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Abstract

This research presents a new performance improvement technique, window memoization, for software

and hardware implementations of local image processing algorithms. Window memoization combines

the memoization techniques proposed in software and hardware with a characteristic of image data,

computational redundancy, to improve the performance (in software) and efficiency (in hardware) of local

image processing algorithms.

The computational redundancy of an image indicates the percentage of computations that can be

skipped when performing a local image processing algorithm on the image. Our studies show that com-

putational redundancy is inherited from two principal redundancies in image data: coding redundancy

and interpixel redundancy. We have shown mathematically that the amount of coding and interpixel

redundancy of an image has a positive effect on the computational redundancy of the image where a

higher coding and interpixel redundancy leads to a higher computational redundancy. We have also

demonstrated (mathematically and empirically) that the amount of coding and interpixel redundancy of

an image has a positive effect on the speedup obtained for the image by window memoization in both

software and hardware.

Window memoization minimizes the number of redundant computations performed on an image by

identifying similar neighborhoods of pixels in the image. It uses a memory, reuse table, to store the results

of previously performed computations. When a set of computations has to be performed for the first time,

the computations are performed and the corresponding result is stored in the reuse table. When the same

set of computations has to be performed again in the future, the previously calculated result is reused

and the actual computations are skipped.

Implementing the window memoization technique in software speeds up the computations required to

complete an image processing task. In software, we have developed an optimized architecture for window

memoization and applied it to six image processing algorithms: Canny edge detector, morphological

gradient, Kirsch edge detector, Trajkovic corner detector, median filter, and local variance. The typical

speedups range from 1.2 to 7.9 with a maximum factor of 40. We have also presented a performance

model to predict the speedups obtained by window memoization in software.

In hardware, we have developed an optimized architecture that embodies the window memoization

technique. Our hardware design for window memoization achieves high speedups with an overhead in

hardware area that is significantly less than that of conventional performance improvement techniques.

As case studies in hardware, we have applied window memoization to the Kirsch edge detector and median

filter. The typical and maximum speedup factors in hardware are 1.6 and 1.8, respectively, with 40% less

hardware in comparison to conventional optimization techniques.
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Chapter 1

Introduction

In recent years, as a result of advances made in digital computers and digital cameras,

image processing algorithms have been used widely in applications that affect our daily

lives including medical imaging (e.g. MRI and Ultrasound), security, navigation, multi-

media, industrial inspection, and astrophysics. Many of these applications are used in

soft and hard real-time systems where it is crucial to meet the performance requirements.

On the other hand, image processing algorithms are usually data-intensive. This makes it

both crucial and challenging to improve the performance of image processing algorithms.

In soft real-time systems that require performing image processing algorithms, such as

MRI, although it is not fatal not to have a high-performance system, in order to increase

patient access to MRI scans, it is absolutely crucial to speed up the computations. In

hard real-time applications, such as a visual based vehicle navigation system, it may be

fatal not to be able to process the incoming images quickly enough.

Traditionally, software running on microprocessors and digital signal processors has

provided adequate computational power to cope with the real-time image processing chal-

lenges. However, as image resolution and complexity of algorithms increase, the conven-

tional approaches of software implementations of image processing algorithms are not able

to handle these challenges. A common solution to meet the performance requirements

of real-time image processing is specialized hardware implementations of the algorithms.

Nevertheless, there are drawbacks to this solution. First, hardware design is much more

difficult and time consuming than writing software. Thus, in situations where a long

time to market cannot be tolerated, the hardware approach may not be feasible. Second,
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in order to benefit from the parallel processing nature of hardware, design optimization

techniques such as pipelining (scalar and/or superscalar) must be used. Implementing

such optimization techniques requires a large amount of hardware area, which increases

the cost of the design.

The main goal of this research is to develop an innovative optimization technique,

window memoization, which improves real-time image processing. Window memoization

improves the performance (in software) and efficiency (in hardware) of local image pro-

cessing algorithms. Local processing algorithms that deal with local features in images

constitute a large portion of low-level and mid-level image processing algorithms. In soft-

ware, the goal is to speed up the calculations required to complete an image processing

task. This will reduce the cost of embedded systems by using microprocessors instead of

specialized hardware. Employing the window memoization technique in software increases

the ability of embedded processors to meet the performance requirements of real-time im-

age processing systems and hence, in many cases, it eliminates the need to migrate to

hardware-based systems. In hardware, the objective is to speed up the calculations with

significantly less hardware area than conventional performance improvement methods.

In this work, we investigate the underlying characteristics of images that make window

memoization an effective optimization. We implement window memoization in software

and hardware. In software, the typical speedups range from 1.2 to 7.9 with a maximum

factor of 40. In hardware, the typical and maximum speedup factors are 1.6 and 1.8,

respectively, with less than 20% extra hardware area.

The main initiative behind this research is to reduce the amount of computation

that an image processing algorithm must perform. The underlying basis of reduction

is to remove the redundant computations; the computations that are not necessary to

perform in order to complete an image processing task. Analogous to image compression

algorithms that exploit data redundancy to reduce the size of images, computational

redundancy can be used to reduce the amount of computation and hence, to improve the

performance of image processing algorithms. In software, removing the computational

redundancy of an image processing task speeds up the whole task. In hardware, doing so

decreases the amount of hardware area needed to speed up the calculations in comparison

to conventional optimization techniques.
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Window memoization uses a reuse table to store the results of previously performed

computations. When a set of computations has to be performed for the first time, the

computations are performed and the corresponding result is stored in the reuse table.

When the same set of computations has to be performed again in the future, the previously

calculated result is reused and the actual computations are skipped.

Image data has two principal types of redundancy: coding redundancy and interpixel

redundancy. Coding redundancy is due to the fact that images are usually represented

using more bits per pixel than is actually needed. Interpixel redundancy is a result of the

correlation among neighboring pixels. Our studies show that the coding and interpixel

redundancy of an image result in having similar neighborhoods (or windows) of pixels in

the image. For a given algorithm, similar windows in an image produce the same results

and thus, they are reusable. The percentage of similar windows in an image indicates the

computational redundancy of the image.

We have shown that the amount of coding and interpixel redundancy of an image has

a positive relationship with the computational redundancy of the image, which means

that an image with a higher coding and interpixel redundancy will have a higher compu-

tational redundancy. In doing so, we have defined a few intermediate steps and concepts:

perfect window memoization, the hit rate of perfect window memoization, the reusability

of an image and the ideal reusability of an image. Perfect window memoization is a high

level processing model, which gives an upper-bound for the potential performance gain

achieved by window memoization in software and hardware. The hit rate of perfect win-

dow memoization for an image is the percentage of windows in the image that match a

symbol in the reuse table. Perfect window memoization gives the maximum hit rate that

the software and hardware implementations of window memoization can possibly achieve.

The reusability of an image gives the average number of unnecessary sets of computations

per each set of necessary computations in the image. In other words, the reusability of an

image gives the average number of redundant sets of computations per each reuse table

cell. The ideal reusability of an image gives the percentage of redundant sets of compu-

tations in the image ignoring the first time misses (i.e. compulsory misses). In order to

show that the coding and interpixel redundancy of an image have a positive relationship

with the computational redundancy of the image we have shown that there is a positive
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relationship between each of the following intermediate steps: coding/interpixel redun-

dancy and ideal reusability, ideal reusability and reusability, reusability and the hit rate

of perfect window memoization, and finally, the hit rate of perfect window memoization

and computational redundancy.

We have implemented window memoization in both software and hardware. In soft-

ware, we have presented an architecture that draws on concepts from hash tables in

software and caches in hardware. We have outlined a set of design decisions to arrive

at an optimal configuration of the architecture. We have also presented a performance

model to predict the speedup obtained by window memoization in software and assist

in choosing the optimal reuse table sizes, which yield maximum speedups. In software,

we have applied the technique to six different case study algorithms, implemented in C,

and demonstrated that window memoization yields significant speedups across different

images and processors. The typical speedups range from 1.2 to 7.9 with a maximum

factor of 40. Finally, we have shown that the computational redundancy of an image has

a positive relationship with the speedup obtained for the image by window memoization

in software. This means that the coding and interpixel redundancy of an image have a

positive relationship with the speedup obtained for the image by window memoization in

software.

In hardware, we have presented an optimized architecture for window memoization,

which improves the performance of local image processing algorithms with less cost

(i.e. hardware area) in comparison to conventional performance improvement techniques.

Similar to window memoization in software, we have explored different design decisions

in order to achieve high speedups with less cost. In contrast to software, which uses a

1-level regular reuse table, in order to increase the efficiency of the design in hardware,

we have used a 2-level reuse table that is based on parallel Bloom filters. We have applied

the window memoization technique to two case study algorithms and implemented them

at the register-transfer-level using VHDL. For typical images, on average our technique

improves the performance by 58% with less than 20% extra hardware area. Finally, we

have shown that the reusability of an image has a positive relationship with the speedup

obtained for the image by window memoization in hardware. This means that the cod-

ing and interpixel redundancy of an image has a positive relationship with the speedup
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obtained for the image by window memoization in hardware.

We have shown that the coding and interpixel redundancy of an image are the root

causes of having similar windows across the image. The window memoization technique

improves the performance of image processing in both software and hardware by identi-

fying similar windows of pixels across the image and eliminating the computations that

are not necessary. We have shown that the coding and interpixel redundancy of an im-

age have a positive relationship with the speedup obtained by window memoization in

software and hardware. This is a simple, yet revealing concept to use in practice. Images

can be categorized based on their potential performance gain in software and hardware

by only their coding and interpixel redundancy, with no need to actually implement

the window memoization technique. Coding and interpixel redundancy are fundamental

characteristics of images and hence, they are independent of any implementation arti-

fact (e.g. identifying similar windows in an image using a reuse table and a mapping

scheme). Therefore, the relationship between the coding/interpixel redundancy and the

performance improvement obtained by window memoization can be used as a useful tool

in analyzing images from the performance perspective in the early stages of designing an

optimization technique.

The contributions of this research include:

• define a quantitative measure for computational redundancy of image.

• show mathematically that the computational redundancy has been inherited from

two principal redundancies in image data: coding and interpixel redundancy.

• introduce a high level processing model, perfect window memoization, which gives

an upper-bound for the performance gain in software and hardware achieved by

exploiting the computational redundancy of an image.

• present an optimized architecture for the software implementation of window mem-

oization, typical speedups: 1.2 to 7.9.

• present a model for speedup of the software implementation of window memoization.

• show that the coding and interpixel redundancy of an image have a positive re-

lationship with the speedup for the image obtained by window memoization in
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software.

• present an optimized architecture for the hardware implementation of window mem-

oization, which yields significant speedups with much less hardware area than con-

ventional digital design techniques, typical efficiencies: 1.4.

• show that the coding and interpixel redundancy of an image has a positive relation-

ship with the speedup for the image obtained by window memoization in hardware.

The outline of the remainder of this thesis is as follows. In chapter 2, we present

a background review and related work on redundancy in image data, computational

redundancy in computer programs, memoization techniques proposed in software and

hardware, and local image processing algorithms. In this chapter, we also present a

taxonomy of local image processing algorithms as well as an overview of six different

local image processing algorithms, which are used as case studies for this research.

In chapter 3, the underlying roots of our performance improvement technique, window

memoization, is presented. We show mathematically that the amount of coding and

interpixel redundancy of an image has a positive relationship with the computational

redundancy of the image.

In chapter 4, we present the implementation of window memoization in software. We

also present a model that predicts the speedup of all images in a data set with minimum

required information. In addition, we show that the coding and interpixel redundancy of

an image have a positive relationship with the speedup obtained for the image by window

memoization in software.

In chapter 5, we present an optimized architecture for the hardware implementation

of the window memoization technique. Moreover, we show that the coding and interpixel

redundancy of an image have a positive relationship with the speedup obtained for the

image by window memoization in hardware.

Chapter 6 presents the conclusion. The thesis also includes four appendices. Ap-

pendix A illustrates the notations and terminology used throughout the thesis. Ap-

pendix B elaborates on using autocorrelation as a measure for interpixel redundancy of

image data. Appendices C and D present the results for window memoization in software

and hardware, respectively.
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Chapter 2

Background and Related Work

The background for our research includes three different topics: redundancy in image

data, memoization techniques proposed in software and hardware, and local image pro-

cessing algorithms. Our research shows that the redundancy in image data leads to

computational redundancy in local image processing algorithms (chapter 3). We present

architectures in both software and hardware to exploit the computational redundancy

to improve performance and efficiency (chapters 4 and 5). In this chapter, we present a

background review and related work on each of the aforementioned topics. In section 2.1,

a background review on different types of redundancy in image data is given. Section 2.2

presents a background review on computational redundancy in computer programs. It

also presents related work on different memoization techniques proposed in software and

hardware. In section 2.3, a brief introduction to local image processing algorithms is

given. We present a taxonomy of local image processing algorithms in section 2.4. In

section 2.5, we present an overview of six different local image processing algorithms,

which are used as case studies for this research. Finally, in section 2.6, we present the

sets of images that we use in our experiments throughout this thesis.

2.1 Image Data Redundancy

Image processing exploits three types of redundancy in image data: psychovisual re-

dundancy, coding redundancy, and interpixel or spatial redundancy [23]. Psychovisual

redundancy indicates that some information in the image is irrelevant and therefore, it is
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ignored by the human vision system. Coding redundancy is due to the fact that images

are usually represented using higher number of bits per pixel than is actually needed.

Interpixel redundancy is due to the correlation among neighboring pixels. These char-

acteristics of image data have been identified and exploited in the image compression

research field where the main goal is to reduce the amount of data required to store,

transmit, and/or represent an image. Nevertheless, the redundancy in image data has

not been considered as a potential source for computational redundancy. Therefore, there

is no explicit previous research on the relationship of the data redundancy and the com-

putational redundancy of image data. In the following sections, we present an overview

of the three types of image data redundancy.

2.1.1 Psychovisual Redundancy

Psychovisual redundancy in an image exists because human vision does not weigh all the

information coming from the image equally. Some parts of the image are considered to

contain more important information than the other parts. The less important information

is considered to be redundant since it is ignored by the human vision system. From the

image compression perspective, a region of an image, which has psychovisual redundancy

can be either omitted or represented using much less number of bits per pixel [23].

2.1.2 Coding Redundancy

An image is said to contain coding redundancy if the number of bits per pixel that

is required to represent the image is higher than is necessary [23]. To remove coding

redundancy in an image, the gray levels of the image are encoded in a way such that a

higher number of bits are assigned to less probable gray levels and vice versa. This is

in contrast to natural binary code where the gray levels are encoded with a fixed length

code. An image with equal probabilities of gray levels (i.e. flat histogram) has the least

coding redundancy (i.e. 0 bits/pixel). The other extreme case is a white image where

all pixels have the same gray level. In such a case, the coding redundancy is maximum

(i.e. 8 bits/pixel) since the image does not carry any information.

The coding redundancy of an image is measured based on the entropy of the image.

Entropy is the average information of an image per pixel, which is calculated as [23]:
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H = −
GL−1∑

i=0

pi × log2pi (2.1)

where GL and pi are the number of gray levels and the probability of occurrence of gray

level i in the image, respectively. For an image with GL gray levels, the sum of the

average coding redundancy per pixel (Cr) and average information per pixel (entropy H)

is a constant value [52]:

Cr + H = log2(GL) (2.2)

In other words, for an image with a given number of gray levels (GL), the entropy of the

image (H) determines the coding redundancy of the image (Cr).

Cr = log2(GL)−H (2.3)

For an image with 256 gray levels we will have: Cr = 8−H.

Coding redundancy has been exploited in several image compression algorithms to

reduce the size of the image. Huffman coding, Golomb coding, and arithmetic coding are

among the common lossless compression algorithms that benefit from coding redundancy

in images [23].

2.1.3 Interpixel Redundancy

When measuring the coding redundancy of an image, it is assumed that the pixels in

the image are uncorrelated. However, in real-world images, the neighboring pixels are

correlated because they usually belong to one object or background with similar gray

levels. The correlations among image pixels, which result from the structural or geomet-

rical relationships between the objects in the image lead to interpixel redundancy [23].

For many pixels, much of information that the pixel carries is redundant and it can

be predicted with a reasonably high accuracy from the values of its neighboring pixels.

There are many lossless image compression algorithms that take advantage of interpixel

redundancy in images including run-length coding, difference coding, lossless predictive

coding, LZW coding, and vector coding. Lossy predictive coding is an example for lossy

image compression algorithms, which exploit interpixel redundancy [23] [16].
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Interpixel redundancy has also been exploited in image segmentation where groups

of pixels are assigned to different classes, indicating objects or different types of surfaces

in the image. Two approaches that use interpixel redundancy in this field are spatial

stochastic model and Markov model. In these approaches, the image is classified based

on the assumption that there is a local dependency of a pixel on its neighbors [56] [25] [30].

To measure interpixel redundancy, three different methods are usually used: mapping

transforms, Markov model, and autocorrelation. In the followings, each of the methods

is described.

Interpixel Redundancy Based on Mapping Transforms

As mentioned earlier, interpixel redundancy exists because much of information carried

by each pixel is redundant with the information carried by the pixels around it. Mapping

transforms convert an image into a new format where the interpixel redundancy of data

has been eliminated [23]. Each pixel in the transformed image contains the information

that is carried solely by the corresponding single pixel in the original image.

In mapping transforms, the interpixel redundancy of a pixel is calculated with respect

to a window of pixels that appears around the pixel in the image. Thus, the size of the

window plays a role in defining the interpixel redundancy of an image. For example, the

information that a pixel shares with a 3× 3 window of pixels around it is different than

that shared with a 5×5 window. The other issue in extracting the interpixel redundancy

is the amount of weight that is given to the interpixel redundancy between a pixel and

each neighboring pixel. The general form of a mapping transform, which extracts the

information carried solely by the central pixels of windows is:

Imgicp(x, y) =
m1∑

i=−m1

m2∑

j=−m2

αijImg(x− i, y − j) (2.4)

In the equation above, icp stands for information at central pixel, (2m1+1)×(2m2+1)

is the size of the windows, based on which the interpixel redundancy is calculated, and

αij determines the weights given to the interpixel redundancy between a pixel and each

neighboring pixel.
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Once the mapping has been applied to an image, the entropy of the transformed

image (H icp) will measure the amount of information stored in the transformed image

(Imgicp), which is usually much less than that stored in the original image (Horig). The

decrease in entropy reflects the removal of interpixel redundancy (IPr) with respect to

the transform used (icp) to generate the transformed image (Imgicp) [23]. Therefore, the

interpixel redundancy of an image can be calculated as:

IPr = Horig −H icp (2.5)

Interpixel Redundancy Based on Markov Model

Markov model assumes that the probability that a pixel at a location has a certain gray

level is a function of the gray levels of some number of neighboring pixels [16]. The

number of neighboring pixels is the order of the Markov source. When pixels in an image

are assumed to be independent random variables, in fact it is assumed that the image is

a Markov source of 0th order. This is the case when coding redundancy is calculated. A

kth order Markov source considers each window of k pixels in an image as a k-D gray-level

vector. If the k neighboring pixels share information with each other, then the entropy

of the kth order Markov source will be less than that of the 0th order Markov source,

which is the original image. Similar to mapping transforms, the decrease in entropy is

considered to reflect the removal of interpixel redundancy among the pixels of windows

with k pixel size:

IPr = Horig −Hk (2.6)

In equation 2.6, IPr is the interpixel redundancy, Horig and Hk are the entropies of

the original image and the kth order Markov source of the image, respectively. Similar

to mapping transforms, the interpixel redundancy calculated based on Markov model

depends on the size of windows of pixels, based on which gray-level vectors are built.
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Interpixel Redundancy Based on Autocorrelation

Autocorrelation is another measure used for interpixel redundancy of images. It is usually

used to measure the interpixel redundancy between two adjacent pixels. Nevertheless, it

can be generalized to measure the interpixel redundancy among a pixel and its neighboring

pixels.

Autocorrelation measures the correlation of an image with the shifted version of the

image in time or space [23]. For our discussion, we consider the correlation of image with

itself in space. Equation 2.7 measures the autocorrelation of an image with itself that

has been shifted by n pixels. Note that the shift can be in any of eight directions (north,

south, east, west, northwest, northeast, southwest, southeast).

AC(n) =
E[(Img − µ)(Imgn − µ)]

E[(Img − µ)2]
(2.7)

In the equation above, µ is the mean of the original image (Img). Imgn is equal to Img

shifted by n pixels. E[Img] is the expected value of random variable Img, which is defined

as:

E[Img] =
∫ +∞

−∞
xp(x)dx (2.8)

where p(x) is the PDF of random variable Img. The denominator of equation 2.7 is in

fact the variance of the original image, σ2:

σ2 = E[(Img − µ)2] =
∫ +∞

−∞
(x− µ)2p(x)dx (2.9)

AC(1) (n = 1) measures the correlation between the original image and the image shifted

by one pixel. In other words, AC(1) indicates the interpixel redundancy between adjacent

pixels of the image: the closer the gray levels of adjacent pixels, the higher AC(1):

AC(1) =
E[(Imgi − µ)(Imgi+1 − µ)]

σ2
(2.10)

In our discussions in chapter 3, it will be required to measure the coding and inter-

pixel redundancy of images. As mentioned in section 2.1.2, the coding redundancy of an

image is calculated based on the entropy of the image. Interpixel redundancy, however,
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can be calculated using different measures (mapping transform, Markov model, and auto-

correlation). As it will be discussed in chapter 3, both coding redundancy and interpixel

redundancy of an image affect the computational redundancy of the image. Therefore,

both coding and interpixel redundancies must be taken into account when dealing with

computational redundancy. We have discussed in appendix B that for our purpose, auto-

correlation is not a suitable measure for interpixel redundancy because there is no direct

link between autocorrelation and the coding redundancy of an image. This makes it

impossible to consider both redundancies using autocorrelation.

In chapter 3, we will show that the coding and interpixel redundancy of an image

have a positive relationship with the computational redundancy of the image. In chap-

ters 4 and 5, we will demonstrate that the computational redundancy of an image leads

to performance improvement. Our goal is to develop a method, which makes it easy

to categorize images based on their expected performance improvement without having

information about the actual performance improvements. As it will be discussed in chap-

ter 3, this is achieved by using a mapping transform as a measure to calculate interpixel

redundancy. Beside the fact that mapping transform is a common approach to calcu-

late interpixel redundancy in image processing, calculating interpixel redundancy using

Markov model is a computationally intensive method. For example, for a Markov model

of 9th order (i.e. windows of 3×3 pixels), the Markov model requires to calculate 9-D vec-

tor histograms, with 272 possible gray-level vectors or bins. For equivalent size windows,

the mapping transform requires to calculate histograms of transformed images with only

511 possible bins.

2.2 Computational Redundancy

Computational redundancy has long been used in memoization techniques proposed for

computer programming and processor design where in some cases the image processing

algorithms have been used as test cases. However, the proposed memoization techniques

are usually generic methods, which do not concentrate on any particular class of input

data or algorithms. Therefore, the computational redundancy of image data has not

been directly studied and exploited in designing the memoization methods. Moreover,

the memoization techniques proposed in hardware are mostly for processor design. In
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contrast, our memoization technique in hardware targets the hardware implementations

of local image processing algorithms. In this section, we present a background review on

locality of data in computer programs. We also present the related work on memoization

techniques proposed in software and hardware.

2.2.1 Data Locality

The notion of data locality is used in both memory hierarchy design and optimizations

of computations in software and hardware. Nevertheless, what is meant by data locality

in these two contexts are usually different. In cache hierarchy design, data locality im-

plies the high possibility of referencing the same resource in future, which can be used

to reduce the memory access time [49]. From computational perspective, data locality is

defined as the possibility of repeatedly encountering previously seen data, upon which the

same calculation is to be performed. This type of data locality leads to computational

redundancy. Redundant computations are operations that repeatedly perform the same

function because they repeatedly see the same operands [46]. In both cases, data locality

is caused by many factors among which data redundancy is the main reason. Data re-

dundancy which means unnecessary reappearances of data is due to the fact that many

programs use data that has little differences [34]. In our discussions, the “data locality”

that we refer to is the one that causes computational redundancy. Computational re-

dundancy has been exploited to optimize the computations by memoization techniques

in both software and hardware. In the following sections, related work on memoization

techniques proposed in software and hardware is presented.

2.2.2 Memoization Techniques in Software

Memoization is a performance improvement technique, which exploits the locality of

data to speed up the calculations in a computer program. It removes the computational

redundancy by storing the results of previous subcomputations in a reuse memory and

reusing them in the future. Assuming that the overhead time for storing/loading the

results to/from memory is small, reusing the previously computed results and skipping the

actual subcomputations improves performance. In other words, memoization improves

performance in exchange for increased memory usage.
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Memoization versus Dynamic Programming

There are two approaches for the general method of memoization in software: top-down

and bottom-up. The top-down approach is also called memoization while the bottom-up

approach is called dynamic programming [10].

In the top-down approach (memoization), first, those subcomputations of a program

that can benefit from memoization are identified. Afterward, the memoization mechanism

is integrated into the original program to store and reuse the result of one or multiple

subcomputations. Based on the dependency of the subcomputations, reusing a result

could lead to skipping one or multiple subcomputations. Top-down memoization does

not transform the original program into a new code. It maintains the flow of the pro-

gram unchanged and only some subcomputations are replaced with the reuse of memory.

Both identifying the subcomputations that benefit from memoization and integrating the

memoization mechanism into the program can be done either manually or automatically.

In the bottom-up approach (dynamic programming), it is assumed that an optimal

solution to a problem contains optimal solutions to the subproblems of the original prob-

lem. Moreover, the optimal solution to the whole problem is achieved by the optimal

solutions to the subproblems, used in a bottom-up manner. Another element of dynamic

programming is the fact that same subproblems are encountered in a program frequently.

Such subproblems are called overlapping subproblems. Dynamic programming uses mem-

oization to avoid repeating redundant subcomputations. Therefore, it is considered a

special case of memoization.

In the top-down memoization, based on the input, it is decided whether to perform

a subcomputation or reuse it. Therefore, not all possible subcomputations are executed.

Only those are performed that are necessary. This is not the case in the bottom-up

approach (i.e. dynamic programming) where each subcomputation is executed at least

once regardless of whether the subcomputation is necessary. In practice, usually a portion

of subcomputations are needed, in which cases memoization can be more efficient than

dynamic programming. On the other hand, dynamic programming can benefit from the

regular pattern of accesses to reuse memory to reduce the memoization overhead time

and the required memory size.

In the following, the related work on top-down memoization techniques proposed in
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software is presented.

Related Work on Memoization Techniques in Software

The concept of memoization was originally introduced by Michie [38]. He used memo-

functions to memoize the result of each function to avoid redundant function calls. Bird [2]

proposed a memoization technique called exact tabulation, which eliminates the recursion

in recursive programs. Exact tabulation is suitable for recursive algorithms whose de-

pendency graphs do not have a uniform property. Exact tabulation requires large reuse

memory since no entry is evicted from the memory once it is stored. Hughes [28] in-

troduced the notion of lazy memo-functions by relaxing the requirement for equality of

subcomputations; rather than require that the equal subcomputations have identical ar-

guments, the subcomputations are considered equal if their arguments are stored in the

same memory location. In other words, the equality evaluation of subcomputations are

based on the addresses where they are stored in the reuse memory. This eliminates the

need for comparing complex data structures and leads to a more efficient memoization

mechanism. The technique also claims that it reduces the size of required reuse memory

by discarding old arguments and results.

Pugh and Teitelbaum [44] applied memoization to incremental computations. Incre-

mental computations is a technique used to efficiently update the result of a computa-

tion only when the input is changed. They introduced the notion of stable decomposi-

tion, meaning that a problem is decomposed into common sub-problems. The reported

speedups for a case study (an incremental theorem proving) is in the range of 4-6. In

another work, instead of previously used eviction methods (LRU and FIFO), Pugh [43]

proposed a new method, which is based on the number of hits an entry receives and

the estimated amount of time required to recompute it. It was reported that the pro-

posed eviction strategy reduce the overhead time incurred by memoization. Mayfield [37]

proposed an automated memoization technique that avoids the redundant calculations

both within a function and across the invocations. The technique provides the user with

methods to decide which functions to reuse and automatically integrate the memoization

mechanism to the program.

In embedded software, the memoization techniques are more interesting because they
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both improve the performance and reduce power consumption. Ding [15] proposed a

computation reuse technique for programs run on handheld devices. The technique uses

profiling tools to identify segments of the program that are executed more frequently.

Afterward, the memoization mechanism is integrated to the program in order to reuse the

results of the selected segments. In addition, an IF-merging technique is used to reduce

the number of branches by merging IF statements with identical IF conditions. For

computation reuse, a typical speedup of 1.37 with 22% reduction in power consumption

were reported. For IF-merging, a typical speedup and power saving of 1.06 and 6% were

reported, respectively.

Wang [55] proposed a systematic methodology to identify and eliminate redundancies

in embedded software programs. Similar to the work done by Ding [15], a profiling tool

is used to identify the regions of the program that have high probability of performing

redundant computations. Afterward, various caching strategies are explored to achieve

maximum energy savings. Finally, the program is modified to include the code that im-

plements the memoization mechanism and performs reuse memory lookups and updates.

The proposed technique yields speedups up to 1.45 with up to 47% reduction in power

consumption.

2.2.3 Memoization Techniques in Hardware

Despite the innovations made in modern microprocessors design, their performance is

essentially limited by two program characteristics: control flow limit and data flow limit.

Control flow limit of a program can cause control hazards, which arise from the speculative

execution of instructions. Data flow limit, on the other hand, is caused by data hazards,

which are due to un-handled data dependency between consecutive instructions. The

goal of memoization techniques proposed in hardware is to improve the performance of

pipelined designs beyond the data flow limit.

There are three different classes of data dependencies in microprocessor design [49]:

• Anti-dependency or Write After Read (WAR) dependency

• Output dependency or Write After Write (WAW) dependency

• True dependency or Read After Write (RAW) dependency
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Anti-dependency is caused by writing to a register before allowing the previous value

of the register to be read. Output dependency is caused by writing to a register before

allowing the previous write operation on the register to take place. These two data depen-

dencies (anti-dependency and output dependency), which are called false dependencies

can be resolved by dynamically renaming the destination operand to a unique location.

The proposed techniques that are able to remove false data dependencies efficiently have

been implemented in processor design for the last four decades. Nevertheless, true data

dependency, which is the critical path between a consumer instruction and its source

operands determines the data flow limit in processors. In other words, the data flow limit

occurs when the unavailability of an instruction’s operands halts the instruction.

The performance of a pipelined design is indicated by throughput, which is measured

in terms of the number of parcels of data entering the pipeline per clock cycle. In the

absence of data flow limit, the throughput of an n-wide superscalar pipeline is n parcels

of data per clock cycle. Data flow limit in a superscalar pipeline causes the pipeline to

stall, reducing the throughput below n parcels of data per clock cycle. The memoization

techniques in hardware introduce additional instruction-level parallelism by reusing the

result of an instruction without executing it. The techniques produce the result of an

instruction, with which the consequent instructions have true data dependencies as soon

as possible and hence reduce the number of cycles that pipeline has to stall. Reducing

the number of pipeline stalls will increase throughput beyond the data flow limit. To

reuse an instruction, it is necessary to verify that its future result is going to be the same

as the previous one, in which case the result can be reused. This is done by recording

the instruction and its operands in a reuse memory. Similar to memoization techniques

in software, memoization techniques in hardware take advantage of the locality of data

fed into the in-flight instructions.

Related Work on Memoization Techniques in Hardware

Richardson [46] proposed to embed a memoization technique in processor architecture to

look up the results of a set of targeted operations (multiply, division and square root) that

are redundant. Different SPEC benchmarks used for simulation showed various speedups

ranging from 1.04 up to 1.48 with up to 16K entry direct mapped reuse memory.
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Sodani and Sohi [51] proposed a microarchitectural technique, instruction reuse, which

reduces the number of instructions that have to be executed dynamically. The idea behind

instruction reuse is to use value locality of instructions and operands to produce the result

of an instruction as soon as it is fetched — without ever executing the instruction. This

reduces the number of cycles that the pipeline has to stall for data dependencies and

hence increases the throughput of the pipeline. Producing the instructions results as

soon as they are fetched eliminates the true data dependency between instructions and

therefore, it breaks the data flow limit of the program. In instruction reuse, three schemes

have been proposed to control the reuse memory. The first scheme checks operand values

of each instruction to verify if they are present in the reuse memory. The second scheme

tracks the operands names and the third one follows the data dependencies among the

instructions. Because the reuse memory access can be pipelined, despite its size, it is

unlikely to be a part of the critical path of the design. For a 1024 entry reuse memory,

the reported speedups for different benchmarks range from 1.03 up to 1.43.

Citron et al. [7] extended Sodani’s work and proposed a technique that enables exe-

cuting multi-cycle operations in a single cycle by adding a MEMO-TABLE to each com-

putation unit in microprocessor architecture. The multi-media benchmarks were chosen

as test cases because of expected high value locality of data. The proposed scheme is

different than instruction reuse bcause it only records multi-cycle instructions in MEMO-

TABLEs. In addition, the instructions are stored in MEMO-TABLEs based on their

types, rather than their addresses. For the selected multi-media benchmark with a 32

entries, 4-way set associative MEMO-TABLEs, the maximum speedup was 1.22.

In another work, Citron and Feitelson [8] proposed adding two new instructions to

the instructions set of processor, which look up and update a generic MEMO-TABLE

(function reuse). These two instructions make it possible to reuse multi-cycle mathemat-

ical and trigonometric functions, most of which are not included in the instructions set of

most microprocessors. It was concluded that for applications that use many functions of

these two types, the proposed approach yields better results in comparison to instruction

reuse. The best result was achieved for a combination of both instruction and function

reuse, which gave the average speedup of 1.14 with 5 MEMO-TABLEs of 256 entries and

4-way set associativity.
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Kavi and Chen [31] studied the possibility of improving performance by reusing the

results from previous function invocations. It was concluded that there is a great po-

tential for exploiting function reuse and also functions with fewer arguments have higher

probability of reuse. Huang and Lilja [26] applied value reuse to blocks rather than single

instructions. This technique, which is called block reuse, showed a speedup between 1.01

and 1.14 with 2048 entries block history buffer for a selected benchmark.

In a recent study, Citron and Feitelson [9] showed that because of long latency memory

access in new processors, the memoization concept is useful only for multi-cycle instruc-

tions. In other words, it is useless to reuse single-cycle instruction.

Although the simulation results for different proposed reuse architectures show sig-

nificant performance improvement, none of these techniques has been implemented in a

real design yet. The reasons are that implementing these techniques will require signifi-

cant modifications to existing control and datapath circuitry in microprocessors and that

designers in industry are not convinced yet that the price they have to pay for design

modifications will be returned by the gain in performance [49].

2.3 Local Image Processing Algorithms

In this section, a brief overview of local image processing algorithms is given. From the

perspective of the mechanics of computations, the image processing algorithms can be

categorized into two major categories: spatial domain algorithms and transform-domain

algorithms. Spatial domain algorithms deal with image pixels directly, while transform-

domain algorithms work with the result of an image transform such as Fourier transform

or Wavelet transform. Each category contains different subcategories as shown below:

• Spatial domain

– Point Processing: mask operations performed on a pixel

– Local Processing: mask operations performed on a local window of pixels

– Global Processing: mask operations performed on the whole image

• Transform-domain
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– Fourier Transform: transforms the image into the frequency domain; the image

is represented as the sum of sines and cosines of different frequencies, each

weighted with a differen coefficient [23]

– Discrete Cosine Transform: is similar to Fourier transform but only uses

cosines function to represent the image [23].

– Wavelet Transform: transforms the image into a 2-dimensional domain of scale

and space. The image is represented as the sum of some functions that are not

necessarily sinusoidal [23].

In this research, our focus is spatial domain algorithms. To perform an image pro-

cessing task in spatial domain, usually a set of image processing algorithms are used in a

chain. A chain contains different stages and each stage performs a set of calculations on

a pixel (point processing), a local window of pixels (local processing) or the whole image

(global processing) at each iteration.

Local processing algorithms that mainly deal with extracting local features in image

(e.g. edges, corners, blobs) are increasingly used in many image processing applications

such as texture recognition, scene classification, and robot navigation. The reason for

popularity of these algorithms is that using local features of an image overcomes the

need for high level algorithms where a semantic-level understanding of the image is re-

quired [54]. The main drawback for local algorithms is that they are usually computa-

tionally expensive; a set of calculations must be repeated all over the image for numerous

times.

The local algorithms use a small neighborhood of a pixel in an image to process and

produce a new gray level for the image in the location of the pixel. The size of local

windows can vary based on the algorithm but for most algorithms the local windows

contain 9 pixels (3 × 3 pixels) or 25 pixels (5 × 5 pixels). A local processing algorithm

applies a set of operations, which is called the mask operations set (f), to each window

of pixels (wij) in the image to produce the response (rij) of the window.

rij = f(wij) (2.11)

As equation 2.11 indicates, in local processing algorithms, the response of each local

window rij only depends on the pixels in the local window wij .
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2.4 The Taxonomy of Local Image Processing Algorithms

From the perspective of functionality, the image processing algorithms can be categorized

into intermediate steps of a processing chain as shown in figure 2.1 [17]. At each stage,

series of calculations are performed on the input image to reach the desired goal (e.g. en-

hance the quality of image, find the objects in the image). In the following, each stage will

be described briefly and then the local processing algorithms that belong to the stage will

be listed. It should be noted that the algorithms/filters that are designed in frequency

domain are usually transformed back to spatial domain in order to be implemented in

software or hardware [23]. Therefore, our taxonomy of local image processing algorithms

will also include such frequency domain algorithms.

Preprocesing Feature 
Extraction

Segmentation Object
Recognition

Image
Understanding

Figure 2.1: Image processing chain

• Pre-Processing: the first stage in the image processing chain. It usually falls into

two categories: image restoration and image enhancement. Usually, the algorithms

of image restoration and image enhancement are local processing.

– Image Restoration: recovers an image that has been degraded by noise, by

using a priori knowledge about the degradation process [23] [52] [22] [13]:

∗ Mean Filters: reduces the noise in an image by removing the detail in the

image and blurring the image:

1. Arithmetic mean filter

2. Geometric mean filter

3. Averaging with limited data

4. Harmonic mean filter

5. Contraharmonic mean filter

6. Averaging according to inverse gradient

7. Averaging using rotating masks
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∗ Order-Statistics Filters: the responses of the filters are based on the order

of the pixels in the local neighborhoods:

1. Median filter

2. Max and min filter

3. Midpoint filter

4. Alpha-trimmed mean filter

∗ Image Smoothing Using Frequency Domain Lowpass Filters:

1. Butterworth lowpass filter

2. Gaussian lowpass filter

3. Wiener lowpass filter

∗ Image Smoothing Using Frequency Domain Selective Filters:

1. Butterworth bandreject filter

2. Gaussian bandreject filter

3. Butterworth bandpass filter

4. Gaussian bandpass filter

5. Butterworth notch filter

6. Gaussian notch filter

∗ Adaptive Filters: takes into account the statistical characteristics (e.g. vari-

ance, mean) of the local neighborhood of pixels:

1. Adaptive noise reduction filter

2. Adaptive median filter

3. Adaptive frost filter

4. Sticks filter

5. Kuwahara Filter

– Image Enhancement: magnifies specific features in the image [23] [52]:

∗ Gradient operators: detect edges and/or sharpen the image by calculating

the gradient of a neighborhood of pixels:

1. Roberts operator

2. Prewitt operator

3. Laplace operator
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4. Sobel operator

5. Kirsch operator

6. Canny edge detector

∗ Unsharp masking: sharpens images by subtracting an unsharp version of

an image from the original image

• Feature Extraction: reduces the amount of data in image in order to extract a

desirable information about the content of the image

– Rapid Transform: is a shift-invariant transform, which locates a pattern in the

image [18]

– Corner Detection: detects the intersection of lines in image [39] [24] [50] [53] [52]:

1. Moravec corner detection

2. Harris & Stephens/Plessey corner detection

3. Level curve curvature corner detection

4. Wang and Brady corner detection algorithm

5. SUSAN corner detector

6. Trajkovic and Hedley corner detector

7. FAST feature detector

8. Facet model

– Blob Detection: detects areas in the image that are brighter or darker than

their surroundings. In other words, blobs are areas whose brightness is above

or below a threshold.

1. Laplacian of Gaussian (LoG)

2. Difference of Gaussians approach

3. Determinant of the Hessian

4. Maximally stable extremal regions (MSER)

– Ridge Detection: for an n variable function, the ridges are a set of curves whose

points are local maxima in n − 1 dimensions. Ridges are used to capture the

interior of elongated objects in the image.
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– Scale-Invariant Feature Transform (SIFT): detects local features in an image.

The result is invariant to change in scale and illumination [36].

• Local Segmentation: partitions the sub-images in isolation into regions such that

the representation of the image is changed into a more meaningful form [52] [47] [48]:

1. Locally-Adaptive Thresholding: adapts the threshold according to the local

characteristics of image

(a) Surface fitting thresholding

(b) Kriging method

(c) Center-surround method

2. Line Finding Operators: detect lines in image

3. Non-Maximal Suppression: suppresses multiple edge responses in the neigh-

borhood of single boundaries.

4. Edge Linking: identifies and links the edges that belong to an object.

5. Segmentation based on Spatial Entropy: segments image based on the entropy

of the foreground and background regions, and the cross-entropy between the

original and binarized image.

6. Block Truncation Coding: operates on small neighborhoods of pixels (blocks)

in image that are non-overlapping. Each block then is divided into two regions

of foreground and background.

7. Filtering Using Explicit Local Segmentation (FUELS): a more generalized ver-

sion of block truncation coding where overlapping neighborhoods are used and

each sub-image is divided into more than two regions.

• Object Recognition: recognizes objects in image and estimates the positions and

orientations of the recognized objects [23]:

– Template matching: recognizes an object in image by matching sub-images of

the image and the target subject

• Morphological Algorithms: are usually used to enhance an image and/or extract a

certain information from an image and they can be seen as preprocessing and/or
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feature extraction algorithms. However, these algorithms are usually categorized as

a separate class of algorithms, which uses the set theory as its language [23] [52].

Therefore, we put them in a separate category in the taxonomy of image processing

algorithms:

1. Dilation: grows image regions by combining two sets of pixels using vector

addition

2. Erosion: shrinks image regions by combining two sets of pixels using vector

subtraction

3. Hit-or-Miss transformation: finds a match or miss-match between an image

and a window of pixels

4. Opening: eliminates particular details in image that are smaller than a specific

size (structuring element), using erosion followed by dilation

5. Closing: connects the object that are close, using dilation followed by erosion

6. Top-Hat Transformation: segments the object in image that differ from back-

ground, using the residue of opening compared to the original image

7. Sequential Thinning: thins the lines down to one pixel wide using local win-

dows (structuring elements)

8. Morphological Gradient: calculates the gradient of image based on dilation

and erosion

9. Morphological Grayscale Reconstruction

The last step in the image processing chain (figure 2.1) is image understanding, which is

the highest processing level in computer vision. Image understanding algorithms usually

process the whole image or a large subimage at each iteration, which is considered to

be a global processing algorithm, rather than local. Thus, we have not included image

understanding algorithms in the taxonomy.

2.5 Case Study Algorithms

In this section, we present six local image processing algorithms that we have chosen as

case studies for our experiments. In choosing the case study algorithms, the followings
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have been considered:

• belong to different classes of local image processing algorithms

• use different local window sizes

• have different complexities

• have binary and gray level outputs

The following shows the case study algorithms and the classes they belong to:

• Canny edge detector: Preprocessing, image enhancement. Segmentation, Non-

maximal suppression

• Morphological gradient: Mathematical morphology algorithms.

• Kirsch edge detector: Preprocessing, Image enhancement

• Trajkovic corner detector: Feature extraction, Corner detection

• Median filter : Preprocessing, Image restoration

• Local Variance: Preprocessing, Image restoration

Table 2.1: Characteristics of the case study algorithms

Algorithm/ Characteristic Window Size Complexity (ms) Output

Canny Edge Detector 3× 3 64 Binary

Morphological Gradient 3× 3 49 Binary

Kirsch Edge Detector 3× 3 37 Binary

Corner Detector 3× 3 315 Binary

Median Filter 3× 3 36 Gray Level

Local Variance 5× 5 2045 Gray Level

Table 2.1 lists the characteristics of the case study algorithms including the window

size, the complexity of the algorithms and whether the output is binary or gray level.

For complexity, we measure the time that it takes to run each algorithm on a mid-range
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processor (Intel(R) XEON(TM), CPU: 1.80GHz, cache size: 512KB). It is seen that the

algorithms use different window sizes (3×3 and 5×5), cover a wide range of complexities

(36ms to 2045ms), and generate both binary and gray-level outputs.

2.5.1 Canny Edge Detection Algorithm

The Canny edge detection algorithm assumes that there is a step edge, which is subject to

white Gaussian noise. The algorithm uses a filter (i.e. derivative of a Gaussian function

∇G(x, y)) to obtain an image that has enhanced edges, even in the presence of noise [52].

Gaussian function is a smoothing filter that removes any quick changes in the image. It

is given by:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.12)

where σ is the scale factor.

The mathematic of Canny edge detector is as follows. First, the derivative of the

Gaussian filter ∇(G(x, y)) is convolved with the input image I:

J(x, y) = ∇(G(x, y)) ∗ I(x, y) (2.13)

The derivative must be taken in the direction of edge. However, the orientation of the

edge is still unknown. So assuming that the orientation is n, it is obtained:

J(x, y) = ∇(G(x, y)) ∗ I(x, y) =
∂G(x, y)

∂n
∗ I(x, y) (2.14)

n can be estimated as follows:

n =
∇(G(x, y)) ∗ I(x, y)
|∇(G(x, y)) ∗ I(x, y)| = nxi + nyj (2.15)

By having the direction of the edge, the location of the edge can be calculated. The

location of the edge is where the second derivative of the Gaussian filter convolved with

the input image is zero:

∂ ∂G(x,y)
∂n

∂n
∗ I(x, y) =

∂2G(x, y)
∂n2

∗ I(x, y) = 0 (2.16)

In order to calculate equation 2.16, we begin with the first derivative of Gaussian filter

in the direction of n:
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∂G(x, y)
∂n

=
∂G(x, y)

∂x

nx

|n| +
∂G(x, y)

∂y

ny

|n| (2.17)

where:

n =
√

n2
x + n2

y (2.18)

The second derivative of Gaussian in the direction of n is calculated as follows:

∂2G(x, y)
∂n2

= [
∂2G(x, y)

∂x2

nx

|n|+
∂2G(x, y)

∂x∂y

ny

|n| ]
nx

|n|+[
∂2G(x, y)

∂y2

ny

|n|+
∂2G(x, y)

∂x∂y

nx

|n| ]
ny

|n| (2.19)

which gives:

∂2G(x, y)
∂n2

=
∂2G(x, y)

∂x2

n2
x

|n|2 + 2
∂2G(x, y)

∂x∂y

nxny

|n|2 +
∂2G(x, y)

∂y2

n2
y

|n|2 (2.20)

Equation 2.20 1 shows that in order to find the location of an edge, we can analytically

calculate Gxx(x, y), Gyy(x, y) and Gxy(x, y) and convolve the results with the image I.

If the second derivative of Gaussian function convolved with the input image is zero in

a location, then that is the location of a candidate edge. Otherwise, the edge is a false

edge and therefore, it is eliminated.

After determining the location of edges and suppressing false edges, the edge magni-

tudes are computed using:

M(x, y) = |∂G(x, y)
∂n

∗ I(x, y)| (2.21)

Substituting equation 2.17 into equation 2.21 yields:

M(x, y) = |nx

|n|
∂G(x, y)

∂x
∗ I(x, y) +

ny

|n|
∂G(x, y)

∂y
∗ I(x, y)|

= |nx

|n|Jx(x, y)|+ ny

|n|Jy(x, y)|

=
√

J2
x(x, y) + J2

y (x, y) (2.22)

which gives:

M(x, y) = |∇(G(x, y)) ∗ I(x, y)| (2.23)
1Equation 2.20 is a specific form of “steerable filters” [21] that constitute a class of filters in which a

filter of arbitrary orientation is built based on a linear combination of filters with fixed orientations.
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The magnitudes of edge responses are compared against a threshold interval [low

threshold, high threshold]. Those pixels with edge magnitudes above the high threshold

are considered as definite edges and those below low threshold are regarded as non-edges.

The rest that are between low and high thresholds are set to be as candidate edges, which

will be defined as edge or non-edge with a hysteresis. Those candidate edges that are

connected to a definite edge are considered as definite edges as well. Otherwise, they

will be removed from the edge map. The Canny edge detection algorithm is listed in

table 2.2 [52].

Table 2.2: Canny edge detector algorithm

1. Input image I

2. For all windows in image I, convolve the windows with the mask of Gaussian

derivative in x direction ∂G(x,y)
∂x to produce Jx = Gx(x, y) ∗ I(x, y).

3. For all windows in image I, convolve the windows with the mask of Gaussian

derivative in y direction ∂G(x,y)
∂y to produce Jy = Gy(x, y) ∗ I(x, y).

4. For all windows in image I, calculate the second derivative of Gaussian ∂2G(x,y)
∂n2 ,

using equation 2.20.

5. For all windows in image I, calculate the magnitudes of edge responses as:

M(x, y) =
√

Jx(x, y)2 + Jy(x, y)2.

6. If ∂2G(x,y)
∂n2 = 0, set edge map E(x, y) to the magnitude M(x, y),

otherwise, set it to 0

7. For all locations in E(x, y):

a. If E(x, y) < thresholdlow, no edge. Set edge map E(x, y) to 0.

b. If E(x, y) > thresholdhigh, a definite edge. Set edge map E(x, y) to 2.

c. If thresholdlow < E(x, y) < thresholdhigh, a candidate edge.

Set edge map E(x, y) to 1.

5. Use hysteresis to determine whether the candidate edges are definite edges.

For our experiments, we implement the Canny edge detector using 3×3 local windows.

2.5.2 Morphological Gradient

The morphological gradient algorithm enhances the edges and suppresses the homoge-

neous areas in the image. This effect is similar to what a derivative causes and hence,
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it is called “gradient”. The result image can be thresholded to obtain the edge map

of the image. The algorithm includes two basic mathematical operators of gray-scale

morphology: Dilation (grows image regions) and Erosion (shrinks image regions). These

two operators are fundamental building blocks for gray-scale morphology, based on which

many morphological algorithms have been developed. Usually, the non-flat (non-uniform)

structuring elements that are used for morphological algorithms are decomposed down to

3× 3 bases to improve the performance [41] [5].

Let I(x, y) and se(x, y) be input image function and structuring element function,

respectively where I : Z2 → Z and se : Z2 → Z. Gray-scale dilation, denoted by I ⊕ se

is defined as [23]:

(I ⊕ se)(x, y) = max{I(x− s, y − t) + se(s, t)|(x− s), (y − t) ∈ DI ; (s, t) ∈ Dse} (2.24)

Gray-scale erosion, denoted by I ª se is defined as [23]:

(I ª se)(x, y) = min{I(x + s, y + t)− se(s, t)|(x + s), (y + t) ∈ DI ; (s, t) ∈ Dse} (2.25)

where DI and Dse are the domains of I and se, respectively. The morphological gradient

is computed as:

g(x, y) = (I ⊕ se)(x, y)− (I ª se)(x, y) (2.26)

For our experiments, we implement the morphological gradient using non-flat 3 × 3

structuring elements. The morphological gradient algorithm is listed in table 2.3 [23].

2.5.3 Kirsch Edge Detection Algorithm

The Kirsch edge detector [32] uses a contrast function to calculate the magnitude of the

gradient of the image at an arbitrary location g(x, y) as shown in the equation below:

gi(x, y) = 5× (pi + pi+1 + pi+2)− 3× (pi+3 + pi+4 + ... + pi+7) (2.27)
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Table 2.3: Morphological gradient algorithm

1. Input image I

2. For all windows in image I, calculate the sums of each pixel in the window and

its corresponding value in the structuring element se to produce wsum.

3. Find the maximum value of the wsum, which is (I ⊕ se)(x, y).

4. For all windows in image I, from each pixel in the window, subtract

its corresponding value in the structuring element se to produce wsub.

5. Find the minimum value of the wsub, which is (I ª se)(x, y).

6. For all windows in image I, calculate the gradient as:

g(x, y) = (I ⊕ se)(x, y)− (I ª se)(x, y).

7. For all windows in image I, compare the gradient g(x, y) against a threshold

to detect edges.

p0 p1 p2

p3

p4p5p6

p7 pc

Figure 2.2: A 3× 3 window

where the subscripts are evaluated modulo 8. As shown in figure 2.2, pc is the central

pixel in the window and p0, pi,...,p7 are the neighboring pixels.

The gradient gi(x, y) in equation 2.27 is calculated for all eight locations of neighboring

pixels: i = 0, 1, 2, ..., 7. The magnitude at location (x, y) is the maximum value of the

eight calculated gradient:

g(x, y) = max(g0(x, y), g1(x, y), g2(x, y), ..., g7(x, y)) (2.28)

The algorithm performs convolutions of 3 × 3 windows with 8 masks, calculating 8

gradients for 8 different edge orientations [52]. The pixel in the center of the window is

identified as an edge if the maximum of the 8 gradients is greater than a threshold.
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2.5.4 Trajkovic Corner Detection Algorithm

The Trajkovic corner detection algorithm detects corners based on the characteristic

of corners that the intensity change of image must be high in all mutually orthogonal

directions [53]. It computes the corner response function as the minimum intensity change

in all possible directions. The algorithm considers a circular window with all the lines

that pass through the nucleus of the circle and intersect the circle in two opposite points

of P and P ′ (Figure 2.3).

P

P’

C

Figure 2.3: Pair of opposite points in a circular window

The corner response function RC is defined as :

RC = min((fP − fC)2 + (fP ′ − fC)2) (2.29)

where C is the central point and fP represents the image intensity at point P . In practice,

a discrete approximation of the circular window is used. For example, for a 3× 3 circular

window, there will be 4 pairs of opposite points (i.e. (A,A’), (B,B’), (D,D’), and (E,E’)),

as seen in figure 2.4.

D B E

A

D’B’E’

A’ C

Figure 2.4: Pairs of opposite points for a 3× 3 circular window

In order to avoid false corner response, which is caused by a strong edge with a

direction different to the ones examined, an interpixel approximation is used, which ap-

proximates the corner response function for any pair of points that is located between

the known points. Moreover, to reduce the cost of computation, a lower resolution of
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the image is used for detecting the corners. The Trajkovic corner detection algorithm is

summarized in table 2.4 [42]. The algorithm uses windows of 3× 3 pixels.

Table 2.4: Trajkovic corner detection algorithm

1. Input original image I and low resolution image J

2. For all windows centered at (x,y) in the low resolution image J , calculate the

cornerness measure: R(x, y) = min(rA, rB , rD, rE) where

rA = (fA − fC)2 + (fA′ − fC)2

rB = (fB − fC)2 + (fB′ − fC)2

rD = (fD − fC)2 + (fD′ − fC)2

rE = (fE − fC)2 + (fE′ − fC)2

3. If R(x, y) > threshold1 then mark the pixel at (x,y) as a corner candidate in the

cornerness map C(x, y).

4. For all windows centered at (x,y) in the low resolution image J , calculate the

interpixel approximation cornerness measure Rinterpixel:

a. If for all i=1,2,3,4 either Bi ≥ 0 or Ai + Bi ≤ 0 then Rinterpixel(x, y) = R(x, y)

b. if for all i=1,2,3,4 Bi < 0 and Ai + Bi > 0 then Rinterpixel(x, y) = min(ri − B2
i

Ai
)

where

r1 = rA, r2 = rB , r3 = rD, and r4 = rE

B1 = (fB − fA)(fA − fC) + (fB′ − fA′)(fA′ − fC)

B2 = (fD − fB)(fB − fC) + (fD′ − fB′)(fB′ − fC)

B3 = (fE − fD)(fE − fC) + (fE′ − fD′(fE′ − fC)

B4 = (fA′ − fE)(fE − fC) + (fA − f ′E)(fE′ − fC)

A1 = rB − rA − 2B1

A2 = rD − rB − 2B2

A3 = rE − rD − 2B3

A4 = rA − rE − 2B4

5. If Rinterpixel(x, y) < threshold2 then the pixel at (x,y) is not a corner, otherwise set

C(x,y) to Rinterpixel(x, y).

6. Perform non-maximal suppression on C(x,y) to find local maxima. The final non-zero

values on C(x,y) indicate the locations of corners in the original image.

34



2.5.5 Median Filter

Median filter removes noise (e.g. impulse noise) by smoothing the image while it reduces

the blurring of edges [52]. First, it sorts the pixels of a neighborhood and then it replaces

the central pixel of the window with the median value of the pixels in that neighborhood.

Performing a sort on pixels of each neighborhood can be very expensive. A more efficient

algorithm, proposed by Huang et al. [27] benefits from the fact that the windows of pixels

in an image overlap. In other words, at each step, the current window loses the leftmost

column and replaces it with a new right column. Thus, for a window of m rows and

n columns, mn − 2m pixels remain unchanged and do not need to be re-sorted. The

algorithm is listed in table 2.5 [27] [52]. For our experiments, we implement the median

filter using 3× 3 windows of pixels.

2.5.6 Local Variance

This algorithm calculates the local variances of 5 × 5 windows of pixels in the image.

In order to produce a gray-level image as the output, the algorithm compares the lo-

cal variance of each window against a threshold; if the local variance is lower than the

threshold, the response of the window is the average value of all 25 pixels in the windows.

Otherwise, the response is the central pixel of the window.

2.6 Sets of Test Images

In this section, we present the sets of test images that we use for our experiments through-

out this thesis. Our data sets contain four different sets of images as listed below:

1. Natural Images: 40 natural images of 512× 512 pixels

2. Industrial Images: 8 industrial images of 512× 512 pixels including text classifica-

tion, quality control, and cell imaging.

3. Medical Images: 30 ultrasound images of 280 × 400 pixels for prostate [33] and

breast cancer [29]
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Table 2.5: Median algorithm

1. Input image I

2. set th = mn
2

3. Sort the first window in the new row and generate a histogram H of the pixels in the

window. Determine the median value of pixels in the window, med, and calculate

lt med: the number of pixels with intensity less than or equal to med.

4. For each pixel p in the leftmost column of the window with the intensity of pg, perform:

a. H[pg] = H[pg]− 1

b. If pg < med then lt med = lt med− 1

5. Move the window one column right: For each pixel p in the rightmost column of the window

with the intensity of pg, perform:

a. H[pg] = H[pg] + 1

b. If pg < med then lt med = lt med + 1

6. If lt med > th then go to 7, else repeat:

a. lt med = lt med + H[med]

b. med = med + 1

until lt med ≥ th. Go to 8.

7. Repeat:

a. med = med− 1

b. lt med = lt med−H[med]

until lt med ≤ th.

8. If the window is not the last window in the row, go to 4.

9. If the window is not the last window in the image, go to 3.

4. Barcode Images: 50 images of 480× 640 pixels of a 2-dimensional barcode used in

an industrial image recognition system [11]

Figure 2.5 shows three sample images from each set of images.
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Figure 2.5: Sample images from: row1: natural, row2: industrial, row3: medical, and

row4: 2-D barcode images.
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Chapter 3

Theory of Window Memoization

In this chapter, the underlying roots of our performance improvement technique, win-

dow memoization, are presented. Window memoization benefits from a characteristic of

image data, computational redundancy, to improve the performance of local image pro-

cessing algorithms. Our goal in this chapter is to show mathematically that the sum of

the coding and interpixel redundancy of an image has a positive relationship with the

computational redundancy of the image: that is, higher coding and interpixel redundancy

in an image leads to higher computational redundancy in the image. This enables us to

categorize images based on their potential performance improvement obtained by window

memoization in software and hardware without actually implementing the window mem-

oization technique. In chapters 4 and 5, we will present the implementations of window

memoization in software and hardware, respectively.

The coding redundancy of an image indicates that each pixel is represented with more

bits than is necessary. Interpixel redundancy reveals that neighboring pixels are similar

and correlated. Our studies show that these two types of redundancy lead to similar

windows of pixels across the image. In local image processing algorithms, the presence

of similar windows across the image leads to computational redundancy, which can be

exploited to improve performance.

In section 3.1, we introduce the notions of computational redundancy in an image,

perfect window memoization, and the idea of tolerant memoization. In order to show that

the coding and interpixel redundancy of an image (Cr + IPr) have a positive relationship
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with the computational redundancy of the image (Compr), a few intermediate notions

are also introduced in section 3.1 including the ideal reusability (Rideal) and reusability

(R) of image, and the hit rate of perfect window memoization (HRpc). Throughout this

chapter, we show mathematically that the following chain of relationships holds:

(Cr + IPr) ∝+ Rideal ∝+ R ∝+ HRpc ∝+ Compr (3.1)

To show that the whole chain holds, first, in section 3.1, we show that the last step

of the chain holds: the hit rate of perfect window memoization for an image has a

positive relationship with the computational redundancy of the image (HRpc ∝+ Compr).

Afterward, we begin from the first step of the chain. In section 3.2, it is shown that the

amount of coding and interpixel redundancy of an image has a positive relationship with

the ideal reusability of the image ((Cr + IPr) ∝+ Rideal). In section 3.3, first, we show

that the ideal reusability of an image has a positive relationship with the reusability

of the image (Rideal ∝+ R). Afterward, it is demonstrated that the reusability of an

image has a positive relationship with the hit rate of perfect window memoization for

the image (R ∝+ HRpc). Putting all the above mentioned intermediate steps together,

it is concluded that the amount of coding and interpixel redundancy of an image has a

positive relationship with the computational redundancy of the image.

(Cr + IPr) ∝+ Compr (3.2)

3.1 Image Reusability for Local Image Processing Algo-

rithms

In this section, first, we define computational redundancy of an image as a measure that

indicates the percentage of unnecessary computation sets performed on the image. We

also define a high level model, perfect window memoization, which gives the upper-bound

for performance improvement obtained by exploiting the computational redundancy of

an image. We show that the hit rate of perfect window memoization for an image has a
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positive relationship with the computational redundancy of the image (HRpc ∝+ Compr).

Afterward, we present the idea of tolerant memoization, which allows one to reuse the

response of similar but not necessarily identical windows of pixels in an image. We also

define two measures: reusability and ideal reusability of an image. These measures help

to build intermediate steps in order to complete our goal, which is to show that the

amount of coding and interpixel redundancy of an image has a positive relationship with

the computational redundancy of the image.

3.1.1 Computational Redundancy in an Image

The windows of pixels are essential parts of designing or implementing local processing

algorithms. When dealing with the windows of pixels in an image as the building blocks

of the image, it is more convenient to consider the windows of pixels as a higher dimension

gray levels or gray-level vectors. Gray-level vectors, which we call symbols, are defined

based on the size of local windows. For windows of m × m pixels, an m2-dimensional

symbol represents all the windows in the image whose corresponding pixels are identical.

In other words, a symbol represents all identical windows in the image. A window win

belongs to (or matches) a symbol sym if each pixel in win is equal to the corresponding

pixel in sym:

∀pix ∈ win,∀pix′ ∈ sym, pix = pix′ =⇒ win ∈ sym (3.3)

where pix and pix′ are corresponding pixels of window win and symbol sym, respectively.

For local windows of 2 pixels, the possible number of 2-D symbols will be 256×256 =

65536, assuming that the pixels in the original image have 256 gray levels. In general, for

local windows of m×m pixels, the possible number of m2-D symbols will be GLm2
where

GL is the number of gray levels in the original image. Symbols are equal to normal 1-D

gray levels when the size of local windows are one pixel.

Ignoring the geometry of objects in an image, for a given local window size, the image

can be characterized by the probability of occurrences of symbols in the image. Assume

that a discrete random variable, si in the interval [0, s), represents the symbols of an

image. The probability of occurrence of each symbol (si) in the image is:
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P (si) =
ni

n
, i = 0, 1, 2, ..., s− 1 (3.4)

where s is the total number of symbols in the image, ni is the number of times that the

ith symbol appears in the image, and n is the number of total windows in the image.

In chapter 2, it was discussed that in local image processing algorithms, the response

of the mask, rij , solely depends on the pixels in the local window, wij , covered by the mask

(equation 2.11). All the windows in the image that contain similar pixels are identified by

one symbol, si. Thus, for a given algorithm, a symbol si will produce the same response

for ni times. This means that much of the mask operations sets that are applied to

symbol si are unnecessary or redundant.

Ideally, for each symbol in an image, the mask operations must be performed only

once. Therefore, for a given algorithm, the number of the mask operations sets that are

absolutely necessary to apply to an image, in order to complete processing the image is

equal to the number of symbols present in the image (s).

We define the computational redundancy (Compr) of an image as the percentage of the

mask operations sets that are not necessary to perform, in order to complete processing

the image. In other words, the computational redundancy of an image indicates what

percentage of mask operations sets are redundant. For each symbol si, only one set of

mask operations is absolutely necessary. Thus, the rest of the mask operations sets, which

are equal to ni − 1 are redundant. The number of the redundant mask operations sets

for all s symbols in the image will be n− s. Thus, the percentage of the redundant mask

operations sets in an image is:

Compr =
n− s

n

= 1− s

n

(3.5)

where s and n are the total number of symbols and the total number of windows in the

image, respectively. It is seen that the computational redundancy depends on the total

number of windows and the number of symbols present in the image. An image with

small number of symbols will have a higher computational redundancy. In contrast, the
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computational redundancy will be 0 if the number of symbols is equal to the total number

of windows in the image (s = n). This, of course, is very rare for typical images where

the number of symbols present in the image is usually less than the number of windows

in the image. Therefore, the number of mask operations sets that an algorithm applies

to an image is usually higher than that absolutely necessary.

3.1.2 Perfect Window Memoization

We define an abstract processing model, perfect window memoization, which minimizes

the number of redundant mask operations sets performed on an image. Perfect window

memoization is a high level model that gives an estimation (upper-bound) of performance

gain in software and hardware, obtained by eliminating the redundant mask operations

sets.

Perfect window memoization uses a reuse table to store symbols, si, and the corre-

sponding responses, ri. The reuse table in perfect window memoization is in fact a perfect

cache. The perfect cache never inserts the same data again. In other words, each sym-

bol is inserted only once and when inserted, it is never evicted. It should be mentioned

that perfect cache is used for theoretical study of window memoization and it cannot be

used in actual implementations of window memoization. Instead, as it will be discussed

in chapters 4 and 5, a practical memory architecture will be used as the reuse table in

software and hardware implementations of window memoization. Nevertheless, with the

assumption of even distributions of symbols across the image, which will be discussed in

chapter 4, section 4.6.1, perfect cache can be used as a high level model for the actual

implementations of the reuse table.

When perfect window memoization receives a window for the first time, there is no

matching symbol in the reuse table and thus, a miss occurs. Therefore, it applies the

mask operations set to the window and inserts its matching symbol and its response into

the reuse table. Upon encountering the same window again in the future, this time there

is a matching symbol in the reuse table and thus, a hit occurs. As a result, perfect window

memoization does not perform the mask operations set on the recent window. Instead, it

looks up or reuses the corresponding response from the reuse table. In other words, each

symbol is inserted into the reuse table only once and the mask operations set is applied
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to its corresponding windows only once regardless of the probability of occurrence of the

symbol in the image. This means that when a symbol is inserted into the reuse table, it

is never replaced with another symbol. Eventually, all symbols of an image along with

their responses will be stored in the reuse table.

For a symbol whose windows appear in the image ni times, ni − 1 mask operations

sets can be skipped and their corresponding responses can be reused. In other words,

the number of hits for the windows of a symbol with the population of ni will be ni − 1.

The number of hits for all windows in the image will be n − s where s is the number

of symbols in the image. The hit rate (HRpc) is defined as the percentage of the times

that the incoming windows find a matching symbol in the reuse table and therefore, reuse

their previously calculated responses. The subscript pc (perfect cache) indicates that the

reuse table used by perfect window memoization is a perfect cache.

In order to insert all symbols of an image into the reuse table, the reuse table size

must be equal to the number of symbols in the image. In practice, however, the required

size may be too large to afford. Therefore, perfect window memoization explores inserting

a variable portion of symbols in the image into the reuse table. The symbols with higher

probabilities of occurrence will contribute more to performance gain if inserted into the

reuse table. The reason is that for such symbols, higher number of mask operations sets

can be skipped.

For a reuse table of k entry size, the number of hits will be the sum of populations

of the k most frequent symbols (the total number of windows that belong to k inserted

symbols) minus the number of inserted symbols (or the number of misses), which is k.

HRpc(k) =
n0 + n1 + ... + nk−1

n
− k

n
(3.6)

where n0, n1, n2, ..., nk−1 are the populations of k most frequent symbols in the image,

and n and k are the total number of windows in the image and the number of inserted

symbols (or the reuse table size), respectively. Although hit rate is a discrete function of

k (the reuse table size), to simplify the analysis, we model its behaviour with a continuous

function. Assume that P is a continuous function that models the probability density

function (PDF ) of the image symbols, which have been sorted in descending order. We

can write:
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HRpc(k) =
∫ k−1

0
P (x)dx− k

n
(3.7)

where
∫ k−1
0 P (x)dx is the probability of k most frequent symbols (or inserted symbols).

In contrast to normal caches in processor architecture where the cache size is always

smaller than the number of unique entries, in window memoization, when input images

are simple (i.e. small number of symbols), it is possible that the reuse table size is larger

than the total number of symbols in the image (i.e. k > s). In this case, the reuse table

will not be filled with the symbols, which means that the total number of misses will be

equal to the total number of symbols (s), rather than the reuse table size (k). Thus, a

more accurate equation for hit rate is:

HRpc(k) =
∫ k−1

0
P (x)dx− min(k, s)

n
(3.8)

In other words, if k ≤ s then k indicates the total number of misses. Otherwise, the total

number of misses will be s.

Ignoring some details of implementations of perfect window memoization in software

and hardware, HRpc(k) indicates what percentage of mask operations sets can be skipped

and their corresponding responses can be reused, given that k most frequent symbols have

been inserted into the reuse table.

Computational Redundancy versus Hit Rate

In this chapter, the relationship of the coding and interpixel redundancy of an image with

the computational redundancy of the image is investigated. As an intermediate step, we

need to know the relationship between the hit rate of perfect window memoization for

an image (HRpc) and the computational redundancy of the image (Compr). This will

help to tie the coding and interpixel redundancy of an image with the performance gain

achieved by perfect window memoization.

As the first step in proving the chain of relations (relation 3.1), we want to show that

for any size of the reuse table, the hit rate of perfect window memoization for an image

has a positive relationship with the computational redundancy of the image:
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HRpc ∝+ Compr (3.9)

Relation 3.9 can be rewritten as:

(∀k, HRpc1(k) ≤ HRpc2(k)) =⇒ (Compr1 ≤ Compr2) (3.10)

Substituting HRpc(k) and Compr into the relation above from equations 3.8 and 3.5,

respectively, gives:

(
∀k,

∫ k−1

0
P1(x)dx− min(k, s1)

n
≤

∫ k−1

0
P2(x)dx− min(k, s2)

n

)
=⇒

(
1− s1

n
≤ 1− s2

n

)
(3.11)

Because the left hand side of the relation above is correct for any size of k, we can assume

that k is a very large number such that it is larger than both s1 and s2 meaning that

min(k, s1) = s1 and min(k, s2) = s2. By having a very large k, the two integrals will

become 1 and we will have 1:

(
1− s1

n
≤ 1− s2

n

)
=⇒

(
1− s1

n
≤ 1− s2

n

)
(3.12)

The relation above proves that the hit rate of perfect window memoization for an image

has a positive relationship with the computational redundancy of the image.

HRpc(k) ∝+ Comprr (3.13)

It is observed that the computational redundancy of an image gives the maximum hit

rate that the perfect window memoization can possibly achieve for the image.

3.1.3 Tolerant Memoization

The human vision system cannot distinguish small amounts of error in an image, with

respect to a reference image. Therefore, small errors can usually be tolerated in an image
1It should be noted that in reality, in order for the integrals to become 1, k only needs to surpass s.
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processing system. Perfect window memoization benefits from such tolerance to increase

the performance gain. In section 3.1.1, we defined the condition, in which case a window

belongs to a symbol:

∀pix ∈ win, ∀pix′ ∈ sym, pix = pix′ =⇒ win ∈ sym (3.14)

In the above definition, a window belongs to a symbol if all the pixels in the window are

identical to the corresponding pixels in the symbol. We relax the equality requirement

such that similar but not necessarily identical windows may belong to one symbol:

∀pix ∈ win, ∀pix′ ∈ sym, MSB(d, pix) = pix′ =⇒ win ∈ sym (3.15)

where MSB(d, pix) represents d most significant bits of pixel pix in window win and

pix′ has d bits. In the ideal case (i.e. definition 3.14), d = 8. By reducing d, windows

that are similar but not identical are assigned to one symbol. From the perfect window

memoization perspective, this means that the response of one window may be assigned

to a similar but not necessarily identical window. As d decreases, more windows with

minor differences are assumed equal and thus, the hit rate of perfect window memoization

increases drastically. Assigning the response of a window to a similar but not necessarily

identical window introduces inaccuracy in the result of the algorithm to which perfect

window memoization is applied. However, in practice, the accuracy loss in responses is

usually negligible.

The error in an image (Img) with respect to a reference image (RImg) is usually

measured by signal-to-noise ratio or SNR as follows [23] :

SNR = 20log10(
Asignal

Anoise
) (3.16)

where A is the RMS (root mean squared) amplitude. A2
noise is defined as:

A2
noise =

1
rc

r−1∑

i=0

c−1∑

j=0

(Img(i, j)−RImg(i, j))2 (3.17)

where r × c is the size of Img and RImg. If SNR of an image is higher than 30dB, the

error in the image is nearly indistinguishable by the observer [1]. As it will be discussed
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in chapter 4, we have found that for most algorithms, d can be decreased to as low as 4

while the average SNR of result images are maintained slightly below 30db (i.e. 29.52db).

Therefore, in our experiments in the remaining of this chapter, we choose d to be 4.

Nevertheless, the entire argument is valid and can be verified by empirical data for any

reasonable value of d (i.e. d ∈ {2, 3, 4, .., 8}).

3.1.4 Reusability of an Image

In order to investigate the relationship between the coding and interpixel redundancy of

an image and the hit rate of perfect window memoization for the image (relation 3.1),

we introduce an intermediate step, which we call reusability of image. On one hand, the

reusability of image should be tied to the coding and interpixel redundancy and on the

other hand, it must be connected to the hit rate of perfect window memoization. The

relationships of the reusability of image with coding/interpixel redundancy and the hit

rate of perfect window memoization will be discussed in section 3.3.

In section 2.1.3, we discussed that the interpixel redundancy of an image can be

measured using three different methods: mapping transforms, Markov model, and auto-

correlation. We reasoned that for our purpose, mapping transform is the most suitable

method to measure interpixel redundancy because it is both easy to compute and di-

rectly linked to coding redundancy. To define the reusability of an image, first, we define

a mapping transform, which converts the input image into an image whose interpixel re-

dundancy has been extracted. Transform icp (information at central pixel) takes a local

window as input and outputs the new information, δ, carried by the pixel at the center

of the window. The new information carried by the central pixel is defined with respect

to the pixels in the local window.

δ = icp(wij) (3.18)

The transformed image (Imgicp) will be produced when the transform icp is applied to

all windows in the image.

Imgicp = icp(Img) (3.19)
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It is possible that icp maps windows that do not belong to one symbol to a single

value because two windows can be different while their central pixels carry exactly the

same new information. This means that more than one symbol may be mapped to a

given δ in the transformed image Imgicp. Thus, as discussed in section 2.1.3, the number

of bins in the histogram of the transformed image is considerably less than the number of

bins in the histogram of symbols of the original image, which makes it computationally

inexpensive to calculate the interpixel redundancy of an image.

We define the reusability of image (R) based on the icp transform. R(δ) is the average

number of the redundant mask operations sets per symbol for symbols in the image whose

central pixels carry new information in the range [−δ, +δ]. To calculate the number

of redundant mask operations sets for a given δ, we need to calculate the number of

symbols in the image whose central pixel carry the new information δ (i.e. nsym(δ)) and

the number of windows that belong to such symbols (i.e. nwin(δ)). In other words, for a

given δ, nsym(δ) indicates the number of necessary mask operations sets and nwin(δ) is

the total number of mask operations sets. Thus, for a given δ, the number of redundant

mask operations sets, maskred(δ), is calculated by:

maskred(δ) = nwin(δ)− nsym(δ) (3.20)

The average number of the redundant mask operations sets per symbol is:

maskred(δ) =
maskred(δ)

nsym(δ)

=
nwin(δ)− nsym(δ)

nsym(δ)

=
nwin(δ)
nsym(δ)

− 1

(3.21)

The equation above can be normalized with respect to the total number of windows in

the image, n:

maskred(δ) =
nwin(δ)

n
nsym(δ)

n

− 1 (3.22)

48



Let P icp be the probability density function of Imgicp. P icp(δ) is also the probability

of occurrences of symbols in the original image Img whose central pixels carry the same

new information, δ 2. For short, we call P icp the probability density function of symbols

in the original image based on δ. Therefore, nwin(δ)
n in equation 3.22 can be replaced by

P icp(δ):

maskred(δ) =
P icp(δ)
nsym(δ)

n

− 1 (3.23)

nsym(δ)
n is the ratio of the number of symbols in the original image Img for a given δ, and

the total number of windows in the image. This ratio is not a probability distribution

because the total number of symbols present in image (i.e.
∫ +∞
+∞ nsym(x)dx) is usually

less than the total number of windows in image, n. In addition, the total number of

symbols present in an image may be different for different images. We define P icp
u as a

pseudo probability distribution, which for a given δ indicates the ratio of the population

of symbols and the total number of windows in the original image:

P icp
u (δ) =

nsym(δ)
n

(3.24)

We call P icp
u the uniqueness probability density function of symbols in the original image

based on δ since it indicates the number of unique symbols present in the image whose

central pixels carry new information δ, normalized by the total number of windows in the

image. Substituting P icp
u (δ) into equation 3.23 gives:

maskred(δ) =
P icp(δ)

P icp
u (δ)

− 1 (3.25)

As defined earlier, the reusability of image R(δ) is the average number of the redundant

mask operations sets per symbol for symbols in the image whose central pixels carry new
2As it will be discussed in section 3.1.6, we model P icp with a continuous function. The probability

of a continuous function should be defined over an interval (i.e. P icp(δ ± ε)) where ε = 1
2×(2d+1−1)

and

(2d+1 − 1) is the number of possible values for δ (see equation 3.36). (d is the number of the most

significant bits used for assigning windows to symbols). If d = 4, δ will be in the range [−15, 15], which

gives 31 bins and thus, ε = 1
2×31

. However, to keep the writing of the following discussions clear and easy

to follow, we sacrifice the mathematical rigor by ignoring ±ε. Therefore, what is meant by P icp(δ) is in

fact P icp(δ ± ε).
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information in the range [−δ,+δ]. Thus, we can write:

R(δ) =
∫ +δ

−δ
maskred(x)dx

=

∫ +δ
−δ P icp(x)dx

∫ +δ
−δ P icp

u (x)dx
− 1 (3.26)

The equation above indicates that for a given range, [−δ, +δ], how many mask operation

responses can be reused per one symbol.

In sections 3.1.6 and 3.1.7, we will show that both the probability and uniqueness

probability of symbols of an image based on δ (i.e. P icp and P icp
u ) can be modeled using

a Laplace distribution.

3.1.5 Ideal Reusability of an Image

From equation 3.26, it is seen that the reusability of image depends on both the probabil-

ity of occurrences of symbols (
∫ +δ
−δ P icp(x)dx) and the uniqueness probability of symbols

(
∫ +δ
−δ P icp

u (x)dx) whose central pixels carry new information in the range [−δ, +δ]. As dis-

cussed before, the reusability of image must be connected with the coding and interpixel

redundancy of the image. In section 3.2, we will show that there is a mathematical rela-

tionship between the coding and interpixel redundancy of an image and the probability

of occurrences of symbols in the image based on δ (
∫ +δ
−δ P icp(x)dx). Nevertheless, there is

no apparent relationship between the coding and interpixel redundancy of an image and

the uniqueness probability of symbols of the image based on δ (
∫ +δ
−δ P icp

u (x)dx). There-

fore, first, we define an idealized version of the image reusability, which ignores the effect

of the uniqueness probability of symbols on reusability and investigate the relationship

between the coding/interpixel redundancy and ideal reusability of the image. Afterward,

we study the the relationship between the ideal reusability and reusability of the image.

We define the ideal reusability of an image as:

Rideal(δ) =
∫ +δ

−δ
P icp(x)dx (3.27)
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With this simplification, the probability density function of Imgicp is the only information

that we need in order to obtain knowledge about the the ideal reusability of the original

image. In section 3.2, we will show that there is a positive relationship between the sum

of coding (Cr) and interpixel redundancy (IPr) of an image and the ideal reusability of

the image:

Cr + IPr ∝+ Rideal (3.28)

In section 3.3, we will show that there is a positive relationship between the ideal

reusability and the reusability of an image:

Rideal(δ) ∝+ R(δ) (3.29)

In section 3.3, we will also show that there is a positive relationship between the reusability

of an image and the hit rate of perfect window memoization for the image:

R(δ) ∝+ HRpc(k) (3.30)

Given that in section 3.1.2, we showed that the hit rate of perfect window memoization

for an image has a positive relationship with the computational redundancy of the image

(HRpc ∝+ Compr), ultimately we will show that:

(Cr + IPr) ∝+ Rideal(δ) ∝+ R(δ) ∝+ HRpc(k) ∝+ Compr (3.31)

For our experiments in the following sections of this chapter, we use local windows of

3× 3 pixels. The experiments are repeatable for larger sizes of local windows (i.e. 5× 5

and 7× 7).

3.1.6 Laplace Model for the Probability of Symbols

The icp transform extracts the new information carried solely by one pixel at the center

of a local window. Such a transform must be designed with respect to the local window’s
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size. For a window of 2 adjacent pixels, the new information carried by one pixel can be

defined as the difference between the gray levels of the two pixels.

Imgicp(i, j) = Img(i, j)− Img(i, j + 1) (3.32)

Because adjacent pixels in image are usually similar, the probability density function of

Imgicp has a peak at zero and it drops rapidly as the differences between adjacent pixels

become larger. The probability density function of symbols of Imgicp (or the probability

density function of symbols of the original images based on δ) can be modeled by a zero

mean Laplace distribution [40] [45] as shown in the equation below 3.

P icp(x) =
1√

2λicp
e
−√2|x|

λicp (3.33)

where λicp is the scale factor of Imgicp, which is equal to the standard deviation of Imgicp

multiplied by a constant value:

λicp = κ× σicp (3.34)

The icp transform can be defined over a window of pixels. For 3 × 3 windows, we

define the new information carried by the pixel at the center of the window, wij , which

is located at the location (i, j) in image, as follows:

icp(wij) =
1
8

1∑

m=−1

1∑

n=−1

(wij(m,n)− wij(0, 0))

= δij (3.35)

By applying the transform to the entire image, we will have:

Imgicp(i, j) =
1
8

1∑

m=−1

1∑

n=−1

(Img(i + m, j + n)− Img(i, j)) (3.36)

The equation above calculates the average difference between the pixel at the center

and the eight pixels surrounding the central pixel. It is not surprising to see that the
3This is somewhat similar to the energy distribution of natural images in the frequency domain where

the lowest frequency has the largest amplitude and increasing the frequency causes the amplitude to

decrease by a factor of 1
f

(i.e. P (f) = 1
f
) [19].
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probability density function of symbols of such a transformed image is also a zero mean

Laplace distribution. In natural images, symbols with small δ (i.e. little differences in

their pixel gray levels) usually belong to one object, texture or background. In contrast,

symbols with large δ (i.e. large differences in their pixel gray levels) usually belong to

boundaries of the objects in the image. The boundaries constitute a small fraction of

the whole image and most of image is usually background or objects with consistent

surfaces. Therefore, the probability density function of Imgicp has a peak at δ = 0

and as δ increases/decreases, it drops drastically. Moreover, on average, the probability

of symbols whose central pixels carry new information δ is almost the same as that of

symbols whose central pixels carry new information −δ. Thus, the probability density

function of Imgicp is symmetric around 0. As we mentioned in section 3.1.3, in our

experiments, we use 4 most significant bits of each pixel (i.e. d = 4). Thus, the range for

δ will be [−15, 15].

Figure 3.1 shows three samples from natural images along with the probability density

functions of the transformed images and their corresponding Laplace curves. The root

mean squared error (RMSE) of the curve fits are 5.28%, 3.37% and 3.55%, respectively.

We have done the curve fit for all 40 natural images and the average RMSE for 40 images

is 3.60%.

3.1.7 Laplace Model for Uniqueness Probability of Symbols

Similar to the probability density function of symbols in image based on δ (P icp), the

uniqueness probability of symbols (P icp
u (δ)) can be modeled by a Laplace distribution.

However, as we discussed in the previous section, P icp
u is not an actual probability density

function and therefore, the area under P icp
u curve is not 1. As a result, we model P icp

u by

a general form of the Laplace distribution:

Puicp(x) = ae−b|x| (3.37)

We have performed the curve fits for the uniqueness probabilities of all 40 natural

images and it has been observed that the model matches the experimental data with a

high accuracy. The average RMSE for 40 natural images is 5.06%. Figure 3.2 shows three

sample natural images along with their uniqueness probability of symbols.
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Figure 3.1: Left: original images. Right: the probability density function of symbols in

the original image based on δ.

3.2 Ideal Reusability of Image Data versus Coding and In-

terpixel Redundancy of the Image

In this section, we prove that the sum of coding and interpixel redundancy of an image

has a positive relationship with the ideal reusability of an image.

Cr + IPr ∝+ Rideal (3.38)
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Figure 3.2: Left: original images. Right: the uniqueness probability density function of

symbols in the original image based on δ.

In order to prove relation 3.38, we break down the problem into smaller pieces and each

one is proved in the following sections:

1. Section 3.2.1: The sum of coding and interpixel redundancies of the original image

(Cr + IPr) has a negative relationship with the entropy of the transformed image

(H icp):

(Cr + IPr) ∝− H icp
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2. Section 3.2.2: The entropy of the transformed image (H icp) has a positive relation-

ship with the standard deviation of the transformed image (σicp):

H icp ∝+ σicp

3. Section 3.2.3: The standard deviation of the transformed image (σicp) has a negative

relationship with the ideal reusability of the original image (Rideal):

σicp ∝− R

3.2.1 Entropy of the Transformed Image versus Coding and Interpixel

Redundancy of the Original Image

In this section, we show that the sum of coding and interpixel redundancy of the original

image has a negative relationship with the entropy of the transformed image:

(Cr + IPr) ∝− H icp

The relation above indicates that as the coding and interpixel redundancy of an

image increases, the entropy of the transformed image decreases. As we discussed in

section 2.1.3, by applying a mapping transform (icp) to an image, which extracts the

interpixel redundancy of the image, a transformed image is created whose interpixel

redundancy has been removed. Therefore, the entropy of the transformed image is much

less than that of the original image. The decrease in entropy from the original image

(Horig) to the transformed image (H icp) indicates the amount of interpixel redundancy

in the original image:

IPr = Horig −H icp (3.39)

From equation 2.3 in section 2.1.2, we have Horig = log2(GL) − Cr. Substituting

Horig into equation 3.39 gives:
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IPr = log2(GL)− Cr −H icp

(3.40)

which gives:

Cr + IPr = log2(GL)−H icp (3.41)

This means that the sum of coding and interpixel redundancy of the original image has

a negative relationship with the entropy of the transformed image.

(Cr + IPr) ∝− H icp (3.42)

3.2.2 Standard Deviation of the Transformed Image versus Entropy of

the Transformed Image

In this section, we show that the entropy of the transformed image has a positive rela-

tionship with the standard deviation of the transformed image:

H icp ∝+ σicp

In section 3.1.6, we showed that the probability density function of Imgicp can be

modeled by a zero mean Laplace distribution. Because we have a continuous model for

the probability density function of Imgicp, we can calculate the continuous entropy of

Imgicp (H icp
c ) based on its probability density function .

H icp
c = −

∫ +∞

−∞
P icp(x)× log2(P icp(x))dx (3.43)

where P icp(x) = 1√
2λicp e

−√2|x|
λicp . In equation 3.43, we can transform log2 into the natural

logarithm using:
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log2P
icp(x) = log2e× lnP icp(x)

= log2e× ln[
1√

2λicp
e
−√2|x|

λicp ]

= log2e× [ln
1√

2λicp
−
√

2|x|
λicp

] (3.44)

Substituting equation 3.44 into equation 3.43, we will have:

H icp
c = −

∫ +∞

0

2√
2λicp

e
−√2x

λicp × log2e× [ln
1√

2λicp
−
√

2x

λicp
]dx

=
2log2e√

2λicp
× [ln(

√
2λicp)

∫ +∞

0
e
−√2x

λicp dx +
√

2
λicp

∫ +∞

0
xe

−√2x

λicp dx]

=
2log2e√

2λicp
× [ln(

√
2λicp)× λicp

√
2

+
√

2λicp

2
]

= log2e× (ln[
√

2λicp] + 1) (3.45)

Substituting λicp from equation 3.34 into equation 3.45 yields:

H icp
c = log2e× (ln[

√
2κσicp] + 1) (3.46)

The equation above indicates that the continuous entropy of the transformed image (H icp
c )

has a positive relationship with the standard deviation of the transformed image (σicp).

H icp
c ∝+ σicp (3.47)

It is known that the continuous entropy of a distribution (H icp
c ) is not exactly the same

as its discrete entropy (H icp) [12].

H icp
c = Lim∆→0(H icp + Log2∆) (3.48)

where H icp
c and H icp are the continuous entropy and discrete entropy of the distribution,

respectively, and ∆ represents the widths of bins to which the range of discrete entropy

has been divided. Equation 3.48 can be estimated by [12]:

H icp
c ≈ H icp + Log2∆ (3.49)
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which gives:

H icp ∝+ H icp
c (3.50)

From relations 3.47 and 3.50, it is concluded that:

(H icp ∝+ H icp
c ) ∧ (H icp

c ∝+ σicp) =⇒ H icp ∝+ σicp (3.51)

The relation above is what we wanted to prove for the entropy and the standard deviation

of Imgicp.

We have run the experiments for the set of 40 natural images and the empirical result

matches equation 3.45. Figure 3.3 shows the entropy of the transformed images versus

their standard deviations. The circles represent the empirical data and the solid curve

plots equation 3.45. The RMSE for the curve fit is 4.85%. From figure 3.3, it is seen

that there are a few outlier images. The reason that these images do not exactly follow

equation 3.45 is that their probability density function of symbols based on δ do not

exactly match the Laplace distribution. This is the case for images that have isolated

regions with inconsistent gray levels compared to neighboring pixels .
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Figure 3.3: Entropy versus standard deviation for the transformed images

3.2.3 Ideal Reusability of an Image versus Standard Deviation of the

Transformed Image

In this section, we show that the standard deviation of the transformed image (i.e. σicp)

has a negative relationship with the ideal reusability of the original image (i.e. Rideal):
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σicp ∝− Rideal

The relation above means that as the standard deviation of the transformed image de-

creases, the number of windows in the original image whose central pixels carry new

information in the interval [−δ, +δ] increases. As mentioned before, the probability den-

sity function of Imgicp can be modeled by a zero mean Laplace distribution as shown in

the equation below.

P icp(x) =
1√

2κσicp
e
−√2|x|
κσicp

where σicp is the standard deviation of Imgicp.

Based on the definition of the ideal reusability of image in section 3.1.5, equation 3.27,

we can write:

Rideal(δ) =
∫ +δ

−δ
P icp(x)dx

=
1√

2κσicp

∫ +δ

−δ
e
−√2|x|
κσicp dx

=
2√

2κσicp

∫ +δ

0
e
−√2x

κσicp dx

= 1− e
−√2δ

κσicp (3.52)

We use equation 3.52 to show that increasing σicp will cause Rideal(δ) to decrease.

σicp
1 ≤ σicp

2 =⇒ e
−√2δ

κσ
icp
1 ≤ e

−√2δ

κσ
icp
2

=⇒ 1− e
−√2δ

κσ
icp
1 ≥ 1− e

−√2δ

κσ
icp
2

=⇒ Rideal1(δ) ≥ Rideal2(δ) (3.53)

The relation above shows that the standard deviation of the transformed image has a

negative relationship with the ideal reusability of the original image:

σicp ∝− Rideal (3.54)
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More precisely:

σicp
1 ≤ σicp

2 =⇒ ∀δ, Rideal1(δ) ≥ Rideal2(δ) (3.55)

Figure 3.4 shows the ideal reusability of 40 natural images versus the standard devi-

ations of the transformed images for different δ. The circles represent the empirical data

and the solid curves plot equation 3.52. Table 3.1 shows the RMSEs of the curve fits for

the ideal reusability plots for δ being equal to 0, 1, 2 and 3 4.

Table 3.1: RMSE for ideal reusability plots

δ 0 1 2 3

RMSE (%) 4.30 0.78 0.31 0.25

It is seen that as δ increases the ideal reusability of all images become closer to 1 (or

100%). This is due to the fact that the ideal reusability is the cumulative density function

(CDF) of the transformed image;
∫ +δ
−δ P icp(x)dx.

3.2.4 Summary of Ideal Reusability versus Coding and Interpixel Re-

dundancy

Through sections 3.2.1 to 3.2.3, we proved that the sum of coding and interpixel redun-

dancy of an image has a positive relationship with the ideal reusability of the image

((Cr + IPr) ∝+ Rideal). In order to prove this, we proved the followings:

1. Section 3.2.1: The sum of coding and interpixel redundancy of the original image

has a negative relationship with the entropy of the transformed image:

(Cr + IPr) = log2(GL)−H icp =⇒ (Cr + IPr) ∝− H icp (3.56)

2. Section 3.2.2: The entropy of the transformed image has a positive relationship

with the standard deviation of the transformed image:
4Note that Rd

ideal(δ) = Rc
idea(δ + 1) where d and c represent the discrete and continues functions,

respectively.
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Figure 3.4: Ideal reusability of images versus the standard deviation of transformed

images for different δ (δ = 0, 1, 2, 3)

(H icp
c = log2e× (ln[

√
2κσicp] + 1) ∧ (H icp

c ≈ H icp + Log2∆)

=⇒ H icp ∝+ σicp (3.57)

3. Section 3.2.3: The standard deviation of the transformed image has a negative

relationship with the ideal reusability of the image:

Rideal(δ) = 1− e
−√2δ

κσicp =⇒ σicp ∝− Rideal (3.58)

4. From (1) and (2), it is concluded that

((Cr + IPr) ∝− H icp) ∧ (H icp ∝+ σicp) =⇒ (Cr + IPr) ∝− σicp (3.59)

5. From (3) and (4), it is concluded that

((Cr + IPr) ∝− σicp) ∧ (σicp ∝− Rideal) =⇒ (Cr + IPr) ∝+ Rideal (3.60)
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Relation 3.60 is the one that we wanted to prove in this section. We proved that

there is a positive relationship between the coding and interpixel redundancy of an image

and the ideal reusability of the image. This means that as the coding and interpixel

redundancy of an image increase, the number of windows in the image whose central

pixels carry new information in the interval [−δ,+δ] will increase.

3.3 Hit Rate versus Coding and Interpixel Redundancy

In section 3.2, it was shown that the ideal reusability of an image depends positively on

the coding and interpixel redundancy of the image.

Cr + IPr ∝+ Rideal (3.61)

In this section, we want to show that the ideal reusability of an image has a positive

relationship with the hit rate of perfect window memoization for the image.

Rideal(δ) ∝+ HRpc(k) (3.62)

In order to show the relation above, first we show that the ideal reusability of an image

has a positive relationship with the reusability of the image:

Rideal(δ) ∝+ R(δ) (3.63)

Then, we will show that the reusability of an image has a positive relationship with the

hit rate of perfect window memoization for the image:

R(δ) ∝+ HRpc(k) (3.64)

By proving relations 3.63 and 3.64, relation 3.62 will be proved. Given that we have

already proved relation 3.61 in the previous section, proving relation 3.62 will give:

Cr + IPr ∝+ HRpc(k) (3.65)
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The relation above combined with relation 3.13 (HRpc(k) ∝+ Compr) proved in sec-

tion 3.1.2 will complete our ultimate goal, which is to prove:

Cr + IPr ∝+ Comprr (3.66)

3.3.1 Reusability versus Ideal Reusability of an Image

In this section, our goal is to show that the ideal reusability of an image has a positive

relationship with the reusability of the image

∀δ, Rideal1(δ) ≤ Rideal2(δ) =⇒ ∀δ, R1(δ) ≤ R2(δ) (3.67)

In section 3.1.4, we defined a measure for the reusability of image using the probability

of symbols and the uniqueness probability of symbols in the image based on the new

information carried by the central pixels of symbols (δ).

R(δ) =

∫ +δ
−δ P icp(x)dx

∫ +δ
−δ P icp

u (x)dx
− 1

(3.68)

Also, in section 3.1.5, we defined the ideal reusability as:

Rideal(δ) =
∫ +δ

−δ
P icp(x)dx (3.69)

The reusability of image (equation 3.68), can be written based on the ideal reusability

(equation 3.69) and the uniqueness probability of symbols:

R(δ) =
Rideal(δ)∫ +δ

−δ P icp
u (x)dx

− 1

(3.70)

By substituting the definition of R(δ) from equation 3.70 into equation 3.67, we can write:

(∀δ, Rideal1(δ) ≤ Rideal2(δ)) =⇒
(
∀δ, Rideal1(δ)∫ +δ

−δ P icp
u1 (x)dx

≤ Rideal2(δ)∫ +δ
−δ P icp

u2 (x)dx

)
(3.71)
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In order to prove relation 3.71, we only need to show:

(∀δ, Rideal1(δ) ≤ Rideal2(δ)) =⇒
(
∀δ,

∫ +δ

−δ
P icp

u1 (x)dx ≥
∫ +δ

−δ
P icp

u2 (x)dx

)
(3.72)

As we proved in section 3.2.3, the left hand side relation in 3.72 has been derived from:

σicp
1 ≥ σicp

2 (3.73)

where σicp is the standard deviation of the transformed image, Imgicp. Thus, the relation

that we want to prove (relation 3.72) can be written as:

(
σicp

1 ≥ σicp
2

)
=⇒

(
∀δ,

∫ +δ

−δ
P icp

u1 (x)dx ≥
∫ +δ

−δ
P icp

u2 (x)dx

)
(3.74)

In relation 3.74, the left hand side and right hand side relations are related to two

different distributions: the probability of symbols based on δ (i.e. P icp) and the uniqueness

probability of symbols based on δ (i.e. P icp
u ), respectively. Therefore, it is necessary to

discover a relationship between the two distributions. In doing so, we investigate the

boundaries of the two distributions where P icp and P icp
u are maximum and minimum. In

our arguments in the remaining of this section, we only consider the case where δ ≥ 0.

All arguments are also valid for δ ≤ 0 because the distributions of P icp and P icp
u are

symmetric around 0.

We start with the left hand side of relation 3.74 to investigate that for P icp, what can

be concluded if σicp
1 ≥ σicp

2 . As defined in section 3.1.6, P icp is modeled as:

P icp(δ) =
1√

2κσicp
e
−√2|δ|
κσicp (3.75)

where κ is a constant number and σicp is the standard deviation of the transformed image

Imgicp. For P icp, the boundary points are P icp(δ = 0) and P icp(δ = e). e, which we call

endpoint is the point where P icp becomes very small 5 or P icp(e) = ε > 0. For δ = 0, we

will have:
5For images of n windows, ε < 1

n
.
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P icp(0) =
1√

2κσicp
(3.76)

From equation 3.76, we can conclude:

σicp
1 ≥ σicp

2 =⇒ P icp
1 (0) ≤ P icp

2 (0) (3.77)

Figure 3.5 shows two hypothetical distributions of P icp
1 and P icp

2 with standard devia-

tions of σicp
1 and σicp

2 , respectively where σicp
1 ≥ σicp

2 . We showed that P icp
1 (0) ≤ P icp

2 (0).

We want to show that the endpoint of P icp
1 is farther than that of P icp

2 or e1 ≥ e2. In

doing so, first, we must show that P icp
1 and P icp

2 can have at most one intersection. This

is verified by solving the equation P icp
1 (x) = P icp

2 (x) where for generality, we consider the

general form of a Laplace distribution P icp(δ ≥ 0) = ae−bδ:

P icp
1 (δ) = P icp

2 (δ)

a1e
−b1δ = a2e

−b2δ

δ =
Ln(a1

a2
)

b1 − b2
(3.78)

The equation above indicates that two Laplace distributions can intersect each other at

most once.
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Figure 3.5: Probability density function of symbols based on δ

Let’s assume that e1 ≥ e2 does not hold. If e1 < e2, because P icp
1 (0) ≤ P icp

2 (0) and

the fact that P icp
1 and P icp

2 can have at most one intersection, then the area under curve
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for P icp
1 will be smaller than that of P icp

2 . However, this can not be the case because the

the area under curve for both P icp
1 and P icp

2 are equal to 1. Therefore, e1 ≥ e2 must hold.

To summarize, in figure 3.5, we have:

σicp
1 ≥ σicp

2 =⇒ (e1 ≥ e2) ∧ (P icp
1 (0) ≤ P icp

2 (0)) (3.79)

By knowing the relationship between the endpoints of P icp
1 and P icp

2 , we can derive a

conclusion for endpoints of P icp
u1 and P icp

u2 because P icp
u stretches as far as P icp does. In

other words, if after a certain δ, P icp becomes very small (i.e. P icp = ε), P icp
u will also

become very small (i.e. P icp
u = ε). Figure 3.6 shows two distributions of P icp

u1 and P icp
u2 .

Thus we can write:

e1 ≥ e2 =⇒ e′1 ≥ e′2 (3.80)
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Figure 3.6: Uniqueness probability density function of symbols based on δ

To further investigate the properties of P icp
u , we examine the empirical data. It is

observed that:

σicp
1 ≥ σicp

2 =⇒ P icp
u1 (0) ≥ P icp

u2 (0) (3.81)

The relation above is true for our set of natural images with 95% accuracy and 8%

error margin 6. Relation 3.81 indicates that if the probability of symbols for δ = 0 is
6The definition of accuracy and error margin is given in appendix A.
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higher, the uniqueness probability of symbols for δ = 0 will be lower. In other words, for

δ = 0, if image1 has higher population of windows than image2 then image1 also has

less number of unique symbols at δ = 0 than image2. This is an interesting phenomena.

The higher coding and interpixel redundancy not only means that at δ = 0 there will be

high number of windows, it also means that the windows with δ = 0 will belong to less

number of symbols.

P icp
u1 and P icp

u2 are both Laplace functions and hence, as discussed before, they can

intersect each other at most once. Therefore, because P icp
u1 (0) ≥ P icp

u2 (0) (relation 3.81)

and e′1 ≥ e′2 (relation 3.80), it is concluded that the two curves (P icp
u1 and P icp

u2 ) do not

intersect each other. As a result, we will have:

∫ +δ

−δ
P icp

u1 (x)dx ≥
∫ +δ

−δ
P icp

u2 (x)dx (3.82)

which means that relation 3.74 and consequently relation 3.67 holds.

By showing that the ideal reusability of an image has a positive relationship with

the reusability of the image (relation 3.63: Rideal ∝+ R), there is one more step left to

complete our entire proof: the reusability of an image has a positive relationship with the

hit rate of perfect window memoization for the image (relation 3.64).

3.3.2 Hit Rate of Perfect Window Memoization versus Reusability of

an Image

In this section, we show the last step of our proof, which is the relationship between the

reusability of an image and the hit rate of the perfect window memoization for the image.

More precisely, we want to show:

(∀δ, R1(δ) ≤ R2(δ)) =⇒ (∀k, HR1(k) ≤ HR2(k)) (3.83)

where k is the reuse table size and δ is the new information carried by the central pixels

of the windows. We begin with the left hand side in the relation above. Substituting the

reusability equation from 3.68 gives:
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(∀δ, R1(δ) ≤ R2(δ)) =⇒
(∫ +δ

−δ P icp
1 (x)dx

∫ +δ
−δ P icp

u1 (x)dx
− 1 ≤

∫ +δ
−δ P icp

2 (x)dx
∫ +δ
−δ P icp

u2 (x)dx
− 1

)

=⇒
(∫ +δ

−δ P icp
1 (x)dx

∫ +δ
−δ P icp

u1 (x)dx
≤

∫ +δ
−δ P icp

2 (x)dx
∫ +δ
−δ P icp

u2 (x)dx

)
(3.84)

If δ goes to infinity, we will have:

(
Lim

R1(δ)
δ→∞ ≤ Lim

R2(δ)
δ→∞

)
=⇒

(∫ +∞
−∞ P icp

1 (x)dx
∫ +∞
−∞ P icp

u1 (x)dx
≤

∫ +∞
−∞ P icp

2 (x)dx
∫ +∞
−∞ P icp

u2 (x)dx

)

=⇒
(

1∫ +∞
−∞ P icp

u1 (x)dx
≤ 1∫ +∞

−∞ P icp
u2 (x)dx

)

=⇒
(∫ +∞

−∞
P icp

u1 (x)dx ≥
∫ +∞

−∞
P icp

u2 (x)dx

)

=⇒
(s1

n
≥ s2

n

)

=⇒ (s1 ≥ s2)

(3.85)

where s1 and s2 are the total number of unique symbols in image1 and image2, respec-

tively, and n is the total number of windows in both images. The relation above indicates

that an image with higher reusability when all windows are considered (i.e. δ → ∞)

will have a lower number of unique symbols, which is what we expect. Lower number

of unique symbols means that there is higher average number of windows per unique

symbol.

Using relation 3.85, we simplify relation 3.83 to:

(s1 ≥ s2) =⇒ (∀k, HR1(k) ≤ HR2(k)) (3.86)

On the right hand side of relation 3.86, we have hit rate. Hit rate was defined in sec-

tion 3.1.2 as (equation 3.8):

HR(k) =
∫ k−1

0
P (x)dx− min(k, s)

n
(3.87)

where, k is the reuse table size, s is the total number of unique symbols in the image,

and n is the total number of windows in the image. It is important to note that P
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is different than P icp. The former is the probability density function of symbols in the

original image (Img), which are sorted in descending order and the latter is the probability

density function of symbols in the transformed image Imgicp. P icp is also the probability

density function of symbols in the original image based on the new information carried

by the central pixels of the symbols δ.

Substituting the hit rate equation into the right hand side of relation 3.86 and as-

suming that the total number of symbols in image is larger than the reuse table size

(i.e. s > k), which is a more probable case, we will have 7:

(∀k, HR1(k) ≤ HR2(k)) ≡
(∫ k−1

0
P1(x)dx− k

n
≤

∫ k−1

0
P2(x)dx− k

n

)
(3.88)

Thus, the relation that we want to prove (relation 3.86) can be rewritten as:

(s1 > s2) =⇒
(∫ k−1

0
P1(x)dx− k

n
≤

∫ k−1

0
P2(x)dx− k

n

)
(3.89)

In order to prove relation 3.89, it is sufficient to prove:

(s1 > s2) =⇒
(∫ k−1

0
P1(x)dx ≤

∫ k−1

0
P2(x)dx

)
(3.90)

In order to prove relation 3.90, we need to have some information about the distribu-

tion of P . As mentioned earlier, P is the probability density function (or histogram) of

symbols in the original image (Img), which are sorted in descending order. P has a peak

at 0 and moving along x axis, it usually drops rapidly. s is the total number of unique

symbols in the image. Therefore, s is the endpoint of P curve where P becomes very

small (i.e. P (x = s) = ε) 8 where the s − 1th symbol is the least frequent symbol in the

image. This means that the area under curve P for the interval [0, s−1] is approximately

1.

∫ s−1

0
P (x)dx ≈ 1 (3.91)

7It can be shown that the discussion is also valid for less probable cases where s ≤ k.
8For images of n windows, ε < 1

n
.
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Figure 3.7 shows the probability density functions of symbols of two hypothetical

images where s1 and s2 are the endpoints of P curves of Img1 and Img2, respectively

and s1 > s2. In order to prove relation 3.90, let’s assume that the two distributions

(i.e. P1 and P2) are exponential. We will verify this assumption later in this section.

Because both distributions are exponential, with the same argument that we made for

the Laplace distributions earlier, they intersect each other at most once at i. Furthermore,

because the area under curves of both P1 and P2 are unity, from s1 > s2 it is concluded

that P1(0) < P2(0).
P

 P
D

F
 

 

 
P

2

P
1

s
2 s

1i0

Figure 3.7: Probability density function of symbols

To show that relation 3.90 holds, we consider all possbile locations of k − 1 where it

can be in either of the three intervals:

• k − 1 ≤ i: In this case, as it is seen from figure 3.7, the area under curve P1 is

smaller than that of P2 or
∫ k−1
0 P1(x)dx ≤ ∫ k−1

0 P2(x)dx

• i < k − 1 ≤ s2: The areas under the two curves in the interval [0, s− 1] are almost

equal. So we can write:
∫ s1

0
P1(x)dx ≈

∫ s2

0
P2(x)dx

∫ k−1

0
P1(x)dx +

∫ s1

k−1
P1(x)dx ≈

∫ k−1

0
P2(x)dx +

∫ s2

k−1
P2(x)dx

(3.92)

Because k − 1 > i, in the interval [k − 1, +∞) the P1 curve overshadows the P2
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curve, which means:
∫ s1

k−1
P1(x)dx ≥

∫ s1

k−1
P2(x)dx (3.93)

From 3.92 and 3.93, we can conclude:
∫ k−1
0 P1(x)dx ≤ ∫ k−1

0 P2(x)dx

• k − 1 > s2: In this case, the whole area under curve P2 is covered, which is almost

equal to 1. However, the the area under curve P1 is partially covered, which means

it is less than 1. Thus:
∫ k−1
0 P1(x)dx ≤ ∫ k−1

0 P2(x)dx

In order to verify that the probability density functions of image symbols are expo-

nential with the area under curves of unity (i.e. P (x) = ae−ax), we have performed the

curve fitting for all 40 natural images. The experimental data shows that the exponential

curve models the probability density functions of image symbols very accurately. The

average RMSE for 40 images is 0.54%. Figure 3.8 depicts three sample images along with

their probability density functions of symbols and the fitted curves. The RMSE for the

three images are 0.61%, 0.64%, and 0.34%, respectively. It must be mentioned that the

reason for very low RMSEs for the probability density functions of image symbols is the

large number of data points with small populations. Although in figure 3.8 the proba-

bility density functions are shown up to x = 500, in reality the the probability density

functions of symbols stretch well over 500. For example, the sample images shown in

figure 3.8 have about 18,000, 44,000, and 173,000 unique symbols, respectively.

By showing that relation 3.90 holds, we have shown that the coding and interpixel

redundancy of an image has a positive relationship with the hit rate of perfect window

memoization for the image:

Cr + IPr ∝+ HR(k) (3.94)

3.4 Summary

The main goal of this chapter was to prove that the sum of the coding and interpixel

redundancy of an image has a positive relationship with the computational redundancy

of the image:
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Figure 3.8: Left: original images. Right: the probability density functions of image

symbols.

(Cr + IPr) ∝+ Compr (3.95)

In order to prove relation 3.95, several intermediate steps had to be proven. The

followings list the intermediate steps that were taken in order to prove relation 3.95.

1. Section 3.2.1: The sum of coding and interpixel redundancy of the original image
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has a negative relationship with the entropy of the transformed image:

(Cr + IPr) ∝− H icp (3.96)

2. Section 3.2.2: The entropy of the transformed image has a positive relationship

with the standard deviation of the transformed image:

H icp ∝+ σicp (3.97)

3. Section 3.2.3: The standard deviation of the transformed image has a negative

relationship with the ideal reusability of the image:

σicp ∝− Rideal(δ) (3.98)

4. Section 3.3.1: The ideal reusability of an image has a positive relationship with the

reusability of the image:

Rideal(δ) ∝+ R(δ) (3.99)

5. Section 3.3.2: The reusability of an image has a positive relationship with the hit

rate of perfect window memoization for the image:

R(δ) ∝+ HR(K) (3.100)

6. Section 3.1.2: The hit rate of perfect window memoization for an image has a

positive relationship with the computational redundancy of the image:

HR(K) ∝+ Compr (3.101)

In short, the whole chain that we proved in this chapter is:

(Cr + IPr) ∝− H icp ∝+ σicp ∝− Rideal(δ) ∝+ R(δ) ∝+ HR(k) ∝+ Compr

(3.102)

which yields:
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(Cr + IPr) ∝+ Compr (3.103)

This is a simple yet revealing relationship, which gives useful information on the

potential performance gain obtained by window memoization for an image, only based

on the coding and interpixel redundancy of the image.
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Figure 3.9: Computational redundancy versus coding and interpixel redundancy

In order to verify relation 3.103, we have run an experiment on four sets of images

(natural, industrial, medical, and barcode). The results are shown in figure 3.9. The

experimental data matches relation 3.103 with 95% of accuracy and error margins 9 in

the range 1.22% to 6.10%. This, in fact, completes the goal of this chapter, which was

to show that the sum of the coding and interpixel redundancy of an image has a positive

relationship with the computational redundancy of the image (relation 3.103).
9The definition of accuracy and error margin is given in appendix A.
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Chapter 4

Window Memoization in Software

In chapter 3, perfect window memoization was introduced as a high level model, which

takes advantage of coding and interpixel redundancy in image data to improve the per-

formance of local image processing algorithms. We also showed that the coding and

interpixel redundancy of an image have a positive relationship with the computational

redundancy of the image. In this chapter, we present the implementation of window

memoization in software. We have applied the technique to several case studies imple-

mented in C and run the experiments on three different processors. The typical speedups

range from 1.2 to 7.9 with a maximum factor of 40. We also present a model that for

a given processor and algorithm, predicts the speedup of all images in a data set with

minimum required information. Finally, we show that the computational redundancy of

an image has a positive relationship with the speedup obtained for the image by window

memoization. This leads to the fact that the coding and interpixel redundancy of an

image have a positive relationship with the speedup obtained for the image by window

memoization in software. This enables us to compare images based on the performance

gain obtained by window memoization in software based on only the coding and interpixel

redundancy of the images, without actually implementing window memoization.

For our experiments throughout this chapter, we have used the four sets of images

given in section 2.6. As we will discuss later in this chapter, it is expected that for a given

algorithm and image, different speedups will be achieved by window memoization on

different processors. Therefore, in all our experiments, we use three different processors,

which are listed in table 4.1.
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Table 4.1: Processors used in experiments

1. Processor 1: Intel(R) Xeon(TM), CPU: 3.20GHz, cache size: 1024 KB.

2. Processor 2: Intel(R) XEON(TM), CPU: 1.80GHz, cache size: 512 KB.

3. Processor 3: Embedded PowerPC 405 processor on Xilinx ML403 board,

CPU: 300MHz, cache size: 16 KB.

The selected set of processors covers a wide range of performance and cache size.

It includes a low-end embedded processor (processor 3), a mid-range server (processor

2), and a high-end server (processor 1). Evaluating window memoization on different

processors and demonstrating that it yields performance improvements on all processors

validates the practicality and portability of the technique across different platforms.

The outline of this chapter is as follows. In section 4.1, we present the implementation

of window memoization in software. In Section 4.2, window memoization in software is

discussed in more detail. In section 4.3, we present a model for the overhead time incurred

by the memoization mechanism. In section 4.4, we present a model for speedup and

validate the model using empirical data. Section 4.5 presents empirical speedup results for

all case study algorithms run on three processors using four sets of images. In section 4.6,

we show mathematically and empirically that the coding and interpixel redundancy of

an image have a positive relationship with the speedup of the image obtained by window

memoization in software. Finally, section 4.7 gives the summary of the chapter.

4.1 Window Memoization Technique in Software

In this section, we present the architecture of window memoization in software. We also

propose a model for actual speedups obtained by window memoization in software and

discuss the factors that affect the speedup.

Figure 4.1 shows the flowchart of window memoization in software. The heart of

window memoization is the memoization mechanism and a reuse table. Upon arrival of a

window, if the memoization mechanism is able to find the matching symbol in the reuse

table, a hit occurs. In this case, the response of the window is looked up from the reuse

table and the actual computations (i.e. mask operations set) are skipped. Otherwise
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(miss), the mask operations set is applied to the window to produce the response and the

reuse table is updated with the symbol to which the window belongs and its response.

Read image

Create window

Look up 
result from 
reuse table

 

Hits=Yes

Perform
calculations

Hits=No

Update 
reuse table

Output

Check
 reuse
 table

Figure 4.1: Flowchart of window memoization

Perfect window memoization uses a perfect cache as reuse table. As discussed in

section 3.1.2, once an entry is inserted into a perfect cache, it is never evicted in the

future. Therefore, if the size of the perfect cache is smaller than the total number of

symbols in an image, those symbols are inserted into the perfect cache (or reuse table),

which have higher probabilities of occurrence than others. This, of course, requires a priori

knowledge about the probability density function of the symbols in the image, which is

not available in real-world implementations. In order to implement window memoization

in software, a different mapping scheme is required, which does not need the information

about the probability density function of the symbols in the image. The mapping scheme

will decide how to map the incoming windows into the reuse table and in case of a miss,

which reuse table entry to evict.

Window memoization in software combines the concepts of cache and hash table.

Similar to cache, window memoization uses a mapping scheme and an eviction policy to

map incoming windows into the reuse table and, in case of a miss, to replace a symbol

in the reuse table with the symbol of current window. Instead of using the symbol of
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the incoming window directly to generate the reuse table address, similar to hash table,

window memoization uses a hash function to convert the symbol of the incoming window

into an address which is within the range of the reuse table size. In general, the symbol

is a large number (e.g. 36-bit) and it is impossible to have such a large reuse table that

allocates one unique location for each value of symbols. Thus, multiple symbols may

be mapped into one location in the reuse table. As a result, the symbol itself must be

stored in the reuse table for the purpose of future comparisons. This leads to a reuse

table whose elements contain three fields: valid bit, symbol, and the result (or response).

The valid bit indicates whether the data stored in this address is valid. The symbol field

represents the stored symbol. Finally, the outcome of applying the mask operations set

to the window is stored in the result field.

In the software implementation of window memoization, first, the incoming window is

transformed into its corresponding symbol. The symbol then is mapped into an address

in the reuse table by building a key. Afterward, the content of the reuse table at the

location where the key points to is read and compared against symbol of the incoming

window. If symbol of the incoming window matches the content of the reuse table at that

particular location, a hit occurs; the response is read from the reuse table and the mask

operations set for the incoming window is skipped. If an incoming window is mapped into

a location in the reuse table, which is either empty or already occupied by a symbol to

which the incoming window does not belong, a miss will occur. In this case, the eviction

policy used by window memoization selects a symbol in the reuse table to be replaced by

the symbol corresponding to the incoming window. Moreover, the mask operations set

of the algorithm is performed on the incoming window and the reuse table is updated by

its response.

In both cases of hit and miss, extra operations are introduced by window memoization.

In case of a hit, the extra operations are: generating symbol, generating key, reading from

reuse table and comparing the symbol of the incoming window to the content of the reuse

table. In case of a miss, in addition to the extra operations similar to hit, there is another

operation: writing the symbol of the incoming window and its response to the reuse table.

As a result, the software implementation of perfect window memoization introduces an

overhead in processing time, which we call memoization overheard time. The memoization
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overhead time will affect the actual speedup obtained by window memoization in software.

Thus, the overhead time should be taken into account when modeling the performance

improvement of window memoization in software.

The following shows the flow of window memoization in software and the correspond-

ing time for each step, based on whether a hit or a miss occurs:

• If a hit occurs:

– build symbol and key based on the incoming window (tkey).

– read the symbol from the reuse table, stored in the address that the key points

to (tread).

– compare the symbol that just read from the reuse table with the symbol to

which the incoming window belongs (tcompare).

– the total time consumed by a window for which, a hit occurs, Tw hit, will be:

Tw hit = tkey + tread + tcompare (4.1)

• If a miss occurs:

– build symbol and key based on the incoming window (tkey).

– read the symbol from the reuse table, stored in the address that the key points

to (tread).

– compare the symbol that just read from the reuse table with the symbol to

which the incoming window belongs (tcompare).

– perform the mask operations set on the incoming window (tmask).

– update the reuse table by writing the symbol of the incoming window and its

response to the reuse table (twrite).

– the total time consumed by a window for which, a miss occurs, Tw miss, will

be:

Tw miss = tkey + tread + tcompare + tmask + twrite (4.2)

Assume that HRsw is hit rate; the number of windows in an image that find a matching

symbol in the reuse table divided by the total number of windows in the image. For those
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windows that find a matching symbol in the reuse table, the required processing time is

HRsw × Tw hit and similarly, for the remaining windows, the required processing time is

(1 − HRsw) × Tw miss. Note that both times (Tw hit and Tw miss) are normalized with

respect to the total number of windows in image. We can combine Tw hit and Tw miss,

using hit rate (HRsw) as follows:

Tw = HRsw × Tw hit + (1−HRsw)× Tw miss

= HRsw × (tkey + tread + tcompare) +

(1−HRsw)× (tkey + tread + tcompare + tmask + twrite)

= (tkey + tread + tcompare) + (1−HRsw)× twrite + (1−HRsw)× tmask

(4.3)

It is seen from the equation above that except for the portion with tmask, the rest are

the overhead time required by the implementation of window memoization in software,

or memoization overhead time (i.e. tmemo):

tmemo = (tkey + tread + tcompare) + (1−HRsw)× twrite (4.4)

In writing the equation for tmemo and consequently for speedup, for simplicity, first

we assume that all memoization overhead time components (i.e. tkey, tread, tcompare, and

twrite) have a linear effect on tmemo and thus on speedup. In section 4.3, we will revisit

this assumption and show that in fact one of the memoization overhead time components

(i.e. twrite) has a nonlinear (quadratic) effect on speedup. The speedup equation will

also be modified accordingly. However, for our current purpose, which is to identify the

parameters that influence the speedup, a linear relationship suffices. By substituting

tmemo from equation 4.4 in equation 4.3, we can write:

Tw = tmemo + (1−HRsw)× tmask

(4.5)
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Similar to any performance improving technique, the speedup of window memoiza-

tion applied to an algorithm is defined as the ratio of the time required to process the

conventional algorithm (Tc) and the algorithm with window memoization, (Tw).

speedup =
Tc

Tw
(4.6)

In equation 4.6, similar to Tw, Tc is also normalized with respect to the total number of

windows in image. Therefore, Tc is in fact the time required by the mask operations set

performed on one window or tmask. Replacing Tw and Tc in equation 4.6 with equation 4.5

and tmask, respectively, gives:

speedup =
tmask

tmemo + (1−HRsw)× tmask
(4.7)

where HRsw is hit rate, tmask is the time required to perform mask operations set, and

tmemo is the memoization overhead time.

Equation 4.7 indicates that the performance improvement in software obtained by

window memoization (i.e. speedup) depends on three different parameters: HRsw, tmask,

and tmemo. Hit rate (HRsw) which itself depends on the memoization mechanism and the

input image, has two effects on speedup. Increasing hit rate directly increases speedup and

reduces tmemo, which also leads to a higher speedup. Therefore, hit rate is an important

parameter in the performance improvement obtained by window memoization in software.

The time required for mask operations set (tmask), which depends on the complex-

ity of the algorithm under study, also has a positive relationship with speedup. The

more complex the algorithm under study, the higher the achieved speedup will be. The

memoization overhead time (tmemo) has a negative relationship with speedup. A higher

tmemo will cause speedup to decrease. The memoization overhead time results from mul-

tiple components: memory operations (tread and twrite), hit rate (HRsw), comparison

(tcompare), and key generation (tkey), which all depend only on the memoization mecha-

nism, except HRsw which also depends on the input image.

Because tmemo 6= 0, equation 4.7 can be rewritten as:
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speedup =
tmask
tmemo

1 + (1−HRsw)× tmask
tmemo

(4.8)

Equation 4.8 indicates that for a fixed hit rate, speedup depends on the ratio tmask
tmemo

. In

other words, the more complex the algorithm under study (i.e. larger tmask) and smaller

memoization overhead time (i.e. smaller tmemo), a higher speedup will be achieved. As

a result, first, for a fixed hit rate, depending on the complexity of the algorithm under

study, different algorithms will yield different speedups. Second, in order to obtain a

higher speedup, it is desired that tmemo is minimized. Another important observation

from this equation is that the ratio tmask
tmemo

may be different for different processors. This

is mainly due to the fact that for different processors, the ratio of arithmetic operations

to memory operations (i.e. processor-memory performance gap) is different. The result is

that for a particular algorithm and image, different speedups may be achieved on different

processors.

4.2 Memoization Mechanism for Window Memoization in

Software

In this section, we discuss the components of the memoization mechanism that affect

speedup and present an optimized memoization mechanism, which takes these parameters

into account to yield high speedups.

The memoization mechanism of window memoization in software consists of three

steps: symbol generation, mapping scheme, and hash function. Each of these steps affect

speedup by affecting the memoization overhead time (tmemo) and hit rate (HRsw) in

the equation of speedup (equation 4.7). tkey in tmemo is affected by both the symbol

generation and hash function. Symbol generation converts each incoming window into a

single number (symbol) and the hash function converts the symbol into an address. The

memory operations (tread, twrite) and tcompare in tmemo are all affected by the mapping

scheme, which decides which symbol to evict when a miss occurs. HRsw is affected by

both the hash function and mapping scheme.

When a window is received by window memoization, the first step is to produce the
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corresponding symbol of the window (symbol generation reflected in tkey), by choosing

the d most significant bits from each pixel in the window (i.e. tolerant memoization). To

achieve high speedups (low tkey), generating the symbol from the incoming window must

be fast. Once the symbol is generated, a mapping scheme must map the symbol into the

reuse table. The mapping scheme will have multiple effects on speedup through tmemo.

First, the way that symbols are mapped to the reuse table will determine the overhead

time caused by memory operations, which are represented by tread and twrite in tmemo.

Second, the number of comparisons that the mapping scheme requires (i.e. tcompare) will

affect tmemo. Third, depending on the mapping scheme, a hash function might be needed

for generating an address (or key) from a symbol, which will also affect tmemo by affecting

tkey. In addition, the mapping scheme and hash function will also have a direct effect

on hit rate, which affects speedup. Thus, the choice of a method which maps symbols

to the reuse table quickly (i.e. low tkey, tread and twrite and thus low tmemo) and at the

same time yields high hit rates is crucial. In table 4.2, the list of parameters that affect

speedup along with their causing roots is shown.

Table 4.2: Design decisions for memoization mechanism in software

Parameter/Affected by Symbol Generation Mapping Scheme Hash Function

HRsw
√ √

tkey
√ √

tread
√

twrite
√

tcompare
√

In the following sections, we will discuss the design decisions that must be made

based on table 4.2, in order to develop an optimized memoization mechanism for window

memoization in software.

4.2.1 Generating Symbols

In section 3.1.3, we defined a condition, based on which a window win belongs to a symbol

sym:
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∀pix ∈ win,∀pix′ ∈ sym, MSB(d, pix) = pix′ =⇒ win ∈ sym (4.9)

where MSB(d, pix) represents the d most significant bits of the pixel pix in the window

win. A symbol represents the d most significant bits of each pixel in the window. As

discussed in section 3.1.3, decreasing d causes the response of a window to be assigned

to windows that are similar but not necessarily identical to the window. This leads to

higher hit rates and thus higher speedups, with a small cost in the accuracy of results.

Window memoization in software extracts the d most significant bits of each pixel of

a window to generate the corresponding symbol. The symbol is a number, which consists

of chunks of the d most significant bits from pixels of the window. In general, it does not

matter in which order the the d most significant bits of each pixel appear in the symbol.

However, to reduce the time required to generate symbols, a certain order is required,

which will be explained shortly. To generate a symbol for each window of m×m pixels in

the image, the d most significant bits of each pixel in the window are shifted and ORed

with each other such that they build a d×m2 bit number (d bits per pixel), as listed in

table 4.3.

Table 4.3: Generating symbol

1. Input image Img

2. For each window win of m×m pixels in the image, perform:

a. Initialize symbol: sym=0.

b. For each pixel pix in the window win, starting from the leftmost column, perform:

sym = (sym ¿ d ) OR (pix À 8− d)

In the algorithm in table 4.3, ‘¿’ represents a left shift operator and ‘OR’ is a logical

or operator. The right hand side of OR (i.e. pix À 8−d) shows how the d most significant

bits of each pixel is selected.

As mentioned before, to gain better performance for window memoization in software,

the memoization overhead time (tmemo and thus tkey) must be minimized, which means

that the symbol of each window must be generated quickly. In doing so, we benefit from

the overlap between the neighboring windows to build the symbol incrementally as the

mask moves across the image. The pixels of each window are used to generate its symbol
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in a left-to-right order. For the first windows in each row, the algorithm is the same as the

one in table 4.3. For the rest of windows, the pixels that belong to the leftmost column in

the window are removed from the symbol and instead, the pixels that belong to the new

rightmost column are added to the symbol. The algorithm given in table 4.3 requires m2

shift and OR operations in order to build symbols for each window. By taking advantage

of overlapping windows, for each window, only m shift and OR operations are needed in

order to build symbol (table 4.4) 1.

Table 4.4: Generating symbol using the overlapping windows

1. input image Img

2. For each window win of m×m pixels in the image perform:

a. If win is the first window in the row, then:

- Initialize symbol: sym=0.

- For each pixel pix in win, starting from the leftmost column,

perform: sym = (sym ¿ d ) OR (pix À 8− d).

b. Else:

- For each pixel pix in the rightmost column of win, perform (insert the rightmost

column and shift out the leftmost column):

sym = (sym ¿ d ) OR (pix À 8− d).

4.2.2 Mapping Scheme for Memoization Mechanism

Once the symbol of an incoming window is generated, a mapping scheme is required to

map the symbol into the reuse table. Once again, a mapping scheme must be chosen

such that the overhead time (i.e. tread, twrite, and tcompare) is small. Different mapping

algorithms have been developed and used in processors cache hierarchy design including

direct-mapped, fully associative, and set-associative [49]. In the following, each of the

mapping schemes is reviewed. We also discuss that direct-mapped mapping scheme is

suitable for window memoization in software.

Direct-mapped method which performs a many-to-one mapping, always maps a par-

ticular symbol to a single location. Fully associative method performs an any-to-any
1This method of fast symbol generation, which benefits from overlapping windows in the image, is

similar to Huang’s method for fast median filter [27], as discussed in chapter 2, section 2.5.5.
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mapping between the incoming windows and the addresses of the reuse table. In this

method, a symbol can reside anywhere in the reuse table and thus, in order to find a

match between an incoming window and the stored symbols, the whole reuse table must

be searched. Set associative scheme is a combination of direct-mapped and fully associa-

tive methods. In this method, first, a symbol is mapped to a range of addresses in the

reuse table, similar to direct-mapped method. Afterward, the symbol can be stored in

any address, which is in that range, similar to fully associative method.

In set associative and fully associative methods, a heuristic must be used in order to

decide where to store the symbol of the incoming window and which address to evict.

Three commonly used methods in processor cache hierarchy design are: first in first out

(FIFO), least recently used (LRU), and random. FIFO evicts the oldest entry in the reuse

table. LRU evicts the entry that has been referenced the least. Finally, random eviction

method chooses randomly which entry to evict.

Fully associative and set associative methods require many memory and comparison

operations (i.e. high tread, twrite, and tcompare). In hardware, because these operations

can be performed in parallel, the two methods are used extensively. In contrast, the serial

nature of software leads to a very poor performance for window memoization that uses

fully associative or set associative methods as the mapping scheme. In other words, these

two schemes yield very high tmemo such that in equation 4.7, for any normal range of

values (i.e. tmask and HRsw), it almost becomes infeasible to achieve speedups higher

than 1. As a result, the software implementation of window memoization uses a direct-

mapped mapping scheme for the memoization mechanism.

4.2.3 Hash Function for Direct-Mapped Mapping Scheme

The memoization mechanism of window memoization in software requires a hash function

to convert each symbol into a smaller number hash key, which is in the range of the reuse

table size. This will cause more than one symbol to be mapped to each location in

the reuse table leading to collisions. In conventional hashing schemes in software, one

generally solves the collisions by two major methods: open addressing and chaining. Both

methods, however, impose an extra overhead time to the memoization mechanism (higher

tread, twrite, and tcompare). Moreover, in window memoization, when a collision occurs,
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the conventional mask operations set can be performed on the window to obtain the

response. This is in contrast to conventional hashing methods where the goal is to find

a target in the hash table and there is no alternate in case of a collision. As a result, it

is more beneficiary for window memoization to consider collision as a miss and hence, to

perform the mask operations set if a collision occurs, rather than employing conventional

collision resolution methods.

There are two commonly used hash functions in the literature: division method and

multiplication method [10]. The division method maps a symbol sym into one of the

reuse table slots by taking the remainder of the symbol by the reuse table size (RTsize):

hash key = h(sym)

= mod(symbol, RTsize) (4.10)

In order to obtain a better result in terms of having hash-keys evenly distributed over

the hash table, RTsize must not be a power of 2. A good choice for RTsize is a prime

number, which is not too close to a power of 2.

An alternative scheme to the division method is the multiplication method. In this

method, first, the symbol is multiplied by a number, A, in the range (0, 1) and the

fractional part is extracted. Afterward, the result is multiplied by RTsize and the floor

of the final result is the outcome of the hash function, which is hash-key:

hash key = floor[RTsize ×mod((sym×A), 1)] (4.11)

In this method, there is no constraint on the value of RTsize. However, it is usually

chosen to be a power of 2 so that the multiplication becomes a shift operation. In order

to use integer operations instead of floating point, A is defined as A = s
2b where s is an

integer in the range (0, 2b) and b is the number of bits of symbol sym. First, sym is

multiplied by s = A × 2b. This gives a 2b-bit number: 2b.r1 + r0. The most significant

portion of the number, r1, is the result of multiplying A by 2b and therefore, it is ignored.

r0 is the fractional part of sym×A, which has been shifted to the left by b bits. In order
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to find the result of r0 × RTsize, where RTsize = 2z, we need to pick z most significant

bits of r0.

The only parameter that must be chosen for this method is the constant A. Depend-

ing on the characteristics of data being hashed, an optimal value can be chosen for A.

Knuth [10] has reported that for many applications, the golden ratio A =
√

5−1
2 ≈ 0.6118

is an optimal choice, which we have used for our experiments.

As shown in table 4.2, in order to compare the two hash functions (i.e. division and

multiplication), both HRsw and tkey must be compared. HRsw and tkey have a positive

and negative relationships with speedup, respectively (equation 4.12). Therefore, a hash

function with higher HRsw and lower tkey will yield higher speedups.

speedup =
tmask

tmemo + (1−HRsw)× tmask
(4.12)

where

tmemo = tkey + tread + tcompare + (1−HRsw)× twrite

(4.13)

To evaluate the efficiency of multiplication and division methods for hash function,

we have run an experiment on the three different processors using the set of natural

images. For each reuse table size in the range 1K to 256K (i.e. 1K, 2K, 4K, 8K, 16K,

32K, 64K, 128K, 256K), we measure tkey and average HRsw over the set of images. To

measure tkey, we use the C clock() function. For the given input images (e.g. natural

images), HRsw and tkey depend only on the reuse table size and the processor on which

the experiments are run, respectively. For each hash function, figure 4.2 left shows tkey

versus different processors and figure 4.2 right shows HRsw versus the reuse table size.

As figure 4.2 left shows, in all cases, the multiplication method gives a smaller tkey than

the division method. This is mainly due to the fact that the multiplication method uses

inexpensive operations (i.e. shift) while the division method uses an expensive operation

(i.e. mod function). It is seen from figure 4.2 right that in the majority of cases, the

multiplication method also gives higher hit rates than the division method. For a given

processor and the reuse table size, if the multiplication method gives both higher hit
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Figure 4.2: Left: tkey for all three processors. Right: hit rate versus the reuse table size.

rate and lower tkey, which is true in most cases, then the speedup for the multiplication

method will be higher than that of the division method. The only case (the worst case)

that speedup for the multiplication method might be lower than that of the division

method is for 16K entries reuse table where the hit rate of the multiplication method is

0.98% lower than that of the division method.

To decide between the multiplication and division method, we perform the following

experiment. We calculate speedup using tkey and HRsw of each hash function. We use

typical values for the remaining parameters in the equation of speedup (equation 4.12).

The difference in speedups of the multiplication and division methods (i.e. speedupmul−
speedupdiv) is shown in figure 4.3. As it is seen, there is only one noticeable scenario

(i.e. 16K entries reuse table) where the multiplication method gives a lower speedup

than the division method (i.e. 6%, 5%, and 12% lower). In all other cases, either the

speedup of the multiplication method is higher than that of the division method or the

difference is negligible (i.e. less than 1%). Based on this observation and the fact that in

most cases, a 16K entries is not the reuse table size that gives the maximum speedups

(sections 4.4.1 and 4.4.2), we have chosen the multiplication method as the hash function

for the software implementation of window memoization.
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Figure 4.3: The difference in speedups of the multiplication and division methods

4.2.4 Tolerant Memoization in Software

In this section, we explore the possibility of assigning similar but not necessarily identical

windows to one symbol, in order to achieve high hit rates and hence, high speedups.

We introduced the concept of tolerant memoization in chapter 3, section 3.1.3 where in

assigning windows to symbols, the d most significant bits of each pixel are used.

We perform an experiment, using our memoization mechanism, which was presented in

the previous sections, to pick an optimal d that gives high hit rates with small inaccuracy

in results. For our experiments, we use an ideal algorithm which outputs the central

pixel of the input 3 × 3 window as its response. We use different values for d from 1 to

8. As the input images, we use the set of natural images. The accuracy of the results

is calculated as SNR, given in equation 3.16, presented in section 3.1.3. In calculating

SNR, we replace an infinite SNR with 100, in order to calculate the average of SNRs of

all images.

Figure 4.4 shows the average hit rate and SNR of the result for each value of d. It

is seen that as d decreases, hit rate increases and at the same time, SNR decreases.

The error in an image with SNR of 30dB is nearly indistinguishable by the observer [1].

Therefore, we pick d to be 4 because it gives an average SNR of 29.68dB, which is slightly

below the value 30dB. Reducing d from 8 to 4 increases the average hit rate from 10%

to 66%. For our experiments in the remaining of this chapter, we will choose d to be 4.
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Figure 4.4: Average hit rate and SNR versus the number of the most significant bits used

for assigning windows to symbols. Infinite SNRs have been replaced by SNR of 100.

4.2.5 Summary of Design Decisions for Memoization Mechanism

In this section, we discussed several parameters that affect the speedup achieved by

window memoization in software. It was shown that each parameter depends on a design

decision of developing the memoization mechanism. A fast symbol generation mechanism

was presented which yields a small tkey. As the mapping scheme, the direct-mapped

method was chosen because it produces small overhead time for memory operations and

comparisons (i.e. tread, twrite, and tcompare). The multiplication method was selected as

the hash function for direct-mapped mapping, which yields high hit rate and low tkey.

Finally, to achieve high hit rates, 4 bits of each pixel in a window are considered to

determine whether the window belongs to a symbol.

4.3 Revisiting the Memoization Overhead Time Equation

In section 4.1, a theoretical model for calculating speedup obtained by window memoiza-

tion in software was presented (equation 4.14).

speedup =
tmask

tmemo + (1−HRsw)× tmask
(4.14)
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Equation 4.14 indicates that for a given algorithm and image, in order to calculate

speedup, the memoization overhead time (tmemo) must be known. In the previous sec-

tions, we discussed that tmemo depends on different parameters: tkey, tread, twrite, tcompare,

and HRsw. Based on these parameters, we designed an optimized memoization mech-

anism that uses the multiplication method for hash function in a direct-mapped style

for mapping the symbols of incoming windows into the reuse table. We also proposed a

model for the memoization overhead time (tmemo) based on the assumption that hit rate

(HRsw) has a linear relationship with tmemo.

In this section, using empirical data, first we evaluate the accuracy of the linear

model for the memoization overhead time proposed in section 4.1. In order to achieve

higher accuracy of curve fits of the model and empirical data, we modify tmemo to a

quadratic equation . Afterward, we simplify the quadratic model such that by using

the empirical data for only two extreme cases of images in a data set, tmemo can be

predicted for all images in the data set. Figure 4.8 summarizes the comparison of the

three models (i.e. linear, quadratic, and simplified quadratic). In section 4.4, we use the

simplified quadratic model of tmemo to modify the speedup equation (i.e. equation 4.14)

accordingly. We then use the modified speedup equation to pick the optimal reuse table

sizes to achieve maximum speedup for each case study algorithm.

4.3.1 Memoization Overhead Time: A Linear Model

In the previous section, it was assumed that there is a linear relationship between tmemo

and its constituting elements:

tmemo = tkey + tread + tcompare + (1−HRsw)× twrite

(4.15)

We study tmemo for a given processor and the reuse table size. By using a particular

processor, tkey and tcompare become constant values. Fixing the the reuse table size

makes the memory operations (i.e. tread and twrite) constant values as well. As a result,

tmemo becomes dependent only on hit rate (HRsw).
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To verify the linear equation for tmemo, we use empirical data. In order to measure

tmemo, we run window memoization in software without applying any mask operations

set. In other words, the code only includes the window memoization mechanism where

the windows’ size is 3 × 3 pixels. We run the experiments on three different processors

given in table 4.1 to calculate tmemo for each image in our set of 40 natural images. In

addition, we use different reuse table sizes, ranging from 1K entries up to 256K entries

(i.e. 1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K, 256K). For each processor, this yields

9 sets of data where each set consists of tmemo data for 40 images. Table 4.5 shows the

RMSEs of the measured tmemo against the linear model for each processor and each reuse

table size.

Table 4.5: RMSEs (%) for linear curve fit for tmemo for different RT sizes on three

processors
Processor/RTsize 1K 2K 4K 8K 16K 32K 64K 128K 256K Average

Processor 1 5.02 6.10 4.70 4.45 4.11 4.24 4.10 3.98 4.70 4.60

Processor 2 3.86 4.21 4.34 4.43 3.82 4.61 4.85 5.01 5.13 4.47

Processor 3 0.00 1.28 2.01 2.70 2.98 3.39 3.65 3.41 3.27 2.52

Figure 4.5 shows the experimental data and linear model for tmemo versus HRsw for

a particular reuse table size (16K entries) for all three processors. Although the RMSEs

given in table 4.5 seem reasonable, observing the tmemo versus HRsw curves (figure 4.5)

reveals a non-linear effect in the tmemo and HRsw relationship. This is more visible

especially in the data sets of processor 1 and 2.

In order to investigate the nonlinear behavior of the empirical data for tmemo versus

HRsw, we must further study the constituting elements of tmemo. As it is shown in

equation 4.15, tmemo has the following components: tkey, tread, tcompare, and twrite. It

is seen that tkey, tread and tcompare are all independent of hit rate HRsw. However,

twrite is the only parameter that can be affected by hit rate. We hypothesize that the

nonlinear behavior observed in the empirical data of tmemo versus hit rate is due to the

write operation, which is reflected as twrite in tmemo. When a miss occurs in window

memoization, the mask operations set is applied to the current window and the symbol

of the window along with its response are written to the reuse table. This causes the
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Figure 4.5: Linear model for tmemo versus HRsw for a 16K entries reuse table

caching mechanism of the processor to update all copies of the reuse table that reside

in different cache levels. Updating a data block in a cache hierarchy is done by either

write-through or write-back method [49]. In a write-through cache, a write to a cache

is propagated through all levels of the cache once a block of data in the highest level of

cache is updated. In a write-back cache, updating the lower levels of cache is delayed

until it is necessary. In either case, updating the cache may cause the pipeline to stall

due to data hazards leading to the nonlinear effect of twrite on tmemo. On the other hand,

increasing hit rate decreases the number of cache updates that the pipeline must perform.

Thus, tmemo has a nonlinear relationship with HRsw.
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4.3.2 Memoization Overhead Time: A Nonlinear Model

To improve the accuracy of curve fits of the model and empirical data for the memoization

overhead time (tmemo), we model tmemo with a nonlinear equation:

tmemo(HRsw) = −a×HR2
sw − b×HRsw − c (4.16)

The RMSEs are listed in table 4.6. As it is seen, the average RMSEs of curve fits for

nonlinear model have decreased by 1.36%, 0.99%, and 0.35% in comparison to the linear

model, for processor 1, processor 2, and processor 3, respectively.

Table 4.6: RMSEs (%) for quadratic curve fit for tmemo for different RT sizes on three

processors
Processor/RTsize 1K 2K 4K 8K 16K 32K 64K 128K 256K Average

Processor 1 3.13 3.87 2.69 2.84 2.73 3.17 3.34 3.20 4.21 3.24

Processor 2 3.15 3.28 3.16 3.07 2.70 3.77 3.84 4.15 4.21 3.48

Processor 3 0.00 1.16 1.71 2.27 2.51 2.88 3.16 2.99 2.82 2.17

Figure 4.6 shows the experimental data and nonlinear model for tmemo versus HRsw

for a particular reuse table size (16K entries) for all three processors.

4.3.3 Memoization Overhead Time: A Simplified Nonlinear Model

Our main goal of modeling the memoization overhead time (tmemo) is to predict speedup

for images in a data set with the minimum required information. This enables us to

quickly pick the optimal reuse table sizes that yield maximum speedups. The equation

of speedup (equation 4.14) indicates that for a given algorithm, in order to predict the

speedups for images of a data set, three parameters are required for each image: tmask,

tmemo, and HRsw. tmask is usually similar for different images in a data set since it

depends on the complexity of the algorithm. Thus, as we will show in the next section, to

calculate speedup, measuring tmask for only two images is usually sufficient. The current

nonlinear model of tmemo requires that memoization overhead time be measured for at

least three images in the data set because there are three paraments (a, b, and c) in
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Figure 4.6: Nonlinear model for tmemo versus HRsw for a 16K entries reuse table

equation 4.16. We will simplify the model such that it requires measuring tmemo for only

two images of a data set, in order to predict tmemo for all images in the data set. With

this simplification, to predict tmemo for all images in a data set, the only parameter that

is required to be calculated for all images is hit rate HRsw. Hit rate is a characteristic of

image and is independent of the processor on which window memoization is run. Thus,

a high level model can be used to calculate the hit rates of all images easily.

The current equation for memoization overhead time is:

tmemo(HRsw) = −a×HR2
sw − b×HRsw − c (4.17)

Assuming that we have the hit rate of all images in the data set, it is seen that to calculate

the coefficients of the quadratic equation in 4.17 (i.e. a, b, and c), at least three images
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are required to measure tmemo. To reduce the minimum number of images required, we

simplify equation 4.17 to:

tmemo(HRsw) = −a×HR2
sw − b (4.18)

In order to determine the coefficients of the equation above (i.e. a and b ), it is only

required to measure tmemo for two images. To obtain a better accuracy of model, we

pick two images with extreme hit rates: images with minimum and maximum hit rate.

To predict tmemo for all images in a data set, first, we measure tmemo for two images

with extreme hit rates in the data set. By having tmemo for two images, we are able to

calculate the coefficients of equation 4.18 (a and b). By having a and b determined, for

any image in the data set (i.e. any HRsw), tmemo can be calculated. The equations below

show how a and b are calculated based on the memoization overhead times of images with

maximum and minimum hit rates in a set of images.

a =
tmemo1 − tmemo2

HR2
sw2 −HR2

sw1

(4.19)

b = −tmemo1 − a×HR2
sw1

= −tmemo1 −
(

tmemo1 − tmemo2

HR2
sw2 −HR2

sw1

)
×HR2

sw1 (4.20)

where the subscripts 1 and 2 indicate tmemo and HRsw of images with minimum and

maximum hit rates, respectively.

To validate our simplified model for tmemo, we use equation 4.18 to perform curve fits

for the empirical data of tmemo for the same set of natural images used in the previous

sections. We validate the simplified model for tmemo by comparing the model with the

empirical data using the RMSEs of the curve fits (table 4.7).

As it can be seen, although the accuracy has slightly dropped in comparison to the

model using equation 4.17 (nonlinear model using tmemo for three images), the model still

matches the empirical data with reasonably low error (i.e. average RMSEs less than 4%)

.
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Table 4.7: RMSEs (%) for simplified quadratic curve fit for tmemo for different RT sizes

on three processors, using only two extreme images
Processor/RTsize 1K 2K 4K 8K 16K 32K 64K 128K 256K Average

Processor 1 4.45 6.20 3.19 3.39 4.05 3.67 3.46 3.19 4.07 3.96

Processor 2 3.15 3.72 4.06 4.42 3.66 4.33 3.92 4.18 4.45 3.99

Processor 3 0.00 1.23 1.79 2.30 2.56 3.22 3.78 3.57 3.72 2.48
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Figure 4.7: Simplified nonlinear model for tmemo versus HRsw for a 16K entries reuse

table using only two extreme images

Figure 4.7 shows the experimental data and the simplified quadratic equation (4.17)

used to model the data for all three processors using a 16K reuse table. This model only

uses two extreme case images for curve fit.

Figure 4.8 shows the RMSEs of all three models (linear, quadratic, and simplified
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quadratic) for different reuse table sizes and three processors. It is seen that the quadratic

model gives the best accuracy and in most cases, the simplified quadratic model gives

more accurate result than the linear model.
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Figure 4.8: RMSEs for different reuse table sizes for linear, quadratic and simplified

quadratic model for tmemo versus HR

4.4 Speedup Model Validation

In section 4.3, we presented a model to predict the memoization overhead time for all

images in a data set. The only information that the model needs is to measure the

memoization overhead time (tmemo) for two images, which have minimum and maximum

hit rates in a data set. With this information, for any image (i.e. for any hit rate), the

model predicts the memoization overhead time. In this section, we modify the speedup
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equation (equation 4.14) by replacing tmemo with the equation presented in section 4.3.

Afterward, we validate our model for speedup with empirical data for six case study

algorithms presented in section 2.5.

In section 4.4.1, we present the empirical data and the results of our model for speedup

for all six case studies run on processor 1 for different reuse table sizes. This gives two

curves of speedup versus reuse table size. For each case study algorithm, we calculate

the RMSE of our model result with respect to the empirical data to validate our model

for speedup. In section 4.4.2, with the confidence achieved from high accuracy of the

speedup model for processor 1, we validate the model for processors 2 and 3 for only

two case study algorithms. We use the model to predict speedups for the rest of case

study algorithms run on processors 2 and 3. It will be shown that for a given algorithm

run on a given processor, there is an optimal reuse table size, which gives the maximum

speedup. We use our model to predict the optimal reuse table size for a given algorithm

and processor. In section 4.5, we will use the optimal reuse sizes obtained in this section to

run experiments and measure empirical speedup results for all six case study algorithms

run on the three processors using four different sets of images.

4.4.1 Model Validation for Processor 1

In this section, we present the empirical data and the results of our model for speedup for

all six case study algorithms run on processor 1. In section 4.1, the the speedup equation

was given as:

speedup =
tmask

tmemo + (1−HRsw)× tmask
(4.21)

where tmask, HRsw, and tmemo are:

• tmask: the time required to process the image by the conventional algorithm

• HRsw: the hit rate of the image

• tmemo: the memoization overhead time

In section 4.3, we presented a model for tmemo as:
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tmemo = −a×HR2
sw − b (4.22)

Substituting equation 4.22 in 4.21 gives:

speedup =
tmask

(−a×HR2
sw − b) + (1−HRsw)× tmask

(4.23)

In order to use equation 4.23 to calculate the speedup, first, the hit rates of all images

are calculated. Hit rate is a characteristic of the input image and it is independent of

the processor on which the program is run. Thus, it can be calculated using any high

level tool (e.g. Matlab). Afterward, for the given processor and algorithm, we measure

tmemo and tmask for only two extreme images: images with minimum and maximum hit

rates. Using tmemo for two extreme case images, we can calculate a and b in the speedup

equation (equation 4.23). For tmask, we use the average of tmask for the two extreme

case images. We calculate the speedup for each image in the set of natural images (see

section 2.6) for each case study algorithm run on processor 1. In addition, we run the

experiments for a range of reuse table sizes from 1K entries to 256K entries.

Figure 4.9 shows the speedup curves for both empirical data and the model for all

six case study algorithms run on processor 1. The plots show the speedups for different

reuse table sizes, ranging from 1K entries to 256K entries. For each reuse table size, the

speedup curve shows the average speedup of all 40 images in the set of natural images.

The RMSEs for each case study algorithm (our model versus empirical data) are shown

in Table 4.8. It is seen that the model matches the experimental data with a reasonably

high accuracy with an average RMSE of 3.28%.

Table 4.8: RMSEs (%) for speedups on processor 1

RMSE/Algorithm Canny Morphological Kirsch Corner Median Variance

RMSE (%) 2.56 1.77 7.95 2.05 3.59 1.79

The speedup curves shown in Figure 4.9 demonstrate an interesting feature; almost

in all cases, increasing the reuse table size beyond some point (e.g. 16K) degrades the

speedup. In other words, further than a particular reuse table size, although hit rate still
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Figure 4.9: Speedup curves for the empirical data and the model for processor 1

increases, which on surface should cause speedup to increase (according to equation 4.23),

it is seen that speedup decreases. The reason is that as the size of the reuse table increases,

it is more likely that the reuse table is located in larger cache memories, which belong to
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the lower levels of the cache hierarchy in the processor. This increases the time required to

perform memory operations (i.e. tread and twrite) due to high cache miss cost. As a result,

for larger reuse sizes, tmemo increases faster than hit rate. Therefore, it is not always the

case that a larger reuse table will give a better speedup for window memoization.

For a given algorithm and processor, there is an optimal reuse table size, which gives

the maximum speedup. For processor 1, the optimal reuse table sizes for case study

algorithms are listed in table 4.9.

Table 4.9: Optimal RTsize for for processor 1

RTsize/Algorithm Canny Morphological Kirsch Corner Median Variance

RTsize 32K 16K 16K 32K 16K 32K

The advantage of our speedup model (equation 4.23) is that by having the memoiza-

tion overhead time for only two images, we can calculate speedups of all images for the

full range of the reuse table sizes. This will yield the optimal reuse table size for the given

algorithm and processor, to be used by window memoization for actual experiments.

4.4.2 Model Validation for Processors 2 and 3

In the previous section, we showed that for all six case study algorithms, our model for

speedup matches the empirical data with a high accuracy. In this section, in order to

further validate our speedup model, we present the empirical data and our model result

for speedup for two algorithms run on processors 2 and 3.

To generate empirical data for speedup on processors 2 and 3, we have chosen the

morphological gradient and Kirsch edge detector because tmask for these two algorithms

are the smallest in comparison to the other case study algorithms. If tmask is too large

then the effect of tmemo will almost be negligible and hence, regardless of accuracy of our

model for tmemo in equation 4.18, the error in speedup model with respect to empirical

data will be negligible. In addition, as shown for processor 1 in the previous section, the

worst case accuracy of our speedup model is for the Kirsch edge detector. Therefore, it is

necessary to calculate the accuracy of the model for the worst case for processors 2 and

3. The RMSEs for the morphological gradient and Kirsch edge detector for processors 2
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and 3 are shown in table 4.10. The speedup plots for all six algorithms on processors 2

Table 4.10: RMSEs (%) for speedups on processors 2 and 3

Processor/Algorithm Morphological Kirsch

Processor 2 4.22 13.73

Processor 3 2.70 11.73

and 3 are shown in figures 4.10 and 4.11, respectively.

As it can be seen from the speedup curves for processors 2 and 3, each algorithm gives

an optimal reuse table size to achieve the maximum speedup. Tables 4.11 and 4.12 list

the optimal reuse table sizes for processors 2 and 3, respectively.

Table 4.11: Optimal RTsize for for processor 2

RTsize/Algorithm Canny Morphological Kirsch Corner Median Variance

RTsize 16K 16K 16K 32K 8K 64K

Table 4.12: Optimal RTsize for for processor 3

RTsize/Algorithm Canny Morphological Kirsch Corner Median Variance

RTsize 256K 64K 64K 128K 256K 256K

4.5 Empirical Speedup Results

In the previous section, we determined the optimal reuse table sizes for each case study

algorithm run on each of the three processors. In this section, we use these optimal

reuse table sizes to run window memoization for all case study algorithms on different

image sets (i.e. natural, industrial, medical, and barcode images presented in section 2.6)

to measure the actual speedups. We run the experiments on all three processors with

maximized compiler optimization settings.

Figure 4.12 shows the speedups for all six case study algorithms using optimal reuse

table sizes for all three processors. For each processor, it is seen that medical images
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Figure 4.10: Speedup curves generated by the model for processor 2

(i.e. ultrasound images) give the lowest speedups. The reason is that medical images

are usually very noisy. A large amount of noise decreases the coding and interpixel

redundancy and causes similar windows to become dissimilar leading to low hit rates
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Figure 4.11: Speedup curves generated by the model for processor 3

and hence low speedups (equation 4.23). Nevertheless, if the medical images are filtered

first to reduce the noise, which is usually the case in the medical applications, window

memoization can yield higher speedups. The highest speedups are achieved by industrial
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images (i.e. text classification, quality control, and cell imaging). These images do not

contain complex patterns and hence many windows are similar (i.e. high coding and

interpixel redundancy and high hit rate). Among processors, processor 3 which is an

embedded processor with a low-end CPU (300MHz) gives the highest speedups. For

low-end processors, the relative speed of processor in comparison to memory is slower

than that for mid-range and high-end processors (i.e. higher tmask
tmemo

in equation 4.8 for

processor 3). This leads to higher speedups in low-end processors. The numerical values

of speedups are presented in appendix C, tables C.1, C.2, and C.3.
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Figure 4.12: Average empirical speedup results

We measure the accuracy of window memoization for an algorithm by comparing

the output of window memoization against the reference image calculated by a conven-

tional implementation of the algorithm (i.e. without memoization). For binary output

images (i.e. Canny edge detection, Morphological gradient, Kirsch edge detection, and
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Corner detection) we use misclassification error (equation 4.24), which calculates the per-

centage of the background pixels that have been assigned to foreground incorrectly and

vice versa [48]. In Equation 4.24, BRef and FRef are the reference edge/corner map

background and foreground, respectively; and BTest and FTest are the background and

foreground of the window memoization result, respectively.

ME = 1− |BRef ∩BTest|+ |FRef ∩ FTest|
|BRef |+ |FRef | (4.24)

For algorithms with gray-level outputs (i.e. median filter and local variance), we use

signal-to-noise ratio, given in section 3.1.3.

Figure 4.13 shows the accuracy of the results for all six case study algorithms. For

binary results, the accuracy of algorithms is in the range 96.01% to 99.93%. For gray-level

results, the SNR ranges from 29.73 to 47.74. The numerical values of results accuracy

are presented in appendix C, table C.4.

Canny Morph Kirsch Corner
95 

96 

97 

98 

99 

100

A
cc

u
ra

cy
 (

%
)

 

 

Natural
Industrial
Medical
Barcode

Median Variance
0

10

20

30

40

50

60

A
cc

u
ra

cy
 (

S
N

R
)

 

 

Natural
Industrial
Medical
Barcode

Figure 4.13: Accuracy of results

For natural images, the original results for a sample image along with the results for

window memoization for all six algorithms are shown in figures 4.14 and 4.15. Almost

in all cases, the accuracy is so high that the difference between the original result and

window memoization result is hardly distinguishable. The results for industrial, medical,

and barcode images are presented in appendix C, figures C.1 to C.6.

The images in the bottom of figures 4.14 and 4.15 show the difference images of

the results of the algorithms with and without window memoization. For binary output
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Figure 4.14: Results for natural images. Left to right: Canny, morphological, and Kirsch

edge detectors. Top: original results, middle: window memoization results, bottom:

difference images.

algorithms (i.e. Canny, Kirsch, and morphological edge detectors and corner detector),

the difference images show two sets of marks: the locations that contain edges in the

original results and non-edges in the window memoization results (marked with red edges)

and the locations that contain non-edges in the original results and edges in the window

memoization results (marked with green edges). It is seen that the error in the window

memoization results is mostly in the area that the original results contain edges. This

is expected because those windows whose responses are edges contain more information

compared to the windows that belong to the background. For windows with higher
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Figure 4.15: Results for natural images. Left to right: Corner detection, median filter,

and local variance. Top: original results, middle: window memoization results, bottom:

difference images.

information, it is more likely that the 4 least significant bits of each pixel play a role in

determining the response of the window. As a result, by ignoring the 4 least significant

bits of each pixel in window memoization, it is more likely that the inaccuracy in the

result is introduced in the locations that edges exist.

For gray-level output algorithms (i.e. median filter and local variance), the difference

image is the gray-level difference of the result of the original algorithm and the window

memoization result, which has been normalized with respect to gray level 255. It is seen

that the inaccuracy introduced by window memoization is almost spread all over the
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image (figure 4.15, bottom center and bottom right).

4.6 Speedup versus Coding/Interpixel Redundancy

In this section, we show that the coding and interpixel redundancy of an image have a

positive relationship with the actual speedup obtained by window memoization in software

for the image (relation 4.28). In chapter 3, we showed that the coding and interpixel

redundancy of an image have a positive relationship with the computational redundancy

of the image.

Cr + IPr ∝+ Compr (4.25)

In this section, first, we show that the computational redundancy of an image has a

positive relationship with the hit rate obtained by window memoization in software for

the image (HRsw).

Compr ∝+ HRsw (4.26)

Afterward, we show that the hit rate of an image has a positive relationship with the

speedup obtained by window memoization in software for the image.

HRsw ∝+ speedup (4.27)

From relations 4.25, 4.26, and 4.27, it will be concluded that:

Cr + IPr ∝+ speedup (4.28)

4.6.1 Hit Rate of Window Memoization in Software versus Computa-

tional Redundancy

In this section, we show that the computational redundancy of an image has a positive

relationship with the hit rate obtained by window memoization in software for the image.
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Compr ∝+ HRsw (4.29)

In chapter 3, computational redundancy was defined as:

Compr = 1− s

n
(4.30)

In equation 4.30, s and n are the total number of symbols and windows in image, re-

spectively. For reasonably complex images, it is likely that in many cases the symbols

are almost evenly distributed across the image. In other words, for any subimage in the

image of size n′ windows, the probability of occurrence of each symbol si in the subimage

(P sub(si)) is almost equal to the probability of occurrence of the symbol in the image

(P (si)):

P sub(si) ≈ P (si) (4.31)

For very small subimages, however, the windows usually belong to one object or

background, which means that the windows are similar and thus, they do not represent

many different symbols. As a result, depending on the structure and geometry of images,

for each image, there is a minimum subimage size, above which the distribution of its

symbols becomes even. For an image with a uniform distribution of symbols, equation 4.31

will hold for any subimage size. On the contrary, for an image with an absolutely non-

even distribution of symbols, equation 4.31 will only hold if the subimage is as large as

the image itself.

For real-world images, the distribution of symbols usually becomes almost even when

the subimage size reaches a certain point (e.g 4K windows; see figure 4.16). In the context

of window memoization, the subimage size, based on which we investigate the evenness

of distributions of symbols across the image is in fact the reuse table size. Assume that

we have two images Img1 and Img2 with the same size (n windows) and s1 and s2

symbols, respectively, where s1 > s2. Based on equation 4.30, s1 > s2 implies that

Compr1 < Compr2. Also, assume that both images have an even distribution of symbols

across the image for subimages larger than n′ windows. From s1 > s2, we can conclude

that, on average, the probability of occurrence of each symbol in Img2 (i.e. P2(sj)) is
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higher than that in Img1 (i.e. P1(si)) or P1(si) < P2(sj) where i ∈ [0, s1 − 1] and

j ∈ [0, s2 − 1].

Due to the even distribution of symbols in both images, P1(si) < P2(sj) will cause

the probability of occurrence of each symbol across any subimage in Img2 to be higher

than that in Img1 or P sub
1 (si) < P sub

2 (sj). This means that, with the direct-mapped

mapping scheme used by window memoization in software using a reuse table larger

than n′ entries, the frequency of reusing the result of each symbol for Img2 (or hit rate)

will be higher than that of Img1 or HRsw1 < HRsw2. Given that we already showed

Compr1 < Compr2, by showing that HRsw1 < HRsw2 it is shown that relation 4.29 holds

for most typical cases.

To summarize, if images have even distributions of symbols for subimages larger than

n′ windows, the computation redundancy of an image has a positive relationship with

the hit rate of the image obtained by window memoization, provided that the reuse table

size is larger than n′ entries.

Compr ∝+ HRsw (4.32)

Figure 4.16 shows the error margins for relation 4.32 with an accuracy equal to or

above 95% for different reuse table sizes and image sets. It is seen that as the reuse table

size grows, the error margin decreases such that after a certain reuse table size, it becomes

zero or negligible because the distributions of symbols in most images become even for

large subimages (e.g. reuse tables larger than 4K entries). A larger reuse table will lead

to less evictions and hence hit rate will approach to that of a perfect cache, which as

shown in chapter 3, has a positive relationship with the computational redundancy of the

image (section 3.1.2).

Figure 4.16 indicates that the reuse table size beyond which the error margin is negli-

gible is different for each set of images. For example, medical images require a reuse table

of 8K entries to achieve negligible error margin while for natural images, a 4K entries

reuse table eliminates the error margin. The reason is that the symbols in different sets

of images are distributed with a different degree of evenness. For images with more even
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Figure 4.16: Error margins for relation Compr ∝+ HRsw

with an accuracy equal to or above 95%

distribution of symbols, relation 4.32 will hold with a high accuracy with smaller reuse

table sizes, in comparison to images with with less even distribution of symbols.

In section 4.4, we discussed that for each algorithm and processor, there is an optimal

reuse table size, which yields the maximum speedup. As it was shown in tables 4.9, 4.11,

and 4.12, for all our case study algorithms, the minimum reuse table size that leads to

maximum speedups is 8K entries. Figure 4.16 shows that for almost all sets of images,

relation 4.32 holds with very high accuracy for reuse table sizes equal to or greater than

8K entries.

As an example, figure 4.17 shows relation 4.29 for natural images for reuse tables of

1K, 2K, and 16K entries sizes. Table C.5 to C.8 in appendix C show the numerical

values of accuracy and error margin for relation 4.32 for different sets of images.

4.6.2 Speedup versus Hit Rate of Window Memoization In Software

In the previous section, we showed that the computational redundancy of an image has

a positive relationship with the hit rate obtained by window memoization in software for

the image.
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Figure 4.17: Hit rate versus computational redundancy for natural images

Compr ∝+ HRsw (4.33)

In this section, we show that the hit rate of an image obtained by window memoization

in software has a positive relationship with the speedup of the image obtained by window

memoization in software

HRsw ∝+ speedup (4.34)

In section 4.4.1, we showed that the speedup for an image obtained by window mem-

oization in software has the following relationship with hit rate:
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speedup =
tmask

(−a×HR2
sw − b) + (1−HRsw)× tmask

(4.35)

where as discussed in section 4.3.3, a and b are calculated as:

a =
tmemo1 − tmemo2

HR2
sw2 −HR2

sw1

(4.36)

b = −tmemo1 − a×HR2
sw1 (4.37)

In the equations above, the subscripts 1 and 2 indicate tmemo and HRsw of images

with minimum and maximum hit rates, respectively. Experimental data shows that in

equation 4.36, the numerator is always a positive number. This is expected because higher

hit rates, which is the case for the image with the maximum hit rate, reduce the number

of writes to the reuse table and therefore, the memoization overhead time decreases

(i.e. tmemo1 > tmemo2). Because the denominator of equation 4.36 is also always positive,

it is concluded that a is always a positive number. This means that b (i.e. equation 4.37)

is a negative number. Because a is always positive and b is always negative, equation 4.35

indicates that for a given algorithm (i.e. fixed tmask) run on a given processor (i.e. fixed

a and b), the hit rate of an image has a positive relationship with the speedup of the

image, which means relation 4.34 holds.

Our experiments show that for very simple images (e.g. industrial images), for a given

algorithm and processor, tmask is not exactly the same for all images in the data set. Very

simple images tend to have smaller tmask than other images. The root cause of this seems

to be the optimizations performed at the microarchitectural level of the processor. Having

different tmask for different images introduces an error in relation 4.34. As Figure 4.18

shows, among the four sets of images, the error margin of relation 4.34 for industrial

images is the highest since the set of industrial images contains the simplest images.

The second simplest images are barcode images, for which relation 4.34 gives the second

poorest accuracy among the sets of images (figure 4.18).

Table C.9 to C.12 in appendix C show the numerical values of accuracy and error

margin for relation 4.34 for different sets of images.
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Figure 4.18: Error margins for relation HRsw ∝+ speedup

with an accuracy equal to or above 95%

4.6.3 Speedup of Window Memoization in Software versus Coding/Interpixel

Redundancy

In sections 4.6.2 and 4.6.3, we showed that:

Compr ∝+ HRsw (4.38)

and

HRsw ∝+ speedup (4.39)

From the above two relations, it is concluded that the computational redundancy of an

image has a positive relationship with the speedup of the image

Compr ∝+ speedup (4.40)

Given that, in chapter 3, we have shown that the coding and interpixel redundancy

of an image have a positive relationship with the computational redundancy of the image

(relation 4.25), it is concluded that the coding and interpixel redundancy of an image has

a positive relationship with the speedup of the image.
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Cr + IPr ∝+ speedup (4.41)
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Figure 4.19: Error margin for relation Cr + IPr ∝+ speedup with 95% accuracy

Figure 4.19 shows the error margins of relation 4.41 with 95% accuracy for all sets

of images and case study algorithms run on processor 1. It is seen that the natural and

industrial images give the best and worst accuracy on relation 4.41, respectively. To be

able to understand the underlying roots of errors, we have drawn a plot (figure 4.20) that

shows the average error margins at each intermediate step of relation 4.41. The relations

whose average error margins are shown in figure 4.20 are:
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Cr + IPr ∝+ Compr (4.42)

Compr ∝+ HRsw (4.43)

HRsw ∝+ speedup (4.44)

Cr + IPr ∝+ speedup (4.45)
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Figure 4.20: Average error margins for relation Cr +IPr ∝+ speedup and its intermediate

steps with an accuracy equal to or above 95%

It is seen that the first source of error in final relation (i.e. relation 4.45) is relation 4.42

(Cr + IPr ∝+ Compr). As discussed in chapter 3, the more the probability density

function of the transformed image (i.e. Imgicp) follows a Laplace distribution, the higher

the accuracy of relation 4.42 will be. The probability density functions of transformed

images for very simple images (e.g. industrial images) and very noisy images (e.g. medical

images) tend to match the Laplace distribution less in comparison to natural images. As

seen from figure 4.20, for industrial and medical images, the error for relation 4.42 is

5.34% and 6.10%, respectively where for natural and barcode images, the error is 1.22%

and 2.10%, respectively.

The other important source of error in final relation (i.e. relation 4.45) is relation 4.44

(HRsw ∝+ speedup). As discussed in the previous section, this error arises because of the

fact that for very simple images, tmask slightly differs for different images. This causes
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that in the speedup equation (equation 4.35), in addition to hit rate, tmask to affect

speedup, too. Due to the fact that industrial and barcode images contain simple images,

the error in relation 4.44 for these two sets of images is higher than that for natural and

medical images. As it is seen from figure 4.20, for industrial and barcode images, the

error for relation 4.44 is 9.40% and 4.43%, respectively where for natural and medical

images, the error is 0.15% and 0.75%, respectively.

For the final relation (Cr + IPr ∝+ speedup), figure 4.20 shows that the set of natural

images, which contain 40 images of 512×512 pixels, yields the best total average accuracy

(error margin of 2.60%). For this set of images, relation 4.42 (Cr + IPr ∝+ Compr) is

the major source of total error. Medical images, which contain 30 images of 280 × 400

pixels yield the second best total average accuracy (error margin of 6.41%) where major

source of error is also relation 4.42 (Cr + IPr ∝+ Compr). The third best total average

accuracy (error margin of 11.01%) is achieved by barcode images, which contain 50 images

of 480 × 640 pixels where all three relations 4.43, 4.43, and 4.44 contribute to the total

error. Finally, industrial images, which contain 8 images of 512×512 pixels yield the worst

total average accuracy (error margin of 22.60%). For this set of images, both relation 4.42

(Cr +IPr ∝+ Compr) and 4.44 (HRsw ∝+ Speedup) are the major sources of total error.

Figure 4.21 shows the speedup versus coding/interpixel redundancies for natural im-

ages for all six case study algorithms run on processor 1. The plots for speedup versus

coding/interpixel redundancies for industrial, medical, and barcode images for all six case

study algorithms run on processor 1 are shown in appendix C, figures C.7, C.8, and C.9,

respectively.

The error margins for relation 4.45 (Cr+IPr ∝+ speedup) for processor 2 is almost the

same as that for processor 1. Processor 3, however, yields better accuracy for relation 4.45

because for processor 3, relation 4.44 (HRsw ∝+ speedup) introduces almost negligible

error. The reason is that processor 3 is a low-end embedded processor with possibly less

optimization at microarchitectural level. Hence, for a given algorithm, it yields similar

tmask for all images.
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Figure 4.21: Speedup versus coding/interpixel redundancy for natural images run on

processor 1

4.7 Summary

In this chapter, we presented an optimized architecture for the implementation of window

memoization in software. We also presented a model for the speedup obtained by window
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memoization in software, which requires the minimum amount of information to predict

the speedup of all images in a data set. In order to achieve high speedups, we used tolerant

memoization, presented a fast symbol generation mechanism, and used the multiplication

method as the hash function for the direct-mapped mapping scheme of the memoization

mechanism. We applied the window memoization technique in software to six case study

algorithms and demonstrated that our technique can improve the performance of different

case study algorithms and input images across different processors significantly (typical

speedups: 1.2 to 7.9), while maintaining the accuracy of the results reasonably high

(i.e. above 96% and 29dB). Finally, we showed mathematically and empirically that

the coding and interpixel redundancy of an image have a positive relationship with the

speedup obtained for the image by window memoization in software.
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Chapter 5

Window Memoization in

Hardware

In this chapter, we present an architecture for the hardware implementation of the window

memoization technique. In hardware, window memoization improves the performance of

local image processing algorithms with lower cost (i.e. hardware area) in comparison to

conventional performance improvement techniques. We implement window memoization

in hardware as a 2-wide superscalar pipeline. Conventional 2-wide superscalar pipelines

require twice the hardware of a scalar pipeline. In contrast, our superscalar pipeline

with window memoization only needs extra hardware to implement the reuse mechanism,

rather than duplicating the original hardware. We have applied the window memoization

technique to two case study algorithms and implemented them at the register-transfer-

level using VHDL. We have used an Altera FPGA as the target device for our designs. For

typical images, our technique improves the performance by 58% with 40% less hardware

area in comparison to conventional 2-wide superscalar pipelines.

The outline of this chapter is as follows. In section 5.1, we introduce the measure

of relative efficiency which is used to compare the performance/area tradeoffs of two

designs. In section 5.2, we present the architecture of window memoization in hardware.

In section 5.3, the design decisions for window memoization in hardware are presented

and discussed. In section 5.4, we present an architecture for parallel reuse tables based

on Bloom filters. In section 5.5, we demonstrate tolerant memoization in hardware. In
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section 5.6, an optimized architecture for window memoization in hardware is presented.

In section 5.7, the results for speedup, sprawl, accuracy, and the relative efficiency for two

case study algorithms are given. In section 5.8, we show mathematically that the coding

and interpixel redundancy of an image have a positive relationship with the speedup

obtained for the image by window memoization in hardware. This shows that the coding

and interpixel redundancy of images can be used as a measure for classifying images based

on their potential performance gain obtained by the window memoization technique in

hardware, without any actual implementation of the technique. Finally, section 5.9 gives

the summary of the chapter. ‘

5.1 Efficiency of a Design

In this section, we introduce a measure, relative efficiency, which evaluates the effec-

tiveness of an optimized hardware design with respect to a base design considering two

parameters: performance improvement and hardware area cost. The measure enables us

to compare different designs not only based on their performance improvement, also based

on the hardware area cost that they require to achieve the performance improvement. As

it will be discussed in the following sections, in hardware we implement window memoiza-

tion as a superscalar pipeline. We will use relative efficiency to compare the effectiveness

of window memoization applied to image processing algorithms in hardware (superscalar

pipeline) against the conventional implementations of the algorithms in hardware (scalar

pipeline).

5.1.1 Relative Efficiency of an Optimized Design versus a Base Design

We define the efficiency of a hardware design as the ratio of the performance of the design

(perf ) and the hardware area cost of the design (area).

efficiency =
perf

area
(5.1)

The performance of a hardware design is characterized by throughput, which is mea-

sured as the number of parcels of data that is produced by the design per unit time [49].
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The cost of a hardware design is measured based on the amount of hardware area that the

design consumes. In ASIC design, the consumed hardware area is measured based on the

amount of the silicon area that the design uses. In FPGA design, the consumed hardware

area is measured based on the number of FPGA cells (or logic elements) and memory

bits used by the design. In order to unify the amount of hardware area consumed by logic

elements and memory bits, the area consumed by memory bits is measured in terms of

the hardware area consumed by logic elements. It is estimated that the hardware area

that each memory bit in an FPGA consumes is equal to 6% of the area consumed by one

logic element in the FPGA [14].

Equation 5.1 represents the effectiveness of one design independent of any other design.

In many cases, it is required to measure the relative efficiency of an optimized design with

respect to the original design (or base design). We define relative efficiency (effRel) as

the ratio of the efficiencies of the optimized design (effOpt) and the base design (effBase).

effRel =
effOpt

effBase
(5.2)

By substituting the efficiency of the optimized and base design from equation 5.1 into

equation 5.2 and considering that the performance of a design is characterized by through-

put, we obtain:

effRel =
thruOpt

thruBase
areaOpt

areaBase

(5.3)

The ratio in the numerator of equation 5.3 (i.e. thruOpt

thruBase
) is in fact the speedup of the

optimized design with respect to the base design.

speedup =
thruOpt

thruBase
(5.4)

The ratio in the denominator of equation 5.3 (i.e. areaOpt

areaBase
) indicates the amount of

increase in hardware area cost in the optimized design with respect to the base design.

We call the increase in the hardware area of the optimized design with respect to the

base design sprawl, which is calculated as:
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sprawl =
areaOpt

areaBase
(5.5)

The equation for relative efficiency (equations 5.3) can be rewritten in terms of speedup

and sprawl (equations 5.4 and 5.5).

effRel =
speedup

sprawl
(5.6)

Equation 5.6 evaluates the relative efficiency of an optimized design with respect to a

base design considering both speedup and sprawl. In many real-world applications, the

defining factor for the hardware design is both performance requirements and hardware

area limitations. Therefore, when comparing two designs, it is important to consider the

performance improvements achieved by the designs (i.e. speedup) and the cost that each

design had to pay in order to achieve the performance improvements (i.e. sprawl).

5.1.2 Relative Efficiency of Superscalar Pipeline versus Scalar Pipeline

In digital hardware design, pipelining is a fundamental optimization technique, which

increases the throughput of a design by overlapping the execution of operations. A

pipeline usually contains two parts: datapath and control circuitry. The datapath is

responsible for performing some operations on each parcel of data that enters the pipeline

to produce an output parcel. The control circuitry is in charge of handling the internal

states of the pipeline based on inputs.

In general, pipelines are categorized into two classes: scalar and superscalar. A

pipeline is called scalar if its maximum throughput is 1. In other words, a scalar pipeline

is able to fetch (and thus to output) at most one parcel of data per clock cycle. A super-

scalar pipeline, on the other hand, can fetch and output at most n parcels of data per

clock cycle, which yields a maximum throughput of n. A superscalar pipeline that is able

to fetch at most n parcels of data per clock cycle is called n-wide.

The reason that the throughput of a superscalar (scalar) pipeline is not always n (1)

is that due to different hazards in a pipeline (i.e. structural, data, and control hazard),
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the pipeline is not able to fetch new parcels of data at each clock cycle. In order to resolve

the hazards, the pipeline must stall and stop fetching new parcels of data for some clock

cycles.

An n-wide superscalar pipeline is created by replicating the hardware of a scalar

pipeline for n times. Figure 5.1 shows a scalar pipeline and a 2-wide superscalar pipeline.

The 2-wide superscalar pipeline (figure 5.1 right) is created by duplicating the hardware of

the scalar pipeline. As it can be seen from the figure, the 2-wide superscalar pipeline can

fetch and output at most 2 parcels of data per clock cycle. In figure 5.1, core represents

the hardware of the base design or the scalar pipeline.

Two incoming parcels

Core

Two outputs

One incoming parcel

Core

One output

Core

Figure 5.1: Right: scalar pipeline. Left: 2-wide superscalar pipeline.

We can use equation 5.6 to calculate the relative efficiency of an n-wide superscalar

pipeline with respect to the scalar pipeline on which the superscalar pipeline has been

based. In doing so, the speedup and sprawl of the n-wide superscalar pipeline must

be calculated with respect to the scalar pipeline. As equation 5.4 indicates, speedup is

calculated as the ratio of the throughput of the superscalar pipeline (optimized design)

to the scalar pipeline (base design).

speedup =
thrusuperscalar

thruscalar
(5.7)

In calculating throughput, if it is assumed that the clock speed of the two designs

under study (i.e. scalar and superscalar pipelines) are the same, instead of seconds, the
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clock cycle of the pipeline can be used as unit time. Thus, the throughput of a pipeline

can be written as:

thru =
pcl

cyc
(5.8)

In the equation above, pcl represents the total number of parcels of data that enter the

pipeline and cyc is the total number of clock cycles elapsed to fetch all pcl parcels of

data. When comparing a superscalar pipeline to a scalar pipeline, we assume that the

total number of parcels of data that enter both pipelines are equal. Therefore, the speedup

equation (equation 5.7) can be rewritten as:

speedup =
pcl

cycsuperscalar

pcl
cycscalar

=
cycscalar

cycsuperscalar

(5.9)

As the equation above indicates, the speedup of an n-wide superscalar pipeline with

respect to a scalar pipeline, assuming that both pipelines process the same amount of

data with equal clock speeds, is equal to the ratio of the total number of clock cycles that

the scalar pipeline and the superscalar pipeline require to fetch all parcels of data.

As equation 5.5 indicates, sprawl of a n-wide superscalar pipeline with respect to a

scalar pipeline is calculated as the ratio of the hardware area consumed by the superscalar

pipeline (areasuperscalar) to scalar pipeline (areascalar).

sprawl =
areasuperscalar

areascalar
(5.10)

A conventional n-wide superscalar pipeline usually yields a maximum relative effi-

ciency of 1 because it speeds up the computations at most by a factor of n with respect

to a scalar pipeline and at the same time, it consumes almost n times the hardware area

that a scalar pipeline does. In contrast, as it will be discussed in the upcoming sections,

an n-wide superscalar pipeline with window memoization gives a relative efficiency larger
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than 1. This means that window memoization is able to improve performance with a cost

(hardware area) which is less than that of conventional techniques.

5.2 Window Memoization Technique in Hardware

In this section, first, we present the architecture of window memoization in hardware

and discuss how speedup and sprawl is calculated for window memoization in hardware.

Afterward, we discuss the factors that affect speedup and sprawl and hence the relative

efficiency of window memoization in hardware.

5.2.1 Architecture of Window Memoization in Hardware

We implement window memoization in hardware as a 2-wide superscalar pipeline. In con-

trast to conventional 2-wide superscalar pipelines, which are created by duplicating the

hardware of a scalar pipeline (i.e. two cores), a 2-wide superscalar pipeline with window

memoization only adds a memoization mechanism to the scalar pipeline (i.e. one core).

As a result, instead if having two cores, a 2-wide superscalar pipeline with window mem-

oization has only one core and a memoization mechanism. The memoization mechanism

consumes a small amount of hardware area in comparison to the core and increases the

throughput of the pipeline

The memoization mechanism includes a reuse table and control circuitry. The reuse

table is a dual port memory array (one read and one write port), which is used to

store the symbols of incoming windows and the corresponding responses. The control

circuitry is responsible for mapping the symbols of the incoming windows into the reuse

table and determining whether there is a matching symbol in the reuse table for each

incoming window. Depending on whether a hit or miss occurs, the control circuitry is

also responsible for stalling the pipeline and deciding which window can enter the core

and updating the reuse table with the response of windows generated by the core.

Figure 5.2 shows a 2-wide superscalar pipeline with window memoization. The 2-wide

superscalar pipeline with window memoization accepts two windows of pixels as inputs at

each clock cycle. One window, winA, tries to find a matching symbol in the reuse table

while the other window, winB, is sent through a fifo (Fifo1) to keep both windows in
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Figure 5.2: 2-wide superscalar pipeline with window memoization

sync. By the time winB exits Fifo1, the control circuitry has determined whether a hit

or miss has occurred for winA. In case of a hit, the control circuitry sends the response

of winA (respA), which has already been looked up from the reuse table, through Fifo2

and at the same time, winB is sent to the core. Fifo2 ensures that the responses of both

input windows (respA and respB) exit the pipeline at the same clock cycle. In other

words, in case of a hit, the pipeline is able to fetch and output two windows per clock

cycle.

If the control circuitry determines that winA was not able to locate a matching symbol

in the reuse table (miss), then both windows require using the same resource (core) at

the same time, causing a structural hazard. To solve the structural hazard, the control

circuitry stalls the pipeline; winA is sent to the core, followed by winB. As a result, the

two responses (respA and respB) exit the pipeline in two consecutive clock cycles. In

other words, in case of a miss, the pipeline is able to fetch and output only one window

per clock cycle. Finally, the reuse table is updated with the symbol and response of either

winA or winB, depending on the design.
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In this architecture, only one input window (i.e. winA) is checked against the reuse

table. It may seem that checking both input windows against the reuse table can increase

hit rate. However, for each pair of input windows, the increase in throughput is the same

if either one window hits the reuse table or both windows hit. The reason is that the

pipeline can accept at most two input windows per cycle, regardless of the number of

hits for a pair of windows. On the other hand, adjacent windows are usually similar in

an image. Therefore, if one window hits (misses) the reuse table, it is very likely that

its adjacent window will also hit (miss) the reuse table. Thus, in order to make control

circuitry simple, it only checks one input window against the reuse table.

5.2.2 Speedup of Window Memoization in Hardware

In section 5.1.2, we showed that the speedup of a 2-wide superscalar pipeline with respect

to a scalar pipeline is calculated as:

speedup =
cycscalar

cycsuperscalar

(5.11)

where cycscalar and cycsuperscalar are the number of clock cycles that the scalar pipeline

and the superscalar pipeline require to fetch all parcels of data, respectively. In deriving

equation 5.11, we assumed that both pipelines process the same number of parcels of

data and both have the same clock speeds.

For a scalar pipeline, assuming that there is no data dependency between the opera-

tions, the total number of clock cycles required to fetch all parcels of data, pcl, is equal

to the total number of the parcels.

cycscalar = pcl (5.12)

For a 2-wide superscalar pipeline with window memoization, depending on the map-

ping scheme used, the pipeline has to stall for some cycles in order to access (read from

and/or write to) the reuse table. Assume that on average, in case of a hit or miss, the
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number of cycles that the pipeline has to stall due to memory access is memstall (mem-

ory stall). Also, assume that HRpair
hw is the number of input pairs of windows that find

a matching symbol in the reuse table divided by the total number of pairs of windows

that enter the pipeline. If a hit occurs, the pipeline requires one clock cycle to fetch one

pair of windows and memstall clock cycles to access the reuse table. Therefore, the total

number of clock cycles required to fetch the pairs of windows, for which a hit will occur

is:

cychit = HRpair
hw × pcl

2
× (1 + memstall) (5.13)

where pcl is the total number of windows and thus, pcl
2 is the total number of pairs of

windows that enter the pipeline. In case of a miss, the pipeline requires two clock cycles

to fetch one pair of windows (because pipeline must stall and both windows must go

through the core) and memstall clock cycles to access the reuse table. Therefore, the

total number of clock cycles required to fetch the pairs of windows, for which a miss will

occur is:

cycmiss = (1−HRpair
hw )× pcl

2
× (2 + memstall) (5.14)

The total number of clock cycles required to fetch all pairs of windows will be:

cycsuperscalar = cychit + cycmiss

= HRpair
hw × pcl

2
× (1 + memstall) + (1−HRpair

hw )× pcl

2
× (2 + memstall)

=
pcl

2
× (2 + memstall −HRpair

hw ) (5.15)

We can rewrite the equation above in terms of HRhw; the number of input windows

that find a matching symbol in the reuse table divided by the total number of windows

that enter the pipeline. In the 2-wide superscalar pipeline with window memoization,

for each pair of input windows at most only one hit can occur. In other words, out of

two incoming windows, only one is checked against the reuse table. The other window

is always sent to the core. Therefore, the number of hits for both single windows and
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pairs of windows is the same. However, hit rate for pairs of windows (i.e. HRpair
hw ) is

calculated with respect to the total number of pairs of input windows while hit rate for

single windows (i.e. HRhw) is calculated with respect to the total number of single input

windows, which means: HRpair
hw = 2 × HRhw. In other words, for a 2-wide superscalar

pipeline with window memoization, the maximum hit rate is 50% (i.e. HRhw = 50%).

Therefore, equation 5.15 can be rewritten as:

cycsuperscalar = pcl × (1 +
memstall

2
−HRhw) (5.16)

Substituting equations 5.12 and 5.16 into the speedup equation (equation 5.11) gives:

speedup =
pcl

pcl × (1 + memstall
2 −HRhw)

=
1

1 + memstall
2 −HRhw

(5.17)

Equation 5.17 is the speedup equation for a 2-wide superscalar pipeline with window

memoization with respect to a scalar pipeline.

5.2.3 Sprawl of Window Memoization in Hardware

In section 5.1.2, we showed that the sprawl of a 2-wide superscalar pipeline with respect

to a scalar pipeline is calculated as:

sprawl =
areasuperscalar

areascalar
(5.18)

where areasuperscalar and areascalar are the hardware area consumed by the superscalar

pipeline and scalar pipeline, respectively. For a scalar pipeline, areascalar is the total

number of logic elements consumed by the pipeline, which we call LEcore.

areascalar = LEcore (5.19)

For a 2-wide superscalar pipeline with window memoization, in addition to the core,

the pipeline also includes the memoization mechanism, which consists of the control
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circuitry, the reuse table and two fifos. Therefore, the total hardware area consumed by

a 2-wide superscalar pipeline with window memoization will be:

areasuperscalar = LEcore + LEctl + 0.06×membits (5.20)

where LEcore and LEctl are the number of logic elements consumed by the core and

control circuitry, respectively. membits is the total number of memory bits used by the

reuse table and the two fifos. In equation 5.20, the coefficient 0.06 reflects the fact that

the hardware area that each memory bit in an FPGA consumes is equal to 6% of the

area consumed by one logic element in the FPGA [14].

Substituting equations 5.19 and 5.20 into the sprawl equation (equation 5.18) gives:

sprawl =
LEcore + LEctl + 0.06×membits

LEcore
(5.21)

Equation 5.21 is the sprawl equation for a 2-wide superscalar pipeline with window mem-

oization with respect to a scalar pipeline.

5.3 Design Decisions for Window Memoization in Hard-

ware

In this section, we discuss the factors that affect the speedup and sprawl of window

memoization in hardware. For each factor, we present an optimized design, which achieves

high speedup and low sprawl.

The factors that affect speedup are the mapping scheme used by the control circuitry,

the core latency, and the reuse table size. Sprawl is affected by the sizes of the reuse

table and fifos, the control circuitry, and the core. The control circuitry is responsible for

mapping the symbols of incoming windows into the reuse table using a mapping scheme,

determining whether a hit or miss occurs, stalling the pipeline (in case of a miss), and

updating the reuse table. The reuse table stores the symbols and responses of windows

and the two fifos keep the windows in order throughout the pipeline. The core size is the
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hardware area consumed by the original scalar pipeline, and finally, the core latency is

the number of clock cycles from the input of the core to its output.

In table 5.1, the list of parameters that affect speedup and sprawl is shown. Fifos

used in window memoization are usually small and hence, at this stage, their effect on

sprawl can be ignored. Therefore, they have not been listed in the table. In the following

sections, we will explain how each component/factor affects speedup or sprawl. For each

component/factor, we will present a solution to achieve high speedup and low sprawl.

Table 5.1: Design decisions for memoization mechanism in hardware

Mapping Scheme Core Latency RT Size Control Circuitry Core Size

Speedup
√ √ √

Sprawl
√ √ √

5.3.1 Speedup

Speedup is affected by the mapping scheme, core latency, and the reuse table size. The

effect of the reuse table size on hit rate and hence on speedup is obvious. A larger reuse

table will produce a higher hit rate. In the following sections, we study the effect of the

mapping scheme and core latency on speedup in more details. For each case, we present

a solution, which yields high speedups.

Mapping Scheme

The equation for speedup (equation 5.17) indicates that in addition to hit rate (HRhw),

the number of pipeline stalls caused by the reuse table access (memstall) also affects

speedup. For a 2-wide superscalar pipeline with window memoization, with the maximum

hit rate (i.e. HRhw = 50%), in order to achieve a speedup of at least 1, memstall must be

equal to or less than 1. In reality, hit rate is usually below 50% (e.g. 35%), which means

that memstall larger than 0 may lead to speedups below 1. Therefore, the mapping scheme

for a 2-wide superscalar pipeline with window memoization should not impose any ex-

tra pipeline stalls. Similar to window memoization in software (section 4.2.2), among the
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three mapping schemes in processor cache hierarchy design (i.e. direct-mapped, fully asso-

ciative, and set-associative), only direct-mapped mapping scheme is able to give memstall

of 0 for window memoization in hardware. Fully associative and set-associative mapping

schemes require multiple clock cycles in order to map/read an entry into/from memory.

As a result, the hardware implementation of window memoization uses a direct-mapped

mapping scheme for the memoization mechanism. With a direct-mapped mapping scheme

(i.e. memstall = 0), the speedup of a 2-wide superscalar pipeline with window memoiza-

tion is calculated as:

speedup =
1

1−HRhw
(5.22)

Core Latency

The latency of the scalar pipeline (core) to which the window memoization technique is

applied can affect hit rate and hence speedup. The core latency causes the response of a

window to be generated and the reuse table to be updated a few cycles after the window

enters the pipeline. On the other hand, many similar windows in an image are usually

located very close to each other. This is due to the fact that neighboring windows usually

belong to one object or background in the image and hence, they contain similar pixels.

When the immediate following windows, which are most probably similar to the current

window, enter the pipeline, the reuse table has not been updated yet with the response

of the current window. As a result, many potential hits are turned into misses.

In order to eliminate the effect of the core latency on hit rate, we use two levels of

reuse tables instead of one. The level 1 reuse table, which is located at the top of the

pipeline stores the symbols of the incoming windows and the level 2 reuse table, which

is located at the bottom of the pipeline stores the responses of the incoming windows.

When a window enters the pipeline for the first time, its symbol is inserted into the level

1 reuse table immediately while it takes a few cycles, due to the core latency, to generate

the response of the window and update the level 2 reuse table. As a result, as soon

as another window enters the pipeline, it is determined whether a hit or miss occurs.

Nevertheless, the response is actually reused (looked up) a few cycles later. This enables

a current window to find a matching symbol that belongs to windows that are spatially
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close to the current window, eliminating the effect of the latency of the core on hit rate

and leading to high speedups.

It must be mentioned that the total number of memory bits used by a 2-level reuse

table is the same as that consumed by a single reuse table. Therefore, using a 2-level

reuse table instead of a single reuse table does not affect sprawl.

5.3.2 Sprawl

Sprawl is affected by the size of the control circuitry, core, and the reuse table. The

equation of sprawl (equation 5.21) can be rewritten as:

sprawl = 1 +
LEctl + 0.06×RTbits

LEcore
(5.23)

In the equation above, membits have been replaced by RTbits because the number of

memory bits consumed by the two fifos are usually negligible.

As equation 5.23 indicates, in order to achieve low sprawl, the relative size of the

control circuitry and memory bits used by window memoization should be small with

respect to the original scalar pipeline (i.e. small LEctl
LEcore

and RTbits
LEcore

). A typical core

consumes about 1000 logic elements (i.e. LEcore = 1000). Using conventional digital

design optimization techniques, the control circuitry can be optimized such that the

hardware area that it consumes is no more than 15% of a typical core (i.e. LEctl
LEcore

= 0.15).

Nevertheless, for small cores (e.g. LEcore < 250), obtaining low sprawls might require

further reducing the amount of hardware area consumed by the control circuitry.

To obtain small RTbits
LEcore

, the reuse tables must be space-efficient. Window memoization

in hardware uses the direct-mapped mapping scheme. In direct-mapped mapping method,

a portion of each incoming window’s symbol is used as an address to the reuse table while

the remaining bits of symbol along with the response of the window are stored in the

reuse table. The conventional implementations of the reuse table usually consume a large

amount of hardware area leading to high sprawls.

For a typical image, to achieve speedup of 1.50, the reuse table size must be above

512 entries. Assuming that for windows of 3× 3 only 2 most significant bits are used to
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determine whether a window belongs to a symbol, each symbol will have 3× 3× 2 = 18

bits. For a reuse table of 512 entries, 9 bits of symbols will be used as address to the

reuse table. The remaining 9 bits will be stored in the reuse table to check whether there

is a hit. Assuming that the responses of the windows are binary, the reuse table will

have (9 + 1) × 512 = 5120 bits, which is equal to the hardware area consumed by 307

logic elements. This amount of hardware area adds to the sprawl and thus, degrades the

relative efficiency of the design. For a typical core (LEcore = 1000) and assuming that

the control circuitry consumes 150 logic elements, sprawl will be 1 + 1000+150+307
1000 = 1.46.

For typical speedups of 1.50, the relative efficiency will be 1.50
1.46 = 1.03. Our goal is to

achieve higher relative efficiencies by reducing sprawl.

To achieve low sprawls, we present a space-efficient architecture for the reuse table,

which is based on parallel Bloom filters. We will discuss our architecture for space-efficient

reuse table in section 5.4. In section 5.5, we will present tolerant memoization in hardware

where, similar to window memoization in software, we will determine the optimal number

of most significant bits of pixels used in assigning windows to symbols, which gives high

hit rates and high accuracy of results. We will also show how the tolerant memoization

is implemented with parallel reuse tables.

In section 5.3.1, we discussed that in order to achieve high speedups, the direct-

mapped mapping scheme and a 2-level reuse table must be used. In section 5.6, we will

present an optimized architecture for window memoization in hardware, which takes into

account all the design decisions discussed in section 5.3.1 (i.e. direct-mapped mapping

scheme and a 2-level reuse table), in this section (i.e. parallel reuse tables), and in sec-

tion 5.6 (i.e. tolerant memoization). The optimized architecture of window memoization

in hardware uses a direct-mapped mapping scheme, a 2-level parallel reuse tables based

on Bloom filters, and tolerant memoization to achieve high speedups and low sprawls. Fi-

nally, in section 5.7, we will present the results on speedup, accuracy, sprawl, and relative

efficiency of designs.
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5.4 Parallel Reuse Tables Based on Bloom Filters

In this section, we present a space-efficient architecture for the reuse table used by the

hardware implementation of window memoization. Our architecture, which is based on

parallel Bloom filters consumes a considerably smaller number of bits compared to con-

ventional architectures. It yields high hit rates with a small number of false positive hits.

In the following sections, first, a brief background on Bloom filters is given. Afterward,

we present the architecture of parallel reuse tables based on Bloom filters.

5.4.1 Parallel Bloom Filters

A Bloom filter is a space-efficient data structure, which is used to determine whether an

element is a member of a set [3]. For a set S of n elements, the Bloom filter is an array

of z bits, which are all initially set to 0. In order to insert each element x in S into the

Bloom filter, k independent hash functions are used to generate k hash keys in the range

{1, .., z} and all k bits in the Bloom filter in the locations where the k hash keys point to

are set to 1. To look up an element from the Bloom filter, first, k hash keys are generated.

Afterward, all the bits in the Bloom filter in the location where the k hash keys point to

are read. If all the bit are set to 1 then it is assumed that the element is in the set S.

Otherwise, the element is not in the set S [4].

The structure of the Bloom filter is such that it may lead to a false positive, meaning

that the Bloom filter may suggest that an element is in the set S while it is not. This is

due to the fact that the hash keys of one element may find all the corresponding bits in

the Bloom filter set to 1 while those bit have been set to 1 by multiple inserted elements

rather than by just one element. Assuming that the hash functions map each element in

the set S to a random number in the range {1, .., z} uniformly, the probability of a false

positive (FP ) is calculated as [4]:

FP = (1− (1− 1
z
)k×n)k (5.24)

where z is the size of the Bloom filter, n is the number of inserted elements, and k is the

number of hash keys generated for each element.
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For parallel Bloom filters, the standard Bloom filter is divided by k equal filters where

each filter has z
k bits. Each filter can be accessed in parallel with the other filters and

hence, the access time is much less than that of the standard Bloom filter. With the same

assumption that the hash functions map each element in the set S to a random number in

the range {1, .., z
k} uniformly, the probability of a false positive (FP ) for parallel Bloom

filter is calculated as [4]:

FP = (1− (1− k

z
)n)k (5.25)

Because (1− k
z )n ≤ (1− 1

z )k×n, the probability of false positives of parallel Bloom filters

is slightly higher than that of a standard Bloom Filter [6] [4].

Parallel Bloom filters require much less space than normal reuse table. To achieve

maximum hit rates with a regular reuse table, elements of b bit wide require 2b bit memory.

In contrast, parallel Bloom filters can use, for example, 2 reuse tables in parallel, each of

2
b
2 bits, which means that the total number of the consumed bits will be 2× 2

b
2 = 21+ b

2 .

Thus, parallel Bloom filters will require 21+ b
2

2b = 21− b
2 the space (i.e. the number of bits)

that a regular reuse table does. For example, if the input elements are 10 bit wide

(i.e. b = 10), parallel Bloom filters will require 21− 10
2 = 1

16 the space that a regular reuse

table consumes.

5.4.2 Parallel Reuse Tables as Parallel Bloom Filters

In this section, we present a space-efficient architecture for the reuse table based on

parallel Bloom filters. We also present an analytical approach to estimate the probability

of false positive hits. Due to the nature of image processing data (i.e. correlation between

pixels in a window), the analytical probability of false positives is much less than that of

empirical data. Nevertheless, the analytical method can be used to explore the effect of

different parameters on the probability of false positives.

The major difference between our architecture and the regular parallel Bloom filters

is that each entry in the regular parallel Bloom filters is a single bit. In contrast, in our

architecture, each entry can be multiple bits. As we will discuss shortly, having wider

entries will reduce probability of false positives.
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In section 5.3.1, we presented a 2-level architecture for the reuse table, which elimi-

nates the effect of the core latency on speedup. The level 1 reuse table stores the symbols

of the windows to determine hit/miss and the level 2 reuse table keeps the responses of

the windows. To reduce the amount of hardware area that the reuse table consumes, for

the level 1 reuse table, we use multiple memory arrays in parallel, rather than a single

memory array. The level 2 reuse table uses a single memory array as before. For windows

of m×m pixels, m2− 1 reuse tables (RT1, RT2,...,RTm2−1) are used to store the symbols

of the windows (i.e. the level 1 reuse tables). For each pixel in the window (pixi), except

the central pixel, there is a corresponding reuse table (RTi). From each pixel pixi, a

hash key is generated as an address to each corresponding reuse table RTi. A portion of

the (or the whole) central pixel in the window is stored in all reuse tables, in locations

where the corresponding hash keys point to (Figure 5.3).

In order to check whether a current window matches a symbol already stored in the

level 1 reuse tables, first, the contents of all level 1 reuse tables at locations where the

corresponding hash keys of the current window point to (i.e. RT1(key1), RT2(key2), ...,

RT8(key8)) are read. If all the values read from the level 1 reuse tables are equal to the

hash key of the central pixel of the current window (key0), then a hit occurs. Otherwise,

a miss will occur. In case of a hit, the response is read from the level 2 reuse table, using

key0 as the address.

The response of the window is stored in a separate reuse table (level 2 reuse table)

whose address is a hash key generated from a certain pixel in the window (e.g. central

pixel). In fact, the address to the level 2 reuse table that holds responses could be

extracted from any pixel in the window so along as the same pixel is used all the time.

To insert the symbol of a window into the reuse tables, the hash key generated from

the central pixel key0 is inserted to the level 1 reuse tables at locations where the cor-

responding hash keys of the current window point to (i.e. RT1(key1), RT2(key2), ...,

RT8(key8)). To insert the response of a window into the level 2 reuse table, key0 is used

as the address to the level 2 reuse table.

Figure 5.3 shows the parallel reuse tables for windows of 3× 3 pixels.
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Figure 5.3: Parallel reuse tables for window memoization in hardware

5.4.3 The Probability of False Positives for Parallel Reuse Tables

Similar to regular parallel Bloom filters, the parallel reuse tables may cause false positives

because certain locations in the level 1 reuse tables, which belong to an incoming window

may have been filled by different windows. Assume that the length and width of each

reuse table are RTlength and RTwidth, respectively. For windows of m ×m pixels, there

will be m2− 1 reuse tables. Assuming that the hash keys are random numbers uniformly

distributed over the range {1, 2, ..., RTlength}, the probability that a certain location in
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reuse table RTi has not been inserted with any value is 1− 1
RTlength

. Each reuse table entry

is RTwidth bits wide. Thus, each entry can have 2RTwidth possible values. The probability

that a certain location in reuse table RTi has not been inserted with a certain value is

1 − 1
RTlength×2RTwidth

. After inserting n symbols, the probability that a certain location

in reuse table RTi has not been inserted with a certain value is (1− 1
RTlength×2RTwidth

)n.

Thus, the probability that a certain location in reuse table RTi has been inserted with

a certain value is 1 − (1 − 1
RTlength×2RTwidth

)n. The probability that certain locations

in all m2 − 1 reuse tables have been inserted with a certain value will be (1 − (1 −
1

RTlength×2RTwidth
)n)m2−1. Given that all hash keys are assumed to be random numbers,

the probability that certain locations in all m2− 1 reuse tables have been inserted with a

certain value indicates the probability of a false positive because random numbers cannot

all point to locations that represent a certain value. Thus, the probability of a false

positive FP will be:

FP = (1− (1− 1
RTlength × 2RTwidth

)n)m2−1 (5.26)

From the equation above, it is seen that the probability of false positives in parallel

reuse tables depends on the reuse table size (RTlength and RTwidth), the number of inserted

symbols (n) and the size of the windows (or the number of hash functions m2 − 1). A

larger reuse table and/or window will decrease the probability of false positives. As the

number of inserted symbols increases, the probability of false positives increases as well.

In contrast to regular parallel Bloom filters whose entries are 1 bit wide, the parallel

reuse tables (RTwidth) can have multi-bit wide entries. From equation 5.26, it is seen that

increasing RTwidth is more effective in reducing false positives than increasing RTlength

while both RTwidth and RTlength affect the total number of memory bits equally. In other

words, having multi-bit entry reuse tables decreases the probability of false positives with

no extra cost in memory size in comparison to single-bit entry reuse tables (i.e. regular

parallel Bloom filters).

Figure 5.4 shows the probability of false positives versus the total number of memory

bits used for two approaches: multi-bit entry reuse tables and single-bit entry reuse tables.

In figure 5.4, it has been assumed that the number of inserted elements is 1000 (n = 1000)
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Figure 5.4: The probability of false positives versus RTwidth

and the input windows are 3× 3 pixels. It is seen that for the same number of memory

bits, the multi-bit entry reuse tables give lower probability of false positives compared to

the single-bit entry reuse tables.

5.5 Tolerant Memoization in Hardware

Similar to software, tolerant memoization in hardware allows us to use the d most signifi-

cant bits of each pixel in a window to determine whether the window belongs to a symbol.

Combining the tolerant memoization and parallel reuse tables, we use the d most signif-

icant bits of each pixel in a window as hash keys for the level 1 reuse tables (i.e. key1,

key2, ...,key8) and the level 2 reuse table (i.e. key0) where keyi = MSB(d, pixi). This

means that the length and width of reuse table will be equal to 2d and d, respectively

(RTlength = 2d, RTwidth = d). On the other hand, in a 2-wide superscalar with window

memoization, one window of each pair of input windows always update the reuse tables.

Therefore, the reuse tables almost always hold only the symbols and responses of the

most recent windows. For reuse tables of 2d long, at each snapshot, the symbols of last

2d windows are held. As a result, at each time that a symbol is checked against the level

1 reuse tables, the number of inserted symbols to the reuse tables is at most 2d (n = 2d).

The equation of probability of false positives (equation 5.26) can be rewritten as:
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FP = (1− (1− 1
2d × 2d

)2
d
)m2−1

= (1− (1− 2−2×d)2
d
)m2−1

(5.27)

The total number of memory bits used by the level 1 reuse tables will be (m2 − 1)×
(2d × d). The level 2 reuse table, which is used to store the responses of windows, will

require up to (2d× 8) bits (8 bits required to store a gray level response). Thus, the total

number of bits consumed by all reuse tables will be:

RTbits = (m2 − 1)× (2d × d) + 2d × 8

= ((m2 − 1)× d + 8)× 2d (5.28)

In order to pick an optimal number of most significant bits used for assigning windows

to symbols (d), we run a simulation to calculate both speedup and results accuracy for

different d (1 to 8) on the set of natural images. We use the ideal algorithm to generate

the response of windows. As defined in section 4.2.4, the ideal algorithm outputs the

central pixel of each window as the response of the window. In calculating SNR, we have

replaced an infinite SNR with 100, in order to calculate the average of SNRs of all images.

Figure 5.5 shows the average SNR and speedups of natural images versus the number of

bits used for comparison for the ideal algorithm. It can be seen that using a d of 2 yields

an average SNR over 30dB (i.e. 32.19dB) with an average speedup of 1.58.

In chapter 4, it was shown that in most cases, using 4 most significant bits of pixels for

comparison (i.e. d = 4) yields reasonably high accuracy of results, which is higher than

that required for hardware (i.e. d = 2). There are two reasons for this difference. First,

in hardware, at most 50% of window are reused and hence, the mask operations set are

applied to at least half of windows. Second, in hardware, the reuse table is updated by

every other window in the image. Thus, whenever a window is checked against the reuse

table, it is very likely that the reuse table holds its nearby neighbors, which are similar to

the window. Therefore, window memoization in hardware can achieve the same accuracy
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Figure 5.5: Left: average SNR versus the number of the most significant bits used for

assigning windows to symbols. Infinite SNRs have been replaced by SNR of 100. Right:

speedup versus the number of the most significant bits used for assigning windows to

symbols.

of results as in software with fewer bits used to determine whether a window belongs to

a symbol.

For windows of 3×3 pixels (m = 3), if 2 most significant bits are used for comparison

(d = 2), the probability of false positives will be (equation 5.27):

FP = (1− (1− 2−2×d)2
d
)m2−1

= (1− (1− 2−2×2)2
2
)3

2−1

= 7.18× 10−4% (5.29)

However, as it will be shown in section 5.7, the probability of false positives for empirical

data is much higher than the analytical result (i.e. average FP of 4.28%). The reason is

that the hash keys in window memoization (i.e. the pixels of windows) are not random

variables.

The total number of bits of the reuse tables for window memoization in hardware

where d = 2 and m = 3 will be (equation 5.28):

RTbits = ((m2 − 1)× d + 8)× 2d

= ((32 − 1)× 2 + 8)× 22 = 96 (5.30)
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The equivalent number of logic elements for 96 memory bits is almost 6, which is negligible

in comparison to a typical core with 1000 logic elements.

5.6 An Optimized Architecture for Window Memoization

in Hardware

In the previous sections (i.e. sections 5.3.1, 5.3.2, 5.4, and 5.5), we discussed the factors

that affect speedup and sprawl of a 2-wide superscalar pipeline with window memoization.

To achieve high speedups, we chose the direct-mapped method as the mapping scheme

(section 5.3.1). To eliminate the effect of the core latency on speedup, we proposed a

2-level reuse table where symbols and responses of windows are stored in different levels

of reuse tables (section 5.3.1). To achieve low sprawl, we proposed parallel reuse tables

which are based on parallel Bloom filters (sections 5.3.2 and 5.4). Finally, we explored

different d (number of the most significant bits of pixels) to be used for comparison and

found out that by using only 2 most significant bits of pixels, speedup can be increased

further while maintaining high accuracy of results (section 5.5). We also showed that how

the tolerant memoization is implemented using the parallel reuse tables (section 5.5). In

this section, we present an optimized architecture for window memoization in hardware,

which considers all the design decisions discussed in the previous sections to yield high

speedups and low sprawl.

Figure 5.6 shows the optimized architecture of a 2-wide superscalar pipeline with

window memoization in hardware. The difference between figure 5.6 and figure 5.2 in

section 5.2.1 is that figure 5.6 uses a 2-level reuse table rather than a 1-level. As it

can be seen from figure 5.6, the architecture includes one core to implement the image

processing algorithm, control circuitry, two fifos (Fifo1 and Fifo2), and two levels of the

reuse tables. At each cycle, two windows enter the pipeline: winA and winB. Out of

each pair of input windows (winA and winB), one window (i.e. winA) is always checked

against the level 1 reuse tables to determine whether there is a matching symbol in the

reuse table. The other window (i.e. winB) is always sent to the core and never checked

against the reuse table. As a result, the level 1 reuse tables are always read by winA and

in case of a hit, the level 2 reuse table is also read by winA. On the other hand, the level
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1 and the level 2 reuse tables are always updated with the symbol and response of winB,

respectively.

Core

Two outputs

Two incoming windows

Fifo2

hit or miss? winA or
winB?

Level 1
reuse 
tables

winA winB

respA respA/respB

Control
circuitry

Fifo1

Read Write

Level 2
reuse 
table

winB 
addr to
write 
respB

winA

addr to
read 
respA

respB

Figure 5.6: An optimized architecture for 2-wide superscalar pipeline with window mem-

oization

At the same cycle that winA is checked against the level 1 reuse tables, the symbol

of winB is written into the level 1 reuse tables. At this stage, the response of winB has

not been generated yet. Both windows are also sent through Fifo1 in order to keep them

in sync with the flow of the pipeline. By the time that the control circuitry determines

whether winA has found a matching symbol in the level 1 reuse tables, both windows

have exited Fifo1. In case of a hit, winB is sent to the core and the central pixel of

winA is sent through Fifo2 to be used as the address to the level 2 reuse table to look up

the response of winA (respA). When the core generates the response of winB (respB),
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respA has also been read from the level 2 reuse table. Therefore, both responses exit the

pipeline at the same cycle. Finally, the level 2 reuse table is updated by respB, at the

location where the central pixel of winB points to.

If winA is not able to find a matching symbol in the level 1 reuse tables (miss) the

pipeline stalls to prevent new windows from entering the pipeline. In the stalled cycle,

winA is sent to the core first to generate its response (respA). Following winA, winB is

also sent to the core to generate respB. The responses of both window will exit the core

consecutively in two cycles. The level 2 reuse table is updated by respB.

It should be noted that in our optimized architecture for window memoization, re-

gardless of whether a miss or hit occurs, the reuse tables are updated by only winB and

its response respB. In case of hit, winA is already in the reuse tables and thus, it is ben-

eficial to update the reuse tables with a new information, winB. In case of miss, if the

reuse tables are updated by winA instead of winB, the control circuitry will be slightly

less complicated compared to the scenario where the reuse tables are updated only by

winB. However, our simulations show that updating the reuse tables by winA (in case of

a miss) decreases hit rate (and hence speedup) slightly. Therefore, the overall efficiency

of the design remains essentially unchanged regardless of the design decision.

5.7 Results

In this section, we present the speedup, sprawl and accuracy results for the optimized

architecture of window memoization in hardware. Both speedup and sprawl are calculated

for a 2-wide superscalar pipeline with window memoization for a case study algorithm

and compared to the scalar pipeline of the case study algorithm. Speedup is independent

of the case study algorithm and it only depends on the input images. Sprawl depends

on the hardware area consumed by the scalar pipeline of the case study algorithm (core)

and the memoization mechanism. Finally, accuracy of results depends on both the case

study algorithm and the input images.

We have implemented all designs (i.e. scalar pipeline and 2-wide superscalar pipeline

with window memoization for each case study algorithm) at the register-transfer-level

(RTL) using VHDL on an Altera FPGA. We have chosen the Kirsch edge detector and
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median filter as our case study algorithms. These two algorithms consume small hardware

area compared to other algorithms used as case studies in software. Therefore, they

give the upper-bound for sprawl (small LEcore in equation 5.23) and thus, the lower-

bound for the efficiency. Moreover, these algorithms produce both binary and gray-level

outputs, which allows us to evaluate the accuracy for both classes of results. We have

run simulations to calculate the speedups obtained for all four sets of images (natural,

industrial, medical, and barcode images). In addition, the sprawl of each design has been

calculated using the number of logic elements and memory bits reported by the synthesis

tool. The clock speeds for all designs, including the two cores (i.e. scalar pipelines for

Kirsch and median) and the two 2-wide superscalar pipelines with window memoization

for Kirsch and median are the same at 235MHz.

5.7.1 Speedup and Accuracy Results

We have run the hardware simulation for all four sets of images and measured the speedups

and the accuracy of results. Figure 5.7 shows the average hit rates and false positives

for each set of images. It is seen that as the complexity of images grow, the probability

of false positives increases (least complex images, industrial, FP = 1.75%, most complex

images, medical, FP = 7.89%).

Natural Industrial Medical Barcode
0

5

10

15

20

25

30

35

40

45

50

 

 
Hit Rate (%)
False Positives (%)

Figure 5.7: Average hit rates and false positives

Speedup is calculated based on hit rate using the equation below:
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speedup =
1

1−HRhw
(5.31)

Table 5.2 shows the average speedups and accuracy of the results for each of the sets of

images for the Kirsch edge detector and median filter. To calculate the accuracy of the

results, for the Kirsch edge detector, we use misclassification error (given in section 4.5,

equation 4.24) and for median filter, we use signal-to-noise ratio (given in section 3.1.3,

equation 3.16).

Table 5.2: Average speedups and results accuracy for in hardware

Images Natural (40) Industrial (8) Medical (30) Barcode (50)

512× 512 512× 512 400× 280 640× 480

Speedup 1.58 1.80 1.55 1.73

Kirsch: Accuracy 98.70% 99.34% 97.21% 98.63%

Median: SNR 33.85 37.08 29.40 37.35

From table 5.2, it is seen that even the most complex images (i.e. medical images)

yield reasonably high average speedups (i.e. 1.55). It is also seen that the result accuracy

of both algorithms is high for all four sets of images (Kirsch: above 97%, median: above

29dB).

Figures 5.8 and 5.9 show the results of conventional algorithms and window mem-

oization for samples of natural image for the Kirsch edge detector and median filter,

respectively. As it can be seen, due to high accuracy of results, the difference between

the results of conventional algorithms and algorithms with window memoization are ei-

ther very small or indistinguishable. The results for industrial, medical, and barcode

images are presented in appendix D, figures D.1 to D.6.

The images in the bottom of figures 5.8 and 5.9 show the difference images of the

results of the algorithms with and without window memoization. For the Kirsch edge

detector algorithm, the difference images show two sets of marks: the locations that

contain edges in the original results and non-edges in the window memoization results

(marked with red edges) and the locations that contain non-edges in the original results

and edges in the window memoization results (marked with green edges). As discussed
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Figure 5.8: Results for natural images for Kirsch edge detector. Top: original results,

middle: window memoization results, bottom: difference images.

in chapter 4, section 4.5, the error in the window memoization results for the Kirsch edge

detector is mostly in the area that the original results contain edges. For the median

filter, it is seen that the inaccuracy introduced by window memoization is almost spread

all over the image.

5.7.2 Sprawl Results

To calculate sprawl for each case study algorithm, first, we implement each case study

algorithm as a conventional scalar pipeline (core) at the register-transfer-level and cal-

culate the hardware area consumed by this conventional implementation. Afterward,
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Figure 5.9: Results for natural images for median filter. Top: original results, middle:

window memoization results, bottom: difference images.

we implement the case study algorithm using 2-wide superscalar pipelines with window

memoization and calculate the consumed hardware area. In each case, we have used

Altera Cyclone II FPGA [20] as the target device.

Table 5.3 lists the hardware area consumed by different components of each design.

As discussed in section 5.5, we use 2 most significant bits of each pixel for determining

whether windows belong to a symbol (i.e. d = 2). Therefore, each level 1 reuse table is

2d × d = 8 bits. Given that the case study algorithms use windows of 3× 3 pixels, there

are 8 level 1 reuse tables, consuming 8× 16 = 64 bits of memory. The level 2 reuse table

is 4×x where x is the number of bits per each output pixel. For the Kirsch edge detector,
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x = 1 since the result is a binary image. For median filter, which outputs a gray-level

image, x = 8.

Other memory arrays used by window memoization are the two fifos. In our design,

Fifo1 has been implemented using registers because it is no more than 3 entries deep.

Therefore, the consumed area by Fifo1 is considered as a part of the control circuitry.

Fifo2 has different sizes for each of the case studies. For the Kirsch edge detector, Fifo2

is 8 entries deep, consuming 8 × 4 = 32 bits (2 bits for key0 of each window winA and

winB). Median filter requires a fifo, which is 16 entries deep and consumes 16× 4 = 64

bits.

Table 5.3: Hardware area consumed by different components of the designs

Algorithm core control level 1 level 2 Fifo2 memory sprawl

circuitry reuse tables reuse table as LEs

Kirsch 1028 LEs 121 LEs 64 bits 4 bits 32 bits 6 LEs 1.12

Median 1002 LEs 160 LEs 64 bits 32 bits 64 bits 9.6 LEs 1.17

Sprawl is calculated using the equation below:

sprawl =
LEcore + LEctl + 0.06×membits

LEcore
(5.32)

As it can be seen from table 5.3, sprawls for the Kirsch edge detector and median filter

are 1.12 and 1.17, respectively. In other words, the hardware area cost incurred by the

2-wide superscalar pipeline with window memoization is 12% and 17% of the original

scalar pipelines.

5.7.3 Efficiency Results

As we discussed in section 5.1, the relative efficiency of a 2-wide superscalar pipeline with

window memoization with respect to the original scalar pipeline is calculated as:

effRel =
speedup

sprawl
(5.33)
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Tables 5.4 and 5.5 show the relative efficiency for each sets of images for the Kirsch

edge detector and median filter, respectively. It is seen that Kirsch edge detector gives

higher relative efficiencies because its sprawl is lower than that of median filter. The

relative efficiency for both algorithms is between 1.33 and 1.60.

Table 5.4: Relative efficiency for Kirsch edge detector

Images Natural (40) Industrial (8) Medical (30) Barcode (50)

512× 512 512× 512 400× 280 640× 480

Speedup 1.58 1.80 1.55 1.73

Sprawl 1.12 1.12 1.12 1.12

Efficiency 1.41 1.60 1.38 1.54

Table 5.5: Relative efficiency for median filter

Images Natural (40) Industrial (8) Medical (30) Barcode (50)

512× 512 512× 512 400× 280 640× 480

Speedup 1.58 1.80 1.55 1.73

Sprawl 1.17 1.17 1.17 1.17

Efficiency 1.35 1.54 1.33 1.48

5.8 Speedup versus Coding/Interpixel Redundancy

In chapter 3, we showed mathematically that the coding and interpixel redundancy of an

image have a positive relationship with both the reusability and computational redun-

dancy of the image. In chapter 4, we showed that the computational redundancy of an

image has a positive relationship with the speedup obtained for the image by window

memoization in software. Thus, it was concluded that the coding and interpixel redun-

dancy of an image have a positive relationship with the speedup obtained for the image

by window memoization in software. In this section, we show that the reusability of an

image has a positive relationship with the speedup obtained for the image by window

memoization in hardware. This will lead to the fact that the coding and interpixel redun-

dancy of an image have a positive relationship with the speedup obtained for the image
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by window memoization in hardware (equation 5.34).

(Cr + IPr) ∝+ speedup (5.34)

In section 5.3.1, we showed that the hit rate of an image in hardware has a positive

relationship with the speedup of the image in hardware:

speedup =
1

1−HRhw
=⇒ HRhw ∝+ speedup (5.35)

Thus, to show that relation 5.34 holds, it is sufficient to show that the relation below

holds.

(Cr + IPr) ∝+ HRhw (5.36)

For window memoization in software, in order to show that (Cr + IPr) ∝+ HRsw holds,

we had to take the following intermediate steps (chapter 3 and chapter 4, section 4.6):

(Cr + IPr) ∝+ Rideal(δ) ∝+ R(δ) ∝+ HRpc ∝+ Compr ∝+ HRsw (5.37)

As we will discuss shortly, for window memoization in hardware, in order to show

that (Cr + IPr) ∝+ HRhw holds, the following intermediate steps are sufficient:

(Cr + IPr) ∝+ Rideal(δ) ∝+ R(δ) ∝+ HRhw (5.38)

In other words, in contrast to window memoization in software, in order to show that

relation 5.36 holds, the information about the hit rate of perfect cache and computational

redundancy is not necessary. The reason is that in window memoization in software, the

reuse is done globally while in window memoization in hardware, the reuse is done locally.

In window memoization in software, the response of one window in the image can be

reused for a similar window located in any spatial distance from the first window because

the reuse table is not always updated. It is updated only in case of a miss. Therefore, it

is possible that a symbol from the beginning of an image is inserted into the reuse table
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and reused for a long time without being evicted. Also, window memoization in software

usually uses large reuse tables (e.g. 32K entries), which leads to non-local reuse.

In contrast, in the hardware implementation of window memoization, the reuse table

is always updated by one window of each pair of input windows. Thus, the reuse table

usually holds only the symbols and responses of the most recent windows. Given that

the reuse table size for window memoization in hardware is very small (i.e. 4 entries) ,

only those similar windows reuse each other’s responses that are located in very close

distances from one another.

In chapter 3, section 3.3, we showed that for two images Img1 and Img2, relation 5.39

holds.

(Cr1 + IPr1) ≤ (Cr2 + IPr2) =⇒ P icp
u1 (δ) > P icp

u2 (δ) (5.39)

where P icp
u is the uniqueness probability density function of an image. Figure 5.10 illus-

trates relation P icp
u1 (δ) > P icp

u2 (δ).
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Figure 5.10: Uniqueness probability density functions

Relation P icp
u1 (δ) > P icp

u2 (δ) means that for any δ, the number of unique symbols for

Img1 is higher than that for Img2. In hardware, window memoization compares only

those windows that are located very close to each other in the image. Close windows

in image are usually similar and thus, they usually have similar δ. Thus, in hardware,

window memoization only compares windows with similar δ. Therefore, having fewer

unique symbols for a given δ means, on average, fewer misses and hence more hits.
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P icp
u1 (δ) > P icp

u2 (δ) =⇒ HRhw1 < HRhw2 (5.40)

In contrast, in software, having fewer unique symbols for a given δ does not necessarily

mean fewer misses because a miss can also occur due to comparing non matching windows,

which have different δ. In other words, in software, there are two sources for misses:

comparing non matching windows with similar δ and comparing non matching windows

with different δ. Having fewer unique symbols for a given δ only affects the misses caused

by comparing non matching windows with similar δ, which is the case in hardware.

From relations 5.39 and 5.40, it is concluded that:

(Cr1 + IPr1) ≤ (Cr2 + IPr2) =⇒ HRhw1 < HRhw2 (5.41)

The relation above can be rewritten as:

(Cr + IPr) ∝+ HRhw (5.42)

Figure 5.11 shows the speedup versus the coding/interpixel redundancies for all four

different sets of images. It is seen that in all cases, relation 5.42 holds with very high

accuracy.

5.9 Summary

In this chapter, we presented an optimized architecture for window memoization in hard-

ware (i.e. 2-wide superscalar pipeline with window memoization) that gives a high relative

efficiency with respect to the design (scalar pipeline) on which window memoization is

based. We implemented window memoization at the register-transfer-level using VHDL

and applied the technique to two case study algorithms. To achieve high speedups, we

used tolerant memoization, a 2-level reuse table, and the direct-mapped mapping scheme

for the memoization mechanism. To achieve low sprawls, we presented parallel reuse
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Figure 5.11: Speedup versus coding/interpixel redundancy

tables based on Bloom filters. We demonstrated that the optimized architecture for win-

dow memoization in hardware can improve performance by up to a factor of 1.8 (typical

speedup: 1.6) with up to 60% (on average: 40%) less hardware area than the conven-

tional 2-wide superscalar pipelines while maintaining reasonably high accuracy of results

(i.e. above 97% and 29dB). Finally, we showed mathematically and empirically that

the coding and interpixel redundancy of an image have a positive relationship with the

speedup obtained for the image by window memoization in hardware.
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Chapter 6

Conclusion

In this work, we introduced an innovative performance improvement technique, window

memoization, that benefits from data redundancy in images to improve the performance

and efficiency of local image processing algorithms. Window memoization combines the

memoization techniques proposed in software and hardware with the repetitive nature of

image data to speed up the computations in both software and hardware. We also showed

mathematically that the speedup obtained by window memoization in both software and

hardware is directly inherited from fundamental characteristics of image data: coding

redundancy and interpixel redundancy.

Although different memoization techniques have previously been proposed in software

and hardware, their practicality has usually been limited. In software, the proposed tech-

niques usually require detailed profiling information about the runtime behaviour of the

program to benefit from the value locality of data [15] [55]. In other words, the techniques

are usually generic methods, which do not concentrate on any particular class of input

data or algorithms. In contrast, window memoization is a specific technique for local

image processing algorithms where the speedup is directly affected by the characteristics

of input image data.

In hardware (i.e. processor design), no memoization technique has been implemented

in a real design yet. Handling the dependencies between instructions in a program

and maintaining the coherency of the memoization table would require large content-

addressable memory arrays with multiple write ports. The complexity of these memory

161



arrays and the difficulty of pipelining them overshadow the theoretical gains in perfor-

mance [49]. Image processing algorithms usually do not have data dependencies among

the operations. This makes it feasible to implement the memoization mechanism using

simple dual-port memories. Moreover, the memoization techniques proposed in hardware

are mostly for processor designs. In contrast, our memoization technique in hardware

targets the specialized hardware implementations of local image processing algorithms.

In software, we discussed several parameters that affect the speedup achieved by

window memoization by affecting hit rate and the memoization overhead time. It was

shown that each parameter depends on a design decision from developing the memoization

mechanism. We presented a fast symbol generation mechanism whose contribution to

the memoization overhead time is small. As the mapping scheme, the direct-mapped

method was chosen because it produces small overhead times for memory operations and

comparisons. The multiplication method was selected as the hash function for the direct-

mapped mapping since it yields high hit rates and small contributions to the memoization

overhead time. Finally, to achieve high hit rates with reasonably high accuracy of results,

4 bits of each pixel in a window are considered to determine whether the window belongs

to a symbol.

We also presented a model to predict the speedup obtained by window memoization

in software for all images in a data set. The only information that the model needs is to

measure the memoization overhead time for the two images that have the minimum and

maximum hit rates in a data set. With this information, for any image, the model predicts

the speedup. The reuse table size is a key parameter in obtaining high speedups. Although

larger reuse tables usually lead to higher hit rates, we showed that for a given algorithm

and a processor, after certain size of reuse table, speedup degrades. Therefore, for a given

algorithm and processor, there is an optimal reuse table size, which yields maximum

speedups. Our speedup model enables the developer to pick the optimal reuse table size

for a set of images by using only two images and before integrating the memoization

mechanism into the algorithm at hand.

In software, we implemented window memoization in C, where six local image pro-

cessing algorithms were used as case studies. We used the optimal reuse table sizes ob-

tained by the speedup model. Our experiments showed that window memoization yields
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significant speedups for different algorithms with various input images run on different

processors. The typical speedups range from 1.2 to 7.9 with a maximum factor of 40.

In hardware, we presented an optimized architecture for window memoization, which

yields high speedups with a small overhead in hardware area (i.e. sprawl). We imple-

mented window memoization in hardware as a 2-wide superscalar pipeline. In contrast

to conventional 2-wide superscalar pipelines that consume twice the hardware area of a

scalar pipeline, the only extra hardware that a 2-wide superscalar pipeline with window

memoization consumes with respect to a scalar pipeline is the memoization mechanism,

which is typically 20% of the scalar pipeline. We also defined a measure, relative ef-

ficiency, which evaluates the speedup/sprawl tradeoffs of a 2-wide superscalar pipeline

with window memoization with respect to a scalar pipeline.

We discussed the factors that affect speedup in hardware, including the mapping

scheme used by the control circuitry, the core latency, and the reuse table size. We

showed that sprawl is affected by the hardware area consumed by the reuse table, the

control circuitry, and the core. We discussed that in order to achieve high speedups, the

direct-mapped mapping scheme and a 2-level reuse table must be used. To achieve low

sprawls, we presented a space-efficient architecture for the reuse table, which is based

on parallel Bloom filters. Finally, we presented an optimized architecture for window

memoization in hardware, which uses a direct-mapped mapping scheme and a 2-level

parallel reuse table based on Bloom filters to achieve high speedups and low sprawls.

In contrast to software, where using 4 most significant bits of pixels for comparison

yields reasonably high accuracy of results, in hardware only 2 most significant bits are

sufficient. The reason is that in hardware, the mask operations set are applied to at least

half the windows in the image. Moreover, in hardware, window responses are usually

reused by nearby windows, because the reuse table is always updated by half the windows.

This also allows the reuse table required for window memoization in hardware to be much

smaller than that in software (e.g. 4 entries versus 32K entries).

In hardware, we implemented window memoization at the register-transfer-level using

VHDL targeting an Altera FPGA where two local image processing algorithms were used

as case studies. For typical images, window memoization yields a relative efficiency in the

range 1.4 to 1.6, while the relative efficiency of conventional superscalar pipelines is 1.
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We introduced the reusability of an image as a measure that gives the average number

of redundant sets of computations per each reuse table cell. We also presented computa-

tional redundancy as a quantitative measure that indicates the percentage of unnecessary

mask operations sets applied to an image. We showed that both the reusability and the

computational redundancy of an image are inherited from two principal redundancies in

image data: coding redundancy and interpixel redundancy. We proved that the cod-

ing and interpixel redundancy of an image have a positive relationship with both the

reusability and computational redundancy of the image.

Computational redundancy considers all of the windows across an image whose re-

sponses need not be calculated. In other words, in calculating computational redundancy,

is is assumed that the response of a window can be reused for similar windows, regardless

of the spatial distance in the image between the two windows, which is the case in window

memoization in software. In other words, in window memoization in software, the reuse

is done globally. We showed mathematically that the computational redundancy of an

image has a positive relationship with the speedup obtained by window memoization in

software. Therefore, it has been concluded that the coding and interpixel redundancy of

an image have a positive relationship with the speedup obtained by window memoization

in software.

Reusability is based on the new information carried by the central pixels of windows,

or δ. We showed that for any δ, the reusability of an image has a negative relationship

with the number of unique symbols of the image. In hardware, window memoization

compares only those windows that are located very close to each other in the image.

In other words, in window memoization in hardware, the reuse is done locally. Nearby

windows in an image are usually similar and thus, they usually have similar values of

δ. Thus, in hardware, window memoization only compares windows with similar values

of δ. Therefore, having fewer unique symbols for a given δ means on average, fewer

misses and hence more hits. This means that the reusability of an image has a positive

relationship with the speedup obtained by window memoization in hardware. Therefore,

it has been concluded that the coding and interpixel redundancy of an image have a

positive relationship with the speedup obtained by window memoization in hardware.

In software, the mask operations sets are applied only to those windows that cannot
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find matching symbols in the reuse table. In contrast, in hardware, the mask operations

sets must be applied to at least half the windows (i.e. every other window in the im-

age). This limits the maximum speedup in hardware to a factor, which is equal to the

pipeline width (e.g. 2), while in software, the speedup can be much higher (e.g. 40). As

a result, window memoization in software performs the reuse globally, while in hardware,

window memoization performs the reuse locally. This is the main difference between the

software and hardware implementations of window memoization. Nevertheless, as dis-

cussed earlier, in both cases, the root cause of having similar windows (either globally

or locally) is coding and interpixel redundancy of the image. This is a simple concept,

which connects basic characteristics of image data to performance improvement obtained

by window memoization in both software and hardware.

Future work for this research will proceed in three directions: theory, software, and

hardware. In theory, we will investigate the mathematical relationship between the two

different measures of interpixel redundancy: mapping transform and Markov model. We

expect that the two measures have a positive relationship with each other, since both

represent the same characteristic of image data. We will also apply window memoization

to color images. For algorithms that use the three basic elements of color (i.e. red, blue,

and green) separately, we anticipate similar speedups to gray-level images to be obtained.

For algorithms that use a combination of colors, although the reuse mechanism will be

more complicated and hit rates may not be as high as for gray-level images, we believe

that there is a potential to obtain reasonable speedups.

In software, we will use processor simulation tools (e.g. SimpleScalar [35]) to inves-

tigate the exact effects of the processor and cache hierarchy architecture (e.g. different

branch and caching schemes) on speedup. This will enable us to customize a configurable

embedded processor for window memoization.

In hardware, we will use wider superscalar pipelines (e.g. 4-wide and 8-wide) to imple-

ment window memoization. In addition, we will apply window memoization to recursive

image processing algorithms where there are data dependencies between the operations.

For recursive algorithms, their recursive nature requires feedback paths that often make it

difficult to increase the clock speed by conventional pipeline optimization techniques. To

overcome this performance limitation, we will extend window memoization in such a way
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that it is applicable to recursive image processing algorithms. We expect that window

memoization will improve the throughput of the hardware implementations of recursive

algorithms.

Finally, we will develop an automated version of window memoization for software

and hardware. Automated window memoization will be a tool that accepts an existing

algorithm (i.e. core) that the user wants to optimize. In both hardware and software, the

core, written in VHDL or C, will be given to automated window memoization along with

a set of input images and the final results of the core. Automated window memoization

will then explore different design options to maximize the performance gain obtained by

window memoization for the existing algorithm. After setting the parameters, a new

VHDL/C code will be generated, which embodies the window memoization technique

applied to the existing algorithm in hardware or software. Automated window memoiza-

tion will use learning algorithms to find the optimal point for the window memoization

parameters quickly and robustly. By automating window memoization and customizing

it for a given algorithm, many existing image processing algorithms and new algorithms,

in software and hardware, will be optimized with minimal cost and human intervention.

This will enable the image processing software and embedded system designers to opti-

mize their existing systems with the push of a button and design new high-performance

systems more efficiently.
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Appendix A

Notations and Terminology

• ∝+ (Positive relationship): two variables are considered to have positive relationship

if one variable increases/decreases then the other variable also increases/decreases.

• ∝− (Negative relationship): two variables are considered to have negative relation-

ship if one variable increases/decreases then the other variables decreases/increases.

• Compr (Computational redundancy of an image): the percentage of the mask op-

erations sets that are not necessary to perform, in order to complete processing the

image.

• Transform icp: A transform (information at the central pixel) that takes a local

window as input and outputs the new information carried by the central pixel.

• Imgicp: A transformed format of original image, based on the information carried

by the pixels at the centers of symbols.

• P : The probability of occurrence of symbols in the original image, which has been

sorted in descending order.

• P icp: The probability of occurrence of symbols in the transformed image, which is

equal to the probability of occurrence of symbols in the original image based on the

new information carried by the central pixels of symbols δ.

• P icp
u : The uniqueness probability of symbols in the original image based on the new

information carried by the central pixels of symbols δ.
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• HR: The percentage of the times that the incoming windows find a matching

symbol in the reuse table.

• Cr: Average coding redundancy (bits per pixel).

• IPr: Average interpixel redundancy (bits per pixel).

• H: Average content of information (bits per pixel).

• GL: Number of gray levels of an image.

• R(δ) (Reusability of an image): the average number of the redundant mask op-

erations sets per symbol for symbols in the image whose central pixels carry new

information in the range [−δ,+δ].

• Rideal(δ) (Ideal Reusability of an image): an idealized version of the image reusabil-

ity, which ignores the effect of the uniqueness probability of symbols on reusability.

• µ: Mean value of the original image.

• σ: Standard deviation of the original image.

• σicp: Standard deviation of Imgicp.

• Accuracy and error margin: Assume we have a function f : S− > S′ where S and

S′ are the finite subsets of real numbers. The accuracy and error margin for the

relation ∀x, y ∈ S, x ≤ y =⇒ f(x) ≤ f(y) is defined as follows:

– For a given ε: Accuracy =100 × k
n where k is the total number of cases that

the relation ∀x, y ∈ S, x ≤ y =⇒ f(x) ≤ f(y) + ε holds, and n is the total

number of possible pairs of elements from set S, which is equal to |S|×|S|−1
2 .

– Error Margin=100× ε
max(S′) where the relation ∀x, y ∈ S, x ≤ y =⇒ f(x) ≤

f(y) + ε holds.
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Appendix B

Autocorrelation as a Measure for

Interpixel Redundancy

In this appendix we use autocorrelation (equation 2.10) to measure the amount of inter-

pixel redundancy of the pairs of adjacent pixels in image. :

IPr = AC(1)

=
E[(Imgi − µ)(Imgi+1 − µ)]

E[(Img − µ)2]

=
E[(Imgi − µ)(Imgi+1 − µ)]

σ2

=
1
σ2

(E[ImgiImgi+1]− µ(E[Imgi+1] + E[Imgi]) + µ2)

(B.1)

where σ2 and µ are the variance and mean value of the original image, respectively. Imgi

and Imgi+1 are defined based on the original image, Img:

Img = x0x1x2...xn−1 (B.2)

Imgi = x0x1x2...xn−2 (B.3)

Imgi+1 = x1x2...xn−1 (B.4)
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Using the equations above, Imgdiff is defined as:

Imgdiff = Imgi − Imgi+1 (B.5)

Imgdiff is in fact Imgicp where the transform icp takes pairs of adjacent pixels as input

and outputs the information carried by one of the pixels.

In equation B.1, E[Imgi] and E[Imgi+1] can be written in terms of E[Img] or µ:

E[Imgi] =
1

n− 1

n−2∑

0

xi

=
1

n− 1
(
n−1∑

0

xi − xn−1)

=
1

n− 1
(nE[Img]− xn−1)

=
nµ

n− 1
≈ µ (B.6)

and similarly:

E[Imgi+1] ≈ µ (B.7)

Replacing E[Xi] and E[Xi+1] in equation B.1 with equations B.6 and B.7 yields:

IPr = AC(1) =
1
σ2

(E[ImgiImgi+1]− µ2) (B.8)

We can calculate the variance of Imgdiff :

σ2
diff = E[(Imgdiff − µdiff )2] (B.9)

As mentioned in chapter 3, section 3.1.6, the probability density function of Imgdiff is

modeled by a zero mean Laplace distribution, which means µdiff = 0, or:
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σ2
diff = E[Img2

diff ] (B.10)

Substituting Imgdiff = Imgi − Imgi+1 from equation B.5 gives:

σ2
diff = E[(Imgi − Imgi+1)2]

= E[Img2
i ] + E[Img2

i+1]− 2E[ImgiImgi+1] (B.11)

E[Img2
i ] and E[Img2

i+1] can be written in terms of E[Img2]:

E[Img2
i ] =

1
n− 1

n−2∑

0

x2
i

=
1

n− 1
(
n−1∑

0

x2
i − x2

n−1)

=
1

n− 1
(nE[Img2]− x2

n−1)

=
nE[Img2]

n− 1
≈ E[Img2] (B.12)

and similarly:

E[Img2
i+1] ≈ E[Img2] (B.13)

Replacing E[Img2
i ] and E[Img2

i+1] in equation B.11 with equations B.12 and B.13 yields:

σ2
diff ≈ 2(E[Img2]− E[ImgiImgi+1]) (B.14)

We also have:

E[Img2] = σ2 + µ2 (B.15)

Substituting the equation above into equation B.14 yields:

σ2
diff ≈ 2(σ2 + µ2 −E[ImgiImgi+1]) (B.16)
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which gives:

E[ImgiImgi+1] ≈ (σ2 + µ2)− σ2
diff

2
(B.17)

Substituting E[ImgiImgi+1] into equation B.8 yields:

IPr = AC(1)

≈ 1− σ2
diff

2σ2
(B.18)

which gives:

σ2
diff ≈ 2σ2(1− IPr) (B.19)

In the chain of relations that we proved in chapter 3 (relation 3.102), we needed to

prove:

(Cr + IPr) ∝− σdiff

Let’s assume that the coding redundancy is constant for all images under study. Thus,

the histograms of images under study will be the same since the equation for coding

redundancy depends only on the histogram (chapter 2, equations 2.1 and 2.3). Images

with the same histograms will have identical variances (σ2). Therefore, in equation B.19,

σ2
diff will only depend on IPr.

σ2
diff ≈ 2σ2(1− IPr) =⇒ IPr ∝− σdiff (B.20)

The relation above is a part of the chain of relations proved in chapter 3, relation 3.102.

However, eliminating the assumption that all the images under study have the same his-

togram or coding redundancy will cause that in equation B.19, σ2
diff depend on both
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IPr and σ2. Although images with the same coding redundancies have the same vari-

ances, there is no mathematical relationship between the image variance and its coding

redundancy. In other words, σdiff1 < σdiff2 does not imply Cr1 > Cr2.

As a result, when working with images with different histograms (i.e. different vari-

ances), having information about the variance does not give any information about the

coding redundancy of the image. Therefore, it is not possible to draw any conclusion

about the relationship between σdiff and coding redundancy using equation B.18. Thus,

for our purpose, which is to prove the relationship between σdiff and both coding and

interpixel redundancies, autocorrelation is not a good measure for interpixel redundancy.
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Appendix C

Results for Window Memoization

in Software

Table C.1: Speedups for processor 1

Images Natural (40) Industrial (8) Medical (30) Barcode (50)

Algorithms 512× 512 512× 512 400× 280 640× 480

Canny Edge Detection 2.15 4.31 1.64 3.63

Morphological Gradient 2.57 4.51 1.52 3.42

Kirsch Edge Detection 1.89 3.17 1.15 2.55

Corner Detection 3.84 14.16 1.54 5.32

Median Filter 1.14 2.08 1.14 1.65

Local Variance 1.59 4.06 1.06 1.86
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Table C.2: Speedups for processor 2

Images Natural (40) Industrial (8) Medical (30) Barcode (50)

Algorithms 512× 512 512× 512 400× 280 640× 480

Canny Edge Detection 2.13 5.37 1.68 4.14

Morphological Gradient 2.27 4.05 1.50 3.29

Kirsch Edge Detection 1.69 2.52 0.94 1.91

Corner Detection 3.73 14.94 1.52 5.20

Median Filter 1.18 2.10 1.04 1.68

Local Variance 1.55 3.88 1.04 1.83

Table C.3: Speedups for processor 3

Images Natural (40) Industrial (8) Medical (30) Barcode (50)

Algorithm 512× 512 512× 512 400× 280 640× 480

Canny Edge Detection 7.93 39.87 3.25 10.96

Morphological Gradient 2.98 5.79 1.99 4.05

Kirsch Edge Detection 1.52 2.20 1.15 1.94

Corner Detection 4.24 22.72 1.70 5.78

Median Filter 2.07 6.75 2.26 3.02

Local Variance 1.58 4.60 1.07 1.85

Table C.4: Accuracy of the results

Images Natural (40) Industrial (8) Medical (30) Barcode (50)

Algorithms 512× 512 512× 512 400× 280 640× 480

Canny Edge Detection 99.08% 99.52% 96.01% 98.90%

Morphological Gradient 99.82% 99.33% 99.45% 99.39%

Kirsch Edge Detection 99.25% 98.47% 97.17% 99.03%

Corner Detection 99.65% 99.86% 99.93% 99.84%

Median Filter (SNR) 34.28 33.33 29.73 33.52

Local Variance (SNR) 39.19 33.78 47.74 34.58
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Figure C.1: Results for industrial images. Left to right: Canny, morphological, and

Kirsch edge detectors. Top: original results, bottom: window memoization results.

Figure C.2: Results for industrial images. Left to right: corner detection, median filter,

and local variance. Top: original results, bottom: window memoization results.
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Figure C.3: Results for medical images. Left to right: Canny, morphological, and Kirsch

edge detectors. Top: original results, bottom: window memoization results.

Figure C.4: Results for medical images. Left to right: corner detection, median filter,

and local variance. Top: original results, bottom: window memoization results.

Table C.5: Accuracy and error margin for relation comp ∝+ HRsw for natural images

RTsize 1K 2K 4K 8K 16 32K 64K 128K 256K

Accuracy (%) 95 95 96 97 98 98 99 99 99

Error Margin (%) 4.55 1.59 0 0 0 0 0 0 0
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Figure C.5: Results for barcode images. Left to right: Canny, morphological, and Kirsch

edge detectors. Top: original results, bottom: window memoization results.

Figure C.6: Results for barcode images. Left to right: corner detection, median filter,

and local variance. Top: original results, bottom: window memoization results.

Table C.6: Accuracy and error margin for relation comp ∝+ HRsw for industrial images

RTsize 1K 2K 4K 8K 16 32K 64K 128K 256K

Accuracy (%) 95 95 95 95 96 96 100 100 100

Error Margin (%) 6.28 3.80 1.71 0.19 0 0 0 0 0
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Table C.7: Accuracy and error margin for relation comp ∝+ HRsw for medical images

RTsize 1K 2K 4K 8K 16 32K 64K 128K 256K

Accuracy (%) 95 95 95 95 96 97 97 97 96

Error Margin (%) 25.04 13.52 5.62 0.27 0 0 0 0 0

Table C.8: Accuracy and error margin for relation comp ∝+ HRsw for barcode images

RTsize 1K 2K 4K 8K 16 32K 64K 128K 256K

Accuracy (%) 95 95 95 95 95 95 95 95 95

Error Margin (%) 11.93 8.37 5.35 3.45 2.03 0.42 0.31 0.56 0.58

Table C.9: Accuracy and error margin for relation HRsw ∝+ speedup for natural images

Algorithm Canny Morphological Kirsch Corner Median Variance

Accuracy (%) 98 98 96 97 95 99

Error Margin (%) 0 0 0 0 0.92 0

Table C.10: Accuracy and error margin for relation HRsw ∝+ speedup for industrial

images

Algorithm Canny Morphological Kirsch Corner Median Variance

Accuracy (%) 95 95 95 95 95 100

Error Margin (%) 7.66 14.31 15.38 8.08 10.99 0

Table C.11: Accuracy and error margin for relation HRsw ∝+ speedup for medical images

Algorithm Canny Morphological Kirsch Corner Median Variance

Accuracy (%) 97 95 95 95 95 97

Error Margin (%) 0 0 1.18 2.65 0.66 0

Table C.12: Accuracy and error margin for relation HRsw ∝+ speedup for barcode images

Algorithm Canny Morphological Kirsch Corner Median Variance

Accuracy (%) 95 95 95 95 95 99

Error Margin (%) 2.09 6.52 6.25 3.19 2.53 0
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Figure C.7: Speedup versus coding/interpixel redundancy for industrial images run on

processor 1.
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Figure C.8: Speedup versus coding/interpixel redundancy for medical images run on

processor 1.
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Figure C.9: Speedup versus coding/interpixel redundancy for barcode images run on

processor 1.
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Appendix D

Results for Window Memoization

in Hardware

Figure D.1: Results for industrial images for Kirsch edge detector. Top: original results,

bottom: window memoization results.
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Figure D.2: Results for industrial images for median filter. Top: original results, bottom:

window memoization results.

Figure D.3: Results for medical images for Kirsch edge detector. Top: original results,

bottom: window memoization results.
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Figure D.4: Results for medical images for median filter. Top: original results, bottom:

window memoization results.

Figure D.5: Results for barcode images for Kirsch edge detector. Top: original results,

bottom: window memoization results.
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Figure D.6: Results for barcode images for median filter. Top: original results, bottom:

window memoization results.
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