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Abstract

The single-row facility layout problem (SRFLP) is concerned with finding the op-
timal linear placement of n departments with different lengths in a straight line.
It is typically achieved by minimizing the cost associated with the interactions be-
tween the departments. The semidefinite programming (SDP) relaxation model
that incorporates cutting planes proposed recently by Anjos, Kennings, and Van-
nelli (AKV) was considered a breakthrough in the field. This thesis presents a new
SDP model AKV’ and compares the two relaxations. The AKV’ is largely based on
the previous model, but it reduces the number of linear constraints from O(n?) to
O(n?). Therefore, it reduces the computing time at the expense of a slightly weaker
lower bound. However, AKV’ is observed to pay off as the instance size increases.
By examining the gap for both the AKV and AKV’ relaxations, we notice that
both relaxations generate very small gaps at the root node, which demonstrates

the effectiveness of the relaxations.

Six different strategies are presented to separate the cutting planes for the
medium-sized SRFLP. In combination with the two SDP relaxations, we compare
the six strategies using three instances of different characteristics. An overall best
strategy is deduced from the computational results, but the best choice of relax-
ations and the best number of cuts added at each iteration changes depending on
the characteristics of the instances. Two new cutting plane strategies are proposed
for large instances. This allows the solution to optimality of new instances with 36
departments, which is higher than previously published results in literature. We
also briefly point out how the computing time can vary greatly between different

sets of data of the same size due to the characteristics of the department lengths.
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Chapter 1
Introduction

The facility layout problem (FLP) determines the most efficient arrangement of n
individual departments within a facility. It is a well-studied combinatorial optimiza-
tion problem that can be employed in many different applications. Many expensive
applications contain numerous important functional objects to be arranged on a
very restricted area, and achieving the most efficient arrangement leads to cost
saving. Some classical examples of the facility layout problem applications include
integrated circuit design, control panel layout design, wiring design, building lay-
out, urban planning [10, 30], and multiple-floor facilities [9]. The single-row facility
layout problem (SRFLP) is a special case of the general layout problem where the
n departments are to be arranged on a straight line. The SRFLP also has many
practical applications, such as the arrangement of departments on one side of a
corridor in supermarkets, hospitals, or offices [36], the assignment of disk cylinders
to files [33], the assignment of airplanes to gates in an airport terminal [39], and the
arrangement of machines along a straight path travelled by an automated guided

vehicle (AGV) in flexible manufacturing systems [20].

The problem instance consists of the length ¢; of each department ¢ and an
n x n matrix I, where Fj; represents the travel intensity between department ¢
and j. The objective of the problem is to arrange the departments in order to
minimize the weighted sum of the distances between all department pairs, which
is often expressed in terms of material handling cost [30]. Some of the common
constraints in a facility layout problem include limiting the departments so that they
are contained within the allowable space boundary. Another common constraint

is to ensure that the departments do not overlap [30]. Depending on the solution
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approaches and models, the constraints may be expressed differently. When the
lengths of all the departments are the same, the SRFLP becomes the linear ordering
(or linear arrangement) problem, see [16] and [26] for more details. The linear
ordering problem is also a special case of the well-studied quadratic assignment
problem (QAP), see [11] for more details.

With 50 years of history since the first publication on the QAP by Koopmans
and Beckman in 1957 [23], substantial research effort has been put in to search for
better ways to solve the FLP. Many new solution approaches, models, and solution
algorithms have been introduced. However, it is still widely recognized that the
facility layout problem is a very difficult problem class. For instance, when the
QAP was first proposed, it was seen as unsolvable for practical problems. In 1986
the largest QAP problem that had been solved optimally only had 15 departments
[25]. By 1996, the number had only been improved slightly to 18 departments, when
solving on a routine basis [30]. By 2002, a QAP with 30 departments was solved,
but vast amount of computation was required, which is unrealistic on a routine basis
[7]. Even now, QAP instances with n > 30 cannot be solved within reasonable
time [27]. Other than QAP, it is widely recognized that SRFLP is strongly NP-
hard [1]. Needless to say, many heuristics have been proposed for the SRFLP, such
as [13], [14], [17], [19], [20], [21], [24], [31], and [37]. However, this research thesis
focuses on the exact solution approach using the semidefinite programming (SDP)

formulation with the help of different cutting plane strategies.

The contribution of this thesis is to empirically examine the new matrix-based
SDP formulation of SRFLP, which was proposed by Anjos and Yen [6]. In addition,
the work of optimization using SDP and cutting planes by Anjos and Vannelli [5] is
improved upon by constructing and evaluating various cutting plane strategies that
allow the process to become dynamic. In Chapter 2, background on the SRFLP is
presented. In Chapter 3, the new SDP model is presented and discussed in detail.
An empirical comparison between the two models is also given. In Chapter 4, six
cutting plane strategies are evaluated and compared. This comparison is further
enhanced by incorporating the analysis of the two SDP models. Furthermore, a best
model-strategy combination will be presented to be used to solve large instances
that were unsolved in the past. These results are presented in Chapter 5. Finally,

conclusions and possible directions for future research are discussed in Chapter 6.



Chapter 2

Background

2.1 Optimization Solution Scheme

This section will clarify and define some of the terms that will be used extensively
throughout this thesis. Figure 2.1 displays a roadmap of how an optimization

problem is typically solved.

Problem & Solution
[ Instance J E Approach
e J
~N
™
Model
- »
~N
n
Solver —}[ Solution J
¢ J

Figure 2.1: Optimization solution roadmap

2.1.1 Problem and Instance

The SRFLP can arise in many practical problems. An interesting example is the

problem of assigning incoming aircrafts to airport gates [39]. Suppose that within a
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short time frame, several flights that carry many connecting passengers arrive from
and depart to various cities. The problem for the airline management is to minimize
the inconvenience of the connecting passengers, which is measured by the distance
travelled in between the connecting flights. Therefore, each flight has an associated
interaction value with each other, which is determined by the number of connecting
passengers. Two flights with significant numbers of connecting passengers should
be placed as close to each other as possible. This problem can be expressed with an
interaction flow matrix that specifies the level of interaction between each flight. In
this case, the distance between each aircraft is fixed by the distance between gates,
regardless of the size of the aircraft. Therefore, the length vector can be assumed
as a vector of all ones. This problem is thus a linear ordering problem, which is a
special case of the QAP.

The instance of five aircrafts (n = 5) can be expressed this way [39]:

e

I
N Ot Ot = O
=~ w oo O =

7
4
5 and 62(1 111 1)
7
0

)
8
0
1
)

Airport Terminal

N O = W W

24444

Figure 2.2: The problem of airplane-to-gate assignment




2.1.2 Solution Approaches

When one encounters a problem with the collected data as the instance, under
certain assumptions, one must first decide on a suitable solution approach. Based
on that approach, one can then build a model with an objective function and
constraints. To reach global optimality for the SRFLP, there are the branch-and-
bound approach [36], the dynamic programming approach [22], [33], the mixed-
integer linear programming (MILP) approach [16], [34], [28], [18], [1], and the SDP
approach [4]. Most recently, Amaral and Letchford [3] have also used the polyhedral
approach to formulate the SRFLP.

On the other hand, if only a local optimum is needed, the SRFLP can be solved
using a nonlinear programming (NLP) approach [21], the metaheuristic approach,
or simply solved by the interchange approach, such as 2-Opt. 2-Opt is a heuristic
formulation that consists of sequence of pairwise exchange of departments. If the
exchange results in improvement, the two departments are swapped. Otherwise,
they stay in the same spot and the algorithm goes on to find the next exchange
pair. The process continues until no more changes can be made. It is a compu-
tationally inexpensive algorithm that is used in several parts of the cutting plane
algorithm in this thesis to reduce the search space more rapidly. The input variable
of 2-Opt is any permutation 7w and the function will return an improved (or the
same) permutation. The Matlab code of 2-Opt can be found in Appendix A. As
for metaheuristics, there are many examples in literature, including the simulated
annealing method [35], [19], and the greedy heuristic [24].

2.1.3 Models

Through each solution approach, the problem can be formulated mathematically in
different models. For example, the MILP approach was used by many researchers
to build models that solve SRFLP [16], [34], [28], [18], [1]. Although with the same
approach, different researchers can express the problem differently. For instance,
Heragu [18] proposed the model LMIP1 using the MILP approach. LMIP1, though
a different model, is similar to another MILP model by Love and Wong [28]. The
main difference between the two models is in the calculation of inter-departmental
distance, where Heragu uses centroids of departments ¢ and j, while Love and Wong

uses the endpoint location of each department to calculate the distance. However,
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both models are known to provide poor global lower bounds while requiring long
computational time. Other models that adapt the MILP approach were proposed
by Grotschel et al. [16], and Reinelt [34]. In 2006, Amaral presented another
model using the MILP approach, which has shown an improvement from all of the
earlier MILP-based models [1]. Although Amaral’s model uses the same number
of zero-one variables, it presents a smaller number of continuous variables than the
preceding models in literature. It is also shown to improve the lower bound and the
computation time in comparison to Love and Wang’s model [1]. However, Anjos and
Vannelli [5] pointed out that these MILP-based models, although they guarantee
global optimality, also require high computational time and memory requirements.
Most recently in 2008, Amaral proposed a new lower bound in [2], which is yet to

be investigated in detail.

Heragu and Kusiak [21] presented ABSMODELL1 for the problem using NLP
approach. In this model, the absolute value of the distance between the centroids
of each department is used, which makes the model non-linear. Therefore, the

selection of the initial point is very important when solving a SRFLP using the
ABSMODELT.

Anjos, Kennings, and Vannelli [4] presented a model, AKV, using the SDP
solution approach. In [4], a heuristic method was also presented to convert a relaxed
solution to a feasible solution. AKV presented the first non-trivial global lower
bound for the SRFLP in the published literature [4]. More recently, a new version
of this matrix-based model, AKV’, shows some promising improvement [6], which

will be discussed in Chapter 3 .

2.1.4 Solvers

Finally, each model may be solved by different solvers. For instance, the NLP-based
models can be solved by BARON, CONOPT, MINOS, SNOPT, and PATH [29].
There are also many solvers available for the SDP-based models, such as CSDP,
SeDuMi, and SDPT3. While there are many solvers for the linear programming
(LP) approach, such as CPLEX, SDP solvers such as SDPT3 and SeDuMi can also
solve linear problems. As indicated by the list of solvers for the various formulations,
one can observe that some solvers are solution approach-specific, while others can

be used to solve models from a number of different solution approaches.



2.1.5 Solution

After an iterative process of computation, a solution can be achieved. The solu-
tion indicates the most efficient arrangement of the different departments and also
the objective value, which is often expressed as material handling cost. For many
practical problems, only a near-optimal solution can be obtained, since most prac-
tical problems are relatively large in size. Fortunately, for practical purposes, high
precision is normally not required. Therefore, the analyst can resort to heuristic
methods in a case like this. It is thus an important judgment for an analyst to
assess the required level of accuracy and precision before finalizing what solution

approach, model, and solver to employ.

2.2 Review of Recent Mathematical Programming

SRFLP Models

2.2.1 ABSMODEL1

Heragu and Kusiak proposed ABSMODELL in [21], where they set the decision
variable x; to represent the location of department i, measured from the reference
point zero to the centroid of department i. There are a total of n departments,
where f;; denotes the interaction frequency cost between department i and j, and
¢; represents the length of the horizontal side of department i. Both f;; and ¢; are
input parameters from the problem instances.
n—1 n
min > > fijlwi — @l
i=1 j=i+1
s.t.
|z; — ;| > 0.5(; +¢;) forall pairs 1 <i<j<n

With the employment of absolute terms to denote centre-to-centre distance, we
are not concerned whether department ¢ is to the left or to the right of department
j. Furthermore, the constraint ensures no overlap between any two departments.
Since the constraints of ABSMODELL1 are not convex, solving a SRFLP using this

model is a heuristic (local optimum) search technique.



2.2.2 LMIP1

LMIP1 is a MILP-based model, which is similar to another MILP model proposed
by Love and Wong [28]. LMIP1 is discussed in detail in this thesis because, instead
of measuring interdepartmental distance from the endpoint of the department like in
[28], it measures distance from the centroid of each department, which is consistent
with all the other models introduced in this thesis.
min S 5 (e - o)
i=1 j=it1
s.t.
x; —x;+ Mag; > 0.5(¢; + ;) forall pairs 1 <i<j<n
xj—x; + M1 — ;) > 0506 +¢;)
T — = xf — x
z; > 0and z;; > 0
a;; € {0,1}
x; >0 foralli=1,...n

The transformation of ABSMODEL1 to LMIP1 is shown in [18], where the
absolute term is replaced by x;; + 2;;. The parameter M is a sufficiently large
positive number. Similar to ABSMODELI, the decision variable x; represents the
location of department ¢, measured from the reference point zero to the centroid
of department ¢. The two new variables a:jj and z;; represent the distance between

department 7 and j, and they are defined as below:

ij -

ot = v —xy, i (z — ;) >0,
0, otherwise,

T

- Tj — Ty, if (l‘l - ZE]‘) S 0,
0, otherwise.

One interesting fact about the SRFLP is its natural symmetry, in which any
solution can be expressed by two opposite permutations. The binary variable c;
serves to break the natural symmetry of the department arrangement by forcing
one of the first two constraints trivial. This means that department ¢ will be either

to the left or to the right of department j. The binary variable c;; is defined as

1, ifx < Zj,
Q5 1= . (21)
0, otherwise.

below:



Other than the new decision variables listed above, the meaning of the parame-

ters fi;, ¢;, and n are the same as in ABSMODELL. Similarly, the objective function

n—1 n
2 Z;Ll fij(zh — IL‘;_) also seeks to minimize the total weighted sum of centre-to-
i=1 j=1
centre distance between department ¢ and j. The first two constraints ensure no

overlap.

2.2.3 Amaral’s Model

Amaral proposed the following MILP model in [1]. The main difference between this
which

is defined as the distance between the centroids of department ¢ and j. Another

model and the earlier MILP-based models is in the new decision variable d;;,

decision variable in this model is the binary variable c;;, which is also defined as in

n—1 n
Equation (2.1) in LMIP1. Similar to LMIP1, the objective function > > fi;d;;
i=1 j=it1
also seeks to minimize the total weighted sum of centre-to-centre distance between

department ¢ and j.

Let x; be the location (or coordinate) of department i. It can be expressed as:
l; &

The new decision variable d;; is defined as

dij = max{(v; — ;), (v; — 2;)} for 1 <i<j<n,

which can be rewritten as

ri—x;, ifxz;>x o
dij = J v J . v for1§@<]§n,
x; —xj, otherwise,

or dij > xi—x;, dij >xj—x;, forl<i<j<n. (2.3)

By substituting Equation (2.2) into the new expression of d;; in Equation (2.3),

we get
vi—x5; = Y, b — Y, Loy + (6 —{;)/2
k=1 ki k=1k#j
= > o + 30 Ue(1 — i) = > lpay — D (1 — agp) + (6 — £5) /2.
k<i k>i k<j k>j

9



Therefore, for the case of d;; > z; — x;,

dz‘j Z Z@ka;ﬂ —I— Zﬁk(l — Ozik) — Zékakj — Zﬁk(l — Oéjk) —I— (& — &)/2

k<i k> k<j k>j

Finally, Amaral’s model for the SRFLP is given by:

n—1 n
min Y > fijdi;

1=1 j=i+1
s.t.
dij Z Z Ekaki + Z gk(l — Oéik) — Z gkakj — Z Ek(l — Oéjk) + (61 — EJ)/Q,
k<i k>1 k<j k>j
dij Z — Z Ekaki — Z Ek(l — Oéik) + Z fkakj + Z gk(l — O./jk) -+ (fj — gl)/Q
k<i k>i k<j k>j

for1 <i<j<n,
i+ ajy — ag < 1 for 1 <i<j<k<n,
—aij — i + oy, <0 for 1 <i<j<k<n,
o € {0, 1} for1<i<j<n,
di; > (C; +0;)/2 for1<i<j<n.

The triangle inequality constraint set helps to make the definition of left and
right consistent. The last constraint sets the minimal distance between each de-

partment pair to ensure no overlap.

2.2.4 The AKV Model

The AKV model proposed by Anjos, Kenning, and Vannelli in [4] has a similar struc-
ture with the SDP model for the max-cut problems by Goemans and Williamson
[15]. Both models set the diagonal elements of the positive semidefinite variable
X to one. Furthermore, the first constraint in AKV is similar to the triangular
constraints in the max-cut model. When disregarding the rank constraint, AKV

becomes the relaxation model that can be used for lower bound computation. The
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AKYV model is given by,

min K — ) % [Z CeXbigg — 2 UXikgi + O CeXikjk

1<j k<i i<k<j k>j
s.t.
Xij ik — Xijik — Xikjx = —1 for all triplets i < j <k (2.4)
diag (X) =e
rank (X) =1
X >0

where K = [ > f2—“ (Z ﬁk), diag (X)) denotes a vector formed by the diagonal
i<j =1
elements of X, e denotes the vector of all ones, and X > 0 signifies that matrix X

is positive semidefinite. The derivation of the constant K will be discussed later.

The entire AKV model is built upon the binary variables R, which are given by,

R - 1, if facility 7 is to the right of facility j,
v -1, if facility 7 is to the left of facility j.

It is clear that one of the two possibilities must hold for every feasible arrange-
ment of the departments and that R;; = —Rj;. The purpose of variable R;; is
similar to the o;; in Equation (2.1) for LMIP1 and Amaral’s model. The minor dif-
ference between the two binary variables is that R;; € {—1, 1}, while ay; € {0,1}.
Also, the left-right position of facility 7 is defined differently. By listing all R;;
with ¢ < j, a vector v can be formed with length (g), where n is the number of

T such

departments. Using v, the rank-one matrix X is constructed as X = vv
that element X;;; = R;jRj. Therefore, the diagonal elements of X are 1 since

Xijij = Rfj = 1. Also it should be noted that the matrix X is of size (’2‘) X (’2‘)

To accurately model the problem, we must make sure that the relationship of
left and right of each department triplet is maintained. Therefore, the following

condition is required to hold:

if Rij = g, then Rij = Rzk

This means that if ¢ is to the right of j, and j is to the right of k, then ¢ must
be right of k. This expression can be rewritten as (R;; + Rj)(R;; — Rir) = 0. After

11



expansion, we get R;; R, — R R, — R Rj, = —1. Finally, when expressed in terms

of variable X, we obtain the following constraint:
Xijjk — Xijik — Xikje = —1.

The following steps illustrate how any given feasible set of R;; can be interpreted
and mapped to the more intuitive format of a permutation 7. A permutation lays
out the department numbers under a given arrangement. These steps are also the
backbone of the AKV Heuristic, which will be discussed in Section 2.2.5.

1. For each department k = 1...n, sum up Ry; by
Py =) Ry
ik
which can be interpreted as how far to the right department k should be
positioned. All the Py values belong to the set {—(n —1),—(n —3),...(n —

3),(n—1)}.

2. Map the numbers to the set {1,2,...n} by substituting into the formula
pr = (P +n+1)/2. But py still can be interpreted as how much to the right
department £ should be placed.

3. Sort the pi to achieve the permutation 7.

It should be noted that if every R;; variable is replaced by its negative, the ar-
rangement of the departments remains the same, and it creates no change to the
model. This is how the AKV model can implicitly take into account of the natural

symmetry of the SRFLP.

The objective function is to minimize the total weighted sum of centre-to-centre

distance between all department pairs, which is originally expressed as:

1 o 1
Z fij 5@ + D (i, 7) + §€j : (2.5)
i<j

D, (i, j) signifies the sum of the lengths of the departments between departments

¢ and j in a given arrangement 7. It can be rewritten as:
o 1 — Ry Ry
k#i,j
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This formula is valid because index k is between ¢ and j iff RpRp; = —1.
Therefore, only the lengths of the departments that are positioned between the
given department pair ¢ and j are summed up. After substituting Equation (2.6)

into Equation (2.5), the objective function can be rewritten this way:

S f ei;ej S 4, <1R§iRkj)]

i< ki
= wa <Z %) - Z gk%]
1<J k=1 k#i,j
) (Z fk;) - f2—7 Yol RyiRg; — > URipRij + > Uk R Rjg
=1 i< k<i i<kh<j >

— fz]
z<]
where ( f”) (E Kk) is the constant K in (2.4).
1<j k=1

2.2.5 AKYV Heuristic

Goemans and Williamson [15] applied a randomized rounding heuristic for the max-
cut problems to derive a feasible solution from the lower bound solution. By using
a different methodology, the AKV Heuristic also extracts a feasible permutation
from the optimal solution X™* of the relaxation. The concept of mapping from R;; to
7 is briefly explained in the previous section. This section will give a more detailed
explanation to the implementation of the translation from the optimal solution X*

of relaxed AKV or AKV’ to a feasible permutation .

1. Calculate R;; by using X* from the lower bound calculation:

By the definition of matrix X, we know that the first row of X is
Ris-v" = (RizR12 RizRis RizRay RisRus. .. RiaRn—1yn)-

Thus by setting 212 = 1, all of R;; can be calculated by using the first row of
X. Note that since the lower bound X™* is from the relaxation, which means
it is very likely not rank-one, the elements X;; are not € {—1,1}. Therefore

R;; can be any value between —1 and +1.

2. Translate R;; to permutation 7 by first calculating P, for each department k

by summing Ry; as followed:

Py =) Ry

i#k
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P, can be seen as the weight of how far to the right department £ should be

positioned.

3. Sort the departments by the weight value Py in descending order, since Ry
is assumed to be 1 and we prefer to see the facilities in an order such that
1< 7.

In the Matlab implementation, X* is (") X ("), so there are ("

2 2 2) sets of possible

feasible solutions: one for each row. All the rows of the X* are checked through
and compared to ensure the best-known feasible solution is obtained. The heuristic
algorithm 2-Opt is also incorporated after obtaining a permutation to improve it
further. In the experiments for this thesis, high-quality feasible solution is often
observed at root node. Please see Appendix B for the Matlab code of the AKV

Heuristic.
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Chapter 3

Comparison of the SDP Models

In this chapter, AKV’, a new matrix-based SDP model is presented. Later in the
chapter, a lower bound comparison between the original AKV and the new AKV’

relaxation model is made to study the tradeoff.

3.1 The AKV’ Model

The AKV’ model is first introduced in [6]. This SDP-formulated model is largely
based on (2.4), but it reduces the number of linear constraints from O(n?) to O(n?).
Other than the reduction in the number of linear constraints, everything else in the

new model remains the same as in AKV.

The AKV’ model is presented in the following way:

min K — fQﬁ > U Xhigg — 2o CeXiwwj + Do CeXikji

i<y k<i i<k<j k>j
s.t.
i Xijjk — i Xijik — i Xikjk = —(n —2) for all pairs i < j
ki, g k=1 ki, g k=1 ki, g k=1
diag (X) =e
rank (X) =1
X >0

(3.1)

Removing the rank-one constraint also results in an SDP relaxation. It should

be noted that, although the number of constraints is now reduced to O(n?), which
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leads to savings in computation time, the quality of the solution also deteriorates

slightly. The tradeoff is studied in Section 3.3.

3.2 Model Equivalency

The AKV’ relaxation is essentially relaxed from the AKV relaxation. It is therefore
interesting to verify whether the AKV’ model (3.1) is equivalent to AKV (2.4) with
the rank-1 constraint. Namely, we want to find out whether the feasible sets of the

two models are equal.
Theorem 1 The feasible sets of (2.4) and (3.1) are identical.

Proof:  First we will show that X feasible for (3.1) is also feasible for (2.4).
Rewrite the first constraint of (3.1) as

n

Z (Xijje — Xijik — Xikjk) = —(n — 2) for all pairs ¢ < j
ki,j k=1

Suppose X is feasible for (3.1). Then the constraints diag (X) = e and rank (X) =1
together imply that X;;,, = %1 for all entries of X. Furthermore, X > 0 implies
that Xij,jk — Xij,ik — Xik,jk > —1 for all distinct i,j, k. Hence,

n

Z (Xij,jk — Xijik — Xik,jk) > —(n—2).

k#i,5,k=1

Therefore, it is clear that each term Xj;jr — Xiji — Xk jr must equal —1. This
means X is feasible for (2.4).

It is then straightforward to show that X feasible for (2.4) is also feasible for
(3.1). By summing all the k terms from 1 to n for all pairs ¢ < j, the first constraint

n (2.4) becomes the first constraint in (3.1). [ ]

3.3 Comparison of Lower Bound Computation

New test instances were generated by using the connectivity data from some of

the well-known Nugent QAP Problems [32]. The facility lengths were randomly
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generated, with the exception of all the instances with their names ending in “17.

These instances have all the department lengths equal to unity.

The computation results in this section was generated on a Sun Fire V890
8*1.2GHz with 64Gb of RAM. The SDP problems were solved using the interior-
point solver CSDP (version 5.0) of [8] in conjunction with the ATLAS library of

routines [41].

First, we compare the two SDP relaxations for problems with 25 to 42 facili-
ties. This comparison aims to provide a sense of how much the lower bounds are
weakened by the reduction in the number of constraints in AKV’. The results are
reported in Table 3.1.

The gap is calculated as the percentage difference between the lower bound and
the best feasible solution by the AKV heuristic. Roughly speaking, the smaller
the gap, the shorter the computation time one would expect to eventually reach
global optimality. By examining the gap for both the AKV and AKV’ relaxations,
we notice that both relaxations generate very small gaps at the root node, which
demonstrates the effectiveness of the relaxations. Furthermore, it is evident that
while the CPU times are significantly smaller for the new AKV’, the resulting gaps
still remain small, mostly between 3% to 7% (with only 1 exception out of 20 test
instances). The savings in computation time are especially significant for larger
instances. In particular, for the instances of size 42, the CPU time for the original
AKYV relaxation is about 2.5 times greater than the new AKV’ relaxation, while
the average gap only decreases to 3.16% from 5.11%. Moreover, if we compare the
two lower bounds directly, the relative gap between the two lower bounds is very

small with an average value of 1.64%.
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Instance # AKV from (2.4) AKV’ from (3.1) Gap
of Lower | CPU | Best layout | Gap Lower | CPU | Best layout | Gap || between
fac. bound | time by AKV bound | time by AKV lower
(sec) heuristic (sec) heuristic bounds
SRFLP-nug25-1 | 25 4515.0 44 4622.0 2.37% || 4463.5 39 4626.0 3.64% || 1.15%
SRFLP-nug25-2 | 25 | 36355.5 44 37641.5 3.54% || 35960.5 42 37346.5 3.86% || 1.10%
SRFLP-nug25-3 | 25 23691.0 43 24537.0 3.57% || 23398.0 41 24609.0 5.18% 1.25%
SRFLP-nug25-4 | 25 47330.0 43 48887.5 3.29% || 46798.5 40 48811.5 4.30% 1.14%
SRFLP-nug25-5 | 25 15304.5 44 15767.0 3.02% || 15148.0 42 15783.0 4.19% || 1.03%
SRFLP-nug30-1 | 30 8061.0 192 8305.0 3.03% || 7975.5 128 8310.0 4.19% | 1.07%
SRFLP-nug30-2 | 30 21188.5 195 21663.5 2.24% || 20921.5 128 21672.5 3.59% 1.28%
SRFLP-nug30-3 | 30 | 44518.5 | 194 45712.0 2.68% || 43986.0 | 133 45703.0 3.90% | 1.21%
SRFLP-nug30-4 | 30 | 55947.5 | 194 56922.5 1.74% || 55181.0 | 136 57060.5 3.41% || 1.39%
SRFLP-nug30-5 | 30 | 113072.0 | 186 115776.0 | 2.39% || 111828.5 | 129 115986.0 | 3.72% || 1.11%
SRFLP-ste36-1 | 36 | 10087.5 | 884 10301.0 2.12% || 9851.0 471 10328.0 4.84% || 2.40%
SRFLP-ste36-2 | 36 | 175387.0 | 843 181910.0 | 3.72% || 170759.5 | 435 182649.0 | 6.96% || 2.71%
SRFLP-ste36-3 | 36 | 98739.0 | 809 102179.5 | 3.48% || 96090.0 | 436 104041.5 | 8.28% | 2.76%
SRFLP-ste36-4 | 36 | 94650.5 | 850 96080.5 1.51% || 91103.0 | 439 96854.5 6.31% || 3.89%
SRFLP-ste36-5 | 36 | 89533.0 | 852 91893.5 2.64% || 87688.0 | 441 92563.5 5.56% | 2.10%
SRFLP-sko42-1 | 42 | 24807.0 | 3032 25724.0 3.70% || 24517.0 | 1160 25779.0 5.15% || 1.18%
SRFLP-sko42-2 | 42 | 210785.0 | 3056 | 217296.5 | 3.09% || 207357.0 | 1174 | 218117.5 | 5.19% || 1.65%
SRFLP-sko42-3 | 42 | 169944.5 | 3206 | 173854.5 | 2.30% | 167783.5 | 1164 | 174694.5 | 4.12% | 1.29%
SRFLP-sko42-4 | 42 | 133429.5 | 3030 | 138829.0 | 4.05% | 131536.0 | 1115 | 139630.0 | 6.15% | 1.44%
SRFLP-sko42-5 | 42 | 242925.5 | 3075 | 249327.5 | 2.64% | 238669.5 | 1172 | 250501.5 | 4.96% | 1.78%
Average Gap 2.86% 4.88% || 1.65%

Table 3.1: Comparison of the two SDP relaxations
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Chapter 4

Cutting Plane Separation
Strategies

One typical way to tighten the semidefinite relaxation of an integer optimization
problem is to add inequalities as cutting planes, such as the triangle inequalities.
For more information on different classes of inequalities, see [12]. Anjos and Van-
nelli [5] use a simple scheme in combination with the AKV model to detect and add
violated triangle inequalities to solve SRFLPs with up to 30 departments to global
optimality. In this thesis, we improve upon the work in [5] by a thorough investiga-
tion of more sophisticated cutting-plane strategies. The objective is to compare the
various strategies in combination with the AKV and AKV’ relaxations and come

up with the best overall combination.

The triangle inequalities to be considered are valid for the integer feasible points.

There are four types, each with ((g)) inequalities:

Xpl,p2 + Xpl,pS + Xp2,p3 2 -1

Xpl,p? - Xpl,p3 - Xp2,p3 > -1

(4.1)
—Aplp2 T Xpl,p?) + Xp2,p3 2 —1

—Apl,p2 + Xpl,p3 - Xp2,p3 Z -1
where pl, p2, p3 are three distinct pairs. Therefore, there are a total of 4((?)
additional inequality constraints, which means O(n%), that can be added to the

relaxation. Obviously, these are too many to include simultaneously for a practical

problem with large n. Consequently, an algorithm is required to filter and select a
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number of violated inequalities that can create the greatest impact for lower bound
improvement and the attainment of the global optimum as quickly as possible.
The general approach for such an algorithm in this thesis begins by solving the
AKV or AKV’ relaxation, then adding some violated inequalities, re-optimizing,
and repeating until no more violations can be found. Due to the strength of the
SDP relaxations, the algorithm never runs out of cuts before global optimality
is attained. In essence, the six strategies considered differ mainly in the ways
that violated inequalities are detected. Also, in Strategies 4, 5, and 6, a scheme
that removes the inequality constraints with positive slack at the relaxed optimum
solution after each re-optimization step is incorporated. This feature helps to keep
the size of the SDP small. In Strategies 5 and 6, an algorithm that performs re-
search for the violated inequalities is included when the total number of violations
found is less than half of the anticipated number set by the user. A more detailed

description of each strategy is presented in the following sections.

4.1 The Six Strategies

Because there are too many possible constraints to be added all at once, an algo-
rithm that ranks and selects the cuts is developed to collaborate with the AKV and
AKV’ relaxations. The process was made dynamic by using the parameter vioRHS.
It is the dynamic condition that determines whether an inequality is considered to
be violated. When expressed mathematically, it is the right-hand-side value for the

triangle inequalities in Equation (4.2):

Xp1p2 + Xp1ps + Xpaps + 1 > vioRHS
Xp1p2 — Xp1ps — Xpops +1 > vioRHS 4
—Xp1p2 — Xp1p3 + Xpopz + 1 > vioRHS
—Xp1p2 + Xp1p3 — Xpops + 1 > vioRHS

Therefore, the closer vioRHS is to zero, the closer the above inequalities (4.2)
are to the actual triangle inequalities (4.1. Consequently, more violations can be
found as the inequalities in the algorithm becomes closer to the actual inequalities.
The more violations that are detected, the longer it takes for the algorithm to sort

and generate the cuts. However, if the vioRHS value is set too high, the algorithm
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cannot find cuts, and it will conclude erroneously that the gap has closed and
global optimality has been reached. In other words, by manipulating vioRHS, we
can control the number of cuts found, and thereby control the computation time of
finding the cuts. This algorithm manipulates the vioRHS parameter dynamically
based on the state of the optimization process, so that shorter computation times

can be achieved while ensuring the accuracy of the conclusion.

Another important parameter that affects the computation effort is numcut,
which represents the number of cuts to add to each sub-problem. While vioRHS
significantly affects the computation time by controlling the number of possible
cuts that can be found, numcut affects the computation time by regulating the
number of cuts that can be added out of all the found cuts. The higher the numcut,
the more rapidly the size of the SDP problem grows, and hence the faster the
growth in optimization time. Although this trend may sound unfavourable, a high
value of numcut can also lead to a reduction in the number of iterations required.
Therefore, a lot of observation and fine-tuning is necessary to bring the computation

time down.

The basic logic of the algorithm is presented in Figure 4.1. This flow chart
depicts the dynamic cutting plane methodology for Strategies 1, 2, and 3. Each
strategy differs by the way vioRHS is adjusted in each iteration. The extensions to

the general logic are explained respectively for each strategy.

When the problem instance is fed to the algorithm, it starts optimizing the first
sub-problem to find the lower bound solution X* and the lower bound objective
value Zj,. The solvers used are CSDP version 5.0 [8] and SDPT3 version 4.0 [40].
With the newly obtained X* and the appropriate vioRHS value, the algorithm
carries out the calculation as laid out in Equation (4.2) to assess violations. If
the left-hand-side value is less than vioRHS, a violation occurs. The indices and
the left-hand-side value are recorded for later use. Note that the initial vioRHS
is chosen to be —0.4. The initial vioRHS should not be too high (in terms of the
magnitude), or otherwise no violations will be found as the standard is too slack.
On the other hand, if the initial vioRHS is set too low, then it will take a very long
time for the initial round of violation assessment, since no cuts have been added in

the first round and there are still plenty of potential violations that can be detected.

In the case when no violation is detected, the algorithm will exit the loop. This

usually happens when the initial vioRHS is too high for smaller instances, or when
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Re-optimize, get Run AKVheur, get
new X*, Z|b g Zbk and 7T

Figure 4.1: General cutting plane algorithm

vioRHS has not been reduced quickly enough in the middle of the process. However,
new feature has been added to the newer cutting plane strategy (Strategies 4, 5,
and 6) to combat these short-comings that may disrupt the computation and cause
premature termination. This new feature is detailed in Section 4.1.4. On a side
note, if branch and cut were to be used, branching would take place at this step
upon exiting the loop. However, since the relaxations used in this thesis are good

enough, branching was never necessary.

If there are any violations detected, these violated inequalities will be sorted
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by their recorded left-hand-side value, which signifies the severity of violation. The
higher the left-hand-side value in terms of magnitude, the further away the inequal-
ity is from zero, and the more severe the violation. Therefore, the inequalities are
sorted in a decreasing order of severity. A preset number of the inequalities from
the top of the list are then chosen to be added to the relaxation sub-problem. This
preset number is numcut. Parameter numcut sets the maximum number of cuts
that can be added for each iteration. If less than numcut violations were found, all
of them will be added, but the vioRHS will need adjustment so that more violations

can be found. The modification of vioRHS will be discussed in more detail later.

By adding a number of most violated inequalities, a new relaxation sub-problem
is obtained. By solving the new sub-problem, a new lower bound solution X* and
objective value Zj, are obtained. Since there were already a number of inequalities
added as new constraints, the new Z;, should be higher and hence closer to the
optimal solution. Using the newly obtained solution, the function AKVheur will
utilize the AKV Heuristic with some help of 2-opt to find a set of feasible solution:
7, which represents the permutation of departments, and Z,, which denotes the
best-known objective value or the upper bound. These newly-obtained solution
helps us to calculate the gap between the lower bound and the upper bound. The
gap tells us about the state and condition of the cutting plane optimization process.
If the lower bound Z;; and the upper bound Z,, are very close to each other,
then the gap is closed and optimality is reached. For the first three strategies, we
used |Zy, — Zy| < 0.01 to declare the gap closed, but it is sufficient to define the
condition of gap closed as |Z; — Zu| < 0.49, because by examining the make-up
of the objective function (2.5) it is evident that the objective values will always be
half-integer, given that the input data are all integer. The latter criterion was used
starting with Strategy 4. On the other hand, if the lower bound Z;;, becomes higher
than the best known Zy;, the sub-problem becomes invalid and hence pruned. If not,
the cutting plane process will continue to the next step where vioRHS is modified
based on the state of the optimization process. After the adjustment of vioRHS,
the standard of the violation assessment is changed, and the algorithm will try to

find new violated inequalities with the newly-obtained information.
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4.1.1 Strategy 1

Strategy 1 follows closely the general approach illustrated in Figure 4.1. Figure 4.2
demonstrates the methodology of vioRHS modification in Strategy 1. The param-
eter vioRHS starts off at —0.4. During steady improvement, i.e. the percentage
difference between the new Zj, from the current iteration and the old Zj, from the
previous iteration exceeds 0.1%, the magnitude of vioRHS is increased by 1%. How-
ever, if the improvement of Z;, stagnates such that the percentage difference is less
than 0.1%, the magnitude of vioRHS will be reduced by 0.2 or by half, whichever
results in a smaller change. Nevertheless, the change will not let vioRHS fall below
—0.03. However, if the problem runs low on the number of cuts found, i.e. number
of cuts found is less than numcut, a bigger reduction is required to keep the problem
running. The parameter vioRHS will be automatically reduced by 75% or by 0.2,

whichever results in a smaller drop.

VIORHS =
VIORHS+min(-0.75*VioRHS,0.2)

# of cuts found >
numcut ?

abs(oldZ;,—newZ,p)/oldz,, No—pVIORHS = VioRHS*1.01

Yes

VIORHS =
min(vioRHS+min(-0.5*vioRHS,0.2),-0.03)

Figure 4.2: Strategy 1 on modification of vioRHS
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4.1.2 Strategy 2

Strategy 2, as illustrated in Figure 4.3 is similar to Strategy 1 with some minor
changes in parameters. For instance, the improvement of Zj, is considered steady if
the percentage difference between the new and the old Zj;, exceeds 0.13%, instead of
0.1% as in Strategy 1. When the improvement is steady, the magnitude of vioRHS
is increased by 1%. Otherwise, the magnitude of vioRHS will be cut down by 0.2 or
by 20%, instead of by half as in Strategy 1, whichever results in a smaller change.
Similar to Strategy 1, the change will not let vioRHS drop below —0.03. Also, if the
number of cuts found is less than numcut, vioRHS will be given a bigger adjustment

of 75% reduction or by 0.2, whichever results in a smaller change.

VIORHS =
VIORHS+min(-0.75*VvioRHS,0.2)

# of cuts found >
numcut ?

abs(oldZ,—newZ,,)/oldZ;,
< 0.0013?

No—» VIORHS = vioRHS*1.01

Yes

VIORHS =
min(vioRHS+min(-0.2*VvioRHS,0.2),-0.03)

Figure 4.3: Strategy 2 on modification of vioRHS

The comparison of results for Strategy 1 and 2 is detailed in Section 4.2.1.
Table 4.1 and Table 4.2 are the computation breakdown of the two circled data
points in Figure 4.9. The table is explained in detail in Section 4.2.1. The three
circled time durations in Table 4.1 are the time intervals for finding and sorting the
cuts after the algorithm decides that the improvement for Zj, is not fast enough,
and hence it lowers the vioRHS by 50%. Consequently, the time required for finding

and sorting the cuts surged up because the change of 50% is too aggressive. There
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are suddenly too many potential cuts that can be found and sorted. Therefore, in
Strategy 2, we changed the cut in vioRHS from 50% to 20% when the improvement is
not steady enough. The resultant change in computing time for cuts is drastically
shortened as seen in Table 4.2. Because the reduction in vioRHS is smaller in
Strategy 2, we can start decreasing vioRHS earlier, in the senes that the standard for
steady improvement of 7, is now higher. In Strategy 2, the percentage difference of
the current and the previous Z;, has to be above 0.13% to be qualified as improving
steadily. Consequently, the algorithm reacts to make minor adjustment to vioRHS

sooner and more frequently in the process.

4.1.3 Strategy 3

In Strategy 3, the gap between Zj, and Z; is introduced as another criterion to
assess the adjustment of vioRHS. Figure 4.4 shows that given the number of cuts
found is higher than numcut, if the percentage difference between Zj, and Z;, is less
than 0.2%, vioRHS will not be changed. Otherwise, vioRHS will be adjusted in the
same way as in Strategy 2. By keeping vioRHS unchanged when the gap is small,
the modification of vioRHS becomes smoother, which is observed to yield shorter
computation time. Figure 4.12 compares the two strategies, and Tables 4.3 and 4.4

illustrate the small improvement as the result of Strategy 3.

4.1.4 Strategy 4

Two new features are added in Strategy 4. As shown in Figure 4.5, when the
algorithm cannot find any violations, it will check whether there has been any
triangle inequality constraints added since the beginning. If there is none, it means
that the initial vioRHS of —0.4 is probably too high for this particular instance. It
will happen if the instance is small, such as when n < 10. Therefore, the algorithm
will reduce the magnitude of vioRHS by 75% to start all over again. Otherwise, it
means that the problem has run out of cuts and hence the cutting plane algorithm

terminates.

Another new function in Strategy 4 is to remove non-binding inequality con-
straints. For numerical reason, the positive slack is considered non-binding if it

is greater than 0.1. Removing non-binding inequality constraints help to keep the
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# of cuts found >
numcut ?

VIORHS =
ViORHS+min(-0.75*VvioRHS,0.2)

No change to
VIORHS

abs (Zbk_zlb)/ZbK
>0.002?

abs(oldZ,,—newz,)/oldZ;, No—p ViORHS = VioRHS*1.01

< 0.00137

Yes

VIORHS =
min(vioRHS+min(-0.2*vioRHS,0.2),-0.03)

Figure 4.4: Strategy 3 on modification of vioRHS

problem size small and gives more room for future cut addition. This is because
the algorithm gets rid of a number of constraints, say numslack, at the end of an
iteration, but in the next iteration, numslack additional cuts on top of the given
number numcut can be added to the new sub-problem. This approach facilitates
the pace of lower bound improvement, which is observed in Figure 4.15. Tables 4.9
and 4.10 also demonstrate the experimental result of this anticipated improvement,

which is explained in Section 4.2.3.

Strategy 4 modifies vioRHS as in Strategy 3. See Figure 4.4 for the illustration
of the algorithm.
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Figure 4.5: Cutting plane algorithm for Strategy 4

4.1.5 Strategy 5

Yes—P»

Pruned

Gap closed

Strategy 5 includes two new features. One feature is that if the number of cuts found

is less than half of numcut, vioRHS will be reduced to re-start the violations search

with the new standard. This approach bypasses the time-consuming optimization

calculation when the number of inequality constraints to be added is low and hence

has smaller impact on lower bound improvement. This is especially helpful when
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the sub-problem becomes large after many inequality constraints have been added.

Lower ViORHS such that
VIORHS = Min(vioRHS+
Min(-0.75*VioRHS,0.2),
-0.001)

Lower ViORHS
such that vioRHS

Solve relaxation,
get X*, Z]b

A

= VIORHS*0.25

A

No

Any new constraints added
since the beginning?

Has VioRHS
reached -0.001?

Yes

v

Exit loop

Compute how each
combination (p1,p2,p3)
violates the inequalities

Remove
inequality

A

No more
violations?

No

# of cuts found <
Y% of numcut ?

No

v

Rank the
combinations by
severity of violation

Figure 4.6:

A

constraints with
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Modify vi ORHS
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Add top numcut most
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A

Re-optimize, get

A

new X*, Z

Cutting plane algorithm for Strategy 5

Yes—pp

Pruned

YesPr

Gap closed

The other new feature of Strategy 5 is the continued search for violations to

avoid premature termination. After detecting that no violations are found and

that it is not a small-instance issue, vioRHS will be reduced further until it reaches

—0.001, a very small number sufficiently close to zero. Please refer to Figure 4.6
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for the methodology of the cutting plane algorithm in Strategy 5. On the other
hand, the modification of vioRHS is executed the same way as in Strategy 3. See

Figure 4.4 for the illustration of the algorithm.

The two new features not only successfully prevent premature termination, but
they also allow the cutting plane process to be more efficient and hence lower the
computing time. The success of Strategy 5 can be observed in Figure 4.18, as well
as in Tables 4.11 and 4.12.

4.1.6 Strategy 6

Strategy 6 is similar to Strategy 5 other than the way vioRHS is adjusted. As re-
flected in Figures 4.7 and 4.8, this new approach ensures that the magnitude of each
adjustment to vioRHS will not exceed 0.1. This technique further smoothes the pro-
cess of vioRHS reduction and thus lowers the computation time. See Figures 4.21,
4.22, and 4.23 for the comparison graphs of Strategies 5 and 6 for instances AV25-
2, AV25-1, and HeKu20. The labeled data points in Figure 4.21 show the lowest
computing time thus far, and they are detailed in Tables 4.17 and 4.18.
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# of cuts found >
numcut ?

ViORHS =
ViORHS+mMin(-0.75*VioRHS,0.1)
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VIORHS
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VIORHS =
min(vioRHS+min(-0.2*vioRHS,0.1),-0.03)

Figure 4.7: Strategy 6 on modification of vioRHS
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Figure 4.8: Cutting plane algorithm for Strategy 6
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4.2 Performance of the Six Strategies

This section discusses the performance of each strategy and how each strategy is
developed based on the earlier results. For this section on the development of the
basis strategies, medium-sized instances such as HeKu20, AV25-1, and AV25-2 were
used. A few larger instances, such as HeKu30 and STE36-1 were attempted, but
even the best-performing strategy out of the six basic strategies were too slow.
Therefore some minor modification was made to create another two strategies for
the large instances, which will be discussed in Chapter 5. HeKu20 and HeKu30
are from Heragu and Kusiak in [20], while AV25-1 and AV25-2 are from Anjos and
Vannelli in [5]. The other larger instances will be explained later in Chapter 5.
Please see Appendix C for the complete listing of all the instances used in this

thesis.

The medium-sized instances were solved by AKV and AKV’ using SDPT3 ver-
sion 4.0 [40] on a 2.0GHz Dual Opteron with 16Gb of RAM. Each method was run
15 times using different numcut setting, ranging from 100 to 900. Several graphs
were generated to study the behaviour of each method and the effect of numcut on
computing time. We would also like to find out a pattern of the effect of numcut

so that we can use the most effective numcut value to solve larger problems.

4.2.1 From Strategy 1 to Strategy 2

The changes between Strategy 1 and Strategy 2 may seem small, but the im-
provement in computing time is drastic. Figure 4.9 compares AKV and AKV’ for
Strategy 1 and 2 when solving instance AV25-2. It should be noted that AKV’1
denotes the combination of AKV’ using Strategy 1. Also, there are two missing
points in this graph, namely AKV’1l and AKV’2 at numcut = 100. Any missing
point in the curves means that the corresponding trial is incomplete. This may be
due to limitations of the algorithm, especially in the earlier stategies, or running
out of memory, which happens when solving large instances. After a few versions
of modifications on the algorithm, the problem of running out of cuts is eliminated

for Strategy 5 and 6.

When doing an overall comparison of AKV and AKV’, Figure 4.9 clearly tells
us that AKV’ outperforms AKV, since both AKV curves are almost always above
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Figure 4.9: Comparison of Strategy 1 and Strategy 2 for AV25-2

the AKV’ curves. This distinction is especially obvious for small numcut. While
the AKV’ curves steady off at low computation time as numcut increases, the AKV

curves climb up and deviate away from the AKV’ curves.

When comparing Strategy 1 and 2, we need to compare AKV1 with AKV?2,
and AKV’1 with AKV’2. For AKV1 and AKV2, the AKV2 curve is almost always
below the AKV1 curve. At numcut = 100, it takes AKV1 nearly 2.5 times the
computation time for AKV2. For AKV’1 and AKV’2, the difference in computing
time at numcut = 150 is also very high, where the total computing time for AKV’1
is 2.6 times of AKV’2. But the two AKV’ curves seem to converge as numcut
increases, and hence the distinction becomes very small. However, we can still

conclude that the change in Strategy 2 makes an improvement for the computation

effeciency.

The conclusion also applies to the other instances as seen in Figure 4.10 for
AV25-1 and Figure 4.11 for HeKu20. It should be noted that the behaviour in
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Figure 4.10: Comparison of Strategy 1 and Strategy 2 for AV25-1

AV25-1 is quite different from the other two instances because the AKV and AKV’
curves seem to steady off and converge as numcut increases. The difference between
Strategies 1 and 2 also seems to diminish as numcut increases. Although at numcut
= 100, the performances of AKV’l and AKV’2 are similar, the computing time
for AKV’2 is still much smaller than AKV1. Therefore, we can still confirm the
improvement of AKV” over AKV and Strategy 2 over Strategy 1.

Tables 4.1 and 4.2 summarize the duration of each iteration of the cutting plane
process and how vioRHS affects the computing time. The circled time duration
shows the most impactful results due to the change in algorithm, which is discussed
in detail in Section 4.1.2. The fourth column in Table 4.1 records the accumulative
clock time in second from the beginning to the end of a trial. The third column is
the duration of each iteration, which is calculated by taking the difference between

the two subsequent clock times. The shaded duration represents the time spent
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Figure 4.11: Comparison of Strategy 1 and Strategy 2 for HeKu20

in the optimization solver. The unshaded time interval denotes the amount of
time taken in between the optimization steps, which includes calculating the Z;
and 7, finding and determining violations, sorting and forming the cuts. The first
shaded duration is the total time taken to calculate the lower bound at root node
with no cuts added, while the shaded number in the fifth column is the lower bound
objective value in root node. The second column in Table 4.1 lists out the vioRHS at
each iteration. As shown in Figure 4.1, vioRHS is modified after the condition check
after exiting the optimization solver. Hence the vioRHS values are placed beside
the unshaded time interval, during which the vioRHS is modified. Occasionally,
a number may sit above a vioRHS value, e.g. the 4 above vioRHS of -0.2080 in
Table 4.1. This number represents the number of cuts found in this trial. This
number is recorded if the number of cuts found is smaller than numcut. The first
column calculates the change in vioRHS by taking the fraction of new vioRHS by

the previous vioRHS.
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AKV'1 numcut 150

change | coorus |parstionsl| (8] 2ih s |SARIOMY e [SARIEIDR) e
in vioRHS new zlb) zbk}
0.000
1.613
59.890 61.503 | 36,3555
-0.4000 |  15.799 77.303
108.429 185.731 | 36,464.0 | 37,177.5| 1085 | 0.298% | 7135 | 1.919%
1.01 | -0.4040 | 83.594 269.325

122.291 391.616 36,577.5 | 37,137.5 113.5 0.311% 560 1.508%
101 -0.4080 84.191 475.806

4 127.345 603.151 36,591.5 | 37,1375 14.0 0.038% 546 1.470%
0.51 -0.2080 | 1,825.353 2,428.504
143.803 2,572,307  36,675.5 | 37,137.5 84.0 0.230% 462 1.244%
101 -0.2101 197.870 2,770.178
- 2,931.537  36,710.0 | 37,137.5 345 0.094% 427.5 1.151%
11,290.081
i 11,477.090 36,753.5 37,137.5 43.5 0.118% 384 1.034%
1.01 -0.1061 | 5,340.500 16,817.590
-230.918 17,048.508 36,799.5  37,137.5 46.0 0.125% 338 0.910%
101 -0.1072 | 3,795.133  20,843.640
: E] 21,127.914  36,830.5 | 37,1375 31.0 0.084% 307 0.827%
13,915.678 ) 35,043.592
35,370.074 36,855.5  37,116.5 25.0 0.068% 261 0.703%
59,180.532
369.904 59,550.436 36,8915 37,1165 36.0 0.098% 225 0.606%
100 -0.0300 | 23,180,167 82,730.603
404.736 83,135.338 36,9235 | 37,1165 32.0 0.087% 153 0.520%
1.00 -0.0300 | 17,736.896 100,872.235
479.898  101,352.133 36,950.5 37,116.5 27.0 0.073% 166 0.447%
1.00 -0.0300 | 14,580.197 115,932.330
537.639  116,469.965 36,971.5 37,1165 21.0 0.057% 145 0.391%
100 -0.0300 | 14,245.535 130,715.504
589.352  131,304.896 36,985.5 37,1165 14.0 0.038% 131 0.353%
1.00 -0.0300 | 13,641.240 144,946.136
646.160  145,592.296 37,0115 37,1165 26.0 0.070% 105 0.283%
1.00 -0.0300 | 11,316.666 156,908.962
714260 | 157,623.222 37,015.0 37,1165 3.5 0.009% 101.5 0.273%
1.00 -0.0300 | 10,756.318 168,379.540
J78.025 | 169,157.565 37,028.5 37,1165 135 0.036% 88 0.237%
1.00 -0.0300 | 9,259.262 178,416.828
B37.664  179,254.492 37,0385 37,1165 10.0 0.027% 78 0.210%
100 -0.0300 | 8,629.014 187,883.306
941.271  188,824.777 37,0515 37,1165 13.0 0.035% 65 0.175%
1.00 -0.0300 | 8,028.163 196,852.940
1,022,171 197,875.110 37,0615  37,116.5 10.0 0.027% 35 0.148%
1.00 -0.0300 | 6,156.170 204,031.280
1,138.751  205,160.032 37,0715 37,1165 10.0 0.027% 45 0.121%
1.00 -0.0300 | 5,010.351 210,170.383
1,237.389  211,407.772 37,078.0 37,116.5 6.5 0.018% 38.5 0.104%
1.00 -0.0300 | 4,024.221 215431.993
1,326.392  216,758.385 37,088.0 37,116.5 10.0 0.027% 28.5 0.077%
100 -0.0300 | 2,390.861 219,149.246
1,419.914 | 220,565.160 37,094.0 37,116.5 6.0 0.016% 22.5 0.061%
1.00 -0.0300 | 1,818.116 222 387.276
1,518.353 223,905.669 37,10L.0 37,1165 7.0 0.019% 15.5 0.042%
1.00 -0.0300 | 1,049.185 224,954.854
1,656.013 226,610.867  37,104.5 37,1165 3.5 0.003% 2 0.032%
100 -0.0300 797.633  227,408.500
1,803.750 | 229,212,251 37,111.0 37,116.5 6.5 0.018% 5.5 0.015%
1.00 -0.0300 51.254 229,303.505
1,974.303  231,277.808 37,113.0 37,116.5 2.0 0.005% 3.5 0.005%
100 -0.0300 89.281 231,367.088
2143160 233,510.248 37,1155 37,1165 25 0.007% 1 0.003%
1.00 -0.0300 84.196 233,594.444
2,368,327  235,963.771 37,116.0 37,116.5 0.5 0.001% 0.5 0.001%
1.00 -0.0300 83.950 236,047.721
2465.805  238,513.526 37,116.5 37,1165 0.5 0.001% o 0.000%
104.147 | 238,617.673

0.50 70.1051<

0.50  -0.0536(

0.56 | -0.0300¢

Table 4.1: Computing AV25-2 using AKV’1 with numcut = 150
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AKV'2 numecut 150

ch Durati Gap (old- Gap (21b-
ENONEE | ioRrms DT s 2lb apk SRR o e [SEPLID o ey
in vioRHS {s) new zlb) zbk)

0.000

2.092

100.403 102.495 | 35,960.5
-0.4000 | 15.984 118.480
155.253 273.733  36,208.5 37,133.5| 248.0 0.690% 925 2.491%
101 -0.4040 | 83.851 357.584
181.755 539.339  36,311.0  37,133.5| 102.5 0.283% 822.5 2.215%
101 -0.4080 | 82.901 622.241
1 176,836  799.076 36,314.0 37,133.5 3.0 0.008% 819.5 2.207%
0.51 -0.2080 | 745.708 1,544.784
190.759 1,735.543 36,432.0 37,133.5| 118.0 0.325% 7015 1.889%
1.01 -0.2101 | 224.930 1,960.473
210.804 2,171.277 36,518.0 37,1335 86.0 0.236% 615.5 1.658%
101 -0.2122 | 143.260 2,314.537
4 2,546.361 36,559.5 37,116.5 41.5 0.114% 557 1.501%
0.80 —D.lﬁBS( 320.687 J)2,867.048
253911  3,120.959 36,620.0 37,116.5 60.5 0.165% 496.5 1.338%
1.01 -0.1715 | 157.481 3,278.439
277772 | 3,556.211 36,669.5 37,116.5 49.5 0.135% 447 1.204%
1.01 -0.1732 | 95.998  3,652.209
3,945.774 36,7015 37,116.5 32.0 0.087% 415 1.118%
396.915 )4,342.690
2 | 4,639.222  36,734.5 37,116.5 33.0 0.090% 382 1.029%

0.80  -0.1386(]

080 -0.1108(
305455 5624674 36,7865 37,1165 | 520  0.142% 330 0.889%
101 -0.1120 | 405.895 6,030.570
370.725 | 6401295 36,8165 37,1165| 30.0  0.082% 300 0.808%
0.80  -0.0896 | 785.406 7,136.702
387509 | 7,584.210 36,857.0 37,1165| 405  0.110%  259.5  0.698%
0 -0.0717 |2,135.008 9,719.218
517.306 10,236.524 36,S70.0 37,1165| 13.0  0.035% 2465  0.664%
0.80  -0.0573 (3,402.916 13,679.440
550.418 14,229.858 36,907.5 37,1165| 375  0.102% 209  0.563%
.80 -0.0459 |4,060.986 18,290.843
571686 18,862.529 36,9250 37,1165| 185  0.050%  190.5  0.513%
0.80  -0.0367 |5,902.289 24,764.819
611988 25,376.107 36,348.5 37,1165| 225  0.061% 168  0.453%
2 -0.0300 |9,032.898 34,409.005
630.756 35,039.761 36375.0 37,1165| 265  0.072% 1415  0.381%
100 -0.0300 |5,041.253 41,081.013
686.648 41,767.561 36,990.0 37,1165 | 150  0.041% 1265  0.341%
100 -0.0300 |5,272.728 47,040.389
710.685 47,751.075 37,0050 37,1165| 150  0.041% 1115  0.300%
100 -0.0300 |4,318.373 52,099.448
772603 52,872.051 37,023.5 37,1165| 185  0.050% 93 0.251%
0 -0.0300 |3,198.914 56,070.965
811,676 56,332.640 37,040.0 37,1165| 165  0.045% 765  0.206%
100 -0.0300 |2,838.567 59,721.208
938.548 60,659.755 37,0455 37,1165| 65  0018% 70 0.189%
100 -0.0300 |2,683.438 63,348.193
963.391 | 64,311.584 37,0600 37,1165| 135  0.036% 565  0.152%
100 -0.0300 |2,050.888 66,362.472
1,055.367 67,417.839 37,0685 37,1165| 85  0023% 48 0.129%
0 -0.0300 |1,699.838 69,117.677
1,114,629 70,232.306 37,0755 37,1165| 7.0  0.019% 41 0.110%
100 -0.0300 |1,453.879 71,686.185
1,157.222 72,843.407 37,0835 37,1165| 80  0.022% 33 0.089%
100 -0.0300 | 951.951 73,795.358
1219347 75,014.700 37,087.0 37,1165| 35  0.009% 295  0.079%
100 -0.0300 | 949.664 75,964.364
1,282490 77,256.854 37,098.0 37,1165| 110  0.030% 185  0.050%
0 -0.0300 | 241.592 77,498.447
1,359.437 78,857.883 37,1035 37,1165| 55  0.015% 13 0.035%
100 -0.0300 | 142.429 79,000.312
1,429.354 30,429.566 37,1080 37,1165| 45  0.012% 85  0.023%
100 -0.0300 | 100.051 80,529.628
1,506.856 52,036.484 37,1120 37,1165| 40  0011% 45  0.012%
100 -0.0300 | 89.327 82,125.811
1,643.219 83,769.031 37,1135 37,1165| 15  0.004% 3 0.008%
0 -0.0300 | 84390 83,853.421
1,784.822 35,638.243 37,1160 37,1165| 25  0.007% 05 0.001%
100 -0.0300 | 83.294 85721537

75 |1,842.814 87,564.350 37,1160 37,1165| 0.0  0.000% 05 0.001%
0.5  -0.0075 | 659.857 88,224.207
1,930.312 90,154,519 37,1165 37,1165| 05  0.001% 0 | 0.000%
89.473 |80,343.997
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Table 4.2: Computing AV25-2 using AKV’2 with numcut = 150
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4.2.2 From Strategy 2 to Strategy 3

The changes made to Strategy 3 are based on Strategy 2, which was explained in
Section 4.1.3. The resultant improvement is marginal, as observed in Figure 4.12
and the two labeled data points, which are elaborated in Tables 4.3 and 4.4. When
comparing AKV and AKV’ using Figure 4.12, the observation is similar to the
previous section, i.e. AKV’ is faster, and hence better, than AKV, especially as
numcut increases. However, the comparison becomes tricky as we start comparing
Strategy 2 and Strategy 3. In a first glance of Figure 4.12, it is difficult to judge
whether Strategy 3 outperforms Strategy 2 because while there are several data
points showing Strategy 3 outperforms Strategy2, there are also several points

indicating a worse result.
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Figure 4.12: Comparison of Strategy 2 and Strategy 3 for AV25-2

Tables 4.3 and 4.4 are the time breakdowns for the two data points that exhibit a
small improvement in the new strategy. In Table 4.3, vioRHS continues to decrease
even when the gap between 7, and Zj, is small. When the gap is small, too much
modification to vioRHS may become too aggressive. Therefore, the computing time

to find and sort the cuts increases considerably, as shown in the three circled time
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durations in Table 4.3. Table 4.4 illustrates the improvement when the vioRHS
stays at -0.454. The three circled durations in Table 4.4 show that the increase
in the sorting time dampens down much quickly in Strategy 3 than in Strategy
2, which gives a percentage improvement of 7.3% in terms of the total computing

time.

However, there are also several data points exhibiting Strategy 3 yielding worse
performance, such as those in Tables 4.5 and 4.6. The trial of AKV3 with numcut
= 700 keeps vioRHS at -0.1359 when the gap becomes small. However, this vioRHS
value becomes too high for the process, so the algorithm runs short of the cuts found.
Only 46 cuts are added in the next iteration, which only makes a tiny improvement
to the Z;, while costing the overall process 5,671 seconds of optimization time.
This iteration can be seen as wasted since a lot of time is invested with only a
small return. This is one reason why Strategy 3 performs poorly for this trial.
Because the algorithm runs out of the cuts, it tries to make a major reduction
to the vioRHS so that it can continue finding more cuts. This major reduction
is however too aggressive, which makes the following time interval for finding and
sorting the cuts significantly surge up, as circled in Table 4.6. Finally, because the
trial wasted one iteration adding only 46 cuts, an additional iteration is required to
close the gap in AKV3. Therefore, the AKV3 trial needs to take additional 10,917
seconds to reach optimality, which is 17.9% longer than the AKV3 trial.

The problem with wasting an iteration when vioRHS stays too high such that
the algorithm cannot find cuts was easily fixed in Strategy 5. The overly aggressive
reduction in vioRHS was also changed in the later strategies. Finally, although the
improvement for Strategy 3 seems trivial for medium-sized instances, one can expect
to see a bigger difference for large instances when the process of finding and sorting
cuts becomes much more complicated and hence more time-consuming. Therefore

the modification made in Strategy 3 is still kept in the following strategies.

Figure 4.13 compares AKV2, AKV3, AKV’2, and AKV’3 by solving the instance
AV25-1, which is a linear ordering problem since it has unity facility lengths. This
special case also has interesting results. Unlike most other cases discussed this far,
AKYV seems to consistenly outperforms AKV’. This contradiction is considered a
special case due to this particular instance at the given parameter settings. Fur-
thermore, the four curves lie closely to each other in the middle range of the graph
from numcut of 250 to 800. On the other hand, Figure 4.13 shows that Strategy 3
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AKV' 2 numcut 250
RES ) v | THEERR ey 2lb s | BRI g | SIREIE | g
in vioRHS (s} new zlb) zbk)
0.000
2477
100.934 103.411 35;9&125
-0.4000 16.051 119.463
169.863 289.326 36,240.5 37,119.5 280.0 0.775% 879 2.368%
181 -0.4040 84.548 373.873
159 194.437 568.310 36,315.0 37,119.5 74.5 0.206% 804.5 2.167%
0.50 -0.2040 815.894 1,384.204
226.390 1,610.594 36,509.0 37,119.5 154.0 0.534% 610.5 1.645%
1.01 -0.2060 149.145 1,759.739
275.459 2,035.198 36,566.5 SIS 57.5 0.157% 553 1.490%
1.01 -0.2081 89.138 2,124,336
323.842 2,448,178 36,644.5 37,119.5 78.0 0.213% 475 1.230%
181 -0.2102 86.802 2,534.980
491.154  3,026.134 36,695.0 37,119.5 50.5 0.138% 424.5 1.144%
1.01 -0.2123 85.202 3,111.336
522.858  3,034.194 36,768.0 37,119.5 73.0 0.199% 351.5 0.347%
1.01 -0.2144 84,460 3,718.654
578.153 4,296.807 36,803.0 SIS 35.0 0.095% 316.5 0.853%
0.80 -0.1715 84.538 4,381.346
611.576 4,992,921 36,851.5 37,119.5 48.5 0.132% 268 0.722%
181 -0.1732 83.573 5,076.495
676.622  5,753.116 36,890.5 37,119.5 39.0 0.106% 229 0.617%
0.80 -0.1386 87.062 5,840.178
702.274 6,542.452 36,922.0 37,119.5 315 0.085% 197.5 0.532%
0.80 -0.1109 90.044 6,632.496
765.415 7,397.911 36,951.5 SIS 29.5 0.080% 168 0.453%
0.80 -0.0887 143.024  7,540.935
843.864 8,384,799 36,984.0 37,119.5 32.5 0.088% 135.5 0.365%
0.80 -0.0710 236.576 8,621.375
923.238  9,544.613 37,010.0 37,119.5 26.0 0.070% 109.5 0.295%
0.80 -0.0568 329.333 9,873.996
1,023.611 10,897.607 37,028.0 37,119.5 18.0 0.049% 31.5 0.247%
0.80 -0.0454 687.116 = 11,584.723
10 11 12,679.034 37,047.0 SIS 19.0 0.051% 72.5 0.195%
0.80 -0.0363 ( 1,266.827 J13,945.861
f ?f 15,151.739 37,060.0 37,119.5 13.0 0.035% 59.5 0.160%
0.83 -0.0300 ( 1,530.893 J16,682.632
18,006.583  37,079.5 37,119.5 18.5 0.053% 40 0.108%
1.00 -0.0300 ( 663.013 _J18,669.596
1451.815 20,121.411 37,089.5 37,119.5 10.0 0.027% 30 0.081%
1.00 -0.0200 392.473  20,513.885
1,663.169 22,177.053 37,097.5 ST1195 8.0 0.022% 22 0.059%
1.00 -0.0300 221.168  22,3598.221
1,829.371 24,220.592 37,105.5 37,119.5 8.0 0.022% 14 0.038%
1.00 -0.0300 57.179 24,317.771
2,004.023 26,321.794 37,111.0 37,119.5 5.5 0.015% 8.5 0.023%
1.00 -0.0300 85.975 26,407.769
2,226,434 28,034.203 37,1145 37,116.5 3.5 0.009% 2 0.005%
1.00 -0.0200 83.825 28,718.027
2,509.022 | 31,227.050 37,115.5 37,1165 1.0 0.003% 1. 0.003%
1.00 -0.0300 83.841 31,310.850
2,656.317 33,967.207 37,116.5 37,116.5 1.0 0.003% (1] 0.000%
83.837 34,051.044

Table 4.3: Computing AV25-2 using AKV’2 with numcut = 250
is consistenly faster than Strategy 2 for both AKV and AKV’. But similar to the

earlier conclusion, the resultant improvement is small but noticeable.

For the smaller instance, HeKu20, the comparison observation is the same as

for AV25-2 i.e. AKV’ outperforms AKV and Strategy 3 shows a marginal improve-
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AKV'3 numcut 250
changeln | Coorus |oumstion(s)| &g b bk (SIPII g [SIPEIDS o
vioRHS new zlb) zbk)
0.000
2.691
107.650 | 110.341 35,960
-0.4000 16.593 126.934
179.762 | 306.697 36,240 37,120 280.0 | 0.779% 880 | 2.371%
1.01 -0.4040 85.252 391.949
153 205714 | 597.662 36,315 37,120 75.0 | 0.207% 805 | 2.169%
0.50 -0.2040 | 793.263  1,390.825
337.129 | 1,628.054 36,509 37,120 194.0 | 0.534% 611 | 1.646%
1.01 -0.2060 | 147.203  1,775.258
293.657  2,068.915 36,566 37,120 5720 | 0.156% 554 | 1.492%
1.01 -0.2081 90.234 | 2,159.149
338.360  2,497.509 36,644 37,120 78.0 | 0.213% 476 | 1.282%
1.01 -0.2102 §7.850  2,585.359
497.659  3,083.017 36,695 37,120 510 | 0.139% 425 | 1.145%
1.01 -0.2123 85.661  3,168.678
538.465  3,707.143 36,768 37,120 73.0 | 0.199% 352 | 0.948%
1.01 -0.2144 84.706  3,791.849
595513 4,387.362 36,803 37,120 5.0 | 0.095% 37 | 0.854%
0.80 -0.1715 85.075 | 4,472.437
625.079  5,097.517 36,852 37,120 43.0 | 0133% 268 | 0.722%
1.01 -0.1732 $4.193  5,181.709
702.053  5,383.762 36,890 37,120 380 0.103% 230 | 0.620%
0.80 -0.1386 88.408  5,972.170
724953  6,607.123 36,922 37,120 320 0.087% 198 0.533%
0.80 -0.1109 91.862  6,788.985
795.689  7,584.674 36,952 37,120 30.0 | 0.081% 168 | 0.453%
0.80 -0.0887 | 142,300 @ 7,726.974
872.244  8,599.213 36,984 37,120 320 | 0.087% 136 | 0.366%
0.80 -0.0710 | 237.398  B,836.616
947.026  9,783.642 37,010 37,120 6.0 | 0.070% 110 | 0.296%
0.80 -0.0568 | 320442  10,104.084
1,054,351  11,158.435 37,028 37,120 180 | 0.049% 92 0.248%
0.80 -0.0454 | 681091 @ 11,839.525
1 05  12,966.731 37,047 37,120 19.0 | 0.051% 73 0.197%
1.00 -0.0454 € 519.953 )13,486.684
3 | 14,729.407 37,060 37,120 13.0 | 0.035% 60 0.162%
1.00 -0.0454  277.347 )15,006.754
16,363.931 37,080 37,120 00 | 0.054% a0 0.108%
1.00 -0.0454 126171 )16,450.103
1,475,680  17,965.782 37,090 37,120 100 | 0.027% 30 0.081%
1.00 -0.0454 98.500  18,064.283
1,682.289 19,746.571 37,098 37,120 80 | 0.022% 22 0.059%
1.00 -0.0454 §7.502  19,834.173
1,837.343 | 21,671.515 37,106 37,120 80 | 0.022% 14 0.038%
1.00 -0.0454 §7.260  21,758.775
2,007.423  23,766.199 37,111 37,120 5.0 | 0.013% 9 0.024%
1.00 -0.0454 85.886  23,852.084
2,234.956  26,087.040 37,114 37,116 3.0 | 0.008% 2 0.005%
1.00 -0.0454 84.509  26,171.549
72 2,333.478  28,505.127 37,115 37,116 1.0 | 0.003% 1 0.003%
0.25 -0.0114 | 235119 @ 28,730.247
2,752,895 31,483.142 37,116 37,116 10 | 0.003% ] 0.000%
88.825 | 31,571.967

Table 4.4: Computing AV25-2 using AKV’3 with numcut = 250

ment. However, it is worth noticing is that unlike for other larger instances, the
cutting plane process runs faster at lower numcut. This is because, as explained
earlier in Section 4.1, the higher the numcut, the more rapidly the size of the SDP

problem grows, and hence the faster the growth in optimization time. This phe-
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AKV 2 numecut 700
(Change | . pus Purstion(s]  t(s) 2lb sk | G0N g e AR e
in vioRHS new zlb) zbk)
0.000
1.638
59.550 61.188 3,655.5
-0.4000 15.331 76.519
294876 371.395 36,560.0 37,130.5 | 32,9045 900.137% 570.5 1.536%
1.01 -0.4040 83.290 454,685
83 307.139 761.825 36,597.0 37,1305 37.0 0.101% 5335 1.437%
0.50 -0.2040 1,156.528  1,918.353
583.731 2,502.083 36,698.5 37,166.5 101.5 0.277% 468 1.255%
1.01 -0.2060 129.091 2,631.175
B61.045 3,492.220 36,817.5 37,166.5 115.0 0.324% 345 0.939%
1.01 -0.2081 91.577 3,583.797
1,288.058 4,871.855 36,852.0 37,166.5 34.5 0.094% 314.5 0.846%
0.80 -0.1665 157.057  5,028.912
1,823.966 6,852.878 36,935.0 37,166.5 83.0 0.225% 231.5 0.623%
1.01 -0.1681 85.905 6,938.733
2,808.047 9,746.830 36,946.5 37,166.5 115 0.031% 220 0.592%
0.80 -0.1345 88.979 9,835.810
3,508.265 13,344.075  36,996.0 37,166.5 455 0.134% 170.5 0.455%
1.01 -0.1359 86.244 13,430.319
4417.566 17,847,885 37,0425 37,166.5 46.5 0.126% 124 0.334%
0.80 -0.1087 86.883 17,934,768
5,698.862 23,633.630  37,066.0 37,166.5 23.5 0.063% 100.5 0.270%
0.80 -0.0870 89.154  23,722.784
B, 12| 30,647.557  37,090.0 37,166.5 24.0 0.065% 76.5 0.206%
0.80 -0.0696 c 86.509 30,734.065
B,308.746 35,042.812 37,108.5 37,166.5 18.5 0.050% 58 0.156%
0.80 -0.0556 87.077 39,129.889
9,976,786 49,106.675 37,114.0 37,166.5 5.5 0.015% 52.5 0.141%
0.80 -0.0445 86.710  49,193.384
11,774.874 60,968.258 37,116.5 37,166.5 2.5 0.007% 30 0.135%
85.881 | 61,054.140

Table 4.5: Computing AV25-2 using AKV2 with numcut = 700

nomenon can be observed by the two labeled data points on Figure 4.14. Tables 4.7
and 4.8 show the time breakdown of the two labeled points. Table 4.7 indicates
that AKV2 at numcut = 100 has four more iterations than AKV2 at numcut = 900,
but its total computing time is only 18% of the trial with numcut = 900. This is
because for a smaller instance such as HeKu20, the number of iterations required
to close the gap is much smaller and the process of finding and sorting the cuts is
less complicated. Therefore, although requiring more iterations to complete, the

trial with smaller numcut is still faster than the trial with higher numcut.

There are two missing data points for AKV3, which means that there are two
incomplete trials. This shows another weakness in Strategy 3. When the gap
between Zy;, and Zj, is small, vioRHS stays unchanged, which occasionaly becomes
too high in the cutting plane process. The algorithm therefore thinks that it runs
out of cuts and exits the cutting plane algorithm. This limitation is corrected in

Strategy 5.
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AKV 3 numcut 700
Changein | . oeus |puration(s)  t(s] 2lb SR Ll T L g
VIORHS new zlb) zhk)
0.000
1.623
58.247 58.870 36,355.5
-0.4000 15.154 75.024
292.511 367.535 36,560.0 37,130.5 204.5 0.563% 570.5 1.536%
1.01 -0.4040 82.961 450.436
83 303.984 754.480 36,597.0 37,130.5 37.0 0.101% 533.5 1.437%
0.50 -0.2040 1,152.826 1,907.306
579.796 2,487.102 36,698.5 37,116.5 101.5 0.277% 418 1.126%
1.01 -0.2060 128.678 2,615.780
855.748 3,471.529 36,817.5 37,116.5 119.0 0.324% 299 0.806%
1.01 -0.2081 88.626 3,560.154
1,279.994 4,840,148 36,852.0 37,116.5 34.5 0.094% 264.5 0.713%
0.80 -0.1665 152.446 4,992.594
1,812.595 6,805.189 36,935.0 37,116.5 83.0 0.225% 181.5 0.489%
1.01 -0.1682 85.789 6,890.979
2,793.265 9,684.243 36,946.5 37,116.5 11.5 0.031% 170 0.458%
0.80 -0.1345 88.076 9,772,319
3477711 13,250.031 36,996.0 37,116.5 49.5 0.134% 120.5 0.325%
1.01 -0.1359 86.434 13,336.465
A4 27707 17,713.536 37,042.5 37,116.5 46.5 0.126% 74 0.199%
1.00 -0.1359 86.093 17,799.629
5,680.520 23,430.149 37,066.0 37,116.5 235 0.063% 50.5 0.136%
1.00 -0.1359 84.539 23,564.688
46 5,671.135 29,235.823 37,072.5 37,116.5 6.5 0.018% 44 0.119%
0.25 -0.033965 ( 3,248.860 ) 32,484.683
7.119.053 39,603.736 37,091.5 37,116.5 19.0 0.051% 25 0.067%
1.00 -0.033965 750.790 40,354.527
8,520,886 48,875.413 37,108.0 37,116.5 16.5 0.044% 8.5 0.023%
1.00 -0.033965 100.369 48,975.782
10;238.321 59,214.103 37,112.5 37,116.5 4.5 0.012% 4 0.011%
1.00 -0.033965 88.217 59,302.320
12,589.062 71,891.382 37,116.5 37,116.5 4.0 0.011% i} 0.000%
79.627 71,971.009

Table 4.6: Computing AV25-2 using AKV3 with numcut = 700
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Figure 4.13: Comparison of Strategy 2 and Strategy 3 for AV25-1
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Figure 4.14: Comparison of Strategy 2 and Strategy 3 for HeKu20
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AKV 2 numcut 100

ch Durati Gap (old- Gap (21b-
NANBE | ioRHS | oM e 2lb el s el A e g
in vioRHS (s) new zlb) zbk)

0.000

1.172

15.084  16.216 | 15,286.0
-0.4 72.854 89.070

24.210  113.280 15,358.0 15,549.0 72.0 0.471% 191.0 1.228%
101 -0.404 18.693  131.974
32,769 164.743 15,376.0 15,549.0 18.0 0.117% 173.0 1.113%
0.80 -0.3232 | 28.863 193.606
35,679 229.285 15,413.0 15,549.0 37.0 0.241% 136.0 0.875%
101 -0.3264 | 19.961  249.245
40,137 289.382  15,454.0 15,549.0 41.0 0.266% 95.0 0.611%
101 -0.3297 | 159.100 308.482
46,532  355.015 15,498.0 15,549.0 44.0 0.285% 51.0 0.328%
101 -0.333 18.312  373.326
55.831 429.157 15,506.0 15,549.0 8.0 0.052% 43.0 0.277%
0.80 -0.2664 | 18.508  447.665
62.260 509.925 15,521.0 15,549.0 15.0 0.037% 28.0 0.180%
0.80 -0.2131 | 18.164 528.090
75.769 603.859 15,536.0 15,549.0 15.0 0.097% 13.0 0.084%
0.80 -0.1705 | 18.273  622.132
88.716 710.843 15,543.0 15,549.0 7.0 0.045% 6.0 0.033%
0.80 -0.1364 | 18.242  729.090
100.609 829.699 15,546.0 15,549.0 3.0 0.019% 3.0 0.019%
0.80 -0.1091 848.019
(117.765 965.784 15,549.0 15,549.0 3.0 0.019% 0.0 0.000%
20.153 | 985.937

Table 4.7: Computing HeKu20 using AKV2 with numcut = 100

AKV 2 numcut 900
ch Durati G Id- G Ib-
STETEE | ems || 2lb s SRR e [SORAADY i
in vioRHS (s) new zlb) zbk)
0.000
0.942

14.498 15.435 [115,286.0
-0.4 57.474 72.913
117473 190.386 | 15,390.5 15,549.0| 104.5 0.684% 158.5 1.019%
101 -0.404 18.932  209.318
302.854 512.172 15435.0 15,549.0 44.5 0.289% 114.0 0.733%
101 -0.408 18.520  530.692
1 297.316 | 827.908 15,440.0 | 15,549.0 5.0 0.032% 109.0 0.701%
0.51 -0.20804 | 88.664 916.572
556.459 1,473.031 15,507.0 | 15,549.0 67.0 0.434% 42.0 0.270%
1.01 -0.2101 | 18.906 1,491.937
972.077 2,454.014 15,540.0 15,549.0 33.0 0.213% 9.0 0.038%
1.01 -0.2122 | 18.808 2,482.822
51 1,093.351 3,576.172 15,5425 15,549.0 2.5 0.016% 6.5 0.042%

0.25 -0.0531 0 3,917.893
(1,661.544 ,579.436 | 15,549.0 | 15,549.0 6.5 0.042% 0.0 0.000%

26.844 5,606.280

Table 4.8: Computing HeKu20 using AKV2 with numcut = 900

4.2.3 From Strategy 3 to Strategy 4

In Strategy 4, the feature of removing non-binding constraints is added, which
results in some satisfactory improvement. Figure 4.15 illustrates that Strategy 4
outperforms Strategy 3 most of the time. As explained in Section 4.1.4, removing

the non-binding constraints keeps the problem size small and allows more violated
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constraints to be added in the next iteration. This number is called numslack,
which is calculated at the end of each iteration before starting to find new cuts for
the next round. This approach removes the less significant constraints and adds the
more important ones, which speeds up the pace of lower bound improvement. This
phenomenon can be observed in the two labeled data points, which are detailed in
Tables 4.9 and 4.10.

250,000

—\-AKV'3
——AKV' 4
——AKV3

AKV4

100,000

\OAR= =

AKV'4 @
numcut = 900

Figure 4.15: Comparison of Strategy 3 and Strategy 4 for AV25-2

The number that is placed between the gap values of the new and old Zj, in
the seventh column of Table 4.10 is the numslack for each iteration. The value of
numslack generally decreases as the gap becomes smaller. Another fact worth of
notice is circled in both tables. The circled Z;;, marks the point at which the effect
of constraints removal becomes obvious. Starting at this point, AKV’4 improves

the Zj, more rapidly, and consequently finishes the computation in fewer iterations.

The arrangement of the four curves for instance AV25-1 starts to be less distin-
guishable in Figure 4.16. The four curves look as if they are interlaced throughout
the various numcut values. Figure 4.16 also shows that Strategy 4 does better than

Strategy 3 all the way through the middle to the ending range of numcut.
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AKV'3 numcut 500

ch Durati Gap {old- Gap (zlb-
Bl R OVl ke BT 2lb e |SIPIOI o [SPEIDY) o i
in vioRHS (s} new zlb) zbk}

0.000

2.314

96.645 98.959 35,960.5
-0.4000 | 15.662 114.621
345.143  459.770 36,325.5 37,1545 365.0 1.015% 829 2.231%
1.01 -0.4040 | 84.311 544.081
52 345.161 889.242 36,365.5 37,1545 40.0 0.110% 789 2.124%
0.50 -0.2040 | £44.042 1,533.284
516.767 2,050.051
1.01 -0.2060 | 105.264 2,155.315
752354 2,907.669 36,723.0 37,1305 1315 0.359% 407.5 1.097%
1.01 -0.2081 | 86.596 @ 2,994.265
1,031.393 4,025.659 36,803.5 37,119.5 80.5 0.219% 316 0.851%
1.01 -0.2102 | 84.865 4,110.523
761 1,387.710 5,498.233 35,9145 37,1195 111.0 0.302% 205 0.552%
0.25 -0.0525 | 2,492.707 7,990.940
1,985.577 9,976.518 36,974.0 37,119.5 539.5 0.161% 145.5 0.392%
1.01 -0.0531 |1,020.877 10,997.395
2,718.270 13,715.665 37,022.5 37,119.5 48.5 0.131% 97 0.261%
1.01 -0.0536 | 461.747 14,177.412
3,585.985 17,763.398 37,064.0 37,119.5 41.5 0.112% 55.5 0.150%
1.00 -0.0536 | 138.650 17,902.048
4,848.069 22,750.117 37,093.0 37,119.5 23.0 0.078% 26.5 0.071%
1.00 -0.0536 | 88.083 22,838.200
6,485.045 29,323.246 37,1105 37,1165 17.5 0.047% 6 0.016%
1.00 -0.0536 | 87.303 29,410.549
500 7,421.006 36,831.555 37,114.0 37,116.5 3.5 0.009% 2.5 0.007%
0.25 -0.0134 | 452.257 37,283.812
9,555.527 46,839.339 37,116.5 37,1165 2.5 0.007% o 0.000%
79.990 | 46,919.329

371305 | 226.0 0.621% 539 1.452%

Table 4.9: Computing AV25-2 using AKV’3 with numcut = 900

ARV 4 numcut 300
Ch Durati G Id- G Ib-
AnRe | viomms: [T 4y 2lb O b I e I
in vioRHS (s) new zlb) zbk)

0.000

2.667

107.612 110.279 35,960.5 37,1725
-0.4000 | B88.228 198.507
363.806 562313 36,325.5 37,154.5 365.0 1.015% 829 2.231%

1.01 -0.4040 | 86.365 648.6738 239
52 254.447 903.124 36,365.5 37,154.5 40.0 0.110% 789 2.124%

0.50 -0.2040 | 668.643 1,571.773 21
513.765 2,085.538 7,154.5 2280 0.627% 561 1.510%

1.01 -0.2060 [ 110.876 2,196.414 142
747419 2,943.833 36,7255 37,1545 1320 0.361% 429 1.155%

1.01 -0.2081 [ 89.623  3,033.456 374
1,014.314 4,047.770 36,8215 37,137.5 96.0 0.261% 316 0.851%

1.01 -0.2102 [ 85.687 4,133.457 349
761 1,172,154 5,305.611 36,9115 37,130.5 90.0 0.244% 219 0.590%

0.25 -0.0525 [2,976.978 8,282.589 288
1,571.653 9,854.242 36,9945 37,130.5 83.0 0.225% 136 0.366%

1.01 -0.0531 | 943.187 10,797.429 172
2,242 498 13,039.927 37,023.0 37,113.5 28.5 0.077% 96.5 0.260%

0.80 -0.0425 [1,307.548 14,347.475 412
3,055.361 17,402.835 37,0775 37,113.5 54.5 0.147% 42 0.113%

1.00 -0.0425 | 171.847 17,574.683 117
4,215,526 21,790.209 37,094.0 37,113.5 16.5 0.045% 25.5 0.069%

1.00 -0.0425 [ 118.642 21,908.850 a7
5,516,688 27,425.539 37,111.0 37,116.5 17.0 0.046% 55 0.015%

1.00 -0.0425 90.552  27,516.091 3
8,123.452 35,639.543 37,116.5 37,116.5 55 0.015% o 0.000%

81.210 | 35,720.752

Table 4.10: Computing AV25-2 using AKV’4 with numcut = 900
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Figure 4.17 compares AKV3, AKV4, AKV’3, and AKV’4 for the smaller in-
stance HeKu20. Even though there are one missing point for both AKV4 and
AKV’4 and two for AKV3, the graph still shows that Strategy 4 outperforms Strat-
egy 3. Also, AKV’ is consistently observed to be a better model for this instance.

One final note about the new feature in Strategy 4 is that although it does not
seem to offer significant reduction in computation time, it is expected to be crucial
for solving large instances. Experience has shown that the algorithm can run out
of memory for certain difficult large instances. Therefore, keeping the problem size

small plays an important role in the next strategies.
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Figure 4.16: Comparison of Strategy 3 and Strategy 4 for AV25-1
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Figure 4.17: Comparison of Strategy 3 and Strategy 4 for HeKu20

4.2.4 From Strategy 4 to Strategy 5
Strategy 5 includes two important new features:

e If number of cuts found < % numcut, lower vioRHS to search for new viola-

tions.

e If no violations are found, lower vioRHS unless it has reached a very point of
-0.001.

These new features ensure the computation will not terminate prematurely and
prevent the algorithm from wasting an iteration when only a few cuts are found.
It is evident that these new features are successful since there is no more missing
data point in the comparison graph; see Figure 4.18. This means that premature

termination is now successfully avoided.

Figure 4.18 compares AKV4, AKV5, AKV’4, and AKV’5. It has evidently
shown that AKV’ outperforms AKV in general. Furthermore, AKV’5 is clearly the
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Figure 4.18: Comparison of Strategy 4 and Strategy 5 for AV25-2

overall best performing combination, which also yields the lowest computing time
thus far at numcut = 800. In addition, AKV’5 produces the lowest small-numcut
run time at numcut = 100, which has always been way above 130,000 seconds in
the past. The first two labeled data point of AKV’4 and AKV’5 at numcut = 800,
which are broken down in Tables 4.11 and 4.12, illustrate how Strategy 5 achieves

a lower computation time.

The shaded clock time in Table 4.12 signifies the activation of the new feature
that re-searches for new violations when the number of cuts found is less than
half of numcut. This new feature is used twice in AKV’5 at numcut = 800. The
first time occurs at the third iteration when the algorithm only found 40 cuts, so
it lowered vioRHS from -0.4040 (not shown) to -0.2040 and began another search
for new cuts. Because a small “detour” was taken, the time duration for finding
and sorting the cuts is slightly longer than how it would normally take. Since the
number of total constraints added after re-search for AKV’5 is much higher than
the 40 new constraints in AKV’4, the respective optimization timee is also longer

for the sub problem becomes bigger. However, because Strategy 5 takes action to
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AKV' 4 numecut 800

ch Durati Gap (old- Gap (zlb-
CANEE | vomms | TRt 4 2l Sl [aRlOle i, [SIPED sk
in vioRHS (s) new zlb) zbk}

0.000

2.159

104.822 106.981 [ 35,960.5| 37,1725
-0.4000 87.883 194.864
323.008 517.961 | 36,317.5 37,1545| 357.0 0.993% 837 2.253%

1.01 -0.4040 85.350 603.511 197
40 236.365 839.876 | 36,355.5 37,1335 38.0 0.105% 778 2.095%
0.50 -0.2040 | 724.941 | 1,564.817 19
479.864 2,044.681 36,565.5 37,1335 | 210.0 0.578% 568 1.530%
1.01 -0.2060 | 105.970 @ 2,150.651 142
680.532  2,831.183  36,697.0 37,133.5| 1315 0.360% 436.5 1.175%
101 -0.2081 86.134 | 2,917.337 217
961.329 3,878.667 36,803.5 37,1335| 1065 0.290% 330 0.883%
101 -0.2102 84.866  3,963.533 308
1,367.208 5,330.741 36,878.0 37,1335 74.5 0.202% 255.5 0.688%
101 -0.2123 86.643  5,417.384 133
144 1,342.239 6,759.622 36,913.0 37,1335 35.0 0.095% 220.5 0.594%
0.25 -0.0531 | 2,180.982 8,940.605 95
1,769.965 10,710.570 36,985.5 37,1335 72.5 0.196% 148 0.399%
1.01 -0.0536 | 897.552 11,608.121 95
2,435.072 14,043.193 37,0255 37,1335 40.0 0.108% 108 0.291%
0.80 -0.0429 | 1.440.323 15.483.516 89
3,032.451 18,515.967 37,068.5 37,1335 43.0 0.116% 65 0.175%
1.00 -0.0429 | 224.236 18,740.153 35
3,953.288 22,693.491 37,087.0 37,1335 18.5 0.050% 46.5 0.125%
1.00 -0.0429 | 123.757 22,817.247 29
4,962.019 27,779.267 37,111.0 37,116.5 24.0 0.065% 5.5 0.015%
1.00 -0.0429 89.987 27,865.254 3

i) A8 34,330.402 37,116.0 37,1165 5.0 0.013% 0.5 0.001%

1.00 -0.0429 86.860 Y\, 34426.262 o
84 6,837.350 Y1,263.612 37,116.0 37,1165 0.0 0.000% 0.5 0.001%
0.25 -0.010 114.767 p41378.379 o

,825. 49,203.435 37,116.5 37,1165 0.5 0.001% 1] 0.000%

49,250.620

Table 4.11: Computing AV25-2 using AKV’4 with numcut = 800

lower vioRHS earlier than Strategy 4, it saves one iteration to achieve a similar Z,.
For instance, AKV’5 requires 4 less iterations than AKV’4 at this given numcut.
The circled time intervals in Tables 4.11 and 4.12 show the impact of saving an extra
iteration. AKV’4 in Table 4.11 requires 2 iterations, which is composed of 2 cut-
searching steps and 2 optimization steps, to sufficiently lower vioRHS to improve its
Zy, and close the gap. Meanwhile, AKV’5 in Table 4.12 can sufficiently improve its
Zip by one iteration. This savings in time is more impactful toward the end of the
cutting plane process when the gap is small because by then the sub-problem with
many added constraints has grown much bigger, which means each optimization

step becomes very time-consuming.

Tables 4.11 and 4.12 present the successful case of Strategy 5, while Tables 4.13
and 4.14 show the weaker aspect of Strategy 5. Tables 4.13 and 4.14 are the other
two labeled data points in Figure 4.18. The two tables show that although the
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AKV'S numcut 300
| e | DI 2lb s, | PPl e (SRR o
in vioRHS (s) new zlb}) zbk}
0.000
2.655
101.981 104.636 35,960.5 37,1725
-0.4000 87.264 151.900
40 326.059 517.959 36,317.5 37,1545 357.0 0.993% 837 2.253%
0.51 -0.2040 | 1,316.412 | 1,834.371 157
550.183 2,384.554 36,552.0 37,1545 234.5 0.646% 602.5 1.622%
1.0 -0.2060 | 134.929 2,519.483 219
665.508 3,185.391 36,7025 37,1515 150.5 0.412% 449 1.209%
1.01 -0.2081 87.659 3,273.051 234
1,015.228 4,288.278 36,793.0 37,1515 90.5 0.247% 338.5 0.965%
101 -0.2102 84.708 4,372.987 458
1,019 1,106,688 5,479.675 36,926.5 37,1305 133.5 0.363% 204 0.549%
0.25 -0.0525 | 2,252.944 7,732.618 206
1,512,678 9,245.296 36,990.0 37,1305 63.5 0.172% 140.5 0.378%
1.01 -0.0531 870.147  10,115.443 225
1,954.074 12,069.517 37,042.0 37,1305 52.0 0.141% 88.5 0.238%
1.01 -0.0536 | 347.032 12,416.549 113
2,583.046 14,999.595 37,067.5 37,1305 25.5 0.069% 63 0.170%
1.00 -0.0536 | 138.982  15,138.577 57
3,511.091 18,649.667 37,098.0 37,1305 30.5 0.082% 32.5 0.088%
1.00 -0.0536 88.214 18,737.881 14
169 4 3 23,317.604 37,110.0 37,116.5 12.0 0.032% 6.5 0.018%
0.25 —0.0134( 1,148.714424,466.318 11
0,337.763 30,804.080 37,116.5 37,1305 6.5 0.018% 14 0.038%
94.118 30,898.198

Table 4.12: Computing AV25-2 using AKV’5 with numcut = 800

time saved in reducing one iteration is significant as circled in Table 4.13, the
overly aggressive drop in vioRHS in AKV5 results in even longer cut-searching time
as circled in Table 4.14. This weakness gives a warning that the modification to

vioRHS will have to be changed to smooth out the reduction process.

Figure 4.19 compares Strategies 4 and 5 for solving AV25-1. The performance
of the four combinations become even more indistinct as the four curves lie closely
to each other in the graph. Although it may seem difficult to conclude that AKV’
outperforms AKV and that Strategy 5 is better than Strategy 4 based on this graph,
Strategy 5 has for certain yielded the shortest computation time thus far for low
numcut such as at 100. This run time is only 1/3 of the run time for AKV'4 at

numcut = 100.

For the smaller instance HeKu20 in Figure 4.20 we can derive a conclusion
that is similar to AV25-2. AKV’5 is generally the best-performing combination
out of the four. However, there are a few exception cases, such as the circled data
point, which are summarized in Tables 4.15 and 4.16. The two tables show that
although the new feature in Strategy 5 allows AKV5 to finish in one less iteration
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ARV 4 numecut 700
Shange | iopng | DUENON | 2l i |SPUOME o e [SAPE ey
in vioRHS {s) new zlb) zbk)
0.000
1.673
60.485 62.158 36,399.5 37,137.5
-0.4000 83.745 145.504
292.320 438.223 36,560.0 37,130.5 204.5 0.563% 570.5 1.536%
1.01 -0.4040 83.447 521.670 22
83 280.210 801.880 | 36,597.0 37,130.5 37.0 0.101% 533.5 1.437%
0.50 -0.2040 | 1,171.036 1,972.915 1%
548.786 2,521.701 36,698.5 37,116.5 101.3 0.277% 418 1.126%
1.01 -0.2060 132.499 2,654.200 30
860.445 3,514.645  36,819.0 37,116.5 120.3 0.328% 297.5 0.802%
1.01 -0.2081 91.409 3,606.054 25
1,330.854 4,936.908 36,852.5 37,116.5 33.5 0.091% 264 0.711%
0.80 -0.1665 156.888 @ 5,093.756 61
1,791.007 ©6,884.803 36,935.0 37,116.5 82.5 0.224% 181.5 0.439%
1.01 -0.1681 84.867 6,969.670 62
2,633.996 9,603.667 36,938.5 37,116.5 3.5 0.009% 178 0.430%
0.80 -0.1345 88.205 9,691.872 16
3,454.663 13,146.535 36,993.5 37,116.5 55.0 0.149% 123 0.331%
1.01 -0.1359 85.968 13,232.503 81
4,584,192 17,816.695 37,014.0 37,116.5 20.5 0.055% 102.5 0.276%
0.80 -0.1087 89.344 | 17,906.039 327
5,557.824 23,463.863 37,053.0 37,116.5 39.0 0.105% 63.5 0.171%
1.00 -0.1087 85.526 | 23,549.389 61
&, 30,532,179 37,078.0 37,116.5 25.0 0.067% 38.5 0.104%
1.00 -0.1087 85.733 30,617.912 40
414 7.918.787 ¥8,536.6599 37,091.0 37,116.5 13.0 0.035% 25.5 0.069%
0.25 -0.0272Y% 2,864.198 f1,400.837 10
%3, 388.039 50,788.932 37,1100 37,1165 15.0 0.051% 6.5 0.018%
1.00 -0.0272 126.856 | 50,915.789 1
11,137.655 62,053.444 37,114.0 37,116.5 4.0 0.011% 2.5 0.007%
1.00 -0.0272 92,204  62,145.648 12
13,954.358 76,100.006 37,116.5 37,116.5 2.5 0.007% 1] 0.000%
96.081 | 76,196.087

Table 4.13: Computing AV25-2 using AKV4 with numcut = 700

than AKV4, AKV5 still takes longer to reach optimality. As seen in the two circled
optimization time intervals in Table 4.15, the optimization time of AKV5 in the last
two iterations become too time-consuming due to containing more constraints than
in AKV4. As a result, the sub-problem becomes too large for this small instance,
and consequently the time saved in running fewer iterations for AKV5 cannot even

pay off the substantial increase in optimization time.
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AKV S numcut 700

ch Durati Gap (old- Gap {zlb-
EENES | weans | e | 2lb SO L I L
in vioRHS (s) new zlb} zbk}

0.000

1.667

60.528 62.195 38,3555 | 37,1375
-0.4000 84.009 146.204
83 301.380 447.584  36,560.0 37,1305 204.5 0.563% 5705 1.536%

0.51 -0.2040 | 2,989.616 = 3,437.200 22

523.291 3960491 36,696.0 37,130.5 136.0 0.372% 434.5 1.170%
101 -0.2060 | 156.863  4,117.354 55

818.758  4,936.112 36,790.5 37,130.5 594.5 0.258% 340 0.916%
101 -0.2081 | 100.543  5,036.655 86

1,251,343 6,287.798  36,856.5 37,130.5 66.0 0.179% 274 0.738%
101 -0.2102 84.101 6,371.899 75

204 8,059.099 36,928.0 37,130.5 715 0.194% 202.5 0.545%

0.25 -0.0531< 7,938.256 )15,997.355 185
2. 04 18,317.559 36,989.5 37,119.5 615 0.167% 130 0.350%

101 -0.0536< 3,266.457 )21,584.016 57
5 29 25,214.045 36,999.0 37,119.5 9.5 0.026% 120.5 0.325%

0.80 -O.MZB( 5,974.219 )31,188.264 93
4 00 35,706.564 37,040.0 37,119.5 41.0 0.111% 79.5 0.214%

0.80 -0.0343( 6,552.204 )42,?53.?68 51

5, 47,866.930 37,062.5 37,119.5 22.5 0.061% 57 0.154%
Lo -0.0343( 3,598,114 J51,465.044 68

7, 3| 58,591.327 | 37,086.0 37,1195 23.5 0.063% 33.5 0.090%
Loo -0.0343( 1,258.184 J)59,849.511 23

8,478.388 68,327.899 37,105.5 37,1165 19.5 0.053% 11 0.030%
100 -0.0343 99.725 68,427.624 5

10,179.375 78,607.003 37,1115 37,1165 6.0 0.016% 5 0.013%
Lo -0.0343 90.460  78,697.463 1

12,383,455 91,080.922 37,116.0 37,116.5 4.5 0.012% 0.5 0.001%
oo -0.0343 86.809 91,167.731 o

14,730.038 105,897.769 37,116.5  37,116.5 0.5 0.001% o 0.000%

83.100 105,980.870

Table 4.14: Computing AV25-2 using AKV5 with numcut = 700
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Figure 4.20: Comparison of Strategy 4 and Strategy 5 for HeKu20
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ARV 4 numcut 800

ch Durati Gap (old- Gap (zlb-
ANES | viopus O g zlb sbi |SaPIElR o g |GaRLE

; % diff.
in vioRHS (s) new zlb) zbk) !

0.000

0.523
15.027 15.550 [15,286.0° 15,545.0
-0.4000 ( 89.772  105.321
100.302 205.624 15,380.0 15,5439.0 94.0 0.615% 169.0 1.087%

1.01 -0.4040 | 18.513 224,137 27
235.323  459.459 15,432.0 15,549.0 52.0 0.338% 117.0 0.752%

1.01 -0.4080 | 18.484  477.953 22
2 236,752 714706 15,435.0 15,549.0 7.0 0.045% 110.0 0.707%

0.51 -0.2080 | 92.472  B07.178 o
411,371 1,218.448 15,498.0 15,549.0 59.0 0.382% 51.0 0.328%

1.01 -0.2101 | 18.756 1,237.204 145

1,922,708 15,543.0 15,545.0 45.0 0.290% 6.0 0.039%

1.00 -0.2101 }18.719 1,941.427 137
5 631768 ,573.195 15,544.0 15,549.0 1o 0.006% 5.0 0.032%
0.25 -0.0525%( 238.052 §2,811.246 9
3,801.915 15,549.0 15,549.0 5.0 0.032% 0.0 0.000%
3,818.532

Table 4.15: Computing HeKu20 using AKV4 with numcut = 800

AKV 5 numcut 800
ch Durati G Id- G lb-
(THRNEE | wiomms | sy 2lb b |SPIE) o iee [SPIE o e
in vioRHS (s} new zlb) zbk)

0.000

0.896

14,310 15.206 | 15,286.0 15,545.0
-0.4000 | 86.233 101.444
98.10%  199.553  15,380.0 15,549.0 94.0 0.615% 169.0 1.087%

1.01 -0.4040 | 18.436  218.039 27
2 231.455 449.452 15,432.0 15,545.0 52.0 0.338% 117.0 0.752%

0.51 -0.2080 | 50.951 & 540.443 22
415.700 956.143 15,503.5 15,549.0 71.5 0.463% 45.5 0.293%

1.01 -0.2101 | 18.824  974.967 41
125 694.006 1,668.973 15,541.0 15,549.0 373 0.242% 2.0 0.051%

0.25 -0.0525 1,813.004 64
( ,975.212 15,548.0 15,549.0 7.0 0.045% 1.0 0.006%

1.00 -0.0525 | ] 2,995.205 I

,506.344  15,545.0 15,545.0 1.0 0.006% 0.0 0.000%
18,591 4,524.935

Table 4.16: Computing HeKu20 using AKV5 with numcut = 800

4.2.5 From Strategy 5 to Strategy 6

In Strategy 6, the magnitude of any major and minor reduction to vioRHS cannot
exceed 0.1, unless when the algorithm runs out of cuts and therefore it needs to
lower vioRHS further to find cuts. This new change helps to calm the process of
vioRHS reduction, and it successfully brings down the overall computation time as

seen in Figure 4.21. Furthermore, this new approach results in the lowest run time
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thus far at numcut = 300, which is labeled in Figure 4.21 and detailed in Tables 4.17
and 4.18.
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Figure 4.21: Comparison of Strategy 5 and Strategy 6 for AV25-2

The two circled durations in Table 4.17 are the total time required for finding
and sorting the cuts after the algorithm made a major reduction in vioRHS due to
shortages of cuts. The drop in vioRHS in Strategy 5 is much more aggressive than
in the updated Strategy 6. Consequently, Table 4.18 shows that although Strategy
6 requires more frequent major reductions in vioRHS, each drop to vioRHS does not
exceed 0.1, and therefore the required cut-searching time is substantially decreased.
Furthermore, This new change corrects the overly aggressive vioRHS reduction in

Strategy 5, such as the case shown in Table 4.14.

When comparing AKV and AKV’ using the instance AV25-1 as presented in
Figure 4.22, it is still difficult to judge which model performs better, as the four
curves lie closely to each other with many overlaps. However, when comparing
Strategies 5 and 6, Figure 4.22 shows that Strategy 6 generally outperforms Strategy
5, with an exception when numcut = 100, which is analyzed in Tables 4.19 and 4.20.

The circled duration in Table 4.19 represents the time taken in finding and sorting
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AKV'S numecut 300

ch Durati Gap (old-
A0EE | yiorHs | oo ts) 2lb sk |GaPle

sairr, | C2PLIE-
in vioRHS (s)

% diff.
new zlb) 2bk) A

0.000

2.977
108.761  111.733 |35,860.5 37,172.5
-0.4000 | 87.298 199.035
194408 393.443  36,247.5 37,130.5| 287.0 0.798% 883 2.378%

1.01 -0.4040 | 85.470 478.914 a4
156 2| 688.257 | 36,326.5 37,130.5 78.0 0.218% 804 2.165%
0.50 —D.ZMD( 789.722 )1,477.979 3
248274 1,726.203 36,510.0 37,130.5| 183.5 0.505% 620.5 1.671%
1.01 -0.2060 | 143.927 1,870.130 33
294.052 2,164.181 36,598.5 37,130.5 88.5 0.242% 532 1.433%
1.01 -0.2081 | 87.574 2,251.756 43
514933 2,766.688 36,667.0 37,130.5 638.5 0.187% 463.5 1.248%
1.01 -0.2102 | 85.416 2,852.105 113
569.478  3,421.583 36,733.0 37,1305 66.0 0.180% 397.5 1.071%
1.01 -0.2123 | 85.960 3,507.543 84
604329 4,111.872 36,820.0 37,130.5 87.0 0.237% 310.5 0.836%
1.01 -0.2144 | 84.528 4,195.401 95
641.330 | 4,837.730 36,890.5 37,130.5 70.5 0.191% 240 0.646%
1.01 -0.2166 | 84.742 4,322.473 91

195 5,541.795 36,917.5 37,130.5 27.0 0.073% 213 0.574%
0.25 —0.054).<3955.DS '9,506.876 38

' 734.180 | 10,241.056 36,936.5 37,130.5 1.0 0.051% 184 0.522%

0.80 -0.0433 |4,639.505 14,880.561 107

762.784 15,643.745 36,974.0 37,116.5 37.5 0.102% 142.5 0.384%
0.80 -0.0346 |3,372.214 15,015.959 72

823.964 19,839.923 37,005.5 37,116.5 3L.5 0.085% 111 0.299%
0.87 -0.0300 |3,846.381 23,686.304 58

956.707 | 24,643.011 37,030.0 37,116.5 24.5 0.066% 86.5 0.233%
1.00 -0.0300 |3,152.158 27,795.169 54

1,018.619 28,813.788 37,052.0 37,116.5 22.0 0.059% 64.5 0.174%
1.00 -0.0300 |2,321.017 31,134.804 a7

1,133.034 32,267.838 37,068.0 37,116.5 16.0 0.043% 48.5 0.131%
1.00 -0.0300 |1,155.061 33,422.899 22

1,312,582 34,735.492 37,0845 37116.5 16.5 0.045% 32 0.086%
1.00 -0.0300 | 805.234 35,540.726 9

1,462.252 37,002.977 37,094.5 37,116.5 10.0 0.027% 22 0.059%
1.00 -0.0300 | 345.608 37,348.585 12

1,656.571 39,005.157 37,106.0 37,116.5 115 0.031% 10.5 0.028%
1.00 -0.0300 | 112.230 39,117.387 7

1,877.923 40,995.310 37,112.5 37,116.5 6.5 0.018% 4 0.011%
1.00 -0.0300 | 87.342 41,082.652 o

2,213.655 43,296.308 37,114.5 37,116.5 2.0 0.005% 2 0.005%
1.00 -0.0300 | 85.045 43,381.352 o

2,552,013 45,933.366 37,116.5 37,116.5 2.0 0.005% o 0.000%

90.153 | 46,023.519

Table 4.17: Computing AV25-2 using AKV’5 with numcut = 300

the cuts after the algorithm experiences a shortage in the number of cuts. This
major reduction to vioRHS is smoothed out in Strategy 6 as the two circled times
in Table 4.20 is much less than the cut-searching duration in Table 4.19. However,
the reason why AKV’6 takes longer to close the gap is due to the continuous minor
reduction to vioRHS as circled in the first column of Table 4.19. The algorithm
continuosly decreases vioRHS because it finds that Zj;, is not improving enough.
However, the modification to vioRHS is not the only factor that can affect the
rate of lower bound improvement. The number of cuts added to the sub-problem
in every iteration can also influence how the lower bound increases. In this case
of numcut = 100, only roughly 100 cuts are added to the sub-problem at each

iteration, so the impact of cuts is not great enough to cause quick improvement
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AKV' 6 numecut 300

ch Durati Gap (old- Gep (zlb-
0L | ionps: [EURM ey 2lb Tl Ll

% diff.
in vioRHS (s} new zlb) zbk) !

0.000
2.031

96.729  98.770 | 35960.5 37,1725

-0.4000 | B6.453 | 185.223

180,885  366.108  36,247.5 37,130.5| 287.0 0.798% 883  2.378%

1.01 -0.4040 | 84.339 450.507 a4
156 8 | 639.935  36,326.5 37,130.5 79.0 0.218% 204 2.165%
0.75 -0.3040( 85.723 725.658 3
227.981 953.639  36,510.0 37,130.5| 183.5 0.505% 620.5 1.671%
101 -0.3070 | 84.121 1,037.760 33
82 217657 | 1,315.416 36,598.5 37,130.5 88.5 0.242% 532 1.433%
0.68 70.2101( 100.414 )1,415.830 49
481.732 1,897.562 36,667.0 37,130.5 68.5 0.187% 463.5 1.248%
101 -0.2122 | 84.144  1,981.706 113
519491 2,501.197 36,733.0 37,130.5 66.0 0.180% 397.5 1.071%
101 -0.2143 | 85.042  2,586.238 84
558.526 3,145.764 36,820.0 37,130.5 87.0 0.237% 310.5 0.836%
1.01 -0.2165 | 83.727  3,229.491 a5

377 5 8 3,822,829 36,889.0 37,130.5 69.0 0.187% 241.5 0.650%
0.54 -D.1165( 135.756 )3,958.585 85

g 4,624.279  36,934.5 37,130.5 45.5 0.123% 196 0.528%

0.80 -0.0932 | 342.390 4,966.669 56
703.505 5,670.175 36,966.0 97,119.5 315 0.085% @ 60153.5 61.938%

0.80 -0.0745 | 543.363 6,213.537 51
775.767 6,989.304 36,995.0 97,119.5 29.0 0.078%  60124.5 61.908%

0.80 -0.0586 | 497.408 7.486.712 38
882,730 8,369.442 37,0135 97,118.5 18.5 0.050% 60106 | 651.889%

0.80 -0.0477 |1,143.247 9,512.689 24
968.919 10,481.609 37,048.0 97,119.5 34.5 0.093% 600715 61.853%

1.00 -0.0477 | 614.478 11,096.086 22
1,103.645 12,198.731 37,065.0 57,118.5 17.0 0.046% = 60054.5 ©61.836%

1.00 -0.0477 | 332150 12,531.881 5
1,241.196 13,773.077 37,079.5 97,119.5 14.5 0.039% 60040 | 61.821%

1.00 -0.0477 | 162.315 13,935.393 33
1,411.326 15,346.719 37,093.0 57,118.5 13.5 0.036% = 60026.5 61.807%

1.00 -0.0477 | B7.550 15,434.269 4
1,571.538 17,005.807 37,101.0 957,1159.5 8.0 0.022% @ 60018.5 61.799%

100 -0.0477 | 85.911 17,091.719 2
1,773.855 18,865.573 37,109.5 37,116.5 8.5 0.023% 7 0.019%

1.00 -0.0477 | 85.719 18,951.292 ¥
15 2,023.516 20,974.808 37,115.0 37,116.5 5.5 0.015% ey 0.004%

0.25 -0.0119 | 375.719 21,350.528 0

2,364.183 23,714.710 37,116.5 37,116.5 15 0.004% o 0.000%
88.253 | 23,802.964

Table 4.18: Computing AV25-2 using AKV’6 with numcut = 300

in 7, even after several attempts to adjust the number of cuts that can be found
by changing the vioRHS. In summary, this exception case where Strategy 6 yields
a longer computing time is mainly due to a low numcut parameter, which is not
sufficient to conjecture Strategy 6 is worse than Strategy 5. Furthermore, since low
numcut generally yields long computing time, the exception case as presented in

Table 4.20 is not concerning for future development.

Finally, Figure 4.23 shows the comarison of AKV5, AKV6, AKV’5, and AKV’6
when solving the smaller instance HeKu20. It is straightforward to see that AKV’
has clearly outperformed AKYV especially when numcut increases. Furthermore,
the figure also demonstrates that Strategy 6 has consistently improved the overall

computing time.
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AKV'S numcut 100
Change | opns [DUEION) g 2lb s |CIRIME o e [GORIIIS) o e
in vioRHS (s} new zib) zbk)
0.000
2.336
98.704 101.039 | 44635 | 4,618.0
-0.4000 86.959 187.998
148,512 336.510 4,488.0 4,618.0 24.5 0.549% 130 2.815%
1.01 -0.4040 82.854 419.364 4
46 1 603.718 = 4,511.5 4,618.0 235 0.524% 106.5 2.306%
0.51 —D.ZOBD< 692.324 J)1,296.041 8
451 1,501.492 4,531.0 4,613.0 ik S 0.432% 87 1.884%
1.01 -0.2101 | 289.284 1,790.776 18
213.170 2,003.946 4,543.5 4,618.0 12.5 0.276% 74.5 1.613%
1.01 -0.2122 | 109.702 2,113.648 4
235.027 2,348,675 4,552.5 4,618.0 9.0 0.198% 65.5 1.418%
1.01 -0.2143 85.041  2,433.716 6
240,737 2,674.453 4,562.0 4,618.0 9.5 0.209% 56 1.213%
1.01 -0.2165 83.385 @ 2,757.838 5
259,609 3,017.447 4,568.5 4,618.0 6.5 0.142% 49.5 1.072%
1.01 -0.2187 82.903 @ 3,100.350 8
269.762 3,370.112 4,575.0 4,618.0 6.5 0.142% 43 0.931%
1.01 -0.2208 | 82.919  3,453.031 12
289.571  3,742.602 4,581.0 4,618.0 6.0 0.131% 37 0.801%
1.01 -0.2230 82.984  3,825.586 19
325.439  4,151.025 4,586.5 4,618.0 5.5 0.120% 315 0.682%
0.80 -0.1784 83.201  4,234.226 25
330.144 4,564.370 4,592.5 4,618.0 6.0 0.131% 25.5 0.552%
1.01 -0.1802 82.917  4,647.287 12
318671 4,965.958 4,536.5 4,618.0 4.0 0.087% 21.5 0.466%
0.80 -0.1442 83.505 @ 5,049.463 F
351.926 5,401.389 4,599.5 4,618.0 3.0 0.065% 18.5 0.401%
0.80 -0.1153 | 91.260  5,492.649 12
342.936  5,835.5386 4,602.5 4,618.0 3.0 0.065% 5.5 0.336%
0.80 -0.0923 | 133.921 5,969.507 7
351.236 6,320.743  4,605.0 4,613.0 2.5 0.054% 13 0.282%
0.80 -0.0738 | 254.290 6,575.034 10
387531 6,962.564 4,607.0 4,618.0 2.0 0.043% 11 0.238%
0.80 -0.0591 | 829.479 7,792.044 9
402.779 8,194.823 4,609.5 4,618.0 2.5 0.054% 8.5 0.184%
1.00 -0.0591 | 385.634 8,580.457 2
428.124 9,008.581 4,611.5 4,618.0 2.0 0.043% 6.5 0.141%
1.00 -0.0591 | 246.271 9,254.853 11
487279 9,702.132  4,612.5 4,618.0 1.0 0.022% 5.5 0.119%
1.00 -0.0591 | 198.640 9,900.772 4
444,047 10,344.819 4,614.0 4,618.0 1.5 0.033% 4 0.087%
1.00 -0.0591 | 118.023 10,462.842 5
475.219 10,938.062 4,615.0 4,618.0 1.0 0.022% 3 0.065%
1.00 -0.0591 | 103.195 11,041.256 9
514.936 11,556.192 4,616.0 4,618.0 1.0 0.022% 2 0.043%
1.00 -0.0591 83.204 11,639.39 2
552.778 12,192.174 4,617.0 4,618.0 1.0 0.022% 1 0.022%
1.00 -0.0591 | 83.316 12,275.490 1
570,219 12,845.709 4,617.0 4,618.0 0.0 0.000% 1 0.022%
1.00 -0.0591 83.253 12,928.961 14
609.167 13,538.129 4,617.5 4,618.0 0.5 0.011% 0.5 0.011%
1.00 -0.0591 83.266 < 13,621.395 3
15 669.32? 14,291.321 4,617.5 @ 4,618.0 0.0 0.000% 0.5 0.011%
0.25 -0.0148 |1,240.283 15,531.610
728.321 16,259.931 4,618.0 4,618.0 0.5 0.011% 0 0.000%
91.186 '16,351.117

Table 4.19:

Computing AV25-1 using AKV’5 with numcut
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AKV'6 numecut 100
Ehange | oy | BUEHON | gy 2b abk (SPOI poe (SEROI) e
in vioRHS (s) new zlb) zbk)
0.000
2.916
98.213 101.129 4,463.5 4,618.0
-0.4000 88.137 189.266
148.842 338.109 4,488.0 4,618.0 24.5 0.549% 130 2.815%
1.01 -0.4040 | 83.429  421.538 4
46 605.491 4,511.5 @ 4,613.0 23.5 0.524% 106.5 2.306%
0.76 —0.3080< 99.632 705.123 8
'206.305 911.428 4,531.0 4,618.0 19.5 0.432% 87 1.884%
1.01 -0.3111 83.544 994.972 18
211995 1,206.967  4,543.5 4,613.0 12.5 0.276% 74.5 1.613%
1.01 -0.3142 83.372 1,250.339 4
234.897  1,525.236 4,552.5 4,618.0 9.0 0.198% 85.5 1.418%
1.01 -0.3174 84.248 1,609.484 6
98 Z 1,860.162 4,561.5 4,618.0 9.0 0.198% 56.5 1.223%
0.68 —0.2174< 84.027 1,944.189
268.206 2,212,396 4,569.0 4,618.0 7.5 0.164% 49 1.061%
1.01 -0.2195 83.484 2,295.879 8
‘280.139  2,576.018 4,575.5 4,618.0 6.5 0.142% 42.5 0.520%
-0.2217 | 83.647 | 2,659.665 9
296.965 2,956.631 4,580.0 4,613.0 4.5 0.098% 38 0.823%
0.80 -0.1774 84.049 3,040.680 18
308.459 3,349.138 4,585.0  4,618.0 5.0 0.109% 33 0.715%
0.80 -0.1419 | 101.880 @ 3,45L.01% 12
328.625 3,779.644  4,589.0 4,618.0 4.0 0.087% 29 0.628%
0.80 -0.1135 | 158.640 @ 3,978.283 19
339.592 | 4,317.876 4,593.5 4,618.0 4.5 0.098% 245 0.531%
0.80 -0.0908 | 305.175 4,623.050 17
354.309 4,977.360  4,597.0 4,618.0 3.5 0.076% 21 0.455%
0.80 -0.0727 | 727.447 | 5,704.807 15
350.105 6,054.912 4,600.0 4,618.0 3.0 0.065% 18 0.390%
0.80 -0.0581 | 1,279.292  7,334.204 17
355.283 7,689.487 4,603.0 4,618.0 3.0 0.065% 15 0.325%
0.80 -0.0465 | 2,095.796 9,785.283 11
373.322 10,158.604 4,605.5 4,618.0 2:5 0.054% 125 0.271%
0.80 -0.0372 | 2,784.474 12,943.078 10
389.218 13,332.296 4,608.5 4,618.0 3.0 0.065% 9.5 0.206%
0.81, -0.0300 [ 3,752.878 17,085.174 i)
402.409 17,487.583 4,610.0 4,613.0 15 0.033% 8 0.173%
1.00 -0.0300 | 3,471.585 20,959.169 ]
415414 21,374.582 4,612.5 4,618.0 2.5 0.054% 5.5 0.119%
1.00 -0.0300 | 2,228.326 23,602.908 8
428.579 24,031.487 4,613.5 4,618.0 1.0 0.022% 4.5 0.097%
1.00 -0.0300 | 2,326.351 26,357.839 10
455.020 26,812.859 4,615.0 4,618.0 1.5 0.033% 3 0.065%
1.00 -0.0300 | 799.094 27,611.952 3
481.933  28,093.174 4,616.0 4,618.0 1.0 0.022% 2 0.043%
1.00 -0.0300 | 631.606 28,724.780 2
499.668 29,224.443 4,617.0 4,618.0 1.0 0.022% 1 0.022%
1.00 -0.0300 | 189.106 @ 29,413.555 3
529.333  29,942.888 4,617.5 4,6138.0 0.5 0.011% 0.5 0.011%
1.00 -0.0300 | 126.323 30,009.212 0
546.506 30,615.718 4,617.5 4,613.0 0.0 0.000% 0.5 0.011%
1.00 -0.0300 86.994 | 30,702.711 1
577.217 31,279.929 4,618.0 4,618.0 0.5 0.011% 0 0.000%
83.133 | 31,363.061

Table 4.20: Computing AV25-1 using AKV’6 with numcut = 100
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Figure 4.23: Comparison of Strategy 5 and Strategy 6 for HeKu20
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4.3 Summary of Experiments with Medium-Sized

Instances

In this chapter, three medium-sized instances are analyzed to help us understand
the effect of the parameters vioRHS and numcut on the computing time to solve
the SRFLP. The conclusion to the medium-sized instances is likely to shed some
light in solving large instances. This section should also provide some advice to the
readers who wish to solve medium-sized SRFLPs using SDP and a cutting plane
approach. It should be noted that the computer setup can also affect the parameter
setting and the computing time. All the computational results were obtained on a
2.0GHz Dual Opteron with 16Gb of RAM.

4.3.1 HeKu20

HeKu20 is the smallest medium-sized instance studied in this thesis. As discussed
in Section 4.2.2; the cutting plane algorithm runs faster at lower numcut due to
smaller optimization problem size and simpler computation requirement. There-
fore, the conclusion for HeKu20 does not extend to the solving of larger instances.
Nonetheless, it is interesting to notice how fast the problem complexity grows with

the number of departments.

The lowest run time (986 seconds) was achieved by AKV2 at numcut = 100.
Although every new strategy with new features results in better overall perfor-
mance and AKV’ has consistently outperformed AKV, AKV2 at numcut = 100
becomes an exception with a very low computing time, see Figure 4.14. However,
this combination may be a special case to HeKu20. Therefore, when solving a
smaller medium-sized instance like HeKu20, it is recommended to use AKV’ and
Strategy 6 at low numcut in the range of 50 to 300. Strategy 6 is chosen for it is
the least aggressive method which also prevents premature termination. AKV’ is
preferred since it almost always outperforms AKV, and consequently AKV’ should

have better success rate.
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4.3.2 AV25-1

AV25-1 is an example of the linear ordering problem, which is also a special case of
the general SRFLP. Therefore, the conclusion for AV25-1 may not apply to solving
general instances. Nevertheless, it is worthy of note to see that a different problem

class can lead to a slightly different conclusion.

For AV25-1, although it is consistent to see newer strategies outperform the
earlier versions, it is generally difficult to judge whether AKV or AKV’ runs faster.
Based on the graphs for AV25-1 in Section 4.2, the frequency of AKV outperforming
AKV’ seems slightly higher. In fact, the lowest computing time (7,532 seconds)
comes from AKV6 at numcut = 400.

In conclusion, when solving a medium-sized linear ordering problem, it is sug-
gested to use Strategy 6 since it has the smoothest approach to vioRHS while en-
suring the algorithm will not terminate prematurely. Furthermore, medium-range
numcut such as 350 to 500 generally yields lower computing time. However, the
distinction between AKV and AKV’ is not big enough to conclude which relax-
ation is better for this problem class. It is advised for the readers to carry out
more detailed analysis on the linear ordering problem class using the cutting plane
approach with AKV and AKV’. The readers can also refer to [16] for other cutting

plane algorithms for the linear ordering problem.

4.3.3 AV25-2

AV25-2 is the most complicated and difficult SRFLP instance out of the three, and
therefore the conclusion is likely to predict the computation for large instances.
As studied in Section 4.2, AKV’ has consistently outperformed AKV, and the new
strategy has almost always improved its previous version. In fact, the best run time
(23,803 seconds) is given by the combination of AKV’6 at numcut = 300. Therefore,
when solving a medium-sized instance like AV25-2 with a similar computer setup,
one should use the combination of AKV’ and Strategy 6 while applying to the
medium-range numcut. The medium-range numcut between 300 to 550 is observed
to yield low computing time. However, high-range numcut after 550 also results
in reasonably low run time which does not deviate much from the middle range.

Therefore, it is also recommended to explore the performance of higher numcut when
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one wishes to solve the medium-sized instances like AV25-2 or larger instances. The

study for large instances is presented in the next chapter.

4.4 Conclusion

The conclusion provides the highlight of Chapter 4.

To solve a small medium-sized instance like HeKu20, it is recommended to use:

e AKV’ relaxation combined with Strategy 6,

e Low numcut in the range of 50 to 300.

For a medium-sized linear ordering problem like AV25-1, the distinction between
AKV and AKV’ relaxations is not prominent. Therefore, it is advised to explore
both relaxations when approaching a problem class similar to AV25-1. The readers
can also refer to [16] for other cutting plane algorithms targetted to linear ordering
problem. Nevertheless, when solving a medium-sized instance like AV25-1 using

the proposed cutting plane strategy, it is recommended to use:

e Strategy 6,

e Medium-range numcut such as between 350 to 500.
For the general medium-sized SRFLPs like AV25-2 it is recommended to use:

e AKV’ relaxation combined with Strategy 6,
e Medium-range numcut such as between 300 to 550,

e Higher-range numcut is also recommended.
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Chapter 5

Global Solutions for Large

Instances

The SRFLP is strongly NP-hard [1] and remains a difficult problem class. By uti-
lizing AKV with a simple cutting plane scheme, Anjos and Vannelli obtained global
optimal solutions for a few large SRFLPs up to 30 departments that had remained
unsolved since 1988 [5]. This achievement was considered a breakthrough in the
field. Most recently, Amaral presented a new lower bound that solved instances
of size up to n = 35 in [2]|. In this thesis, six new large instances with 36 depart-
ments were successfully solved to optimality using AKV’ and the new cutting plane
methodology. We also briefly point out how the computing time can vary greatly

between different sets of data of the same size.

5.1 New Strategies for Large Instances

The combination of Strategy 6 with AKV’ was considered the best approach in
solving the medium-sized instances. However, after a few attempts to solve some
larger instances, the weaknesses of Strategy 6 began to reveal themselves. Conse-
quently, two new strategies are proposed to handle large instances. This section
presents Strategies 7 and 8, and Section 5.2 reports the experimental results and

analysis.
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5.1.1 Strategy 7

Strategy 7 changes the approach in the major adjustment of vioRHS when the
problem is running low on the violations found. Instead of decreasing vioRHS by
75%, the new approach lowers vioRHS by half. This new change also calms the
vioRHS reduction process. Figures 5.1 and 5.2 illustrate the logic of the cutting
plane algorithm and the modification process of vioRHS in Strategy 7. The impact

of these new changes is illustrated in Section 5.2.1.

VIORHS =
VIORHS+min(-0.5*VioRHS,0.1)

# of cuts found >
numcut ?

No change to
VIiORHS

abS(Zbk—Zm)/ZbK
>0.0027?

abs(oldz,—newz,p,)/oldZ,, No—{VIORHS = VvioRHS*1.01

< 0.00137?

Yes

VIORHS =
min(vioRHS+min(-0.2*vioRHS,0.1),-0.03)

Figure 5.1: Strategy 7 on modification of vioRHS

68



Lower viORHS such that
VIORHS = Min(VvioRHS+
Min(-0.75*VioRHS,0.1),
-0.001)

Lower VioRHS
such that vioRHS

Solve relaxation,
get X*, Z]b

Compute how each

= VIORHS*0.25

7y

No

Any new constraints added
since the beginning?

Has vioRHS
reached -0.001?

Yes

A

combination (p1,p2,p3)
violates the inequalities

No more
violations?

No

# of cuts found <
Y of numcut ?

No
v v
Exit loop Yes Rank the
combinations by
severity of violation

Lower VIORHS such that

VIORHS = Min(vioRHS+ 4

<+

Min(-0.5*VioRHS,0.1),
-0.001)

Remove
inequality
constraints with
slack > 0.1

A

Modify viORHS

*

No

abs(Zy, - Zgx)

Add top numcut most
violated inequalities to
relaxation

Run AKVheur,
get Zy and 7

Re-optimize, get

A

new X*, Zlb

Figure 5.2: Cutting plane algorithm for Strategy 7
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5.1.2 Strategy 8

When the problem runs low on the violations found, Strategy 8 also handles the
major adjustment of vioRHS differently. As demonstrated in Figures 5.3 and 5.4,
instead of decreasing vioRHS by half as in Strategy 7, the new approach lowers
vioRHS by 40%. This new change further smoothes the vioRHS reduction process.

The effect of these new modifications is studied in Section 5.3.

# of cuts found >
numcut ?

VIORHS =
ViIORHS+min(-0.4*VioRHS,0.1)

No change to

abs (Zbk_zlb)/ZbK ”
VIORHS

>0.0027?

abs(oldz;,—newz,p)/oldzZ,, No—p{VIORHS = VvioRHS*1.01

< 0.00137?

Yes

VIORHS =
min(vioRHS+min(-0.2*vioRHS,0.1),-0.03)

Figure 5.3: Strategy 8 on modification of vioRHS
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Figure 5.4: Cutting plane algorithm for Strategy 8
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5.2 Experimental Analysis

This section reports the preliminary findings in developing Strategies 7 and 8.
These results were obtained by SDPT3 version 4.0 [40] on a 2.0GHz Dual Opteron
with 16Gb of RAM. However, it was later found out that as the problem size
increases, the optimization time becomes too long. As a result, newer computations
were generated on a Sun Fire V890 8*1.2GHz with 64Gb of RAM, while the SDP
problems were solved using the interior-point solver CSDP (version 5.0) of [8] in
conjunction with the ATLAS library of routines [41]. A simple comparative analysis
between these two computing setups is also documented in this section to provide

the best combination in solving the new large instances.

Several large instances were used in this section. HeKu30 is from Heragu and
Kusiak in [20], while STE36-1 is created by Anjos and Yen in [6] and is originally
based on the QAP instance from Steinberg in [38]. It should be noted that while
STE36-1 is a linear ordering problem instance, HeKu30 is a SRFLP instance with
varying lengths. All of the instances used in this thesis are listed in Appendix C.

5.2.1 Preliminary Results by SDPT3

Upon obtaining Strategies 4, 5, and 6, they were used to solve a few larger instances
by SDPT3 version 4.0 [40] on a Sun Fire V890 8*1.2 GHz with 64 Gb of RAM. But
after several attempts, it was observed that even the best strategy for the medium-
sized problem is still not good enough for large instances. The main problem is
that the vioRHS reduction process is still too aggressive, which leads to substantial
CPU time to find and sort the cuts. Tables 5.1 and 5.5 illustrate the impact of
the minor changes made in Strategies 7 and 8 to smooth out the vioRHS reduction

process.

Table 5.1 shows that although the number of iterations has increased slightly
as we updated the strategies, the computation time has greatly decreased. The
percentage differences in the total CPU time between AKV’4 and AKV’8 are 18.9%
and 24.1% for numcut = 700 and 800 respectively. Even for AKV’6, the best
strategy for the medium-sized problem, the percentage difference to AKV’S is as
high as 20.6% at numcut = 800. The number of iterations may increase slightly

for the newer strategies because as the changes made to vioRHS becomes more
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AKV'4 AKV’5 AKV’6 AKV’7 AKV’8
nuncut || CPU | Number | CPU | Number | CPU | Number | CPU | Number | CPU | Number
time of time of time of time of time of
(sec) | iterations | (sec) | iterations | (sec) | iterations | (sec) | iterations | (sec) | iterations
700 87,602 17 93,232 16 72,781 18 71,222 18 71,045 18
800 82,513 16 94,072 14 78,967 15 74,139 15 62,663 14

Table 5.1: Comparison of Strategies 4, 5, 6, 7, and 8 Using HeKu30

120,000

100,000

AKV'6 @
numcut = 800

oooooo

/ AKV'7 @
numcut = 800
——AKV' 6
~B-AKV' 7
AKV'8 @ AKV'8
numcut = 800

40,000

oooooo

Figure 5.5: Comparison of Strategies 6, 7, and 8 for HeKu30

gentle, the rate of improvement to Zj; may also become lower. As a result, it
may sometimes take a few more iterations to close the gap. However, since the
time duration for each iteration becomes much shorter, the overall effect is usually

positive.

Figure 5.5 shows that Strategy 8 generally outperforms Strategies 6 and 7. In
fact, Strategy 8 produces the shortest run time (54,266 seconds) for HeKu30 at
numcut = 650. The three labeled data points are explained in Tables 5.2, 5.3, and

5.4. The two circled time duration values in Table 5.2 illustrate the result of an

73




AKV'6 numcut 800
ChEEE |y | DUEle | zb s |G o e GPLEID o e
in vioRHS (s) new zib) zhk)
0.000
2.951
177.808 180.759 | 43,448.5 45,073.0
-0.4000 324.136 504.894
307 572130 1,077.025 43,884.0 45,014.0( 4355 1.002% 1130 2.510%
0.76 -0.3040 341.223 | 1,418.248 219
1,070.126 2,488.374 44,149.5 45,014.0 265.5 0.605% 864.5 1.921%
1.01 -0.3070 287433  2,775.813 211
204 1,276.229 4,052,043 44,3240 45,014.0( 1745 0.395% 650 1.533%
0.68 -0.2101 339.922 | 4,391.965 319
1,698.199 6,090.164 44,463.0 45,014.0| 13%.0 0.314% 551 1.224%
1.01 -0.2122 288.472  6,378.635 244
302 2,128.733 8,507.368 44,596.5 45,014.0 133.5 0.300% 417.5 0.927%
0.54 -0.1143 544.995 | 5,052.362 284
2,506.958 11,555.321 44,705.5 44,983.0 109.0 0.244% 277.5 0.617%
1.01 -0.1155 307.824 11.867.144 236
3,210.261 15,077.406 44,791.0 44,983.0 85.5 0.191% 152 0.427%
101 -0.1166 290.415 15,367.820 121
4,057.708 19,425.528 44,8445 44,975.0 53.5 0.119% 130.5 0.290%
0.80 -0.0933 289.975 19,715.503 66
5,099.051 24,814.554 44,888.0 44,974.0 43.5 0.097% 86 0.191%
1.00 -0.0933 288.402 25,102.956 51
6,213.989 31,316.944 44,911.0 44,974.0 23.0 0.051% 63 0.140%
1.00 -0.0933 289.381 31,606.325 26
445 i 1 38,804.386 44,930.5 44,965.0 19.5 0.043% 34.5 0.077%
0.25 —0.0233( 4,229,378 M3,033.764 17
271 51,861.034 44,9435 44,965.0 18.0 0.040% 16.5 0.037%
1.00 —D.D233< 1,372.404 )53,233.438 1
11,111.414 64,344,852 44,963.0 44,965.0 14.5 0.032% 2 0.004%
1.00 -0.0233 292.307 64,637.159 6
14,061.976 78,695.135 44,965.0 44,565.0 2.0 0.004% o 0.000%
268.024 78,967.159

Table 5.2: Computing HeKu30 using AKV’6 with numcut = 800

overly aggressive drop to vioRHS. The time required to finding and sorting the cuts
suddenly surged up when vioRHS was reduced by 75% due to a shortage of cuts
found. However, when we change the reduction percentage from 75% to 50% in
Strategy 7, the resultant cut-searching time period is much smaller (Table 5.3).
As the reduction percentage to vioRHS is further reduced to 40% in Strategy 8,
the overall computing time is also lessened as shown in Table 5.4. Furthermore,
because of this change in the approach to lower vioRHS, the major reduction occurs
earlier in the process, which helps the algorithm to quickly improve Z; and close
the gap. Consequently, AKV’8 at numcut = 800 requires one less iteration than
both Strategies 6 and 7.

The impact of the new approach amplifies as the instance size increases. Ta-
ble 5.5 presents the results of a few trials to solve STE36-1. Although STE36-1
is a linear ordering problem instance, the computing time still rises substantially.
HeKu30 requires 93,232 seconds to reach optimality by AKV’5 at numcut = 700
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AKV'7 numcut 300
Change | pppe | Domtlon | 2 O s T Al e e
in vioRHS (s} new zlb) zbk}
0.000
2.237
173511 | 175.747 [43,448.5 45,073.0
-0.4000 290.198 465.946
307 582.008 1,047.953 43,884.0 45,014.0 435.5 1.002% 1130 2.510%
0.7 -0.32040 296.638 | 1,344.591 219
1,074.930 2,419.521 44,1495 45,014.0 265.5 0.605% 864.5 1.921%
1.01 -0.3070 | 265.892 2,685.413 211
204 1.274.721 3,960.134 44,324.0 45,014.0 174.5 0.395% 690 1.533%
0.68 -0.2101 296.328 | 4,256.462 319
1,707.916 5,964.378 44,463.0 45,014.0 139.0 0.314% 551 1.224%
1.01 -0.2122 266.853  6,231.231 244
302 2,121.240 8,352.470 44,596.5 45,014.0 133.5 0.300% 417.5 0.927%
0.54 -0.1143 | 494.338 S,ME.EUE 284
2,528,623 11,375.431 44,705.5 44,933.0 109.0 0.244% 271.5 0.617%
1.01 -0.1155 279.316  11,654.747 236
3:219.060 14,873.807 44,791.0 44,983.0 85.5 0.191% 192 0.427%
1.01 -0.1166 269.208 15,143.015 121
4,099.711 19,242,727 44,8445 44,975.0 O30 0.119% 130.5 0.290%
0.80 -0.0933 269.217  19,511.544 66
5,126.070 24,638.014 44,888.0 44,974.0 43.5 0.097% 86 0.191%
1.00 -0.0933 268.473  24,906.487 51
6,238.827 31,145.314 44,911.0 44,974.0 23.0 0.051% 63 0.140%
1.00 -0.0933 268.728 31,414.042 26
445 7,237.491 38,651.534 44,930.5 44,965.0 19.5 0.043% 34.5 0.077%
0.50 -0.0467 303.176  38,954.709 17
8,984.893 47,939.602 44,948.5 44,965.0 18.0 0.040% 16.5 0.037%
1.00 -0.0467 270.740 48,210.342 11
171 11,246.848 59,457.190 44,963.0 44,965.0 14.5 0.032% A 0.004%
0.50 -0.0233 294.454 59,751.644 6
14,144,560 73,896.204 44,965.0 44,965.0 2.0 0.004% 0 0.000%
242.583 | 74,138.786

Table 5.3: Computing HeKu30 using AKV’7 with numcut = 800

(see Table 5.1). The total CPU time required rises up to 1,205,688 seconds (approx-
imately 14 days) for the same strategy combination to solve STE36-1. This long
computing time is 12.9 times of the total CPU time for the smaller instance. The
total run time has significantly decreased for Strategy 6 at numcut = 350. However,

it is still quite substantial to solve on a routine basis.

Tables 5.6 and 5.7 break down the entire cutting plane processes of the two
abovementioned cases that result in extensive computing time. The circled time
periods in both tables indicate that the cause of this significant growth in computing
time is the aggressive reduction to vioRHS after the algorithm runs short of cuts.
After the reduction rate becomes lower in Strategies 7 and 8, the required cut-

searching time becomes much smaller as seen in Tables 5.10 and 5.11.

However, we can also observe Strategy 8 yielding a slightly longer computing
time than Strategy 7 for STE36-1. As shown in Tables 5.10 and 5.11, there is not

any major difference between the two strategies in terms of the time duration in
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AKV'8 numecut 300
Lhange | odis | Dumtion | o 2lb N A R L g
in vioRHS (s} new zlb) zbk)
0.000
2.227
177.863  180.090 | 43,4485 45,073.0
-0.4000 290.532 470.621
307 580,585  1,051.216 43,884.0 45,014.0 | 4355 1.002% 1130 2.510%
0.76 -0.3040 296.357 | 1,347.573 219
1,061.708  2,409.281  44,149.5 45,014.0 265.5 0.605% 864.5 1.921%
1.01 -0.3070 | 265.184  2,674.465 211
204 1,272,158 3,946.623 44,3240 45,014.0 174.5 0.295% 690 1.533%
0.68 -0.2101 295.682 | 4,242.304 319
1,699.331  5,941.636 44,463.0 45,014.0 139.0 0.314% 551 1.224%
1.01 -0.2122 | 266.197 6,207.833 244
302 2,145,489  38,353.322 44,596.5 45,014.0 133.5 0.300% 417.5 0.927%
0.61 -0.1286 328.316 @ 8,681.639 284
2,529.514  11,211.152 44,705.5 44,983.0 109.0 0.244% 2775 0.617%
1.01 -0.1299 268.898  11,480.050 236
3,221.350 14,701.400 44,791.0 44,983.0 85.5 0.191% 192 0.427%
1.01 -0.1312 | 266.887 14,568.287 121
4,078.184 19,046.471 44,8445 44,975.0 53.5 0.119% 130.5 0.290%
0.80 -0.1049 267.238 15,313.709 66
5,166.329 24,480.038 44,888.0 44,974.0 43.5 0.097% 86 0.191%
1.00 -0.1049 267.653  24,747.692 51
140 6,235.927 30,583.619 44,911.0 44,974.0 23.0 0.051% 63 0.140%
0.60 -0.0030 | 293.481 31,277.100 26
7,804.665 35,081.764 44,941.0 44,965.0 30.0 0.067% 24 0.053%
1.00 -0.0630 269.477  35,351.241 23
152 9,906.302 49,257.543 44,955.0 44,965.0 14.0 0.031% 10 0.022%
0.60 -0.0378 295.255 | 48,552.798 8
12,868.354 62,421.152 44,965.0 44,965.0 10.0 0.022% i} 0.000%
241.482 | 62,662.635

Table 5.4: Computing HeKu30 using AKV’8 with numcut = 800

every iteration. The only major distinction is that the trial by Strategy 8 requires
one more iteration than Strategy 7, and consequently, the total time requirement
is higher. As explained earlier in the section, newer strategies may sometimes need
more iterations as a result of a smoother vioRHS reduction approach. However, the

time difference for this cause is usually not significant.

Table 5.5 also presents a case where AKV’8 outperforms AKV’7, which is il-
lustrated in Tables 5.8 and 5.9 explain this comparison set in detail. The circled
cut-searching time in Table 5.8 depicts a typical example when the reduction to
vioRHS is too aggressive. On the contrary, Table 5.9 shows that Strategy 8 avoids
this surge in computation time. Therefore, although Strategy 8 does not always
outperforms Strategy 7, Strategy 8 is still preferred because it is overall a better ap-
proach to larger instances. Tables 5.16 and 5.17 from the next section show another
comparison set that was generated by another computing setup, which is explained
in detail in the next section. This comparison set shows a drastic improvement of

Strategy 8 over Strategy 7.
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AKV’5 AKV’6 AKV'7 AKV’S
nuncut || CPU time | Number of | CPU time | Number of | CPU time | Number of | CPU time | Number of
(sec) iterations (sec) iterations (sec) iterations (sec) iterations
350 N/A N/A 318,978 14 54,681 14 61,046 15
500 N/A N/A N/A N/A 60,006 12 69,219 13
700 1,205,688 11 N/A N/A 82,341 12 78,803 12

Table 5.5: Comparison of Strategies 5, 6, 7, and 8 using STE36-1

AKV'5 numecut 700
Change | Corus  |Duration(s)]  t(s) 2lb bk | SPOIE or [SPEDY o i
in vioRHS new zib) zbk)
0.000
5.411
658.849 664.260 9,851.0 | 10,375.0
-0.4000 2,477.805  3,142.065
1,841,765  4,983.830  9,978.5  10,337.0 | 1275 1.294% 358.5 3.468%
1.01 -0.4040 1,008.504  5,992.334 130
56 2,310.783  8,303.117  10,112.0 10,337.0 | 133.5 1.338% 225 2.177%
0.51 -0.2080 | 4,517.934 | 12,821.050 100
2911915 15732965  10,185.0  10,289.0 73.0 0.722% 104 1.011%
1.01 -0.2101 3,205.641  18,938.606 115
3,639.163  22,577.769  10,223.0  10,289.0 38.0 0.373% 66 0.641%
1.01 -0.2122 1,075.563  23,653.332 115
4,684.676  28,338.008 10,2425  10,289.0 195 0.191% 6.5 0.452%
1.01 -0.2143 1,009.102  29,347.111 317
72 34,476,917  10,262.0  10,285.0 195 0.190% 27 0.262%
0.25 00541 738,763.190 118
744,708.645  10,275.0  10,289.0 13.0 0.127% 14 0.136%
1.00 -0.0541 ( 3 ,175,433.539 94
7411893 1,182,845.433 10,283.5  10,287.0 8.5 0.083% 3.5 0.034%
1.00 -0.0541 1,935.060 1,184,720.493 7
8,630.150 1,193,410.642 10,285.5  10,287.0 2.0 0.019% 15 0.015%
1.00 -0.0541 1,015.036 1,194,425.678% 5
10,331.404 1,204,757.082 10,287.0 | 10,287.0 15 0.015% 0 0.000%
930.995  1,205,688.077

Table 5.6: Computing STE36-1 using AKV’5 with numcut = 700

Although the two large instances show some major impacts of the new approach
in Strategies 7 and 8, one may wonder whether this new approach can improve the
performance of the medium-sized problems. Therefore, a comparison of Strategies
6, 7, and 8 was made for AV25-2 and the result is presented in Figure 5.6. It is
observed that the newer strategy, for the most part, outperforms the earlier version,
and therefore Strategy 8 has the lowest running time overall. In fact, the lowest
ever computing time for AV25-2 is 23,128 seconds, which is generated by AKV’8
at numcut = 300. However, the graph also shows that the difference between

the three strategies is very small. Nevertheless, this graph also shows that AKV’
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AKV'6 numcut 350
Change | . rus |Duration(s))  t(s) 2lb AT A
in vioRHS new zlb) zbk)
0.000
4.698
681582 | 686.280 | 9,851.0 | 10,375.0
-0.4000 | 2,310,935  2,997.215
1,478.858 4,426,073 19,9545 10,289.0| 103.5 1.051% 3345  3.251%
1.01 | -0.4040 | 991.023  5417.096 57
1,611.775 7,028.871 10,094.0 10,289.0 | 139.5 1.401% 195 | 1.895%
1.01  -0.4080 | 990.416  8,019.286 47
192 | 2,074.771 | 10,094.058 10,119.5 10,289.0 | 255 = 0.253%  169.5 1.647%
0.75  -0.3080 | 990.719  11,084.777 30
2,233.789  13,318.566 10,160.5 10,289.0 | 410  0.405% 1285  1.249%
.01 -0.3111 | 989.812  14,308.378 66
2,435.471 | 16,743.848 10,183.5 10,289.0| 23.0  0.226% 1055  1.025%
101 -0.3142 | 990.233 | 17,734.082 28
360 | 2,849.435 | 20,583.517 10,197.0 10,289.0 | 135 @ 0.133% 92 0.894%
0.68  -0.2142 | 1,184.993 21,768.510 63
2,890.870 24,650.380 10,228.5 10,289.0| 315  0.309%  60.5  0.588%
.01 -0.2164 | 990.573  25,649.953 66
3,203.916 28,853.369 10,248.5 10,289.0| 20.0  0.196%  40.5  0.394%
1.01  -0.2185 | 989.526  29,843.395 115
237 | 3,476.046 | 33,319.441 10,261.0 10,289.0 | 125 = 0.122% 28 0.272%
0.54  -0.1185 | 1,523.276 34,842.717 93
3,514,358 38,357.075 10,275.5 10,289.0| 14.5  0.141% 135  0.131%
1.00  -0.1185 | 991756  39,348.831 24
2,013.645 | 43,362.476 10,2815 10,287.0| 6.0 0.058% 5.5 0.053%
1.00  -0.1185 | 992.179  44,354.655 20
246 48,580.402 | 10,284.0 10,287.0| 2.5 0.024% 3 0.029%
0.25  -0.0296¢]264,955.427 %13,535.230 2
4827976 318,058.806 10,287.0 10,287.0| 3.0 0.029% 0 0.000%
918.709 | 318,977.515

Table 5.7: Computing STE36-1 using AKV’6 with numcut = 350

clearly outperforms AKV. Therefore it can be concluded that the changes made to
Strategies 7 and 8 to achieve a smoother vioRHS reduction process are important for
larger instances, but these new changes make little difference for the medium-sized
instances. We can also conclude that Strategy 8 is the best-performing strategy for

the most part with some exception that Strategy 7 may run with fewer iterations

and hence result in shorter run time.
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AKV'7 numcut 700
change | o | DO oy 2lb ke |SEPLOI o e | GTPLIR o it
in vioRHS (s} new zlb} zbk)
0.000
4.957
689.957 | 694.914 | 98510 | 10,375.0
-0.4000 | 2,299.315  2,994.229
1,829.160 4,823.389 9,978.5 | 10,337.0 127.5 1.294% 3538.5 3.468%
1.01 -0.4040 933.937 | 5,757.326 130
56 2,315.416 8,072.742 10,112.0 10,337.0 133.5 1.338% 225 2.177%
0.76 -0.3080 | 1,007.119 9,079.862 100
2,885.483 11,965.345 10,185.0 10,283.0 73.0 0.722% 104 1.011%
1.01 -0.3111 | 933.722 12,899.067 115
757 3,722,951 16,622.017 10,222.5 10,285.0 37.5 0.368% 60.5 0.646%
0.68 -0.2111 | 998.604 17,620.621 117
4,457,917 22,078.538 10,245.0 10,285.0 22.5 0.220% 44 0.428%
1.01 -0.2132 | 934.226 23,012.764 267
162 27,973.569 10,259.5 10,289.0 14.5 0.142% 29.5 0.287%
0.54 -0.1154( 5,846.909 JB3,820.478 93
&, 39,905.763 10,274.0 10,289.0 14.5 0.141% 15 0.146%
1.00 -0.1154 | 940.764 40,846.527 122
155 7,199.823 48,046.350 10,283.5 10,289.0 9.5 0.092% 5.5 0.053%
0.50 -0.0577 | 1,184,223 49,230.573 38
8,235.175 57,465.747 10,285.5 10,289.0 2.0 0.019% 3.5 0.034%
1.00 -0.0577 | 937.913 58,403.661 3
G 9,563.459 6©67,967.120 10,286.5 10,287.0 1.0 0.010% 0.5 0.005%
0.50 -0.0288 | 1,009.165 68,976.285 1]
12,502.663 81,479.948 10,287.0 10,287.0 0.5 0.005% 1] 0.000%
861.375 [82,341.323

Table 5.8:

Computing STE36-1 using AKV’7 with numcut = 700

AKV'8 numcut 700
e | copisy | UEHON | gy 2lb abk (SRR o |SAPLEIDY e
in vioRHS (s} new zlb) zbk}
0.000
5121
682.488 687.609 9,351_.0 10,375.0
-0.4000 | 2,301.585  2,989.194
1,803.760° 4,752.954 9,978.5 10,337.0 1275 1.294% 358.5 3.468%
1.01 -0.4040 931.570 5,724.925 130
56 2243814 7,968.739 10,112.0 10,337.0 133.5 1.338% 235 2.177%
0.76 -0.3080 | 1,004.464 8,973.203 100
2,850,601 11,823.804 10,185.0 10,283.0 73.0 0.722% 104 1.011%
1.01 -0.3111 932.001 12,755.806 115
757 3,666.407 16,422.212 10,223.5 10,283.0 T 0.368% 66.5 0.646%
0.68 -0.2122 995.139 17,417.352 115
4446420 21,863.772 10,245.0 10,2839.0 Jrs 0.220% 44 0.428%
1.00 -0.2132 931.241 22,795.013 267
162 4,927.869 27,722.882 10,258.5 10,289.0 14.5 0.142% 29.5 0.287%
0.61 -0.1292 | 1,632.809 |29,355.691 93
6,001.647 35,357.338 10,274.0 10,283.0 14.5 0.141% 15 0.146%
1.00 -0.1292 933,422 36,290.760 94
58 7,1059.356 43,400.116 10,283.5 10,289.0 9.5 0.092% 5.5 0.053%
0.60 -0.0775 | 1,004,931 44,405.047 7
i5 8,143.423 52 543.470 10,285.5 10,289.0 2.0 0.019% 3.5 0.034%
0.60 -0.0465 | 2,503.475 55,051.945 3
61 9,425.184 64,477.129 10,286.5 10,287.0 1.0 0.010% 0.5 0.005%
0.60 -0.0279 | 1,008.171 65,485.299 i}
12 457.810 77,943,109 10,287.0 10,287.0 0.5 0.005% 0 0.000%
B859.649 | 78,802.758
Table 5.9: Computing STE36-1 using AKV’8 with numcut = 700
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AKV'7 numcut 350
Chenge | prng [PURHO gy 2lb ol s 2 el R e o et
in vioRHS (s} new zlb) zbk)
0.000
5.421
685.469 690.891 9,351._0 10,375.0
-0.4000 |2,237.915 2,928.806
1,500.656 4,429.462 9,954.5 10,289.0 103.5 1.051% 334.5 3.251%
1.01 -0.4040 | 934.476 5,363.938 57
1,606.885 ©6,970.823 10,094.0 10,289.0 139.5 1.401% 1585 1.895%
101 -0.4080 | 933.453 7,904.277 47
192 2,102,356 10,006.633 10,119.5 10,289.0 25.5 0.253% 169.5 1.647%
0.75 -0.3080 | 934.248 10,540.881 30
2279.010 13,219.891 10,160.5 10,289.0| 410  0.405% 1285  1.249%
101 | -0.3111 | 932.263 14,153.154 66
2,437.189 16,590.343 10,183.5 10,289.0 23.0 0.226% 105.5 1.025%
1.01 -0.3142 | 933.546 17,523.850 28
360 [2,845.882 20,369.772 10,197.0 10,289.0| 13.5  0.133% 92  0.894%
0.68 -0.2142 (1,119.608 21,489.380 83
2,894,791 24,384.171 10,228.5 10,289.0 31.5 0.309% 60.3 0.588%
1.01 -0.2164 | 934.101 25,318.271 66
3,235.339 25,553.611 10,248.5 10,289.0| 20.0  0.196% 405  0.394%
1.01 -0.2185 | 933.352 29,486.963 115
237 3,493.538 32,580.501 10,261.0 10,289.0 12.5 0.122% 28 0.272%
0.54 -0.1185 (1,461.996 34,442.457 93
3,568,726 38,011,223 10,275.5 10,289.0| 145  0.41% 135  0.131%
1.00 -0.1185 | 933.781 38,545.004 24
4,024.675 42,569.680 10,2815 10,287.0 6.0 0.058% 5.5 0.053%
1.00 -0.1185 | 934.212 43,503.852 20
246 |4375.850 48,279.742 10,284.0 10,287.0| 25  0.024% 3 0.029%
0.50 -0.0593 | 991.134 45,270.876 F
4,546.963 53,817.839 10,287.0 10,287.0 3.0 0.029% ] 0.000%
863.165 54,681.004
Table 5.10: Computing STE36-1 using AKV’7 with numcut
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AKV'S numecut 350
it sl Lol o it (e 2lh T e I T o L P
in vioRHS (s} new zlb) zbk}
0.000
5.247
692.121 697.368 | 9,851.0 | 10,375.0
-0.4000 (2,333.340 3,030.708
1,455.234 4,485.941 9,954.5 10,289.0 103.5 1.051% 334.5 3.251%
1.01 -0.4040 | 941.723 5,427.664 57
1,594.390 7,022.054 10,094.0 10,289.0 139.5 1.401% 195 1.895%
1.01 -0.4080 | 945.798 7,967.852 a7
192 2,033.923 10,001.776 10,119.5 10,289.0 25.5 0.253% 169.5 1.647%
0.75 -0.3080 | 940.591 10,942.367 30
2,274,035 13,216.402 10,160.5 10,289.0 41.0 0.405% 128.5 1.245%
1.01 -0.3111 | 939.828 14,156.230 66
2,450.125 16,646.354 10,183.5 10,239.0 23.0 0.226% 105.5 1.025%
1.01 -0.3142 | 939.452 17,585.806 28
360 2,854.408 20,440.214 10,197.0 10,285.0 13.5 0.133% 92 0.894%
0.68 -0.2142 (1,130.308 21,570.522 63
2,939.065 24,509.5806 10,228.5 10,289.0 31.5 0.309% 60.5 0.588%
1.01 -0.2164 | 940.114 25,449.700 66
3,226.928 28,676.629 10,248.5 10,285.0 20.0 0.196% 40.5 0.394%
1.01 -0.2185 | 939.641 29,616.270 LIS
237 3,480.754 33,097.023 10,261.0 10,289.0 125 0.122% 23 0.272%
0.60 -0.1311 (1,041.800 34,138.824 93
3,604,208 37,743.032 10,2755 10,289.0 14.5 0.141% 13.5 0.131%
1.00 -0.1311 | 946.822 38,689.854 24
51 4,106.633 42,796.488 10,281.5 10,287.0 6.0 0.058% 5.5 0.053%
0.60 -0.0787 (1,057.901 43,854.388 20
4,394,598 43,248.986 10,284.5 10,287.0 3.0 0.025% 2.5 0.024%
1.00 -0.0787 | 946.813 49,195.799 X
1 4,768.510 53,964.309 10,286.5 10,287.0 2.0 0.019% 0.5 0.005%
0.60 -0.0472 (1,019.415 54,983.725 5
5,188.191 ©0,171.515 10,287.0 10,287.0 0.5 0.005% o 0.000%
873.862 |61,045.778

Table 5.11:

Computing STE36-1 using AKV’8 with numcut
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Figure 5.6: Comparison of Strategies 6, 7, and 8 for AV25-2

5.2.2 Results from CSDP in Parallel Computing

As the size of instances increased, it was observed that the optimization time also
increased quickly (e.g. HeKu30 in Table 5.4). Therefore, other options were ex-
plored to facilitate solving large instances. So far, other than the lower bound
experiment in Chapter 3, the experimental results were obtained by using SDPT3
version 4.0 [40] on a 2.0GHz Dual Opteron with 16Gb of RAM. The other option
is to use CSDP version 5.0 [8] with the ATLAS library of routine [41] on a Sun
Fire V890 8*1.2GHz with 64Gb of RAM. Running in parallel using 8 CPUs allows
the optimization run to speed up. But since different computers were used to run
these two different solvers, the configuration of Matlab may also affect the overall

performance of each options.

Table 5.12 presents the overall computing time to solve HeKu20 by AKV’6 us-
ing the two solvers on different computers. In this example, the computing time
actually increases as we switch the solver to CSDP. Table 5.13 details the first
comparison set in Table 5.12 when numcut = 200. Table 5.13 shows that the new

82



Table 5.12: Quick comparison

CPU time (sec)

numcut || SDPT3 | CSDP
200 1,574 | 2,155
300 1,470 1,884
500 1,495 | 1,759

of SDPT3 and CSDP using AKV’6 solving HeKu20

AKV' 6 SDPT3 numcut 200 AKV'6 C5DP numcut 200

Thange | e | DI gy 2lb s | A | e (DUREH) o 2Ib 2bk
in vioRHS (s) in vioRHS (s}

0.000 0.000

1.416 0.979
25951  27.367 | 15,203.0 15,549.0 44,969 45.949 | 15208.0 15549

-0.4 47.719 75.086 -0.4 58.434  104.383
48.272 123.358 | 15,297.0 | 15,549.0 B7.573 191.955 | 15297.0 15549

1.01 -0.404 18.518 141.876 1.01 -0.404 40.501 232.456
56.347 198.223  15,366.0 15,549.0 57.311 329.767 15366.0 15549

1.01 -0.408 18.583 216.805 1.01 -0.408 40.963 370.730
125 57.639 274.445 15,4010 15,5459.0 125 101.322 472,052 15401.0 15549

0.76 -0.30804 158.886 293.331 0.76 -0.30804 | 41.202  513.253
85.428 373.759 15,4435 15,549.0 113921 627.174 15443.5 15545

1.01 -0.3111 18.504 397.263 1.01 -0.3111 40.452  667.626
26 95.323 492,586 15,479.5 15,549.0 26 125.655 793.281 15479.5 15545

0.69 -0.21423 22.321 514.907 0.69 -0.2142 45.278 | 838.55%
102.449 617.357 | 15,521.5  15,549.0 1334088 971.967 15521.5 15549

1.00 -0.21423 18.285 635.642 1.00 -0.2142 40.376 1 1,012.343
130.684 766.326 | 15,529.5  15,549.0 453 2195 1,165.655| 15529.5 15549

1.00 -0.2143 18.282 784.609 1.00 -0.2142 40.198 1,205.853
104 140.124 924,732 15,537.0 15,549.0 104 192949 1,398.803 15537.0 15549

0.53 -0.11423 18.903 943.635 0.53 -0.1142 40.763 1,439.566
162.144 1,105.779 15,5445 15,545.0 171.589 1,611.154 15544.5 15543

1.00 -0.11423 18.432 1,124.211 1.00 -0.1142 40.278 1,651.433
185.046 1,309.257 15,548.5 15,549.0 206 201.274 1,852,707 15548.5 15545

0.25 -0.02856 22.279 1,331.536 0.25 -0.02856 | 45.171 1,897.878
220.313 1,551.849 15,549.0 | 15,549.0 222,006 2,119.884 15549.0 15549

21.804 [1,573.653 35.206 2155051

Table 5.13: Comparing SDPT3 and CSDP by using AKV’6 to solve HeKu20

computing setup results in longer cut-searching time, which is due to the difference
in the Matlab computing environment in different computers. Also, the optimiza-
tion time is initially longer than the first computing option, but the difference in

time slowly decreases as the sub-problem size increases.

Table 5.14 compares the two computing options by solving two bigger instances
using Strategies 6, 7, and 8 at numcut = 500. We can observe that as the problem
instance becomes larger and more complicated, the new computing option using
CSDP actually pays off. Table 5.15 illustrates the time breakdown of the AKV’7
comparison set that solves STE36-1 at numcut = 500 in Table 5.14. This time

breakdown shows that the cut-searching time in the CSDP option is approximately
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AV25-2 STE36-1
Strategy || SDPT3 | CSDP || SDPT3 | CSDP
AKV’6 || 24,845 | 20,557 N/A N/A
AKV’7T || 24,071 | 19,913 || 60,006 | 53,246
AKV’8 || 23,940 | 20,040 || 69,219 | 59,925

Table 5.14: Quick Comparison of SDPT3 and CSDP solving AV25-2 and STE36-1

at numcut = 500

AKV'T SDPT3 | numcut 500 AKV' 7 CSDP numcut 500
EEREE | ey (PR o 2lb gk | TS | e (DEENO 2lb 2bk
in vioRHS (s} in vioRHS (s)
0.000 0.000
4.069 7.503
637.006 B41.075 9,851.0  10,375.0 486.193  493.695 9,_§§LO_ 10,375.0
-0.4000 |2,229.954 2,871.029 -0.4000 |3,040.174 3,533.869
1,607.718 4,478,748 9,966.0 10,340.0 976.875 4,510.744 5,966.0 10,340.0
1.01 -0.4040 | 933.865 5,412.613 1.01 -0.4040 (2,218.336 6,729.139
188 1,857.940 7,270.553 10,1095 10,340.0 188 1,107.976 7,837.115 10,109.5 10,340.0
0.76 -0.3080 |1,004.927 8,275.480 0.76 -0.3080 |2,381.047 [10,218.162
2,605.648 10,881.128 10,1545 10,340.0 1,330.034 11,548,196 10,154.5 10,340.0
1.01 -0.3111 | 933.552 11,814.680 1.01 -0.3111 |2,220.519 13,768.715
235 2,916.899 14,731.579 10,197.0 10,285.0 235 1.481.445 15,250.160 10,197.0 10,289.0
0.69 -0.2142 |1,850.761 16,582.339 0.69 -0.2142 (2,883.835 18,133.995
3,277.722 19,860.061 10,219.0 10,289.0 1,765.771 15,899.766 10,219.0 10,285.0
1.01 -0.2164 | 934.813 20,794.874 1.01 -0.2164 (2,231.638 22,131.404
3,815.136 24,610.010 10,252.5 10,285.0 1,929,845 24,061.249 10,252.5 10,289.0
1.01 -0.2185 | 933.997 25,544.007 1.01 -0.2185 |2,228.020 26,289.270
4,272 654 29,816.661 10,259.5 10,289.0 2,199.229 28,488.499 10,259.5 10,289.0
0.80 -0.1748 | 934.333 30,750.994 0.80 -0.1748 (2,219.776 30,708.275
39 5,020.658 35,771.652 10,273.5 10,285.0 35 2,495,636 33,203.911 10,273.5 10,289.0
0.50 -0.0874 |1,888.539 37,660.191 0.50 -0.0874 (2,880.150 36,084.061
5,582,277 43,242,467 10,283.0 10,285.0 2,926,767 39,010.828 10,283.0 10,289.0
1.00 -0.0874 | 935.773 44,178.245 1.00 -0.0874 (2,219.693 41,230.520
5 6,493.094 50,671.339 10,286.0 10,285.0 ] 3,507.704 44,738.224 10,286.0 10,289.0
0.50 -0.0437 | 1,006.521 51,677.860 0.50 -0.0437 (2,387.877 47,126.100
7,464.867 59,142.726 10,287.0 10,287.0 4,071.114 51,197.215 10,287.0 10,287.0
863.150 60,005.917 2,048.290 53,245.505

Table 5.15: Comparing SDPT3 and CSDP by using AKV’7 to solve STE36-1

more than double of the original setup that uses SDPT3. This discrepancy is again
due to the difference of the Matlab computing environment in different computers.
However, the optimization time in parallel computing is much smaller than the
original setup. In fact, as more cuts are added and the sub-problem becomes

bigger, the payoff becomes more significant.

Other than comparing the two computing options, Table 5.14 also shows that
Strategies 6, 7, and 8 have similar performance in solving AV25-2 using the CSDP
setup at numcut = 500. This again verifies that the fine-tuning changes made to

Strategies 7 and 8 does not show any effect for medium-sized instances as concluded
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AKV'T numcut 600
ehange | rorms: | TUEHOT sy 2lb sk |CPPLOM gecnpr. |SIPLIDY) gcrite,
in vioRHS (s} new zlb} zbk)
0.000
7.373
486.200 453.573 98510 10,375.0
-0.4000 | 2,955.968 3,449.541
1,008.819 4,458.360 9,971.0 10,350.0 | 120.0 1.218% 379 3.062%
101 -0.4040 | 2,219.219 6,677.579 119
101 1,208.594 7,886.173 10,1115 10,337.0| 140.5 1.409% 225.5 2.181%
0.76 -0.3080 | 2,383.280 10,269.453 67
1,482,167 11,751.620 10,165.0 10,337.0 515 0.529% 172 1.664%
1.01 -0.3111 | 2,221,981 13,973.600 132
166 1,731.682 15,705.282 10,209.5 10,287.0 44.5 0.438% 77.5 0.753%
0.69 -0.2142 | 2,6590.493 18,395.775 173
2,100,305 20,496.080 10,230.5 10,287.0 21.0 0.206% 56.5 0.549%
101 -0.2164 | 2,226.349 22,722.429 210
2,157.565 24,879.994 10,252.5 10,287.0 22.0 0.215% 34.5 0.335%
1.01 -0.2185 | 2,221.656 27,101.650 63
2,741.179 29,842.828 10,257.5 10,287.0 5.0 0.049% 29.5 0.287%
0.80 -0.1745 | 2,222.149 32,064.978 45
108 3,168.396 35,233.374 10,275.0 10,287.0 17.5 0.171% 12 0.117%
0.50 -0.0874 | 2,720.285 37,953.659 118
3,496.002 41,445.661 10,283.0 10,287.0 2.0 0.078% 4 0.039%
1.00 -0.0874 | 2,222,658 43,672.319 17
283 4 i7 47,794.286 10,285.0 10,287.0 2.0 0.015% 2 0.015%
0.50 -0.043?( 24,644,837 J72,439.123 47
5,273.759 77,712.882 10,287.0 10,287.0 2.0 0.015% a 0.000%
2,054.767 | 79,767.649

Table 5.16: Computing STE36-1 using AKV’7 with numcut = 600

from the previous chapter. However, as we move on to 1 arger instances such as
STE36-1, Table 5.14 shows more performance deviation between strategies. In the
case of numcut = 500 in Table 5.14, Strategy 8 has a slighly longer computation
time than Strategy 7 in solving STE36-1, which is also due to the requirement
of one more iteration in Strategy 8 as a result of a smoother vioRHS reduction
process. Tables 5.16 and 5.17 present a contrary example when Strategy 8 out-
performs Strategy 7. While AKV’7 requires 79,768 seconds to complete the run
of solving STE36-1 at numcut = 600, AKV’8 only needs 57,437 seconds, whcich
results in a percentage difference of 38.9%. As illustrated in the circled time pe-
riod Table 5.16, this considerable difference is again due to an aggressive reduction
in vioRHS. Therefore, this contrary example verifies the earlier finding in Section
5.2.1, which concludes that Strategy 8 is preferred over Strategy 7, even though it
does not always outperforms Strategy 7. When Strategy 8 takes longer time than
Strategy 7 to complete a run, the difference in time is usually relatively small, and
it is usually due to the need of one more iteration in Strategy 8 as a result of a
smoother vioRHS reduction process. However, when Strategy 8 outperforms Strat-

egy 7, the difference is usually more significant. Moreover, it was already observed
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AKV'8 numcut 600
Shense omms [TUENRM 4 2lb ST O e B
in vioRHS (s) new zib) zbk)
0.000
7.520
486.399  493.918 2851.0° 10,375.0
-0.4000 (3,106.002 3,599.920
1,010.283 4,610.203 19,9710 10,350.0 120.0 1.218% 379 3.662%
1.01 -0.4040 (2,216.519 6,826.722 115
101 1,209,513 8,036.235 10,1115 10,337.0 140.5 1.405% 225.5 2.181%
0.76 -0.3080 |2,388.136 10,424.371 67
1,485.522 1 11,509.893 10,165.0 10,337.0 53.5 0.529% 172 1.664%
1.01 -0.3111 (2,218.817 14,128.710 132
166 1,733.867 15,862.577 10,209.5 10,287.0 44.5 0.438% 7.5 0.753%
0.69 -0.2142 |(2,698.560 18,561.137 173
2,105,107 20,666.244 10,230.5 10,287.0 21.0 0.206% 56.5 0.549%
1.01 -0.2164 |(2,228.540 22,894,734 210
2163327 25,058.111 | 10,252.5 10,287.0 22.0 0.215% 34.5 0.335%
1.01 -0.2185 |2,219.865 27,277.976 69
2,755,308 30,033.285 10,257.5 10,287.0 5.0 0.049% 29.5 0.287%
0.80 -0.1748 (2,221.477 32,254.762 45
108 3,182.776 35,437.537 10,275.0 10,287.0 17.5 0.171% 12 0.117%
0.60 -0.1049 |(2,391.629 [37,829.167 118
3,508.929 41,338.095 10,283.0 10,287.0 8.0 0.078% 4 0.039%
1.00 -0.1049 |2,221.673 43,559.769 17
54 4,133.460 47,693.229 10,285.0 10,287.0 2.0 0.019% 2 0.019%
0.60 -0.0629 (2,397.643 50,090.872 47
5,290,557 55,381.430 10,287.0 10,287.0 2.0 0.019% o 0.000%
2,055.509 57,436,938

Table 5.17: Computing STE36-1 using AKV’8 with numcut = 600

that Strategy 8 has a better overall performance over Strategy 7 in HeKu30 and
AV25-2 from Figures 5.5 and 5.6. This justifies the use of Strategy 8 to solve the

new large instances in the next section.

Finally, since the quick comparison between the two computing options show
that the CSDP setup runs faster as the instance size increases, it is decided that
the new instances with n = 36 will be solved by the new CSDP computing setup.
Furthermore, as was explained in Section 4.2.2, smaller instances run faster with
smaller numcut. On the contrary, larger instances should be executed with higher
numcut due to the fact that every additional iteration requires a great deal of
computing time. Furthermore, by using high numcut we can exploit the advantage
of parallel computing as the sub-problem size increases. Figure 5.7 also shows the
trend of computing time with the effect of varying numcut for Strategy 7 to solve
STE36-1. The computing time fluctuates a lot for low numcut from 300 to 640.
The fluctuation seems to ease off and go down in higher numcut. In fact, the lowest
computing time is generated by numcut = 900. Therefore, a high numcut such as

900 is used to pursue the large instances in the next section.
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Figure 5.7: Effect of numcut on computing time of AKV’7 solving STE36-1

5.3 Solving New Large Instances

5.3.1 Results Analysis

The 36-facility instances are based on the QAP instance from Steinberg in [38] where
the flow matrix is taken from [38] and the length vector is randomly generated.
A total of nine STE instances were attempted, in which six of these were newly
generated while three others (STE36-1, STE36-2, and STE36-3) already appeared
in [6] where the new lower bounds were published. The complete listing of these

instances can be found in Appendix C.

The instances STE36-2, STE36-3, and STE36-8 failed to reach optimality due
to memory limitation in Matlab. Table 5.18 lists the six successful instances as well
as the three failed instances, along with their optimal objective values and the total
CPU run time when applicable. These results are obtained by running AKV’S at
numcut = 900 using the CSDP computing setup.
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Instance Generation Optimal CPU time Number of
Method Solution (sec) iterations
STE36-1 | Vector of ones | 10,287.0 62,754 11
STE36-2 U(1,37) Not found | Out of memory -
STE36-3 U(1,19) Not found | Out of memory -
STE36-6 U(1,3) 19,186.5 243,535 18
STE36-7 U(1,4) 25,055.0 124,852 14
STE36-8 U(1,5) Not found | Out of memory -
STE36-9 N(2,0.25) 20,203.5 56,675 11
STE36-10 N(3,0.25) 29,846.0 83,505 12
STE36-11 |  N(4,0.25) 41,240.0 104,001 13

Table 5.18: Results of the STE-series instances using AKV’8 and numcut = 900

5.3.2 Preliminary Analysis on Length Vector

Other than the optimization findings, Table 5.18 also shows how the lenght vector
of these new 36-facility instances were created. The notation U(1,37) represents
uniform distribution between 1 and 37, while N(2,0.25) denotes normal distribution
with mean of 2 and variance of 0.25. The instances STE36-2, STE36-3, and STE36-
8 failed to reach optimality due to memory limitation in Matlab, and they all have
higher variations in the length elements. Therefore, it can be observed that as the
degree of variance of the length elements increases, the problem structure becomes
more complicated, and hence harder to solve. Furthermore, while STE36-6 and
STE36-7 are solvable, STE36-8 has larger variance in the length vector and could
not be solved. However, although STE36-6 is created by U(1,3), which is expected
to be simpler than U(1,4), STE36-6 requires a longer run time than STE36-7. Tt is
possibly due to the interaction between the length allocation to the given frequency

of each department.

Another interesting fact is that the instance created by normal distribution
exhibits shorter CPU run time. Since normal distribution has a characteristic
bell shape with more elements falling in the range of the mean, it is expected to
have less “jumps” between the length elements, and hence easier to solve. This
prediction can be observed in Table 5.18. Using a fixed variance that controls
the spread of the length elements enables the control of the difficulty level of the

instances. Therefore we conjecture that the length vector plays an importaant role
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in the solvability of an instance. This interesting observation is recommended as
the subject of future research. Meanwhile, it should be noted that Amaral’s new
instances of size n = 35 are not presented in his new paper [2],and thus we have
not yet been able to experiment with them. However, it would be interesting to
analyze the new 35-facility instances in order to fully understand the performance

of his new lower bound in [2]
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Chapter 6
Conclusions and Future Research

In this thesis, a new matrix-based model AKV’ is presented. It is created based on
AKV from [4], but it reduces the number of linear constraints from O(n?) to O(n?).
AKV’ relaxation can find a lower bound in a shorter computing time than AKV
relaxation with only a minor penalty of slight deterioration in the lower bound.

AKYV’ is observed to pay off as the instance size increases.

Six cutting plane strategies are proposed for the medium-sized SRFLP instances.
The general approach is to smooth the vioRHS reduction process while preventing
premature termination. Three instances of different characteristics are used to an-
alyze the cutting plane strategies. To solve a small medium-sized instance like
HeKu20 using a similar computing setup as described in this thesis, it is recom-
mended to use the AKV’ relaxation combined with Strategy 6 at low numcut in
the range of 50 to 300. When approaching a medium-sized linear ordering problem
like AV25-1, it is advised to explore both relaxations, since the distinction between
them is not prominent. The readers can also refer to [16] for other cutting plane
algorithms targetted to linear ordering problem. To solve a medium-sized instance
like AV25-1 using the proposed cutting plane strategy, it is recommended to apply
Strategy 6 with medium-range numcut such as between 350 to 500. For the gen-
eral medium-sized SRFLPs like AV25-2, it is recommended to utilize AKV’6 with
medium-range numcut such as between 300 to 550. However, higher-range numcut

is strongly recommended to explore other medium-sized or larger SRFLPs.

Another two cutting plane strategies are proposed for large instances to achieve

a smoother vioRHS reduction process. The combination of Strategy 8 with AKV’
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relaxation in high numcut is capable of solving six new instances of size n = 36,
which is higher than the published results in literature. We also point out an
interesting fact about the the length vector, where we conjecture that the length

vector plays an important role in the solvability of an instance.

The interesting observation regarding the length vector analysis is recommended
as the subject of future research. By investigating the effect of the length vector
on the solvability and the computing time of the SRFLP instances, one can better
understand how good different models are in literature. It can also facilitates a

more thorough and fair comparison between optimization methods.

Another interesting topic for future research is to investigate a more in-depth
comparison between the two SDP solvers, namely SDPT3 and CSDP. A fair com-
parison should be made within the same computing environment, and it should be

able to help an analyst to make a better decision in choosing a suitable solver.

Just recently Amaral proposed a new lower bound approach, which is capable of
solving SRFLPs of size n = 35. It would be interesting to compare the performance
of Amaral’s new model to the AKV and AKV’ relaxations. Furthermore, it is also
interesting to analyze the 35-facility instances that he used in [2] in order to fairly

gauge the ability of his new lower bound approach.

Since the proposed methodology of combining Strategy 8 with AKV’ relaxation
reaches the memory limitation in Matlab, it would be very interesting to look into
the possibility of translating the code to run in C in conjunction of CSDP as future
research. By running on a different platform, the memory limit may be different,

and consequently larger instances may be solved.

Finally, after a more thorough study of the SRFLP, the future research may
extend from single-row to multi-row facility layout problem. It is likely that the

result from the SRFLP may shed some light to the multi-row problems.
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Appendix A

Matlab Code for 2-Opt

function [x] = twoopt(F, 1, x)
n = length(l); % number of departments
Xtemp = X;
bestCost = 0;
cost = 0;
xold = zeros(1l,n);
bestCost = objfunction(F,1,x);
while x "= xold
xold = x;
for a = 1:(n-1) % check swap b/w ith and jth positions
for b = (a+l):n
xtemp(a) = x(b);
xtemp(b) = x(a);
cost = objfunction(F,1,xtemp);
if cost >= bestCost ¥ keep the same
Xtemp = X;
else % swap and update best cost
X = Xtemp,
bestCost = cost;
end
end
end

end
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Appendix B

Matlab Code for AKV Heuristic

function [x, xbk, zbk] = AKVheur (X, xbk, zbk, F, 1);
n = length(l);
zub = 9999999; YJa large number as upper bound to begin with

for a = 1 : nchoosek(n,2), %check thru each row of Xx
R = zeros(n);
for i=1:n-1, % Calculate Rij in matrix form, set Rii = 0

for j=i+l:n,
Xcol = (j-1)*(j-2)/2+1;
R(i,j)=X(a,Xcol);
R(j,i)=-1*xX(a,Xcol);
end
end
for i=1:n, % calculate p
P(i) = (sum(R(i,:))+n+1)/2; %Rii = 0 so no effect
end
[Y,x_temp] = sort(P,’descend’);
if objfunction(F,1l,x_temp) < zub, %hzub = best obj value by comparing each row
zub = objfunction(F,l,x_temp); % zub not used
X = xX_temp;
end
[x_temp] = twoopt(F, 1, x_temp);
if objfunction(F,1l,x_temp) < zbk, Y%zbk = best global obj value
xbk = x_temp; % Update xbk
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zbk = objfunction(F,1l,x_temp); % Update zbk
display(’zbk updated at’); a
end

end
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Appendix C

Complete Listings of SRFLP

Instances Used
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C.1 HeKu20

1=[203937375965393737529 6]

1 565 5 0 0 5 4 4 0 0 1;

F=[0 0 5 0 5 210 3

2 4 2 5 01010 3 0 510 65;

1

5

1
5 3 0 2 056 2 4 4 5 0 0 0 5

010 2 O
5 5 0

0 0 310 5
2

1 0 0 5 0 0

010 2 2 0 2

5 2 5 5;

1

1

1 0 5 2

1 11 6 2 6 1;

0O 56 6 5 2 5 2 0 b

1
5 0 5 0 5 2

0 1 5;
1

1
2

6 0 010 0 2 O

1

1

0 10;

1

10 5 2 56 6 5 0 0 0 0 510 2 2 5
11010 2 010 2 5 2 2 10;

3
1

4 2 5 2 0 0 1

2 4

1

0 2 0 355 05 0 0 0 2
2 0 5 5 0 5

1
1

1 0
5 2 010 2 0 510 0 5 0 5 2 b5

2

1

1 0 0 &6 5 2

110 0 2 2 5;

5 4 5 0 5 6 0

2 b;

1

1
1 0 0 0 5;

5 5 0 2 0 01010 3 5 5 0 210 5 O
0 0 0 2 510 2 2 6 0 2 2 0 2 2

010 5 O

5 5 0;

1 0 2 0 656 5 510 2 0 5 5 1
5 2 5 0 3 0 5 10 10;

1
1

2 510 0 1 1
0 2 5 010 O

510 1 2
4 3 0 1

5 3 0 0 0 2 0;

1

1
0

1

0O 0 0 5 2 0;

1
1

1 2 5 0 0 0

4 0 0 &5 b

1

1
0

0 5 5 0 5 0

2 0 5 2

1

0 56 5 2 2 0

6;

1
1

60 2 06 2 2 0 510 2 2

1
1 51010 2 2 5 5 5 010 0 O

010 0 5 b5

1

6 0]

5 0 b5
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C.2 AV25 Instances

The AV25 instances have the same flow matrix F' as listed below.

[0

10;

10

10

0 10 10 5 10

2

10
10

10

2 10 10 1

0

10

0 10 10 O

1
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10;

10

10

0]

10

C.2.1 AV25-1

ones(1,25)

1 =

C.2.2 AV25-2

10 8 14 12 8 1 13 8 10 13 15 12 4 7 15 15 7 14 ...
3]

13

1 =1[156 4

1

2 6
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C.3 HeKu30

1=1[3

5]

F=1[0

10

10

10

4 10 10 2

1

0 10 10 5 10 10 6

1

10
10

2 10 10 1

5

10;

2 10 10 O

0
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10;

4
0

2 10 10
0 10 10

1
0

10 10;
10

2

1

10

10

10;

10

0]

10
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C.4 STE36 Instances

The STE36 instances have the same flow matrix F' as listed below.

75 ...

[0

23 ...

22

12

20

16

23

47

18

29

25 ...

12 25

18

29

18 ...

19 ...

19

23

72 ...

14

18 12
40

16
39

71 ...

10

47 25

20

16
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14 ...

10

14

14

71

72

75

15 ...

17

17

11

11 ...

34 ...

33

0 316

12
316

25

157

17 ...

18

16 20 48 26 19 39
157

22
33

11

21 ...

11

25

12 ...
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17 ...

41

26 ...

13 ...

16

27

20

15 ...

18 19

12

25

23
34
11

13

26

21

10 ...

18

16

36

28

11 ...

36

36

36 ...

22

35

26
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35

12

16 ...

10

18 ...

27
10

22 ...

16

19 ..

10

12

10 ...

19

22

19

19 ...

12

28 ...

20

24

18

20

18
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'_L
w O O

O O O O O O o o

C4.1

N
> O O
N
o O O

O O O O O O O O O O

O O O O O O o o
o O O O O O o o

STE36-1

1 = ones(1,36)

C.4.2
1= [17
17
28
C.4.3
1 =[11
1
9
C.4.4
1 =102
2

STE36-2

10 26 16 22
4 22 11 23
31 2 35]

STE36-3

13 5 8 15
15 18 19 15
18 13 5 16

STE36-6

O O O O O O O O o o o

11

13

12]

[

[

O O O O O O O o o o

(@]
=

34
16

10

11 1
23 18

11 15
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37
17

12
18

19
28

14

23

11

24
32

14 ...

17 ...

2]



C.4.5

1=1[4
2
C.4.6
1=1[4
3
C.4.7
1=1[2
2
C.4.8
1=1[3
4
C.4.9
1= 1[4
4

STE36-7

STE36-8

STE36-9

STE36-10

STE36-11
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