
Analysis of Parameterized Networks

by

Siamak Nazari

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c©Siamak Nazari 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Siamak Nazari

ii

Abstract

In particular, the thesis will focus on parameterized networks of discrete-event systems.

These are collections of interacting, isomorphic subsystems, where the number of subsys-

tems is, for practical purposes, arbitrary; thus, the system parameter of interest is, in this

case, the size of the network as characterized by the number of subsystems. Parameterized

networks are reasonable models of real systems where the number of subsystems is large,

unknown, or time-varying: examples include communication, computer and transportation

networks. Intuition and engineering practice suggest that, in checking properties of such

networks , it should be sufficient to consider a “testbed” network of limited size. However,

there is presently little rigorous support for such an approach.

In general, the problem of deciding whether a temporal property holds for a parameterized

network of finite-state systems is undecidable; and the only decidable subproblems that

have so far been identified place unreasonable restrictions on the means by which subsys-

tems may interact. The key to ensuring decidability, and therefore the existence of effective

solutions to the problem, is to identify restrictions that limit the computational power of

the network. This can be done not only by limiting communication but also by restricting

the structure of individual subsystems. In this thesis, we take both approaches, and also

their combination on two different network topologies: ring networks and fully connected

networks.

iii

Acknowledgements

First, I would like to thank my supervisor Professor John Thistle for his great guidance,

support and patience. His advice and support were always greatly appreciated. I also want

to thank all my committee members: Prof. Mark Aagaard, Prof. Richard Trefler, Prof.

Paul Ward, and Prof. Stephane Lafortune.

Most importantly, I’d like to thank my family for their supporting and encouraging com-

ments, their love and faith in me.

iv

Contents

List of Figures vii

1 Introduction 1

1.1 Related Work . 5

2 Ring Networks of Isomorphic Processes 12

2.1 Preliminaries . 14

2.1.1 Process Model . 14

2.1.2 Observable Modal Logic . 18

2.1.3 Process Equivalences . 19

2.2 Computation Model . 24

2.3 Undecidability Results . 31

2.3.1 Ring Networks Equivalence Classes 31

2.3.2 Component and Network Blocking 36

2.3.3 Ring-Segments Equivalence Classes 37

2.4 Termination of PROC . 41

2.4.1 Piecewise Recognizable Processes 41

2.4.2 Shuffled processes . 51

3 Infinite State Modelings and Fully-Connected Networks 56

v

3.1 Petri Net Preliminaries . 57

3.1.1 Petri Net Models . 57

3.1.2 Reachability Tree and Coverability Tree 60

3.1.3 Linear Temporal Logic . 67

3.1.4 Product of Petri Nets . 68

3.1.5 Variants of Ordinary Petri nets . 69

3.2 Model Checking of Ordinary Petri Nets . 74

3.2.1 A Decidable Fragment of Linear Temporal Logic 75

3.2.2 Model-Checking Under Fairness . 83

3.2.3 Factory Example . 85

3.3 Networks of Identical Processes . 87

3.3.1 Computation Model . 87

3.3.2 Petri Nets Modelling of Networks with Rendezvous Templates . . . 88

3.3.3 Component and Network Blocking 92

3.4 Networks of Isomorphic Processes . 97

3.4.1 A Generic Template . 101

4 Conclusion and Future Work 109

Bibliography 113

vi

List of Figures

2.1 PR Processes . 15

2.2 A Template Process Example . 25

2.3 Procedure PROC . 27

2.4 template process P . 29

2.5 Weak Bisimilarity of Rings . 34

2.6 segment of size N (SN) . 45

2.7 Process Tmax . 46

2.8 template T . 48

2.9 Con-discon example . 53

2.10 Processes P` and Pr . 53

2.11 A ring segment of size 2m− 2 . 54

3.1 Producer and Consumer with an infinite size Buffer 59

3.2 Producer and Consumer with a Buffer of size 3 59

3.3 Mutual Exclusion example . 60

3.4 different Petri nets with the same coverability tree 64

3.5 Petri Net P . 66

3.6 Coverability Tree of P . 66

3.7 FSM corresponding to coverability tree of P 67

3.8 Mutual Exclusion example with assigned priority 70

vii

3.9 Elevator System . 70

3.10 One Dining Philosopher . 72

3.11 A Ring of 5 Dining Philosophers . 74

3.12 Colored Petri Net Model of the Dining Philosophers 75

3.13 Petri nets in Chomsky Hierarchy . 76

3.14 Büchi net construction steps . 79

3.15 Petri net model of a factory . 86

3.16 Token Generator in Petri Net Pe . 89

3.17 Template Process of Network N . 90

3.18 Petri Net Model of Network N . 91

3.19 Petri Net Model of Network N with a Distinguished Process 92

3.20 Template Process T . 93

viii

Chapter 1

Introduction

Digital technology continues to create new opportunities and challenges for control engi-

neers. Inexpensive computing power has made computer control almost ubiquitous, to the

point where it is commonplace in everyday household appliances – let alone in disk drives,

automobiles, aircraft and chemical plants. The abundance of computing power has been

coupled with an explosion in digital communications and internet infrastructure, and this

combination has produced automated systems of unprecedented scale and complexity.

To meet this challenge, control scientists have been developing appropriate new control

paradigms since the early eighties. The field of control of discrete event systems combines

the control engineer’s outlook and methodology with models borrowed from computer

engineering and computer science. Featuring abrupt, event-driven transitions among dis-

crete states, such “discrete-event” models are more appropriate for high-level coordination

problems that arise in the control of complex systems.

Thus far, the models employed have primarily been unstructured finite automata. Given

intelligent means of problem decomposition such as those developed within discrete-event

control, such models represent a useful means of synthesis and analysis of specific control

systems. However, their unstructured nature often obscures the logical essence of a prob-

1

2

lem. Consider, for example, the control of a manufacturing system, where buffer overflows

must be avoided. The appropriate control logic should in essence be independent of specific

buffer capacities, yet current standard approaches provide no means of abstracting away

such details. An alternative approach would consider “parameterized” models – these, in

fact, are families of models, each member corresponding to different values of key system

parameters (such as buffer capacities). The overall objective of this research is to extend

methods for the analysis and synthesis of control logic to these more structured models.

In particular, the thesis will focus on parameterized networks of discrete-event systems.

These are collections of interacting, isomorphic subsystems, where the number of subsys-

tems is, for practical purposes, arbitrary; thus, the system parameter of interest is, in this

case, the size of the network as characterized by the number of subsystems. Parameterized

networks are reasonable models of real systems where the number of subsystems is large,

unknown, or time-varying: examples include communication, computer and transporta-

tion networks. Specific motivation for the research will be provided by prior studies of the

development of call-processing services in telecommunications networks within the formal

framework of discrete-event control [2]. A key stumbling block in the development of such

services is “feature interaction” – the unforeseen and undesirable interaction of different

call-processing features or services. Within the discrete-event control framework, such in-

teraction manifests itself as a form of “blocking” – the prevention of one subsystem from

ever reaching a set of prespecified “goal” states.

Intuition and engineering practice suggest that, in checking for blocking or other prop-

erties, it should be sufficient to consider a “testbed” network of limited size. However,

there is presently little rigorous support for such an approach. In general, the problem

of deciding whether blocking occurs in parameterized networks of finite-state systems is

undecidable [20]; and the only decidable subproblems that have so far been identified place

unreasonable restrictions on the means by which subsystems may interact. The key to

ensuring decidability, and therefore the existence of effective solutions to the problem, is

3

to identify restrictions that limit the computational power of the network. This can be

done not only by limiting communication but also by restricting the structure of individual

subsystems. In this thesis, we take both approaches, and also their combination on two

types of network topologies: ring networks and fully connected networks.

The general methodology for ring networks will be to compare networks of different

size, using process-algebraic equivalence relations. This methodology provides semidecision

procedures for establishing that all networks are equivalent to networks of bounded size.

We shall extend these results by identifying restrictions on subsystem structure that yield

decision procedures. We have showed a decidability result for the case where subsystems

have the form of so-called “piecewise” automata, and the equivalence relation employed is

weak trace equivalence. The key idea is roughly that the number of equivalence classes of

networks of arbitrary size can be uniformly bounded on the basis of the piecewise structure

alone. This result will be extended to other equivalence relations, such as weak failures

equivalence, weak possible-futures equivalence (which suffices to handle blocking). Another

decidability result for ring networks is shown when a ring segment is a “shuffled” process;

this guarantees the ring segments of arbitrary size to fall into a finite number of bisimulation

classes. Then, a specific framework has been presented which limits the communication

to a limited number, say m, of processes, and results in a ring segment of size 2m − 2

to be a shuffled process. This framework enforces restriction on both communication and

structure of processes in the ring.

Fully connected networks are investigated in two categories:

1. fully connected networks of identical processes in which processes are the exact same

copies of a network template, and cannot distinguish between one another;

2. fully connected networks of isomorphic processes in which every process is obtained

from the network template by appropriate relabeling of actions; has a distinguished

identity, and can precisely determine the process that he intends to communicate

4

with.

Petri nets are introduced as a mathematical tool to model infinite-state and parame-

terized systems. More specifically, we will show how Petri nets can be used to model fully

connected networks of identical processes. A linear temporal logic L on Petri nets is intro-

duced, and the already-known decidable fragments of this logic are discussed. Furthermore,

we define two fragments of this logic: LE and LO, and show that the problem of deciding

whether a given Petri net existentially (globally) satisfies a formula of LE (LO) is decidable.

Component and network blocking as some specific properties of our interest are investi-

gated on fully connected networks of identical processes. It is proved that the problem

of checking blocking for networks with a general broadcast template is undecidable. Such

templates allow for communication among processes by means of rendezvous and broad-

cast actions; however, if templates are restricted to only allow for rendezvous actions, the

problem becomes decidable. This implies a restriction on the means of communication,

and not the structure of network processes.

Finally, fully connected networks of isomorphic processes are introduced. It is proved

that blocking problem for such networks is undecidable even if the template process only

allows for rendezvous actions. A general template is then proposed which limits the total

number of processes communicating at any time. This template is expressive enough to

model many real-life networks, and at the same time makes the model-checking problem

for CTL∗\X, and therefore, blocking problem decidable. In fact, it implies restriction on

both communication and structure of network processes.

The results of the research will permit rigorous approaches to the analysis and design of

complex, distributed control systems, and should enable further progress toward the goal

of addressing control of parameterized systems in a more general context.

This thesis is organized as follows: In the following section, we will survey some of the

work done in the literature which is similar in nature to our work.

In chapter 2, ring networks consisting of an arbitrary number of processes are in-

5

vestigated. Semialgorithms are introduced to automatically model-check such networks.

Sufficient conditions are then presented on ring templates which guarantee the termination

of the proposed semialgorithms. Chapter 3 discusses Petri nets as a model for infinite-state

systems, and parameterized systems. An expressive linear temporal logic on Petri nets is

defined, and the decidability of a large fragment of this logic is proven. Some applications

of such results on infinite-state manufacturing systems, and fully-connected networks con-

sisting of an arbitrary number of identical processes are then discussed. Fully connected

networks of isomorphic processes are investigated next in this chapter. Blocking as a spe-

cial property of our interest is discussed in both chapters 2,3 on ring networks and fully

connected networks.

Finally in chapter 4, conclusions are given and future work is discussed.

1.1 Related Work

As mentioned before, the abundance of networks which consist of an essentially arbitrary

number of isomorphic subsystems, and the criticality of safety and security in many such

networks makes the parameterized model checking problem (PMCP) vitally important.

This problem is known to be undecidable in general [42].

In an early work [10], Clarke, Grumberg and Browne defined a new logic called indexed

CTL∗\X to express the properties of networks consisting of arbitrary number of identical

processes. In such networks, a natural number is assigned to every process by which

all the atomic propositions of that process are subscripted. The formula
∧

i φ(i) is then

used to imply that φ(i) holds for every process Pi in the network, and similarly,
∨

i φ(i)

is used to imply at least one process Pi satisfies φ(i) where φ(i) is a CTL∗ formula in

which the X operator is not allowed, and whose atomic propositions are all subscripted

by i. A new version of bisimulation equivalence between two processes is also introduced

which guarantees that both processes satisfy the same formulas of indexed CTL∗\X. For

6

a distributed mutual exclusion example, it is shown that a network Nn of size n ≥ 2 is

equivalent with a network N2 of size two. The properties of a network of arbitrary size

can therefore be checked on N2. This technique may be applied in other examples, but

the main problem with this method is that the construction of the equivalence relation

must be done by ad hoc means. The method proposed in [11] is a more systematic way of

constructing the correspondences between the processes. A form of induction is used on

the number of processes in the network. Since this version of bisimulation equivalence is

not a congruence for the composition of processes, this requires ad hoc introduction of a

new process that serves as a process closure. Therefore, this method again needs human

intervention, and cannot be done automatically.

New induction methods are presented in [12, 13]. According to these methods, the

specification is modelled as a further process, and the satisfaction relation is that of “im-

plementation” of the specification by the network [12], or some other preorder relation such

as language containment[13]. Sometimes we need to replace the specification model with

a logically-stronger “network invariant”. These invariants are typically constructed in an

ad hoc manner.

Significant related studies have been reported that consider systems with special topolo-

gies. In [43] asynchronous networks consisting of classes of homogenous processes are in-

vestigated. The processes of a class are considered to be instances of a template. The

overall network can be represented by (U1, ..., Uk)
n1,...,nk where Ui denotes the template of

class i, and ni denotes the number of instances in that class. So the processes in this class

are numbered 1, 2, · · · , ni. The size of this system depends on the number of instances in

each class – one may think of n1 to nk as the parameters of this system. The transitions of

a template process are of the form s
g

−→ t, indicating that the process can go from state

s to state t provided that the guard g is true. The guards must have exactly one of the

following two forms:

1. Disjunctive guards for the ith instance of template l have the general form

7

∨

r 6=i

(ar
l ∨ ... ∨ brl) ∨

∨

j 6=l

(
∨

k∈[1..nj]

(ak
j ∨ ... ∨ b

k
j))

where aj
i is true when instance j of template Ui is in local state ai.

2. Conjunctive guards for the ith instance of template l have the general form

∧

r 6=i

(irl ∨ a
r
l ∨ ... ∨ b

r
l) ∧

∧

j 6=l

(
∧

k∈[1..nj]

(ikj ∨ a
k
j ∨ ... ∨ b

k
j))

where il denotes the initial state of template l.

On the other hand, the correctness properties are expressed using a fragment of indexed

CTL∗\X. They are of one of the following three forms:

1. the properties over all the processes of a single class Ul:

∧

il
Ah(il) and

∧

il
Eh(il) where il ranges over the indices of Ul.

2. the properties over pairs of different processes in a single class Ul:

∧

il,jl
Ah(il, jl) and

∧

il,jl
Eh(il, jl) where il, jl ranges over all the indices of Ul.

3. the properties over pairs of processes from two distinct classes Ul,Um:

∧

il,jm
Ah(il, jm) and

∧

il,jm
Eh(il, jm) where il ranges over all the indices of Ul and

jm ranges over all the indices of Um.

where h is an LTL\X formula.

Various examples of networks can be modelled in the framework of [43]. For such

systems a bound on the number of instances of each class has been found which is sufficient

to capture all the possible computations in the parameterized system.

For the network (U1, ..., Uk)
n1,...,nk, two cutoffs (c1, c2 · · · ck) and (d1, d2 · · · dk) are defined

such that ci = |Ui|+ 3, di = 2|Ui|+ 1 and |Ui| is the number of states of template Ui. It is

8

then shown that they are sufficient cutoffs for checking all three types of properties of the

networks defined in disjunctive and conjunctive forms respectively. For example, in order

to show that all the instances of a given network (U1, ..., Uk)
n1,...,nk(defined in disjunctive

framework for instance) satisfy a given property ψ (one of the three types), it suffices to

check ψ for those instances which we have ni ≤ ci for 1 ≤ i ≤ k. This can also be denoted

by (n1, ..., nk) ≤ (c1, c2 · · · ck). This is a significant result in parameterized model checking.

In [14] two different types of network structures are investigated. First, networks con-

sisting of a unique control process, and an arbitrary number of identical processes. The

processes communicate using CCS actions. A decision algorithm for checking whether all

the computations of such a network satisfy a given temporal property is presented. The sec-

ond one is a special case of the first when the network does not have a distinguished control

process. It is shown that a more efficient algorithm can be applied for such networks. This

framework is too restrictive, and is not appropriate for modelling a complicated network

such as a telephone network because processes cannot distinguish among one another, and

a transition of one process can be synchronized with any other process capable of executing

its complement transition.

In [17], networks with a ring topology have been investigated. The processes are all

copies of a template process T . So a ring of size n consists of processes P1, P2, · · · , Pn−1

where Pi is obtained from T by indexing all its propositions and actions with i. Pi+1 is

the immediate right-hand neighbor of Pi, and Pi−1 is the immediate left-hand neighbor of

Pi where the index calculations are modulo n. Every process in the ring can communi-

cate with its immediate neighbors, and this communication is done by means of a single

token which is passed between neighbor processes. Every process that has the token will

eventually pass it to its right neighbor. Initially, the token is given to one of the processes

nondeterministically. The token cannot carry any information with it. Processes are as-

sumed to have two sets of actions: free actions, and token-dependent actions. A process

9

cannot perform a token dependent action unless it has the single token of the ring, but

free actions can be performed at any time. For such a system, it has been shown that the

problem of checking many correctness properties for every size instance of the ring can be

reduced to checking them on rings of bounded size where the bound (cutoff) depends on

the kind of property for which we check the system. The properties are expressed using

indexed CTL∗\X. An example of an acceptable formula is ∀i :: g(i) where i ranges over

all the process indices, and g(i) is a CTL∗\X formula expressed on the propositions and

actions of process i. A given ring network satisfies this property iff every process Pi in the

ring satisfies g(i). Another example is ∀i, j : i 6= j : g(i, j); this property holds iff every

distinct pair of processes Pi, Pj satisfies g(i, j). The following results have been proved for

four different types of properties:

• properties of the form ∀i :: g(i) have a cutoff of 2.

• properties of the form ∀i :: g(i, i+ 1) have a cutoff of 3.

• properties of the form ∀i, j : i 6= j : g(i, j) have a cutoff of 4.

• properties of the form ∀i, j : i 6= j : g(i, i+ 1, j) have a cutoff of 5.

Using similar techniques as in [17], these results can be extended to other types of

properties. The major restriction in this work is on the communication of processes. As

said before, the token does not carry any information; if it did so, the problem would

become undecidable.

The authors of [19] generalize the work of [17] to other network topologies consisting

of isomorphic processes which communicate by passing a single token among them. A

directed graph G(V,E), where V = {1, 2, · · · , |V |} and E ⊆ V × V , is defined to represent

the way the processes can transfer the unique token. Each vertex i corresponds to a process

Pi in the network, and a directed edge (i, j) means that process Pi can transfer its token

to process Pj. Therefore a network of n processes can be represented by a network graph

10

G = (V,E) such that |V | = n, and a template process T . The processes are copies of T

obtained by appropriate renaming. There are two major differences between [19] and [17].

First, the results only hold for LTL\X properties, and second, a more refined definition of

cutoff is used.

Consider the quantifier-free LTL\X formula φ(x, y) where x, y are two indexed variables.

Then the closed formula ∀x∃y.φ(x, y) known as a 2-indexed specification implies “for every

process Pi in the network, there exits another process Pj such that φ(i, j) holds”. In a

similar way, a k-indexed specification is defined as a formula whose quantifier-free part,

also known as its matrix, refers to k processes.

Assume that we want to model-check a parameterized network N for a property ψ; we

reduce the problem as follows: model check c smaller networks of size less than or equal

to s. The final result of the verification on the original network is a boolean expression on

the collected results on smaller ones. This is called a (c, s)-bounded reduction. It is shown

that for a class of networks and a k-indexed specification, a (c, s)-bounded reduction exists

such that c, s only depend on k. In particular, for a 2-indexed specification, it is enough

to model check at most 36 networks of size 4. Although the results of [19] is more general

than [17], the communication among processes is still restricted to a great extent.

In [18], Emerson and Kahlon address the state explosion in the context of resource

allocation systems. In such systems the processes share tokens representing their common

resources. Each token is shared between at most two processes, and is possessed by one of

them, or none at a time (free resource). Every process needs to possess all its shared tokens

to perform the token dependent actions. A method is proposed in which the model checking

of a network comprising a fixed number n of possibly heterogeneous processes is reduced

to the model checking of a smaller system. The smaller system is constructed with respect

to the original system and the correctness property to be verified (expressed in LTL\X).

In the special case when the network is symmetric and the processes are homogenous,

this method can be extended to the model checking of parameterized networks where the

11

number of processes in the network is arbitrary. The dining philosophers problem is studied

as an application of this method.

Chapter 2

Ring Networks of Isomorphic

Processes

In this chapter, we investigate ring networks consisting of isomorphic processes. Processes

in the network are obtained by appropriate relabelling of a template process. They interact

through event-sharing. Furthermore, the number of processes in the network is assumed

to be arbitrary. This is an instance of parameterized model-checking problem. In fact,

the number of processes is the only parameter of such networks. The model-checking of

a ring network is then to check whether a given property holds for every fixed size ring.

This problem is known to be undecidable [17, 42]. However, one may achieve decidability

results by imposing restrictions on the structure of the template process, or the mechanism

whereby processes interact with one another. In this work, we apply restrictions on the

structure of subsystems rather than the means of interaction. Within our framework,

semialgorithms have been proposed, based on various process equivalences. We show that

a procedure based on weak trace equivalence is guaranteed to terminate in the case where

individual subsystems are piecewise recognizable; this can be extended to a procedure based

on the finer completed trace equivalence, weak failure equivalence or weak possible futures

12

13

equivalence. Consequently, a subset of observable modal logic (which is preserved under the

above equivalence relations) as well as LTL\X properties can be model-checked for such

systems.

We then consider networks in which actions occurring in a subsystem affect only a

bounded number of other subsystems. This property is formalized through the notion of

shuffled processes. When a segment of a ring is a shuffled process, it is shown that networks

of all sizes fall into a finite number of weak bisimilarity classes. In this case, the whole set

of observable modal logic and also CTL∗\X properties can be model-checked.

We also show how such parameterized networks can be checked for deadlock and blocking

of their subsystems whenever the proposed procedures terminate.

This chapter is organized as follows. In the first section, we discuss some preliminaries

of process algebra. A process model is defined, and several operations on processes such

as synchronous product, hiding, and renaming are explained. We also introduce a modal

logic to express the properties of processes. Several equivalence relations are defined, and

the classes of modal formulas preserved under the respective equivalence relations are dis-

cussed. In section 2.2, the computation model of a ring network is defined, and a general

semialgorithm is introduced to check such networks against modal properties. It is also

shown how the results can be extended to temporal logic. However, the proposed semialgo-

rithm is not guaranteed to terminate. It is shown in section 2.3 that the termination of this

semialgorithm is undecidable for every equivalence relation which is finer than weak trace

equivalence and coarser than weak bisimulation. Finally in section 2.4, we introduce some

sufficient conditions on the structure of rings templates which guarantees the termination

of the proposed semialgorithm for some equivalence relations.

14

2.1 Preliminaries

2.1.1 Process Model

A finite state process P is a tuple of the form (S,Σ, R, s0) where S is a finite set of reachable

states, Σ is a finite set of visible actions, R ⊆ S × (Σ] {τ}) × S is a transition relation1,

and s0 ∈ S is the initial state. Sometimes we write s
σ

−→ r to show (s, σ, r) ∈ R. In a

given transition t = (s, σ, r), s is known as its source state (Src(t)), r as the destination

state (Dst(t)), and σ as its action (Act(t)).

For a given sequence of transitions t = t1t2 · · · tn, if Src(t1) = s, Dst(tn) = r, and

Dst(ti) = Src(ti+1) for 1 ≤ i ≤ n− 1, we say s leads to r via t and denote this by s
t
 r.

The sequence t is called a computation path from s to r. The reachable state of t, denoted

by reach(t), is the destination state r of its last transition tn. The definition of reach can

be extended to sets of computation paths as follows: reach(A) = {reach(t) : t ∈ A}. We

also denote by Act(t) the sequence of actions of transitions in t : Act(t1)Act(t2) · · ·Act(tn).

The projection of Act(t) onto the visible actions is called t’s sequence of visible actions,

and is denoted by Actv(t). The set of all the computation paths of P starting from s0 is

denoted by C(P).

The notation s
ε

=⇒ r means that there exists a sequence of states u1u2 · · ·un such that

u1 = s and un = r and ui
τ

−→ ui+1 for 1 ≤ i ≤ n − 1. As a special case, s
ε

=⇒ s for

every state s ∈ S. We also use the notation s
σ

=⇒ r for a visible action σ when there exist

states v and w such that s
ε

=⇒ v, v
σ

−→ w, and w
ε

=⇒ r. This can easily be generalized to

strings of visible actions. Given a string σ = σ1σ2 · · ·σn where σi ∈ Σ, the notation s
σ

=⇒ r

implies that there exists a sequence of states u1u2 · · ·un+1 such that u1 = s and un+1 = r

and ui
σi=⇒ ui+1 for 1 ≤ i ≤ n. Sometimes we just write s

σ
=⇒ to show that there exists

some state r such that s
σ

=⇒ r. Define the visible language of a process P as the set of all

the strings executable from its initial state: Lv(P) = {σ ∈ Σ∗ : s0
σ
⇒}.

1τ is the invisible action.

15

Piecewise Recognizable Processes

Process P is called piecewise recognizable (PR) iff there exists a partial order relation ≤ on

S such that if (s1, σ, s2) ∈ R, then s1 ≤ s2 [7]. An example of a PR process is a program

whose variables have all finite domains, and the values assigned to any of them, during a

run of that program, is non-decreasing or non-increasing. A thin piecewise process is a PR

process whose states can have at most one successor state other than itself. A tree process

is a special PR process in which each state has at most one predecessor other than itself.

A leaf state is one which does not have any successor. Figure 2.1 depicts some examples of

PR processes. All three processes in the Figure are PR; the one on the left is thin piecewise

and the one in the middle is a tree.

α

β

β

βα

α

β

α β

α

β

α

θ θ θ

θ

Figure 2.1: PR Processes

Given a tree process P = (S,Σ, R, s0), a subtree of P is a process (S ′,Σ, R′, s0) where

S ′ ⊆ S, R′ ⊆ R, and if (s, σ, s) ∈ R for some s ∈ S ′, then (s, σ, s) ∈ R′. Note that a subtree

of P has the same initial state as P . Denote the set of all subtrees of P by sub(P). One

way of constructing a subtree of P is to remove a subset of its non-self-loop transitions,

and then trim the obtained process by removing all unreachable states. Therefore, if P

has m non-self-loop transitions, there are 2m different possibilities for subtrees of P , some

of which become the same after trimming; 2m is, therefore, only an upper bound on the

number of such subtrees: |sub(P)| < 2m.

16

Hiding and Renaming

Let σ be a visible string in Σ∗. We denote by σ\Σ1 string σ with all the actions in Σ1

deleted (hidden). This operation can be defined inductively as follows:

ε\Σ1 = ε

α\Σ1 =







ε : α ∈ Σ1

α : α 6∈ Σ1

σα\Σ1 = (σ\Σ1)(α\Σ1)

where α ∈ Σ and σ ∈ Σ∗. Similarly, σ\Σ1 is defined as σ with all the actions not in Σ1

deleted. For a language L ⊆ Σ∗, define L\Σ1 = {σ\Σ1 : σ ∈ L} and L\Σ1 = {σ\Σ1 : σ ∈

L}.

We can also extend the notion of action hiding to processes which is a standard opera-

tion in Milner’s process algebra [5]. We denote by P\Σ1, process P with all his actions in

Σ1 hidden. More formally, for a given process P = (S,Σ, R, s0), P\Σ1 is defined as process

P in which the action Act(t) of every transition t ∈ R is renamed to τ if Act(t) ∈ Σ1.

Similarly, process P\Σ1 is defined as P with all the actions not in Σ1 hidden.

Proposition 1 For a given process P = (S,Σ, R, s0) and a set of actions Σ1, we have

Lv(P)\Σ1 = Lv(P\Σ1).

Renaming, another standard operation of Milner’s process algebra [5], is a more general

form of hiding where every action of a process is renamed (not necessarily to τ) according

to a given function. Given a process P = (S,Σ, R, s0) and a function f : Σ −→ Σ′, define

P [f] to be the tuple (S,Σ′, R1, s0) where R1 = {(s1, β, s2)|(s1, α, s2) ∈ R & β = f(α)}. If

f is not defined for some action, then that action won’t be renamed.

17

Interleaving of Strings

Given any two strings of actions (transitions) x, y, define inter(x, y) as the set of all strings

obtained by interleaving the actions (transitions) of x and y [6]. For instance,

inter(β1β2, α1α2) = {β1β2α1α2, β1α1β2α2, β1α1α2β2, α1β1β2α2, α1β1α2β2, α1α2β1β2}.

The interleaving of two sets of strings is defined as the set of all interleavings of all pairs

of strings belonging to those sets:

inter(A,B) =
⋃

x∈A,y∈B

inter(x, y)

Synchronous Product of Processes

Given two processes P1 = (S1,Σ1, R1, s01), P2 = (S2,Σ2, R2, s02), define their synchronous

product P1 × P2 = (S1 × S2,Σ1 ∪Σ2, R, (s01, s02)) where ((s1, s2), α, (r1, r2)) ∈ R iff one of

the following conditions holds:

• α ∈ Σ1 ∩ Σ2, (s1, α, r1) ∈ R1, (s2, α, r2) ∈ R2;

• α ∈ (Σ1 \ Σ2) ∪ {τ}, (s1, α, r1) ∈ R1, s2 = r2;

• α ∈ (Σ2 \ Σ1) ∪ {τ}, (s2, α, r2) ∈ R2, s1 = r1.

In the special case when Σ1 ∩ Σ2 = ∅ the synchronous product of P1 and P2 is known

as their shuffle product and is denoted by P1 } P2.

Proposition 2 Given two processes P1 = (S1,Σ1, R1, s01) and P2 = (S2,Σ2, R2, s02), the

following statements hold:

• Lv(P1 × P2)\Σ1 ⊆ Lv(P1)

• Lv(P1 } P2)\Σ1 = Lv(P1)

• Lv(P1 × P2)\Σ ⊆ Lv(P1)\Σ ∩ Lv(P2)\Σ

18

2.1.2 Observable Modal Logic

We use the observable modal logic Mo from [5] to express the properties of the processes.

The formulas of Mo are inductively defined as follows:

Ψ := T | F | Ψ1 ∧ Ψ2 | Ψ1 ∨ Ψ2 | 〈〈K〉〉Ψ | 〈〈〉〉Ψ | [[K]]Ψ | [[]]Ψ

where K is a subset of visible actions.

For a given process P = (S,Σ, R, s0), state s ∈ S, and modal formula Ψ, we write

(P, s) |= Ψ to show that state s of P satisfies Ψ, and if that does not hold (P, s) 6|= Ψ.

The semantics of this satisfaction relation is defined inductively on the structure of the

formulas as follows:

(P, s) |= T

(P, s) 6|= F

(P, s) |= Ψ1 ∧ Ψ2 iff (P, s) |= Ψ1 and (P, s) |= Ψ2

(P, s) |= Ψ1 ∨ Ψ2 iff (P, s) |= Ψ1 or (P, s) |= Ψ2

(P, s) |= 〈〈K〉〉Ψ iff ∃t ∈ Rch(s,K). (P, t) |= Ψ

(P, s) |= 〈〈〉〉Ψ iff ∃t ∈ Rch(s, ε). (P, t) |= Ψ

(P, s) |= [[K]]Ψ iff ∀t ∈ Rch(s,K). (P, t) |= Ψ

(P, s) |= [[]]Ψ iff ∀t ∈ Rch(s, ε). (P, t) |= Ψ

where Rch(s,K), Rch(s, ε) denote the set of states reachable from s by performing an

action in K or ε respectively; more formally, Rch(s,K) := {r ∈ S : s
α

=⇒ r, α ∈ K},

Rch(s, ε) := {r ∈ S : s
ε

=⇒ r}.

Proposition T holds in every state s of a process P , and F does not hold in any state.

The formula Ψ1 ∧Ψ2 (Ψ1 ∨Ψ2) holds in state s if Ψ1 and (or) Ψ2 holds in s. The formula

〈〈K〉〉Ψ holds in s if P can perform an action in K from state s, and reach a state which

satisfies Ψ. Similarly, 〈〈〉〉Ψ holds in s iff P can reach another state from s which satisfies

19

Ψ by only taking invisible actions. The formula [[K]]Ψ holds in state s if all the actions

in K from s evolve to states which satisfy Ψ. Similarly, [[]]Ψ holds in state s if all the

reachable states from s by performing invisible strings of actions satisfy Ψ.

We say process P satisfies an observable modal formula Ψ, and write P |= Ψ if

(P, s0) |= Ψ. For notation simplicity, we use [[α1, α2, · · ·αn]] instead of [[{α1, α2, · · ·αn}]],

and 〈〈α1, α2, · · ·αn〉〉 instead of 〈〈{α1, α2, · · ·αn}〉〉. This logic can be used to express local

capabilities and necessities of processes [5]. For instance, P |= [[α1, α2]]〈〈β〉〉T implies that

the visible action β can be performed from any state reachable from the initial state of P

by performing an visible action α1 or α2.

2.1.3 Process Equivalences

When do we call two processes equivalent? This is a fundamental question in process

algebra. Two processes are said to be equivalent when they both show the same “behavior”.

However, their behavior can be seen from different perspectives. Let P be the set of all

processes. Each equivalence relation partitions P into classes of processes with equivalent

behaviors. Equivalence relation E1 is said to be more refined than E2 (E1 ≤ E2) if any

two processes which are equal according to E1 are also equal according to E2.

E1 ≤ E2 iff ∀P1, P2 ∈ P. [(P1, P2) ∈ E1 ⇒ (P1, P2) ∈ E2]

One way of defining an equivalence relation on P is by presenting a set of properties

Γ. Then, we say two processes P1 and P2 are equivalent with respect to Γ, and denote

it by P1 ≡Γ P2, iff they both satisfy the same properties from Γ. In other words, ≡Γ

preserves the set of properties indicated by Γ. An extreme case is when Γ = ∅ which

results in the equivalence of any two processes. As the set of properties, one may choose a

subset of formulas of the modal logic Mo. In the remainder of this subsection, a number

of important equivalence relations will be defined, and their respective preserved subsets

20

of Mo are stated. We will also investigate whether they can be ordered according to the

partial order relation ≤ [5].

Weak Trace Equivalence

We say two processes P1, P2 are weakly trace equivalent, and denote it by P1 ≡wtr P2, iff

they both have the same visible languages [5].

P1 ≡wtr P2 iff Lv(P1) = Lv(P2)

Proposition 3 Let Γwtr be the set of all modal formulas of the form 〈〈α1〉〉〈〈α2〉〉 · · · 〈〈αn〉〉T

where αi ∈ Σ. 2 Then, the equivalence relations ≡wtr and ≡Γwtr
are identical.

String σ ∈ Σ∗ is called a deadlock for process P = (S,Σ, R, s0) iff there exists some

state s ∈ S such that s0
σ

=⇒ s, and no visible action can be performed from s. Let’s denote

the set of all deadlocks of P by D(P). Completed trace equivalence is a finer version of

weakly trace equivalence which guarantees the processes to have the same set of deadlocks

as well [5]:

P1 ≡ctr P2 iff Lv(P1) = Lv(P2) & D(P1) = D(P2)

Proposition 4 Let Γctr be the union of Γwtr and the set of all modal formulas of the form

〈〈α1〉〉〈〈α2〉〉 · · · 〈〈αn〉〉[[Σ]]F or 〈〈 〉〉[[Σ]]F where αi ∈ Σ. Then, the equivalence relations ≡ctr

and ≡Γctr
are identical.

Weak Failure Equivalence

There may be a certain subset of visible actions X of a process P which cannot occur

(be rejected) after a specific run of visible actions σ; such visible actions are known as

rejections of P after performing σ, and the pair (σ,X) is known as a failure of P . More

2when not specified Σ is the set of all visible actions.

21

formally, for a given process P = (S,Σ, R, s0) and a state s ∈ S, define Rjctv(s) as the set

of visible actions which cannot be executed from s:

Rjctv(s) := Σ \ {α ∈ Σ | s
α

=⇒}

Then, Failures(P) is defined as follows:

Failures(P) = {(σ,X) ∈ Σ∗ × 2Σ : ∃s ∈ S. s0
σ

=⇒ s & X ⊆ Rjctv(s)}

We say two processes P1, P2 are weakly failure equivalent, and denote it by P1 ≡wf P2,

iff Failures(P1) = Failures(P2).

Proposition 5 Let Γwf be the union of Γctr and the set of all modal formulas of the form

〈〈α1〉〉〈〈α2〉〉 · · · 〈〈αn〉〉[[K]]F where αi ∈ Σ and K ⊆ Σ. Then, the equivalence relations ≡wf

and ≡Γwf
are identical.

A string σ belongs to the visible language Lv(P) of a process P iff (σ, ∅) ∈ Failures(P).

Similarly, a deadlock σ belongs to D(P) iff (σ,Σ) ∈ Failures(P). Therefore, when the

Failures sets of two processes are equal, so are their visible languages and deadlocks.

Consequently ≡wf ≤ ≡ctr.

The weak failure equivalence is specially of interest for deadlock detection. A process

running in a network of processes is said to have deadlock if it can reach a state from which

cannot perform any visible action.

Proposition 6 Suppose E and F are weakly failure equivalent. Then, P shows deadlock

in P × E iff it does in P × F .

Weak Possible-Futures Equivalence

Given a process P = (S,Σ, R, s0), the set of weakly possible-futures of P is defined as

PF (P) := {(σ, L) ∈ Σ∗ × 2Σ∗

: ∃s ∈ S.s0
σ

=⇒ s & Lv(Ps) = L}.

We say two processes P1, P2 are weakly possible-futures equivalent, and denote it by

P1 ≡wpf P2, iff PF (P1) = PF (P2).

22

Proposition 7 Let Γwpf be the union of Γwf and the set of all formulas of the form 〈〈a1〉〉

〈〈a2〉〉 · · · 〈〈an〉〉
(

〈〈α1〉〉〈〈α2〉〉 · · · 〈〈αk1〉〉T ∧ · · · ∧ 〈〈θ1〉〉〈〈θ2〉〉 · · · 〈〈θkm
〉〉T

)

where ai, αi, · · · , θi ∈

Σ. Then, the equivalence relations ≡wpf and ≡Γwpf
are identical.

It can easily be shown that ≡wpf≤≡wf [5].

The weak possible-futures equivalence specially useful to detect blocking. Sometimes

a subset of states F ⊆ S of a process P is marked as final states. A process running in a

network of processes is said to have blocking if it can reach a state from which a marker

state is not reachable. This notion of blocking is the same as component blocking defined

in [1]. It can also be expressed in CTL∗\X logic as follows: let pf be the proposition of

being a marker state, then a process P running in a network of processes does not show

component blocking iff P satisfies AGEFpf .

Proposition 8 Let P = (S,Σ, R, s0), E = (SE ,Σ, RE, s0e), F = (SF ,Σ, RF , s0f) and

E ≡wpf F ; then P is blocking in P × E iff it is blocking in P × F .

Proof: Suppose P is blocking in P × E; then, there exists a blocking state (s, se) ∈

S × SE and x ∈ Σ∗ such that (s0, s0e)
x

=⇒ (s, se) in P × E and for every reachable state

(s′, s′e) from (s, se), we have s′ is not a final state. Let L be the language of all visible

strings from se in process E. Therefore, the pair (x, L) ∈ PF (E) = PF (F). This implies

that there exists sf ∈ SF such that (s0, s0f)
x

=⇒ (s, sf) in P ×F and the language of visible

strings from sf is L. The global state (s, sf) is blocking in P × F because F allows for

occurrence of the same strings from sf as E does from se. �

In section 2.2, it will be explained how propositions 6,8 can be used to detect partial

deadlocks and blocking of ring networks with an arbitrary number of isomorphic processes.

Weak Bisimulation

Given two processes P1 = (S1,Σ, R1, s01), P2 = (S2,Σ, R, s02), and a relation Rel ⊆ S1×S2,

we say Rel is a weak bisimulation relation iff the following conditions hold:

23

• If (s1, r1) ∈ Rel and s1
α

=⇒ s2 for some α ∈ Σ ∪ {ε}, then there exists some state r2

such that r1
α

=⇒ r2 and (s2, r2) ∈ Rel;

• If (s1, r1) ∈ Rel and r1
α

=⇒ r2 for some α ∈ Σ ∪ {ε}, then there exists some state s2

such that s1
α

=⇒ s2 and (s2, r2) ∈ Rel.

For s1 ∈ S1 and s2 ∈ S2, we write (P1, s1) ≡wb (P2, s2) to mean that a weak bisimulation

relation Rel exists and (s1, s2) ∈ Rel. Two processes P1 and P2 are weakly bisimilar,

P1 ≡wb P2, iff there exists a bismulation relation Rel such that (P1, s01) ≡wb (P2, s02) [5].

Weak bisimulation is the strongest of all the previous equivalences we have discussed

so far, and preserves all formulas of Mo.

Proposition 9 Let Γwb be the set of all modal formulas Mo. Then, the equivalence rela-

tions ≡wb and ≡Γwb
are identical.

Proof: First we show that for every two processes P1, P2 and every two states s1, s2

belonging to their sets of states respectively, if (P1, s1) ≡wb (P2, s2), then they both satisfy

the same formulas of Mo. This will be done by using induction on the structure of modal

formulas Ψ. The base case when Ψ is T or F clearly holds. Now let Ψ be of the form

Ψ1 ∧ Ψ2, and assume that the proposition holds for Ψ1 and Ψ2. We know (P1, s1) |= Ψ

iff (P1, s1) |= Ψ1 and (P1, s1) |= Ψ2 iff (P2, s2) |= Ψ1 and (P2, s2) |= Ψ2 iff (P2, s2) |= Ψ.

The case when Ψ is of the form Ψ1 ∨ Ψ2 can be shown in a similar way. Now let’s say

Ψ is [[K]]Ψ1 and (P1, s1) satisfies Ψ, which means that for any state s′1 and any action

α ∈ K such that s1
α

=⇒ s′1, we have (P1, s
′
1) |= Ψ1. Now for every state s′2 and every action

α ∈ K such that s2
α

=⇒ s′2, there exists a state s′1 of process P1 such that s1
α

=⇒ s′1 and

(P1, s
′
1) ≡wb (P2, s

′
2). We also have (P1, s

′
1) |= Ψ1 which implies (P2, s

′
2) |= Ψ1 according

to the premise of the induction. Consequently, (P2, s2) |= Ψ. A similar reasoning can be

presented for the other operators of Mo. Thus, when P1 ≡wb P2 both processes satisfy the

same formulas of Mo.

24

Now suppose that P1 ≡Γwb
P2. Let’s define the relation Rel as follows:

Rel := {(s, r) : ∀Ψ ∈Mo, (P1, s) |= Ψ iff (P2, r) |= Ψ}

We shall first show that the relation Rel is a weak bisimulation relation.

Suppose that Rel is not a weak bisimulation relation. That implies that there exist a

pair (s, r) ∈ Rel and α ∈ Σ ∪ {ε} for which s
α

=⇒ s′ in P1, but a state r′ does not exist

such that r
α

=⇒ r′ in P2 and (s′, r′) ∈ Rel. This could happen either because r
α

6=⇒, or

because for every state ri, i ∈ {1, 2, · · ·n}, such that r
α

=⇒ ri, we have (P1, s
′) |= Ψi and

(P2, ri) 6|= Ψi. If the first case holds, then (P1, s) satisfies 〈〈α〉〉T, but (P2, r) does not;

therefore, (s, r) cannot belong to Rel which is a contradiction. In the second case, (P1, s
′)

satisfies Ψ = Ψ1 ∧ Ψ1 ∧ · · ·Ψn, but (P2, ri) does not. Consequently, (P1, s) |= 〈〈α〉〉Ψ and

(P1, r) 6|= 〈〈α〉〉Ψ; therefore, (s, r) cannot belong to Rel which is again a contradiction.

Also note that Rel relates the initial states s01, s02 of P1, P2 since (P1, s01) and (P2, s02)

both satisfy the same Mo formulas. Therefore, P1 ≡wb P2. �

2.2 Computation Model

In this chapter, we particularly focus on ring networks of arbitrary size consisting of isomor-

phic processes – processes are all copies of the same template with appropriate relabelling

of actions. More specifically, suppose that a template process P = (S,Σn, R, s0) is given,

in which every action in Σn carries a subscript n (a left-hand action) or n+1 (a right-hand

action), where n is a natural number. We denote the set of left-(right-) hand actions by

Σ`(Σr). See figure 2.2 for an example. Given such a template, the ith process in the ring

Pi is obtained by evaluating n to i in all the action subscripts. More formally Pi is defined

as (S,Σi, Ri, s0) where Σi is a copy of Σn and Ri is a copy of R in which n is evaluated to

i. A linear network consisting of processes P0, P1, · · ·PN−1 can be created by taking their

25

cn+1

an+1, cn

an

bn+1

bn

Figure 2.2: A Template Process Example

synchronous product:

LN := ΠN−1
i=0 Pi = P0 × P1 × · · · × PN−1

Define Pi(mod N) exactly like Pi, but with the subscript of the actions evaluated using

mod N arithmetic. In this way, we can create a ring network of size N as follows:

RN := ΠN−1
i=0 Pi(mod N) = ΠN−2

i=0 Pi × PN−1(mod N)

In this structure, each process shares actions only with its immediate neighbors. Let

Σri denote those actions of Pi which are shared by its right-hand neighbor Pi+1(mod N):

Σri = (Σi∩Σi+1)(mod N). Similarly, let Σ`i denote the actions of Pi shared by its left-hand

neighbor Pi−1(mod N): Σ`i = (Σi ∩Σi−1)(mod N). Any action of Pi which is not in Σri or

Σ`i is invisible.

In the above ring RN , one may want to model-check one specific process in the ring,

say P0, when interacting with the rest of the ring SN−1 – a ring segment of size N − 1

which can be defined as follows:

SN−1 : =
(

ΠN−1
i=1 Pi(mod N)

)

\Σ0

=
(

ΠN−2
i=1 Pi × PN−1(mod N)

)

\Σ0

Note that hiding of actions outside Σ0 does not have any effect on the properties of P0

which are expressed on Σ0. In some other network examples, the specific process P0 may

have a different structure than the other processes in the ring, or it may consist of a finite

number of processes.

26

In the sequel, we show a recursive definition of a ring segment. We first need to define

an operator � for composition of processes over the template alphabet Σn. Given two

template processes P ′ and P ′′ over Σn, define:

P ′ � P ′′ :=
(

(P ′ × P ′′[n+ 1\n, n+ 2\n+ 1])\(Σn ∩ Σn+1)
)

[n+ 1\n+ 2]

Every subscript n (respectively n+ 1) in P ′′ is first renamed to n+ 1 (n+ 2), then the

synchronous product of P ′ with the new P ′′ is taken; all the actions whose subscripts are

n+ 1 are hidden (actions in Σn ∩ Σn+1), and finally every subscript n+ 2 of the obtained

process is renamed to n+1. Note that the result is a process over Σn, and � is associative.

Now a ring segment of size N can be defined recursively:

S ′
1 : = P

S ′
N : = P � S ′

N−1 = S ′
N−1 � P

It can be easily shown that S ′
N and SN are the same processes up to a simple renaming.

More precisely:

S ′
N = SN [n\1, n+ 1\0]

Our next goal is to investigate the behavior of segments of different size S ′
N , and check

whether they all fall into a finite number of equivalence classes for some equivalence relation

≡. Define B to be the smallest bound (if such a bound exists) such that every segment of

size larger than B is equivalent to a segment of size less than or equal to B. Suppose that

S ′
i ≡ S ′

i+k where i, k are positive natural numbers and ≡ has the congruence property with

respect to �. That implies S ′
i �P ≡ S ′

i+k�P . Therefore, S ′
i+1 ≡ S ′

i+k+1 and S ′
i+2 ≡ S ′

i+k+2

and so forth. It can be shown inductively that S ′
i+t ≡ S ′

i+r where t modulo k is r. In other

words, every segment of size larger than i + k − 1 is equivalent to a ring segment of size

less than or equal to i + k − 1. On this basis, procedure PROC(P) compares each ring

segment against the ring segments of smaller size until two ring segments S ′
k1
,S ′

k2
are found

27

Procedure PROC(P)

begin
flag:=True;

n:=2;

while flag do

for i:=1 to n-1 do

if S ′
n ≡ S ′

i then
B:=n-1;

flag:=False;

endif

endfor

n:=n+1;

endw

end

Figure 2.3: Procedure PROC

such that S ′
k1

≡ S ′
k2

and k1 < k2; B is then set to k2 − 1, and the procedure terminates –

PROC(P) can be defined more formally as in Figure 2.3.

Ring segments S ′
1,S

′
2, · · · ,S

′
B can be thought of as the representatives of ring segments

equivalence classes. By PROCwtr, PROCctr, PROCwf , PROCwpf , PROCwb, we denote

PROC when the equivalence relation used in the procedure is ≡wtr, ≡ctr, ≡wf , ≡wpf , ≡wb

respectively. In the next section, it is shown that the problem of determining whether or

not ring segments of arbitrary size are equivalent (for any equivalence relation stronger

than weak trace equivalence and weaker than weak bisimulation) to those of bounded size

is undecidable.

Suppose that for a ring network of arbitrary size RN , we are interested in verifying a

property of the form
∧N−1

i=0 g(i) where g(i) is an observable modal property expressed on Σi

which is preserved under ≡. By the symmetry of RN , the above formula holds iff g(0) does.

28

Thus, we can restate the verification problem as that of checking whether P0×SN−1 |= g(0)

where N is an arbitrary natural number. If a bound B as defined above exists on ring

segments, then the problem can be reduced to checking whether P0 × SN |= g(0) for

∀N ≤ B. The size of the largest ring network to be model-checked, also known as cutoff

size, is therefore B + 1.

In particular, when PROCwf (resp. PROCwpf) terminates we can decide whether a

process can reach deadlock (resp. blocking) by only checking networks of up to size B+1.

A more general problem involves a property of the form
∧N−1

i=0 g(i, i+1, · · · , i+M − 1)

where g(i, i + 1, · · · , i + M − 1) is a modal property expressed on
⋃i+M−1

j=i Σi which is

preserved under ≡. By similar reasoning as in the previous case, the problem can be

simplified to checking g(0, 1, · · · ,M − 1) for rings of up to a cutoff size B+M . Properties

of the form
∧N−1

i=0

∧N−1
j=0 g(i, j), similarly, have a cutoff size 2B + 2 since a ring consists

of processes Pi, Pj, and the two ring segments in between them which can be at most of

size B. Similar results hold for LTL\X and CTL∗\X properties according to the following

theorem:

Theorem 1 For any given processes E,F, P , if E ≡ctr F (respectively E ≡wb F), then for

every LTL\X (CTL∗\X) formula ψ on the states of P , P × E |= ψ iff P × F |= ψ.

In fact, it can be shown by using natural induction that when E ≡ctr F , then P × E

and P × F both have the same set of computations. Similarly, it can be shown that

when E ≡wb F , then P × E and P × F perfectly mimic one another while preserving the

atomic propositions of P . For more results on preserved temporal properties with respect

to equivalence relations or partial order relations, refer to [41].

Note that for some fragments of CTL∗\X, one may come up with a coarser equivalence

relation than ≡wb which preserves the truth of their formulae. For instance, the truth of

formulae of the form AG EF s, where s ∈ S, is preserved under ≡wpf .

29

Therefore, if for a given ring network and an equivalence relation, our suggested pro-

cedure PROC terminates, then that network can be verified for preserved temporal and

modal properties under that equivalence relation. However, PROC is not guaranteed to

terminate.

In the sequel, an example of a ring network is shown in which the procedure of checking

segments for weak trace equivalence never terminates.

Example: Consider the template of a ring network as shown in Figure 2.4: action

conn+1 establishes connection with the immediate right-hand process, conn establishes

connection with the immediate left-hand process. Similarly, dcn+1 disconnects the process

from its immediate right-hand process, and dcn disconnects the process from its immediate

left-hand process. Let the tuple (s1, s2, · · · sN) denote the global state of a segment SN

3

2

1

0
conn+1

connconn+1

dcn+1

dcn+1

dcn

Figure 2.4: template process P

where si ∈ {0, 1, 2, 3} represents the local state of process Pi. The visible actions of SN

have either a subscript 1 (left-hand actions of P1), or a subscript N +1 (right-hand actions

of PN). The rest of the actions are invisible. By notation i1, i2, · · · im 7→ j1, j2, · · · jm,

we denote that a global state which has a subsequent of states of the form i1, i2, · · · im

can evolve to another global state whose corresponding subsequent of states is j1, j2, · · · jm

without affecting the rest of the segment. For instance, consider the local states of two

neighbor processes Pk, Pk+1 to be 0,1 respectively; then, they can share the action conk to

30

evolve to the local states 1, 2. Therefore, 0, 1 7→ 1, 2. It can also be shown that

I : 0, 1, 3 7→ 1, 3, 0

II : 0, 1, 3 7→ 0, 0, 0

If the states of the two rightmost processes in a segment of size N are 0, 0, then they can

evolve to 1, 3 by performing the sequence conN+1 conN dcN+1mod(N +1) whose projection

onto visible actions is con0 dc0. Initially, all the processes in SN are in their initial state 0;

therefore, the two rightmost states can evolve to 1, 3. By applying I repetitively, this pair

can then be shifted to the left until the local states of the leftmost processes are 0, 1, 3.

Again, a new pair 1, 3 can be generated by the two rightmost processes (by performing

con0 dc0) and shifted to the left until they reach the previous 1,3 pair. This can be repeated

until a global state of the form 0, 1, 3, 1, 3, · · · , 1, 3 or 0, 1, 3, 1, 3, · · · , 1, 3, 0 is reached. Now

by repetitive application of II, the pairs 1,3 can be removed starting from the leftmost

one. Note that each time a pair 1,3 is removed a sequence of visible actions con1 dc1 is

performed. Consequently, the language of a segment of size 2N +1 includes strings of form

(con0 dc0)
i(con1 dc1)

i, i ≤ N . Thus, such a ring segment can count the number of con0dc0

substrings up to N which requires at least N + 1 states. Consequently, the number of

states of minimal SN
3 increases as N grows; therefore, PROCwtr(P) is not terminating.

�

Remark: Rings with Unary Tokens. Consider a special case of ring networks

in which processes communicate by passing a single unary token around the ring (as in

[6]), and holding the token allows a process to execute a set of special (token-dependent)

actions. Owing to the ring topology, additional tokens can never enter the network, but

opening the loop into a ring segment allows multiple tokens to enter (the exact upper limit

depending on the number of processes in the segment). For this reason, PROC does not

3Minimal SN is the process with the minimum number of states which is weakly trace equivalent with

SN .

31

terminate for such systems. However, we can redefine ring segments as S ′
N = (S ′

N−1�P)×I

where I = ({0, 1}, {rcvn, sndn+1}, {(0, rcvn, 1), (1, sndn+1, 0)}, 0); action rcvn (respectively,

sndn+1) denotes the reception (respectively, sending) of a token. This results in termination

of PROCwb. In fact, B = 1 for such rings, and the same cutoffs as in [17] can be achieved

for different sets of temporal properties, explained earlier in chapter 1.

2.3 Undecidability Results

In this section, three important undecidability results of ring networks will be presented,

which are mainly extensions to the results of [20, 21]. In fact, it will be shown that for

any given equivalence relation finer than weak trace equivalence and coarser than weak

bisimulation, and any given ring template, it is not decidable whether the number of

ring equivalence classes are finite, and if so, give a bound on the size of the smallest

representatives. Next, the problem of detecting component and network blocking is shown

to be undecidable. Finally, the undecidability of checking whether the number of ring

segment equivalence classes are finite will be proved.

2.3.1 Ring Networks Equivalence Classes

The problem of determining whether or not the rings of arbitrary size fall into a finite

number of equivalence classes, and if so giving a bound on the size of the smallest repre-

sentatives of these classes is undecidable. In [1], this was shown only for weak bisimulation.

In the following theorem, we will show that it holds for any equivalence which refines weak

trace equivalence and is coarser than weak bisimulation [21].

Theorem 2 For any given equivalence relation finer than weak trace equivalence, and

coarser than weak bisimulation and any given template, there is no algorithm which deter-

mines whether or not the number of equivalent classes of rings of arbitrary size is finite,

32

and if so, computes a bound on the size of the smallest representatives of these classes.

Proof: The proof is by reduction from the halting problem. We take a similar approach

to [1].

Given a Turing machine M , we construct a ring template P with two registers: “tape

register” which can store a tape symbol of M , and a “state register” to store the state

of M ’s control unit. We also define four different modes for P : idle, active, passive, dead.

The template is initially in its idle mode with its tape register filled with the empty symbol,

and its state register set to the initial state of M ′s control unit. The template, when in

its idle mode, can become active by generating a token, or become passive by receiving a

token from its left-hand neighbor. It can also turn into dead mode, and do nothing after

that; it won’t generate any token, and destroys any token received from its neighbors. The

mode of a process will remain unchanged after switching to active, passive, or dead. Now

consider a ring network consisting of N copies of the template P – initially all in their idle

mode. The intuition is to simulate the Turing machine M with a sequence of consecutive

processes where the tape register of each process accounts for a single tape cell of M . A

process which becomes active possesses the leftmost tape cell, and his token denotes where

the tape-head initially points to. A process holding a token can simulate M with respect

to his current state and tape registers, and update their values. The token is then moved

to his right, left, or stays stationary depending on where M ’s tape head moves. As a

generated token moves further to the right, it may encounter idle processes, and change

their mode to passive; or may encounter an active process, and destroy; i.e., the active

process consumes the token, and won’t pass it to another neighbor process. In fact, an

active process, and all the consecutive passive processes to its right can faithfully simulate

the computation of the Turing machine M until the token of that ring segment hits another

active process; this destroys the token, and the simulation of the Turing machine stops

incomplete. Note that if the state register of a process sets to the “halting state” of M ’s

control unit, then we know that M halts on the empty string, and its computation has been

33

perfectly simulated by the corresponding ring segment. At this point, the token holding

the “halting state” is passed to the left until it reaches the active process, and destroys.

Now suppose that the Turing machine halts by going through N tape cells. We shall

show that a ring of size 2N − 1 is weakly bisimilar to any ring of larger size 2N +K − 1,

K ≥ 0; i.e, R2N−1\Σ0 ≡wb R2N+K−1\Σ0, K ≥ 0, Σ0 is the set of visible actions of P0.

Figure 2.5 provides intuition. The ring depicted on the left, consists of 2N − 1 processes,

and the one on the right consists of 2N + M − 1 processes. Our goal is to prove that

the two rings are weakly bisimilar. We have slightly changed the indices of processes

in the two rings in order to make the proof more clear. The processes have also been

categorized in 3 segments. The first N − 1 processes on the left-hand side of P0 (resp. P ′
0)

comprise segment A, and the first N − 1 processes on the right-hand side of P0 (resp. P ′
0)

comprise segment B. Note that every process Pi in these two segments of R2N−1 has a

corresponding process P ′
i with the same index in R2N+K−1. Furthermore, the processes

with indices N,N + 1, · · · , N + K − 1 comprise segment C of R2N+K−1, and they don’t

have any corresponding process in R2N−1. For notation simplicity, sometimes we denote

by A,B,C the set of indices in each of those segments. For instance, B = {1, 2, · · ·N −1}.

The rough intuition behind this proof is to correspond processes with the same indices

in A (resp. B) segments of the two rings in order to simulate one another, and show that

the actions of processes in C segment will not affect the behavior of P ′
0. Let’s denote by

x, y the global states of the rings R2N−1 and R2N+K−1 respectively. Also suppose that

xi and yj denote the states of processes Pi, P
′
j in the two rings respectively. By mode(xi)

(mode(yj)), we denote the mode of process Pi (resp. P ′
j) is state xi (resp. yj). Also let

org(x, Pi) be the index of the unique active process whose token has reached Pi in global

state x. In other words, org(x, Pi) returns the origin of the token that has reached Pi, and

changed his mode to passive. If Pi is in an active mode itself, then the index of Pi, i, is

returned, and if Pi is idle or dead, no index is returned. The function org(y, P ′
j) is defined

similarly.

34

P ′

1−N

P ′

−2

P ′

N+M−1
P ′

N

P ′

N−1

P ′

2

P ′

1

P ′

0

P−2

P−1

P1−N PN−1

P2

P1

P0

P ′

−1

right

C

A B

right

A B

Figure 2.5: Weak Bisimilarity of Rings

We define the relation Rel to relate two global states x, y of R2N−1\Σ0 and R2N+K−1\Σ0

when the following conditions hold:

• x0 = y0;

• for every i ∈ A, [xi = yi] or [mode(xj) = mode(yj) = active for some i < j ≤ −1] or

[mode(xi), mode(yi) ∈ {passive, dead} and org(x, Pi), org(y, Pi) 6∈ A];

• for every i ∈ B, [xi = yi] or [mode(xj) = mode(yj) = active for some 1 ≤ j < i].

The first condition implies that processes P0, P
′
0 should both be in the same states.

According to the second condition, the states of corresponding processes in segment A also

need to be the same unless either 1) active processes Pj , P
′
j exist in that segment which are

closer to P0, P
′
0 than Pi, P

′
i respectively. If that’s the case then the transitions of processes

before Pj, P
′
j (including Pi, P

′
i) won’t affect the behavior of P0, P

′
0 respectively. This is

because every token passed to an active process from its left is destroyed by that process,

and cannot be carried further to the right. In other words, xi, yi could be different for

−N + 1 ≤ i < j; or 2) the modes of Pi, P
′
i are passive or dead. Furthermore, if Pi (P ′

i)

35

is passive, his unique active process is not in segment A. In fact, if that’s the case the

transitions of Pi, P
′
i could not affect the behavior of P0, P

′
0 (the generated token by the

active process cannot reach P0, P
′
0), and therefore, xi, yi don’t have to be the same. The

third condition, enforces corresponding processes in segment B to have the same states

unless active processes Pj , P
′
j exist somewhere in that segment. If so, Pj, P

′
j , and those

processes which are placed on their right, don’t have to be matched in their states. In fact,

when a token is passed to Pj, P
′
j from their left, it is destroyed regardless.

Next, we need to show that the defined relation Rel is, in fact, a bisimulation relation.

The idea is that whatever action either of R2N−1\Σ0 or R2N+K−1\Σ0 performs, can be

mimicked by the other one in order to keep them in bisimilar states. The first N − 1

processes on left- and right-hand side of P0, P
′
0 are the only ones that can affect their

behavior. Therefore, Rel is defined such that these neighboring processes are kept in

identical states – as long as they can affect the behavior of P0, P
′
0. A subtle case is when a

process in segment C of R2N+K−1\Σ0 becomes active, and passes his token further down

to his right into segment A. This may turn some idle processes in segment A into their

passive mode, and therefore, they won’t be able to affect the behavior of P ′
0 anymore. In

such case, the corresponding processes in segment A of R2N−1\Σ0 change their mode to

dead. This will have the same effect from P0, P
′
0’s perspective. The other scenarios can

be explained in a similar way. On the other hand, the initial states of the two rings are

also related according to Rel; therefore, R2N−1\Σ0,R2N+K−1\Σ0 are weakly bisimilar. Our

proof holds for any natural number K. Consequently, if M halts on the empty string, then

rings of different size are weakly bisimilar to the rings of size smaller than, or equal to a

computable bound.

Now assume that all the rings of arbitrary size fall into a finite number of trace equiva-

lence classes on which we can give a corresponding bound. If the Turing machine M halts

on the empty string, then a possible executable string in an arbitrary large ring is when P0

is passed a token carrying the halting-state symbol. The projection of this string onto the

36

visible actions includes the particular action of passing the token carrying the halting-state

symbol to P0. On the other hand, if such a string belongs to the visible language of a ring,

then M halts on the empty string. This can be easily proved according to the construction

used. Consequently, we only need to test the equivalence classes to see if any of them

includes that string, and then it is known whether M halts on the empty string, or not.

Suppose that there exists an algorithm as described in the theorem. We apply it to the

case when the template of the ring is constructed according to the Turing machine M . If

the number of equivalence classes for a specific equivalence relation ≡ is infinite, then so is

the number of weak bisimulation classes (since ≡wb≤≡), and therefore, the Turing machine

M does not halt on the empty string. If the number of equivalence classes is finite, and we

have a bound on their smallest representatives, then the same result holds for weak trace

equivalence (since ≡≤≡wtr), and therefore, halting of M can be checked. This implies that

the halting problem is decidable which is a contradiction. �

2.3.2 Component and Network Blocking

By taking the same approach as in the previous problem, it can be proved that the blocking

problem for ring networks is also undecidable. A ring network of arbitrary size RN is said

to have component blocking iff a process in that ring can reach a state from which no

marker state is reachable. In other words, when a component in a particular instance of

the ring is blocking. On the other hand, RN is said to have network blocking iff it can

reach a global state g which cannot evolve to a state with all processes in their marker

states. [1].

Theorem 3 The problems of deciding whether a ring network has component blocking

(CBP), or network blocking (NBP) are undecidable.

Again, we can show that the halting problem can be reduced to CBP and NBP. We

only need to make a slight change in the construction of the ring template P from a given

37

Turing machine M , such that every time the state register holds the halting state, P enters

a non-marker state, and remains there forever. Therefore, the Turing machine halts on the

empty string iff the network with the constructed template P has component or network

blocking. Note that for such construction, component and network blocking are equivalent;

i.e., a network has component blocking iff it has network blocking. �

2.3.3 Ring-Segments Equivalence Classes

The last undecidability result relates to ring segments of arbitrary size rather than rings

themselves. We will show that for a given template, there is no algorithm which decides

on the equivalence of arbitrary size ring segments to ring segments of bounded size. The

proof is done by reduction from the mortality problem [21].

Let M be a Turing machine which has a two-way infinite tape. Let Σ be its finite tape

alphabet, and Q be the set of control states. A configuration of M can be represented as

lqr ∈ ΣωQΣω where l, r ∈ Σω are infinite strings of tape symbols, and q ∈ Q is a state of

the control-unit. The read/write head of the tape is assumed to be on the leftmost letter

of r. The Turing machine M is called mortal if and only if it always halts regardless of

its initial configuration. The problem of determining whether a given Turing machine is

mortal is called the mortality problem.

Theorem 4 The mortality problem is undecidable [22].

It is important to note that in the mortality problem the Turing machine is assumed

to have a two-way tape, and the initial configuration is arbitrary, i.e., the tape maybe

nonempty and the control state of the initial configuration could be any state from the set

of states Q, which makes this problem different from the halting problem.

The Turing machine M is called uniformly mortal iff it halts starting from any initial

configuration in a uniformly bounded number of steps. It is known that uniform mortality

is equivalent to mortality:

38

Theorem 5 A Turing machine is mortal if and only if it is uniformly mortal [23].

According to the previous two theorems, the problem of uniform mortality is undecid-

able, and we shall show that it can be reduced to the ring-segments equivalence problem:

Theorem 6 Given a template process P , the problem of determining whether ring seg-

ments, SN , of arbitrary size are all equivalent to ring segments of bounded size, for any

given equivalence relation which refines weak trace equivalence and is coarser than weak

bisimulation equivalence, is undecidable.

Proof: For a given Turing machine M , we will construct a template which can input

a possible configuration of M , and output its successor configuration. A configuration of

the form . . . l3l2l1qr1r2r3 . . . will be fed into the template process in the form of the string

qr1l1r2l2r3l3 The template is equipped with the look-up tables of M in order to model

its transitions. As soon as the first two letters of the input string are received by the

template, it can compute the next state, the new tape symbol of the current tape-head

position, and also the new position of the tape-head according to the look-up tables. We

use the following notation to describe the input-output relation of the template:

q r1 l1 r2 l2 r3 l3 · · ·

q′ r′1 l′1 r′2 l′2 r′3 l′3 · · ·

The string above the line shows the order of the inputs to the template, and the one

below the line represents the corresponding output sequence. This notation represents the

temporal interleaving of the input and output strings; an output event occurs right after

the input event which is directly above it. So the visible string in the above example is of

the form: q r1 q
′ l1 r

′
1 r2 l

′
1 l2 r

′
2 r3 l

′
2 l3 r

′
3 l

′
3

As stated earlier, the template is to simulate the Turing machine, and output the

successor configuration of any valid configuration which is fed into it. In order to do that,

39

we construct the template according to the following rules – in all of these rules, we assume

that q r1 are the first inputs to the template, which implies that the control unit of the

Turing machine is in state q, and the tape-head reads r1. Let the Turing machine write r′1

to the tape, and go to a new state q′. Different cases arise depending on whether q is a

halting state, and what direction the tape-head moves:

• If q is a non-halting state and the tape-head stays stationary, then

q r1 l1 r2 l2 r3 l3 · · ·

q′ r′1 l1 r2 l2 · · ·

• If q is a non-halting state and the tape-head moves to the right, then

q r1 l1 r2 l2 r3 l3 · · ·

q′ r2 r′1 r3 l1 · · ·

• If q is a non-halting state and the tape-head moves to the left, then

q r1 l1 r2 l2 r3 l3 r4 l4 · · ·

q′ l1 l2 r′1 l3 r2 l4 · · ·

• If q is a halting state, then

q · · ·

q

Now consider a linear segment consisting of the instances of the constructed template.

The first instance receives as its input the initial configuration, and then it outputs the

successor configuration, which in turn becomes the input to the second instance; the second

instance outputs the third configuration for the next instance, and so forth. This continues

until a halting configuration (a configuration with a halting state) is generated. The first

instance which receives such a configuration only passes the state symbol along, and ignores

40

the rest of inputs. Note that the first input of each instance has to be a state symbol,

otherwise it won’t be accepted, and for this to be possible the tape symbols have to be

different from the state symbols.

Assume that for the above linear segment whose template is simulating a Turing ma-

chine M , the segments of arbitrary size are all weakly trace equivalent to the segments of

size B or smaller. Note that the existence of such a bound implies that it can be com-

puted. In fact, ring segments of different size can be compared until two ring segments are

found equivalent. This will be explained in further details in the next section. Therefore,

the output configuration of any instance K1 such that K1 > B should be the same as an

output configuration of an instance K2 such that K2 ≤ B. Therefore, the Turing machine

can go through at most B+ 1 distinct configurations regardless of its initial configuration.

Consequently, it is a finite-state machine of size smaller than a computable bound, and

therefore, can be checked for uniform mortality.

On the other hand, if M is uniformly mortal, then sufficiently large segments can be

shown to be weakly bisimilar. Assume that M halts in at most c computation steps. For

any two segments of size greater than c, we can provide a relation on their set of states

which holds when each of the first c instances of one segment has the same state as its

respective counterpart in the other one, and their last instances are also in the same states.

This is a weak bisimulation relation because for identical sequence of inputs, the first c

instances of both segments can make the same transitions, and their last instances cannot

perform any action until the “halting state” is outputted by one of the first c instances,

and passed along to them. Then, they can output the “halting state” symbol, and stay in

the same states. Furthermore, the defined relation includes the pair of the initial states of

the both segments. Therefore, any two segments of size greater than c are weakly bisimilar.

Now let’s say for a given equivalence relation ≡, it is decidable whether all segments

of different size fall into a finite number of classes. Apply it to the above construction. If

the number of equivalence classes is finite, then so is the number of weak trace equivalence

41

classes since weak trace equivalence is coarser than ≡ according to the theorem. It can

then be determined whether the Turing machine M is uniformly mortal.

If there are infinite number of equivalence classes, then the number of weak bisimu-

lation classes is infinite as well – weak bisimulation is stronger than ≡ according to the

theorem. Consequently, M is not uniformly mortal. In other words, the mortality problem

is decidable which is a contradiction. �

2.4 Termination of PROC

In this section, we propose some conditions on the structure of the ring template that are

sufficient for termination of our proposed procedure.

2.4.1 Piecewise Recognizable Processes

Assume that the template process P = (S,Σn, R, s0) of a ring network is PR. Given any

ring segment SN , we shall construct a tree process TN which is weakly trace equivalent to

SN . Then we show that TN ’s, for arbitrary values of N , are all subtrees of a tree process

which can be constructed according to P . The number of such subtrees is finite, therefore,

the number of weak trace equivalence classes of ring segments of arbitrary size is finite.

This results in PROCwtr(P) to be terminating. An upper bound on the number of these

classes will then be introduced which is double exponential in the number of non-self-loop

transitions of the ring template P .

Process SN = (M,Σ0,∆, i), as defined earlier, is composed of N processes P1 · · ·PN

where P1 (respectively PN) is the leftmost (rightmost) process. Every global state sg ∈M

is of the form (s1, s2, · · · , sn) where sj ∈ S, the jth element of sg, represents the local

state of process Pj, and is denoted by sg(j). The initial state i = (s0, s0, · · · , s0). Every

transition of SN corresponds to either a transition of an individual process, or a shared

transition between a pair of neighbor processes. Define the transitions of SN which have a

42

corresponding non-self-loop transition of P1 or PN as type I transitions – the transitions

which change the 1st or N th coordinates of a global state in SN ; those with a corresponding

self-loop transition of P1 or PN are defined as type II, and the rest as type III. Note that

only type I and II transitions may be visible, according to the definition of SN . Assume

that the ring template P has m non-self-loop transitions, then so do P1 and PN . Let’s

name every such transition in P1, PN by `i, ri respectively, where 1 ≤ i ≤ m. Then the set

of transitions of P1 and PN can be denoted by Λ` = {`1, `2, · · · `m} and Λr = {r1, r2, · · · rm}

respectively. The projection function ProjI : ∆ → Λ` ∪ Λr is defined such that given a

type I transition of SN , it returns the corresponding non-self-loop transition of P1 or PN ,

and returns [otherwise where [denotes the empty sequence of transitions. This function

can be extended to Proj′I : ∆∗ → (Λ` ∪ Λr)
∗ inductively as follows:

Proj′I([) = [

Proj′I(tt) = ProjI(t)Proj
′
I(t)

where t ∈ ∆ and t ∈ ∆∗. For simplicity, we use ProjI instead of Proj′I throughout the rest

of the paper. We also define the projection of the sets of computation paths as follows:

ProjI(Γ) = {ProjI(c) : c ∈ Γ}

Define process TN as the tuple (M ′,Σ0,∆
′, [) where the set of states M ′ = ProjI(C(SN))

which is finite. The transition relation ∆′ is defined as: {(ProjI(c), Act(c1), P rojI(cc1)) :

cc1 ∈ C(SN) & c1 ∈ ∆}.

We will show that every computation path c ∈ C(SN) has a corresponding computation

path c′ ∈ C(TN) with the same sequence of visible actions, and vice versa.

Theorem 7 SN and TN are weakly trace equivalent.

First we need to prove the following lemma.

43

Lemma 1 If for c1, c2 ∈ C(SN), we have ProjI(c1) = ProjI(c2) = cp, i
c1
 sg1 and i

c2
 sg2,

then:

• ∀α ∈ Σ0, sg1

α
−→ sg1 iff sg2

α
−→ sg2;

• ∃c′1 ∈ C(SN).P rojI(c
′
1) = cp, Actv(c

′
1) = Actv(c2) and i

c′1
 sg1;

• ∃c′2 ∈ C(SN).P rojI(c
′
2) = cp, Actv(c

′
2) = Actv(c1) and i

c′2
 sg2.

Visible self-loop transitions (type II) in any global state of SN correspond to visible

self-loop transitions of P1 and PN . On the other hand, if a local state sl of P1 (PN) allows

for a self-loop action α (it is obviously not shared with any other process of SN), then

any global state sg of SN whose first (last) coordinate is sl has an α self-loop transition.

Therefore, any two global states of SN whose first and last coordinates are the same allow

for the same self-loop visible transitions. Taking computation paths in SN with the same

projection under ProjI results in such global states, and therefore, the first assertion of

the lemma holds.

The computation paths of SN , whose projections under ProjI are the same, may only

differ (in terms of sequence of visible actions) because of visible type II transitions occurring

in between type I transitions since type III transitions are invisible. As stated earlier in

the proof, visible type II transitions allowed in global states of SN are the same as long as

they have the same first and last coordinates. On this basis, the second and third assertions

can be easily proved by using induction on the length of c1 and c2 respectively. �

Now let c ∈ C(SN). By using induction on the length of c, we show that there exists

d ∈ C(TN) such that Actv(c) = Actv(d) and [
d
 ProjI(c). The basic case when c = [is

obvious. Suppose that the proposition holds for computation paths of length m; we prove

it for those of length m + 1. A computation path of length m + 1 can be written as cc1

where |c| = m and |c1| = 1. Let d1 := (ProjI(c), Act(c1), P rojI(cc1)), then [
dd1
 ProjI(cc1)

44

and

Actv(dd1) = Actv(d)Actv(d1)

= Actv(c)Act(c1)

= Actv(cc1).

Therefore, dd1 is the corresponding computation path in TN .

Now we show that corresponding to every d ∈ C(TN), there exists c ∈ C(SN) such that

Actv(c) = Actv(d) and [
d
 ProjI(c). For the basic case when the computation path is

empty, this is obvious. Suppose that the proposition holds for the computation paths of

length m; we prove it for computation paths of length m + 1. Consider a computation

path of length m+ 1, dd1, where |d| = m and |d1| = 1; d1 is a transition of TN , therefore,

according to the transition relation definition of TN , there should exist c′, c′c1 ∈ C(SN)

such that d1 = (ProjI(c
′), Act(c1), P rojI(c

′c1)). The source state of d1 has to be the same

as the destination state of d: ProjI(c) = ProjI(c
′) = cp. Now according to lemma 1, there

should exist c′′ ∈ C(SN) such that c′ and c′′ reach the same global states, Actv(c) = Actv(c
′)

and ProjI(c
′′) = cp. We have ProjI(c

′c1) = ProjI(c
′′c1); therefore [

dd1
 ProjI(c

′′c1) and

Actv(c
′′c1) = Actv(c

′′)Actv(c1)

= Actv(c)Act(c1)

= Actv(d)Act(d1)

= Actv(dd1).

Consequently, c′′c1 is the corresponding computation path in SN , and the proof is complete.

�

A computation path is called non-stuttering iff none of its transitions are self-loop. Let’s

denote the set of non-stuttering computation paths of P1 and PN by NS` (⊆ Λ∗
`) and NSr

(⊆ Λ∗
r) respectively; also denote by inter(NS`,NSr) the set of all possible interleavings of

45

L3

L2

L1

`1

`2

R1

r1

r2

P1 P2 PN

R3

R2

Figure 2.6: segment of size N (SN)

the computations in NS` and NSr. It is not hard to see that M ′ ⊆ inter(NS`,NSr) for

any tree TN . We call the special tree, whose set of states is inter(NS`,NSr), the maximal

tree, and denote it by Tmax. In fact, every tree TN is a subtree of Tmax. Figure 2.6 shows

a special case of a ring segment whose template process is thin piecewise and has only

three states. The transitions of P1 and PN are annotated with labels: `i, ri denote the

non-self-loop transitions and Li, Ri the sets of self-loop transitions.

The maximal tree of this ring is depicted in Figure 2.7. For the sake of simplicity,

self-loop transitions are not shown. Note that every state s of a tree TN represents those

global states of SN whose first as well as last coordinates are the same. These coordinates

represent the local states of P1 and PN . Self-loop transitions at s are defined according to

self-loop transitions at these local states. For instance, consider the state s = r1`1r2; this

state corresponds to those global states of SN in which P1 is in state 2 and PN in state 3

(the states of the ring template are named 1 to 3 from top to bottom). Therefore, actions

of self-loop transitions at state s are the same as the actions of transitions in L2 ∪R3.

In a more general case when the template process of a ring is thin piecewise with m+1

states, a computation path of any possible subtree, starting from its initial state and ending

at a leaf, would have at most m right edges and m left edges. We denote the total number

of such subtrees by M(m,m) where M(m,n) can be recursively computed by the following

46

`1

`1`2r1

`1`2r1r2

`1r1`2 `1r1r2

`1r1`2r2 `1r1r2`2 r1`1`2r2

Act(r2)

Act(r1)

Act(`2)

Act(r2) Act(`2)

Act(r1)

Act(`2)

[

`1r1`1`2

r1r2`1

r1r2`1`2

Act(`2)

Act(`1)

r1

r1`1

r1`1r2

r1`1r2`2

r1`1`2

Act(r2) Act(`2)

Act(r2)

Act(`1) Act(r2)

r1r2

Act(`2)Act(r2)

Act(r1)Act(`1)

Figure 2.7: Process Tmax

recursion formula:

M(m,n) = (1 +M(m− 1, n))(1 +M(m,n− 1))

M(m,n) = 0 for m < 0 or n < 0. It can also be shown that for any PR template (not

necessarily thin piecewise), whose number of non-self-loop transitions is m, |sub(Tmax)| ≤

M(m,m). In the following theorem, M(m,m) is shown to be double exponential in m.

Theorem 8 M(m,m) ∈ 22Θ(m)
.

We first show that 22m

≤ M(m,m) for every m ≥ 1 by using induction on m. For

the base case when m = 1, M(1, 1) = (1 + M(1, 0))2 = (1 + 2)2 = 9 ≥ 22. Now assume

that the proposition holds for some natural number m: 22m

≤ M(m,m). Therefore,

M(m+1, m+1) = (1+M(m,m+1))2 ≥M(m,m)2 ≥ (22m

)2 = 22m+1
. So, the proposition

holds for m+ 1 as well.

Next, we will show that M(m,m) ≤ 222m

for every m ≥ 1. For the base case when

m = 1, M(1, 1) = 9 ≤ 222
= 16. Similarly, assume that the proposition holds for some

47

natural number m: M(m,m) ≤ 222m

; we prove it for m+ 1. We have

M(m+ 1, m+ 1)

= (1 +M(m,m + 1))2

= (1 + (1 +M(m,m))(1 +M(m− 1, m+ 1))2

≤ (M(m,m)M(m,m))2 = (M(m,m))4

≤ (222m

)4 = 222(m+1)

,

and the proof is complete. �

By taking a similar approach, we show that PROCwf is terminating. In this case, we

assign a pair (TN ,AN) to every ring segment SN where TN represents the visible language

of SN (Lv(SN) = Lv(TN)), and AN is a function which assigns a subset of 2Σ0 to every

state of TN . Let’s say state s of TN is reachable by a visible string σ and A ∈ AN(s),

then it means that (σ,A) ∈ Failures(SN). Let Proj−1
I : (Λ` ∪ Λr)

∗ → ∆∗ be the function

which inputs a state cp of TN and outputs the set of all computation paths c of SN whose

projections under ProjI are cp:

Proj−1
I (cp) = {c ∈ C(SN) : PtojI(c) = cp};

the function A is then more formally defined as follows:

AN(cp) =
⋃

sg∈reach(Proj−1
I

(cp))

2Rjct(sg)

Clearly, if (TN ,AN) = (TM ,AM) for two distinct natural numbers N,M , then SN and SM

are failure equivalent. On the other hand, the number of possible pairs (TN ,AN) is finite

because both TN ’s and AN ’s are finite for a given ring template. This results in a finite

number of failure equivalence classes of ring segments, and therefore, PROCwf terminates.

Complete trace equivalence is coarser than weak failure equivalence; therefore, the number

of complete trace equivalence classes of ring segments is finite as well, and this guarantees

the termination of PROCctr.

48

Similarly, it can be shown that PROCwpf is terminating. Here, the pair assigned to a

ring segment SN is of the form (TN ,BN) where TN represents the visible language of SN

and BN is a function which assigns a subset of {Lv(E) : E ∈ sub(TNs
)} to every state s

of TN (TNs
is TN with s as its initial state). If s is reachable by a visible string σ and

B ∈ BN (s), then it means that (σ,B) ∈ PF (SN). The function B can be defined formally

as follows:

BN (cp) =
⋃

sg∈reach(Proj−1
I

(cp))

{Lv(SN(sg)
)}

where SN(sg)
is SN with sg as its initial state. If (TN ,BN) = (TM ,BM) for two distinct

natural numbers N,M , then SN and SM are possible-futures equivalent. The finite number

of such pairs (TN ,BN) on the other hand results in a finite number of possible-futures

equivalence classes; the suggested procedure is then guaranteed to terminate.

Examples exist where the number of ≡wb classes of ring segments is infinite, and conse-

quently PROCwb never terminates. Consider the template shown in the following figure.

We will show that SN 6≡wb SM where N,M are any two distinct natural numbers.

`n+1

`n

Figure 2.8: template T

Let’s show the global state of a segment SN with a sequence s1s2 · · · sN where si ∈ {0, 1}

represents the state of the ith process in SN . Obviously, the initial state of SN is a sequence

of zeros of length N : 00 · · ·0. According to the template, one process can move from state

0 to state 1 if its right-hand neighbor is in state 0, and the rightmost process can always

do so. Therefore, SN can go to the state 00 · · ·01 from its initial state by performing a

49

visible action `1. Process N will stay in state 1 after that, and thus process N − 1 will

be stuck in state 0 forever. The reached process is weakly bisimilar to a segment of size

N − 2 where the visible action of the rightmost process is hidden: SN−2\{`1}. Another

possibility is that process N − 1 moves to state 1 first, and then process N moves to 1 by

performing `1. This time the reached process is weakly bisimilar to SN−3\{`1}, and so on.

Let Ai = Si\{`1}. In particular, define A0 to be a null process – a process with no

transition. Process A1 can perform a visible action `0, and evolve to A0. It can also be

shown that Ai
ε

=⇒ Ai−2 for i ≥ 2.

The processes AN−2, AN−3, · · ·A0 are all reachable from SN . We will show that Ai’s are

not weakly bisimilar, and therefore, two segments of different size are not weakly bisimlar

because as the size of the segment grows the number of weak bisimulation equivalence

classes of reachable processes from SN grows as well; but weak bisimilarity of two segments

of distinct size implies the existence of a finite bound on the number of such equivalence

classes which is a contradiction.

In order to show that Ai 6≡wb Aj where i 6= j, we first need to mention some results

from [5] regarding games on processes.

Let E0, F0 be two given processes. An interactive game G(E0, F0) is defined between

two players R (the refuter) and V (the verifier). A play of this game is a sequence of

pairs of processes (E0, F0)(E1, F1) · · · (Ei, Fi) · · · which is constructed as follows: starting

from the pair (E0, F0), R starts the game by picking one of the processes in the pair, and

performing a visible or an ε transition. It could for example choose E0 and perform a

transition t to reach a new process E1. Now V picks the other process from the pair F0

and performs a transition t′ with the same label as t to reach F1. This results in a new

pair (E1, F1) which will be added to the sequence of the game. Now the players repeat the

same game with the new pair (E1, F1). They continue this game until the verifier cannot

match a transition which results in R to win the game. If the game is infinite, meaning

that the verifier can match all the transitions of the refuter, V is called the winner. Note

50

that every process can always perform an ε transition, therefore the refuter always has a

transition to perform.

A player may have a set of rules which she obeys in the game. This set of rules is known

as the strategy of that player. The strategy of a refuter may only depend on the last pair

of the processes achieved in the game which is known as a history-free strategy, or it may

depend on the sequence of the pairs in the game. Similarly, the strategy of a verifier is

called history-free if it only depends on the last pair of the processes in the game, and the

last transition that the refuter made.

Theorem 9 For every two processes E,F , either the refuter or the verifier has a history-

free winning strategy for the game G(E,F).

If the verifier has a strategy to win the game G(E,F), then E and F are called game

equivalent. It can easily be shown that game equivalence is an equivalence relation. The

following theorem shows that the game equivalence and weak bisimulation equivalence are

identical.

Theorem 10 Two given processes are weakly bisimilar iff they are game equivalent.

Now we return to our problem of showing that Ai 6≡wb Aj where i > j ≥ 0. We show

that Ai, Aj , i > j ≥ 0, are not game equivalent by using induction on i. The basic case

when i = 1, 2 can be proved easily. The possible cases are: G(A2, A1), G(A2, A0) and

G(A1, A0) which we discuss them separately.

• in the game G(A1, A0) (G(A2, A0)), let the refuter choose A1(A2)
`0=⇒ A0. The verifier

cannot match this action, and therefore, the refuter wins the game.

• in the game G(A2, A1), let the refuter choose A2
ε

=⇒ A0, then the verifier can only

choose A1
ε

=⇒ A1; so the new pair is (A0, A1), and the rest of the strategy will be

similar to first case.

51

Now assume that for a natural number N ≥ 2, we have a strategy for the refuter to

win the game G(AN , AM) where 0 ≤ M < N , then we propose a strategy for the refuter

to win the game G(AN+1, AM) where 0 ≤M < N + 1. Three different cases can happen:

• If M = N , the refuter chooses the transition AN+1
ε

=⇒ AN−1 and whatever ε tran-

sition that the verifier chooses for the process AM , it will reach some Ai where

0 ≤ i < n − 1 or i = N ; so the new pair is (AN−1, Ai), and from there the re-

futer follows the strategy of the game G(AN−1, Ai) which is known according to our

assumption.

• If M = N − 1, the refuter chooses the transition AN+1
ε

=⇒ AN−2, and whatever ε

transition that the verifier chooses for the process AM , it will reach some Ai where

0 ≤ i < N − 2 or i = N − 1; so the new pair is (AN−2, Ai), and the winning strategy

of the refuter for the game G(AN−2, Ai) is known.

• If M ≤ N − 2, the refuter chooses the transition AN+1
ε

=⇒ AN−1 and whatever ε

transition that the verifier chooses for the process AM , it will reach some Ai where

0 ≤ i ≤ N − 2; so the new pair is (AN−1, Ai), and the rest of the strategy is known.

Consequently, no two segments of different sizes are game equivalent, and therefore, no

two segments of different sizes are weakly bisimilar.

2.4.2 Shuffled processes

A shuffled process over the template alphabet Σn is one which is weakly bisimilar to

the shuffle product of processes P` and Pr whose respective sets of visible actions are

disjoint sets Σ` and Σr. In this subsection, we will show that if a ring segment (S ′
N) is a

shuffled process, then the procedure for checking the ring segments for weak bisimulation

is guaranteed to terminate. Given a process P over Σn, we can easily check whether

there exist processes P`, Pr such that P ≡wb P` } Pr, as follows: if such processes P`, Pr

52

exist, then P\Σ` ≡wb P`\Σ`}Pr ≡wb Pr and P\Σr ≡wb P`}Pr\Σr ≡wb P`. Consequently,

P ≡wb P\Σr}P\Σ`. So we only need to check whether P ≡wb P\Σr}P\Σ`: if that holds,

then P\Σr and P\Σ` are our desired processes (up to weak bisimilarity); otherwise such

processes do not exist. Before stating the main theorem, we need to prove the following

lemma:

Lemma 2 If P`1 } Pr1 ≡wb P`2 } Pr2 where P`1, P`2 (and respectively Pr1, Pr2) have the

same set of visible actions, then P`1 ≡wb P`2 and Pr1 ≡wb Pr2.

Proof: This can be shown by similar reasoning as in the previous paragraph. �

Theorem 11 If S ′
N = P � P � ...� P is weakly bisimilar to P` } Pr, then S ′

N ≡wb S
′
N+1.

Proof: We know that S ′
N � P ≡wb P � S ′

N ; therefore, (P` } Pr) � P ≡wb P � (P` } Pr);

consequently, P` } (Pr � P) ≡wb (P � P`) } Pr. According to the previous theorem,

P` ≡wb P � P` and Pr � P ≡wb Pr which implies S ′
N+1 = S ′

N � P ≡wb P` } Pr ≡wb S
′
N . �

In the sequel, we will provide two examples of potential applications of this theorem.

Con-discon machine

Consider a ring of processes where each process can connect only to one of its immediate

neighbors at a time, and then it needs to disconnect in order to establish a new connection.

The template process of such a ring is shown in Figure 2.9.a. The ring segment of size 2

(S ′
2) is weakly bisimilar to the one depicted in Figure 2.9.b.

It is easy to show that P �P is weakly bisimilar to P`}Pr where P` and Pr are shown

in Figure 2.10.

Consequently, a ring segment of size two is weakly bisimilar to any ring segment of

greater size.

53

conn+1

conn

conn

conn+1

conn+1conn

dcn dcn+1

dcn dcn+1

dcndcn+1

b: Segment of size 2a: Template process

Figure 2.9: Con-discon example

conn+1dcn+1conndcn

Figure 2.10: Processes P` and Pr

Token passing template

Define the template T of a ring network as follows:

• the set of states: Q× {0, 1, ..., m};

• the set of visible actions: Σn includes actions of the form (a, num)n or (a, num)n+1

where num ∈ {2, .., m};

• the initial state: (q0, 0);

• in the transition relation R, every transition of the form ((q1, x), τ, (q2, y)) satisfies:

y = x 6= 0 or (q2, y) = (q0, 1);

every transition of the form ((q1, x), (a, num)n+1, (q2, y)) (send a token to the right-

hand neighbor) satisfies: x 6= m, num = x+ 1 and y = x;

54

and every transition of the form ((q1, x), (a, num)n, (q2, y)) (receive a token from left)

satisfies:

– new token : if num 6= x, then x 6= 1 and (q2, y) = (q0, num);

– old token : if num = x, then x 6= 1 and y = num.

Every state of a process in the ring is of the form (q, x) where 0 ≤ x ≤ m shows

the mode of that state. An active state is one whose mode is 1. The mode of a process

is the mode of its current state. Initially, all the processes are in mode 0, and cannot

communicate with their neighbors. But, at any state, any process in the ring can set

its mode to 1 (become active) by performing an internal action, and then communicate

with its right-hand neighbors. It is useful to think of this communication as a token being

passed. Every time two processes synchronize on an action, the mode of the right process is

set to the mode of the left increased by 1. A token’s value num is not allowed to exceed m.

So the active process sets the mode of its immediate right-hand neighbor to 2 in their first

communication, and that neighbor sets the mode of its own right-hand neighbor to 3 and

so on until the the mode of the mth process is set. In this way, every communication within

the ring is limited to m processes, including an active process and its m − 1 right-hand

neighbors.

Pm−1

P1

P2

A

Pm

P2m−2

P2m−1

B

Figure 2.11: A ring segment of size 2m− 2

55

By the above argument, it is not hard to see that a ring segment of size 2m − 2 is a

shuffled process. In Fact, it can be shown that P` = S ′
m−1\Σr and Pr = S ′

m−1\Σ`. Figure

2.11 shows a segment of size 2m − 2. The first m − 1 processes are marked as group A

processes, and the second m − 1 processes are marked as group B. We define a weak

bisimulation relation R between the states of S2m−2 and P` } Pr as follows: one state of

SN is related to a state of P` } Pr iff the following two conditions hold:

• for any 1 ≤ j < m the jth coordinates of the both states are the same or the ith

coordinates are active for some i ≤ j;

• for any 0 ≤ j < m − 1, if the mode of (m + j)th coordinate of one of the states is

between 1 and j + 1, then the (m + j)th coordinates of both of the states are the

same or their (m+ i)th coordinates are active for some j < i < m− 1.

One can easily show that R is a weak bisimulation relation since every action taken from

a state of S2m−2 can be mimicked from a related state of P` } Pr, and vice versa.

In this chapter, we focused on ring networks consisting of an arbitrary number of pro-

cesses. An algebra-theoretic approach was taken to compare rings as well as ring segments

of different size, and check whether they fall into a finite number of equivalence classes.

The equivalence relation is chosen based on the type of modal property or temporal prop-

erty that the network is being verified against. A few of interesting problems on ring

networks such as blocking detection are shown to be undecidable. On the other hand, a

semi-decidable procedure is introduced as a solution; however, this procedure is not guar-

anteed to terminate. It is then shown that if the template process of a ring network satisfies

some sufficient conditions, then the termination of the above procedure is guaranteed.

Chapter 3

Infinite State Modelings and

Fully-Connected Networks

Choosing the right modelling tool is a major step in analysis of any real-world system. Petri

nets are a graphical and mathematical tool for modelling systems which are characterized as

finite- or infinite-state, concurrent, asynchronous, distributed, parallel, non-deterministic,

and/or stochastic [24]. They have proved themselves as a powerful tool for modelling,

control, and analysis of communication and manufacturing systems, and many of their

interesting properties are decidable. For surveys of Petri nets, their properties, and the

complexity of their problems, see [24, 31, 32, 33]. Model-checking of Petri nets is the main

focus of this chapter. Current results on model-checking of branching time logics on Petri

nets are not very positive. In fact Esparza shows in [33] that model checking of VBPP’s (a

very weak class of Petri nets) against an action-based modal µ calculus as well as a very

weak branching time logic UB− is undecidable. The results are more promising for linear

time temporal logic.

In this chapter, we start by first stating some preliminaries of Petri nets. Some funda-

mental and interesting problems on Petri nets including reachability problem, boundedness

56

57

problem, coverability problem, non-termination problem, and fair non-termination prob-

lem are discussed. We will also introduce a method of solving the fair non-termination

problem by means of the coverability tree. Next, we survey the existing literature on

model-checking of Petri nets, and introduce our decidability results on model-checking of a

large fragment of linear temporal logic with marking predicates. Finally we will show how

these results can be applied in rigorous analysis of some examples of infinite-state systems

and parameterized systems.

3.1 Petri Net Preliminaries

3.1.1 Petri Net Models

A labelled Petri net P is a tuple of the form (P, T,W,Σ, ρ,M0) where P is a set of places,

T is a set of transitions, W : ((P × T) ∪ (T × P)) → N is a weight function, Σ is a set

of action labels, ρ : T → Σ is a labelling function which assigns to every transition an

action label. A marking M : P → N is a function which assigns to every place a natural

number – M(p) represents the number of tokens in place p in marking M ; M0 is the initial

marking of P. A non-labelled Petri net is one with no set of action labels and labelling

function, denoted by (P, T,W,−,−,M0). A transition t is called enabled at a marking M

if M(p) ≥W (p, t) for every place p ∈ P ; then t can be fired at M and reach a new marking

M ′ where M ′(p) = M(p)−W (p, t)+W (t, p). We denote this transition by M
t
→M ′. Given

a sequence of transitions M1
t1→ M2

t2→ · · ·
tn−1
→ Mn, sometimes we omit the intermediate

markings, and write M1
σ

−→ Mn where σ = t1t2 · · · tn−1; marking Mn is then said to be

reachable from M1. Every marking is reachable from itself. By R(P), we denote the set

of all markings which are reachable from the initial marking M0 of P. The reachability

problem (RP) is to decide for a given Petri net P, and a marking M whether M ∈ R(P).

A place p of P is said to be bounded if there exists a non-negative constant c such that

58

for every marking M in R(P), we have M(p) � c. A Petri net P is said to be bounded if

all of its places are bounded. The boundedness problem (BP) is to decide whether a given

Petri net P (or a particular place p of P) is bounded.

An infinite firing sequence of P is of the form M0, t1,M1, · · · where M0 is the initial

marking of P, and Mi−1
ti→ Mi for 1 � i. A firing sequence is sometimes referred to as a

computation. We denote by Cω(P) the set of all infinite firing sequences of P.

We extend the labelling function ρ to a sequence of transitions in a natural way: ρ(tσ) =

ρ(t)ρ(σ). For the sake of notation simplicity, we also use ρ(c) to denote the actions sequence

corresponding to the transitions of the infinite computation c. More formally, ρ(c) =

ρ(t1)ρ(t2) · · · where c = M0, t1,M1, · · · . Also define inf(c) as the set of transitions which

occur in c infinitely often.

The language of P is the set of all action sequences corresponding to finite firing se-

quences of P; more formally, L(P) = {ρ(σ)|M0
σ
→ M}.

The ω language Lω(P) of P is defined as the set of all action sequences corresponding

to infinite firing sequences of P. More formally, Lω(P) = {ρ(c)|c ∈ Cω(P)}.

A Büchi net B is a pair (P, T) where P = (P, T,W,Σ, ρ,M0) is a Petri net, and T is

a subset of T known as the set of final transitions. The language Lω(B) of B is defined

as the set of all action sequences corresponding to infinite computations c of P for which

inf(c)∩T 6= ∅. More formally, Lω(B) = {ρ(c)|c ∈ Cω(P) & inf(c)∩T 6= ∅}. In the special

case when T = T , we have Lω(B) = Lω(P).

One important feature of Petri nets is their ability to model unlimited, and limited-size

buffers, and that makes them suitable for modelling of manufacturing systems. Figure 3.1

[26], depicts an example of a non-labelled Petri net which models a Producer-Consumer

system. Place p1 represents the initial state of the producer (left block). Two transitions

t1, t2 need to be fired in a sequence to produce a part. A token is then added to place p5

to represent the new part stored in the buffer. This buffer is assumed to be of infinite size.

The right block of the model represents a consumer which takes token from p5 upon the

59

t1

t2

t3

t4

p1

p2

p3

p4
p5

Producer Consumer

Figure 3.1: Producer and Consumer with an infinite size Buffer

execution of t3. In a real model, one may need to consider the buffer to be of limited size

(say 3). In order to model that, we can add another place p6 to the model whose tokens

represent the number of free places in the buffer. Therefore, a part can be added to the

buffer if it has at least one free place; i.e. there is at least one token left in p6. On the

other hand, the consumer can remove a part from the buffer if it has least one part in it;

i.e., there is at least one token in p5.

t1

t2

t3

t4

p1

p2

p3

p4
p5

Producer Consumer

Figure 3.2: Producer and Consumer with a Buffer of size 3

Figure 3.3 [26], depicts a mutual exclusion example where two subsystems are sharing

a common resource represented by place p4. This place needs to be marked (resource avail-

60

able) in order for any of the subsystems 1,2 to fire t2, t5 respectively. After the subsystems

finish their job with the resource, they return it by execution of t3, t6 respectively. This

structure guarantees that the resource is only held by one subsystem at a time.

t1

t2

p1

p2

p5

p6

p7p3

p4

t3

t4

t5

t6

Subsystem1 Subsystem2

Figure 3.3: Mutual Exclusion example

3.1.2 Reachability Tree and Coverability Tree

The reachability tree of a labelled Petri net P is a labelled transition system E = (Σ, Q, T, q0)

where Σ is the set of action labels of P; Q is the set of reachable markings of P, T =

{(M,α,M ′)|M
t
→ M ′ and ρ(t) = α}, and q0 is the initial marking of P. If the reachability

tree of a Petri net is finite, then the common algorithms of the finite state systems can

be applied to answer many of the interesting questions on Petri nets such as reachability

of a particular marking, or liveness of a particular transition; however the set of reachable

markings may be infinite resulting in an infinite state reachability tree. The coverabil-

ity tree of a Petri net, on the other hand, is a more abstract version of the reachability

tree which enumerates the covers of reachable markings instead of the reachable markings

61

themselves. In other words, one can decide whether a cover of a particular marking of a

Petri net is reachable by looking at its corresponding coverability tree. This tree, which is

guaranteed to be finite, can be useful to answer many interesting questions including BP.

In order to define the construction steps of the coverability tree, we need to define a new

symbol ω with the following properties: ω > n, ω + n = ω − n = ω and ω > ω for any

integer n – one can think of ω as infinity. For two given extended markings M1,M2, we say

M1 is covered by M2, M1 ≤ M2, iff M1(p) ≤ M2(p) for every place p ∈ P . Furthermore,

we say M1 < M2 iff M1 ≤ M2 and M1 6= M2. The construction steps of the coverability

tree can then be defined as follows [25, 24]:

1) Create the root note M0 and mark it “new”.

2) While exists a node with a “new” tag do the following steps.

2.1) Select a new node M .

2.2) If M has an identical predecessor (defined below), then mark M “old” and go to 2.

2.3) If no transition is enabled at M , mark M “dead” and go to 2.

2.4) Do the following steps for every enabled transition t at M .

2.4.1) Obtain the marking M ′ such that M
t
→M ′.

2.4.2) If M ′ has a predecessor M ′′ < M ′, replace M ′(p) by ω

for each place p such that M ′′(p) < M ′(p).

2.4.3) Create a node M ′ and mark it “new”; connect M to M ′ with an arc labelled t.

A node marking M ′ is called a predecessor of another node marking M if M ′ is on the

path from the root to M .

Theorem 12 [25] The coverability tree of every given Petri net is finite.

To prove this theorem, we first need to show that: every infinite sequence π = a1, a2, a3, · · ·

of elements of (N ∪ {ω})r has an infinite subsequence π′ = ai1 , ai2 , ai3 , · · · such that

ai1 ≤ ai2 ≤ ai3 ≤ · · · . The proof is very simple. One can first extract a subsequence

62

of π which is non-decreasing in its first coordinates; then extract a subsequence of the

obtained sequence which is non-decreasing in its second coordinate, and so forth.

Now suppose that the coverability tree of a given Petri net has an infinite branch

extending from its root: M0M1M2 · · · . According to what we showed earlier, there exists

a non-decreasing subsequence of this marking sequence: Mi1Mi2Mi3 · · · . Note that the

markings of this subsequence cannot be identical because according to the coverability

tree construction procedure, that would result in a finite path. Therefore, Mi1 < Mi2 <

Mi3 < · · · . Thus, each marking has to have at least one more ω coordinate than its previous

one. However, this is impossible since the number of coordinates is finite. �

Corollary 1 A Petri net P is unbounded iff it has a firing sequence M0
σ
→ M

σ1→ M + L

where L > 0.

Let’s first assume that such a token generator exists, then M0
σ
→ M

σn
1→ M + n ∗ L

is also an acceptable firing sequence of P. Since L is a non-negative integer vector, the

reachable marking M + n ∗ L can be made arbitrarily large in the positive coordinates of

L; therefore, P is unbounded.

Now suppose that P is unbounded. Construct its corresponding coverability tree. If ω

does not appear in the tree, then the set of reachable states of P is finite; therefore, P is

bounded which contradicts our assumption. Existence of ω in the tree, on the other hand,

implies the existence of a firing sequence of the form M0
σ
→ M

σ1→ M ′ where M ′ > M .

That completes the proof. �

Theorem 13 [25] For a given marking M of a Petri net P the following statement holds:

a marking Mr is reachable from the initial marking of P such that Mr ≥ M iff a node

marking Mn of P’s coverability tree exists such that Mn ≥M .

According to the above theorem, one can decide whether a cover of a marking is reach-

able by means of the coverability tree. This problem is known as the coverability problem

63

(CP). Also note that if some coordinates of a node marking in a coverability tree are ω,

then those coordinates can grow arbitrarily large by repeating the transition sequences

resulting in them. Therefore, one can decide whether a Petri net (or a particular place of

that Petri net) is unbounded by means of its coverability tree. In other words, BP can be

solved using the coverability tree construction. There are several other problems that can

be solved using the coverability tree. For instance,

Non-termination problem (NTP): Decide whether a given Petri net has an infinite firing

sequence.

If ω appears anywhere in the coverability tree, that means that the Petri net has a

token generator, and therefore, has an infinite path. Otherwise, the coverability tree is a

finite-state reachability tree. Now we can look at the leaves of the tree, and check whether

exists any leaf whose tag is “old”. That implies that the Petri net has a firing sequence of

the form M0
σ
→M

σ1→ M , and consequently, has an infinite path. Otherwise, all the leaves

are labelled “dead” and the Petri net does not have an infinite path. A more general case

of NTP is as follows:

Fair non-termination problem (FNTP): For a given Petri net P and a finite sub-

set of transitions X ⊆ T , decide whether P has an infinite computation c such that

inf(c) ∩X 6= ∅.

We know from [37], that FNTP is PTIME equivalent to BP. However, we propose an

algorithm for deciding this problem by means of the coverability tree construction. This

problem is not as straight forward as NTP. Consider the two Petri nets in Figure 3.4. They

both have the same coverability trees as depicted in the Figure; however, the right-hand

one has an infinite path which fires t3 infinitely often, but the left-hand one does not have

such a path.

Let Mmax be the set of all node markings M ∈ (N∪ {ω})r of the coverability tree that

are not covered by any other one. In fact, Mmax is the set of the maximal markings of the

64

p2

p4

p1

t3

t2

t1p2

p3

p4

p1

t3

t2

t1

t2t1

t2t1

t3

t3

p3

01ωω

01ωω

10ω0 01ω0

10ω0 0100

1000

Figure 3.4: different Petri nets with the same coverability tree

coverability tree. Now, consider the following simple lemma from [37].

Lemma 3 A given Petri net P has an infinite path c such that inf(c) ∩X 6= ∅, X ⊆ T ,

iff P has a firing sequence of the form M0
σ
→ M

σ′

→ M ′ where M ′ ≥ M and Tσ′ ∩X 6= ∅

where Tσ′ is the set of transitions in σ′.

Therefore, if P has such an infinite path, there exists M ∈ R(P) such that M
σ′

→ M ′,

M ′ ≥ M , Tσ′ ∩ X 6= ∅. Obviously, every cover of M ′ (and therefore of M) in Mmax has

this property as well. On the other hand, it can be shown that if a marking in Mmax

has this property, then so does a reachable marking of P. Therefore, it suffices to check

whether there exists a marking M ∈ Mmax such that M
σ
→ M ; if so, P has a fair infinite

path. Furthermore, suppose that M
σ
→ M holds for some M ∈ Mmax; therefore, we have

M1
t1→ M2

t2→ · · ·Mn where M1 = Mn = M . It is easy to see that every marking Mi,

1 ≤ i ≤ n, has the above property as well; i.e., there exists a sequence of transitions σi

such that Mi
σi→ Mi for every 1 ≤ i ≤ n; Hence, Mmax

1
t1→ Mmax

2
t2→ · · ·Mmax

n also holds

where Mmax
i is the maximal node marking in Mmax which covers Mi. Consequently, we

can only search for self-covering loops occurring among the markings of Mmax.

65

Considering the above fact, a finite state machine (FSM) Π = (Σ, Q,R) can be con-

structed where the set of transition labels Σ = T ; the set of states Q = Mmax; and the

transition relation R ⊆ Q×Σ×Q is defined as {(M1, t,M2)|M1
t
→M2}. A loop L of Π is de-

fined as a sequence of markings (states of Π)M0,M1, · · ·Mn where (Mi, ti,Mi+1 mod n) ∈ R,

0 ≤ i ≤ n. The weight ν(L) of L is defied as the sum of all the integer vectors corresponding

to the transitions of L: Σn
i=0ti. We also denote by T (L) the set of transitions ti of L. The

loop L is called “simple” if Mi = Mj implies i = j. In other words, in a simple loop, the

markings are not repetitive. Two simple loops are called “interconnected” when they have

at least one common marking. A subset A of simple loops in Π is called interconnected,

if members of A can be ordered as L1, L2, · · ·Lp such that Li, Li+1 are interconnected for

1 ≤ i ≤ p− 1.

Lemma 4 An FSM Π has a loop L where T (L) ∩ X 6= ∅ and ν(L) ≥ 0 iff there exist a

set of interconnected simple loops {L1, L2, · · ·Lp}, and positive numbers n1, n2, · · ·np such

that (
⋃p

i=1 T (Li)) ∩X 6= ∅ and Σp
i=1ni × ν(Li) ≥ 0 holds.

According to the above lemma, the NTP problem reduces to check whether Σp
i=1ni ×

ν(Li) ≥ 0 has a positive solution (refer to [47] for a solution of such linear inequal-

ity systems) for a subset {L1, L2, · · ·Lp} of interconnected simple loops of Π for which

(
⋃p

i=1 T (Li)) ∩ X 6= ∅. Consider the Petri net in Figure 3.5 1. Places p1, p2 act as a se-

quencer. As long as place p1 contains a token, transition t1 is enabled and it can be fired

arbitrarily many times, resulting in arbitrarily many tokens in place p3. At some point, p1

may pass its token to p2 by firing t2. Non-emptiness of p2 is a sufficient condition for firing

transitions t3 and t4.

One may wish to know whether P has an infinite firing sequence which fires t4 in-

finitely often. In order to answer that question, we construct the coverability tree, and

its corresponding FSM as depicted in Figures 3.6 and 3.7. The set of maximal nodes

1Note that a two-headed arrow denotes two arrows with opposite directions.

66

5

t4

t3

t2

t1

p5

p4

p2

t7

p3

p1

p6

2

Figure 3.5: Petri Net P

Mmax is {01ω10ω, 01ω01ω, 10ω100} which implies that the FSM has only three states.

The simple loops of the FSM are as follows: L1 = 01ω10ω, 01ω01ω L2 = 01ω10ω

L3 = 01ω01ω L4 = 10ω100, and their corresponding weights are: ν(L1) = t3 + t4 =

[0 0 0 −1 1 0]T +[0 0 −5 1 −1 1]T = [0 0 −5 0 0 1]T , ν(L2) = ν(L3) = t7 = [0 0 2 0 0 0]T ,

ν(L4) = t1 = [001000]T . We have 2×σ(L1)+5×σ(L2) = [0 0 0 0 0 2] is a non-negative vec-

tor, and T (L1)∪T (L2) = {t3, t4, t7}; therefore, there exists a firing sequence with infinitely

many occurrences of t4.

01ω100

01ω010

100100

10ω100 010100

10ω100 010010

t1

01ω10ω

01ω010

01ω010 01ω10ω
t7

01ω10ω

t7 t4

t3

t3

01ω01ω

t1

t7

t3

t2

t4

t2

t7

01ω01ω

Figure 3.6: Coverability Tree of P

67

01ω10ω

t1

10ω100

t7

t4

01ω01ω

t7

t3

Figure 3.7: FSM corresponding to coverability tree of P

3.1.3 Linear Temporal Logic

In this subsection, we will introduce a linear temporal logic with three different predicates,

and the usual temporal operators G,F,X, U,R,∧,∨,¬. The predicate fi(t), also known

as a transition predicate, holds at a marking of a computation path when t is the next

transition executed from that marking. The other two predicates, known as marking

predicates, are employed to express the properties of markings. The predicate ge(p, k) holds

at a marking of a computation path when the number of tokens in place p is greater than

or equal to the constant k. Another such predicate is en(t) which holds when transition

t is enabled. This predicate is also a marking predicate since it can be expressed as a

conjunction of ge(p, k) marking predicates. More formally, the syntax and the semantics

of this logic are defined below.

Given a Petri net P = (P, T,W,Σ, ρ,M0), we define the syntax of the linear temporal

logic L inductively as follows:

(a) Every basic predicate fi(t), ge(p, k), en(t) where p ∈ P , t ∈ T , k ∈ N, is a formula of

L;

(b) If ϕ is a formula of L, then ¬ϕ, Xϕ are in L;

(c) If ϕ1 and ϕ2 are formulas of L, then ϕ1 ∨ ϕ2, ϕ1Uϕ2 are in L.

68

The semantics of this logic is defined inductively for any infinite computation π = M0, t1,M1, · · ·

and any natural number n as follows:

• (π, n) |= fi(t) iff tn+1 = t

• (π, n) |= ge(p, k) iff Mn(p) ≥ k

• (π, n) |= en(t) iff Mn(p) ≥W (p, t) for every p ∈ P

• (π, n) |= ¬ϕ iff ¬((π, n) |= ϕ)

• (π, n) |= ϕ1 ∨ ϕ2 iff (π, n) |= ϕ1 ∨ (π, n) |= ϕ2

• (π, n) |= Xϕ iff (π, n+ 1) |= ϕ

• (π, n) |= ϕ1Uϕ2 iff ∃i � n, ∀j n � j ≺ i, (π, j) |= ϕ1 ∧ (π, i) |= ϕ2

Intuitively, a formula ϕ holds at (π, n) when marking Mn of π satisfies ϕ. The predicates

of the form ge(p, k), en(t) are known as marking predicates since they are interpreted

on markings. Note that a predicate en(t) can be written as
∧

p∈P ge(p,W (p, t)). The

predicates of the form fi(t) are known as transition predicates.

As usual, we use the abbreviations ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2); ϕ1Rϕ2 = ¬(¬ϕ1U¬ϕ2);

Fϕ = TrueUϕ; Gϕ = FalseRϕ.

We say a Petri net P existentially satisfies a formula ϕ of logic L, P |=∃ ϕ, iff ∃π ∈

Cω(P), (π, 0) |= ϕ. Similarly, we say P globally satisfies ϕ, P |=∀ ϕ, iff ∀π ∈ Cω(P), (π, 0) |=

ϕ.

3.1.4 Product of Petri Nets

Given two Petri nets P1 = (P1, T1,W1,Σ, ρ1,M01) and P2 = (P2, T2, W2, Σ, ρ2, M02), define

their synchronous product P1 ×P2 as a Petri net (P, T,W,Σ, ρ,M0) where

P := P1] P2

69

T := {(t1, t2)|t1 ∈ T1, t2 ∈ T2, ρ1(t1) = ρ2(t2)}

W (p, (t1, t2)) :=











W1(p, t1) if p ∈ P1

W2(p, t2) if p ∈ P2

W ((t1, t2), p) :=











W1(t1, p) if p ∈ P1

W2(t2, p) if p ∈ P2

ρ((t1, t2)) := ρ1(t1) = ρ2(t2)

M0(p) :=











M01(p) if p ∈ P1

M02(p) if p ∈ P2

Product of a Petri net P1 and a Büchi net (P2, T2) is a Büchi net (P, T) where P =

P1 ×P2 and T = {(t1, t2)|(t1, t2) ∈ T & t2 ∈ T2}.

Proposition 10 Given two Petri nets P1,P2, and a Büchi net B, we have Lω(P1 ×P2) =

Lω(P1) ∩ Lω(P2), Lω(P1 × B) = Lω(P1) ∩ Lω(B).

3.1.5 Variants of Ordinary Petri nets

In this section, we briefly talk about two variants of ordinary Petri nets, and compare their

computational power with other mathematical modelling tools.

Petri nets with inhibitors: the ordinary Petri nets, as defined earlier, cannot test

whether a place has no token in it. Petri nets with inhibitors add this capability to ordinary

Petri nets. An inhibitor is an arc connecting a place p to a transition t, and has a small

circle instead of an arrow at its terminating point where it connects to t [24]. The role of

the inhibitor is disable the transition t if there exists any token in p; i.e., the emptiness of

place p is a precondition for firing t. It has been shown that adding inhibitors to ordinary

petri nets increases their computational power to the level of Turing machines [24]. In the

mutual exclusion example discussed earlier (Figure 3.3), none of the two subsystems has

70

t1

t2

p1

p2

p5

p6

p7p3

p4

t3

t4

t5

t6

Subsystem1 Subsystem2

Figure 3.8: Mutual Exclusion example with assigned priority

priority over the other one in taking the resource when they both are requesting it – places

p2, p6 are marked. One may introduce a new rule such that every time the two subsystems

are requesting the available resource, then subsystem 1 takes it. This can be modeled using

an inhibitor connecting p2 to t5 which disables t5 every time p2 is marked (subsystems 1 is

requesting the resource). The new model is depicted in Figure 3.8 [26].

3

2

2
2 3m2d m1d m1u m2udown up

c c′

d − cc − d

2

Figure 3.9: Elevator System

To illustrate the role of inhibitors, consider an elevator system with only one lift. The

71

system has two variables c which denotes the current level, and d which represents the

destination level. The current level tracks the destination number as long as they are not

equal. If d > c, then increase c by one, and if d < c, then decrease c by one. After c

reaches the same value as d, then d sets to a new value non-deterministically. Figure 3.9

depicts the Petri net model of an elevator with 3 levels. Place c represents the current floor.

Place c′ is the complement of c; i.e., the total number of tokens in c, c′ is 3. d− c denotes

the difference between the destination floor and the current floor when d > c; otherwise

it’s set to zero. Similarly, c − d denotes the difference between the current floor and the

destination floor when d < c; otherwise it’s set to zero. After c reaches d, c− d and d− c

both become zero, and one of the 4 transitions m1u,m2u,m1d,m2d fires. That would set

a new destination value, and disables the 4 transitions until c−d, d− c become zero again.

Meanwhile, the current floor c increases (decreases) one by one by firing the transition up

(down) if d− c (c− d) is positive. The elevator is initially in the third floor, and so is the

destination floor, c = d = 3.

Colored Petri nets: In the ordinary Petri nets, the tokens all have the same type or

color, and we can not distinguish among them. In colored Petri nets, on the other hand,

we assign types or colors to the tokens. This can be very useful in modelling of systems

consisting of isomorphic, but not identical, subsystems. This can be best explained by

means of an example. Consider the example of the dining philosophers [27]. The Petri net

of one philosopher can be modelled as in Figure 3.10. A philosopher can be is initially in

“thinking” state – the place Think is marked. He can then evolve to his “eating” state by

taking the two chopsticks on his left- and right-hand sides (demonstrated by places C1, C2)

if they are available; the place Eat becomes marked. Otherwise, he has to wait until his

neighbor philosophers return the chopsticks. Figure 3.11, depicts a ring consisting of five

philosophers, P1, P2, P3, P4, P5. All the philosophers are initially in their thinking state.

As can be seen, the size of the model grows linearly by the number of the philosophers in

the ring. In fact, a ring with n philosophers has 3n places and 2n transitions (5n nodes),

72

although all the philosophers have exactly the same structure. Also note that only the

neighboring states of a philosopher affect his transitions. In other words, the philosophers

can distinguish among themselves, and therefore, the identity of the philosophers needs to

be kept in the modelling of such system. This can be achieved by adding colors to the

tokens of ordinary Petri nets. A colored Petri net model of such system can be depicted

as in Figure 3.12. As can be seen, the number of nodes of this model is only 5 (3 places

and 2 transitions). This, therefore, is a more abstract and understandable model of the

dining philosophers example. A type is defined as a set of values. In this example, Phil is

a type with P1, P2, P3, P4, P5 values. Every place in the model is assigned a type, and that

determines the type (color) of the tokens in that place. Places Think, Eat, for instance, are

of type Phil. The place C is of type Chop which is defined as the set {c12, c23, c34, c45, c51}.

cij denotes the chopstick which is places between philosophers Pi, Pj.

Eat

C1C2 Think

Figure 3.10: One Dining Philosopher

A multi-set m over a given set S is defined as a function from S to the set of natural

numbers N. Sometimes, we represent that as a sum
∑

s∈S m(s)′s [28]. Marking of a place

is then defined as a multi-set on the type assigned to that place. For instance, we could

define M(Think) = 1′P1 + 2′P2 + 4′P5 meaning that place Think has one token of color

73

P1, two tokens of color P2, and 4 tokens of color P5. The initial marking of a colored Petri

net can then be defined by assigning a marking to each one of the places in the net. In our

example of dining philosophers, we define M(Think) = 1′P1 + 1′P2 + 1′P3 + 1′P4 + 1′P5,

M(C) = 1′c12 + 1′c23 + 1′c34 + 1′c45 + 1′c51, and M(Eat) = ∅ where ∅ is a multi-set with

no elements. Transition t1 takes a token Pi from Think, one token of each ci(i+1), c(i−1)i

from C, and adds a token Pi to Eat where i ∈ {1, 2, · · · , 5}. This is determined by the

expressions assigned to the arcs connected to t1. These arc expressions may have some

free variables. For instance, in the arc expression Pi of the arc connecting the place Think

to the transition t1, there is a free variable i which is a natural number between 1 to 5.

The action of a transition depends on bindings of the variables in the arcs connected to

that transition. For instance, firing of t1 with the binding i = 2 removes one P2 token

from Think, and one token of each c12, c23 from C, and adds a token P2 to Eat. Similarly,

transition t2 removes a token Pi from Eat, and adds a token Pi to Think, and one token

of each ci(i+1), c(i−1)i to C. Note that by increasing the number of philosophers, only the

token types Phil, Chop become larger, but the structure of the net remains unchanged.

Since colored Petri nets are not the main focus of this thesis, we will not cover any

more details of these high-level nets. Please refer to [28], for a more formal definition of

colored Petri nets. It is however important to emphasize that the computational power of

colored Petri nets is the same as ordinary Petri nets, and they are only a better formalism

for modelling systems with isomorphic subsystems.

Languages are a common way of measuring the computational power of mathematical

modelling tools. Figure 3.13 [29], depicts a comparison of the class of Petri nets languages

with other language categories in the Chomsky hierarchy. Finite automata (FA), push down

automata (PDA), and linear bounded automata (LBA) are the mathematical models of

regular, context free, and context sensitive languages respectively. As can be seen from the

Figure, regular languages as well a subset of context sensitive and context free languages

can be expressed using ordinary Petri nets. Petri nets with inhibitors (IPN) have the same

74

Figure 3.11: A Ring of 5 Dining Philosophers

power as the Turing machines (TM), and colored Petri nets (CPN) have the same power

as ordinary Petri nets (PN).

3.2 Model Checking of Ordinary Petri Nets

In this section, we discuss the model-checking of Petri nets against linear temporal logic

introduced earlier. There are a few very important results in the literature on this concept.

It is known from [34] that the model checking of linear time µ-calculus with fi(t) as the only

predicate is decidable. However, as you extend the logic by adding the marking predicates

ge(p, c), en(t), the model-checking problem becomes undecidable. Some fragments of the

logic L however have been shown to be decidable.

In [37], a fragment of L is defined such that F is the only temporal operator allowed,

75

Eat

Think

Pi

Pi

Pi

C

Ci(i+1) + C(i−1)i

Pi

Ci(i+1) + C(i−1)i

t1

t2

Figure 3.12: Colored Petri Net Model of the Dining Philosophers

and negation is only applied to predicates. It is shown that deciding whether a given Petri

net existentially satisfies a formula of this logic is PTIME equivalent to the reachability

problem. As an example, one can decide whether P |=∃ F (fi(t) ∧ (F¬ge(p, 3))).

In another work [38], the decidability of a similar syntax as [37] with GF (infinitely

often) as the only temporal operator allowed is proved. This is done by reducing the

problem to an exponential number of instances of the reachability problem. For instance,

P |=∃ GF (fi(t) ∧ (GF¬ge(p, 3))).

In this section, two fragments LE (LO) of linear temporal logic L are defined in which

every predicate ge(p, k), en(t) is in the scope of an even (resp. odd) number of negations.

It is shown that the problem of deciding whether a given Petri net existentially (globally)

satisfies a formula of LE (resp. LO) can be reduced to the boundedness problem. The

results then are extended to model checking of Petri nets under fairness constraints.

3.2.1 A Decidable Fragment of Linear Temporal Logic

By LE (resp. LO), we denote the fragment of L formulae whose marking predicates are all

in the scope of an even (resp. odd) number of negations. A formula with only transition

predicates is considered to be in both LE and LO. For instance, ¬(F (fi(t) ∨G¬ge(p, 2)))

76

Context free

PN = CPN
Context sensitive

PDA

LBA

Regular

FA

TM = IPN

Recursively enumerable

Figure 3.13: Petri nets in Chomsky Hierarchy

belongs to LE since ge(p, 2) (its only marking predicate) lies in the scope of 2 negations.

Note that negation of a formula of LO belongs to LE , and vice versa. A formula of L

can always be written in the negation normal form in which negations are only applied

to the predicates. This can be done by pushing negations inward, using the equivalences

¬Xϕ = X¬ϕ, ¬Fϕ = G¬ϕ, ¬(ϕ1Uϕ2) = ¬ϕ1R¬ϕ2 [41]. Therefore, if we put a formula of

LE in this form, negations can only appear on the transition predicates. As for the above

formula, we can write it as G(¬fi(t) ∧ Fge(p, 2)). In the sequel, we will assume that all

the formulas are in the negation normal form.

It will be shown that the problem of deciding whether a Petri net P existentially satis-

fies a formula of LE , or globally satisfies a formula of LO is decidable by reduction to BP.

We take an automata-theoretic approach as in [34]. Given a Petri net P, and a formula

ϕ, a Büchi net Bϕ (resp. B¬ϕ) is first constructed which represents all predicate behaviors

accepted by ϕ (resp. ¬ϕ). Secondly, a Petri net Ext(P) is built which represents all predi-

cate sequences of P. Model checking of P against ϕ is then reduced to decide whether the

language of the Büchi net Ext(P) × Bϕ (resp. Ext(P) × B¬ϕ) is empty. The emptiness of

77

this language can be tested by reduction to BP.

Construction of Ext(P): Let P = (P, T,W,−,−,M0) and ϕ be a formula of L to be

model-checked against P. We shall explain the construction of Extϕ(P) = (Pe, Te,We,Σe, ρe,M0e)

by adding some new transitions to P with respect to marking predicates in ϕ. The set

of places Pe remains unchanged, Pe := P , and so is the initial marking, M0e := M0. The

set of transitions Te is the union of T , and the set of some new transitions which corre-

spond to marking predicates of ϕ. The weight function We assigns the same value as W

to every old pair in (P × T) ∪ (T × P). The weight assignments to the new pairs will be

defined as we add new transitions to Te. For every marking predicate of the form ge(p, c)

in ϕ, add a new transition t such that ρe(t) := ge(p, c), We(p, t) = We(t, p) := c, and

We(p
′, t) = We(t, p

′) := 0 for every other place p′ ∈ Pe. This transition can occur at a

marking only when ge(p, c) holds, and its occurrence does not affect the current mark-

ing. Similarly, for every predicate of the form en(t), add a new transition t′ such that

ρe(t
′) := en(t) and We(p, t

′) = We(t
′, p) := W (p, t) for every place p ∈ Pe. Transition t′ can

occur whenever t is enabled without affecting the current marking. Note that the occur-

rence of a new transition t only implies the truth of ρe(t) at the current marking. We also

label every old transition t of T with fi(t). The set of action labels Σe := Γ where Γ is the

union of all the marking predicates in ϕ and a set of transition predicates {fi(t)|t ∈ T}.

Intuitively, Extϕ(P) has the same computations as P with some new transitions interleaved

into them.

Construction of Bϕ: Next, the construction of Bϕ with respect to P and ϕ is discussed.

Let Γ be a set of predicates as defined earlier. Define a predicate run γ on Γ as a

function from the set of natural numbers to the power set of Γ; i.e., γ : N → 2Γ. A

predicate run can also be thought of as an infinite sequence of truth assignments to the

predicates in Γ, denoted by Γ0Γ1, · · · where at each time instant i the predicates in Γi are

78

evaluated to True, and the ones in Γ \ Γi to False.

According to [40], a Büchi automaton Aϕ = (Q,R, q0, F) can be constructed over the

alphabet 2Γ that accept all the predicate runs that satisfy ϕ. As usual, Q is a set of states,

R ⊆ Q × 2Γ × Q is a transition relation, q0 ∈ Q is the initial state, and F is the set of

accepting states. Every transition t ∈ R is annotated with a subset of predicates in Γ. We

could instead assign a boolean expression e to each transition [41]. Every such expression

e represents those truth assignments to predicates in Γ which evaluate it to True.

Note that a single boolean expression can represent all the transitions from a given

state s to another state r. In fact, all the transitions of the form (s, ei, r), 1 � i � m,

can be merged into a single transition (s,
∨

i∈{1···m} ei, r). Let e be a boolean expression in

disjunctive normal form (DNF); call e positive if all of its predicates are non-negated. For

instance, (ge(p1, 2) ∧ en(t1)) ∨ fi(t2) is positive. A positive Büchi automaton is a Büchi

automaton whose transition labels are positive.

Proposition 11 Every formula ϕ of the logic LE can be translated into a positive Büchi

automaton.

Proof sketch: First, we use the algorithm of [41], to construct the Büchi automaton Aϕ

from ϕ, and then, show how it can be converted into a positive one. The algorithm starts

by transforming the temporal operators G,F according to equivalences Fϕ = TrueUϕ and

Gϕ = FalseRϕ; these transformations do not change the number of negations covering

a predicate in ϕ. In the next step, the obtained formula is put in negation normal form

by pushing all the negations inward. As explained earlier, this results in a formula whose

marking predicates are not negated.

At this point, the algorithm starts from a list of a single node, and recursively adds new

nodes to the list where a node is the basic data structure of this algorithm representing

a state of Aϕ. Each node r has a list of properties, denoted by Old(r), assigned to it.

Intuitively, this list is a subset of subformulas of ϕ which hold in the suffixes of computations

79

fi(t1),
fi(t2),
fi(t3)

fi(t1),
fi(t2),
fi(t3)

Aϕ

A′

ϕ

A′′

ϕ

fi(t1),
fi(t2),
fi(t3)

fi(t3)

fi(t2)

fi(t3)
fi(t2),

fi(t1)

fi(t2),
fi(t3)

fi(t3)

True

ge(p, 2)
True

ge(p, 2) ∧ fi(t1),
ge(p, 2) ∧ fi(t2),
ge(p, 2) ∧ fi(t3)fi(t1),

fi(t2),

ge(p, 2)

ge(p, 2)

¬fi(t1)

ge(p, 2)

Figure 3.14: Büchi net construction steps

satisfying ϕ. The node list is complete when no new node is generated. Finally, the

transition relation of Aϕ is defined as the set of transitions of the form (r, α, r′) where r′ is

a successor node of r, and α is the conjunction of negated and non-negated predicates in

Old(r′); however, Old(r′) may only contain negated transition predicates since the marking

predicates are not negated. On the other hand, every negated transition predicate ¬fi(t)

can be rewritten as
∨

t′∈T&t′ 6=t fi(t
′) – if t is not the next transition to fire, then a different

transition t′ has to fire. �

Given a positive Büchi automaton Aϕ, we shall construct a Büchi net Bϕ as follows.

The construction is done in 3 steps. Figure 3.14 depicts the first two steps for the Büchi

automaton of the formula ϕ = F (ge(p, 2) ∧ X¬fi(t1)). It is assumed that the Petri net

model P has three transitions t1, t2, t3.

First, we convert Aϕ into another Büchi automaton A′
ϕ which has the same set of

(accepting) states, and whose transition labels are the conjunction of a finite number of

predicates. Let (s, e, r) be a transition of Aϕ connecting state s to r; Suppose e is a

positive boolean expression of the form d1 ∨ d2 · · · ∨ dm. If any of the disjunctive terms

di has two transition predicates fi(ti) and fi(tj) where ti, tj are distinguished transitions,

80

evaluate di to False since two transitions ti, tj cannot be both the first transition to fire at

a marking of a computation. Furthermore, if di does not include a transition predicate as

one of its conjunctive terms, then we can rewrite it as di ≡ di ∧ True ≡ di ∧
∨

t∈T fi(t) ≡
∨

t∈T di ∧ fi(t).

By applying the above rewriting rules, e will be transformed into a boolean expres-

sion whose disjunctive terms are the conjunction of a finite number of marking predicates

and a solitary transition predicate. Let e′ = d′1 ∨ d′2 · · · ∨ d′m′ be the obtained expres-

sion from e; then, replace (s, e′, r) with m′ transitions (s, d′i, r), 1 � i � m′. For in-

stance, transition (s, ge(p, 2), r) is first transformed into (s, (ge(p, 2)∧ fi(t1)) ∨ (ge(p, 2) ∧

fi(t2))∨(ge(p, 2)∧fi(t3)), r), and then replaced by three transitions (s, ge(p, 2)∧fi(t1), r),

(s, ge(p, 2)∧ fi(t2), r), and (s, ge(p, 2)∧ fi(t3), r) as depicted in figure 3.14. Note that ev-

ery transition label of A′
ϕ is the conjunction of a (possibly empty) sequence of marking

predicates followed by a single transition predicate.

In the next step, we convert A′
ϕ into another Büchi automaton A′′

ϕ whose transitions

are labelled only by individual predicates as opposed to conjunction of predicates. This is

mainly because transitions of Ext(P) are labelled with individual predicates, and our goal

is to eventually take the product of the final Büchi net with Ext(P).

For every transition of the form (s, b1 ∧ b2 · · · ∧ bm, r) where bm = fi(t) for some t ∈ T ,

we first add m − 1 intermediate states s1, s2, · · · , sm−1, and then replace the transition

with m transitions (si, bi+1, si+1) where i ∈ {0, 1, · · · , m − 1}, s0 = s, and sm = r. The

set of accepting states of A′′
ϕ is the same as A′

ϕ. See figure 3.14 to see an example of this

construction.

Finally, a Büchi net Bϕ = ((Pϕ, Tϕ,Wϕ,Σϕ, ρϕ,M0ϕ), Tϕ) is constructed from A′′
ϕ =

(Γ, Q,R, q0, F) where:

Pϕ := Q

Tϕ := R

81

Σϕ := Γ

Wϕ(s, (q, α, q′)) :=











1 if s = q

0 otherwise

Wϕ((q, α, q′), s) :=











1 if s = q′

0 otherwise

ρϕ((q, α, q′)) := α

M0ϕ(q) :=











1 if q = q0

0 otherwise

Tϕ := {(q, α, q′)|q′ ∈ F}

Lemma 5 Given a Petri net P, and a formula ϕ, we have

• if ϕ is in LE , then P |=∃ ϕ iff Lω(Extϕ(P) × Bϕ) 6= ∅;

• if ϕ is in LO, then P |=∀ ϕ iff Lω(Extϕ(P) × B¬ϕ) = ∅.

The main result of this section is stated below.

Theorem 14 Given a Petri net P, and a formula ϕ ∈ LE (LO), the problem of deciding

whether P existentially (globally) satisfies ϕ is decidable.

Consider first the case when ϕ is an even formula (ϕ ∈ LE). We know from [37], that

given a Petri net P and a finite set of non-empty subsets of transitions X , the problem

of deciding whether P has an infinite computation c such that inf(c) ∩ X 6= ∅ for some

X ∈ X is PTIME equivalent to BP.

According to lemma 5, P |=∃ ϕ iff Lω(Extϕ(P)×Bϕ) 6= ∅ iff the Büchi net Extϕ(P)×Bϕ

has an infinite path c such that inf(c) ∩ T 6= ∅ where T is the set of final transitions of

the Büchi net Extϕ(P) × Bϕ. This reduces the model-checking problem to BP.

82

For the case when ϕ is an odd formula (ϕ ∈ LO), we have P |=∀ ϕ iff P 6|=∃ ¬ϕ where

¬ϕ is an even formula. �

Remark: Extension of L

The logic L can be extended by adding new predicates to the logic. For instance, the

predicate ge(p, k) can be extended to involve more than one place. Therefore, ge(p1, p2, · · · , pr, k)

holds at a marking of a firing sequence if the total number of tokens in places p1, p2, · · · , pr

is more than, or equal to constant k. More formally for an infinite computation π =

M0, e1,M1, · · · and any natural number n:

(π, n) |= ge(p1, p2, · · · , pr, k) iff Σr
i=1Mn(pi) ≥ k

One can also extend the definition of ge to transitions. The predicate ge(t1, t2, · · · , tr, k)

holds at a marking M of a firing sequence if the total number of transitions t1, t2, · · · , tr

firings from the initial marking M0 to M is greater than or equal to k. More formally for

an infinite computation π = M0, e1,M1, · · · and any natural number n:

(π, n) |= ge(t1, t2, · · · , tr, k) iff f(n) ≥ k

where f(n) is a recursive function defined as:

f(0) = 0

f(n) =







f(n) : en 6∈ {t1, t2, · · · , tr}

f(n) + 1 : en ∈ {t1, t2, · · · , tr}

It can easily be shown that the same result as in theorem 14 holds for the extended

L with ge(pt1, pt2, · · · , ptr, k) predicates where pt1, pt2, · · · , ptr are either places or transi-

tions.

In the sequel, we will use the predicate le(pt1, pt2, · · · , ptr, k) as an abbreviation for

¬ge(pt1, pt2, · · · , ptr, k+1), and e(pt1, pt2, · · · , ptr, k) as an abbreviation for ge(pt1, pt2, · · · , ptr, k)

∧ le(pt1, pt2, · · · , ptr, k).

83

Remark: Bounded Places

In the remainder of this section, it is explained how to extend the decidable fragment

of our defined logic by allowing the marking predicates ge(p, c) of any bounded place p in

a formula to be model-checked; i.e., the number of negations covering such a predicate is

not important.

We need to make some minor changes in the construction of Ext(P) by adding a com-

plementary place pc corresponding to every bounded place p when ge(p, c) is a predi-

cate of the formula to be model-checked. First, we update the weight function such that

We(pc, t) := We(t, p) and We(t, pc) := We(p, t) for every t ∈ Te. The initial number of

tokens in pc, M0e(pc), is set to k −M0e(p) where k is a bound on the number of tokens in

p. This guarantees that M(p) +M(pc) = k at any reachable marking M of Ext(P). Then,

add a new transition t with action ¬ge(pc, c) such that We(pc, t) = We(t, pc) := k − c + 1,

and We(p
′, t) = We(t, p

′) := 0 for every other place p′ ∈ Pe. It is not hard to see that the

new transition t can occur when the predicate ge(p, c) does not hold. We will see later how

this result can be beneficial in model-checking of manufacturing systems models.

3.2.2 Model-Checking Under Fairness

Sometimes, we need to define some constraint on the computations of a Petri net known as

a fairness condition. Any computation satisfying the fairness condition is called a fair path.

A fair net is a pair (P, f) where P is a Petri net, and f is fairness condition expressed as a

formula of L. Define Lω(P, f) as the set of all the action sequences corresponding to the fair

paths of P. There are different notions of fairness for Petri nets in the literature. In fact, in

[37] 24 versions of fairness are defined. We only state two of them. Weak fairness on a Petri

net P requires every transition of P to fire infinitely often, or be disabled infinitely often;

more formally, it is expressed as
∧

t∈T GFfi(t)∨GF¬en(t) where T is the set of transitions

of P. Strong fairness, on the other hand, requires every transition to fire infinitely often if

it is enabled infinitely often; more formally, it is expressed as
∧

t∈T GFen(t) ⇒ GFfi(t).

84

Proposition 12 For given fair Petri nets (P1, f1) and (P2, f2), a fairness condition f

exists such that Lω(P1 × P2, f) = Lω(P1, f1) ∩ Lω(P2, f2).

Let Pi = (Pi, Ti,Wi,Σ, ρi,M0i) for i ∈ {1, 2}. First, we transform f1 and f2 into f ′
1 and

f ′
2 respectively by applying the following two modifications:

• every predicate of the form en(t) in fi, i ∈ {1, 2}, is replaced by
∧

p∈Pi
ge(p, c) where

Wi(p, t) = c. Obviously if c = 0, then ge(p, c) is equivalent to True.

• every predicate of the form fi(t) in fi is replaced by
∨

s∈Ht
fi(s) where

Ht := {(t1, t2) ∈ T |ti = t}

Now define f as f ′
1 ∧ f

′
2. Every computation of P1 × P2 is of the form σ = (M01,M02)

(t11, t12) (M11,M12) · · · which corresponds to computations σ1 = M01 t11 M11 · · · and

σ2 = M02t12M12 · · · of P1 and P2 respectively. For a given place p ∈ P1 (P2), we have

(Mi1,Mi2)(p) = Mi1(p) (Mi2(p)). Therefore, a marking predicate ge(p, c) holds at a mark-

ing (Mi1,Mi2) of σ iff it holds at Mi1 (Mi2). As for the transition predicates, if fi(t)

holds at Mi1 (Mi2) of σ1 (σ2) for some t ∈ T1 (T2), then t = ti+1,1 (t = ti+1,2); therefore,

fi((ti+1,1, ti+1,2)) and consequently
∨

s∈Ht
fi(s) holds at (Mi1,Mi2). On the other hand, if

∨

s∈Ht
fi(s) holds at (Mi1,Mi2), then (t, t′) (or (t′, t)) holds at (Mi1,Mi2) for some t′ ∈ T2

(T1); therefore, fi(t) holds at Mi1 (Mi2).

Consequently, σ1 and σ2 satisfy fair conditions f1 and f2 respectively iff σ satisfies f ′
1

and f ′
2 iff σ satisfies f = f ′

1 ∧ f
′
2. �

Proposition 13 Given a Büchi net (P, T), we have Lω((P, T)) = Lω((P, f)) where f =

GF
∨

t∈T fi(t).

We say a fair net (P, f) existentially satisfies a formula ϕ of L, (P, f) |=∃ ϕ, iff a

fair path c of P exists such that c |= ϕ. Similarly, (P, f) is said to globally satisfy ϕ,

(P, f) |=∀ ϕ, iff for every fair path c we have c |= ϕ.

85

Theorem 15 Given a fair net (P, f) where f is a weak fairness condition, and a formula

ϕ ∈ LE (LO), the problem of deciding whether (P, f) existentially (globally) satisfies ϕ is

decidable.

Let ϕ be an even formula. Construct Petri net Ext(P) and Büchi net Bϕ on Γ according

to P and ϕ as explained earlier. The weak fairness condition f can simply be translated

into another weak condition f1 on Ext(P), resulting in a fair net (Ext(P), f1). Büchi net

Bϕ can also be translated into a fair net (P2, f2) according to proposition 13. Now the

question is to decide whether the product of the two fair nets (Ext(P)×P2, f
′
1 ∧ f

′
2) has a

fair path where f ′
1 ∧ f

′
2 has only GF operators, and its negations are applied to predicates.

According to [38], this can be reduced to an exponential number of RP instances. The

other case of the theorem where ϕ is an odd formula can be decided similarly. �

When the fairness condition is strong the model-checking problem becomes undecidable

even when the temporal property is True. For a given Petri net P if we could decide

whether (P, f) |=∃ True where f is a strong fairness, then it was decidable whether P has

a strongly fair path which is known to be undecidable from [36].

3.2.3 Factory Example

In this section, we shall investigate the application of our results on a real-world example.

Consider a factory which produces some mechanical parts, and pack them. This is done

in two stages; first the parts are produced, and then in the second stage they are checked

against some quality standards. If a part passes the test, it will be packed, and if it fails, it

will be thrown away. Note that production of the parts and their test and packing process

cannot be performed simultaneously since running the machinery in parallel consumes

more electrical power than allowed by the safety regulations. The Petri net model P of

such factory is depicted in Figure 3.15.

The number of tokens in pprt demonstrates the total number of parts generated in the

86

pfst

pprt

pfail

ppck

d

c

b

b

a

psec

Figure 3.15: Petri net model of a factory

first stage, and ready to be tested and packed. Tokens in ppck demonstrate the number of

parts which passed the test, and have been packed. Tokens in pfail, on the other hand, are

the ones which failed the test. pfst (resp. psec) when marked implies that the factory is

producing parts (resp. testing and packing). Each transition is labelled by an action from

Σ = {a, b, c, d}. The language L(P) := {(a∗b(c + d)∗b)∗ : #(a) � #(c) + #(d)}. Note that

P is the model of an infinite state system since it is unbounded, and L(P) is not a regular

language.

As a safety property, we may wish to make sure that the factory cannot produce and

pack the parts simultaneously, i.e., P |=∀ G¬(ge(pfst, psec, 2)).

We know that the two places pfst and psec are bounded – this is usually the case for the

controller part of any manufacturing system. Therefore, we can decide whether P globally

satisfies the property G (eq(pfst, 1) ⇔ eq(psec, 0)) ∧ (eq(pfst, 0) ⇔ eq(psec, 1)).

We can also decide P |=∀ G eq(psec, 1) ⇒ ¬fst(ta). This means that if the second

controller psec is active, it does not allow for production of any mechanical part – only the

test and packing segment of the factory can be running.

Remark. The model of a manufacturing system usually consists of some places rep-

resenting the sources, and buffers of that system (for instance, inventory of packed parts),

and also some places representing its logic which controls the flow through the system.

The logic part usually consists of bounded places. Therefore, all properties expressed on

87

such places can be model-checked.

3.3 Networks of Identical Processes

3.3.1 Computation Model

A process is a tuple (Σ, S, R, F, s0) where Σ is a set of actions which is the disjoint union

of 3 sets: local actions (Σl), rendezvous actions (Σr), and broadcast actions (Σb); S is a

finite set of states; R is a set of transitions. A transition is defined as a triple of the form

(s1, `, s2) where s1, s2 ∈ S and ` ∈ Σl ∪ (Σr × {!, ?}) ∪ (Σb × {!!, ??}) – sometimes this

transition is written as s1
`
→ s2; F ⊆ S is the set of marker states; finally, s0 is the initial

state. For the sake of notation simplicity, we write a! (resp. a??) instead of (a, !) (resp.

(a, ??)).

We assume that for every broadcast action a ∈ Σb and every state s ∈ S, there exists a

state s′ ∈ S such that s
a??
→ s′. We will see later that in a network of processes, every time

a process broadcasts a message a!!, all the other processes should be able to receive it by

performing a??; the assumption is to fulfill that goal.

A network N consists of an arbitrary number of identical processes T = (Σ, S, R, F, s0).

Process T is also referred to as the template process of network N . An instance of the

network with a fixed number n copies of T is denoted by Nn. These processes are num-

bered 1 to n. The set of global states of Nn is Gn = Sn. A global state g ∈ Gn is a tuple

of n elements (s1, s2, · · · , sn) where si ∈ S, 1 ≤ i ≤ n, denotes the state of the ith process.

We also use g(i) to denote the ith element of g. The initial state g0n of Nn is defined so

that g0n(i) = s0 for 1 ≤ i ≤ n. We define a transition relation Rn ⊆ Gn × Σ × Gn as

follows: 1) local actions of individual subsystems: let g be a global state such that g(i) = s

and s
αl→ s′ for some 1 ≤ i ≤ n and αl ∈ Σl, then (g, αl, g

′) ∈ Rn where g′(i) = s′ and

g′(j) = g(j) when i 6= j; 2) rendezvous of a pair of processes: let g be a global state such

88

that g(i) = si, g(j) = sj, si
αr !
→ s′i and sj

αr?
→ s′j for some distinct numbers 1 ≤ i, j ≤ n, then

(g, αr, g
′) ∈ Rn where g′(i) = s′i, g

′(j) = s′j and g′(k) = g(k) for any 1 ≤ k ≤ n other than

i, j; and 3) a broadcast action: let g be a global state such that g(i) = si, si
αb!!→ s′i, then

(g, αb, g
′) ∈ Rn where g′(i) = s′i and g(j)

αb??→ g′(j) for j 6= i.

We say a global state t ∈ Gn is reachable from a global state r ∈ Gn, and write r → t

if there exists a sequence of global states g1, g2, · · · , gk such that g1 = r, gk = t and

(gi, αi, gi+1) ∈ Rn for 1 ≤ i ≤ k − 1 and αi ∈ Σ. Every state is assumed to be reachable

from itself. The set of all reachable states from a state r ∈ Gn is denoted by Rn(r).

Template processes, in their general form, are sometimes called broadcast templates

since they allow for broadcast actions. A special class of broadcast templates are the ones

with empty sets of broadcast actions, Σb = ∅. Such templates are known as rendezvous

templates since they only allow for rendezvous and local actions.

3.3.2 Petri Nets Modelling of Networks with Rendezvous Tem-

plates

First, we construct a Petri net Pn = (P, T,W,−,−,M0) to simulate an instance Nn of the

network N with n processes, and then, we will show how our construction can be extended

to a more general model Pe whose computations are the union of the computations of

every instance model Pn. Let T = (Σ, S, R, F, s0) be the rendezvous template of N ; Pn is

defined according to T as follows: let P = {ps : s ∈ S} – one place corresponding to each

state of S. The number of tokens at each place denotes the number of processes in the

corresponding state. Therefore, we set the initial marking M0 such that M0(ps0) = n, and

M0(p) = 0 for every place p ∈ P \ {ps0}. Every transition of Nn is either a local action of

one process, or a rendezvous action shared between two processes. Corresponding to every

transition (r1, αl, r2) ∈ R, add a transition t to T such that W (pr1 , t) = W (t, pr2) = 1 –

89

ps0

tg

pcon1

ts

pcon2

Figure 3.16: Token Generator in Petri Net Pe

firing of t removes a token from pr1, and adds a token to pr2 . Furthermore, for every two

transitions (r1, αr!, r2), (s1, αr?, s2) ∈ R add a new transition t to T such that W (pr1 , t) =

W (ps1, t) = W (t, pr2) = W (t, ps2) = 1 – firing of t removes a token from each one of the

two places pr1 , ps1, and adds a token to pr2, ps2. This completes the construction if Pn.

Note that the only difference between instance models Pn is in their initial markings. We

wish to change Pn slightly so that the initial number of tokens in ps0 can be set randomly.

A new Petri net model Pe is then constructed by adding two new places pcon1, pcon2, and

two new transitions tg, ts to Pn. The new places and transitions, and the way they connect

to old places and transitions in Pn are depicted in the following Figure.

The place pcon1 is initially marked with a single token. This enables transition tg, and

it can therefore fire to add an arbitrary number of tokens to ps0. Firing of ts, on the other

hand, removes the token of pcon1, and adds a token to pcon2. This stops the generation

of tokens in ps0. Also note that pcon2 being marked is a necessary condition for firing

any transition in T \ {ts, tg}. In other words, none of the transitions corresponding to N

transitions can fire until pcon2 is marked. The construction of Pe is such that it initially

generates an arbitrary number n of tokens in ps0; then ts is fired, and an instance of the

network N with n processes is simulated. The initial marking of Pe is defined so that pcon1

is marked with a single token, and every other place is empty.

Now let Ψ ∈ L be a formula expressed on Pn. One may wish to know whether Pn

globally satisfies Ψ for every natural number n. This, however, cannot be done in a finite

90

time since it has an infinite number of instances. Instead, we could check whether Pe

globally satisfies (F (fi(ts) ∧XΨ))
∨

¬(Ffi(ts)). In other words,

∑

n∈N

Pn |=∀ Ψ iff Pe |=∀ (F (fi(ts) ∧XΨ))
∨

¬(Ffi(ts))

In fact, a possible computation for Pe is when tg is fired infinitely to generate an infinite

number of tokens in ps0. Every other computation of Pe is a sequence of n firings of tg

followed by a computation of Pn. Therefore,
∑

n∈N
Pn |=∀ Ψ holds iff every computation

of Pe after firing ts (if ts fires at all) reaches a marking which satisfies Ψ.

A similar approach can be taken to model a network consisting of an arbitrary number

of identical processes T , and a distinguished process Tc, which is sometimes referred to

as the control process. In order to model such a network, we need to add extra places to

Petri net Pe corresponding to states of Td. Note that Td may only differ from T in his

initial state. If so, we could slightly change the initial marking of Pe such that the place

corresponding to the initial state of Td has a single token.

Consider for instance a network with a template process which has three states: nt

(non-trying), t (trying), and c (critical) as depicted in Figure 3.17.

β!

t

β?

cnt α

Figure 3.17: Template Process of Network N

Every process in this network can perform a local action α and reach t from nt. In

order to reach its critical state c, a process needs to perform β!, and synchronize with an-

other process performing β?. The initial state of the network is such that only one process

91

(control process) is in state c, and the rest of processes are in nt. The Petri net model of

such a network is depicted in Figure 3.18. Transition t1 in this model corresponds to the

local action α, and t2 corresponds to rendezvous action β.

t1 t2ptpnt pc

pcon2tg

pcon1
ts

Figure 3.18: Petri Net Model of Network N

As a safety property, we may wish to require the network to satisfy the mutual exclusion

property; i.e., it should not be possible for two processes to be in their critical state

simultaneously. We can therefore define Ψ as G¬ge(pc, 2), and check whether Pe |=∀

(F (fi(ts) ∧XΨ))
∨

¬(Ffi(ts)). The formula to be model-checked is an odd formula, and

therefore, according to theorem 14, it is decidable whether Pe globally satisfies it.

We may also wish to model-check a property of a single process T ∗ running in the

network. To do so, one token needs to be distinguished from the rest. This could be done

by assigning new places to the distinguished token. The new model of the network will be

as shown in Figure 3.19 where pnt, pt, pc represent the states of T ∗, and p′nt, p
′
t, p

′
c represent

the states of the rest of processes. There should be a two-headed arc connecting pcon2 to

every transition ti, 1 ≤ i ≤ 4, in the model. These transitions are not depicted in the

Figure to avoid confusion.

As a local property of T ∗, it is desirable that every time it enters its trying state,

it eventually enters its critical state. Let’s define Ψ as G(fi(t1) ⇒ Ffi(t4)), and check

whether Pe |=∀ (F (fi(ts)∧XΨ))
∨

¬(Ffi(ts)). This property does not hold because there

92

tg

p′nt

t2

pnt

t3

t4 t5

p′t

pt

t1

p′c

pc

pcon1 ts pcon2

Figure 3.19: Petri Net Model of Network N with a Distinguished Process

exist non-fair paths in which T ∗ is kept in its trying state forever. This problem can be

solved by adding a fairness condition to the model. So define f =
∧

t∈T GF (fi(t)∨¬en(t)).

The resulted fair net (Pe, f) satisfies the liveness property of our interest.

3.3.3 Component and Network Blocking

An instance Nn of a network N is said to have component blocking if there exists a global

state r ∈ Rn(g0n) and 1 ≤ i ≤ n such that for any t ∈ Rn(r), t(i) 6∈ F . This means

a global state is reachable (from the initial state) from which subsystem (component) i

cannot reach a marker state – component i is blocking. Note that Nn, as we have defined

it, is symmetrical, and therefore, if one subsystem in Nn is blocking, then so is every other

subsystem. A network N has component blocking if an instance of N does.

An instance Nn of network N is said to have network blocking if there exists a global

state r ∈ Rn(g0n) such that for every t ∈ Rn(r), t(i) 6∈ F for some 1 ≤ i ≤ n. In other

words, reachable state r cannot extend to a state t in which all the subsystems are in their

marker states. A network N has network blocking if an instance of N does.

Consider the template process T shown in figure 3.20. This template does not have

any broadcast action; therefore, it is a rendezvous template. The initial state of T is the

93

state with an arrow pointing into it, and the marker states are distinguished by exiting

arrows. The only non-marker state is therefore the rightmost state. Let N be a network

consisting of an arbitrary number of such processes. It can easily be seen that the instances

N1,N2,N3 of N are not blocking, and instances of size larger than 3 (and therefore N)

are both component and network blocking because a subsystem can reach its non-marker

state, and stay there forever.

α α α α

Figure 3.20: Template Process T

In the following theorem, we shall show that problems of deciding the existence of

component blocking (CBP) and network blocking (NBP) are undecidable for a network

with a broadcast template.

Theorem 16 Given a network N with a broadcast template T , it is undecidable whether

N has component or network blocking.

We shall show that a two-counter machine can be simulated by a network with a

broadcast template. The halting problem of counter machines is then reduced to CBP and

NBP.

A two-counter machine C consists of two counters c1, c2, and a program with a finite

number r of instructions I0, I1, · · · , Ir−1. An instruction Ii is of one of the following forms.

• inc(ci): ci increments by one and the program evolves to Ii+1.

• dec(c2): ci decrements by one and the program evolves to Ii+1.

• jump(ci, j, k): if ci = 0 the program jumps to Ij ; otherwise to Ik.

94

• halt: the program halts.

Given a two-counter machine C whose counters are initially zero, we construct a broad-

cast template T to simulate C. Define the set of states of T to be {I, R,E, H, c1, c2, s0,

s1, · · · , sr−1}. Initially, all the processes are in state I. A broadcast action can happen

which results in one of the processes to evolve to state s0 (become a control process), and

the rest to state R (become user processes).

Intuitively, the control process simulates the program of C, and the numbers of user

processes in state c1, c2 represent the value of counters c1, c2 respectively. Now we add

transitions to T according to each instruction Ii of C. There are four possibilities.

(a) inc(c1): add si
inc(c1)!
−→ si+1, R

inc(c1)?
−→ c1; this increments the number of processes in

state c1, and moves the control process to state si+1 to simulate the next instruction. Note

that if there is no user process in state R, a deadlock happens. However, the number of

user processes is arbitrary, and it can always be chosen large enough so that this instruction

is simulated properly. The case of inc(c2) can be done in a similar way.

(b) dec(ci): add si
dec(c1)!
−→ si+1, c1

dec(c1)?
−→ R; this decrements the number of processes in

state c1, and moves the control process to state si+1 to simulate the next instruction. Note

that if there is no user process in state c1, a deadlock happens as C fails.

(c) jump(c1, j, k): add si
zero(c1)!!
−→ sj ,si

nzero(c1)!
−→ sk, R

zero(c1)??
−→ R, c1

zero(c1)??
−→ E,

c2
zero(c1)??
−→ c2, c1

nzero(c1)?
−→ c1; therefore, the control process has two choices. It can ei-

ther (i) broadcast zero(c1)!! and evolve to sj . In this case, there should not be any user

process in state c1. All the user processes which are in state R, c2 remain in the same state,

and those which are in state c1 (if exists any) evolve to an error state E. This determines

a cheating on the simulation of C; or (ii) perform nzero(c1)!. This action can only happen

when there exists at least one user process in state c1. In this case, cheating is not possible.

(d) halt: add si
halt
−→ H . The control state enters the H state which is the only non-

marker state.

We also add the following transitions: E
test!
−→ E, H

test?
−→ H ′. If the control process

95

enters the non-marker state H while one user process is in its error state E, then they can

synchronize on the action test which takes the control process to a marker state H ′. So the

only case when the control process remains in H is when there is no process in the error

state E – the network has not cheated. In other words, the two-counter machine halts

iff the broadcast network blocks. On the other hand, halting problem of a two-counter

machine is undecidable, and therefore, CBP and NBP are undecidable. Note that in this

construction network blocking and component blocking are equivalent. �

In the sequel, we shall show that if we restrict ourselves to rendezvous templates, then

CBP and NBP become decidable. Before stating the theorems, we need to define a home

space for a Petri net.

A subset L of N
n is linear if there exist vectors u, v1, v2, · · · , vr ∈ N

n such that

L = {u+

r
∑

i=1

nivi : ni ∈ N}

The vectors vi, 1 ≤ i ≤ r are known as the periods of the linear set L, and u as its base.

The union of a finite number of linear sets is a semilinear set [39].

A set of markings H of a given Petri net P is called a home space iff every reachable

marking M of P can reach some marking M ′ in H. It is known from [39] that the problem

of determining whether a given set of markings H is a home space for a given Petri net P

is decidable when H is a linear set, or the union of a finite number of linear sets with the

same periods.

Theorem 17 Given a network N with a rendezvous template T , it is decidable whether

N has network blocking.

Proof: Let T = (Σ, S, R, F, s0) be the template process of a network N . The goal is to

decide whether a global state of this network is reachable which cannot evolve to another

state with all processes in their marker states. Let Pe be the Petri net model of N .

96

Let H be the set of markings in which all the tokens are in places corresponding to

marker states of T . More formally, H = {M ∈ N
|P | : ∀s 6∈ F,M(ps) = 0} where P is the

set of places of Pe. This set is clearly linear.

The problem of network blocking of N is then reduced to the problem of checking

whether H is a home space for P which is known to be decidable. Therefore, NBP is

decidable. �

Theorem 18 Given a network N with a rendezvous template T , it is decidable whether

N has component blocking.

Proof: This time we construct Pe by assigning distinguished places to the states of

one process in the network. In other words, every state s ∈ S is represented by a place ps

in Pe. Let H be the set of markings which have at least one token in pq for some q ∈ F .

More formally, H = {M ∈ N
|P | : ∃q ∈ F,M(pq) ≥ 1} where P is the set of places of Pe.

This set is clearly the union of a finite number of linear sets with the same set of periods:

H =
⋃

q∈F{uq +
∑|P |

i=1 nibi : ni ∈ N} where the bi’s are unity vectors and

uq(p) :=











1 if p = pq

0 otherwise

Note that there is always only one place ps, s ∈ S, which holds a token. Therefore, if

for a given reachable marking M(pq) ≥ 1, q ∈ F , then M(pq) = 1 and M(ps) = 0 for any

s ∈ S other than q. In other words, the distinguished process in the network is in a marker

state q.

The problem of component blocking of N can then be reduced to the problem of

checking whether H is a home space for Pe which is known to be decidable. �

97

3.4 Networks of Isomorphic Processes

In networks of identical processes, the subsystems cannot distinguish one another. In

networks of isomorphic processes, on the other hand, every subsystem has a distinguished

index. The subsystems are numbered 1 to n (in a network with n subsystems), and can pass

messages through rendezvous or broadcast actions. It can be determined what subsystem

the information is sent to by including that subsystem’s index in the passed message. This

type of communication is needed to model complex networks such as telephone networks.

The template process of a rendezvous network of isomorphic processes is best defined in

a precondition-effect style [46]. The states of a process is described in terms of its variables,

and the transitions are expressed by 1) their preconditions; more precisely, in what states

they are enabled; and 2) their effect on the states. Note that the number of processes in

the network is a parameter of the template, and therefore, the number of actions as well as

states of a process may be dependent on this parameter. A template process is of the form

P (i, n) where i denotes the unique process identity, and n denotes the number of processes

in the network. The processes in the network can be generated by appropriate valuation

of these parameters. For instance to generate a process whose ID is 4 in a network with

10 processes, we replace i by 4, and n by 10 in the template process.

It will be shown that CBP and NBP are undecidable for such networks by reduction

from the halting problem.

The intuition is that for any given Turing machine M = (Q,Σ,Γ, δ, q0, h), we define a

network N which can simulate M , and its blocking is equivalent to the halting of M on

the empty tape – a similar approach is taken in [20] to show that blocking is undecidable

in ring networks of arbitrary size. As usual, Q is the set of control states of M , Σ ⊆ Γ

is the input alphabet, Γ is the tape alphabet, q0 is the initial state and h is the halting

state. The transition function δ : Q× Γ → Q× Γ × {R,L, S} maps a pair (q, a) to a new

state denoted by sucs(q, a), a new tape letter denoted by sucl(q, a), and also returns the

98

direction to which the tape head moves, denoted by dir(q, a).

Processes in N communicate by first setting two other processes as their immediate

right- and left-hand neighbors. Every process Pi can initiate a communication by sending

out a connection message to another process Pj by performing conij!; Pj then receives

this message by performing conij?. This results in Pi’s becoming an initiator and Pj’s

becoming its right-hand neighbor – an initiator only has a right-hand neighbor. Process

Pj, on the other hand, has Pi as its left-hand neighbor; however, it still needs to establish

its right-hand neighbor. It does this similarly by performing conjk!. Note that any process

which is not an initiator has to have both right- and left-hand neighbors. In this way, a

chain of processes c = S1, S2, · · ·Sn can be formed where S1 is the initiator of c and Si is a

right-hand neighbor of Si−1 and a left-hand neighbor of Si+1, 1 < i < n. Define the size of

a chain to be the number of processes in that chain. Therefore, we have size(c) = n. Note

that the right-hand neighbor of Sn is not established, and that denotes the last process of

c. At any time Sn may set up its right-hand neighbor, and extend the size of c to n + 1.

Also note that all the processes in c are distinguished, i.e., they all have different indices.

Every process Pi has two variables nl and nr to store the indices of its left- and right-

hand neighbors respectively. These two variables are initially blank since Pi’s neighbors

are not established yet. Process Pi is also equipped with a tape register π, a boolean flag

b, and a state variable q. The state register π is to store a tape symbol of Γ. This regis-

ter in Si (the ith process in chain c) corresponds to the ith tape cell of M . The registers

of the processes in c, therefore, represent the first n tape cells of M where size(c) = n.

This register is initially set to ∆, the tape blank symbol. The boolean flag b when set to

true indicates where the tape head is pointing. Therefore, only one process in a chain of

processes has its flag set to true at any time. This flag is initially set to False. The state

variable q is used to store a control state of the Turing machine M , and is initially set to

q0, the initial state of M . More formally, the model of a process Pi is defined as follows:

99

Process Pi

States:

nl, nr, indices, initially blank

q, a state in Q, initially q0

π, a tape letter in Γ, initially ∆

b, boolean, initially False

Transitions:

conij !

Effect

case

var = free: nl := 0, nr := j, b := True, var := set

var = half set: nr := j, var := set

conji?

Precondition

var = free

Effect

nl := j, var := half set

int!

Precondition

var = set, b = True, dir(q, π) = S

Effect

q := sucs(q, π), π := sucl(q, π)

outi nr(sucs(q, π))!

Precondition

var = set, b = True, dir(q, π) = R

Effect

π := sucl(q, π), b := False

outi nl
(sucs(q, π))!

100

Precondition

var = set, b = True, dir(q, π) = L

Effect

π := sucl(q, π), b := False

outji(qx)?

Precondition

var = set, b = False, j ∈ {nl, nr}

Effect

q := qx, b := True

As mentioned earlier, every process needs to set its neighbors first before any further

action. Process Pi has a variable var which denotes if the neighbors of Pi have been set.

This variable is initially free meaning that none of Pi’s variables are set yet. At this point,

Pi may send a connection request conij ! to another process Pj , and become an initiator.

This sets the right-hand neighbor of Pi to Pj (nr := j), and its left-hand neighbor to

nil (nl := 0) since Pi is an initiator, and does not have any left-hand neighbor 2. This

transition also sets the boolean flag b to True; the tape head is pointing to the first cell in

its tape. In a second scenario, Pi is called by another process Pj by performing conji?. This

sets Pj as Pi’s left-hand neighbor, and sets its var to half set since its right-hand neighbor

is not set yet. Similarly, it can send a connection request to set its right-hand neighbor,

and become set. This procedure can be followed to establish a chain of n processes where

n is less than or equal to the number of processes in the network.

Process Pi whose neighbors are established and its flag is set to True simulates the

Turing machine on its current control state and tape letter (q, π). It then stores the new

tape letter sucl(q, π), and sends out the new control state sucs(q, π) to its proper neighbor,

or saves it in its own state variable if dir(q, π) = S. If dir(q, π) 6= S, the boolean flag b

2We assume that no process in the network has a zero index.

101

becomes False – the tape head moves to another tape cell. If flag is set to False, on the

other hand, Pi can receive a message from its left- or right-hand neighbor by performing

outji(qx)?. This transition updates its control state to qx.

Define those states of Pi whose state variable is the halting state of M , q = h, as its

non-marker states. A process that has reached a non-marker state will stay there forever

since there is no transition out of the halting state of a Turing machine. This therefore

causes component and network blocking.

If M halts on the empty tape by going through n of its tape cells, then obviously

an instance of network N with at least n processes “can” truthfully simulate M . This

results in a process to evolve to a non-marker state. Consequently, the network N will

have component and network blocking. On the other hand, when N is blocking, it means

that a process of an instance of N can evolve to a non-marker state where q = h, and this

cannot happen unless M halts on the empty tape. Therefore, if we could decide whether

N blocks, then the halting problem would be decidable, which is not the case.

3.4.1 A Generic Template

Consider again networks consisting of an arbitrary number of isomorphic processes. Model-

checking of such networks against temporal properties is an instance of parameterized model

checking problem (PMCP), and in known to be undecidable. We also proved earlier that

checking blocking as a more specific temporal property is also undecidable since such

networks can easily simulate a Turing machine. Our goal is to propose a general template

to make model checking and blocking detection in such networks decidable, and at the same

time expressive enough to model real-life processes. The intuition is to always restrict the

total number of processes communicating by some fixed number dmax. In other words, a

set of dmax processes which have established connections through an algorithm (which will

be explained in more details) can pass messages among each other, but the rest of processes

in the network are not allowed to communicate with these processes.

102

Processes can be thought of as vertices of a dynamic graph G. Each process Pi is

distinguished from other processes by its unique index i. The index number i is sometimes

referred to as its ID. The corresponding vertex of Pi in G is affixed with i. The connection

of two processes is represented by an edge connecting their corresponding vertices in G.

Processes in the network need first to connect, and become neighbors; then, they can take

their communication further by passing messages. They also can disconnect, and stop

their communication. Initially, the vertices of graph G are all disconnected – the set of

edges is empty. However, by establishing and removing connections, connected subgraphs

may create and disappear. Our proposed algorithm ALG ensures that the total number of

vertices in a connected subgraph is less than or equal to dmax.

Every subgraph is initiated by some process Pi when it sends a connection request to

another process Pj. This results in Pi’s becoming the master process of the created 2-node

subgraph Gij with two vertices i, j and one edge (i, j). The master process is in fact the

first process which initiates a subgraph. Another process, say Pk, may now connect to

Gij through Pi and create a 3-node graph Gijk = ({i, j, k}, {(i, j), (i, k)}). Every such

connection is first checked with the master process of the existing subgraph. The degree

of a subgraph, deg(G), is defined as the total number of vertices in that subgraph.

The master process stores the information of its corresponding subgraph, and therefore,

can decide whether a requested connection is allowed. There is always only one master

process in every subgraph. The rest of processes are slave. The new connections to the

processes outside a subgraph is always done through the master process. In fact, the master

process has the most updated information of the whole subgraph, and can decide whether

establishing or removing a connection will keep the subgraph degree less than or equal to

dmax, and then update the graph information accordingly. The master process can pass its

status as well as the subgraph information to another slave process, and thereafter, Pj can

establish or remove a connection.

103

Process Pi

States:

nbs, a set of indices, initially empty

G, a subgraph, initially empty

stat, with values in {neutral,master, slave}, initially neutral

The variable nbs, also known as Pi’s set of neighbors, is a set of indices of processes

which are connected to Pi. This set is initially empty since Pi is not connected to any other

processes. The variable G is used to store a subgraph information; it is a pair of two sets V

and E where V is a set of vertices and E is a set of edges. The next variable stat denotes

the status of Pi which is initially set to neutral, and can become slave, or master as Pi

becomes part of a subgraph. Before defining the transitions of Pi, we need to define two

functions merge(G, i, j) and split(G, i, j). The first function takes as input a connected

subgraph G = (V,E), and two indices i, j, and returns G′ = (V ∪ {i, j}, E ∪ {(i, j)}). In

fact, it updates the subgraph G by adding the new edge (i, j) to it. The second function

split(G, i, j) returns a connected subgraph which results by removing the edge (i, j) from

G. Note that by removing the edge (i, j) from G, it may split into two connected sub-

graphs. However, split(G, i, j) returns the part which includes i.

Transitions:

conij !

Precondition

stat = master, j 6∈ V , deg(G) < dmax

Effect

add j to nbs, G := merge(G, i, j)

conji?

Precondition

stat = neutral

104

Effect

add j to nbs, stat := slave

intconij!

Precondition

stat = master, j ∈ V \ {i}

Effect

add j to nbs, G := merge(G, i, j)

intconji?

Precondition

stat = slave

Effect

add j to nbs

rmvij(G)!

Precondition

stat = master, j ∈ V

Effect

remove j from nbs, G := split(G, i, j)

rmvji(Gx)?

Effect

Case

deg(G) = 2 or G − (i, j) is connected: remove j from nbs

otherwise: stat = master, G = split(Gx, i, j)

switchij(G)!

Precondition

stat = master, j ∈ V \ {i}

Effect

stat = slave

switchji(Gx)?

Precondition

105

stat = slave

Effect

stat = master, G = Gx

reset

Precondition

nbs = ∅

Effect

reset all the variables to their initial values

The master process Pi in a subgraph can perform conij ! to connect to another process

Pj outside Pi’s subgraph. In order to do so, the degree of the obtained subgraph should not

exceed dmax, and also Pj has to be a neutral process. This is clear from the preconditions

of conij! and conij?. As a result, j is added to the list of Pi’s neighbors nbs, and its

subgraph G is updated accordingly. Process Pj, on the other hand, adds i to its list of

neighbors, and becomes a slave. According to this definition, only neutral processes can

join an already existing subgraph. We will see later that a neutral process cannot carry

any information of its previous actions within other subgraphs.

Transition intconij is very similar to conij. However, it is used to connect processes

within a subgraph. The master process Pi checks whether another process Pj is part of

its subgraph; then, they connect, and their list of neighbors as well as Pi’s subgraph are

updated.

Transition rmvij(G) is to remove an already established connection between two pro-

cesses Pi and Pj where Pi is a master process, and Pj is a slave within the same subgraph.

If removal of the edge (i, j) from Pi’s subgraph G splits G into two connected subgraphs,

then Pi will become the master of split(G, i, j) and Pj the master of split(G, j, i).

Transition switchij(G) is to switch status between a master and a slave process in

a given subgraph. The graph information of the new master process is then updated

106

according to what it receives from the old master process.

When a process disconnects from all its neighbors, it can reset its variables to their

initial values by performing the internal transition reset. Then, Pi returns to its neutral

status, and can become part of another subgraph.

One can think of a process Pi as a composition of a higher level process Pil and a

lower level process Pih. Variables and transitions, discussed so far, comprise the lower

level structure. This part of Pi is responsible for establishing and removing connections

with other processes. The distributed algorithm ALG run by lower level parts of processes

in the network guarantees that the degree of created subgraphs do not exceed dmax. It

also guarantees that a subgraph of degree dmax cannot communicate with any process

outside its subgraph. The higher level transitions, on the other hand, are utilized for

communication among neighbors. In other words, after two processes Pi and Pj become

neighbors according to their lower level parts Pil and Pjl, then their higher level parts Pih

and Pjh can talk through higher level actions. Any variable or action other than the ones

that we have defined so far is considered higher level. A higher level action of process Pi is

of the form acij ! or acji? with a precondition j ∈ nbs. Note that transitions of Pih cannot

affect the state variables of Pil. They can only read the variable nbs in their preconditions.

Also note that the lower level transition reset, resets both lower and higher level variables

to their initial values.

Theorem 19 A Network N as defined above has component (network) blocking iff a net-

work instance of size up to dmax does.

We shall show that a particular process Pi running in a network of size m = dmax is

blocking iff a process Pj , running in a network of size n > dmax, is blocking. Let denote by

Gi and Gj the subgraphs of Pi and Pj respectively. Note that according to our template

definition, a process can only communicate with processes in its own subgraph, and the

107

state of other processes, outside its subgraph, does not affect its behavior. On the other

hand, a new process can only join its subgraph if it’s been reset to its initial state; therefore,

it cannot have any memory of its previous computations. Furthermore, from Pi’s (resp.

Pj’s) perspective the identities of processes in Gi (resp. Gj) are not important, and only

their mutual status determines their enabled transitions.

A subgraph as discussed earlier is developed by adding and removing vertices one at a

time. We assign a number to processes in a network based on the order in which they are

added to their subgraphs. We refer to this number as the ordering number of a process,

and denote it by O(r) for a process Pr. Initially, all processes have a 0 ordering number.

As stated earlier, a subgraph is created when two neutral processes Pi and Pj synchronize

on actions conij ! and conij?. As a result, we will have O(i) = 1 and O(j) = 2. The ordering

number of the third process joining their subgraph will be 3, and so forth. More formally,

if k is the maximum ordering number of processes in a subgraph, then a new process will

be labeled with k + 1 upon connection to that subgraph. Note that the ordering number

of processes in a subgraph may exceed dmax although the total number of processes in that

subgraph is limited by dmax.

Let f be a function which maps processes in Gi to processes Gj. We call f an isomor-

phism if it satisfies the following properties:

• f is bijective;

• f(i) = j;

• if O(r) ≺ O(r′), then O(f(r)) ≺ O(f(r′)) – f preserves the ordering;

• if (r, r′) is an edge in Gi, then (f(r), f(r′)) is an edge in Gj – f preserves subgraph

structure.

Obviously, Gi and Gj should have the same size if such an isomorphism exists; fur-

thermore, every process in Gi will have a unique corresponding process in Gj, and vice

108

versa. Also note that processes in Gi are from a fixed limited set of processes as opposed

to processes in Gj which are from a broader range.

The equivalence relation R relates a state of Nm to a state of Nn if there exists an

isomorphism f mapping Gi to Gj, and every process Pr in Gi and its corresponding process

Pf(r) in Gj are in isomorphic states. In other words, Pf(r)’s state can be obtained from

Pr’s state by relabeling of indices according to f .

In fact, when a global state of Nm and a global state of Nn are related according to

R, then the two networks can perfectly mimic one another by evolving through equivalent

states in which Gi and Gj have the same structure, and corresponding processes in the two

subgraphs are in isomorphic states. Therefore, if Pi is in a marker state, then so is Pj , and

vice versa. This completes the proof.

�

Chapter 4

Conclusion and Future Work

Due to today’s rapidly advancing technology, software and hardware systems tend to be-

come larger and more complicated, and therefore, they become more prone to errors intro-

duced at the design level. Verification of these systems, therefore, is becoming a major step

in their design. This step is specially important in the design of safety critical systems.

Model checking is a very strong verification method which has proved itself very useful

for finite state systems. In model checking of a finite-state system, the system model (a

finite-state automaton) is checked against a temporal property which may be given as a

formula, or another automaton. This is done by exhaustive traversal of the system model

to see whether the given property holds.

Many important engineering systems, however, are in essence infinite-state, or param-

eterized. For instance, a system to be model-checked may consist of an infinite size buffer;

the number of floors, or the number of elevators may be parameters in the model of an

elevator system; the number of subscribers in a telephone network may be varying, or

in other words a parameter. Model checking of such systems is undecidable in general.

In fact, one cannot model-check an infinite-state system, or a parameterized system by

exhaustive traversal of its model since it requires an infinite amount of time.

109

110

Model checking of such systems is an active topic of research. In this thesis, we mainly

focused on networks consisting of an arbitrary number of processes. We investigated dif-

ferent network topologies including ring networks and fully connected networks. Model

checking of such parameterized networks against some given property φ is to determine

whether every size instance of that network (with a fixed number of processes) satisfies

φ. Since the number of instances is infinite, we cannot check every instance separately.

A huge amount of research has been done to develop restricted frameworks which make

the problem decidable. Some of them, including our approach, introduce a bound on the

parameters of the defined network to be model checked. This reduces the problem to the

model checking of a large finite number of instances. As a specific temporal property, we

investigated component and network blocking for the mentioned types of network.

In chapter 2, we discussed ring networks. The respective results of this chapter provide

sufficient conditions for the effective model-checking ofMo, LTL\X and CTL∗\X properties

of the behavior of component subsystems in ring networks. The approach taken is in the

spirit of [12, 13] in that it employs induction on the basis of process congruences. But for

the case of piecewise recognizable processes, it provides fully automatic model-checking of

a subset of Mo and LTL\X properties by showing that all ring networks fall into a finite

number of equivalence classes. It also considers networks in which actions of a given process

affect only a bounded number of others by defining shuffled processes. If a ring segment

is a shuffled process, then all ring networks fall into a finite number of weak bisimilarity

classes; consequently, Mo and CTL∗\X properties may be effectively checked. A general

template is then introduced which guarantees a ring segment to be a shuffled process.

This therefore reduces the model-checking problem of ring networks with such templates

to checking network instances of up to some fixed known size.

Although finding a bound on the parameters of a system eases the problem a lot, it

still leaves us with model checking of a large number of network instances. One way of

solving this is by verifying all the instances one by one which is not a very elegant way

111

considering the fact that these instances may have only minor changes. A better way of

approaching this problem has been proposed by Emerson, Trefler and Wahl in [16]. They

change the problem to the model checking of an aggregate system which takes only a little

more time than model checking of the largest instance. In their method, all the parameters

for which the property being checked does not hold will be returned. This method can

definitely be applied in our semi-decidable procedure of model checking ring networks.

This is something that we will consider in our future work in more details.

In chapter 3, we investigated Petri nets as a modeling tool for infinite-state systems, and

showed that the model-checking problem of deciding whether a given Petri net existentially

(globally) satisfies a formula of LE (LO) is decidable. The space complexity of our algorithm

is exponential in the size of the Petri net, and double exponential in the size of the formula.

It is also shown that the problem remains decidable for fair nets with a weak fairness

condition, but becomes undecidable with a strong fairness condition.

Model-checking of LTL Properties of Petri nets under weak and strong fairness is dis-

cussed in [35] as well; however, the authors restrict themselves to Petri nets with a finite set

of reachable markings. In this thesis, however, we are interested in verification of infinite

state systems which are modeled with Petri nets.

We have shown how fully connected networks consisting of an arbitrary number of

identical processes can be modeled with Petri nets. Such networks have been defined

in [45]. It has also been shown how such parameterized networks can be model-checked

against correctness specifications in propositional linear temporal logic. But the focus of

[45] is mainly on verification of local properties of individual processes, although a few

specific global properties such as deadlock and mutual exclusion are also discussed. The

way we modeled such networks as well as the power of the logic L, makes it more convenient

to express global properties. Note that a similar modeling can be used for networks that

allow more than 2 processes (a finite number of up to a fixed number c) to synchronize at

a time.

112

In chapter 3, we also discussed fully connected networks of isomorphic processes which

communicate by means of rendezvous and broadcast actions. We introduced a general

template which always limits the total number of processes connected at a time to some

fixed number dmax. This therefore reduces the model-checking problem to model-checking

instances of size up to dmax.

Bibliography

[1] S. Nazari.Model Reduction in Distributed Supervision. M.A.Sc. thesis, Department

of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada,

2004.

[2] O. Gordon. Supervisory Control Models of Telephone Networks: Symmetry and Scala-

bility. M.A.Sc. thesis, Department of Electrical and Computer Engineering, University

of Waterloo, Waterloo, Canada, January 2003.

[3] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer

Academic Publishers, Boston, 1999.

[4] D. A. Peled. Software Reliability Methods. Texts in Computer Science. Springer, 2001.

[5] C. Stirling. Modal and Temporal properties of processes. Texts in Computer Science.

Springer-Verlag, 2001.

[6] J. Shallit. Advanced Topics in Formal Langugaes and Automata Theory. Course Notes

of CS462/662, Faculty of Mathematics, University of Waterloo, Waterloo, Canada,

2005.

[7] N. Klarlund and R. Trefler. Regularity Results for FIFO Channels. Electronic Notes

in Theoretical Computer Scince, 128(6): 21-36, 2005.

113

114

[8] R.J. Van Glabbeek. The Linear Time - Branching Time Spectrum. in Proceedings of

CONCUR ’90, LNCS 458, pages 278-297, Springer-Verlag, 1990.

[9] Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of finite-state

concurrent systems. Information Processing Letters, 22:307-309, 1986.

[10] E. M. Clarke, O. Grümberg, and M. C. Browne. Reasoning about networks with

many identical finite-state processes. Department of Computer Science CMU-CS-86-

155, Carnegie-Mellon University, October 1986.

[11] E. M. Clarke, O. Grümberg. Avoiding the state explosion problem in temporal logic

model-checking algorithms. In Proceedings of the 6th ACM Symposium on Principles

of Distributed Computing, pages 294-303, 1987

[12] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with net-

work invariants. In proceedings of the international workshop on automatic verification

methods for finite state systems, pages 68-80. Springer-Verlag New York,Inc.,1990.

[13] R.P. Kurshan and K.L. McMillan. A structural induction theorem for processes. In-

formation and Computation, 117:1-11, 1995.

[14] Steven M. German and A. Prasad Sistla. Reasoning about systems with many pro-

cesses. Journal of the Association for Computing Machinery, 39(3):675-735, July 1992.

[15] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the

few. In Conference on Automated Deduction, pages 236-254, 2000.

[16] E.A. Emerson, R.J. Trefler, T. Wahl. Reducing model checking of the few to the one.

to be submitted.

115

[17] E. A. Emerson and K.S. Namjoshi. Reasoning about rings. In Conference Record of

POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of programming

languages, pages 85-94, 1995.

[18] A. E. Emerson and V. Kahlon. Model Checking Large-scale and Parameterized Re-

source Allocation Systems. In Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems (TACAS), pages 251-265, 2002.

[19] E. Clarke, M. Talupur, T. Touili, H. Veith. Verification by network decomposition. In

Fifteenth International Conference on Concurrency Theory, LNCS 3170, pages 276-

291, 2004.

[20] J.G. Thistle and S. Nazari. Model Reduction in Distributed Supervision. In 16th In-

ternational Symposium on Mathematical Theory of Networks and Systems, Leuven,

Belgium, July 2004.

[21] J.G. Thistle and S. Nazari. Analysis of Arbitrarily Large Networks of Discrete-Event

Systems. In 44th IEEE Conference on Decision and Control and European Control

Conference, 2005.

[22] P.K. Hooper. The undecidability of the Turing machine immortality problem. Journal

of Symbolic Logic, vol. 31, no. 2, pp. 219-234, June 1966.

[23] G.G. Hillebrand, P.C. Kanellakis, H.G. Mairson, and M.Y. Vardi. Undecidable bound-

edness problems for datalog programs. Journal of Logic Programming, vol. 25, no. 2,

pp. 163-190, 1995.

[24] T. Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings of the

IEEE, 77(4):541-580, 1989.

[25] R.M. Karp and R.E. Miller. Parallel Program Schemata. In {Journal of Computer and

System Sciences,} 3:147-195, 1969.

116

[26] A. Bobbio. System Modelling with Petri Nets. In Systems Reliability Assessment,

pages 103-143, 1990.

[27] D. Garlan. Lecture Notes on Models of Software Systems: Petri Nets, Carnegie Mellon

University, 2001.

[28] K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri Nets. In A

Decade of Concurrency, LNCS 803, pages 230-272, Springer-Verlag, 1993.

[29] D. Stotts and R. Furuta. Language-Theoretic Classification of Hypermedia Paths.

In Proceedings of the fifteenth ACM conference on Hypertext and hypermedia, pages

40-41, 2004.

[30] R. Lipton. The Reachability Problem Requires Exponential Space. Thechnical Report

62, Yale University, Department of Computer Science, January 1976.

[31] J. Esparza and M. Nielsen. Decidability Issues for Petri Nets – a Survey. In Journal

of Information Processing and Cybernetics, 30(3):143-160, 1995.

[32] J. Esparza. Decidability and Complexity of Petri Net Problems – an introduction. In

Lectures on Petri Nets I: Basic Models, LNCS 1491, pages 374-428, Springer-Verlag,

1998.

[33] J. Esparza. Decidability of Model Checking for Infinite-state Concurrent Systems. In

Acta Informatica, 34(2):85-107, 1997.

[34] J. Esparza. On the Decidability of Model Checking for Several µ-calculi and Petri

Nets. In Colloquium on Trees in Algebra and Programming, LNCS 787, pages 115-

129, Springer-Verlag, 1994.

[35] T. Latvala and K. Heljanko. Coping With Strong Fairness. Fundamenta Informaticae,

43(1-4), pages 175-193, 2000.

117

[36] H. Carstensen. Decidability Questions for Fairness in Petri Nets. In Proceedings of the

4th Annual Symposium on Theoretical Aspects of Computer Science, LNCS 247, pages

396-407, 1987.

[37] R.R. Howell, L.E. Rosier, H. Yen. A taxonomy of fairness and temporal logic problems

for Petri nets. Theoretical Computer Science 82, pages 341-372, 1991.

[38] P. Jančar. Decidability of a Temporal Logic Problem for Petri Nets. Theoretical Com-

puter Science 74, pages 71-93, 1990.

[39] D. Frutos-Escrig and C. Johnen. Decidability of Home Space Property. Technical Re-

port LRI 503, 1989.

[40] R. Gerth, D. Peled, M.Y. Vardi, P. Wolper. Simple on-the-fly automatic verification

of linear temporal logic. In Protocol Specification Testing and Verification, pages 3-18.

Chapman & Hall, 1995.

[41] E.M. Clarke, O. Grumberg and D.A. Peled. Model Checking. MIT Press, ISBN 0-262-

03270-8, 1999.

[42] Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of finite-state

concurrent systems. Information Processing Letters, 22:307-309, 1986.

[43] A. E. Emerson and V. Kahlon. Reducing model checking of the many to the few. In

Conference on Automated Deduction, pages 236-254, 2000.

[44] A. E. Emerson and K. S. Namjoshi. Automatic Verification of Parameterized Syn-

chronous Systems (Extended Abstract). In 8th International Conference on Computer

Aided Verification, Pages 87-98, 1996.

[45] S.M. German and A.P. Sistla. Reasoning about systems with many processes. Journal

of the Association for Computing Machinery, 39(3):675-735, 1992.

118

[46] N. A. Lynch. Distributed Algorithms.

[47] J. Von zur Gathen and M. Sieveking. A bound on solutions of linear integer equalities

and inequalities. Proceedings of the American Mathematical Society, 72(1):155-158,

1978.

	List of Figures
	Introduction
	Related Work

	Ring Networks of Isomorphic Processes
	Preliminaries
	Process Model
	Observable Modal Logic
	Process Equivalences

	Computation Model
	Undecidability Results
	Ring Networks Equivalence Classes
	Component and Network Blocking
	Ring-Segments Equivalence Classes

	Termination of PROC
	Piecewise Recognizable Processes
	Shuffled processes

	Infinite State Modelings and Fully-Connected Networks
	Petri Net Preliminaries
	Petri Net Models
	Reachability Tree and Coverability Tree
	Linear Temporal Logic
	Product of Petri Nets
	Variants of Ordinary Petri nets

	Model Checking of Ordinary Petri Nets
	A Decidable Fragment of Linear Temporal Logic
	Model-Checking Under Fairness
	Factory Example

	Networks of Identical Processes
	Computation Model
	Petri Nets Modelling of Networks with Rendezvous Templates
	Component and Network Blocking

	Networks of Isomorphic Processes
	A Generic Template

	Conclusion and Future Work
	Bibliography

