
Non-Intrusive Computing

by

Hao Chen

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Hao Chen 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Pervasive computing is an important trend today. It concerns devices and services in a

smart space that interact with users in a simple, natural, and harmonious way. Many prob-

lems in this domain have been studied from different perspectives in various projects.

However, one important characteristic of pervasive computing, which is how to make it

non-intrusive so that users can focus on their tasks, has received little formal attention.

Nowadays, many computing entities including smart devices, and software components,

are involved in our daily lives, and users need to deal with them as well as with other

people. Besides, people are easy to reach with multiple devices. We believe there should

be a systematic way to help users avoid intrusive ones.

We propose a model for posing and answering two questions: will an interaction

intrude on its receiver if delivered, and given that the interaction is deliverable, how can

it be delivered effectively and not too overtly? With this model, the intrusion problem is

analyzed and the essential factors are identified. A quantitative approach is used, so that

factors have quantitative values for comparison and computation. We also apply context

to refine them in order to achieve better results.

We then illustrate how to materialize the model and build a system whose design is

inspired by the Jabber framework that includes a collection of standards, technologies,

and projects for instant messaging. The discussion is at a general level that does not

depend on Jabber. However, by choosing Jabber in implementation, we reuse existing

software and technologies, and benefit from Jabber/XMPP standardization, its low entry

barrier for application developers, and its rich community support.

The main contributions of our work are two-fold. First, we propose a model for in-

trusiveness in pervasive computing. Second, we address the problem at the system level

by designing and realizing it. We also make use of standardized instant-messaging tech-

nologies, more precisely Jabber, in the system instantiation to reuse existing software,

making the system more flexible and extensible.

iii

Acknowledgements

I would like to thank my supervisor, Professor James P. Black, for his advice and

suggestions, for his continuous support financially and on other aspects, for weekly con-

versations where he spent time and effort, even when he is away, for many tedious writing

corrections, and for his patience and understanding through out my program. His sharp

perspectives and wisdom taught me how to think and tackle problems and helped me

come up with the ideas in this thesis.

I am also grateful to my committee members, Professors Johnny Wong, Ian McKil-

lop, Paul A.S. Ward, Sidney Fels, and Catherine Burns for spending time in reading my

thesis and providing me valuable advice.

My wife, Juan Wang, provides me family. Without her, I would not have been able

to go through all of the difficulties I encountered. I thank her for all she is and all she has

done for me.

I appreciate my colleagues and friends, Andrei Dragoi, Qiyan Li, Georgia Kastidou,

Omar Khan, Herman Li, and Abdur-Rahman El-Sayed. I am also obliged to many other

faculty members, staff, and students who helped my success.

iv

Dedication

This is dedicated to my father, Haixiang Chen, and my mother, Morong Song.

v

Contents

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 Motivating scenario . 3

1.2 Our approach . 4

1.3 Thesis contributions . 6

1.4 Organization of the thesis . 7

2 Modeling non-intrusive computing 8

2.1 Previous work on intrusiveness . 8

2.2 Non-intrusive computing: Overall model 11

2.3 Non-intrusive computing: Filter stage 13

2.3.1 Willingness . 14

2.3.2 Importance . 14

2.3.3 The comparison model . 15

2.3.4 The fuzzy-logic model . 17

2.3.5 Modifying importance and willingness 26

2.3.6 Atomic modifiers . 26

2.3.7 Complex modifiers . 31

vi

2.3.8 The comparison model with modifiers 32

2.4 Non-intrusive computing: Delivery stage 32

2.4.1 Feasibility criteria . 33

2.4.2 Effectiveness . 35

2.4.3 Overtness . 38

2.4.4 Relationships between effectiveness and overtness 39

2.4.5 Delivery-candidate selection 41

2.5 User study . 44

2.6 Summary . 50

3 Performance analysis 54

3.1 Non-dropping approach . 55

3.2 Dropping approach . 57

3.3 Hybrid dropping approach . 59

3.4 Discussion . 62

4 Previous work on pervasive-computing systems 64

4.1 Literature review . 64

4.1.1 Aura . 65

4.1.2 Gaia . 67

4.1.3 Stanford interactive workspaces project - iRoom 69

4.1.4 One.world . 71

4.1.5 Plan B . 74

4.1.6 Cooltown . 76

4.1.7 The Aware Home . 78

4.2 Recurring themes . 82

4.3 Insufficiencies in previous systems . 85

4.3.1 Isolation . 86

vii

4.3.2 Insufficient integration platforms 86

4.3.3 No standards . 87

4.3.4 High barrier to entry . 87

5 A non-intrusive-computing system 89

5.1 Overview of the non-intrusive-computing system 90

5.2 Jabber . 92

5.2.1 Jabber overview . 92

5.2.2 Jabber naming . 94

5.2.3 Jabber communication mechanism 94

5.2.4 Jabber presence and security models 96

5.2.5 Jabber storage . 97

5.2.6 Jabber and the non-intrusive-computing system 98

5.3 System implementation . 99

5.3.1 Ontology and context manager 99

5.3.2 The models and Jabber clients 106

5.3.3 System implementation . 111

5.3.4 Overhead evaluation . 113

5.4 Code Blue case study . 116

5.4.1 Code Blue . 117

5.4.2 Application scenarios . 118

6 Conclusions and future work 123

6.1 Conclusions . 123

6.2 Future work . 125

Bibliography 129

viii

List of Tables

2.1 Fuzzy-control rules . 20

2.2 An example of assigning effectiveness (E) and overtness (O) for a few

devices and notification methods . 35

2.3 Overtness thresholds based on the user study in Section 2.5 39

2.4 Answers to the questions in the survey 45

2.5 Statistical results for willingness . 46

2.6 Statistical results for importance . 48

2.7 Statistical results for effectiveness and overtness 49

2.8 Statistical results for overtness threshold 49

5.1 Doctor Adam’s schedule . 121

ix

List of Figures

1.1 Overview of pervasive-computing environments 2

1.2 Two-tier approach . 5

2.1 Overall modeling . 12

2.2 The comparison model . 16

2.3 Relationships among importance, willingness, and deliverability, using

the comparison model. Left: unwillingness = 0.3, right: unwillingness=

0.5 . 16

2.4 Fuzzy sets for importance . 18

2.5 Fuzzy sets for deliverability . 19

2.6 Fuzzy-logic computing . 21

2.7 Deliverability. Curved lines: from the fuzzy-logic model; straight lines:

from the comparison model; Unw: unwillingness 23

2.8 Deliverability. Curved lines: from the fuzzy-logic model; straight lines:

from the comparison model; Imp: importance 24

2.9 3D deliverability. Left: deliverability computed with fuzzy logic; right:

deliverability computed with comparison 25

2.10 Applying context in the filter stage. Left: black-box approach; right:

pipeline approach . 27

2.11 A sample role tree for a university . 28

2.12 Complex modifier for willingness . 32

2.13 The comparison model with modifiers 33

x

2.14 Conceptual view of the delivery stage 34

2.15 Relationship between effectiveness and overtness 40

2.16 Willingness to interact when in a meeting 46

2.17 Different views of the intrusion problem 52

3.1 Constant willingness and different device-status patterns 55

3.2 Different willingness and different device-status patterns 56

3.3 Calculating the error probability given a fixed V 58

3.4 Calculating the error probability with random V 60

3.5 Error rates. Top: dropping approach; Bottom: hybrid dropping approach,

P = 0.5 . 61

4.1 Aura architecture . 65

4.2 Prism architecture . 66

4.3 Gaia architecture . 67

4.4 Call sequence using Gaia microserver 69

4.5 iROS . 70

4.6 One.world illustration . 72

4.7 One.world architecture . 73

4.8 A Plan B computing environment . 75

4.9 Plan B architecture . 75

4.10 Cooltown . 77

4.11 Context-based infrastructure of the Aware Home 80

4.12 The Aware Home architecture . 81

4.13 General architecture and recurring themes 83

4.14 Context manager . 84

5.1 Overview of the non-intrusive-computing system 90

5.2 Jabber system illustration . 93

xi

5.3 Jabber security . 96

5.4 SOUPA ontology . 102

5.5 iContext architecture. Top: without using pubsub; bottom: with pubsub 104

5.6 iContext screen shot . 107

5.7 Model implementation . 107

5.8 Spark modification. Top: receiver sets willingness; bottom: sender sets

importance . 109

5.9 Willingness propagated to the sender 110

5.10 System summary . 112

5.11 SPARQL query performance. Left: the first query, right: the second query 115

5.12 Code Blue . 117

5.13 Intelligent notification . 118

5.14 Inpatient care . 120

xii

Chapter 1

Introduction

Pervasive computing developed from distributed and mobile computing, and was first

introduced by Mark Weiser of Xerox PARC in the early 1990s [55]. Ever since, it has

received growing research interest. The overall goal of pervasive computing is to han-

dle the complexity of many smart devices, software components, and human users, and

integrate them together seamlessly. This involves multiple domains, from computing

hardware, networks, systems, and user interfaces, to theory, modeling, algorithms, and

so on. Projects in this area are as small as a few intelligent applications, or as big as

umbrella projects with dozens of researchers. Weiser’s visions of pervasive computing

are explored in great breath and depth.

Among these visions, one is that users focus on their own tasks and let software and

hardware components stay at the periphery [55]. This is also referred as calm technol-

ogy [56]. In order to realize this vision, the system should help users deal with interac-

tions.

Figure 1.1 depicts a scene in pervasive computing where there are two smart spaces,

an office and a home, each of which consists of a number of users and devices. Spaces

may intersect each other. Some devices are tightly associated with users, such as the note-

book, the PDA (Personal Digital Assistant), the cell phone, the music player in the office,

the smart watch, the tablet PC, and the cell phone at home, while others are more shared

among users than associated with particular individuals. Examples are the printer, the

whiteboard, the landline phone, the PC in the office, the smart fridge, the digital frame,

the TV, and the X10 lamp (http://www.x10.com) at home. There could be other

devices, represented by black dots (Figure 1.1). These devices have some computing and

1

http://www.x10.com

Smart office Smart home

device
tightly

associated

with users

loosely

associated

with users

Figure 1.1: Overview of pervasive-computing environments

communication abilities, and can initiate, respond to, or deliver interactions. For exam-

ple, the motion detector at home may send a warning message to the home owner once

it detects an unexpected motion, or the whiteboard can display a picture for a user.

In such a strongly connected pervasive-computing environment, users face a large

number of interactions. Some are desired while others are not, usually depending on

how busy the users are and what those interactions are about. Besides, each interaction

may involve different devices for delivery. For example, an interaction may be delivered

to two devices, one of which is tightly associated with the receiver, and the other of

which is loosely associated with the receiver. The reason for doing this is that the first

type of device tends to have less computing power and smaller form factors, while the

second type is usually larger and more advanced in these regards, hence more suitable for

some interactions. However, this type of device may affect both the receiver and other

people in the same environment, as is the case for the whiteboard, visible to everybody

in the office. This may give rise to undesired situations, such as delivering a private high-

resolution picture to the whiteboard during a meeting. All of these questions add more

complexity in handling interactions in such environments.

We believe that users should be able to control these interactions, so that desired ones

2

are delivered using appropriate devices and undesired ones are prevented from intruding

on users. This is the main concern of this thesis. We use “non-intrusive computing” to

refer to our work based on the following definitions of a few similar candidates.

Disturbance - The interruption and breaking up of tranquility, peace, rest, or

settled condition; agitation (physical, social, or political). [1]

Interruption - A breaking in upon some action, process, or condition (esp.

speech or discourse), so as to cause it (usually temporarily) to cease; hin-

drance of the course or continuance of something; a breach of continuity in

time; a stoppage. [1]

Intrusive - Of intruding character; characterized by coming or entering in an

encroaching manner, or without invitation or welcome; done or carried out

with intrusion. [1]

In the rest of this chapter, Section 1.1 first presents the motivation using a scenario, then

we briefly introduce our approach to this problem in Section 1.2. The contributions of

this work are discussed in Section 1.3, followed by the thesis organization in Section 1.4.

1.1 Motivating scenario

The focus of our work is non-intrusive computing that helps users control interactions.

We use a home scenario to motivate our research and illustrate the problems that we are

tackling.

Suppose Alice is working in her study at home. She is thinking about a net meeting

that she will have with her supervisor and colleagues in about an hour. A chat window

pops up on the monitor of her computer from her friend. Alice tells her friend that she

is busy and will get back to her later. After reading some documents, Alice feels a bit

hungry. Since there are still thirty minutes left before the meeting, she steps into the

kitchen to have a sandwich. When she comes back to the study, she finds that she missed

a call on her cell phone and a new pop-up window on the computer monitor. Both were

from her supervisor saying that the meeting will start ten minutes early. She apologizes

for missing the messages and starts to set up the net meeting.

After Alice finishes the meeting, she relaxes on a couch. At this time, the clothes

dryer finishes. Since it is a smart dryer, it is configured to send a notification to the TV

3

by displaying a line of text on the corner of the TV screen. Unfortunately, the TV is not

turned on, so although Alice is right in front of the TV, she misses the message anyway,

and before she remembers, the clothes are already wrinkled. After Alice folds them, two

of her colleagues come to her place to discuss a project. During the discussion, Alice’s

son sends her a personal picture, and it is displayed on the digital frame next to Alice and

her colleagues. Alice apologizes to her colleagues and turns off the digital frame to avoid

other intrusions. Before the meeting is over, the cellphone of one of Alice’s colleagues

rings, and he apologizes for not setting it to vibrate, thus disturbing meeting participants.

This scenario shows that when a user is dealing with multiple interactions, the sit-

uation can easily get out of control. Some interactions are important and not intrusive,

such as those from Alice’s supervisor that Alice does want to receive, while others are

indeed intrusive and Alice wants to avoid them, such as the one from her friend. Desired

interactions may be missed if they are not delivered to the right devices. For example,

the notification from Alice’s supervisor should have been delivered to the phone in the

kitchen, where she was at the moment. For another example, the message from the dryer

should have been routed to a different device that was at least available. The scenario

also depicts a scene with multiple people in the same location, where uncontrolled inter-

actions cause intrusions to other people if they are not delivered to the right devices using

correct notifications, such as the private picture displaying on the digital frame and the

cellphone ringing during the meeting. It would have been better if the picture was dis-

played on Alice’s laptop, which is only viewable to herself, and the cell phone vibrated

instead of rang.

These situations can be exaggerated in a pervasive- and ubiquitous-computing en-

vironment that is usually shared by people and saturated by entities and interactions.

Besides, users are tending to acquire more smart handheld devices, which in turn makes

them more open and vulnerable to interactions. If users receive no support in managing

these interactions and devices, they may be frustrated easily and thus unable to focus on

their own tasks.

1.2 Our approach

Given the scenario in Section 1.1, it is necessary to build a system that selects interactions

and delivery devices. It is also necessary to find a model that can help us understand and

4

Will the

interaction

intrude on

the receiver

If not,

how to

deliver

Modeling

System

Communication

and naming

Context

Security

Standardization

Figure 1.2: Two-tier approach

generalize these problems and also guide system construction. Figure 1.2 is our two-level

approach to non-intrusive computing.

At the upper level, there is a model that abstracts interactions and deliveries, where

key elements are discussed. The model focuses on two particular questions. The first is

how to determine whether an interaction will intrude on the receiver if delivered. The

second is that, given a non-intrusive interaction, how to deliver it properly. Chapter 2

contains a detailed discussion of the model.

Then at the lower level, we use the model to guide the construction of a non-intrusive-

computing system in Chapter 5. Aside from the functionalities implied by the model, the

system follows a few principles.

• It should provide communication support for all entities in a pervasive-computing

environment, because the environment involves many devices and software com-

ponents, and communication happens more often than ever.

• It should provide naming support in this environment, to identify human users and

software and hardware entities consistently.

• It needs to manage context, and enable entities to access it in a flexible way.

• It should provide security support.

• It should leverage standardized technologies and existing components for extensi-

bility and adoption.

5

Our system is inspired by and built on Jabber [28], a collection of standards, technolo-

gies, and software projects for instant messaging. Although our work is aimed at in-

trusiveness in pervasive computing, our system has elements and qualities of pervasive-

computing middleware. It distinguishes itself from previous pervasive-computing mid-

dleware and platforms because of Jabber’s standardization, architecture, extensibility,

and other aspects.

1.3 Thesis contributions

The goal of our work is to help users deal with interactions, so that they receive non-

intrusive ones properly. This will allow them to focus better on their current tasks without

being disturbed by intrusive interactions. This area has received little attention, and our

work fills a void and materializes one of the Weiser’s visions of pervasive and ubiquitous

computing.

There are two major contributions.

1. The non-intrusive-computing model captures key elements of the intrusion prob-

lem in pervasive-computing environments. The model is separated into two stages,

the filter and delivery stages. They deal with different questions, and are related

naturally. The model is concise and comprehensive. It not only considers the in-

trusiveness to the receiver, but also to other users in the same space. The model is

similar to the administrative-assistant or secretary models in real life, in which a

secretary decides whether a message or a phone call is important enough to inter-

rupt her supervisor and whether she should forward the message to his cell phone

or knock on the door.

2. We develop such a system for non-intrusive computing, based on Jabber technolo-

gies. The system uses standardized technologies. It is practical and extensible,

and complies with the model. Although Jabber provides many features and facil-

ities (see Section 5.2), it does not solve the system problem directly. We develop

various components, such as a context manager and the model implementation,

and integrate them with Jabber.

We also make a number of other contributions. We apply context in a pluggable way.

More or better context can be injected into the system to refine the model and help the

6

system make more appropriate decisions. We also use a quantitative approach that is able

to model elements and perform comparisons and computations. The target devices for

delivery are also treated quantitatively. We identify two types of delivery candidates and

their characteristics with respect to effectiveness and overtness: a private delivery candi-

date has negligible overtness and a public delivery candidate has the same effectiveness

as the overtness. The candidate-selection process is a knapsack problem, as it requires

both low overtness and high effectiveness. Although this problem is NP-complete, cate-

gorizing candidates according to public and private delivery helps simplify the problem

in some cases, so that the results may be found in linear time.

1.4 Organization of the thesis

This dissertation is divided into six chapters, the introduction in Chapter 1, the modeling

and performance analysis in Chapters 2 and 3, the previous work on systems and our

design and prototyping in Chapters 4 and 5, and the conclusions in Chapter 6. As we can

see, the flow generally follows the three major contributions in Section 1.3.

In Chapter 2, non-intrusive computing is analyzed and modeled in detail. We first

review previous work on interruptions and intrusiveness, then model the problem domain

with two stages, the filter and the delivery stages, with detailed discussions of each of

them. A user study is also conducted to investigate how users understand the model and

its parameters.

Chapter 3 analyzes the performance of the model theoretically, in conjunction with

a few experiments to confirm the analysis. We measure the filter stage only, because

the delivery stage needs much configuration and results are less general, so it will not

provide any insight into the model or the system.

In Chapter 4, we start to describe the system instead of the model. In particular,

Chapter 4 surveys previous pervasive- and ubiquitous-computing systems. There are

large number of such systems, and so only representative ones are selected and presented.

Chapter 5 describes a non-intrusive-computing system, including its design, enabling

technologies, overhead evaluation, and a case study of how such a system could be used.

Lastly, Chapter 6 concludes the thesis and highlights future research in this area.

7

Chapter 2

Modeling non-intrusive computing

In this chapter, we discuss modeling non-intrusive computing [13]. Before describing the

model, we review related research on intrusiveness in Section 2.1. Section 2.2 introduces

the overall model. Sections 2.3 and 2.4 continue the discussion of the stages of the model.

Section 2.5 describes a user study to validate the model. Section 2.6 summarizes this

chapter.

2.1 Previous work on intrusiveness

From a distributed-system point of view, much previous work tends to design the pervasive-

computing environments to cooperate with users in an automatic fashion, so that users

can concentrate on their tasks, instead of being disturbed because of the complexity

of the environment. An example is the Aura project [19], which describes tasks in an

environment-independent way, so that tasks can move automatically along with users

from one environment to another. Another example is the Gaia project [43], which de-

velops a context file system where relevant data can be mounted according to the current

context of the users. These systems focus on integrating components and reducing users’

interventions in a pervasive-computing environment, but they do not address the intru-

siveness problem of interactions directly. More detailed descriptions of Aura and Gaia

are in Chapter 4, together with other systems.

From human-computer-interaction point of view, interruptions caused by computing

software and devices have been investigated in many ways. The common goals are to

study what effects an interruption may have on users and their tasks, and to develop

8

models and systems to manage interruptions. Adamczyk et al. [3] discuss interruptions

at different stages of a task, and try to find proper interruption moments, even defer in-

terruptions if necessary, to mitigate the disruptive effects on the user’s current task. Then

they use psychological theory to model tasks in order to identify opportune moments and

achieve finer-grained temporal reasoning [4]. Bailey et al. [7] study how much task per-

formance is affected by interruptions from computer applications. The results show that

users perform worse when there are interruptions than when there are not. Andrews [5]

describes a unified interruption-management approach that combines tools, social prac-

tices, and policies to help users control their attention and improve productivity. QnA [6]

is an augmented instant-messaging client that balances user responsiveness and perfor-

mance. It first analyses an instant message and classifies it. For example, it tries to

determine whether a message contains a question. If it does, the QnA client indicates

to the receiver that the sender is expecting a response; otherwise, it does nothing. This

helps the user decide whether to respond to the message or to stay on the current task.

Much interruption research has also been applied to cell-phone use while driving.

In these cases, if someone calls the driver’s cell phone, it will cause distraction, which

could be risky. People are relying more and more on cell phones today. In the world,

cell phones are in use by 32.5% of the population in 2005 [58]. Evidence shows [24]

that using a cell phone while driving impairs driving performance, and this impairment

may lead directly to accidents. According to the U.S. Department of Transportation,

inattentive driving accounted for 6.4% of crash fatalities in 2003 [27].

Using a cell phone requires both physical involvement, such as dialing and view-

ing, and mental involvement, such as discussion. Both distract from driving. Hands-

free phones, which help users reduce physical involvement, do not necessarily improve

safety [42]. Approximately 50 countries have passed legislations to ban cell phones

while driving [64].

The problem of cell phones distracting drivers may be alleviated in two ways. One

approach is to improve the user interface to reducing eye viewing [20, 34]. The other,

more relevant to our research, is to provide remote traffic context to callers [23, 47].

If the caller is made aware of road context, he can moderate the conversation, such as

stopping talking. The callee, who is the driver, can concentrate more on the road traffic.

Although we are not focused on vehicular research, our system fits well to this situation,

as it uses the importance of an interaction, determined by the caller, and the willingness

of the callee to decide whether this interaction causes any intrusiveness if delivered, as

9

discussed in Section 2.3.

As we can see, research on interruption usually has a notion of tasks and their models

and focuses on measuring the negative effects on tasks caused by interruptions. Our work

models interactions themselves directly.

A more relevant work is an agent-based approach to minimizing intrusiveness in

a meeting environment [41]. Its main idea is the following. In a meeting scenario,

participants have their own devices, such as a personal laptop; they also share some

public devices, such as a whiteboard in the meeting room. Displaying a message on a

public device is more intrusive than displaying it on a private device, as all participants

can see the whiteboard but not the screen of a laptop. Each user has an agent maintaining

the user’s interests and making decisions for him. When a message arrives for a user,

the agent checks with other agents to see if they are interested in this message. If so,

the message will be displayed on a public device; otherwise, it goes to a private device.

The limitation of this work is that it only applies to a situation where multiple users have

shared devices, for example a meeting scenario. Our work, instead, is aimed at a more

general question: given an interaction, is it going to intrude on the receiver?

Existing systems such as electronic mail, telephone, and instant messaging (IM) are

also relevant to the intrusion problem in general.

Electronic mail and telephony rely on distributed communication systems, which

greatly facilitate human interactions. Telephones are usually intrusive, because people

do not know when the phone will ring, who it is from, or what it is about. Some tech-

nologies can alleviate the problem, such as call forwarding to voice mail, call blocking,

or caller identification. But they are insufficient and inflexible. Call forwarding redi-

rects all of the calls, even important ones that do need direct conversation with the user.

Call blocking only works for the numbers that are blocked, but calls from others can

still be intrusive and disturbing. Displaying caller ID does not help much when the ID

is not recognizable, such as wrong numbers. Conventional telephones notify users only

by ringing. Cell phones have more choices, such as vibrating, visual blinking, or even

remaining completely silent. These features are more useful when cell-phone users are in

a public environment, such as a meeting, a class, and so on, to make them less intrusive

to other people. However, if a phone call is not what a user wants at the moment, it is

still intrusive, no matter how it notifies the user.

An electronic-mail system tends to be less intrusive, as receivers decide when to read

10

messages, which is essentially due to the time-decoupling of the sender and the receiver.

Although many electronic mail clients can check new messages at a pre-set frequency

and notify people, it is still time-decoupled because transferring a message from a sender

to a receiver might take a long time, and receivers might not read messages immediately

upon receipt.

IM is becoming more and more popular. Instances are MSN messenger, AOL mes-

senger, Yahoo messenger, ICQ, Google Talk, and so on. In an IM system, users can set

presence describing their availability status, such as “do not disturb,” and the presence

is delivered to users who subscribe to it. Because of the presence, the message sender

knows if the receiver is available and can decide to send or not. This reduces the intru-

siveness if senders respect the presence. But, if the sender sends a message, it will be

delivered to the receiver, regardless of her presence.

Previous work shows that this intrusion problem is important and deserves much

research. Existing systems deal with the problem in different ways but with various

limitations. Next, we abstract our research problem with an overall model.

2.2 Non-intrusive computing: Overall model

In general, interactions can be labeled as time- or reference-coupled or decoupled [10].

Time-coupled interactions are synchronous; reference-coupled ones have specific re-

sponders. We are only interested in time- and reference-coupled interactions. Those

that are time-decoupled or reference-decoupled do not pose similar intrusion problems.

We also focus on interactions that involve only one interaction initiator (sender) and one

responder (receiver) as this is the most common and basic case for interactions. One-to-

multiple interactions are considered future work.

An interaction process extends from when a sender initiates the interaction until it is

delivered to some device and a receiver is notified in some way. For example, a sender

initiates a chat with one of his friends, and the interaction is delivered to the receiver’s

cell phone, which rings softly to inform the receiver.

This process can be divided naturally into two stages. The first determines whether

the interaction is deliverable to the receiver. If it is not, it should be prevented, since it will

intrude upon him/her. The second stage, given the interaction is deliverable, determines

11

Delivery stage

Sender Receiver

Receiver’s

laptop

?

Filter stage

Pop up

window

Receiver’s

cell phone

Whiteboard

in the lounge

Ring

tone

Flash

screen

Receiver’s

cell phone
Vibrate

Receiver’s

cell phone
Blink

Printer Printing

Landline

phone
Ring

Other

devices
Notification

Figure 2.1: Overall modeling

how to deliver it to the right device and notify the receiver appropriately. We call the first

part the filter stage, and the second the delivery stage, as illustrated in Figure 2.1.

The filter stage only involves a sender and a receiver, as we can see in Figure 2.1.

The interaction can be of any form. For example, it can be an instant message, a file

transfer, a remote procedure call (RPC), a multimedia conversation, and so on. In order

to determine the deliverability of an interaction, we need to know the importance of the

interaction and the willingness of the receiver. The determination procedure depends on

the presence model of instant-messaging (IM) systems (see Section 5.2.4). A detailed

description on how to determine deliverability is in Section 2.3.

Once we decide that the interaction is deliverable, hence not intrusive to the receiver,

the interaction takes place and arrives at the receiver side. This is the delivery stage

in Figure 2.1. We can see that on the receiver’s side, there could be multiple devices

available at the moment, such as a laptop, a cell phone, or a whiteboard. Each of them

may have one or more mechanisms for notifying the receiver. For example, a cell phone

can ring, vibrate, or blink. In order to choose a proper device and a notification method,

we should consider two factors.

First, the interaction should be delivered to the receiver in such a way that it is rare

for the user to miss it. We call this effective delivery. For example, if a user is away

from her office, it is better to deliver interactions to his cell phone than to his desktop

computer. For another example, if a user is listening to some music when an interaction

arrives, she should be notified with a pop-up window instead of beeping, because she

12

might not hear it. The fact that we are dealing with time-coupled interactions results in

the necessity of effective delivery.

Second, a user might be in a shared environment with other people. Choosing an in-

appropriate device or notification method may cause intrusion on other users nearby. For

example, during a meeting, if a private interaction for a user is delivered to a whiteboard

or to a phone that rings, other users either see it on the whiteboard or hear the ringing.

We call this the overtness of the delivery. We want the delivery to minimize overtness.

Combining these, interactions should be delivered to proper destination devices in

proper ways, so that receivers notice them and surrounding people are not disturbed. In

the next two sections, we discuss the details of our work in the two stages. In each stage,

we present and analyze factors that affect intrusion. We use a quantitative approach in

dealing with the problems.

2.3 Non-intrusive computing: Filter stage

In order to describe the model and its parameters clearly, we use A and B to represent the

sender and the receiver of the interaction, A→ B. The same notation is used elsewhere

in this thesis.

Intuitively, if B does not want to interact, for example because of being busy, deliver-

ing an interaction from A to B tends to intrude on B. We use willingness to describe this

factor. However, on the other hand, if the interaction is important enough, B will want

to accept it. So the interaction is still deliverable and does not cause intrusion to B. We

use importance to denote this factor. The willingness and the importance can be used

to decide whether an interaction is deliverable or not. A non-deliverable interaction is

intrusive to the receiver if delivered; a deliverable one does not cause such intrusion. The

approach we take is to quantify these two factors and then present a comparison model

to deduce a value of deliverability. The model, although simple, can produce acceptable

results. To validate this point, we also describe a more complicated model using fuzzy

logic, and show that these two models generate similar results.

We next quantify these two factors and present the two models. However, there may

be other factors that affect both the willingness and the importance, such as the role

relationship between the sender and the receiver, the receiver’s willingness preferences

13

in particular situations, and so on. Hence, how to modify the importance and willingness

and a refined model are described from Sections 2.3.5 to 2.3.8.

2.3.1 Willingness

To determine if an interaction is intrusive to a receiver, B, we need to know how willing

B is to interact. The willingness changes dynamically, and is entirely at the discretion of

B. We use WB to denote B’s willingness. The quantization is the following.

The lower bound of the willingness should indicate that the entity is completely un-

willing to interact, and the upper bound should indicate that the entity is completely

willing. Thus, we need similar values for both “willingness” and “unwillingness.” These

values should be finite. It is also necessary to perform various comparisons and transfor-

mations on these finite ranges of values, from completely unwilling to completely will-

ing. Thus, we choose [0,1], which has appealing intuitive and mathematical properties,

such that 0 means completely unwilling, 1 means completely willing, and unwillingness

is equal to 1 minus willingness. Besides, we can think of the unwillingness as a threshold

for importance so that only those interactions whose importance is greater than the im-

portance threshold should be delivered. We use unwillingness and importance threshold

interchangeably.

Although a willingness of 0 is acceptable, it does not have any practical value, be-

cause 0 would mean the current entity does not want to interact at all, and the interaction

should not, or even cannot, take place, such as when an IM user is off-line, and so there

is no intrusion possible.

Note that social-networking protocols usually describe a user with some status. For

example, in Skype (http://www.skype.com), a user can be “skype me,” “away,”

“not available,” “do not disturb,” and so on. These statuses can be mapped to different

values of willingness, or used to infer the willingness together with other information (see

Section 5.3.2).

2.3.2 Importance

The importance of an interaction also affects the intrusiveness. If an interaction is of little

importance, it tends to be intrusive, such as chatting. If an interaction is important, such

14

http://www.skype.com

as informing a user of an accident, then it should perhaps override the unwillingness,

even if the receiver does not wish to interact. For example, Bob is in a meeting, with

little willingness to interact. Bob receives a message that his mother was sent to the

hospital due to health reasons. Clearly, Bob will not think this interaction is intrusive to

him, rather, he will be grateful to the person who informs him.

We mention above that the willingness is determined by the receiver of an interaction.

In contrast, the importance of an interaction is determined by the sender, because we

believe the sender must know the purpose of the interaction, which makes him or her

capable of determining the importance. We use IA to represent the importance of an

interaction initiated by a sender A.

The lower bound of IA indicates the interaction is meaningless, and the upper bound

indicates that the interaction is of the utmost importance, and should occur immediately.

As above, we choose 0 for the lower bound and 1 as the upper bound for importance,

so it is comparable with the willingness. Again, we include 0 for modeling purposes,

although it represents meaningless interactions.

2.3.3 The comparison model

Obviously, the importance and unwillingness are competing factors that affect the de-

liverability of an interaction. The higher the importance, the higher the deliverability;

the higher the unwillingness, the lower the deliverability. Given an interaction A→ B,

the importance IA and the willingness WB, the comparison model for determining the

deliverability is shown in Figure 2.2.

The model compares the importance IA against the importance threshold, that is,

1−WB. The difference is the deliverability, d. If IA is greater than or equal to 1−WB,

the interaction is deliverable, otherwise it is not. There is a boundary condition where

IA = 1−WB, in which case, we assume that this interaction is not intrusive, because the

purpose of this model is to reduce the intrusiveness of interactions, not to block them.

The relationships among deliverability, importance, and unwillingness are given in

Figure 2.3. The deliverability increases with importance and decreases with unwilling-

ness.

The model, being simple and straightforward, produces acceptable results. More

complex models, such as those using fuzzy logic [61], generate similar, if not the same,

15

Compare IA and 1-WB

d >= 0

Interaction is

deliverable

Interaction is NOT

deliverable

d < 0

Interaction occurs
Interaction is cancelled

or retried later

d = IA - (1-WB)

Figure 2.2: The comparison model

0 0.5 1
−0.5

0

0.5

1
Unwillingness = 0.3

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−0.5

0

0.5
Importance = 0.5

Unwillingness

D
el

iv
er

ab
ili

ty

Figure 2.3: Relationships among importance, willingness, and deliverability, using the

comparison model. Left: unwillingness = 0.3, right: unwillingness= 0.5

16

results as our comparison-based one. In the next section, we discuss an approach based

on fuzzy logic. Note that it only validates our model. In practice, we will not adopt

it because, compared to our model, it is more complex, requires more computing, and

makes the same decision on whether to deliver the interaction. Later, we will use context

to improve the model in Section 2.3.8.

2.3.4 The fuzzy-logic model

Fuzzy logic [61] was invented by Lotfi A. Zadeh at the University of California, Berke-

ley in 1965. It is derived from traditional logic, where a predicate can only be true or

false. In other words, traditional logic maps a subject to a set with only two values, 0

and 1. For example, suppose Alice is female and Bob is male, we have male(Alice) =

0, male(Bob) = 1. Male is a crisp set. However, for some predicates, it is not obvious

whether they are absolutely true or false. Instead we can say that they are true with a

certain degree of truth. For example, if Alice and Bob are 15 and 30 years old respec-

tively, we can say that Alice is quite young, while Bob is still young but not that young,

depending on how we define young. So if we formalize the definition for young (see be-

low), then we have young(Alice) = 1, young(Bob) = 0.5. In this case, young is a fuzzy

set that maps a subject (a person) to a value between 0 and 1 to indicate the degree with

which the subject belongs to the set. The definition of young is called the membership

function. Fuzzy logic is based on fuzzy-set theory plus a number of inference rules that

we describe next. For example, we might define young(x) as:

young(x) =


1 x≤ 20

− 1
20x+2 20 < x < 40

0 x≥ 40

In our case, given a value of importance or unwillingness, it is more natural to say

it is high or low to a certain degree than to claim it is high or low in an absolute sense.

Thus it may be suitable to apply fuzzy-set theory and fuzzy-logic control to our scenario.

We define three fuzzy sets for importance, high, low, and zero. Each of these maps an

importance value to a membership value describing the degree of the importance being

in the set. The importance I has range [0,1], hence the universe of discourse has range

[0,1]. The definitions of the three sets are the following.

17

Importance

Membership funct ion value

0 0.5 1

1
Zero

Low High

0.3

0.4

0.6

Figure 2.4: Fuzzy sets for importance

zero =

−2I +1 0≤ I < 0.5

0 0.5≤ I ≤ 1

low =

2I 0≤ I < 0.5

−2I +2 0≤ I ≤ 1

high =

0 0≤ I ≤ 0.5

2I−1 0.5 < I ≤ 1

The graphical representations of these functions are in Figure 2.4. As we can see, an

importance value of 0.3 belongs to fuzzy set zero with truth degree 0.4, but to fuzzy set

low with truth degree of 0.6. We choose the same fuzzy sets and membership functions

for the unwillingness.

We also define fuzzy sets for deliverability in a similar way in order to apply fuzzy

rules and perform the delivery computation later. Note that the universe of discourse for

deliverability, d, is [−1,1]. The fuzzy-set definitions for deliverability are illustrated in

Figure 2.5.

18

Deliverabi l i ty

Membership funct ion value

0 0.5 1

1 Zero

Positive lowNegative high

-0.5-1

1

Positive highNegative low

Figure 2.5: Fuzzy sets for deliverability

negative high =

−2d−1 −1≤ d <−0.5

0 −0.5≤ d ≤ 1

negative low =


2d +2 −1≤ d ≤−0.5

−2d −0.5≤ d < 0

0 0≤ d ≤ 1

zero =



0 −1≤ d ≤−0.5

2d +1 −0.5 < d ≤ 0

−2d +1 0 < d < 0.5

0 0.5≤ d ≤ 1

positive low =


0 −1≤ d ≤ 0

2d 0 < d ≤ 0.5

−2d +2 0.5 < d ≤ 1

positive high =

0 −1≤ d ≤ 0.5

2d−1 0.5 < d ≤ 1

The goal is to use an importance and an unwillingness to determine the deliverability.

Now we show how to use fuzzy logic to achieve this. The fuzzy-logic control consists

of a number of rules, expressed in terms of fuzzy sets. Table 2.1 describes rules used in

this scenario. There are nine rules for different values of importance and unwillingness.

For example, when the importance is low and the unwillingness is zero, the deliverability

19

Fuzzy-control rules

for deliverability

Unwillingness zero Unwillingness low Unwillingness high

Importance zero zero negative low negative high

Importance low positive low zero negative low

Importance high positive high positive low zero

Table 2.1: Fuzzy-control rules

should use fuzzy set positive low. When the importance is zero and the unwillingness is

high, the deliverability is negative high.

Generally, these rules are intuitive and straightforward. Each one has two inputs,

the importance and the unwillingness, and one output, the deliverability, expressed in

terms of fuzzy sets. When the given importance and unwillingness belong to these sets

according to the set definition, then the rule is applied by evaluating the membership

values of the input, i.e., the importance and the unwillingness. The larger membership

value is discarded while the smaller one is transferred to the output side by cutting the

whole area defined by the corresponding fuzzy set for the deliverability at the height of

that value. This process is shown in Figure 2.6.

Suppose an importance I is 0.3, and an unwillingness Unw is 0.6. By definition,

we know this importance belongs to fuzzy sets zero and low with degrees 0.4 and 0.6

respectively, and the unwillingness belongs to low and high with degrees 0.8 and 0.2

respectively. Thus there are four rules to be applied. Figure 2.6 only shows two of

them. Steps 1 to 3 correspond to “if the importance is zero, and the unwillingness is low,

then the deliverability is negative low.” Steps 1 and 2 evaluate the degrees of variables

belonging to fuzzy sets. The lower degree value is 0.4, thus we end up with the shaded

area in step 3. Step 4 to 6 illustrate the rule that if the importance is zero, and the

unwillingness is high, then the deliverability is negative high. Thus, we have another

shaded area together with the previous one in step 6. We repeat the same process for

all applicable rules and merge all areas into a combined one, indicated by thick lines

at step 7. Note that a few steps corresponding to other applicable rules are omitted

between 6 and 7, and that there are two rules whose outputs are negative low for the

deliverability. The X coordinate of the centroid of this area is the deliverability that we

desire, which is −0.22 in this case. This procedure is also known as defuzzification.

Specifically, this technique is MAX-MIN inference [48], where we choose the minimum

of the degrees of input parameters, and maximize the areas generated by each rule. There

20

zero
low

11

I Unw0.6

0.8

0.3

0.4

0.5 1

Negative low
1

0.4

D

high
1

Unw0.6

0.2

1

Negative low

1

0.4

D

0.2

zero1

I0.3

0.4

0.5

Negative high

1 2 3

4 5 6

Negative low

1

0.6

D

Negative high

7

Zero

0.4

0.2

...
I: importance

Unw: unwillingness

D: deliverability

Legend

-0.22

Centroid

Figure 2.6: Fuzzy-logic computing

are other techniques with which we could experiment. However we choose the min-max

one because of its popularity. Algorithm 2.1 summarizes the computation.

We now show the results that we get from this fuzzy-logic model in Figures 2.7 to

2.9. From these figures, we can see that when the importance and unwillingness are far

apart, the deliverability results are noticeably different, while when the importance and

unwillingness values are close, the results from the two models are also close. Although

these two models produce different results, they are the same in terms of filtering intru-

sive interactions. The reason is the following. Since we are dealing with time-coupled

interactions, for any such given interaction, there are only two options, delivering or not

delivering. Furthermore, if the deliverability is greater than zero, we deliver the inter-

action; otherwise, we do not. Clearly, both models are consistent when it comes to the

polarity of the deliverability. This being said, although the fuzzy-logic model fits well

into this scenario, it acts identically to the comparison model of Section 2.3.3. Thus, we

will not use it in our implementation and the purpose of discussing it is to validate our

comparison model.

We know that the sender decides the importance based on the purpose of the inter-

21

Algorithm 2.1 Using fuzzy logic to compute deliverability
/*

* given an importance (imp) and unwillingness (unw)

* this algorithm outputs the deliverability using

* fuzzy logic

*

* n: number of rules

* rule[i]: the ith rule, i: 0~n−1

* zero(imp), low(imp), and high(imp) are the truth degree

* of imp being zero, low and high. The same for unw.

*/

initialize n and rule;

compute zero(imp), low(imp), and high(imp);

compute zero(unw), low(unw), and high(unw);

i← 0;

area← 0;

while i < n

if rule[i] can be applied, i.e., imp and unw belong to

fuzzy sets specified in rule[i]

height← min(f uzzy_set(imp), f uzzy_set(unw));

area← area ∪ corresponding fuzzy set for

deliverability under height;

i← i+1;

compute the centroid of area;

return the x coordinate of the centroid;

22

0 0.5 1
−1

0

1
Unw = 0.1

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Unw = 0.2

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Unw = 0.3

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Unw = 0.4

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−0.5

0

0.5
Unw = 0.5

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Unw = 0.6

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Unw = 0.7

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Unw = 0.8

Importance

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Unw = 0.9

Importance

D
el

iv
er

ab
ili

ty

Figure 2.7: Deliverability. Curved lines: from the fuzzy-logic model; straight lines: from

the comparison model; Unw: unwillingness

23

0 0.5 1
−1

0

1
Imp = 0.1

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Imp = 0.2

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Imp = 0.3

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Imp = 0.4

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−0.5

0

0.5
Imp = 0.5

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Imp = 0.6

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Imp = 0.7

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Imp = 0.8

Unwillingness

D
el

iv
er

ab
ili

ty

0 0.5 1
−1

0

1
Imp = 0.9

Unwillingness

D
el

iv
er

ab
ili

ty

Figure 2.8: Deliverability. Curved lines: from the fuzzy-logic model; straight lines: from

the comparison model; Imp: importance

24

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

Importance

Fuzy−logic approach

Unwillingness

D
el

iv
er

ab
ili

ty

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

Importance

Comparison approach

Unwillingness

D
el

iv
er

ab
ili

ty

Figure 2.9: 3D deliverability. Left: deliverability computed with fuzzy logic; right:

deliverability computed with comparison

25

action, and the receiver sets the willingness. However, this is not precise enough for

a number of reasons. For example, because importance is relative, an interaction may

be important to the sender, but less important to the receiver, or vice versa. When this

kind of situation occurs, receivers will be annoyed, either by receiving non-deliverable

interactions or by not receiving deliverable ones. We need to take this into consideration.

As another example, the willingness describes a general situation, but there are always

exceptions. A person may have a low willingness, as he is working on something. So this

person is not interested in interactions in general, but only in related ones. Furthermore,

since senders and receivers are dealing with many interactions, the importance and the

willingness should be set as automatically as possible. Next, we discuss using context to

address these problems.

2.3.5 Modifying importance and willingness

The comparison model in Section 2.3.3 depends on accurate importance and willingness.

Users may set them. However, because of the dynamics of pervasive-computing envi-

ronments, it is impractical to always rely on users to specify and update values. Hence,

the system needs to modify users’ input or infer new importance or willingness using

context.

Context can be applied in different ways. In the left half of Figure 2.10, multiple

pieces of context are processed by a complex modifier simultaneously. This modifier acts

as a black-box algorithm. On the contrary, the right half of the figure shows a pipeline of

context processing. Each “atomic” modifier only takes one piece of context and outputs

a modified value of the importance or willingness. The advantage of this approach is

that it is easy to expand and add more elements of context. The disadvantage is that

different context elements may be correlated, which makes the black-box approach more

appropriate. Next, we present some examples of these modifiers in Sections 2.3.6 and

2.3.7.

2.3.6 Atomic modifiers

Atomic modifiers can be applied for both importance and willingness. They change the

original IA or WB based on one piece of context, so that the new value is more appropriate

or accurate than before. In this section, we describe two modifiers. One is for importance

26

Complex

modifier

Atomic

modifier

Atomic

modifier

Atomic

modifier

Final I or W

Final I or W

I: importance

W: willingness

Context input:

Figure 2.10: Applying context in the filter stage. Left: black-box approach; right:

pipeline approach

based on the role relationship between the sender and the receiver. The other is for the

willingness based on the receiver’s interest in particular topics.

As we briefly mention at the end of Section 2.3.4, the importance is relative to the

entities that participate in the interaction. More precisely, it can be relative to the roles

of these entities. Consider a failed student who tries to interact with an instructor, where

the interaction is important to the student but perhaps not to the instructor. In this case,

the comparison needs to reduce the importance to prevent the interaction from happening

when the instructor is not very interested in interacting. Or suppose a manager is trying

to send out a meeting notice to his employees. A meeting notice probably is not the most

important interaction among all kinds of interactions in a company environment. So if an

employee is busy, she can present a low willingness, to avoid intrusions. However, this

interaction is from the manager, so employees will not want to miss it. The comparison

model should let the interaction happen by increasing the importance.

In the first example above, the role of the initiator is lower than the receiver’s, and

we need to reduce the importance, while it is the opposite case in the second example.

Obviously, the modifier needs to increase or decrease the importance according to the

relative roles of the senders and receivers.

Assume roles are organized into a tree as in Figure 2.11. Given an interaction A→ B,

the roles of A and B are RA and RB respectively. We assume that roles have integer values

and those closer to the root have greater values than those closer to the leaves. The dis-

tance between A and B is |RA−RB|. For example the distance between the president and

a professor is 2, while the distance between the deans of the math and the arts faculties

is 0. If A is higher than B in the role tree, the importance should be increased, otherwise

27

President

Dean of

Mathematics
Dean of Arts

Professor

Graduate student

Figure 2.11: A sample role tree for a university

decreased. The new importance should still be in (0,1].

In principle, the importance modifier based on the role relationship is a function

f (IA,RA,RB)∈ (0,1], where IA ∈ (0,1]. Clearly, some exponential functions of RAand RB

have this property. Linear functions can also be applied with extra treatment of boundary

conditions. The following is an example of a linear modifier.

f (IA,RA,RB) =


min((RA−RB) · IA,1) i f RA > RB

IA
RB−RA

i f RA < RB

IA i f RA = RB

One can also imagine other classes of modifiers. Among all possible choices, we pre-

fer exponential modifiers because of their intrinsic commutative property. Algorithm 2.2

is a modifier that we propose as an example of a class of exponential modifiers.

Consider the student-instructor example again. The role distance between a student

and an instructor is 1 according to the role tree in Figure 2.11. Suppose the importance of

the interaction is 0.8. It is high, because the student is a little bit desperate. Suppose the

instructor’s willingness is 0.3, which means he is busy working, so please do not disturb

if not urgent. In this case, the importance threshold is 1−0.3 = 0.7. Without the modi-

fier, the professor would face an intrusion due to the exaggerated importance set by the

student. If we apply the algorithm, the new importance becomes 0.81+1 = 0.64, which is

lower than the instructor’s importance threshold, which is also the unwillingness, and the

interaction is prevented. One might argue that if the student sets the original importance

to 0.9, the new importance would be 0.81, which would let the intrusive interaction hap-

28

Algorithm 2.2 Importance modifier for roles
/*

* given the original importance and a role tree,

* this algorithm returns the new modified importance

*

* RA, RB: the integer level of A and B in the tree

* RA > RB if A is at a higher level than B

*/

if the sender or the receiver is not on the role tree

return IA;

else if RA > RB, /* increase IA */

newIA← I
1

(RA−RB)+1
A ;

else /* decrease IA */

newIA← I(RB−RA)+1
A

return newIA;

pen. In a closed environment, there are limited kinds of interactions, and users usually

have some shared understanding of the importance of interactions. We also assume that

users will not misrepresent importance, as they know each other. Besides, at the system

level (see Chapter 5), we use the IM presence model to implement the comparison fil-

tering, which asks the receiver to approve the sender’s presence-subscription request. It

is easy for the sender to deny requests from those who exaggerate importance. Further-

more, the sender can block communication completely from selected users if they are

aggressive. In this way, we can deal with malicious users who exaggerate importance

and try to interrupt others with “spam” interactions.

This example shows that an appropriate modifier for roles can reflect importance

more precisely. Users may choose different classes of functions for modifiers. However,

we are focusing on demonstrating the model and ideas, rather than on finding or propos-

ing the best function. Next, we describe an example atomic modifier for willingness.

In our model, the receiver sets a general willingness for all interactions and all

senders, although this general willingness changes with time and location at the receiver’s

discretion. An alternative is to use an individual willingness for each interaction and each

sender. We consider the latter infeasible in a pervasive- and ubiquitous-computing envi-

29

ronment, as there are many entities and interactions, and the receiver cannot foresee what

interactions will arrive. A general willingness, however, might block some interactions

that are actually wanted by the receiver. For example, Bob is in a meeting discussing new

equipment to be purchased. Bob presents a low willingness, as he does not want other

people to disturb him. During the meeting, Bob’s secretary Alice tries to interact with

him about some price information she just found for the equipment. If the willingness is

not modified to suit this situation, this interaction may not happen, because it is not an

emergency, so it will not have a high importance. The role relationship between Alice

and Bob may further reduce the probability of this interaction happening, as it decreases

the importance of the interaction. However, intuitively, Bob does want this interaction,

because it is related, and is helpful for his current task.

So in general, we assume an entity presents a willingness that is suitable for most of

the interactions. However, there are usually some exceptions, such as when Bob wants to

interact with Alice if the interaction is related to the meeting. A receiver should provide

such information as the subject of his current activity. A willingness modifier takes the

original willingness, and generates a new one based on the extra information that the

receiver provides. We call this a willingness modifier for exceptions.

We describe one importance modifier for roles, and one willingness modifier for

exceptions. We choose them as they are obvious and match intuition. However, there

could be many such atomic modifiers for either the importance or the willingness. For

example, we can suppose that in a company, interactions on Monday morning have a

higher importance than the rest of the week, as important decisions or meetings usually

happen on Monday morning in this company. So in this case, we need an importance

modifier for time. Similarly, we might need a willingness modifier for location, weather,

and so on.

Each of these modifiers does the same thing, which is refining the importance or the

willingness so they can fit the situation better and the model can generate more accurate

results. At the same time, each modifier is based on some context of the system. For

example, an importance modifier for time obviously requires the time information. A

willingness modifier for location requires the location information to be available. Ob-

taining some context might be easy, such as the time, or might be more difficult, such

as the location. The availability of the context information determines the usability of

modifiers. Once we have new context, we can add modifiers accordingly.

Suppose we have more than one modifier for either importance or willingness. For

30

example, we can have two importance modifiers, one for role relationships and the other

for time. They are going to take effect independently. That is to say they can both

increase or decrease the importance, or one could increase the importance while the

other decreases it. If both modifiers are exponential, then they are commutative. Thus

the order of application does not matter. In general, we prefer commutative modifiers.

Other refinements can also be considered. For example, a user might think that modifier

X should be three times more effective than modifier Y. We exclude this, as well as how

to make commutative modifiers, from our model at this time. Instead, we leave them to

future work.

The composition of atomic modifiers has a prerequisite, which is that the context they

use should be orthogonal so that modifiers are independent of each other. Otherwise, they

cannot simply be connected into a pipeline without considering their correlations, which

is the complexity we want to avoid. However, this is not always the case, since, for

example, the location and the activity may be related. Or, it just might be more suitable

to consider a variety of context together to infer the new importance or willingness. Thus

it is necessary to have complex modifiers in addition to atomic ones.

2.3.7 Complex modifiers

A complex modifier takes multiple context as input and produces an inferred value of

IA or WB. Figure 2.12 is an example, which infers willingness using four pieces of con-

text, i.e., the IM status, the calendar, the status of the office door, and the time of day.

The internal logic of such modifiers can be based on rules, such as “if the IM status is

online, the current calendar is empty, the door is open, and the user is on lunch break,

then the user’s willingness is 0.9,” or can use a more comprehensive mechanism, such

as a Bayesian network [57]. However, finding the optimum mechanism for a complex

modifier is not the focus this thesis. Overall, complex modifiers are tightly bound to

users and applications and are less general than the atomic ones, but appropriate when

different context is related or the pipeline approach does not fit well.

We may combine atomic and complex modifiers to form a hybrid approach, so that

we can utilize the advantages of both and incorporate a variety of context. Next we refine

the comparison model to include context and modifiers.

31

Complex

modifier

Final willingness

Calendar
Door

status

Time of

day
IM status

Figure 2.12: Complex modifier for willingness

2.3.8 The comparison model with modifiers

The original comparison model in Section 2.3.3 compares raw importance and willing-

ness to determine if an interaction is intrusive. In the refined model shown in Figure 2.13,

both IA and WB go through a series of modifiers and receive new values for them, and

then the new importance is compared to the new importance threshold to decide the in-

trusiveness of an interaction. Note that all modifiers require the input of some context.

The complexity of these modifiers depends on the availability of context.

We have described how a sender can determine the deliverability of an interaction

during the filter stage. The importance of the interaction is compared against the im-

portance threshold or the unwillingness of the receiver. We use context to modify the

importance and the importance threshold so they are more accurate. Next we move to

the delivery stage.

2.4 Non-intrusive computing: Delivery stage

In this stage, we know that the sender has decided the interaction will not intrude upon

the receiver. So it is taking place and should be delivered in such a way that it catches the

receiver’s attention, which we model with effectiveness. At the same time, an inappro-

priate delivery may interrupt or intrude upon other users in the same environment, such

as when delivering a personal conversation to a phone that rings while people are having

a meeting. We use overtness to model this factor. Obviously, we want delivery to have

low overtness, yet high effectiveness.

A pair consisting of a device and one of its notification methods is called a delivery

candidate. The delivery stage starts from a collection of known candidates, as shown

32

Importance IA Willingness WB

New

willingness

new_WB

New

importance

new_IA

Modifier for

roles

Modifier for

exceptions

Interaction is intrusive, iff new_IA < (1-new_WB)

Other modifiers

for importance

Other modifiers

for willingness

Context

Context

Context

Context

Figure 2.13: The comparison model with modifiers

in Figure 2.14. Then we use context to find feasible ones. For example, we may use

location information to find only those devices that are in the same location as the user.

A detailed discussion of this step is in Section 2.4.1. With feasible candidates, we apply

the effectiveness and the overtness criteria (Sections 2.4.2 and 2.4.3) to ensure effective

delivery with tolerable overtness. In the end, there are one or more appropriate candidates

that will be chosen for delivering the interaction to the receiver.

2.4.1 Feasibility criteria

We know that an interaction should be delivered to the receiver in an effective yet un-

obtrusive manner. Before we discuss these in detail, we describe a few other criteria

that eliminate infeasible delivery candidates. For example, any selected candidates have

to be at the same location as the receiver, otherwise, the receiver will miss interactions

delivered to them. For another example, delivery candidates should be available when

the interaction happens. Suppose we decide to redirect a message to a landline phone,

but it is being used by another user. Obviously, we should consider this case and avoid

it. Figure 2.14 shows four such criteria, each of which eliminates infeasible candidates

33

Feasible candidates

Appropriate candidates

Known candidates

Receiver’s

laptop

Receiver’s

cell phone

Whiteboard

in the lounge

Pop up

window

Ring

tone

Flash

screen

Receiver’s

cell phone
Vibrate

Receiver’s

cell phone
Blink

. . .

Receiver’s

cell phone

Whiteboard

in the lounge

Ring

tone

Flash

screen

Location

Availability

Capability

User

preference

Effectiveness

Overtness

Receiver’s

laptop

Receiver’s

cell phone

Whiteboard

in the lounge

Pop up

window

Ring

tone

Flash

screen

Receiver’s

cell phone
Vibrate

Receiver’s

cell phone
Blink

Printer Printing

Landline

phone
Ring

Other

devices
Notification

Figure 2.14: Conceptual view of the delivery stage

in some way.

• Location: Candidates should be at the same location as the receiver.

• Availability: Candidates should be available when the interaction happens.

• Capability: Candidates should be capable of handling the interaction, such as a

display and a speaker for multimedia interactions.

• Preference: Users may have preferences in selecting candidates, and these should

be respected if possible.

All these criteria depend on some context whose complexity varies. For example, the

context required by the capability criterion is easy to obtain, assuming it depends only

on static characteristics of the device. For another example, imagining there exists a

criterion based on the physical modeling of a space, it would be difficult for a system

to provide this type of context, because the physical modeling requires deployment of

large number of sensors or cameras, which many practical systems do not yet have.

Nonetheless, based on how much context is available, there may be more or fewer such

criteria than in Figure 2.14 . The more context we have, the more we are able to make

good choices of delivery candidates.

After applying feasibility criteria, the remaining candidates are subjected to the ef-

fectiveness and overtness criteria, as shown in Figure 2.14. The next two sections discuss

them in detail.

34

Audible Visual Motion Nothing

E O E O E O E O

Workstation 0.5 0.5 0.3 0.3 n/a n/a 0 0

Cell phone 0.7 0.7 0.4 0.4 0.6 0 0 0

Printer 0.6 0.6 n/a n/a n/a n/a n/a n/a

whiteboard n/a n/a 0.8 0.8 n/a n/a 0 0

Table 2.2: An example of assigning effectiveness (E) and overtness (O) for a few devices

and notification methods

2.4.2 Effectiveness

A pervasive-computing environment is usually assumed to be saturated with devices for

users to interact with each other or with the rest of the environment. Each of these devices

may have one or more choices in terms of capturing a user’s attention, as we mention

briefly in Section 2.2. Different notification methods of the same device or different

devices may imply different levels of effectiveness when it comes to notifying users. For

example, a cell-phone ringing may be more effective than blinking. As another example,

a conventional land-line phone ringing may be more effective than a cell-phone ringing,

as the former usually rings louder.

Although each individual notification method is different, they can be divided into

four categories, which are audible, visual, motion, and doing nothing. Table 2.2 is an

example of assigning effectiveness values for each of these categories for a few devices.

We can see that the values for effectiveness range between 0 and 1, inclusive. These

values can be interpreted in two ways. On the one hand, zero means that the notification

does nothing actively, and the user will have to take independent action to perceive the

interaction. Value 1 means that the notification is effective enough that the user should

notice immediately. On the other hand, these values can be thought of as the probabilities

of the receiver perceiving the notification. The higher the effectiveness value for the

notification, the more likely the user noticing the interaction.

Let D be a device, and N be one of D’s notification methods, then c = (D,N) is

a delivery candidate. E(c) ∈ [0,1] is the effectiveness of c. We also have E(c) is the

probability of user perceiving the notification when delivering an interaction using c. We

use similar notation for overtness in Section 2.4.3.

It is possible to combine multiple delivery candidates to achieve a higher effective-

35

ness. For example, we consider that a cell-phone ringing at the same time as a land-line

phone is more effective than each of them ringing alone. However, it is not always

possible to combine multiple delivery candidates. For example, there are three delivery

candidates, the land-line phone ringing with high volume, the land-line phone ringing

with medium volume, and the land-line phone ringing with low volume. They have the

same device but different notification methods. In this case, we are not able to combine

any two of these three candidates to achieve higher effectiveness. To solve this prob-

lem, for a device with multiple notification methods that may be exclusive to each other,

we add all non-exclusive combinations of notification methods as delivery candidates.

When the system tries to select multiple delivery candidates, it cannot select more than

one with the same device.

Now suppose two delivery candidates are compatible. The combined effectiveness

is defined as the probability of the user perceiving the notification when using either or

both candidates. Let c1 and c2 be two delivery candidates, E(c1∪c2) the combined effec-

tiveness of them, and E(c1∩ c2) the joint effectiveness of the two. Based on probability

theory, we have

E(c1∪ c2) = E(c1)+E(c2)−E(c1∩ c2)

We assume delivery candidates are independent in terms of capturing users’ attention.

Thus E(c1∩ c2) = E(c1)E(c2). Hence,

E(c1∪ c2) = E(c1)+E(c2)−E(c1)E(c2)

Generalizing, we can model the union effectiveness of three or more independent

delivery candidates.

E(c1∪ c2∪ c3) = E(c1)+E(c2)+E(c3)−E(c1)E(c2)−E(c2)E(c3)

−E(c1)E(c3)+E(c1)E(c2)E(c3)

In this way, we are able to combine as many delivery candidates as possible in order to

be “effective enough.” We expand the above effectiveness notation for a single candidate

to a set of candidates.

36

Let σ = {c1,c2, ...,cn},assuming c1,c2, ...,cn are compatible, we have E(σ) = E(c1∪
c2∪ ...∪ cn) ∈ [0,1].

Note that we currently make an assumption of independence, but also refine the im-

plementation to mark candidates as mutually exclusive if they cannot be combined. Also,

it is possible to completely eliminate this assumption by using fuzzy logic. It defines ef-

fectiveness of each candidate in fuzzy sets, and then uses rules to infer the combined

effectiveness. This approach requires us to define rules for any possible combination of

available candidates, which will result in a large number of rules. This is not the focus

of this paper, and we will investigate this issue in the future.

Intuitively, if an interaction is important enough, or the receiver’s willingness is very

high, we should make sure that the receiver does not miss this interaction. This means we

should use a very effective notification. Similarly, if the importance is not very high but

higher than the importance threshold, we should deliver the interaction effectively but

without overwhelming the receiver. This suggests that the effectiveness of the chosen

delivery candidates should be related to the deliverability, as described in the filter stage.

Let S be the set from which we choose delivery candidates. SE is a set of sets, each

member in SE is a subset of S, whose effectiveness should be greater than or equal to the

deliverability calculated in the filter stage. and satisfies the condition below, i.e.,

SE = {σ ⊂ S |E(σ)≥ d = IA−W}

We call this the effectiveness criterion, which is that an interaction should be deliv-

ered to those devices with certain notification methods so that the combined effectiveness

is greater than or equal to the difference between the importance IA and the importance

threshold, denoted by W (W = 1−WB). In the context of effectiveness, the difference

of IA and W represents the net importance of the interaction, and we want the delivery

effectiveness to outweigh it.

This effectiveness criterion only benefits the receiver. However, as the receiver often

shares an environment with other users, we should consider them as well. In the next sec-

tion, we discuss how to make sure our delivery choice does not cause intrusion problems

for other users in the same physical environment.

37

2.4.3 Overtness

The previous discussion is based on the observation that devices and notification meth-

ods imply different levels of effectiveness. Similarly, each delivery candidate has some

degree of overtness. For example, a cell-phone ringing has a higher overtness than vibra-

tion. For another example, popping up a window on a big whiteboard has an even higher

overtness than a cell-phone ringing in a class. Again, Table 2.2 is an example that lists

possible overtness values for a few devices and notification methods. Overtness values

also range from 0 to 1.

Let c = (D,N) be a delivery candidate, we have O(c) ∈ [0,1], which is also inter-

preted as the probability that some other user will be aware of the delivery through

c. We now expand this notation to a set of candidates, as in Section 2.4.2. Suppose

σ = {c1,c2, ...,cn}, then O(σ) = O(c1∪ c2∪ ...∪ cn) ∈ [0,1].

We want to point out that some delivery candidates have the same value for effec-

tiveness and overtness, such as a workstation with audible notification, while others have

zero overtness, such as a cell phone with motion, i.e., vibrating. This is because some

delivery candidates have the same notifying effect to all people. For those with non-zero

effectiveness but zero overtness, they tend to notify the receiver only, thus causing no

overtness to others. Section 2.4.4 has more details on the relationship between effective-

ness and overtness.

Depending what delivery candidates we choose, the overtness should be low and ac-

ceptable. Each environment has an indication of its overtness requirement. For example,

a meeting situation has a strict requirement on overtness, i.e., delivery overtness should

be very low. For another example, a lunch-break situation has a loose overtness require-

ment where everybody can make more noise or move around. We use OT (overtness

threshold) to denote the requirement imposed by the environment. The range of OT is

[0,1]. A lower OT means a more strict overtness requirement. When OT becomes 0, it

means right now there should be no overtness at all. Table 2.3 assigns OT values for a

few example scenarios, based on the user study in Section 2.5. The values are linearly

mapped from the majority answer to each question. For example, in the case of shared

lab, the majority of the participants chose “neither high nor low.” As another example,

in the case of being alone, the majority chose “very high.” More details on this regard is

in Section 2.5.

Using notation similar to Section 2.4.2, we have the following overtness criterion.

38

Overtness Threshold (OT)

meeting in a meeting room 0.25

working in a shared lab 0.5

lunch break in a lounge 0.75

being alone in a private room 1

Table 2.3: Overtness thresholds based on the user study in Section 2.5

SO = {σ ⊂ S |O(σ)≤ OT}

It says that the combined overtness of a set of delivery candidates should be less than

the overtness threshold, which is predetermined based on the environment context.

We have described the effectiveness and overtness criteria, which are fundamental in

the delivery stage. Although effectiveness and overtness measure a delivery candidate’s

impact on the receiver and other users respectively, they are related in some circum-

stances. Section 2.4.4 explores the relationship between them, to facilitate the selection

of delivery candidates in Section 2.4.5.

2.4.4 Relationships between effectiveness and overtness

Both effectiveness and overtness characterize how a delivery method may affect people.

Effectiveness evaluates a delivery candidate in favor of the intended receiver, while overt-

ness is a side effect to unintended users. Their relationship is two-fold. On the one hand,

if a delivery candidate has a high overtness, it tends to also have a high effectiveness

because the receiver is among all users who perceive the interaction. For example, if a

private message is delivered to a whiteboard while the receiver and other users are using

the whiteboard in a meeting, all of them will notice the message. On the other hand,

a low overtness does not necessarily indicate low effectiveness, as the effectiveness can

be confined to the receiver. For example, a cell phone vibrating can easily capture the

receiver’s attention, but not that of others.

Delivery candidates can be divided into two groups, one of which has effects on all

users when delivering an interaction to a receiver, such as a whiteboard displaying or a

phone ringing, the other of which has effects only on the receiver, such as a cell-phone

vibrating or a voice notification from a pair of earphones, assuming the receiver has the

39

Effectiveness

Overtness

0

Public-oriented delivery,
Overtness = Effectiveness

Private-oriented del ivery, overtness = 0

Figure 2.15: Relationship between effectiveness and overtness

cell phone in his pocket, or is wearing earphones. We call these two groups public and

private delivery respectively. Each delivery candidate (a pair of device and notification

method) belongs to one of these two groups.

Since public delivery candidates affect all users, the effectiveness value to the receiver

is close to the overtness value to other users. As private delivery candidates only affect

the intended receivers, their overtness is low and negligible. We assume that a public-

delivery candidate has the same value for effectiveness and overtness; a private-delivery

one has zero overtness value. In reality, effectiveness and overtness may not be exactly

the same for public delivery and overtness may not be completely negligible for private

delivery. For example, a message on a whiteboard may not be easily read by people

who do not have good angles. For another example, although cell-phone vibration is

considered private delivery, it may capture all users’ attention, because this cell phone

may be on a table instead of in somebody’s pocket, or the vibration may be significant

enough that people nearby can still hear it even though the cell phone is in the receiver’s

pocket, or some people further away may have good hearing. However, we consider

these discussions beyond our focus and leave them to future work.

Figure 2.15 reflects public and private delivery with regard to overtness and effective-

ness. The bar on the x axis represents private delivery candidates with zero overtness;

while the inclined bar represents public delivery candidates whose overtness and effec-

tiveness are always the same.

As we mention briefly at the the end of Section 2.4.3, the relationship in Figure 2.15

helps reduce the complexity in choosing delivery candidates. Section 2.4.5 discusses the

selection process in detail.

40

2.4.5 Delivery-candidate selection

The aim of the delivery stage is to select proper candidates. We discuss selection criteria

from Sections 2.4.1 to 2.4.4. As shown in Figure 2.14, the feasibility criteria are ap-

plied first, then are the effectiveness and overtness ones. Applying the feasibility criteria

is straightforward given the necessary context. Depending how this context is provided

and accessed, we may apply the feasibility criteria as a single query to the context system,

if complex querying is allowed, or a sequence of queries, otherwise. In the case of se-

quential queries, the order does not matter, as each one eliminates infeasible candidates.

The result is the feasible set, FS. For now, we assume the existence of the underlying

system and its context management facilities in order to carry on the selection process.

The detailed description of the system is in Chapter 5.

When the effectiveness and overtness criteria are applied to FS, each produces a set

of sets, SE and SO; hence their intersection, RE, is also a set of sets. Conceptually, every

member in RE is a potential final choice containing one or more delivery candidates.

SE = {σ ⊂ FS |E(σ)≥ d = IA−W}

SO = {σ ⊂ FS |O(σ)≤ OT}

RE = SE ∩SO

Applying SE and SO to FS requires combined overtness of RE less than OT , and

the combined effectiveness of RE greater than the net importance d. This problem is

essentially a knapsack problem [62], where there is a set of items, each of which has a

value and a cost. The problem is to determine a collection of items whose total cost is

less than a given limit, i.e., the capacity of the knapsack, and the total value is as large

as possible. In our case, the overtness threshold is the cost limit. The effectiveness of a

candidate is the value of an item, and the overtness is its cost.

The difference is that in the knapsack problem, the cost or the value of multiple items

is the sum of individuals, whereas in the candidate-selection problem, the effectiveness

or overtness of multiple candidates is the combined probability of individuals. Also, the

selection problem has a lower bound constraint on the effectiveness, the net importance,

while the knapsack one does not. Despite these differences, the selection problem is the

0− 1 knapsack problem, which is NP-complete [62]. Dynamic programming [59] can

41

be used to solve these problems [62]. However, it requires much space to compensate

for the run-time complexity, which may be a constraint on mobile devices, where the

selection is computed.

In Section 2.4.4, delivery candidates are divided into two groups, public and private.

Based on the discussion of the relationship between the effectiveness and the overtness,

we assume that for public delivery candidates, the effectiveness is the same as the overt-

ness, and for private ones, the overtness is zero. These relationships will not change the

nature of the problem in the worst case, however, they can simplify it in many situations.

The strategy is that the private delivery candidates are always selected. If their com-

bined effectiveness is greater than the lower bound of the effectiveness required in SE,

i.e., IA−W , the problem is solved, as these candidates have zero overtness. Otherwise,

we compute the remaining effectiveness requirement by removing that combined effec-

tiveness. It then becomes the new lower bound for the effectiveness criterion.

The problem now is to find a set of public-delivery candidates with union overtness

less than OT and union effectiveness greater than the new lower bound. In general, this is

a knapsack problem. However, there is is a special case where there may be at least one

public-delivery candidate whose effectiveness or overtness is in between the lower bound

and the upper bound. In this case, we only need to check each public-delivery candidate

in linear time. Besides, we may use exhaustive search to deal with NP-completeness.

In reality, it is rare to have more than, say, 20 feasible delivery candidates at one time

in a smart space, so exhaustive search is viable. This process is also described in the

Algorithm 2.3.

Note that when the effectiveness and overtness criteria, i.e., SE and SO, cannot both

be satisfied, we can relax the feasibility criteria so that we enlarge the input set of delivery

candidates, i.e., FS, and hope appropriate candidates are found. It is possible that even

if FS is relaxed and larger, SE and SO still cannot be satisfied at the same time. Or we

may not want to relax FS at all. In those cases, SE or SO has to be overridden. The

system preference may specify rules in this regard. Also, Algorithm 2.3 tends to return

multiple delivery candidates, which may cause complexity at the system level, as the

interaction will have to be delivered to multiple candidates. Hence, we may add some

constraints to the problem, such as the result size should be no larger than two. While

this reduces the complexity of the problem, it may decrease the probability of finding

appropriate candidates. However, this level of detail is of concern for a specific system

implementation and is not the focus of this dissertation.

42

Algorithm 2.3 Delivery-candidate selection, part 1
/*

* this algorithm selects delivery candidates

* from the feasible set

* if it returns null, then

* option 1: relax the feasibility criteria

* option 2: override criteria SE or SO

* if it becomes the knapsack problem, then

* use dynamic programming or exhaustive search

* if the number of candidates is small

*

* input: FS, PrDS, PuDS, d, and OT

* FS: feasible set of candidates

* PrDS: set of private-delivery candidates

* PuDS: set of public-delivery candidates

* d: net importance(d = IA−W)

* OT: overtness threshold

*

* output: RE

* RE: set of appropriate candidates for delivery

*/

RE←PrDS /* all candidates in PrDS are returned */

lowBound←d−E(PrDS)
1−E(PrDS) /* new lower bound for effectiveness */

if lowBound < 0 /* PrDS is effective enough */

return RE

if lowBound > OT /* cannot satisfies both SE & SO*/

relax feasibility criteria, or

override SE or SO

/* continued on next page */

43

Algorithm 2.4 Delivery-candidate selection, part 2
/* continued from previous page */

sort PuDS, high overtness first

backup PuDS

if min(PuDS) > OT /* SO cannot be satisfied */

relax feasibility criteria, or

override SE or SO

if max(PuDS) < lowBound

dynamic programming or exhaustive search

c←first element in PuDS

while |PuDS|> 0 and !(lowBound < O(c) < OT)

PuDS←PuDS−{c}
c←first element in PuDS

if |PuDS|> 0

return RE∪{c}
else

dynamic programming or exhaustive search

2.5 User study

In order to investigate how users understand the model and their reaction to it, we con-

ducted a user study using a survey, where users are presented with hypothetical interac-

tions and answer questions about the concepts of importance, willingness, effectiveness,

overtness, and overtness threshold. A demographic question is asked in the beginning of

the survey regarding the familiarity with various computing devices.

The survey has four parts, each dealing with one or two parameters in the model.

Each part has five to eight questions. For example, in the willingness part, we ask users

their general willingness to interact with other people when they are discussing a project

with colleagues in a meeting. As another example, in the overtness threshold part, we ask

users to set the threshold values in different scenarios, such as a meeting, a job interview,

and so on. Answers to all questions use a 5-level Likert scale [63]. We also give them

options to choose not to answer the question, as shown in Table 2.4.

We recruited 22 participants in two weeks, all being UW students or researchers from

44

©very high © high
© neither high nor

low
© low ©very low

©no opinion

Table 2.4: Answers to the questions in the survey

different faculties and departments. In each interview, we gave a brief introduction to this

study and then the participant finished the survey independently, either on site or off site.

It takes, on average, about 20 minutes to answer all questions.

For the demographic question, all participants considered themselves familiar or very

familiar with computer devices. One participant selected “no opinion” in one of the

questions regarding the importance; one participant chose “no opinion” in one of the

questions regarding the effectiveness and overtness of delivery candidates.

For the statistical results, we choose values, 5, 4, 3, 2, and 1 for answers from “very

high” to “very low” respectively. Table 2.5 shows the averages and the standard devi-

ations for different scenarios where participants are asked about their willingness. Ta-

ble 2.6 is for importance. Table 2.7 lists a number of delivery candidates and their effec-

tiveness and overtness. Table 2.8 shows the results for the overtness threshold.

The willingness averages of different questions are considered normal. For example,

the willingness average of the meeting scenario (Table 2.5) is 2.14, which is between

“neither high nor low” and “low,” and closer to “low.” The average for the coffee break

one is 4.14, which is consistent with intuition. Some standard deviations are relatively

high. In the meeting case, the deviation value is 0.92. Part of the the reason for this

is that participants were considering more information than is provided on the survey,

for example, whether interactions are related to the meeting. However, the majority of

participants still show consistency to some degree. In Figure 2.16, three people chose 4

(“high”) when asked their willingness in a meeting; two people chose “neither high nor

low”; 17 out of 22 (77%) participants chose “low” or “very low.”

We find that values for importance tend to be more stable, i.e., smaller standard devi-

ations compared to those for willingness. At the same time, the average values are larger

than those for willingness. There are five scenarios regarding the importance (Table 2.6),

four of which have values greater than 4. Although these scenarios are not unimportant,

there may be some endowment bias [60], which, in this case, means that people consider

their own interactions more important than others. It is difficult to completely avoid this,

if we let individuals determine importance values. In Section 2.3.6, we introduce modi-

45

Scenario Average
Standard

deviation

You are discussing a project with colleagues in a

meeting. What is your willingness to interact in

general?
2.14 0.92

You are having coffee during a break in the lounge

where people gather and chat. What is your will-

ingness to interact in general?
4.14 0.69

You are a faculty member working on your research

in your office. A student shows up and wants to talk

about the final exam with you. It is not your regu-

lar office hour. What is your willingness to interact

with the student?

2.82 0.98

You are home on the weekend, relaxing. What is

your willingness to interact in general?
3.82 1.23

Suppose you have many important business emails,

correspondence, orders, etc, to deal with on Mon-

day morning, presumably accumulated over the

past weekend. You are processing them. What is

your willingness to interact in general?

1.95 1.11

Table 2.5: Statistical results for willingness

Figure 2.16: Willingness to interact when in a meeting

46

fiers and discuss how they may refine the initial values. An example is that a student may

exaggerate the importance of an interaction with an instructor, in which case the system

will then reduce the value based on the role relationship. Hence, the endowment effect

can be rectified by different modifiers.

As to the delivery candidates, according to Table 2.7, the landline phone and cell-

phone ringing are the most effective and the most overt. The cellphone blinking and the

printer printing are the least effective and overt.

In Section 2.4.4, public and private deliveries are discussed. The approximation is

that for the public delivery, the effectiveness is the same as the overtness; for private

delivery, the overtness is negligible. According to the survey, the effectiveness is slightly

higher than the overtness. One reason is that users are used to the disturbance and are

generally immune to noise from the environment. Another reason is that, in the case of

the cellphone ringing, the owner is more sensitive to the ring tone. Hence, in terms of

capturing people’s attention, a particular ring tone is more effective to the person who

selects it than to others.

For the private delivery, the overtness is not zero in Table 2.7, which is expected.

Given more context, such as how close one user is to another when the cellphone vibrates,

the system is able to assign more precise values for overtness.

We also calculate the correlation coefficient between the effectiveness and the overt-

ness. The result (Table 2.7) shows that these two are barely correlated. This confirms

the fact that effectiveness and overtness are indeed two different metrics, as one is for

the intended receiver, and the other is for the unintended people nearby. One does not

necessarily determine the other.

For the overtness threshold (Table 2.8), the chatting scenario has a high threshold

(average: 4.23), as does the user being alone, with an average of 4.41. The meeting

scenarios have a lower threshold value. It is unanimously agreed that in a private job

interview, there should be no overtness (average: 1, standard deviation: 0).

From this user study, we understand how users react to various scenarios. On the

one hand, it shows that the majority of the participants tend to make similar or the same

choices, which helps a system infer and determine the parameters in the model. On the

other hand, it implies that we need much context in order to make appropriate decisions.

People could have very different opinions occasionally, which suggests that before a sys-

tem is deployed, it needs to take users’ preferences into consideration. Also, it confirms

47

Scenario Average
Standard

deviation

You are involved in a project. You need frequent

discussions with other people about your solutions,

progress, problems, and so on. Now you try to ini-

tiate such a discussion. What is the importance of

this discussion?

4.18 0.49

You witnessed an elderly neighbor fall in front of

his house, you helped the neighbor and called an

ambulance and now you want to call his son at

work. What is the importance of this call?

4.73 0.45

During work time for both of you, you want to in-

vite a friend to a party using an instant message.

What is the importance of this message?
2.55 0.94

You are a project coordinator. You need to orga-

nize a meeting and want to call a participant for his

schedule. What is the importance of this call?
4.05 0.64

Suppose you are the coordinator in the previous

scenario. One participant has not confirmed his at-

tendance at the meeting by the deadline. You want

to go over to his office and knock on his door. What

is the importance of this?

4.48 0.5

Table 2.6: Statistical results for importance

48

Delivery candidate Effectiveness Overtness

average
standard

devia-

tion

average
standard

devia-

tion

coefficient

landline phone, volume high 4.68 0.47 4.36 0.83 0.3

landline phone, volume low 3.43 1.05 2.95 1.09 0.6

cellphone, ringing 4.55 0.58 4.09 0.9 0.17

cellphone, vibrating 3.95 0.88 1.5 0.72 -0.04

cellphone, blinking 2.41 1.07 1.27 0.62 0.45

shared printer, printing 2.41 0.98 2.23 0.9 0.05

whiteboard, displaying 3.41 0.89 2.82 1.3 0.3

laptop, popping up window 4.27 0.81 1.55 0.94 0.04

Table 2.7: Statistical results for effectiveness and overtness

Scenarios for the overtness threshold Average

Standard

devia-

tion

Small meeting involving at most three people 1.91 0.67

Large meeting involving more than ten people 1.82 0.83

You are the only person in the office 4.41 0.72

A typical computer lab, shared with a number of

other users
2.95 0.77

People chatting in a lounge during lunch time 4.23 0.6

In a technical presentation 1.14 0.34

As the prospective employee in a private job inter-

view
1 0

Table 2.8: Statistical results for overtness threshold

49

that the assumptions we make regarding the public and private delivery are close approx-

imations. In reality, the effectiveness of a public delivery candidate is higher than the

overtness; and the overtness of a private delivery is close to, but not, zero. In a practical

system, we can set default values for the parameters in the model, such as what we did

in Table 2.3. Users should be able to override them at any time. Furthermore, the system

may needs to be customized or trained for individual users.

2.6 Summary

We have analyzed and modeled the intrusion problem associated with a time- and refer-

ence-coupled interaction, including deciding whether it is deliverable, and if it is, how

to choose devices and how to notify the receiver. The model is general and applicable

to different interactions. For example, we may use it to enhance the low-battery warning

system on a laptop computer. Currently, for laptop users, if the remaining battery power

is less than a predefined amount, the system notifies users by popping up a dialog window

or showing a message, which may cause some interruption to users. Besides, it always

uses the same means to alert users, which could be inappropriate in some situations. Our

model can be applied to address these issues.

The model is divided into the filter and delivery stages. In each one, key elements

are identified, i.e., importance and willingness in the filter stage, and effectiveness and

overtness in the delivery stage. The elements are quantified to enable computation and

comparison. These two stages are connected internally by requiring the effectiveness of

selected delivery candidates in the delivery stage to be greater than or equal to the net

importance in the filter stage.

In the filter stage, we compare the importance of an interaction with the willingness

of the receiver, to determine the deliverability. Continuing the battery-warning example,

the remaining power indicates the importance of a notification. The lower the power

level, the higher the importance. The result will be that unless the battery is critically

low, no notification will be delivered to a busy user with a low willingness.

In the delivery stage, several criteria are proposed. Feasibility criteria can identify

devices and notifications that are not suitable for delivery for various reasons, such as

not being co-located with the receiver, not being capable of handling the interaction, and

so on. Then the effectiveness and overtness criteria are applied to ensure that the receiver

50

notices the interaction and delivering the interaction will not disturb other users.

In the battery-warning example, there could be many different ways to inform users,

depending on available context. For example, if a user is presenting a research paper,

the warning software may send a message to his cell phone which vibrates. This avoids

popping up a message on the projector screen. As another example, if a user is reading

a hard-copy document, it is better to play a soft tone as he is not looking at the screen.

Furthermore, if a user is temporarily away from the laptop, the notification could be

redirected to a close land-line phone or to his cell phone, assuming an indoor location-

tracking system and the availabilities and settings of those devices involved. In this way,

this low-battery-warning system will be less intrusive to users, and more importantly, the

notification could be more effective. This example, although simple, shows the applica-

bility of our model.

The process of selecting delivery candidates is NP-complete. However, we cate-

gorize candidates into public and private delivery and utilize the relationships between

effectiveness and overtness, so that our algorithm can find appropriate devices and noti-

fication methods quickly in many cases.

Context is used extensively. In the filter stage, it is the input to atomic and complex

modifiers, which refine the values of importance and willingness. In the delivery stage, it

is the basis of feasibility criteria to eliminate infeasible delivery candidates. Both stages

use context in a flexible way. The model does not depend on context to work, however,

with more context, we can better refine the importance and willingness, and also produce

a set of delivery candidates that is more feasible.

Figure 2.17 summarizes the intrusion problem from different views and the connec-

tions among them. This chapter focuses on the modeling of non-intrusive computing.

It does not deal with middleware issues, but assumes the underlying platforms provide

necessary support, such as context data and convenient accessing methods.

We conduct a user study to investigate how people choose different scales for param-

eters in the model. The results show that the answers of most participants are consistent

and match the intuition. However, some may answer differently due to insufficient con-

text and different interpretation of questions. The survey indicates that there may be

some endowment effect, which could be handled using modifiers. Also, it shows that the

effectiveness and overtness are not correlated as expected.

In order to evaluate the model, we need to study and analyze its performance. In the

51

S
e
n
d
e
r

R
e
c
e
iv
e
r

C
e
llp
h
o
n
e

ri
n
g
 t
o
n
e

C
e
llp
h
o
n
e

v
ib
ra
te

W
h
it
e
b
o
a
rd

fl
a
s
h

L
a
p
to
p

p
o
p
 u
p
 w
in
d
o
w

L
a
n
d
 l
in
e
 p
h
o
n
e

ri
n
g

P
ri
n
te
r

p
ri
n
t

O
th
e
r

d
e
liv
e
ry

c
a
n
d
id
a
te
s

C
o
n
c
e
p
tu
a
l

v
ie
w
 o
f
tw
o

s
ta
g
e
s

M
o
d
e
l
v
ie
w
 o
f

tw
o
 s
ta
g
e
s

S
u
p
p
o
rt
in
g

C
o
n
te
x
t

F
ilt
e
r
s
ta
g
e

D
e
liv
e
ry
 s
ta
g
e

F
ilt
e
r
s
ta
g
e

D
e
liv
e
ry
 s
ta
g
e

determines

determines

R
o
le

E
x
c
e
p
ti
o
n

U
s
e
r
p
re
fe
re
n
c
e

A
v
a
ila
b
ili
ty

L
o
c
a
ti
o
n

.
.
.

V
s
.

F
e
a
s
ib
ili
ty
 c
ri
te
ri
a

O
v
e
rt
n
e
s
s
 c
ri
te
ri
o
n

C
a
p
a
b
ili
ty

E
O
T

Im
p
o
rt
a
n
c
e

U
n
w
ill
in
g
n
e
s
s

N
e
t
im
p
o
rt
a
n
c
e

support

support

E
ff
e
c
ti
v
e
n
e
s
s
 c
ri
te
ri
o
n

F
e
a
s
ib
le
 c
a
n
d
id
a
te
s

lin
k
a
g
e

A
p
p
ro
p
ri
a
te
 c
a
n
d
id
a
te
s

input

Figure 2.17: Different views of the intrusion problem

52

next chapter, we propose a performance metric and use several approaches to measure

our model.

53

Chapter 3

Performance analysis

Non-intrusive computing aims to filter non-deliverable and hence intrusive interactions,

and to choose proper devices and notification methods. Without this mechanism, trivial

interactions might be delivered to cause intrusion to the receivers, or important ones may

be missed due to the inappropriate selection of end devices. It is necessary to study and

understand how interactions are handled normally without system help.

We call an interaction mis-handled if it is either non-deliverable but delivered or de-

liverable but does not reach the receiver. The interaction’s deliverability is determined

by the comparison model in Figure 2.2. The error rate (“errRate”) measures the per-

centage of mis-handled interactions, as defined in Equation 3.1. “MisDelivered” and

“misDropped” in the equation refer to these two cases respectively. The more a system

considers intrusiveness, the less the error rate is. Hence, error rates of systems with little

control on intrusiveness provide room for our non-intrusive-computing model to operate.

errRate =
misDelivered+misDropped

total interactions
(3.1)

Next, considering a system with little support on controlling intrusiveness, we theo-

retically analyze its error rates from different aspects using different approaches. Some

simulations are performed to confirm the analysis.

54

Figure 3.1: Constant willingness and different device-status patterns

3.1 Non-dropping approach

The first approach is called the non-dropping approach. In these scenarios, senders do

not drop interactions; controlling non-deliverable interactions is solely on the receiver’s

side by setting the willingness and turning on/off the receiving device. In order to focus

on analyzing the performance instead of worrying about the environment and its charac-

teristics, we make the following assumptions.

• Incoming interactions arrive according to a Poisson process with importance dis-

tributed uniformly between 0 and 1.

• The receiver has only one device, which is able to handle all his interactions.

• The device has only two states, on and off. If it is turned on, it can receive any

interaction, otherwise, it cannot, so the receiver misses all of them.

Figure 3.1 describes a scenario where the willingness is a constant W over time. There

are three different patterns for the status of the device, always on, always off, and on for

t1 and off for t2.

According to the definition of errRate in Equation 3.1, error rates for these three

device-status patterns are 1−W , W , and((1−W)t1+Wt2)/t respectively. We can further de-

duce that, given a constant willingness, if the device is turned on and off more frequently,

the error rate is the following (Equation 3.2):

55

Figure 3.2: Different willingness and different device-status patterns

errRate =
(1−W)∑ ti +W ∑ t j

t
(3.2)

ti : device is on

t j : device is off

t = ∑ ti +∑ t j

Now we consider the scenario where a user changes his willingness over time. Fig-

ure 3.2 describes such a scenario, where the willingness of a user changes from W1 to

W2. The time spans for W1 and W2 are t1 and t2 + t3 respectively. We use the same

device-status patterns as those in Figure 3.1.

When the device is always on, the error rate is

errRate =
(1−W1)t1 +(1−W2)(t2 + t3)

t

When it is always off, we have

errRate =
W1t1 +W2(t2 + t3)

t

When the device is on for t1 + t2 and off for t3, the rate becomes

errRate =
(1−W1)t1 +(1−W2)t2 +W2t3

t

To generalize the calculation of the error rate, we divide the time t into small time

spans ti and t
′
j, where ti = 1,2, ...,n and t

′
j = 1,2, ...,m, such that within ti, the device is on

and the receiver’s willingness is Wi; while within t
′
j, the device is off and the willingness

of the receiver is W
′
j . Then the error rate is as follows.

56

errRate =
∑(1−Wi)ti +∑W

′
jt
′
j

t
(3.3)

In these receiver-controlled scenarios, error rates fluctuate and depend on the will-

ingness and device-status patterns. It is difficult to draw an average. However, a few

examples may help illustrating these rates.

Suppose Bob always leave his cell phone on, and his willingness is 0.5, which is

constant over time. In this case, the error rate is 0.5. If his constant willingness is 0.2,

the rate becomes 0.8. As another example, suppose Alice’s willingness is 0.3 from 9AM

to 12PM, and 0.7 from 12PM to 5PM. Her device is turned off before noon, and turned

on after. Using Equation 3.3, we compute the error rate as 0.3.

With the non-dropping approach, if the receiver’s willingness is consistent with the

status of the device, e.g., if the willingness is low, then the device is off, and vice versa,

the system shows a low error rate. This requires users to operate the device when they

change their willingness. In reality, users may forget to do so, which tends to increase

the error rate. The next section describes a different approach where senders control the

interactions.

3.2 Dropping approach

With the previous approach, senders have no obligation for non-deliverable interactions,

which are always sent. It is the receiver’s responsibility to control them. Now, we discuss

the dropping approach where the control is on the sender’s side. An interaction may be

dropped at the sender’s discretion, as follows.

The sender estimates an unwillingness value for the receiver, V , such that if the im-

portance of an interaction, I, is greater than V , then the sender processes it, otherwise, he

drops it. However, the actual unwillingness of the receiver may not be the same as the

sender’s estimate, V . Hence, a delivered interaction may not be wanted by the receiver.

For the same reason, a dropped one may actually be desired by the receiver. Note that

we assume the importance, I, and the unwillingness, Unw, are independent, so are I and

V . Other than this, we make similar assumptions to those of Section 3.1.

• Interactions arrive according to a Poisson process, with importance distributed uni-

formly between 0 and 1.

57

I

Unw

0

1

1V

V<I<Unw

Unw<I<V

Figure 3.3: Calculating the error probability given a fixed V

• The actual willingness of the receiver is uniformly distributed between 0 and 1.

• The receiving device is always available, so it accepts any incoming interaction.

There are two situations where the sender may make inappropriate decisions. One is that

an interaction’s importance is greater than the estimated unwillingness but less than the

actual one, in which case it is delivered and may cause intrusion to the receiver. The other

is when an interaction’s importance is less than the estimation but greater than the actual

unwillingness, in which case, it is dropped but should have been sent to the receiver.

Let Unw be the actual unwillingness of the receiver. An interaction is mis-handled

if V < I < Unw or V > I > Unw, the probability of which, errRate, is calculated as the

following, and also is illustrated by Figure 3.3.

errRate = P(V < I < Unw ∪ V > I > Unw)

= P(V < I < Unw)+P(V > I > Unw)

=
1
2
(1−V)2 +

1
2

V 2

=
1
2
−V +V 2

The errRate is a quadratic function of V , which has the minimum value when the

derivative is zero, i.e.,

d errRate
dV

=−1+2V = 0

58

The minimum errRate is 1/4 when V is 1/2. This is to say that with the dropping

approach, the best scenario is for the sender to assume the receiver’s willingness is 0.5,

which yields the minimum error rate, 0.25.

Note that in reality, sometimes people may have some knowledge about each other’s

current state and behave accordingly. For example, Alice knows that Bob is in a meeting

every Friday morning, so she will not call him if it is not urgent. Hence 25% is the upper

bound of the error rate using the dropping approach when the sender knows nothing

about the receiver.

Now if we choose a random unwillingness for each interaction, assuming V is uni-

formly distributed between 0 and 1, the probability of an interaction being mis-handled

becomes

errRate = P(V < I < Unw ∪ V > I > Unw)

= P(V < I < Unw)+P(V > I > Unw)

=
1
3
(area1 ∗height1)+

1
3
(area2 ∗height2)

=
1
3
(
1
2
∗1)+

1
3
(
1
2
∗1)

=
1
3

Figure 3.4 illustrates this probability calculation, which is the total volume of the two

pyramids.

We have described two approaches, one is non-dropping, controlled by the sender,

the other is dropping, controlled by the receiver. In reality, both might happen simultane-

ously. In the next section, we discuss a hybrid dropping approach, which combines the

two.

3.3 Hybrid dropping approach

The non-dropping approach in Section 3.1 requires the receivers to turn on and off the

device to control interactions, while the dropping one in Section 3.2 depends on the

sender’s estimate of the receiver’s unwillingness. We now consider the strategies together

by further assuming a probability of the receiver’s device being off when the interaction

59

I

Unw

V

1

1

1

V < I < Unw

I

Unw

V

1

1

1

V > I > Unw

Figure 3.4: Calculating the error probability with random V

happens. Because the receiver might turn off the receiving device independent of the

sender, the error rate is different from Equation 3.1.

Let I be the importance of the interaction, V the assumed unwillingness of the re-

ceiver, Unw the actual unwillingness, and P the probability of the receiving device being

available.

When a sender decides to send an interaction based on the estimate V , i.e., V < I, it

can either intrude on the receiver or not. Assume it is intrusive to the receiver, i.e., V <

I < Unw. Now, if the receiving device has been turned off, then this intrusive interaction

will not actually cause any intrusion to the receiver. Hence, the mis-delivered portion in

Equation 3.1 becomes misDelivered ∗P. Similarly, if we assume the same interaction

is not intrusive, i.e., V < I &Unw < I, and if the device is currently not available, then

the receiver will miss this deliverable and non-intrusive interaction, which is an error. If

we call delivered non-intrusive interactions “deliveryAttempts,” then the new portion of

error is deliveryAttempts∗ (1−P).

On the contrary, if the sender decides to drop the interaction, i.e., V > I, the mis-

dropped portion in the error rate will not change regardless of the status of the receiving

device. Below is the revised error-rate definition reflecting these changes.

errRate =
misDelivered∗P+deliveryAttempts∗ (1−P)+misDropped

total interactions
(3.4)

We conduct a simulation to show the result of the error rates with respect to the es-

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

V

R
at

e

Error rates − dropping approach

errRate

misDelivered

misDropped

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

V

R
at

e

Error rates − hybrid dropping approach

errRate

misDelivered

deliveryAttempts

misDropped

Figure 3.5: Error rates. Top: dropping approach; Bottom: hybrid dropping approach,

P = 0.5

timate of the receiver’s unwillingness, V , in Figure 3.5. There are two plots. The top

one uses the dropping approach discussed in Section 3.2, while the bottom one uses

the hybrid dropping approach with P = 0.5. Comparing these two, the mis-dropped

rates are the same as explained before. The dropping approach produces lower over-

all error rates than the hybrid dropping one. When V = 0.5, both approaches perform

the best, with error rates of 0.25 and 0.38 respectively. In detail, 0.38 is the sum of

three rates, where misDelivered∗P/total = 0.0625, deliveryAttempts∗(1−P)/total = 0.1875, and
misDropped/total = 0.125.

The summary and discussion of all three approaches is in the next section.

61

3.4 Discussion

We analyzed the error rates when people deal with interactions using three different ap-

proaches. The non-dropping approach is the simplest of the three. It assumes that senders

have no responsibility to control interactions. The only control that receivers have is to

turn off receiving devices to avoid intrusion. The side effect of this coarse mechanism is

that they may miss important interactions. The error rates are highly dynamic and subject

to whether receivers control devices to reflect their willingness in time.

The other two approaches, the dropping and the hybrid dropping ones, introduce an

estimate of the receiver’s unwillingness. The error rates are more stable and predictable

as they use information from both the sender and the receiver.

We may do further analysis, such as by introducing the estimation error in the dropping-

based approaches, or assuming a different distribution for incoming interactions, and so

on. However, it cannot eliminate error rates. In fact, these error rates are due to senders

and receivers taking independent action when interactions are taking place. On the one

hand, the sender either takes no responsibility in sending non-deliverable interactions, or

estimates the unwillingness before sending. However, due to lack of information about

the receiver, the estimate may be different from the actual value, thus causing intrusion

or incorrect cancellation to the receiver.

On the other hand, the receiver controls the device without knowing if interactions are

about to happen. If he turns the device off, he may be able to avoid intrusive interactions

but, at the same time, miss non-intrusive ones, and vice versa. Note that these analyses

and discussions have not yet considered multiple devices and overtness to other people in

the same environment as the receiver, which only increases the complexity and worsens

the situation in practice.

Our non-intrusive model addresses these problems by effectively combining context

from both the sender and receiver. Assuming accurate context is provided, our model can

reduce the error rate from 38% (see Figure 3.5, bottom, errRate= 0.38 when V = 0.5) in

the hybrid dropping scenario to zero. Furthermore, our definition of error rate does not

include intrusion on other users, which will increase the rate if considered. That means

our model can reduce the error from a higher rate than 38% to zero, because it considers

overtness in selecting delivery candidates. An example calculation is the following.

According to the simulation in Section 3.3, the percentage of successfully delivered

62

non-intrusive interactions is deliveryAttempts∗P = 0.1875, where P, the probability of

the device being available, is 50%. Suppose half of these interactions cause intrusion

to other people in the same environment as the receiver, then the error rate becomes

0.38 + 0.1875/2 ≈ 0.47. Because our model addresses the intrusion problem on both the

receiver and the other users, it can reduce the error rates from 47% to none, with proper

context.

The error rates that we discussed in this chapter are the extent to which interactions

can be handled better when there is a model and system in place than when there is not.

So far, we have described the modeling of non-intrusive computing in Chapters 2, and

have analyzed its potential performance in terms of reducing mis-handled interactions.

Since the model is built on top of a system and depends on system facilities, from the

next chapter, we start to discuss issues at the system level, including a survey of previ-

ous pervasive-computing systems and our implementation of a non-intrusive-computing

system.

63

Chapter 4

Previous work on pervasive-computing
systems

This dissertation aims to address intrusion problems in pervasive computing. Our ap-

proach to this involves two layers, as explained in Section 1.2 (see Figure 1.2). Chapters

2 and 3 correspond to the upper modeling level, which concerns the model and ana-

lyzes its performance theoretically. From this chapter onwards, we focus on the bottom

level, system construction. Before our non-intrusive-computing system is presented in

Chapter 5, we review previous work on pervasive-computing systems. Section 4.1 is a

literature review on selected systems. Sections 4.2 and 4.3 summarize them.

4.1 Literature review

Pervasive computing has been a current research topic for more than fifteen years. There

are many systems and projects. We make no attempt to examine every one here. We also

do not focus on specific aspects of pervasive computing, such as service discovery, user

interfaces, and so on. Instead, we choose projects that are relatively comprehensive with

many constructs and usually include some middleware platform for pervasive computing.

These systems many be general purpose or more suitable to some environments such as

domestic homes.

64

4.1.1 Aura

Although we briefly mention Aura in Section 2.1 with regard to the intrusiveness, we

discuss it in more detail here from the system point of view. Aura [19] was an umbrella

project at Carnegie Mellon University. It attempts to build a distraction-free pervasive-

computing environment. The overall structure of Aura is shown in Figure 4.1, modified

slightly from [19].

Figure 4.1: Aura architecture

Aura is built on two other projects, Coda [46] and Odyssey [46]. Coda provides

disconnected operation to support mobile and distributed computing. Odyssey features

application-aware adaptation, which enables mobile applications to balance between re-

source consumption and fidelity. To be distraction-free, Aura encapsulates task-driven

and high-level proactivity into another layer, Prism. Task-driven means that mobile users

focus on the high-level tasks, and need not worry about lower-level configurations [54].

The system handles these for users in an automatic fashion. User intent is expressed

explicitly in Prism, to guide the rest of the system, because user intent corresponds to

the tasks. High-level proactivity means that when a user moves from one environment

to another, the latter can obtain the execution states and necessary data from the for-

mer, and perform initialization automatically for the user. Figure 4.2, adapted from [19],

illustrates the structure of Prism.

Prism is composed of a context observer, a task manager, an environment manager

and many suppliers. The context observer is a general context manager. It collects con-

65

Figure 4.2: Prism architecture

text, detects changes, and reports relevant events to the task and environment managers.

This context observer is also responsible for some simple authentication. When it detects

that a user is approaching, it interacts with the user (usually through a handheld device)

to perform authentication. There is no dedicated security-management component in the

Aura/Prism architecture.

The task manager deals with user intent and maps it to system services. First, a

user expresses his desires with explicit task descriptions, each of which is a coalition of

services. The description uses abstract services, and hence is environment-independent.

Then the task manager consults with the environment manager to map abstract services

into actual ones in the current environment. Prism infers whether the user is going to

stop one task or start another. In detail, it is the context observer that handles this simple

prediction based on the context and user-specific information, such as the calendar.

The environment manager registers the available services and devices, and is respon-

sible for mapping abstract services into actual ones based on descriptions. The system

is adaptable in that when a service becomes unavailable at runtime, the manager tries to

find a replacement.

Suppliers represent individual services with abstract descriptions, so that the envi-

ronment manager can translate the desired service, described in an abstract format, to a

current instance. Note that Aura assumes that both users’ and suppliers’ abstract descrip-

tions of services use the same vocabulary.

Aura does have some runtime support. The environment manager stores some of the

task-related data, such as task-execution status. The majority of the data is stored in the

Aura file system, which is not included in Prism.

66

Figure 4.3: Gaia architecture

Aura uses an environment-independent format to describe tasks explicitly, and these

tasks are initialized automatically in different environments. Thus, a task can take ad-

vantage of different resources in different environments, freeing the user from config-

uration management. The Aura project seems dormant based on its website (http:

//www.cs.cmu.edu/~aura/). The latest work was in 2004.

4.1.2 Gaia

Gaia is also mentioned when we discuss previous work on intrusiveness in Section 2.1.

We now describe it because it is a comprehensive system and provides middleware for

ubiquitous computing. Gaia [43] was developed at the University of Illinois at Urbana-

Champaign. Gaia attempts to provide users’ data wherever they are. In Gaia’s view,

applications usually include several devices during execution, and applications should

be described using abstract generic devices. The runtime system maps abstract devices

to concrete ones depending on the environment. The architecture of Gaia is in Figure 4.3

from [43].

Gaia uses the term “active space” to denote a smart space. The Gaia kernel consists

of several components: context service, presence service, context file system, event-

manager service, and space-repository service. Above the kernel, there is an application

framework that uses the model-view-controller (MVC) architecture for application de-

velopment, control, and presentation.

The context service obtains context from sensors, and manages a registry. Any appli-

cation or component can register interest in the context service. The context service uses

first-order logic and boolean algebra to infer high-level context.

67

http://www.cs.cmu.edu/~aura/
http://www.cs.cmu.edu/~aura/

The presence service manages services and devices. It reports which services are

available in the current system, which applications are running, who uses what device,

and where the users are. Simply put, the presence service observes all the software

and hardware resources, and the space repository maintains a complete list of resources

(hardware and software entities) in the environment.

The space repository is similar to a naming service. It stores attribute information

such as name, type, and owner for each software and hardware component, and provides

a query mechanism for applications. The difference between the space repository and

the presence service is that the latter keeps a live resource list, while the space-repository

service stores the attributes of the various resources. Both services manage resources,

but at different levels. When the application is initialized in a particular environment,

it queries the space repository and maps the abstract resources (software and hardware)

into actual ones by specifying attributes.

Event service is the communication mechanism among components in Gaia. It man-

ages events that change the state of some devices or software entities. It separates event

suppliers and consumers and creates a channel for each kind of events.

The context file system (CFS) is a traditional file system augmented with context

information. In the CFS, any file or directory can be associated with certain context, such

as time, location, topic, or number of attendees in a meeting. The CFS constructs a virtual

file system based on context, i.e., it collects files located at different machines but with

the same context into the same directory in the virtual file system. Thus, applications can

obtain the desired data by specifying context. CFS can also make user data from other

smart spaces available automatically. At each smart space, there is a mounting server that

can mount files or directories from other smart spaces. The user’s handheld will carry

the mount points, which give the locations of the personal and related data. When this

user enters a space, the mounting server retrieves mounting-point information from the

handheld and mounts files automatically.

Gaia supports both traditional desktop computers and mobile handhelds when per-

forming the device mapping. In order for an application to use a mobile device, Gaia

introduces a microserver [12], which is a component running on the mobile device that

helps export the device’s native environment and functionalities to the Gaia system, so

that Gaia applications can use them. Figure 4.4 is an illustration, modified from the one

in [12]). A Gaia application sends a request to the Gaia proxy that hides the Gaia specifics

from applications. The middleware component on the mobile device is a J2ME compo-

68

Gaia

application

Gaia

 Proxy

J2ME

middleware
Microserver

C++

device

functions

Request

Response

Internet

Internet

RPC

RPC

C++

C++

Gaia Mobile device

Figure 4.4: Call sequence using Gaia microserver

nent providing a Java sandbox for the device. The microserver handles the device’s native

environment and export it to the J2ME middleware that further interprets this environ-

ment into a number of Gaia services that applications can use. The microserver breaks

the limitation confined by the standardized set of functionalities that J2ME allows and

enables the integration of arbitrary native devices.

Overall, Gaia is a pervasive-computing environment where applications are devel-

oped in terms of abstract devices. At runtime, these devices are instantiated to detailed,

and potentially different ones in each smart space. The context file system keeps users’

data available regardless of location. Gaia uses ontologies and first-order logic for repre-

senting and reasoning about context. The Gaia microserver incorporates mobile devices

into active spaces and Gaia applications may use the native functionalities on these de-

vices. The Gaia project started in 2000, and seems to be dormant after 2005 according

to its website (http://gaia.cs.uiuc.edu).

4.1.3 Stanford interactive workspaces project - iRoom

The interactive workspaces project [30, 31] at Stanford University was started in 1999. It

focuses on the collaboration of devices and applications in a pervasive-computing space.

iRoom is an experimental research environment, rich in devices and technologies. This

project has three goals. One is data moving, which means data can move freely between

applications running on different devices. Data formats are converted automatically to

support a specific device. The second goal is control moving, by which users can control

the same application on different devices using different interfaces. These different in-

terfaces are generated automatically by the system. The last goal is dynamic application

coordination, which means that in an interactive workspace with many applications cou-

pled together, when events occur in one application, related ones will be aware of these

69

http://gaia.cs.uiuc.edu

Figure 4.5: iROS

events and make corresponding changes.

To enable these goals, Stanford researchers developed a meta-operating system, the

Interactive Room Operating System (iROS), as shown in Figure 4.5 [30].

The three main components in iROS are the Event Heap, the Data Heap, and the

ICrafter. The event heap is a collaboration framework. Events in iROS are represented

by tuples, which are attribute-value combinations. The event heap is based on the tuple-

space-collaboration model that is temporally and referentially decoupled. Applications

can retrieve events using pattern matching, i.e., specifying some fields of a desired tuple,

and then searching the tuple space. The event heap extends the regular tuple space by

adding an important feature, tuple expiration. It associates each tuple with an expiration

date to prevent event tuples from staying in the tuple space forever. The event heap also

incorporates some other features, such as tuple sequencing and tuple routing [29].

The event heap is vital for dynamic application coordination. It provides a set of APIs

for applications to operate on event tuples, and applications can communicate through the

event heap. Because the event heap is temporally and referentially decoupled, communi-

cation is asynchronous and applications do not need to specify receivers when generating

a tuple.

The data heap stores data for applications. Data has attributes. Applications locate

data by attributes without knowing its physical location. The data heap can also invoke

format converters automatically to transform data from one format to another. Hence,

data can be communicated among different applications.

The ICrafter [40] is a service framework. It is responsible for service invocation and

dynamic interface generation, and is based on the event heap. When a user wants to

invoke a service, he sends a request event to the heap. An interface manager, a sub-

70

component inside ICrafter, retrieves the request and searches the heap for appropriate

service descriptions. Then it generates an appropriate interface for the requesting device

and places the interface in the event heap. Next, the user can retrieve the interface and

invoke the service through the heap.

ICrafter has an intelligent function, service aggregation. For example, if a user wants

to take a picture and then print it, she needs to have a camera service as well as a printing

service. Intuitively, she needs to obtain the camera service first, take a picture, save it

somewhere, ask for a printing service, and finally send the picture to the printing service.

Obviously, these two services are related and should be aggregated. ICrafter can return

to the user an integrated interface to these two services, which will help her take the

picture and send it to a printer. ICrafter uses patterns to implement service aggregation.

For example, the picture-printing example belongs to the consumer-producer pattern, as

the camera is a producer and the printer is a consumer.

The interactive workspace project does not concentrate on context sensing; instead,

it focuses on the collaboration of applications and builds a framework for users to move

data and control applications, and for applications to collaborate with each other in a

technology-rich environment. The iROS system uses a central server to host the event

heap, which is an extended tuple space and vital to the rest of the system. The advantage

of this is that communicating applications do not need to know each other beforehand,

and two parties are not required to be present at the same time to make the communica-

tion happen. The last active update on this project was in 2004.

4.1.4 One.world

The one.world [21, 22] project was developed originally at the University of Washington.

This project provides a framework for pervasive-application development and a platform

for pervasive-application execution. If each device has the one.world system installed,

then applications can move from one device to another. Tuples and asynchronous events

are used as the data and the collaboration models (see Figure 4.6 [21]).

One.world aims to address three problems in pervasive computing, which are con-

stant change of context, ad-hoc composition, and pervasive sharing. In a pervasive-

computing environment, context changes often and failures are inevitable, and the sys-

tem should expose this information to applications, so that the applications can adapt

to changes, rather than forcing that on the users. Ad-hoc composition means that when

71

Figure 4.6: One.world illustration

users move to a different place, devices and applications can just “plug together” in the

new environment. Pervasive sharing means that information should be accessible any-

where and anytime.

To address these problems, one.world provides corresponding services in three lay-

ers, foundation services, system services, and user space. The architecture of one.world

is shown in Figure 4.7 [21].

Foundation services are those that address contextual change, ad-hoc composition,

and pervasive sharing. The virtual machine is the underlying execution support, such as a

Java virtual machine, or Microsoft common language runtime. Tuples are attribute-value

pairs, which is claimed to facilitate data sharing in one.world. The asynchronous-events

module is the communication module, where contextual changes can be represented by

events. The environments module holds the code, data, and other, if any, environmental

information for the application. Each application corresponds to an environment. Envi-

ronments can be nested, which is used for application composition.

System services include migration, checkpointing, discovery, remote events, the tuple

storage, and the query engine. The checkpointing service captures application-execution

states in an environment for later restoration or migration. The migration service moves

environments from one device to another by moving the states captured by checkpoint-

72

Figure 4.7: One.world architecture

ing. The discovery service can find other one.world-enabled resources. The remote-

events service provides a way to deliver events to remote applications, which is the basic

communication mechanism in one.world.

Above system services, there is the user space. Libraries and system utilities that

might be useful for user applications are defined here. For example, the user-interface

library is in this space. The user space also holds user applications. Experimental ap-

plications and services are built on one.world, such as the user and application manager,

and the text-and-audio-messaging system [22].

Overall, one.world provides a framework for building pervasive applications. The

one.world system should be installed on attending devices before data and applications

can move around. From the user and the developer point of view, it provides a single

consistent computing and communication platform. The system is designed from the

ground up to solve the requirement for pervasive-computing-application development.

However, a limitation in one.world [22] is that it uses a programmatic data model, i.e.,

using Java classes for tuples. In order to process a tuple, the corresponding Java class

has to be available. A better solution is to use a data-centric data model such as XML

Schema to represent tuples, which makes them easier to distribute and share than Java

classes. The last report on the one.world project was in 2004.

73

4.1.5 Plan B

Plan B is an operating system for ubiquitous-computing environments developed at the

Universidad Rey Juan Carlos, Spain [9, 8]. It is derived from Plan 9 [39], which is a

distributed operating system that uses Unix files to represent specific interfaces, such

networking and user interfaces, and was developed by Bell Labs in the 1990’s.

Plan B follows the same ideas as its predecessor and extends the system to pervasive

computing. Popular elements in such environments, such as sensors, actuators, context,

events, services, and so on, are all represented as files and are handled using file-system

operations. Plan B uses a network-file-system protocol from Plan 9 to connect different

machines and import/export file systems.

Unlike other pervasive-computing systems and projects, which usually employ mid-

dleware to provide high-level abstractions and hide the heterogeneities in the environ-

ment, Plan B does not have this notion and instead uses files universally. Hence any

device capable of importing remote files and exporting local files can be part of a Plan B

system; applications become compositions of file operations, such as mount, open, read,

write, close, and so on. Users can use any languages or tools that can use files, such as

the shell and C, for the programming.

In a Plan B system, there are multiple machines, each of which has a number of

resources, such as devices attached, programs and services that are running, the owner of

the machine, and so on. When a machine boots, it exports all its resources to the network.

Each resource is exported as a file system, called a resource volume. Each volume has

a set of attributes, called constraints. These files systems may be virtual, similar to

/proc in Unix systems. Figure 4.8 [8] illustrates an example of a Plan B computing

environment. Machine #1 exports four resources, i.e., a mouse, a keyboard, a screen,

and one or more X10 devices; machine #2 exports two, i.e., an “exec” allowing users to

launch applications and a home directory. According to [8], a kbd volume is a virtual

file system with a single directory containing two files: cons and kbdctl. Reading from

cons receives key strokes that a user enters; writing to kbdctl sends control information,

such as redirecting the keyboard to another GUI. The environment of each application

consists of resources imported by the application. Each user’s environment includes all

applications’ environments that belong to him.

Machines are arranged using a peer-to-peer architecture, because each machine runs

the same Plan B system (see Figure 4.9 [9]) and can import remote resource volumes

74

Figure 4.8: A Plan B computing environment

Figure 4.9: Plan B architecture

as well export local ones. A Plan B system contains kernel modules and user modules,

represented by squares and circles respectively in Figure 4.9. Among those modules,

vols manages all resource volumes that the kernel knows, and vold discovers volumes

across the network. More information about these modules can be found in [9, 8]. Note

that not all machines have to run Plan B. As long as a machine can mount Plan B file

systems, it can use services provided by those files. Similarly, a system can export some

resources without installing the complete Plan B system. These two features facilitate

integration with other systems.

Context in Plan B is organized with three types of volumes, i.e., /who, /where, and

/what for users, places, and things respectively. Similar to other volumes, they contain

directories and files to hold information. These volumes form a hierarchical structure

to represent context. For example, /who/user/where represents the last known location

of a user. As another example, /who/user/status reports the status of a user in a way

similar to instant-messaging systems. To use context, users and applications read context

volume files. For example, ls /what displays all machines in the current environment.

To handle the dynamicity and context change, Plan B can adapt applications to new or

75

available resources based on users’ specifications and the constraints of volumes. In

Plan B, permanent context is kept in real files, while temporary context is kept in virtual

files in RAM. Users can create new context by creating new files in the corresponding

volumes.

To interact with devices, users or applications read or write the resource volumes

of these devices. Plan B has an event-delivery mechanism, implemented using volume

portfs. Port files may be created dynamically in portfs. Each message written to a port

file is delivered to all applications and users who read the same file.

To summarize, Plan B takes a different approach to pervasive computing. It abstracts

the environments using files and file-system operations, which are well established. The

networked computing platform is transparent to users and applications as if it were a

single operating system. Plan B is also aware of context and adaptable to context and

environment changes. However, as pointed out by [9], Plan B lacks a type-checking

mechanism. The control information is in the form of text. Upon erroneous operations,

the system will have to wait for user intervention to correct them. Because Plan B is built

on the operating-system level, it is difficult to interoperate with non-Plan-B systems, such

as Windows. Also, using file operations to interact with the environment gains simplicity,

but at the same time, is less intuitive and may be inconvenient for the end users.

4.1.6 Cooltown

Cooltown [38] was a pervasive-computing project initiated at Hewlett-Packard around

2001. Its goal is to build a web-based nomadic computing system. Web presence is the

central idea of this project, which means that people, places, and daily objects all have

web representations [33]. Simply put, it applies the web-page concept to people, places,

and things. Cooltown proposes that a nomadic user can get any desired information if

there is a web presence for everything, which bridges the difference between physical

space and cyber space. The overall architecture of this computing system is shown in

Figure 4.10, taken from [32].

In Cooltown, each physical object, such as a picture or a printer, is associated with

some web page that describes the object. The URL of the page is stored in some beacon,

tag, or explicit text, which is shown at the bottom of the Cooltown architecture. Users

have a handheld with a specific reader installed that can fetch the URL information from

scanning a tag, sensing a beacon, or just reading a text description. This is called URL

76

Figure 4.10: Cooltown

sensing or ID sensing. After that, the user can exchange content with different objects.

For example, in an exhibition hall, a user finds the URL of a painting and a printer. He

reads the page at the URL, which describes the picture in detail. He realizes that he really

likes the painting. Then he checks the page of the printer and determines that it is a color

printer with high resolution. He sends the URL of the painting to the printer, which then

fetches the image and prints it. The user obtains a printout of his favorite painting when

he leaves.

The “place” is the primary notion of context in Cooltown. It is a physical container

that includes things and persons. The place itself also has a web presence, which de-

scribes the place and things and persons in it by adding their URLs to its web page. By

checking the place’s web presence or web page, the user can receive information about

current things and persons it contains.

Above the web presence, illustrated by “URL” in Figure 4.10, Cooltown concentrates

on content exchange among objects, especially different devices. There are three ways

of doing that. First, one device can send content directly to another. Second, a device

can send the URL of the content to another, and the second device can retrieve the actual

content through the received URL. Third, a device can expose a configuration interface

on its web page. Other devices can configure it before use. For example, a printer

supports several resolutions; other devices can set the desired resolution through the

printer’s web page. So in this way, the initiating device can read the state and supported

77

configuration parameters of the destination device, and send content and configuration

parameters together to it, so that the content is handled in a personalized fashion.

Cooltown simply relies on the web. It does not require the handheld devices to have

specific software, such as a Java virtual machine. It provides service management and

device management through the web presence of each place. Each device provides an

operation interface through its own web presence, so that as long as a user obtains the

URL, he can control the device. It does not require a centralized infrastructure, except

that the web presence of a place maintains the available resources in it centrally.

From the middleware point of view, Cooltown does not provide many services for

pervasive computing. However, Cooltown provides a familiar interface to users, i.e.,

the web interface, through which users, environments, entities are integrated. Cooltown

uses a peer-to-peer architecture, while most of the similar systems use a centralized one.

The Cooltown project is dormant according to HP’s website (http://www.hpl.hp.

com/techreports/2001/HPL-2001-22.html).

4.1.7 The Aware Home

The Aware Home [2] at the Georgia Institute of Technology investigates health-care is-

sues of pervasive computing in a real house. The purpose of this project is to explore

how computing technologies can help people, usually elders with cognitive disabilities.

Before we describe the project, we discuss some general characteristics of health care as

an application area for pervasive computing.

First of all, the intent in applying pervasive computing to health care is to help people

live healthier lives, especially older people. Traditionally, elder care occurs in nursing

homes and hospitals, with significant reliance on professional caregivers. We expect

pervasive-computing technologies might help provide a home environment with almost

the same level of health care as a hospital. This is the long-term goal in applying perva-

sive computing in health care.

Second, there are several categories of users, such as patients, healthy family mem-

bers, caregiving nurses, and doctors. Family members could be caregivers and supple-

ment professional nurses. It is important to distinguish these categories, because the

pervasive-computing system should react differently to different kinds of users, or even

to the same kind of users but doing different jobs. For example, a healthy family mem-

ber goes to the bathroom to open the shower tap, and then the system should decide if

78

http://www.hpl.hp.com/techreports/2001/HPL-2001-22.html
http://www.hpl.hp.com/techreports/2001/HPL-2001-22.html

it is the family member who wants to take a shower or if he prepares a shower for the

patient, so the system can adjust the temperature of the water. A pervasive-computing

system for health care should provide facilities for all of the users in the environment,

and this system needs to be careful if one user’s behavior affects others. For example,

when a family member wants to play rock music, although this behavior is appropri-

ate for healthy members, it might be inappropriate for the others residing in the same

room. Generally speaking, for the residents, the system should help them avoid dangers,

such as making sure that they take medicine only at the appropriate times, or suggest

they avoid dangerous situations. For the caregivers and doctors, the system should help

them observe the behaviors of the residents, and provide history data for monitoring and

diagnosis.

The third characteristic of pervasive computing in health care is the extensive need

for context. The system should know exactly what is happening at all times. This relies

heavily on sensors and cameras, which can locate users and record their behavior. Users

may also have wearable computers and electronic badges, to cooperate with the system.

The last characteristic is that the patients or the elder residents may not always have

a clear intent about what they want or what they want to do. As a disease such as

Alzheimer’s progresses, their intent may even be inappropriate. A system should be

able to detect and infer residents’ intent. If it is appropriate, such as a user vaguely re-

membering to take medicine before dining, the system should assist users, such as by

reminding them where the medicine is and so on. Otherwise, the system should notify

the caregivers and intervene necessarily if users intend to perform actions that may hurt

themselves. This does not mean that the system should override users. Instead, it should

be careful and behave in a way that makes users feel comfortable. In general, the system

should remain backstage and assist users unobtrusively, not disturb them.

Although there are some special considerations in health-care applications, the theme

of pervasive computing does not change, which is still the seamless integration of all

kinds of devices and services, calmly and invisibly. Now we return to the aware-home

project.

This project has been deployed in a real house since 1999. The project has three main

goals. One is crisis prevention, which tries to prevent bad things from happening to elder

people. The second is memory augmentation, which attempts to compensate for a lack of

short-term memory. This happens especially in situations that involve many steps, such

as cooking. Memory augmentation is implemented through many digital cameras, which

79

Figure 4.11: Context-based infrastructure of the Aware Home

take live pictures at some frequency. When a user forgets what he did, the system can

play back these pictures to remind the user. The third goal is social connection, especially

supporting the connection between elder people and their adult children. Adult children

do not usually live with their parents, so they often worry about them. Thus, the project

seeks to build a communication channel between parents and children, which will give

both live pictures of each other. This provides “peace of mind.”

Obviously, context-awareness is the core of the Aware Home, since the system needs

to know the house in detail. Many sensors are installed in the home, such as the smart

floor. Each sensor is represented by a software widget, which has attributes, values,

and associated events. A context server manages widgets in terms of aggregation of

context. When dealing with context, the Aware Home also has some interpreters to

abstract raw context into meaningful information. Applications can obtain interpreted

and/or aggregated context information from the context server. This forms a context-

based infrastructure (see Figure 4.11 from [16]) for the Aware Home.

The overall system architecture of the Aware Home is illustrated in Figure 4.12. We

can see that INCA & GRBAC are based on the context infrastructure. INCA stands for

infrastructure for capture and access. It provides architectural support for applications

that need automatic capture of and access to data, including storing history data for fu-

ture access. In a health-care pervasive-computing environment, historical data is very

important to both the system and the caregiver, so that they can track the behaviors of

older people.

80

Figure 4.12: The Aware Home architecture

INCA is implemented as a generic database system with some common services. It

is generic in that it supports any kind of data. Common services are services that may

be useful for many applications, such as audio capture, and attribute-based access and

information integration.

GRBAC is an extension to traditional role-based security systems. Role-based access

control (RBAC) defines a users’ access based on the user role. For example, if a user has

the role “parent,” he has the right to do everything at home. Otherwise, if a user has

role “child,” he can only do more limited things at home. GRBAC extends RBAC by

introducing object roles and environment roles. Environment roles define where or when

things happen. Object roles define what kinds of objects are manipulated. For example,

we can define “weekend” as an environment role, and define “TV,” “VCR,” and “game

box” as object roles: entertainment devices. Then we can say children (a role in RBAC)

can use entertainment devices (object role in GRBAC) on the weekend (environment role

in GRBAC). GRBAC implements security management in the Aware Home.

At the layer above INCA and GRBAC, there are applications designed to support

older people in a pervasive-computing environment. Examples are the digital family

portrait [37] and the personal audio loop [25]. The digital family portrait is an applica-

tion that connects two houses; at one house, digital cameras take live pictures and the

application sends pictures to another. In this way, children at a remote house can know

the current situation of their parents. They can verify that their parents are well. The per-

sonal audio loop is an application that captures audio at one place and plays that audio

back elsewhere when required.

The Aware Home research involves computer science, medical science, gerontology,

and other areas and is now growing to a large research base where many interdisciplinary

81

projects are developed actively. The interdisciplinarity of the Aware Home also exempli-

fies a recent trend in pervasive computing, which is exploring it in other domains, such

as health care, transportation, sports, real-world deployment, urban computing, and so

on. These fields provide many new opportunities for pervasive computing. However,

the progress and success of interdisciplinary research depends on pervasive-computing

middleware, platform, and integration, which is the focus of this literature review.

There are too many pervasive-computing systems to be listed. We select and discuss

those that are relatively large and act more as computing platforms than applications.

The next two sections summarize them by discussing their recurring themes and insuffi-

ciencies.

4.2 Recurring themes

Pervasive computing is a trend that emerged from distributed and mobile computing. Its

goal is to integrate devices and technologies in smart spaces so that they weave them-

selves into people’s daily lives. Many projects have detailed this vision from different

perspectives, such as adaptive systems, context-aware computing, data and program mi-

gration, and so on. To achieve these aspects, abstractions are needed, such as the abstract

task description in Aura or using files for resources in Plan B. Also, although these ab-

stractions may be at different levels, like the middleware level or the operating-system

level, they all provide users with a consistent view of the system, so that users and de-

velopers concentrate on high-level logic, while the platforms handle the environments.

Although different systems have different designs and goals, they exhibit some similar

features that we call recurring themes. Figure 4.13 illustrates a general architecture of a

pervasive-computing platform. Each module represents a recurring theme.

At the bottom level, there is the runtime and communication module. Above this,

there are five fundamental modules for security, context, services, devices, and data.

The user interface is built on top of these basic modules. Then there are the users and

applications. Note that the boundaries of these modules are not always clear and precise,

and the layering may be different. For example, in some sensing-intensive systems,

devices, such as sensors, are usually at the bottom of the system. Hence, recurring themes

are discussed more from the functional than structural point of view.

The runtime module provides communication and coordination support, such as re-

82

Runtime and communication

Security Context Service Device Data

Interface

Users and applications

Figure 4.13: General architecture and recurring themes

mote-method invocation and remote-procedure call (RMI/RPC), message-based commu-

nication, stream-based communication, publish-subscribe-based communication (pub-

sub), or tuple-space facilities. The runtime may also be responsible for naming in the

system.

The security module is responsible for authentication and registration, access con-

trol, and secure transmission of information. Users in a pervasive-computing system are

nomadic. Some of them are static, such as employees; some are dynamic, such as visi-

tors. The security module should grant different permissions to different kinds of users,

instead of simply disabling visitors. A pervasive-computing system tends to have many

more devices and resources than before. A flexible access-control strategy over users ac-

cessing resources is necessary. Also, wireless network technologies are used extensively

nowadays. The security module enables secure transmission of information over both

wireless and wired networks.

The context module concerns context representation, context collection, context in-

terpretation (processing raw context into a form understandable to a system or program),

and context composition (synthesizing several low-level contexts into a high-level one).

Context information is usually collected by various sensors and is hence heterogeneous.

Some is continuous, such as room temperature; some is discrete, such as a telephone

ring; some is static, such as a room number, and some is dynamic, such as the number of

users in the room. An important function of this module is masking the heterogeneity of

context and providing the rest of the system with a universal interface to deal with con-

text. Accessing context may also be part of a context manager. Many systems provide a

publish-subscribe mechanism to facilitate accessing context. A typical context manager

83

Low level

context

provider

Low level

context

provider

Low level

context

provider
. . .

Context engine

Application Application Application. . .

High level context

Context inference Context synthesis
Context format

conversion

Figure 4.14: Context manager

is shown in Figure 4.14.

The service module mainly concerns service registration and discovery. Service

providers first register themselves with this module, then applications discover services

dynamically. Different vendors could provide services in different formats. This results

in heterogeneous services. A pervasive-computing system can either use some wrapper

for services, or require services to follow a set of standards. In addition, applications and

users are dynamic, as they come and go. Users walking into a new environment cannot

necessarily know the available services in advance. So they tend to describe services

abstractly. The service module thus should be able to find the appropriate actual services

to match the abstract descriptions.

The device module keeps track of devices in the current environment. Devices may

be sensors and actuators; they may also provide some services, such as a printing service

provided by a printer, or use other services, such as a handheld using a desktop computer

to compute some tasks. The device module and service module are overlapping to some

extent. However, many existing systems tend to have a dedicated device manager to

make the system flexible.

The data module concerns information about or related to the user. This could be

work documents, personal preferences, application-execution status, entertainment files,

address books, or any other personal data. This module may perform two main functions.

First, it keeps track of the data and synchronizes it when it is scattered across different

places or programs, for example two schedules, or two address books. The data manager

is a portal from which users and applications access desired data, especially when the

user is remote from the current environment. The point is that the user does not need to

84

remember or care where the data is located physically.

The other function of the data module is the transcoding that filters the data and trans-

forms it to suit applications or devices. This could happen when a program imports some

data that does not have a consistent format. File-format transfer can also happen when

data moves to a resource-limited mobile device. If that device does not have an appro-

priate program or enough resources to open the data, then the personal-data management

module will transfer the source data to an appropriate format or reduce the quality of the

data, such as reducing the resolution of a picture.

The interface module concerns the human-computer interaction (HCI). In a smart

space, devices are pervasive and heterogeneous. Users are not restricted to keyboards,

mice, and screens. Input or output may happen at different places with different devices.

The user-interface module controls these things. For example, it manages input from the

user explicitly or implicitly (no explicit command from the user); it transforms input data

to fit the program and output data to suit the user’s current device.

We have summarized the recurring features of pervasive-computing systems. These

systems make solid contributions in that they bring the Weiser’s vision of pervasive and

ubiquitous computing clearer and closer. They also show us the recurring themes in terms

of system design and construction. However, these systems are not complete and have

some issues, such as isolation from each other, no standardization and so on. Section 4.3

discusses them in detail.

4.3 Insufficiencies in previous systems

Previous systems spend much effort on exploring various aspects of pervasive comput-

ing, and they usually stand alone. Inter-system integration is not often considered. Hence

existing systems are mostly isolated from each other. They are not built on standards.

Their short lifespan indicates that further evolvement and adoption may be difficult.

Many of these systems also have a high barrier to entry because of particular system

requirements, documentation incompleteness, and limited number of users. We consider

these missing points from first-generation systems. Sections 4.3.1 to 4.3.4 elaborate on

them.

85

4.3.1 Isolation

Existing systems are usually designed to solve one or a few aspects of pervasive comput-

ing, for example Aura features user-intention detection and proactive computing, while

iRoom focuses on collaboration. They are often tailored for specific environments, such

as offices or homes. These systems may be comprehensive but none is complete. This

means individual systems would have to cooperate to paint a complete picture of perva-

sive computing.

However, existing systems usually make different assumptions about parts of a sys-

tem while developing solutions. For example, Aura assumes the environment is often

disconnected, so it incorporates the Coda file system for such disconnected operations,

while Gaia assumes file systems should be associated with context, hence it includes

CFS. Solutions from one system may not necessarily fit in the assumptions of another,

which prevents the two systems from being merged into one. For example, SOUPA is an

ontology framework developed for pervasive and ubiquitous computing, while Gaia uses

first-order logic to deal with context. Besides, different systems usually have different

views for users, objects, context, and so on. The mechanisms and techniques used in

these systems are diverse. The programming languages for developing new applications

may also differ from each other.

The result is that each system works within its own territory, but isolated from each

other. The differences in architectures, constraints, interfaces, message types, and many

other aspects prevent systems from interacting with each other. Interoperability is highly

desired in pervasive computing, but it has yet to be achieved.

4.3.2 Insufficient integration platforms

One aspect of pervasive computing is seamless integration of software and hardware

components into a unified system, so that human users can use it easily and consistently.

Previous work in this direction is usually insufficient for two reasons. One is that the in-

tegration tends to provide managerial components to users and applications while hiding

the individual service or device from them, such as the environment manager in Aura.

The advantage is that applications can use abstract descriptions for services and devices

and let the system do the mapping. The disadvantage is that it becomes less convenient

and more cumbersome when applications or users want to access specific devices or ser-

86

vices, such as a user controlling nearby lamps from his laptop. The desired approach

is to provide the high-level interfaces for managerial components and also expose the

low-level interface for devices and services to users and applications.

The other reason for previous integration platforms being insufficient is that they

often lack a consistent view of users, applications, services, and devices. There is no

consistent naming scheme for these entities. In many cases, previous systems focus on

building applications using services and devices. It is convenient for users to use devices

and services, but less convenient for devices to initiate an interaction with users without

using an application. A desired platform should identify users, devices, and services

consistently, not only in local environments, but also across them. This platform should

also allow all entities to interact with each other in an easy way.

4.3.3 No standards

Pervasive computing is a pioneer field compared with distributed and mobile computing.

Researchers have explored many possibilities of it and made much progress. At the

same time, none of the previous projects has prevailed in practice. One of the reasons

is that they are not based on standards. Existing projects use their own formats for data

representation, communication, accessing context, and so on. It is difficult for systems

to interact.

It is important to introduce standards into pervasive-computing systems. It enables

interoperability among them. It also ensures compatibility when systems evolve. With

standardization, different systems may be combined into one that is truly ubiquitous and

pervasive.

4.3.4 High barrier to entry

A pervasive-computing system usually involves many components and groups of users.

In order to make such a complex system pervasive, the barrier to entry has to be low

for both professionals and non-professionals. Early systems are often built in order to

explore novel ideas. They have core components but may lack finishing touches. In

order to turn them into realistic systems, developers may have to deploy or develop more

facilities or components. For example, in Cooltown, a beacon has to be in place for every

object of interest.

87

Existing systems tend to be targeted to professionals, such as researchers and devel-

opers, hence the system may be too complex for non-professionals to perform simple

tasks. For example, iRoom addresses data moving, control moving, and application col-

laboration, while a home user may just want to interact with surrounding devices most

of the time, which may not necessarily utilize the core functions provided by iRoom. We

believe a system should be designed to facilitate the implementation of new ideas for

professionals, as well as to make basic tasks easy for non-professionals.

Besides, existing systems are used mainly by a small number of researchers, which

means limited community support. Documentation is often insufficient. Few program-

ming languages are supported, such as C++ and Java in Gaia. All these create a high

barrier to entry, which prevents developers from prototyping quickly and extending sys-

tems with new functionality. These barriers also hinder non-professional users from

using the system and adopting it in their daily lives.

Isolation, insufficient integration platforms, the lack of standards, and the high barrier

to entry are major common deficiencies in previous research. They are also related; for

example, standardization helps reduce the barrier to entry and promote interoperability.

With regard to this thesis, the survey on previous systems provides us insight into

other pervasive-computing systems. The recurring themes and insufficiencies guide the

design and construction of our non-intrusive-computing system. The next chapter de-

scribes a non-intrusive-computing system.

88

Chapter 5

A non-intrusive-computing system

The goal of non-intrusive computing is to help users manage interactions in a pervasive-

computing environment, so that non-deliverable interactions do not disturb users, while

deliverable ones are delivered to users appropriately. Given the model and the discussion

in Chapter 2, we need to address a number of problems to make non-intrusive computing

possible. For example, context needs to be collected and exposed to the model, there

should also be a security mechanism to protect users from malicious interactions, and so

on. The non-intrusive-computing system not only implements the model, but also solves

these system issues.

In this chapter, we describe such a system. Inspired by Jabber, an open-source IM

system, which will be detailed in Section 5.2, our non-intrusive computing system con-

sists of middleware and application logic for filtering and delivering interactions. These

two major functions are implemented based on system abstractions, services, and facili-

ties, such as a general communication mechanism among different entities, a consistent

naming scheme, and so on. In addition, the system is able to span multiple administrative

domains and federate with other similar systems.

This chapter has three sections. Section 5.1 is an overview of the system. Although

the system is inspired by and built on Jabber, the discussion is kept on a high level without

using Jabber terms. The focus is to explain the system structure, its functional compo-

nents, and their compositions. Section 5.2 describes the enabling technology, Jabber,

and how the system components and requirements map to Jabber features and protocols.

Section 5.3 discusses details of our implementation, how various pieces fit into the over-

all system, and the system overhead. Section 5.4 studies the Code Blue scenario to show

89

Universal Communication

and Naming Bus

Universal Communication

and Naming Bus

ACL Preference

Augmented space

Human

users
Devices

Context

manager

Security

Willingness

propagation

Universal Communication

and Naming Bus
Communication

Naming

Services

Legend:

Server or

server module

Client

Storage

Server-server

communication

Client-server

communication

Figure 5.1: Overview of the non-intrusive-computing system

how non-intrusive computing may be applied.

5.1 Overview of the non-intrusive-computing system

In Section 1.2, we briefly mention the design principles of our system. In general, the

system should be a platform that can integrate hardware and software components. The

system should also have a naming scheme for entities. It should also provide context and

security support. When the system is built, we should use standardized technologies and

reuse existing components. Figure 5.1 is an overview of our system. It follows these

principles.

The simplest non-intrusive computing system starts from a single system with a

client-server architecture, as shown in Figure 5.1. Then multiple such systems federate

together through server-to-server communication and form a larger distributed system.

A single system usually integrates with a smart space and manages local clients, such as

users, devices, and services.

In a simple system, there are a server and a number of clients. The server provides

core facilities and functionalities, such as security and naming, and acts as a communi-

cation bus for clients. Clients from different systems can also communicate with each

other with the server-server communication. Clients may perform various functions in

the system. They can be pure messaging clients, such as Google Talk, device clients,

90

such as a printer or a sensor, or service clients that provide services that the server does

not have and are considered server extensions, such as the context manager.

The server is called UCNB (for Universal Communication and Naming Bus). As

indicated by the name, the server provides naming and communication infrastructure for

the system. The communication mechanisms are versatile, including message-oriented

communication, streaming-voice communication, remote procedure call (RPC), ad-hoc

commands, and so on. The naming scheme is similar to that of electronic-mail systems.

Each UCNB server has a unique domain name; clients have their names concatenated to

the server name. Each UCNB ensures that there are no naming conflicts within its own

domain.

Other than naming and communication, the UCNB also has a security module. Clients

have to be authenticated by the server to use the system at all. The server also main-

tains an access control list (ACL) for each client, as shown in Figure 5.1. Basically, an

ACL contains a list of clients and specifies their rights to communicate with the ACL

owner. The ACL may be divided into a number of groups, with group-based authoriza-

tion. Clients can also interpret their ACLs in different ways. For example, one client may

grant communication for all clients on its list, while the other may deny communication

for those on the list. More importantly, ACLs are the basis for propagating willingness,

which is also the presence model in Jabber (Section 5.2).

As discussed in Section 2.3, the filter stage of non-intrusive computing compares the

unwillingness and the importance. The sender specifies the importance and the receiver

specifies the willingness. Thus, the willingness needs to be propagated to the sender so

he can perform the comparison. If the willingness changes, the new value should also

be propagated. For a given user, the UCNB server only broadcasts his willingness and

updates to other users on his ACL.

We choose the sender to decide deliverability of interactions and filter them, as op-

posed to the receiver, the UCNB server, or a third party, such as a service client. This

is based on the assumption that we are dealing with time-coupled interactions, and con-

sideration that the server should be simple and generic. First, suppose the receiver client

is to do the filtering. All interactions will be transferred from the sender side to the re-

ceiver side. If an interaction is indeed intrusive, the receiver client either holds or deletes

it. However, since it is time coupled, it is of little interest to the receiver if it cannot

be delivered immediately. So the system makes unnecessary transmissions. Second, we

do not let the server make the filtering decision, because filtering is a specific high-level

91

function that should not be the server’s responsibility. Third, although a third party may

be capable of filtering interactions, it requires the importance and willingness to be prop-

agated, then the decision propagated back. Obviously, this approach is cumbersome. So

having the sender decide matches intuition and may achieve some load balancing, as the

filter and delivery stages are implemented on the sender and the receiver respectively.

There is storage for various preferences in UCNB. It is a generic data-storage mecha-

nism, and clients usually use it to specify such preferences as how to handle the delivery

of an interaction. For example, a user may prefer to deliver an interaction to her laptop

instead of her cell phone if both satisfy all other criteria in the delivery stage. As it is

generic storage, clients can use it store any specific data.

Notice that the server does not provide context service itself, leaving that responsi-

bility to a separate client. This arrangement makes the server robust and simple. The

system is also extensible, given the split between the server and the clients. We can

easily replace or upgrade the current context manager with a new client without affect-

ing the whole system. The client-server and server-server communication interfaces are

standardized, which increases the system extensibility further.

Next, we describe Jabber that inspires and enables our non-intrusive computing sys-

tem.

5.2 Jabber

Jabber is an extensible IM system. More precisely, Jabber is a set of streaming XML

protocols and technologies that enable any two entities on the Internet to exchange mes-

sages, presence, and other structured information in close to real time.

5.2.1 Jabber overview

Jabber is an open-source instant-messaging-and-presence system. The Internet Engi-

neering Task Force (IETF) has standardized the core Jabber protocol as the eXtensible

Messaging and Presence Protocol (XMPP) [45]. Jabber extends traditional IM systems

in the following ways.

• Traditional IM enables message transfer between two people. Jabber enables this

between any two entities. An entity can be a person, a device, a software service,

92

Jabber

Server

Jabber

Server

(Google

Talk)

Jabber

Server/

Gateway

Smart

Space

Application

AIM

MSN

Email

SMS

Figure 5.2: Jabber system illustration

or a conference room. Each entity has a unique Jabber ID (JID). Most of the JIDs

take the form user@domain. For more information about JIDs, see the XMPP

Core specification [45].

• The Jabber system has gateways to other environments, such as other IM systems,

electronic mail, and short message service (SMS), so that a Jabber user can talk

with an MSN messenger user, electronic mails can be forwarded to a Jabber user,

a Jabber user can send a short message to a cell phone, and so forth.

• Jabber defines a set of enhancement protocols on top of XMPP, such as ad-hoc

commands, Jabber RPC, pubsub, and so on.

• The architecture of the Jabber system is distributed. A Jabber server has a number

of registered clients. Clients on the same server interact through that server; clients

on different servers interact through server-to-server communication.

Figure 5.2 illustrates the concept of the Jabber system. In the middle of the figure,

there are three Jabber servers and gateways. Each server has a number of Jabber clients.

These clients can be regular desktop/laptop users or PDA users. The clients can also

be sensing and actuating devices, such as a web camera or a speaker. In addition, the

clients can be software applications, which may provide some service to the system,

such as the context-manager application in the figure. We can also see that Jabber can

connect with other systems directly or thru gateways. For example, it is able to federate

with Google talk directly, and communicate with electronic mail systems, SMS systems,

93

user@domain

and traditional IM systems, such as AIM or MSN messenger, through the corresponding

gateways.

Next, from Section 5.2.2 to 5.2.5, we discuss some of the Jabber features relating to

the non-intrusive-computing system.

5.2.2 Jabber naming

Jabber has a naming scheme for both users and objects, which are all Jabber entities.

Jabber uses Jabber IDs (JID) to identify entities. A JID is similar to an electronic-mail

address. For example, a JID for Hao Chen is h8chen@jabber.uwaterloo.ca, and

a JID for a printer in the Shoshin lab is hplaserjet@jabber.uwaterloo.ca. If

a user has multiple devices, such as a laptop and a cell phone, we can identify them

as resources of the user. So the JIDs for Hao’s laptop and cell phone are h8chen@

jabber.uwaterloo.ca/ThinkPad and h8chen@jabber.uwaterloo.ca/

motorola respectively. In principle, any entity is allowed to have multiple resources.

For example, a printer has printing options for color and black-white. We can use,

for example, hplaserjet@jabber.uwaterloo.ca/color and hplaserjet@

jabber.uwaterloo.ca/blackwhite to represent them.

5.2.3 Jabber communication mechanism

Although Jabber is an instant-messaging-and-presence system, it enriches the communi-

cation support beyond chat to many other interaction semantics, such as Jabber RPC [XEP-

0009]1, ad-hoc commands [XEP-0050], streaming audio and video [XEP-0166], and so

on. Interactions can happen between any two Jabber entities and in any format supported

by Jabber.

In Jabber remote procedure calls (RPC), the remote server is a Jabber entity, which

we call an RPC server to differentiate it from other Jabber servers. It has procedures that

can be called by remote clients, also Jabber entities. A client sends an XML message

that encodes the server’s JID, method name, and parameters to the RPC server. The RPC

server processes the request and returns an XML message to the client. In fact, Jabber

RPC implements XML-RPC [65] over XMPP.

1The bibliography for this protocol is [66]. For other XEPs, please refer to the same entry.

94

h8chen@jabber.uwaterloo.ca
hplaserjet@jabber.uwaterloo.ca
h8chen@jabber.uwaterloo.ca/ThinkPad
h8chen@jabber.uwaterloo.ca/ThinkPad
h8chen@jabber.uwaterloo.ca/motorola
h8chen@jabber.uwaterloo.ca/motorola
hplaserjet@jabber.uwaterloo.ca/color
hplaserjet@jabber.uwaterloo.ca/blackwhite
hplaserjet@jabber.uwaterloo.ca/blackwhite

A Jabber entity can implement ad-hoc commands; other Jabber entities can invoke

these commands with XML messages. For example, a smart light might support such ad-

hoc commands as “turn on,” “turn off,” “dim,” and so on. Ad-hoc commands are similar

to Jabber RPC in that they support interactions between two Jabber entities. But ad-hoc

commands fit better than Jabber RPC in the situation where human users are involved

and ad-hoc commands are not known beforehand. In other words, the client of a human

user can send an XML message and discover what commands are supported, and then

present an interface for the user to pick one to execute.

Before executing the ad-hoc commands, the two entities need to exchange arbitrary

command data. Jabber defines a protocol, Data Forms [XEP-0004], to describe generic

data. It is useful not only for ad-hoc commands, but also for any situation that exchanges

arbitrary data. It assumes a style of forms-based request and response between the enti-

ties.

Most forms of Jabber communication have one or more Jabber servers involved, de-

pending on whether two communicating entities are on the same server. This is a type of

client-server communication. Jabber also supports peer-to-peer communication, which

is mainly for streaming audio and video sessions. When two entities want to start such a

session, they first negotiate, through Jabber servers, data coding/decoding (CODEC) pro-

tocols and the transport candidates, such as IP addresses, ports, transport protocols, and

so on. Then the two entities transfer multimedia data directly using the agreed CODEC

and the transport candidate.

In addition, Jabber has a pubsub facility [XEP-0060], in which both publishers and

subscribers are Jabber entities. A publisher publishes a message item to a topic, and

then all the topic subscribers will receive the newly published item. This communication

mechanism disengages publishers and subscribers. A publisher does not need to know

who will receive the message, and a subscriber does not need to know who sent it. This

pubsub mechanism is ideal for context-aware systems, where context providers and con-

sumers can be associated and disassociated dynamically. For dynamic context or context

changes, the consumers do not need to poll individual providers or check with a context

manager periodically. Instead, the pubsub system pushes new items to all subscribers in-

stantly. Essentially, the pubsub facility provides a time-coupled and reference-decoupled

communication channel that is common in pervasive-computing environments.

95

Authentication and

secure transmission

Subscription and

presence model

Server-side

privacy list

Granularity

Fine

Coarse

Figure 5.3: Jabber security

5.2.4 Jabber presence and security models

Similar to other instant-messaging systems, Jabber has a presence model that allows en-

tities to subscribe to presence and updates from each other. This provides an opportunity

for an entity to authorize other entities at its own discretion, hence the presence model

also becomes part of the security model. Jabber supports security in three layers (Fig-

ure 5.3).

At the bottom layer, it uses TLS [17] for secure data transfer between clients and

servers, among servers, and among server components inside a server. It also uses

SASL [36] to support authenticating users. These ensure the data stream remains intact

and users are who they claim to be. An implementation of the Jabber server can sup-

port various authentication modules. For example, the Openfire Jabber server (http:

//www.igniterealtime.org/projects/openfire/index.jsp) supports

MySQL, PAM (pluggable authentication modules), and others.

The next layer of Jabber security is achieved by the presence model. It works as

follows. Entities may subscribe to each other’s presence. If an entity updates its pres-

ence, the Jabber server will deliver the updated presence to all other subscribers. The

presence model is used for the receiver to transfer his willingness to the sender in the

filter stage (see Section 2.2). The presence model also helps protect users’ privacy. If

one entity wants to know the presence and availability information of another entity, it

has to subscribe and obtain consent from the other entity. If the subscription request is

granted by the first entity, the Jabber server will disclose the presence information and

any updates of the subscribee to the subscriber. In Jabber, the presence information may

96

http://www.igniterealtime.org/projects/openfire/index.jsp
http://www.igniterealtime.org/projects/openfire/index.jsp

be extended to include user activities [XEP-0108], mood [XEP-0107], locations [XEP-

0080], tunes [XEP-0118], and so on, to describe the user’s status in detail. The Jabber

subscription relationship could be one-way, two-way, or none. Every entity has a ros-

ter that lists JIDs with which it has subscription relationships. Users can define groups

inside the roster to categorize the contacts.

The third layer is the server-side privacy list [XEP-0016] that provides a fine-granu-

larity security mechanism. Server-side privacy lists allow users to deny or allow certain

XML messages based on JIDs, roster groups, or subscription status. There are three

kinds of XML messages. The first kind is the Message stanza, with which users chat

with each other or send messages. The second is the Presence stanza with which entities

exchange presence information. The third is the IQ (Info/Query) stanza, which is for

information, query or configuration purposes. The server-side privacy lists define rules

or policies for the server to process XML stanzas. In detail, the Message, the Presence,

and the IQ stanzas may be allowed or blocked based on specific JIDs, a user’s roster

groups, or a user’s subscription types.

With privacy lists, a user can specify list rules, for example, denying all of the Mes-

sage stanzas from a list of JIDs, or blocking the inbound/outbound Presence from/to a

particular group, or all of the IQ stanzas from those entities with which the current user

has a “From” subscription relationship. “From” means that entity is subscribed to the

current user, but not the other way. Jabber defines a few subscription relationships, such

as “To,” “From,” “Both,” “From + Pending out,” and so on. For a detailed explanation of

these, refer to the Jabber protocol, XMPP IM [44]. Note that this server-side-privacy-list

is unable to allow or block stanzas in further granularity. For example, it cannot control

communication based on the namespace of an IQ stanza.

When a server is going to send an XML stanza to the user, the server first checks the

privacy lists to filter undesired messages for the user. The privacy lists are flexible. Users

can specify multiple lists and they can modify the lists at any time.

5.2.5 Jabber storage

Jabber allows its clients store arbitrary XML stanzas on the server. The data can then

be retrieved by the same client [XEP-0049]. Aside from this general-purpose storage

facility, Jabber can also store shortcuts to various services and resources for users [XEP-

97

0048]. These shortcuts may be in two forms, a URI or a Jabber conference room. These

server-side storage facilities allow clients to save their preferences when needed.

5.2.6 Jabber and the non-intrusive-computing system

We mention that our non-intrusive computing system is inspired by and based on Jabber

technologies. We choose Jabber because its design, architecture, and features match the

requirements of non-intrusive computing.

The goal of non-intrusive computing is to control interactions in a ubiquitous-compu-

ting environment. Interactions are generic and not in a particular format. So first of all,

the system has to support different communication mechanisms. Jabber, as an extended

IM system, provides a rich selection of communication methods (see Section 5.2.3).

Second, non-intrusive computing manages interactions regardless of the senders and

receivers. That is to say they do not necessarily have to be human users, especially

for the senders. In pervasive computing, many smart devices or programs are able to

initiate interactions. This requires the system to support users, devices, and software

components universally. Participants in Jabber systems are not confined to particular

users or devices. Instead, any entity that implements the XMPP-Core and XMPP-IM

protocols can establish a connection with a Jabber server and interact with other entities

on any Jabber server. The open architecture and standardization are strengths of the

Jabber platform, and ease its adoption.

Third, one of the core ideas of non-intrusive computing is filtering non-deliverable

interactions by comparing the importance with the importance threshold (unwillingness).

This requires these two factors to be available at the same time and in the same place. The

IM presence model supports this well by propagating presence updates to all subscribers.

Jabber even has an enhanced presence model that carries more information, such as lo-

cation [XEP-0080], activities [XEP-0108], mood [XEP-0107], and so on. Although as

described in the protocol [XEP-0163], these pieces should be delivered to subscribers

through the pubsub facility instead of the native presence-model implementation in the

Jabber server, it makes no difference to non-intrusive computing in this regard. Note

that all this extended presence information does not provide values for willingness di-

rectly. Instead, they offer context that may be used by a system to infer willingness more

accurately.

98

Jabber’s various facilities, such as private XML storage (Section 5.2.5) and security

support, are suitable for non-intrusive computing as well, as we can see that in Sec-

tion 5.1, there is the ACL and Presence storage in the universal communication and

naming bus.

Other than these compatibilities, Jabber has a number of other advantages that make

it viable for non-intrusive computing.

• Jabber has an increasing user base, and has become more popular with the intro-

duction of Google talk. Jabber also has prompt and quality community support.

• Jabber has a rich set of resources including servers, clients, and coding libraries,

which provide a low barrier to entry for both developers and users.

• Jabber uses XML to communicate among entities, which enables us to leverage

existing XML technologies, such as XQuery [11].

Because of all these merits, it is reasonable and practical to choose Jabber and build a

non-intrusive-computing system on it; the detail is in the next section.

5.3 System implementation

We reviewed the architecture of the non-intrusive system in Section 5.1 and explained

the Jabber framework in Section 5.2. As we know, Jabber provides many mechanisms,

protocols, and software, some of which may be used directly in our system, such as the

Jabber server, its security mechanisms, the communication protocols, the private XML

storage, and so on. However, to construct a full system for non-intrusive computing,

we need to develop some new components. There are two major parts missing. One is

the context manager; the other is incorporating the comparison model in the filter stage

and the selection criteria in the delivery stage into the system. Sections 5.3.1 and 5.3.2

describe these two parts respectively.

5.3.1 Ontology and context manager

In the modeling of non-intrusive computing, we use context in both the filter stage (Sec-

tion 2.3) and the delivery stage (Section 2.4) to refine the parameters and achieve better

99

results. At that time, we simply used context as a system support and assumed its exis-

tence. In order to realize that assumption, two issues about context should be considered.

The first is the format for representing context information. The second is how to manage

context so that it can be accessed easily by users and applications.

We choose the Web Ontology Language (OWL) [50] to represent context data. An

ontology describes concepts and their relationships. OWL was developed by the World

Wide Web Consortium (W3C) to describe and process information on the web. The un-

derlying data model is the Resource Description Framework (RDF) [51]. RDF describes

knowledge using triples of a subject, a predicate, and an object. The object in one triple

may be the subject of another. Hence, RDF data can form a graph. Using web ontologies

is a significant trend, as both OWL and RDF are open and standardized by W3C. Fur-

thermore, they are designed to be exploited by computers. Once data is in the form of

ontology instances, any entity that understands that ontology is able to process the data.

OWL is written in XML. Proprietary formats tend to isolate a system, hence reducing its

usefulness.

In order to access ontologies, Jena [26] is used. Jena is an open-source programming

framework for web ontology applications. Jena has APIs to read and write OWL data.

More importantly, Jena has a built-in SPARQL [52] inference engine.

SPARQL is a language for querying RDF data, defined and standardized by W3C.

The name is a recursive acronym for “SPARQL Protocol and RDF Query Language.”

Since OWL uses RDF as its data model, and RDF instances are expressed in the form

of triples, SPARQL queries are based on the triple pattern. At the same time, SPARQL

queries are similar to SQL queries for databases. For example,

select ?employee

from employee.owl

where

{

?employee age ?x .

?x greater_than 40

}

This query returns employees who are older than 40. ?Employee is the variable contain-

ing the return values. ?X is a temporary variable. Age and greater_than are predicates.

100

Each clause in the where portion of the query follows the (subject, predicate, object) pat-

tern. SPARQL queries may ask for any elements in the triple, i.e., a subject, a predicate,

or an object, or may query multiple elements at the same time. The following query

returns all triples in the RDF graph for employees.

select ?subject ?predicate ?object

from employee.owl

A SPARQL query can also use multiple temporary variables, but none of them is returned

in the results. The result of a SPARQL query consists of values for each selected variable.

If there are multiple results that satisfy the where condition clause, these results are all

returned. SPARQL results may be transferred over the network, in the XML format

defined by W3C [53]. More information about SPARQL and its XML format can be

found at their websites.

We further adopt the SOUPA ontology (Standard Ontology for Ubiquitous and Per-

vasive Applications [15] as the basis for context in our system. SOUPA is designed

to model and support pervasive-computing environments and applications. It includes

general descriptions and relationships about basic elements in a pervasive-computing

environment, such as persons, spaces, devices, and so on. Figure 5.4 (taken from [15])

overviews SOUPA. Each box represents an OWL class, which may include sub-classes.

For example, Device has a subclass for cell phones. Classes are related through object

properties. For example, the device class defines an object property, hasUser, whose

subject is a device and object a person. SOUPA is currently the most comprehen-

sive ontology for pervasive and ubiquitous computing. The complete SOUPA descrip-

tion is found on its website (pervasive.semanticweb.org/soupa-2004-06.

html). However, despite the maturity of SOUPA, it is still necessary to extend it to sup-

port our system properly.

The space ontology in SOUPA includes two sub classes, GeographicalSpace and Ge-

ographicalRegion. Their objects are like DC3552D and the city of Waterloo respectively.

The SOUPA space also defines some properties, such as spatiallySubsumes, hasCoordi-

nates, and controlledBy. Conversion among different measurements and representations

of spaces can be done. Clearly, SOUPA tries to provide general and complete vocabulary

and concepts and to differentiate them. The device and person ontologies are similar.

Note that in a pervasive-computing scenario, it is important to relate things to form

101

pervasive.semanticweb.org/soupa-2004-06.html
pervasive.semanticweb.org/soupa-2004-06.html

Figure 5.4: SOUPA ontology

context, such as combining users and locations to conclude who is where. SOUPA, how-

ever, is insufficient in this regard. Although, it does have the notion of a device’s user, i.e.,

hasUser, it does not define where devices and persons are located. Both relationships are

necessary in the non-intrusive-computing system, because selecting delivery candidates

requires this knowledge to determine which devices are co-located with the receiver and

if there are other users around. To address this problem, we add two properties. One

is spatiallySubsumesDevice, whose subject and object are a GeographicalSpace object

and one or more Device objects respectively. The other is Location, whose subject and

object are a Person object and a GeographicalSpace object respectively. We also extend

Device to a few sub-classes, such as Printer, PC, and so on. Necessary properties are

also defined, such as notification methods and the effectiveness and overtness values.

We decide to choose SOUPA ontology to represent context in our system, and use

SPARQL to query and access it. We now build a context manager that use both mecha-

nisms to provide context to applications.

New Jabber entities can be implemented either as clients or as external server com-

ponents. Clients use the protocols defined in “XMPP Core” [45] to connect to the Jabber

server; external components use the “Jabber Component Protocol” (JCP) [XEP-0114] for

102

the connection. These two types of entities are functionally similar. For a given service,

we can implement it as either a client or a component.

However, there are some differences between the two. For clients, the Jabber server

stores their contact lists and subscription relationships to other entities. If clients up-

date their presences, the Jabber server will broadcast these updates to other entities that

subscribe to these presences. On the other hand, an external component has to manage

subscription and contact lists by itself. When it updates its presence, it has to send the

updated presence to any subscribers. The Jabber server only forwards incoming and

outgoing messages for external components. As to the authentication, clients each have

different credentials, while components always use the same one. The naming conven-

tion for components is also different. Suppose there is a dictionary service connecting

to the Jabber server jabber.uwaterloo.ca. Its JID might be dict@jabber.

uwaterloo.ca, if it is a client, and dict.jabber.uwaterloo.ca, if an exter-

nal component. An external component can act as a container to hold more entities.

For example, a dictionary component contains two dictionaries, one for English and one

for French. The JIDs for them are english@dict.jabber.uwaterloo.ca and

french@dict.jabber.uwaterloo.ca respectively. Messages to both entities

are forwarded to the same component, dict.jabber.uwaterloo.ca. In this case,

the component has to manage communications for any entity it contains.

Hence, implementing an external component involves more work than doing so as a

client, since the Jabber server does not manage rosters and subscription for components

and contained entities as it does for clients. However, a component has the advantage of

being able to host entities, which may be needed in some circumstances.

Our context manager may be implemented as either a client or an external component,

but our choice is to implement it as an external Jabber component. The choice is more of

a conceptual decision than a functional one, considering the context manager as an ex-

tension to server functions. Also, the component approach make it flexible to extend the

context manager in the future, as we can add entities. For example, suppose the JID for

the service manager is icontext.jabber.uwaterloo.ca, it may decide to have

two separate entities, query@icontext.jabber.uwaterloo.ca and update@

icontext.jabber.uwaterloo.ca, for retrieving and updating context.

Figure 5.5 shows the architectures of the context manager, iContext. There are two

options. The difference is that the bottom option uses a pubsub server [18], while the

top one does not. The pubsub server is also a Jabber component. In both architectures,

103

jabber.uwaterloo.ca
dict@jabber.uwaterloo.ca
dict@jabber.uwaterloo.ca
dict.jabber.uwaterloo.ca
english@dict.jabber.uwaterloo.ca
french@dict.jabber.uwaterloo.ca
dict.jabber.uwaterloo.ca
icontext.jabber.uwaterloo.ca
query@icontext.jabber.uwaterloo.ca
update@icontext.jabber.uwaterloo.ca
update@icontext.jabber.uwaterloo.ca

Jabber Server

Web server

iContext

Jena

Ontology

Jabber client

JCP

HTTP

SPARQL

XML result

Jabber Server

Web server

iContext

Jena

Ontology

Jabber client

JCP

HTTP

SPARQL

XML result

Option 1

Option 2

Pub/sub server

JCP

Reference

Figure 5.5: iContext architecture. Top: without using pubsub; bottom: with pubsub

104

iContext connects to a Jabber server using JCP. The ontology that describes the context

is stored in a web server. In the bottom architecture, for dynamic context, the ontology

only stores a reference, i.e., a node name, to the pubsub server. The actual context data

is stored in pubsub under that node name. The advantage is that the pubsub server will

notify the subscribers of any context changes.

In the top architecture, when iContext initializes, it reads context data from the HTTP

server, then it waits for SPARQL requests from clients. After it queries the ontology, it

returns results in the standardized XML format to clients. For example, in order to select

location instances whose type is GeographicalSpace labeled DC3552D, we have:

type = <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

space = <http://pervasive.semanticweb.org/ont/2004/06/

space#GeographicalSpace>

label = <http://www.w3.org/2000/01/rdf-schema#label>

SELECT ?x

WHERE

{

?x type space .

?x label "DC3552D"

}

The query returns:

<?xml version="1.0"?>

<sparql

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xs="http://www.w3.org/2001/XMLSchema#"

xmlns="http://www.w3.org/2005/sparql-results#" >

<head>

<variable name="x"/>

</head>

<results ordered="false" distinct="false">

<result>

<binding name="x">

105

<uri>

http://grand.uwaterloo.ca/~h8chen/owl/

mylocation.owl#DC3552D

</uri>

</binding>

</result>

</results>

</sparql>

Note that to determine proper delivery candidates, a client may send multiple such query

requests to iContext. Also, the requests and returns are encoded in XMPP traffic. In this

case, they are the payload of Jabber “IQ” stanzas [44].

If the bottom architecture is used, the control flow is the same, except that the results

returned by iContext may contain node names for dynamic context. Then the Jabber

client needs to subscribe to this context on the pubsub server using the node names. With

the pubsub mechanism, updated data will be pushed to the Jabber client without querying

iContext. We implemented both architectures.

Figure 5.6 is a screen shot of service discovery in Jabbin (http://www.jabbin.

com/int/), an open-source Jabber client. Each service is indeed an external compo-

nent. We can see that the Jabber server is jabber.uwaterloo.ca. iContext has a

JID of icontext.jabber.uwaterloo.ca and is currently connected to the server.

Since the interfaces of iContext are all standardized, iContext can interact with other

OWL ontologies, Jabber servers, and Jabber clients.

5.3.2 The models and Jabber clients

In the model of non-intrusive computing, the deliverability of an interaction is deter-

mined by comparing the importance with the unwillingness. Then there is a delivery

model that selects appropriate devices and notification methods in the delivery stage.

As discussed in Section 5.1, we let the sender decide the deliverability of an interac-

tion, and let the receiver select the proper delivery candidates, as shown in Figure 5.7.

For this arrangement to work, the receiver sets his willingness. This willingness is prop-

agated to the sender together with Jabber presence information. The sender is then able

106

http://www.jabbin.com/int/
http://www.jabbin.com/int/
jabber.uwaterloo.ca
icontext.jabber.uwaterloo.ca

Figure 5.6: iContext screen shot

Sender Jabber client
Jabber

server

Receiver Jabber

client

Filter stage Delivery stage

Willingness

Net importance

Willingness

Net importance

Figure 5.7: Model implementation

107

to compare the importance with the importance threshold. If the interaction is deliver-

able, i.e., the net importance is greater than zero, it takes place. At the same time, the net

importance is forwarded to the receiver, so that he can apply the effectiveness criterion.

Note that, at the model level, the comparison function can be on the sender side, the

receiver side, or in a third party. The only requirement is to have both the importance and

the willingness together when the comparison takes place. At the implementation level,

we may use any of the above three choices. The current implementation is inspired by

the Jabber presence model of Section 5.2.4, which propagates the updated presence to

all subscribing entities. This satisfies the requirement well. Also, there is an advantage

in performing the comparison this way. If the interaction is non-deliverable, then the

interaction body, such as a message, will not be transferred, saving unnecessary network

traffic. If we were to make the comparison at a different place, such as the receiver’s

side or a third party, the system would send the interaction together with the importance

value. If the interaction is determined to be non-deliverable, it will be dropped either at

the receiver’s side or the third party, which may waste network resources.

We modify Spark (www.igniterealtime.org/projects/spark/index.

jsp), an open-source Jabber client, to implement the models instead of developing a new

client, because reusing existing code for efficiency is one of the principles for our sys-

tem. Spark has an open architecture and allows third-party plugins, from adding a button

in the main window to reinterpreting incoming and outgoing messages. Our work in-

cludes a plugin and some source-code modifications. Figure 5.8 is screen shots of the

modified Spark, where we allow senders and receivers to set the importance and will-

ingness manually from combo boxes. Once the willingness is set, it is delivered to the

presence subscribers as shown in Figure 5.9. Then at the sender side, we are able to filter

interactions by comparing the importance and the importance threshold.

In a pervasive-computing environment where users’ willingness tends to change fre-

quently, this manual behavior may become a burden for users. Hence automatic setting

is desired. To determine a user’s willingness fully automatically and correctly is com-

plicated and not the focus of this dissertation. However, as a proof of concept, we use a

user’s Jabber presence, the status of his office door, and entries of his calendar service,

such as Google Calendar, to determine the willingness, since each of these has some will-

ingness indication. We take the average of them for the final willingness. Jabber defines

four levels of presence, “do not disturb (dnd),” “extended away (ea),” “away,” and “chat.”

We map them evenly to [0,1], so that the willingness is 0.2, if the presence is dnd; and

108

www.igniterealtime.org/projects/spark/index.jsp
www.igniterealtime.org/projects/spark/index.jsp

Figure 5.8: Spark modification. Top: receiver sets willingness; bottom: sender sets

importance

109

Figure 5.9: Willingness propagated to the sender

0.4 for ea, and so on. The door status can be obtained from iContext, assuming there is

a sensing mechanism, such as a contact sensor, which can monitor the door status, and

update the corresponding context in the ontology. The door angle measurement can be

normalized to range over [0,1]. For simplicity, we only have 0 for willingness when the

door is closed, and 1 when it is open. For Google Calendar, a user has to have a Gmail

account, which can determine a unique URL feed where calendar data can be retrieved

or updated. If there is an entry in the calendar, it sets the willingness to 0, otherwise, 1.

We prototype this inference mechanism in Spark (see the check box in the upper half

of Figure 5.8). When the box is checked, it calculates willingness from the presence, the

Google-calendar entry, and the door status. However, the door status is hardcoded as we

did not deploy the necessary sensing equipment.

This method for setting the willingness is obviously coarse and may not be accurate.

Even if there is context available and comprehensive inference mechanisms are used, the

result may still be inaccurate. So we allow users to override the automatic willingness at

any time.

Aside from modifying Spark, we also need to wrap some devices as Jabber entities.

For example, if we decide to deliver a message to a printer, there should be a printer entity

that receives the message and turns it into a printing command. There are many libraries

for this type of functionality, such as Echomine Muse (http://open.echomine.

org). A complete list can be found at http://www.jabber.org/software/

110

http://open.echomine.org
http://open.echomine.org
http://www.jabber.org/software/libraries.shtml

libraries.shtml. Typically, these libraries handle authentication and communica-

tion details and let developers focus on user interfaces and application logic.

5.3.3 System implementation

In the last two sections, we described iContext and the Spark modifications for the mod-

els, which are the major custom pieces of the non-intrusive-computing system. In this

section, we explain how these parts are combined.

In Figure 5.10, three Jabber servers are inter-connected. Each of them connects to

a few Jabber entities, such as the sender, the receiver, the printer, the cell phone, and

so on. The context manager, iContext, connects to one of the Jabber servers as a Jabber

external component. These are transport connections, which means they are actual routes

for transferring data. On the other hand, the dashed lines indicate logical connections,

which means the communication between two end points does not happen directly, but

through physical ones.

When the system starts up, the context of each device is placed into the ontology

either by the system administrator or by devices and their Jabber wrappers that can update

it themselves, as is shown in Stage 0.

Both the sender and the receiver logon to their Jabber servers, which may or may not

be the same one. The receiver reflects her willingness explicitly or the client software

infers it automatically. The sender will obtain it through Jabber presence, assuming that

the sender subscribes to the receiver’s presence. Thus the sender can compare the impor-

tance of the interaction with the importance threshold when it attempts an interaction. If

the sender decides that the interaction is deliverable, the interaction, such as a message,

is delivered to the receiver client. The net importance is appended to the body element

of the message’s XML stanza, so it is delivered to the receiver as well. This process is

Stage 1 in Figure 5.10.

In Stage 2, upon receiving a message, the receiver client first truncates the net im-

portance from the XML message body and then sends SPARQL queries to the context

manager, iContext. The queries ask for feasible delivery candidates at the receiver’s loca-

tion, assuming the receiver client knows the current location of the receiver. The iContext

component executes the queries and returns XML results. The receiver client is then able

to perform the effectiveness and overtness criteria using Algorithm 2.3. The last step is

to forward the message without the net importance to selected delivery candidates.

111

http://www.jabber.org/software/libraries.shtml
http://www.jabber.org/software/libraries.shtml

Jabber

server

Jabber

server

Jabber

server

Sender

client

Receiver

client

update

update

iContext

update

Jabber

server

Jabber

server

Jabber

server

Sender

client

Receiver

client

Transport connection

Logical connection

net importance

willingness

interact

iContext

Jabber

server

Jabber

server

Jabber

server

Sender

client

Receiver

client

deliver

deliver

XML result

SPARQL

iContext

deliver

auth.

request

auth.

request

Stage 0:

Preparing

context

Stage 1:

filtering

Stage 2:

delivering

Figure 5.10: System summary

112

Some of the devices in this scenario are public, such as the whiteboard and the printer

in Figure 5.10. To prevent users, such as newcomers, from abusing them, and also in-

crease security, the receiver client has to be authenticated before it can deliver any in-

teraction to those devices. The authentication makes use of the subscription model and

the server-side privacy lists of these devices. A user first sends a subscription request to

the Jabber wrapper of the device. If it is approved, the device’s Jabber wrapper adds the

subscriber to its privacy list, so that all further communication is allowed.

The above procedure may happen in one of two ways. If a user is known to an

environment, such as Alice to her lab, then the system administrator may set up the sub-

scription and the privacy lists statically, so that she is allowed to use all public devices at

any time. If a user is new to an environment, for example, when Bob comes to Alice’s lab

for a meeting, then Bob has to be authenticated by the whiteboard in Alice’s lab. There

is a password for the whiteboard that Alice can tell Bob to include in his subscription

request to the whiteboard, to establish the subscription.

Once the receiver client determines the final delivery candidates, and authenticates to

public ones, it delivers the interaction.

If there are changes in context, such as a sensor sensing movement, a printer load

becoming heavy, or no available display space on the whiteboard, information is updated

and pushed by devices and their wrappers to context subscribers through the pubsub fa-

cility. Then for new interactions, the receiver client retrieves updated feasible candidates.

The non-intrusive-computing system is built on top of a number of technologies, such

as Jabber, OWL, Jena, and so on. It leverages these enabling technologies to achieve

the goal of controlling interactions in a way that is not intrusive to the receiver nor to

other people in the same environment. The system has a clear architecture and is highly

extensible. The next section discusses the system overhead.

5.3.4 Overhead evaluation

The two major components in our system are the Jabber server and iContext. Jabber

provides near real-time communication. It competes with other well-known IM systems,

such as MSN Messenger, ICQ, and so on. Many Jabber servers have been deployed

world wide. The latest version of the Openfire server has been downloaded 1,462,777

times (http://www.igniterealtime.org/projects/openfire/index.

113

http://www.igniterealtime.org/projects/openfire/index.jsp

jsp) by September 18, 2008. Also, public data from May 19, 2008 shows that Jabber

is scalable: the public server at www.jabber.org had 10,054 connected users and

2,954 connections to other Jabber servers. Note that the new version of the website does

not provide such data anymore.

In terms of delivering a message, the overhead comes from querying the ontology. We

use Jena 2.5.4 (http://jena.sourceforge.net/) as the SPARQL query engine.

Our ontology is derived from SOUPA [15]. We added five classes for describing devices,

such as smart phones, printers, and so on. A number of properties are also added to both

devices and locations. There are 20 instances in each device class, assuming that there

will be no more than 100 delivery candidates in a smart space in the near future, and

three instances in a geographical-location class. All data is in two XML files, one for

devices, the other for locations.

We evaluate two SPARQL queries, on a Centrino Duo 1.73GHz laptop, with 2G

memory, running Ubuntu 8.04. The first one selects all devices of different sub-classes

of class Device, as shown below. This query only needs the data file for the devices.

We run the query 10 times (Figure 5.11, left). The average time to finish this query is

71.3ms; the standard deviation is 3.35.

TYPE = <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

SUBCLASS = <http://www.w3.org/2000/01/rdf-schema#subClassOf>

DEVICE = <http://pervasive.semanticweb.org/ont/2004/06/

device#Device>

SELECT ?x

WHERE

{

?y SUBCLASS DEVICE .

?x TYPE ?y

}

The second query (see below) selects the effectiveness and overtness values and the JIDs

of those delivery candidates that are in room “DC3552D.” This query accesses data from

both files. The same as the first query, we run this 10 times. The average running time is

74.5ms, with standard deviation 3.2 (Figure 5.11, right).

114

http://www.igniterealtime.org/projects/openfire/index.jsp
http://www.igniterealtime.org/projects/openfire/index.jsp
www.jabber.org
http://jena.sourceforge.net/

Figure 5.11: SPARQL query performance. Left: the first query, right: the second query

...

SELECT ?effect ?overt ?jid

WHERE

{

?loc TYPE geo_space .

?loc LABEL “DC3552D” .

?loc SUBSUME ?device .

?device EFFECTIVENESS ?effect .

?device OVERTNESS ?overt .

?device JID ?jid

}

As we can see that the running time in both cases is close and stable. Since we are

dealing with human interactions, this overhead will not cause noticeable delay to people.

Note that all data is preloaded, which could take some time, depending on the size and

the network load.

So far, we have discussed the system design, enabling technologies, the implemen-

tation, and the performance evaluation. In the next section, we keep discussing how a

non-intrusive-computing system could be applied to a different domain, and what appli-

cations may be built on top of it. We case study the Code Blue scenario.

115

5.4 Code Blue case study

Hospitals, especially large and busy ones, have emergency coding systems for respond-

ing to various urgent situations. When an emergency happens, such as a patient show-

ing cardiac failure, the hospital broadcasts an announcement to call doctors, nurses, lab

workers, and so on. The message usually includes some color code to identify the type

of the emergency. Different color codes are often well established. For example, Code

Black indicates mass casualty or public health threat; Code Blue is often dedicated for

cardiac-related situations; Code White corresponds to pediatric medical emergencies,

and so on.

With such a color-code system, a team may be summoned within a short period of

time, such as minutes or even seconds. Typically, a public address system is used to

deliver the message and capture people’s attention. When it is being used, everybody in

every floor of the hospital hears it. This approach is simple and effective. The drawback,

however, is also obvious. It does not differentiate between people who should be involved

and those who should not. This may cause disturbance since everybody is forced to listen

to it. Imagine that a pediatric doctor is performing an operation on a child injured in an

accident, and an announcement asks for cardiac specialists. The sound, to the pediatric

doctor, is much like noise and may potentially distract his attention. It would be ideal

if the emergency system delivers calls only to related personnel. Furthermore, existing

color-code emergency systems usually do not perform other tasks than calling people.

It would be better if these systems could coordinate the people and entities involved.

For example, when a doctor is heading to a patient’s room, the system could deliver the

available medical results, such as X-ray and medication information to the TV in that

room, which will help the doctor once he arrives and save some time in treating the

patient.

With modern computing technologies, it is possible to acquire necessary context,

determine who should receive urgent calls, who should not be disturbed, and help coor-

dinate among doctors, nurses, medical resources, and so on. Non-intrusive computing

provides an abstract framework to deal with interactions, which matches this problem

well. Given proper context and implementation, we can design an intelligent emergency

system that not only notifies proper receivers in a proper way, but also assists medical

doctors in handling emergencies. Without loss of generality, we choose Code Blue as s

case study for an intelligent system. The rest of this section describes the design of such

116

Crash cart

Medical

equipment

Medication

Public

address

system

Medical

sensors

Location

Medication

Patients

Nurses

Doctors

Family

members

Respiratory

technicians

Chaplain RFID

Code Blue

Staff

resources

Physical

resources

Information

resources

Figure 5.12: Code Blue

a system for Code Blue emergencies based on the non-intrusive-computing model.

5.4.1 Code Blue

A Code Blue system involves many components or resources. When an emergency is

detected, the system tries to locate resources as completely and quickly as possible. For

example, doctors and respiratory technicians should gather at some place; nurses should

bring a crash cart; if the situation is potentially fatal, the system will also call a chaplain

to be present, and so on. These resources are categorized as illustrated in Figure 5.12.

Information resources are critical to an intelligent emergency system. The system

behavior depends on quality information resources. For example, medical sensors may

be attached to patients, which can provide live data for the heart rate and the blood

oxygen saturation. Once the sensor data shows that a patient is in danger, the system

should start a Code Blue call. The location system will keep track of where the related

doctors are. The system will call those who are less busy. In order to call them effectively

and not too overtly, the system needs to know the available delivery candidates and the

surrounding circumstances. RFID technology may be used to identify objects. Medical

devices, such as crash carts, have RFID tags attached to them. In an emergency, the

system may instruct nurses to bring these objects from the nearest place.

We can see that each of the information resources itself could be a complex system.

For example, Lorincz et al. [35] use a wireless sensor network to propagate data. Loca-

117

Patient with a sensor

showing heart rate is

below the threshold,

I: 0.9

Doctor John is in a

surgery, W: 0

Doctor Adam is making regular

visit to patients, W: 0.3

Doctor Adam,

After handling the emergency, informing family

members and/or chaplain, I: 0.9

Call Adam’s

cell phone to

vibrate

E: 0.8, O:0

If no reply in 10

sec, use radio

E: 1.0, O:1.0

Display medications

and X-ray results on

the TV in the

patient’s room

Family members,

W: 1
Chaplain, W: 0.7

Figure 5.13: Intelligent notification

tion tracking may involve both indoor and outdoor technologies. The discussion in this

section assumes the existence of these systems and focuses on combining non-intrusive

computing with emergency handling.

Next we describes possible applications for this intelligent emergency system for

Code Blue.

5.4.2 Application scenarios

In a Code Blue system, the most important thing is to call people to the emergency.

This section first describes some intelligent notification applications, then an application

for inpatients. Next, we discuss the possibility of engaging with other applications in a

hospital. The goal is to show how to apply non-intrusive computing in such a system and

how it may be used to improve handling of Code Blue scenarios.

The idea of intelligent notification is that when urgent situations happen, instead of

using public address to notify everybody, the system decides who should be notified

based on context.

Figure 5.13 describes such an application. Suppose a patient has some sensors at-

tached to his body, which constantly provide data to the system. Once the sensor data

falls out of the normal range, the system should intervene, either by calling for a nurse,

a doctor, or a team depending on how severe the situation is. The sensor data determines

the importance level of the interaction.

118

In Figure 5.13, the importance of calling for a doctor is determined to be 0.9. Suppose

there are two doctors on duty at the moment. Doctor John is performing a surgery, so

he is completely unavailable, with willingness 0. Doctor Adam is busy on regular visits,

so the willingness is relatively low at 0.3. However, since the importance is high, the

system decides to call Doctor Adam.

In terms of delivering this interaction, there are two options: one is through the cell-

phone, the other is using the public address system. The Code Blue system will first

try to call the doctor’s cellphone, because the system does not want to affect the patient

who is with Doctor Adam. The cellphone is highly effective and not overt. If, for some

reason, Doctor Adam does not answer the phone in a few seconds, the system will use

the public-address system.

In the meantime, the system gathers all the information about this patient, such as

X-ray, ultrasound, medications, and so on, and sends them to the patient’s room. This

information will be shown on the TV once the doctor arrives. In this case, the doctor

does not have to go back to the nursing station to pick up the medical record. This will

save time and effort for the doctor.

Afterwards, the system may inform the family members of this patient who are wait-

ing outside about any progress. This gives peace of mind to the family members. If

unfortunately, the patient is about to die, the system calls for the chaplain, who will

come to perform the necessary ceremony.

In summary, this application shows two things. First, if possible, the system will

try to avoid unnecessary disturbance by using cellphones. Second, the system makes

the patient information available to the doctor in an automatic fashion, which not only

helps the doctor diagnose the patient, but also saves some time which may be crucial in

emergent cases.

Note that this example assumes a number of values for importance, willingness, ef-

fectiveness and overtness. The user study in Section 2.5 suggests that there are some

discrepancies between our assumed values and average values from the survey ques-

tionnaire. Hence, these values are intended to demonstrate the application scenario, and

do not necessarily mean they should be set this way, which is also the case for other

applications later in this section.

Another application we describe there is how to take care of inpatients with an intel-

ligent system. Inpatients often take medicines on a regular basis. They also need to order

119

Patient is sleeping,

W: 0.3

Time to order meal

I: 0.5

After 20 minutes, time to

take medicine

I: 0.8

Play music to

wake up the

patient

E: 0.6, O: 0.6

1

2

3

4
5

6

Menu delivery

cancelled

Patient is

watching TV

after medicine

W: 0.9

Try to ask patient to

order meal again

I: 0.5 7

Menu deliver,

displayed on TV

E: 0.7, O:0.7

8

Figure 5.14: Inpatient care

meals two or three times a day. Usually, it is the nurses on shift who walk from one room

to another to give medicines to patients or remind them to take pills, and bring menus for

lunch or dinner. This is tedious. And the patient might be sleeping, that means the nurse

will have to either wake her up or come back later.

With an intelligent system, we can improve the experience for both patients and

nurses. Figure 5.14 illustrates such a scenario. When it is time for the patient to or-

der a meal, the system detects that the patient is sleeping by using different sleep sensors

to capture body position, limb movement, snoring, respiratory airflow, and so on. The

system then assigns a low willingness of 0.3, which consequently aborts the meal-order

interaction. After 20 minutes, the patient is supposed to take some pills according to

the schedule. Since this is important, the system plays some soft music to wake up the

patient. Then the system tries to ask the patient to select from the menu, and this time,

this interaction takes place as the patient has a higher willingness.

In this way, the system takes care of these things on the nurses’ behalf. Patients are

interrupted only if the interaction is important and necessary. This saves some of the

nurses’ time and still provides a quality experience to patients.

There are many application scenarios in a hospital environment other than emergency

handling and inpatient care. In the rest of this section, we discuss some other applica-

tions, such as patient scheduling in the context of the intelligent emergency system. The

purpose is to show that the system can be leveraged to support different applications.

Patient scheduling is indispensable to medical professionals. This can be complicated

when doctors are practicing in multiple clinics. Rescheduling also happens from time to

120

Doctor Adam’s schedule 9−10am 10−11am 11am−5pm

Booking details Bob’s regular visit Mike’s operation

Willingness 1 0.3 0

Table 5.1: Doctor Adam’s schedule

time. There exist online scheduling services and appointment-management tools. Often,

these tools and services are replacements for paper-based appointment systems. When

it comes to scheduling and rescheduling, human actions, such as phone calls, are still

involved.

With the intelligent emergency system, it is possible to improve this aspect of patient

scheduling. Each doctor has a calendar; each spot on the doctor’s calendar is marked with

a willingness value based on the booking. If a spot has not been booked, the willingness

value will be high, otherwise the value will be low. When a patient tries to book an

appointment, the system compares the importance of booking with the willingness value

on the doctor’s calendar to decide whether this booking request can be approved.

Table 5.1 shows that Doctor Adam is free before 10 o’clock in the morning, then he

has a regular visit by Bob. Afterwards, his schedule is full for an operation for Mike.

Suppose another patient Henry has an urgent need to see the doctor that day, and the

visit will take more than one hour. In this case, if the importance of Henry’s visit is

greater than 0.7, the system will cancel Bob’s appointment and Bob has to reschedule his

original regular-visit appointment, otherwise Henry’s request is denied, and no change is

made to the doctor’s schedule.

We can see that in this case, we only use the filter stage of the non-intrusive-computing

model. The delivery stage is also applicable when the system needs to notify the doctor

and the patient about the changes.

Existing hospitals often have color coded emergency systems. This section discusses

an intelligent emergency system for Code Blue. Non-intrusive computing is applied in

this system. If all the underlying context is available, we are able to build such a sys-

tem that improves and facilitates handling Code Blue scenarios. Some applications are

described to show some details of instantiating the model for non-intrusive computing.

We think that this intelligent emergency system can also support other color-coded emer-

gency scenarios, such as Code White.

This case study describes how non-intrusive computing may be used in a hospital

121

environment, and what applications may be supported in this area. The aim is to show

that non-intrusive computing provides general values to different domains, and its model

and instantiations may improve scenarios where interactions are dealt with.

The next chapter concludes this thesis and discusses future work.

122

Chapter 6

Conclusions and future work

The goal of this thesis is to tackle intrusiveness in pervasive and ubiquitous computing.

A model is proposed and prototyped. The solution is comprehensive in that it considers

the intrusion of an interaction from both the receiver’s and the other users’ points of view.

This work establishes a framework where problem abstraction and system construction

are combined, and where new and further research is spawned. Section 6.1 concludes

the thesis and Section 6.2 provides some ideas for future research.

6.1 Conclusions

The proliferation of devices with small form factors, such as sensors and actuators, and

the trend of consumer objects becoming digital and “smart,” such as smart phones and

digital picture frames, indicate some progress towards Weiser’s vision. However, in spite

of many aspects that have been articulated, a pervasive-computing system has to reduce

the distractions to users caused by various kinds of interactions.

An observation [49] conducted by a professor at the University of California at Irvine

showed that in two high-tech companies, “each employee spent only 11 minutes on any

given project before being interrupted and whisked off to do something else... and each

time a worker was distracted from a task, it would take, on average, 25 minutes to return

to that task.” These results underline the importance of non-intrusive computing and

motivate our research.

We extract a model from the problem domain. The model is further divided into two

stages mimicking the lifespan of an interaction. The two stages suggest different but

123

related questions. In the filter stage, the question to answer is whether an interaction is

deliverable. In the delivery stage, it becomes whether a deliverable interaction will in-

trude on other people in the same location as the receiver. From the model, we propose a

general solution. Importance and unwillingness are compared to determine deliverabil-

ity, and effectiveness and overtness are introduced to ensure appropriate delivery.

This general solution places two requirements on how the system is implemented.

The first one is that the importance and willingness, controlled by a sender and a receiver,

have to be brought together for comparison. The second is that the middleware system

has to provide appropriate context support so that context can be applied incrementally.

More context results in better decisions made by the model.

Being able to model the intrusiveness and understand how to manage it is one of the

major contributions. The model is then analyzed in order to understand its performance.

Multiple approaches are tried. One of the results is that, in the hybrid dropping approach,

if half of the successfully delivered interactions cause intrusion on other users due to

inappropriate usage of target devices and notification methods, then the combined error

rate is as high as 47%. With our system in place, this number could be reduced to zero,

given accurate context. The user study demonstrates agreement on the the model and its

parameters, and the results also show that the majority of the users agree on the parameter

values. The average values of each parameter in different scenarios can be used as the

default values in system instantiations.

Although the prototyping of the model is based on Jabber, the design of the system

is a contribution in that it emphasizes the requirement for a communication bus and a

naming mechanism for all participants. Context support is as important as the communi-

cation and naming support in the system, and is managed through the use of an ontology

and a pubsub facility. Security is considered and designed into the system. Jabber is cho-

sen because it already has many of the required features which we may reuse. However,

these features are not enough in terms of system development. More importantly, they

do not address the problems directly. We still need to develop components and integrate

them together. The non-intrusive-computing system is the second major contribution that

the thesis makes.

Jabber, as an extended IM system, goes beyond supporting non-intrusive comput-

ing. It can exchange many forms of structured data for many more uses than chatting.

It is easy to use, with familiar interfaces. It is able to capture recurring themes from

previous research on middleware. The standardization of Jabber makes this technology

124

potentially pervasive. Although, this is not entirely related to non-intrusive computing,

having a generic platform where a pervasive-computing ecology can be built will foster

non-intrusive computing and its applications. For example, with a smart walker [14],

we may extend the interaction management to elderly people in modern smart homes or

health-care environments. We consider this a minor contribution of our work.

We use a quantitative approach together with the modeling. Atomic and complex

modifiers are proposed. Context is used flexibly in both stages. Identifying public and

private delivery candidates reduces the complexity of the selection process. These are

also minor contributions of this dissertation.

6.2 Future work

We address the intrusion problem with a comparison model, which features a few param-

eters and selection criteria. This model is generic and can be applied to different domains

(Section 5.4). However, it needs improvement in a number of respects.

Some interactions may occupy more of the receiver’s time than others. For example,

sending a document to the receiver and expecting him to read it immediately requires

more time than asking the receiver to approve a purchase. At the moment, our model does

not utilize the temporal properties of an interaction. When there are multiple concurrent

interactions for a receiver, this ability is desirable, as we can use it to order interactions

based on the receiver’s schedule and the time available to him.

It is often the case that senders and receivers need to interact multiple times to solve

a problem. These multiple interactions may be grouped together into a session. If one

interaction of this group is deliverable, others are likely to be deliverable as well. Our

model does not have a notion of session. In other words, it treats related interactions

independently. In order to address this issue, one might add an additional layer that

manages sessions, and apply deliverability to the session as a whole.

In Section 2.2, we mentioned that we only deal with interactions that have one sender

and one receiver. The next step is to expand this to one-to-many interactions. One ap-

proach is to treat a one-to-many interaction as many one-to-one interactions, and to use

the existing model to filter and deliver them sequentially. However, this may result in

some interactions being delivered while others are not, depending on the willingness of

individual receivers, which may or may not be appropriate. A different approach is to

125

group receivers together, and to consider some aggregated “willingness.” New questions

will come up, such as how to aggregate the willingness of multiple receivers. We may

introduce weights into the aggregation. For example, if a receiver with the highest role

expresses enough willingness to accept an interaction, it may be reasonable to deliver

that interaction in spite of some other receivers not being willing to interact. Further-

more, all receivers may not be in the same environment. If each receiver is in an isolated

environment, we are still able to deliver the interaction with the existing effectiveness and

overtness criteria, as there is no interference among different environments. However, if

some of the receivers are in the same environment, the delivery becomes more compli-

cated, because a delivery candidate may or may not be effective for multiple receivers.

For example, if two receivers in the room are reading documents, a phone ringing is

effective to both of them, but if one if them is listening to music, then ringing is less

effective to him. Hence, the difficult part is to model and measure the effectiveness of

delivery candidates for multiple receivers in the same space. Sophisticated context is

likely needed in this situation.

These are the major directions in which our model may be stretched and improved.

With regard to the intrusion problem generally, there could be other completely different

approaches. Here, we discuss using an economic model and intelligent agents to manage

interactions.

In an economic model, an interaction, such as a message, is associated with a price.

Either the sender or the receiver pays the price to make the interaction happen. Devices

may also have prices that have to be paid in order to use them. There are also utility

functions, so that for a successful interaction, some participants receive rewards. How to

assign roles, such as sellers, buyers, or market mediators to participants depends on the

goals and the assumptions of the system. For example, in our case, we assume the sender

knows the receiver, as interactions are reference-coupled (Section 2.2), and the goal is

to reduce the intrusiveness to the receiver. Presumably, every interaction is intrusive in

some sense, hence the sender should pay some price to purchase the receiver’s attention

and time in dealing with an interaction. The price of the interaction is then determined by

how busy the receiver is. The busier the receiver is, the higher the price. Of course, the

price is also influenced by other factors, such as the temporal properties of the interaction,

assuming we expand our model as mentioned above. If it turns out that the sender sends a

valuable message to the receiver, the sender receives rewards, which may be used towards

the next time he wants to send a message.

126

When a message is delivered to some devices, especially if the devices are shared

(such as a public whiteboard) or owned by an individual (such as a cell phone), either

the sender or the receiver will have to pay the price required by the device for delivery.

Public devices should be more expensive than private ones. This provides flexibility

to the sender. If he thinks the message is very important, he could influence how the

message is delivered by paying a larger price.

Intelligent agents could be used in combination with an economic model. Each agent

represents a user and acts on his behalf based on his preferences. Agents could negotiate

the price. For example, the sender’s agent may tell the receiver’s agent that the message is

important and useful to the receiver, then the receiver’s agent may agree on a lower price.

Agents may also borrow money from each other. We mentioned that one future direction

of our model is to address one-to-many interactions. The prices for such interactions tend

to be higher. With an economic approach, the sender’s agent may need to borrow money

in order to pay the price. Agents may also cooperate to deliver interactions. Assuming

that an agent has the right to use devices owned by its user, a multimedia interaction may

be delivered to a screen and a stereo controlled by two different agents.

Although economic models are different from ours, they share some essential aspects,

such as whether an interaction is important, how busy a user is, and so on. Comparing

with our model, the economic one is more familiar to users as it is closer to our daily

lives. At the same time, it involves more roles and procedures. Issues such as how

to determine price and utility functions, who monitors the market, whether the overall

amount of money should be constant and finite, and so on, should be investigated and

figure in our future concerns.

There are other issues that we plan to investigate. One is to develop commutative

modifiers for the importance and the willingness. Sometimes, when there is more than

one modifier, we will need to consider the order of applying them. One way to make

the modifiers commutative is to use exponential functions, since the importance and the

willingness remain in [0,1]. However, it is not always easy to find appropriate expo-

nential functions. Some modifiers take effect based on the original values, such as the

importance modifier for roles in Section 2.3.6; other may yield new values irrespective

of the old ones. For example, when the subject of an interaction matches the current

activity of the receiver, it is reasonable to assume that the receiver will want to receive

this interaction, so the new willingness is simply set to 1. We plan to devise a number of

common modifiers and apply them in different orders and study their inter-relationships.

127

In Section 2.4.4, an assumption is made about the relationship between effectiveness

and overtness of delivery candidates. However, this is an approximation (see the user

study in Section 2.5), and may not always be accurate. For example, a cell-phone vibrat-

ing is a private delivery candidate, which ignores the fact that if a cell phone is vibrating

on a meeting table, most of the attenders will notice it, which in turn invalidates the as-

sumption that its overtness is negligible. This shows that the effectiveness and overtness

of a delivery candidate are dynamic and current context can modify them. To address

this, we need to use context to determine the effectiveness and overtness. This is diffi-

cult as there are many situations to consider. Besides, context may further change the

effectiveness for the intended receiver. Taking the the same cell-phone example, if it vi-

brates on a table far away from the meeting, its overtness becomes negligible again, but

at the same time, its effectiveness also becomes negligible. Obviously, we will have to

make a few, but less restrictive, assumptions in order to tackle this problem. In addition,

fuzzy logic may be applicable when studying the correlations among different context

elements, which is beneficial not only to this problem, but also to that of calculating the

combined effectiveness and overtness of multiple delivery candidates (see Section 2.4.2).

In terms of future prototyping and testing, we will keep developing the non-intrusive-

computing system, such as deploying sensors to report the door status, based on which

we can infer a user’s willingness. We will also improve the user interface and release our

system to other users.

128

Bibliography

[1] Oxford English Dictionary. Oxford University Press, second edition, March 1989.

ISBN 978-0-19-861186-8. URL http://www.oed.com/. 3

[2] Aware Home Research Initiative. URL http://awarehome.imtc.gatech.

edu/. 78

[3] Piotr D. Adamczyk and Brian P. Bailey. If not now, when?: the effects of in-

terruption at different moments within task execution. In CHI ’04: Proceed-

ings of the SIGCHI conference on Human factors in computing systems, pages

271–278, New York, NY, USA, 2004. ACM. ISBN 1-58113-702-8. doi: http:

//doi.acm.org/10.1145/985692.985727. 9

[4] Piotr D. Adamczyk, Shamsi T. Iqbal, and Brian P. Bailey. A method, system, and

tools for intelligent interruption management. In TAMODIA ’05: Proceedings of

the 4th international workshop on Task models and diagrams, pages 123–126, New

York, NY, USA, 2005. ACM. ISBN 1-59593-220-8. doi: http://doi.acm.org/10.

1145/1122935.1122959. 9

[5] Peter Andrews. Vying for your attention: Interruption management. Executive

technology report G510-3939-00, Executive technology report, IBM Business Con-

sulting Services, July 2004. 9

[6] Daniel Avrahami and Scott E. Hudson. Qna: Augmenting an instant messaging

client to balance user responsiveness and performance. In Proceeings of the ACM

Conference on Computer Supported Cooperative Work (CSCW, pages 515–518.

ACM Press, 2004. 9

[7] Brian P. Bailey, Joseph A. Konstan, and John V. Carlis. Measuring the effects of

interruptions on task performance in the user interface. In In IEEE Conference

129

http://www.oed.com/
http://awarehome.imtc.gatech.edu/
http://awarehome.imtc.gatech.edu/

on Systems, Man, and Cybernetics 2000 (SMC 2000, pages 757–762. IEEE Press,

2000. 9

[8] Francisco J. Ballesteros, Enrique Soriano, Gorka Guardiola, and Katia Leal. Plan B:

An Operating System for Ubiquitous Computing Environments. In Proceeding 4th

annual IEEE International Conference Pervasive Computing and Communication,

pages 126–135, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-

7695-2518-0. doi: http://dx.doi.org/10.1109/PERCOM.2006.43. 74, 75

[9] Francisco J. Ballesteros, Enrique Soriano, Gorka Guardiola, and Katia Leal.

Plan B: Using Files instead of Middleware Abstractions. IEEE Pervasive Com-

puting, 6(3):58–65, July-September 2007. ISSN 1536-1268. doi: http://doi.

ieeecomputersociety.org/10.1109/MPRV.2007.65. 74, 75, 76

[10] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Mobile-Agent Coor-

dination Models for Internet Applications. Computer, 33(2):82–89, 2000. ISSN

0018-9162. doi: http://dx.doi.org/10.1109/2.820044. 11

[11] D. Chamberlin. XQuery: An XML Query Language. IBM Systems Jour-

nal, 41(4):97–615, 2002. URL http://researchweb.watson.ibm.com/

journal/sj/414/chamberlin.html. 99

[12] Ellick Chan, Jim Bresler, Jalal Al-Muhtadi, and Roy Campbell. Gaia Microserver:

An Extendable Mobile Middleware Platform. In PERCOM ’05: Proceedings of

the Third IEEE International Conference on Pervasive Computing and Communi-

cations, pages 309–313, Washington, DC, USA, 2005. IEEE Computer Society.

ISBN 0-7695-2299-8. doi: http://dx.doi.org/10.1109/PERCOM.2005.22. 68

[13] Hao Chen and James P. Black. A quantitative approach to non-intrusive comput-

ing. In The Fifth Annual International Conference on Mobile and Ubiquitous Sys-

tems: Computing, Networking and Services (MobiQuitous’08), Dublin, Ireland,

July 2008. 8

[14] Hao Chen, James P. Black, Omar Zia Khan, and Kamran Jamshaid. Data-centric

support of a smart walker in a ubiquitous-computing environment. In The 2nd

International Workshop on systems and Networking Support for Healthcare and

Assisted Living Environments (HealthNet’08), Breckenridge, Colorado, USA, June

2008. 125

130

http://researchweb.watson.ibm.com/journal/sj/414/chamberlin.html
http://researchweb.watson.ibm.com/journal/sj/414/chamberlin.html

[15] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard

Ontology for Ubiquitous and Pervasive Applications. In International Conference

on Mobile and Ubiquitous Systems: Networking and Services, Boston, MA.,

pages 258–267, Augest 2004. URL http://csdl.computer.org/comp/

proceedings/mobiquitous/2004/2208/00/22080258abs.htm.

101, 114

[16] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A Context-based Infras-

tructure for Smart Environments. In Proceedings of the 1st International Workshop

on Managing Interactions in Smart Environments (MANSE ’99), pages 114–128,

Dublin, Ireland, December 1999. URL http://www.cc.gatech.edu/fce/

contexttoolkit/pubs/MANSE99.pdf. 80

[17] T. Dierks and C. Allen. The TLS Protocol Version 1.0, January 1999. URL http:

//www.ietf.org/rfc/rfc2246.txt. 96

[18] Abdur-Rahman El-Sayed and James P. Black. Semantic-Based context-Aware Ser-

vice Discovery in Pervasive-Computing Environments. In First IEEE Int. Workshop

on Services Integration in Pervasive Environments, pages 9–14, Lyon, France, June

2006. 103

[19] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste. Project Aura:

Toward Distraction-Free Pervasive Computing. IEEE Pervasive Computing, 1(2):

22–31, April-June 2002. ISSN 1536-1268. doi: http://dx.doi.org/10.1109/MPRV.

2002.1012334. 8, 65

[20] Iván E. González, Jacob O. Wobbrock, Duen Horng Chau, Andrew Faulring, and

Brad A. Myers. Eyes on the road, hands on the wheel: thumb-based interaction

techniques for input on steering wheels. In GI ’07: Proceedings of Graphics Inter-

face 2007, pages 95–102, New York, NY, USA, 2007. ACM. ISBN 978-1-56881-

337-0. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/1268517.1268535.

9

[21] Robert Grimm. System Support for Pervasive Applications. PhD thesis, Department

of Computer Science and Engineering, University of Washington, 2002. 71, 72

[22] Robert Grimm. One.world: Experiences with a Pervasive Computing Architecture.

131

http://csdl.computer.org/comp/proceedings/mobiquitous/2004/2208/00/22080258abs.htm
http://csdl.computer.org/comp/proceedings/mobiquitous/2004/2208/00/22080258abs.htm
http://www.cc.gatech.edu/fce/contexttoolkit/pubs/MANSE99.pdf
http://www.cc.gatech.edu/fce/contexttoolkit/pubs/MANSE99.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt

IEEE Pervasive Computing, 3(3):22–30, July-September 2004. ISSN 1536-1268.

doi: http://dx.doi.org/10.1109/MPRV.2004.1321024. 71, 73

[23] Edward S. De Guzman, Moushumi Sharmin, and Brian P. Bailey. Should i call

now? understanding what context is considered when deciding whether to initiate

remote communication via mobile devices. In GI ’07: Proceedings of Graphics

Interface 2007, pages 143–150, New York, NY, USA, 2007. ACM. ISBN 978-1-

56881-337-0. doi: http://doi.acm.org/10.1145/1268517.1268542. 9

[24] Joanne L. Harbluk and Y. Ian Noy. The impact of cognitive disraction on driver

visual behaviour and vehicle control. Technical Report TP 13889E, Transport

Canada, February 2002. http://www.tc.gc.ca/roadsafety/tp/tp13889/menu.htm. 9

[25] G. R. Hayes, S. N. Patel, K. N. Truong, G. Iachello, J. A. Kientz,

R. Farmer, and G. D. Abowd. The Personal Audio Loop: Design-

ing a Ubiquitous Audio-Based Memory Aid. In Mobile HCI, volume

3160/2004, pages 168–179. Springer Berlin / Heidelberg, 2004. URL http:

//springerlink.metapress.com/content/jm5x3c4h4wvtw1nb/

?p=86ab3ae6e81d458fa2bc90ac5495388c&pi=14. 81

[26] Hewlett-Packard. Jena - A Semantic Web Framework for Java. URL http://

jena.sourceforge.net/. 100

[27] Insurance Information Institute. Cellphones and driving, June 2008.

http://www.iii.org/media/hottopics/insurance/cellphones/. 9

[28] Jabber Software Foundation. Jabber.org: open instant messaging and presence.

URL http://www.jabber.org. 6

[29] Brad Johanson and Armando Fox. The Event Heap: A Coordination Infrastruc-

ture for Interactive Workspaces. In WMCSA ’02: Proceedings of the Fourth IEEE

Workshop on Mobile Computing Systems and Applications, page 83, Washington,

DC, USA, June 2002. IEEE Computer Society. ISBN 0-7695-1647-5. 70

[30] Brad Johanson, Armando Fox, and Terry Winograd. The Interactive Workspaces

Project: Experiences with Ubiquitous Computing Rooms. IEEE Pervasive Com-

puting, 1(2):67–74, 2002. ISSN 1536-1268. doi: http://doi.ieeecomputersociety.

org/10.1109/MPRV.2002.1012339. 69, 70

132

http://springerlink.metapress.com/content/jm5x3c4h4wvtw1nb/?p=86ab3ae6e81d458fa2bc90ac5495388c&pi=14
http://springerlink.metapress.com/content/jm5x3c4h4wvtw1nb/?p=86ab3ae6e81d458fa2bc90ac5495388c&pi=14
http://springerlink.metapress.com/content/jm5x3c4h4wvtw1nb/?p=86ab3ae6e81d458fa2bc90ac5495388c&pi=14
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://www.jabber.org

[31] Brad Johanson, Armando Fox, and Terry Winograd. The Stanford Interactive

Workspaces Project. Technical Report 2004-05, Stanford University, August 2004.

URL http://hci.stanford.edu/cstr/reports/2004-05.pdf. 69

[32] Tim Kindberg and John Barton. A Web-Based Nomadic Computing System. Tech-

nical Report HPL-2000-110, HP Laboratories Palo Alto, 2000. URL http:

//www.hpl.hp.com/techreports/2000/HPL-2000-110.pdf. 76

[33] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe

Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John Schettino,

Bill Serra, and Mirjana Spasojevic. People, Places, Things: Web Presence for

the Real World. Mobile Networks and Applications, 7(5):365–376, October 2002.

ISSN 1383-469X. doi: http://dx.doi.org/10.1023/A:1016591616731. 76

[34] Kevin A. Li, Patrick Baudisch, and Ken Hinckley. Blindsight: eyes-free access

to mobile phones. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI

conference on Human factors in computing systems, pages 1389–1398, New York,

NY, USA, 2008. ACM. ISBN 978-1-60558-011-1. doi: http://doi.acm.org.proxy.

lib.uwaterloo.ca/10.1145/1357054.1357273. 9

[35] Konrad Lorincz, David J. Malan, Thaddeus R.F. Fulford-Jones, Alan Nawoj,

Antony Clavel, Victor Shnayder, Geoffrey Mainland, Matt Welsh, and Steve

Moulton. Sensor networks for emergency response: Challenges and opportu-

nities. IEEE Pervasive Computing, 3(4):16–23, 2004. ISSN 1536-1268. doi:

http://doi.ieeecomputersociety.org/10.1109/MPRV.2004.18. 117

[36] J. Myers. RFC 2222 - Simple Authentication and Security Layer (SASL), October

1997. URL http://www.faqs.org/rfcs/rfc2222.html. 96

[37] Elizabeth D. Mynatt, Jim Rowan, Sarah Craighill, and Annie Jacobs. Digital family

portraits: Supporting peace of mind for extended family members. In CHI ’01:

Proceedings of the SIGCHI conference on human factors in computing systems,

pages 333–340, New York, NY, USA, 2001. ACM. ISBN 1-58113-327-8. doi:

http://doi.acm.org/10.1145/365024.365126. 81

[38] Hewlett Packard. Cooltown. URL http://www.hpl.hp.com/archive/

cooltown/. 76

133

http://hci.stanford.edu/cstr/reports/2004-05.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-110.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-110.pdf
http://www.faqs.org/rfcs/rfc2222.html
http://www.hpl.hp.com/archive/cooltown/
http://www.hpl.hp.com/archive/cooltown/

[39] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard

Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):

221–254, Summer 1995. 74

[40] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and

Terry Winograd. Icrafter: A service framework for ubiquitous com-

puting environments. In UbiComp ’01: Proceedings of the 3rd in-

ternational conference on Ubiquitous Computing, pages 56–75, Lon-

don, UK, 2001. Springer-Verlag. ISBN 3-540-42614-0. URL http:

//springerlink.metapress.com/content/ty1v54d2bcyjkryj/

?p=ce3026791b94458e8a84196c65880678&pi=6. 70

[41] Sarvapali D. Ramchurn, Benjamin Deitch, Mark K. Thompson, David C. De Roure,

Nicholas R. Jennings, and Michael Luck. Minimising Intrusiveness in Pervasive

Computing Environments using Multi-Agent Negotiation. In First Annual Inter-

national Conference on Mobile and Ubiquitous Systems: Networking and Services

(MobiQuitous’04), pages 22 – 26, Boston, Massachussets, USA, August 2004. doi:

http://doi.ieeecomputersociety.org/10.1109/MOBIQ.2004.1331743. 10

[42] Donald A. Redelmeier and Robert J. Tibshirani. Association be-

tween cellular-telephone calls and motor vehicle collisions. The

New England Journal of Medicine, 336(7):453–458, February 1997.

http://dx.doi.org/10.1056/NEJM199702133360701. 9

[43] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan,

Roy H. Campbell, and Klara Nahrstedt. A Middleware Infrastructure for

Active Spaces. IEEE Pervasive Computing, 1(4):74–83, October-December

2002. URL http://ieeexplore.ieee.org/iel5/7756/25949/

01158281.pdf?arnumber=1158281. 8, 67

[44] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant

Messaging and Presence, October 2004. URL http://www.ietf.org/rfc/

rfc3921.txt. 97, 106

[45] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core,

October 2004. URL http://www.ietf.org/rfc/rfc3920.txt. 92, 93,

102

134

http://springerlink.metapress.com/content/ty1v54d2bcyjkryj/?p=ce3026791b94458e8a84196c65880678&pi=6
http://springerlink.metapress.com/content/ty1v54d2bcyjkryj/?p=ce3026791b94458e8a84196c65880678&pi=6
http://springerlink.metapress.com/content/ty1v54d2bcyjkryj/?p=ce3026791b94458e8a84196c65880678&pi=6
http://ieeexplore.ieee.org/iel5/7756/25949/01158281.pdf?arnumber=1158281
http://ieeexplore.ieee.org/iel5/7756/25949/01158281.pdf?arnumber=1158281
http://www.ietf.org/rfc/rfc3921.txt
http://www.ietf.org/rfc/rfc3921.txt
http://www.ietf.org/rfc/rfc3920.txt

[46] Mahadev Satyanarayanan. Mobile Information Access: Accessing information on

demand at any location. IEEE Personal Communications, 3(1):26–33, 1996. 65

[47] Mike Schneider and Sara Kiesler. Calling while driving: effects of providing remote

traffic context. In CHI ’05: Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 561–569, New York, NY, USA, 2005. ACM.

ISBN 1-58113-998-5. doi: http://doi.acm.org/10.1145/1054972.1055050. 9

[48] William Siler and James J. Buckley. Fuzzy Expert Systems and Fuzzy Rea-

soning. WILEY-InterScience, first edition, December 2004. ISBN 978-0-

471-38859-3. URL http://ca.wiley.com/WileyCDA/WileyTitle/

productCd-0471388599.html. 20

[49] Clive Thompson. Meet the Life Hackers. The New York Times Magazine, pages

40–45, October 2005. URL http://www.nytimes.com/2005/10/16/

magazine/16guru.html. 123

[50] W3C. OWL Web Ontology Language Overview, February 2004. URL http:

//www.w3.org/TR/owl-features/. 100

[51] W3C. Resource Description Framework (RDF), 2004. URL http://www.w3.

org/RDF/. 100

[52] W3C. SPARQL Query Language for RDF, January 2008. URL http://www.

w3.org/TR/rdf-sparql-query/. 100

[53] W3C. SPARQL Query Results XML Format, January 2008. URL http://www.

w3.org/TR/rdf-sparql-XMLres/. 101

[54] Zhenyu Wang and David Garlan. Task-Driven Computing. Technical Re-

port CMU-CS-00-154, School of Computer Science, Carnegie Mellon University,

May 2000. URL http://reports-archive.adm.cs.cmu.edu/anon/

2000/CMU-CS-00-154.ps. 65

[55] Mark Weiser. The Computer for the 21st Century. Scientific American, pages 94–

104, September 1991. 1

[56] Mark Weiser and John Seely Brown. The coming age of calm technolgy. Beyond

calculation: the next fifty years, pages 75–85, 1997. 1

135

http://ca.wiley.com/WileyCDA/WileyTitle/productCd-0471388599.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-0471388599.html
http://www.nytimes.com/2005/10/16/magazine/16guru.html
http://www.nytimes.com/2005/10/16/magazine/16guru.html
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://reports-archive.adm.cs.cmu.edu/anon/2000/CMU-CS-00-154.ps
http://reports-archive.adm.cs.cmu.edu/anon/2000/CMU-CS-00-154.ps

[57] Wikipedia. Bayesian network, February 2008. URL http://en.wikipedia.

org/wiki/Bayesian_network. 31

[58] Wikipedia. List of countries by number of mobile phones in use, September 2008.

http://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use.

9

[59] Wikipedia. Dynamic programming, March 2008. URL http://en.

wikipedia.org/wiki/Dynamic_programming. 41

[60] Wikipedia. Endowment effect, September 2008.

http://en.wikipedia.org/wiki/Endowment_effect. 45

[61] Wikipedia. Fuzzy logic, February 2008. URL http://en.wikipedia.org/

wiki/Fuzzy_logic. 15, 17

[62] Wikipedia. Knapsack problem, February 2008. URL http://en.wikipedia.

org/wiki/Knapsack_problem. 41, 42

[63] Wikipedia. Likert scale, September 2008.

http://en.wikipedia.org/wiki/Likert_scale. 44

[64] Wikipedia. Mobile phones and driving safety, September 2008.

http://en.wikipedia.org/wiki/Mobile_phones_and_driving_safety. 9

[65] Dave Winer. XML-RPC Specification, June 1999. URL http://www.xmlrpc.

com/spec. 94

[66] XMPP Standards Foundation (XSF). XMPP Extensions. URL http://www.

xmpp.org/extensions/. 94

136

http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Knapsack_problem
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://www.xmpp.org/extensions/
http://www.xmpp.org/extensions/

	List of Tables
	List of Figures
	Introduction
	Motivating scenario
	Our approach
	Thesis contributions
	Organization of the thesis

	Modeling non-intrusive computing
	Previous work on intrusiveness
	Non-intrusive computing: Overall model
	Non-intrusive computing: Filter stage
	Willingness
	Importance
	The comparison model
	The fuzzy-logic model
	Modifying importance and willingness
	Atomic modifiers
	Complex modifiers
	The comparison model with modifiers

	Non-intrusive computing: Delivery stage
	Feasibility criteria
	Effectiveness
	Overtness
	Relationships between effectiveness and overtness
	Delivery-candidate selection

	User study
	Summary

	Performance analysis
	Non-dropping approach
	Dropping approach
	Hybrid dropping approach
	Discussion

	Previous work on pervasive-computing systems
	Literature review
	Aura
	Gaia
	Stanford interactive workspaces project - iRoom
	One.world
	Plan B
	Cooltown
	The Aware Home

	Recurring themes
	Insufficiencies in previous systems
	Isolation
	Insufficient integration platforms
	No standards
	High barrier to entry

	A non-intrusive-computing system
	Overview of the non-intrusive-computing system
	Jabber
	Jabber overview
	Jabber naming
	Jabber communication mechanism
	Jabber presence and security models
	Jabber storage
	Jabber and the non-intrusive-computing system

	System implementation
	Ontology and context manager
	The models and Jabber clients
	System implementation
	Overhead evaluation

	Code Blue case study
	Code Blue
	Application scenarios

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

