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Abstract

The single-row facility layout problem (SRFLP) is concerned with finding the op-

timal linear placement of n departments with different lengths in a straight line.

It is typically achieved by minimizing the cost associated with the interactions be-

tween the departments. The semidefinite programming (SDP) relaxation model

that incorporates cutting planes proposed recently by Anjos, Kennings, and Van-

nelli (AKV) was considered a breakthrough in the field. This thesis presents a new

SDP model AKV’ and compares the two relaxations. The AKV’ is largely based on

the previous model, but it reduces the number of linear constraints from O(n3) to

O(n2). Therefore, it reduces the computing time at the expense of a slightly weaker

lower bound. However, AKV’ is observed to pay off as the instance size increases.

By examining the gap for both the AKV and AKV’ relaxations, we notice that

both relaxations generate very small gaps at the root node, which demonstrates

the effectiveness of the relaxations.

Six different strategies are presented to separate the cutting planes for the

medium-sized SRFLP. In combination with the two SDP relaxations, we compare

the six strategies using three instances of different characteristics. An overall best

strategy is deduced from the computational results, but the best choice of relax-

ations and the best number of cuts added at each iteration changes depending on

the characteristics of the instances. Two new cutting plane strategies are proposed

for large instances. This allows the solution to optimality of new instances with 36

departments, which is higher than previously published results in literature. We

also briefly point out how the computing time can vary greatly between different

sets of data of the same size due to the characteristics of the department lengths.
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Chapter 1

Introduction

The facility layout problem (FLP) determines the most efficient arrangement of n

individual departments within a facility. It is a well-studied combinatorial optimiza-

tion problem that can be employed in many different applications. Many expensive

applications contain numerous important functional objects to be arranged on a

very restricted area, and achieving the most efficient arrangement leads to cost

saving. Some classical examples of the facility layout problem applications include

integrated circuit design, control panel layout design, wiring design, building lay-

out, urban planning [10, 30], and multiple-floor facilities [9]. The single-row facility

layout problem (SRFLP) is a special case of the general layout problem where the

n departments are to be arranged on a straight line. The SRFLP also has many

practical applications, such as the arrangement of departments on one side of a

corridor in supermarkets, hospitals, or offices [36], the assignment of disk cylinders

to files [33], the assignment of airplanes to gates in an airport terminal [39], and the

arrangement of machines along a straight path travelled by an automated guided

vehicle (AGV) in flexible manufacturing systems [20].

The problem instance consists of the length `i of each department i and an

n × n matrix F , where Fij represents the travel intensity between department i

and j. The objective of the problem is to arrange the departments in order to

minimize the weighted sum of the distances between all department pairs, which

is often expressed in terms of material handling cost [30]. Some of the common

constraints in a facility layout problem include limiting the departments so that they

are contained within the allowable space boundary. Another common constraint

is to ensure that the departments do not overlap [30]. Depending on the solution
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approaches and models, the constraints may be expressed differently. When the

lengths of all the departments are the same, the SRFLP becomes the linear ordering

(or linear arrangement) problem, see [16] and [26] for more details. The linear

ordering problem is also a special case of the well-studied quadratic assignment

problem (QAP), see [11] for more details.

With 50 years of history since the first publication on the QAP by Koopmans

and Beckman in 1957 [23], substantial research effort has been put in to search for

better ways to solve the FLP. Many new solution approaches, models, and solution

algorithms have been introduced. However, it is still widely recognized that the

facility layout problem is a very difficult problem class. For instance, when the

QAP was first proposed, it was seen as unsolvable for practical problems. In 1986

the largest QAP problem that had been solved optimally only had 15 departments

[25]. By 1996, the number had only been improved slightly to 18 departments, when

solving on a routine basis [30]. By 2002, a QAP with 30 departments was solved,

but vast amount of computation was required, which is unrealistic on a routine basis

[7]. Even now, QAP instances with n > 30 cannot be solved within reasonable

time [27]. Other than QAP, it is widely recognized that SRFLP is strongly NP-

hard [1]. Needless to say, many heuristics have been proposed for the SRFLP, such

as [13], [14], [17], [19], [20], [21], [24], [31], and [37]. However, this research thesis

focuses on the exact solution approach using the semidefinite programming (SDP)

formulation with the help of different cutting plane strategies.

The contribution of this thesis is to empirically examine the new matrix-based

SDP formulation of SRFLP, which was proposed by Anjos and Yen [6]. In addition,

the work of optimization using SDP and cutting planes by Anjos and Vannelli [5] is

improved upon by constructing and evaluating various cutting plane strategies that

allow the process to become dynamic. In Chapter 2, background on the SRFLP is

presented. In Chapter 3, the new SDP model is presented and discussed in detail.

An empirical comparison between the two models is also given. In Chapter 4, six

cutting plane strategies are evaluated and compared. This comparison is further

enhanced by incorporating the analysis of the two SDP models. Furthermore, a best

model-strategy combination will be presented to be used to solve large instances

that were unsolved in the past. These results are presented in Chapter 5. Finally,

conclusions and possible directions for future research are discussed in Chapter 6.
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Chapter 2

Background

2.1 Optimization Solution Scheme

This section will clarify and define some of the terms that will be used extensively

throughout this thesis. Figure 2.1 displays a roadmap of how an optimization

problem is typically solved.

Problem & 
Instance

Solution 
Approach

Model

Solver Solution

Figure 2.1: Optimization solution roadmap

2.1.1 Problem and Instance

The SRFLP can arise in many practical problems. An interesting example is the

problem of assigning incoming aircrafts to airport gates [39]. Suppose that within a
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short time frame, several flights that carry many connecting passengers arrive from

and depart to various cities. The problem for the airline management is to minimize

the inconvenience of the connecting passengers, which is measured by the distance

travelled in between the connecting flights. Therefore, each flight has an associated

interaction value with each other, which is determined by the number of connecting

passengers. Two flights with significant numbers of connecting passengers should

be placed as close to each other as possible. This problem can be expressed with an

interaction flow matrix that specifies the level of interaction between each flight. In

this case, the distance between each aircraft is fixed by the distance between gates,

regardless of the size of the aircraft. Therefore, the length vector can be assumed

as a vector of all ones. This problem is thus a linear ordering problem, which is a

special case of the QAP.

The instance of five aircrafts (n = 5) can be expressed this way [39]:

F =



0 1 5 5 7

1 0 8 3 4

5 8 0 1 5

5 3 1 0 7

7 4 5 7 0


and ` =

(
1 1 1 1 1

)

2 3 5 1 4

Figure 2.2: The problem of airplane-to-gate assignment
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2.1.2 Solution Approaches

When one encounters a problem with the collected data as the instance, under

certain assumptions, one must first decide on a suitable solution approach. Based

on that approach, one can then build a model with an objective function and

constraints. To reach global optimality for the SRFLP, there are the branch-and-

bound approach [36], the dynamic programming approach [22], [33], the mixed-

integer linear programming (MILP) approach [16], [34], [28], [18], [1], and the SDP

approach [4]. Most recently, Amaral and Letchford [3] have also used the polyhedral

approach to formulate the SRFLP.

On the other hand, if only a local optimum is needed, the SRFLP can be solved

using a nonlinear programming (NLP) approach [21], the metaheuristic approach,

or simply solved by the interchange approach, such as 2-Opt. 2-Opt is a heuristic

formulation that consists of sequence of pairwise exchange of departments. If the

exchange results in improvement, the two departments are swapped. Otherwise,

they stay in the same spot and the algorithm goes on to find the next exchange

pair. The process continues until no more changes can be made. It is a compu-

tationally inexpensive algorithm that is used in several parts of the cutting plane

algorithm in this thesis to reduce the search space more rapidly. The input variable

of 2-Opt is any permutation π and the function will return an improved (or the

same) permutation. The Matlab code of 2-Opt can be found in Appendix A. As

for metaheuristics, there are many examples in literature, including the simulated

annealing method [35], [19], and the greedy heuristic [24].

2.1.3 Models

Through each solution approach, the problem can be formulated mathematically in

different models. For example, the MILP approach was used by many researchers

to build models that solve SRFLP [16], [34], [28], [18], [1]. Although with the same

approach, different researchers can express the problem differently. For instance,

Heragu [18] proposed the model LMIP1 using the MILP approach. LMIP1, though

a different model, is similar to another MILP model by Love and Wong [28]. The

main difference between the two models is in the calculation of inter-departmental

distance, where Heragu uses centroids of departments i and j, while Love and Wong

uses the endpoint location of each department to calculate the distance. However,

5



both models are known to provide poor global lower bounds while requiring long

computational time. Other models that adapt the MILP approach were proposed

by Grötschel et al. [16], and Reinelt [34]. In 2006, Amaral presented another

model using the MILP approach, which has shown an improvement from all of the

earlier MILP-based models [1]. Although Amaral’s model uses the same number

of zero-one variables, it presents a smaller number of continuous variables than the

preceding models in literature. It is also shown to improve the lower bound and the

computation time in comparison to Love and Wang’s model [1]. However, Anjos and

Vannelli [5] pointed out that these MILP-based models, although they guarantee

global optimality, also require high computational time and memory requirements.

Most recently in 2008, Amaral proposed a new lower bound in [2], which is yet to

be investigated in detail.

Heragu and Kusiak [21] presented ABSMODEL1 for the problem using NLP

approach. In this model, the absolute value of the distance between the centroids

of each department is used, which makes the model non-linear. Therefore, the

selection of the initial point is very important when solving a SRFLP using the

ABSMODEL1.

Anjos, Kennings, and Vannelli [4] presented a model, AKV, using the SDP

solution approach. In [4], a heuristic method was also presented to convert a relaxed

solution to a feasible solution. AKV presented the first non-trivial global lower

bound for the SRFLP in the published literature [4]. More recently, a new version

of this matrix-based model, AKV’, shows some promising improvement [6], which

will be discussed in Chapter 3 .

2.1.4 Solvers

Finally, each model may be solved by different solvers. For instance, the NLP-based

models can be solved by BARON, CONOPT, MINOS, SNOPT, and PATH [29].

There are also many solvers available for the SDP-based models, such as CSDP,

SeDuMi, and SDPT3. While there are many solvers for the linear programming

(LP) approach, such as CPLEX, SDP solvers such as SDPT3 and SeDuMi can also

solve linear problems. As indicated by the list of solvers for the various formulations,

one can observe that some solvers are solution approach-specific, while others can

be used to solve models from a number of different solution approaches.
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2.1.5 Solution

After an iterative process of computation, a solution can be achieved. The solu-

tion indicates the most efficient arrangement of the different departments and also

the objective value, which is often expressed as material handling cost. For many

practical problems, only a near-optimal solution can be obtained, since most prac-

tical problems are relatively large in size. Fortunately, for practical purposes, high

precision is normally not required. Therefore, the analyst can resort to heuristic

methods in a case like this. It is thus an important judgment for an analyst to

assess the required level of accuracy and precision before finalizing what solution

approach, model, and solver to employ.

2.2 Review of Recent Mathematical Programming

SRFLP Models

2.2.1 ABSMODEL1

Heragu and Kusiak proposed ABSMODEL1 in [21], where they set the decision

variable xi to represent the location of department i, measured from the reference

point zero to the centroid of department i. There are a total of n departments,

where fij denotes the interaction frequency cost between department i and j, and

`i represents the length of the horizontal side of department i. Both fij and `i are

input parameters from the problem instances.

min
n−1∑
i=1

n∑
j=i+1

fij|xi − xj|

s.t.

|xi − xj| ≥ 0.5(`i + `j) for all pairs 1 ≤ i < j ≤ n

With the employment of absolute terms to denote centre-to-centre distance, we

are not concerned whether department i is to the left or to the right of department

j. Furthermore, the constraint ensures no overlap between any two departments.

Since the constraints of ABSMODEL1 are not convex, solving a SRFLP using this

model is a heuristic (local optimum) search technique.
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2.2.2 LMIP1

LMIP1 is a MILP-based model, which is similar to another MILP model proposed

by Love and Wong [28]. LMIP1 is discussed in detail in this thesis because, instead

of measuring interdepartmental distance from the endpoint of the department like in

[28], it measures distance from the centroid of each department, which is consistent

with all the other models introduced in this thesis.

min
n−1∑
i=1

n∑
j=i+1

fij(x
+
ij − x−ij)

s.t.

xi − xj +Mαij ≥ 0.5(`i + `j) for all pairs 1 ≤ i < j ≤ n

xj − xi +M(1− αij) ≥ 0.5(`i + `j)

xi − xj = x+
ij − x−ij

x+
ij ≥ 0 and x−ij ≥ 0

αij ∈ {0, 1}
xi > 0 for all i = 1, . . . n

The transformation of ABSMODEL1 to LMIP1 is shown in [18], where the

absolute term is replaced by x+
ij + x−ij. The parameter M is a sufficiently large

positive number. Similar to ABSMODEL1, the decision variable xi represents the

location of department i, measured from the reference point zero to the centroid

of department i. The two new variables x+
ij and x−ij represent the distance between

department i and j, and they are defined as below:

x+
ij :=

{
xi − xj, if (xi − xj) > 0,

0, otherwise,

x−ij :=

{
xj − xi, if (xi − xj) ≤ 0,

0, otherwise.

One interesting fact about the SRFLP is its natural symmetry, in which any

solution can be expressed by two opposite permutations. The binary variable αij

serves to break the natural symmetry of the department arrangement by forcing

one of the first two constraints trivial. This means that department i will be either

to the left or to the right of department j. The binary variable αij is defined as

below:

αij :=

{
1, if xi < xj,

0, otherwise.
(2.1)
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Other than the new decision variables listed above, the meaning of the parame-

ters fij, `i, and n are the same as in ABSMODEL1. Similarly, the objective function
n−1∑
i=1

n∑
j=i+1

fij(x
+
i − x+

j ) also seeks to minimize the total weighted sum of centre-to-

centre distance between department i and j. The first two constraints ensure no

overlap.

2.2.3 Amaral’s Model

Amaral proposed the following MILP model in [1]. The main difference between this

model and the earlier MILP-based models is in the new decision variable dij, which

is defined as the distance between the centroids of department i and j. Another

decision variable in this model is the binary variable αij, which is also defined as in

Equation (2.1) in LMIP1. Similar to LMIP1, the objective function
n−1∑
i=1

n∑
j=i+1

fijdij

also seeks to minimize the total weighted sum of centre-to-centre distance between

department i and j.

Let xi be the location (or coordinate) of department i. It can be expressed as:

xi =
`i
2

+
n∑

k=1,k 6=i

`k αki. (2.2)

The new decision variable dij is defined as

dij = max{(xi − xj), (xj − xi)} for 1 ≤ i < j ≤ n,

which can be rewritten as

dij :=

{
xj − xi, if xj > xi,

xi − xj, otherwise,
for 1 ≤ i < j ≤ n,

or dij ≥ xi − xj, dij ≥ xj − xi, for 1 ≤ i < j ≤ n. (2.3)

By substituting Equation (2.2) into the new expression of dij in Equation (2.3),

we get

xi − xj =
n∑

k=1,k 6=i
`kαki −

n∑
k=1,k 6=j

`kαkj + (`i − `j)/2

=
∑
k<i

`kαki +
∑
k>i

`k(1− αik)−
∑
k<j

`kαkj −
∑
k>j

`k(1− αjk) + (`i − `j)/2.
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Therefore, for the case of dij ≥ xi − xj,

dij ≥
∑
k<i

`kαki +
∑
k>i

`k(1− αik)−
∑
k<j

`kαkj −
∑
k>j

`k(1− αjk) + (`i − `j)/2.

Finally, Amaral’s model for the SRFLP is given by:

min
n−1∑
i=1

n∑
j=i+1

fijdij

s.t.

dij ≥
∑
k<i

`kαki +
∑
k>i

`k(1− αik)−
∑
k<j

`kαkj −
∑
k>j

`k(1− αjk) + (`i − `j)/2,

dij ≥ −
∑
k<i

`kαki −
∑
k>i

`k(1− αik) +
∑
k<j

`kαkj +
∑
k>j

`k(1− αjk) + (`j − `i)/2

for 1 ≤ i < j ≤ n,

αij + αjk − αik ≤ 1 for 1 ≤ i < j < k ≤ n,

−αij − αjk + αik ≤ 0 for 1 ≤ i < j < k ≤ n,

αij ∈ {0, 1} for 1 ≤ i < j ≤ n,

dij ≥ (`i + `j)/2 for 1 ≤ i < j ≤ n.

The triangle inequality constraint set helps to make the definition of left and

right consistent. The last constraint sets the minimal distance between each de-

partment pair to ensure no overlap.

2.2.4 The AKV Model

The AKV model proposed by Anjos, Kenning, and Vannelli in [4] has a similar struc-

ture with the SDP model for the max-cut problems by Goemans and Williamson

[15]. Both models set the diagonal elements of the positive semidefinite variable

X to one. Furthermore, the first constraint in AKV is similar to the triangular

constraints in the max-cut model. When disregarding the rank constraint, AKV

becomes the relaxation model that can be used for lower bound computation. The

10



AKV model is given by,

min K −
∑
i<j

fij

2

[∑
k<i

`kXki,kj −
∑

i<k<j

`kXik,kj +
∑
k>j

`kXik,jk

]
s.t.

Xij,jk −Xij,ik −Xik,jk = −1 for all triplets i < j < k

diag (X) = e

rank (X) = 1

X � 0

(2.4)

where K :=

(∑
i<j

fij

2

)(
n∑
k=1

`k

)
, diag (X) denotes a vector formed by the diagonal

elements of X, e denotes the vector of all ones, and X � 0 signifies that matrix X

is positive semidefinite. The derivation of the constant K will be discussed later.

The entire AKV model is built upon the binary variables R, which are given by,

Rij :=

{
1, if facility i is to the right of facility j,

−1, if facility i is to the left of facility j.

It is clear that one of the two possibilities must hold for every feasible arrange-

ment of the departments and that Rij = −Rji. The purpose of variable Rij is

similar to the αij in Equation (2.1) for LMIP1 and Amaral’s model. The minor dif-

ference between the two binary variables is that Rij ∈ {−1, 1}, while αij ∈ {0, 1}.
Also, the left-right position of facility i is defined differently. By listing all Rij

with i < j, a vector v can be formed with length
(
n
2

)
, where n is the number of

departments. Using v, the rank-one matrix X is constructed as X = vvT , such

that element Xij,kl = RijRkl. Therefore, the diagonal elements of X are 1 since

Xij,ij = R2
ij = 1. Also it should be noted that the matrix X is of size

(
n
2

)
×
(
n
2

)
.

To accurately model the problem, we must make sure that the relationship of

left and right of each department triplet is maintained. Therefore, the following

condition is required to hold:

if Rij = Rjk, then Rij = Rik.

This means that if i is to the right of j, and j is to the right of k, then i must

be right of k. This expression can be rewritten as (Rij +Rjk)(Rij−Rik) = 0. After
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expansion, we get RijRjk−RijRik−RikRjk = −1. Finally, when expressed in terms

of variable X, we obtain the following constraint:

Xij,jk −Xij,ik −Xik,jk = −1.

The following steps illustrate how any given feasible set of Rij can be interpreted

and mapped to the more intuitive format of a permutation π. A permutation lays

out the department numbers under a given arrangement. These steps are also the

backbone of the AKV Heuristic, which will be discussed in Section 2.2.5.

1. For each department k = 1 . . . n, sum up Rkj by

Pk =
∑
j 6=k

Rkj

which can be interpreted as how far to the right department k should be

positioned. All the Pk values belong to the set {−(n− 1),−(n− 3), . . . (n−
3), (n− 1)}.

2. Map the numbers to the set {1, 2, . . . n} by substituting into the formula

pk = (Pk +n+ 1)/2. But pk still can be interpreted as how much to the right

department k should be placed.

3. Sort the pk to achieve the permutation π.

It should be noted that if every Rij variable is replaced by its negative, the ar-

rangement of the departments remains the same, and it creates no change to the

model. This is how the AKV model can implicitly take into account of the natural

symmetry of the SRFLP.

The objective function is to minimize the total weighted sum of centre-to-centre

distance between all department pairs, which is originally expressed as:∑
i<j

fij

[
1

2
`i +Dπ(i, j) +

1

2
`j

]
. (2.5)

Dπ(i, j) signifies the sum of the lengths of the departments between departments

i and j in a given arrangement π. It can be rewritten as:

Dπ(i, j) =
∑
k 6=i,j

`k

(
1−RkiRkj

2

)
. (2.6)
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This formula is valid because index k is between i and j iff RkiRkj = −1.

Therefore, only the lengths of the departments that are positioned between the

given department pair i and j are summed up. After substituting Equation (2.6)

into Equation (2.5), the objective function can be rewritten this way:

∑
i<j

fij

[
`i+`j

2
+
∑
k 6=i,j

`k

(
1−RkiRkj

2

)]

=
∑
i<j

fij

[(
n∑
k=1

`k
2

)
−
∑
k 6=i,j

`k
RkiRkj

2

]

=

(∑
i<j

fij

2

)(
n∑
k=1

`k

)
−
∑
i<j

fij

2

[∑
k<i

`kRkiRkj −
∑

i<k<j

`kRikRkj +
∑
k>j

`kRikRjk

]

where

(∑
i<j

fij

2

)(
n∑
k=1

`k

)
is the constant K in (2.4).

2.2.5 AKV Heuristic

Goemans and Williamson [15] applied a randomized rounding heuristic for the max-

cut problems to derive a feasible solution from the lower bound solution. By using

a different methodology, the AKV Heuristic also extracts a feasible permutation π

from the optimal solution X∗ of the relaxation. The concept of mapping from Rij to

π is briefly explained in the previous section. This section will give a more detailed

explanation to the implementation of the translation from the optimal solution X∗

of relaxed AKV or AKV’ to a feasible permutation π.

1. Calculate Rij by using X∗ from the lower bound calculation:

By the definition of matrix X, we know that the first row of X is

R12 · vT = (R12R12 R12R13 R12R23 R12R14 . . . R12R(n−1)n).

Thus by setting R12 = 1, all of Rij can be calculated by using the first row of

X. Note that since the lower bound X∗ is from the relaxation, which means

it is very likely not rank-one, the elements Xij are not ∈ {−1, 1}. Therefore

Rij can be any value between −1 and +1.

2. Translate Rij to permutation π by first calculating Pk for each department k

by summing Rkj as followed:

Pk =
∑
j 6=k

Rkj.
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Pk can be seen as the weight of how far to the right department k should be

positioned.

3. Sort the departments by the weight value Pk in descending order, since R12

is assumed to be 1 and we prefer to see the facilities in an order such that

i < j.

In the Matlab implementation, X∗ is
(
n
2

)
×
(
n
2

)
, so there are

(
n
2

)
sets of possible

feasible solutions: one for each row. All the rows of the X∗ are checked through

and compared to ensure the best-known feasible solution is obtained. The heuristic

algorithm 2-Opt is also incorporated after obtaining a permutation to improve it

further. In the experiments for this thesis, high-quality feasible solution is often

observed at root node. Please see Appendix B for the Matlab code of the AKV

Heuristic.
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Chapter 3

Comparison of the SDP Models

In this chapter, AKV’, a new matrix-based SDP model is presented. Later in the

chapter, a lower bound comparison between the original AKV and the new AKV’

relaxation model is made to study the tradeoff.

3.1 The AKV’ Model

The AKV’ model is first introduced in [6]. This SDP-formulated model is largely

based on (2.4), but it reduces the number of linear constraints from O(n3) to O(n2).

Other than the reduction in the number of linear constraints, everything else in the

new model remains the same as in AKV.

The AKV’ model is presented in the following way:

min K −
∑
i<j

fij

2

[∑
k<i

`kXki,kj −
∑

i<k<j

`kXik,kj +
∑
k>j

`kXik,jk

]
s.t.

n∑
k 6=i,j,k=1

Xij,jk −
n∑

k 6=i,j,k=1

Xij,ik −
n∑

k 6=i,j,k=1

Xik,jk = −(n− 2) for all pairs i < j

diag (X) = e

rank (X) = 1

X � 0

(3.1)

Removing the rank-one constraint also results in an SDP relaxation. It should

be noted that, although the number of constraints is now reduced to O(n2), which
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leads to savings in computation time, the quality of the solution also deteriorates

slightly. The tradeoff is studied in Section 3.3.

3.2 Model Equivalency

The AKV’ relaxation is essentially relaxed from the AKV relaxation. It is therefore

interesting to verify whether the AKV’ model (3.1) is equivalent to AKV (2.4) with

the rank-1 constraint. Namely, we want to find out whether the feasible sets of the

two models are equal.

Theorem 1 The feasible sets of (2.4) and (3.1) are identical.

Proof: First we will show that X feasible for (3.1) is also feasible for (2.4).

Rewrite the first constraint of (3.1) as

n∑
k 6=i,j,k=1

(Xij,jk −Xij,ik −Xik,jk) = −(n− 2) for all pairs i < j

Suppose X is feasible for (3.1). Then the constraints diag (X) = e and rank (X) = 1

together imply that Xij,k` = ±1 for all entries of X. Furthermore, X � 0 implies

that Xij,jk −Xij,ik −Xik,jk ≥ −1 for all distinct i, j, k. Hence,

n∑
k 6=i,j,k=1

(Xij,jk −Xij,ik −Xik,jk) ≥ −(n− 2).

Therefore, it is clear that each term Xij,jk − Xij,ik − Xik,jk must equal −1. This

means X is feasible for (2.4).

It is then straightforward to show that X feasible for (2.4) is also feasible for

(3.1). By summing all the k terms from 1 to n for all pairs i < j, the first constraint

in (2.4) becomes the first constraint in (3.1).

3.3 Comparison of Lower Bound Computation

New test instances were generated by using the connectivity data from some of

the well-known Nugent QAP Problems [32]. The facility lengths were randomly
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generated, with the exception of all the instances with their names ending in “1”.

These instances have all the department lengths equal to unity.

The computation results in this section was generated on a Sun Fire V890

8*1.2GHz with 64Gb of RAM. The SDP problems were solved using the interior-

point solver CSDP (version 5.0) of [8] in conjunction with the ATLAS library of

routines [41].

First, we compare the two SDP relaxations for problems with 25 to 42 facili-

ties. This comparison aims to provide a sense of how much the lower bounds are

weakened by the reduction in the number of constraints in AKV’. The results are

reported in Table 3.1.

The gap is calculated as the percentage difference between the lower bound and

the best feasible solution by the AKV heuristic. Roughly speaking, the smaller

the gap, the shorter the computation time one would expect to eventually reach

global optimality. By examining the gap for both the AKV and AKV’ relaxations,

we notice that both relaxations generate very small gaps at the root node, which

demonstrates the effectiveness of the relaxations. Furthermore, it is evident that

while the CPU times are significantly smaller for the new AKV’, the resulting gaps

still remain small, mostly between 3% to 7% (with only 1 exception out of 20 test

instances). The savings in computation time are especially significant for larger

instances. In particular, for the instances of size 42, the CPU time for the original

AKV relaxation is about 2.5 times greater than the new AKV’ relaxation, while

the average gap only decreases to 3.16% from 5.11%. Moreover, if we compare the

two lower bounds directly, the relative gap between the two lower bounds is very

small with an average value of 1.64%.
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Instance # AKV from (2.4) AKV’ from (3.1) Gap

of Lower CPU Best layout Gap Lower CPU Best layout Gap between

fac. bound time by AKV bound time by AKV lower

(sec) heuristic (sec) heuristic bounds

SRFLP-nug25-1 25 4515.0 44 4622.0 2.37% 4463.5 39 4626.0 3.64% 1.15%

SRFLP-nug25-2 25 36355.5 44 37641.5 3.54% 35960.5 42 37346.5 3.86% 1.10%

SRFLP-nug25-3 25 23691.0 43 24537.0 3.57% 23398.0 41 24609.0 5.18% 1.25%

SRFLP-nug25-4 25 47330.0 43 48887.5 3.29% 46798.5 40 48811.5 4.30% 1.14%

SRFLP-nug25-5 25 15304.5 44 15767.0 3.02% 15148.0 42 15783.0 4.19% 1.03%

SRFLP-nug30-1 30 8061.0 192 8305.0 3.03% 7975.5 128 8310.0 4.19% 1.07%

SRFLP-nug30-2 30 21188.5 195 21663.5 2.24% 20921.5 128 21672.5 3.59% 1.28%

SRFLP-nug30-3 30 44518.5 194 45712.0 2.68% 43986.0 133 45703.0 3.90% 1.21%

SRFLP-nug30-4 30 55947.5 194 56922.5 1.74% 55181.0 136 57060.5 3.41% 1.39%

SRFLP-nug30-5 30 113072.0 186 115776.0 2.39% 111828.5 129 115986.0 3.72% 1.11%

SRFLP-ste36-1 36 10087.5 884 10301.0 2.12% 9851.0 471 10328.0 4.84% 2.40%

SRFLP-ste36-2 36 175387.0 843 181910.0 3.72% 170759.5 435 182649.0 6.96% 2.71%

SRFLP-ste36-3 36 98739.0 809 102179.5 3.48% 96090.0 436 104041.5 8.28% 2.76%

SRFLP-ste36-4 36 94650.5 850 96080.5 1.51% 91103.0 439 96854.5 6.31% 3.89%

SRFLP-ste36-5 36 89533.0 852 91893.5 2.64% 87688.0 441 92563.5 5.56% 2.10%

SRFLP-sko42-1 42 24807.0 3032 25724.0 3.70% 24517.0 1160 25779.0 5.15% 1.18%

SRFLP-sko42-2 42 210785.0 3056 217296.5 3.09% 207357.0 1174 218117.5 5.19% 1.65%

SRFLP-sko42-3 42 169944.5 3206 173854.5 2.30% 167783.5 1164 174694.5 4.12% 1.29%

SRFLP-sko42-4 42 133429.5 3030 138829.0 4.05% 131536.0 1115 139630.0 6.15% 1.44%

SRFLP-sko42-5 42 242925.5 3075 249327.5 2.64% 238669.5 1172 250501.5 4.96% 1.78%

Average Gap 2.86% 4.88% 1.65%

Table 3.1: Comparison of the two SDP relaxations
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Chapter 4

Cutting Plane Separation

Strategies

One typical way to tighten the semidefinite relaxation of an integer optimization

problem is to add inequalities as cutting planes, such as the triangle inequalities.

For more information on different classes of inequalities, see [12]. Anjos and Van-

nelli [5] use a simple scheme in combination with the AKV model to detect and add

violated triangle inequalities to solve SRFLPs with up to 30 departments to global

optimality. In this thesis, we improve upon the work in [5] by a thorough investiga-

tion of more sophisticated cutting-plane strategies. The objective is to compare the

various strategies in combination with the AKV and AKV’ relaxations and come

up with the best overall combination.

The triangle inequalities to be considered are valid for the integer feasible points.

There are four types, each with
((n

2)
3

)
inequalities:

Xp1,p2 +Xp1,p3 +Xp2,p3 ≥ −1

Xp1,p2 −Xp1,p3 −Xp2,p3 ≥ −1

−Xp1,p2 −Xp1,p3 +Xp2,p3 ≥ −1

−Xp1,p2 +Xp1,p3 −Xp2,p3 ≥ −1

(4.1)

where p1, p2, p3 are three distinct pairs. Therefore, there are a total of 4
((n

2)
3

)
additional inequality constraints, which means O(n6), that can be added to the

relaxation. Obviously, these are too many to include simultaneously for a practical

problem with large n. Consequently, an algorithm is required to filter and select a
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number of violated inequalities that can create the greatest impact for lower bound

improvement and the attainment of the global optimum as quickly as possible.

The general approach for such an algorithm in this thesis begins by solving the

AKV or AKV’ relaxation, then adding some violated inequalities, re-optimizing,

and repeating until no more violations can be found. Due to the strength of the

SDP relaxations, the algorithm never runs out of cuts before global optimality

is attained. In essence, the six strategies considered differ mainly in the ways

that violated inequalities are detected. Also, in Strategies 4, 5, and 6, a scheme

that removes the inequality constraints with positive slack at the relaxed optimum

solution after each re-optimization step is incorporated. This feature helps to keep

the size of the SDP small. In Strategies 5 and 6, an algorithm that performs re-

search for the violated inequalities is included when the total number of violations

found is less than half of the anticipated number set by the user. A more detailed

description of each strategy is presented in the following sections.

4.1 The Six Strategies

Because there are too many possible constraints to be added all at once, an algo-

rithm that ranks and selects the cuts is developed to collaborate with the AKV and

AKV’ relaxations. The process was made dynamic by using the parameter vioRHS.

It is the dynamic condition that determines whether an inequality is considered to

be violated. When expressed mathematically, it is the right-hand-side value for the

triangle inequalities in Equation (4.2):

Xp1,p2 +Xp1,p3 +Xp2,p3 + 1 ≥ vioRHS

Xp1,p2 −Xp1,p3 −Xp2,p3 + 1 ≥ vioRHS

−Xp1,p2 −Xp1,p3 +Xp2,p3 + 1 ≥ vioRHS

−Xp1,p2 +Xp1,p3 −Xp2,p3 + 1 ≥ vioRHS

(4.2)

Therefore, the closer vioRHS is to zero, the closer the above inequalities (4.2)

are to the actual triangle inequalities (4.1. Consequently, more violations can be

found as the inequalities in the algorithm becomes closer to the actual inequalities.

The more violations that are detected, the longer it takes for the algorithm to sort

and generate the cuts. However, if the vioRHS value is set too high, the algorithm
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cannot find cuts, and it will conclude erroneously that the gap has closed and

global optimality has been reached. In other words, by manipulating vioRHS, we

can control the number of cuts found, and thereby control the computation time of

finding the cuts. This algorithm manipulates the vioRHS parameter dynamically

based on the state of the optimization process, so that shorter computation times

can be achieved while ensuring the accuracy of the conclusion.

Another important parameter that affects the computation effort is numcut,

which represents the number of cuts to add to each sub-problem. While vioRHS

significantly affects the computation time by controlling the number of possible

cuts that can be found, numcut affects the computation time by regulating the

number of cuts that can be added out of all the found cuts. The higher the numcut,

the more rapidly the size of the SDP problem grows, and hence the faster the

growth in optimization time. Although this trend may sound unfavourable, a high

value of numcut can also lead to a reduction in the number of iterations required.

Therefore, a lot of observation and fine-tuning is necessary to bring the computation

time down.

The basic logic of the algorithm is presented in Figure 4.1. This flow chart

depicts the dynamic cutting plane methodology for Strategies 1, 2, and 3. Each

strategy differs by the way vioRHS is adjusted in each iteration. The extensions to

the general logic are explained respectively for each strategy.

When the problem instance is fed to the algorithm, it starts optimizing the first

sub-problem to find the lower bound solution X∗ and the lower bound objective

value Zlb. The solvers used are CSDP version 5.0 [8] and SDPT3 version 4.0 [40].

With the newly obtained X∗ and the appropriate vioRHS value, the algorithm

carries out the calculation as laid out in Equation (4.2) to assess violations. If

the left-hand-side value is less than vioRHS, a violation occurs. The indices and

the left-hand-side value are recorded for later use. Note that the initial vioRHS

is chosen to be −0.4. The initial vioRHS should not be too high (in terms of the

magnitude), or otherwise no violations will be found as the standard is too slack.

On the other hand, if the initial vioRHS is set too low, then it will take a very long

time for the initial round of violation assessment, since no cuts have been added in

the first round and there are still plenty of potential violations that can be detected.

In the case when no violation is detected, the algorithm will exit the loop. This

usually happens when the initial vioRHS is too high for smaller instances, or when
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Solve relaxation, get 
X*, Zlb

Compute how each 
combination (p1,p2,p3) 
violates the inequalities

No more 
violations?Exit loop Yes

Rank the combinations 
by severity of violation

No

Add top numcut most 
violated inequalities to 

relaxation

Re-optimize, get 
new X*, Zlb

Run AKVheur, get 

Zbk and π

abs(Zlb - Zbk) < 
0.01 ?

Zlb > Zbk ?

No

Gap closedYes

PrunedYes

Modify vioRHS

No

Figure 4.1: General cutting plane algorithm

vioRHS has not been reduced quickly enough in the middle of the process. However,

new feature has been added to the newer cutting plane strategy (Strategies 4, 5,

and 6) to combat these short-comings that may disrupt the computation and cause

premature termination. This new feature is detailed in Section 4.1.4. On a side

note, if branch and cut were to be used, branching would take place at this step

upon exiting the loop. However, since the relaxations used in this thesis are good

enough, branching was never necessary.

If there are any violations detected, these violated inequalities will be sorted
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by their recorded left-hand-side value, which signifies the severity of violation. The

higher the left-hand-side value in terms of magnitude, the further away the inequal-

ity is from zero, and the more severe the violation. Therefore, the inequalities are

sorted in a decreasing order of severity. A preset number of the inequalities from

the top of the list are then chosen to be added to the relaxation sub-problem. This

preset number is numcut. Parameter numcut sets the maximum number of cuts

that can be added for each iteration. If less than numcut violations were found, all

of them will be added, but the vioRHS will need adjustment so that more violations

can be found. The modification of vioRHS will be discussed in more detail later.

By adding a number of most violated inequalities, a new relaxation sub-problem

is obtained. By solving the new sub-problem, a new lower bound solution X∗ and

objective value Zlb are obtained. Since there were already a number of inequalities

added as new constraints, the new Zlb should be higher and hence closer to the

optimal solution. Using the newly obtained solution, the function AKVheur will

utilize the AKV Heuristic with some help of 2-opt to find a set of feasible solution:

π, which represents the permutation of departments, and Zbk, which denotes the

best-known objective value or the upper bound. These newly-obtained solution

helps us to calculate the gap between the lower bound and the upper bound. The

gap tells us about the state and condition of the cutting plane optimization process.

If the lower bound Zlb and the upper bound Zbk are very close to each other,

then the gap is closed and optimality is reached. For the first three strategies, we

used |Zlb − Zbk| ≤ 0.01 to declare the gap closed, but it is sufficient to define the

condition of gap closed as |Zlb − Zbk| ≤ 0.49, because by examining the make-up

of the objective function (2.5) it is evident that the objective values will always be

half-integer, given that the input data are all integer. The latter criterion was used

starting with Strategy 4. On the other hand, if the lower bound Zlb becomes higher

than the best known Zbk, the sub-problem becomes invalid and hence pruned. If not,

the cutting plane process will continue to the next step where vioRHS is modified

based on the state of the optimization process. After the adjustment of vioRHS,

the standard of the violation assessment is changed, and the algorithm will try to

find new violated inequalities with the newly-obtained information.
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4.1.1 Strategy 1

Strategy 1 follows closely the general approach illustrated in Figure 4.1. Figure 4.2

demonstrates the methodology of vioRHS modification in Strategy 1. The param-

eter vioRHS starts off at −0.4. During steady improvement, i.e. the percentage

difference between the new Zlb from the current iteration and the old Zlb from the

previous iteration exceeds 0.1%, the magnitude of vioRHS is increased by 1%. How-

ever, if the improvement of Zlb stagnates such that the percentage difference is less

than 0.1%, the magnitude of vioRHS will be reduced by 0.2 or by half, whichever

results in a smaller change. Nevertheless, the change will not let vioRHS fall below

−0.03. However, if the problem runs low on the number of cuts found, i.e. number

of cuts found is less than numcut, a bigger reduction is required to keep the problem

running. The parameter vioRHS will be automatically reduced by 75% or by 0.2,

whichever results in a smaller drop.

# of cuts found ≥
numcut ?

abs(oldZlb–newZlb)/oldZlb  
< 0.001 ?

Yes

vioRHS = 
min(vioRHS+min(-0.5*vioRHS,0.2),-0.03)

Yes

vioRHS = vioRHS*1.01No

vioRHS = 
vioRHS+min(-0.75*vioRHS,0.2)

No

Figure 4.2: Strategy 1 on modification of vioRHS
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4.1.2 Strategy 2

Strategy 2, as illustrated in Figure 4.3 is similar to Strategy 1 with some minor

changes in parameters. For instance, the improvement of Zlb is considered steady if

the percentage difference between the new and the old Zlb exceeds 0.13%, instead of

0.1% as in Strategy 1. When the improvement is steady, the magnitude of vioRHS

is increased by 1%. Otherwise, the magnitude of vioRHS will be cut down by 0.2 or

by 20%, instead of by half as in Strategy 1, whichever results in a smaller change.

Similar to Strategy 1, the change will not let vioRHS drop below −0.03. Also, if the

number of cuts found is less than numcut, vioRHS will be given a bigger adjustment

of 75% reduction or by 0.2, whichever results in a smaller change.

# of cuts found ≥
numcut ?

abs(oldZlb–newZlb)/oldZlb  
< 0.0013 ?

Yes

vioRHS = 
min(vioRHS+min(-0.2*vioRHS,0.2),-0.03)

Yes

vioRHS = vioRHS*1.01No

vioRHS = 
vioRHS+min(-0.75*vioRHS,0.2)

No

Figure 4.3: Strategy 2 on modification of vioRHS

The comparison of results for Strategy 1 and 2 is detailed in Section 4.2.1.

Table 4.1 and Table 4.2 are the computation breakdown of the two circled data

points in Figure 4.9. The table is explained in detail in Section 4.2.1. The three

circled time durations in Table 4.1 are the time intervals for finding and sorting the

cuts after the algorithm decides that the improvement for Zlb is not fast enough,

and hence it lowers the vioRHS by 50%. Consequently, the time required for finding

and sorting the cuts surged up because the change of 50% is too aggressive. There
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are suddenly too many potential cuts that can be found and sorted. Therefore, in

Strategy 2, we changed the cut in vioRHS from 50% to 20% when the improvement is

not steady enough. The resultant change in computing time for cuts is drastically

shortened as seen in Table 4.2. Because the reduction in vioRHS is smaller in

Strategy 2, we can start decreasing vioRHS earlier, in the senes that the standard for

steady improvement of Zlb is now higher. In Strategy 2, the percentage difference of

the current and the previous Zlb has to be above 0.13% to be qualified as improving

steadily. Consequently, the algorithm reacts to make minor adjustment to vioRHS

sooner and more frequently in the process.

4.1.3 Strategy 3

In Strategy 3, the gap between Zlb and Zbk is introduced as another criterion to

assess the adjustment of vioRHS. Figure 4.4 shows that given the number of cuts

found is higher than numcut, if the percentage difference between Zlb and Zbk is less

than 0.2%, vioRHS will not be changed. Otherwise, vioRHS will be adjusted in the

same way as in Strategy 2. By keeping vioRHS unchanged when the gap is small,

the modification of vioRHS becomes smoother, which is observed to yield shorter

computation time. Figure 4.12 compares the two strategies, and Tables 4.3 and 4.4

illustrate the small improvement as the result of Strategy 3.

4.1.4 Strategy 4

Two new features are added in Strategy 4. As shown in Figure 4.5, when the

algorithm cannot find any violations, it will check whether there has been any

triangle inequality constraints added since the beginning. If there is none, it means

that the initial vioRHS of −0.4 is probably too high for this particular instance. It

will happen if the instance is small, such as when n ≤ 10. Therefore, the algorithm

will reduce the magnitude of vioRHS by 75% to start all over again. Otherwise, it

means that the problem has run out of cuts and hence the cutting plane algorithm

terminates.

Another new function in Strategy 4 is to remove non-binding inequality con-

straints. For numerical reason, the positive slack is considered non-binding if it

is greater than 0.1. Removing non-binding inequality constraints help to keep the
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# of cuts found ≥
numcut ?

abs(oldZlb–newZlb)/oldZlb  
< 0.0013 ?

vioRHS = 
min(vioRHS+min(-0.2*vioRHS,0.2),-0.03)

Yes

vioRHS = vioRHS*1.01No

vioRHS = 
vioRHS+min(-0.75*vioRHS,0.2)

No

abs(Zbk-Zlb)/ZbK 
≥ 0.002 ?

Yes

Yes

No change to 
vioRHS

No

Figure 4.4: Strategy 3 on modification of vioRHS

problem size small and gives more room for future cut addition. This is because

the algorithm gets rid of a number of constraints, say numslack, at the end of an

iteration, but in the next iteration, numslack additional cuts on top of the given

number numcut can be added to the new sub-problem. This approach facilitates

the pace of lower bound improvement, which is observed in Figure 4.15. Tables 4.9

and 4.10 also demonstrate the experimental result of this anticipated improvement,

which is explained in Section 4.2.3.

Strategy 4 modifies vioRHS as in Strategy 3. See Figure 4.4 for the illustration

of the algorithm.
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Solve relaxation, 
get X*, Zlb

Compute how each 
combination (p1,p2,p3) 
violates the inequalities

No more 
violations?

Exit loop
Rank the 

combinations by 
severity of violation

No

Add top numcut most 
violated inequalities to 

relaxation

Re-optimize, get 
new X*, Zlb

Run AKVheur, 
get Zbk and π

abs(Zlb - ZBk)
≤ 0.49 ?

Zlb > Zbk ?

No

Gap closedYes

PrunedYes

Modify vioRHS

No

Any new constraints added 
since the beginning?

Yes

Yes

Lower vioRHS by:
vioRHS = 
vioRHS*0.25

No

Remove 
inequality 

constraints with 
slack ≥ 0.1

Figure 4.5: Cutting plane algorithm for Strategy 4

4.1.5 Strategy 5

Strategy 5 includes two new features. One feature is that if the number of cuts found

is less than half of numcut, vioRHS will be reduced to re-start the violations search

with the new standard. This approach bypasses the time-consuming optimization

calculation when the number of inequality constraints to be added is low and hence

has smaller impact on lower bound improvement. This is especially helpful when
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the sub-problem becomes large after many inequality constraints have been added.

Solve relaxation, 
get X*, Zlb

Compute how each 
combination (p1,p2,p3) 
violates the inequalities

No more 
violations?

Exit loop
Rank the 

combinations by 
severity of violation

No

Add top numcut most 
violated inequalities to 

relaxation

Re-optimize, get 
new X*, Zlb

Run AKVheur, 
get Zbk and π

abs(Zlb - ZBk)
≤ 0.49 ?

Zlb > Zbk ?

No

Gap closedYes

PrunedYes

Modify vioRHS

No

Any new constraints added 
since the beginning?

Yes

Lower vioRHS
such that vioRHS 
= vioRHS*0.25

No

Remove 
inequality 

constraints with 
slack ≥ 0.1

Has vioRHS
reached -0.001?

Yes

Yes

Lower vioRHS such that 
vioRHS = Min(vioRHS+
Min(-0.75*vioRHS,0.2),
-0.001)

No

# of cuts found ≤
½ of numcut ?

No

Yes

Figure 4.6: Cutting plane algorithm for Strategy 5

The other new feature of Strategy 5 is the continued search for violations to

avoid premature termination. After detecting that no violations are found and

that it is not a small-instance issue, vioRHS will be reduced further until it reaches

−0.001, a very small number sufficiently close to zero. Please refer to Figure 4.6
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for the methodology of the cutting plane algorithm in Strategy 5. On the other

hand, the modification of vioRHS is executed the same way as in Strategy 3. See

Figure 4.4 for the illustration of the algorithm.

The two new features not only successfully prevent premature termination, but

they also allow the cutting plane process to be more efficient and hence lower the

computing time. The success of Strategy 5 can be observed in Figure 4.18, as well

as in Tables 4.11 and 4.12.

4.1.6 Strategy 6

Strategy 6 is similar to Strategy 5 other than the way vioRHS is adjusted. As re-

flected in Figures 4.7 and 4.8, this new approach ensures that the magnitude of each

adjustment to vioRHS will not exceed 0.1. This technique further smoothes the pro-

cess of vioRHS reduction and thus lowers the computation time. See Figures 4.21,

4.22, and 4.23 for the comparison graphs of Strategies 5 and 6 for instances AV25-

2, AV25-1, and HeKu20. The labeled data points in Figure 4.21 show the lowest

computing time thus far, and they are detailed in Tables 4.17 and 4.18.
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# of cuts found ≥
numcut ?

abs(oldZlb–newZlb)/oldZlb  
< 0.0013 ?

vioRHS = 
min(vioRHS+min(-0.2*vioRHS,0.1),-0.03)

Yes

vioRHS = vioRHS*1.01No

vioRHS = 
vioRHS+min(-0.75*vioRHS,0.1)

No

abs(Zbk-Zlb)/ZbK 
≥ 0.002 ?

Yes

Yes

No change to 
vioRHS

No

Figure 4.7: Strategy 6 on modification of vioRHS
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Figure 4.8: Cutting plane algorithm for Strategy 6
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4.2 Performance of the Six Strategies

This section discusses the performance of each strategy and how each strategy is

developed based on the earlier results. For this section on the development of the

basis strategies, medium-sized instances such as HeKu20, AV25-1, and AV25-2 were

used. A few larger instances, such as HeKu30 and STE36-1 were attempted, but

even the best-performing strategy out of the six basic strategies were too slow.

Therefore some minor modification was made to create another two strategies for

the large instances, which will be discussed in Chapter 5. HeKu20 and HeKu30

are from Heragu and Kusiak in [20], while AV25-1 and AV25-2 are from Anjos and

Vannelli in [5]. The other larger instances will be explained later in Chapter 5.

Please see Appendix C for the complete listing of all the instances used in this

thesis.

The medium-sized instances were solved by AKV and AKV’ using SDPT3 ver-

sion 4.0 [40] on a 2.0GHz Dual Opteron with 16Gb of RAM. Each method was run

15 times using different numcut setting, ranging from 100 to 900. Several graphs

were generated to study the behaviour of each method and the effect of numcut on

computing time. We would also like to find out a pattern of the effect of numcut

so that we can use the most effective numcut value to solve larger problems.

4.2.1 From Strategy 1 to Strategy 2

The changes between Strategy 1 and Strategy 2 may seem small, but the im-

provement in computing time is drastic. Figure 4.9 compares AKV and AKV’ for

Strategy 1 and 2 when solving instance AV25-2. It should be noted that AKV’1

denotes the combination of AKV’ using Strategy 1. Also, there are two missing

points in this graph, namely AKV’1 and AKV’2 at numcut = 100. Any missing

point in the curves means that the corresponding trial is incomplete. This may be

due to limitations of the algorithm, especially in the earlier stategies, or running

out of memory, which happens when solving large instances. After a few versions

of modifications on the algorithm, the problem of running out of cuts is eliminated

for Strategy 5 and 6.

When doing an overall comparison of AKV and AKV’, Figure 4.9 clearly tells

us that AKV’ outperforms AKV, since both AKV curves are almost always above
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Figure 4.9: Comparison of Strategy 1 and Strategy 2 for AV25-2

the AKV’ curves. This distinction is especially obvious for small numcut. While

the AKV’ curves steady off at low computation time as numcut increases, the AKV

curves climb up and deviate away from the AKV’ curves.

When comparing Strategy 1 and 2, we need to compare AKV1 with AKV2,

and AKV’1 with AKV’2. For AKV1 and AKV2, the AKV2 curve is almost always

below the AKV1 curve. At numcut = 100, it takes AKV1 nearly 2.5 times the

computation time for AKV2. For AKV’1 and AKV’2, the difference in computing

time at numcut = 150 is also very high, where the total computing time for AKV’1

is 2.6 times of AKV’2. But the two AKV’ curves seem to converge as numcut

increases, and hence the distinction becomes very small. However, we can still

conclude that the change in Strategy 2 makes an improvement for the computation

effeciency.

The conclusion also applies to the other instances as seen in Figure 4.10 for

AV25-1 and Figure 4.11 for HeKu20. It should be noted that the behaviour in
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Figure 4.10: Comparison of Strategy 1 and Strategy 2 for AV25-1

AV25-1 is quite different from the other two instances because the AKV and AKV’

curves seem to steady off and converge as numcut increases. The difference between

Strategies 1 and 2 also seems to diminish as numcut increases. Although at numcut

= 100, the performances of AKV’1 and AKV’2 are similar, the computing time

for AKV’2 is still much smaller than AKV1. Therefore, we can still confirm the

improvement of AKV’ over AKV and Strategy 2 over Strategy 1.

Tables 4.1 and 4.2 summarize the duration of each iteration of the cutting plane

process and how vioRHS affects the computing time. The circled time duration

shows the most impactful results due to the change in algorithm, which is discussed

in detail in Section 4.1.2. The fourth column in Table 4.1 records the accumulative

clock time in second from the beginning to the end of a trial. The third column is

the duration of each iteration, which is calculated by taking the difference between

the two subsequent clock times. The shaded duration represents the time spent
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Figure 4.11: Comparison of Strategy 1 and Strategy 2 for HeKu20

in the optimization solver. The unshaded time interval denotes the amount of

time taken in between the optimization steps, which includes calculating the Zbk

and π, finding and determining violations, sorting and forming the cuts. The first

shaded duration is the total time taken to calculate the lower bound at root node

with no cuts added, while the shaded number in the fifth column is the lower bound

objective value in root node. The second column in Table 4.1 lists out the vioRHS at

each iteration. As shown in Figure 4.1, vioRHS is modified after the condition check

after exiting the optimization solver. Hence the vioRHS values are placed beside

the unshaded time interval, during which the vioRHS is modified. Occasionally,

a number may sit above a vioRHS value, e.g. the 4 above vioRHS of -0.2080 in

Table 4.1. This number represents the number of cuts found in this trial. This

number is recorded if the number of cuts found is smaller than numcut. The first

column calculates the change in vioRHS by taking the fraction of new vioRHS by

the previous vioRHS.
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Table 4.1: Computing AV25-2 using AKV’1 with numcut = 150
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Table 4.2: Computing AV25-2 using AKV’2 with numcut = 150
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4.2.2 From Strategy 2 to Strategy 3

The changes made to Strategy 3 are based on Strategy 2, which was explained in

Section 4.1.3. The resultant improvement is marginal, as observed in Figure 4.12

and the two labeled data points, which are elaborated in Tables 4.3 and 4.4. When

comparing AKV and AKV’ using Figure 4.12, the observation is similar to the

previous section, i.e. AKV’ is faster, and hence better, than AKV, especially as

numcut increases. However, the comparison becomes tricky as we start comparing

Strategy 2 and Strategy 3. In a first glance of Figure 4.12, it is difficult to judge

whether Strategy 3 outperforms Strategy 2 because while there are several data

points showing Strategy 3 outperforms Strategy2, there are also several points

indicating a worse result.

Figure 4.12: Comparison of Strategy 2 and Strategy 3 for AV25-2

Tables 4.3 and 4.4 are the time breakdowns for the two data points that exhibit a

small improvement in the new strategy. In Table 4.3, vioRHS continues to decrease

even when the gap between Zbk and Zlb is small. When the gap is small, too much

modification to vioRHS may become too aggressive. Therefore, the computing time

to find and sort the cuts increases considerably, as shown in the three circled time

39



durations in Table 4.3. Table 4.4 illustrates the improvement when the vioRHS

stays at -0.454. The three circled durations in Table 4.4 show that the increase

in the sorting time dampens down much quickly in Strategy 3 than in Strategy

2, which gives a percentage improvement of 7.3% in terms of the total computing

time.

However, there are also several data points exhibiting Strategy 3 yielding worse

performance, such as those in Tables 4.5 and 4.6. The trial of AKV3 with numcut

= 700 keeps vioRHS at -0.1359 when the gap becomes small. However, this vioRHS

value becomes too high for the process, so the algorithm runs short of the cuts found.

Only 46 cuts are added in the next iteration, which only makes a tiny improvement

to the Zlb while costing the overall process 5,671 seconds of optimization time.

This iteration can be seen as wasted since a lot of time is invested with only a

small return. This is one reason why Strategy 3 performs poorly for this trial.

Because the algorithm runs out of the cuts, it tries to make a major reduction

to the vioRHS so that it can continue finding more cuts. This major reduction

is however too aggressive, which makes the following time interval for finding and

sorting the cuts significantly surge up, as circled in Table 4.6. Finally, because the

trial wasted one iteration adding only 46 cuts, an additional iteration is required to

close the gap in AKV3. Therefore, the AKV3 trial needs to take additional 10,917

seconds to reach optimality, which is 17.9% longer than the AKV3 trial.

The problem with wasting an iteration when vioRHS stays too high such that

the algorithm cannot find cuts was easily fixed in Strategy 5. The overly aggressive

reduction in vioRHS was also changed in the later strategies. Finally, although the

improvement for Strategy 3 seems trivial for medium-sized instances, one can expect

to see a bigger difference for large instances when the process of finding and sorting

cuts becomes much more complicated and hence more time-consuming. Therefore

the modification made in Strategy 3 is still kept in the following strategies.

Figure 4.13 compares AKV2, AKV3, AKV’2, and AKV’3 by solving the instance

AV25-1, which is a linear ordering problem since it has unity facility lengths. This

special case also has interesting results. Unlike most other cases discussed this far,

AKV seems to consistenly outperforms AKV’. This contradiction is considered a

special case due to this particular instance at the given parameter settings. Fur-

thermore, the four curves lie closely to each other in the middle range of the graph

from numcut of 250 to 800. On the other hand, Figure 4.13 shows that Strategy 3
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Table 4.3: Computing AV25-2 using AKV’2 with numcut = 250

is consistenly faster than Strategy 2 for both AKV and AKV’. But similar to the

earlier conclusion, the resultant improvement is small but noticeable.

For the smaller instance, HeKu20, the comparison observation is the same as

for AV25-2, i.e. AKV’ outperforms AKV and Strategy 3 shows a marginal improve-
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Table 4.4: Computing AV25-2 using AKV’3 with numcut = 250

ment. However, it is worth noticing is that unlike for other larger instances, the

cutting plane process runs faster at lower numcut. This is because, as explained

earlier in Section 4.1, the higher the numcut, the more rapidly the size of the SDP

problem grows, and hence the faster the growth in optimization time. This phe-
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Table 4.5: Computing AV25-2 using AKV2 with numcut = 700

nomenon can be observed by the two labeled data points on Figure 4.14. Tables 4.7

and 4.8 show the time breakdown of the two labeled points. Table 4.7 indicates

that AKV2 at numcut = 100 has four more iterations than AKV2 at numcut = 900,

but its total computing time is only 18% of the trial with numcut = 900. This is

because for a smaller instance such as HeKu20, the number of iterations required

to close the gap is much smaller and the process of finding and sorting the cuts is

less complicated. Therefore, although requiring more iterations to complete, the

trial with smaller numcut is still faster than the trial with higher numcut.

There are two missing data points for AKV3, which means that there are two

incomplete trials. This shows another weakness in Strategy 3. When the gap

between Zbk and Zlb is small, vioRHS stays unchanged, which occasionaly becomes

too high in the cutting plane process. The algorithm therefore thinks that it runs

out of cuts and exits the cutting plane algorithm. This limitation is corrected in

Strategy 5.

43



Table 4.6: Computing AV25-2 using AKV3 with numcut = 700
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Figure 4.13: Comparison of Strategy 2 and Strategy 3 for AV25-1

Figure 4.14: Comparison of Strategy 2 and Strategy 3 for HeKu20

45



Table 4.7: Computing HeKu20 using AKV2 with numcut = 100

Table 4.8: Computing HeKu20 using AKV2 with numcut = 900

4.2.3 From Strategy 3 to Strategy 4

In Strategy 4, the feature of removing non-binding constraints is added, which

results in some satisfactory improvement. Figure 4.15 illustrates that Strategy 4

outperforms Strategy 3 most of the time. As explained in Section 4.1.4, removing

the non-binding constraints keeps the problem size small and allows more violated
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constraints to be added in the next iteration. This number is called numslack,

which is calculated at the end of each iteration before starting to find new cuts for

the next round. This approach removes the less significant constraints and adds the

more important ones, which speeds up the pace of lower bound improvement. This

phenomenon can be observed in the two labeled data points, which are detailed in

Tables 4.9 and 4.10.

Figure 4.15: Comparison of Strategy 3 and Strategy 4 for AV25-2

The number that is placed between the gap values of the new and old Zlb in

the seventh column of Table 4.10 is the numslack for each iteration. The value of

numslack generally decreases as the gap becomes smaller. Another fact worth of

notice is circled in both tables. The circled Zlb marks the point at which the effect

of constraints removal becomes obvious. Starting at this point, AKV’4 improves

the Zlb more rapidly, and consequently finishes the computation in fewer iterations.

The arrangement of the four curves for instance AV25-1 starts to be less distin-

guishable in Figure 4.16. The four curves look as if they are interlaced throughout

the various numcut values. Figure 4.16 also shows that Strategy 4 does better than

Strategy 3 all the way through the middle to the ending range of numcut.
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Table 4.9: Computing AV25-2 using AKV’3 with numcut = 900

Table 4.10: Computing AV25-2 using AKV’4 with numcut = 900
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Figure 4.17 compares AKV3, AKV4, AKV’3, and AKV’4 for the smaller in-

stance HeKu20. Even though there are one missing point for both AKV4 and

AKV’4 and two for AKV3, the graph still shows that Strategy 4 outperforms Strat-

egy 3. Also, AKV’ is consistently observed to be a better model for this instance.

One final note about the new feature in Strategy 4 is that although it does not

seem to offer significant reduction in computation time, it is expected to be crucial

for solving large instances. Experience has shown that the algorithm can run out

of memory for certain difficult large instances. Therefore, keeping the problem size

small plays an important role in the next strategies.

Figure 4.16: Comparison of Strategy 3 and Strategy 4 for AV25-1
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Figure 4.17: Comparison of Strategy 3 and Strategy 4 for HeKu20

4.2.4 From Strategy 4 to Strategy 5

Strategy 5 includes two important new features:

• If number of cuts found ≤ 1
2
numcut, lower vioRHS to search for new viola-

tions.

• If no violations are found, lower vioRHS unless it has reached a very point of

-0.001.

These new features ensure the computation will not terminate prematurely and

prevent the algorithm from wasting an iteration when only a few cuts are found.

It is evident that these new features are successful since there is no more missing

data point in the comparison graph; see Figure 4.18. This means that premature

termination is now successfully avoided.

Figure 4.18 compares AKV4, AKV5, AKV’4, and AKV’5. It has evidently

shown that AKV’ outperforms AKV in general. Furthermore, AKV’5 is clearly the
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Figure 4.18: Comparison of Strategy 4 and Strategy 5 for AV25-2

overall best performing combination, which also yields the lowest computing time

thus far at numcut = 800. In addition, AKV’5 produces the lowest small-numcut

run time at numcut = 100, which has always been way above 130,000 seconds in

the past. The first two labeled data point of AKV’4 and AKV’5 at numcut = 800,

which are broken down in Tables 4.11 and 4.12, illustrate how Strategy 5 achieves

a lower computation time.

The shaded clock time in Table 4.12 signifies the activation of the new feature

that re-searches for new violations when the number of cuts found is less than

half of numcut. This new feature is used twice in AKV’5 at numcut = 800. The

first time occurs at the third iteration when the algorithm only found 40 cuts, so

it lowered vioRHS from -0.4040 (not shown) to -0.2040 and began another search

for new cuts. Because a small “detour” was taken, the time duration for finding

and sorting the cuts is slightly longer than how it would normally take. Since the

number of total constraints added after re-search for AKV’5 is much higher than

the 40 new constraints in AKV’4, the respective optimization timee is also longer

for the sub problem becomes bigger. However, because Strategy 5 takes action to
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Table 4.11: Computing AV25-2 using AKV’4 with numcut = 800

lower vioRHS earlier than Strategy 4, it saves one iteration to achieve a similar Zlb.

For instance, AKV’5 requires 4 less iterations than AKV’4 at this given numcut.

The circled time intervals in Tables 4.11 and 4.12 show the impact of saving an extra

iteration. AKV’4 in Table 4.11 requires 2 iterations, which is composed of 2 cut-

searching steps and 2 optimization steps, to sufficiently lower vioRHS to improve its

Zlb and close the gap. Meanwhile, AKV’5 in Table 4.12 can sufficiently improve its

Zlb by one iteration. This savings in time is more impactful toward the end of the

cutting plane process when the gap is small because by then the sub-problem with

many added constraints has grown much bigger, which means each optimization

step becomes very time-consuming.

Tables 4.11 and 4.12 present the successful case of Strategy 5, while Tables 4.13

and 4.14 show the weaker aspect of Strategy 5. Tables 4.13 and 4.14 are the other

two labeled data points in Figure 4.18. The two tables show that although the

52



Table 4.12: Computing AV25-2 using AKV’5 with numcut = 800

time saved in reducing one iteration is significant as circled in Table 4.13, the

overly aggressive drop in vioRHS in AKV5 results in even longer cut-searching time

as circled in Table 4.14. This weakness gives a warning that the modification to

vioRHS will have to be changed to smooth out the reduction process.

Figure 4.19 compares Strategies 4 and 5 for solving AV25-1. The performance

of the four combinations become even more indistinct as the four curves lie closely

to each other in the graph. Although it may seem difficult to conclude that AKV’

outperforms AKV and that Strategy 5 is better than Strategy 4 based on this graph,

Strategy 5 has for certain yielded the shortest computation time thus far for low

numcut such as at 100. This run time is only 1/3 of the run time for AKV’4 at

numcut = 100.

For the smaller instance HeKu20 in Figure 4.20 we can derive a conclusion

that is similar to AV25-2. AKV’5 is generally the best-performing combination

out of the four. However, there are a few exception cases, such as the circled data

point, which are summarized in Tables 4.15 and 4.16. The two tables show that

although the new feature in Strategy 5 allows AKV5 to finish in one less iteration
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Table 4.13: Computing AV25-2 using AKV4 with numcut = 700

than AKV4, AKV5 still takes longer to reach optimality. As seen in the two circled

optimization time intervals in Table 4.15, the optimization time of AKV5 in the last

two iterations become too time-consuming due to containing more constraints than

in AKV4. As a result, the sub-problem becomes too large for this small instance,

and consequently the time saved in running fewer iterations for AKV5 cannot even

pay off the substantial increase in optimization time.
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Table 4.14: Computing AV25-2 using AKV5 with numcut = 700
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Figure 4.19: Comparison of Strategy 4 and Strategy 5 for AV25-1

Figure 4.20: Comparison of Strategy 4 and Strategy 5 for HeKu20

56



Table 4.15: Computing HeKu20 using AKV4 with numcut = 800

Table 4.16: Computing HeKu20 using AKV5 with numcut = 800

4.2.5 From Strategy 5 to Strategy 6

In Strategy 6, the magnitude of any major and minor reduction to vioRHS cannot

exceed 0.1, unless when the algorithm runs out of cuts and therefore it needs to

lower vioRHS further to find cuts. This new change helps to calm the process of

vioRHS reduction, and it successfully brings down the overall computation time as

seen in Figure 4.21. Furthermore, this new approach results in the lowest run time
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thus far at numcut = 300, which is labeled in Figure 4.21 and detailed in Tables 4.17

and 4.18.

Figure 4.21: Comparison of Strategy 5 and Strategy 6 for AV25-2

The two circled durations in Table 4.17 are the total time required for finding

and sorting the cuts after the algorithm made a major reduction in vioRHS due to

shortages of cuts. The drop in vioRHS in Strategy 5 is much more aggressive than

in the updated Strategy 6. Consequently, Table 4.18 shows that although Strategy

6 requires more frequent major reductions in vioRHS, each drop to vioRHS does not

exceed 0.1, and therefore the required cut-searching time is substantially decreased.

Furthermore, This new change corrects the overly aggressive vioRHS reduction in

Strategy 5, such as the case shown in Table 4.14.

When comparing AKV and AKV’ using the instance AV25-1 as presented in

Figure 4.22, it is still difficult to judge which model performs better, as the four

curves lie closely to each other with many overlaps. However, when comparing

Strategies 5 and 6, Figure 4.22 shows that Strategy 6 generally outperforms Strategy

5, with an exception when numcut = 100, which is analyzed in Tables 4.19 and 4.20.

The circled duration in Table 4.19 represents the time taken in finding and sorting
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Table 4.17: Computing AV25-2 using AKV’5 with numcut = 300

the cuts after the algorithm experiences a shortage in the number of cuts. This

major reduction to vioRHS is smoothed out in Strategy 6 as the two circled times

in Table 4.20 is much less than the cut-searching duration in Table 4.19. However,

the reason why AKV’6 takes longer to close the gap is due to the continuous minor

reduction to vioRHS as circled in the first column of Table 4.19. The algorithm

continuosly decreases vioRHS because it finds that Zlb is not improving enough.

However, the modification to vioRHS is not the only factor that can affect the

rate of lower bound improvement. The number of cuts added to the sub-problem

in every iteration can also influence how the lower bound increases. In this case

of numcut = 100, only roughly 100 cuts are added to the sub-problem at each

iteration, so the impact of cuts is not great enough to cause quick improvement
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Table 4.18: Computing AV25-2 using AKV’6 with numcut = 300

in Zlb, even after several attempts to adjust the number of cuts that can be found

by changing the vioRHS. In summary, this exception case where Strategy 6 yields

a longer computing time is mainly due to a low numcut parameter, which is not

sufficient to conjecture Strategy 6 is worse than Strategy 5. Furthermore, since low

numcut generally yields long computing time, the exception case as presented in

Table 4.20 is not concerning for future development.

Finally, Figure 4.23 shows the comarison of AKV5, AKV6, AKV’5, and AKV’6

when solving the smaller instance HeKu20. It is straightforward to see that AKV’

has clearly outperformed AKV especially when numcut increases. Furthermore,

the figure also demonstrates that Strategy 6 has consistently improved the overall

computing time.
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Table 4.19: Computing AV25-1 using AKV’5 with numcut = 100
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Table 4.20: Computing AV25-1 using AKV’6 with numcut = 100
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Figure 4.22: Comparison of Strategy 5 and Strategy 6 for AV25-1

Figure 4.23: Comparison of Strategy 5 and Strategy 6 for HeKu20
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4.3 Summary of Experiments with Medium-Sized

Instances

In this chapter, three medium-sized instances are analyzed to help us understand

the effect of the parameters vioRHS and numcut on the computing time to solve

the SRFLP. The conclusion to the medium-sized instances is likely to shed some

light in solving large instances. This section should also provide some advice to the

readers who wish to solve medium-sized SRFLPs using SDP and a cutting plane

approach. It should be noted that the computer setup can also affect the parameter

setting and the computing time. All the computational results were obtained on a

2.0GHz Dual Opteron with 16Gb of RAM.

4.3.1 HeKu20

HeKu20 is the smallest medium-sized instance studied in this thesis. As discussed

in Section 4.2.2, the cutting plane algorithm runs faster at lower numcut due to

smaller optimization problem size and simpler computation requirement. There-

fore, the conclusion for HeKu20 does not extend to the solving of larger instances.

Nonetheless, it is interesting to notice how fast the problem complexity grows with

the number of departments.

The lowest run time (986 seconds) was achieved by AKV2 at numcut = 100.

Although every new strategy with new features results in better overall perfor-

mance and AKV’ has consistently outperformed AKV, AKV2 at numcut = 100

becomes an exception with a very low computing time, see Figure 4.14. However,

this combination may be a special case to HeKu20. Therefore, when solving a

smaller medium-sized instance like HeKu20, it is recommended to use AKV’ and

Strategy 6 at low numcut in the range of 50 to 300. Strategy 6 is chosen for it is

the least aggressive method which also prevents premature termination. AKV’ is

preferred since it almost always outperforms AKV, and consequently AKV’ should

have better success rate.
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4.3.2 AV25-1

AV25-1 is an example of the linear ordering problem, which is also a special case of

the general SRFLP. Therefore, the conclusion for AV25-1 may not apply to solving

general instances. Nevertheless, it is worthy of note to see that a different problem

class can lead to a slightly different conclusion.

For AV25-1, although it is consistent to see newer strategies outperform the

earlier versions, it is generally difficult to judge whether AKV or AKV’ runs faster.

Based on the graphs for AV25-1 in Section 4.2, the frequency of AKV outperforming

AKV’ seems slightly higher. In fact, the lowest computing time (7,532 seconds)

comes from AKV6 at numcut = 400.

In conclusion, when solving a medium-sized linear ordering problem, it is sug-

gested to use Strategy 6 since it has the smoothest approach to vioRHS while en-

suring the algorithm will not terminate prematurely. Furthermore, medium-range

numcut such as 350 to 500 generally yields lower computing time. However, the

distinction between AKV and AKV’ is not big enough to conclude which relax-

ation is better for this problem class. It is advised for the readers to carry out

more detailed analysis on the linear ordering problem class using the cutting plane

approach with AKV and AKV’. The readers can also refer to [16] for other cutting

plane algorithms for the linear ordering problem.

4.3.3 AV25-2

AV25-2 is the most complicated and difficult SRFLP instance out of the three, and

therefore the conclusion is likely to predict the computation for large instances.

As studied in Section 4.2, AKV’ has consistently outperformed AKV, and the new

strategy has almost always improved its previous version. In fact, the best run time

(23,803 seconds) is given by the combination of AKV’6 at numcut = 300. Therefore,

when solving a medium-sized instance like AV25-2 with a similar computer setup,

one should use the combination of AKV’ and Strategy 6 while applying to the

medium-range numcut. The medium-range numcut between 300 to 550 is observed

to yield low computing time. However, high-range numcut after 550 also results

in reasonably low run time which does not deviate much from the middle range.

Therefore, it is also recommended to explore the performance of higher numcut when
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one wishes to solve the medium-sized instances like AV25-2 or larger instances. The

study for large instances is presented in the next chapter.

4.4 Conclusion

The conclusion provides the highlight of Chapter 4.

To solve a small medium-sized instance like HeKu20, it is recommended to use:

• AKV’ relaxation combined with Strategy 6,

• Low numcut in the range of 50 to 300.

For a medium-sized linear ordering problem like AV25-1, the distinction between

AKV and AKV’ relaxations is not prominent. Therefore, it is advised to explore

both relaxations when approaching a problem class similar to AV25-1. The readers

can also refer to [16] for other cutting plane algorithms targetted to linear ordering

problem. Nevertheless, when solving a medium-sized instance like AV25-1 using

the proposed cutting plane strategy, it is recommended to use:

• Strategy 6,

• Medium-range numcut such as between 350 to 500.

For the general medium-sized SRFLPs like AV25-2, it is recommended to use:

• AKV’ relaxation combined with Strategy 6,

• Medium-range numcut such as between 300 to 550,

• Higher-range numcut is also recommended.
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Chapter 5

Global Solutions for Large

Instances

The SRFLP is strongly NP-hard [1] and remains a difficult problem class. By uti-

lizing AKV with a simple cutting plane scheme, Anjos and Vannelli obtained global

optimal solutions for a few large SRFLPs up to 30 departments that had remained

unsolved since 1988 [5]. This achievement was considered a breakthrough in the

field. Most recently, Amaral presented a new lower bound that solved instances

of size up to n = 35 in [2]. In this thesis, six new large instances with 36 depart-

ments were successfully solved to optimality using AKV’ and the new cutting plane

methodology. We also briefly point out how the computing time can vary greatly

between different sets of data of the same size.

5.1 New Strategies for Large Instances

The combination of Strategy 6 with AKV’ was considered the best approach in

solving the medium-sized instances. However, after a few attempts to solve some

larger instances, the weaknesses of Strategy 6 began to reveal themselves. Conse-

quently, two new strategies are proposed to handle large instances. This section

presents Strategies 7 and 8, and Section 5.2 reports the experimental results and

analysis.
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5.1.1 Strategy 7

Strategy 7 changes the approach in the major adjustment of vioRHS when the

problem is running low on the violations found. Instead of decreasing vioRHS by

75%, the new approach lowers vioRHS by half. This new change also calms the

vioRHS reduction process. Figures 5.1 and 5.2 illustrate the logic of the cutting

plane algorithm and the modification process of vioRHS in Strategy 7. The impact

of these new changes is illustrated in Section 5.2.1.

# of cuts found ≥
numcut ?

abs(oldZlb–newZlb)/oldZlb  
< 0.0013 ?

vioRHS = 
min(vioRHS+min(-0.2*vioRHS,0.1),-0.03)

Yes

vioRHS = vioRHS*1.01No

vioRHS = 
vioRHS+min(-0.5*vioRHS,0.1)

No

abs(Zbk-Zlb)/ZbK 
≥ 0.002 ?

Yes

Yes

No change to 
vioRHS

No

Figure 5.1: Strategy 7 on modification of vioRHS
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Solve relaxation, 
get X*, Zlb

Compute how each 
combination (p1,p2,p3) 
violates the inequalities

No more 
violations?

Exit loop Rank the 
combinations by 

severity of violation

No

Add top numcut most 
violated inequalities to 

relaxation

Re-optimize, get 
new X*, Zlb

Run AKVheur, 
get Zbk and π

abs(Zlb - ZBk)
≤ 0.49 ?

Zlb > Zbk ?

No

Gap 
closed

Yes

PrunedYes

Modify vioRHS

No

Any new constraints added 
since the beginning?

Yes

Lower vioRHS
such that vioRHS 
= vioRHS*0.25

No

Remove 
inequality 

constraints with 
slack ≥ 0.1

Has vioRHS
reached -0.001?

Yes

Yes

Lower vioRHS such that 
vioRHS = Min(vioRHS+
Min(-0.75*vioRHS,0.1),
-0.001)

No

# of cuts found ≤
½ of numcut ?

No

Lower vioRHS such that 
vioRHS = Min(vioRHS+
Min(-0.5*vioRHS,0.1),
-0.001)

Yes

Figure 5.2: Cutting plane algorithm for Strategy 7
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5.1.2 Strategy 8

When the problem runs low on the violations found, Strategy 8 also handles the

major adjustment of vioRHS differently. As demonstrated in Figures 5.3 and 5.4,

instead of decreasing vioRHS by half as in Strategy 7, the new approach lowers

vioRHS by 40%. This new change further smoothes the vioRHS reduction process.

The effect of these new modifications is studied in Section 5.3.

# of cuts found ≥
numcut ?

abs(oldZlb–newZlb)/oldZlb  
< 0.0013 ?

vioRHS = 
min(vioRHS+min(-0.2*vioRHS,0.1),-0.03)

Yes

vioRHS = vioRHS*1.01No

vioRHS = 
vioRHS+min(-0.4*vioRHS,0.1)

No

abs(Zbk-Zlb)/ZbK 
≥ 0.002 ?

Yes

Yes

No change to 
vioRHS

No

Figure 5.3: Strategy 8 on modification of vioRHS
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Solve relaxation, 
get X*, Zlb

Compute how each 
combination (p1,p2,p3) 
violates the inequalities

No more 
violations?

Exit loop Rank the 
combinations by 

severity of violation

No

Add top numcut most 
violated inequalities to 

relaxation

Re-optimize, get 
new X*, Zlb

Run AKVheur, 
get Zbk and π

abs(Zlb - ZBk)
≤ 0.49 ?

Zlb > Zbk ?

No

Gap 
closed

Yes

PrunedYes

Modify vioRHS

No

Any new constraints added 
since the beginning?

Yes

Lower vioRHS
such that vioRHS 
= vioRHS*0.25

No

Remove 
inequality 

constraints with 
slack ≥ 0.1

Has vioRHS
reached -0.001?

Yes

Yes

Lower vioRHS such that 
vioRHS = Min(vioRHS+
Min(-0.5*vioRHS,0.1),
-0.001)

No

# of cuts found ≤
½ of numcut ?

No

Lower vioRHS such that 
vioRHS = Min(vioRHS+
Min(-0.4*vioRHS,0.1),
-0.001)

Yes

Figure 5.4: Cutting plane algorithm for Strategy 8
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5.2 Experimental Analysis

This section reports the preliminary findings in developing Strategies 7 and 8.

These results were obtained by SDPT3 version 4.0 [40] on a 2.0GHz Dual Opteron

with 16Gb of RAM. However, it was later found out that as the problem size

increases, the optimization time becomes too long. As a result, newer computations

were generated on a Sun Fire V890 8*1.2GHz with 64Gb of RAM, while the SDP

problems were solved using the interior-point solver CSDP (version 5.0) of [8] in

conjunction with the ATLAS library of routines [41]. A simple comparative analysis

between these two computing setups is also documented in this section to provide

the best combination in solving the new large instances.

Several large instances were used in this section. HeKu30 is from Heragu and

Kusiak in [20], while STE36-1 is created by Anjos and Yen in [6] and is originally

based on the QAP instance from Steinberg in [38]. It should be noted that while

STE36-1 is a linear ordering problem instance, HeKu30 is a SRFLP instance with

varying lengths. All of the instances used in this thesis are listed in Appendix C.

5.2.1 Preliminary Results by SDPT3

Upon obtaining Strategies 4, 5, and 6, they were used to solve a few larger instances

by SDPT3 version 4.0 [40] on a Sun Fire V890 8*1.2 GHz with 64 Gb of RAM. But

after several attempts, it was observed that even the best strategy for the medium-

sized problem is still not good enough for large instances. The main problem is

that the vioRHS reduction process is still too aggressive, which leads to substantial

CPU time to find and sort the cuts. Tables 5.1 and 5.5 illustrate the impact of

the minor changes made in Strategies 7 and 8 to smooth out the vioRHS reduction

process.

Table 5.1 shows that although the number of iterations has increased slightly

as we updated the strategies, the computation time has greatly decreased. The

percentage differences in the total CPU time between AKV’4 and AKV’8 are 18.9%

and 24.1% for numcut = 700 and 800 respectively. Even for AKV’6, the best

strategy for the medium-sized problem, the percentage difference to AKV’8 is as

high as 20.6% at numcut = 800. The number of iterations may increase slightly

for the newer strategies because as the changes made to vioRHS becomes more

72



AKV’4 AKV’5 AKV’6 AKV’7 AKV’8

numcut CPU Number CPU Number CPU Number CPU Number CPU Number

time of time of time of time of time of

(sec) iterations (sec) iterations (sec) iterations (sec) iterations (sec) iterations

700 87,602 17 93,232 16 72,781 18 71,222 18 71,045 18

800 82,513 16 94,072 14 78,967 15 74,139 15 62,663 14

Table 5.1: Comparison of Strategies 4, 5, 6, 7, and 8 Using HeKu30

Figure 5.5: Comparison of Strategies 6, 7, and 8 for HeKu30

gentle, the rate of improvement to Zlb may also become lower. As a result, it

may sometimes take a few more iterations to close the gap. However, since the

time duration for each iteration becomes much shorter, the overall effect is usually

positive.

Figure 5.5 shows that Strategy 8 generally outperforms Strategies 6 and 7. In

fact, Strategy 8 produces the shortest run time (54,266 seconds) for HeKu30 at

numcut = 650. The three labeled data points are explained in Tables 5.2, 5.3, and

5.4. The two circled time duration values in Table 5.2 illustrate the result of an
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Table 5.2: Computing HeKu30 using AKV’6 with numcut = 800

overly aggressive drop to vioRHS. The time required to finding and sorting the cuts

suddenly surged up when vioRHS was reduced by 75% due to a shortage of cuts

found. However, when we change the reduction percentage from 75% to 50% in

Strategy 7, the resultant cut-searching time period is much smaller (Table 5.3).

As the reduction percentage to vioRHS is further reduced to 40% in Strategy 8,

the overall computing time is also lessened as shown in Table 5.4. Furthermore,

because of this change in the approach to lower vioRHS, the major reduction occurs

earlier in the process, which helps the algorithm to quickly improve Zlb and close

the gap. Consequently, AKV’8 at numcut = 800 requires one less iteration than

both Strategies 6 and 7.

The impact of the new approach amplifies as the instance size increases. Ta-

ble 5.5 presents the results of a few trials to solve STE36-1. Although STE36-1

is a linear ordering problem instance, the computing time still rises substantially.

HeKu30 requires 93,232 seconds to reach optimality by AKV’5 at numcut = 700
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Table 5.3: Computing HeKu30 using AKV’7 with numcut = 800

(see Table 5.1). The total CPU time required rises up to 1,205,688 seconds (approx-

imately 14 days) for the same strategy combination to solve STE36-1. This long

computing time is 12.9 times of the total CPU time for the smaller instance. The

total run time has significantly decreased for Strategy 6 at numcut = 350. However,

it is still quite substantial to solve on a routine basis.

Tables 5.6 and 5.7 break down the entire cutting plane processes of the two

abovementioned cases that result in extensive computing time. The circled time

periods in both tables indicate that the cause of this significant growth in computing

time is the aggressive reduction to vioRHS after the algorithm runs short of cuts.

After the reduction rate becomes lower in Strategies 7 and 8, the required cut-

searching time becomes much smaller as seen in Tables 5.10 and 5.11.

However, we can also observe Strategy 8 yielding a slightly longer computing

time than Strategy 7 for STE36-1. As shown in Tables 5.10 and 5.11, there is not

any major difference between the two strategies in terms of the time duration in
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Table 5.4: Computing HeKu30 using AKV’8 with numcut = 800

every iteration. The only major distinction is that the trial by Strategy 8 requires

one more iteration than Strategy 7, and consequently, the total time requirement

is higher. As explained earlier in the section, newer strategies may sometimes need

more iterations as a result of a smoother vioRHS reduction approach. However, the

time difference for this cause is usually not significant.

Table 5.5 also presents a case where AKV’8 outperforms AKV’7, which is il-

lustrated in Tables 5.8 and 5.9 explain this comparison set in detail. The circled

cut-searching time in Table 5.8 depicts a typical example when the reduction to

vioRHS is too aggressive. On the contrary, Table 5.9 shows that Strategy 8 avoids

this surge in computation time. Therefore, although Strategy 8 does not always

outperforms Strategy 7, Strategy 8 is still preferred because it is overall a better ap-

proach to larger instances. Tables 5.16 and 5.17 from the next section show another

comparison set that was generated by another computing setup, which is explained

in detail in the next section. This comparison set shows a drastic improvement of

Strategy 8 over Strategy 7.
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AKV’5 AKV’6 AKV’7 AKV’8

numcut CPU time Number of CPU time Number of CPU time Number of CPU time Number of

(sec) iterations (sec) iterations (sec) iterations (sec) iterations

350 N/A N/A 318,978 14 54,681 14 61,046 15

500 N/A N/A N/A N/A 60,006 12 69,219 13

700 1,205,688 11 N/A N/A 82,341 12 78,803 12

Table 5.5: Comparison of Strategies 5, 6, 7, and 8 using STE36-1

Table 5.6: Computing STE36-1 using AKV’5 with numcut = 700

Although the two large instances show some major impacts of the new approach

in Strategies 7 and 8, one may wonder whether this new approach can improve the

performance of the medium-sized problems. Therefore, a comparison of Strategies

6, 7, and 8 was made for AV25-2 and the result is presented in Figure 5.6. It is

observed that the newer strategy, for the most part, outperforms the earlier version,

and therefore Strategy 8 has the lowest running time overall. In fact, the lowest

ever computing time for AV25-2 is 23,128 seconds, which is generated by AKV’8

at numcut = 300. However, the graph also shows that the difference between

the three strategies is very small. Nevertheless, this graph also shows that AKV’
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Table 5.7: Computing STE36-1 using AKV’6 with numcut = 350

clearly outperforms AKV. Therefore it can be concluded that the changes made to

Strategies 7 and 8 to achieve a smoother vioRHS reduction process are important for

larger instances, but these new changes make little difference for the medium-sized

instances. We can also conclude that Strategy 8 is the best-performing strategy for

the most part with some exception that Strategy 7 may run with fewer iterations

and hence result in shorter run time.
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Table 5.8: Computing STE36-1 using AKV’7 with numcut = 700

Table 5.9: Computing STE36-1 using AKV’8 with numcut = 700
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Table 5.10: Computing STE36-1 using AKV’7 with numcut = 350
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Table 5.11: Computing STE36-1 using AKV’8 with numcut = 350
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Figure 5.6: Comparison of Strategies 6, 7, and 8 for AV25-2

5.2.2 Results from CSDP in Parallel Computing

As the size of instances increased, it was observed that the optimization time also

increased quickly (e.g. HeKu30 in Table 5.4). Therefore, other options were ex-

plored to facilitate solving large instances. So far, other than the lower bound

experiment in Chapter 3, the experimental results were obtained by using SDPT3

version 4.0 [40] on a 2.0GHz Dual Opteron with 16Gb of RAM. The other option

is to use CSDP version 5.0 [8] with the ATLAS library of routine [41] on a Sun

Fire V890 8*1.2GHz with 64Gb of RAM. Running in parallel using 8 CPUs allows

the optimization run to speed up. But since different computers were used to run

these two different solvers, the configuration of Matlab may also affect the overall

performance of each options.

Table 5.12 presents the overall computing time to solve HeKu20 by AKV’6 us-

ing the two solvers on different computers. In this example, the computing time

actually increases as we switch the solver to CSDP. Table 5.13 details the first

comparison set in Table 5.12 when numcut = 200. Table 5.13 shows that the new
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CPU time (sec)

numcut SDPT3 CSDP

200 1,574 2,155

300 1,470 1,884

500 1,495 1,759

Table 5.12: Quick comparison of SDPT3 and CSDP using AKV’6 solving HeKu20

Table 5.13: Comparing SDPT3 and CSDP by using AKV’6 to solve HeKu20

computing setup results in longer cut-searching time, which is due to the difference

in the Matlab computing environment in different computers. Also, the optimiza-

tion time is initially longer than the first computing option, but the difference in

time slowly decreases as the sub-problem size increases.

Table 5.14 compares the two computing options by solving two bigger instances

using Strategies 6, 7, and 8 at numcut = 500. We can observe that as the problem

instance becomes larger and more complicated, the new computing option using

CSDP actually pays off. Table 5.15 illustrates the time breakdown of the AKV’7

comparison set that solves STE36-1 at numcut = 500 in Table 5.14. This time

breakdown shows that the cut-searching time in the CSDP option is approximately
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AV25-2 STE36-1

Strategy SDPT3 CSDP SDPT3 CSDP

AKV’6 24,845 20,557 N/A N/A

AKV’7 24,071 19,913 60,006 53,246

AKV’8 23,940 20,040 69,219 59,925

Table 5.14: Quick Comparison of SDPT3 and CSDP solving AV25-2 and STE36-1

at numcut = 500

Table 5.15: Comparing SDPT3 and CSDP by using AKV’7 to solve STE36-1

more than double of the original setup that uses SDPT3. This discrepancy is again

due to the difference of the Matlab computing environment in different computers.

However, the optimization time in parallel computing is much smaller than the

original setup. In fact, as more cuts are added and the sub-problem becomes

bigger, the payoff becomes more significant.

Other than comparing the two computing options, Table 5.14 also shows that

Strategies 6, 7, and 8 have similar performance in solving AV25-2 using the CSDP

setup at numcut = 500. This again verifies that the fine-tuning changes made to

Strategies 7 and 8 does not show any effect for medium-sized instances as concluded
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Table 5.16: Computing STE36-1 using AKV’7 with numcut = 600

from the previous chapter. However, as we move on to l arger instances such as

STE36-1, Table 5.14 shows more performance deviation between strategies. In the

case of numcut = 500 in Table 5.14, Strategy 8 has a slighly longer computation

time than Strategy 7 in solving STE36-1, which is also due to the requirement

of one more iteration in Strategy 8 as a result of a smoother vioRHS reduction

process. Tables 5.16 and 5.17 present a contrary example when Strategy 8 out-

performs Strategy 7. While AKV’7 requires 79,768 seconds to complete the run

of solving STE36-1 at numcut = 600, AKV’8 only needs 57,437 seconds, whcich

results in a percentage difference of 38.9%. As illustrated in the circled time pe-

riod Table 5.16, this considerable difference is again due to an aggressive reduction

in vioRHS. Therefore, this contrary example verifies the earlier finding in Section

5.2.1, which concludes that Strategy 8 is preferred over Strategy 7, even though it

does not always outperforms Strategy 7. When Strategy 8 takes longer time than

Strategy 7 to complete a run, the difference in time is usually relatively small, and

it is usually due to the need of one more iteration in Strategy 8 as a result of a

smoother vioRHS reduction process. However, when Strategy 8 outperforms Strat-

egy 7, the difference is usually more significant. Moreover, it was already observed
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Table 5.17: Computing STE36-1 using AKV’8 with numcut = 600

that Strategy 8 has a better overall performance over Strategy 7 in HeKu30 and

AV25-2 from Figures 5.5 and 5.6. This justifies the use of Strategy 8 to solve the

new large instances in the next section.

Finally, since the quick comparison between the two computing options show

that the CSDP setup runs faster as the instance size increases, it is decided that

the new instances with n = 36 will be solved by the new CSDP computing setup.

Furthermore, as was explained in Section 4.2.2, smaller instances run faster with

smaller numcut. On the contrary, larger instances should be executed with higher

numcut due to the fact that every additional iteration requires a great deal of

computing time. Furthermore, by using high numcut we can exploit the advantage

of parallel computing as the sub-problem size increases. Figure 5.7 also shows the

trend of computing time with the effect of varying numcut for Strategy 7 to solve

STE36-1. The computing time fluctuates a lot for low numcut from 300 to 640.

The fluctuation seems to ease off and go down in higher numcut. In fact, the lowest

computing time is generated by numcut = 900. Therefore, a high numcut such as

900 is used to pursue the large instances in the next section.
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Figure 5.7: Effect of numcut on computing time of AKV’7 solving STE36-1

5.3 Solving New Large Instances

5.3.1 Results Analysis

The 36-facility instances are based on the QAP instance from Steinberg in [38] where

the flow matrix is taken from [38] and the length vector is randomly generated.

A total of nine STE instances were attempted, in which six of these were newly

generated while three others (STE36-1, STE36-2, and STE36-3) already appeared

in [6] where the new lower bounds were published. The complete listing of these

instances can be found in Appendix C.

The instances STE36-2, STE36-3, and STE36-8 failed to reach optimality due

to memory limitation in Matlab. Table 5.18 lists the six successful instances as well

as the three failed instances, along with their optimal objective values and the total

CPU run time when applicable. These results are obtained by running AKV’8 at

numcut = 900 using the CSDP computing setup.
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Instance Generation Optimal CPU time Number of

Method Solution (sec) iterations

STE36-1 Vector of ones 10,287.0 62,754 11

STE36-2 U(1,37) Not found Out of memory -

STE36-3 U(1,19) Not found Out of memory -

STE36-6 U(1,3) 19,186.5 243,535 18

STE36-7 U(1,4) 25,055.0 124,852 14

STE36-8 U(1,5) Not found Out of memory -

STE36-9 N(2,0.25) 20,203.5 56,675 11

STE36-10 N(3,0.25) 29,846.0 83,505 12

STE36-11 N(4,0.25) 41,240.0 104,091 13

Table 5.18: Results of the STE-series instances using AKV’8 and numcut = 900

5.3.2 Preliminary Analysis on Length Vector

Other than the optimization findings, Table 5.18 also shows how the lenght vector

of these new 36-facility instances were created. The notation U(1,37) represents

uniform distribution between 1 and 37, while N(2,0.25) denotes normal distribution

with mean of 2 and variance of 0.25. The instances STE36-2, STE36-3, and STE36-

8 failed to reach optimality due to memory limitation in Matlab, and they all have

higher variations in the length elements. Therefore, it can be observed that as the

degree of variance of the length elements increases, the problem structure becomes

more complicated, and hence harder to solve. Furthermore, while STE36-6 and

STE36-7 are solvable, STE36-8 has larger variance in the length vector and could

not be solved. However, although STE36-6 is created by U(1,3), which is expected

to be simpler than U(1,4), STE36-6 requires a longer run time than STE36-7. It is

possibly due to the interaction between the length allocation to the given frequency

of each department.

Another interesting fact is that the instance created by normal distribution

exhibits shorter CPU run time. Since normal distribution has a characteristic

bell shape with more elements falling in the range of the mean, it is expected to

have less “jumps” between the length elements, and hence easier to solve. This

prediction can be observed in Table 5.18. Using a fixed variance that controls

the spread of the length elements enables the control of the difficulty level of the

instances. Therefore we conjecture that the length vector plays an importaant role
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in the solvability of an instance. This interesting observation is recommended as

the subject of future research. Meanwhile, it should be noted that Amaral’s new

instances of size n = 35 are not presented in his new paper [2],and thus we have

not yet been able to experiment with them. However, it would be interesting to

analyze the new 35-facility instances in order to fully understand the performance

of his new lower bound in [2]
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Chapter 6

Conclusions and Future Research

In this thesis, a new matrix-based model AKV’ is presented. It is created based on

AKV from [4], but it reduces the number of linear constraints from O(n3) to O(n2).

AKV’ relaxation can find a lower bound in a shorter computing time than AKV

relaxation with only a minor penalty of slight deterioration in the lower bound.

AKV’ is observed to pay off as the instance size increases.

Six cutting plane strategies are proposed for the medium-sized SRFLP instances.

The general approach is to smooth the vioRHS reduction process while preventing

premature termination. Three instances of different characteristics are used to an-

alyze the cutting plane strategies. To solve a small medium-sized instance like

HeKu20 using a similar computing setup as described in this thesis, it is recom-

mended to use the AKV’ relaxation combined with Strategy 6 at low numcut in

the range of 50 to 300. When approaching a medium-sized linear ordering problem

like AV25-1, it is advised to explore both relaxations, since the distinction between

them is not prominent. The readers can also refer to [16] for other cutting plane

algorithms targetted to linear ordering problem. To solve a medium-sized instance

like AV25-1 using the proposed cutting plane strategy, it is recommended to apply

Strategy 6 with medium-range numcut such as between 350 to 500. For the gen-

eral medium-sized SRFLPs like AV25-2, it is recommended to utilize AKV’6 with

medium-range numcut such as between 300 to 550. However, higher-range numcut

is strongly recommended to explore other medium-sized or larger SRFLPs.

Another two cutting plane strategies are proposed for large instances to achieve

a smoother vioRHS reduction process. The combination of Strategy 8 with AKV’
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relaxation in high numcut is capable of solving six new instances of size n = 36,

which is higher than the published results in literature. We also point out an

interesting fact about the the length vector, where we conjecture that the length

vector plays an important role in the solvability of an instance.

The interesting observation regarding the length vector analysis is recommended

as the subject of future research. By investigating the effect of the length vector

on the solvability and the computing time of the SRFLP instances, one can better

understand how good different models are in literature. It can also facilitates a

more thorough and fair comparison between optimization methods.

Another interesting topic for future research is to investigate a more in-depth

comparison between the two SDP solvers, namely SDPT3 and CSDP. A fair com-

parison should be made within the same computing environment, and it should be

able to help an analyst to make a better decision in choosing a suitable solver.

Just recently Amaral proposed a new lower bound approach, which is capable of

solving SRFLPs of size n = 35. It would be interesting to compare the performance

of Amaral’s new model to the AKV and AKV’ relaxations. Furthermore, it is also

interesting to analyze the 35-facility instances that he used in [2] in order to fairly

gauge the ability of his new lower bound approach.

Since the proposed methodology of combining Strategy 8 with AKV’ relaxation

reaches the memory limitation in Matlab, it would be very interesting to look into

the possibility of translating the code to run in C in conjunction of CSDP as future

research. By running on a different platform, the memory limit may be different,

and consequently larger instances may be solved.

Finally, after a more thorough study of the SRFLP, the future research may

extend from single-row to multi-row facility layout problem. It is likely that the

result from the SRFLP may shed some light to the multi-row problems.
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Appendix A

Matlab Code for 2-Opt

function [x] = twoopt(F, l, x)

n = length(l); % number of departments

xtemp = x;

bestCost = 0;

cost = 0;

xold = zeros(1,n);

bestCost = objfunction(F,l,x);

while x ~= xold

xold = x;

for a = 1:(n-1) % check swap b/w ith and jth positions

for b = (a+1):n

xtemp(a) = x(b);

xtemp(b) = x(a);

cost = objfunction(F,l,xtemp);

if cost >= bestCost % keep the same

xtemp = x;

else % swap and update best cost

x = xtemp;

bestCost = cost;

end

end

end

end
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Appendix B

Matlab Code for AKV Heuristic

function [x, xbk, zbk] = AKVheur(X, xbk, zbk, F, l);

n = length(l);

zub = 9999999; %a large number as upper bound to begin with

for a = 1 : nchoosek(n,2), %check thru each row of X*

R = zeros(n);

for i=1:n-1, % Calculate Rij in matrix form, set Rii = 0

for j=i+1:n,

Xcol = (j-1)*(j-2)/2+i;

R(i,j)=X(a,Xcol);

R(j,i)=-1*X(a,Xcol);

end

end

for i=1:n, % calculate p

P(i) = (sum(R(i,:))+n+1)/2; %Rii = 0 so no effect

end

[Y,x_temp] = sort(P,’descend’);

if objfunction(F,l,x_temp) < zub, %zub = best obj value by comparing each row

zub = objfunction(F,l,x_temp); % zub not used

x = x_temp;

end

[x_temp] = twoopt(F, l, x_temp);

if objfunction(F,l,x_temp) < zbk, %zbk = best global obj value

xbk = x_temp; % Update xbk
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zbk = objfunction(F,l,x_temp); % Update zbk

display(’zbk updated at’); a

end

end
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Appendix C

Complete Listings of SRFLP

Instances Used
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C.1 HeKu20

l = [ 20 3 9 3 7 3 7 5 9 6 5 3 9 3 7 3 7 5 9 6]

F = [ 0 0 5 0 5 2 10 3 1 5 5 5 0 0 5 4 4 0 0 1; ...

0 0 3 10 5 1 5 1 2 4 2 5 0 10 10 3 0 5 10 5; ...

5 3 0 2 0 5 2 4 4 5 0 0 0 5 1 0 0 5 0 0; ...

0 10 2 0 1 0 5 2 1 0 10 2 2 0 2 1 5 2 5 5; ...

5 5 0 1 0 5 6 5 2 5 2 0 5 1 1 1 5 2 5 1; ...

2 1 5 0 5 0 5 2 1 6 0 0 10 0 2 0 1 0 1 5; ...

10 5 2 5 6 5 0 0 0 0 5 10 2 2 5 1 2 1 0 10; ...

3 1 4 2 5 2 0 0 1 1 10 10 2 0 10 2 5 2 2 10; ...

1 2 4 1 2 1 0 1 0 2 0 3 5 5 0 5 0 0 0 2; ...

5 4 5 0 5 6 0 1 2 0 5 5 0 5 1 0 0 5 5 2; ...

5 2 0 10 2 0 5 10 0 5 0 5 2 5 1 10 0 2 2 5; ...

5 5 0 2 0 0 10 10 3 5 5 0 2 10 5 0 1 1 2 5; ...

0 0 0 2 5 10 2 2 5 0 2 2 0 2 2 1 0 0 0 5; ...

0 10 5 0 1 0 2 0 5 5 5 10 2 0 5 5 1 5 5 0; ...

5 10 1 2 1 2 5 10 0 1 1 5 2 5 0 3 0 5 10 10; ...

4 3 0 1 1 0 1 2 5 0 10 0 1 5 3 0 0 0 2 0; ...

4 0 0 5 5 1 2 5 0 0 0 1 0 1 0 0 0 5 2 0; ...

0 5 5 2 2 0 1 2 0 5 2 1 0 5 5 0 5 0 1 1; ...

0 10 0 5 5 1 0 2 0 5 2 2 0 5 10 2 2 1 0 6; ...

1 5 0 5 1 5 10 10 2 2 5 5 5 0 10 0 0 1 6 0]
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C.2 AV25 Instances

The AV25 instances have the same flow matrix F as listed below.

F = [0 3 2 0 0 10 5 0 5 2 0 0 2 0 5 ...

3 0 1 10 0 2 1 1 1 0; ...

3 0 4 0 10 0 0 2 2 1 5 0 0 0 0 ...

0 1 6 1 0 2 2 5 1 10; ...

2 4 0 3 4 5 5 5 1 4 0 4 0 4 0 ...

3 2 5 5 2 0 0 3 1 0; ...

0 0 3 0 0 0 2 2 0 6 2 5 2 5 1 ...

1 1 2 2 4 2 0 2 2 5; ...

0 10 4 0 0 2 0 0 0 0 0 0 0 0 2 ...

0 0 2 0 5 0 2 1 0 2; ...

10 0 5 0 2 0 10 10 5 10 6 0 0 10 2 ...

10 1 5 5 2 5 0 2 0 1; ...

5 0 5 2 0 10 0 1 3 5 0 0 2 4 5 ...

10 6 0 5 5 5 0 5 5 0; ...

0 2 5 2 0 10 1 0 10 2 5 2 0 3 0 ...

0 0 4 0 5 0 5 2 2 5; ...

5 2 1 0 0 5 3 10 0 5 6 0 1 5 5 ...

5 2 3 5 0 2 10 10 1 5; ...

2 1 4 6 0 10 5 2 5 0 0 1 2 1 0 ...

0 0 0 6 6 4 5 3 2 2; ...

0 5 0 2 0 6 0 5 6 0 0 2 0 4 2 ...

1 0 6 2 1 5 0 0 1 5; ...

0 0 4 5 0 0 0 2 0 1 2 0 2 1 0 ...

3 10 0 0 4 0 0 4 2 5; ...

2 0 0 2 0 0 2 0 1 2 0 2 0 4 5 ...

0 1 0 5 0 0 0 5 1 1; ...

0 0 4 5 0 10 4 3 5 1 4 1 4 0 0 ...

0 2 2 0 2 5 0 5 2 5; ...

5 0 0 1 2 2 5 0 5 0 2 0 5 0 0 ...

2 0 0 0 6 3 5 0 0 5; ...

3 0 3 1 0 10 10 0 5 0 1 3 0 0 2 ...
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0 0 5 5 1 5 2 1 2 10; ...

0 1 2 1 0 1 6 0 2 0 0 10 1 2 0 ...

0 0 5 2 1 1 5 6 5 5; ...

1 6 5 2 2 5 0 4 3 0 6 0 0 2 0 ...

5 5 0 4 0 0 0 0 5 0; ...

10 1 5 2 0 5 5 0 5 6 2 0 5 0 0 ...

5 2 4 0 5 4 4 5 0 2; ...

0 0 2 4 5 2 5 5 0 6 1 4 0 2 6 ...

1 1 0 5 0 4 4 1 0 2; ...

2 2 0 2 0 5 5 0 2 4 5 0 0 5 3 ...

5 1 0 4 4 0 1 0 10 1; ...

1 2 0 0 2 0 0 5 10 5 0 0 0 0 5 ...

2 5 0 4 4 1 0 0 0 0; ...

1 5 3 2 1 2 5 2 10 3 0 4 5 5 0 ...

1 6 0 5 1 0 0 0 0 0; ...

1 1 1 2 0 0 5 2 1 2 1 2 1 2 0 ...

2 5 5 0 0 10 0 0 0 2; ...

0 10 0 5 2 1 0 5 5 2 5 5 1 5 5 ...

10 5 0 2 2 1 0 0 2 0]

C.2.1 AV25-1

l = ones(1,25)

C.2.2 AV25-2

l = [15 4 10 8 14 12 8 1 13 8 10 13 15 12 4 7 15 15 7 14 ...

2 6 13 1 3]
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C.3 HeKu30

l = [3 9 3 7 3 7 5 9 6 5 3 9 3 7 3 ...

7 5 9 6 5 3 9 3 7 3 7 5 9 6 5]

F = [0 3 2 0 0 2 10 5 0 5 2 5 0 0 2 ...

0 5 6 3 0 1 10 0 10 2 1 1 1 0 1; ...

3 0 4 0 10 4 0 0 2 2 1 0 5 0 0 ...

0 0 2 0 1 6 1 0 1 2 2 5 1 10 5; ...

2 4 0 3 4 0 5 5 5 1 4 1 0 4 0 ...

4 0 6 3 2 5 5 2 1 0 0 3 1 0 2; ...

0 0 3 0 0 0 0 2 2 0 6 0 2 5 2 ...

5 1 1 1 1 2 2 4 0 2 0 2 2 5 5; ...

0 10 4 0 0 5 2 0 0 0 0 2 0 0 0 ...

0 2 1 0 0 2 0 5 1 0 2 1 0 2 1; ...

2 4 0 0 5 0 1 2 2 1 4 10 10 2 5 ...

5 0 5 0 0 0 10 0 0 0 4 0 10 1 1; ...

10 0 5 0 2 1 0 10 10 5 10 10 6 0 0 ...

10 2 1 10 1 5 5 2 3 5 0 2 0 1 3; ...

5 0 5 2 0 2 10 0 1 3 5 0 0 0 2 ...

4 5 2 10 6 0 5 5 2 5 0 5 5 0 2; ...

0 2 5 2 0 2 10 1 0 10 2 1 5 2 0 ...

3 0 2 0 0 4 0 5 2 0 5 2 2 5 2; ...

5 2 1 0 0 1 5 3 10 0 5 5 6 0 1 ...

5 5 0 5 2 3 5 0 5 2 10 10 1 5 2; ...

2 1 4 6 0 4 10 5 2 5 0 0 0 1 2 ...

1 0 2 0 0 0 6 6 0 4 5 3 2 2 10; ...

5 0 1 0 2 10 10 0 1 5 0 0 5 5 2 ...

0 0 0 0 2 0 4 5 10 1 0 0 0 0 1; ...

0 5 0 2 0 10 6 0 5 6 0 5 0 2 0 ...

4 2 2 1 0 6 2 1 5 5 0 0 1 5 5; ...

0 0 4 5 0 2 0 0 2 0 1 5 2 0 2 ...

1 0 5 3 10 0 0 4 2 0 0 4 2 5 5; ...

2 0 0 2 0 5 0 2 0 1 2 2 0 2 0 ...

4 5 1 0 1 0 5 0 2 0 0 5 1 1 0; ...
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0 0 4 5 0 5 10 4 3 5 1 0 4 1 4 ...

0 0 3 0 2 2 0 2 0 5 0 5 2 5 10; ...

5 0 0 1 2 0 2 5 0 5 0 0 2 0 5 ...

0 0 2 2 0 0 0 6 5 3 5 0 0 5 1; ...

6 2 6 1 1 5 1 2 2 0 2 0 2 5 1 ...

3 2 0 5 1 2 10 10 4 0 0 5 0 0 0; ...

3 0 3 1 0 0 10 10 0 5 0 0 1 3 0 ...

0 2 5 0 0 5 5 1 0 5 2 1 2 10 10; ...

0 1 2 1 0 0 1 6 0 2 0 2 0 10 1 ...

2 0 1 0 0 5 2 1 3 1 5 6 5 5 3; ...

1 6 5 2 2 0 5 0 4 3 0 0 6 0 0 ...

2 0 2 5 5 0 4 0 1 0 0 0 5 0 0; ...

10 1 5 2 0 10 5 5 0 5 6 4 2 0 5 ...

0 0 10 5 2 4 0 5 0 4 4 5 0 2 5; ...

0 0 2 4 5 0 2 5 5 0 6 5 1 4 0 ...

2 6 10 1 1 0 5 0 0 4 4 1 0 2 2; ...

10 1 1 0 1 0 3 2 2 5 0 10 5 2 2 ...

0 5 4 0 3 1 0 0 0 5 5 0 1 0 0; ...

2 2 0 2 0 0 5 5 0 2 4 1 5 0 0 ...

5 3 0 5 1 0 4 4 5 0 1 0 10 1 0; ...

1 2 0 0 2 4 0 0 5 10 5 0 0 0 0 ...

0 5 0 2 5 0 4 4 5 1 0 0 0 0 0; ...

1 5 3 2 1 0 2 5 2 10 3 0 0 4 5 ...

5 0 5 1 6 0 5 1 0 0 0 0 0 0 10; ...

1 1 1 2 0 10 0 5 2 1 2 0 1 2 1 ...

2 0 0 2 5 5 0 0 1 10 0 0 0 2 2; ...

0 10 0 5 2 1 1 0 5 5 2 0 5 5 1 ...

5 5 0 10 5 0 2 2 0 1 0 0 2 0 2; ...

1 5 2 5 1 1 3 2 2 2 10 1 5 5 0 ...

10 1 0 10 3 0 5 2 0 0 0 10 2 2 0]
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C.4 STE36 Instances

The STE36 instances have the same flow matrix F as listed below.

F = [0 0 0 2 1 7 9 0 4 75 ...

7 12 22 7 1 0 0 0 0 23 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 4 16 0 8 ...

0 0 16 0 0 0 0 6 0 4 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 4 16 20 0 0 ...

0 0 20 0 0 0 0 0 0 4 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

2 0 0 0 29 5 18 47 23 2 ...

4 0 48 0 4 0 0 0 0 25 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

1 0 0 29 0 18 12 25 0 0 ...

4 0 25 0 3 0 0 0 0 18 ...

0 3 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

7 0 4 5 18 0 4 2 0 1 ...

23 2 19 0 0 0 0 0 2 19 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

9 4 16 18 12 4 0 0 14 72 ...

7 8 39 8 40 8 0 8 4 7 ...

0 0 0 0 0 0 0 28 8 0 ...

0 0 0 0 0 0; ...

0 16 20 47 25 2 0 0 10 71 ...

2 0 0 0 0 0 0 41 0 0 ...

0 0 0 0 0 0 7 8 0 0 ...
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0 0 0 0 0 0; ...

4 0 0 23 0 0 14 10 0 14 ...

0 0 18 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

75 8 0 2 0 1 72 71 14 0 ...

11 1 17 0 1 0 0 17 0 15 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

7 0 0 4 4 23 7 2 0 11 ...

0 316 33 8 2 0 0 0 8 34 ...

0 0 6 0 0 0 10 0 0 6 ...

0 0 0 0 0 0; ...

12 0 0 0 0 2 8 0 0 1 ...

316 0 157 25 4 0 0 1 0 0 ...

0 0 0 0 22 0 1 0 0 0 ...

0 0 0 0 0 0; ...

22 16 20 48 25 19 39 0 18 17 ...

33 157 0 11 6 0 0 6 0 5 ...

8 3 10 0 0 0 9 11 2 0 ...

0 1 0 0 0 0; ...

7 0 0 0 0 0 8 0 0 0 ...

8 25 11 0 3 0 0 1 1 21 ...

0 1 0 2 0 0 5 0 0 3 ...

2 5 5 4 0 0; ...

1 0 0 4 3 0 40 0 0 1 ...

2 4 6 3 0 19 0 2 2 12 ...

0 0 0 0 0 0 0 7 3 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 8 0 0 0 ...

0 0 0 0 19 0 0 6 0 1 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...
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0 0 0 0 0 0 0 40 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

0 6 0 0 0 0 8 41 0 17 ...

0 1 6 1 2 6 40 0 0 26 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 2 4 0 0 0 ...

8 0 0 1 2 0 0 0 0 13 ...

9 0 7 0 0 0 0 27 16 3 ...

0 20 0 4 0 0; ...

23 4 4 25 18 19 7 0 0 15 ...

34 0 5 21 12 1 0 26 13 0 ...

11 4 36 0 0 0 16 18 9 10 ...

1 28 6 2 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 8 0 0 0 0 0 9 11 ...

0 36 6 0 8 0 2 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 3 0 0 0 0 0 ...

0 0 3 1 0 0 0 0 0 4 ...

36 0 0 0 0 0 4 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

6 0 10 0 0 0 0 0 7 36 ...

6 0 0 0 0 12 9 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 2 0 0 0 0 0 0 ...

0 0 0 0 26 0 5 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 22 0 0 0 0 0 0 0 0 ...

8 0 0 26 0 35 2 0 0 0 ...
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0 0 0 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 12 0 35 0 4 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 0 7 0 0 ...

10 1 9 5 0 0 0 0 0 16 ...

2 4 9 5 2 4 0 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 28 8 0 0 ...

0 0 11 0 7 0 0 0 27 18 ...

0 0 0 0 0 0 0 0 10 22 ...

4 6 4 12 0 0; ...

0 0 0 0 0 0 8 0 0 0 ...

0 0 2 0 3 0 0 0 16 9 ...

0 0 0 0 0 0 0 10 0 19 ...

12 0 0 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

6 0 0 3 0 0 0 0 3 10 ...

0 0 0 0 0 0 0 22 19 0 ...

19 4 5 8 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 2 0 0 0 0 0 1 ...

0 0 0 0 0 0 0 4 12 19 ...

0 0 3 13 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 1 5 0 0 0 0 20 28 ...

0 0 0 0 0 0 0 6 0 4 ...

0 0 18 24 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 5 0 0 0 0 0 6 ...

0 0 0 0 0 0 0 4 0 5 ...

3 18 0 20 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...
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0 0 0 4 0 0 0 0 4 2 ...

0 0 0 0 0 0 0 12 0 8 ...

13 24 20 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0; ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0]

C.4.1 STE36-1

l = ones(1,36)

C.4.2 STE36-2

l = [17 10 26 16 22 5 34 11 1 37 29 19 23 6 24 7 ...

17 4 22 11 23 11 16 23 18 17 3 28 4 11 32 14 ...

28 31 2 35 ]

C.4.3 STE36-3

l = [11 13 5 8 15 13 9 11 15 2 12 2 8 6 17 ...

1 15 18 19 15 9 10 5 13 7 18 14 8 14 6 ...

9 18 13 5 16 12]

C.4.4 STE36-6

l = [2 1 2 3 3 3 1 2 3 1 1 1 1 1 1 1 2 2 ...

2 2 2 2 3 2 2 2 3 3 3 2 3 1 2 3 3 2]
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C.4.5 STE36-7

l = [4 3 4 1 3 3 1 4 4 3 4 3 1 1 1 2 1 2 ...

2 2 2 2 2 4 3 3 2 2 4 1 3 3 4 3 4 3]

C.4.6 STE36-8

l = [4 2 3 2 3 1 3 1 3 4 5 2 2 3 3 3 5 3 ...

3 5 2 5 3 3 5 4 4 3 4 3 2 2 3 2 5 3 ]

C.4.7 STE36-9

l = [2 1 2 1 2 3 2 2 2 2 2 2 3 2 3 3 2 2 ...

2 2 2 2 1 3 2 2 2 1 2 2 2 2 2 1 2 2]

C.4.8 STE36-10

l = [3 2 3 3 2 4 3 2 3 4 3 3 3 2 3 3 4 3 ...

4 3 4 3 2 3 2 3 2 3 3 3 3 3 2 3 2 3]

C.4.9 STE36-11

l = [4 4 4 4 4 3 4 3 4 4 5 4 4 4 4 4 5 4 ...

4 5 4 5 4 4 5 4 4 4 4 4 4 3 4 4 5 4]
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