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Abstract

Time integration methods are necessary for the solution of transient flow prob-

lems. In recent years, interest in transient flow problems has increased, leading to a

need for better understanding of the costs and benefits of various time integration

schemes. The present work investigates two common time integration schemes,

namely the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) and

the Fractional Step (FS) method.

Three two-dimensional, transient, incompressible flow problems are solved using

a cell centered, finite volume code. The three test cases are laminar flow in a lid-

driven skewed cavity, laminar flow over a square cylinder, and turbulent flow over a

square cylinder. Turbulence is modeled using wall functions and the k−ε turbulence

model with the modifications suggested by Kato and Launder. Solution efficiency

as measured by the effort carried out by the flow equation solver and CPU time

is examined. Accuracy of the results, generated using the SIMPLE and FS time

integration schemes, is analyzed through a comparison of the results with existing

experimental and/or numerical solutions.

Both the SIMPLE and FS algorithms are shown to be capable of solving bench-

mark flow problems with reasonable accuracy. The two schemes differ slightly

in their prediction of flow evolution over time, especially when simulating very

slowly changing flows. As the time step size decreases, the SIMPLE algorithm

computational cost (CPU time) per time step remains approximately constant,

while the FS method experiences a reduction in cost per time step. Also, the

SIMPLE algorithm is numerically stable for time steps approaching infinity, while

the FS scheme suffers from numerical instability if the time step size is too large. As

a result, the SIMPLE algorithm is recommended to be used for transient simulations

with large time steps or steady state problems while the FS scheme is better suited

for small time step solutions, although both time-stepping schemes are found to be

most efficient when their time steps are at their maximum stable value.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is an important tool in modern engineering

design. Until recent years it was thought that it was completely infeasible to

determine an entire complicated flow field as part of a design process. This was due

in part to the incredible cost of iterative calculation. As an example, one of the first

CFD solutions of a fluid flow took 20 hours a week for a year and a half to compute

on a mechanical calculator [17]. Although the equations governing Newtonian fluid

motion have been known for over a hundred years, for the majority of the time

since their discovery, their solutions were limited to a small set of simple systems.

With the creation and widespread use of computers came the ability to do iterative

calculations with relative ease, making CFD a viable tool for the study of fluids

and practical engineering design.

1.1 Motivation

Today, the rising demand for energy, coupled with concerns relating to global cli-

mate change have increased interest in alternative energy sources like wind turbines.

Wind turbines are mechanical devices designed to extract energy from moving air

to allow it to be used for other purposes such as adding electrical energy to the grid.

One of the major concerns related to wind turbines is the noise the rotating blades

generate and the effect of the noise on the surrounding environment. In fact, noise

is one of the primary limiting factors in the creation of new wind farms. Design of

quieter wind turbines will help to allow more wind farms to be created and allow

the energy demands of the coming years to be met without increasing greenhouse

gas emissions.
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Prediction through numerical means of noise produced by fluid flow, or aero-

acoustic noise, is of interest due to the high cost of producing prototypes and

conducting experiments. In order to do this efficiently, CFD code is needed which

can accurately predict transient flow fields around turbine blades in a reasonable

amount of time. In the past, Reynolds Averaged Navier-Stokes (RANS) turbulent

flow solvers have produced steady state flow fields which take into account the effects

of turbulence by modeling it statistically. When used for transient simulations,

Unsteady RANS (URANS) can be used to resolve only the very largest eddies while

approximating the rest of the turbulence with a turbulence model, for example, Ahn

et al. [1]. Increasing the amount of resolved turbulence so that the small eddies are

modeled and the medium to large eddies are resolved is another approach which

provides added solution accuracy. This is referred to as Large Eddy Simulation

(LES), ie. Kim and Moin [18]. In an attempt to produce solutions with the efficiency

of URANS and the accuracy of LES, hybrid approaches to turbulence modeling have

been suggested. Hybrid URANS/LES combines features of both schemes to achieve

faster solutions and better accuracy, for example Ahn et al. [1].

In order to predict a transient flow field, the flow solver must divide the solution

time into steps and march through time to produce a time dependent solution.

Traditionally, RANS codes (and in turn, URANS codes) have used implicit methods

which solve all the flow equations simultaneously for each time step which are

variants of the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)

algorithm, proposed by Patankar and Spalding [31]. Many commercial codes also

depend on (implicit) SIMPLE based time stepping, for example, FLUENT [15],

STAR-CD [6], and ANSYS-CFX [14]. LES codes on the other hand have tradition-

ally used explicit Fractional Step (FS) time-stepping schemes which rely heavily the

information from the previous time step to generate the solution for the next time

step. For example, in 1985, Kim and Moin [18] presented a 2 step Adams-Bashforth

FS, LES code which simulated the flow over a backwards facing step. In 1991 Le

and Moin [19] presented a 4th order Runge-Kutta FS code which allowed larger

time steps to be used. Both of these studies were performed on Cartesian, staggard

grids. In 1994, Zang et al. [42] studied a LES code which used FS time stepping on

a collocated, non-orthogonal grid and in 2004, Mahesh et al. [27] proposed a LES

code which operated on an unstructured grid.

Hybrid URANS-LES simulation methodology has recently become of interest

in an effort to combine the efficiency of URANS simulations and the accuracy of

LES. For example, in 2003, Davidson and Peng [8] separated the flow domain of a

hill in a channel into near-wall and off-wall regions which were solved with URANS
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and LES approaches respectively. In 2006, Liu and Shih [24] proposed a method of

applying a continuous model to a flow domain which could be moved from URANS

to LES modes through the use of a resolution control parameter. In 2008, Lien et

al. [23] showed that hybrid URANS-LES was more accurate for simulating flow in

an urban environment than pure URANS when using the k − ε turbulence model.

With growing interest in hybrid URANS-LES CFD solutions, the question of

which time-stepping scheme is best to use for these simulations has become an

important one which appears to still be unanswered.

1.2 Objectives

This study will investigate the SIMPLE and the Fractional Step time-stepping

schemes. The SIMPLE time-stepping scheme is a semi-implicit scheme which solves

a pressure equation, the velocity equation and any turbulence model equations

implicitly. The FS time-stepping scheme solves the pressure and turbulence model

equations implicitly and solves the velocity equations explicitly.

The relative costs and benefits of the two time-stepping schemes are of interest,

especially their relative efficiencies. Accuracy of the two time-stepping schemes

will be analyzed as far as is possible using existing transient benchmark solutions,

however few reliable transient test cases exist. The comparison will be accomplished

by conducting simulations using codes that are nearly identical, with the exception

of the time-stepping scheme. For each of the test cases, existing SIMPLE code

will be modified to use the FS time-stepping scheme. Simulations under the same

parameters will be conducted to compare the variations between the two time-

stepping schemes.

Three test cases of increasing complexity will be completed and analyzed to

determine the relative benefits of the two time-stepping schemes.

1. Laminar Flow in a Lid Driven Skewed Cavity

2. Laminar Flow over a Square Cylinder

3. Turbulent Flow over a Square Cylinder

All test cases are incompressible and are two-dimensional due to cost and time

restrictions.
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The final goal of this study is to determine which time-stepping scheme is best

suited for transient CFD simulation. Specifically, a time-stepping scheme must

be recommended for use in small time step transient flow simulations. This will

lead towards the goal of efficiently using hybrid URANS-LES CFD as a tool for

aero-acoustic rotating blade problems.

1.3 Literature Survey

This study investigates three test cases which have been studied both experimen-

tally and numerically in the past. Previous comparisons of CFD time-stepping

schemes in the literature are also of interest.

1.3.1 Lid-Driven Skewed Cavity

Lid driven cavities have been studied as a numerical test case ever since 1966 when

Burggraf [5] published a numerical study of a square, lid driven cavity. The square

cavity is a convenient test case for structured orthogonal mesh codes as it has very

simple geometry but can exhibit complex flow structures which are highly Reynolds

number dependent.

The skewed cavity exhibits similar geometrical simplicity to the square cavity

but it requires a non-orthogonal mesh. Skewed cavity numerical studies were

the natural extension of the square cavity test case when non-orthogonal and

unstructured meshes began to be studied in depth [11]. The first published study

to use the skewed cavity as a test case was in 1992 when Demirdžiü et al. [10]

published a benchmark solution of a steady state skewed cavity at skew angles of

45◦ and 30◦ on a 320× 320 structured grid at Reynolds numbers of 100 and 1000.

Many studies since then have used this work as a benchmark, for example, Louaked

et al. [25], Shklyar and Arbel [33] and Xu and Zhang [41].

In 2007, a high resolution (512 × 512) steady state numerical simulation of a

lid driven skewed cavity at a variety of skew angles was carried out by Erturk and

Dursun [11]. This work provides a tabulated solution for the center-line velocity

profiles for each of the skew angles studied. The results reported by Erturk and

Dursun [11] for 45◦ and 30◦ skew angles and Reynolds numbers of 100 and 1000 are

consistent with the results first reported by Demirdžiü et al. [10].
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1.3.2 Laminar Flow over a Square Cylinder

This test case has been studied many times both experimentally and numerically.

In this study flows of a Reynolds number of 100 are to be studied in line with

the Masters Thesis by Thompson [38]. In fact much of the SIMPLE time step-

ping base code used by Thompson was used for this study, although some of the

boundary conditions have been modified. Thompson was interested in studying

vortex induced vibrations and used this as a first test case to (successfully) validate

his code. Thompson carried out tests on a variety of meshes to produce a range of

summary properties.

In 1982, Davis and Moore [9] reported numerical results for this test case and

in 1990 Franke et al. [13] published numerical results generated by their SIMPLEC

code (which is similar to SIMPLE) for this test case for Reynolds numbers less than

or equal to 300.

Experiments were performed by Okajima [30] in 1982 using a water tank.

Although he did not run tests at exactly Re = 100, he did report results very close to

the target Reynolds number (80 and 150). Okajima provided results from multiple

experiments at each tested Reynolds number which provided a better picture of the

spread in experimental results for unsteady flow. Interpolating between the results

of Okajima provides an approximate range of values for experimental Strouhal

numbers.

In 1996 Sohankar et al. [34] published an internal report at Chalmers University

in Sweden reporting the results of a numerical study of a rectangular cylinder in

cross flow at a variety of angles of attack. This was followed by a paper in 1997

which expanded the results and provided more discussion on previously unpublished

experimental work on this test case as well as a compilation of numerical results

from between 1982 and 1995 [35]. Simulations for this work were carried out

using a transient SIMPLEC based code. The effects of blockage ratio and entrance

length were explored producing a range of summary properties for this numerical

simulation. In general, Sohankar showed that the results of his simulation were quite

sensitive to mesh density and the flow domain dimensions. The results published

in the 2007 paper included - results from experiments performed, but never before

published, by Norberg in 2006 [35].

The results discussed above have been summarized in Table 1.1. This test case

continues to be studied as a benchmark case for new algorithms, for example, Lee

et al. [20].
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Study St CL CLrms CD,P CD,P rms

Thompson [38]
Min 0.150 −8.44× 10−5 0.116 1.57 3.03× 10−3

Max 0.150 7.27× 10−4 0.132 1.61 3.87× 10−3

Sohankar et al. [35]
Min 0.120 – 0.138 1.45 –

Max 0.155 – 0.156 1.76 –

Sohankar et al. [35] Exp. 0.145 – – – –

Okajima [30]
Min 0.132 – – – –

Max 0.144 – – – –

Sohankar et al. [34]
Min 0.135 – 0.082 1.348 1.4× 10−3

Max 0.151 – 0.160 1.462 5.9× 10−3

Franke et al. [13] – 0.154 – 0.191 1.55 –

Davis and Moore [9]
Min 0.148 – – 1.64 –

Max 0.153 – – 1.64 –

Table 1.1: Summary of results presented in literature for laminar flow over a square

cylinder.

1.3.3 Turbulent Flow over a Square Cylinder

In 1995 Lyn et al. [26] reported laser-Doppler velocimetry (LDV) experimental

results for flow over a square cylinder with a Reynolds number of 21400. These

results were used as a benchmark for several workshops and additional numerical

studies of unsteady, turbulent flow around a square cylinder [3, 4, 40]. Lyn’s results

are listed in Table 1.2

St CD

0.132± 0.004 2.1

Table 1.2: Experimental results reported by Lyn et al. [26] for turbulent flow over

a square cylinder at Re = 21400.

A large number of numerical solutions were generated for this case for the

second ERCOFTAC workshop on Direct and Large-Eddy Simulation. In total, 7

groups provided 20 different numerical solutions using a variety of Direct Numerical

Simulation (DNS) and LES codes [40]. Table 1.3 was assembled by Voke [40] as a

summary of the workshop results.

Further LES results were reported by Murakami and Mochida [28] in 1995 and

Bouris and Bergeles [4] in 1999. Their results are listed in Table 1.4.
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Study St CL CLrms CD CDrms

UK1 0.13 -0.02 1.01 2.2 0.14

UK2 0.13 -0.04 1.15 2.3 0.14

UK3 0.13 -0.05 1.02 2.23 0.13

GRO 0.133 0.005 1.45 2.09 0.18

NT7 0.131 -0.05 1.39 2.05 0.12

UOI 0.13 0.04 1.29 2.03 0.18

IS1 0.13 -0.29 1.31 2.041 0.26

IS2 0.13 -0.0066 1.235 2.067 0.15

IS3 0.133 -0.125 1.68 2.79 0.36

TIT 0.131 0.0093 1.39 2.62 0.23

ST2 0.16 0.01 1.26 2.72 0.28

ST3 0.15 -0.005 1.33 2.66 0.27

ST4 0.139 0.012 1.36 2.74 0.29

ST5 0.161 0.009 1.38 2.78 0.28

Table 1.3: Summary of results reported from the second ERCOFTAC workshop

on Direct and Large-Eddy Simulation, test case LES2 [40], turbulent flow over a

square cylinder at Re = 21400.

Study St CD

Murakami and Mochida [28] 0.132 2.09

Bouris and Bergeles [4] 0.134 2.18

Table 1.4: Results of the LES studies of Murakami and Mochida [28] and Bouris

and Bergeles [4] for turbulent flow over a square cylinder at Re = 21400.
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URANS simulations of this test case were carried out by Thompson [38] using

the same code as the current study. This study uses wall functions and a version

of the k − ε model with the modifications proposed by Kato and Launder [16] in

their study of bluff bodies (referred to as the KL turbulence model). By varying

the mesh density Thompson [38] generated a range of summary properties which

could be compared to those arising from the ERCOFTAC results. It should be

noted that Thompson’s coarse mesh has the same wall geometry and grid density

as the mesh used in this study. Thompson’s results are summarized in Table 1.5.

St CL CLrms CD CDrms

Coarse Mesh 0.141 4.21× 10−4 1.09 2.15 0.048

Fine Mesh 0.143 1.71× 10−3 1.45 2.29 0.1188

Table 1.5: Summary of results presented by Thompson [38] for turbulent flow over

a square cylinder at Re = 21400.

In order to quantify the effects of using different the turbulence models, Bosch

and Rodi [3], Kato and Launder [16] and Franke and Rodi [12] simulated this

test case geometry at a similar Reynolds number of 22000, using a variety of

turbulence models in conjunction with different near wall treatments. Turbulence

models studied included the KL model [16, 3], the standard k− ε model [16, 3, 12]

and the Reynolds Stress Equation (RSE) model [12]. Solid wall conditions were

applied through either wall functions (WF) [16, 3, 12] or the two-layer approach

(TL) [3, 12]. Their results are summarized in Table 1.6.

1.3.4 Comparisons of Different Time Stepping Methods

Very few studies have attempted to compare the SIMPLE and FS time-stepping

schemes using a finite volume code. A study of different time stepping methods

for finite element solutions of the incompressible Navier-Stokes equations was pre-

sented by Turek [39] in 1996 which compared Backwards Euler, Crank-Nicolson and

Fractional Step (second order) methods for discretizing the time derivative. Turek

[39] also compared a variety of options for solving the non-linear advection terms

in the momentum equations, namely, in his terms, fully non-linear implicit, linear

extrapolated semi-implicit, constant extrapolated semi-implicit and fully explicit.

The study also explored the role of the equation solver and made use of adaptive

time step adjustment methods.
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Study Turb. Mdl. Walls St CLrms CD CDrms

Bosch and Rodi [3] k − ε WF 0.126 0.050 1.62 0.0003

Kato and Launder [16] k − ε WF 0.127 0.100 1.66 -

Franke and Rodi [12] k − ε TL 0.124 0.228 1.79 0.0

Bosch and Rodi [3] k − ε TL 0.122 0.178 1.75 0.0012

Bosch and Rodi [3] KL WF 0.146 1.012 2.11 0.0325

Kato and Launder [16] KL WF 0.145 0.820 2.05 0.0212

Franke and Rodi [12] RSE WF 0.136 1.49 2.15 0.270

Franke and Rodi [12] RSE TL 0.159 1.30 2.43 0.055

Table 1.6: Summary of URANS results presented by Bosch and Rodi [3] and Kato

and Launder [16] and Franke and Rodi [12] for turbulent flow over a square cylinder

at Re = 22000.

All combinations of discretization schemes and non-linear term approaches were

tested in numerical simulations of flow through a venturi pump and vortex shed-

ding from an inclined plate in cross flow. Care was taken to insure that the

implementations of the various schemes were optimized to the same degree and

all simulations were implemented in Fortran 77 and computed on Silicon Graphics

and SUN workstations of “similar performance ratings” [39]. Results including the

pressure difference across the inclined plate and total CPU time allowed detailed

discussion and analysis of the various schemes.

Turek [39] recommended that second order time-stepping schemes should be

used for transient flows because Backwards Euler discretization, fully explicit and

semi-implicit advection term approaches required much smaller time step sizes to

maintain accuracy and stability, reducing their efficiency to the same level as second

order schemes at a larger time step. CPU times were not reported for first order

schemes. Of the second order schemes, Fractional Step was found to be the most

efficient as the Crank-Nicolson scheme was more prone to instability as the time

step increased in size. In general, the transient solutions reported varied widely in

frequency and amplitude, depending on the time-stepping scheme. In some cases,

solutions were completely non-physical, which speaks to the importance of select-

ing an appropriate time-stepping scheme and ensuring that it is operating within

reasonable operating parameters. The study also strongly advocated adaptive time

step control, citing that correctly implemented adaptive time step control could

lead to much greater accuracy while at the same time ensuring numerical stability

[39]. It should be noted that the recommendations of Turek exclude cases in which
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very small time steps are necessary such as in the case of aero-acoustic problems.

1.4 Outline

The remainder of this work will focus on formulating the code used in this work and

then examining the results obtained from test cases as a method of comparing the

two time-stepping schemes. Finally, conclusions and recommendations will be made

concerning the relative benefits of the SIMPLE and FS time stepping methods. The

discussion will be arranged as follows:

• Chapter 2: Numerical Methods

• Chapter 3: Laminar Flow in a Lid Driven Skewed Cavity

• Chapter 4: Laminar Flow over a Square Cylinder

• Chapter 5: Turbulent Flow over a Square Cylinder

• Chapter 6: Conclusions
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Chapter 2

Numerical Methods

The code used for this study was a modified version of the finite volume RANS

code, STREAM, developed by Lien and Leschziner [22]. The original STREAM

code employed the SIMPLE algorithm first proposed by Patankar and Spalding

[31]. A second version of the STREAM employs the Fractional Step time-stepping

method following the framework described by Zang et al. [42] who extended the

work of Kim and Moin [18] to work on a collocated grid. The work of Kim and

Moin [18] was based on earlier work by Chorin [7] and Teman [37]. STREAM solves

the governing equations on a curvilinear, non-orthogonal, co-located grid, using the

interpolation scheme first proposed by Rhie and Chow [32].

Initial modifications to the SIMPLE version of the STREAM code were carried

out as part of the study detailed in the Masters thesis by Thompson [38] in order to

predict vortex shedding caused by an infinite square cylinder in cross flow. Parallel

modifications to the Fractional Step version of the STREAM code have been carried

out as part of this study in order to compare the FS and SIMPLE algorithms.

2.1 Governing Equations

The flows of interest in this study are assumed to be incompressible Newtonian

fluids which is a standard assumption for most gases with a Mach number of less

than 0.3. All studied flows are time dependent. Two of them exhibit laminar flow

while the third is known to be turbulent. Incompressible transient flows can be

fully described by a momentum equation and a continuity equation. For this study,

the momentum equation is
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∂ui

∂t
+

∂uiuj

∂xj

= −1

ρ

∂P

∂xi

+
∂

∂xj

[
ν

(
∂ui

∂xj

+
∂uj

∂xi

)]
(2.1)

and the continuity equation is
∂ui

∂xi

= 0 (2.2)

2.1.1 Non-Dimensionalization of Governing Equations

Variables in the STREAM code were non-dimensionalized as follows.

t∗ =
tu∞
D

, x∗ =
xi

D
, u∗i =

u

u∞
, (2.3)

P ∗ =
P

ρu2
∞

, ν∗ =
ν

u∞D
=

1

Re
,

Upon the substitution of these non-dimensional parameters into the governing

equations, Equations 2.1 and 2.2 become

∂u∗i
∂t∗

+
∂

∂x∗j

(
u∗i u

∗
j

)
= −∂P ∗

∂x∗i
+

∂

∂x∗j

[
1

Re

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)]
(2.4)

and
∂u∗i
∂x∗i

= 0 (2.5)

From this point on the superscript * will be dropped for the sake of simplicity but

all following values can be assumed to be dimensionless unless otherwise stated.

2.2 Turbulence

In the case of turbulent flow, a choice must be made of whether or not the computer

resources available are adequate to resolve all of the turbulent fluctuations present

in the flow. As the time scale and length scale of the smallest turbulent fluctuations

are typically much smaller than the time and length scales for the flow in question, it

is often advantageous to decompose the quantities of interest into ensemble averaged

and fluctuating components. That is,

φ = 〈φ〉+ φ′ (2.6)

where 〈φ〉 is the ensemble averaged value of φ and φ′ denotes the random fluctuating

component of φ. The ensemble average is defined as

〈φ〉 =
1

N

N∑
i=1

φi (2.7)
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where N is a large number, which represents the number of physical tests sampled,

and φ represents a sampled value at one particular time and space coordinate in

each of the sampled tests. Substituting Equation 2.6 into Equations 2.1 and 2.2

yields

∂ 〈ui〉
∂t

+
∂

∂xj

(
〈ui〉 〈uj〉+

〈
u′iu

′
j

〉)
= −∂ 〈P 〉

∂xj

+
∂

∂xj

[
ν

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)]
(2.8)

and
∂ 〈ui〉
∂xi

= 0 (2.9)

respectively.

The primary difference between Equations 2.1 and 2.8, besides the change from

actual values to ensemble averaged values in most of the terms, is the addition

of the Reynolds stress tensor
〈
u′iu

′
j

〉
, a new term which must be modeled for the

system of equations to be closed.

2.2.1 Turbulence Models

One of the most common ways of modeling the Reynolds stress is using the Boussi-

nesq approximation

−
〈
u′iu

′
j

〉
= νt

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
− 2

3
δijk (2.10)

where k is the turbulent kinetic energy, that is

k =
1

2
〈u′iu′i〉 (2.11)

This allows Equation 2.8 to be written in the convenient form,

∂ 〈ui〉
∂t

+
∂

∂xj

(〈ui〉 〈uj〉) = − ∂

∂xi

(
〈P 〉+

2

3
k

)
+

∂

∂xj

[
(ν + νt)

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)]
(2.12)

The k transport equation is

∂ 〈k〉
∂t

+
∂ 〈uj〉 〈k〉

∂xj

= Pk − 〈ε〉+
∂

∂xj

(
〈νt〉
σk

∂ 〈k〉
∂xj

)
(2.13)

and the turbulence dissipation rate, ε, is obtained by solving

∂ 〈ε〉
∂t

+
∂ 〈uj〉 〈ε〉

∂xj

=
〈ε〉
〈k〉

(Cε1Pk − Cε2 〈ε〉) +
∂

∂xj

(
〈νt〉
σε

∂ 〈ε〉
∂xj

)
(2.14)

13



where the eddy viscosity is modeled as

〈νt〉 = Cµ
〈ε〉2

〈k〉
(2.15)

Turbulence production takes the form

Pk = −
〈
u′iu

′
j

〉 ∂ 〈ui〉
∂xj

= Cµ 〈ε〉S2 (2.16)

where the turbulent strain rate invariant is

S =
〈k〉
〈ε〉

√
1

2

[
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

]2

(2.17)

So Equation 2.16 becomes

Pk = Cµ
〈k〉2

〈ε〉

[
1

2

[
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

]2
]

(2.18)

Finally to provide better results in bluff body flow, the Kato-Launder [16]

modification to the k − ε equations is used. That is,

Pk = Cµ 〈ε〉SΩ (2.19)

where

Ω =
〈k〉
〈ε〉

√
1

2

[
∂ 〈ui〉
∂xj

− ∂ 〈uj〉
∂xi

]2

(2.20)

Thus, Equation 2.19 becomes

Pk = Cµ
〈k〉2

〈ε〉

√
1

2

[
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

]2 [
∂ 〈ui〉
∂xj

− ∂ 〈uj〉
∂xi

]2

(2.21)

The addition of the term Ω improves the accuracy of the k − ε model for bluff

body flows because the k−ε model typically over predicts turbulence production in

stagnation regions for which the Ω ≈ 0. In regions of simple shear, Ω ≈ S, allowing

the model to act like the standard k− ε model. Table 2.1 lists the standard values

of the constants in the k and ε equations. From now on the ensemble averaged

notation, <>, will be dropped for simplicity but all values can be assumed to be

ensemble averaged unless otherwise stated.

14



Cµ Cε1 Cε2 σk σε

0.09 1.44 1.92 1.0 1.3

Table 2.1: Empirical turbulence model constants [22].

2.2.2 Wall Functions

Turbulence close to a solid wall is difficult to model as the gradients of the various

flow properties tends to be quite steep and thus requires a large number of control

volumes to resolve them. To increase the efficiency of the solution, near wall

turbulent effects are modeled with the use of wall functions. For high Reynolds

number flows, the boundary layer can be separated into the inner and outer regions.

Non-dimensionalizing the distance from the wall into the flow, denoted by y+, the

inner region is defined as 0 < y+ < 11.6 and the outer (or log law) region is defined

as y+ > 11.6. The definition of y+ is

y+ =
yuτ

ν
=

yC
1/4
µ k1/2

ν
(2.22)

where the shear velocity is

uτ =

√
τw

ρ
by definition (2.23)

uτ = C
1/4
µ k

1/2 from log – law

and the shear stress at the wall is

τw =
µu

y
for y+ < 11.6 (2.24)

τw =
κC

1/4
µ k1/2ρu

ln Ey+
for y+ > 11.6

where κ = 0.42 is the von Kármán constant and E = 9.8 is the integration constant

for smooth walls. Thus the velocity profile will be accurately approximated for a

turbulent boundary layer as

u+ =
u

uτ

=
ln Ey+

κ
(2.25)

as well as turbulent kinetic energy,

k = C−1/4
µ u2

τ (2.26)

and the dissipation rate,

ε =
u3

τ

κy
=

C
3/4
µ k3/2

κy
. (2.27)
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2.3 Transformation to Curvilinear Coordinates

In most practical numerical simulations of fluid flows, bounding walls and other

such surfaces are not shaped in such a way that they can mapped by an orthogonal

grid so that the solid surfaces and boundaries line up with the cell boundaries. On

the other hand the most convenient way to discretize the governing equations is in

using a uniform, orthogonal grid. The governing equations described in the previous

sections have been written in Cartesian space, denoted by xi i.e. (x1, x2, x3). This

difference between numerical and physical convenience can be bridged by mapping

the governing equations from the Cartesian coordinate system to an arbitrary,

curvilinear coordinate system, ξi i.e. (ξ1, ξ2, ξ3) which will follow the geometry

of the physical system to be modeled as suggested by, for example, Anderson [2].

First it is important to note that the momentum, k and ε equations can be

written in the form

∂φ

∂t
+

∂ujφ

∂xj

=
∂

∂xj

[
Γφ

∂φ

∂xj

]
+ Sφ (2.28)

The definition of the source term Sφ and the diffusion coefficient Γφ is determined

by the variable represented by φ. Table 2.2 lists the possible variables represented

by φ and the source terms related to them.

Equation φ Γφ Sφ

2.12 ui ν + νt − ∂
∂xi

(
P + 2

3
k
)

+ ∂
∂xj

[
(ν + νt)

∂uj

∂xi

]
2.13 k νt

σk
Pk − ε

2.14 ε νt

σε

ε
k

(Cε1Pk − Cε2ε)

Table 2.2: Definitions of source terms and diffusion coefficients of governing

equations

Knowing that φ = φ(xi, t) and that xi = xi (ξj) the chain rule can be applied

to transform the differentials from the Cartesian to the curvilinear system. i.e.

dxi =
∂xi

∂ξj

dξj = Jijdξj (2.29)

or

dξi =
∂ξi

∂xj

dxj (2.30)
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where J is the Jacobian matrix, with its ijth component being

Jij =

(
∂xi

∂ξj

)
(2.31)

From this point on, a subscript spatial or time coordinate variable will denote

a partial derivative. For example

∂xi

∂ξj

= xiξj
(2.32)

Applying the chain rule expansion to Equation 2.28 yields

φt + (ujφ)ξi
ξixj

=
(
Γφφxj

)
ξi

ξixj
+ Sφ (2.33)

By comparing Equations 2.29 and 2.30 it can be shown that

ξixj
=
(
J−1
)

ij
(2.34)

Substituting Equation 2.34 into Equation 2.33 provides

φt + (ujφ)ξi

(
J−1
)

ij
=
(
Γφφxj

)
ξi

(
J−1
)

ij
+ Sφ (2.35)

As we are interested in two-dimensional simulation of flows in this study, Equa-

tion 2.35 will be expanded for the two dimensional case of i = 1, 2 and j = 1, 2. In

this case, the Jacobian matrix can be written as

J =

[
x1ξ1 x1ξ2

x2ξ1 x2ξ2

]
(2.36)

This Jacobian matrix can be easily inverted by finding its adjugate and dividing

by its determinant. That is,

J−1 =
1

J

[
x2ξ2 −x1ξ2

−x2ξ1 x1ξ1

]
=

[
ξ1x1

ξ1x2

ξ2x1
ξ2x2

]
(2.37)

where the Jacobian, J , (not to be confused with the Jacobian matrix, J) is

J = det (J) = x1ξ1x2ξ2 − x1ξ2x2ξ1 (2.38)
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Expanding Equation 2.33 into 2 dimensions provides

φt +

(u1φ)ξ1

(
J−1
)
11

+ (u2φ)ξ1

(
J−1
)
12

+ (2.39)

(u1φ)ξ2

(
J−1
)
21

+ (u2φ)ξ2

(
J−1
)
22

=

(Γφφx1)ξ1

(
J−1
)
11

+ (Γφφx2)ξ1

(
J−1
)
12

+

(Γφφx1)ξ2

(
J−1
)
21

+ (Γφφx2)ξ2

(
J−1
)
22

+

Sφ

Applying the chain rule to the remaining xi partial derivatives provides

φx1 = φξ1ξ1x1
+ φξ2ξ2x1

= φξ1

(
J−1
)
11

+ φξ2

(
J−1
)
21

(2.40)

φx2 = φξ1ξ1x2
+ φξ2ξ2x2

= φξ1

(
J−1
)
12

+ φξ2

(
J−1
)
22

Substituting Equation 2.40 into Equation 2.39 provides

φt + (2.41)

(u1φ)ξ1

(
J−1
)
11

+ (u2φ)ξ1

(
J−1
)
12

+

(u1φ)ξ2

(
J−1
)
21

+ (u2φ)ξ2

(
J−1
)
22

=(
Γφφξ1

(
J−1
)
11

+ Γφφξ2

(
J−1
)
21

)
ξ1

(
J−1
)
11

+
(
Γφφξ1

(
J−1
)
12

+ Γφφξ2

(
J−1
)
22

)
ξ1

(
J−1
)
12

+(
Γφφξ1

(
J−1
)
11

+ Γφφξ2

(
J−1
)
21

)
ξ2

(
J−1
)
21

+
(
Γφφξ1

(
J−1
)
12

+ Γφφξ2

(
J−1
)
22

)
ξ2

(
J−1
)
22

+

Sφ

Combining terms provides

φt + (2.42)(
u1φ

(
J−1
)
11

+ u2φ
(
J−1
)
12

)
ξ1

+(
u1φ

(
J−1
)
21

+ u2φ
(
J−1
)
22

)
ξ2

=(
Γφφξ1

(
J−1
)2
11

+ Γφφξ2

(
J−1
)
21

(
J−1
)
11

+ Γφφξ1

(
J−1
)2
12

+ Γφφξ2

(
J−1
)
22

(
J−1
)
12

)
ξ1

+(
Γφφξ1

(
J−1
)
11

(
J−1
)
21

+ Γφφξ2

(
J−1
)2
21

+ Γφφξ1

(
J−1
)
12

(
J−1
)
22

+ Γφφξ2

(
J−1
)2
22

)
ξ2

+

Sφ

Substituting Equation 2.37 into Equation 2.42 and rearranging the terms provides
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the generic transport equation for two dimensional curvilinear space.

Jφt + (2.43)(
u1φx2ξ2 − u2φx1ξ2

)
ξ1

+
(
u2φx1ξ1 − u1φx2ξ1

)
ξ2

− 1

J

(
Γφφξ1x2

2
ξ2

+ Γφφξ1x1
2
ξ2

)
ξ1

− 1

J

(
Γφφξ2x2

2
ξ1

+ Γφφξ2x1
2
ξ1

)
ξ2

=

− 1

J

(
Γφφξ2x2ξ1x2ξ2 + Γφφξ2x1ξ1x1ξ2

)
ξ1

− 1

J

(
Γφφξ1x2ξ2x2ξ1 + Γφφξ1x1ξ2x1ξ1

)
ξ2

+ JSφ

The conversion of JSφ to curvilinear coordinates is dependent on the variable

assigned to φ and is exemplified in Appendix A for φ = u1 and φ = u2.

2.4 Finite Volume Method

In order to solve practical flow problems, a curvilinear coordinate system will be

chosen such that each control volume or cell in the coordinate system is a square

with unit length sides and such that the cell faces are defined by a constant value

of either ξ1 or ξ2. This is shown in Figure 2.1.
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Figure 2.1: Finite volume grid
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Integrating Equation 2.43 over the P control volume shown in Figure 2.1 provides

J∆ξ1∆ξ2φt + (2.44)

∆ξ2

[(
u1x2ξ2 − u2x1ξ2

)
e
φe −

(
u1x2ξ2 − u2x1ξ2

)
w

φw

]
∆ξ1

[(
u2x1ξ1 − u1x2ξ1

)
e
φn −

(
u2x1ξ1 − u1x2ξ1

)
w

φs

]
−∆ξ2

J

[(
Γφφξ1x2

2
ξ2

+ Γφφξ1x1
2
ξ2

)
e
−
(
Γφφξ1x2

2
ξ2

+ Γφφξ1x1
2
ξ2

)
w

]
−∆ξ1

J

[(
Γφφξ2x2

2
ξ1

+ Γφφξ2x1
2
ξ1

)
n
−
(
Γφφξ2x2

2
ξ1

+ Γφφξ2x1
2
ξ1

)
s

]
=

−∆ξ2
J

[(
Γφφξ2x2ξ1x2ξ2 + Γφφξ2x1ξ1x1ξ2

)
e
−
(
Γφφξ2x2ξ1x2ξ2 + Γφφξ2x1ξ1x1ξ2

)
w

]
−∆ξ1

J

[(
Γφφξ1x2ξ2x2ξ1 + Γφφξ1x1ξ2x1ξ1

)
n
−
(
Γφφξ1x2ξ2x2ξ1 + Γφφξ1x1ξ2x1ξ1

)
s

]
+∆ξ1∆ξ2JSφ

Due to the arrangement of the ξi grid, both ∆ξ1 and ∆ξ2 are unity. The face values

in the convective terms (terms 2 and 3 of Equation 2.44) are approximated using

the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme

[21]. The QUICK convection scheme dictates that face values are calculated using

an upwind quadratic interpolation; for the east face this becomes

φe =

3
8
φE + 3

4
φP − 1

8
φW if qe > 0

3
8
φP + 3

4
φE − 1

8
φEE if qe < 0

(2.45)

where the volume flux across the east face, qe is found by

qe ≈
(
u1x2ξ2

)
e
−
(
u2x1ξ2

)
e

(2.46)

for future reference,

qn ≈
(
−u1x2ξ1

)
n

+
(
u2x1ξ1

)
n

(2.47)

Applying Equation 2.46 at the west face and Equation 2.47 at the south face

provides the values of qw and qs respectively. The advecting velocities u1 and u2 in

Equations 2.46 and 2.47 are calculated at the cell faces using the Pressure Weighted

Interpolation Method (PWIM) proposed by Rhie and Chow [32]. For example,

u1e =
1

2
[û1P + û1E] +

∆t

J

(
−
[
P n+1

E − P n+1
P

] (
x2ξ2

)
e
+
[
P n+1

ne − P n+1
se

] (
x2ξ1

)
e

)
(2.48)

Noting that the first part of each of the convection terms is the face volume

flux, this term can be used to convert the convection terms into a more convenient
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form. For example, for the east face(
u1x2ξ2 − u2x1ξ2

)
e
φe ≈ qeφe ≈ (2.49)

max [qe, 0]
(

3
8
φE + 3

4
φP − 1

8
φW

)
−max [−qe, 0]

(
3
8
φP + 3

4
φE − 1

8
φEE

)
The value of φ for the diffusive flux terms (terms 4 and 5 in Equation 2.44) are

determined using the second order central difference scheme, for example,(
Γφφξ1x2

2
ξ2

+ Γφφξ1x1
2
ξ2

)
e
=
[
Γφx2

2
ξ2

+ Γφx1
2
ξ2

]
(φE − φP ) (2.50)

The cross diffusive terms (terms 6 and 7 in Equation 2.44) are approximated in a

similar way, for example,(
Γφφξ2x2ξ1x2ξ2 + Γφφξ2x1ξ1x1ξ2

)
e
=
[
Γφx2ξ1x2ξ2 + Γφx1ξ1x1ξ2

]
(φne − φse) (2.51)

where

φne =
φN + φP + φP + φNE

4
(2.52)

and similar approximations are made at the other corners.

Making the substitutions described by Equations 2.49, 2.50 and 2.51 into Equa-

tion 2.44 provides

JφP t (2.53)

+
(
max [qe, 0]

(
3
8
φE + 3

4
φP − 1

8
φW

)
−max [−qe, 0]

(
3
8
φP + 3

4
φE − 1

8
φEE

))
−
(
max [qw, 0]

(
3
8
φP + 3

4
φW − 1

8
φWW

)
−max [−qw, 0]

(
3
8
φW + 3

4
φP − 1

8
φE

))
+
(
max [qn, 0]

(
3
8
φN + 3

4
φP − 1

8
φS

)
−max [−qn, 0]

(
3
8
φP + 3

4
φN − 1

8
φNN

))
−
(
max [qs, 0]

(
3
8
φP + 3

4
φS − 1

8
φSS

)
−max [−qs, 0]

(
3
8
φS + 3

4
φP − 1

8
φN

))
−
([

Γφ

J
x2

2
ξ2

+
Γφ

J
x1

2
ξ2

]
e
(φE − φP )−

[
Γφ

J
x2

2
ξ2

+
Γφ

J
x1

2
ξ2

]
w

(φP − φW )
)

−
([

Γφ

J
x2

2
ξ1

+
Γφ

J
x1

2
ξ1

]
n
(φN − φP )−

[
Γφ

J
x2

2
ξ1

+
Γφ

J
x1

2
ξ1

]
s
(φP − φS)

)
=

−
([

Γφ

J
x2ξ1x2ξ2 +

Γφ

J
x1ξ1x1ξ2

]
e
(φne − φse)−

[
Γφ

J
x2ξ1x2ξ2 +

Γφ

J
x1ξ1x1ξ2

]
w

(φnw − φsw)
)

−
([

Γφ

J
x2ξ2x2ξ1 +

Γφ

J
x1ξ2x1ξ1

]
n
(φne − φnw)−

[
Γφ

J
x2ξ2x2ξ1 +

Γφ

J
x1ξ2x1ξ1

]
s
(φse − φsw)

)
+JSφ

Collecting like terms allows the equation to be written as

JφP t + AP φP − AEφE − AW φW − ANφN − ASφS = JSDC
φ + JSCD

φ + JSφ (2.54)
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where

AE = max [−qe, 0] +

[
Γφ

J

(
x2

2
ξ2

+ x1
2
ξ2

)]
e

(2.55)

AW = max [qw, 0] +

[
Γφ

J

(
x2

2
ξ2

+ x1
2
ξ2

)]
w

(2.56)

AN = max [−qn, 0] +

[
Γφ

J

(
x2

2
ξ1

+ x1
2
ξ1

)]
n

(2.57)

AS = max [qs, 0] +

[
Γφ

J

(
x2

2
ξ1

+ x1
2
ξ1

)]
s

(2.58)

AP = AE + AW + AS + AN + qe − qw + qn − qs (2.59)

The values of the convection terms in Equations 2.55 through 2.58 correspond

to a first order upwind convection scheme. This is returned to the QUICK scheme

through the deferred correction source term, JSDC
φ , which takes the form

JSDC
φ = (2.60)

−
(
max [qe, 0]

(
3
8
φE − 1

4
φP − 1

8
φW

)
−max [−qe, 0]

(
3
8
φP − 1

4
φE − 1

8
φEE

))
+
(
max [qw, 0]

(
3
8
φP − 1

4
φW − 1

8
φWW

)
−max [−qw, 0]

(
3
8
φW − 1

4
φP − 1

8
φE

))(
−max [qn, 0]

(
3
8
φN − 1

4
φP − 1

8
φS

)
−max [−qn, 0]

(
3
8
φP − 1

4
φN − 1

8
φNN

))
+
(
max [qs, 0]

(
3
8
φP − 1

4
φS − 1

8
φSS

)
−max [−qs, 0]

(
3
8
φS − 1

4
φP − 1

8
φN

))
Finally, the cross diffusion source term is written as

JSCD
φ = (2.61)

−
([

Γφ

J

(
x2ξ1x2ξ2 + x1ξ1x1ξ2

)]
e
+
[

Γφ

J

(
x2ξ2x2ξ1 + x1ξ2x1ξ1

)]
n

)
φne

+
([

Γφ

J

(
x2ξ1x2ξ2 + x1ξ1x1ξ2

)]
e
+
[

Γφ

J

(
x2ξ2x2ξ1 + x1ξ2x1ξ1

)]
s

)
φse

+
([

Γφ

J

(
x2ξ1x2ξ2 + x1ξ1x1ξ2

)]
w

+
[

Γφ

J

(
x2ξ2x2ξ1 + x1ξ2x1ξ1

)]
n

)
φnw

−
([

Γφ

J

(
x2ξ1x2ξ2 + x1ξ1x1ξ2

)]
w

+
[

Γφ

J

(
x2ξ2x2ξ1 + x1ξ2x1ξ1

)]
s

)
φsw

The continuity equation, Equation 2.5, can also be integrated over the standard

control volume and written in curvilinear terms. It becomes,

qe − qw + qn − qs = 0 (2.62)

which allows Equation 2.59 to be rewritten as

AP = AE + AW + AS + AN . (2.63)
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2.5 Time-Stepping Schemes

The time derivative (transient) term of the transport equations (term 1 in Equation

2.54) is often set to zero, which causes a steady state solution to be generated. In

cases that it is included in the transport equations it is typically included for one of

two reasons. The first is to observe some transient flow phenomena such as acoustic

waves or vortex shedding. The second is included to improve convergence of difficult

steady state problems by allowing the solution to reach steady state in a manner

which mimics natural flow physics. In the first case, temporal accuracy is important

while in the second case, commonly referred to as “pseudo time-stepping,” temporal

accuracy is not important as only the final solution is of interest.

A variety of methods can be used to deal with the transient term in the generic

transport equation. These methods range from fully explicit schemes to fully

implicit time-stepping schemes. Fully explicit schemes, such as the forward Euler

or Runge-Kutta methods, depend only on information from the previous time step.

As a result, explicit schemes tend to march through time steps with a relatively low

computational cost as the equations governing flow through each control volume

can be solved individually. The primary disadvantage of explicit schemes is that

they tend to become unstable when time step sizes get too large. This restriction

on step size can be prohibitively limiting especially in cases where only the final

steady state solution is of interest.

In contrast to explicit time-stepping schemes, implicit schemes such as Back-

wards Euler or Crank-Nicolson use both information from the previous time step

as well as information from the current time step. These schemes allow the use

of larger maximum time step sizes than explicit schemes which can make them

more efficient for reaching a steady state solution. The need for information at the

current time step, however, requires that the flow values in all control volumes in

the domain be solved simultaneously which corresponds to a large computational

cost at each time step.

Combinations of implicit and explicit time-stepping schemes are typically called

semi-implicit or implicit explicit (IMEX) methods. These time-stepping schemes

take flow values from the previous time step for some terms and the current time

step for the rest of the terms.

In addition to IMEX methods for solving individual transport equations, semi-

implicit time-stepping schemes can also be employed in which some of the flow

equations are solved implicitly and some are solved explicitly. Two different schemes
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will be evaluated in this work; one is the SIMPLE algorithm which involves solving

for pressure correction and velocity implicitly. The second time-stepping scheme

evaluated here is the Fractional Step method which solves for pressure implicitly but

solves for the velocity components explicitly. In both cases turbulence quantities

are solved implicitly to ensure stability.

The implementations of these time-stepping schemes in the STREAM code

approximate the time derivative as

φP t '
φn+1

P − φn
P

∆t
(2.64)

where a superscript containing the index n indicates a value taken at the nth, or

previous, time step.

The velocity transport equations (ie φ = u1 and φ = u2) are treated differently

from the other transport equations as they contain pressure as well as velocity.

These equations are coupled with the continuity equation, Equation 2.43, to deter-

mine the velocity and pressure fields. The momentum equation for u1 is rewritten

as

J
∆t

u1
n+1
P + AP u1P − AEu1E − AW u1W − ANu1N − ASu1S = (2.65)

J
∆t

u1
n
P + Qu1 +

(
−Pξ1x2ξ2 + Pξ2x2ξ1

)
P

where

Qu1 = JSQUICK
u1

+ JSCD
u1

+ JSu1 −
(
−Pξ1x2ξ2 + Pξ2x2ξ1

)
P

(2.66)

It should be noted that the time coordinate has not been set for the majority of

the terms in Equation 2.65. A decision must be made for where in time, relative to

the current step (n + 1), each of the flow variables will sampled at in order to solve

the equation. The choice of position in time for each of the terms depends on the

time-stepping scheme. In general, a fully explicit scheme would have all remaining

terms sampled at the nth time step while an implicit scheme will take them all at

the (n + 1)th step.
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2.5.1 SIMPLE

To implement an implicit time-stepping scheme, all terms with unassigned time

steps are assigned to be sampled at the (n+1)th time step. Equation 2.65 is solved

for the current cell velocity providing

u1
n+1
P =

[
1

ÂP

( ∑
nb=E,W,N,S

Anbu1nb + Qu1 +
J

∆t
u1

n
P +

(
−Pξ1x2ξ2 + Pξ2x2ξ1

)
P

)]n+1

(2.67)

where

ÂP =

(
J

∆t
+ AP

)
In this section all flow values will be assumed to be at the (n+1)th time step unless

otherwise stated.

In order to solve this equation, velocity and pressure are cast as an unconverged

or guessed solutions and corrections (denoted by a superscript * and ’ respectively.)

In other words,

u1 = u∗1 + u′1 (2.68)

u2 = u∗2 + u′2

P = P ∗ + P ′

Substituting this into Equation 2.67 provides

(u∗1 + u′1)P = 1dAP

(∑
nb=E,W,N,S Anb (u∗1 + u′1)nb + Qu1 + J

∆t
u1

n
P

)
(2.69)

+ 1dAP

(
− (P ∗ + P ′)ξ1

x2ξ2 + (P ∗ + P ′)ξ2
x2ξ1

)
P

For a given guessed pressure field, a corresponding unconverged velocity field

can be calculated, which satisfies the momentum equation, or

(u∗1)P =
1

ÂP

( ∑
nb=E,W,N,S

Anbu1
∗
nb + Qu1 +

J

∆t
u1

n
P +

(
−P ∗

ξ1
x2ξ2 + P ∗

ξ2
x2ξ1

)
P

)
(2.70)

Subtracting Equation 2.70 from Equation 2.69 provides

u′1P =
1

ÂP

∑
nb=E,W,N,S

Anbu1
′
nb +

1

ÂP

(
−P ′

ξ1
x2ξ2 + P ′

ξ2
x2ξ1

)
P

(2.71)

When the solution has converged all of the correction terms will become zero,

thus the SIMPLE algorithm assumes that the u1
′
nb terms in Equation 2.71 can all

be neglected, which provides the velocity correction equation,
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u′1P =
1

ÂP

(
−P ′

ξ1
x2ξ2 + P ′

ξ2
x2ξ1

)
P

(2.72)

Similarly, u′2 can be found to be

u′2P =
1

ÂP

(
P ′

ξ1
x1ξ2 − P ′

ξ2
x1ξ1

)
P

(2.73)

The continuity equation, Equation 2.62, can be written in the unconverged-

corrected form

q′e − q′w + q′n − q′s + q∗e − q∗w + q∗n − q∗s = 0 (2.74)

or

q′e − q′w + q′n − q′s = −ṁ∗ (2.75)

where the mass imbalance is defined as

ṁ∗ = q∗e − q∗w + q∗n − q∗s (2.76)

To find the volume flux corrections, Equations 2.72 and 2.73 are substituted

into Equations 2.46 and 2.47. This provides

q′e =

(
1

ÂP

(
−P ′

ξ1
x2ξ2 + P ′

ξ2
x2ξ1

)
x2ξ2

)
e

−
(

1

ÂP

(
P ′

ξ1
x1ξ2 − P ′

ξ2
x1ξ1

)
x1ξ2

)
e

(2.77)

Equation 2.77 can be simplified for the sake of the matrix solver used in the

present study by neglecting P ′
ξ2

x2ξ1 from the first group of terms and P ′
ξ1

x1ξ2 from

the second set of terms. This provides the result,

q′e = −
(

1

ÂP

[
P ′

ξ1

(
x2

2
ξ2

+ x1
2
ξ2

)])
e

(2.78)

Similarly,

q′n = −
(

1

ÂP

[
P ′

ξ2

(
x1

2
ξ1

+ x2
2
ξ1

)])
n

(2.79)

Substituting this back into Equation 2.75 provides

−
(

1

ÂP

[
P ′

ξ1

(
x2

2
ξ2

+ x1
2
ξ2

)])
e

(2.80)

+

(
1

ÂP

[
P ′

ξ1

(
x2

2
ξ2

+ x1
2
ξ2

)])
w

−
(

1

ÂP

[
P ′

ξ2

(
x1

2
ξ1

+ x2
2
ξ1

)])
n

+

(
1

ÂP

[
P ′

ξ2

(
x1

2
ξ1

+ x2
2
ξ1

)])
s

= −ṁ∗
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The pressure derivatives at the faces can be approximated as, for example,(
P ′

ξ1

)
e
= P ′

E − P ′
P (2.81)

Equation 2.80 then becomes

− [P ′
E − P ′

P ]

(
x2

2
ξ2

+ x1
2
ξ2

ÂP

)
e

+ [P ′
P − P ′

W ]

(
x2

2
ξ2

+ x1
2
ξ2

ÂP

)
w

(2.82)

− [P ′
N − P ′

P ]

(
x1

2
ξ1

+ x2
2
ξ1

ÂP

)
n

+ [P ′
P − P ′

S]

(
x1

2
ξ1

+ x2
2
ξ1

ÂP

)
s

= −ṁ∗

This equation can be rewritten in a form which is convenient to solve using an

iterative matrix solver, that is

AP ′

P P ′
P =

∑
nb=E,W,N,S

AP ′

nbP
′
nb − ṁ∗ (2.83)

where

AP ′

E =

(
x2

2
ξ2

+ x1
2
ξ2

ÂP

)
e

AP ′

W =

(
x2

2
ξ2

+ x1
2
ξ2

ÂP

)
w

AP ′

N =

(
x1

2
ξ1

+ x2
2
ξ1

ÂP

)
n

AP ′

S =

(
x1

2
ξ1

+ x2
2
ξ1

ÂP

)
s

AP ′

P =
∑

nb=E,W,N,S

AP ′

nb

Solution of this equation provides the pressure corrections for the current time

step. Given the pressure corrections, Equations 2.72 and 2.73 can be used to find

velocity corrections to the velocity field produced by solving Equation 2.70 and its

equivalent for the u∗2 field. The final step is to calculate the corrected pressure field

and velocity fields. To provide stable convergence, under relaxation factors are used

to scale the correction factors so that

PP = P ∗
P + αP P ′

P (2.84)

u1P = u1
∗
P + αu1u1

′
P

u2P = u2
∗
P + αu2u2

′
P

For this study, constant values of αP = 0.4 and αu1 = αu2 = 0.6 were used.
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2.5.2 Fractional Step

The fractional step method uses a more explicit approach than SIMPLE. Equation

2.65 is solved for u1
n+1
P while all the right hand terms are evaluated at the nth time

step with the exception of the pressure terms which are evaluated at the (n + 1)th.

u1
n+1
P = u1

n
P +

∆t

J

[
−AP u1P +

∑
nb=E,W,N,S

Anbu1nb + Qu1

]n

+
(
−Pξ1x2ξ2 + Pξ2x2ξ1

)n+1

P

(2.85)

or

u1
n+1
P = û1P +

∆t

J

(
−Pξ1x2ξ2 + Pξ2x2ξ1

)n+1

P
(2.86)

where

û1P = u1
n
P +

∆t

J

[
−AP u1P +

∑
nb=E,W,N,S

Anbu1nb + Qu1

]n

(2.87)

A pressure equation is derived from the continuity equation, Equation 2.62.

The face volume flows can be found using PWIM [32] to find the face velocities as

described earlier, i.e. Equation 2.48. The face velocities are then substituted into

Equations 2.46 and 2.47 to provide the face volume flows. Substituting the volume
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flows into Equation 2.62 provides[
1
2
[û1P + û1E] +

(
∆t
Je

[P n+1
ne − P n+1

se ]
(
x2ξ1

)
e

)] [
x2ξ2

]
e

(2.88)

+
[
−1

2
[û2P + û2E] +

(
∆t
Je

[P n+1
ne − P n+1

se ]
(
x1ξ1

)
e

)] [
x1ξ2

]
e

+
[
P n+1

P − P n+1
E

]
∆t
Je

([
x2ξ2

]2
e
+
[
x1ξ2

]2
e

)
+
[
−1

2
[û1P + û1W ] +

(
−∆t

Jw
[P n+1

nw − P n+1
sw ]

(
x2ξ1

)
w

)] [
x2ξ2

]
w

+
[

1
2
[û2W + û2P ] +

(
−∆t

Jw
[P n+1

nw − P n+1
sw ]

(
x1ξ1

)
w

)] [
x1ξ2

]
w

+
[
P n+1

P − P n+1
W

]
∆t
Jw

([
x2ξ2

]2
w

+
[
x1ξ2

]2
w

)
+
[
−1

2
[û1P + û1N ] +

(
∆t
Jn

[P n+1
ne − P n+1

nw ]
(
x1ξ1

)
n

)] [
x2ξ1

]
n

+
[

1
2
[û2P + û2N ] +

(
∆t
Jn

[P n+1
ne − P n+1

nw ]
(
x1ξ2

)
n

)] [
x1ξ1

]
n

+
[
P n+1

P − P n+1
N

]
∆t
Jn

([
x2ξ1

]2
n

+
[
x1ξ1

]2
n

)
+
[

1
2
[û1S + û1P ] +

(
∆t
Js
− [P n+1

se − P n+1
sw ]

(
x1ξ1

)
s

)] [
x2ξ1

]
s

+
[
−1

2
[û2S + û2P ] +

(
−∆t

Js
[P n+1

se − P n+1
sw ]

(
x1ξ2

)
s

)] [
x1ξ1

]
s

+
[
P n+1

P − P n+1
S

]
∆t
Js

([
x2ξ1

]2
s
+
[
x1ξ1

]2
s

)
= 0

which can be written in a form which allows a pressure field to be calculated. The

final form of the pressure equation is

AP
P P n+1

P =
∑

nb=E,W,N,S

AP
nbP

n+1
nb + SP

u (2.89)
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where

AP
E =

∆t

Je

([
x2ξ2

]2
e
+
[
x1ξ2

]2
e

)
AP

N =
∆t

Jn

([
x2ξ1

]2
n

+
[
x1ξ1

]2
n

)
AP

P =
∑

nb=E,W,N,S

AP
nb

SP
u = − [q̃e − q̃w + q̃n − q̃s]

q̃e =
(
ũ1x2ξ2

)
e
−
(
ũ2x1ξ2

)
e

q̃n =
(
−ũ1x2ξ1

)
n

+
(
ũ2x1ξ1

)
n

ũ1e =

[
1

2
[û1P + û1E]−

(
∆t

Je

[
P n+1

ne − P n+1
se

] (
−x2ξ1

)
e

)]
ũ2e =

[
1

2
[û2P + û2E]−

(
∆t

Je

[
P n+1

ne − P n+1
se

] (
x1ξ1

)
e

)]
ũ1n =

[
1

2
[û1P + û1N ]−

(
∆t

Jn

[
P n+1

ne − P n+1
nw

] (
x1ξ1

)
n

)]
ũ2n =

[
1

2
[û2P + û2N ]−

(
∆t

Jn

[
P n+1

ne − P n+1
nw

] (
−x1ξ2

)
n

)]
The corner pressures (e.g. Pne) are found using the same bilinear interpolation

described by Equation 2.52. The pressure equation can now be solved using a

variety of matrix equation solvers. For this study, the standard Tri-Diagonal Matrix

Algorithm (TDMA), a special case of Gaussian elimination, is used to solve the

required matrix equations.

2.6 Linearization of Source Terms

The k and ε equations arising from the modeling of turbulence are more difficult to

solve as the values of both k and ε must remain positive to be physically relevant.

In addition, these equations are highly non-linear and tend to cause instability

issues when solving them with a linear solver. The stability of the solution can be

increased by making the diagonal term in the coefficient matrix larger via source

term linearization. That is

Sφ = Su + SP φ where SP < 0 (2.90)

The source term for the k equation, Equation 2.13, is linearized as

Sk
u = Pk (2.91)

30



Sk
P = − ε

k
= − ε

k
Cµ

k2

ενt

= −Cµk

νt

(2.92)

The source term for the ε equation, Equation 2.14, is linearized as

Sε
u = Cε1Pk

ε

k
(2.93)

Sε
P = −Cε2

ε

k
= −Cε2

ε

k
Cµ

k2

ενt

= −CµCε2k

νt

(2.94)

2.7 Solution Generation

Once the time-stepping scheme has been selected, a computational domain and

grid must be generated depending on the geometry and predicted flow physics of

the problem. Problem dependent boundary and initial conditions are set to provide

STREAM with values of the flow variables at t = 0 (or n = 0) and at the boundaries.

Table 2.3 lists the initial conditions for cells not bordering a boundary for the cases

studied here (turbulence quantities are only relevant to turbulent flows.)

u1 u2 P k ε

0 0 0 0.005u2
∞

Cµk2

20ν

Table 2.3: Initial conditions of flow variables for cells not bordering a boundary.

Given initial conditions the code can then march through time in steps of ∆t,

increasing the value of n with each step. Flow charts are shown in Figure 2.2 for the

SIMPLE and Fractional Step time-stepping schemes implemented in the STREAM

code.

It should be noted that any block which calls for the solution of an equation

requires an iterative solution of a matrix equation which tends to be more time

consuming than a block which explicitly calculates the solution. Based on this,

Figure 2.2 suggests that Fractional Step should solve each time step more quickly

than SIMPLE as it only needs to iteratively solve for the pressure, k and ε fields,

while the u1 and u2 fields are calculated based on previously determined values. In

addition, the SIMPLE flow chart requires an internal loop to ensure that all of the

flow variable fields are consistent with one another, adding additional calculation

cost to the SIMPLE solution procedure.
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(a) SIMPLE (b) Fractional Step

Figure 2.2: Flow charts for the (a) SIMPLE and (b) FS algorithms
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2.8 Boundary Conditions

In order to close a solution domain, the conditions at the boundary must be

specified. In the cases studied here four different types of boundary conditions were

employed. In most cases these conditions are applied through the use of boundary

cells which are grid of zero thickness cells that lie on the boundary of the solution

domain which allow boundary conditions to be applied explicitly. Alternatively, in

some cases, boundary conditions are applied through modification of the governing

equation source terms.

2.8.1 Inlet

The inlet conditions are defined using boundary cells. The inlets have specified

velocities, pressures, and turbulence quantities. Table 2.4 lists the typical inlet

values for an inlet face normal to the x1 direction on the west side of the domain.

u1W u2W PW kW εW

U(x2) 0 PP 0.005u2
∞

Cµk2

20ν

Table 2.4: Inlet boundary condition values

Typically the value of U(x2) is set to unity for all values of x2, but occasionally it

is necessary to define a non-symmetrical inlet flow to allow quasi-steady phenomena

to develop as will be discussed later. The pressure inlet condition is equivalent to
∂P
∂n

= 0 at the inlet where n denotes the direction normal to the face (not to be

confused with the nth time step.)

2.8.2 Outlet

Outlet boundary conditions are the same as the inlet conditions for pressure.

For velocity, the convective boundary condition followed by a global mass flow

correction as described below is employed. The convective boundary condition for

an east face outlet is
∂u1

∂t
+

∂u1

∂x1

= 0 (2.95)

After this condition is applied, the velocity profiles at the inlet and outlet are used

to determine the volume flows. The difference of the volume flows is then divided by
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the exit area and added to the exit velocity profile to ensure net mass conservation

in the system is always satisfied during each iteration. Boundary conditions for u2,

k and ε are taken as ∂u2

∂n
= 0, ∂k

∂n
= 0 and ∂ε

∂n
= 0 respectively. These conditions are

implemented through the use of boundary cells, with the boundary cell values for

an east face outlet listed in Table 2.5.

u1E u2E PE kE εE

u1
n
E −∆t

u1
n
E−u1

n
P

∆x1
u2P PP kP εP

Table 2.5: Outlet boundary condition values

2.8.3 No-Slip Wall Boundaries

No-slip walls are applied through both boundary cells or through source term

manipulation. Walls at the edge of the mesh use boundary cells to introduce

boundary conditions while walls immersed in the mesh, like those seen in bluff

body flow simulations, have their boundary conditions introduced through the use

of source term manipulations applied to cells neighbouring the boundary. Table

2.6 lists the boundary cell values used for wall boundaries for a wall on the south

side of a domain. Only laminar boundary values are reported here because the only

test case in this study which has no-slip walls at the boundaries is laminar flow in

a lid-driven skewed cavity.

u1S u2S PS

0 0 PP

Table 2.6: Wall boundary cell values for walls at the edge of the solution domain.

No-slip wall boundary conditions for turbulent flows are only applied to walls

contained inside the flow domain in this study. These boundary conditions are

applied through source term manipulation. In this case, the velocity and turbulence

values close to the wall are determined using wall functions as described in Section

2.2.2. Once the values are known, the terms they occupy are moved into the source

terms. For example, for a wall running along the south side of a control volume and

the case where φ = u1, Equation 2.54 is modified by setting Au1
S = 0, and replacing

the source term, Su1 with a modified source term, S̃u1 where

S̃u1 = Su1 −
k

1/2
P C

1/4
µ κ

ln (Ey+)
utan

1P

√(
x1ξ1

)2

s
+
(
x2ξ1

)2

s
(2.96)
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utan
1P = (1− n2

1)u1P − n1n2u2P (2.97)

and

[n1, n2] =
1√(

x1ξ1

)2

s
+
(
x2ξ1

)2

s

[(
−x2ξ1

)
s
,
(
x1ξ1

)
s

]
(2.98)

In the k equation, Equation 2.13, the production term Pk is modified as follows

in order to be consistent with the log law described in Section 2.2.2

Pk =
k

1/2
P C

1/4
µ κ

y [ln (Ey+)]2
(u1P n2 − u2P n1)

2 (2.99)

and ε is modified in accordance with Equation 2.27.

2.8.4 Slip Wall Boundaries

Slip wall boundary conditions assume that ∂φ
∂n

= 0 along the face. Boundary cell

values for this boundary condition when applied along the north face of a domain

are listed in Table 2.7.

u1N u2N PN kN εN

u1P 0 PP kP εP

Table 2.7: Slip wall boundary condition values.

2.9 Summary

A numerical solution method for the transient, incompressible Navier-Stokes equa-

tions has been presented here. The largest turbulent eddies are to be resolved

while the rest of the turbulent fluctuations are modeled through the use of k − ε

model with the modifications recommended by Kato and Launder [16] for bluff

body flow. Time integration, or time stepping, is carried out using one of two

approaches. The first approach, SIMPLE, is to solve two velocity equations, a

pressure correction equation and two turbulence model equations (for turbulent

flow cases only) implicitly for each time step. The second approach, FS, is to solve

a pressure equation and two turbulence equations (in the turbulent flow cases)

implicitly while treating the velocity terms explicitly.
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It is expected that the selection of time stepping scheme will have a major

impact on the efficiency of the code, however, this may be offset by numerical

stability issues which are common in explicit time integration methods. This will

be explored in the coming chapters.
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Chapter 3

Lid-Driven Skewed Cavity

3.1 Problem Definition

The first and simplest test case selected to compare the SIMPLE and Fractional

Step time-stepping schemes is the lid driven skewed cavity. The problem consists

of a cavity with one unit long walls, top (lid) and floor. The sides of the cavity are

skewed at 45◦. The lid moves at a non-dimensional speed of 1 in the left to right

(positive) direction. A schematic of the problem geometry is shown in Figure 3.1.

Figure 3.1: Schematic of the lid-driven skewed cavity. The dashed lines and labeled

points indicate paths along which a benchmark solution is available. Points A

through D are labeled in line with Erturk and Dursun [11].

Dimensional analysis yields that the flow physics of this problem are a function

of the Reynolds number, which, for this system, is defined as
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Re =
UlidL

ν
(3.1)

The problem begins with quiescent fluid inside the cavity, i.e. u1 = u2 = 0 for

t < 0. At t = 0 the cavity lid starts to move generating flow inside the cavity.

Eventually steady state is achieved and the flow ceases to evolve.

3.2 Benchmark

This problem has been investigated by Erturk and Dursun [11] using a fine mesh

(512× 512) to provide as accurate as possible results. Erturk and Dursun [11]

provide the steady state profiles of the velocity in the horizontal direction along a

line reaching from the midpoint of the lid to the midpoint of the floor (AC in Figure

3.1) and the velocity in the vertical direction across a horizontal line at exactly half

the height of the cavity (BD in Figure 3.1). This data will be used to verify that

the FS and SIMPLE codes converge to a correct steady state solution for Re = 100

and Re = 1000.

3.3 Computational Mesh

The mesh for this case is a uniformly distributed skewed mesh. Each mesh of this

type is constrained by the number of cells per side. Figure 3.2 shows a 40 cell mesh

for this case.

3.4 Definition of Summary Properties

The error in the solutions will be judged based on the difference between the

approximate flow variable values, φ and the benchmark solution, Φ. That is,

ei = Φi − φi (3.2)

The average error is found as

ē =
1

N

N∑
i=1

|ei| (3.3)

where N is the number of error values available. The maximum error is found as

emax = max (|ei|) (3.4)
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Figure 3.2: Lid-driven skewed cavity on a mesh of 40× 40 cells.

In addition to the average of the local error, ē, and the maximum error, emax;

the root mean square (rms) of the error is a useful way of categorizing error as it

is more sensitive to large error values. The rms error is defined as

erms =

√√√√ 1

N

N∑
i=1

e2
i (3.5)

3.5 Test Matrix

A variety of CFD simulations were completed on this test arrangement. The

simulations were stopped when the max (∆u1, ∆u2) < 10−8 indicating that steady

state has been achieved. Simulations were performed at Re = 100 and Re = 1000

using both time-stepping schemes. Mesh sizes of 20, 40 and 80 cells per side were

used to study the effects of grid size. For the case of Re = 100, the maximum

value of ∆t that would remain stable was 0.001; at ∆t = 0.0011 the simulation

would diverge and eventually eventually causing overflow errors and halting the

simulation. For comparison sake, the initial SIMPLE and FS simulations were

conducted at ∆t = 0.001. For the Re = 1000 case, a time step of 0.005 was stable

for both FS and SIMPLE solvers, and this value was used for initial simulations.

Unlike the FS code, the SIMPLE code was stable for large values of ∆t. In order to
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take advantage of this feature, the SIMPLE code was run at ∆t = 1030, effectively

removing the transient terms from the flow equations and allowing the code to

work in steady state (SS) mode. Results from these tests are listed and discussed

in Section 3.6. A complete list of the simulations completed are listed in Table 3.1.

Grid ∆t Re Time-stepping scheme

802 0.001 100 SIMPLE

402 0.001 100 SIMPLE

202 0.001 100 SIMPLE

402 1030 100 SIMPLE

802 0.001 100 FS

402 0.001 100 FS

202 0.001 100 FS

802 0.005 1000 SIMPLE

402 0.005 1000 SIMPLE

202 0.005 1000 SIMPLE

402 1030 1000 SIMPLE

802 0.005 1000 FS

402 0.005 1000 FS

202 0.005 1000 FS

Table 3.1: Parameters and time-stepping schemes used for lid-driven skewed cavity

tests.

3.6 Results

The flow patterns generated by the SIMPLE and FS cases were nearly identical

at steady state as would be expected. The streamlines of the velocity profiles as

determined using the SIMPLE code are plotted in Figures 3.3 and 3.4 for Re = 100

and Re = 1000 respectively.

Both the Re = 100 and Re = 1000 streamline plots agree fairly well with

what would be expected for lid-driven skewed cavity flow. They are qualitatively

similar to the results reported by Erturk and Dursun [11]. In order to gain a more

quantitative grasp on the error in the current study, the centerline profiles at steady

state are compared for Reynolds numbers of 100 and 1000 are shown in Figures 3.5

and 3.6 respectively along with the benchmark data [11].

40



Figure 3.3: Lid-driven skewed cavity streamlines for Re = 100, calculated using

SIMPLE.

Figure 3.4: Lid-driven skewed cavity streamlines for Re = 1000, calculated using

SIMPLE.
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Figure 3.5: Comparison of centerline velocity profiles for Re = 100 at ∆t = 0.001

with benchmark values [11] marked as +; SIMPLE runs, marked with solid lines,

using 80, 40 and 20 cell meshes marked as �, � and ◦ respectively; Fractional Step

runs marked with dotted lines using 80, 40 and 20 cell meshes marked as /, . and

4 respectively. Finally a SIMPLE run with ∆t = 1030 for one time step using a 40

cell mesh is marked as ×.
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Figure 3.6: Comparison of centerline velocity profiles for Re = 1000 at ∆t = 0.005

with benchmark values [11] marked as +; SIMPLE runs, marked with solid lines,

using 80, 40 and 20 cell meshes marked as �, � and ◦ respectively; Fractional Step

runs marked with dotted lines using 80, 40 and 20 cell meshes marked as /, . and

4 respectively. Finally a SIMPLE run with ∆t = 1030 for 1 time step using a 40

cell mesh is marked as ×.
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For the Re = 100 plots shown in Figure 3.5, results obtained with all three mesh

densities seem to agree well with the benchmark data. As is expected, the closest

match to the benchmark is provided by the 80 cell mesh while the most error is

present in the 20 cell mesh. In addition, at steady state, the FS and SIMPLE codes

provide nearly identical results, increasing confidence in the results of both codes.

The SIMPLE SS run is also nearly identical to the other 40 cell mesh solutions.

For the Re = 1000 plots shown in Figure 3.6, the 40 and 80 cell mesh solutions

seem to match the benchmark solution while the two 20 cell solutions differ a

significant amount from the benchmark solution, especially in the high gradient

region in the upper half of the u1 profile and in the right hand third of the u2

plot. For all the profiles, solutions depend much more on the grid density than on

the time-stepping scheme used to generate them, suggesting that the steady state

accuracy is the same for both FS and SIMPLE codes, even compared with SIMPLE

in SS and transient modes.

Using cubic spline interpolation between the solution profile points, the error

from the benchmark solution is calculated according to Equation 3.2. It should

be noted that the benchmark data is reported by Erturk and Dursun [11] to 4

significant digits limiting the accuracy of error calculations as the error becomes

smaller. Average, maximum and rms error values for the profiles shown in Figures

3.5 and 3.6 are listed in Tables 3.2 and 3.3 respectively.

Solver Grid
ē emax erms

u1 u2 u1 u2 u1 u2

FS

202 5.71E-3 3.71E-3 1.85E-2 8.98E-3 7.91E-3 4.39E-3

402 1.50E-3 9.21E-4 4.19E-3 1.93E-3 2.07E-3 1.10E-3

802 3.95E-4 2.39E-4 1.13E-3 5.48E-4 5.62E-4 2.99E-4

SIMPLE

202 5.66E-3 3.68E-3 1.94E-2 9.28E-3 7.97E-3 4.43E-3

402 1.51E-3 9.22E-4 4.22E-3 1.95E-3 2.08E-3 1.11E-3

802 4.04E-4 2.42E-4 1.15E-3 5.62E-4 5.74E-4 3.05E-4

SIMPLE SS 402 1.48E-3 9.20E-4 4.15E-3 1.90E-3 2.04E-3 1.09E-3

Table 3.2: Error values for lid-driven skewed cavity flow compared against the

benchmark solution at Re = 100 [11].

The error values listed in Tables 3.2 and 3.3 confirm that the calculated steady

state solutions do not vary appreciably between FS, transient SIMPLE and SS SIM-

PLE. For each mesh density, the error values are almost identical across the three
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Solver Grid
ē emax erms

u1 u2 u1 u2 u1 u2

FS

202 3.05E-2 1.08E-2 1.29E-1 3.84E-2 5.38E-2 1.40E-2

402 7.88E-3 8.27E-4 4.80E-2 1.79E-3 1.58E-2 9.82E-4

802 9.26E-4 2.09E-4 4.15E-3 6.48E-4 1.41E-3 2.87E-4

SIMPLE

202 3.09E-2 1.09E-2 1.32E-1 3.99E-2 5.47E-2 1.44E-2

402 7.88E-3 8.29E-4 4.79E-2 1.83E-3 1.58E-2 9.94E-4

802 9.30E-4 2.03E-4 3.81E-3 6.35E-4 1.37E-3 2.83E-4

SIMPLE SS 402 7.61E-3 8.28E-4 4.71E-2 1.76E-3 1.53E-2 9.53E-4

Table 3.3: Error values for lid-driven skewed cavity flow compared against the

benchmark solution at Re = 1000 [11].

solution methods with most solutions differing by less than 2% and a maximum

difference in error values of 8% occurring in the maximum error of the u1 curve

for Re = 1000 with an 80 × 80 cell grid. Those error values are on the order of

10−3, which is close to the benchmark solution accuracy. Across the board, errors

decrease with an increase in mesh density as expected. As well, magnitudes of

average error are the lowest, max error are the largest and RMS error falls between

the two.

While the solution error seems to be much more dependent on grid density than

on the time-stepping scheme used to calculate the solution, the time to solution

generation is drastically different between FS, SIMPLE transient and SIMPLE SS.

To generate a solution, the largest portion of CPU time is generally taken up

by the iterative simultaneous solution of flow variables. For this study, a linear

TDMA solver was used to solve the large matrix equations generated by the FS

and SIMPLE codes. The solver computes a solution by iteratively sweeping the

rows of matrix equation until a converged solution is reached. In general, the fewer

sweeps the solver needs to make, the more efficiently a solution can be generated.

Along these lines, the count of solver sweeps can be related to the amount of CPU

time required to generate a solution, and is in turn a measure of the computational

(and monetary) cost of the simulation.

The solver sweeps for the transient SIMPLE and FS solutions are plotted versus

time step in Figures 3.7 and 3.8 for Re = 100 and Re = 1000 respectively. Based

on Figures 3.7 and 3.8, the FS solutions tend to take much more solver sweeps to

complete the initial time steps than the transient SIMPLE solutions. This is likely
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Figure 3.7: Comparison of the cumulative total solver sweeps versus time step for

laminar flow in a lid-driven skewed cavity with Re = 100 and ∆t = 0.001. SIMPLE

runs are marked with solid lines, using 80, 40 and 20 cell meshes marked as �, �
and ◦ respectively; Fractional Step runs marked with dotted lines using 80, 40 and

20 cell meshes marked as /, . and 4 respectively.
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Figure 3.8: Comparison of the cumulative total solver sweeps versus time step for

laminar flow in a lid-driven skewed cavity with Re = 1000 and ∆t = 0.005. SIMPLE

runs are marked with solid lines, using 80, 40 and 20 cell meshes marked as �, �
and ◦ respectively; Fractional Step runs marked with dotted lines using 80, 40 and

20 cell meshes marked as /, . and 4 respectively.
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due to very strong non-physical gradients, in the u1 velocity field close to the lid

for the first few time steps. Especially for the first time step, the lid velocity is

unity while the fluid inside the cavity has a uniform velocity of 0. It is up to the

solver to fit a pressure field which is consistent to the previous velocity field before

the solution can move on to the next time step. SIMPLE does not have the same

problem at the beginning as it can adjust both the current velocity and pressure

fields at the new time step to be consistent with the non-physical initial condition.

This causes a much shallower slope of the solver efficiency trends for the SIMPLE

simulations, shown on the left side of Figures 3.7 and 3.8. The poor efficiency of

the FS solver in the first few time steps is most pronounced in the densest grids,

which supports the speculation that initial large gradients close to the lid are to

blame for this poor efficiency as ∆x2 decreases as grid density increases, increasing

the approximated gradient at the lid.

After the initial costly time steps have passed, the FS solver behaves more

efficiently than the SIMPLE solver, requiring much fewer sweeps per time step

than the SIMPLE solutions. This is likely due to the need for the SIMPLE solver

to solve 3 equations (u1, u2 and P ′) for each time step while the FS solver only

needs to solve a P equation. Analysis of the raw data (not shown here) confirms

that after some initial number of time steps both the SIMPLE and FS solvers do the

minimum number of sweeps per time step, giving the FS solver a huge advantage

in efficiency after the initial time steps have passed.

Based on the above discussion it can be concluded that the choice of solver for

a transient solution should take into account the length of time that needs to be

simulated. If it is a small number of time steps, likely SIMPLE will be more efficient,

whereas if it is a large number of time steps, FS will likely be more efficient. For

all cases tested in this section, FS is always more efficient than transient SIMPLE

overall because the number of time steps needed to achieve steady state is fairly

large.

The total solver sweeps to steady state are listed in Tables 3.4 and 3.5. Listed

along with the transient solutions are the results from the single time step SIMPLE

SS run. The results in Tables 3.4 and 3.5 confirm that the FS solver is indeed more

efficient in reaching steady state than the SIMPLE solver in transient mode. For

both Reynolds numbers, FS ranges from 10 to 2.5 times more efficient than the

SIMPLE solver with the greatest gains made in the coarse 20 cell meshes and the

smallest gains in the 80 cell mesh. It should be noted that the SIMPLE solutions

take more time steps to reach steady state in addition to requiring more solver

sweeps. The time to reach steady state is more consistent with FS than with
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Run Parameters Run Length Solver Sweeps

Solver Grid n t P u1 u2 Total

FS

202 9124 9.124 10178 0 0 10178

402 9217 9.217 18822 0 0 18822

802 9238 9.238 59857 0 0 59857

SIMPLE

202 13599 13.599 74421 24807 24807 124040

402 14226 14.226 79947 26649 26649 133250

802 16096 16.096 101070 33689 33689 168450

SIMPLE SS 402 1 1030 8103 2701 2701 13505

Table 3.4: Summary for Re = 100 of time steps (n), simulated time (t), solver

sweeps in the pressure or pressure correction (P ) and velocity (u1 and u2) equations,

and total solver sweeps carried out before steady state solution is reached. Criteria

for steady state is max (∆u1, ∆u2) < 10−8. The time step size was ∆t = 0.001 for

all cases except the SIMPLE SS case for which ∆t = 1030.

Run Parameters Run Length Solver Sweeps

Solver Grid n t P u1 u2 Total

FS

202 11544 57.72 12225 0 0 12225

402 11891 59.455 19520 0 0 19520

802 12428 62.14 59724 0 0 59724

SIMPLE

202 18380 91.9 74049 24683 24683 123420

402 19396 96.98 78348 26116 26116 130580

802 21995 109.97 94323 31441 31441 157210

SIMPLE SS 402 1 1030 6948 2316 2316 11580

Table 3.5: Summary for Re = 1000 of time steps (n), simulated time (t), solver

sweeps in the pressure or pressure correction (P ) and velocity (u1 and u2) equations,

and total solver sweeps carried out before steady state solution is reached. Criteria

for steady state is max (∆u1, ∆u2) < 10−8. The time step size was ∆t = 0.005 for

all cases except the SIMPLE SS case for which ∆t = 1030.
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SIMPLE. Changing the grid density from 802 cells to 202 cells changed the SIMPLE

results 27% for Re = 100 and 20% for Re = 1000 compared to 1% for Re = 100 and

8% for Re = 1000 for the FS results. This variance suggests that the time accuracy

of SIMPLE may not be as good as that of FS, or that there are small oscillations that

keep SIMPLE from converging to steady state. Plotting the maximum change in

velocity over the simulation time indicates that oscillations are not present however,

as shown in Figures 3.9 and 3.10.

Figure 3.9: Comparison of the maximum change in velocity versus time step for

laminar flow in a lid-driven skewed cavity with Re = 100 and ∆t = 0.005. SIMPLE

runs are marked with solid lines, using 80, 40 and 20 cell meshes marked as �, �
and ◦ respectively; Fractional Step runs marked with dotted lines using 80, 40 and

20 cell meshes marked as /, . and 4 respectively.

Another point of interest raised by Tables 3.4 and 3.5 is that SIMPLE running

in steady state mode is more efficient for finding the steady state solution than FS

for both Reynolds numbers. At Re = 100 SIMPLE SS finishes faster on a 40 cell

grid than the fastest transient solver on a 20 cell grid. This suggests that steady
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Figure 3.10: Comparison of the maximum change in velocity versus time step for

Re = 1000 at ∆t = 0.005. SIMPLE runs are marked with solid lines, using 80,

40 and 20 cell meshes marked as �, � and ◦ respectively; Fractional Step runs

marked with dotted lines using 80, 40 and 20 cell meshes marked as /, . and 4
respectively.
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state solvers with the time terms removed are more efficient for solving steady state

problems, assuming that they are capable of solving the problem. The down side

of the steady state solver is that it gives no indication of how long it will take to

reach steady state.

3.7 Conclusions

The results in this section indicate that the accuracy of the SIMPLE and FS time-

stepping schemes are equivalent when used to generate a steady state solution.

Even when the grid is not fine enough to resolve major features in the flow, the

solution is still nearly identical for either scheme on the same grid. Both codes also

agree with the steady state SIMPLE code. In addition to being self consistent, the

codes also agree with the benchmark solution of Erturk and Dursun [11] with levels

of error dependent on the mesh size.

For steady state solution efficiency, SIMPLE running in steady state mode was

found to be the most efficient followed closely by FS and then by transient SIMPLE

which required between 2.5 to 10 times more solver sweeps than FS. This efficiency

of the time-stepping scheme is somewhat dependent on the flow being simulated as

the FS code requires more solver sweeps per time step at the beginning of this case.

The beginning of this case is characterized by large changes in the flow structure

over time and sharp velocity gradients near the lid. FS becomes more efficient

than SIMPLE after the initial large changes in flow have ceased and the velocity

gradients are smaller. The exact point where FS becomes more efficient is problem

dependent. As a rule of thumb, SIMPLE is likely to be more efficient for short

quickly changing flows or large time step transient simulations and FS is likely to

be more efficient for long transient simulations and/or small time step simulations.

Due to numerical stability issues associated with the explicit FS time-stepping

scheme, FS cannot produce results for time steps which are too large, putting it

at a major disadvantage when steady state results are needed. It may be more

accurate in time than SIMPLE as it showed less variance in its prediction of time

to steady state. This issue is explored further in the next chapter of this work.
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Chapter 4

Laminar Flow Over a Square

Cylinder

4.1 Problem Definition

The second test case is a simulation of laminar flow over an infinitely long (2D)

square cylinder. Flow enters from the left of the domain at U∞ and exits from the

right. No fluid escapes from the top or bottom of the test domain. A schematic of

the flow domain is shown in Figure 4.1.

Figure 4.1: Schematic of square cylinder flow domain (not to scale.)

At t < 0 flow is quiescent everywhere in the flow domain, but at t = 0 fluid

enters from the inlet at u1 = 1. Dimensional analysis yields that the flow physics of

53



this system are a function of the Reynolds number as was the case for the lid-driven

skewed cavity case. In this case, the Reynolds number is defined as

Re =
U∞D

ν
(4.1)

From experiments it is known that flow through this domain can be laminar

at low Reynolds numbers and turbulent at high Reynolds numbers. At extremely

low flow rates the flow achieves a steady, non-fluctuating state after some initial

transient flow features have passed. At higher Reynolds numbers the flow never

reaches a true steady state but continues to shed vortices in a repeating pattern.

This flow is unsteady and exhibits large eddies but not small eddies, allowing for

all flow features to be resolved without the use of turbulence models. A Reynolds

number of Re = 100 fits within the laminar unsteady range, making it a suitable

candidate for the present study. It is all the more suitable as it has been well

studied in the literature, i.e. Sohankar et al. [35].

4.2 Computational Mesh

The mesh for this study is made up of 70×100 rectangular cells with a concentration

of cells around the square cylinder in order to resolve the interaction of the flow

with the cylinder. This mesh is very similar to the mesh used by Thompson [38]

to study vortex shedding from a square cylinder in cross flow. Using the same

base code as the SIMPLE code used here, Thompson determined that this mesh

was capable of producing reasonably accurate results. In addition, doubling the

grid density did not appreciably change the results suggesting a grid independent

solution was reached. The mesh is shown in Figure 4.2.

4.3 Definition of Summary Properties

The instantaneous lift coefficient, CL is a non-dimensional measure of the lift force

applied to the cylinder by the fluid. For this case, the lift coefficient per unit depth

due to pressure is defined as

CL,P =
LP

1
2
ρU2

∞D
(4.2)
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Figure 4.2: Mesh used for square cylinder study.

where the lift due to pressure is

LP =

∫
cylinder

P (n̂ · x̂2) dx (4.3)

where n̂ is the unit normal pointing into the surface of the cylinder and x̂2 is a unit

vector pointing in the x2 direction. This value can be determined per unit depth of

cylinder by summing the product of the face pressure and length along the bottom

of the cylinder and subtracting the product of the face pressure and length along

the top of the cylinder.

The time average of the lift coefficient is found as

CL,P =

∑
CL,P

N
(4.4)

where N is the total number of time steps in the averaged range. The rms of the

lift coefficient is found as

CL,P rms =

√∑(
CL,P − CL,P

)2
N

(4.5)

Adding the lift due to wall shear stress to the lift due to pressure provides the

overall lift coefficient, CL.
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The drag coefficient is found in a similar way as the lift coefficient; Equation 4.2

is modified by replacing the lift, LP with drag by substituting x̂1 into Equation 4.3

for x̂2. Mean and rms drag coefficient values are determined using similar equations

to Equations 4.4 and 4.5. The overall lift and drag coefficients can be found by

including the wall shear forces, however, much of the literature reports only the

pressure component, and the contribution of the wall shear forces is small enough

to be negligible in most cases.

The Strouhal number is a non-dimensional frequency of vortex shedding. It is

defined as

St =
fD

U∞
(4.6)

where f is the vortex shedding frequency as determined by the frequency of the CL

signal.

4.4 Test Matrix

For this problem, two simulations were of primary interest. One with the SIMPLE

code and the other with the FS code. The simulations were run from quiescent

conditions at t = 0, n = 0 until t = 312.5, n = 25000 at which point the solutions

could be assumed to have reached a quasi-steady state for a majority of this solution.

The parameters for the two original simulations of interest are listed in Table 4.1.

∆t Re Time-stepping scheme

0.0125 100 SIMPLE

0.0125 100 FS

Table 4.1: Parameters and time-stepping schemes used for laminar flow over a

square cylinder simulations.

The computational domain is symmetrical and at this low of a Reynolds number

the flow will not oscillate unless some non-symmetry is present in the solution for a

few time steps. This was introduced through a skewed inlet velocity profile, applied

for the first 40 time steps. The skewed profile takes the form

U(x2) = U∞

(
5

4
− x2

2h

)
(4.7)
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4.5 Results

The solutions generated by both the SIMPLE and FS code are quite similar when

assessed based on the instantaneous streamline plots and pressure contours. Both

solutions reach a quasi-steady state when presented with a non-symmetrical initial

flow condition. The solution as computed by the FS code is shown in Figure 4.3 at

a point in time after the flow has developed into its quasi-steady state.

Figure 4.3: Instantaneous pressure contours and streamlines for a square cylinder in

cross flow at Re = 100 calculated using FS time-stepping. Contours and streamlines

are shown at a point in time after quasi-steady flow has been achieved.

The unstable vortex shedding can be clearly seen in Figure 4.3 with a new

vortex being shed from the bottom of the cylinder and the previous vortex, which

was shed from the top, still visible downstream of the cylinder. The shedding of

vortices corresponds to oscillations in the cylinder’s lift and drag coefficients which

are shown in Figures 4.4 and 4.5 respectively for a small portion of their time

histories. The summary properties of quasi-steady portions of the CL and CD,P

histories are shown in Table 4.2.

Table 4.2 demonstrates that although there are some minor differences between
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Figure 4.4: Lift coefficient versus time for the laminar square cylinder test case.

The SIMPLE solution is shown by a solid line while the FS solution is shown by a

dashed line.

Time-stepping scheme St CL CLrms CD,P CD,P rms

SIMPLE 0.156 −7.67× 10−7 0.194 1.652 5.80× 10−3

FS 0.160 4.26× 10−5 0.199 1.634 6.69× 10−3

Table 4.2: Summary properties results for laminar flow over a square cylinder at

Re = 100.
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Figure 4.5: Drag coefficient versus time for the laminar square cylinder test case.

The SIMPLE solution is shown by a solid line while the FS solution is shown by a

dashed line.
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the two solutions they are quite similar. The value of the Strouhal number for

the FS code is larger indicating that the predicted vortex shedding rate is slightly

higher, although this difference is slight as the Strouhal number only varies by

2.5%. This faster flow evolution seems to correspond to the faster convergence to

steady state of the FS code compared to the SIMPLE code observed in Chapter 3.

Both solvers predict that CL ≈ 0 as is expected for a symmetrical body in cross

flow at zero angle of attack. The values of CLrms are also nearly identical, varying

by 2.5%. The values of CD,P shown in Figure 4.5 appear to be quite different in

mean value due to the scale of the figure. However, the values of CD,P only vary

1% between the two solvers. The largest percent variation is found in the values

of CD,P rms which vary by 15%. The amplitude of the fluctuations is much smaller

compared to the total value of the drag coefficient, and the variance of these values

is also smaller than the variance seen in the literature, as reported by Sohankar et

al. [35].

Comparing the results in Table 4.2 to results in the surveyed literature (Table

1.1) suggests that most of the values are on the high end of the spectrum recorded

in the literature. Both the Strouhal numbers and the CLrms values are slightly

above the range reported previously. The St value predicted by the SIMPLE code

was 0.6% greater than the maximum value presented by Sohankar et al. [35] while

the FS code was higher, with a St value 3.5% greater than the maximum reported

by Sohankar et al. [35]. Compared to the experimental St value of 0.145 presented

by Sohankar et al. [35], the SIMPLE and FS codes over-predict by 7.6% and 10.3%

respectively. This study’s variation from the experimental values is less than the

variation of the minimum value presented by Sohankar et al. which is 17.2% below

the experimental value. The variation from experimental results of this study is on

the same order as Okajima [30], 9.0% and Sohankar et al. [34], 6.9%. The values of

Thompson [38] are 4.0% lower than the SIMPLE code results in the present study.

Thompson completed his study using very similar code and identical flow domain

geometry. Differences between the two codes suggest that the difference in St is due

to differences in the mesh distribution or differences in the boundary conditions.

In contrast to the present study, Thompson [38] used no-slip walls on the top and

bottom flow boundaries and a zero velocity partial derivative in the flow direction

at the outlet.

The values of CLrms presented in Table 4.2 are also above the values presented

in the literature, however, in this case, no experimental values are available. In

addition, of the studies surveyed, 4 of 7 reported CLrms values. Of the studies

surveyed that did report CLrms values the variation was quite large. The difference
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between values of CLrms presented by Sohankar et al. [34] and Franke et al. [13]

is 133%, suggesting that this quantity is fairly sensitive and difficult to predict.

The value reported by Thompson [38] is 32% smaller than the value generated by

the SIMPLE results in Table 4.2, which is relatively low compared to the variation

shown in the literature.

The values of CD,P in Table 4.2 are on the high end of the range of values

reported in the literature but are lower than the maximum value reported by

Sohankar et al. [35]. The results CD,P match best with the results of Davis and

Moore [9] and are slightly higher than the results reported by Thompson [38].

CD,P rms is rarely reported in the literature. Of the works surveyed, 2 of 7

reported results for this quantity. The present values of CD,P rms for the SIMPLE

case falls within the range of values presented by Sohankar et al. [34], while the FS

value is slightly above the results of Sohankar et al. The rarity of this quantity in

the literature and the large range reported by Sohankar et al. [34] suggests that,

as was the case with CLrms, this quantity is difficult to compute and may be quite

sensitive to minor changes in the grid or flow domain dimensions.

The efficiency of the two codes is initially measured by the number of solver

sweeps performed by the TDMA solver to compute the solution. The cumulative

solver sweeps for both the FS and SIMPLE runs up to t = 150 is shown in Figure

4.6. As shown in Figure 4.6, for ∆t = 0.0125 the FS code takes more solver sweeps

to solve the system than the SIMPLE code for the entire span of time simulated.

For ∆t = 0.0125 the FS code is also divergent from the SIMPLE code, increasing

the gap between the two as time goes on. It should also be noted that the curves are

steeper once the flow has developed into a quasi-steady fluctuating flow than they

are in the initial transient portion before a quasi-steady state has been attained,

indicating that the quasi-steady flow is more costly than the initial development

period. The same is true for the smaller time step, ∆t = 0.00125 except that in

this case, SIMPLE is by far the most costly. For the smaller time step, the FS code

is by far the most efficient, even passing the larger time step runs. Even though the

code does 10 time steps for every time step the large time step code does, it has

much fewer cumulative sweeps than both SIMPLE runs and the large time step FS

run. To further examine the computational cost, the solver sweeps for each time

step are shown along with the coefficient of lift for a portion of the quasi-steady

flow history in Figure 4.7 for ∆t = 0.0125 and Figure 4.8 for ∆t = 0.00125.

Figure 4.7 indicates that the periods of high computational cost correspond to

regions of large change to the lift coefficient. The peaks and troughs on the CL curve

61



Figure 4.6: Cumulative solver sweeps for the laminar flow over a square cylinder

case. The SIMPLE run is shown with a solid line and the FS run is shown with a

dotted line. Markings are SIMPLE, ∆t = 0.0125, �; SIMPLE, ∆t = 0.00125, �;

FS, ∆t = 0.0125, /; and FS, ∆t = 0.00125, .. The CL value is shown with a solid

line in the upper portion of the figure and was calculated using the SIMPLE code

at ∆t = 0.0125.
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Figure 4.7: Solver sweeps per step for the laminar flow over a square cylinder case

with ∆t = 0.0125. The SIMPLE run is shown with a solid line and the FS run is

shown with a dashed line. The upper curves correspond to CL and the lower curves

correspond to solver sweeps per time step.
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Figure 4.8: Solver sweeps per step for the laminar flow over a square cylinder case

with ∆t = 0.00125. The SIMPLE run is shown with a solid line and the FS run

is shown with a dashed line. The upper curves correspond to CL,P and the lower

curves correspond to solver sweeps per time step.
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correspond to vortices traveling across the top of the cylinder and bottom of the

cylinder respectively. The portions in between the peaks and troughs represent large

vortices traveling downstream of the cylinder. These large vortices are likely the

cause of the high computational cost per step as there are large changes occurring

in a large number of cells from time step to time step. It should be noted that the

peak solver sweeps per time step do not occur at precisely the same points in time

for the two time-stepping schemes, relative to both simulated time and phase of

the corresponding CL signal. The SIMPLE solver reaches its peak load at a greater

phase angle of its CL signal than the FS code, further illustrating the difference

between the two time-stepping schemes. FS time stepping is most costly when large

changes are occurring in the solution domain, increasing computational cost in this

case by approximately 2.5 times from best to worst performance, while SIMPLE

increases approximately 2 times from best to worst performance. This is similar to

the trend discussed in Chapter 3.

Comparing Figure 4.8 to Figure 4.7 illustrates the difference seen between the

two time step sizes shown in Figure 4.6. For the ∆t = 0.00125 case, the number of

SIMPLE sweeps are much greater than that of FS, and are even greater than the

number of sweeps recorded for the larger time step. More drastic than the increase

in the SIMPLE sweeps is the decrease in FS sweeps with peak sweeps per time step

dropping to 9 at ∆t = 0.00125 from a value of just under 250 at ∆t = 0.0125. This

indicates that the efficiency of the FS time-stepping scheme is much more sensitive

to variations in ∆t. For this time step, again, the solver peaks seem to correspond

to the portions of the CL curve with the steepest slopes for both the SIMPLE and

FS solutions.

Up to this point in this study, all simulations were completed using scientific

clusters provided by SHARCNET [29], a consortium of computational clusters

available at minimal charge to researchers. The side effect of using this resource is

that the computational power of the processor that code is running on is difficult

to quantify as the specific CPU and its loading is assigned by the cluster scheduling

software. Through the process of generating summary property and solver load

results, it seemed that the SIMPLE runs were taking longer than the FS runs even

though the number of sweeps was typically much higher for the FS runs. This

suggested that the actual CPU time was not accurately reflected by the number of

sweeps performed by the matrix solver. An in-depth analysis of the time spent on

the various parts of the solution procedure suggests a much different division of the

CPU time than was assumed earlier in this work. The SIMPLE and FS codes were

divided into sections and the time spent in each section was logged and then added
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up at the end of the run. The results of this study are summarized in Figures 4.9

and 4.10 for the FS and SIMPLE codes respectively. It should be noted that the

results reported here are quite rough as the system clock only reports events up

to the millisecond and one solver sweep tends to take less than a millisecond. On

average however, this study should give a good indication of the trends in CPU

time.

Figure 4.9: Division of CPU time for the FS code. Study was conducted for 8000

time steps at ∆t = 0.0125.

The FS code time division is much closer to what was expected than the SIMPLE

division of time. That is, the FS code spends the majority of its time, 68%, solving

the P equation while the SIMPLE code spends the majority of its time setting up

the equations with only 8% of the CPU time devoted to solving equations. This is

in part due to the efficiency of the solver used in this case. If the grid were much

more dense, the TDMA solver used here would not be as efficient and would likely

dominate a larger portion of the CPU time. Another potential cause for this small

cost for solving compared to the cost of setup is that the cost of setup is quite

high for the SIMPLE scheme in general. In the current SIMPLE configuration, the

solver does 1 sweep of the u1 and u2 equations and 3 sweeps of the P ′ equation

before recalculating the equation coefficients. A new configuration was tested to

determine if overall speed of solution could be increased for the SIMPLE code by

taking advantage of the efficiency of the solver. The number of sweeps per internal
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Figure 4.10: Division of CPU time for the SIMPLE code with the standard solver

sweep configuration of 1 sweep for the u1 equation, 1 sweep for the u2 equation,

and 3 sweeps for the P ′ equation. Study was conducted for 8000 time steps at

∆t = 0.0125.
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iteration was increased to 3 for the u1 and u2 equations and 12 for the P ′ equation.

The results from this test are shown in Figure 4.11.

Figure 4.11: Division of CPU time for the SIMPLE code with a modified solver

sweep configuration of 3 sweeps for the u1 equation, 3 sweeps for the u2 equation,

and 12 sweeps for the P ′ equation. Study was conducted for 8000 time steps at

∆t = 0.0125.

As seen in Figure 4.11, the overall cost of the solver did increase with the number

of sweeps per internal loop, however it is difficult to determine from this chart if

the overall efficiency is improved due to a lack of knowledge about what resources

available for each run. To overcome this problem, a dedicated, single CPU machine

was acquired and the SIMPLE and FS codes were run on it one configuration at a

time. The total number of sweeps and wall clock times for each run are shown in

Table 4.3. The FS solver and the SIMPLE solver in both sweep configurations were

tested at ∆t = 0.00125 and ∆t = 0.0125 in runs up to t = 200. An additional run

was done for the three solver configurations at ∆t = 0.0125 up to t = 250 to gauge

the effect of the length of the run on the time values and the effect of the initial

unsteady transient portion. The values in Table 4.3 have also been normalized by

dividing them by the values for the FS run in the second row of Table 4.3, these

68



values are shown in Table 4.4.

Solver ∆t n CPU Time Sweeps Loops Sweeps
n

CPU time
Sweeps

FS 0.00125 160000 3239773 883983 160000 5.52 3.66

FS 0.0125 16000 1044451 2493258 16000 155.83 0.42

FS 0.0125 20000 1262714 3140403 20000 157.02 0.40

SIMPLE 0.00125 160000 46902803 14415560 2883112 90.10 3.25

SIMPLE 0.0125 16000 4712064 1379590 275918 86.22 3.42

SIMPLE 0.0125 20000 5784186 1732895 346579 86.64 3.34

SIMPLE2 0.00125 160000 60897304 58402548 3244586 365.02 1.04

SIMPLE2 0.0125 16000 5510142 5188806 288267 324.30 1.06

SIMPLE2 0.0125 20000 6983177 6557238 364291 327.86 1.06

Table 4.3: Summary of time study using identical resources for solution. CPU time

is reported in ms and refers to actual wall clock CPU time. SIMPLE2 refers to the

new SIMPLE TDMA solver sweep configuration of 3 sweeps for the u1 equation, 3

sweeps for the u2 equation, and 12 sweeps for the P ′ equation. Loops refer to the

number of inner loop iterations performed for the test.

The primary observation to be made from Table 4.3 is that the efficiency results

based on solver sweeps are not a conclusive indicator of the computational cost of

a job. The fastest, least expensive simulation was the FS, ∆t = 0.0125 simulation

even though it had many more sweeps than the smaller time step FS run and the

standard sweep (1 sweep each for the u1 and u2 equations, and 3 sweeps for the

P ′ equation) SIMPLE runs. The reduction in the number of sweeps achieved by

lowering the time step size of the FS code did not result in a reduction of CPU

time. This is likely due to the increase in the number of time steps and, in turn,

the number of times the equations must be assembled which was shown in Figure

4.9 to be a costly procedure.

The SIMPLE solver exhibits very different behavior from the FS solver. A

reduction by 10 times in time step size did not improve the time convergence.

Instead, it increased the solution CPU time by nearly 10 times, providing a CPU

time per time step which is nearly identical for both large and small ∆t sizes.

Increasing the sweeps per step does decrease the amount of time per sweep required,

however, the total number of sweeps increases as well. It was hypothesized earlier

in this section that increasing the number of solver sweeps per inner loop iteration

would decrease convergence time. This assumed that increasing the number of
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Solver ∆t n CPU Time Sweeps Loops Sweeps
n

CPU time
Sweeps

CPU Time
n

FS 0.1 10 3.10 0.35 10.00 0.04 8.75 0.31

FS 1 1 1.00 1.00 1.00 1.00 1.00 1.00

FS 1 1.25 1.21 1.26 1.25 1.01 0.96 0.97

SIMPLE 0.1 10 44.91 5.78 180.19 0.58 7.77 4.49

SIMPLE 1 1 4.51 0.55 17.24 0.55 8.15 4.51

SIMPLE 1 1.25 5.54 0.70 21.66 0.56 7.97 4.43

SIMPLE2 0.1 10 58.31 23.42 202.79 2.34 2.49 5.83

SIMPLE2 1 1 5.28 2.08 18.02 2.08 2.53 5.28

SIMPLE2 1 1.25 6.69 2.63 22.77 2.10 2.54 5.35

Table 4.4: Normalized summary of time study using identical resources for solution.

Values are normalized by dividing by the second row values. SIMPLE2 refers to the

new SIMPLE TDMA solver sweep configuration of 3 sweeps for the u1 equation, 3

sweeps for the u2 equation, and 12 sweeps for the P ′ equation. Loops refer to the

number of inner loop iterations performed for the test.

sweeps per inner loop would reduce the number of inner loops needed to solve the

u1, u2 and P ′ equations simultaneously. Table 4.3 indicates that the inner loops

were not reduced by increasing the number of sweeps per loop. In fact, they were

slightly increased. As a result, all of the modified sweep cycle SIMPLE runs were

less efficient than the standard sweep cycle used in the rest of this study.

The degree of similarity in the efficiencies of various runs is evident in Table

4.4. For runs that shared the same value of ∆t and solver, sweeps per time step,

CPU time per sweep and CPU time per time step are always within 5% of each

other and are often much more similar. For the SIMPLE runs, even reducing the

time step size by 10 times had little effect on the value of CPU time per sweep. As

noted above, the sweeps per time step did change with time step size, although not

nearly as much for SIMPLE as for FS. A 10% increase in time per time step was

observed with a reduction in time step size for the modified SIMPLE run.

All of the results in Tables 4.3 and 4.4 were generated by simulations which

start from initial conditions and experience a non-periodic development period of

time before quasi-steady flow is achieved. This occurs in the simulations from

t = 0 up to around t = 40. To examine the quasi-steady state performance of the

tested solvers, 6 more runs were completed up to t = 50 on the same machine as

the previous tests. The CPU time and sweeps performed by these solutions was
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subtracted from the corresponding result in Table 4.3 to provide a more accurate

look at the quasi-steady performance of the studied solvers. These results are shown

in Table 4.5; the normalized results are listed in Table 4.6.

Solver ∆t n CPU time Sweeps Loops Sweeps
n

CPU time
Sweeps

FS 0.00125 120000 2458652 698169 120000 5.82 3.52

FS 0.0125 12000 805954 1925775 12000 160.48 0.42

FS 0.0125 16000 1024217 2572920 16000 160.81 0.40

SIMPLE 0.00125 160000 46902803 14415560 2883112 90.10 3.25

SIMPLE 0.0125 12000 3661181 1062875 212575 88.57 3.44

SIMPLE 0.0125 16000 4733303 1416180 283236 88.51 3.34

SIMPLE2 0.00125 160000 60897304 58402548 3244586 365.02 1.04

SIMPLE2 0.0125 12000 4394545 4117050 228725 343.09 1.07

SIMPLE2 0.0125 16000 5867580 5485482 304749 342.84 1.07

Table 4.5: Quasi-steady time study summary. Original results were corrected by

subtracting the initial transient portion of the solution from the results to provide

results only from the quasi-steady portion of the solution. CPU time is reported in

ms and refers to actual wall clock CPU time. SIMPLE2 refers to the new SIMPLE

TDMA solver sweep configuration of 3 sweeps for the u1 equation, 3 sweeps for the

u2 equation, and 12 sweeps for the P ′ equation. Loops refer to the number of inner

loop iterations performed for the test.

The changes in the summary quantities between Tables 4.3 and 4.5 are slight.

The FS values of sweeps per time step, CPU time per sweep and CPU time per time

step vary 5% or lower after the development period contributions were removed. For

the SIMPLE cases, the CPU time per sweep changed less than 1%. The SIMPLE

cases at ∆t = 0.00125 experienced changes of approximately 10% for solver sweeps

per time step and CPU time per time step. The effect of the development period

removal was smaller for the ∆t = 0.0125 SIMPLE cases, with 3.5% or lower for the

standard sweep configured solver and 6% or less for the modified sweep configured

solver in both solver sweeps per time step and CPU time per time step. The change

between solutions with the same solver and time step size is of the same order of

magnitude as the variation between the values in Table 4.3 (∼ 5%). This suggests

that the error involved in this study is of the same order as the correction, and

suggests that the results are likely correct within 10%, with or without the initial

development period removed. Using the normalized values of CPU time per sweep

(averaged for the ∆t = 0.0125 FS and SIMPLE cases), Figure 4.6 can be adjusted

71



Solver ∆t n CPU time Sweeps Loops Sweeps
n

CPU time
Sweeps

CPU time
n

FS 0.1 10 3.05 0.36 10 0.04 8.41 0.31

FS 1 1 1 1 1 1.00 1.00 1.00

FS 1 1.33 1.27 1.34 1.33 1.00 0.95 0.95

SIMPLE 0.1 10 48.05 6.19 198.71 0.62 7.76 4.81

SIMPLE 1 1 4.54 0.55 17.71 0.55 8.23 4.54

SIMPLE 1 1.33 5.87 0.74 23.60 0.55 7.99 4.40

SIMPLE2 0.1 10 62.72 25.31 225.63 2.53 2.48 6.27

SIMPLE2 1 1 5.45 2.14 19.06 2.14 2.55 5.45

SIMPLE2 1 1.33 7.28 2.85 25.40 2.14 2.56 5.46

Table 4.6: Normalized quasi-steady time study summary. Original results were

corrected by subtracting the initial transient portion of the solution from the results

to provide results only from the quasi-steady portion of the solution. Values are

normalized by dividing by the second row values. SIMPLE2 refers to the new

SIMPLE TDMA solver sweep configuration of 3 sweeps for the u1 equation, 3

sweeps for the u2 equation, and 12 sweeps for the P ′ equation. Loops refer to the

number of inner loop iterations performed for the test.

to indicate the actual relative CPU time of the run as a function of simulation

time by multiplying the values shown in Figure 4.6 by the corresponding values of

normalized CPU time per time step in column 8 of Table 4.6. This is shown in

Figure 4.12.

As seen in Figure 4.12 the cost is least for the FS solver with ∆t = 0.0125 and

is most for the SIMPLE solver with ∆t = 0.00125. FS is more efficient for all

configurations of SIMPLE studied up to this point. It should be noted that ten

times more data is available from the FS run with ∆t = 0.00125 than is available

from the SIMPLE run with the time step 10 times larger and it still solves in less

time.

As a final point of interest, an attempt was made to determine the most efficient

time step size for both solvers. SIMPLE is known to be most efficient at its

maximum time step which produces the least information (a single steady state

solution) but still provides some insights into the flow physics. Up to this point it

is difficult to say where the optimum time step lies for the FS solver. In order to find

the optimum time step for this case, runs at different time steps were completed

using the FS code on a dedicated machine. Each run simulated the same total
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Figure 4.12: Relative cumulative wall clock time versus simulation time for the

laminar flow over a square cylinder case. The SIMPLE run is shown with a solid line

and the FS run is shown with a dotted line. Markings are SIMPLE, ∆t = 0.0125,

�; SIMPLE, ∆t = 0.00125, �; FS, ∆t = 0.0125, /; and FS, ∆t = 0.00125, ..

The CL value is shown with a solid line in the upper portion of the figure and was

calculated using the SIMPLE code at ∆t = 0.0125.
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length of time (from t = 0 to t = 200) but had a different time step size and

number of time steps. Solutions diverged for ∆t ≥ 0.03 so the value of ∆t was

varied from 0.00125 to 0.029. The results of this study are shown in Figure 4.13.

Figure 4.13a indicates that the least expensive time step size is the largest

possible size before the code becomes divergent. The decrease in time appears to

be nearly exponential (decay). Figure 4.13b indicates that as the time step size

increases, the number of sweeps per time step increases until it reaches a peak and

then decreases slightly beyond that point. The cost of the solution when divided by

the number of sweeps seems to increase with the log of the time step size as shown

in Figure 4.13c, while Figure 4.13d indicates total sweeps divided by the number

of time steps increases as a nearly linear function of ∆t. The CPU time divided by

number of time steps also seems to increase as a linear function of ∆t as shown by

Figure 4.13d.

4.6 Conclusions

In this chapter it was shown that both the FS and SIMPLE codes provide reasonable

solutions to a square cylinder in laminar cross flow problem. Both codes predict a

flow field that exhibits quasi-steady vortex shedding after the initial transients have

passed. The value of CL for both simulations was approximately zero as would be

expected for a symmetrical body at zero angle of attack. The summary properties

of both solutions are of the same order as the experimental and previous numerical

results presented in the literature, and for the most part fall within the range of

previously reported results.

The FS code was found to predict a flow field which evolved slightly faster than

the solution provided by the SIMPLE code, as indicated by a larger St. FS also

predicted drag which was 2.5% lower than the prediction of the SIMPLE code.

Computational efficiency as measured by solver sweeps was found to be better

for the SIMPLE code than for the FS code at the original solution time step size,

with the FS code consistently needing more solver sweeps per time step leading to

a greater number of sweeps overall. When the time step was reduced, the SIMPLE

code showed a marked decrease in solver efficiency, requiring the same or more

sweeps per time step than SIMPLE code at the larger original time step. On

the other hand, for the FS code, a 10 times reduction in time step size reduced

the number of sweeps needed per time step from a maximum value of 250 to a

maximum value of 9. Both SIMPLE and FS codes were found to exhibit the worst
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(a) (b)

(c) (d)

(e)

Figure 4.13: FS solution behavior versus time step. Plotted quantities are (a) total

wall clock CPU time, (b) total solver sweeps, (c) average CPU time per solver

sweep, (d) average number of solver sweeps per time step and (e) average CPU

time per time step. Results were generated on a dedicated machine with FS up to

t = 200.
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efficiency when the flow was exhibiting large changes in a large number of cells and

better efficiency when less change was occurring from one time step to the next.

For the larger time step, FS seemed to have more trouble with fluctuating flow than

SIMPLE as indicated by a greater increase in the number of solver sweeps for the

FS code when the time step increased in size.

An analysis of the division of CPU time amongst the solution procedure com-

ponents in the SIMPLE and FS code indicated that the matrix equation solution

portion of both codes required a much smaller percentage of CPU time than was

expected, indicating that solver sweeps are not a conclusive measure of computa-

tional cost. The FS code operating at ∆t = 0.0125 required a large number of

solver sweeps and only spent 68% of its total CPU time solving matrix equations

while. The SIMPLE code operating at ∆t = 0.0125 only spent 8% of its CPU

time solving matrix equations. Increasing the number of sweeps per internal loop

in the SIMPLE code did increase the solver cost to 24% of the total cost but did

not decrease the overall number of sweeps needed as the number of internal loops

required for each time step did not decrease.

Running the various configurations on a dedicated machine allowed their relative

time costs to be evaluated. FS was found to be the most efficient at the largest

time step while the SIMPLE code running at the smallest time step was found to be

the least efficient. Increasing the number of time steps by 10 times and decreasing

the step size by the same amount increased the cost of the SIMPLE solution by

approximately 10 times but only increased the cost of the FS solution 3.1 times.

When cost per time step is considered, SIMPLE seems to be the best at a larger

time step while FS is better at a smaller time step.

The differences in efficiency with time step size suggests that both time-stepping

schemes could be useful, but for different applications. For very large time step

applications, such as large amplitude vortex induced vibration problems, SIMPLE

is likely to be more cost efficient than FS. Alternatively, for very small time step

simulations such as aero-acoustic simulations, FS is likely to be vastly superior in

cost efficiency. FS does increase in cost, however, as time step decreases, suggesting

that the time step should not be decreased in size beyond the time resolution

required for an accurate solution or as is needed for transient results.

When CFD is used as a tool for design, computational efficiency becomes very

important because an efficient code allows more design iterations than a less efficient

code. Based on the case studied here, FS solutions of transient laminar flow systems

are much more cost effective than SIMPLE within the range of time steps FS is
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able to operate. Above some critical time step size, SIMPLE should be used as

it is stable for all large time steps and increases in cost efficiency as time step

increases.
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Chapter 5

Turbulent Flow Over a Square

Cylinder

5.1 Problem Definition

The third test case considered in this study is turbulent flow over a square cylinder.

This case uses the same domain geometry as the laminar flow over a square cylinder

case described by Figure 4.1. As in the laminar case, flow enters from the left and

exits to the right. For this geometry, Re = 21400 is known to be within the

turbulent flow regime. This case has been studied extensively both experimentally

and numerically in the literature making it a good candidate for comparison with

existing results. The computational mesh used is the same 70 × 100 cell mesh

described in Section 4.2. It can be seen in Figure 4.2. The summary properties for

this case are the same as described in Section 4.3.

5.2 Test Matrix

For this problem, two simulations were completed, one with FS and the other using

SIMPLE. The simulations were run from quiescent conditions at t = 0, n = 0 until

t = 625, n = 50000 at which point the solutions could be assumed to have reached

a quasi-steady state for a majority of this solution. The parameters for the two

original runs of interest are listed in Table 5.1.

In this case, it was necessary to use the skewed initial inlet condition described

by Equation 4.7 for only the FS code. The SIMPLE code exhibited oscillations
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∆t Re Time-stepping scheme

0.0125 21400 SIMPLE

0.0125 21400 FS

Table 5.1: Parameters and time-stepping schemes used for initial turbulent flow

over a square cylinder tests.

without the use of a skewed inlet condition. The FS code however did not achieve

a quasi-steady oscillating state without the skewed inlet for the first 40 times steps.

Instead, it formed a non-oscillating symmetrical flow field. This solution was quite

unstable numerically and would eventually produce overflow errors if allowed to

run up to around n = 10000. Introduction of a non-symmetrical inlet condition

for a short portion of this beginning of the run provided a quasi-steady oscillating

solution which was also numerically stable.

5.3 Results

As was the case for the laminar case, the SIMPLE and FS codes produced qualita-

tively very similar results. The streamlines and turbulent kinetic energy contours

for a single instant in time are shown in Figure 5.1 as calculated using the FS code.

At the point shown in Figure 5.1 a large vortex has been shed from the upper

half of the cylinder and a new vortex is forming on the bottom side of the cylinder.

Half a period later the flow will be the same as shown in Figure 5.1 only mirrored

about the central axis. This process of vortex shedding continues for the duration

of the simulation.

As was discussed in Section 4, a vortex passing by the top of the cylinder

corresponds to a positive CL while a vortex passing by the bottom of the cylinder

corresponds to a negative CL. The CL signal for this case is shown for both time-

stepping schemes in Figure 5.2.

As seen in Figure 5.2, the lift coefficients are similar in magnitude and frequency

but not identical. The FS frequency appears to be slightly lower and its magnitude

is greater than that of the SIMPLE CL signal. These differences will be discussed

more quantitatively below in terms of the values of St and CLrms. The mean value

of the CL signal does appear to be zero for both cases as expected.

The CD,P oscillates as well, but its peaks correspond to a vortex being present
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Figure 5.1: Instantaneous turbulent kinetic energy contours and streamlines for a

square cylinder in cross flow with Re = 21400 calculated using FS time stepping.

Contours and streamlines are for at a point in time after quasi-steady flow has been

achieved.
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Figure 5.2: Lift coefficient vs. time for the turbulent square cylinder test case. The

SIMPLE solution is shown by the solid line while the FS solution is shown by a

dashed line.
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downstream of the cylinder, producing a frequency that is double that of the CL.

The CD,P signal is shown for a portion of the quasi-steady solutions in Figure 5.3

for both time-stepping schemes.

Figure 5.3: Drag coefficient vs. time for the turbulent square cylinder test case.

The SIMPLE solution is shown by a solid line while the FS solution is shown by a

dashed line.

As shown in Figure 5.3, the mean values and amplitudes of the drag coefficients

are somewhat different but are in the same range. The frequencies are also slightly

different as would be expected given the different frequencies shown in Figure 5.2.

The summary properties for the two simulations are listed in Table 5.2.

Time-stepping scheme St CL CLrms CD,P CD,P rms

Simple 0.144 −5.10× 10−3 1.070 2.15 4.79× 10−2

FS 0.138 6.01× 10−6 1.288 2.19 7.67× 10−2

Table 5.2: Summary properties for turbulent flow over a square cylinder with Re =

21400.

Table 5.2 demonstrates that the two solutions are fairly similar while still being

distinct. Both CL are essentially zero as expected. The Strouhal numbers vary
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by about 4% and in this case FS is lower suggesting that flow physics for this

case evolve less quickly using FS compared to SIMPLE. This goes against the

hypothesis raised in Chapters 3 and 4 that FS simulated flows evolve more quickly

than SIMPLE simulated flows. The values of CD,P are quite close and vary by only

1.6% while the rms values, which are a measure of the amplitude of the signal, vary

by 20% for the CL signals and 60% for the CD,P signals. This may seem significant,

however, the actual magnitude of the difference is 0.281 for CLrms values (less than

15% of the amplitude), and 0.0287 for CD,P rms (approximately 1.5% of the value

of CD,P ). All of the values reported fall within the range reported in literature for

numerical studies and are within 10% of the experimental values reported by Lyn

et al. [26].

The St results for this study are well within the range of LES results presented in

Tables 1.3 and 1.4. The FS St value of 0.138 is closer to the maximum experimental

value of 0.136 reported by Lyn et al. [26] than is the SIMPLE value. The SIMPLE

results seem to agree best with the URANS results for the KL model using wall

functions reported by Bosch and Rodi [3] and Kato and Launder [16] (Table 1.6)

as expected. The FS St value agrees best with the URANS RSE model using wall

functions as presented by Franke and Rodi [12].

Values of CLrms in Table 5.2 agree well with the LES results in Table 1.3 and

with the results of Thompson [38]. When compared with other URANS studies,

the SIMPLE value agrees best with the KL model with wall functions results of

Bosch and Rodi [3] and FS seems to agree better with the RSE two level results of

Franke and Rodi [12].

The CD,P values are very close to the experimental value [26] and the LES results

in Table 1.3. The SIMPLE value is identical to the value reported by Thompson

[38]. Of the other URANS studies, the CD,P SIMPLE and FS values agree best

with the KL model with wall functions results of Bosch and Rodi [3].

Compared to the LES results, the values of CD,P rms in Table 5.2 are very low.

An examination of the URANS results in the literature, however, indicates that this

is a common difference between URANS and LES studies of turbulent flow over

square cylinders. The FS CD,P rms value is slightly above the range reported in the

surveyed literature for URANS simulations (Tables 1.5 and 1.6), but it is closer to

the LES results which are likely to be more accurate. The SIMPLE CD,P rms value

is nearly identical to the value reported by Thompson [38] for this case.

Both runs for this case were completed on the same dedicated machine allowing

the computation time to be monitored and compared in addition to the number of
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solver sweeps carried out by the TDMA solver. The cumulative solver sweeps and

time to completion is shown for both time-stepping schemes in Figure 5.4.

(a)

(b)

Figure 5.4: Comparison of (a) cumulative solver sweeps and (b) cumulative CPU

time for the turbulent flow over a square cylinder case. The SIMPLE run is shown

with a solid line and the FS run is shown with a dashed line.

As was demonstrated in the laminar case, the FS code requires more sweeps

per time step but takes less time per time step providing a faster solution than

the SIMPLE scheme. Both solutions exhibit an initial low number of solver sweeps

before the quasi-steady flow is achieved. The CPU time curve is not as smooth as

the solver sweeps curve. There are several regions of the CPU time curves which

suddenly increase, a behavior which is not reflected in the solver sweeps curves.

The most obvious example of these discontinuities is the SIMPLE CPU time curve

in the region of t = 300. These sudden increases in time are likely caused by low
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cost background processes running on the host machine which slightly slow down

the solution. Even with these small discontinuities, the trend is clear that the FS

code solves in a much shorter time than the SIMPLE code, even with the addition

of 2 extra equations which are solved implicitly. An examination of the cost of

the two additional equations in the turbulent FS code indicates that the k and

ε equations solve much more easily than the P equation. Typically the k and ε

equations require 2 sweeps per time step each while the P equation may require

between 100 and 600 sweeps per time step. In these conditions, implicitly solving

the k and ε equations is nearly as cost efficient as solving them explicitly without

the added danger of numerical instability. SIMPLE on the other hand requires all

5 equations to be solved simultaneously. In the current solver configuration, the

P ′ equation receives 3 sweeps per internal loop and all others receive 1, resulting

in a total of 7 solver sweeps per internal iteration. In the quasi-steady region of

the SIMPLE solution, the solver requires between 12 and 25 internal loops which

explains the much larger overall cost of the SIMPLE solution.

In order to compare the turbulent and laminar cases, the solver sweeps per

time step are plotted in Figure 5.5 along with the CL signals for a portion of the

quasi-steady solution.

As seen for the laminar case, Figure 5.5 demonstrates that the maximum cost

to the solver occurs at regions of high slope in the CL curves. In addition, the FS

code seems to react more strongly than SIMPLE to this increase with its solver

sweeps increasing nearly 6 times in high slope regions. This is the same trend as

was observed in Chapter 4. However, it is more pronounced when the turbulence

model is included in the solution.

To compare the correlation between solver sweeps and CPU time for this case,

the solver sweeps per time step was divided by the CPU time per time step to

produce the cost per solver sweep as a function of time step. These results are

plotted for a portion of the quasi-steady solution in Figures 5.6 and 5.7.

The trends shown in Figures 5.6 and 5.7 are as expected for the most part. The

FS results indicate that the CPU time is not directly correlated to the number of

solver sweeps for the FS solver. As observed for the laminar flow over a square

cylinder problem, the cost of assembling the equations is fairly substantial and is

the same for each time step in the FS code. The value that does change with the

position of the solution is the number of sweeps needed to solve the P equation. At

peaks and troughs in the CL curve, the number of sweeps is at its lowest for both

codes, which corresponds to a higher relative cost of each sweep as the assembly
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Figure 5.5: Solver sweeps per time step for turbulent flow over a square cylinder

with Re = 21400. The SIMPLE run is shown with a solid line and the FS run is

shown with a dashed line.

cost is spread amongst fewer sweeps. In high slope regions of the CL signal, the

number of sweeps is the highest, driving down the cost per sweep. In the case of the

SIMPLE results shown in Figure 5.7, the time cost per sweep remains approximately

constant compared to the CL value because the number of times the equations are

assembled is proportional to the number of sweeps. As a result, the time cost per

sweep is approximately constant throughout the solution.

There are two anomalies which appear in Figures 5.6 and 5.7 which need to be

addressed. First of all, both figures show sudden spikes in the CPU time per sweep.

Figure 5.7 suggests that this phenomena may be connected to the solution physics

as it seems to occur at the same phase on every other cycle. A careful look at the

full range of the data (not shown here) indicates that these spikes occur at different

points along the CL cycle and apparent solution dependance is purely due to chance

and the portion of solution time chosen for the plot. Further investigation into the

cause of the spikes indicated that the wall clock time between the spikes was almost

exactly 300 seconds or 5 minutes apart, suggesting that a background process on

the computer used for the solution is the cause. Each of these spikes corresponds
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Figure 5.6: FS CPU time per sweep as a function of time step. The CL signal is

included for reference.
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Figure 5.7: SIMPLE CPU time per sweep as a function of time step. The CL signal

is included for reference.
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to an increase of approximately 0.5 seconds for every 300 seconds of CPU time, or

approximately 0.16% of the total time recorded in this study, suggesting the error

introduced by this anomaly is negligible.

The second anomaly is the change in average value of CPU time per sweep

observed most clearly around t = 318 in Figure 5.7 but also visible in Figure 5.6

at t = 316 to a lesser degree. As with the previous issue, a look at the CPU

time per solver sweep results for the entire solution indicates that several of these

changes occur throughout the solution. These changes are likely due to background

processes running on the host machine which require very few resources but still

have some effect on the overall wall clock time of the solution. These changes in

mean value vary up to 30% of the global mean and will introduce some error into

the efficiency results reported in this study. However, the mean value of the CPU

cost per sweep is on the order of 10 times greater for SIMPLE than it is for FS

which is well outside the order of error introduced by background processes on the

host machine. This trend is seen in the summary quantities which span the entire

length of the runs and were completed up to n = 50000, or t = 625. These results

are tabulated in Table 5.3.

Solver CPU time Sweeps Sweeps
n

CPU time
Sweeps

CPU time
n

FS 7567353 18880131 377.60 0.40 151.35

SIMPLE 30078459 6808536 136.17 4.42 601.57

Table 5.3: CPU time and solver sweep results for the turbulent flow over a square

cylinder test case. CPU time is in ms. Sweeps refer to TDMA solver sweeps.

To better appreciate the differences between the two codes, Table 5.3 is normal-

ized by the FS run results shown in Table 5.4. The normalized SIMPLE laminar

flow results for the same time step size are copied from Table 4.3 for the sake of

comparison.

As shown in Table 5.4, the percent difference in CPU time for the turbulent

flow case is slightly less than the percent difference for the laminar case at this time

step. This is a result of the increase in the number of sweeps needed to solve the

P equation for the FS code and to a minor degree, the increase in the number of

equations that must be solved by the FS code from 1 to 3 compared to 3 to 5 for

the SIMPLE code. The percent increase in sweeps per time step is greater for the

turbulent code by 19%. The normalized values of time per sweep increase from

laminar to turbulent runs largely due to the large increase in sweeps needed by the

89



FS code in the turbulent simulation. A solver sweep itself is not very expensive for

either code, and the FS code only needs to build the equations once which drives

down the cost per sweep when the number of sweeps is high. This increase in the

required solver sweeps is best illustrated by the average sweeps per time step. The

FS code increased 2.4 times from 156 to 378 average sweeps per time step over

the change from laminar to turbulent solutions while SIMPLE increased 1.6 times

from 86 to 136. Although individual sweeps are not particularly costly, the large

increase in solver sweeps per time step required by the FS code from laminar to

turbulent flow does somewhat close the gap in efficiency between FS and SIMPLE

algorithms used for turbulent flows.

Solution CPU time Sweeps Sweeps
n

CPU time
Sweeps

CPU time
n

SIMPLE laminar 4.51 0.55 0.55 8.15 4.51

SIMPLE turbulent 3.97 0.36 0.36 11.02 3.97

Table 5.4: Comparison of normalized SIMPLE solver results. Results are

normalized by dividing by the results of the FS run of the same Re, ∆t and n.

Sweeps refer to TDMA solver sweeps.

5.4 Conclusions

Both FS and SIMPLE codes have been shown to produce results which fall within

the results previously presented in the literature. In order to ensure that the FS

code was numerically stable, the turbulence equations are solved implicitly. This

addition of two extra equations has a minimal effect on the efficiency of the FS code

because the solver is able to solve the equations in two sweeps for each turbulence

equation in most cases. The pressure equation in the FS code takes much more

effort to solve at this higher Reynolds number. It is this increase in solver effort

that reduces the increase in efficiency from SIMPLE to FS codes that was seen in

Chapter 4.

The results indicate that the improvement in efficiency seen in FS time stepping

is more pronounced when the flow is laminar, but there is still a definite advantage

in efficiency when using FS to solve quasi-steady turbulent flow problems. This

confirms the conclusions of Chapter 4 which suggest that FS is a better choice

in terms of efficiency when a quasi-steady small time step simulation is required;

indeed, it extends the conclusions to turbulent flows.
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Chapter 6

Conclusions

6.1 Summary

The framework for a numerical solution of the transient, incompressible Navier-

Stokes equations was laid out with the option of two different time-stepping schemes,

referred to here as the SIMPLE and the Fractional Step time-stepping schemes. The

SIMPLE time-stepping scheme implemented here iteratively solves two velocity

equations, a pressure correction equation and any necessary turbulence equations.

The FS scheme is a semi-implicit method which solves a pressure equation and any

turbulence equations iteratively, but solves the velocity equations explicitly. Both

time-stepping schemes are first order accurate in time.

Turbulence is approached using URANS turbulence modeling. The Kato-Lauder

turbulence model is used in this study instead of the standard k − ε model as the

former has been shown to be more accurate for flow over bluff bodies [16, 3].

Three test cases were explored using the code described above:

1. Laminar Flow in a Lid-Driven Skewed Cavity

2. Laminar Flow over a Square Cylinder

3. Turbulent Flow over a Square Cylinder

The first test case demonstrated that both codes are able to predict the same

steady state flow in a skewed cavity on the same mesh. Both solvers agreed with

the benchmark solution, suggesting that they are reasonably spatially accurate

and could be used in cases where steady state solvers have difficulty generating a

91



converged solution. The rate of convergence to a steady state solution was found

to be somewhat dependent on the time-stepping scheme used in addition to grid

size and time step size. SIMPLE was found to vary more with grid size than FS,

and it had a longer predicted time to steady state. The number of TDMA solver

sweeps required to reach a steady state solution was used as a measure of the overall

efficiency of the SIMPLE and FS numerical solutions. It was determined that the

most efficient way to solve the steady state problem was with the SIMPLE code

using a very large time step (essentially running in steady state mode.) This is not

possible with the FS scheme as it becomes unsteady if the time step gets too big.

For example, for the FS test with Re = 100, on a 40 × 40 grid, the solution was

stable at ∆t = 0.001 but not at ∆t = 0.0011.

The second test case confirmed that flow features evolve at somewhat different

rates depending on the time-stepping scheme. This was indicated by the difference

in Strouhal number (2.5% difference). In addition, the amplitudes and mean values

of the lift and drag coefficients were different depending on the time-stepping

scheme. All summary quantities explored were similar and were close to the

range reported in the literature indicating that both the SIMPLE and FS codes

were functioning correctly. The computational cost as measured by the number

of solver sweeps was found to increase for those periods of time in the solutions

characterized by quickly changing lift coefficient. Regions of change in the lift

coefficient correspond to periods of time featuring large vortices just downstream

of the cylinder. This suggests that increased solver effort corresponds to portions

of the solution time during which large changes occur in a large number of cells.

An investigation of the division of the computational cost in the two laminar flow

codes demonstrated that, in contradiction to the assumption made in the first part

of this study, the solver was not the primary contributor to the computational cost

of the code. To better understand the computational demands of the test codes,

a series of simulations were completed on a dedicated, single CPU machine. The

results of the CPU time study indicated that the FS code was more efficient than

the SIMPLE code in terms of total computational cost for an equivalent solution.

This is largely because the FS code only needs to assemble the governing equations

once per time step while the SIMPLE code requires a new equation assembly per

internal iteration. The results of the CPU time study indicate that the FS code

is much more efficient for small time step simulations, while the SIMPLE code is

preferable for very large time steps. Both codes are least costly overall when the

time step is largest. As the time step size drops, the cost per time step remains

fairly constant for SIMPLE while it reduces in magnitude for FS. A reduction of 10
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times in the time step size resulted in a 3.2 times reduction of CPU time per time

step, largely due to an increase in matrix solver efficiency (solver sweeps per time

step at the smaller time step were 25 times lower).

The third test case demonstrated results which were consistent with the liter-

ature, partially due to the large spread in results reported in the literature, both

from experimental and numerical studies. The summary properties of the solutions

investigated here all fell within the range of results reported in the literature. The

resultant values of CD,P rms were much lower than the LES/DNS results in the

literature, but were larger than most other URANS results. As demonstrated in

the laminar square cylinder test case, the number of solver sweeps was not a good

judge of computational efficiency for this case. Although the SIMPLE code required

1.8 times more solver sweeps, it generated an equation of equivalent accuracy to

the FS solution in 4.51 times longer. An analysis of the CPU time per time step

indicated that some error was present in the CPU time study due to background

processes on the dedicated machine. The effect of these errors was found to be less

than 30% of the mean for either case, and do not effect the general trend, that the

FS time cost was on the order of 10 times less than the SIMPLE time cost per time

step. Finally, for this case, as with the previous one, FS was shown to be more

efficient for small time step problems involving quasi-steady flow than the SIMPLE

algorithm due to the enormous cost of reassembling the equations inside the inner

loop of the SIMPLE algorithm.

6.2 Recommendations

The basic findings of this study apply to transient, quasi-steady, incompressible

laminar and URANS cell centered finite volume codes. They can be summarized

as follows.

1. Both of the time-stepping schemes analyzed were most efficient at their largest

time steps. Time steps should be used at the largest value for which reasonable

time resolution, accuracy and stability are achieved.

2. For steady state flow, the SIMPLE algorithm should be used in preference to

the FS time-stepping scheme.

3. For studies which require small time steps below the maximum stable time

step size for numerical stability of the FS scheme, the FS scheme should be
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used in preference to the SIMPLE algorithm. In fact, the FS scheme is likely

to be more efficient than the SIMPLE scheme even if, to ensure numerical

stability, the FS time step is on the order of 10 times smaller than would be

needed for and acceptably accurate solution using SIMPLE.

In the case of the compressible URANS codes for aero-acoustics, such as the

code used by Ahn et al. [1], it is likely that FS will be more efficient than SIMPLE

but further work is needed to conclusively demonstrate this.

6.3 Future Work

The recommendations of this study are based on the low computational cost of

the matrix solver used here. As the dimensionality or the grid resolution increases,

the TDMA solver used here may become less efficient. It is recommended that

other solvers, such as the Strongly Implicit Procedure as suggested by Stone [36],

should be investigated to determine if the relative efficiency of the SIMPLE and FS

methods remains the same as was found here.

The effects of compressibility are not accounted for in this work and should be

examined in the context of time integration methods.

As suggested by Turek [39], second or higher order time-stepping schemes are

likely to yield further benefits in terms of efficiency and accuracy. It is recommended

that higher order time-stepping schemes be investigated for cell centered finite

volume codes.
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Appendix A

Source Term Transformation
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Table A.1: Source terms of the momentum equations in 2D curvilinear coordinates.
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