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Abstract

In 2001, Boneh, Lynn, and Shacham presented a pairing-based signature scheme
known as the BLS signature scheme. In 2003, Boneh, Gentry, Lynn, and Shacham
presented the first aggregate signature scheme called the BGLS aggregate signature
scheme. The BGLS scheme allows for N users with N signatures to combine their
signatures into a single signature. The size of the resulting signature is independent
of N . The BGLS signature scheme enjoys roughly the same level of security as the
BLS scheme.

In 2005, Waters presented a pairing-based signature scheme which does not as-
sume the existence of random oracles. In 2007, Lu, Ostrovsky, Sahai, Shacham, and
Waters presented the LOSSW aggregate signature scheme which does not assume
the existence of random oracles.

The BLS, BGLS, Waters, and LOSSW authors each chose to work with a re-
stricted class of pairings. In each scheme, it is clear that the scheme extend to
arbitrary pairings. We present the schemes in their full generality, explore vari-
ations of the schemes, and discuss optimizations that can be made when using
specific pairings.

Each of the schemes we discuss is secure assuming that the computational Diffie-
Hellman (CDH) assumption holds. We improve on the security reduction for a
variation of the BGLS signature scheme which allows for some restrictions of the
BGLS signature scheme can be dropped and provides a stronger guarantee of secu-
rity. We show that the BGLS scheme can be modified to reduce public-key size in
presence of a certifying authority, when a certain type of pairing is used. We show
that patient-free bit-compression can be applied to each of the scheme with a few
modifications.
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CHAPTER 1

Introduction

1.1. Signature schemes

Two parties Alice and Bob wish to communicate over an unsecured channel.
Alice wishes to send messages to Bob. They are not concerned with hiding their
messages but they wish to ensure that messages have not been modified in-transit
by some malicious adversary, Oscar.

Alice Bob

Oscar

Figure 1. Alice sends a message to Bob. Oscar may modify the
message before the message reaches Bob.

In the world of pen-and-paper, this problem is addressed using hand-written
signatures. Alice signs a paper document with her signature, writes Bob’s address
on an envelope, seals the document inside, and drops it in a mailbox. If the docu-
ment is intercepted at Bob’s mailbox, it is a non-trivial task to place an identical
signature on a different document. When Bob receives the paper document with
Alice’s signature, Bob has some assurance that the document is authentic.

Of course, in the digital world, paper documents and signatures are replaced
with binary strings. The binary string representing the hand-written signature
could easily be duplicated. Signature schemes are meant to address authentication
in the digital world.

Public-key signature schemes require at least three algorithms, Generate, Sign,
and Verify. The Generate algorithm produces private and public keys. The pri-
vate key is used to produce signatures. The public key is used to verify a signa-
ture. Of course, the verifier must obtain an authentic copy of the public key. The
Sign algorithm produces a signature on a given message using the private key. The
Verify algorithm determines if a signature on some message is valid. Any signa-
ture produced by the Sign algorithm on a message m with the private key SK
is accepted by the Verify algorithm on the message m with the public key PK
corresponding to SK.
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The most commonly used signature scheme is Full Domain Hash (FDH) [3]. Its
security relies on the difficulty of the RSA problem and assumes the existence of a
random oracle.

Full Domain Hash (FDH). We define the functions Generate, Sign, and Verify.
Fix some integer `. Let H : {0, 1}∗ → ZN be a random oracle (where N is defined
later).

Generate selects two primes p, q of bit-length ` uniformly at random and com-
putes N = pq. The algorithm selects some e ∈ Z∗

N (usually e = 3 for fast verifica-
tion) and computes d such that ed ≡ 1 (mod ϕ(N)). The public key 〈N, e〉 and the
private key d are returned. When we are referring to FDH, all multiplication using
the keys 〈N, e〉, d are done modulo N .

Sign takes as input a message m ∈ {0, 1}∗ and a private key d. The algorithm
returns σ = H(m)d.

Verify takes as input a message m, a public key 〈N, e〉, and a signature σ. The
algorithm accepts the signature iff H(m) = σe.

We will formalize the notion of security for signature schemes in Section 1.3.
Intuitively, only the party that holds the private key should be able to create
signatures. FDH has the property that it is infeasible to create signatures without
the private key, provided that the hash function employed is assumed to be a
random function and the following problem is computationally infeasible.

The RSA problem is the problem of determining hd, given only e, N , and
h ∈ ZN . The best method known for solving this problem (and the best attack
known on FDH) is to factor N using the number field sieve algorithm [22] which
runs in time

O
(
e(1.923+o(1))(log n)1/3(log log n)2/3

)
.

Consequently, to obtain 80 bits of security, we require that N be a 1024 bit integer.
The assumption that the hash function is a random function is known as the

random oracle assumption.

1.2. Bilinear pairings

Let G and GT be groups of prime order p. Let g be a generator of G. A function
e : G × G → GT is said to be a non-degenerate, symmetric, bilinear pairing, if e
satisfies the following properties

(i) e(g, g) 6= 1,
(ii) e(gx, g) = e(g, g)x = e(g, gx), for all integers x.

In the remainder of this chapter, we fix e, G, and a generator g of G. In
Chapter 2, we will fix more general entities for the remainder of the thesis.

The signature schemes we discuss assume that a problem known as the compu-
tational Diffie-Hellman problem (CDH ) is difficult to solve for a sufficiently large
group G.

The computational Diffie-Hellman problem (CDH). Let G be a group of
prime order with generator g. Given elements gx, gy, find gxy.
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There exists a decisional version of the CDH problem, called the decisional
Diffie-Hellman problem (DDH ): given gx, gy, and gz, determine if

(1) gz = gxy.

Using a pairing e : G×G→ GT , we have that Equation (1) holds iff

e(gz, g) = e(gx, gy).

Therefore, the DDH problem can be solved using two pairing evaluations.

1.3. The Boneh-Lynn-Shacham signature scheme

We present a simplified version of the BLS signature scheme [7]. In Chapter 3,
we generalize the BLS scheme for a more general class of pairings.

BLS. Let H : {0, 1}∗ → G be a hash function. We define the algorithms Generate,
Sign, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and returns the private
key x and the public key X = gx.

Sign takes as input a private key x, a message m, and returns a signature
σ = H(m)x.

Verify takes as input a public key X, a message m, and a signature σ. The
algorithm accepts the signature iff

e(σ, g) = e(H(m), X).

As we have mentioned, it should be impossible or at least computationally infea-
sible for an adversary to create signatures on messages without holding the private
key. A strong security model is one in which the adversary is given many abilities
and has a relatively weak goal. We fix some public key PK for the adversary and
its goal is to produce a signature on any message of its choosing. We refer to such
a signature as a forgery.

Intuitively, it is reasonable to assume that the adversary has seen many signa-
tures of messages signed by a legitimate party. Of course, we wish the adversary
to return the signature of a message that was not already signed. It is also con-
ceivable that the adversary can force a legitimate party to sign as many “benign”
messages as the adversary wishes. The adversary could then proceed to forge a
signature on a potentially “damaging” message. We formalize these ideas in our
attack model. We emphasize that the model we will describe has no notion of “be-
nign” and “damaging” messages; the adversary is permitted to obtain signatures
for arbitrary messages and to succeed must produce a signature for a message not
queried.

Consider an arbitrary signature scheme. We fix an arbitrary user with some
public key, referred to as the challenge public key. We assume that an adversary has
access to the Sign algorithm as a black box. That is, the adversary is presented with
an interface that behaves exactly like the Sign algorithm except that the private key
need not be given as an input. We refer to this black box as a signing oracle. The
goal of the adversary is to produce a signature for some message not given as input
to the oracle. We refer to such an adversary as a forger. If no computationally-
bounded adversary can succeed with a non-neglidgeable probability, the signature
scheme is said to be existentially unforgeable under chosen-message attacks.

3



Assuming that the CDH problem in G is computationally infeasible and H
is a random oracle, the BLS signature scheme is existentially unforgeable under
chosen-message attacks [7].

1.4. Aggregate signature schemes

Given a set of N messages each corresponding to one of N signers, the signers
wish to construct a signature which will convince a verifier that the messages are
authentic. Using the signature schemes we previously described, we could generate
N signatures and verify them one at a time. The total bit-length of the signatures
grows linearly in the number of signers. Aggregate signature schemes are designed
to fix the bit-length of the aggregate signature. That is, regardless of the number of
signers and messages, the bit-length of the aggregate signature produced is fixed.
Aggregate signatures schemes have applications in secure routing protocols and
certificate chains [5].

1.4.1. The BGLS scheme. The first aggregate signature scheme, proposed
by Boneh, Gentry, Lynn, and Shacham, is referred to as the BGLS aggregate signa-
ture scheme [5]. BGLS is inspired by the BLS signature scheme. Each user creates
their own signature using the BLS algorithm and using a new algorithm we refer
to as Aggregate, the signatures are combined into a single aggregate signature
of a fixed bit-length. We will discuss a notion of security for aggregate signature
schemes later in this section. For now, we present the BGLS signature scheme.

The Boneh-Gentry-Lynn-Shacham aggregate signature scheme (BGLS).
Let H : {0, 1}∗ → G be a hash function. We define the algorithms Generate, Sign,
Aggregate, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and returns the private
key x and the public key X = gx.

Sign takes as input a private key x, a message m, and returns a signature
σ = H(m)x.

Aggregate takes as input signatures σ1, . . . , σN and returns an aggregate sig-
nature

σ =
N∏

i=1

σi

Verify takes as input public keys X1, . . . , XN , messages m1, . . . , mN , and an
aggregate signature σ. The algorithm accepts the signature iff

e(σ, g) =
N∏

i=1

e(H(mi), Xi).

Intuitively, given a particular user that contributes to an aggregate signature,
the security of this user’s contribution should not rely on the security of other
users. That is, if we are given a set of N − 1 compromised users and a single
uncompromised user, it should be infeasible to generate an aggregate signature of
these N users on any set of messages. To formalize this notion of security, we fix
a particular user with some challenge public key. As with signature schemes, we
grant an adversary access to a signing oracle with respect to this user’s public key.
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An adversary is successful if the adversary produces an aggregate signature on N
messages corresponding to N public keys, one of which is the challenge public key.
The adversary must produce all messages and all public keys corresponding to the
signature. The message corresponding to the challenge public key cannot be one
that was given as input to the signing oracle. We are careful to note that the
adversary need only produce the public keys of the other users. The adversary, in
general, does not need to possess the private keys of compromised users.

Since the invention of BGLS, other aggregate signature schemes have been pro-
posed. In Chapter 6, we present one such aggregate signature scheme, called
LOSSW [24]. The LOSSW aggregate signature scheme is a sequential aggregate
signature scheme wherein each user must add their contribution to an aggregate-
so-far signature in sequence. This differs from the BGLS signature scheme where
individual signatures can be aggregated in sequence or at any time.

1.5. Outline and contributions

In Chapter 2, we define a more general class of pairings and define computational
assumptions more general than the CDH assumption. Throughout this thesis, we
present schemes in their most general form. Each scheme may be optimized for
specific pairings.

The BLS signature scheme and the BGLS aggregate signature schemes are
stated in a general setting in Chapters 3 and 4. Previous definitions and proofs
of security of BLS and BGLS have been in terms of a specific pairing. Bellare,
Namprempre, and Neven presented a variation of the BGLS scheme which offers a
better proof of security [2]. We present an improvement to their proof of security.
Although they claim to have proven their Theorem 3.2, the bounds they obtain in
their probabilistic reduction do not correspond to those of the theorem. We give a
direct proof of their Theorem 3.2. We show that if a proof-of-possession is imple-
mented, then using certain pairings, BGLS public keys can be made smaller and
verification can be done more efficiently. We describe a method for compressing
points in BGLS that avoids certain patents related to bit-compression.

Waters presented a signature scheme using symmetric pairings which is secure
without making the random oracle assumption [32]. In Chapter 5, we generalize
the Waters signature scheme to arbitrary pairings. We show how the scheme can be
modified to reduce signature size at the cost of dramatically increasing the public
key size. We apply the same technique we used in BGLS to obtain patent-avoiding
bit-compression. In Chapter 6, we present the LOSSW aggregate signature scheme
and apply the same modifications we outlined for the Waters signature scheme.

In Chapter 7, we state results due to Coron [10] which show that security reduc-
tions for deterministic signature schemes cannot be improved without modification
to the underlying scheme. We abstract some of the concepts used in Coron’s proof
and show that it can be extended to a class of non-deterministic signature schemes,
which includes the Waters signature scheme.
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CHAPTER 2

Baretto-Naehrig Curves

2.1. Terminology

An elliptic curve E defined over a field F of characteristic neither 2 nor 3 is
defined by an equation

(2) y2 = x3 + ax+ b,

where a, b ∈ F. The set of F-rational points on E is

E(F) = {(x, y) ∈ F× F | y2 = x3 + ax+ b} ∪ {∞}.

We denote by Fn the finite field of order n.
Let p 6= 2, 3 be prime and let E be an elliptic curve such that the order

n = #E(Fp) is prime. The embedding degree of E is the smallest integer k such
that n divides pk − 1. We shall assume throughout that k > 1. The trace map
Tr: E(Fpk)→ E(Fp) of E is defined by

Tr(Z) =
k−1∑
i=0

πi(Z),

where π(x, y) = (xp, yp) is the pth-power Frobenius map.
Let E[n] be the set of points P in E(Fpk) such that the order of P divides n. We

refer to E[n] as the set of n-torsion points. It is well known that E[n] ∼= Zn × Zn,
which implies that E[n] has n+ 1 subgroups of order n.

Consider groups G1, G2, GT of prime order n and generators g1, g2 of G1 and
G2 respectively. A function e : G1 × G2 → GT is referred to as a non-degenerate
bilinear pairing if

(i) e(g1, g2) 6= 1;
(ii) e(gx

1 , g2) = e(g1, g2)
x = e(g1, g

x
2 ), for all integers x.

The pairings we discuss in Chapter 1 are of Type 1, since G1 = G2. If G1 6= G2

and an efficiently computable isomorphism ψ : G2 → G1 is known, we refer to the
pairing as a Type 2 pairing. If G1 6= G2 and no such map is known, the pairing is
a Type 3 pairing [13].

2.2. Baretto-Naehrig curves

A Baretto-Naehrig (BN) elliptic curve [1] is constructed by selecting an integer
z such that p = 36z4 + 36z3 + 24z2 + 6z + 1 and n = 36z4 + 36z3 + 18z2 + 6z + 1
are prime. Then there is an elliptic curve E : y2 = x3 + b defined over Fp such that
n = #E(Fp). Each such elliptic curve has embedding degree k = 12.
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2.2.1. Type 3 pairings. Let G1 = E(Fp. Let GT denote the unique order-n
subgroup of F∗

p12 . The curve E has a degree-6 twist over Fp2 ; that is, there exists

an elliptic curve Ẽ over Fp2 such that d = 6 is the smallest positive integer for

which E and Ẽ are isomorphic over Fp2d [18]. The curve Ẽ has the property that

n | #Ẽ(Fp2). Let T̃ be a point of order n and set G̃2 = 〈T̃ 〉. Then there exists an

efficiently computable monomorphism φ : G̃2 → E(Fp12). For T = φ(T̃ ), the group
G2 = 〈T 〉 is such that G2 6= G1 and we have an efficiently-computable isomorphism
φ : G̃2 → G2. The group G2 is called the trace-0 subgroup of E[n], since it has the
property that for each Z ∈ G2, the trace of Z is the identity element. Next, we
define three asymmetric pairings on (G1, G2, GT ). Since no efficiently-computable
isomorphism from G2 to G1 is known, these pairings are of Type 3.

First, we describe the Tate pairing. The Miller function fn,P [25] is a function
whose only zeroes and poles in E are a zero of order n at P and a pole of order n
at ∞. The full Tate pairing ê : E[n] × E[n] → GT is defined for P , Q ∈ E[n] and
R ∈ E(Fp12) by

ê(P,Q) =

(
fn,P (Q+R)

fn,P (R)

)(p12−1)/n

.

If we restrict the domain of the Tate pairing to G1×G2, the Tate pairing tn : G1×
G2 → GT is defined by

tn(P,Q) =
(
fn,P (Q)

)(p12−1)/n

and can be efficiently computed using Algorithm 1 [6].

Algorithm 1 (Computing the Tate pairing)

Input: P ∈ G1 and Q ∈ G2.
Output: tn(P,Q).

1. Write n in binary: n =
∑L−1

i=0 ni2
i.

2. T ←− P , f ←− 1.
3. For i from L− 2 downto to 0 do: {Miller operation}

3.1 Let ` be the tangent line at T .
3.2 T ←− 2T , f ←− f 2 · `(Q).
3.3 If ni = 1 and i 6= 0 then

Let ` be the line through T and P .
T ←− T + P , f ←− f · `(Q).

4. Return(f (p12−1)/n). {Final exponentiation}

The ate pairing an : G1 ×G2 → GT [18] is defined by

an(P,Q) =
(
ft−1,Q(P )

)(p12−1)/n

where t− 1 = p− n = 6z2. The ate pairing is generally faster to compute than the
Tate pairing, since the number of iterations in the Miller operation is determined
by the bit-length of t− 1 ≈

√
n.

7



The R-ate pairing Rn : G1 × G2 → GT [23] further reduces the number of
iterations in the Miller operation. Set a = 6z+ 2, f = fa,Q(P ), and let `A,B denote
the line through A and B. We define Rn by

Rn(P,Q) =
(
f ·

(
f · `aQ,Q(P )

)p · `π(aQ+Q),aQ(P )
)(p12−1)/n

.

There is an integer N such that Rn(P,Q) = ê(Q,P )N for all P ∈ G1 and Q ∈ G2

[23]. The R-ate pairing can be computed using Algorithm 2. The number of
iterations in the Miller operation is now determined by the bit-length of a ≈

√
t ≈

n1/4.

Algorithm 2 (Computing the R-ate pairing)

Input: P ∈ G1 and Q ∈ G2.
Output: Rn(Q,P ).

1. Write a = 6z + 2 in binary: a =
∑L−1

i=0 ai2
i.

2. T ←− Q, f ←− 1.
3. For i from L− 2 downto 0 do

3.1 Let ` be the tangent line at T .
3.2 T ←− 2T , f ←− f 2 · `(P ).
3.3 If ai = 1 then

Let ` be the line through T and Q.
T ←− T +Q, f ←− f · `(P ).

4. f ←− f · (f · `T,Q(P ))p · `π(T+Q),T (P ).

5. Return(f (p12−1)/n).

Table 1, due to Hankerson, Menezes, and Scott [16], lists the expected costs of
computing the Tate, ate, and R-ate pairings for a particular BN curve described in
Section 2.3, demonstrating the superiority of the R-ate pairing. The cost estimates
have been validated by experiments. For example, [16] reports timings of 81 million
and 54 million clock cycles for computing the ate and R-ate pairings on a 2.8 GHz
Pentium 4 machine using general purpose registers.

Pairing Miller operation Final exponentiation Total
Tate 27,934m 7,246m+i 35,180m+i
ate 15,801m 7,246m+i 23,047m+i

R-ate 7,847m+i 7,246m+i 15,093m+2i
Table 1. Expected costs of the Tate, ate and R-ate pairings for the
BN curves described in Section 2.3. Here, m and i denote multipli-
cation and inversion in Fp.

2.2.2. Type 2 pairings. Let R ∈ E[n] where R /∈ G1 and R /∈ G2 and
define G′

2 = 〈R〉. The map en : G1 × G′
2 → GT defined by en(P,Q) = ê(Q,P )2N

is an asymmetric pairing on (G1, G
′
2, GT ). Since the trace map is an efficiently

computable isomorphism from G′
2 to G1, the map en is a Type 2 pairing.
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Lemma 1. [19] Let P ∈ G1 and Q ∈ G′
2. Then en(P,Q) = Rn(P, Q̂), where

Q̂ = Q− π6(Q).

Proof. First note that Q̂ 6=∞ since Q 6∈ E(Fp6). Moreover,

Tr(Q̂) = Tr(Q)− Tr(π6(Q)) =∞,

and hence Q̂ ∈ G2. Finally,

en(P,Q) = ê(Q,P )2N

= ê(2Q,P )N

= ê(Q+ Q̂+ π6(Q), P )N

= ê(Q̂, P )N · ê(Q+ π6(Q), P )N

= Rn(P, Q̂),

since Q+ π6(Q) ∈ E(Fp6) whence ê(Q+ π6(Q)) = 1 [12, Lemma IX.8]. �

2.3. A particular BN curve

Consider the BN curve

E/Fp : y2 = x3 + 3

with BN parameter z = 6000000000001F2D (in hexadecimal) [11]. For this choice
of BN parameter, p is a 256-bit prime of Hamming weight 87, n = #E(Fp) is a
256-bit prime of Hamming weight 91, and the R-ate parameter a = 6z + 2 is a
66-bit integer of Hamming weight 9. Note that p ≡ 7 (mod 8) (whence −2 is a
nonsquare modulo p) and p ≡ 1 (mod 6).

2.3.1. Field representation. The extension field Fp12 is represented using
tower extensions

Fp2 = Fp[u]/(u
2 + 2),

Fp6 = Fp2 [v]/(v3 − ξ) where ξ = −u− 1, and

Fp12 = Fp6 [w]/(w2 − v).

We also have the representation

Fp12 = Fp2 [W ]/(W 6 − ξ) where W = w.

Hence an element α ∈ Fp12 can be represented in any of the following three ways:

α = a0 + a1w, where a0, a1 ∈ Fp12

= (a0,0 + a0,1v + a0,2v
2) + (a1,0 + a1,1v + a1,2v

2)w where ai,j ∈ Fp2

= a0,0 + a1,0W + a0,1W
2 + a1,1W

3 + a0,2W
4 + a1,2W

5.

We let (m, s, i), (m̃, s̃, ı̃), (M,S, I) denote the cost of multiplication, squaring,
inversion in Fp, Fp2 , Fp12 , respectively. Experimentally, we have s ≈ 0.9m and
i ≈ 41m on a Pentium 4 processor [16]. In our cost estimates that follow, we will
make the simplifying assumption s ≈ m.
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2.3.1.1. Arithmetic in Fp2. We have m̃ ≈ 3m using Karatsuba’s method which
reduces a multiplication in a quadratic extension to 3 (rather than 4) small field
multiplications; s̃ ≈ 2m using the complex method:

(a+ bu)2 = (a− b)(a+ 2b)− ab+ (2ab)u;

and ı̃ ≈ i+ 2m+ 2s since

(a+ bu)−1 =
a− bu
a2 + 2b2

.

Note also that p-th powering is free in Fp12 because (a+ bu)p = a− bu.
2.3.1.2. Arithmetic in Fp6. Karatsuba’s method reduces a multiplication in a

cubic extension to 6 (rather than 9) multiplications in the smaller field. Hence a
multiplication in Fp6 costs 18m. Squaring in Fp6 costs 2m̃ + 3s̃ = 12m via the
following formulae [9]: if

β = b0 + b1v + b2v
2 ∈ Fp6

where bi ∈ Fp2 , then

β2 = (A+Dξ) + (B + Eξ)v + (B + C +D − A− E)v2

where A = b20, B = 2b0b1, C = (b0 − b1 + b2)
2, D = 2b1b2, and E = b22. Finally,

as shown in [31, Section 3.2], inversion in Fp6 can be reduced to 1 inversion, 9
multiplications, and 3 squarings in Fp2 .

2.3.1.3. Arithmetic in Fp12. Since Fp12 is a tower of quadratic, cubic, and qua-
dratic extensions, Karatsuba’s method gives M ≈ 54m. By using the complex
method for squaring in Fp12 and Karatsuba for multiplication in Fp6 and Fp2 , we
have S ≈ 36m. Since inversion in Fp12 can be reduced to 1 inversion, 2 multiplica-
tions, and 2 squarings in Fp2 , it follows that I ≈ i+ 97m.

2.3.2. Elliptic curve operations. A point (X, Y, Z) in Jacobian coordinates
corresponds to the point (x, y) is affine coordinates with x = X/Z2 and y = Y/Z3.
The formulas for doubling a point in E(Fpd) represented in Jacobian coordinates
require 3 multiplications and 4 squarings in Fpd , while the formulas for mixed
Jacobian-affine addition in E(Fpd) require 8 multiplications and 3 squarings in Fpd .

2.3.3. Type 2 versus Type 3 pairings. Table 2 lists the bitlengths of el-
ements in G1, G2, G

′
2 and GT , and the estimated costs of performing essential

operations in these groups.
2.3.3.1. Representing elements in G1, G2 and G′

2. A point Q = (x, y) ∈ G1 can
be represented in compressed form by x ∈ Fp plus a sign bit of y ∈ Fp. The full
y-coordinate can be recovered by solving y2 = x3 + 3 over Fp via

y = ±
√
x3 + 3 = (x3 + 3)(p+1)/4.

The exponentiation can be performed using sliding windows of width 5, at a cost
of 315m.

A point Q̃ = (x, y) ∈ Ẽ(Fp2) can be represented by x ∈ Fp2 plus a sign bit of

y ∈ Fp2 . The full y-coordinate y = ±
√
x3 + 3 can be recovered at a cost of 2 square

roots in Fp plus i + m + 2s using Scott’s method for computing square roots in
Fp2 [31]. The overall cost is 674m.
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Type 2 Type 3
Bitlength of elements in G1 257 257

Bitlength of elements in G′
2/G2 6144 513

Bitlength of elements in GT 3072 3072
Decompressing elements in G1 315m 315m

Decompressing elements in G′
2/G2 — 674m

Exponentiation in G1 2,345m 2,345m
Exponentiation in G′

2/G2 105,462m 5,859m
Fixed-base exponentiation in G1 718m 718m

Fixed-base exponentiation in G′
2/G2 34,312m 1,906m

eN/RN Pairing 15,175m 15,175m
Hashing into G1 315m 315m

Hashing into G′
2/G2 — 6,533m

Table 2. Bitlengths of elements in G1, G2, G
′
2 and GT , and esti-

mated costs (in terms of Fp multiplications) of basic operations.

Finally, a point Q = (x, y) ∈ E(Fp12) can be represented by x ∈ Fp12 and y ∈
Fp12 . Point compression is not used because decompression would be prohibitively
expensive due to the high cost of computing square roots in Fp12 .

2.3.3.2. Exponentiation in G1, G2 and G′
2. Computing kP (also known as point

multiplication), where k is an integer and P is an elliptic curve point can be per-
formed using the 5-NAF method. The cost of the w-NAF method with `-bit mul-
tipliers k is

1D + (2w−2 − 1)A+
`

w + 1
A+ `D.

whereD is the cost of doubling an elliptic curve point and A is the cost of adding two
elliptic curve points (see [17, Algorithm 3.36]). Thus, the costs of exponentiation
in G1, G2 and G′

2 are 2, 345m, 5, 859m and 105, 462m, respectively.
If the point P is fixed or known in advance, then the operation kP can be

significantly accelerated by precomputing some multiples of P . For example, the
fixed-base comb method with two tables (see [17, Algorithm 3.45]) with windows
of width w has expected cost approximately(

2w − 1

2w
2e− 1

)
A+ (e− 1)D,

where d = d`/we and e = dd/2e. Taking w = 5 yields the expected costs 718m,
1, 906m and 34, 312m for fixed-base exponentiation in G1, G2 and G′

2, respectively.
2.3.3.3. Hashing into G1, G2 and G′

2. Hashing into G1 can be defined by first
using a standard hash function (such as SHA-2) to hash to an x-coordinate of
E(Fp). A y-coordinate can then be computed as

√
x3 + 3. The dominant cost is

for computing the square root in Fp, yielding our cost estimate of 315m for hashing
into G1.

Hashing into G2 can be defined by first using a standard hash function to hash
to an x-coordinate of Ẽ(Fp2), then computing a y-coordinate as

√
x3 + b ∈ Fp2 ,

and finally multiplying the resulting point by #Ẽ(Fp2)/n to obtain a point of order
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n. Since square roots in Fp2 cost 674m and point multiplication in Ẽ(Fp2) costs
5, 859m, hashing into G2 can be performed at a cost of 6, 533m.

As noted in [13], no efficient method is known for hashing into G′
2. Based on

Table 2, it seems that Type 3 pairings are superior to Type 2 pairings in all respects
except for the lack of an efficiently computable isomorphism φ : G2 → G1.

2.4. Hard problems

In Chapter 1, we mentioned the CDH problem and stated the BLS scheme in
terms of a symmetric pairing. In the remainder of the thesis, we fix a pairing
e : G1 × G2 → GT such that G1, G2, and GT are of prime order p and we fix
generators g1, g2 of G1, G2 respectively. We do not restrict ourselves to a Type 1,
Type 2, or Type 3 pairing; we describe all schemes in their most general setting.

In future chapters, we prove our schemes secure relative to a problem which we
call the co-CDH′ problem.

The co-CDH′ problem. Given gx
1 , g

x
2 , g

y
2 , produce gxy

1 . An algorithm which solves
the co-CDH′ problem in time at most t with probability at least ε is referred to as a
co-CDH′ 〈t, ε〉-solver.

The CDH problem is a special instance of the co-CDH′ problem, when G1 = G2

and g1 = g2. If we are given an efficiently computable isomorphism ψ : G2 → G1

such that ψ(g2) = g1, then given gx
2 , gy

2 , the problem is to compute gxy
1 and is

referred to as the co-CDH problem. Since gx
1 can be computed using ψ, we see that

the the co-CDH problem is a special case of the co-CDH′ problem. In the schemes
we present, we do not assume the existence of the map ψ. If we are given such a
map, parts of the protocol can be modified to reduce public-key size, signature size,
and remove certain checks.
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CHAPTER 3

The Boneh-Lynn-Shacham Signature Scheme

3.1. The basic scheme

The Boneh-Lynn-Shacham signature scheme (BLS) was first proposed in [7].
The authors assume the existence of an efficiently computable isomorphism ψ : G2 →
G1 such that ψ(g2) = g1. Although this map is not used in the actual scheme, the
authors point out that the map is required for the security reduction. With a few
modifications to the underlying hard problem, the requirement for the map ψ can
be dropped.

The Boneh-Lynn-Shacham signature scheme. Let H : {0, 1}∗ → G1 be a hash
function. We define the algorithms Generate, Sign, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and returns the private
key x and the public key X = gx

2 .
Sign takes as input a private key x, a message m, and returns a signature

σ = H(m)x.
Verify takes as input a public key X, a message m, and a signature σ. The

algorithm accepts the signature iff

e(σ, g2) = e(H(m), X).

Consider an algorithm which can forge BLS signatures and is permitted to make
qS queries to a signing oracle and qH queries to the hash function. If the algorithm
succeeds with probability at least ε, in time at most t, the algorithm is said to be
a BLS 〈qH , qS, t, ε〉-forger.

In the next section, we prove that the BLS scheme is existentially unforgeable
under chosen-message attacks, assuming the intractability of the co-CDH′ problem.

3.1.1. Security. It is convenient to abstract the problem of forging BLS sig-
natures. Next, we state an interactive version of the co-CDH′ problem which is
equivalent to forging BLS signatures. The problem was first stated by Galindo [14]
and was inspired by the RSA1 problem [21]. We prove the equivalence to forging
BLS signatures in Lemma 2.

The interactive co-CDH′ problem (co-CDH′1). Let qH be a positive integer.
Given

(i) an element gx
2 of G2;

(ii) elements h1, . . . , hqH
selected uniformly at random from G1;

(iii) an oracle, which on input hi, returns hx
i ,

determine hx
k, for some hk not given as input to the oracle.
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An algorithm which solves co-CDH′1 in time at most t, with probability at
least ε, using at most qS oracle queries, is said to 〈qH , qS, t, ε〉-solve the co-CDH′1
problem.

We prove the tight equivalence of forging BLS signatures and solving the co-
CDH′1 problem in the next lemma.

Lemma 2. Given a 〈qH , qS, t, ε〉-forger of the BLS scheme, we can construct an
algorithm which 〈qH , qS, t+ qH + qS, ε〉-solves the co-CDH′1 problem.

Conversely, given an algorithm which 〈qH , qS, t, ε〉-solves the co-CDH′1 problem,
we can construct a BLS 〈qH , qS, t+ qH + qS, ε〉-forger.

Proof. In the forward direction, we begin with an instance of the co-CDH′1 prob-
lem. We construct an instance of BLS, using the element X = gx

2 as the public
key. We must respond to hash function queries and a signing oracle queries. The
BLS forger queries the hash function H with distinct messages m1, . . . , mqH

. To
each query, we respond with H(mi) = hi. We assume that before making a signing
query, the forger makes the hash query on the message to be signed. Informally,
a signing query uses up one of the qH hash queries as well as a signing query. To
respond to a signing query on message mi, we use the oracle given to us in the
co-CDH′1 problem to produce hx

i = H(mi)
x which we return as the signature of

the message mi. With probability ε, the BLS forger returns H(mk)
x, for some mk

not queried to the signing oracle. We return H(mk)
x = hx

k as our solution to the
co-CDH′1 problem.

Conversely, we are given the public key X = gx
2 of an instance of BLS. We select

distinct messages m1, . . . , mqH
and set h1 = H(m1), . . . , hqH

= H(mqH
). Since H

is a random oracle, our choice of messages is irrelevant so long as they are distinct;
we may chose them randomly or even sequentially starting from the zero bit-string.
Since H is a random oracle, the hi’s are uniformly random elements of G1. We give
X = gx

2 and the hi’s as input to the co-CDH′1 solver. To respond to an oracle query
on hi, we respond by using a BLS signing query on the message mi. We obtain
H(mi)

x = hx
i , our response to the oracle query. With probability ε, the algorithm

returns hx
k for some hk not queried. The element hx

k = H(mk)
x is a forgery of the

message mk. �

Having proven the equivalence of forging BLS signatures and the co-CDH′1 prob-
lem, we give an informal argument for the security of BLS. An algorithm which
solves the co-CDH′1 problem is given gx

2 in G2 and elements h1, . . . , hqH
selected

uniformly at random from G1. Solving co-CDH′1 without using the oracle is equiv-
alent to solving co-CDH′. The oracle generates pairs of the form 〈ga

1 , g
xa
1 〉 where

a ∈ Zp is selected uniformly at random. This is something we may do without
the oracle. Intuitively, the oracle gives us no useful information and forging BLS
signatures seems as difficult as solving co-CDH′.

In the next lemma, we show that we may build a co-CDH′ solver from a BLS
forger.
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Lemma 3. Given a BLS 〈qH , qS, t, ε〉-forger, we may construct an algorithm which
〈t+ t′, εε′〉-solves the co-CDH′ problem with one query of the forger where

t′ = qH + qS,

ε′ =
1

e(qS + 1)
,

and e is the constant 2.182 . . . .

Proof. We are given a BLS 〈qH , qS, t, ε〉-forger. By Lemma 2, we can construct
an algorithm which 〈qH , qS, t+qH +qS, ε〉-solves the co-CDH′1 problem. We assume
that we have such an algorithm.

Fix an instance of the co-CDH′ problem. We have elements gx
1 , gy

1 , g
x
2 and our

goal is to produce gxy
1 . We need to construct an instance of the co-CDH′1 problem

and respond to oracle queries.
For i = 1, . . . , qH , we select an integer ai ∈ Zp uniformly at random. With

probability 1/(qS + 1), we set hi = gy
1 · g

ai
1 and with probability 1− 1/(qS + 1), we

set hi = gai
1 . We give gx

2 and the hi’s as input to the co-CDH′1 solver.
To respond to an oracle query on input hi, we abort if hi = gy

1 · g
ai
1 . Otherwise,

hi = gai
1 . Since we know ai and gx

1 , we respond with (gx
1 )ai = hx

i .
With probability at least ε, the algorithm will produce hx

k, for some hk not
given as input to the oracle. If hk = gak

1 , then we abort. Otherwise, we have that
hk = gy

1 · g
ak
1 . Since we know ak and gx

1 , we may compute

hx
k · (gx

1 )−ak = gxy
1 .

Next, we analyze the probability of success. With probability(
1− 1

qS + 1

)qS

,

we are able to respond to all signing queries. With probability 1/(qS + 1), we have
hk = gy

1 · g
ak
1 . Finally, the algorithm succeeds with probability at least ε. Putting

this all together, we obtain an algorithm which solves the co-CDH′ problem with
probability at least

ε
(
1− 1

qS + 1

)qS 1

qS + 1
≥ ε

e(qS + 1)
.

�

We remark that in absence of an efficiently computable isomorphism ψ : G2 →
G1, there is no obvious way to use a co-CDH′ solver to forge BLS signatures.
Counter to intuition, this suggests that in some sense, we should be more confident
in the security of BLS than we are in the intractability of the co-CDH′ problem.

Lemma 3 tells us that if co-CDH′ is difficult, then forging BLS signatures is
difficult. However, given a BLS forger which takes time 280 (with ε = 1/2) and
makes qS = 230 signature queries, by Lemma 3 we can only conclude that there
exists a co-CDH′ solver which takes time 280 · e230 ≈ 2110 (with ε′ = 1/2). Because
of this qS gap in the reduction, we need G1 to have 110 bits of security to ensure
BLS has 80 bits of security via Lemma 3.

If we selectG1 with only 80 bits of security, the qS gap is not known to provide an
attacker with an advantage. That is, the best-known method for forging signature
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is to determine the private key using Pollard-Rho. Since the problem of forging
BLS signature is not as well studied as the co-CDH′ problem, removing the qS in
the reduction’s probability is desirable. Unfortunately, the following lemma shows
that we cannot make a non-negligible improvement in Lemma 3.

Lemma 4. Let R be a reduction which 〈t + t′, εε′〉-solves co-CDH′, making one
query to an algorithm which 〈qH , qS, t, ε〉-solves co-CDH′1. Let

ε′ =
1

e(qS + 1)
+ δ

for some δ ∈ [0, 1]. Then there exists an algorithm which can 〈2t′, δ〉-solve the
co-CDH′ problem.

Proof. This result is proven in Chapter 7. �

If δ is some non-negligible probability and R is an efficient reduction, then
we obtain an efficient co-CDH′ solver. Since it is conjectured that co-CDH′ is
intractable, the reduction in Lemma 3 is essentially optimal.

3.2. The Katz-Wang bit

The signatures in the BLS scheme are deterministic; for a fixed key, each message
determines a unique signature. We present a variation of the signature scheme due
to Galindo [14]. Galindo’s technique was a variation of the technique used by Katz
and Wang [20] to obtain a tight reduction of the RSA problem to a variant of
RSA-FDH.

Non-deterministic BLS (NBLS). Let H : {0, 1}∗ → G1 be a hash function. We
define the algorithms Generate, Sign, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and returns a public
key X = gx

2 and a private key x.
Sign takes as input a message m and a private key x. The algorithm selects

a bit b ∈ {0, 1} uniformly at random and returns the signature σ = 〈H(b,m)x, b〉.
The bit b should be fixed for a given message. As suggested by Galindo [14], we can
hash the message along with a secret seed to obtain b.

Verify takes as input a message m, a public key X, and a signature σ =
〈σ1, σ2〉. Just as in the BLS scheme, the algorithm accepts the signature iff

e(σ1, g2) = e(H(σ2,m), X).

The NBLS scheme enjoys the strongest notion of security for non-deterministic
signatures captured in the following definition.

Definition 1. Consider a signature scheme which produces non-deterministic sig-
natures and an adversary which is permitted qH hash queries and qS signature
queries to some signing oracle. The signature scheme is said to be strongly unforge-
able under chosen-message attacks, if the adversary cannot produce a signature σ
on some message m in time at most t with probability at least ε such that σ was not
returned by a signing oracle query on input m. If there exists such an adversary,
we refer to it as a strong 〈qH , qS, t, ε〉-forger of the signature scheme, or simply a
strong forger when the signature scheme and the parameters are understood.
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An attack on the NBLS scheme can be modeled as solving the following inter-
active problem.

The co-CDH′2 problem. Let qH be a positive integer. Given

(i) an element gx
2 of G2;

(ii) pairs of elements 〈h0,1, h1,1〉, . . . , 〈h0,qH
, h1,qH

〉 selected uniformly at random
from G1 ×G1;

(iii) an oracle, which on input 〈h0,i, h1,i〉, returns either (h0,i)
x or (h1,i)

x selected
uniformly at random for each pair and responds deterministically for a partic-
ular pair,

determine (hb,k)
x, where (hb,k)

x was not returned as output by the oracle.

The equivalence of the co-CDH′2 problem with breaking the NBLS scheme is
captured in the following lemma.

Lemma 5. Given an NBLS strong 〈qH , qS, t, ε〉-forger, we can construct an algo-
rithm which 〈qH , qS, t, ε〉-solves the co-CDH′2 problem.

Conversely, given an algorithm which 〈qH , qS, t, ε〉-solves the co-CDH′2 problem,
we can construct an NBLS strong 〈qH , qS, t, ε〉-forger.

We omit the proof of Lemma 5, since it is very similar to the proof of Lemma 2.
In the next lemma, we show that an NBLS strong forger can be used to construct

an algorithm which can solve the co-CDH′ problem.

Lemma 6. Given an NBLS strong 〈qH , qS, t, ε〉-forger, we can construct an algo-
rithm which 〈t+ qH + qS, ε/2〉-solves the co-CDH′ problem.

Proof. By Lemma 5, a strong forger of the NBLS scheme can be used to
construct a co-CDH′2 solver. We will show that the co-CDH′2 solver can be used
to construct a co-CDH′ solver.

We begin with an instance of the co-CDH′ problem. We have elements gx
1 , gy

1 ,
gx
2 , and wish to produce gxy

1 . For each i = 1, . . . , qH , we select a bit bi ∈ {0, 1}
uniformly at random and we select integers ci, di ∈ Zp uniformly at random. Set

hbi,i = gci
1 and h1−bi,i = gdi

1 · g
y
1 . We give gx

2 and the hi,j’s as input to the co-
CDH′2 solver.

To respond to an oracle query on input 〈h0,i, h1,i〉, we have that hbi,i = gci
1 . Since

we know ci and gx
1 , we return (gx

1 )ci = (hbi,i)
x.

With probability at least ε, in time at most t, the algorithm returns hx
b,k for

some hx
b,k not returned as output by the oracle. With probability at least 1/2, we

have that b = 1 − bk and so h1−bk,k = gdk
1 · g

y
1 . Since we know dk and gx

1 , we may
compute

(hb,k)
x · (gx

1 )−dk = gxy
1 .

�

Comparing the results of Lemma 6 with Lemma 3, we see that with only a
slight modification of BLS, we obtain a tight reduction. The importance of tight
reductions in the BLS scheme is discussed in Section 3.4.
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3.3. Point compression

The points on an elliptic curve E defined over a finite field F are elements
(x, y) ∈ F×F. For points of order greater than 2, the x-coordinate determines two
distinct points on the curve. These two points are mutual inverses in the group
E(F). We can determine a point on the curve using the x-coordinate of the point
and a single extra bit to determine one of the two points corresponding to the
x-coordinate. This essentially reduces key and signature sizes by a half.

In order to avoid some patents on point compression, some authors have sug-
gested dropping the y-coordinate entirely and modifying the protocols to handle
the resulting ambiguity [28]. We define the map ·̃ : E − {∞} → F such that for

Q = (x, y), we have Q̃ = x. Given an x-coordinate Q̃, we may determine Q up to
a sign.

For the remainder of the section, we fix elliptic curve groups G1, G2 with gener-
ators P1, P2. Following convention, we use additive notation. We use the notation
·̃ for both groups G1 and G2.

We present the BLS scheme with this modification. The compression modifica-
tion we describe can be applied to all other variations of BLS we have mentioned.

Compression BLS (CBLS). Let H : {0, 1}∗ → G1 be a hash function. We define,
the algorithms Generate, Sign, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and computes X =

xP2. The algorithm returns the public key X̃ and a private key x.
Sign takes as input a message m and a private key x. The algorithm computes

Q = xH(m) and returns the signature σ = Q̃.

Verify takes as input a message m, a public key X̃, and a signature σ. The

algorithm computes elements Q and R such that Q̃ = σ and R̃ = X. The signature
is accepted iff either of the following two equations hold:

e(Q,P2) = e(H(m), R);

e(Q,P2) = e(H(m), R)−1.

Even with the added ambiguity, we still obtain the same security as BLS.

Lemma 7. If there exists a 〈qH , qS, t, ε〉-CBLS forger, then we can construct a
〈qH , qS, t+ qH + qS, ε〉-BLS forger.

Proof. Fix a public key X of some BLS instance. We run the CBLS forger

with public key X̃.
To respond to signing queries, we use the BLS signing oracle to obtain a signa-

ture σ ∈ E and respond with σ̃ ∈ F.
Eventually, the forger will produce a signature σ ∈ F. We compute Q such that

Q̃ = σ. If

e(Q,P2) = e(H(m), X),

then we return Q as a BLS forgery. Otherwise, we have

e(−Q,P2) = e(H(m), X)

and we return −Q as a BLS forgery. �
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3.4. Practical considerations

The security of BLS depends on the type of pairing used and the size of the
groups G1, G2, and GT . Care needs to be taken in selecting a pairing for which the
co-CDH′ problem is hard. To select a group, we consider the best attack known on
the co-CDH′ problem. It is conjectured that the best attack is to solve the discrete
log problem in G1, G2, or GT . If the pairing is selected appropriately, the best
method known of solving co-CDH′ is to determine the private key from the public
key using the Pollard-Rho algorithm [29], which runs in time O

(√
p
)
.

If we desire 80 bits of security against co-CDH′ solvers, we need to choose
|G1| = 2160. Lemma 3 tells us that a forger of the BLS scheme can be used so solve
co-CDH′. In practice, we can bound the number of signature queries by 230 queries.
If we take the proof of Lemma 3 seriously, then a deterministic BLS forger which
runs in time 280 yields a CDH forger which runs in time ≈ 280 and succeeds with
probability 2−30. The CDH solver we obtain from the reduction is much weaker
than the Pollard-Rho method we have protected against. We need to select a group
size which takes into account Lemma 3, say |G1| = 2220.

There is no attack known on co-CDH′1 other than to solve co-CDH′ itself. We
know by Lemma 4, that if co-CDH′ is intractable, then no tight reduction from
co-CDH′ to co-CDH′1 will ever be found. However, this is not known to give any
advantage to an adversary. Intuitively, it seems unlikely that such an adversary
exists but it should be noted that co-CDH′1 has not been as well studied as co-
CDH′. Choosing our keys without consideration of Lemma 4 and Lemma 3 might
be too bold an assumption. We must either choose larger keys or assume that
the co-CDH′-to-co-CDH′1 gap gives an attacker no advantage. If we are concerned
enough to choose larger keys, using NBLS as opposed to BLS will allow us a tight
reduction between forging BLS signature and solving co-CDH′ at the expense of
only a 1-bit increase in signature size.
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CHAPTER 4

The Boneh-Gentry-Lynn-Shacham Aggregate Signature
Scheme

4.1. The scheme

Motivated by applications to secure routing protocols and certificate chains,
Boneh et al. proposed the first aggregate signature scheme [5]. The scheme has key
generation and signing algorithms which are similar to those of BLS.

The Boneh-Gentry-Lynn-Shacham aggregate signature scheme (BGLS).
Let H : {0, 1}∗ → G1 be a hash function. We define the algorithms Generate, Sign,
Aggregate, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and computes X = gx
1 ,

Y = gx
2 . The algorithm returns the private key x and the public key 〈X, Y 〉.

Sign takes as input a private key x, a message m, and returns the signature
σ = H(m)x.

Aggregate takes as input signatures σ1, . . . , σN and returns the signature

σ =
N∏

i=1

σi.

Verify takes as input public keys 〈X1, Y1〉, . . . , 〈XN , YN〉, messages m1, . . . ,
mN , and a signature σ. For each key 〈Xi, Yi〉, the algorithm verifies that the key
was correctly constructed by checking

(3) e(Xi, g2) = e(g1, Yi).

This key verification step needs to be done only once per public key, across all
invocations of the Verify algorithm. To verify the actual signature, the algorithm
checks

(4) e(σ, g2) =
N∏

i=1

e(H(mi), Yi).

The algorithm accepts the signature iff the messages m1, . . . , mN are distinct and
equations (3) and (4) hold.

We remark that verifying Equation (3) is required to guarantee security and the
component Xi of the public key is used nowhere else.

If we are given a Type 2 pairing, then an efficiently computable isomorphism
ψ : G2 → G1 is known and we may compute Xi from Yi. This shortens the length
of the public key and we need not perform the check of Equation (3).

Consider an adversary which is given a single public key, referred to as the
challenge public key. The goal of the adversary is to produce an aggregate signature
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on some set of public keys including the one given. The adversary may choose all
other public keys and all messages. An aggregate signature scheme is said to be
existentially unforgeable under chosen-message attacks, if given a challenge public
key, it is infeasible for an adversary, who is given access to a signing oracle on the
challenge public key, to produce a forgery of some set of messages containing a
message corresponding to the challenge public key which was not given as input to
the signing oracle. An algorithm which produces a forgery on N messages, with
probability at least ε, in time at most t, making at most qH hash queries and qS
signing queries is referred to as a BGLS 〈qH , qS, N, t, ε〉-forger.

In the next lemma, we prove that a BGLS forger can be used to solve the
co-CDH′ problem.

Lemma 8. Given a BGLS 〈qH , qS, N, t, ε〉-forger we can construct an algorithm
which 〈t+ t′, ε · ε′〉-solves co-CDH′, making one query to the BGLS forger where

t′ = qH + qS +N,

ε′ =
1

e(qS +N)
.

Proof. We fix an instance of the co-CDH′ problem. We are given elements gx
1 ,

gy
1 in G1 and gx

2 in G2. We wish to produce gxy
1 .

We construct an instance of BGLS with public key 〈X1, Y1〉 = 〈gx
1 , g

x
2 〉 and run

the forger. We need to respond to hash queries and signature queries.
To respond to hash query on message m, we select an integer am ∈ Zp uni-

formly at random. With probability 1/(qS +N), we respond with gy
1 · gam

1 and with
probability (qS +N − 1)/(qS +N), we respond with gam

1 .
To respond to a signature query on message m, we abort if H(m) = gy

1 · gam
1 .

Otherwise, since we know am and gx
1 , we respond with (gx

1 )am = H(m)x.
Eventually, the forger returns the signature σ on some messages m1, . . . , mN

and public keys 〈X1, Y1〉, . . . , 〈XN , YN〉 such that no signing query was made for
m1. If either H(m1) = g

am1
1 or for some i > 1, we have that H(mi) = gy

1 · g
ami
1 ,

then we abort. Otherwise, letting for each i, the integer xi be the private key
corresponding to the public key 〈Xi, Yi〉 = 〈gxi

1 , g
xi
2 〉, we have that

σ =
N∏

i=1

H(mi)
xi = gx1y

1 · gx1am1
1 ·

N∏
i=2

g
xiami
1 = gxy

1 ·
N∏

i=1

g
xiami
1

and may compute

σ ·
N∏

i=1

X
−ami
i = gxy

1 .

Now, we determine the probability of success. With probability(
1− 1

qS +N

)qS

,

we are able to answer all signature queries. With probability(
1− 1

qS +N

)N−1
1

qS +N
,
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the signature returned by the forger is of the desired form.
Putting this all together, we obtain a co-CDH′ solver which succeeds with prob-

ability at least (
1− 1

qS +N

)qS+N−1
1

qS +N
≥ 1

e(qS +N)
.

�

4.1.1. The necessity of distinct messages. The authors of the BGLS scheme
present an attack that succeeds if the requirement for distinct messages is dropped
[5]. They mention a modification that allows this restriction to be dropped. The
modification is discussed more in the next section. We present the attack.

Given a public key 〈X1, Y1〉, we select an integer a ∈ Zp uniformly at random
and compute X2 = ga

1 ·X−1
1 , Y2 = ga

2 · Y −1
1 . For an arbitrary message m1 = m2, we

compute σ = H(m1)
a. The signature σ verifies on the public keys 〈X1, Y1〉, 〈X2, Y2〉

and messages m1, m2.

4.2. BNN modifications

In the paper which first describes BGLS [5], Boneh, et al. point out that by
prepending the public key to each message, the requirement for distinct messages
can be dropped. They do not give any details of the modified scheme.

If the signing algorithm is given messages m1, . . . , mN and public keys 〈X1, Y1〉,
. . . , 〈XN , YN〉, for each i = 1, . . . , N , the signing algorithm constructs a message
m̂i = (Xi, Yi,mi). To sign the message mi with the public key 〈Xi, Yi〉 = 〈gxi

1 , g
xi
2 〉,

the signing algorithm computes H(m̂i)
xi . It follows from the security of BGLS that

this scheme is secure if the m̂i’s are distinct.
Bellare-Namprempre-Neven analyze the enhanced scheme in detail and show

that the requirement for the m̂i’s to be distinct can be dropped [2].

BNN-BGLS. Let H : {0, 1}∗ → G1 be a hash function.
We define the algorithms Generate, Sign, Aggregate, and Verify.
Generate selects an integer x ∈ Zp uniformly at random and computes X = gx

1 ,
Y = gx

2 . The algorithm returns the private key x and the public key 〈X, Y 〉.
Sign takes as input a private key x, a message m, and returns a signature

σ = H(gx
1 , g

x
2 ,m)x.

Aggregate takes as input signatures σ1, . . . , σN and returns the signature

σ =
N∏

i=1

σi.

Verify takes as input public keys 〈X1, Y1〉, . . . , 〈XN , YN〉, messages m1, . . . ,
mN , and a signature σ. For each key 〈Xi, Yi〉, the algorithm verifies that the key
was correctly constructed by checking

(5) e(Xi, g2) = e(g1, Yi).

This key verification step needs to be done only once per public key, across all
invocations of the Verify algorithm. To verify the actual signature, the algorithm
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checks

(6) e(σ, g2) =
N∏

i=1

e(H(Xi, Yi,mi), Yi).

The algorithm accepts the signature iff equations (5) and (6) hold.

In addition to the lifting of the distinct message restriction we obtain a tighter
reduction to the co-CDH′ problem.

Lemma 9. Given a BNN-BGLS 〈qH , qS, N, t, ε〉-forger, we can construct a co-
CDH′ 〈t+ t′, ε · ε′〉-solver which makes one query to the BNN-BGLS forger, where

t′ ≤ qH + qS,

ε′ ≥ 1

e(qS + 1)
.

Proof. First, we fix an instance of the co-CDH′ problem. We are given el-
ements gx

1 , gy
1 , g

x
2 and our goal is to produce gxy

1 . We create an instance of the
BNN-BGLS signature scheme with the public key 〈X1, Y1〉 = 〈gx

1 , g
x
2 〉 and run the

BNN-BGLS forger. We need to respond to hash queries and signature queries.
To respond to a hash query on input (X, Y,m), if 〈X, Y 〉 6= 〈X1, Y1〉, then

we select an integer a(X,Y,m) ∈ Zp uniformly at random and return H(X, Y,m) =
(g1)

a(X,Y,m) . Otherwise, X = X1 and Y = Y1. We select an integer a(X,Y,m) ∈ Zp

uniformly at random and with probability 1/(qS + 1), we return H(X, Y,m) =
gy
1 · (g1)

a(X,Y,m) ; with probability qS/(qS + 1), we return H(X, Y,m) = (g1)
a(X,Y,m) .

To respond to a signature query on some message m, we abort if H(X1, Y1,m) =
gy
1 ·g

a(X,Y,m)

1 . Otherwise, we have thatH(X, Y,m) = g
a(X,Y,m)

1 and we return (gx
1 )a(X,Y,m) .

Eventually, the forger returns a signature σ. We may write σ as

σ =
N∏

i=1

ki∏
j=1

(
H(Xi, Yi,mi,j)

xi
)si,j ,

where mi,j is a message signed by the private key xi corresponding to the public
key 〈Xi, Yi〉 and the message mi,j has multiplicity si,j.

For each i = 2, . . . , N , and each message mi,j, since we know Xi and a(Xi,Yi,mi,j),
we may compute

σi =

ki∏
j=1

X
a(Xi,Yi,mi,j)·si,j

i =

ki∏
j=1

(
H(Xi, Yi,mi,j)

xi
)si,j .

Set

σ1 = σ ·
N∏

i=2

σ−1
i ,

A = {mij ∈ {0, 1}
∗ | H(X1, Y1,m) = gy

1 · g
a(X1,Y1,m)

1 },
B = {mij ∈ {0, 1}

∗ | H(X1, Y1,m) = g
a(X1,Y1,m)

1 }.
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If A = ∅, we abort. Otherwise, we rewrite σ1 as

σ1 =

k1∏
j=1

(
H(X1, Y1,m1,j)

x
)s1,j

=

( ∏
m1,j∈A

(
gxy
1 · g

xa(X1,Y1,m1,j)

1

)s1,j

)( ∏
m1,j∈B

(
g

xa(X1,Y1,m1,j)

1

)s1,j

)

= g
xy

P
m1,j∈A s1,j

1 ·
k1∏

j=1

g
xa(X1,Y1,m1,j)s1,j

1

= g
xy

P
m1,j∈A s1,j

1 · (gx
1 )

Pk1
j=1(a(X1,Y1,m1,j)s1,j).

Finally, we compute(
σ1 · (gx

1 )
−

Pk1
j=1(a(X1,Y1,m1,j)s1,j)

)(P
m1,j∈A s1,j

)−1

= gxy
1 .

Now, we analyze the probability of success. The probability that we successfully
respond to a single signing query is qS/(1+ qS). Since k1 > 0 and

∑k1

j=1 s1,j > 0, we

have that A 6= ∅ with probability at least 1/(qS + 1). Putting these observations
together, we obtain that the reduction succeeds with probability at least(

qS
qS + 1

)qS 1

qS + 1
=

(
1− 1

qS + 1

)qS 1

qS + 1
≥ 1

e(qS + 1)
.

�

4.3. The Katz-Wang bit

In addition to lifting the distinct signer/message restriction, Bellare-Namprempre-
Neven [2] observed that the technique of Katz-Wang [20] can be used to obtain a
tight reduction to co-CDH′. We mention three different versions of this technique.

The first version is the direct application of the technique used by Katz and
Wang.

KW1-BGLS. Let H : {0, 1}∗ → G1 be a hash function.
We define the algorithms Generate, Sign, Aggregate, and Verify.
Generate selects an integer x ∈ Zp uniformly at random and computes X = gx

1 ,
Y = gx

2 . The algorithm returns the private key x and the public key 〈X, Y 〉.
Sign takes as input a private key x, a message m. A bit bm ∈ {0, 1} is

selected uniformly at random and the algorithm returns the signature 〈σ, β〉 =
〈H(bm, g

x
1 , g

x
2 ,m)x, bm〉. The bit bm is fixed for each message m.

Aggregate takes as input valid signatures 〈σ1, β1〉, . . . , 〈σN , βN〉, computes

σ =
N∏

i=1

σi,

and returns the signature 〈σ, β1, . . . , βN〉.
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Verify takes as input public keys 〈X1, Y1〉, . . . , 〈XN , YN〉, messages m1, . . . ,
mN , and a signature 〈σ, β1, . . . , βN〉. For each key 〈Xi, Yi〉, the algorithm verifies
that the key was correctly constructed by checking

(7) e(Xi, g2) = e(g1, Yi).

This key verification step needs to be done only once per public key, across all
invocations of the Verify algorithm. To verify the actual signature, the algorithm
checks

(8) e(σ, g2) =
N∏

i=1

e(H(βi, Xi, Yi,mi), Yi).

The algorithm accepts the signature iff equations (7) and (8) hold.

The following lemma gives us a tight reduction from co-CDH′ to the KW1-BGLS
scheme.

Lemma 10. Given a KW1-BGLS 〈qH , qS, N, t, ε〉-forger, we can construct a co-
CDH′ 〈t+ t′, ε · ε′〉-solver which makes one query to the forger, where

t′ = qS + qH +N,

ε′ =
1

2
.

Proof. We fix an instance of the co-CDH′ problem. We are given elements gx
1 ,

gy
1 , and gx

2 . Our goal is to produce gxy
1 . We will construct an instance of the KW1-

BGLS signature scheme with public key 〈X1, Y1〉 = 〈gx
1 , g

x
2 〉 and run the forger. We

must respond to hash queries and signing queries.
For each hash function query on input (b,X, Y,m), we assume thatH(b,X, Y,m)

has not been defined before. We will define H(b,X, Y,m) and H(1− b,X, Y,m) si-
multaneously. Select a random bit b′ = b(X,Y,m) ∈ {0, 1} and integers a′ = a(b′,X,Y,m),

a = a(1−b′,X,Y,m) ∈ Zp uniformly at random. We set H(b′, X, Y,m) = (g1)
a′ .

If 〈X, Y 〉 = 〈X1, Y1〉, we set H(1 − b′, X, Y,m) = gy
1 · (g1)

a. Otherwise, we set
H(1 − b′, X, Y,m) = (g1)

a. We have now defined H(b,X, Y,m) and so we return
H(b,X, Y,m).

To respond to a signature query on the message m, we let b′ = b(X,Y,m) and
compute (gx

1 )a(b′,X,Y,m) = H(b′, X, Y,m)x and return 〈σ, b′〉.
Eventually, the adversary returns an aggregate signature

σ =
N∏

i=1

ki∏
j=1

1∏
b=0

(
H(b,Xi, Yi,mi,j)

xi
)sb,i,j ,

where mi,j is a message signed by the private key xi corresponding to the public
key 〈Xi, Yi〉 and the message mi,j has multiplicity sb,i,j for the bit b. That is, the
value H(b,Xi, Yi,mi,j)

xi was aggregated into the signature sb,i,j times.
For each i = 2, . . . , N , we may compute

σi =

ki∏
j=1

1∏
b=0

X
a(b,Xi,Yi,mi,j)sb,i,j

i =

ki∏
j=1

1∏
b=0

(
H(b,Xi, Yi,mi,j)

xi
)sb,i,j .
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We set

σ1 = σ ·
N∏

i=2

σ−1
i =

k1∏
j=1

1∏
b=0

(
H(b,X1, Y1,m1,j)

x1
)sb,1,j .

We set bi,j = b(Xi,Yi,mi,j). Now, we may rewrite σ1 as

σ1 =

k1∏
j=1

((
H(b1,j, X1, Y1,m1,j)

x1
)sb1,j ,1,j ·

(
H(1− b1,j, X1, Y1,m1,j)

x1
)s1−b1,j ,1,j

)

=

k1∏
j=1

((
(gx

1 )
a(b1,j ,X1,Y1,m1,j)·sb1,j ,1,j

)
·
(
(gx

1 )
(y+a(1−b1,j ,X1,Y1,m1,j))·s1−b1,j ,1,j

))

=
( k1∏

j=1

1∏
b=0

(gx
1 )

a(b,X1,Y1,m1,j
)·sb,1,j

)
· (gxy

1 )
Pk1

j=1 s1−b1,j ,1,j .

If
∑ki

j=1 sb1,j ,1,j = 0, we abort. Otherwise, we compute

σ1 ·
(
(gx

1 )
−

Pk1
j=1

P1
b=0 a(b,X1,Y1,m1,j

)·sb,1,j

)(Pk1
j=1 s1−b1,j ,1,j

)−1

= gxy
1 .

Since k1 ≥ 1, with probability at least 1/2, at least one message m1,j signed with
the key 〈X1, Y1〉 in the aggregate signature is such that s1−b1,j ,1,j ≥ 1. Therefore,
with probability at least 1/2, we have that

k1∑
j=1

s1−b1,j ,1,j ≥ 1.

We conclude that the reduction succeeds with probability at least 1/2. �

Unfortunately, the bit-length of signatures in the KW1-BGLS scheme increases
linearly with the number of signatures aggregated. In practice, the one-bit increase
per signature is negligible. For hypothetical applications where a fixed signature
size is a hard requirement, we offer two alternatives.

The next variation produces aggregate signatures of a fixed size but becomes
infeasible when a large number of signatures are aggregated.

KW2-BGLS. Let H : {0, 1}∗ → G1 be a hash function. We define the algorithms
Generate, Sign, Aggregate, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and computes X = gx
1 ,

Y = gx
2 . The algorithm returns the private key x and the public key 〈X, Y 〉.

Sign takes as input a private key x, a message m. The algorithm selects a bit
bm ∈ {0, 1} uniformly at random and returns the signature σ = H(bm, g

x
1 , g

x
2 ,m)x.

The bit bm is selected so that bm is fixed for a given message m.
Aggregate takes as input valid signatures σ1, . . . , σN and returns the signature

σ =
N∏

i=1

σi.
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Verify takes as input public keys 〈X1, Y1〉, . . . , 〈XN , YN〉, messages m1, . . . ,
mN , and a signature σ. For each key 〈Xi, Yi〉, the algorithm verifies that the key
was correctly constructed by checking

(9) e(Xi, g2) = e(g1, Yi).

This key verification step needs to be done only once per public key, across all
invocations of the Verify algorithm. To verify the actual signature, for each b ∈
{0, 1}N , the algorithm checks

(10) e(σ, g2) =
N∏

i=1

e(H(bi, Xi, Yi,mi), Yi).

The algorithm accepts the signature iff equation (9) holds and there exists b ∈
{0, 1}N such that (10) holds.

To verify a signature, we must check on average 2N−1 conditions, computing at
least one pairing for each check. As we see in the next lemma, the KW2-BGLS
scheme enjoys the same security of KW1-BGLS.

Lemma 11. Given a KW2-BGLS 〈qH , qS, N, t, ε〉-forger, we can construct a KW1-
BGLS 〈qH , qS, N, t+ 2N , ε〉-forger.

Proof. We fix an instance of the KW1-BGLS scheme. We run the KW2-BGLS
on this instance of the KW1-BGLS scheme. We obtain a signature σ on messages
m1, . . . , mN corresponding to keys 〈X1, Y1〉, . . . , 〈XN , YN〉 such that there exists

b ∈ {0, 1}N with

e(σ, g2) =
N∏

i=1

e(H(bi, Xi, Yi,mi), Yi).

Clearly, we have that 〈σ, b1, . . . , bN〉 is a valid KW1-BGLS signature. �

As the number of signatures we aggregate grows, the KW2-BGLS scheme be-
comes infeasible. The next variation is a sequential aggregate signature which fixes
the size of aggregate signatures and verification time does not increase exponentially
with the number of signatures aggregated.

KW3-BGLS. Let H : {0, 1}∗ → G1 be a hash function. We define the algorithms
Generate, Sign-Aggregate, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and computes X = gx
1 ,

Y = gx
2 . The algorithm returns the private key x and the public key 〈X, Y 〉.

Sign-Aggregate takes as input a message m, a private key x, and optionally a
valid signature 〈σ′, β〉. If no signature is given as part of the input, then the algo-
rithm selects a bit β ∈ {0, 1} uniformly at random, computes σ = H(β, gx

1 , g
x
2 ,m),

and returns the signature 〈σ, β〉. If a signature 〈σ′, β〉 is given as input, the algo-
rithm computes σ = σ′ · H(β, gx

1 , g
x
2 ,m) and returns the signature 〈σ′, β〉. The bit

β is determined by the first message.
Verify takes as input public keys 〈X1, Y1〉, . . . , 〈XN , YN〉, messages m1, . . . ,

mN , and a signature 〈σ, β〉. For each key 〈Xi, Yi〉, the algorithm verifies that the
key was correctly constructed by checking

(11) e(Xi, g2) = e(g1, Yi).
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This key verification step needs to be done only once per public key, across all
invocations of the Verify algorithm. To verify the actual signature, the algorithm
checks

(12) e(σ, g2) =
N∏

i=1

e(H(β,Xi, Yi,mi), Yi).

The algorithm accepts the signature iff equations (11) and (12) hold.

Lemma 12. Given a KW3-BGLS 〈qH , qS, N, t, ε〉-forger, we can construct a KW1-
BGLS 〈qH , qS, N, ε〉-forger.

Proof. The result follows from the fact that if 〈σ, β〉 is a KW3-BGLS signature,
then 〈σ, β1, . . . , βN〉 is a KW1-BGLS signature, for β1 = · · · = βN = β. �

4.4. Public key proof-of-possession

For Type 1 and Type 2 pairings, we are given an efficiently computable iso-
morphism ψ : G2 → G1. In the BGLS scheme, this allows for a shorter public key;
we may exclude the element X from the public key 〈X, Y 〉. The element X is not
used in the protocol and is only required for the proof of Lemma 8. For Type 3
pairings, no such isomorphism is known to exist and we require the element X for
the security proof. We show that for Type 3 pairings, a proof-of-possesion can be
used to exclude the element X from the scheme and maintain the security provided
by Lemma 8.

In this modified scheme, after generating public and private keys, a user must
sign a special message for some certifying authority. The message mY determined
by the public key Y could be something like “I, Alice, know the private key cor-
responding to Y ”. Fortunately, the private key is not revealed to the certifying
authority. The technique can be applied to BNN-BGLS, KW1-BGLS, KW2-BGLS,
or KW3-BGLS. For simplicity purposes, we modify the BGLS scheme.

POP-BGLS. Let H : {0, 1}∗ → G1, HP : {0, 1}∗ → G1 be hash functions.
We define the algorithms Generate, Pop, Sign, Aggregate, and Verify.
Generate selects an integer x ∈ Zp uniformly at random and computes Y = gx

2 .
The algorithm returns the private key x and the public key Y .

Pop takes an input a signature σ = HP (mY )x on a message mY and verifies
that

e(σ, g2) = e(HP (mY ), Y ).

The message mY is corresponds to the public key Y = gx
2 . After the the Pop algo-

rithm is run on public key Y , we say that Y is pop-certified.
Sign takes as input a private key x, a message m, and returns the signature

σ = H(m)x.
Aggregate takes as input valid signatures σ1, . . . , σN on distinct messages and

returns the signature

σ =
N∏

i=1

σi.
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Verify takes as input pop-certified public keys Y1, . . . , YN , messages m1, . . . ,
mN , and a signature σ. The algorithm accepts the signature iff

e(σ, g2) =
N∏

i=1

e(H(mi), Yi).

We prove the scheme secure in the following lemma. The proof is similar to
that of Lemma 8 except that the random oracle HP in effect allows us to construct
X ourselves.

Lemma 13. Given a POP-BGLS 〈qH , qHP
, qS, N, t, ε〉-forger, we can construct a

co-CDH′ 〈t+ t′, ε · ε′〉-solver where

t′ = qH + qS +N,

ε′ =
1

qS +N
.

Proof. We fix an instance of the co-CDH′ problem. We are given elements
gx
1 , gy

1 , and gx
2 . Our goal is to produce gxy

1 . We construct an instance of the POP-
BGLS scheme with public key Y1 = gx

2 . We must respond to hash queries of H,
hash queries of HP , and signature queries.

To respond to a hash query of H on input m, we select an integer am ∈ Zp

uniformly at random and with probability 1/(qS +N), we return H(m) = gy
1 · gam

1 .
With probability (qS +N − 1)/(qS +N), we return H(m) = gam

1 .
To respond to a hash query of HP on input mY , we select an integer bY ∈ Zp

uniformly at random and return HP (mY ) = gbY
1 .

To respond to a signature query on the message m, we abort if H(m) = gy
1 ·gam

1 .
Otherwise, we compute and return (gx

1 )am = H(m)x.
Eventually, the forger returns a signature σ of messages m1, . . . , mN with

certified public keys Y1, . . . , YN . If H(m1) = g
am1
1 , or if some i = 2, . . . , N , we

have H(mi) = gy
1 · g

ami
1 , then we abort. Otherwise, we have that

σ =
N∏

i=1

H(mi)
xi = (gy

1 · g
am1
1 )x1 ·

N∏
i=2

(gxi
1 )ami = gxy

1 ·
N∏

i=1

(gxi
1 )ami

where xi is the private key corresponding to Yi. Since each public key Yi is certified,
we are given HP (mYi

)xi . We set X1 = gx
1 and for each i = 2, . . . , N , we compute

Xi = (HP (mYi
)xi)b−1

Y = gxi
1 .

Finally, we compute

σ ·
N∏

i=1

X
−ami
i = gxy

1 .

With probability qS/(qS +N), we are able to respond to a given signature query.
With probability ( qS

qS +N

)N−1 1

qS +N
,
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the forger returns a signature of the desired form. The reduction succeeds with
probability( qS

qS +N

)qS+N−1 1

qS +N
=

(
1− 1

qS +N

)qS+N−1 1

qS +N
≥ 1

e(qS +N)
.

�

4.5. Point compression

Just as in the BLS signature scheme, we may compress points on an elliptic
curve defined over some finite field F. Given a point P on an elliptic curve, we
have that P = (x, y) where x, y ∈ F. The field element x determines two points on
the elliptic curve. With the addition of an extra bit, we may reduce the memory
requirements of storing P by almost 1/2.

We may desire (to possibly avoid a patent) to remove this extra bit. In Chap-
ter 3, we showed that removing the y-coordinate entirely introduced a manageable
amount of ambiguity. We may naively extend this technique to BGLS. We switch
to additive notation. Let P1 be a generator of G1 and P2 be a generator of G2.

For a point Q = (x, y) on an elliptic curve, we let Q̃ = x. We define G̃1 =

{Q̃ ∈ F | Q ∈ G1}. For the identity element ∞ of the elliptic curve, we use a bit-
string of length at most log2 |F|+ 1 to represent ∞̃.

For simplicity’s sake, we restrict ourselves to modifying the BGLS scheme. We
could apply the technique to any of the schemes previously mentioned in this chap-
ter.

C1-BGLS. Let H : {0, 1}∗ → G1 be a hash function. We define the algorithms
Generate, Sign, Aggregate, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and computes X =

xP1, Y = xP2. The algorithm returns the public key 〈X̃, Ỹ 〉 and the private key x.
Sign takes as input a message m and a private key x. The algorithm computes

Q = xH(m) and returns the signature σ = Q̃.
Aggregate takes as input valid signatures σ1, . . . , σN . For each i = 1, . . . , N ,

we let Qi be such that Q̃i = σi. The algorithm computes

R =
N∑

i=1

Qi

and returns σ = R̃.
Verify takes as input messages m1, . . . , mN corresponding to public keys

〈X̃1, Ỹ1〉, . . . , 〈X̃N , ỸN〉, and a signature σ. The algorithm computes Q such that

Q̃ = σ. For each key 〈X̃i, Ỹi〉, the elements Xi, Yi can be determined up to sign.
To verify that the key was correctly constructed, the algorithm checks that one of
the following equations hold:

e(Xi, P2) = e(P1, Yi),

e(Xi, P2) = e(P1, Yi)
−1.
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This key verification step needs to be done only once per public key, across all
invocations of the Verify algorithm. If one of the two equations above holds and
there exists b ∈ {−1, 1}N such that

e(Q,P2) =
N∏

i=1

e(H(mi), Yi)
bi ,

then the algorithm accepts the signature.

We show in the next lemma that a C1-BGLS forger can be used to construct a
BGLS forger.

Lemma 14. Given a C1-BGLS 〈qH , qS, N, t, ε〉-forger, we can construct a BGLS
〈qH , qS, N, t+ 2N , ε〉-forger.

Proof. We begin with an instance of the BGLS scheme with a hash function
H and a challenge public key 〈X1, Y1〉. We construct an instance of the C1-BGLS

scheme with public key 〈X̃1, Ỹ1〉 and run the C1-BGLS forger. We need to respond
to hash queries and signing queries.

To respond to a hash query on the message m, we return H(m). To respond
to a signing query on the message m, we use the BGLS signing oracle to obtain

Q = xH(m) and respond with Q̃.
Eventually, the forger returns a signature σ on messages m1, . . . , mN and public

keys 〈X̃1, Ỹ1〉, . . . , 〈X̃N , ỸN〉 where no signing query was made for m1. For each i,
we select Xi, Yi such that

e(Xi, P2) = e(P1, Yi).

We enumerate the elements of {−1, 1}N until we obtain b ∈ {−1, 1}N such that

e(Q,P2) =
N∏

i=1

e(H(mi), Yi)
bi .

We return the signature σ′ = b1Q, the messages m1, . . .mN , and public keys
〈X1, Y1〉, 〈b1b2X2, b1b2Y2〉, . . . , 〈b1bNXN , b1bNYN〉. This is a valid BGLS forgery. �

Unfortunately, the scheme becomes infeasible as the number of messages aggre-
gated into the signature increases.

By hashing bitstrings into pairs of elliptic curve points, we obtain an efficient
scheme. For each element h of the finite field underlying some elliptic curve E, the
element h determines at most two elements of the elliptic curve. We arbitrarily fix

one element Ph of E such that h = P̃h. Since a point consists of two field elements
x, y and field elements are represented by bitstrings, we can take, for instance, the
smallest of the two bistrings representing the y’s under the lexicographical ordering.

C2-BGLS. Let H : {0, 1}∗ → G̃1 be a hash function. We define the algorithms
Generate, Sign, Aggregate, and Verify.

Generate selects an integer x ∈ Zp uniformly at random and computes X =

xP1, Y = xP2. If PeY = Y , then the algorithm returns the public key 〈X̃, Ỹ 〉 and

private key x. Otherwise, the algorithm returns the public key 〈X̃, Ỹ 〉 and private
key −x.
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Sign takes as input a message m and a private key x. The algorithm computes

Q = xPH(m) and returns the signature σ = Q̃.
Aggregate takes as input valid signatures σ1, . . . , σN . For each i = 1, . . . , N ,

the algorithm determines Qi = Pσi
such that Q̃i = σi. The algorithm computes

R =
N∑

i=1

Qi

and returns σ = R̃.
Verify takes as input messages m1, . . . , mN corresponding to public keys

〈X̃1, Ỹ1〉, . . . , 〈X̃N , ỸN〉, and a signature σ. We compute Q such that Q̃ = σ.

For each key 〈X̃i, Ỹi〉, we may determine the Xi, Yi up to sign. Take Yi to be such
that PeYi

= Yi. To verify that the key was correctly constructed, we check that one
of the following equations hold:

e(Xi, P2) = e(P1, Yi),

e(Xi, P2) = e(P1, Yi)
−1.

This key verification step needs to be done only once per public key, across all
invocations of the Verify algorithm. If one of the two equations above holds and
there exists b ∈ {−1, 1} such that

e(Q,P2)
b =

N∏
i=1

e(PH(mi), Yi),

then the algorithm accepts the signature.

Remark. All previous schemes permitted sequential aggregation. That is, given
only an “aggregate signature so far” σ, a new message m, and a private key, a user
may append a signature on the message m to σ without knowledge of the previous
messages and keys. Unfortunately, the same is not true for C2-BGLS.

Consider a signature σ on messages m1, . . . , mN and public keys 〈X̃1, Ỹ1〉, . . . ,

〈X̃N , ỸN〉. If we wish to perform sequential aggregation, we determine Q such that

Q̃ = σ and

e(Q,P2) =
N∏

i=1

e(PH(mi), PeYi
).

To aggregate a copy of m signed under the private key x into the signature σ, we
compute

R = Q+ xPH(m)

and return the signature R̃.

In the next lemma, we show that we can construct a BGLS forger, using a
C2-BGLS forger.

Lemma 15. Given a C2-BGLS 〈qH , qS, N, t, ε〉-forger, we can construct a BGLS
〈qH , qS, N, t, ε〉-forger.
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Proof. We are given a BGLS instance with hash function Ĥ and challenge
public key 〈X1, Y1〉 corresponding to the private key x. Let b ∈ {−1, 1} be such
that bY1 = PeY1

. We construct an instance C2-BGLS with hash function H and

challenge key 〈X̃1, Ỹ1〉 and we run the C2-BGLS forger. We need to respond to
queries to the hash function H and signing queries.

To respond to a hash query on the message m, we compute Q = Ĥ(m) and

return H(m) = Q̃.
To respond to a signature query on message m, we use our BGLS signing oracle

to obtain σm = xĤ(m). We return σ̃m.
Eventually, the C2-BGLS forger returns a signature σ on messages m1, . . . , mN

and public keys 〈X̃1, Ỹ1〉, . . . , 〈X̃N , ỸN〉. Let Q = Pσ. For each i = 2, . . . , N , let
Yi be such that Yi = PeYi

and take Xi to be such that

e(Xi, P2) = e(P1, Yi).

We have that there exists c ∈ {−1, 1} such that

e(Q,P2)
c = e(Ĥ(m1), bY1) +

N∑
i=2

e(Ĥ(mi), Yi).

Therefore,

Q = cbx1H(m1) + c
N∑

i=2

xiĤ(mi),

where xi is the private key corresponding to 〈Xi, Yi〉. Set

σ′ = bcQ

and return the signature σ′, a BGLS forgery on messages m1, . . . , mN and public
keys 〈X1, Y1〉, 〈bX2, bY2〉, . . . , 〈bXN , bYN〉 �
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CHAPTER 5

The Waters Signature Scheme

5.1. The scheme

In 2005, Waters presented an Identity-Based Encryption scheme based on the
decisional bilinear Diffie-Hellman assumption, without the use of random oracles
[32]. Based on this scheme, Waters describes a signature scheme which is secure in
the standard model relative to the co-CDH′ problem. That is, the scheme is secure
without assuming the existence of a random oracle.

Waters presented the scheme in the special case G1 = G2. We present the
scheme in its full generality.

The Waters signature scheme (Waters). We define the functions Generate,
Sign, and Verify. By making use of a collision-resistant hash function, we assume
that all messages are of bit-length n.

Generate selects integers x, y ∈ Zp and elements c′, c1, . . . , cn ∈ Z1 uniformly
at random. The algorithm returns the private key Z = gxy

1 and the public key
〈X, Y 〉 = 〈gx

1 , g
y
2〉, u′ = gc′

1 , u1 = gc1
1 , . . . , un = gcn

1 . For notational convenience
we define the functions H : {0, 1}n → G1 and K : {0, 1} → Zp by

H(m) = H(m1, . . . ,mn) = u′ ·
n∏

i=1

umi
i ;

K(m) = K(m1, . . . ,mn) = c′ +
n∑

i=1

cimi.

It should be noted that since u′, u1, . . . , un are public, the function H is public.
Sign takes as input a message m and a private key Z. The algorithm selects an

integer r ∈ Zp uniformly at random and returns the signature

σ = 〈Z · grK(m)
1 , gr

1, g
r
2〉.

Verify takes as input a message m, a public key 〈X, Y 〉, and a signature σ =
〈σ1, σ2, σ3〉. The algorithm checks

(13) e(σ2, g2) = e(g1, σ3)

and

(14) e(σ1, g2) = e(X, Y ) · e(H(m), σ3).

The algorithm accepts the signature iff equations (13) and (14) hold.

For a signature σ = 〈σ1, σ2, σ3〉, although it seems that the component σ2 is
superfluous, the component is necessary for the security of the Waters scheme.
However, if the pairing is Type 1 or Type 2, then we are given an efficiently com-
putable isomorphism ψ : G2 → G1 such that ψ(g2) = g1 and may exclude the
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component σ2 from the signature. Since we may compute σ2 = ψ(σ3) such that
Equation (13) holds, the proof of security remains valid and we need not check
Equation (14) as part of the Verify algorithm.

An algorithm is said to be a Waters 〈qS, n, t, ε〉-forger, if after qS queries to a
signing oracle, the algorithm outputs the signature of some message not queried,
in time at most t, with probability at least ε.

Before we prove the Waters scheme secure, we give the following technical
lemma. We will use this lemma to reduce solving the co-CDH′ problem to forging
Waters signatures.

Waters lemma. Let n, qS be integers. Set t = 2qS. Let m, m1, . . . , mqS
∈ {0, 1}n

be arbitrary distinct bit-strings. Let a′, a1, . . . , an ∈ {0, . . . , t− 1} be selected
uniformly at random. Let k ∈ {0, . . . , n} be selected uniformly at random. Define
F : {0, 1}n → Z by

F (µ) = F (µ1, . . . , µn) = a′ − kt+
n∑

i=1

aiµi.

Then

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]
≥ 1

4qS(n+ 1)
.

Proof. Let ≡t denote equivalence modulo t. For an arbitrary µ ∈ {0, 1}n, we
claim the probability that F (µ) ≡t 0 is 1/t. To see this, we fix ` = −kt+

∑n
i=1 aiµi

and notice that since a′ is chosen at random, the probability that a′ ≡t −` is 1/t.
If F (µ) ≡t 0, then since F (µ) ≤ (n+1)(t−1)−kt < (n+1−k)t, the probability

that F (µ) = 0 is 1/(n+ 1), the probability of choosing the correct k. Therefore,

(15) Pr[F (µ) = 0] =
1

t(n+ 1)
.

For each i = 1, . . . , qS, sincem andmi differ in at least one bit and since F (m) =
0 implies F (m) ≡t 0, the events F (m) = 0 and F (mi) ≡t 0 are independent. So,

(16) Pr
[
F (mi) ≡t 0 | F (m) = 0

]
=

1

t
.
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We conclude,

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]

≥ Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6≡t 0
)]

= Pr[F (m) = 0] Pr
[ qS∧

i=1

F (mi) 6≡t 0 | F (m) = 0
]

=
1

t(n+ 1)
Pr

[ qS∧
i=1

F (mi) 6≡t 0 | F (m) = 0
]

by (15)

=
1

t(n+ 1)

(
1− Pr

[ qS∨
i=1

F (mi) ≡t 0 | F (m) = 0
])

≥ 1

t(n+ 1)

(
1−

qS∑
i=1

Pr
[
F (mi) ≡t 0 | F (m) = 0

])
=

1

t(n+ 1)

(
1− qS

t

)
by (16)

=
1

4qS(n+ 1)
.

�

In the next lemma, we show that forging Waters signatures is at least difficult
as solving the co-CDH′ problem.

Lemma 16. Given a Waters 〈qS, n, t, ε〉-forger, we can construct a co-CDH′ 〈t +
t′, ε · ε′〉-solver, where

t′ ≤ qS,

ε′ ≥ 1

4qS(n+ 1)
.

Proof. We begin with an instance of the co-CDH′ problem. We are given gx
1 ,

gy
1 , and gx

2 and we wish to produce gxy
1 .

We define a few terms which will be used to construct a Waters public key. Set
t = 2qS and let k ∈ {0, . . . , n} be selected uniformly at random. Let a′, a1, . . . ,
an be integers selected uniformly at random from {0, . . . , t− 1} and let b′, b1, . . . ,
bn be integers selected uniformly at random from Zp. For notational convenience,
we define the functions F (m) = −kt+ a′ +

∑n
i=1 aimi and J(m) = b′ +

∑n
i=1 bimi.

Finally, set u′ = (gy
1)

−kt+a′gb′
1 and for each i = 1, . . . , n, set ui = (gy

1)
aigbi

1 . We
observe that

H(m) = g
yF (m)+J(m)
1 .

We create an instance of the Waters signature scheme with public key 〈X, Y 〉 =
〈gy

1 , g
x
2 〉, u′, u1, . . . , un and run the forger.
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To respond to a signature query on the message m, we abort if F (m) = 0.
Otherwise, let r̂ ∈ Zp be an integer selected uniformly at random. The signature is
computed as

σ = 〈(gx
1 )−

J(m)
F (m)H(m)r̂, gr̂

1(g
x
1 )−

1
F (m) , gr̂

2(g
x
2 )−

1
F (m) 〉.

To show that this is a valid signature, we set r = r̂ − x
F (m)

and so

(gx
1 )−

J(m)
F (m)H(m)r̂ = (gxy

1 )(g−xy
1 )(gx

1 )−
J(m)
F (m)H(m)r̂

= gxy
1

(
(g−y

1 )(g1)
− J(m)

F (m)
)x
H(m)r̂

= gxy
1

(
(gy

1)
F (m)g

J(m)
1

) −x
F (m)H(m)r̂

= gxy
1

(
(g

yF (m)+J(m)
1

) −x
F (m)H(m)r̂

= gxy
1 H(m)

−x
F (m)H(m)r̂ = (gxy

1 )H(m)r̂− x
F (m)

= gxy
1 H(m)r.

Eventually, the forger returns the signature σ = 〈σ1, σ2, σ3〉 = 〈gxy
1 H(m)r, gr

1, g
r
2〉

for some m not queried. If F (m) 6= 0, we abort. Otherwise, we compute

σ1(σ2)
−J(m) =

(
gxy
1 H(m)r

)(
gr
1

)−J(m)
= gxy

1 g
rJ(m)
1 g

−rJ(m)
1

= gxy
1 .

Now, we analyze the probability that the reduction can successfully respond to
all signature queries and return a forgery. We assume that the forger makes exactly
qS signing queries. Let m1, . . . , mqS

be the distinct messages given as input to the
signing oracle. Let m be the message on which the forger returns a signature. The
reduction succeeds if F (m) = 0 and F (mi) 6= 0, for each i = 1, . . . , qS. Applying
Waters lemma, we have, as required, that

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]
≥ 1

4qS(n+ 1)
.

�

5.1.1. Alternative public-key representation. If we desire, we can replace
the public key 〈X, Y 〉 with an element X = e(X,Y ). For Type 2 pairings, the
representation of GT requires fewer bits than G1 × G2. However, for Type 3, the
converse is true. In addition, replacing 〈X, Y 〉 with X = e(X, Y ) results in one
fewer pairing evaluation during varification. Depending on the type of pairing used
and the cost of a pairing operation, one of the public key representations may be
more desirable than the other.

For completeness, we present the modified scheme and reduce its security to the
Waters scheme.

Waters with an alternative public-key representation (APK-Waters). We
define the functions Generate, Sign, and Verify. By making use of a collision-
resistant hash function, we assume that all messages are of bit-length n.
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Generate selects elements Z, u′, u1, . . . , un ∈ G1 uniformly at random. The
algorithm returns the private key Z and the public key X = e(Z, g2), u

′, u1, . . . ,
un. For notational convenience we define the function H : {0, 1}n → G1 by

H(m) = H(m1, . . . ,mn) = u′ ·
n∏

i=1

umi
i .

It should be noted that since u′, u1, . . . , un are public, the function H is public.
Sign takes as input a message m and a private key Z. The algorithm selects an

integer r ∈ Zp uniformly at random and returns the signature

σ = 〈Z · (H(m))r, gr
1, g

r
2〉.

Verify takes as input a message m, a public key X, and a signature σ =
〈σ1, σ2, σ3〉. The algorithm checks

(17) e(σ2, g2) = e(g1, σ3)

and

(18) e(σ1, g2) = X · e(H(m), σ3).

The algorithm accepts the signature iff equations (17) and (18) hold.

In the next lemma, we show that an APK-Waters forger can be used to forge
Waters signatures.

Lemma 17. Given an APK-Waters 〈qS, n, t, ε〉-forger, we can construct a Waters
〈qS, n, t, ε〉-forger.

Proof. We fix an instance of the Waters signature scheme with challenge
public-key 〈X, Y 〉, u′, u1, . . . , un. We construct an instance of the APK-Waters
scheme with challenge public-key X = e(X, Y ), u′, u1, . . . , un and run the forger.

We need to respond to APK-Waters signing queries. Since APK-Waters signa-
tures and Waters signatures verify identically, to respond to signature queries, we
use the signing oracle given by the Waters scheme.

The forgery returned by the APK-Waters forger is also a forgery for the Waters
instance. Since the reduction is deterministic, the result follows. �

Since an APK-Waters forger can be used to construct a Waters forger and a
Waters forger can be used to construct a co-CDH′ solver, we obtain the following
lemma.

Lemma 18. Given an APK-Waters 〈qS, n, t, ε〉-forger, we can construct a co-
CDH′ 〈t+ t′, ε · ε′〉-solver, where

t′ ≤ qS,

ε′ ≥ 1

4qS(n+ 1)
.

Proof. Follows from Lemma 16 and Lemma 17. �
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5.1.2. Selecting ui’s. In the two versions of the Waters scheme which we have
described, each user picks his own ui’s, contributing to the size of his public key.
To help minimize the size of public keys, it is desirable to have the users share the
ui’s. If we assume the existence of a trusted third-party (TTP), we can reduce the
public key size by n+ 1 elements of G1, while introducing some public parameters
shared by all users.

A public key in the Waters scheme is of the form (X, Y ) ∈ G1 ×G2. The TTP
may select Y1 ∈ G1, Y2 ∈ G2 as a public parameter for all users. The element Y1 is
used for key generation and Y2 for verification.

We present the following modification. A TTP runs an algorithm called Setup which
returns public parameters.

Waters with a trusted third-party (TTP-Waters). We define the functions
Setup, Generate, Sign, and Verify. By making use of a collision-resistant hash
function, we assume that all messages are of bit-length n.

Setup selects integers y ∈ Zp, u
′, u1, . . . , un ∈ G1 uniformly at random. The

algorithm returns u′, u1, . . . , un, and Y1 = gy
1 , Y2 = gy

2 . For notational convenience
we define the function H : {0, 1}n → G1 by

H(m) = H(m1, . . . ,mn) = u′ ·
n∏

i=1

umi
i .

It should be noted that since u′, u1, . . . , un are public, the function H is public.
Generate selects an integer x ∈ Zp uniformly at random. The algorithm returns

the private key Z = Y x
1 and the public key X = gx

1 .
Sign takes as input a message m and a private key Z. The algorithm selects an

integer r ∈ Zp uniformly at random and returns the signature

σ = 〈Z · (H(m))r, gr
1, g

r
2〉.

Verify takes as input a message m, a public key X, and a signature σ =
〈σ1, σ2, σ3〉. The algorithm checks

(19) e(σ2, g2) = e(g1, σ3)

and

(20) e(σ1, g2) = e(X, Y2) · e(H(m), σ3).

The algorithm accepts the signature iff equations (19) and (20) hold.

The next lemma reduces solving co-CDH′ to forging TTP-Waters signatures.
The proof is essentially the same as that of Lemma 16.

Lemma 19. Given a TTP-Waters 〈qS, n, t, ε〉-forger, we can construct a co-CDH′ 〈t+
t′, ε · ε′〉-solver, where

t′ ≤ qS,

ε′ ≥ 1

4qS(n+ 1)
.

Proof. We begin with an instance of the co-CDH′ problem. We are given
elements gx

1 , gy
1 , g

x
2 and wish to produce gxy

1 . To create an instance of TTP-Waters,
we first define a few terms. Set t = 2qS and let k ∈ {0, . . . , n} be selected uniformly
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at random. Let a′, a1, . . . , an be integers selected uniformly at random from
{0, . . . , t− 1} and let b′, b1, . . . , bn be integers selected uniformly at random from Zp.
For notational convenience, we define the functions F (m) = −kt+ a′ +

∑n
i=1 aimi

and J(m) = b′ +
∑n

i=1 bimi. Finally, set u′ = (gy
1)

−kt+a′gb′
1 and for each i = 1, . . . ,

n, set ui = (gy
1)

aigbi
1 . We observe that

H(m) = g
yF (m)+J(m)
1 .

We create an instance of the Waters signature scheme with public parameters Y1 =
gx
1 , Y2 = gx

2 , u′, u1, . . . , un. We run the forger with the challenge public-key X = gy
1 .

To respond to a signature query on the message m, we abort if F (m) = 0.
Otherwise, let r̂ ∈ Zp be an integer selected uniformly at random. The signature is
computed as

σ = 〈(gx
1 )−

J(m)
F (m)H(m)r̂, gr̂

1(g
x
1 )−

1
F (m) , gr̂

2(g
x
2 )−

1
F (m) 〉.

To show that this is a valid signature, we set r = r̂ − x
F (m)

and so

(gx
1 )−

J(m)
F (m)H(m)r̂ = (gxy

1 )(g−xy
1 )(gx

1 )−
J(m)
F (m)H(m)r̂

= gxy
1

(
(g−y

1 )(g1)
− J(m)

F (m)
)x
H(m)r̂

= gxy
1

(
(gy

1)
F (m)g

J(m)
1

) −x
F (m)H(m)r̂

= gxy
1

(
(g

yF (m)+J(m)
1

) −x
F (m)H(m)r̂

= gxy
1 H(m)

−x
F (m)H(m)r̂ = (gxy

1 )H(m)r̂− x
F (m)

= gxy
1 H(m)r.

Eventually, the forger returns the signature σ = 〈σ1, σ2, σ3〉 = 〈gxy
1 H(m)r, gr

1, g
r
2〉

for some m not queried. If F (m) 6= 0, we abort. Otherwise, we compute

σ1(σ2)
−J(m) =

(
gxy
1 H(m)r

)(
gr
1

)−J(m)
= gxy

1 g
rJ(m)
1 g

−rJ(m)
1

= gxy
1 .

Now, we analyze the probability that the reduction can successfully respond to
all signature queries and return a forgery. We assume that the forger makes exactly
qS signing queries. Let m1, . . . , mqS

be the queried made to the signing oracle. Let
m be the message on which the forger returns a signature.

The reduction succeeds if F (m) = 0 and F (mi) 6= 0, for each i = 1, . . . , qS.
Applying Waters lemma, we have, as required, that

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]
≥ 1

4qS(n+ 1)
.

�

Since the TTP can compute the ui’s knowing their discrete logs, the TTP can
recover the private key of a user, given only one signature produced by this user.
To demonstrate this, we let u′ = ga′

1 , u1 = ga1
1 , . . . , gan

1 . If a′, a1, . . . , an are known
by the TTP and the TTP obtains a signature

σ = 〈σ1, σ2, σ3〉 = 〈gxy
1 H(m)r, gr

1, g
r
2〉,
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then the TTP can recover the private key used to produce this signature by com-
puting

σ1 · (σ2)
−a′−

Pn
i=1 aimi = σ1 ·H(m)−r = gxy

1 .

Allowing a TTP to choose the ui’s, essentially reveals the private keys to the
TTP. We may construct a threshold version of the construction of the ui’s which
requires that all parties collude in order to recover private keys. Given k parties, for

each party i = 1, . . . , k, party i selects a′(i), a
(i)
1 , . . . , a

(i)
n and publishes u′(i) = ga′(i)

1 ,

u
(i)
1 = g

a
(i)
1

1 , . . . , u
(i)
n = ga

(i)
n

1 . Each party is associated with a public hash function

H(i)(m) = u′(i)
n∏

j=1

(u
(i)
j )mj .

A user may construct a function H : {0, 1}n → G1 by computing u′ =
∏k

i=1 u
′(i),

u1 =
∏k

i=1 u
(i)
1 , . . . , un =

∏k
i=1 u

(i)
n , and so

H(m) =
k∏

i=1

H(i)(m).

Considering the effectiveness of the attack by a dishonest TTP, it seems that
having some party select Y1, Y2, u

′, u1, . . . , un verifiably at random is more desirable
than merely assuming that a TTP will generate the ui’s at random. Unfortunately,
in the standard model it is not clear what verifiably at random should mean. In
practice, we would use a hash function to determine the ui’s. Certainly, if we
assume the hash function is a random oracle, we can prove the scheme secure. But
this defeats the purpose of the Waters scheme.

Furthermore, for Type 2 and Type 3 pairings, there is no way to produce a
pair Y1, Y2 such that e(Y1, g2) = e(g1, Y2) and one of Y1, Y2 is produced using a
hash function. Combining the TTP modification with the APK modification, we
alleviate this problem. In some implementations, this will be at the expense of
larger public keys.

Alternatively, we can make another slight modification to the scheme. During
the setup algorithm, instead of producing Y1 ∈ G1, Y2 ∈ G2, an element Y ∈ G1 is
selected uniformly at random and published. The key generation algorithm selects
an integer x ∈ Zp uniformly at random and computes the private key Z = Y x and
the public key X = gx

2 . The public key is now an element of G2 rather than G1.
In practice, this means the public key of each user is larger for Type 2 and Type
3 pairings. To verify a signature σ = 〈σ1, σ2, σ3〉 on the message m, we replace
Equation (20) with

e(σ1, g2) = e(Y,X) · e(H(m), σ3)

and perform verification as usual.

5.2. Small signatures

In previous versions of the Waters scheme, a signature is represented by an
element of G1 × G1 × G2. If we are willing to accept larger public keys, we may
obtain smaller signatures, taken from the set G1 ×G1.
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Waters with small signatures (SS-Waters). We define the functions Generate,
Sign, and Verify. By making use of a collision-resistant hash function, we assume
that all messages are of bit-length n.

Generate selects integers x, y, c′, c1, . . . , cn ∈ Zp uniformly at random. The
algorithm returns the private key Z = gxy

1 , c′, c1, . . . , cn and the public key 〈X, Y 〉 =
〈gx

1 , g
y
2〉, v′ = gc′

2 , v1 = gc1
2 , . . . , vn = gcn

2 . For notational convenience we define the
functions H : {0, 1}n → G2 and K : {0, 1}n → Zp by

H(m) = H(m1, . . . ,mn) = v′ ·
n∏

i=1

vmi
i

K(m) = K(m1, . . . ,mn) = c′ +
n∑

i=1

cimi.

It should be noted that since v′, v1, . . . , vn are public, the function H is public.
Sign takes as input a message m and a private key Z. The algorithm selects a

random integer r and returns the signature

σ = 〈Z · (grK(m)
1 , gr

1〉.

Verify takes as input a message m, a public key X, and a signature σ. Using
σ = 〈σ1, σ2〉, the algorithm accepts the signature iff

e(σ1, g2) = e(X, Y ) · e(σ2, H(m)).

The scheme appears to enjoy a level of security equivalent to Waters scheme.
However, in general, we cannot expect to reduce the security of one to the other.
Specifically, we cannot generate the third component of the Waters signature 〈X ·
H(m)r, gr

1, g
r
2〉, given only a TTP-SS-Waters signature 〈X ·H(m), gr

1〉. Conversely,
given Waters hash function parameters u′, u1, . . . , un, we cannot generate the vi’s.

The next lemma proves that SS-Waters is secure. We note that when compared
to the security reduction in Lemma 16 which proves the Waters scheme secure, the
roles of gx

1 and gy
1 in the co-CDH′ problem are reversed.

Lemma 20. Given an SS-Waters 〈qS, n, t, ε〉-forger, we can construct a co-CDH′ 〈t+
qS, εε

′〉-solver which makes one query to the forger where

ε′ =
1

4qS(n+ 1)
.

Proof. We begin with an instance of the co-CDH′ problem. We are given
elements gx

1 , gy
1 , g

x
2 and wish to produce gxy

1 . We construct an instance of the
SS-Waters scheme with challenge key 〈X, Y 〉 = 〈gy

1 , g
x
2 〉. Let t = 2qS and let

k ∈ {0, . . . , n} be selected uniformly at random. Let a′, a1, . . . , an ∈ {0, . . . , t− 1},
b′, b1, . . . , bn ∈ Zp be integers chosen uniformly at random. Set v′ = (gx

2 )a′gb′
2 and

for each i = 1, . . . , n, set

vi = (gx
2 )aigbi

2 .
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Define

F (m) = a′ − tk +
n∑

i=1

aimi,

J(m) = b′ +
n∑

i=1

bimi.

For a message m ∈ {0, 1}n, we have that H(m) = g
xF (m)+J(m)
2 . Now, we run the

forger.
To respond to a signature query on the message m, we abort if F (m) = 0.

Otherwise, we select an integer r̂ ∈ Zp uniformly at random and return the signature

σ = 〈(gy
1)

− J(m)
F (m)H(m)r̂, gr̂

1(g
y
1)

− 1
F (m) 〉.

To show that this is a valid signature, we set r = r̂ − y
F (m)

and so

(gy
1)

− J(m)
F (m) g

r̂K(m)
1 = (gxy

1 )(g−xy
1 )(gy

1)
− J(m)

F (m) g
r̂K(m)
1

= gxy
1

(
(g−x

1 )(g1)
− J(m)

F (m)
)y
g

r̂K(m)
1

= gxy
1

(
(gx

1 )F (m)g
J(m)
1

) −y
F (m) g

r̂K(m)
1

= gxy
1

(
(g

xF (m)+J(m)
1

) −y
F (m) g

r̂K(m)
1

= gxy
1 H(m)

−x
F (m) g

r̂K(m)
1 = (gxy

1 )g
(r̂− x

F (m)
)K(m)

1

= gxy
1 g

rK(m)
1 .

Eventually, the forger returns a signature σ = 〈σ1, σ2〉 = 〈gxy
1 g

rK(m)
1 , gr

1〉 on the
message m. If F (m) 6= 0, we abort. Otherwise, we compute

σ1 · σ−J(m)
2 = gxy

1 .

To compute the reduction’s probability of success, we let m1, . . . , mqS
be the

messages on which signature queries were made and m be the message for which a
forgery was returned. The reduction succeeds when F (m) = 0 and F (mi) 6= 0, for
all i = 1, . . . , qS. Applying Waters lemma, we have, as required, that

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]
≥ 1

4qS(n+ 1)
.

�

Unfortunately, the SS-Waters scheme has a significantly larger public key. For
Type 3 pairings, the number of bits required to represent elements of G2 is twice
than the number of bits required to represent elements of G1. In effect, we double
the size of the public key, a key which is already very large.

If we assume the existence of a TTP, we can significantly reduce the size of the
public key but at the expense of larger public parameters.

Waters with small signatures and a trusted third-party (TTP-SS-Wa-
ters). We define the functions Setup, Generate, Sign, and Verify. By making

43



use of a collision-resistant hash function, we assume that all messages are of bit-
length n.

Setup selects integers y, c′, c1, . . . , cn ∈ Zp uniformly at random. The algorithm
publishes u′ = gc′

1 , u1 = gc1
1 , . . . , un = gcn

1 , v′ = gc′
2 , v1 = gc1

2 , . . . , vn = gcn
2 , Y1 = gy

1 ,
Y2 = gy

2 . For notational convenience we define the functions H1 : {0, 1}n → G1,
H2 : {0, 1}n → G2 by

H1(m) = H1(m1, . . . ,mn) = u′ ·
n∏

i=1

umi
i ,

H2(m) = H2(m1, . . . ,mn) = u′ ·
n∏

i=1

vmi
i .

It should be noted that since u′, u1, . . . , un, v
′, v1, . . . , vn are public, the functions

H1 and H2 are public.
Generate selects an integer x ∈ Zp uniformly at random and returns the private

key Z = Y x
1 and the public key X = gx

1 .
Sign takes as input a message m and a private key Z. The algorithm selects an

integer r ∈ Zp uniformly at random and returns the signature

σ = 〈Z · (H1(m))r, gr
1〉.

Verify takes as input a message m, a public key X, and a signature σ =
〈σ1, σ2〉. The algorithm must ensure e(u′, g2) = e(g1, v

′) and for all i = 1, . . . , n,

(21) e(ui, g2) = e(g1, vi).

The Verify algorithm accepts the signature iff

e(σ1, g2) = e(X, Y2) · e(σ2, H2(m)),

e(u′, g2) = e(g1, v
′), and Equation (21) holds for all ui, vi’s.

The next lemma states that the TTP-SS-Waters scheme enjoys the same level
of security as SS-Waters. We omit the proof as it is simply the application of two
modifications to the proof of the security of the Waters scheme in Lemma 16. The
modifications were applied separately to obtain security proofs of TTP-Waters in
Lemma 19 and SS-Waters in Lemma 20.

Lemma 21. Given a TTP-SS-Waters 〈qS, n, t, ε〉-forger, we can construct a co-
CDH′ 〈t+ t′, ε · ε′〉-solver where

ε′ ≥ 1

4qS(n+ 1)
.

Of course, we may also modify the SS-Waters and TTP-SS-Waters so that they
have public keys in GT . This will reduce verification time by one pairing evaluation
but may be at the cost of (in the case of Type 3 pairings) increasing the size of
public keys and public parameters.

For Type 2 and Type 3 pairings, it is not possible to replace the TTP with a
party that selects the public parameters verifiably at random. For Type 2 pairings,
we are unable to hash into G2. For Type 3 pairings, it is not known how one may
select a pair (u, v) ∈ G1×G2 such that e(u, g2) = e(g1, v) and one of u, v is selected
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verifiably at random. This restriction holds regardless of whether one makes the
random oracle assumption.

5.3. Reducing public key or public parameter size

If we are willing to accept a loss in the success probability of the security re-
duction, we may dramatically reduce the number of ui’s, the largest contributing
factor to size of the public key or public parameters.

Chatterjee-Sarkar [8] and Naccache [26] independently proposed the modifica-
tion in the context of the Waters identity-based encryption scheme. The modified
scheme is as follows.

The Waters signature scheme with a smaller hash function (SH-Waters).
We define the functions Generate, Sign, and Verify. By making use of a collision-
resistant hash function, we assume that all messages are of bit-length n · `.

Generate selects integers x, y ∈ Zp uniformly at random and elements u′, u1,
. . . , un ∈ G1 uniformly at random. The algorithm returns the private key Z = gxy

1

and the public key 〈X, Y 〉 = 〈gx
1 , g

y
2〉, u′, u1, . . . , un. For notational convenience

we define the function H : Zn
2` → G1 by

H(m) = H(m1, . . . ,mn) = u′ ·
n∏

i=1

umi
i .

It should be noted that since u′, u1, . . . , un are public, the function H is public.
Sign takes as input a message m and a private key Z. The algorithm selects an

integer r ∈ Zp uniformly at random and returns the signature

σ = 〈Z · (H(m))r, gr
1, g

r
2〉.

Verify takes as input a message m, a public key 〈X, Y 〉, and a signature σ =
〈σ1, σ2, σ3〉. The algorithm checks

(22) e(σ2, g2) = e(g1, σ3)

and

(23) e(σ1, g2) = e(X, Y ) · e(H(m), σ3).

The algorithm accepts the signature iff equations (22) and (23) hold.

A SH-Waters forger which uses a public key u′, u1, . . . , un ∈ G1, uses at most
qS signing queries, and can forge signatures in time at most t with probability at
least ε is referred to as an SH-Waters 〈qS, n, `, t, ε〉-forger.

To prove the SH-Waters secure, we require a strengthened version of Waters
lemma.

Waters lemma (strong version). Let n, `, qS be integers. Set t = 2qS. Let m,
m1, . . . , mqS

∈ {0, . . . , 2` − 1}n be distinct. Let a′, a1, . . . , an ∈ {0, . . . , t− 1} be
selected uniformly at random. Let k ∈ {0, . . . , (n+ 2)2` − 1} be selected uniformly
at random. Define F : Zn

2` → Z by

F (µ) = F (µ1, . . . , µn) = a′ − kt+
n∑

i=1

aiµi.
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Then

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]
≥ 1

4qS(n+ 2)2`
.

Proof. Let ≡t denote equivalence modulo t. For an arbitrary m∗ ∈ Zn
2` , we

claim the probability that F (m∗) ≡t 0 is 1/t. To see this, we fix s = −kt+
∑n

i=1 ai

and notice that since a′ is chosen at random, the probability that a′ ≡t −s is 1/t.
Since

F (m∗) ≤ (n+ 1)(2` − 1)(t− 1)− kt <
(
(n+ 2)2` − k

)
t,

if F (m∗) ≡t 0, then the probability that F (m∗) = 0 is 1/(2`(n+2)), the probability
of choosing the correct k. Therefore,

(24) Pr[F (m∗) = 0] =
1

2`t(n+ 2)
.

For each i = 1, . . . , qS, since m and mi differ in at least one bit and F (m) = 0
implies F (m) ≡t 0, the events F (m) = 0 and F (mi) ≡t 0 are independent. So,

(25) Pr
[
F (mi) ≡t 0 | F (m) = 0

]
=

1

t
.

We conclude,

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]

≥ Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6≡t 0
)]

= Pr[F (m) = 0] Pr
[ qS∧

i=1

F (mi) 6≡t 0 | F (m) = 0
]

=
1

2`t(n+ 2)
Pr

[ qS∧
i=1

F (mi) 6≡t 0 | F (m) = 0
]

by (24)

=
1

2`t(n+ 2)

(
1− Pr

[ qS∨
i=1

F (mi) ≡t 0 | F (m) = 0
])

≥ 1

2`t(n+ 2)

(
1−

qS∑
i=1

Pr
[
F (mi) ≡t 0 | F (m) = 0

])
=

1

2`t(n+ 2)

(
1− qS

t

)
by (25)

=
1

4 · 2`qS(n+ 2)
.

�

In the next lemma, we reduce solving the co-CDH′ problem to forging SH-Waters
signatures.

46



Lemma 22. Given a SH-Waters 〈qS, n, `, t, ε〉-forger, we can construct a co-CDH′ 〈t+
t′, ε · ε′〉-solver which makes one query to the forger where

t′ ≤ qS + n,

ε′ ≥ 1

4 · 2`qS(n+ 2)
.

Proof. We begin with an instance of the co-CDH′ problem. We are given gx
1 ,

gy
1 , and gx

2 and we wish to produce gxy
1 .

We define a few terms which will be used to construct an SH-Waters public key.
Set t = 2qS and let k ∈ {0, . . . , (n+ 2)2` − 1} be selected uniformly at random. Let
a′, a1, . . . , an ∈ {0, . . . , t− 1}, b′, b1, . . . , bn ∈ Zp be integers selected uniformly
at random. For notational convenience, we define the functions F , J : Zn

2` → Zp

by F (m) = −kt + a′ +
∑n

i=1 aimi and J(m) = b′ +
∑n

i=1 bimi. Finally, set u′ =

(gy
1)

−kt+a′gb′
1 and for each i = 1, . . . , n, set ui = (gy

1)
aigbi

1 . We observe that

H(m) = g
yF (m)+J(m)
1 .

We create an instance of the SH-Waters signature scheme with public key 〈X, Y 〉 =
〈gy

1 , g
x
2 〉, u′, u1, . . . , un and run the forger.

To respond to a signature query on the message m, we abort if F (m) = 0. Let
r̂ ∈ Zp be an integer selected uniformly at random. The signature is computed as

σ = 〈(gx
1 )−

J(m)
F (m)H(m)r̂, gr̂

1(g
x
1 )−

1
F (m) , gr̂

2(g
x
2 )−

1
F (m) 〉.

To show that this is a valid signature, we set r = r̂ − x
F (m)

and so

(gx
1 )−

J(m)
F (m)H(m)r̂ = (gxy

1 )(g−xy
1 )(gx

1 )−
J(m)
F (m)H(m)r̂

= gxy
1

(
(g−y

1 )(g1)
− J(m)

F (m)
)x
H(m)r̂

= gxy
1

(
(gy

1)
F (m)g

J(m)
1

) −x
F (m)H(m)r̂

= gxy
1

(
(g

yF (m)+J(m)
1

) −x
F (m)H(m)r̂

= gxy
1 H(m)

−x
F (m)H(m)r̂ = (gxy

1 )H(m)r̂− x
F (m)

= gxy
1 H(m)r.

Eventually, the forger returns the signature σ = 〈σ1, σ2, σ3〉 = 〈gxy
1 H(m)r, gr

1, g
r
2〉

for some m not queried. If F (m) 6= 0, we abort. Otherwise, we compute

σ1(σ2)
−J(m) =

(
gxy
1 H(m)r

)(
gr
1

)−J(m)
= gxy

1 g
rJ(m)
1 g

−rJ(m)
1

= gxy
1 .

Now, we analyze the probability that the reduction can successfully respond
to all signature queries and return a forgery. We assume that the forger makes
exactly qS signing queries. Let m1, . . . , mqS

be the input for the queries made to
the signing oracle. Let m be the message on which the forger returns a signature.
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The reduction succeeds if F (m) = 0 and F (mi) 6= 0, for each i = 1, . . . , qS.
Applying Waters lemma (strong version), as required, we obtain

Pr
[(
F (m) = 0

)
∧

( qS∧
i=1

F (mi) 6= 0
)]
≥ 1

4qS(n+ 2)2`
.

�

5.3.1. Practical implications. If we choose parameters while considering the
tightness of the reductions, at first glance, it seems that the 1/2` factor in the
security reduction of the SH-Waters scheme is a great weakness. Naccache remarked
that for n` = 160, taking ` = 32 is an acceptable loss of probability in the reduction,
while obtaining much smaller public keys (or public parameters) which consist of
only n = 5 elements of G1 [26]. However, we will see that by making our group
larger, we can reduce public key size at the cost of signature size, while maintaining
the same guarantee of security as the Waters scheme. Chatterjee and Sarkar give
a more detailed analysis in [8].

In practice, if we take n` = 256 = 28, we obtain 128-bits of security. We
compare two specific options for `. If we take ` = 1, then this is simply the Waters
scheme. The reduction from co-CDH′ to Waters suceeds with probability

1

4qSn
=

1

210qS
.

If we take ` = 128 and n = 2, then we obtain a reduction which succeeds with
probability

1

4qS2`n
=

1

2131qS
.

We fix the group G1 used in the ` = 1 case (which gives us, say, 128-bits of
security). To obtain the same level of security as the ` = 1 case in the ` = 128 case,
we need an additional 121-bits of security. To obtain this level of security, we can
use a group of size |G1|2. This has an obvious negative impact on signature sizes,
doubling the size of signatures. However, the factor by which space required to store
the ui’s decreases is very dramatic, when we compare ` = 1 to ` = 128. We require
257 log |G1|-bits to store the ui’s, for ` = 1. For ` = 128, there are only three ui’s,
but each is represented by twice as many bits. We require 3 log |G1|2 = 6 log |G1|-
bits to store the ui’s in the ` = 128 case.

In summary, we can reduce the space requirements for the ui’s by a factor of
around 40 at the expense of doubling the signature size and increasing computa-
tional cost, all the while maintaining an equivalent level of security.

5.4. Point compression

Just as in the BLS scheme, we may compress points on an elliptic curve. We
could store only the x-coordinate and deal with the ambiguity. For a point Q =

(x, y), we let ·̃ : E−{∞} → F be the operation defined by Q̃ = x. For each element
h of F that is the x-coordinate of a point in E(F), we fix a point Ph such that

h = P̃h.
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Once again, since we are dealing with elliptic curves instead of an arbitrary
group, we use additive notation. Let P1, P2 be the generators of the elliptic curve
groups G1, G2 respectively. We use the notation ·̃ for both groups G1 and G2.

We present the Waters scheme using compressed points.

The Waters signature scheme with compression (C-Waters). We define
the functions Generate, Sign, and Verify. By making use of a collision-resistant
hash function, we assume that all messages are of bit-length n.

Generate selects integers x, y ∈ Zp uniformly at random. Also, we select
elements u′, u1,. . . , un ∈ G1 uniformly at random. Set X = xP1, Y = yP2.
The algorithm determines bx, by ∈ {−1, 1} such that P eX = bxX, PeY = byY . The

algorithm returns the private key bxbyZ and the public key X̃, Ỹ , ũ′, ũ1, . . . , ũn.
For notational convenience we define the function H : {0, 1}n → G1 by

H(m) = Peu′ +
n∑

i=1

miPeui
.

Since ũ′ and the ũi’s are public, so is the function H.
Sign takes as input a message m and a private key Z. The algorithm selects an

integer r ∈ Zp uniformly at random and computes S = Z + rH(m), R1 = rP1, and

R2 = rP2. Finally, the algorithm returns the signature σ = 〈S̃, R̃1, R̃2〉.
Verify takes as input a message m, a public key 〈X̃, Ỹ 〉, and a signature σ =

〈σ1, σ2, σ3〉. The algorithm checks

e(Pσ2 , P2) = e(P1, Pσ3),

e(Pσ2 , P2) = e(P1, Pσ3)
−1.

If either of the above two signatures hold and any of the following four equations
holds, the algorithm accepts the signature:

e(Pσ1 , P2) = e(P eX , PeY ) · e(H(m), Pσ3),

e(Pσ1 , P2)
−1 = e(P eX , PeY ) · e(H(m), Pσ3),

e(Pσ1 , P2) = e(P eX , PeY ) · e(H(m), Pσ3)
−1,

e(Pσ1 , P2)
−1 = e(P eX , PeY ) · e(H(m), Pσ3)

−1.

In the next lemma, we show that an algorithm which forges C-Waters signatures
can be used to forge Waters signatures.

Lemma 23. Given a C-Waters 〈qS, n, t, ε〉-forger, we can construct a Waters 〈qS, n, t, ε〉-
forger which makes one call to the C-Waters forger.

Proof. We begin with an instance of the Waters scheme with challenge public-
key X, Y , u′, u1, . . . , un. We construct an instance of the C-Waters signature

scheme with challenge public-key X̃, Ỹ , ũ′, ũ1, . . . , ũn. We run the C-Waters
forger on this instance of the C-Waters scheme.

To respond to a signature query on the message m, we make a signature query
to our Waters oracle to obtain σ = 〈σ1, σ2, σ3〉. We respond with the signature
〈σ̃1, σ̃2, σ̃3〉.
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The C-Waters forger eventually returns a signature σ = 〈σ1, σ2, σ3〉. There exist
a, b, c ∈ {−1, 1} such that

e(Pσ2 , P2) = e(P1, Pσ3)
a,

e(Pσ1 , P2)
b = e(P eX , PeY ) · e(H(m), Pσ3)

c.

We return the signature 〈bPσ1 , acPσ2 , cPσ3〉, a forgery of the Waters scheme. �

5.5. Summary of the variations of the Waters signature scheme

There are several degrees of freedom in selecting a variation of the Waters sig-
nature scheme. Initially, we presented the Waters signature scheme. We then pre-
sented a few small variations of the scheme. The variations are APK-Waters, TTP-
Waters, SS-Waters, SH-Waters, and C-Waters, representing alternative public-key
representation, trusted third-party, small signature, small hash, and compression
modifications respectively. We can chose any subset of these modifications to ob-
tain a variation of the Waters signature scheme. Indeed, we could choose to use
“APK-TTP-SS-SH-C-Waters”.
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CHAPTER 6

The Lu-Ostrovsky-Sahai-Shacham-Waters Aggregate
Signature Scheme

6.1. The scheme

Motivated by the Waters signature scheme, Lu, Ostrovsky, Sahai, Shacham,
and Waters (LOSSW) [24] developed an aggregate signature scheme whose secu-
rity does not rely on the random oracle assumption. The scheme is a sequential
aggregate signature scheme; each user sequentially aggregates his contribution into
an aggregate signature.

LOSSW. We define the functions Generate, Sign-Aggregate, and Verify. By
making use of a collision-resistant hash function, we assume that all messages are
of bit-length n.

Generate selects integers x, y, c′, c1, . . . , cn ∈ Zp uniformly at random. The
algorithm returns the public key X = gx

1 , Y = gy
2 , u

′ = gc′
1 , u1 = gc1

1 , . . . , un = gcn
1

and the private key Z = gxy
1 , c′, c1, . . . , cn. For notational convenience, we define

the functions H : {0, 1}n → G1 and K : {0, 1}n → Zp by

H(m) = u′
n∏

i=1

umi
i ;

K(m) = c′ +
n∑

i=1

cimi.

By definition, we have H(m) = g
K(m)
1 . Notice that since the ui’s are public, the

function H is public. We use 〈X, Y,H〉 to refer to the public key of a user and
〈Z,K〉 to refer to the private key.

Sign-Aggregate takes as input a message m, a private key 〈Z,K〉, an aggregate
signature σ = 〈σ1, σ2, σ3〉 on messages m(1), . . . , m(N) corresponding to the public
keys 〈X1, Y1, H1〉, . . . , 〈XN , YN , HN〉. If the user is the first signer, then N = 0 and
we set σ = 〈g0

1, g
0
1, g

0
2〉. First, the algorithm verifies that the signature σ is valid.

Finally, the algorithm selects an integer r ∈ Zp uniformly at random and returns
the signature

〈σ1 · Z · (σ2 · gr
1)

K(m) ·
N∏

i=1

Hi(m
(i))r, σ2 · gr

1, σ3 · gr
2〉.

Verify takes as input an aggregate signature σ = 〈σ1, σ2, σ3〉 on messages m(1),
. . . , m(N) corresponding to the public keys 〈X1, Y1, H1〉, . . . , 〈XN , YN , HN〉. The
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algorithm accepts the signature iff the following two equations hold

e(σ1, g2) = e(
N∏

i=1

Hi(m
(i)), σ3) ·

N∏
i=1

e(Xi, Yi);

e(σ2, g2) = e(g1, σ3).

Observe that the Generate algorithm and for N = 1, the Verify algorithm are
identical to those of the Waters scheme. Also, for the first signer, the Sign-Aggregate al-
gorithm is identical to the Waters Sign algorithm.

The scheme is secure in the registered-key model. An adversary is given a chal-
lenge public-key 〈X1, Y1, H1〉 and access to a signing oracle for this key. The ad-
versary must output a signature σ on messages m(1), . . . , m(N) on public keys
〈X1, Y1, H1〉, . . . , 〈XN , YN , HN〉 such that m(1) was not given as input to the sign-
ing oracle. Additionally, the adversary must reveal the private keys corresponding
to 〈X2, Y2, H2〉, . . . , 〈XN , YN , HN〉. An adversary which succeeds in time at most
t with probability at least ε making at most qS signing queries is referred to as an
LOSSW 〈qS, n,N, t, ε〉-forger.

This model differs from that used in the BGLS scheme; in the registered-key
model, we assume the existence of a trusted third-party which possesses all private
keys.

In this security model we may reduce an LOSSW forger to a Waters forger.

Lemma 24. Given an LOSSW 〈qS, n,N, t, ε〉-forger, we can construct a Waters
〈qS, n, t+ qS +N, ε〉-forger which makes a single call to the LOSSW forger.

Proof. We begin with an instance of the Waters signature scheme. We are
given a challenge public-key 〈X, Y,H〉 and access to a Waters signing oracle. Our
goal is to produce a Waters signature on some message not queried to the signing
oracle. We construct an instance of the LOSSW signature scheme with challenge
public-key 〈X1, Y1, H1〉 and run the LOSSW forger.

To respond to the LOSSW forger signature query on message m, we use the
Waters signing oracle. As we have observed, the Waters signature is an LOSSW
signature with a single signer.

Eventually, the LOSSW forger returns the signature σ = 〈σ1, σ2, σ3〉 on the mes-
sages m(1), . . . , m(N) corresponding to public keys 〈X1, Y1, H1〉, . . . , 〈XN , YN , HN〉.
Since we are working in the registered-key model, we have the private keys 〈Z2, K2〉,
. . . , 〈ZN , KN〉 corresponding to the public keys 〈X2, Y2, H2〉, . . . , 〈XN , YN , HN〉. We
compute

σ′1 = σ1 ·
( N∏

i=2

Zi · (σ2)
K(mi)

)−1

=

( N∏
i=1

Zi · (σ2)
K(mi)

)
·
( N∏

i=2

Zi · (σ2)
K(mi)

)−1

= Z1 · (σ2)
K(m1).

We return the signature σ = 〈σ′1, σ2, σ3〉, a valid Waters signature. �
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Since we obtained in Lemma 16 a reduction from the Waters scheme to the
co-CDH′ problem, we conclude that if co-CDH′ is intractable, then the LOSSW
scheme is secure under the registered-key model.

6.1.1. Smaller public keys with a TTP. Since we are already assuming the
existence of a certifying authority which will possess all private keys, this certifying
authority is a Trusted Third-Party (TTP). As we have seen in the Waters scheme,
if the TTP publishes some global parameters, the size of our public key can be
reduced. In addition, we may reduce the number of pairing computations required
to verify signatures. The size of the public key remains very large due to the ui’s.
We present the modified scheme.

LOSSW with a TTP (TTP-LOSSW). We define the functions Setup, Generate,
Sign-Aggregate, and Verify. By making use of a collision-resistant hash func-
tion, we assume that all messages are of bit-length n.

Setup selects an integer y ∈ Zp uniformly at random and publishes 〈Y1, Y2〉 =
〈gy

1 , g
y
2〉. If the certifying authority issues private and public keys, the element Y1

need not be made public. Making Y1 public allows users to compute their keys
offline. It should be noted that users need to register their keys with the certifying
authority anyway.

Generate selects integers x, c′, c1, . . . , cn ∈ Zp uniformly at random. The
algorithm returns the public key X = gx

1 , u
′ = gc′

1 , u1 = gc1
1 , . . . , un = gcn

1 and
the private key Z = Y x

1 , c′, c1, . . . , cn. For notational convenience, we define the
functions H : {0, 1}n → G1 and K : {0, 1}n → Zp by

H(m) = u′
n∏

i=1

umi
i ;

K(m) = c′ +
n∑

i=1

cimi.

By definition, we have H(m) = g
K(m)
1 . Notice that since u′ and the ui’s are public,

the function H is public. We use 〈X,H〉 to refer the public key of a user and 〈Z,K〉
to refer the private key.

Sign-Aggregate takes as input a message m, a private key 〈Z,K〉, and op-
tionally an aggregate signature σ on messages m(1), . . . , m(N) corresponding to the
public keys 〈X1, H1〉, . . . , 〈XN , HN〉. If the optional signature is not part of the
input, the algorithm sets σ = 〈g0

1, g
0
1, g

0
2〉. Using σ = 〈σ1, σ2, σ3〉, the algorithm

selects an integer r ∈ Zp uniformly at random and returns the signature

〈σ1 · Z · (σ2 · gr
1)

K(m) ·
N∏

i=1

Hi(m
(i))r, σ2 · gr

1, σ3 · gr
2〉.

Verify takes as input an aggregate signature σ = 〈σ1, σ2, σ3〉 on messages m(1),
. . . , m(N) corresponding to the public keys 〈X1, H1〉, . . . , 〈XN , HN〉. The algorithm
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accepts the signature iff the following two equations hold

e(σ1, g2) = e(
N∏

i=1

Hi(m
(i)), σ3) · e(

N∏
i=1

Xi, Y2);

e(σ2, g2) = e(g1, σ3).

Lemma 25. Given a TTP-LOSSW 〈qS, n,N, t, ε〉-forger, we can construct Waters
〈qS, n, t+ qS +N, ε〉-forger which makes a single call to the TTP-LOSSW forger.

We omit the proof as it is essentially the same as Lemma 24.

6.2. Small signatures

Signatures in the LOSSW scheme are elements of G1×G1×G2. In this section,
we modify the scheme so that signatures are in G1 ×G1. However, this is done at
the cost of having a much larger public key.

LOSSW with small signatures (SS-LOSSW). We define the functions Generate,
Sign-Aggregate, and Verify. By making use of a collision-resistant hash func-
tion, we assume that all messages are of bit-length n.

Generate selects integers x, y, c′, c1, . . . , cn ∈ Zp uniformly at random. The
algorithm returns the public key X = gx

1 , Y = gy
2 , u

′ = gc′
1 , u1 = gc1

1 , . . . , un = gcn
1 ,

v′ = gc′
2 , v1 = gc1

2 , . . . , vn = gcn
2 and the private key Z = gxy

1 , c′, c1, . . . , cn. For
notation convenience, we define the functions H(1) : {0, 1}n → G1, H

(2) : {0, 1}n →
G2, and K : {0, 1}n → Zp by

H(1)(m) = u′
n∏

i=1

umi
i ;

H(2)(m) = v′
n∏

i=1

vmi
i ;

K(m) = c′ +
n∑

i=1

cimi.

By definition, we have that H(1)(m) = g
K(m)
1 and H(2)(m) = g

K(m)
2 . Notice that

since the ui’s, vi’s are public, the functions H(1), H(2) are public. Define U =
〈u′, u1, . . . , un〉, V = 〈v′, v1, . . . , vn〉. We use 〈X, Y,U ,V 〉 to refer to the public key
of a user and 〈Z,K〉 to refer to the private key.

Sign-Aggregate takes as input a message m, a private key 〈Z,K〉, and option-
ally an aggregate signature σ = 〈σ1, σ2〉 on messages m(1), . . . , m(N) corresponding

to the public keys 〈X1, Y1,U
(1),V (1)〉, . . . , 〈XN , YN ,U

(N),V (N)〉. If the optional
signature is not part of the input, the algorithm sets σ = 〈g0

1, g
0
1〉. The algorithm

selects an integer r ∈ Zp uniformly at random and returns the signature

〈σ1 · Z · (σ2 · gr
1)

K(m) ·
N∏

i=1

H
(1)
i (m(i))r, σ2 · gr

1〉.

Verify takes as input an aggregate signature σ on messages m(1), . . . , m(N) cor-
responding to the public keys 〈X1, Y1,U

(1),V (1)〉, . . . , 〈XN , YN ,U
(N),V (N)〉. For
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each user i = 1, . . . , N , let

U (i) = 〈u′(i), u(i)
1 , . . . , u

(i)
n 〉,

V (i) = 〈v′(i), v(i)
1 , . . . , v(i)

n 〉.
To verify the integrity of the public key, the algorithm checks

(26) e(u′(i), g2) = e(g1, v
′(i))

and for each j = 1, . . . , n, the algorithm checks

(27) e(u
(i)
j , g2) = e(g1, v

(i)
j ).

The signature is accepted iff for each i = 1, . . . , N , Equation (26) holds, for each
i = 1, . . . , N and each j = 1, . . . , n, Equation (27) holds, and using σ = 〈σ1, σ2, σ3〉
the following equation holds:

e(σ1, g2) = e(σ2,
N∏

i=1

H
(2)
i (m(i))) ·

N∏
i=1

e(Xi, Yi).

We notice that expensive checks of Equation (26) and Equation (27) can be
done by the certifying authority before they key is certified.

We obtain the following proof of security for the SS-LOSSW scheme.

Lemma 26. Given a SS-LOSSW 〈qS, n,N, t, ε〉-forger, we may construct a Waters
〈qS, n, t+ qS +N, ε〉-forger which makes one query to the SS-LOSSW forger.

We omit the proof, as it is similar to that of Lemma 24.

6.3. Reducing public key size

Using the techniques of Chatterjee-Sarkar [8] and Naccache [26], we may reduce
the size of public keys. We prove the scheme secure relative to the forging of
SH-Waters signatures. The security of the SH-Waters scheme relative to the co-
CDH′ problem decreases exponentially as ` increases.

LOSSW with smaller hash function (SH-LOSSW). We define the functions
Generate, Sign-Aggregate, and Verify. By making use of a collision-resistant
hash function, we assume that all messages are of bit-length n · `.

Generate selects integers x, y, c′, c1, . . . , cn ∈ Zp uniformly at random. The
algorithm returns the public key X = gx

1 , Y = gy
2 , u

′ = gc′
1 , u1 = gc1

1 , . . . , un = gcn
1

and the private key Z = gxy
1 , c′, c1, . . . , cn. For notational convenience, we define

the functions H : Zn
2` → G1 and K : Zn

2` → Zp by

H(m) = u′
n∏

i=1

umi
i ;

K(m) = c′ +
n∑

i=1

cimi.

By definition, we have H(m) = g
K(m)
1 . Notice that since the ui’s are public, the

function H is public. We use 〈X, Y,H〉 to refer to the public key of a user and
〈Z,K〉 to refer to the private key.
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Sign-Aggregate takes as input a message m, a private key 〈Z,K〉, and option-
ally an aggregate signature σ = 〈σ1, σ2, σ3〉 on messages m(1), . . . , m(N) correspond-
ing to the public keys 〈X1, Y1, H1〉, . . . , 〈XN , YN , HN〉. If the optional signature is
not part of the input, the algorithm sets σ = 〈g0

1, g
0
1, g

0
2〉. The algorithm selects an

integer r ∈ Zp uniformly at random and returns the signature

〈σ1 · Z · (σ2 · gr
1)

K(m) ·
N∏

i=1

Hi(m
(i))r, σ2 · gr

1, σ3 · gr
2〉.

Verify takes as input an aggregate signature σ = 〈σ1, σ2, σ3〉 on messages m(1),
. . . , m(N) corresponding to the public keys 〈X1, Y1, H1〉, . . . , 〈XN , YN , HN〉. The
algorithm accepts the signature iff the following two equations hold

e(σ1, g2) = e(
N∏

i=1

Hi(m
(i)), σ3) ·

N∏
i=1

e(Xi, Yi);

e(σ2, g2) = e(g1, σ3).

In the following lemma, we reduce forging SH-Waters signatures to forging SH-
LOSSW signatures.

Lemma 27. Given a SH-LOSSW 〈qS, n, `,N, t, ε〉-forger, we can construct a SH-
Waters 〈qS, n, `, t, ε〉-forger which makes one query to the SS-LOSSW forger.

Once again, the proof of Lemma 27 is omitted as the proof is similar to that of
Lemma 24.

6.4. Point compression

We present a modification of the LOSSW scheme similar to that used in Chap-
ter 5 to compress elliptic curve points. Let ·̃ : E − {∞} → F be such that for a

point Q of E, the element h = Q̃ is the x-coordinate of Q. For each element h of

F we fix some Ph in E such that h = P̃h.
In the remainder of this section, we fix elliptic curves G1 and G2 with generators

P1 and P2. We switch from multiplicative notation to additive notation. We use
the map ·̃ for both G1 and G2.

LOSSW with compression (C-LOSSW). We define the functions Generate,
Sign-Aggregate, and Verify. By making use of a collision-resistant hash func-
tion, we assume that all messages are of bit-length n.

Generate selects integers x, y, c′, c1, . . . , cn ∈ Zp uniformly at random. Set
X = xP1, Y = yP2, u

′ = c′P1, u1 = c1P1, . . . , un = cnP1. Let bx, by, b
′, b1,

. . . , bn ∈ {−1, 1} be such that P eX = bxX, PeY = byY , Peu′ = b′u′, Peu1 = b1u1, . . . ,

Peun = bnun. The algorithm returns the public key X̃, Ỹ , ũ′, ũ1, . . . , ũn and the
private key Z = bxbyxyP1, b

′c′, b1c1, . . . , bncn. For notational convenience, we
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define the functions H : {0, 1}n → G1 and K : {0, 1}n → Zp by

H(m) = Peu′ +
n∑

i=1

Peui
mi;

K(m) = c′ +
n∑

i=1

cimi.

By definition, we have H(m) = K(m)P1. Notice that since ũ′ and the ũi’s are

public, the function H is public. We use 〈X̃, Ỹ , H〉 to refer to the public key of a
user and 〈Z,K〉 to refer to the private key.

Sign-Aggregate takes as input a message m and a private key 〈Z,K〉. Op-
tionally the algorithm takes as input an aggregate signature σ on messages m(1),

. . . , m(N) corresponding to the public keys 〈X̃1, Ỹ1, H1〉, . . . , 〈X̃N , ỸN , HN〉. If the
optional signature is not part of the input, the algorithm sets σ = 〈∞̃, ∞̃, ∞̃〉 and
N = 0. Using σ = 〈σ1, σ2, σ3〉, the algorithm determines a, b, c ∈ {−1, 1} such that

e(Pσ2 , P2) = e(P1, Pσ3)
a,

e(Pσ1 , P2)
b = e(P eX , PeY ) · e(H(m), Pσ3)

c.

Let S1 = bPσ1, S2 = acPσ2, and S3 = cPσ3. The algorithm selects an integer r ∈ Zp

uniformly at random and returns the signature

〈S1 + Z +K(m)(S2 + rP1) +
N∑

i=1

rHi(m
(i)), S2 + rP1, S3 + rP2〉.

Verify takes as input an aggregate signature σ = 〈σ1, σ2, σ3〉 on messages m(1),

. . . , m(N) corresponding to the public keys 〈X̃1, Ỹ1, H1〉, . . . , 〈X̃N , ỸN , HN〉. The
algorithm accepts the signature iff one of the following two equations hold

e(Pσ2 , P2) = e(P1, Pσ3),

e(Pσ2 , P2) = e(P1, Pσ3)
−1,

and one of the following equations hold

e(Pσ1 , P2) = e(
N∑

i=1

Hi(m
(i)), Pσ3) ·

N∏
i=1

e(P eXi
, PeYi

),

e(Pσ1 , P2)
−1 = e(

N∑
i=1

Hi(m
(i)), Pσ3) ·

N∏
i=1

e(P eXi
, PeYi

),

e(Pσ1 , P2) = e(
N∑

i=1

Hi(m
(i)), Pσ3)

−1 ·
N∏

i=1

e(P eXi
, PeYi

),

e(Pσ1 , P2)
−1 = e(

N∑
i=1

Hi(m
(i)), Pσ3)

−1 ·
N∏

i=1

e(P eXi
, PeYi

).

Lemma 28. Given a C-LOSSW 〈qS, n,N, t, ε〉-forger, we may construct a Waters
〈qS, n, t+ qS +N, ε〉 which makes one query to the C-LOSSW forger.

Since the proof of Lemma 28 is similar to that of Lemma 24, we omit the proof.
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CHAPTER 7

Coron’s Theorem

7.1. Coron’s Lemma

In Chapters 3 and 5, we have proven that given a BLS forger or a Waters forger,
we can construct a co-CDH′ solver. As we noted in the respective chapters, the
co-CDH′ solver we produce using these forgers succeeds with a lower probability
than the forgers we were originally given. In this chapter, we will show that in
the case of BLS and Waters, we cannot hope to find a reduction which succeeds
with probability non-negligibly greater than 1/(qS + 1), where qS is the number of
signing queries allowed.

Coron proved an analogous result for the Full-Domain Hash signature scheme
and observed that the same technique can be applied to any deterministic signature
scheme including BLS [10]. Coron remarked that the proof does not apply to non-
deterministic signature schemes. In this Chapter, we reproduce Coron’s results for
deterministic signature schemes. We also show that with a slight modification of
the proof, we can obtain a similar result for a class of non-deterministic signature
schemes which includes the Waters scheme.

Before we prove Coron’s result, we need to define a few terms. Let n be a
positive integer and let M be a finite set. A collection

Q ⊆
n⋃

i=0

M i

of subsequences of Mn is said to be prefix-closed if

(γ1, . . . , γk) ∈ Q =⇒ (γ1, . . . , γk−1) ∈ Q, for all k > 0.

Coron’s lemma. Let Q be prefix-closed collection of Mn subsequences, for some
positive integer n and some finite set M . Let α1, . . . , αn, β be distinct elements
selected uniformly at random from M . Let i be an integer selected uniformly at
random from [1, n]. For each j = 0, . . . , n, let Aj be the event (α1, . . . , αj) ∈ Q
and Bj be the event (α1, . . . , αj−1, β) ∈ Q. Then

Pr[An ∧ ¬Bi] ≤
1

n+ 1
.

Proof. We will show by induction on n that

Pr[An ∧Bi] ≥ Pr[An]1+
1
n .

If n = 1, then since A1 and B1 are independent events,

Pr[A1 ∧B1] = Pr[A1] Pr[B1] = Pr[A1]
2 = Pr[An]1+

1
n .

Therefore, the statement holds for n = 1 and for all M .
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Assume n > 1 and that if Q̂ is a prefix-closed collection of M̂n−1 subsequences,
for some M̂ , then the statement holds for Q̂.

Let Q be a prefixed closed collection of Mn subsequences for some M . We make
a few observations. Since, An and B1 are independent events,

(28) Pr[An ∧B1] = Pr[An] Pr[B1] = Pr[An] Pr[A1] ≥ Pr[An]2.

Define
Q̂ = {(γ2, . . . , γk) | (α1, γ2, . . . , γk) ∈ Q}.

For j = 1, . . . , n − 1, set α̂j = αj+1. We also set M̂ = M − {α1}. Finally, for

j = 1, . . . , n − 1, we let Âj denote the event (α̂1, . . . , α̂j) ∈ Q̂ and B̂j denote the

event (α̂1, . . . , α̂j−1, β) ∈ Q̂. Notice that if i ≥ 2, then i− 1 is selected uniformly at

random from [1, n− 1]. Since Q̂ is a prefix-closed collection of M̂n−1 subsequences,
we have that

Pr[Ân−1 ∧ B̂i−1 | i ≥ 2] ≥ Pr[Ân−1 | i ≥ 2]1+
1

n−1 = Pr[Ân−1]
1+ 1

n−1 .

By definition,

(29) Pr[An ∧Bi | i ≥ 2] = Pr[Ân−1 ∧ B̂i−1] ≥ Pr[Ân−1]
1+ 1

n−1 = Pr[An]1+
1

n−1 .

Next, recall the following relationship between the arithmetic and geometric
mean. For any real number x,

(30)
1

n
x+

n− 1

n
x

1
n−1 ≥ x

1
n .

We have that

Pr[An ∧Bi] = Pr[An ∧Bi | i = 1] Pr[i = 1] + Pr[An ∧Bi | i ≥ 2] Pr[i ≥ 2]

=
1

n
Pr[An ∧Bi | i = 1] +

n− 1

n
Pr[An ∧Bi | i ≥ 2]

=
1

n
Pr[An ∧B1] +

n− 1

n
Pr[An ∧Bi | i ≥ 2]

≥ 1

n
Pr[An]2 +

n− 1

n
Pr[An ∧Bi | i ≥ 2] by (28)

≥ 1

n
Pr[An]2 +

n− 1

n
Pr[An]1+

1
n−1 by (29)

= Pr[An]
( 1

n
Pr[An] +

n− 1

n
Pr[An]

1
n−1

)
≥ Pr[An] Pr[An]

1
n by (30)

= Pr[An]1+ 1
n .

Finally, using elementary calculus,

Pr[An ∧ ¬Bi] = Pr[An]− Pr[An ∧Bi] ≤ Pr[An] + Pr[An]1+
1
n

= Pr[An](1− Pr[An]
1
n ) ≤

( n

n+ 1

)n 1

n+ 1

≤ 1

n+ 1
.

�
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7.2. Deterministic signature schemes

In this section, we consider an efficient reduction which makes a single query
to a forger of some signature scheme and goes on to solve some problem. We show
that either:

(i) the reduction succeeds with probability at most 1/(qS + 1) + δ, where δ is
negligible or

(ii) the problem which the reduction solves can be solved efficiently without a
forger.

Essentially, we show that a forger can be simulated with one query to the
reduction. This simulation can be used itself as input to the reduction which goes
on to solve some problem. We then bound the probability of success using Coron’s
Lemma.

Theorem 1. Consider a deterministic signature scheme. Let F be a 〈qH , qS, t, ε〉-
forger of this signature scheme. Let P be some problem. Let R be a reduction which
makes one query to F and is able to 〈t+ t′, ε · ε′〉-solve P . If

ε′ =
1

qS + 1
+ δ,

then we can construct an algorithm A which 〈2t′, δ〉-solves the problem P with two
queries to the reduction.

Proof. We construct two forgers F1 and F2. Since a probabilistic algorithm
is a deterministic algorithm with access to a random sequence of bits, we fix the
random sequence of bits for R so that R behaves deterministically.

We select distinct messages m1, . . . , mqS
and m′. We select an integer i uni-

formly at random from [1, qS]. The forger F1 makes i signing queries on the messages
m1, . . . , mi−1, m

′ to obtain signatures σ1, . . . , σi−1, σ
′. The forger then aborts.

We run R with the forger F1 as input.
The forger F2 makes qS signing queries on the messagesm1, . . . , mqS

and outputs
a forgery σ′ of the message m′. We run R with the forger F2 as input.

SetM = {m1, . . . ,mqS
,m′}. We define a prefix-closed collection of subsequences

of M qS

Q ⊆
qS⋃
i=0

M i

such that (γ1, . . . , γj) ∈ Q iff the reduction R successfully returns signatures to a
forger which makes signing queries for messages γ1, . . . , γj.

The forger F2 behaves correctly as a forger unless

(31) (m1, . . . ,mqS
) ∈ Q and (m1, . . . ,mi−1,m

′) /∈ Q.
By Coron’s lemma, the probability that (31) occurs is at most 1/(qS + 1). So,

the probability that the reduction R successfully solves the problem P is at least

ε′ − 1

qS + 1
.

If

ε′ =
1

qS + 1
+ δ
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for some δ, then we are able to 〈2t′, δ〉-solve the problem P . �

Theorem 1 can be applied to any deterministic signature schemes as Coron
observed in [10].

Corollary 1. Consider a BLS 〈qH , qS, t, ε〉-forger and a reduction which is able to
〈t+ t′, ε · ε′〉-solve the CDH problem with one query to the BLS forger. If

ε′ =
1

qS + 1
+ δ,

then we can construct an algorithm which can 〈2t′, δ〉-solve the co-CDH′ problem.

7.3. Non-deterministic signature schemes

In general, Theorem 1 cannot be applied to signature schemes for which each
message has many distinct signatures. Our simulation of the forger F2 in Theorem 1
produces a signature which is determined by the reduction. A true forger will output
a signature which is independent of the reduction.

Consider a signature scheme that is existentially unforgeable under chosen-
message attacks. That is, given a forger of this signature scheme, we can solve
some problem P . Let Sm be the set of signatures of some message m. We will show
that if there exists an efficiently computable collection of functions

rerollm : Sm → Sm

such that for a signature σ ∈ Sm, we have that rerollm(σ) is selected uniformly at
random from Sm, then Coron’s proof can be applied to this signature scheme.

Note that if such a function exists, then the signature scheme is not strongly
unforgeable under chosen-message attacks.

Theorem 2. Consider a 〈qH , qS, t, ε〉-forger of some non-deterministic signature
scheme equipped with a collection of functions rerollm. Also, consider a reduction
which is able to 〈t+ t′, ε · ε′〉-solve some problem P with one query to the forger. If

ε′ =
1

qS + 1
+ δ,

then we can construct an algorithm which can 〈2t′, δ〉-solve P .

Proof. We proceed in exactly the same manner as in the proof of Theorem 1,
except when the forger F2 is to return a forged signature σ′ for message m′, the
forger F2 computes and outputs a second signature σ′′ = rerollm(σ′). The forger F2

outputs forgeries which are independent of the reduction and the result follows. �

For the Waters signature scheme, if we are given a signature

σ = 〈σ1, σ2, σ3〉 = 〈gxy
1 H(m)r, gr

1, g
r
2〉,

then we may select a random integer r′ and compute

σ′ = 〈σ1 ·H(m)r′ , σ2 · gr′

1 , σ3 · gr′

2 〉 = 〈gxy
1 H(m)r+r′ , gr+r′

1 , gr+r′

2 〉.
Since we may generate a random signature on the message m, given a signature
on the message m, the Waters signature scheme is equipped with a reroll function.
We obtain the following corollary following from Theorem 2.
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Corollary 2. Consider a Waters 〈qH , qS, t, ε〉-forger and a reduction which is able
to 〈t+ t′, ε · ε′〉-solve the CDH problem with one query to the Waters forger. If

ε′ =
1

qS + 1
+ δ,

then we can construct an algorithm which can 〈2t′, δ〉-solve the co-CDH′ problem.
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CHAPTER 8

Conclusions and Future Work

The initial descriptions of BLS, BGLS, Waters, and LOSSW mention that the
schemes may be extended to Type 3 pairings. We have shown that there are various
nuances to the modifications which are required to create secure schemes using Type
3 pairings.

The primary motivation for the Waters signature scheme was to avoid the ran-
dom oracle assumption. Unfortunately, as we have seen, in the Waters signature
scheme, we must either assume the existence of a trusted third-party or contend
with extremely large public keys (around 256 elements of G1). When we consider
whether to use the Waters signature scheme or the BLS signature scheme, we must
compare the Waters public-key size to BLS public-key size (which is a single element
of G2) and the trusted third-party assumption required by Waters to the random
oracle assumption required by BLS. Fortunately, the security of both Waters and
BLS is relative to a standard assumption, the co-CDH′ problem.

We made similar comparisons for LOSSW and BGLS. The LOSSW signature
scheme has very large public keys and requires the assumption of a trusted third-
party. The security model (the registered-key model) of LOSSW requires that the
private key of each party is revealed to a certifying authority. When compared
to BGLS, we must weigh the trusted third-party assumption of LOSSW against
the random oracle assumption of BGLS. The public keys of LOSSW contain 256
elements of G1. For BGLS, a public keys is a single element of G2.

All of the schemes BLS, BGLS, Waters, and LOSSW are secure assuming that
the co-CDH′ problem is computationally infeasible to solve. We prove the schemes
secure by reducing the co-CDH′ problem to forging signatures. Unfortunately, the
reduction succeeds with probability asymptotically 1/qS where qS is the number
of signing queries made. We have shown that reductions for deterministic signa-
ture schemes necessarily succeed with probability at most 1/qS. Furthermore, the
Waters signature scheme also suffers from a 1/qS upper bound of the success prob-
ability. For BLS and BGLS, there exist non-deterministic versions of the schemes
which have tight reductions to the co-CDH′ problem. No variation of the Waters
or LOSSW schemes is known with a tight reduction.

The motivation for aggregate signature schemes is to produce a signature on
multiple messages using multiple keys while using as little bandwidth as possible to
transmit the signature. Unfortunately, public keys still need to be distributed. A
few identity-based aggregate signature schemes which are pairing-based have been
proposed but are secure assuming that non-standard problems are computation-
ally infeasible [15] [4]. Recently, Neven shifted focus away from simply fixing the
signature size to a focus on reducing total bandwidth required, introducing a new
primitive called sequential aggregate signed data [27]. Neven’s protocol is secure
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in the random-oracle model and assuming the existence of claw-free permutations
meaning that the protocol can be based on RSA or factoring assumptions. It
would be interesting to compare Neven’s scheme based on RSA or factoring with
the LOSSW and BGLS schemes in terms of security and efficiency.
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