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Abstract

The purpose of this thesis is to explore the formal verification technique of comple-

tion functions and equivalence checking by verifying two pipelined cryptographic

circuits, KASUMI and WG ciphers.

Most of current methods of communications either involve a personal computer

or a mobile phone. To ensure that the information is exchanged in a secure manner,

encryption circuits are used to transform the information into an unintelligible

form. To be highly secure, this type of circuits is generally designed such that it

is hard to analyze. Due to this fact, it becomes hard to locate a design error in

the verification of cryptographic circuits. Therefore, cryptographic circuits pose

significant challenges in the area of formal verification.

Formal verification use mathematics to formulate correctness criteria of designs,

to develop mathematical models of designs, and to verify designs against their

correctness criteria.

The results of this work can extend the existing collection of verification methods

as well as benefiting the area of cryptography. In this thesis, we implemented the

KASUMI cipher in VHDL, and we applied the optimization technique of pipelin-

ing to create three additional implementations of KASUMI. We verified the three

pipelined implementations of KASUMI with completion functions and equivalence

checking. During the verification of KASUMI, we developed a methodology to han-

dle the completion functions efficiently based on VHDL generic parameters. We

implemented the WG cipher in VHDL, and we applied the optimization techniques

of pipelining and hardware re-use to create an optimized implementation of WG.

We verified the optimized implementation of WG with completion functions and

equivalence checking. During the verification of WG, we developed the methodol-

ogy of “skipping” that can decrease the number of verification obligations required

to verify the correctness of a circuit. During the verification of WG, we developed

a way of applying the completion functions approach such that it can deal with a

circuit that has been optimized with hardware re-use.
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Chapter 1

Introduction

Many aspects of our life depend vitally on digital systems. Yet, empirical studies

have shown that more than 50 percent of all application specific designs do not work

properly after initial design and fabrication [15]. These dysfunctional designs can

cost millions of dollars and human lives. In 1994, a bug in Intel’s Pentium floating

point unit costs 475 millions US dollars to replace the faulty processors [12]. Also,

a data type conversion bug caused the launch failure of Ariane 5 rocket in 1996. In

principle, verification methods can detect and fix these bugs at the early stages of

the design process.

Verification is the process of proving or disproving the correctness of a design

and it traditionally relies on exhaustive simulation. However, the increasing de-

sign size and complexity make exhaustive simulation an unattractive verification

method due to the unreasonable required amount of time and computing resources.

Formal verification can improve the verification procedure with the application of

mathematics to formulate correctness criteria of designs, to develop mathematical

models of designs, and to verify designs against their correctness criteria. In ex-

change of verifying all possible behaviours of a circuit, formal verification suffers

from the problem of limited capacity where it can only verify detailed models of

small circuits or very abstract models of complex circuits. Therefore, new verifi-

cation methodologies need to be developed in order to increase the probability of

achieving a bug-free design.

Most of current methods of communications either involve a personal computer

or a mobile phone. To ensure that the information is exchanged in a secure manner,

encryption circuits are used to transform the information into an unintelligible

form. To be highly secure, this type of circuits is generally designed such that it

is hard to analyze. Due to this fact, it becomes hard to locate a design error in
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the verification of cryptographic circuits. Therefore, cryptographic circuits pose

significant challenges in the area of formal verification.

The aim of this thesis is to develop new verification methodologies by verifying

cryptographic circuits. The results of this work can extend the existing collection of

verification methods as well as benefiting the area of cryptography. The remaining

of this chapter is organized as follows. In Section 1.1, we give a brief overview of

the verification technique applied in our work and the two cryptographic circuits

used as our verification case studies. Section 1.2 provides an outline of the major

sections in this thesis.

1.1 Overview of Background

In formal verification, the technique of combinational equivalence checking is one

of the most practical developments due to its high capacity and its high degree of

automation. In the design of digital circuits, the initial hardware description of a

specification is referred as the golden reference model. Under the assumption that

the reference model has been verified by simulation or other verification methods,

equivalence checking is used to prove the equivalence between the reference model

and an implementation model which is derived from optimizing the reference model.

The process of equivalence verification compares the combinational logic of the two

models by identifying related signals in the two models, selecting a subset of the

related points to be the compare points, and verifying each compare point in the

implementation model against the corresponding compare point in the reference

model.

In the design of digital circuits, the optimization technique of pipelining is widely

used to increase the circuit throughput by overlapping the execution of instructions.

Pipelining is one of the reasons for the increase in circuit complexity. For example,

the specification of a processor defines how the programmer visible parts of the

processor are updated after one instruction is executed, one cycle per instruction.

However, pipelined implementations of processors can have partially executed in-

structions in the pipeline that cause the programmer visible parts to be updated

at different pipeline stages or cycles. Therefore, a proper relationship between

the specification and the pipelined implementation cannot be established due to

partially executed instructions in the pipeline.

The verification technique of completion functions can establish a proper rela-

tionship between the specification and the pipelined implementation. Completion

2



functions are abstract functions used to decompose the verification of a pipeline into

smaller stage-by-stage verification obligations. For each stage of a pipeline, there

is a completion function that describes the effects on the programmer visible parts

of completing the partially executed instruction in that stage. Thus, applying all

completion functions of a pipeline has the same effect as completing all instructions

in the pipeline. This verification technique can localize an implementation error

and never lead to a false positive verification.

Cryptography is the study of the methods in securing information. To keep

the information secret, encryption is the process used to convert comprehensible

information (i.e. plaintext) into incomprehensible information (i.e. ciphertext).

Decryption is the process used to recover the plaintext from the ciphertext. To-

gether, encryption and decryption constitute a pair of algorithms which is referred

as a cipher. KASUMI, also known as A5/3, is a block cipher in which encryp-

tion and decryption operations are identical with a reversal of the key schedule.

It is used in the confidentiality and integrity algorithms for the third generation

mobile phone system. It operates on blocks of 64 bits and outputs in block of

64 bits. WG is a synchronous stream cipher that has been designed to produce

a keystream with guaranteed randomness properties such as balance, long period,

large and exact linear complexity, 3-level additive autocorrelation and ideal 2-level

multiplicative autocorrelation. Also, it is resistant to Time/Memory/Data tradeoff

attacks, algebraic attacks and correlation attacks.

1.2 Thesis Outline

The remaining of this thesis is organized as follows.

• Chapter 2 provides the necessary background for the reader to understand

the work of this thesis.

• Chapter 3 describes the implementation, optimization, and verification of the

KASUMI cipher.

• Chapter 4 contains the implementation and optimization of the WG cipher.

• Chapter 5 presents the verification of the WG cipher.

• Chapter 6 includes the conclusions of this thesis and future work.

3



Chapter 2

Background Materials

The work of this thesis involves exploring a formal verification strategy in the

verification of two cryptographic circuits. The purpose of this chapter is to provide

the necessary background in order to understand the contribution of this thesis,

and this chapter is organized as follows. Section 2.1 and 2.2 are used to describe

two verification strategies: Burch-Dill flushing and completion functions. Section

2.3 and 2.5 provides an introduction to cryptography as well as a list of algebraic

terminologies. Section 2.4 and 2.6 give a description of our two verification case

studies: the KASUMI cipher and the Welch-Gong cipher.

2.1 Burch-Dill Flushing

The research of this thesis involves the use of the verification strategy known as

completion functions. The verification strategy of completion functions was derived

from an earlier verification strategy called Burch-Dill flushing. To understand the

verification strategy of completion functions, we explain why Burch-Dill flushing

was invented and how it is used to verify a pipelined design in this section.

Burch-Dill flushing [6] is an important concept which was first used in the ver-

ification of pipelined processors. The specification of a processor defines how the

programmer visible parts of the processor are updated after one instruction is exe-

cuted, one cycle per instruction. However, pipelined implementations of processors

can have partially executed instructions in the pipeline that cause the programmer

visible parts to be updated at different pipeline stages or cycles. A contrived exam-

ple based on Figure 2.1 to 2.3 would demonstrate this difficulty in the verification

of pipelined implementations against a non-pipelined specification.
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Figure 2.1: Specification Figure 2.2: Pipelined Implementation

Figure 2.1 illustrates a non-pipelined specification which shows how the pro-

grammer visible parts (registers R1 and R2 ) are updated once per cycle depending

on the instruction at the input of the combinational block A1 and A2. Figure 2.2

depicts a 2-stage implementation of the circuit shown in Figure 2.1 where the stage

registers X1 and X2 are inserted to form the pipeline. For the 2-stage implementa-

tion of Figure 2.2, the circuit can execute two parcels of data simultaneously where

the first pipeline stage writes to the register R1 and the second pipeline stage is

used to update the register R2. Figure 2.3 illustrates how the specification and

the pipelined implementation update their programmer visible parts R1 and R2.

Figure 2.3 is divided into the specification side (top) and the implementation side

(bottom). In addition, there is a legend for the registers (X1, X2, R1, R2 ) at the

right end of Figure 2.3. Both the specification and the pipelined implementation

begin with the registers R1 and R2 holding null values as shown in Figure 2.3.

Then, the instruction sequence of 〈A,B,C〉 is fed, one instruction per cycle, to

both the specification and the pipelined implementation. On the specification side,

both programmer visible parts R1 and R2 are updated at the same cycle for a given

instruction. On the implementation side, the registers R1 and R2 always have dif-

ferent values due to partially executed instructions in the pipeline. Note that the

stage registers (X1, X2 ) only exist on the implementation side due to pipelining,

and that their behaviour are not defined as part of the specification. Thus, the cor-

rectness of the pipelined implementation is independent of the stage registers X1

and X2. Since the programmer visible parts (R1, R2 ) of both the specification and

the pipelined implementation never hold the same value, it is impossible to draw

a proper relationship between the specification and the pipelined implementation

without relying on additional verification methods.

5



Figure 2.3: Difficulty in The Verification of Pipelined Circuits

Figure 2.4 depicts how Burch-Dill flushing can be used to establish a proper

relationship between a pipelined implementation and its specification. In verifying

processors, both the specification and its implementation are modeled as state ma-

chines in Figure 2.4. The transition function Ni(· , I) brings the old implementation

state to its new implementation state given a set of inputs i. Similarly, Ns(· , I)

returns the new specification state given its old specification state and a set of in-

puts i. Burch and Dill used one of the processors properties to establish a proper

relationship between the specification and its pipelined implementation. All pro-

cessors have an input setting Ibubble that causes instructions already in the pipeline

to continue execution while no new instructions are initiated, and this is known

sending “bubbles” down the pipeline. Thus, all instructions already in the pipeline

can be completed by sending a certain number of bubbles down the pipeline, and

this is called Burch-Dill flushing.

In Figure 2.4, both old and new implementation states are flushed to emulate

the effects of completing all instructions already in the pipeline. Thus, all partially

executed instructions are completed and updated the programmer visible parts

accordingly. Then, the proj function extracts the programmer visible parts from

the flushed states. These extracted programmer visible parts can be compared

with the old and the new specification state. The implementation satisfies the

specification if and only if the diagram of Figure 2.4 commutes.
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In order to demonstrate the use of Burch-Dill flushing on a simple example,

the last two cycles of Figure 2.3 are used to partially form Figure 2.5. Note that

Figure 2.5 and Figure 2.4 have similar structure in which the square boxes denotes

exactly the same states (i.e. Old Spec, New Spec, Flushed Old Impl, Flushed New

Impl, Old Impl, New Impl). In Figure 2.5, the specification states (Old, New) and

the implementation states (Old, New) correspond to the ones shown in the last

two cycles of Figure 2.3. However, a proper relationship between the specification

and the pipelined implementation cannot be established due to partially executed

instructions in the pipeline. Burch-Dill flushing is used to build this relationship

from the implementation side (bottom) to the specification side (top) as shown in

Figure 2.5. Since the example is a 2-stage pipeline, two bubbles (denoted as ∅ in the

figure) are sufficient to flush the pipeline and to emulate the effects of completing

all instructions already in the pipeline.

In Figure 2.5, flushing brings the implementation states (Old, New) to their

corresponding flushed states (Old, New). Then, proj function is applied to these

flushed states in order to extract the programmer visible parts (R1, R2 ). In this

simple example, both the implementation and the specification have a matching

set of programmer visible parts (R1, R2 ) and it implies that the implementation

is correct with respect to the specification. In the case that the set of programmer

visible parts does not match, the implementation is said to be incorrect with respect

to the specification.

With the idea of flushing, Burch and Dill verified a pipelined ALU and a subset

of the DLX processor architecture. This section has explained the challenge in the

verification of pipelined circuits, and it has demonstrated how Burch-Dill flushing

is used to establish a proper relationship between a pipelined implementation and

its non-pipelined specification. In the next section, the verification strategy of

completion functions (based on Burch-Dill flushing) is introduced.

2.2 Completion Functions

In this section, we describe why completion functions were invented, what they are

and how they are used for the verification of pipelined circuits.

Burch-Dill flushing of Section 2.1 works well in the verification of small scale

pipelined circuits, e.g. in-order pipelines with small number of stages. However,

Burch-Dill flushing runs into the state-space explosion problem for large scale de-

signs that support out-of-order execution and have a large number of pipeline stages.
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Figure 2.4: Burch-Dill Flushing Figure 2.5: Flushing Example

Completion functions are abstract functions used to decompose Burch-Dill flush-

ing’s monolithic verification in Figure 2.4 into multiple smaller verification obliga-

tions. Thus, the completion functions approach is a solution to Burch-Dill flushing’s

state-space explosion problem. For each stage of a pipeline, there is a completion

function that describes the effects on the programmer visible parts of completing

the partially executed instruction in that stage. Thus, applying all completion

functions of a pipeline has the same effect as flushing a pipeline. Hosabettu et al.

used completion functions over Burch-Dill flushing to establish a proper relation-

ship between a pipelined implementation states and its non-pipelined specification

states. This verification technique can localize an implementation error and never

lead to a false positive verification.

A contrived example in Figure 2.6 shows how completion functions are used

for the verification of a 2-stage pipeline. The pipelined implementation satisfies its

specification if and only if the diagram in Figure 2.6 commutes. A pipeline of n-

stage requires n+1 verification obligations to check its correctness. In this example,

the first obligation V O1 verifies the second or last pipeline stage by comparing the

state a produced by applying last stage’s completion function C2 to the state a′

produced by taking an implementation step Ni(·, I). The second obligation V O2

is used to verify the first pipeline stage, and it compares the state b produced by
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Figure 2.6: Completion Functions Figure 2.7: Completion Functions Example

the completion function C1 to the state b′ produced by taking an implementation

step and then applying C2. The last or third verification obligation compares the

specification stepNs(·, I) to the completion function of the first stage C1. Therefore,

mistakes in building these completion functions can be detected with this final

verification obligation. Also, implementation bugs can be localized due to the

stage-by-stage verification given that the completion functions are correct.

In order to show the similarities and the differences between the completion

functions approach and Burch-Dill flushing, the same example of Figure 2.5 is

verified with completion functions. As depicted in Figure 2.7, the four square boxes

represent the four states (Old Impl State, New Impl State, Old Spec State, New Spec

State). In Figure 2.7, note that the completion functions have replaced Burch-Dill

flushing in establishing a proper relationship between the implementation states

and the specification states.

The completion functions approach and Burch-Dill flushing uses the same cor-

rectness criteria as follows. Given that the implementation and the specification

start in any matching pair of states (i.e. Old Impl State matches Old Spec State),

the implementation is said to be correct when taking an implementation step

Ni(· , I) on the implementation side leads to a matching pair of states (i.e. New

Impl State matches New Spec State) as taking a specification step Ns(· , I) on the
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specification side. In other words, the implementation is correct when the diagrams

(Figures 2.5 and 2.7) commute.

The completion functions approach differs from Burch-Dill flushing in the way

it establishes the relationship from the implementation side to the specification side

as shown in Figure 2.7. Since Burch-Dill flushing runs into the state-space explo-

sion problems for pipelines with large number of stages, the completion functions

decompose the 2-stage pipeline verification of Figure 2.5 into 3 smaller verification

obligations as shown in Figure 2.7.

In Figure 2.7, the first verification obligation V O1 is used to verify the correct-

ness of the second stage of the pipeline in Figure 2.2. It compares the value of

the register R2 produced by the completion function C2 to the one produced by

taking an implementation step as shown in Figure 2.7. The completion function

C2 completes the instruction A in the stage register X2 and updates the register

R2 accordingly. The implementation step updates the register R2 according to the

circuit shown in Figure 2.2. Thus, the first verification obligation V O1 verifies if

the second pipeline stage is equivalent to the completion function C2.

Similarly, the next verification obligation V O2 of Figure 2.7 is used to verify

the correctness of the first pipeline stage in Figure 2.2. It compares the values of

the register set (R1, R2 ) generated by the completion function C1 to the values

created by taking an implementation step followed by the completion function C2

in Figure 2.7. Since V O2 verifies the correctness of the first pipeline stage, the

completion functions C1 is applied to the stage register X1 to emulate the effects

of completing the instruction B as shown in Figure 2.7. The implementation step

updates the register R1 according to the circuit shown in Figure 2.2 and it is

followed by the completion function C2 to update the register R2. Thus, the second

verification obligation V 02 verifies if the first pipeline stage is correct with respect

to the behaviour given by the completion function C1.

Up to this point of the verification, it has been shown that the pipeline stages are

functionally correct with respect to their completion functions (C1 or C2). However,

these completion functions can have design bugs buried in them. Finally, the last

or third verification obligation compares the specification step to the completion

function of the first pipeline stage C1. Therefore, any bugs in the completion

functions are caught with this final verification obligation.

Completion functions have been investigated under several verification tech-

niques. Hosabettu et al. invented completion functions and verified complex out-

of-order processors in an interactive theorem prover [10]. Berezin et al. applied
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completion functions to symbolic model checking in verifying an abstract model

of Tomasulos algorithm [5]. Velev used completion functions and automated first-

order decision procedures to verify abstract models of out-of-order processors [18].

Aagaard et al. combined completion functions and equivalence checking for the

verification of a 32-bit OpenRISC processor and a Sobel edge-detector circuit at

the register- transfer-level [3].

This section has covered the need for completion functions, how they are applied

in the verification of a 2-stage pipeline, their similarities and their differences to

Burch-Dill flushing, and how they have been used in other work.

2.3 The Basics of Cryptography

To better understand the two cryptographic circuits, this section provides an in-

troduction to cryptography. This section describes the following: cryptography,

encryption, decryption, symmetric key algorithms, asymmetric key algorithms, key

scheduling, block ciphers, and stream ciphers. Section 2.4 describes the KASUMI

cryptographic algorithm, and Section 2.6 provides the background of the Welch-

Gong cipher.

Cryptography is the study of the methods in securing information. To keep

the information secret, encryption is the process used to convert comprehensi-

ble information (i.e. plaintext) into incomprehensible information (i.e. cipher-

text). Decryption is the process used to recover the plaintext from the ciphertext.

Together, encryption and decryption constitute a pair of algorithms which is re-

ferred as a cipher. The operations of a cipher are not just determined by the

algorithm, but they also depend on a key. When a different key is used for the

encryption/decryption of the same plaintext/ciphertext, the cipher produces a cor-

responding ciphertext/plaintext for each key. Thus, keys make it more difficult in

establishing the relationship between the plaintext and the ciphertext.

Depending on the type of key used, a cipher can be categorized as a symmetric

key or an asymmetric key algorithm. In a symmetric key algorithm, the same key

is used for both encryption and decryption. The key used to encrypt a plaintext

differs from the key used to decrypt it in an asymmetric algorithm. Certain types of

ciphers use an algorithm, known as the key schedule, to compute smaller keys from

the input key. Then, the smaller keys are used during encryption/decryption. The

contribution of this thesis involves the verification of two symmetric key algorithms.
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Figure 2.8: Block Ciphers Figure 2.9: Stream Ciphers

Hence, this section focuses on symmetric key algorithms and any information rele-

vant to the understanding of this thesis.

A symmetric key algorithm can be classified as a block cipher or a stream cipher

depending on the type of input data. As the name suggested, block ciphers have

the characteristic of operating on block of n-bit. Figure 2.8 illustrates the general

structure of a block cipher. A block cipher takes a plaintext/ciphertext of n-bit

and a key, and it computes the corresponding ciphertext/plaintext of n-bit. In

contrast, stream ciphers encrypt/decrypt one bit at a time. Figure 2.9 shows the

general structure of a stream cipher. Given a key, the keystream generator of

the stream cipher produces a pseudorandom sequence of bits (keystream). During

encryption, the keystream is XORed to the plaintext in a bitwise fashion. Similarly,

decryption recovers the original plaintext by XORing the same keystream bits to its

corresponding ciphertext bits. Thus, it usually requires the sender and the receiver

to be synchronized in producing an identical keystream for accurate encryption and

decryption. This type of cipher is known as synchronous stream cipher.

2.4 The KASUMI Cipher

In this section, we provide a description of the algorithm that we implemented in

our first verification case study: the KASUMI cipher. Chapter 3 describes our

implementation, optimization, and verification of the KASUMI algorithm.

KASUMI, also known as A5/3, is a block cipher in which encryption and de-

cryption operations are identical with a reversal of the key schedule. Therefore,
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its implementation size can be reduced by nearly half which leads to its use in

the confidentiality and integrity algorithms for the third generation mobile phone

system. It operates on blocks of 64 bits and outputs in block of 64 bits.

In Figure 2.10, the algorithm begins by dividing a 64-bit input i into two 32-bit

strings L0 and R0 which are then introduced into the first round of the cipher.

KASUMI has a total of eight rounds in which all even rounds are identical and all

odd rounds are the same. A 128-bit input key is used to derive the subkeys KLi,

KOi, KIi through XOR and bitwise permutations of the input key for each round

i = 1 . . . 8, and this is called the key schedule. At the end of the final round, the

algorithm terminates with a 64-bit output.

Every round of the cipher in Figure 2.10 sends two 32-bit inputs Li−1 and Ri−1

through the FL and FO subfunctions to compute two 32-bit outputs Li and Ri

defined as:

Li =

{
Ri−1 ⊕ FO(FL(Li−1, KLi), KOi, KIi) i = 1, 3, 5, 7

Ri−1 ⊕ FL(FO(Li−1, KOi, KIi), KLi) i = 2, 4, 6, 8
(2.1)

Ri = Li−1 i = 1 . . . 8 (2.2)

The FL subfunction splits a 32-bit input into two 16-bit strings L and R, and it

divides the 32-bit subkey KLi into two 16-bit subkeys KLi,1 and KLi,2. A 32-bit

output is obtained through the concatenation of the two 16-bit strings L′ and R′

defined as:

R′ = R⊕ROL(L ∩KLi,1) i = 1 . . . 8 (2.3)

L′ = L⊕ROL(R′ ∪KLi,2) i = 1 . . . 8 (2.4)

In Figure 2.11, the FO subfunction starts by splitting a 32-bit input into two 16-bit

strings L0 and R0 which are then fed into three identical rounds formed mainly by

the FI subfunction. The 48-bit subkeys KOi and KIi are each divided into their

three corresponding 16-bit subkeys KOi,j and KIi,j for i = 1 . . . 8 and j = 1 . . . 3.

Each round of the FO subfunction is defined as:

Rj = FI(Lj−1 ⊕KOi,j, KIi,j)⊕Rj−1 i = 1 . . . 8, j = 1 . . . 3 (2.5)

Lj = Rj−1 i = 1 . . . 8, j = 1 . . . 3 (2.6)

The FI subfunction applies many bitwise permutations, truncations, and XOR to

obscure the relationship between the input and the output. Its detailed description

is not necessary to understand the remaining chapters of this thesis, and the reader

can obtain that information in the specification of KASUMI [1].
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Figure 2.10: KASUMI Circuit

Figure 2.11: FO Circuit
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2.5 Algebraic Terminology for Finite Fields and

Normal Basis

In order to understand the description of the next cryptographic circuit, the reader

is required to have some knowledge about abstract algebra. In this section, the

following terms are defined: field, finite field, extension field, basis, primitive poly-

nomial, polynomial basis, and normal basis.

Field: a field is an algebraic structure in which the operations of addition,

subtraction, multiplication and division are define with the same rules that hold

for normal arithmetic.

Finite field: finite field, also known as Galois field, is a field that contains

finitely many elements. F2 denotes the finite field with two elements, 0 and 1.

Extension field: let L be a field. If K is a subset of L which is closed with

respect to the field operations of addition and multiplication in L and the additive

and multiplicative inverses of every element in K are in K, then L is an extension

field of K. F2m denotes the extension field of F2 with 2m elements, where each

element is represented as a m-bit binary vector. Thus, a field F2m can be viewed

as an m-dimensional vector space defined over F2.

Basis: basis is a set of vectors that, in a linear combination, can express every

vector in a given vector space and such that no element of the set can be expressed

as a linear combination of the others.

Primitive polynomial: let the set of vectors {1, β, β2, . . . , βm−1} be the basis

for the field F2m . Then, a polynomial with coefficients in F2 is a primitive polyno-

mial if its root is β ∈ F2m , and it has to be the smallest degree polynomial having

β as a root.

Polynomial basis: let β ∈ F2m be the root of a primitive polynomial of degree

m over F2 . Then, the set of vectors {1, β, β2, . . . , βm−1} is called the polynomial

basis or the canonical basis of F2m over F2.

Normal Basis: let the set of elements P = {γ, γ2, γ4, . . . , γ2m−1} be the basis

of F2m over F2. Then, the basis P is called a normal basis and γ is called a normal

element.
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2.6 The Welch-Gong Cipher

This section describes the circuit structure proposed by Gong and Nawaz [14], and

it explains how the cipher is initialized prior its use for encryption/decryption.

Chapter 4-5 describes our implementation, optimization, and verification of the

Welch-Gong cipher.

WG is a synchronous stream cipher that has been designed to produce a keystream

with guaranteed randomness properties such as balance, long period, large and ex-

act linear complexity, 3-level additive autocorrelation and ideal 2-level multiplica-

tive autocorrelation. Also, it is resistant to Time/Memory/Data tradeoff attacks,

algebraic attacks and correlation attacks.

Figure 2.12 shows the general circuit structure of the WG family cipher. It

consists of a linear feedback shift register, also called LFSR, followed by a WG

transformation block. The mathematical definition of the WG transformation f(x)

is described here:

f(x) = Trm
1 (t(x+ 1) + 1), x ∈ F2m (2.7)

The trace function Trm
1 (x) from F2m → F2 is defined as:

Trm
1 (x) =

m−1∑
i=0

x2mi

, x ∈ F2m (2.8)

The function t(x) exists only if m 6= 0mod 3, and it is defined as:

t(x) = x+ xq1 + xq2 + xq3 + xq4 , x ∈ F2m (2.9)

For k ∈ N and m = 3k − 1, qi’s are defined as:

q1 = 2k + 1

q2 = 22k−1 + 2k−1 + 1

q3 = 22k−1 − 2k−1 + 1

q4 = 22k−1 + 2k − 1

(2.10)

and for m = 3k − 2, they are defined as:

q1 = 2k−1 + 1

q2 = 22k−2 + 2k−1 + 1

q3 = 22k−2 − 2k−1 + 1

q4 = 22k−1 − 2k−1 + 1

(2.11)
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Figure 2.12: WG Family Circuit Structure

Various implementations of the WG cipher exist, and they have a different level

of security depending on their design parameters. The number of LFSR stages

l, the feedback polynomial of the LFSR, the number of bits m used for the WG

transform computation, and the basis used to represent each field element affect

the implementation complexity and security. A detailed design analysis of the

WG family ciphers and how to select these design parameters are not relevant to

the remaining chapters of this thesis, and the reader can find this information in

Nawaz’s PhD thesis [13].

The implementation presented in [14] is one of the two verification case studies

of our thesis and it is described in this section. Figure 2.13 illustrates the 11-stage

LFSR(l = 11) over F229(m = 29) in which its feedback polynomial p(x) is defined

as:

p(x) = γ · x11 + x10 + x8 + x5 + x2 + x+ 1 (2.12)

where β ∈ F229 and the set {1, β, β2, . . . , βm−1} forms the polynomial basis of F229 .

Also, β is the root of the primitive polynomial g(x) defined as:

g(x) =x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17+

x14 + x12 + x11 + x10 + x7 + x6 + x4 + x+ 1
(2.13)

over F2. Note that Si ∈ F229 and the feedback polynomial of the LFSR includes a

normal basis multiplication with the element γ which is defined, in the polynomial

form, as:

γ =β1 + β2 + β3 + β5 + β6 + β7 + β10 + β11 + β12 + β13+

β14 + β15 + β16 + β17 + β20 + β23 + β24 + β26 + β27
(2.14)

γ is a normal element and it is used to define the normal basis of {γ20
, γ21

, γ22
, . . . , γ228}.

For m = 29, t(x) is defined as:

t(x) = x+ x210+1 + x219+29+1 + x219−29+1 + x219+210−1, x ∈ F229 (2.15)

and the WG transformation becomes:

f(x) = Tr29
1 (t(x+ 1) + 1), x ∈ F229 (2.16)
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Figure 2.13: LFSR Feedback Polynomial

The WG transformation can be implemented in both the normal basis and the

polynomial basis representation. However, the normal basis representation offers

the following advantages:

• From the definition of a normal basis {γ, γ2, γ4, . . . , γ2m−1} in F2m over F2,

shifting the bits of an element x cyclically to right by i position computes x2i
.

Thus, the squaring operation consists of rewiring the bits of a field element in

terms of hardware. This operation comes up multiple times in the definition

of t(x).

• In normal basis representation, the all ones vector represent 1. Therefore,

the operation of adding 1 to a field element becomes inverting all the bits

of that element. This operation occurs twice in the definition of the WG

transformation, and it requires 2m inverters given a the field F2m .

• In normal basis representation, the trace function Trm
1 (x) of any normal basis

elements is one. Therefore, the trace function of a field element is done by

adding all the bits of that element over F2.

Nawaz [13] has showed that equation (2.15) can be written in order to decrease the

implementation area of WG as follows:

t(x) = x+ x210+1 + x219+29+1+ x219−29+1 + x219+210−1

= x+ x210+1 + x219+29+1+ x(210−1)·29+1 + x219+(210−1) (2.17)

Figure 2.14 shows the implementation of the WG transformation for F229 according

to the properties of its normal basis representation. (x)−1 denotes the normal basis

inversion of x in F229 . x >> i denotes cyclic shift of x, i positions to the right where

c ≥ 0. x ⊗ y means normal basis multiplication of x and y in F229 . x ⊕ y means

bitwise XOR of x and y. Finally, ⊕(x) means XORing all 29 bits of x over F2.

The WG implementation described above can be used with key sizes of 80, 96,

112 and 128 bits. In addition, it can take either a 32 or a 64 bits Initialization

Vector (IV). For the purpose of this thesis, only a 80-bit key and a 32-bit IV are

18



Figure 2.14: Implementation of WG Transformation

considered. The first step in initializing the cipher is to load the key bits and IV

bits into the LFSR. Each stage i of the LFSR is denoted by s(i) or more precisely

S1,...,29(i) where 1 ≤ i ≤ 11. Similarly, the key bits are denoted as k1,...,j where

1 ≤ j ≤ 80 and the IV bits as IV1,...,k where 1 ≤ k ≤ 32. The 80-bit key and the

32-bit IV are loaded into the LFSR as described:

S1,...,16(1) = k1,...,16 S1,...,16(2) = k17,...,32 S1,...,16(3) = k33,...,48

S1,...,16(4) = k49,...,64 S1,...,16(5) = k65,...,80 S1,...,16(9) = k1,...,16

S1,...,16(10) = k17,...,32 ⊕ 1 S1,...,16(11) = k33,...,48

S17,...,24(1) = IV1,...,8 S17,...,24(2) = IV9,...,16 S17,...,24(3) = IV17,...,24

S17,...,24(4) = IV25,...,32

To complete the LFSR loading phase, all the undefined bits of the LFSR are

set to zero. Once the LFSR has been loaded with the key and IV, the circuit is

run for 44 clock cycles with the additional connection shown in Figure 2.15. Once

the key has been initialized, the feedback connection in Figure 2.15 is disconnected

from the LFSR and the first bit of the keystream is given by the 1-bit output of

the WG transformation after one clock cycle.

This section has given the description of the Welch-Gong cipher, its mathemat-

ical formulation, the circuit structure of its 29-bit implementation based on normal

basis, and how to initialize the cipher with the key and the initialization vector.
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Figure 2.15: Key Initialization Phase
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Chapter 3

KASUMI: Design, Optimizations

and Verification

The contribution of this thesis is to verify two cryptographic circuits using the

verification strategy of completion functions at the register transfer level. The goal

of this chapter is to show how completion functions are used in the verification of

the KASUMI cipher, and this chapter is organized as follows. Section 3.1 describes

the design process of our non-pipelined KASUMI implementation, and Section 3.2

explains how RTL simulation is used to verify this non-pipelined implementation.

Section 3.3 illustrates how the optimization of pipelining produces three pipelined

implementations of KASUMI. Section 3.4 introduces the verification methodologies

used to verify these three pipelined implementations, and Section 3.5 shows the

results of our verification.

3.1 The First Design

The goal of this chapter is to explore completion functions in the verification of

pipelined implementations of KASUMI against its non-pipelined specification at

the register transfer level. Therefore, we first need to build a non-pipelined imple-

mentation of KASUMI such that it can be used as the specification.

The circuit structure of the KASUMI cipher and its circuit operation were

discussed in Section 2.4. Our research work began with the design of a purely

combinational or non-pipelined implementation of the KASUMI cipher using the

VHDL hardware description language. Since the KASUMI circuit has an highly

recursive and modular structure formed by several components (FI, FO, FL), we
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have taken a bottom-up modular design approach. We started by implementing

the FI component because it is the lowest level component in the KASUMI circuit.

Then, the FO component was built using a composition of XOR gates, bitwise

permutations and multiple FI components. The FL component was implemented

independently of the other components following the description in Section 2.4.

With the implementation of the FO and the FL components, we constructed all

even and odd rounds of KASUMI. Our first VHDL implementation of KASUMI was

completed by connecting each round of the cipher with its corresponding subkey

that was generated by the key scheduling algorithm described in the specification

of KASUMI [1].

This first implementation was synthesized using Mentor Graphics Precision

RTL synthesis tool. On an Altera Stratix II series field programmable gate arrays

(FPGA) device EP2S15F484C, our combinational implementation of KASUMI has

an area of 4748 logic elements and a performance of 9 MHz when registers are

inserted at the inputs and at the outputs. The verification of this combinational

implementation is described in the next section.

3.2 Formulating The Specification

Various verification technologies and strategies can be applied for the verification

of a circuit at different level of abstraction. Our work focuses on exploring the

verification strategy of completion functions in the verification of pipelined imple-

mentations with respect to a combinational specification at the register transfer

level. Therefore, we are required to verify the correctness of our combinational

implementation of KASUMI because it will be used as the specification for the

verification of the pipelined implementations of KASUMI.

Since the main focus of our work is to verify pipelined circuits and a set of test

vectors are provided in the specification of KASUMI [2], we have used conventional

RTL simulation for the verification of the combinational implementation of KA-

SUMI. In [2], various sets of test vectors are given for all three major components

(FI, FL, FO) as well as for the whole KASUMI cipher. Thus, the combinational

implementation is defined as correct if and only if it generates the expected outputs

given its associated set of test vectors. However, there are still possibilities for a

subtle bug to be undetected because our RTL simulation does not cover all possible

inputs to the KASUMI cipher.
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Figure 3.1: FI Test Vectors Results

Similar to our modular bottom-up design approach, we verified the combina-

tional KASUMI, components by components, starting from the smallest building

blocks. This simulation methodology would localize an implementation bug to a

component. For all of the RTL simulation runs, we have used Mentor Graphics

ModelSim. Figure 3.1 shows the simulation results of the FI component in which

in16 is the 16-bit input, key16 is the 16-bit subkey KL and out16 is the 16-bit

output. Figure 3.2 illustrates fragments of test vectors in the specification of KA-

SUMI [2], and the circled test vectors correspond to the waveform shown in Figure

3.1. Notice that all vectors holds hexadecimal values and that only a subset of test

vectors from the specification of KASUMI[2] are presented here. Figure 3.3 depicts

the verification of the FO component, where in32 and out32 are the 32-bit input

and ouput, ki48 and ko48 are the 48-bit subkeys KI and KO respectively. Figure

3.4 illustrates the test vectors results of the FL component in which in32 is the

32-bit input, out32 is the 32-bit output and kl32 is the 32-bit subkey KL. Finally,

we have verified that our combinational implementation of KASUMI produces the

expected 64-bit output out64 given its corresponding 64-input in64 and 128-bit key

key128 as shown in Figure 3.5. Through the key scheduling algorithm, the 128-bit

key key128 has properly transformed into three sets (KL, KI, KO) of eight sub-

keys for all eight rounds of the KASUMI cipher as shown in Figure 3.5. For all

three sets (KL, KI, KO), the subkeys of the first round are denoted by (7) and

the subkeys of the eighth round are denoted by (0).

Our combinational implementation of KASUMI was verified through various

sets of test vectors, and no bugs were found. Therefore, this implementation can

serve as a specification for the pipelined implementations of KASUMI that are

described in the next section, when using the verification strategy of completion

functions.
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Figure 3.2: Fragments of Test Vectors from KASUMI Specification

Figure 3.3: FO Test Vectors Results

Figure 3.4: FL Test Vectors Results
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Figure 3.5: KASUMI Test Vectors Results
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3.3 Pipelined Implementations

In Section 3.1 and 3.2, we have explained how we obtained the combinational spec-

ification of KASUMI. In this section, we describe how the optimization technique

of pipelining was used to create three pipelined implementations of KASUMI.

KASUMI was our first case study in exploring the verification strategy of com-

pletion functions at the RTL abstraction level. Therefore, we have used pipelining

only to create three pipelined implementations of KASUMI, without any additional

optimizations. For pure datapath circuits, the optimization technique of pipelining

simply inserts registers at various locations of the implementation to divide the

circuit into pipeline stages. In our second verification case study, we have explored

the completion functions further by applying more sophisticated optimizations to

the Welch-Gong cipher.

Since the KASUMI circuit is formed by eight rounds of FL and FO components,

it was natural to insert registers at the beginning of each round so that all pipeline

stages have an equal amount of gate delay. Thus, our first pipelined implementation

of KASUMI consists of a 8-stage pipeline where the set of registers A are inserted

at the beginning of each round of the cipher as shown in Figure 3.6. Note that both

FL and FO are purely combinational circuits and that the set of registers B are

not present in the 8-stage implementation of KASUMI. For our second pipelined

implementation of KASUMI, we have further divided each pipeline stage of the

8-stage implementation into two pipeline stages by inserting the set of registers B

between the FL and the FO components as shown in Figure 3.6. Thus, our second

pipelined implementation has 16 stages in which each stage contains either the FL

or the FO components. For our third pipelined implementation of KASUMI, we

have divided the FO component of the 16-stage implementation of KASUMI into a

3-stage pipeline by inserting the set of registers C as depicted in Figure 3.7. Hence,

our third pipelined implementation of KASUMI has 32 stages in which each stage

contains either the FL or the FI components.

The area and performance of our pipelined implementations are shown in Figure

3.8, where LUT denotes lookup table. All of our area and performance results

were synthesized on an Altera Stratix II series FPGA device EP2S15F484C using

Mentor Graphics PrecisionRTL. Thus, our 8-stage implementation of KASUMI has

an area of 4518 LUTs with a throughput of 3.9 Gbps. In Figure 3.8, we have

included the latest(2005) optimized implementations of KASUMI by Kitsos et al.

[11]. All of their implementations were synthesized onto the Xilinx FPGA device

XCV300E-8BG432. Their four pipelined implementations are divided into two main
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Figure 3.6: Registers Locations in KASUMI Figure 3.7: Registers Locations in FO

architectures: 8R and 2R. In the 8R architecture, Kitsos et al. [11] have defined

each round of the KASUMI circuit to be a pipeline stage (similar to our 8-stage

implementation). For the 2R architecture, the optimization of area re-use has been

applied to reduce the number of pipline stages to two, where one stage is an odd

round of KASUMI and the second stage is an even round of the cipher. Each of these

two architectures are further divided into two different implementations, where

Comb denotes that the FI component is implemented with combinational logic

and ROM means that the FI block is implemented as lookup table with read-only

memory (ROM). In Figure 3.8, both 8R ROM and 2R ROM require less LUTs

for their implementations because their FI components are implemented with read-

only memory. 8R ROM uses 2752 bytes of read-only memory, and 2R ROM uses

688 bytes of read-only memory. Finally, note that our 8-stage implementation has

only half the throughput of the 8R Comb implementation. This difference is due to

the fact that Kitsos et al. have used Double Edge Trigger (DET) pipelining in which

the data are transferred between two successive registers in both rising and falling

edges of the clock signal. For our pipelined implementations of KASUMI, we have

used conventional single edge-triggered registers in which the data are transferred

between two successive registers only at rising edges of the clock signal. Given the

same circuit, replacing its single edge-triggered registers with double edge-triggered

ones would double its throughput because data are processed at both rising and

falling edges of the clock signal instead of being processed only at rising edges of
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the clock signal. In other words, a double edge-triggered pipeline would give two

outputs per cycle (one at rising edge, one at falling edge of the clock signal) given

that its single edge-triggered version produces one output per cycle.

In this section, we have provided descriptions of our pipelined implementations

of KASUMI. Next section describes the verification methodology that we have

applied with the verification of these three pipelined implementations.

3.4 Verification Methodology

In the verification of the three pipelined implementations of KASUMI, we have de-

vised a set of guidelines in using the completion functions efficiently. This section

describes our verification methodologies, and it is organized as follows. Section

3.4.1 provides the general steps of our verification, and a contrived example is used

to show how completion functions are applied in our verification. Section 3.4.2

describes two important VHDL features used in our verification methodology. Sec-

tion 3.4.3 shows how our methodology fits into a single entity design environment.

Then, we show the advantages of our methodology by applying it to a multiple

entities design environment in Section 3.4.4.

3.4.1 General Guidelines

For the verification of our pipelined implementations of KASUMI, we have com-

bined the verification technology of equivalence checking with the verification strat-

egy of completion functions. A disadvantage of combinational equivalence checking

is that it cannot verify pipelined implementations against a non-pipelined specifica-

tion as it is limited to comparing the next-state equations of compare points based

only on the combinational circuitry driving the points. By applying the verification

strategy of completion functions with equivalence checking, pipelined implementa-

tions can be verified against its non-pipelined specification. The general outline of

this verification has the following steps:

1. Create a first purely combinational implementation of the circuit as described

in Section 3.1. This is usually also the first step in designing circuits.

2. Verify the correctness of the combinational implementation using suitable

verification technologies and strategies as explained in Section 3.2. This ver-
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Figure 3.8: Area and Performance Results of Various KASUMI Designs
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ified combinational implementation is used as the specification if there are

additional optimized implementations of the same circuit to be verified.

3. Optimize the combinational implementation with optimization techniques

such as pipelining or area re-use to achieve desired area/performance (de-

scribed in Section 3.3).

4. For each pipeline stage of the optimized design, build its completion function

such that it describes the effects on the programmer visible parts upon com-

pleting the instruction in that pipeline stage. Depending on which pipeline

stage is under verification, the completion functions are either connected to

the stage registers or to the outputs of the stage combinational circuitry. This

is explained in this section.

5. Using the completion functions, verify the optimized design stage-by-stage

starting from the last pipeline stage. The verification of each pipeline stage

requires one equivalence check. The optimized design is correct if the equiv-

alence checker returns true when verifying the completion function of the

first stage against the specification (verified purely combinational implementa-

tion). Therefore, there are n+1 verification obligations for a n-stage pipeline.

To demonstrate the last two steps of our methodology mentioned above, we have

used the 2-stage verification example shown in Figure 3.9. Note that Figure 3.9

has already appeared in Section 2.2 for the general explanation of the completion

functions approach that is used for the verification of the 2-stage implementation in

Figure 2.2. This section describes the details of applying the completion functions

approach in combination with equivalence checking.

The verification of our 2-stage contrived example in Figure 3.9 requires a total

of three verification obligations. The first verification obligation V O1 is to verify

the correctness of the last pipeline stage (i.e. second stage) with respect to the

completion function C2 that describes the correct behaviour. Figure 3.10 illustrates

the first equivalence check which corresponds to our first verification obligation

V O1. On the left hand side of Figure 3.10, the completion function C2 is connected

to the stage registers X2 and emulates the effects of completing the instructions

in the second pipeline stage. This corresponds to taking the register R2 from

state “-” to state “A” (through completion function C2) in Figure 3.9. On the

right hand side of Figure 3.10, the combinational block A2 is connected to the

stage registers X2 and this circuit is the original pipelined implementation. This

corresponds to taking the register R2 from state “-” to state “A” (through taking
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Figure 3.9: 2-Stage Pipeline Verification

Structure

Figure 3.10: First Verification Obligation

an implementation step) in Figure 3.9. Note that the combinational block A2 of

Figure 3.10 is viewed as the implementation step. Thus, the first equivalence check

verifies if the combinational block A2 has the same behaviour as the completion

function C2.

In Figure 3.9, the second verification obligation V O2 is used to verify the correct-

ness of the first pipeline stage according to the behaviour given by the completion

function C1. Similarly, Figure 3.11 shows the equivalence check that is associated

to our second verification obligation V O2. On the left hand side of Figure 3.11, the

effect of completing the instruction in the first stage is achieved by connecting the

completion function of the first stage (C1) to the stage registers X1. This corre-

sponds to taking the set of registers (R1, R2 ) from the state (A, −) to the state

(B, B) (through completion function C1) in Figure 3.9. On the right hand side

of Figure 3.11, the completion function of the second stage (C2) is connected to

the pipelined implementation through the outputs of the combinational block A1.

This corresponds to taking the set of registers (R1, R2 ) from the state (A, −) to

the state (B, B) (through completion functions C2 and an implementation step) in

Figure 3.9. Note that the combinational block A1 of Figure 3.11 is viewed as the

implementation step in Figure 3.9. Hence, the second equivalence check verifies if
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Figure 3.11: Second Verification Obliga-

tion

Figure 3.12: Third Verification Obligation

the combinational block A1 is correct with respect to the behaviour given by the

completion function C1.

The previous two verification obligations (V O1 and V O2) have verified both

pipeline stages under the assumption that the completion functions are bug-free.

Hence, the third verification obligation is to verify the correctness of the completion

functions with respect to the specification. Figure 3.12 depicts the equivalence run

for the third verification obligation. The equivalence checker verifies if the comple-

tion function of the first stage (C1) is equivalent to the non-pipelined specification.

In Figure 3.9, this corresponds to showing that the diagram commutes by proving

that the completion function C1 is equivalent to the specification step. Thus, the

verification of a 2-stage pipeline is completed with 3 verification obligations.

As mentioned earlier, different completion functions are connected to different

locations of the circuit depending on the pipeline stage being verified. In our 2-stage

contrived example, the completion function of the second stage C2 is connected to

the stage register X2 for the verification of the second stage in Figure 3.10. For the

verification of the first stage in Figure 3.11, the completion function C2 is connected

to the outputs of the combinational block A1.

In VHDL, the process of connecting the completion functions to various registers

can be cumbersome because the registers buried inside a VHDL entity cannot be
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1 if <boolean condition> generate

2 ... hardware to be conditionally synthesized ...

3 end generate;

4 ... hardware to be synthesized ...

Figure 3.13: If-Generate Statement

accessed without declaring additional output ports. It is undesirable to have all

the completion functions synthesized during equivalence checking because it would

increase the size of the circuit being compared. Therefore, there is a need for a

methodology to efficiently control the completion functions in VHDL. This can

be achieved by a combination of the “if-generate” statements and the “generic”

parameters in VHDL, which are introduced in the next subsection.

3.4.2 Background of VHDL Features

This subsection provides the background of two important VHDL features, if-

generate statements and generic parameters, used as part of our verification method-

ology. Section 3.4.3 and 3.4.4 illustrate how these two VHDL features are applied

with our verification methodology.

If-generate statements are evaluated at elaboration time to conditionally create

some hardware, and they are similar to #ifdef in C. Figure 3.13 shows some VHDL

code fragments which include the if-generate statement. Line 1-3 of Figure 3.13

is the general structure of an if-generate statement. Line 2 is the body of the if-

generate statement, and its hardware is generated if the boolean condition of line

1 is true. All VHDL codes outside the scope of the if-generate statements are

synthesized into actual hardware as shown on line 4 of Figure 3.13. The boolean

condition controls which completion function to be synthesized and how they would

be connected to the circuit depending on the pipeline stage under verification.

The VHDL generic parameters can be used as control parameters, and they are

introduced next.

Generic parameters are evaluated at elaboration time, and they are analogous

to #define in C. Generic parameters are constant values and they are declared

as part of a VHDL entity declaration as shown in Figure 3.14. Unlike the port

parameters of line 3 in Figure 3.14, the generic parameters of line 2 are not actual

ports of the circuit and they would not be synthesized into any additional signals

or hardware. Generic parameters are commonly used to modify the bit width of
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1 entity <entity name> is

2 generic( ... list of generic parameters ...);

3 port( ... list of input and output ports ...);

4 end entity;

Figure 3.14: Generic Parameters

an implementation, such as the bit width of an adder, during hardware synthesis.

Generic parameters can only be assigned as constant values. A common pitfall

in using generic parameters is to assign constant signals to generic parameters.

However, the VHDL compiler interprets the “signal” type to have dynamic values

that can be modified during circuit operation. Generic parameters can help the

verification engineer to manage the completion functions in VHDL as part of the

boolean condition. Our methodology in using completion functions efficiently in

VHDL is described next.

3.4.3 Single Entity Environment

This subsection explains our verification methodologies and recommendations in the

application of completion functions in equivalence checking at the register transfer

level.

In using the verification strategy of completion functions for the equivalence

checking of pipelined implementations against its non-pipelined specification, the

first step is to build the completion functions for each pipeline stage. We recommend

the circuit designers to include the completion functions for each pipeline stage

with their implementation because writing the completion functions requires an in-

depth knowledge about the circuit operation and the designers already have that

information. If the verification engineers are to build the completion functions,

additional time resources would be spent on understanding the detailed circuit

operation.

The completion functions are built for verification purpose only and should not

be synthesized into actual hardware as part of the implementation. Only the asso-

ciated completion functions and wire connections should be generated for its asso-

ciated pipeline stage equivalence run because it saves time and memory resources.

To avoid synthesizing additional hardware, we recommend the use of if-generate

statements with boolean conditions formed by two suggested generic parameters:

stage and spec.
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stage is an integer used to specify which stage of a pipelined entity is under ver-

ification, and the associated completion functions are exclusively synthesized with

if-generate statements. spec is a binary digit used to indicate whether the specifi-

cation or the implementation is synthesized with if-generate statements during the

equivalence checking of a pipeline stage as shown in Figure 3.10 to 3.12. In other

words, spec specifies whether the associated completion functions are connected to

the stage registers or to the outputs of a combinational block.

Referring back to the verification of our 2-stage example of Figure 3.9, set-

ting stage to 2 and spec to ‘1’ results in synthesizing the left hand side circuit

Specification exclusively as shown in Figure 3.10. Setting stage to 2 and spec to

‘0’ results in synthesizing the right hand side circuit Implementation exclusively

as shown in Figure 3.10. Figure 3.15 shows the VHDL code (with completion func-

tions) of the same 2-stage implementation that is used to described our verification

methodology in Section 3.4.1. Note that the two generic parameters (stage and

spec) are used with if-generate statements to control the hardware generation of

the completion functions. Figure 3.16 illustrates which completion functions are

generated and how they are connected depending on the generic parameters stage

and spec. In the next section, we show the advantages of our VHDL methodology

in a multiple entities design environment.

3.4.4 Multiple Entities Environment

For most of today’s large digital systems, their design flow usually involve multiple

designers creating multiple VHDL entities. To illustrate that our methodology

supports multiple entities design environment, we created a contrived example as

shown in Figure 3.17. Suppose that two designers A and B create separately their

own corresponding 2-stage pipelined entities A and B. A third designer d creates 4-

stage pipelined entity d, which is formed by both entities A and B, without knowing

the detailed implementations of these sub-entities.

To build the completion functions for each pipeline stage of the circuit in Figure

3.17, the verification engineers are required to gain an in-depth understanding about

the circuit operation of each component. However, it is intuitive to the circuit

designers upon how to build the completion functions for each stage of their own

entities.

In Figure 3.17, designers A and B can easily build the completion functions

for each of their pipeline stage because they are fully aware about each block of
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1 entity A is

2 generic(stage:integer:=0;

3 spec:std logic:=‘0’);

4 port(input:in std logic;

5 output:out std logic;

6 clk:in std logic);

7 end entity A;

8

9 architecture main of A is

10 signal x1,x2:std logic;

11 begin

12 process begin

13 wait until rising edge(clk);

14 x1<=input; x2<=A1(r1);

15 end process;

16 cfSpec:if spec=‘1’ generate

17 cf2Spec:if stage=2 generate

18 output<=C2(x2);

19 end generate cf2Spec;

20 cf1Spec:if stage=1 generate

21 output<=C1(X1);

22 end generate cf1Spec;

23 end generate cfSpec;

24 cfImpl:if spec=‘0’ generate

25 cf2Impl:if stage=2 generate

26 output<=A2(x2);

27 end generate cf2Impl;

28 cf1Impl:if stage=1 generate

29 output<=C2(A1);

30 end generate cf1Impl;

31 cf0Impl:if stage=0 generate

32 output<=C1(input);

33 end generate cf0Impl;

34 end generate cfImpl;

35 end architecture main;

Figure 3.15: Entity A: VHDL Code

Figure 3.16: Contrived Entity A With

Completion Functions
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Figure 3.17: Contrived Entity D

their own entities A and B. However, the circuit designer of entity d does not

know the detailed implementation of its sub-entities A and B. Therefore, our

methodology suggests the use of if-generate statements with two VHDL generic

parameters: stage and spec. For example, setting stage to 2 and spec to ‘0’ of

entity A would generate the path X1 → A1 → X2 → A2 in Figure 3.16. With

the addition of the two generic parameters to entities A and B, designer d can now

build the completion functions of entity d simply by setting stage to 0 and spec

to ‘0’ of both sub-entities. The verification engineers can also use the completion

functions of each entity by setting the two generic parameters accordingly.

Note that the two generic parameters (stage and spec) are not global parameters

which can be passed from entity d to entity A or B. The two generic parameters,

stage and spec, can be viewed as local variables for each entity. The reason is that

the stage parameter of entity d is not the same as the stage parameter of entity A.

As shown in Figure 3.17, the stage parameter of the 4-stage entity d are defined

for values from 0 to 4 whereas the stage parameter of the 2-stage entity A are

only defined for values from 0 to 2. Nonetheless, our methodology fits very well in

the current design environment where there are multiple components and multiple
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designers. In the next section, we discuss the verification of the three pipelined

implementations of KASUMI.

3.5 Verification of KASUMI

The purely combinational implementation of KASUMI, which was verified in Sec-

tion 3.2, was optimized with pipelining and conceived three additional pipelined

implementations of the cipher in Section 3.3. However, these additional implemen-

tations of KASUMI need to be verified for their correctness. In this section, we

describe how the verification methodology of Section 3.4 were used to verify these

additional implementations of the cipher.

Figure 3.18 to 3.21 each represents an equivalence check of the implementa-

tion Impl against the specification Spec. For each equivalence run, the equivalence

checker returns true whenever the implementation is equivalent to the specification

that describes the desired behaviour of the circuit. The verification of our 8-stage

KASUMI began by verifying the last pipeline stage as shown in Figure 3.18. The

left hand side is the 8-stage KASUMI implementation Impl with stage registers

Ai. The right hand side is the 8-stage KASUMI specification Spec with the com-

pletion function of the eighth stage connected to the eighth stage registers A8.

The equivalence checker compared the left hand side circuit Impl against the right

hand side circuit Spec to verify the correctness of the last pipeline stage. In other

words, it was verifying the equivalence of “8th round implementation” against the

“Completion function 8” and it was our first verification obligation.

The second verification obligation was to move up the pipeline and verify the

correctness of the seventh stage as depicted in Figure 3.19. On the right hand side,

we connected the completion function of the seventh stage to its associated stage

registers A7 in the specification. Note that the completion function of the seventh

stage is formed by the completion function of the last stage “Completion function

8” plus “Completion function 7”, and it has the effect of completing the instructions

in the stage registers A7. On the left hand side, we connected “Completion function

8” directly to the outputs of the seventh stage combinational circuitry “7th round

implementation”. Basically, the second verification obligation compared “7th round

implementation” against “Completion function 7” as shown in Figure 3.19.

If the stage registers A8 were not removed from the left hand side Impl in Figure

3.19, the equivalence checker would not be able to compare the implementation

against the specification due to the nature of equivalence checking. In addition, it
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Figure 3.18: Stage 8 Obligation Figure 3.19: Stage 7 Obligation
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is easier for the equivalence checker to solve when both the implementation and the

specification have the same block “Completion function 8” as part of their circuits.

By matching signal names and circuit structures on both sides (Spec and Impl),

the equivalence checker applies the optimization of structural matching to recognize

that “Completion function 8” is part of both Spec and Impl. Without structural

matching, the equivalence checker cannot reduce its computational complexity and

it would run into the state-space explosion problem. Therefore, structural matching

is very important in our verification strategy.

Similarly, the remaining pipeline stages were verified in the same manner where

the completion functions of each stage were connected to their corresponding stage

registers Ai on the specification side (right hand side of figures). Also, the com-

pletion functions of the next stage were connected to the outputs of the stage

combinational circuitry on the implementation side (left hand side of figures) for

each stage verification obligation. Figure 3.20 shows the equivalence check for the

verification of the first pipeline stage. Note that the completion function of the first

stage is the composition of “Completion function 1” to “Completion function 8”.

Up to this point of the verification, any design bugs would be detected and

localized under the assumption that the completion functions were correctly built

to describe the behaviour of the circuit. Our final verification obligation was used to

verify this assumption by comparing the completion function of the first stage (left

hand side) against the “verified” purely combinational implementation of KASUMI

(right hand side) as shown in Figure 3.21. This final verification obligation is crucial

as it would catch any bugs in writing the completion functions used for the stage-

by-stage verification. Therefore, our verification would never lead to false positive

results. The verification of our 8-stage KASUMI was completed with 9 verification

obligations in three minutes, and no bugs were found.

Using the same verification tools and strategies, we verified the 16-stage and

the 32-stage KASUMI implementations. The verification of our 16-stage KASUMI

was completed with 17 verification obligations in five minutes. The verification

of our 32-stage KASUMI was completed with 33 verification obligations in nine

minutes. No bugs were found in both the 16-stage and the 32-stage KASUMI

implementations.

In this chapter, we have covered the design and the verification of the non-

pipelined specification of KASUMI (Section 3.1 and 3.2). In Section 3.3, we have

introduced our three pipelined implementations of KASUMI. We explained our

verification methodologies in using completion functions with equivalence checking
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Figure 3.20: Stage 1 Obligation Figure 3.21: Final Obligation
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in Section 3.4. In Section 3.5, we conclude the chapter with the verification results

of KASUMI. Next chapter contains the design and the optimization of the Welch-

Gong cipher.
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Chapter 4

WG: Design and Optimizations

The purpose of this chapter is to extend our verification methodology used in the

verification of KASUMI to a more sophisticated case study, the Welch-Gong cipher,

and it is organized as follows. Section 4.1 describes the design process of the non-

pipelined implementation of WG, and Section 4.2 explains how RTL simulation

was used to verify the correctness of this first implementation. In Section 4.3, we

illustrate how the optimizations of pipelining and hardware re-use were applied to

create the optimized implementation of WG. Section 4.4 provides a comparison of

our optimized WG implementation to other state-of-the-art stream ciphers.

4.1 The First Design

This section is used to describe our design of the non-pipelined implementation

of WG. We first introduce the overall structure of our implementation then we

describe each of the major components separately.

The circuit structure of WG and its circuit operation were described in Section

2.6. We implemented the circuit shown in Figure 2.15, and we added a finite

state machine to generate control signals used to change the configuration of WG

depending on the phase of the cipher (loading of the registers, initialization phase,

keystream generation).

Figure 4.1 illustrates our 29-bit non-pipelined implementation of WG in which

the four main components are: the 11-stage linear feedback shift register, the WG

core, the trace function and the finite state machine. Note that we have split the

WG transformation into WG core and trace function because there is a feedback

from the output of the WG core block to the input of the LFSR. In the remaining
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Figure 4.1: WG Implementation Block Diagram

subsections, we first describe how we designed the datapath (WG core and trace

function) of the WG cipher. Then, we introduce the control circuitry (LFSR and

finite state machine) used in our implementation.

4.1.1 WG Core and Trace Function

In this section, we focus on the datapath of our implementation of WG. We first

introduce the WG core block then we briefly describe our implementation of the

trace function.

We implemented the WG core block (i.e. WG transformation without trace

function) shown in Figure 2.15 of Section 2.6. Note that the WG core block is

formed by a combination of simple building blocks such as inverters, bitwise shifting

(re-wiring) and XOR gates. The most sophisticated components are the normal

basis multiplier and the (·)210−1 block which are described next.

For all the normal basis multipliers in our implementation, we chose to use the

optimal normal basis multiplier implemented by Sunar [17]. A detailed description

of the implementation of the optimal normal basis multiplier is not necessary to

understand our work, and the reader can obtain that information in [17].

We implemented the (·)210−1 operation with a combination of normal basis mul-

tiplications and bitwise shifting as shown in Figure 4.2. Recall that shifting the

bits of an element x cyclically to right by i position computes x2i
if x is expressed

in normal basis representation. Our implementation of this block becomes clear

once we rewrite the exponent (i.e. 210−1) as follows. Suppose that u is an element
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Figure 4.2: Implementation of (·)210−1

represented in the normal basis form, then:

u210−1 = u20+21+22+23+24+25+26+27+28+29

= u(20+21+22+23+24)+25×(20+21+22+23+24)

let z = u(20+21+22+23+24), then:

u210−1 = z × z25

where z can be rewritten as:

z = u(20+21+22+23+24)

= u(20+21)+22×(20+21)+24

let y = u(20+21), then:

z = y × y22 × u24

Therefore, we can compute u210−1 with the following three steps:

y = u20 × u21

z = y × y22 × u24

u210−1 = z × z25

We completed the design of the datapath (i.e. WG transformation) by con-

necting the 29-bit output of the WG core block to the 29-bit input of the trace

function as shown in Figure 4.1. For the implementation of the trace function, we

XORed all 29 input bits together because the trace function of an element is sim-

ply the addition of all the bits of that element over F2. This section has described

how we designed the datapath of our 29-bit non-pipelined implementation of WG.

In the next section, we explain how we designed the control circuitry of our WG

implementation.
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Figure 4.3: Linear Feedback Shift Register Implementation

load init WG Phase Input of register S(1) becomes...

1 0 loading of the registers 29-bit input

1 1 loading of the registers 29-bit input

0 1 initialization lfsr fb ⊕ 29-bit fb

0 0 keystream generation lfsr fb

Table 4.1: Signal Selected Based on load and init

4.1.2 Linear Feedback Shift Register

In this section, we describe how we designed the control circuitry of our non-

pipelined implementation of WG. We first introduce the design of the LFSR and

how control signals are used to change its circuit configuration. Then, we explain

how we implemented the finite state machine that is used to generate the control

signals.

We implemented the LFSR in Figure 2.13 of Section 2.6, and we added two

sets of multiplexers at the input of the registers S(1) as shown in Figure 4.3. The

two sets of multiplexers are added to change the input signal of the LFSR registers

S(1) depending on the two control signals, init and load, as shown in Figure 4.3.

In Figure 4.3, note that γ is not an input to the LFSR but it is a constant number

which is multiplied to the output of the LFSR S(11) as mentioned in Section 2.6.

The five inputs to the LFSR are: the clock signal clk, the 29-bit input used for the

loading of the registers, the 29-bit feedback fb used for the initialization of WG, the

two control signals init and load used for the control of the two sets of multiplexers.

Table 4.1 illustrates the signal at the input of the LFSR registers S(1) based on

the values of the two control signals, init and load, and the respective phase of the

WG cipher.

For the loading of the LFSR registers S(1) to S(11), we chose to implement

serial loading instead of parallel loading because it requires less implementation area

without affecting the performance of the WG cipher. In our 29-bit implementation
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Figure 4.4: Finite State Machine Implementation

of WG, serial loading introduces 29 multiplexers at the input of the first stage

LFSR registers S(1) and it loads the desired values into the registers S(1) every

clock cycle until the desired values have propagated to the registers S(11). Parallel

loading would insert 319 (29 bits × 11 LFSR stages) multiplexers, one per register,

into the LFSR and it would load all the registers (S(1) to S(11)) in one clock cycle.

Although serial loading requires 11 clock cycles to load all the registers, it is an

acceptable trade off because the loading of the LFSR registers only occur once at

the beginning of the WG cipher operation.

4.1.3 Finite State Machine

We completed the design of the control circuitry by implementing a finite state

machine used to generate the two control signals, init and load. Figure 4.4 shows

the state transition diagram of our 3-state finite state machine. In our design of

the finite state machine, we added the counter cnt to keep track of the number of

clock cycles elapsed and we encoded the three states (REG LOAD, INIT PHASE,

RUN PHASE ) with a 2-bit vector in which the left bit corresponds to the init

signal and the right bit is the load signal.

The operation of the finite state machine begins by setting the reset signal

rst to ‘1’ as shown in Figure 4.4, then the finite state machine is initialized and

enters its first state REG LOAD and the counter cnt resets to 0. From the state

encoding mentioned above, the state REG LOAD is equivalent to setting init to

‘0’ and load to ‘1’. Thus, the input of the LFSR registers S(1) becomes the 29-bit

input according to Table 4.1. During the state REG LOAD, the counter cnt is

incremented every clock cycle by a value of one. When the counter cnt hits a value

of 10, the finite state machine makes a transition to its next state INIT PHASE

because the LFSR has loaded all of its registers from clock cycle 0 to 10 (a total of

11 clock cycles).
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From our state encoding, the state INIT PHASE corresponds to assigning init

to ‘1’ and load to ‘0’. Hence, the input of the LFSR registers S(1) becomes the

LFSR feedback polynomial lfsr fb added with the 29-bit feedback fb from the WG

core block as shown in Table 4.1. During the state INIT PHASE, the counter cnt

continues to count the number of clock cycles elapsed. Once the counter cnt reaches

a value of 54, the finite state machine transfers to its next state RUN PHASE

because the initialization phase has been completed from clock cycle 11 to 54 (a

total of 44 clock cycles).

For our finite state machine, the state RUN PHASE implies that init is ‘0’ and

load is ‘0’. Thus, the input of the LFSR registers S(1) becomes the LFSR feedback

polynomial lfsr fb as listed in Table 4.1. During the state RUN PHASE, the counter

cnt becomes idles and the finite state machine would remain in this state unless the

reset signal rst is set to ‘1’. Note that keystream generation occurs in this state,

and the two other states (REG LOAD, INIT PHASE ) are used to initialize the

WG cipher. Throughout all three states of our finite state machine, setting ‘1’ to

the reset signal rst leads the state machine back to the state REG LOAD and it

resets the counter cnt to 0.

This first implementation was synthesized using Mentor Graphics Precision

RTL synthesis tool. On an Altera Stratix II series field programmable gate ar-

rays (FPGA) device EP2S15F484C, our combinational implementation of WG has

an area of 7412 logic elements and a performance of 31 MHz when registers are in-

serted at the inputs and at the outputs. This section has explained how we designed

both the datapath and the control circuitry of our 29-bit non-pipelined implemen-

tation of the Welch-Gong cipher. In the subsection about the WG core block and

the trace function, we have covered the design of the (·)210−1 operation. In the

subsection about the linear feedback shift register and the finite state machine, we

have showed how the input to the LFSR is controlled by the signals generated by

the finite state machine. In the next section, we have to verify the correctness of

our non-pipelined implementation of WG so that it can be used as a specification

in equivalence checking.

4.2 Formulating The Specification

Similar to the case study of KASUMI, we have to verify the correctness of our

non-pipelined implementation of WG before it can be used as the specification for

the verification of the optimized implementation of WG.
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Figure 4.5: Fragments of Test Vectors from WG Paper

For the verification of the combinational implementation of WG, we have used

conventional RTL simulation because a set of test vectors are given in the WG

paper [14]. These test vectors only defines the correct output keystream given a

specific input key and initialization vector IV as shown in Figure 4.5. Note that

all vectors are in hexadecimal values and that only a subset of test vectors from

the WG paper are shown in Figure 4.5. Hence, our non-pipelined implementation

of WG is defined as correct if and only if it produces an expected keystream given

a key and an initialization vector. However, there are still possibilities for a subtle

bug to be hidden in our implementation because our RTL simulation does not cover

all possible combinations of input key and initialization vector to the WG cipher.

The test vector of Figure 4.5 is only useful in the verification of our implemen-

tation of WG as a whole system, and it does not provide any information about the

internal components (e.g. linear feedback shift register) used to form the whole WG

cipher. Similar to any real hardware design, our implementation of WG has various

implementation-specific details that need to be verified prior to the verification of

the WG implementation as a system. As an example of implementation-specific

details, the design of our linear feedback shift could have been loading the registers

in parallel instead of loading the registers in serial. Thus, we have defined the cor-

rectness criteria for the finite state machine as well as for the linear feedback shift

register, and we have verified them in this section.

The verification of our implementation of WG is divided into four parts, one

per component, and it proceeds in a bottom-up manner because it can localize

an implementation bug to a component instead to the whole WG implementation.

In this section, we first verify the finite state machine, the linear feedback shift

register and the trace function individually. Our final RTL simulation combines the

verification of the WG core with the verification of the whole WG implementation.
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4.2.1 Finite State Machine

For all of the RTL simulation runs, we have used Mentor Graphics ModelSim.

Figure 4.6 illustrates the simulation results of the finite state machine in which rst

is the reset signal and cnt is the counter for the number of clock cycles elapsed.

The finite state machine is defined as correct when it satisfies all the properties

mentioned below. These properties capture the behavior of the finite state machine

as shown in Figure 4.4, which includes the sequence of the states, the number of

clock cycles elapsed in each state, and the transitions to the next state.

1. The finite state machine can only be initialized by setting the reset signal rst

to ‘1’, then the finite state machine would enter the REG LOAD state (“01”)

where init = ‘0′ and load = ‘1′.

2. When the finite state machine enters the REG LOAD state, if the reset signal

rst remains at ‘0’, then the finite state machine remains in the REG LOAD

state for exactly 11 clock cycles then goes into the INIT PHASE state (“10”)

where init = ‘1′ and load = ‘0′.

3. When the finite state machine enters the INIT PHASE state, if the re-

set signal rst remains at ‘0’, then the finite state machine remains in the

INIT PHASE state for exactly 44 clock cycles then goes into the RUN PHASE

state (“00”) where init = ‘0′ and load = ‘0′.

4. When the finite state machine enters the RUN PHASE state, if the re-

set signal rst remains at ‘0’, then the finite state machine remains in the

RUN PHASE.

4.2.2 Linear Feedback Shift Register

Figure 4.7 shows the simulation results of the 1-bit linear feedback shift register in

which d is the input of the LFSR, fb is the feedback signal from WG core, lfsr fb

is the LFSR feedback polynomial and first bit is the input of the register S(1). By

replicating the 1-bit linear feedback shift register 29 times, we can obtain the 29-bit

linear feedback shift register shown in Figure 4.3. The 1-bit linear feedback shift

register is defined as correct when it fulfills properties mentioned below. These

properties capture the description of the linear feedback shift register as shown

in Figure 4.3, which includes the bit shifting of the registers, the LFSR feedback

polynomial connection, and the signal selection by the mutliplexers.
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Figure 4.6: Finite State Machine Simula-

tion Results

Figure 4.7: Linear Feedback Shift Register

Simulation Results
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Figure 4.8: Trace Function Simulation Results

1. At each clock cycle, the data of the register s(i) shifts to the register s(i+1)

for i = 1 . . . 10 and s(1) retrieves its value from the signal first bit.

2. At all time, the LFSR feedback polynomial lfsr fb has to match equation

(2.12) of Section 2.6.

3. When load=‘1, the first bit input to the register s(1) becomes the d input of

the linear feedback shift register.

4. When load=‘0 and init=‘1, the first bit input to the register s(1) becomes

the XOR of the LFSR feedback polynomial (lfsr fb) and the feedback signal

from WG core (fb).

5. When load=‘0 and init=‘0, the first bit input to the register s(1) becomes

the LFSR feedback polynomial lfsr fb.

4.2.3 Trace Function and WG Core

Figure 4.8 depicts the simulation results of the trace function in which x is the

29-bit input and y is the 1-bit output. The trace function is define as correct if and

only if the output y is the addition (XOR) of all 29 bits of input x.

The RTL simulation results from Figure 4.6 to 4.8 have confirmed the correct-

ness for three components of our WG implementation except the WG core block.

Our fourth RTL simulation is used to verify the correctness of the WG implemen-

tation (as a system) as well as to verify the correctness of the WG core block.

Figure 4.9 shows the simulation results of the non-pipelined implementation of

WG in which key is the 80-bit input key, init v is the 32-bit initialization vector,

spec k stream is the 1-bit output of WG and spec keystream is the output keystream

of WG. Note that our simulation results match with the test vectors of Figure 4.5.

In this section, we verified the correctness of our non-pipelined implementation

of WG by using multiple RTL simulation runs. Therefore, our non-pipelined im-
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Figure 4.9: WG Test Vectors Results

plementation can be used as the specification in the verification of the optimized

implementation of WG that is described in the next section.

4.3 The Optimized Implementation

To explore the completion functions in the verification of a pipelined circuit with

sophisticated optimizations, we have optimized our non-pipelined implementation

of WG with both optimization techniques of pipelining and hardware re-use. In this

section, the first subsection shows how we have applied pipelining onto the datapath

of our implementation of WG. The second subsection introduces the concept of

hardware re-use and how to apply it to our implementation of WG. In the third

subsection, we explain how the two optimizations (i.e. pipelining and re-use) require

some modifications to be made in the control circuitry (i.e. linear feedback shift

register and finite state machine) so that the whole optimized implementation of

WG can operate correctly.

4.3.1 Pipelining

The optimization process began with the pipelining of the datapath (i.e. WG core

and trace function) of our WG implementation. In the pipelining of a design,

it is optimal for each pipeline stage to have an equal amount of delay because

the operating speed would not be limited only by the slowest stage. Recall the

the datapath of our WG implementation is mainly dominated by normal basis

multipliers (beside the inverters and the XOR gates) as shown in Figure 2.14 and

4.2. Therefore, we have divided the datapath of our WG implementation such that

each pipeline stage has approximately a delay of one normal basis multiplier.

In combination to the pipelining strategy mentioned above, we have taken a

modular bottom-up approach in which we first optimize the smaller block of (·)210−1

then we proceed to the larger block of WG core. Figure 4.10 shows our 4-stage
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Figure 4.10: 4-Stage Implementation of (·)210−1

Figure 4.11: 5-Stage Implementation of WG Core

implementation of (·)210−1 in which we have inserted the registers (Q1, Q2, Q3,

Q4 ) at the inputs of the normal basis multipliers.

By moving up one level in the hierarchy, Figure 4.11 illustrates our 5-stage

implementation of WG Core. In Figure 4.11, we have extracted the registers Q1

from the “4-stage of (·)210−1” block and relocated (retimed) them to the input of the

inverter because it minimizes the number of registers used in our implementation

of WG while keeping the amount of delay per pipeline stage to approximately a

delay of one normal basis multiplier. If we did not relocate the registers Q1, then

we would need to create an additional stage solely for the inverter at the input

of the WG core block and it would increase the number of registers used in our

implementation of WG as well as the latency of the WG core block.

The registers (Q2, Q3, Q4 ) of Figure 4.11 were inserted so that the data packets

flowing in the WG core block are synchronized with the data packets flowing in the

“4-stage of (·)210−1” block. In the fourth pipeline stage of Figure 4.11, the two

multipliers could have been moved to any earlier stage because their inputs do not

depend on the outputs of the “4-stage (·)210−1” block. However, moving these two
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multipliers to any earlier stage would increase the number of registers used in our

implementation of WG because the outputs of these two multipliers have to be

carried to the fifth stage where they are used to compute the output of the WG

core block.

The registers Q5 were inserted to build the fifth pipeline stage in which we have

lumped the normal basis multiplier with the simple operations of exclusive-or and

bitwise inversion. Similar to the two multipliers in the fourth pipeline stage, the

multiplier used to produce the signal q2 in the fifth stage is located in the latest

possible stage so that the number of registers used in our WG implementation is

minimized. Note that the multiplier (in fourth stage) used to generate the signal

q1 could have been moved to the fifth stage to save some registers, but we have

kept this multiplier in the fourth stage because it would allow the optimization

technique of hardware re-use to be applied onto our pipelined implementation of

WG in later subsection.

In this subsection, we explained how we used pipelining to optimize the WG

core block into a 5-stage pipeline. An immediate effect of changing the latency

of the WG core block to five clock cycles is that the linear feedback shift register

would sample the feedback signal from the WG core every six clock cycles (instead

of every clock cycle when the WG core block is purely combinational) during the

initialization phase of the WG cipher. Note that Figure 4.10 and 4.11 are not the

finalized pipelines used in our optimized implementation of WG, and we will explain

the modifications required in the control circuity (i.e. linear feedback shift register

and finite state machine) to remedy the WG core latency change after we finalize

the optimization of the datapath with hardware re-use in the next subsection.

4.3.2 Hardware Re-Use

We proceed to the second phase of our optimization process with the optimization

technique known as hardware re-use. This optimization technique can reduce the

implementation area by re-using a component in multiple pipeline stages instead of

instantiating multiple instances of the same component in various pipeline stages

to generate the same outputs. However, hardware re-use can only be applied to

circuits that contain multiple instances of a component and it has the drawback

of decreasing the throughput of the circuit if the clock speed cannot be increased

further. In this subsection, we first clarify our description of hardware re-use with

a simple contrived example then we proceed to the application of hardware re-use

onto our pipelined implementation of WG from the previous subsection.
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Figure 4.12:

Initial Pipeline

Figure 4.13: Pipeline with

Re-Use

Figure 4.14: Pipeline with

Re-Use and Superpipelining

2-Stage Pipeline Example

Figure 4.12 depicts the initial 2-stage pipeline in which both stages have their own

combinational block M and the stages are delimited by the stage registers S1 and

S2. This initial pipeline consumes an area of two blocks M and it has a throughput

of 1X at a clock speed of 1X. Since the 2-stage pipeline of Figure 4.12 has two

instances of the component M , the optimization of hardware re-use can be applied

to reduce the implementation area to one block M as shown in Figure 4.13.

In Figure 4.13, one block M is used in both the first and the second pipeline

stage to compute the same output as the initial pipeline. When a data packet first

enters the pipeline, the control signal d valid is asserted so that the multiplexer

feeds the stage register S1 (data packet) into the block M as shown in Figure 4.13.

When a data packet reaches the second pipeline stage, the control signal must be

de-asserted so that the multiplexer feeds the stage register S2 (data packet) back

into the block M again to compute the output and no new data packet enters the

pipeline. Since each data packet occupies the block M for two consecutive clock
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clk cycle 0 1 2 3 4 5

input A ∅ B ∅ C ∅
d valid 1 0 1 0 1 0

S1 A ∅ B ∅ C

DV1 1 0 1 0 1

R1 A ∅ B A

S2 A ∅ B

R2 A ∅
output A

Figure 4.15: Timing Diagram of Pipeline with Re-Use and Superpipelining

cycles, the throughput has decreased from one output per clock cycle to one output

per every two clock cycles at the same clock speed of 1X. Thus, hardware re-use

has reduced the implementation area from two to one block M and decreased the

throughput from 1X to (1/2)X at a clock speed of 1X. It is possible to restore

the throughput of the circuit back to 1X if the re-used block M can be further

pipelined (i.e. superpipelining) as depicted in Figure 4.14.

In Figure 4.14, we have inserted the stage registers R1 to split the block M

into two pipeline stages (M1, M2) in which both stage has a delay of (1/2)M so

that the clock speed is doubled to 2X. Although this pipeline with re-use samples

an input per every two clock cycles to avoid contention of the signals at the input

of the block M , it can still achieve a throughput of 1X because the clock speed

has been increased to 2X instead of the original clock speed of 1X. Figure 4.15

shows the timing diagram of the pipeline with re-use and superpipelining in which

an input is fed into the pipeline once per every two clock cycles. Since there is

a data packet in the first pipeline stage (S1) whenever there is a data packet in

the third pipeline stage (S2), as depicted in clock cycle 3 of the timing diagram

in Figure 4.15, the registers R2 (instead of S2) are added and fed back into the

multiplexer to avoid the contention of these two data packets (data packet B in S1

and data packet A S2) at the input of the block M . In comparison to the initial

pipeline of Figure 4.12, the pipeline with re-use and superpipelining has reduced

the implementation area from two to one block M while keeping the throughput

at 1X by increasing the clock speed from 1X to 2X. For the second phase of the

optimization of our pipelined WG implementation, we have applied hardware re-use

and superpipelining as described next.
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Figure 4.16: 9-stage Implementation of (·)210−1 with Re-Use

Pipelined WG with Re-Use

The optimization goal of applying hardware re-use to our pipelined WG implemen-

tation is to decrease the implementation area while keeping the same throughput in

generating the WG keystream. We began our second optimization by superpipelin-

ing all normal basis multipliers into two balanced (i.e. similar delay) pipeline stages

so that the clock speed of our WG implementation can be roughly doubled to main-

tain the throughput after the application of hardware re-use. The remaining of this

section first shows how hardware re-use has been applied to the (·)210−1 block then

it explains how the WG core has been optimized with hardware re-use.

Figure 4.16 illustrates the circuit structure of the (·)210−1 block after hardware

re-use has been used to reduce its area from four to two normal basis multipliers.

Since we have inserted one stage register within each multiplier (not shown in Figure

4.16) to superpipeline it into two balanced stages, we have added the stage registers

Q2 and Q4 for the synchronization of the data packets outside and inside of the

two multipliers. This implementation of the (·)210−1 has a latency of nine clock

cycles because the output u210−1 is computed after a data packet makes its second

passage through the second multiplier located between the stage registers Q3 and

Q5. The interactions between the data valid registers (V 1, V 2, V 3) and the two

multiplexers can be explained with the timing diagram in Figure 4.17.

In Figure 4.17, the data packet A enters the pipeline at clock cycle 0 and reaches

the output at clock cycle 9 while other data packets (B, C, D, E) are fed into the

pipeline with a d valid of ‘1’ every other clock cycle. A stage-by-stage description
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clk cycle 0 1 2 3 4 5 6 7 8 9

u A ∅ B ∅ C ∅ D ∅ E ∅
d valid 1 0 1 0 1 0 1 0 1 0

Q1 A ∅ B ∅ C ∅ D ∅ E

V1 1 0 1 0 1 0 1 0 1

Q2 A ∅ B ∅ C A D B

V2 1 0 1 0 1 0 1 0

Q3 A ∅ B ∅ C A D

V3 1 0 1 0 1 0 1

Q4 A ∅ B ∅ C A

Q5 A ∅ B ∅ C

Q6 A ∅ B ∅
u210−1 A

Figure 4.17: Timing Diagram of 9-stage Implementation of (·)210−1 with Re-Use

of our pipelined implementation of the (·)210−1 block with re-use is provided here

because it helps the reader to understand the verification of this block in Chapter

5. Throughout our stage-by-stage description, we use the data packet A of Figure

4.17 as reference and it begins as follow.

• Stages 1 and 2: in clock cycle 1 (i.e. stage 1), the data valid register V 1

is ‘1’ so that the multiplexer selects the sigals u and u2 to be fed into the

multiplier in Figure 4.16. In clock cycle 2 (i.e. stage 2), the computation of

y = u × u2 is completed and matches with the first multiplication in Figure

4.10.

• Stage 3 and 4: in clock cycle 3 (i.e. stage 3), the data valid register V 3

is ‘1’ so that the multiplexer selects the signal y22
to be multiplied with the

signal y (output of register Q3) in Figure 4.16. In clock cycle 4 (i.e. stage

4), the computation of y × y22
is completed and matches with the second

multiplication in Figure 4.10.

• Stage 5: in clock cycle 5, the data packet A is temporarily stored in the stage

registers Q5 because the input of the first multiplier (between the registers

Q1 and Q3) is being occupied with the data packet C (stored in Q1)

• Stages 6 and 7: in clock cycle 6 (i.e. stage 6), the data valid register V 1 is

‘0’ so that the multiplexer selects the sigals u24
and y× y22

to be fed into the
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multiplier in Figure 4.16. In clock cycle 7 (i.e. stage 7), the computation of

z = u24 × y × y22
is completed and matches with the third multiplication in

Figure 4.10.

• Stages 8 and 9: in clock cycle 8 (i.e. stage 8), the data valid register V 3

is ‘0’ so that the multiplexer selects the signal z25
to be multiplied with the

signal z (output of register Q3) in Figure 4.16. In clock cycle 9 (i.e. stage

9), the computation of u210−1 = z × z25
is completed and matches with the

fourth multiplication in Figure 4.10.

By moving up one level in the hierarchy of the datapath, Figure 4.18 shows the

circuit structure of the WG core after hardware re-use has condensed the original

five multipliers down to three multipliers plus multipliers buried in the (·)210−1 block.

Similar to the original pipelined WG core block, we have extracted the registers

(Q1, V 1) from the “9-stage of (·)210−1” block and retimed them to the input of

the inverter. The stage registers Q2 to Q9 are added for the synchronization of

the data packets outside and inside of the “9-stage of (·)210−1” block. The latency

of this WG core block (with re-use) is eleven clock cycles since the 29-bit output

is generated after a data packet makes its second passage through the multipliers

located between the stage registers Q7 and Q9. Similar to the “9-stage of (·)210−1”

block, we provide a stage-by-stage description of the circuit in Figure 4.18 along

with its timing diagram in Figure 4.19.

In Figure 4.19, the data packet A enters the WG core pipeline at clock cycle

0 and produces an output at clock cycle 11 while additional data packets (B, C,

D, E, F ) are fed into the pipeline with a d valid of ‘1’ every other clock cycle.

Throughout our stage-by-stage description, we use the data packet A of Figure

4.19 as reference and it begins as follow.

• Stages 1 to 6: from clock cycle 1 to 6, the data packet A is inverted then

propagated through the stage registers Q1 to Q6 and the first six pipeline

stages of the (·)210−1 block.

• Stages 7 and 8: in clock cycle 7, the data valid register V 7 is ‘1’ so that the

two multiplexers select the signals originated from the stage registers Q7 to be

fed into the two multipliers in Figure 4.18. In clock cycle 8, the computation

of both q1 and t are completed and match with the first two multiplications

located in the fourth stage of the pipeline in Figure 4.11.
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Figure 4.18: 11-stage Implementation of WG Core with Re-Use
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clk cycle 0 1 2 3 4 5 6 7 8 9 10 11

29-bit input A ∅ B ∅ C ∅ D ∅ E ∅ F ∅
d valid 1 0 1 0 1 0 1 0 1 0 1 0

Q1 A ∅ B ∅ C ∅ D ∅ E ∅ F

V1 1 0 1 0 1 0 1 0 1 0 1

Q2 A ∅ B ∅ C ∅ D ∅ E ∅
V2 1 0 1 0 1 0 1 0 1 0

Q3 A ∅ B ∅ C ∅ D ∅ E

V3 1 0 1 0 1 0 1 0 1

Q4 A ∅ B ∅ C ∅ D ∅
V4 1 0 1 0 1 0 1 0

Q5 A ∅ B ∅ C ∅ D

V5 1 0 1 0 1 0 1

Q6 A ∅ B ∅ C ∅
V6 1 0 1 0 1 0

Q7 A ∅ B ∅ C

V7 1 0 1 0 1

Q8 A ∅ B A

V8 1 0 1 0

Q9 A ∅ B

V9 1 0 1

Q10 A ∅
V10 1 0

Q11 A

V11 1

Figure 4.19: Timing Diagram of 11-stage Implementation of WG Core with Re-Use
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• Stage 9: in clock cycle 9, the data packet A is temporarily stored in the stage

registers Q9 because the inputs of the two multipliers (between the registers

Q7 and Q9) are being occupied with the data packet B (stored in Q7).

• Stages 10 and 11: in clock cycle 10, the data valid register V 7 is ‘0’ so that

the two multiplexers select the signals originated from the stage registers Q10

to be fed into the two re-used multipliers in Figure 4.18. Meanwhile, the

stage registers Q10 are directly fed into the third multiplier located near the

output of the WG core block. In clock cycle 11, the computations of all

three multipliers (q2, q3, q4) are completed and match with the last three

multiplications located in the fifth stage of the pipeline in Figure 4.11.

Up to this point of our optimization process, the datapath (i.e. WG core and

trace function) of our optimized implementation of WG is finalized and is shown in

Figure 4.20. Since the trace function is simply the XOR of all 29 bits of its input,

we did not apply any optimizations to this component.

In field programmable gate arrays designs, critical paths can be first approxi-

mated in terms of lookup tables (LUTs) because they are the basic building blocks.

Recall that all normal basis multipliers in our optimized implementation of WG

have been pipelined into two balanced stages. By observing the synthesized field

programmable gate arrays schematic, both pipeline stages of the multiplier have a

delay of two LUTs.

In order to maintain the delay of each pipeline stage to approximately a delay

of two LUTs, the stage register Q12 are inserted at the input of the trace function

to shorten the critical path from the stage register Q11 (inside the 11-stage WG

core) to the 1-bit output of the whole WG implementation in Figure 4.20. The

final critical path of our WG implementation is buried within the “11-Stage LFSR

block, and this path begins from the stage registers (inside the multiplier) through

a XOR gate then back to the input of the registers S(1) as shown in Figure 4.3 of

Section 4.1.2. We did not further pipeline (i.e. shorten) this critical path because it

involves the feedback signal within the linear feedback shift register and pipelining

it further(i.e. increasing its latency) would decrease the throughout of the linear

feedback shift register without receiving a proportional increase in clock speed to

maintain the current throughput.

Due to pipelining and hardware re-use of the WG core block, three control sig-

nals (ce, d valid, d ready) are added to maintain the data synchronization between

the “11-Stage LFSR” and the “11-Stage WG Core” as shown in Figure 4.20. The

generation of these three control signals are explained in the next section.
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Figure 4.20: Optimized Implementation Block Diagram of WG

4.3.3 Control Circuitry Modifications

In this section, we first explain why the three control signals (ce, d valid, d ready)

of Figure 4.20 have been added to our implementation of WG then we describe how

the generation of these three control signals has been incorporated into the finite

state machine.

In Figure 4.20, we have added chip-enable ce to all registers inside the “11-

Stage LFSR” to control its input sampling rate. During the initialization phase of

the WG cipher, the “11-Stage LFSR” can no longer sample its input every clock

cycle because pipelining has increased the latency of the WG core block that feeds

the signal fb back into the input of the linear feedback shift register. During the

keystream generation of the WG cipher, all registers inside the “11-Stage LFSR

can no longer shift every clock cycle because hardware re-use has decreased the

data rate of the WG core block to one data packet per every two clock cycles as

mentioned in Section 4.3.2. In Figure 4.20, we have added a data valid signal d valid

for the control of the multiplexers used in the hardware re-use of the normal basis

multipliers inside the WG core block as mentioned in Section 4.3.2. As shown in

Figure 4.18, the signal d ready is simply a delayed version of the data valid signal

d valid and it is used for the generation of the chip-enable ce inside the finite state

machine that is described next.

Figure 4.21 shows the original implementation of the finite state machine with

additional modifications made for the three control signals (ce, d valid, d ready).

The finite state machine remains the same in terms of the reset signal behaviour,

the number of states, and the state encoding. In Figure 4.21, we have added the
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Figure 4.21: Modified Finite State Machine Implementation

behaviour of the two control signals (ce, d valid) in each state and we have changed

the transition condition of the INIT PHASE state by adding a second counter cnt2

that is explained in this section.

During the state REG LOAD, the loading of the linear feedback shift register

is not affected by the two optimizations made to the WG core block. In the im-

plementation of this state, ce is set to ‘1’ and d valid is set to ‘0’ because there is

no valid data fed to the WG core block and the linear feedback shift register shifts

every clock cycle to load the key and the initialization vector into the registers.

When the finite state machine makes it transition to the state INIT PHASE,

it sets d valid to ‘1’ for one clock cycle because there is valid data (output of the

LFSR has been loaded) to be fed into the 11-stage WG core. During that same

clock cycle, all data valid registers inside the 11-stage WG core have a value of ‘0’

because a data valid of ‘0’ has been fed in the previous 11 clock cycles of loading

(as described earlier). Since pipelining increased the WG core latency to 11 clock

cycles, the number of clock cycles in the initialization phase increased from 44 to

44× (1 + 11) clock cycles. To save implementation area of the finite state machine,

we have added a data packet counter cnt2 instead of the expensive process of

counting the large number of clock cycles elapsed in the initialization phase. This

data packet counter cnt2 is incremented by one whenever the finite state machine

receives a d ready of ‘1’ from the WG core block. The implementation of our data

packet counting is independent of the WG core latency because the first d valid of

‘1’ is propagated through the WG core and returned to the finite state machine as

the signal d ready to update the counter cnt2 then sent back to the WG core as

the next d valid of ‘1’. Inside the finite state machine, the signal d ready is also

used to set the chip-enable ce to ‘1’ because the LFSR can only be clocked when

a data packet exits the 11-stage WG core (i.e. data packet arrives at the input
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of the LFSR). In Figure 4.21, the transition condition from state INIT PHASE

to state RUN PHASE translates into processing 44 data packets through the WG

core block (i.e. cnt2 = 44).

When the finite state machine makes it transition to the state RUN PHASE,

it sets d valid to ‘1’ because there is valid data (output of the LFSR has been

initialized) to be fed into the 11-stage WG core. Since the optimization of hardware

re-use has decreased the data rate of our WG implementation to one data packet per

every two clock cycles, the finite state machine outputs a d valid which alternates

between ‘0’ and ‘1’ every clock cycle (i.e. one data valid per every two clock cycles).

During the first clock cycle in the state RUN PHASE, the chip-enable ce cannot

have a value of ‘1’ because a data packet (output of the LFSR) needs one clock

cycle to travel from the output of the LFSR (register S(11)) to the input of register

S(1) as shown in Figure 4.3 (due to the additional stage register buried in the

multiplier). Hence, the chip-enable ce is the signal d valid with a delay of one clock

cycle.

This optimized implementation was synthesized using Mentor Graphics Preci-

sion RTL synthesis tool. On an Altera Stratix II series field programmable gate

arrays (FPGA) device EP2S15F484C, our pipelined implementation with re-use of

WG has an area of 4184 LUTs (3740 registers) and a throughput of 109 Mbps at

a clock speed of 218 MHz. In the next section, we compare our optimized imple-

mentation of WG to other state-of-the-art stream ciphers.

4.4 Related Work

Since the WG algorithm is a fairly recent stream cipher and no other implementa-

tion of WG has been previously published, we have compared the area and perfor-

mance of our optimized WG implementation against three state-of-the-art stream

ciphers in this section.

The stream ciphers Grain [9], MICKEY-128 [4] and Trivium [7] are the finalists

in the eSTREAM project organized by European Network of Excellence for Cryp-

tology (ECRYPT). One of the goals of the eSTREAM project was to identify a

new and secure stream cipher that is suitable for hardware implementations with

limited resources such as area, power and memory. To have a low complexity in

hardware, all three stream ciphers (Grain, MICKEY-128, Trivium) are based on

linear and non-linear feedback shift registers along with simple bitwise operations

such as XOR and AND operations.
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Both Grain and Trivium have the additional feature of increasing the throughput

by duplicating the feedback circuitry of their shift registers d times. In doing so,

their shift registers can be shifted by d positions per clock cycle and output d bits

of the keystream per clock cycle instead of shifting by 1 position per clock cycle

and outputting 1 bit of the keystream per clock cycle. This parallelization factor

d has a maximum value depending on the cipher structure. Grain has a maximum

parallelization factor of 16, and Trivium has a maximum parallelization factor of

64.

The area and performance of our optimized WG implementation is shown in

Figure 4.22, where LUT denotes lookup table. All of our area and performance

results were synthesized on an Altera Stratix II series FPGA device EP2S15F484C

using Mentor Graphics PrecisionRTL. Thus, our optimized implementation of WG

has an area of 4184 LUTs with a throughput of 109 Mbps at a clock speed of 218

MHz. In Figure 4.22, we have included the implementations of the three ciphers

(Grain, MICKEY-128, Trivium) by Gaj et al. [8]. All of their implementations

were synthesized onto the Xilinx Spartan 3 FPGA family devices using Synopsys

tools.

As shown in Figure 4.22, the throughput of our optimized WG implementation

is half of what Grain and Trivium can achieve when they have a parallelization

factor of 1 (i.e. basic architecture). If we did not apply hardware re-use to our WG

implementation, we would achieve a throughput of 218 Mbps because the data rate

would return to one data packet per every clock cycle instead of one data packet

per every two clock cycles. Compared with the basic architecture of the three

ciphers, the WG cipher can achieve a competitive throughput. However, both

Grain and Trivium can greatly increase their throughputs when they parallelize

their operations with their respective maximum factor d of 16 and 64 as shown in

Figure 4.22.

In Figure 4.22, the area of our WG implementation greatly exceeds the imple-

mentation area of all other three ciphers. This is due to the fact that the WG

cipher is based on normal basis multiplication whereas the other three ciphers are

based on simple shifting as well as bitwise XOR and AND operations. From our

synthesis results, a 29-bit normal basis multiplier in our WG implementation costs

approximately 600 LUTs. In parallelized architecture, both Grain and Trivium

have a greater implementation area than their basic architecture counterpart be-

cause additional hardware was inserted to increase the throughput as mentioned

earlier.
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Figure 4.22: Area and Performance Results of Various Stream Ciphers
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Although our optimized implementation of WG has a large implementation

area, it offers a high level of security with proven mathematical properties. As

mentioned in Section 2.6, various architectures of the WG cipher exist depending

on their design parameters. By lowering the level of security and decreasing the

number of LFSR stages as well as the number of bits used in the multiplication,

the WG cipher can achieve a higher throughput with less implementation area.

In this chapter, we have covered the design and the verification of the non-

pipelined implementation of WG (Section 4.1 and 4.2). In Section 4.3, we have

showed how the optimizations of pipelining and hardware re-use were applied to

form our optimized implementations of WG. In Section 4.4, we conclude the chapter

with a comparison of our optimized WG implementation against three state-of-the-

art stream ciphers. The next chapter contains the verification of the Welch-Gong

cipher.
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Chapter 5

WG: Verification

The purpose of this chapter is to verify our optimized implementation of WG and

to develop a method of applying the completion functions approach such that it can

deal with a circuit that has been optimized with hardware re-use. Since all of our

optimizations were applied to the WG core block, Section 5.1 first describes how

completion functions were used to verify this block. In Section 5.2, we verify the

linear feedback shift register in which a chip-enable signal was added to accommo-

date the optimization made to the WG core block. During the verification of both

the WG core block and the linear feedback shift register, several assumptions were

made about the control signals (d valid, ce) and these assumptions were confirmed

with the verification of the finite state machine by model checking in Section 5.3.

Section 5.4 is used to describe related work.

5.1 The WG Core

Similar to the verification of KASUMI, we have used completion functions in combi-

nation with equivalence checking for the verification of the optimized datapath (i.e.

WG core) of WG. All verification methodologies suggested in the KASUMI chapter

apply in this section as well. Since the WG core block consists of the (·)210−1 block

which is formed by normal basis multipliers, we have taken a bottom-up modular

verification approach in which we begin with the verification of the multipliers fol-

lowed by the verification of the (·)210−1 block then the verification of the WG core.

In conducting our verification in a bottom-up modular way, we have developed a

new methodology that can decrease the number of verification obligations and we

refer to it as “skipping” (explained later in this section).
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Figure 5.1: Multiplier: 1st Obligation Figure 5.2: Multiplier: 2nd Obligation

5.1.1 First Verification: The Normal Basis Multiplier

We began the verification with the smallest building block (i.e. multiplier) because

it helps the reader to understand the methodology of “skipping” in later sections.

Since only pipelining was used to optimize the normal basis multiplier, this verifi-

cation is identical to the one of KASUMI except that the number of stages differs.

In Figure 5.1 to 5.3, we have used the block M1 to represent the first pipeline stage

of the multiplier, the block M2 to represent the second stage and REG to denote

the stage registers.

Figure 5.1 illustrates the first equivalence check used to verify the correctness of

the second pipeline stage M2 with respect to the completion function of the second

stage C2 of the multiplier. In Figure 5.2, the equivalence checker verifies that the

first pipeline stage M1 has the behaviour described by the completion function of

the first stage C1. Since we have verified our non-pipelined implementation of WG

with RTL simulations in Section 4.2, we can use our non-pipelined implementation

of the normal basis multiplier as the specification (denoted as SPEC ) in the final

verification obligation. The final verification of the normal basis multiplier is to

verify that the completion function of the first stage C1 is equivalent to the non-

pipelined implementation of the multiplier SPEC as depicted in Figure 5.3.

Since the 2-stage normal basis multiplier has been verified here, we would not

need to verify this pipeline again when it is used to form a larger component such

as the (·)210−1 block. However, we would still need to verify the connection to the

inputs and outputs of the pipelined multipliers in order to prove the correctness of
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Figure 5.3: Multiplier: Final Obligation

the larger component. This is the fundamental concept of our methodology known

as “skipping” (skip internal stages of a verified pipeline), and it is demonstrated in

the verification of the (·)210−1 block described the next subsection.

5.1.2 Second Verification: The (·)210−1 Block

Moving up one level in the hierarchy of the datapath of WG, the verification of

the (·)210−1 block can be used to show how completion functions are used to verify

a circuit which has been optimized with hardware re-use and to demonstrate the

methodology of “skipping”.

In Section 4.3.2, we have provided a stage-by-stage description of our 9-stage

implementation of the (·)210−1 block. If we apply the same verification methodology

used in the verification of KASUMI, we would need ten verification obligations

(one per stage and one final obligation) to completely verify the correctness of the

(·)210−1 block. Since the 2-stage normal basis multiplier within the (·)210−1 block

has already been verified in Section 5.1.1, we do not need to verify this multiplier

again. Therefore, this fact allows us to “skip” the verification of the internal stages

of the multipliers and decreases the number of verification obligations of the (·)210−1

block from ten to six as shown in this section.

Similar to the verification of KASUMI, we began the verification of the (·)210−1

block from its last pipeline stage (i.e. 9th stage). As mentioned in the stage-by-

stage description of this pipeline in Section 4.3.2, the 9th pipeline stage is formed by
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Figure 5.4: Stage 8 Obligation with Skipping and d valid=‘0’

the second stage of the normal basis multiplier. In Section 5.1.1, we have already

verified the correctness of the 2-stage normal basis multiplier. Therefore, we skipped

the verification of the 9th pipeline stage of the (·)210−1 block. For the same reason,

we skipped the verification of the 2nd, 4th and 7th pipeline stage of the (·)210−1 block.

Although we skipped the verification of the internal stage of the multiplier, we still

need to verify if the input and output connections of the multipliers are correct.

To do so, we verify the 1st, 3rd, 5th, 6th and 8th pipeline stage of the (·)210−1 block.

Similar to the case study of KASUMI, we have used the VHDL generic parameter

stage to specify which pipeline stage is under verification and the spec to indicate

whether the specification or the implementation is synthesized during equivalence

checking. Throughout these verification obligations, we set both VHDL generic

parameters stage and spec to 0 so that the multiplier block becomes its purely

combinational form as shown in Figure 5.4 to 5.8. In doing so, we can verify the

input and output connections of the multiplier while skipping the internal stage of

the multiplier.

We proceed to our first equivalence check used for the verification of the 8th

stage as shown in Figure 5.4. On the specification side (right hand side) of Figure

5.4, the completion function of the 8th stage (CF8) simply describes the desired

behaviour of the 8th stage and it does not provide any description about the multi-

plexer (on the left hand side) because the multiplexer is an implementation-specific

detail added for the optimization of hardware re-use. With the presence of this mul-

tiplexer, the equivalence checker cannot prove the equivalence between the circuit

73



on the implementation side and the circuit on the specification side. To remedy this

problem, we have to make the assumption on the implementation side that the data

valid register V 3 is ‘0’ so that the multiplexer feeds the signal z25
to the multiplier

in Figure 5.4. This assumption matches with the stage-by-stage description of this

pipeline in Section 4.3.2 and the timing diagram of Figure 4.17 because the data

valid register V 3 should be ‘0’ when a valid data packet reaches the 8th pipeline

stage. In the verification of the 3rd pipeline stage shown in Figure 5.7, we made

a different assumption that the data valid register V 3 is ‘1’ because the re-used

multiplier now takes the signal y22
as input according to its stage-by-stage descrip-

tion in Section 4.3.2. Thus, completion functions can handle the optimization of

hardware re-use only if we make assumptions about the data valid registers during

equivalence checking.

Similarly, the remaining verification obligations proceed in the same manner

where the equivalence checker verifies the equivalence between the circuit on the

implementation side (left hand side) and the circuit on the specification side (right

hand side). For the implementation side to be equivalent to the specification side,

we have to make an assumption about the associated data valid registers Vi so that

the multiplexers (added on the implementation side for hardware re-use) feed the

appropriate signals into the multipliers.

Figure 5.5 depicts the verification of the 6th pipeline stage and the second ver-

ification obligation in which we made the assumption that the data valid register

V 1 is ‘0’ so that it matches with the stage-by-stage description in Section 4.3.2.

Figure 5.6 shows our third verification obligation used to verify the correctness of

the 5th pipeline stage. Since the 5th pipeline stage of the (·)210−1 was added to

store the data packets and to avoid the contention of these data packets at the

inputs of the multiplexers, we simply connect the completion function of the next

stage (6th stage) to the stage register Q5 on the implementation side. In Figure

5.7, we have made the assumption that the data valid register V 3 is ‘1’ so that the

equivalence checker can compare the implementation against the specification in

the verification of the 3rd pipeline stage. Figure 5.8 illustrate the verification of the

1st pipeline stage in which we have assumed that the data valid register V 1 is ‘1’.

The previous five verification obligations have verified the pipeline stages under

the assumption that the completion functions are bug-free and the data valid sig-

nals are generated in a specific manner. To verify the correctness of the completion

functions, we can simply check the equivalence between the completion function

of the 1st stage and the specification of the (·)210−1 block (i.e. non-pipelined im-

plementation of Figure 4.2 in Section 4.1) as shown in Figure 5.9. To verify the
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Figure 5.5: Stage 6 Obligation with Skipping and d valid=‘0’

Figure 5.6: Stage 5 Obligation
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Figure 5.7: Stage 3 Obligation with Skipping and d valid=‘1’

assumptions about the data valid signals, we have to verify the finite state machine

because the data valid signals are generated by the finite state machine. Prior to the

verification of the finite state machine in Section 5.3, we first go up one level in the

hierarchy and verify the correctness of the WG core block in the next subsection.

5.1.3 Third Verification: The WG Core

To complete the verification of the datapath of WG, the verification of the WG core

is provided here. Similar to the verification of the (·)210−1 block, the verification

of the WG core began with the last pipeline stage and ends with the first pipeline

stage.

Figure 5.10 shows our first verification obligation used to verify the correctness of

the 11th stage of the WG core. The completion function CF11 on the specification

side (right hand side) is used to define to correct behaviour of the 11th stage. The

circuit on the implementation side (left hand side) is the circuit under verification.

The equivalence checker compares the implementation side against the specification

side to verify the correctness of the 11th stage. Since all normal basis multipliers

were verified in Section 5.1.1, we skipped the verification of all three multipliers

by instantiating all three multipliers on both the implementation and specification

sides in their combinational form (by setting the generic parameters stage and spec

to 0). Although we skipped the verification of the multipliers, we did not skip the

verification of the output connections of all three multipliers as shown in Figure
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Figure 5.8: Stage 1 Obligation with Skipping and d valid=‘1’

Figure 5.9: Final Obligation of (·)210−1 Block
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Figure 5.10: Stage 11 Obligation of WG Core

5.10. The verification of the input connections of all three multipliers is included

in the next verification obligation.

Similar to the previous verification obligation, the circuit on the implementation

side of Figure 5.11 is defined as correct if the equivalence checker proves that the

circuit on the implementation side is equivalent to the completion function CF10 on

the specification side which is used to define the behaviour of the 10th pipeline stage.

Due to the optimization of hardware re-use, the inputs of all three multipliers on

the implementation side can either be from the stage registers Q7 or Q10 depending

on the value of the data valid register V 7 fed to the multiplexers. Similar to the

verification of the (·)210−1 block, we have to make an assumption about the value

of the data valid register V 7 and this assumption has to match with the stage-by-

stage description of this pipeline in Section 4.3.2. For this verification obligation,

we made the assumption that the data valid register V 7 is ‘0’ so that the stage

registers Q10 are fed to all three multipliers. By doing so, the equivalence checker

can prove the equivalence between the circuit on the implementation side and the

completion function CF10 on the specification side. In this verification obligation,

we verified that the connections to the inputs of all three multipliers are correct. As

explained in Section 3.5 of the KASUMI chapter, we have connected the completion

function CF11 to the output of the combinational circuitry on the implementation

side because the equivalence checker can apply structural matching to decrease its

computational complexity. Note that the completion function CF11 is internally
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Figure 5.11: Stage 10 Obligation of WG Core

part of the completion function CF10 but it is not shown in Figure 5.11. Next, we

verify the correctness of the 9th pipeline stage of the WG core block.

According to the stage-by-stage description of the WG core pipeline in Section

4.3.2, the 9th pipeline stage was added for the storage of the data packets to avoid

the contention of the data packets at the inputs of the multiplexers. As shown in

Figure 5.12, the circuit on the implementation side is simply the stage registers Q9

connected to the completion function of the 10th pipeline stage because there is no

computation other than storage in this stage. Similar to the normal basis multiplier,

the “9-stage of (·)210−1” block was already verified in Section 5.1.2 and we skipped its

verification by instantiating this block on both the implementation and specification

sides in their combinational form (by setting the generic parameters stage and spec

to 0). Although we skipped the verification of the “9-stage of (·)210−1” block, we

did not skip the verification of its output connections as shown in Figure 5.12. The

verification of the input connections of the “9-stage of (·)210−1” block is included in

the verification of the 1st pipeline stage described later in this section. In Figure

5.12, the equivalence checker proved the equivalence between the circuit on the

implementation side and the completion function CF9 on the specification side.

Next, we verify the correctness of the 8th pipeline stage of the WG core block.

According to the stage-by-stage description of the WG core pipeline in Section

4.3.2, the 8th pipeline stage is formed by the second stage of the normal basis

multiplier (which was already verified). For this reason, we skipped the verification
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Figure 5.12: Stage 9 Obligation of WG Core

of the 8th pipeline stage of the WG core. In Figure 4.18 of Section 4.3.2, the

stage registers Q8 (outside to the multipliers) are used to synchronize the data

packets flowing inside and outside of the multipliers. Although the methodology

of “skipping” saved the verification of the 8th pipeline stage, the circuit designer

or the verification engineer still needs to verify that the stage registers Q8 (outside

of the multipliers) are correctly connected to the other stage registers so that the

data packets in the pipeline are synchronized correctly. This simple verification

was done by VHDL code review. The user can choose to not skip this verification

and pursue a stage-by-stage verification strategy without making use of “skipping”.

Next, we verify the correctness of the 7th pipeline stage of the WG core block.

Similar to the verification of the 10th pipeline stage of the WG core, we made

the assumption that the data valid register V 7 is ‘1’ to select the correct input

of the multiplier and we connected the completion function CF9 to the output of

the combinational circuitry so that the equivalence checker can apply structural

matching to decrease its computational complexity as shown in Figure 5.13. Note

that the “9-stage of (·)210−1” block still exist on both the implementation and

specification sides because the input connections of this block have not been verified

and the semantics of this block have not been captured by any completion functions

yet (to be shown in the verification of the 1st pipeline stage). In Figure 5.13, the

equivalence checker proved the equivalence between the implementation and the

specification. Next, we verify the correctness of the 6th pipeline stage of the WG
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Figure 5.13: Stage 7 Obligation of WG Core

core block.

Similar to the verification of the 8th pipeline stage of the WG core, we skipped

the equivalence verification of the 6th pipeline stage and we used VHDL code review

to verify that the stage registers Q6 are correctly connected to the other stage

registers so that the data packets in the pipeline are synchronized correctly. This

is because the 6th pipeline stage of the WG core is formed by the 6th stage of the

“9-stage of (·)210−1” block (which was already verified). Similarly, we verified the

2nd to 5th pipeline stage of the WG core in the same manner because these pipeline

stages are formed by the 2nd to 5th pipeline stage of the “9-stage of (·)210−1” block.

Next, we verify the correctness of the 1st pipeline stage of the WG core block.

Figure 5.14 depicts the equivalence check used in the verification of the 1st

pipeline stage of the WG core. By checking the equivalence between the comple-

tion function of the first stage CF1 on the specification side and the circuit on

the implementation side, we verified that the input connections of the “9-stage of

(·)210−1” block are correct. Although “skipping” was applied to the “9-stage of

(·)210−1” block, the completion function of the first stage CF1 still captures the

semantics of the “skipped” components (shown in Figure 5.14) because the com-

pletion function CF1 needs to be verified in the final verification obligation as

discussed next.

The previous five verification obligations have verified the pipeline stages of the

WG core under the assumption that the completion functions are bug-free and the

data valid signals are generated in a specific manner. To verify the correctness of the
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Figure 5.14: Stage 1 Obligation of WG Core

completion functions, we can simply check the equivalence between the completion

function of the 1st stage and the specification SPEC of the WG core (i.e. non-

pipelined implementation in Section 4.1.1) as shown in Figure 5.15. Prior the to

verification of the assumptions about the data valid signals in Section 5.3, we first

verify the correctness of the linear feedback shift register with the addition of the

chip-enable signal in the next section.

5.2 The Linear Feedback Shift Register

In our first non-pipelined WG implementation of Section 4.1, the linear feedback

shift register shifts and feeds a data packet per clock cycle to the WG core. Due to

the application of hardware re-use onto the WG core in Section 4.3.2, the WG core

can only process one data packet per every two clock cycles instead of the original

one data packet per clock cycle. To change the rate at which the linear feedback

shift register feeds data packets to the WG core, a chip-enable signal was added to

all registers inside the linear feedback shift register in Section 4.3.3. In this section,

we describe how we have used equivalence checking to verify the correctness of the

modified linear feedback shift register with chip-enable.

Figure 5.16 shows the equivalence check used in the verification of the linear

feedback shift register with chip-enable. On the specification side of Figure 5.16,
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Figure 5.15: Final Obligation of WG Core

Figure 5.16: Verification of LFSR with ce=‘1’

we used the original linear feedback shift register of Section 4.1.2 because its cor-

rectness was already verified with RTL simulations in Section 4.2.2. Similar to the

verification of the WG core with hardware re-use, we have to make an assumption

about the chip-enable ce of the linear feedback shift register on the implementa-

tion side so that the equivalence checker can verify its correctness with respect to

the specification on the right hand side. As shown in Figure 5.16, we made the

assumption that the chip-enable ce is ‘1’ because the linear feedback shift register

with chip-enable would shift and this is equivalent to the original linear feedback

shift register. If we made the assumption that the chip-enable ce is ‘0’, the linear

feedback shift register with chip-enable would not shift and the equivalence checker

would conclude that the implementation is not equivalent to the specification in

Figure 5.16.
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Recall that there is a normal basis multiplier within the linear feedback shift reg-

ister as shown in Figure 4.3. This multiplier is purely combinational in the original

linear feedback shift register but becomes a 2-stage pipeline in the linear feedback

shift register with chip-enable due to pipelining. Since the pipelined normal basis

multiplier was already verified in Section 5.1.1, we instantiated the multiplier in

its purely combinational form on both the implementation and specification side

of Figure 5.16 by setting the VHDL generic parameters stage and spec to ‘0’. By

doing so, the equivalence checker can decrease its computational complexity with

structural matching. Up to this point, the verification of our optimized implemen-

tation of WG is correct if the assumptions about the data valid and chip-enable

signals are correct. To verify that our assumptions are correct, we verify the finite

state machine that generates these two control signals in the next section.

5.3 The Finite State Machine

Throughout the verification of our optimized WG implementation, we made as-

sumptions about the data valid and chip-enable signals based on the fact that

these signals are correctly generated by the finite state machine. To verify the gen-

eration of these two control signals by the finite state machine, we used a method

known as model checking. In this section, we first provide background information

about model checking then we describe how it was used to verify the finite state

machine of our optimized WG implementation.

5.3.1 Background of Model Checking

Model checking is an automatic formal verification technique used to verify finite

state systems. In the verification of hardware designs, these systems in hardware

description language are first translated into state transition graphs then these

graphs are traversed to check if they satisfy certain properties. In the case that the

system does not satisfy a property, model checking provides a counterexample to

show why the property does not hold. In our verification, we used linear temporal

logic formulas to express the properties that we verified.

Linear temporal logic (LTL) formulas are formed by propositional variables, log-

ical connectives and temporal modal operators. Propositional variables are Boolean

variables used to represent a proposition (i.e. property). To link multiple propo-

sitions together, the following five logical connectives are used: negation ¬, con-
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Temporal LTL Meaning of Formula

Operator Formula

next X X a a is true at the next state

globally G G a a is true globally on the path

eventually F F a a is eventually true somewhere on the path

until U a U b a is true until b is true,

and b is true at current or future state

Table 5.1: Semantics of Temporal Modal Operators

junction ∧, disjunction ∨, and material implication⇒. By adding temporal modal

operators, the aspect of time is added to these propositions. Given two proposi-

tional variables a and b, the semantics of the temporal modal operators are shown

in Table 5.1. Note that a path is a sequence of states that describe the behaviour

of the circuit. A path satisfies a linear temporal logic formula if and only if the

initial position of that path satisfies this formula.

5.3.2 The Verification

The verification of the finite state machine began by checking the VHDL code of

our optimized WG implementation into IBM RuleBase verification tool which can

handle model checking. Similar to conventional simulation, a set of environment

stimulus needs to be defined before verifying if our finite state machine satisfies

certain properties. As shown in Figure 4.20, there are two environment variables

that can affect the behavior of the finite state machine: the clock signal clk and the

reset signal rst. Under normal operation of the WG cipher, the clock signal is always

active and the reset signal is only asserted on the first clock cycle to initialize the

finite state machine then it is de-asserted for the remaining clock cycles. Therefore,

we defined (i.e. modeled) these two environment variables as described above.

To verify that the data valid d valid and chip-enable ce are correctly generated

by the finite state machine as described in Section 4.3.3, we devised 19 linear

temporal logic formulas (i.e. properties) and divided them intro three sets. The

first set is used to verify whether the finite state machine makes transition from

state to state in the desired sequence. The second set is used to verify if the finite

state machine remains in each state for a correct number of clock cycles. The

third set is used to verify whether the finite state machine generates the correct

data valid d valid and chip-enable ce in each state. In the rest of this section, all
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Property Formula

1 rst ⇒ X reg load

2 reg load ⇒ reg load U init phase

3 init phase ⇒ init phase U run phase

4 run phase ⇒ X run phase

Table 5.2: First Set of Properties Verified

Operator Formula Meaning of Formula

prev prev a a is true at the previous cycle

next a[i..j] next a[i..j] a a is true for all cycles from ith to jth cycle

next[i] next[i] a a is true at the ith cycle

Table 5.3: Semantics of Additional Operators

linear temporal logic formulas are evaluated globally but we did not include the

temporal modal operator G at the beginning of each formula and we have replaced

the proposition (state = state name) by state name for readability purpose.

Table 5.2 shows the first set of properties used to verify that the state machine

makes state transitions in the correct sequence. These properties have shown that

the reset signal rst is asserted to initialize the state machine at the state reg load

(property 1) then it remains in this state until it enters the state init phase (prop-

erty 2). Once the state machine enters the state init phase, it remains in this state

until it enters the state run phase (property 3) where the state machine remains

in this state (property 4) for the remaining clock cycles to generate the keystream.

This sequence of state transitions matches with the description provided in Section

4.2.1.

To represent complex properties (i.e. formulas) in a simple form, we used three

additional RuleBase built-in operators: prev, next a[i..j], and next[i]. Given a

proposition a and two integers i and j, the semantics of these operators are shown

in Table 5.3.

Table 5.4 illustrates the second set of properties used to verify that the state

machine remains in each state for a correct number of cycles. These properties

have demonstrated that the state machine remains in the state reg load for at least

11 cycles (property 5) and makes a transition to the state init phase at the 12th

cycle (property 6) so that the 11-stage linear feedback shift register has the exact

number of cycles required to load all of its registers. Once the state machine enters

the state init phase, it remains in this state for at least 528 cycles (property 7) and
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Property Formula

5 reg load ∧ prev ¬reg load ⇒ next a[1..10] reg load

6 reg load ∧ prev ¬reg load ⇒ next[11] init phase

7 init phase ∧ prev ¬init phase ⇒ next a[1..527] reg load

8 init phase ∧ prev ¬init phase ⇒ next[528] run phase

Table 5.4: Second Set of Properties Verified

Property Formula

9 reg load ⇒ ce ∧ ¬d valid ∧ load ∧ ¬init

10 init phase ⇒ ¬load ∧ init

11 init phase ∧ prev ¬init phase ⇒ d valid ∧ ¬ce

12 init phase ∧ d valid ⇒ next a[1..10] ¬ce

13 init phase ∧ d valid ⇒ next[11] ce

14 init phase ∧ d valid ⇒ next a[1..11] ¬d valid

15 init phase ∧ d valid ⇒ next[12] d valid

16 run phase ⇒ ¬load ∧ ¬init

17 run phase ∧ prev ¬run phase ⇒ d valid ∧ ¬ce

18 run phase ∧ d valid ⇒ X ¬d valid ∧ ce

19 run phase ∧ ¬d valid ⇒ d valid ∧ ¬ ce

Table 5.5: Third Set of Properties Verified

makes a transition to the state run phase at the 529th cycle (property 8) so there

are exactly 528 cycles for the initialization of the cipher. The finite state machine

remains in the state run phase until keystream generation is fully completed. The

number of cycles in each state matches with the description provided in Section

4.3.3

Table 5.5 depicts the third set of properties used to verify that the state machine

generates the correct control signals (d valid, ce, load, init) in each state. Through-

out all cycles of the state reg load, the state machine generates a chip-enable of ‘1’,

a data valid of ‘0’, a load signal of ‘1’, and a init signal of ‘0’ (property 9) so that

the linear feedback shift register loads itself one stage per cycle.

Throughout all cycles of the state init phase, the state machine generates a

load of ‘0’ and an init of ‘1’ (property 10) so that the feedback of the WG core is

connected to the input of the linear feedback shift register. In the first cycle of the

state init phase, the state machine generates a data valid of ‘1’ and a chip-enable of

‘0’ (property 11) because there is valid data to be fed from the linear feedback shift
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register to the WG core and the linear feedback shift register cannot shift until it

receives data back from the WG core. Since every valid data packet needs 12 cycles

to travel from the WG core back (latency of 11 cycles) to the linear feedback shift

register (latency of 1 cycle), the chip-enable is de-asserted for 11 cycles (property

12) then re-asserted at the 12th cycle (property 13) so that the linear feedback shift

register can shift the data packet into its first stage. Once the data valid signal is

asserted, it is de-asserted for 12 cycles (property 14) because a data packet needs

to travel through the WG core to the linear feedback shift register. The data valid

signal is re-asserted on the 13th cycle (property 15) because another valid data

packet in the linear feedback shift register is ready to be fed to the WG core again.

Throughout all cycles of the state run phase, the state machine generates a load

of ‘0’ and an init of ‘0’ (property 16) so that the input of the linear feedback shift

register becomes the original feedback polynomial. In the first cycle of the state

run phase, the state machine generates a data valid of ‘1’ and a chip-enable of ‘0’

(property 17) because there is valid data to be fed to the WG core and the output

bit of the linear feedback shift register has not arrived to its own input yet(due to

the pipelined multiplier in the feedback polynomial). During the state run phase,

both the data valid and chip-enable signals toggle between ‘0’ and ‘1’ every cycle

(property 18 and 19) because the WG can only handle a data rate of one data

packet per every two clock cycles.

All of the properties mentioned above were satisfied by our optimized imple-

mentation of WG. Therefore, the verification of our optimized WG implementation

was completed and no bugs were found.

5.4 Related Work

Since ciphers were invented to encrypt information for high security applications,

most of the research in the area of cryptography has been focused on breaching

the security of ciphers. In the past, various formal verification techniques have

been used to verify security protocols. However, there is not much research which

involves the hardware verification for cryptography.

In 2008, Slobodová published the first work [16] which is related to the verifica-

tion of hardware for cryptography. Their work verified the Advanced Encryption

Standard (AES) by using Symbolic Trajectory Evaluation.

In this chapter, we began the verification of our optimized WG implementation

in Section 5.1 by verifying the WG core (i.e. datapath) with completion functions
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and equivalence checking under the assumption that the data valid signals were

generated correctly. In Section 5.2, we verified that the linear feedback shift register

with chip-enable is equivalent to the original linear feedback shift register under

the assumption that the chip-enable signal was generated correctly. To complete

the verification of our optimized WG implementation, we used model checking to

confirm that the finite state machine did generate the control signals correctly. The

next chapter provides the conclusions of this thesis as well as future work.
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Chapter 6

Conclusions and Future Work

In this thesis, we explored the verification technique of completion functions by the

verification of two ciphers: KASUMI and WG.

In Chapter 3, we first designed a non-pipelined implementation of KASUMI

then we used RTL simulations to verify its correctness. With the optimization

technique of pipelining, we created three additional implementations of KASUMI:

8-stage, 16-stage, and 32-stage. We verified these three pipelined implementations

by using completion functions and equivalence checking, and their correctness was

defined with respect to the non-pipelined specification.

During the verification of KASUMI, we developed a methodology to handle

the completion functions efficiently in VHDL. This methodology use the VHDL

“if-generate” and generic parameters to control the generation of the completion

functions in hardware. The stage generic parameter specifies which stage is un-

der verification, and the spec parameter indicate whether the specification or the

implementation is synthesized. This methodology offers two advantages. First, it

avoids the cumbersome process of connecting the completion functions to the regis-

ter buried inside VHDL sub-entities. Second, a hardware designer or a verification

engineer can instantiate the completion functions of a component simply by spec-

ifying the values of the generic parameters. The drawback of this methodology is

that it consumes the time of hardware designer to build these completion functions.

In the case study of the WG cipher, we aimed to explore the completion func-

tions with more sophisticated circuits. Similar to the case study of KASUMI, we

first designed a non-pipelined implementation of WG then we used RTL simula-

tions to verify its correctness in Chapter 4. With the optimization technique of

pipelining and hardware re-use, we created an optimized implementation of WG.
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In the verification of WG in Chapter 5, we developed two verification method-

ologies: skipping and completion functions dealing with hardware re-use. The

methodology of skipping makes use of the fact that the verification of the inter-

nal stages of a verified sub-component can be skipped during the verification of a

block which uses this sub-component. This methodology offers the advantage of

decreasing the number of verification obligations in proving the correctness of a

circuit.

The optimization technique of hardware re-use requires multiplexers to be added

at the input of the re-used circuitry. In using completion functions and equivalence

checking to verify a circuit optimized with hardware re-use, the completion func-

tions or the specification does not provide any description about these multiplexers

because they are implementation-specific details. By making assumptions about

the select signals of the multiplexers, equivalence checking can prove that the im-

plementation has the same functionality as the specification. These assumptions

need to be verified in order to have a complete proof of correctness. In the case

study of WG, we used model checking to verify that the finite state machine gener-

ates the select signals of the multiplexers correctly. From the results in this thesis,

we derived research topics for future work and they are described below.

Completion Functions in Verilog: similar to programming languages, there

exists many different hardware description languages with different features. In

the industry, the two most widely-used hardware description languages are: VHDL

and Verilog. In this thesis, we developed a methodology to handle completion func-

tions based on some VHDL features such as “if-generate” and generic parameters.

For a methodology to be widely-used, it has to support both VHDL and Verilog.

Therefore, there is a need to explore completion function in Verilog.

Automatic Use of Completion Functions: in a report, it is estimated

that between 40 to 70 percent of the total development effort is consumed by

verification tasks [15]. In this thesis, we verified the correctness of both pipelines

in a systematic way. The verification begins at the last pipeline stage and it ends

at the first pipeline stage. For each pipeline stage, we first build its completion

function then we use this completion function to verify the correctness of that

pipeline stage. Other than building the completion functions of each pipeline stage,

most steps in the verification can be automated. To decrease verification effort and

time, heuristics should be developed to automate the use of completion functions.
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