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Abstract

Machine intelligence techniques contribute to solving real-world problems. Reinforcement

learning (RL) is one of the machine intelligence techniques with several characteristics

that make it suitable for the applications, for which the model of the environment is not

available to the agent.

In real-world applications, intelligent agents generally face a very large state space

which limits the usability of reinforcement learning. The condition for convergence of

reinforcement learning implies that each state-action pair must be visited infinite times, a

condition which can be considered impossible to be satisfied in many practical situations.

The goal of this work is to propose a class of new techniques to overcome this problem for

off-policy, step-by-step (incremental) and model-free reinforcement learning with discrete

state and action space. The focus of this research is using the design characteristics of

RL agent to improve its performance regarding the running time while maintaining an

acceptable level of accuracy. One way of improving the performance of the intelligent

agents is using the model of environment. In this work, a special type of knowledge about

the agent actions is employed to improve its performance because in many applications

the model of environment may only be known partially or not at all. The concept of

opposition is employed in the framework of reinforcement learning to achieve this goal.

One of the components of RL agent is the action. For each action we define its associate

opposite action. The actions and opposite actions are implemented in the framework of

reinforcement learning to update the value function resulting in a faster convergence.

At the beginning of this research the concept of opposition is incorporated in the com-

ponents of reinforcement learning, states, actions, and reinforcement signal which results

in introduction of the oppositional target domain estimation algorithm, OTE. OTE re-

duces the search and navigation area and accelerates the speed of search for a target. The
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OTE algorithm is limited to the applications, in which the model of the environment is

provided for the agent. Hence, further investigation is conducted to extend the concept of

opposition to the model-free reinforcement learning algorithms. This extension contributes

to the generating of several algorithms based on using the concept of opposition for Q(λ)

technique.

The design of reinforcement learning agent depends on the application. The emphasize

of this research is on the characteristics of the actions. Hence, the primary challenge of this

work is design and incorporation of the opposite actions in the framework of RL agents. In

this research, three different applications, namely grid navigation, elevator control problem,

and image thresholding are implemented to address this challenge in context of different

applications. The design challenges and some solutions to overcome the problems and

improve the algorithms are also investigated. The opposition-based Q(λ) algorithms are

tested for the applications mentioned earlier. The general idea behind the opposition-based

Q(λ) algorithms is that in Q-value updating, the agent updates the value of an action in

a given state. Hence, if the agent knows the value of opposite action then instead of one

value, the agent can update two Q-values at the same time without taking its corresponding

opposite action causing an explicit transition to opposite state. If the agent knows both

values of action and its opposite action for a given state, then it can update two Q-values.

This accelerates the learning process in general and the exploration phase in particular.

Several algorithms are outlined in this work. The OQ(λ) will be introduced to accel-

erate Q(λ) algorithm in discrete state spaces. The NOQ(λ) method is an extension of

OQ(λ) to operate in a broader range of non-deterministic environments. The update of

the opposition trace in OQ(λ) depends on the next state of the opposite action (which

generally is not taken by the agent). This limits the usability of this technique to the de-

terministic environments because the next state should be known to the agent. NOQ(λ)
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will be presented to update the opposition trace independent of knowing the next state

for the opposite action. The results show the improvement of the performance in terms of

running time for the proposed algorithms comparing to the standard Q(λ) technique.
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Chapter 1

Introduction

1.1 Background

Artificial intelligence aims to develop systems that are able to think and act rationally.

Currently, there are artificial intelligence methods that are, to different degrees, involved

in learning, understanding, adapting, interacting, achieving goals or objectives, reasoning,

predicting, recognizing, or acting rationally.

Reinforcement learning (RL) is one of the techniques in artificial intelligence that can

be considered a goal-directed method for solving problems in uncertain and dynamic envi-

ronments. The RL agent learns by receiving reinforcement signals (reward or punishment)

from its environment. One of the advantages of using reinforcement learning is its inde-

pendence from the need to specify a priori knowledge. The learning is rather performed

based on trial and error. This behavior is useful for all user-dependent cases where it is

difficult to obtain sufficiently large training data.

One of the established approaches of reinforcement learning is temporal difference (TD)

which does not require a model of the environment and is based on step-by-step, incre-
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2 Oppositional Reinforcement Learning with Applications

mental computation. Q-learning is an off-policy TD control and is one of the most popular

methods in reinforcement learning. In off-policy techniques the agent learns a greedy pol-

icy and also applies an exploratory policy for action selection. One of the characteristics

of Q-learning is model-freedom which makes it suitable for many real-world applications.

Dynamic programming, Monte Carlo algorithms, and temporal-difference learning (TD)

are three elementary classes of techniques for solving problems using reinforcement learning.

Some of the methods of RL are based on the concept of an eligibility trace which provides

a bridge from TD techniques to Monte Carlo methods. The idea is that only eligible states

or actions will be assigned a credit or blamed for an error.

1.2 Objective

Most real-world applications constitute large environments which are dynamic, stochastic

and/or only partially observable. One of the theoretical conditions for convergence of

reinforcement learning methods such as Q-learning [97] implies that each state-action pair

must be visited infinite times. Hence, tabular and naive RL algorithms (e.g. Q-learning)

benefit from a technique that decreases their computation time in the case of large state

spaces.

This research presents the newly proposed opposition-based RL algorithm for accel-

erating the learning process in off-policy, step by step, incremental and model-free re-

inforcement learning with discrete state and action space. We integrate the concept of

opposition [53, 54, 55, 74, 95] within a new scheme to make some tabular RL algorithms

perform better with regard to the running time and number of learning iterations. The

general idea behind these algorithms is that in Q-value updating, the agent updates the

value of an action in a given state and if it knows the value of the opposite state or the
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opposite action, then instead of one value, the agent can update two Q-values at the same

time without taking its corresponding opposite action or going to the opposite state. This

accelerates the learning process, particularly the exploration stage. The most challenging

part of this scheme is defining the opposite state or the opposite action. For some appli-

cations, the concept of opposition can be established heuristically. A variety of algorithms

can be generated based on the concept of opposition to improve learning and facilitate a

faster convergence [73, 90, 91, 92]. The objective of this research is to increase the speed of

some of RL-techniques using the concept of opposition by maintaining the same accuracy.

1.3 Thesis Organization

The thesis consists of six chapters. Chapter 2 introduces the reinforcement learning tech-

niques as well as a survey of the techniques for accelerating reinforcement learning. Chap-

ter 2 also describes the opposition-based computing. The purpose of this research is to

introduce a technique to accelerate the reinforcement learning methods for off-policy, step-

by-step (incremental) and model-free reinforcement learning with discrete state and action

space. Hence, the design characteristics of RL agent as well as the concept of opposition are

employed to improve the performance of some of the RL algorithm regarding the running

time.

At the beginning of this research (Chapter 3) the concept of opposition is applied

to the components of reinforcement learning, namely states, actions, and reinforcement

signal which yields to the introducing the oppositional target domain estimation (OTE)

algorithm. OTE is not constructed upon learning, it rather searches for a reduced state

space which includes the target. However, the model of the environment should be provided

for the OTE algorithm.
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In order to extend the opposition-based computing to the model-free RL techniques

a special type of knowledge about the agent actions is used. Therefore, in Chapter 4 a

class of new opposition-based RL algorithms is introduced by employing opposite actions

to update the value function. Major techniques based on opposition are described in this

chapter.

Chapter 5 investigates the oppositional agents in dynamic environments for more chal-

lenging applications. Three major applications, namely navigation, elevator control, and

image thresholding are discussed based on the concept of opposition and the design issues

for implementing this concept is discussed in details. Chapter 6 contains the conclusions

with some thoughts on the future works.



Chapter 2

Reinforcement Learning and

Opposition-Based Computing

2.1 Reinforcement Learning

Reinforcement learning (RL) can be considered as a class of goal-directed intelligent tech-

niques for solving problems in uncertain and dynamic environments. By definition, an

agent is “something that acts” or “something that perceives and acts in an environment”

[66]. More specifically by intelligent agent we mean an intelligent software that performs

a task for a human user. A rational agent attempts in a way to maximize the expected

value of a performance/quality measure, given the percept sequence it has seen so far [66].

Agents should have the ability to manage themselves, optimize task performance and in-

crease the level of security. An agent can be a function or a piece of software that maps the

states of an environment to a set of actions. A rational agent aims to maximize the profit

according to a performance measure. Intelligent robots and softbots (software agents) are

examples of artificial intelligent agents.
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6 Oppositional Reinforcement Learning with Applications

A reinforcement learning agent is autonomous [58] meaning that its behavior is deter-

mined by its own experience. What is outside the agent is considered the environment.

The states are parameters (features) describing the environment. An RL agent has the

ability to sense the environment and learn the optimal policy (or a good policy) for taking

optimal/good actions in each state of the environment to achieve its goal. As a result of

taking an action, the agent has the ability to influence the state of the environment (and

can map the states to appropriate actions). The agent must be aware of the states of the

environment by interacting with the environment, and learns from receiving reinforcement

feedback as reward or punishment from its environment. The reward function represents,

directly or indirectly, the goal of the reinforcement learning problem. RL agents try to

maximize the reward or minimize the punishment [3, 16, 83]. The reward values could

be objective or subjective. In the subjective case, the agent will receive reward and pun-

ishment directly from the interactive user (in some cases by using an interface). In the

objective case, the reward is defined based on some optimality measures or desired proper-

ties of the results [66, 69]. Actions could affect the next situation and subsequent rewards

and have the ability to optimize the environment’s state [31].

As mentioned earlier, one of the advantages of using reinforcement learning is indepen-

dency of some of the RL techniques from a priori knowledge by learning based on trial and

error. Some RL agents learn from their own experience without relying on a teacher or

training data. This kind of learning is not supervised, but because of using a reward func-

tion and exploitation of rewarding actions a weak supervision can be assumed. The agent

can learn online by the ability of continuously learning and adapting through interaction

with the environment while performing the required task and improving its behavior in

real time. This characteristic is useful, among others, for all user-dependent cases where a

set of sufficiently large training data is difficult or impossible to obtain.
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Learning is the core characteristic of any intelligent system. Learning can be described

as “modification of a behavioral tendency by experience” [44]. For an RL agent, learning

by trial and error has mainly two stages, namely exploration and exploitation. Exploration

means that the agent tries to discover which actions yield the maximum reward by taking

different actions repeatedly. Exploitation, on the other hand, means that the agent takes

those actions that yield more reward.

The history of RL research has two major parts: the study of animal learning, and the

solution of optimal control problems using value functions and dynamic programming [83].

Value functions are functions of states or functions of state-action pairs that estimate how

good it is to perform a given action in a given state. Watkins developed the Q-learning

algorithm in 1989 [96, 97] in such a way that the agent maintains a value for both state

and action, which represents a prediction of the value of taking that action in that state.

2.1.1 General Framework

The design of an RL agent is based on the characteristics of the problem at hand. First

of all the problem must be clearly defined and analyzed and the purpose of designing the

agent must be determined. Figure 2.1 illustrates the components, which constitute the

general idea behind reinforcement learning.

The RL agent, which is the decision-maker in the process, takes an action that influences

the environment. The agent acquires knowledge of the actions that generate rewards and

punishments and eventually learns to perform the actions that are the most rewarding in

order to attain a certain goal. In the RL model presented in Figure 2.1 the process is as

follows [58]:

• Observe the state of the environment



8 Oppositional Reinforcement Learning with Applications

Figure 2.1: Basic components of reinforcement learning

• Take an action and observe reward and punishment

• Observe the new state

2.1.2 Action Policy

Another key element of reinforcement learning is the action policy which defines the agent’s

behavior at any given time. It maps the perceived states to the actions to be taken

[83]. There are three common policies, softmax, ε-greedy, and greedy. ε-greedy or near-

greedy policy is based on the idea of selecting greedy actions most of the time but a

few times selecting a random action with probability of ε. Based on the near-greedy

policy an agent has a chance to explore more and balance exploration with exploitation,

in contrast with greedy policy that always selects rewarding actions. In this situation

all actions may not be explored. Generally, choosing the appropriate policy depends on

the application but it must be considered that the greedy policy sometimes leads to sub-

optimal situations which is a common problem in any intelligent system. On the other

hand, one of the disadvantages of using ε-greedy is that this technique uses random action
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selection by considering equal probabilities for each action based on a uniform distribution

for the exploration. An alternative solution is considering the estimated value of each

action to vary the probability of action selection. This technique is called softmax action

selection [83]. The Boltzmann policy is the most common softmax method, and uses a

Gibbs, or Boltzmann distribution for defining the policy. The probability of taking each

action is presented based on Boltzmann policy in Equation 2.1, where Q(s, a) is the Q-

matrix [96, 97] representing the state-action values, τ is a parameter called temperature,

s is the state, and a is a candidate action.

P (a) = e
Q(s,a)

τ

P
e

Q(s,:)
τ

. (2.1)

In the Equation 2.1 the parameter τ is used to control the intensity of exploration. At

the beginning of learning τ has higher values which contributes to more exploration. By

increasing the time τ decreases and consequently the intensity of exploitation increases

[26].

2.1.3 Markov Decision Process (MDP)

Reinforcement learning is learning from interaction of the agent with the environment to

achieve the goal, i.e. maximizing the accumulated rewards over the long run [31]. Another

concept that should be mentioned here is the Markov property for reinforcement learning.

If the environment has the Markov property, then the state at the time step t+ 1 depends

on the state and action at time t. If the reinforcement learning task satisfies the Markov

property it is called a finite Markov decision process (MDP) [83]. Regarding RL problems

as MDPs, it is assumed that the next state depends on the finite history of previous

states [66]. The environment can be modeled as a Markov decision process (MDP). The
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first order Markov property is used to predict the probability of a possible next state as

follows:

P a
ss′ = Pr{st+1|st = s, at = a}, (2.2)

where P a
ss′ is the transition probability to the next state s′ = st+1 given any state s and

action a [83].

2.1.4 Different RL Schemes

The solution of the reinforcement learning problem is the policy that maximizes the reward

over several learning episodes. There are three elementary classes of techniques for solv-

ing reinforcement learning problems: dynamic programming, Monte Carlo algorithm, and

temporal-difference learning (TD). There are also methods based on “eligibility traces”

that can be considered as a bridge between TD methods and Monte Carlo techniques. The

idea of eligibility traces is that only eligible states or actions will be assigned a credit or

blame for the error [83].

Optimization techniques are suitable for solving the sequential decision problems when

knowledge of the environment is provided for the agent. The model of the environment can

be applied to predict the next state and next reward by using the current state and action.

Models generally can be employed for planning by considering possible future situations

before they occur to decide the best possible action. A model, similar to integration of

prior knowledge, can include the transition probabilities for the states of the environment

and the expected reward for the actions.

Dynamic programming is one of the techniques for solving reinforcement learning prob-

lems if a complete model of the environment is available. The model of environment can
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be applied to predict the next state and next reward by using the given state and action.

Dynamic programming is a mathematically well developed method but the complete and

accurate model of the environment must be provided for this technique.

Monte Carlo techniques are not based on using the model of the environment. However,

they are not appropriate for step-by-step learning because of episodic nature [83].

Another alternative approach for solving a reinforcement learning problem is temporal

difference (TD) methods which do not require a model of the environment and are based

on step-by-step incremental computation [31]. The TD technique is flexible because it

does not require a model. However its implementation is more complex.

Another property of some of the elementary RL techniques is bootstrapping, which

refers to the idea of updating estimated values of states based on estimated values of

successor states without waiting for final outcomes [2]. Dynamic programming (DP) and

TD are bootstrapping methods, in contrast to Monte Carlo methods which wait for a final

outcome. In this research, the focus is on TD approaches.

2.1.5 Temporal-Difference Learning

Temporal-difference learning is a combination of Monte Carlo and dynamic programming

ideas. If at time t a nonterminal state st is visited, TD methods estimate the value of that

state, V (st), based on what happens after that visit. TD methods wait until the next step

(t + 1) to determine the increment to V (st) as opposed to Monte Carlo that must wait

until the end of the learning episode. The simplest TD method, called TD(0), is presented

in Equation 2.3 where α is a step-size parameter (0 < α ≤ 1), r is the result1 of taking an

action, γ is a discount-rate parameter (0 ≤ γ ≤ 1) and V (st) is the value function in each

1Generally, in all RL algorithms r represents the result of the action which can be reward or punishment.
The variable r represents the reward and a variable p represents the punishment.
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time step t:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]. (2.3)

The tabular TD(0) for estimating the value function is presented in Algorithm 1 [83] where

V is the value function and π is a policy that must be evaluated.

Algorithm 1 Tabular TD(0) for estimating value function

Initialize V (s) arbitrary, π the policy to be evaluated
for each episode do

Initialize s
for each step of episode do
a← action given by π for s
Take action a: observe reward, r, and next state, s′

V (s)← V (s) + α[r + γV (s′)− V (s)]
s← s′

end for
end for

Sarsa

Sarsa (State-Action-Reward-State-Action) is an on-policy method and is one of the TD

techniques. For an on-policy method the state-action value Qπ(s, a) must be estimated for

the current policy π, and all states s and actions a. In the on-policy Sarsa, the learned

policy for the action-value function is the same as the policy which is applied for action

selection. The general steps of Sarsa are presented in Algorithm 2 [83].

Q-Learning

Q-learning is off-policy TD control and one of the most popular methods in reinforcement

learning. In an off-policy technique the learned action-value function, Q(s, a), directly ap-
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Algorithm 2 Sarsa: An on-policy TD control algorithm

Initialize Q(s, a) arbitrary
for each episode do

Initialize s
Choose a from s using policy derived from Q (e.g.,ε-greedy)
for each step of episode do

Take action a, observe r, s′

Choose a′ from s′ using policy derived from Q (e.g., ε-greedy)
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′, a← a′

end for
end for

proximates the optimal action-value function Q∗ independent of the policy being followed.

In other words, the agent learns a greedy policy as well as applying exploratory policy for

action selection [83]. It simplifies the algorithm and facilitates convergence. The agent

learns to act optimally in Markovian domains by experiencing sequences of actions. The

agent takes an action at a particular state and uses immediate reward and punishment and

estimates the state value. By trying all actions in all states multiple times, the agent learns

which action is best overall for each visited state [97]. Therefore, the agent must determine

an optimal policy and maximize the total discounted expected reward. Equation 2.4 must

be employed for updating the action-value function, Q, where s is state, a is action, α is

learning step, γ is discount factor, r is the reward (reinforcement signal), a′ is the next

action, and s′ is the next state:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)]. (2.4)

The task of Q-learning is determining an optimal policy π∗. The values of the Q matrix

are the expected discounted reward for executing action a at state s, using policy π [97].
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The (theoretical) condition for convergence of the Q-learning algorithm is that the sequence

of episodes which forms the basis of learning must visit all states infinitely. It must be

mentioned that based on Watkins’ and Dayan’s Theorem in [97] the rewards and learning

rate are bounded (|rn| ≤ Rmax, 0 ≤ αn < 1). The Q-learning algorithm is presented in

Algorithm 3 [83].

Algorithm 3 Q-Learning: An off-policy TD control algorithm

Initialize Q(s, a) arbitrary
for each episode do

Initialize s
for each step of episode do

Choose a from s using policy derived from Q {e.g., ε-greedy}
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)]

s← s′;
end for

end for

Q-learning is model-free and off-policy, and it uses bootstrapping. The bootstrapping

property helps the algorithm to use step-by-step reward, which is the result of the taking

an action in each step. This reward is a useful source of information which guides the

agent through the environment. Q-learning is considered a general and simple technique

for learning through interaction in unknown environments.

Initialization of parameters can be considered as a priori knowledge for reinforcement

learning. Choosing the appropriate parameters may influence the convergence rate [51, 83].

The (theoretical) condition for convergence of the Q-algorithm is that the sequence of

episodes which forms the basis of learning must visit all states infinitely. It must be

mentioned that based on Watkins and Dayan’s Theorem in [97] the rewards and learning

rate are bounded (|rn| ≤ Rmax, 0 ≤ αn < 1). The focus of opposition-based reinforcement

learning is on accelerating the speed of the updating process for Q-learning which is a
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major problem in real-world applications and a result of the hyper-dimensionality of states

and actions.

Q(λ): A Bridge Between Monte Carlo and Q-Learning

Sutton et al. [83] introduced the eligibility trace as a bridge between TD techniques and

Monte Carlo methods. The idea behind the eligibility traces is that only eligible states or

actions will be assigned a credit or blamed for the error. TD(λ) is based on a weighted

averaging of n-step backups, λn−1 (0 ≤ λ ≤ 1). This weighted averaging is presented in

Equation 2.5 and Equation 2.6 (λ-return) where Rn
t is the n-step target at time t [83],

Rn
t = rt+1 + γrt+2 + γ2rt+3 + ...+ γn−1rt+n + γnVt(st+n), (2.5)

Rλ
t = (1− λ)

∑∞
n=1 λ

n−1Rn
t . (2.6)

The alternative choice for non-Markovian tasks with long delayed rewards is using

the eligibility traces. “Eligibility trace is a temporary record of occurance of an event”

and “marks the memory parameter associated with the event as eligible for undergoing

learning changes” [83]. Eligibility traces require more computation but yield faster learning

especially for applications with delayed rewards (result of many steps) [83]. The parameter

λ (0 ≤ λ ≤ 1) must be adjusted to place the eligibility somewhere between TD and Monte

Carlo. If λ = 1 then the algorithm behaves like the Monte Carlo technique. In contrast, if

λ = 0, then the overall backups (for value V ) behave like one-step TD backup. Sutton et

al. suggest that there is not sufficient theoretical investigations on determining the suitable

location for placing the eligibility [83].

The idea of eligibility traces can be applied to TD techniques such as Sarsa and Q-
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learning. Watkins’ Q(λ) unlike the TD(λ) and Sarsa(λ) looks ahead until the next ex-

ploratory action. TD(λ) and Sarsa(λ) need to look ahead until the end of the episode. In

contrast, in Q(λ), if an agent takes an exploratory action then the eligibility traces will

become zero. During the exploration process in early learning the traces will be cut off

[83]. Peng et al. [49] introduced a solution for this problem by using a mixture of backups.

The implementation of Peng’s technique is more difficult than the Q(λ) [49, 83]. It is based

on a combination of TD(λ) and Q-learning. This technique is “experimentation-sensitive”

when λ > 0. Rewards associated with “non-greedy action” will not be used for evaluating

“greedy policy” [49].

Sutton et al. proposed a third variation of Q(λ) [83], Naive Q(λ), which is like Watkins’

Q(λ) with the difference that in this version the traces related to exploratory actions are

not set to zero. In this chapter the Watkins’ Q(λ) has been implemented (presented in

Algorithm 4). The reason for this is that in Watkins’ Q(λ) the representation of the update

for the value function is based on using Q(s, a), contrary to Peng’s technique which is based

on a combination of backups based on both V (s) and Q(s, a). Since the opposition-based

RL technique benefits from the concept of opposite actions, therefore the updates should

be presented for Q(s, a) and Q(s, ă) where ă denotes the opposite action.

2.1.6 Benefits and Shortcomings

Reinforcement learning has the ability of learning through interaction with a dynamic en-

vironment and using reward and punishment independent of any training data set. One

of the advantages of using some of the reinforcement learning techniques is independency

from a priori knowledge. RL agents learn from their own experience without relying on

teachers or training data. The agent does not need a set of training examples. Instead, it

learns online by continuously adapting its knowledge through interaction with the environ-
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Algorithm 4 Tabular Watkins’ Q(λ) algorithm [83]

Initialize Q(s, a) with arbitrary numbers and initialize e(s, a) = 0 for all s and a
for each episode do

Initialize s and a
for each step of episode do

Take action a, observe r and next state s′

Choose next action a′ from s′ using policy
a∗←− argmaxb Q(s′, b) {if a′ ties for max, then a∗ ← a′}
δ ←− r + γ Q(s′, a∗)−Q(s, a)
e(s, a)←− e(s, a) + 1
for all s, a do

Q(s, a)←− Q(s, a) + αδe(s, a)
if a′ = a∗ then
e(s, a)←− γλe(s, a)

else
e(s, a)←− 0

end if
end for
s ←−s′;a←−a′

end for
end for
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ment while performing the required task and improving its behavior in real time. In some

of the RL techniques the model of the environment can be applied to predict the next state

and next reward by using the given state and action. Model-based reinforcement learning

methods have the advantage of yielding more accurate value estimation but they require

more storage and may suffer from the curse of dimensionality. The other major problem is

that the model of the environment is not always available. The strengths and shortcomings

of RL techniques can be summarized as follows [30, 37, 50, 75]:

Strengths:

• Online learning through interaction with environment

• No training data is required for some of the RL techniques

• No model is required for some of the RL techniques

• Independency of a priori knowledge for some of the RL techniques

Shortcomings:

• Exploring the state space is computationally expensive for some of the RL techniques

specially tabular methods

• The large number of actions also makes the RL techniques more computationally

expensive

• Design of RL agents is not straightforward for all applications

The condition for convergence of Q-learning implies that each state-action pair must

be visited infinite times. This requirement is impossible to fulfill in the real-world, but in
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practice nearly optimal action policies can be achieved before all actions have been taken

several times for all states [57]. In real-world applications generally the agent faces a very

large state or action space which limits the usability of reinforcement learning. There are

several solutions in literature. Some general solutions to this problem are briefly described

in following.

• Using a priori knowledge - It is argued that RL is not always a tabula rasa and

additional knowledge can be provided for the agent [41, 57]. The knowledge can be

gained through imitation of other agents or transformation of knowledge from previ-

ously solved problems [41]. Ribeiro proposed a technique of using knowledge about

rates of variation for action values in Q-learning and updating temporal information

for the visited states and neighboring states which have similarities with the visited

states [57]. Knowledge can be transfered to the agent by a human user through giv-

ing advice to the agent. Maclin et al. [40] propose the Preference Knowledge-Based

Kernel Regression algorithm (Pref-KBKR). Their algorithm uses human advice as a

policy based on if-then rules.

• Using hierarchical models and task decomposition - The idea of a hierarchical model

is presented by Mahadevan and Kaelbling in [41] as a way of increasing the speed

of learning by decomposing the task into a collection of simpler subtasks. Goel

provides a technique of sub-goal discovery based on learned policy for hierarchical

reinforcement learning [18]. In this technique, hierarchies of actions are produced

by using sub-goals in a learned policy model. Hierarchies of actions can then be

applied for more effective exploration and acceleration of the process [41]. Goel em-

phasizes that for finding the sub-goals the states with certain structural properties
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must be searched [41]. Kaelbling [29] introduces hierarchical distance to goal learn-

ing (HDG) by using decomposition of the state space. She argues that this modified

version achieves the goal more efficiently. Shapiro et al. [68] combine the hierar-

chical RL with background knowledge. They propose Icarus, an agent architecture

that embeds hierarchical RL within a programming language representing an agent’s

behavior, where the programmer writes an approximately correct plan including op-

tions in different level of details to show how to behave with different options. The

agent then learns the best options from experience and the reward function given by

the user.

• Parameters optimization - Potapov and Ali mention that choosing the appropriate

parameters may influence convergence rate of reinforcement learning [51]. They in-

vestigate the problem of selecting parameters for Q-learning method.

• Function approximation - Function approximation techniques such as neural net-

works can also be considered as a technique for reducing the large stochastic state

space, especially in continuous domains [41, 84]. The function approximation tech-

niques are providing solutions for approximating the value function [41].

• Offline training - The RL agent could be trained offline. The demands and needs of

a user can be learned offline in order to minimize the online learning time [88].

• Gereralization - Agent generalizes by learning similar or closely related tasks. The

generalization techniques “allow compact storage of learned information and transfer
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of knowledge between ’similar’ states and actions” [31].

• Hybrid techniques - As mentioned earlier, neural networks can be applied in the

framework of the RL as function approximators [41, 84]. In the case of model learn-

ing the Bayesian network can represent state transition and reward function [41].

• Fuzzy techniques - Berenji [6] introduces fuzzy Q-learning (FQ-learning) which can

be applied in the decision process with fuzzy goals or constraints. FQ-learning is

an extension of Q-learning applicable for fuzzy environments. Berenji [7] introduces

the combination of the fuzzy Q-learning and the generalized approximate reasoning-

based intelligent control (GARIC) for generalizing reinforcement learning. In this

technique a group of agents are controlled by fuzzy Q-learning “at top level” but

each agent learns locally based on GARIC architecture. Hence, the “generalization

of input space” by using “fuzzy rules” expedites and improves fuzzy Q-learning in

the GARIC −Q method.

• Using macro actions - Mc Govern and Sutton [42] introduce the macro actions as

temporally extended actions by combining smaller actions. They argue that macro

actions can affect the speed of learning based on the task at hand.

• Relational state abstraction - Morales proposes relational state abstraction for re-

inforcement learning [46]. In this technique Morales describes that the states can

be presented as a set of relational properties which yields to abstraction and sim-

plification of the state space. Then, the agent can learn over abstracted space to
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produce reusable policies which can be transferred and applied to similar problems

or problems with the same relational properties [46].

Relational learning can be considered as “learning from examples and background

knowledge” and can be presented using inductive logic [14]. Driessens et al. describe

the problem of “integrating guidance and experimentation in reinforcement learning”,

particularly relational RL technique [14].

As it is described, a large number of techniques exist in the literature and many of them

are involved in using function approximation techniques or integration of knowledge of the

environment. In this research the novel idea of opposition will be introduced to expedite

the RL-techniques. The idea of explicitly employing opposition in machine intelligence has

been introduced before [91].

There are “Diverse forms of opposition” everywhere around us but the “nature and

significance of oppositeness” are not investigated and applied directly in the field of com-

putational intelligence [93]. The goal of this research is understanding and establishing

the concept of opposition within reinforcement leaning techniques in order to improve the

performance of existing methods in terms of running time.

Another emphasis of this research is to provide a new class of RL-algorithms to perform

faster than their conventional techniques and meanwhile keep them independent from any

training data or model of environment. Hence, in the opposition-based RL approach the

new form of knowledge which is associated to the actions are employed. The new approach

can be further developed and combined with other techniques (mentioned earlier) which is

a subject for future studies. In the next section the concept of opposition and its connection

with learning techniques will be described.
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2.2 Opposition-Based Computing

2.2.1 Introduction

Different forms of opposition are apparent in nature and have been studied in some of the

fields such as philosophy, psychology, linguistics, logic and physics. Generally, the word

opposite “is used to describe things of the same kind which are completely different in

a particular way.”[12] Two directions of west and east are opposite of each other. Two

different results of winning and losing a game are opposite of each other. In a social context,

the opposition means “strong, angry or violent disagreement and disapproval” [12]. The

opposition influences the environment by using sudden and radical changes. Even though

the opposition is used in the fields of engineering, mathematics, and computer science, it

is not usually studied in a direct way. Systematical examination and understanding of

opposition could yield a better convergence rate, new search or optimization algorithms,

and a new approach to reasoning and decision making. In this research the concept of

opposition is used to expedite existing RL algorithms. Opposition-based learning (OBL)

has been recently introduced to accelerate learning and search in model-free contexts [53,

54, 55, 73, 74, 90, 91, 92, 95].

Consider the function y = f(s1, s2, . . . , sn). The task could be to approximate f , solve

f(·) = 0, or develop a policy π that describes the relationship between inputs and outputs

according to y = f(·). In machine intelligence, the function f itself is generally unknown.

Different methodologies are employed for approximation (e.g. neural nets), optimization

(e.g. evolutionary algorithms) and search for an optimal policy (e.g. reinforcement learn-

ing). In all cases, random initialization can be applied at the beginning of learning or search

process when prior knowledge is not available. Random initialization of weights of neural

nets, chromosomes in genetic algorithms, and state-action values in reinforcement learning
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are the examples of these cases. A random guess such as S = (s1, s2, · · · , sn) may be close

to or far from the solution vector like Sq = (sq1, sq2, · · · , sqn). If the initial random guess is

far from the existing solution2 then the learning or search time considerably increases. It

should be emphasized that the absence of prior knowledge for diverse machine intelligence

problems reduces the chance of the best initial guess and makes the machine intelligence

techniques less efficient and time consuming.

2.2.2 Basic Definitions

The definition of opposition may be diverse for different problems of engineering and com-

puter science and there is a need to establish at least to some degree mathematical defini-

tions based on the main idea of opposition which is as follows: If we initialize an algorithm

with a random guess S = (s1, s2, · · · , sn), or if we are operating on a candidate solution

S = (s1, s2, · · · , sn), which has been initially a random number, it could be advantageous

to simultaneously search in the opposite direction yielding to calculate the opposite guess

S̆ = (s̆1, s̆2, · · · , s̆n) [90, 91, 92, 95, 93]. In this section the abstract definitions of opposition

are introduced [93].

Definition of Type-I Opposition Mapping: Any one-to-one mapping func-

tion, φ : C → C, which defines an oppositional relationship between two unique

elements C1, C2 of concept class C is a type-I opposition mapping. Further-

more, the relationship is symmetric in that if φ(C1) = C2, then φ(C2) = C1.

The opposite nature between C1 and C2 is defined by this mapping. The opposite nature

between C1,C2 could be understood by considering the problem and/or goal of using

opposition (i.e. minimizing an evaluation function).

2In the worst-case situation the initial random guess may be located at the opposite position
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Definition of Type-I Opposition: Let c ∈ C be a concept in n-dimensional

space and let φ : C → C be an opposition mapping function. Then, the type-I

opposite concept is determined by c̆ = φ(c).

The “explicit reliance on φ(C)” can be omitted for convenience [93]. Therefore, in type-I

opposition if x̆i = φ(xi) = ai +bi−xi, it can be written as x̆i = ai +bi−xi, with xi ∈ [ai, bi].

The type-I opposite can be denoted as x̆i = −xi or x̆i = 1− xi depending on the range of

the universe discourse.

Definition of Type-II Opposition Mapping: Any one-to-many function

Ψ : f(C)→ f(C) which defines an oppositional relationship between the eval-

uation f of a concept c ∈ C to a set S of all other evaluations of concepts also

in C such that c ∈ Ψ(s)∀s ∈ S.

“Given some concept c and its associated evaluation f(c), the type-II opposition mapping

will return a set of opposite evaluations” [93].

Definition of Type-II Opposition: Let concept c be in set C and let

Ψ : f(C) → f(C) be a type-II opposition mapping where f is a performance

function (such as error, cost, fitness, reward, etc.) Then, the set of type-II

opposites of c are completely defined by Ψ. Type-II opposition can also be

considered as non-linear opposition.

“Type-II opposition mappings can be approximated online as the learning/search is in

progress” [93]. In this situation the opposition can be acquired via online mining.

Definition of Opposition Mining: Let c∗ ∈ C be a target concept and Ψ

a type-II opposition mapping. Then, opposition mining refers to the online

discovery of Ψ̆, which represents an approximation to Ψ.
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Definition of Degree of Opposition: Let φ be a type-I opposition mapping

and c1, c2 ∈ C arbitrary concepts such that c1 6= φ(c2). Then, the relationship

between c1 and c2 is not opposite, but can be described as partial opposition,

determined by a function τ : c1, c2 → [0, 1]. As τ(c1, c2) approaches 1 the two

concepts are closer to being opposite of each other.

Tizhoosh [92] uses the opposition-based mining to define a degree of opposition to show

how far two actions are opposite of each other. His degree of opposition is defined as

τ(a1|st , a2|sj
) = η ×

1− exp(− |Q(si, a1)−Q(sj, a2)|
max

k
(Q(si, ak), Q(sj, ak))

)

 , (2.7)

where the Q is a matrix of accumulated discounted rewards, and η is the state similarity

which is calculated based on state clustering or a simple measure presented:

η(si, sj) = 1−

∑
k

|Q(si, ak)−Q(sj, ak)|∑
k

max(Q(si, ak), Q(sj, ak))
. (2.8)

The online opposition mining based on this measure has not been fully investigated for

reinforcement learning algorithm [92].

Opposition-Based Computing: We speak of opposition-based computing,

when a computational method or technique implicitly or explicitly employs

oppositional relations and attributes either at its foundation (purely opposi-

tional algorithms) or to improve existing behavior of some parent algorithm

(opposition based extensions of existing algorithms).

Opposition can be embedded into existing algorithms implicitly or explicitly in order to

improve the performance of the algorithms.
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Implicit OBC Algorithms: Any algorithm that incorporates oppositional

concepts without explicitly using type-I or type-II opposites is an implicit OBC

algorithm, or short an I-OBC algorithm.

Hence, a large variety of I-OBC techniques are available. There are algorithms that are

using type-I or type-II opposites which are defined as follows.

Explicit OBC Algorithms: Any algorithm dealing with an unknown func-

tion Y = f(X) and a known evaluation function g(X) (with higher values being

more desirable) extended with OBC to calculate type-I or type-II opposite X̆

of numbers, guesses or estimates X for considering max(g(X), g(X̆)) in its

decision-making is an explicit OBC algorithm, or short an E-OBC algorithm.

Three classes of E-OBC algorithms are distinguished in [92], Initializing E-OBC Algo-

rithms, Somatic E-OBC Algorithms, and Initializing and Somatic E-OBC Algorithms.

Initializing E-OBC Algorithms: The concept of opposition is only used

during the initialization. The effect is a better start (initial estimates closer to

solution vicinity). Further, since it is done before the actual learning/searching

begins, this creates no additional overhead.

Somatic E-OBC Algorithms: This approach is based on modification of the

body of an existing algorithm. For instance, changing the weights in a neural

network during the learning based on integration of opposite weights changes

the way the algorithm works in every step. The effect of OBC will be much more

visible since opposition is considered in every iteration/episode/generation.

Initializing and Somatic E-OBC Algorithms: This class uses OBC both

during initialization and actual learning/search by combining the two previous

approaches.
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In the next section some applications of opposition-based computing are discussed.

2.2.3 Applications of Opposition-based Computing

The concept of opposition can be implemented in the framework of many learning and

optimization techniques to improve the performance or outcome of the methods. The

advantage of using this technique has been investigated for reinforcement learning [73, 74,

76, 77, 90, 91, 92], evolutionary algorithms [53, 54, 55], neural network [77, 95], grid-based

target estimation [78], and swarm intelligence [43].

The main focus of this research is to implement the concept of opposition for the rein-

forcement learning to accelerate the learning performance. How can the idea of opposition

and RL be combined? As mentioned earlier, the knowledge about actions can be imple-

mented to operate with actions and their associated opposite actions. One of the threads

in the history of RL is the study of animal learning. In this research this thread is extended

to the concept of opposition for actions. To clarify the opposite action for RL, an example

of animal learning is provided to present the idea of learning from reward and punishment3:

Example - Assuming an animal trainer has the intention to train his dog to

fetch a ball. The dog has two choices, which can be considered as actions.

These options are going toward the ball or staying there near the trainer and

not moving. If the dog goes toward the goal, it receives its favorite treat as a

reward which is provided by the trainer for reinforcing good actions. If the dog

stays, then it receives nothing which can be considered as a punishment.

An intelligent agent acts the same way by using reward and punishment. Based

3It must be mentioned that in psychology “punishment acts as the opposite of reinforcement” and it
should not be confused with the proposed technique [103]
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on this theory, in order to teach the dog a good action, the dog must try all the

actions and receives rewards or punishments to learn which action yields to more

rewards. What happens if the dog receives reward when bringing a ball knowing

that taking opposite action (staying) means receiving punishment? It means

that the dog, exactly after receiving a reward for fetching the ball, can realize

the strong possibility of receiving punishment for opposite action without taking

the opposite action. If the trainer could tell the dog that receiving a reward

for bringing a ball means that taking opposite action (staying there) brings

punishment, and if the dog could understand this conversation, the learning

process would be faster.

The condition for convergence of Q-learning implies that each state-action pair must

be visited infinite times which is expensive in terms of running time. The main objective

of this research is to propose new techniques for accelerating the learning process for off-

policy, step by step, incremental and model-free reinforcement learning with discrete state

and action space. Different algorithms are introduced which will be discussed in the next

chapters.

There are some primary investigations conducted in this work to define the opposition

for the components of reinforcement learning such as environment, actions, and the rein-

forcement feedback. This led to a new algorithm which is not a reinforcement learning

method but it has the same RL components such as environment, actions, and the feed-

back. This algorithm is oppositional target domain estimation using grid-based simulation

(OTE) which will be explained in the next chapter.



Chapter 3

Oppositional Target Domain

Estimation Using Grid-Based

Simulation

3.1 Introduction

The purpose of this research is employing the concept of opposition to expedite the learning

process for some of the reinforcement learning techniques. Concept of opposition has been

reported to have positive effects on the performance ofQ-learning algorithm in terms of run-

ning time [90, 91, 92]. However, the technique was limited to deterministic environments.

This reduces the applicability of the technique. Moreover, in some cases the opposition

has negative impact on the learning process because of the issue of reward/punishment

confusion (for some states) which will be discussed in the next chapter. Hence, the goal of

this research is to use opposition for model-free and non-deterministic environments.

As mentioned in the previous chapter, there are many ways to implement opposition

30
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in the existing algorithms since this concept has a broad range of applicabilities. This

research is started by implementing the opposition in the components of reinforcement

learning algorithms such as states, actions, and reinforcement signal. The grid environment

is implemented here to test the benefit of the opposition. This yields to development

of Oppositional Target Domain Estimation (OTE). OTE is not constructed based on

learning, but it rather uses the same RL components for search in the grid environment.

It searches for a reduced space which includes the target. The opposition concept makes

the algorithm to perform faster comparing to the random search for the target.

The OTE algorithm can be used for many applications such as optimization or rescue

operations. OTE is the first attempt to establish the concept of opposition in the frame-

work of reinforcement learning and is based on type-II opposition. The algorithm can be

considered in the category of ‘Initializing E-OBC Algorithms’ because the concept of op-

position is used during the initialization and then a condition is verified to find a reduced

space. The further attempt for using opposition in reinforcement learning generates a class

of opposition-based Q(λ) algorithms which will be introduced in the next chapters.

Since the model of the environment should be presented as a grid for the OTE al-

gorithm, it could be a beneficial technique for search and navigation in the urban area.

Hence, in the next section a brief literature review of search and navigation is discussed.

3.2 Search and navigation

Search and navigation are challenging research areas and have many applications in robot-

ics, human-robot interaction, urban search and rescue (USAR), and optimization problems

of finding global minima or maxima.

Search and rescue operations require navigation in a vast area. The robots must be
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able to sense the environment by receiving feedback information about victims or source

of contamination in the area. In other words, the robots should sense and monitor the

states describing the environment. The robots search the environment to reach a target.

The target could be a victim in the rubble pile, toxic substances, nuclear wastes and other

source of contamination, or missing objects and material. A target may denote various

meaning for other applications such as a minimum or maximum in optimization domain.

However the focus of this chapter is more on the navigation in deterministic environments.

Hudock et al. [25] emphasize the design issues of robotic platform for search and

rescue in urban environments. They describe their primary purpose as developing a robot

which is mobile, light, and can be controlled easily. They discuss several issues regarding

the design of search and rescue robots. For instance, they mention the ability of robot

to move in the enclosed debris, flexibility of its movement around obstacles and stands,

and transportability. These issues yield to new generation of robots with more movement

flexibility to access the search states of the environment. Kadous et al. [28] indicate

that generating “dense, textured 3D maps” and merging and presenting them should be

considered as design issues regarding the robotic search and rescue.

Kantor et al. [32] investigate the search and rescue operation by proposing distrib-

uted search and using teams of robots and sensors. Their ad hoc network of distributed

mobile sensors is a solution to the emergency response problem based on the cooperative

localization technique. The sensors are responsible for collecting temperature data and

running a distributed algorithm to collect the temperature gradient for mobile navigation.

They assume that dissimilar groups of humans, robots, static and mobile sensors are in-

volved in search and rescue operation in the building. They propose using of “gradients of

temperature” and “concentration of toxins”, and searching for “immobile humans”.

Thrun et al. [86] also present a localization technique for estimating a robot’s location
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and orientation. Their technique is based on the Monte Carlo approach. They present

“Mixture-MCL” which is “a version of particle filters that combines a regular sampler

with its dual” and can be suitable to estimate posteriors for Bayesian in the localization

problem.

Birk et al. [8] introduce their intelligent mobile robot, IUB Rugbot, for search and

rescue missions. They use the integration of intelligent software and hardware techniques

for search and rescue operations. They also take into account several other approaches such

as adjustable autonomy strategy, wireless networking and exploration, and mapping of the

area with robots. Their Rugbot benefits from onboard PC and a variety of sensors and

cameras. Their software has several abilities of mapping a detected human, controlling,

and tele-operating.

Castillo et al. [9] propose vision-based template matching for detecting human victim

in search and rescue by integrating human silhouettes, corners and skin presence. They

present an automatic way of producing templates from set of photos.

Advanced developments in the search and rescue operations provide new capabilities in

this field. Mobility, robustness, perception, recognition, decision making, navigation, local-

ization, tele-operation, large scale coordination, resource allocation, autonomous control,

sophisticated sensory perception, and mapping are some of the technological advances for

the robotic search and rescue mission [17, 36, 39, 65, 99, 100].

The design of the proposed algorithm is motivated by the robot capabilities and re-

quirements for the search and rescue operations. Robots either have capabilities to sense

the environment by using sensors, or they can receive the signal from sensors which are

distributed in the environment. The main task of a search and rescue operation is to

“locate as many victims as possible in the entire area” [65].

In this chapter the environment is modeled by a discrete grid and a software agent has
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the ability to sense each cell of the grid. We assume that the map of urban environment

is provided and represented by a grid. Hence, the proposed technique is suitable for real

urban search and rescue tasks.

The oppositional target domain estimation, OTE, is proposed to reduce the size of

search and navigation area and accelerate the speed of search for a target. We integrate

the concept of opposition [54, 55, 53, 74, 76, 90, 91, 92, 95] within a new scheme to

establish a state reduction algorithm for oppositional target domain estimation. The goal

of the algorithm is to search for some states/actions that satisfy certain conditions in order

to reduce the environment to a smaller area containing the target. The mathematical proof

and the experimental results show that the proposed algorithm is a promising solution to

reduce the navigation environment to a smaller area.

The main idea of OTE algorithm is reducing the size of the environment and increasing

the efficiency and applicability of the search agent. The general characteristics of the OTE

algorithm are:

• OTE reduces the size of the environment

• OTE estimates the target domain inside the environment

• OTE performs the crucial task of estimating target domain for search and navigation

tasks

• The environment is modeled as a grid

• The reduction is based on the concept of opposition

• OTE theorem defines the conditions for the agent to find a sub-space without losing

the target
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The proposed algorithm is tested for three grid sizes and the target is randomly chosen

in different areas of the grid. The aim of the experiment is to investigate the effect of

the target position on the performance of the algorithm. Three quantities measure the

performance, robustness, and efficiency of the algorithm. The results are also compared

with the results of the randomized target domain estimation, RTE, which is a Monte Carlo

inspired approach. Monte Carlo techniques have been applied to mobile robot localization

as mentioned earlier [86]. The goal of this comparison is to verify the advantage of using

opposition concept over the random selection of states.

3.3 Oppositional Target Domain Estimation

One of the characteristics of the reinforcement learning problem is that the model of the

environment or samples of learned policy of action-state pairs for supervised learning or

rules for knowledge-based schemes, as well as probability distribution over states may

not be provided to the agent. However, reinforcement learning agent can learn by trial

and error without using a priori knowledge. Therefore reinforcement learning is mostly

suitable for the unknown environments. In contrast, for the grid-based applications, the

navigation environment is modeled by a grid. The proposed technique is based on state

of the art robot characteristics presented earlier. The environment is modeled by a grid

and a software agent is designed capable of navigating the grid cells. The map of the

urban environment is provided and represented by a grid. Hence, the proposed technique

is suitable for real urban search and rescue tasks. Other techniques for the search and

navigation may benefit from the proposed technique if the model of the environment could

have the same characteristics of the proposed model.

Estimating a target in the search and navigation applications is a crucial task. A target
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can be a source of contaminated and hazardous material or a human trapped inside the

collapsed buildings in the emergency situations caused by an earthquake or a tornado. Fast

estimation of the target domain prevents human mortality and environmental damage. In

this chapter an algorithm is proposed to estimate the target domain based on the concept

of opposition. As it was mentioned earlier in Section 3.1, software and hardware techniques

advance the real-world search and rescue mission. There are new robots with variety of

shapes and sizes equipped with cameras, sensors and wireless devices. These facilities make

them flexible enough to navigate through the debris and collapsed areas, receive feedback,

and perform in hazardous environments.

The oppositional target domain estimation (OTE) algorithm [78] is presented as a new

strategy to reduce the state of the environment to the area which includes the target.

The proposed numerical simulation presents a software agent that uses OTE algorithm for

finding a target domain, and saves time by reducing the size of the search space.

The components of the proposed search algorithm are defined as follows:

• States: parameters/features describing the environment

• Actions: motion commands to navigate through the environment

• Evaluative feedback: signals indicating the quality of actions taken

In the following subsections the components of the technique and their major role in

the search mission will be described.

3.3.1 States of the Environment

The proposed technique uses the model of the environment (e.g. a map of the area) and

represents it as a grid. Hence, each cell of the grid represents a state of the environment.
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Figure 3.1: State space with the target marked by a star

Figure 3.1 is a map1 representing an urban environment. A star represents a target inside

the environment.

Each state S has its associated opposite state S̆. The opposite state is determined

based on the definition of opposite number which was introduced in Chapter 2. Here is

the definition of opposite state:

Definition of Opposite State Assume that the environment is an n dimen-

sional state space, which is a subset of Z. Each state S is considered as a point

with coordinates s1, s2, ..., sn ∈ Z and bi ≤ si ≤ ci ∀i ∈ 1, ..., n. The opposite

1Map of University of Waterloo which has been taken from Google Map. The map then has been
blurred to make the grid more visible.
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state S̆ is defined by its coordinates s̆1, s̆2, ..., s̆n where

s̆i = bi + ci − si. (3.1)

Figure 3.1 also illustrates the state SJ with its associated opposite state S̆J .

3.3.2 Actions

An action causes the software agent to move from one grid cell to another by the amount of

∆ (a single unit and integer number). In other words, in the n dimensional state space, an

action has the ability to change (increase/decrease) the state coordinates by the amount

of ∆. Assume that an action a is applied to state S and transfers it to the new state S ′.

Then there is at least one coordinate like si ∈ S which is transfered to s′i as a result of

taking this action. Therefore, the modified state component can be given by the following

relation:

s′i = si ±∆, (3.2)

where ∆ is a single unit and positive integer number. Hence, we can define the opposite

action:

Definition (Opposite Action) – If an action a changes one or more coordi-

nates of a given state in a certain direction by the amount of ∆ (a single unit and

positive integer number), then the opposite action ă changes the coordinates

to the opposite direction by the same amount.

For example, if an action a is applied to state S and transfers it to the new state S ′

(by changing si ∈ S to s′i = si ± ∆), then the opposite action ă can be applied to S ′ to
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transfer the s′i to si. By applying ă in state S ′, there will be a transition to a state S such

that si = s′i ∓∆.

3.3.3 Evaluative Feedback

As mentioned earlier in Section 3.1, in search and rescue operations sensors receive infor-

mation from the environment to use it as a navigation guide to localize the target [32].

New generation of robots are equipped with wireless and intelligent software technology [8].

Many advanced capabilities are also considered for designing search and rescue robots such

as ability to move in the enclosed debris and around obstacles as well as transportability of

the robots [25]. Such characteristics make the robots capable of sensing the environment

and gathering data during the navigation.

In the design of our software agent we are motivated by the robot capability of receiving

feedback information from the environment. We define the evaluative feedback for the

agent based on varying intensity of the feedback received from environment. The type of

the feedback can be different. In real-world applications the type of the sensors defines the

nature of the feedback.

It is assumed that the intensity of a feedback signal will increase when the agent takes

a step toward the target. On the contrary, if the agent moves away from the target the

intensity of the signal will decrease. In other words it is assumed that the intensity of the

signal is a function of the distance from the target. Hence, the definition of the evaluative

feedback is based on this assumption. We consider two types of evaluative feedback, reward

and punishment. The evaluative feedback is a result of taking an action by the agent. If

the agent is in a shorter distance to the target (after taking an action) then the evaluative

feedback is a reward r otherwise it is a punishment p.
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3.3.4 OTE Theorem

The oppositional target domain estimation (OTE) uses a discrete grid to model the en-

vironment. Each grid cell represents a state of the environment. OTE addresses the

navigation problem and is a suitable technique for searching in a large area. It reduces the

size of environment and hence speeds up the search process.

In the OTE technique the search function looks for a sub-space (smaller than the

original space) that includes the target. Consequently, the number of states will be reduced

to the cells in this sub-space. It should be mentioned that the agent has the ability to go

from one state in all directions, “left”, “up-left”, “down-left”, “right”, “up-right”, “down-

right”, “up”, and “down”.

The OTE theorem is based on the definitions introduced in Sections 3.3.1, 3.3.2, and

3.3.3. The target is a point (terminal state) in a state space where the agent aims to reach.

For instance the target can be a human trapped in the hazardous building or a source

of contaminated material. The main idea of employing OTE for state-space reduction is

presented as follows:

If taking opposite actions in opposite states leads to the same evaluative feedbacks, and

if at least for one action we receive reward, then the target is located between those states

and the rest of the search space can be disregarded. The following theorem establishes this

idea in a formal way [78].

OTE Theorem – Assuming there is an n dimensional state space with the

state coordinates si ∈ [bi, ci] containing a target. Further consider a state S

with coordinates s1, s2, ..., sn. For this state, the opposite state S̆ is calculated

using the intervals of the state space [bi, ci] (see Equation 3.1). Consider that

all directions are represented in the action set and ∆ is a single unit and pos-

itive integer number for each action (∆ = 1). If the results of all admissible
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actions am applied to the state S are the same as the results of their correspond-

ing opposite actions ăm applied to corresponding opposite state S̆, and for at

least one action and its corresponding opposite action the evaluative feedback

is reward r, then the target with the optimal (terminal) state ST is located

between S and S̆. For the terminal state ST (target position) with coordinates

sT
1 , s

T
2 , · · · , sT

n , we receive min(si, s̆i) ≤ sT
i ≤ max(si, s̆i) ∀i ∈ {1, ..., n}. This

sub-space, spanned between S and S̆, is called the reduced space.

Figure 3.1 shows an example of the application of theOTE theorem for a two-dimensional

grid-world. In this figure the reduced space is highlighted by a bounding box.

This thesis will introduce an algorithm and deliver experimental results to establish

empirical evidence for the OTE Theorem. However, a proof prior to the experimental

verification is provided as well [78] .

Proof – Assume that the j-th state Sj = (sj
1, s

j
2, · · · , sj

n), its opposite state

S̆j = (s̆j
1, s̆

j
2, ..., s̆

j
n), the terminal state (target position) ST = (sT

1 , s
T
2 , · · · ,sT

n ),

and a evaluative feedback R(Sj, am) which is a reward r or a punishment p =

−r are given. Now, assume that R(Sj, am) = R(S̆j, ăm) ∀ m, ∃ k so that

R(Sj, ak) = R(S̆j, ăk) = r, and ∃ l so that min(sJ
l , s̆

J
l ) � sT

l � max(sJ
l , s̆

J
l ).

This means that OTE conditions are satisfied but the target is outside the

reduced space. Then there is at least one dimension like l and a corresponding

coordinate of the target like sT
l in such a way that this coordinate is larger or

smaller than the corresponding coordinates of state sJ
l , and opposite state s̆J

l .

Then for the target coordinate sT
l one of the following relations must hold:

Case 1: sT
l < s̆J

l and sT
l < sJ

l ;

Case 2: sT
l > s̆J

l and sT
l > sJ

l .
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If case 1 occurs, then there is at least one action like ap leading to the state

transition sJ
l − ∆ = (sJ

l )′ and causing a reduction of the distance from the

target. Therefore R(sJ
l , ap) = r. The opposite action ăp must be applied to

opposite state, therefore s̆J
l +∆ = (s̆J

l )′ leading to increase in distance from the

target and therefore R(s̆J
l , ăp) = −r. This, however, contradicts the assumption

R(Sj, am) = R(S̆j, ăm) ∀m.

If case 2 occurs, then there is at least one action like ap leading to the state

transition sJ
l + ∆ = (sJ

l )′ and causing an increase in distance from the target.

Therefore R(sJ
l , ap) = −r. The opposite action ăp must be applied to oppo-

site state, therefore s̆J
l − ∆ = (s̆J

l )′ leading to decrease in distance from the

target and therefore R(s̆J
l , ăp) = r. This, however, contradicts the assumption

R(Sj, am) = R(S̆j, ăm) ∀m as well. �

Recall that the intensity of a feedback signal has a direct relation to the distance from

the target. Figure 3.2 visualizes the proof by contradiction.

Before introducing the algorithm of oppositional target domain estimation (OTE), we

summarize the constraints of the OTE Theorem as equality and r-equality conditions:

• The equality constraint constitutes that the result of taking all admissible actions

(actions presenting one step movements in all directions) am in the state SJ is

equal to the result of taking opposite action ăm in opposite state S̆J : R(Sj, am) =

R(S̆j, ăm) ∀m.

• The r-equality constraint requires that for at least one action ak the result is reward:

∃ k so that R(Sj, ak) = R(S̆j, ăk) = r.

The OTE technique is presented in Algorithm 5 [78]. All directions are represented

in the action set of the algorithm and ∆ is a single unit and positive integer number. In
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Figure 3.2: State space: If the target is located outside the reduced space (cells between
SJ and S̆J , highlighted by the bold bounding box), then the action and opposite action
yield different results which contradicts the OTE assumption. In this figure the result of ap

(represented by the upward arrow) is punishment whereas the result of ăp (represented by
the downward arrow) is reward. The subscripts represent coordinates and the superscripts
represent elements of each coordinate
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Algorithm 5 Algorithm of oppositional target domain estimation (OTE)

Initialize the boundaries of the state space
Define the set of states and actions
Define reward and opposite reward (punishment)
while equality and r-equality conditions are not satisfied or there is an obstruction in
the state or in the opposite state do

Select an arbitrary state S in the state space
Calculate the associated S̆ using the boundaries of the state space
for all actions a and their associated opposite actions ă do

Apply a in state S, observe the result
Apply ă in state S̆, observe the result
Compare results of a & ă for equality & r-equality constraints
If the state satisfies equality & r-equality for all a then exit

end for
end while
Return S & S̆ that satisfies equality & r-equality constraints for all a
Choose the sub-space between S & S̆ as the reduced space
Exit algorithm

the next section the experimental results will be presented and discussed for different grid

sizes.

3.4 Experimental Results

In this experiment series a grid is selected to simulate the environment. The experimental

results are collected for several grid sizes, 200× 200, 500× 500, and 1000× 1000. The grid

is the navigation environment and each grid cell represents a state of the environment. A

sample grid with the actions is presented in Figure 3.3 (left). As it is presented in this

figure the agent can move in eight possible directions marked by arrows. These directions

represent four actions and four corresponding opposite actions (if al = Up, then ăl =

Down). The actions/opposite actions are left/right, up/down, up-right/down-left, and up-
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left/down-right. The goal of the agent is to reach the target marked by a star in the Figure

3.3 (left). The grid is divided into different areas as it is presented in the Figure 3.3 (right)

and the target is randomly selected in each area. A constant integer is used as evaluative

feedback. Hence, the value of reward has been set to 10 and the value of the punishment

has been set to −10. It is intended to design and run experiments to investigate the ability

of the OTE algorithm for reducing the search space and measure the sensitivity of the

performance to the position of the target.

Intuitively, for the cases that the target is in the vicinity of the grid center, the reduction

rate should be higher. This is due to the higher possibility that the condition of the

theorem will be met with a small number of random guesses. As it is mentioned, in order

to investigate this hypothesis the grids have been divided into several areas and the target

has been randomly placed in these areas. In other words, the states have been selected

randomly but the target has been chosen randomly in different areas to study the effect of

the target location on the performance of the algorithm. The random selection of a state

is not required by the algorithm but it is necessary to reduce the influence of any bias

associated with state selection for measuring the performance of the algorithm. Figure 3.3

(right) illustrates a sample of the grid with 10 different areas Ai. The target is randomly

selected in each area.

For each grid area, the algorithm is run several times and the target is randomly chosen

in that area. The average and variance of three measures are calculated after several runs

for each area and for each grid size. These measures are presented as R̄r (average reduction

rate), Nf (number of failures), and N̄g (number of required guesses).

Rr quantifies the amount of state-space reduction for grid environment after applying

the algorithm. The average reduction rate R̄r for several runs quantifies the performance

of the algorithm for each grid area.
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Figure 3.3: left: Sample grid including eight possible actions represented by arrows. S is
a possible state and the star is the target; right: Sample areas in the grid for selecting the
target in order to investigate the impact of position of the target on the performance of
the algorithm

Nf is the number of failures for each area when the algorithm fails to find the state

satisfying the conditions of the OTE theorem in a pre-determined number of steps. In

each case when number of guesses (number of random states) has exceeded a threshold θ

during the search process, one failure will be counted for the algorithm. The definition of

threshold θ is arbitrary but the number of states (grid size) and number of actions have

been taken into account since in each state the actions should be tested for investigating

the satisfaction of the conditions of the theorem. The threshold θ is calculated as

θ = (0.01)×Xmax × Ymax × |A|, (3.3)

where Xmax × Ymax is the grid size and |A| is the number of actions. For individual grid
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sizes we receive

θ200×200 = (0.01)× 200× 200× 8 = 3200,

θ500×500 = (0.01)× 500× 500× 8 = 20000,

θ1000×1000 = (0.01)× 1000× 1000× 8 = 80000.

(3.4)

The number of failures Nf will provide information on the robustness of the algorithm

for each grid area.

Ng (number of guesses) is the number of random states that the agent selects during

the search process. As mentioned before, agent selects a random state and checks the

condition of the OTE theorem for each run. If conditions are not satisfied or there is an

obstacle in a selected state or in the corresponding opposite state, then the agent randomly

selects another state (another random guess). N̄g quantifies the efficiency of the algorithm

for each grid area.

Table 3.1 summarizes the results of the proposed technique for 200 × 200, 500 × 500

and 1000× 1000 grid-worlds. Each grid is divided into several areas Ai for random target

selection.

The results of the OTE are compared with the results of the randomized target domain

estimation, RTE. RTE is a Monte Carlo inspired technique that randomly generates states

in the grid environment. In each run two random numbers are uniformly generated. Then

the agent reduces the grid area to the area between the two random states as it is performed

by the OTE method. Then the agent simply checks whether the reduced area includes the

target or not. The goal is to compare the results of the OTE technique with the results of

RTE and verify the benefit of the OTE over the totally randomized search for the reduced

space. In the RTE approach, N ′
f is the number of failures for each area when the algorithm

fails to find the target in the reduced space. It is measured by considering the number
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Table 3.1: Results of the OTE technique for different grid sizes. The target was chosen
randomly in each area Ai. Measurements: average reduction size R̄r (and standard devi-
ation), number of failures Nf , and average number of guesses N̄g to generate the reduced
space

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

200× 200 grid-world with two areas A1 and A2 (200 trials in each area)

R̄r
68%
(18%)

64%
(21%)

Nf 0 27

N̄g 6 229

500× 500 grid-world with five areas A1 − A5 (500 trials in each area)

R̄r
71%
(20%)

69%
(16%)

63%
(20%)

60%
(20%)

54%
(26%)

Nf 0 0 0 0 56

N̄g 2 4 13 47 1342

1000× 1000 grid-world with ten areas A1 − A10 (1000 trials in each area)

R̄r
74%
(20%)

73%
(18%)

68%
(18%)

66%
(17%)

64%
(19%)

63%
(19%)

59%
(20%)

57%
(22%)

55%
(24%)

51%
(27%)

Nf 0 0 0 0 0 0 0 0 0 117

N̄g 1 2 3 5 9 17 29 63 202 4540
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of random guesses exceeding a threshold θ during the search process. In such cases, one

failure will be counted for the algorithm. The threshold θ is the same as the threshold

that has been used for calculating number of failures for the OTE algorithm. The results

of the randomized approach, RTE are presented in Table 3.2.

The results of all simulations can be summarized as follows:

• An average reduction rate R̄r of above 50% has been reached in all cases. Although

the reduction rate for OTE is less than the RTE, the cost of the reduction rate is

significantly higher for RTE (average number of guesses required to meet the target

in each area). The maximum difference of the reduction rate between OTE and RTE

is 38% for the Area 10 in the 1000× 1000 grid. The minimum difference is 11% for

the Area 1 in the 1000× 1000 grid.

• For the largest state space with 8× 106 state-action pairs (8 actions ×1000× 1000),

a maximum of 74% ± 20% and a minimum of 51% ± 27% reductions were achieved

by OTE. Hence, the performance of algorithm, promised by the OTE theorem, was

experimentally evident for a relatively large state space.

• The low number of failures Nf for the OTE indicates that the algorithm is quite

robust (Nf = 0 for almost all cases). Only if the target is located in the last area

(grid border) the algorithm sometimes fails to find the reduced target domain within

the pre-determined maximum number of iterations θ. In other areas which are not

located on the border, the number of failures are zero. This is not the case for RTE

except for the Area 1 in the 500× 500 grid. Apparently, with increase in the number

of states the robustness of OTE increases. Increasing the manually set threshold θ

yields to decreasing the failure rate toward zero. This, however, would suppress the

algorithm efficiency which is expressed in terms of number of required guesses Ng.
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Table 3.2: Results of the RTE technique for different grid sizes. Two states are chosen
randomly. The target was chosen randomly in each area Ai. Measurements: average
reduction size R̄r (and standard deviation), number of failures N ′

f , and average number of
guesses N̄g to generate the reduced space

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

200× 200 grid-world with two areas A1 and A2 (200 trials in each area)

R̄r
87%
(13%)

88%
(13%)

N ′
f 3 3

N̄g 2584 2876

500× 500 grid-world with five areas A1 − A5 (500 trials in each area)

R̄r
85%
(15%)

86%
(15%)

87%
(14%)

87%
(14%)

88%
(13%)

N ′
f 0 3 3 5 2

N̄g 14601 15293 16500 18022 19279

1000× 1000 grid-world with ten areas A1 − A10 (1000 trials in each area)

R̄r
85%
(14%)

86%
(14%)

86%
(14%)

86%
(14%)

87%
(14%)

86%
(14%)

88%
(14%)

87%
(14%)

88%
(13%)

89%
(13%)

N ′
f 5 2 1 2 2 2 4 5 1 3

N̄g 60464 59080 61503 61404 65893 67737 71086 72926 76078 78558
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• In order to decrease the number of failures (Nf ) in the vicinity of the grid border

the RTE algorithm can be applied in that area instead of OTE method. The OTE

algorithm can be used for other areas which are not in the vicinity of the border. As

mentioned before, the OTE method uses the model of the environment and represents

it as a grid. Hence, the agent can easily determine the states which are located in the

vicinity of the grid border (based on the model of the environment) and switch from

OTE algorithm to RTE in that area. Based on the experimental results presented

in the Tables 3.1 and 3.2 by using this mixed strategy, the number of failures drops

from Nf = 27 (OTE result) to N ′
f = 3 (RTE result) in the area 2 for the 200× 200

grid. The same improvement will be gained for the number of failures in the the area

5 of the 500× 500 grid. The number of failures drops from Nf = 56 (OTE result) to

N ′
f = 2 (RTE result). Also, for the area 10 of the 1000 × 1000 grid the number of

failures changes from Nf = 117 (OTE result) to N ′
f = 3 (RTE result).

However, this strategy of switching over to RTE increases the number of required

guesses as presented in the Tables 3.1 and 3.2 in the vicinity of the border. The

other issue which should be addressed in the future work is defining the size of the

area located in the vicinity of the border. In the experimental results, area 2 for

the 200 × 200 grid, area 5 for 500 × 500 grid, and area 10 for 1000 × 1000 grid are

considered as the border areas.

• A low average number of necessary guesses N̄g for finding the reduced space indicates

the efficiency of the OTE algorithm. A couple of hundred guesses and the associated

operations takes fractions of a second on ordinary computers. Only if the target is

located close to the grid border, N̄g increases. The number of guesses is significantly

high for RTE which makes it very inefficient and time consuming in contrast to

OTE.
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Figure 3.4: Average number of guesses N̄g to generate the reduced space for OTE and
RTE techniques in a 1000× 1000 grid

Average number of guesses N̄g and average reduction sizes R̄r are also illustrated in

the Figures 3.4 and 3.5 for OTE and RTE techniques and for the 1000× 1000 grid (using

data in Tables 3.1 and 3.2). Overall, it can be stated that OTE offers a considerable

state-space reduction. The state-space reduction for grid-based cases can be performed

quite efficiently. OTE is robust enough to deliver a solution unless the target is located in

the vicinity of the grid border. In such cases, only an increase in computational expense

may lead to reduction. The other option is to switch from OTE to RTE in the border

areas. The mathematical proof for the benefits of opposition-based techniques comparing

to the random approach is presented by Rahnamayan et al. [56].

The state reduction can be conducted during offline training for some of the applications

such as optimization. Therefore, additional steps to ascertain the creation of a smaller

search space in an offline phase may be well-suited in some applications.
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Figure 3.5: Average reduction sizes R̄r for OTE and RTE techniques in a 1000 × 1000
grid

3.5 Summary and Conclusions

This chapter addressed the problem of estimating target domain in search and navigation

in known environments. In this research oppositional target domain estimation (OTE)

algorithm is introduced to tackle the problem of navigation in large environments. OTE

helps the search operation by reducing the environment to a smaller area which includes

the target. In this technique, the map of the environment is modeled by a grid. Agent

can sense each state (grid cell) and has the ability to move to any neighboring cell. The

OTE algorithm benefits from the concept of opposition. The OTE theorem established

the conditions to find a sub-space without losing the target.

The OTE algorithm was tested for three grid sizes. In order to investigate the effects of

the target position, the grids were segmented into different areas and tested the algorithm
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for randomly selected targets in each part. Three quantities were measured to evaluate the

performance, robustness, and efficiency of the algorithm.

The results of the proposed technique were also compared with the results of the ran-

domized target domain estimation, RTE. The comparison investigated the advantage of

using the opposition concept and the equality and r-equality conditions associated with it

(formulated in the OTE Theorem) over the randomized target domain estimation inspired

by the Monte Carlo technique. The experimental results are promising and suggest several

advantages of the OTE algorithm which can be summarized as follows:

1. OTE is a straightforward algorithm for state-space reduction in search and navigation

problems.

2. OTE can achieve high reduction rates.

3. It is widely robust and only takes more computational time if the target is close to

the grid border.

4. OTE is generally very fast.

5. The agent can switch from the OTE technique to the RTE method in the areas

located in the vicinity of the border to reduce the number of failures in these areas.

In summary, the proposed technique has promising performance by providing an estima-

tion of a target domain, reducing the search environment, and accelerating the navigation.

However, the model of the environment should be available for the OTE algorithm which

limits the applicability of this technique. Therefore, in the next chapters the concept of

opposition is extended to well-established reinforcement learning techniques and benefits of

this concept are investigated for dynamic environments where the model of the environment

or training samples are not provided for the agent.



Chapter 4

Concept of Opposition for Q-learning

and Q(λ) Techniques

4.1 Introduction

In many real-world problems the environment is non-deterministic and is changing over

time or a complete or partial knowledge about parameters and model of the environment or

learning policy is not available. In such applications reinforcement learning is useful tech-

nique to address the learning process. Temporal difference learning, TD, is an RL method

and constructed based on assigning credit using difference between temporally successive

predictions. Hence, no supervisor or training example is required in this type of learning

and temporal sequence sensory input can act as a training example. Sutton [82] describes

the “milder demand on computational speed”, distribution of “arithmetic operations” over

time, efficient use of “experiments comparing supervised methods”, accuracy in prediction

over time, and applicability for dynamic systems, as the advantages of using TD methods.

However, the explorations of state space is computationally expensive for some applica-

55



56 Oppositional Reinforcement Learning with Applications

tions. The main focus of this research is on presenting the concept of opposition in the

framework of some RL techniques to expedite the learning process.

This research has investigated the effect of opposition for Q(λ) technique because it is

based on simple and widely used Q-learning method. Q-learning is one of the TD meth-

ods. There are hybrid techniques based on the combination of Q-learning and temporal

difference learning such as QV (λ)-learning [98] and incremental multi-step Q-learning [49].

These technique are the bridge between Q-learning and actor-critic learning and take ad-

vantage of the qualities of both techniques to improve the learning process. However, the

opposition-based Q(λ)-techniques presented in this research are based on the update for

Q-values for states and opposite actions. Hence, any technique that has updates based

on Q-function (which is a function of state and action) can benefit from the concept of

opposition. In the hybrid techniques presented by Q-function and V -function, the value

function (V ) will not be affected.

In this chapter the special kind of knowledge about actions is employed. It should be em-

phasized that the knowledge about actions does not include the knowledge of state/action

pair. Rather, this knowledge is embedded in the definition of actions. For instance, di-

rection of the action “left” is part of the characteristic or definition of this action. Hence,

the action “right” is the opposite direction of the action “left”. Therefore the actions left

and right are opposite of each other. Opposition first has been introduced for Q-learning

(one of the TD methods) by Tizhoosh [92]. However, it was limited to the model-based

techniques. Moreover, the issue of reward/punishment confusion which negatively affects

the performance of opposition-based RL techniques has not been addressed [92]. Hence,

in this research the opposition is extended to model-free techniques and the problem of

reward/punishment confusion is solved by extending the opposition concept to the Q(λ)

technique [73, 74, 76]. The problem of Markovian update is discussed in this chapter and
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non-Markovian update is presented as a remedy for this problem.

In this chapter the opposition-based RL algorithms are presented by using Q(λ) tech-

nique. These methods are based on multiple and concurrent Q-value updates. In conven-

tional Q-learning, an agent updates one state-action Q-value per iteration. In opposition-

based Q-learning we assume that for each action there is an opposite action. If the agent

takes an action and receives a reward (or punishment) for that action, it would receive

punishment (reward) for the opposite action. Therefore, instead of taking the opposite

action in a given state, the agent will update its associated Q-value. It means that for a

given state the Q-values can be updated at the same time for both the action (which is

taken) and its corresponding opposite action (which is not taken). This strategy saves time

and accelerates the learning process [91, 90, 92]. In this chapter two oppositional RL tech-

niques, opposition-based Q(λ) (OQ(λ)) and opposition-based Q(λ) with Non-Markovian

Update (NOQ(λ)) will be introduced [73, 74].

4.1.1 Opposition-based Q(λ)

The relationship between the idea of opposition and RL have been explored in the frame-

work of the opposition-based Q(λ) technique, OQ(λ) [73, 74]. If an OQ(λ) agent at each

time t receives a reward for taking the action a in a given state s, then at that time the

agent also may receive punishment for opposite action ă in the same state s without tak-

ing that opposite action. It means that the value function, Q, (e.g. Q-matrix in tabular

Q-learning) can be updated for two values Q(s, a) and Q(s, ă) instead of only one value

Q(s, a). Therefore, an agent can simultaneously explore actions and opposite actions. Con-

sequently, updating the Q-values for two actions in a given state for each time step can

lead to faster convergence since the Q-matrix can be filled in a shorter time [90, 91, 92].

Figure 4.1 demonstrates the difference between Q-matrix updating using reinforcement
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learning (left image) and Q-matrix updating using opposition-based reinforcement learning

(right image). In the left image the states are si and actions are aj where 1 ≤ i ≤ 5 and

1 ≤ j ≤ 4. The agent in state s2 takes action a2 and receives reward r. Then by using

reward r the value v1 = Q(s2, a2) of action a2 in the state s2 is calculated using the updating

formula of Q-learning algorithm as follows:

Q(s2, a2)← Q(s2, a2) + α[r + γQ(s′, a′)−Q(s2, a2)]. (4.1)

In the right image of Figure 4.1, there are two actions a1 and a2 with their associated

opposite actions ă1 and ă2. The agent in state s2 takes action a2 and receives reward r.

By using reward r the value v1 of action a2 in the state s2 is calculated as before. In

the opposition-based technique we assume that the agent will receive an opposite reward

by taking opposite action. Hence, by assuming that the agent will receive punishment p

(opposite reward) by taking the opposite action ă2 in state s2, the value v2 = Q(s2, ă2) in

Q-matrix is also updated as follows [90, 91, 92]:

Q(s2, ă2)← Q(s2, ă2) + α[p+ γQ(s′, a′)−Q(s2, ă2)]. (4.2)

It means that the value function Q can be updated for two values instead of only one value.

Therefore, an agent can simultaneously explore actions and opposite actions. Hence, the

additional update should accelerate the learning of the algorithm.

The OQ(λ) algorithm is constructed based on opposition traces which represent eligi-

bility traces for opposite actions. Assume that e(s, a) is the eligibility trace for action a

in state s, then the opposition trace is ĕ = e(s, ă). For updating the Q-matrix in a given

state s, agent takes action a and receives reward r. Then by using reward r the Q-matrix
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Figure 4.1: Q-matrix updating; Left: Q-matrix updating using reinforcement learning,
right: Q-matrix updating using opposition-based reinforcement learning where an addi-
tional update (v2) can be performed for the opposite action ă2.

will be updated for all states and actions:

δ1 ←− r + γQ(s′, a∗)−Q(s, a), (4.3)

Q(s, a)←− Q(s, a) + αδ1e(s, a), (4.4)

By assuming that the agent will receive punishment p by taking opposite action ă, the

Q-matrix will be updated for all states s and opposite actions ă:

δ2 ←− r̆ + γQ(s′′, a∗∗)−Q(s, ă), (4.5)

Q(s, ă)←− Q(s, ă) + αδ2e(s, ă), (4.6)

The OQ(λ) technique [73] is presented in the Algorithm 6. OQ(λ) differs from Q(λ) algo-

rithm in the Q-value updating. In OQ(λ) the opposition trace facilitates updating of the

Q-values for opposite actions and instead of punishing/rewarding the action and opposite
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Algorithm 6 OQ(λ) Algorithm. If the agent receives punishment p for taking an action
then the opposite action receives reward r

For all s and a initialize Q(s,a) with arbitrary numbers and initialize e(s, a) = 0
for each episode do

Initialize s and a
for each step of episode do

Take action a, observe r and next state s′

Determine opposite action ă and next state s′′

Calculate opposite reward (punishment) r̆ = p
Choose next action a′ from s′ using policy
Determine next opposite action ă′ from s′′

a∗←− argmax
b

Q(s′, b) {if a′ ties for max, then a∗ ← a′}
a∗∗←− argmax

b
Q(s′′, b) {if ă′ ties for max, then a∗∗ ← ă′)}

δ1 ←− r + γ Q(s′, a∗)−Q(s, a)
δ2 ←− r̆ + γ Q(s′′, a∗∗)−Q(s, ă)
e(s, a)←− e(s, a) + 1
e(s, ă)←− e(s, ă) + 1
for all s, a in action set A do
Q(s, a)←− Q(s, a) + αδ1e(s, a)
if a′ = a∗ then
e(s, a)←− γλe(s, a)

else
e(s, a)←− 0

end if
end for
s ←−s′; a←−a′
for all s, ă in the opposite action set Ă where Ă is not ⊂ A do
Q(s, ă)←− Q(s, ă) + αδ2e(s, ă)
if ă′ = a∗∗ then
e(s, ă)←− γλe(s, ă)

else
e(s, ă)←− 0

end if
end for

end for
end for
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action1 we punish/reward the eligible trace and opposite trace. The major difference be-

tween Q(λ) and OQ(λ) is in Q-value updating. The opposition trace is a facilitator for

updating the Q-values for opposite actions to benefit from the idea of concurrent updating

of the Q-matrix.

Reward/Punishment Confusion

One issue that must be addressed is that in some situations two opposite actions in a

given state may yield the same result instead of opposite results. The action and opposite

action may both lead to reward, or both lead to punishment. The example in Figure 4.2

illustrates this situation using the grid-world problem [73]. The goal is presented by a star

and the present state is s. For both action a1, and its opposite ă1 the result is punishment

because they both increase the distance of the agent from the goal. Hence, both of them

should be punished. Rewarding one of them will falsify the value function and affect the

convergence.

Opposition traces are possible solutions for this problem since the Q-matrix updating

is not limited to one action and one opposite action at a given state, but also depends on

updating more Q-values by using eligibility and opposition traces. In the methods based

on eligibility traces, the effects of all eligible actions are considered for the update, not just

one action. Therefore, all actions in the trace and all opposite actions in the opposition

trace will affect the learning process and help to reduce the effect of reward/punishment

confusion. It can also be stated that for grid-based problems with one target the influence

of confusing cases becomes completely negligible with increase in dimensionality. How-

ever, the confusing cases can cause algorithm oscillations around the corresponding state

if mechanisms such as opposition traces are not employed. This has been reported for

1It is assumed that when the agent receives reward (r)/punishment (r̆) for taking an action, it will
receive punishment (r̆)/reward (r) for taking the opposite action.
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Figure 4.2: Example to show that two opposite actions in state s can yield the same result,
here punishment. The target is presented by a star and the next state is s′ or s′′ [73]. If
the agent takes an action and moves toward the target it receives a reward, otherwise it
receives a punishment. In this example the agent is located at state s and takes the action
a1 or the opposite action ă1. Hence, it receives punishment for both cases.

standard Q-learning [92]. The OQ(λ) algorithm utilizes a Markovian update of opposition

traces.

4.1.2 Opposition-Based Q(λ) with Non-Markovian Update

It has been assumed that the opposite state can be presented to the agent in the OQ(λ)

technique (see s′′ in the Equation 4.5). This may limit the usability of the technique to

deterministic environments because the next state of the environment (for the opposite

action) should be provided, bearing in mind that the agent will not actually take the

opposite action. In order to relax this assumption the Non-Markovian Opposition-Based

Q(λ) (NOQ(λ)) is introduced in this section.

The new method is a hybrid of Markovian update for eligibility traces and non-Markovian-
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based update for opposition traces. The NOQ(λ) method specifically focuses on investi-

gating the possible non-Markovian updating of opposition traces where the next state for

the opposite action may not be available. This extends the usability of OQ(λ) to a broader

range of applications where the model of environment is not provided for the agent.

The issue of the Markovian-based updating of the opposite trace in the OQ(λ) algorithm

is addressed here. As it is presented in Algorithm 6, line 6, the agent should determine

the next state s′′ after defining the opposite action ă. In this algorithm the agent does not

actually take ă, but only determines the opposite one. For instance, if the action is going

to the left in the environment then the opposite action is determined (not taken) as going

to the right. In a deterministic environment the agent can figure out the next state by

using the model of the environment. In the case of the grid-world problem for instance,

the agent assumes that if it takes the action “right” and goes to the right cell (in the grid)

then the next state s′′ for the opposite action ă (“left”) is the left cell in the grid with

respect to initial state. In this case the Q values can be updated for the opposition trace

as follows:

a∗∗ ←− argmax
b
Q(s′′, b), (4.7)

δ2 ←− r̆ + γQ(s′′, a∗∗)−Q(s, ă), (4.8)

Q(s, ă)←− Q(s, ă) + αδ2e(s, ă), (4.9)

where α is step-size parameter and γ is a discount-rate parameter. Equations 4.7, 4.8, and

4.9 present the Markovian-based updating by considering the next state s′′ [74]. InNOQ(λ)

we address this problem by introducing the non-Markovian updating for opposition traces.

The OQ(λ) method updates opposite traces without taking opposite actions. For this

reason the opposition update (the Markovian update) depends on the next state of the en-

vironment that should be known to the agent. This limits the applicability of the OQ(λ) to
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deterministic environments. We relax the constraint of Markovian updating by introducing

a new update for opposition traces. Equation 4.10 presents the new update formula for

opposition traces where r̆ is the opposite reward, and e(s, ă) is the opposite trace:

Q(s, ă)←− Q(s, ă) + w · r̆ · e(s, ă). (4.10)

w is a parameter introduced to impose a weight between 0 and 1 on the opposition update.

Hence, we assume that at the beginning of learning the weight of the update is low and

increases gradually as the agent explores the actions and the opposite actions. The new

update for NOQ(λ) algorithm depends on the parameter w, opposite reinforcement signal

r̆, and the parameters such as α, γ, and λ which are defined like the parameters in the Q(λ)

method. Therefore, the Markov property is not violated in this update because it is a non-

Markovian update and the next state for the opposite action has not been considered in the

update. The new update represents online integration of domain knowledge embedded in

the definition of actions; the original condition of the Q(λ) algorithms for convergence are

not changed. Hence, the convergence of the NOQ(λ) can be assumed since the Markovian

assumptions of underlying Q(λ) have not been altered.

The details regarding the definition of w will be discussed in the next chapter. In the

case of simple grid-world problem which is discussed in this chapter the weight w is set

to 1. As it is presented in Equation 4.10, Q(s, ă) does not depend on the next state, in

contrast to the OQ(λ) technique which depends on s′′ (see Equations 4.9 and 4.8). The

NOQ(λ) technique is presented in the Algorithm 7.

Figure 4.3 is the extension of the grid-world example of eligibility trace. In this ex-

tension the grid-world is presented with two traces. The black arrows represent increases

of the action values. On the other hand, the gray arrows represent the negative increases

(decreases) in the action values for the opposition trace. The trace ends at a location of
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Algorithm 7 NOQ(λ) Algorithm. If the agent receives punishment p for taking an action
then the opposite action receives reward r

For all s and a initialize Q(s,a) with arbitrary numbers and initialize e(s, a) = 0
for each episode do

Initialize s and a
for each step of episode do

Take action a, observe r and next state s′

Determine opposite action ă
Choose next action a′ from s′ using policy
Determine next opposite action ă′

a∗←− argmax
b

Q(s′, b) {if a′ ties for max, then a∗ ← a′}
δ1 ←− r + γ Q(s′, a∗)−Q(s, a)
e(s, a)←− e(s, a) + 1
e(s, ă)←− e(s, ă) + 1
for all s, a in the action set A do
Q(s, a)←− Q(s, a) + αδ1e(s, a)
if a′ = a∗ then
e(s, a)←− γλe(s, a)

else
e(s, a)←− 0

end if
end for
for all s, ă in the opposite action set Ă where Ă is not ⊂ A do
Q(s, ă)←− Q(s, ă) + w · r̆ · e(s, ă)
if a′ = a∗ then
e(s, ă)←− γλe(s, ă)

else
e(s, ă)←− 0

end if
end for
s ←−s′; a←−a′

end for
end for
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Figure 4.3: The extension of the grid-world with eligibility trace [83]. In this extension the
grid-world is presented with two traces, eligibility and opposition trace.

high reward value marked by a star.

4.2 Experimental Results

The grid-world [74] problem with three sizes (20×20, 50×50, and 100×100) is chosen as a

test case. The grid represents the learning environment and each cell of the grid represents

a state of the environment. A sample grid-world is presented in Figure 4.4. The agent can

move in 8 possible directions indicated by arrows in the figure. The goal of the agent is to

reach the defined target in the grid which is marked by a star.

Four actions with their corresponding four opposite actions (if a = Up then ă = Down)

are defined. By taking an action an agent has the ability to move to one of the neighboring

states. The actions/opposite actions are left/right, up/down, up-right/down-left, and up-

left/down-right. The initial state is selected randomly for all experiments. If the size of

a grid is (Xmax, Ymax), then the coordinates of the target are fixed at (Xmax

2
, Ymax

3
). The



Chapter 4. Concept of Opposition for Q-learning and Q(λ) Techniques 67

Figure 4.4: Sample grid-world [74]. There are eight possible actions presented by arrows.
S is a state and the star is the target.

Table 4.1: The initial parameters for all experiments

nE Imax α γ λ

100 1000 0.3 0.2 0.5

value of immediate reward is 10, and punishment is −10. After the agent takes an action,

if the distance of the agent from the goal is decreased, then agent will receive a reward. If

the distance is increased or not changed, the agent receives punishment. The Boltzmann

policy [31] is applied for all implementations (see the Equation 2.1 in Chpater 2). The

Q(λ), OQ(λ), and NOQ(λ) algorithms are implemented. The initial parameters for the

algorithms are presented in Table 4.1.

The following measurements are considered for comparing the results of Q(λ), OQ(λ),

and NOQ(λ) algorithms:

• overall average iterations I: average of iterations over 100 runs
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Table 4.2: The results for the five measures of I, E, T , χ, and ζ for algorithms Q(λ),
OQ(λ), and NOQ(λ). The results are based on 100 runs for each algorithm

Q(λ) OQ(λ) NOQ(λ)

X × Y 20× 20 50× 50 100× 100 20× 20 50× 50 100× 100 20× 20 50× 50 100× 100

I 255± 151 528± 264 431± 238 20± 8 57± 26 103± 50 19 ± 7 48± 23 100 ± 46

T 3± 2 17± 6.6 102± 25 0.3± 0.1 5± 1 80± 7 0.2 ± 0.1 5 ± 0.7 58 ± 6

χ 0 11 9 0 0 0 0 0 0

ζ 93.3% 100% 100%

• average time T : average of running time (seconds) over 100 runs

• number of failures χ: number of failures in 100 runs

The agent performs the next episode if it reaches the target represented by the star.

Learning stops when the accumulated reward of the last 15 iterations has a standard

deviation below 0.5. The results are presented in Table 4.2 and plotted in Figures 4.5 and

4.6 for visual comparisons. The results presented for Q(λ) technique have higher standard

deviations compared to its opposition-based version. In addition, it seems that the benefit

of opposition-based extension increases as the problem dimension increases.

Figure 4.5 presents changes in the overall average number of iterations for Q(λ), OQ(λ),

and NOQ(λ) algorithms for the three grids. It can be observed that the total number of

iterations for convergence of Q(λ) is far higher than OQ(λ) and NOQ(λ) algorithms. The

NOQ(λ) takes slightly less iterations than OQ(λ). The reason for this may be related to

the independency of NOQ(λ) from next state for the opposite action.

Figure 4.6 presents the average time for Q(λ), OQ(λ), and NOQ(λ) algorithms for the

three grids. Even though the number of iterations for OQ(λ) and NOQ(λ) are almost

the same, the average computation time of NOQ(λ) is much lower than the average time
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Figure 4.5: The average of average iterations I for Q(λ), OQ(λ), and NOQ(λ)

Figure 4.6: The changes of average time T for Q(λ), OQ(λ), and NOQ(λ)
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of the OQ(λ) for 100 × 100 grid. The reason is that NOQ(λ) algorithm is more efficient

than OQ(λ) due to decrease in the computational overhead associated with updating the

opposition traces.

In order to compare Q(λ), OQ(λ), and NOQ(λ) we also need to consider that Q(λ)

failed2 to reach the goal or target 20 times. To reflect this failure in the performance

measure, the success rate ζoverall for the algorithms is calculated:

ζoverall = (1−
kP

i=1
χi

P

k
H

)× 100, (4.11)

where k is the number of grids tested (in this case k = 3), χ is the number of failures,

and H is the number of times the code is run for each grid. Considering the convergence

conditions, for the Q(λ) algorithm the overall success rate is ζoverall = 93.3% because the

agent failed to reach the goal 20 times. For the proposed algorithm NOQ(λ), and the

oppsotion-based algorithm OQ(λ), the overall success rate is ζoverall = 100%; They always

successfully find the target and reach the goal.

4.3 Summary and Conclusions

Reinforcement learning (RL) can be considered as a goal-directed intelligent technique for

solving problems in uncertain and dynamic environments by using reward and punishment.

The RL agent learns from receiving reinforcement feedback as a reward or punishment from

its environment. One of the concepts in reinforcement learning is the eligibility trace which

is a bridge between TD techniques and Monte Carlo methods. The idea is that only eligible

states or actions will be assigned a credit or blamed for the error.

2If the fixed numbers of iterations and episodes are not enough for the algorithm to reach the target
(in one run) then we consider this as one failure.
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The goal of this chapter was to introduce new techniques to expedite some of the RL

methods for off-policy, step-by-step, incremental and model-free reinforcement learning

with discrete state and action space. To solve this problem the concept of opposition-

based reinforcement learning has been introduced. The general concept is that in Q-value

updating, the agent updates the value of an action in a given state. If the agent knows the

value of the opposite state or the opposite action, then instead of one value, the agent can

update multiple Q-values at the same time without taking the associated opposite action

or going to the opposite state. This should accelerate the learning process in general, and

exploration in particular.

A variety of algorithms can be generated based on the concept of opposition to improve

the learning and design faster RL techniques. Opposition is applied to create several

algorithms using Q-learning. The OQ(λ) has been introduced to accelerate Q(λ) algorithm

with discrete state and action space. The NOQ(λ) method is an extension of OQ(λ) to

a broader range of non-deterministic environments. The update of the opposition trace in

OQ(λ) depends on the next state of the opposite action (which cannot be taken). This

limits the usability of this technique to the deterministic environments because the next

state should be detected by or known to the agent. NOQ(λ) was presented to update

the opposition traces independent of knowing the next state for the opposite action. The

primary results show that NOQ(λ) can be employed in non-deterministic environments

and performs even faster (see Figure 4.6) than OQ(λ).

In this chapter the effects of the opposition on the performance of Q(λ) algorithm with

respect to the number of iterations and running time have been studied for the grid-world

environment. The next chapter will focus on the investigation of the NOQ(λ) technique

for three examples of dynamic environments.



Chapter 5

Oppositional Agents in Dynamic

Environments

5.1 Introduction

Opposite actions have been introduced as a counter-concept to actions in the reinforcement

learning model [73, 74, 77, 91, 90, 92]. This duality in concept has been implemented in

the framework of Q(λ) and contributes to the acceleration of the learning with regard to

the number of iterations and running time. We have been able to develop the opposition-

based Q(λ) by first proposing the concept of opposition trace in [73] and then solving

several issues regarding the modeling of the problem by generalizing the algorithm [74].

In the previous technique, NOQ(λ), the possible non-Markovian update of opposition

traces was investigated where the next state for opposite action may not be available.

However, the NOQ(λ) was tested for a deterministic grid-world problem and it has not

been implemented for non-deterministic environments [74].

In the previous chapter the opposition weight w was introduced. However, the effects

72
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of the opposition weight was not investigated since the value of the opposition weight was

set to one.

In the Section 5.2 the trade-off between exploration and exploitation will be studied

by presenting the opposition weight as a function. The value of the opposition weight w

increases as learning progresses and the number of steps increases. Hence, the positive

effects of the opposition for the update of Q-values (Q(s, ă) where ă is opposite action)

increases.

In the Section 5.3 the NOQ(λ) will be applied to the grid-based navigation. Three

different weight functions are examined for different grid sizes with obstacle and walls (as

parts of the environment) and the effects of weights will be discussed in this section.

In the Section 5.4 the NOQ(λ) will be applied to the dynamic environment of elevator

control. A simple case of the elevator control problem is selected for the experiments. The

elevator control problem has several design challenges. Despite the continuous state and

time, the elevator simulation is based on discrete events which imposes a challenge for

simulation [13]. Another design challenge of the elevator control domain is the states of

the environment which are not fully observable. Moreover the states are non-stationary

because the arrival rate of passengers is not constant [13].

The NOQ(λ) for elevator control problem with one elevator car will be implemented.

The experiment will be kept simple by considering only one elevator car in order to demon-

strate the positive effects of the opposition in the NOQ(λ) algorithm and compare it with

Q(λ) technique without any training data.

The more complex version of the elevator control was presented by Crites et al. [13].

They demonstrated the application of the reinforcement learning for the elevator control.

The elevator system simulated by Crites et al. was for a 10-storey building with 4 elevator

cars. They have used feedforward neural networks to store Q-values because of the large



74 Oppositional Reinforcement Learning with Applications

number of states and implemented a team of RL-agents in which every single agent controls

one elevator car. The global RL signal was affected by the action of the agents, random

arrivals of passengers, and incomplete state observation.

In this chapter, the intention is not to propose a new solution for elevator control, but

employ this application, with a manageable state-space size to verify the improvement via

NOQ(λ) in comparison to Q(λ).

Reinforcement learning methods have been successfully applied to difficult problem do-

mains such as robotics [15, 34, 35], operation research [52], games [5, 67, 102], economics

and marketing [1, 45], control [4, 47], human computer interaction [27, 80], image thresh-

olding [75, 70, 69], simulation [81], and E-learning [72, 88]. In Section 5.5 the NOQ(λ) will

be employed to find the optimal threshold for an image. Image thresholding is a common

segmentation technique which has many applications in computer vision. The states of

the environment in the images can be dynamic because the intensity of gray levels can

change due to changes in the illumination or noise in the image. The environment can also

be non-deterministic because the next state of the environment may not be determined

by the current state and action. “If the next sate of the environment is completely deter-

mined by the current state and the actions selected by the agents”, then the environment

is deterministic [66]. For instance, if the states of the environment are presented based on

the gray levels in the image and a current action changes the current state by the amount

of ∆ then the next state which is a gray value may not even be available in the image.

Hence, developing RL-based image thresholding is a challenging task. In the Section 5.5

the details of NOQ(λ) algorithm for image thresholding will be discussed.

In all the applications in this chapter the performance of the NOQ(λ) algorithm (with

regard to the number of iterations and the running time) will be investigated and compared

to the performance of the Q(λ) method. It is demonstrated that the NOQ(λ) algorithm
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can successfully perform in non-deterministic and dynamic environments.

5.2 NOQ(λ) in Dynamic Environments

Most of the early solutions to the approximate dynamic programming (ADP) involved

using value iteration and exact model of the system. In contrast, reinforcement learning

techniques have the advantage of solving ADP problems with or without using a model of

the system [13]. Function approximation, good state definition, knowledge about parame-

ters and model of the environment, learning model of the environment, or any knowledge

about policy increases the range of applications for reinforcement learning.

The NOQ(λ) employs the notion of opposition as a kind of knowledge of action rep-

resentation for Q(λ) technique. Actions are core components of reinforcement learning

framework. The effect of some actions could oppose other actions. Hence, we consider

them as opposite of each other. For instance we can consider “up/down”, “left/right”, and

“plus/minus” as opposite pairs of actions.

The NOQ(λ) takes into consideration such a dichotomy between actions in the RL

framework. In the Q-learning technique there are two updates for Q(s, a) and Q(s, ă)

where Q(s, a) is the expected infinite discounted return by taking action a in state s,

and Q(s, ă) is the expected infinite discounted return for opposite action ă in state s.

The update for Q(s, ă) is applied without actually taking ă. It is based on the idea of

considering opposite reinforcement signal for opposite action which was presented in the

previous chapter.

The NOQ(λ) also employs the idea of opposition trace and non-Markovian update.

This chapter takes into account the challenging trade-off between exploration and ex-

ploitation.
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The NOQ(λ) technique was demonstrated in the Algorithm 7 (see Chapter 4 Sec-

tion 4.1.2). However, the weight w provides a trade-off between exploration and exploita-

tion for non-Markovian update. The second update in the algorithm which is also presented

in Equation 5.1 takes advantage of the opposite reinforcement signal r̆ and w to update

the Q(s, ă):

Q(s, ă)←− Q(s, ă) + w · r̆ · e(s, ă). (5.1)

As was presented in the Algorithm 7, in addition to the update for Q(s, a) we have

another update for opposite actions in a given state s, Q(s, ă). Because such updates are

based on step by step learning from reinforcement signal, we introduce the term w in the

update formula (Equation 5.1).

w is a parameter introduced to impose a weight between 0 and 1 on the opposition

update and can simply be set to a constant number. In [74] we set the weight w to 1 to

simplify the update. In order to present w in a way to contribute to the exploration and

exploitation process it must be increased as the iterations increase. The reason for this

is that the agent can trust the state-action values more as it gradually moves toward the

optimal values by visiting every state and taking every action several times. Therefore the

weight w should be an increasing function in the second update (Equation 5.1). A simple

way of defining the weight w is presenting it by a linear or quadratic function presented in

the Equations 5.2 and 5.3 respectively.

w(κ) =
κ

θ
, (5.2)

κ is a variable for counting steps (iterations) of the learning process and θ is the total

number of steps for all the episodes (constant number).
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w(κ) =
κ2

θ2
, (5.3)

The equations are normalized in the implementation process to set the weight between

0 and 1 in order to prevent any bias toward opposition-based update for Q-values. We

should bear in mind that increasing the order of the Equation 5.3 and increasing the value

θ, decreases the values of w. Consequently, the values of w tend to approach zero and the

effects of opposition-based update will diminish.

Since the new update presented in the Equation 5.1 depends on the parameter w and

opposite reinforcement signal r̆ (in contrast to the first update which depends on difference

between Q-values in the present state and the next state), the convergence of the NOQ(λ)

can be satisfied by assuming that the parameters of the NOQ(λ) technique such as α, γ,

and λ are the same as Q(λ). The Markov property is not violated in the second update

because it is a non-Markovian update and the next state for the opposite action has not

been considered in the update.

In this chapter the NOQ(λ) algorithm is tested for three applications, grid navigation,

elevator control, and image thresholding which will be presented in the following sub-

sections.

5.3 NOQ(λ) for Grid-Based Navigation

Barto et al. [79] use a two room grid environment to apply temporal abstraction technique

in reinforcement learning. However, their approach is based on identifying subgoal states.

Their “Two-Room” grid-world has two rooms of equal size and there is a wall with hole in

the wall for passing agent. They have presented the environment as a 21× 10 grid [79].

In this work the Two-Room grid-world has been slightly changed to produce more
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Figure 5.1: Two-Room grid-world environment for grid sizes 6× 6 (left), 12× 12 (middle),
and 18× 18 (right). S represents a random state and the star represents the target. The
walls and obstacles are presented by gray cells.

challenge to the navigation of the agent. The size of the rooms are not equal, and there

are two walls and one obstacle in the grid. The algorithm is tested for three grid sizes

6× 6, 12× 12, and 18× 18 to present the results for grids with different number of states.

Figure 5.1 presents the Two-Room grid-world environment for grid sizes 6 × 6, 12 × 12,

and 18× 18. If the size of the grid is presented by ω1 (presenting the number of rows) and

ω2 (presenting the number of columns) then it is assumed that the target is located in the

area with coordinate (ω1

2
− 1,ω2

2
− 1) in all grids. The walls and obstacles are presented by

gray cells in the Figure 5.1.

The grid environment presented in this application is deterministic and not dynamic.

The algorithm will be tested for different weight functions, constant, linear, and quadratic.

S represents a random state and the star represents the target. The agent begins its

navigation from a random state s and in each time step it receives a scalar reinforcement

signal after taking action. It uses a scalar for opposite reinforcement signal to update the

Q-matrix for opposite action in a given state.

The reinforcement signals are presented by different scalar values r1 = 20, r̆1 = −5,
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Table 5.1: The Initial Parameters for all experiments

max. episodes max. iterations α γ λ

1000 100 0.3 0.2 0.5

r2 = 10, and r̆2 = −3. If the agent hits the walls, obstacle, or the grid borders then

it receives r̆1. In this scenario, the agent uses r1 as a reinforcement signal for updating

the opposite action. If the distance of the agent from the target decreases after taking

an action then it receives r2 as a reinforcement signal (reward). In this case the opposite

reinforcement signal is r̆2 for updating the opposite action.

The walls and obstacles are presented by gray cells. The ε-greedy policy is applied

for action selection by the agent. The parameters used in the algorithm are presented in

the Table 5.1. Each cell of the grid presents one state of the environment. Hence, there

are 36 states for 6 × 6 Grid, 144 states for 12 × 12 Grid, and 324 states for 18 × 18 grid.

There are 8 actions to move to 8 possible directions, up, down, right, left, up-right, up-left,

down-right, down-left. The opposite actions are defined based on the directions. Hence,

(up,down), (right,left), (up-right,down-left), (up-left,down-right) are pairs of actions and

opposite actions. The results will be discussed in the following subsection. The nE presents

the maximum number of episodes and Imax is the maximum number of iterations initialized

at the beginning of the algorithm.

5.3.1 Experimental Results

The NOQ(λ) algorithm introduced in Chapter 4 (see Algorithm 7 in Section 4.1.2) is used

for the navigaion task. Three different weights are used for updating Q-matrix for opposite

action in a given state. The linear (Equation 5.2) and Quadratic (Equation 5.3) functions
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Table 5.2: The results for three measures of I, E, and T for the NOQ(λ)-based navigation
with three weights. The results are based on 15 runs. The ε-greedy policy is used for action
selection.

NOQ(λ)

W1 W2 W3

X × Y 6× 6 12× 12 18× 18 6× 6 12× 12 18× 18 6× 6 12× 12 18× 18

I 26± 16 16± 5 15± 3 23± 12 23± 8 19± 5 29± 18 26± 6 21± 2

E 15± 8 130± 37 494± 75 21± 13 137± 65 615± 222 15± 12 163± 45 564± 142

T 0.4 ± 0.06 1 ± 0.3 8 ± 1.5 0.4± 0.1 1.9± 0.8 15± 6 0.4± 0.1 3± 1.8 17± 7

as well as a constant value equal to the learning rate α are used to examine the effects of

different weights on the learning process. The results are also compared with the results

of Q(λ) technique. The results for NOQ(λ)-based navigation is presented in the Table 5.2

where I is overall average iterations, E is average number of episodes, T is average running

time for the algorithm, W1 presents a linear weight, W2 presents a quadratic weight, and

W3 presents a constant weight which is equal to the learning rate α.

The results of the Q(λ)-based navigation are shown in the Table 5.3. In all the cases

the agent successfully reaches the target for both NOQ(λ) and Q(λ) algorithms and all

the grid sizes.

The results of NOQ(λ) and Q(λ) algorithms are compared for different weights, W1,

W2, and W3 and presented in the Figures 5.2, Figures 5.3, and Figures 5.4 respectively

based on the measures presented in the Tables 5.2 and 5.3.

The number of iterations and episodes together affect the running time of the algorithm.

The average running time is 0.4 seconds for NOQ(λ) with W1, W2, and W3 weights for

6 × 6 grid. The average time is 0.33 seconds for Q(λ) technique for the same grid size.

However, as the grid size increases, opposition-technique exhibits a more positive impact.
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Table 5.3: The results for three measures I, E, and T for Q(λ). The results are based on
15 runs. The ε-greedy policy is used for action selection.

Q(λ)

X × Y 6× 6 12× 12 18× 18

I 15± 9 29± 15 29± 17

E 28± 16 183± 71 504± 147

T 0.33± 0.07 3± 1.3 22± 14

Figure 5.2: Left: Overall average iterations for NOQ(λ) (with W1) and Q(λ) algorithms;
Middle: Average episodes for NOQ(λ) (with W1) and Q(λ) algorithms; Right: Average
time for NOQ(λ) (with W1) and Q(λ) algorithms

Figure 5.3: Left: Overall average iterations for NOQ(λ) (with W2) and Q(λ) algorithms;
Middle: Average episodes for NOQ(λ) (with W2) and Q(λ) algorithms; Right: Average
time for NOQ(λ) (with W2) and Q(λ) algorithms
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Figure 5.4: Left: Overall average iterations for NOQ(λ) (with W3) and Q(λ) algorithms;
Middle: Average episodes for NOQ(λ) (with W3) and Q(λ) algorithms; Right: Average
time for NOQ(λ) (with W3) and Q(λ) algorithms

As presented in the results, the average time for NOQ(λ) with W1 and W2 is less than the

average time in the Q(λ) technique for 12 × 12 and 18 × 18 grids. The average time in

the NOQ(λ) with W3 is equal to the average time in the Q(λ) technique for 12× 12 grid.

However, the average time for NOQ(λ) with W3 is less than the average time in the Q(λ)

method for larger grid size, 18× 18.

5.3.2 Conclusions

The NOQ(λ) algorithm was applied to the navigation task in the two room grid environ-

ment with walls and obstacle. The effects of three weights have been examined in this

technique. The aim of using NOQ(λ) is to provide a faster approach in terms of running

time. The results demonstrated that the linear weight (W1) saves more time comparing

to other weight functions. Hence, in the following sections we employ the linear weight

to demonstrate and discuss the implementation and efficiency (in terms of running time)

of NOQ(λ) algorithm for other challenging applications in dynamic and non-deterministic

environments.
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5.4 NOQ(λ) for Simple Elevator Control

The elevator simulation of the proposed technique is for one elevator car [76]. The number

of floors is defined by a variable that is initialized at the beginning of each run. Hence,

the program could perform for different number of floors. Five variables contribute to

the definition of states which are ElLoc, UH, UE, DH, and DE. These variables are

described as follows:

• ELLoc is a variable presenting the floor number in which the elevator car is located

and can vary from one to the maximum number of floors.

• UH is a variable presenting the number of requests in the hallway floors located in

the floors above the elevator car.

• DH is the number of hallway requests in the floors located in the same or lower levels

of the elevator car.

• UE is a variable presenting the number of passengers’ requests for the floors above

the current position of the elevator car.

• DE is a variable corresponding to the number of passengers’ requests for the floors

in the same level of the elevator car or the lower floors.

The elevator control simulation was tested for a 5-storey building, hence, the number

of states generated to represent the RL environment is 524. There are three actions, ‘up’,

‘down’, and ‘stop’ for changing the location of the elevator.

In each episode the elevator receives random requests from the passengers in the ele-

vator car or people in the hallway. The elevator location is initialized randomly for each
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episode. By using this information the state of the environment is determined based on

the requirements of the state definition explained earlier.

Two matrices are defined for elevator car and the hallway to keep track of the requests.

Whenever the elevator satisfies a request the value of the matrix corresponding to the

hallway or elevator car will be set to zero. In contrast, whenever the elevator receives a

request for a specific floor the value for the matrices in that floor will be set to one.

The priorities for the elevator to satisfy the requests are presented in terms of reward

and punishment definitions. I use the term “current floor” for the floor that the elevator

has stopped, “upper floors” for the floors above the elevator car level, and “lower floors”

for the floors below the elevator car level. These priorities are described as follows:

• The first priority of the elevator is to satisfy the requests of the passengers in the

elevator car for the current floor (if any passenger decides to leave the elevator in

the current floor). The second priority is to consider the requests for upper floors (in

the elevator car) if the number of these requests is more than the requests for lower

floors.

• If the number of the requests for the lower floors is larger than the requests for upper

floors in the elevator car then the first priority for the elevator is to pick up passengers

in the hallway or let the passengers in the elevator leave the car (if they requested

to leave) in the current floor. The second priority for the elevator is to satisfy the

requests of the passengers for lower floors because the number of requests for the

lower floors is more than the requests for upper floors.

• If the number of requests in the elevator car for the lower floors is equal to the

upper floors then the number of requests in the hallway should be considered for the

elevator priorities. If this number for the upper floors is greater than the lower floors
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then the priority for the elevator is to pick up people in the upper floors, otherwise

it should first pick up people in the hallway (in the current floor) or let the people

leave the elevator if they requested. Then it should move to the lower floors to pick

up passengers.

• If the number of hallway requests for the upper floors is equal to the requests for

lower floors then the first priority is to satisfy the requests of the people for the

current floor and the second priority is satisfying the requests of the people in the

upper floors.

• If all requests are either for lower floors or for the upper floors (not for both upper and

lower floors together) then the priority for the elevator is to satisfy those requests.

• If the elevator is in the top floor and takes upward action or if the elevator is in the

first floor and it takes downward action then the position of the elevator will not be

changed but elevator receives punishment for taking wrong action.

These priorities contribute to the definition of the reward and punishment for the

elevator. Whenever the action taken by the agent does not satisfy the priorities then the

agent receives punishment otherwise it receives reward. The reward and punishment are

defined by a set of if/then rules. The reinforcement signal has two values, 10 and -1. If

the agent receives reinforcement signal r = 10 then the opposite reinforcement signal (r̆) is

-1. If the agent receives the reinforcement signal r = −1 then the opposite reinforcement

signal (r̆) is 10.

The Boltzmann policy is applied for action selection. Boltzmann is a common action

policy method based on using Boltzmann distribution which presents a probability P (a)

of taking action a in a given state s. The following equation is defined to be applied in the

definition of Boltzmann equation:
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$ =

(
θ −

(
0.001− θ2

1− θ

))
× κ+

(
0.001− θ2

1− θ

)
. (5.4)

Here κ is a variable for counting steps (iterations) of the learning process and θ is the total

number of steps across all episodes. Now the probability of taking each action is estimated

by Boltzmann policy as follows:

P (a) =
e

Q(s,a)
$∑
e

Q(s,:)
$

. (5.5)

Hence, the action is determined as follows:

Ac = {a|P (s, a) = max
j
P (s, aj)}, (5.6)

where s is a given state, and 1 ≤ j ≤ Na (Na is the number of actions) and a is an action.

If there are several actions available in Ac (|Ac| > 1), the agent will randomly choose one

of them otherwise a = Ac.

In each iteration if the elevator satisfies all requests in the hallway and the elevator car,

then the agent goes to the next episode to take new random requests.

Because the number of requests for the elevator car and the hallway is changing and it

is selected randomly, the sates are not stationary. The states of the elevator environment

are generalized by considering the number of requests for upper or lower floors comparing

the current elevator position or the current floor. As stated by Crites et al. [13] “the

desired destination of the passengers” (part of the state) in the hallway is not provided

which is also the case in our simulation, hence, this part of state is not fully observable in

our simulation.
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Figure 5.5: Elevator simulation for five-floor building; The black box presents the hallway
buttons and the gray box presents the elevator car moving upward

As was presented earlier, theNOQ(λ) algorithm is implemented for the elevator control.

The action ‘up’ is considered the opposite of action ‘down’. There is not any opposite

action for action ‘stop’ hence in the update relation for the opposite actions (presented in

the Equation 5.1) the update is applied just for one opposite action in the opposite action

set Ă.

The states of the elevator control are not fully observable and non-stationary which

makes the elevator simulation challenging. The reinforcement learning applied to elevator

control problem operates in a dynamic environment. The purpose of this research is not

only to show that NOQ(λ) method can successfully perform in this kind of environments

but that it is also a faster alternative to Q(λ) method. The experimental results presented

in the next section confirm the superiority of NOQ(λ) for the applications that at least

one opposite action is available to the agent. Figure 5.5 illustrates the elevator simulation

for a five-storey building.
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5.4.1 Experimental Results of Elevator Control Application

The results of the elevator simulation are presented for a 5-storey building with one elevator

car. The results of NOQ(λ) are also compared with the results of Q(λ). The initial

parameters for the algorithms are nE = 500, Imax = 50, α = 0.3, γ = 0.2. These parameters

represent maximum number of episodes, maximum number of iterations, learning step, and

discount factor, respectively. The parameter λ is set to 0.5 for both NOQ(λ) and Q(λ)

algorithms.

As was described earlier, in each iteration in the NOQ(λ) and Q(λ) algorithms if the

agent satisfies all requests then the agent goes to the next episode. The average number of

iterations for all episodes is measured for each run as well as running time of the algorithms.

The simulation has been run 10 times to acquire average values. The results are presented

in Table 5.4.

The average running time, T , required for the proposed technique is 0.0455 ± 0.0041

seconds and the overall average iterations, I for this technique is 16±1. The average

running time, T , required for the Q(λ) technique is 0.0774±0.0119 seconds and the overall

average iterations, I for the Q(λ) method is 29± 5.

The average running time required for Q(λ) is 1.7 times higher than average running

time for the NOQ(λ) technique. The overall average iterations for the Q(λ) is 1.9 times

higher than the overall average iterations for the proposed technique. Hence, Q(λ) requires

almost double time and iterations to run (for the same number of episodes) compared with

the proposed algorithm.

Figure 5.6 shows the average rewards versus the number of steps (iterations) for the

NOQ(λ) and Q(λ) algorithms. Figure 5.6 also shows the convergence of the average

rewards for both algorithms.
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Figure 5.6: Left: Plot of average reward for NOQ(λ); Right: Plot of average reward for
Q(λ) technique

5.4.2 Conclusions

In this section the NOQ(λ) algorithm for a dynamic and non-deterministic environment

is presented. I have considered the simple case of an elevator control problem for the

experiments. The states of the environment in the elevator control simulation impose

challenges for the reinforcement learning model. The states are non-stationary and not

fully observable. The purpose of this work was not to propose a new solution for elevator

control, but to employ this application, with a manageable state-space size and verify the

improvement of Q(λ) via NOQ(λ).

The NOQ(λ) technique is modified by using the increasing function w(κ) employed

for updating the Q-values of opposite action in a given state s, Q(s, ă) (Equation 5.1).

This facilitates the tradeoff between exploration and exploitation in the opposition-based

technique. As the learning steps increase, w(κ) increases.

The results of the proposed technique are compared with the results of Q(λ). The

NOQ(λ) can perform faster than Q(λ) algorithm in terms of running time and average
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number of iterations required for learning. Hence, the proposed algorithm can be used as

an alternative to Q(λ) whenever the opposite actions are available for the agent.

5.5 NOQ(λ) for Image Thresholding

5.5.1 Introduction

Image thresholding is one of the common segmentation techniques in image processing.

In numerous applications the foreground and background of the image must be separated

to obtain a binary image containing the objects of interest. The challenge is how to find

the optimal threshold under non-optimal circumstances. Finding an optimal threshold in

order to segment digital images is a difficult task in image processing. A large number of

image thresholding methods already exist in the literature, each providing good results for

some specific image classes [70, 69, 71, 75, 64].

In previous research [69], the subjective and objective versions of RL techniques were

applied and investigated for global image thresholding where the definition of states de-

pended on the ratio of black pixels to the total number of pixels and number of objects

in the image [69]. In order to define the states in a straightforward way we introduced

“a reinforcement agent for threshold fusion” [75]. The idea behind this threshold fusion

technique was the combination or fusion of different thresholding methods. In the cases

that apparently no individual technique can be applied to all types of images, the fusion

of some thresholding techniques could have promising results. The performance of a com-

bination of several methods can yield better results provided a proper fusion of weighted

thresholds specially for the cases that individual techniques deliver unsatisfactory results.

We applied a reinforcement learning (RL) method with a fuzzy reward function to find the

optimal weight for each method. This hybrid technique can detect the best combination
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of thresholding techniques at hand.

However, if all thresholding methods fail to provide the appropriate threshold value due

to the non-uniform illumination or noise in the image, then the fusion will not be able to

deliver satisfactory results. Another issue that should be addressed is definition of states.

In the previous work we defined the states based on the weighted average of the threshold

values that each thresholding technique in the fusion delivers to the agent. However, a

more effective way is to have a technique that gives the agent the opportunity to explore

each gray level of the image as a state of the environment. Hence, the states are not limited

to any specific method. Therefore, the design components of the RL thresholding agent

should be revised. In the previous technique [75] the agent changes the weights of each

thresholding technique to find the optimal fusion but the new approach will not be limited

to any specific thresholding technique. Hence, the agent has a chance to explore every

single gray level of the image presented as a state of the environment.

5.5.2 Background Literature

Thresholding is one of the segmentation techniques in image processing which separates the

foreground and background of the image [10, 19, 64, 94, 62, 38]. In some applications, the

gray-level images will be thresholded to acquire binary images. In these cases, the image

contains a background and one or more objects. The generation of binary images is mainly

for feature extraction and object measurement and recognition. Image thresholding can

be regarded as the simplest form of segmentation, or in more general terms, as a two-class

clustering procedure. In order to separate the object gray levels, gO, from the background

gray levels, gB, a threshold, T , must be determined. The thresholding can be carried out

by the following decision (L is the total number of gray levels in the image):
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gi(T ) =

 gO = 0 for 0 ≤ gi ≤ T,

gB = 1 for T < gi ≤ L− 1.
(5.7)

Generally, finding an appropriate threshold depends on the shape of the histogram,

the image content and the application requirements [24, 101]. Illumination during image

acquisition can have a major influence on thresholding. Poor and non-uniform illumination

complicates the detection of an appropriate threshold.

Sankur and Sezgin [64] provide an extensive survey of over sixty thresholding techniques,

in which the method according to Kittler [33] has found to be the best algorithm.

There are numerous threshold selection methods introduced in literature [64, 60, 71].

Thresholding methods could be divided into the several categories based on information

they are using [64, 60, 71, 94, 62, 38]:

• Clustering and classification-based methods

One of the most common thresholding techniques in clustering category [64] is Otsu’s

method [48, 71]. This method minimizes the weighted sum of within-class variances

of foreground and background pixels to create the optimal threhsold [48]. Generally,

clustering techniques are unsupervised techniques (without using prior knowledge)

that generate separate regions in the image such that a pixel in a given region dose

not belong to other regions [60]. On the other hand, classification techniques generate

the classes in such a way that objects in the same class have high degree of similarity

and objects belong to different classes have lower degree of similarity [60]. Usually,

the classification techniques require training data with known labels [60, 71].

• Histogram shape-based methods
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Histogram-based techniques are very practical for some applications in image seg-

mentation. In multi-thresholding based on histogram the values in the range of

histogram should be found to divide the image in to different regions. It should be

noted that “the histogram is based on some global characteristics of the image, such

as brightness distribution” [60].

• Entropy-based methods

Sahoo, Wilkins, and Yeager presented a threshold selection method using entropy [63].

They used two probability distribution related to object and background. These

probability distributions are derived from the original gray-level distribution of the

image. They define the probability distributions of the object and background classes

by using probability distribution of gray levels, P0, P1, P2,. . ., P255.

• Local, global and hybrid methods

Local techniques are based on operation on the local parts of the image. The global

image information will not be applied in these techniques. In contrast, the global

methods are based on information in the whole image not the local characteristics.

The features of the objects in the image are a useful source of information in these

techniques [60]. Hybrid techniques are based on combination of local and global

characteristics.

• Spatial and feature-based methods

There are basic elements that can be used to represent the image such as features and

spatial characteristics of the image. Any segmentation technique that employs certain

features in the image and extracts or detects the homogeneous regions in feature space

is a feature-based technique. Spatial-based techniques are constructed based on the
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spatial characteristics of pixels in the image. In the spatial-based techniques the

points of an object are considered spatially close which helps to better segment the

image in many cases.

• Intelligent methods

Machine learning techniques can be used for image segmentation as well. For in-

stance, artificial neural networks [21] and reinforcement learning are two intelligent

leaning techniques that have been employed to segment images. They both can be

applied in different ways for segmentation tasks [60]. However, neural techniques

need sample data for training but reinforcement learning can perform the required

task without any training samples [70, 69, 71, 75].

• Attribute-similarity methods

The similarity between the binarized image and original image could lead to bet-

ter object detection. The edges, shapes, connectivity, or compactness could be the

attribute of interest [64]. For many problems in image processing the subjective

knowledge can be used to solve the problem. Fuzzy methods have the ability to

represent subjective information. Fuzzy thresholding methods define a threshold as

a fuzzy number [89].

There are more thresholding techniques which are discussed in [60, 71, 64]. The em-

phasize of this thesis is not on the thresholding methods rather it is about the applicability

of opposition-based reinforcement learning for the real-world applications such as image

thresholding. Hence, the details regarding thresholding techniques are not discussed in this

thesis.

Ultrasound (US) imaging is one of the common modalities in medical imaging for soft

tissues or the fluid filled parts in the body because it is based on sound waves [85]. Ul-
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trasound imaging is not a harmful technique due to its radiation-free nature. Ultrasound

imaging is a technique with the ability of helping to diagnose “breast lesions” and dis-

tinguish “cysts from solid breast tumors”. US also has the ability to assist the doctors

to “differentiate benign from malignant solid masses” [11]. Ultrasound images are noisy

and difficult to segment. Image thresholding is a segmentation technique and has a crucial

role in many applications. Image thresholding increases the contrast of the image specially

foreground and background of the image and makes the image more understandable. The

detection of the object of interest will be easier after thresholding because of increasing

the contrast of foreground and background.

Non-uniform illumination, noise, lack of clear contrast in the objects and other fac-

tors contribute to segmentation errors such as under-segmentation and over-segmentation.

If there are regions in the image that appear as one region after segmentation there is

under-segmentation. In this situation the “full segmentation has not been achieved” [60].

If a region in the image splits into several parts after segmentation then we have over-

segmentation. Solving over- and under-segmentation is reported to be a difficult task and

can be solved based on the specification of the application [60].

Sahba et al. [61] employ the opposition-based Q-learning in image segmentation to

threshold Transrectal Ultrasound (TRUS) images (for prostate cancer detection). Rein-

forcement learning is reported as an alternative approach for learning-based segmenta-

tion techniques in the cases that there is not sufficient number of training data available

[75, 61]. As mentioned earlier in Chapter 4, opposition-based Q-learning may suffer from

reward/punishment confusion. The opposition-based Q(λ) was introduced as a cure for

this problem because of using opposition trace and making updates for Q-matrix for all

the opposite actions in all the sates [73]. Hence, in this chapter we have applied NOQ(λ)

technique [74, 76] for the thresholding of breast ultrasound images.
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5.5.3 NOQ(λ) Image Thresholding

The definition of the reinforcement learning components are different in this work com-

paring the components of RL-based thresholding presented in [75] and [61]. In the work

presented in [75], a reinforcement agent is designed to learn the optimal weights for thresh-

olds delivered by different algorithms and segment the image globally by applying the fused

threshold. However, if all the techniques fail to find a good threshold for the image due to

the noise or the poor resolution, the fusion may not yield to satisfactory results which is the

case for many ultrasound images. In the work presented by Sahba et al. [61] the states of

the environment are represented by some parameters quantifying the quality of the image.

They have used features such as area, compactness, number of objects, etc. Sahba et al.

emphasize that the choice of these parameters and features depends on the application.

Here we use a more universal approach to define the states of the environment. The sates

in this work are based on gray levels in the image. The actions suggested by Sahba et al.

[61] change the threshold value and the size of structuring elements for each sub-image.

In this research the actions change the thresholds and not the structuring elements be-

cause the features are not presented as states and consequently the agent does not need to

change the size of structuring elements. Sahba et al. calculate reward and punishment by

comparing the result with its associated gold standard image (which is thresholded by an

expert). In this work the immediate reward and punishment are calculated based on gold

standard image and other measurements which will be described later.

A reinforcement agent is designed to learn the optimal threshold for the image. The

proposed approach is a weakly supervised technique for image thresholding. The structure

of the method is presented in Figure 5.7.

The first step of the algorithm is to read the image and its associated gold standard

image. The gold standard image is the image which has been manually thresholded by the
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Figure 5.7: Overall structure of the NOQ(λ)-based image thresholding
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expert and used to define the immediate reinforcement signal for the agent [60, 61]. One of

the advantages of using reinforcement learning comparing to supervised learning methods

is that this technique requires only a few or no training examples [60, 61, 75].

The next step in the algorithm is applying pre-processing techniques. In the proposed

technique the λ-enhancement technique is applied [87]. This method aims to provide

optimal contrast enhancement for digital images. It is based on a new class of fuzzy

membership functions to detect the suitable modification of gray levels. The technique is

constructed on involutive membership functions as follows [87]:

µ∗λ(g) = µ(g).(1+λ)
1+λµ(g)

g = 0, L, L− 1. (5.8)

µ(g) is initial membership value and L is number of gray levels. Tizhoosh et al. [87]

have generated images with “different level of brightness” using monotone membership

functions and varying λ. Extreme values for λ are gained when λ→ −1 (generating black

image) or λ → ∞ (generating white image). In the extreme cases the ambiguity of gray

levels reduces. Tizhoosh et al. [87] state that “images in the middle of the sequence

are more suitable for human perception”. I should emphasize that pre-processing (e.g.

enhancement techniques) and post-processing methods are not investigated in this research.

The focus of this research is to introduce the opposition concept for reinforcement learning

and investigate the implementation and advantages of opposition for selected problems

that can be solved using Q(λ) technique.

RL agents can be employed to design a personalized system to adapt to human in-

tention, intuition, needs and requests [72, 88]. The user can provide his/her requests,

responses, and reactions for the computer by interacting with intelligent agent. This yields

the most efficient system that can perform challenging tasks, save the user’s time, and

prevent user tiredness and confusion. Humanized computational intelligence is a new and
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challenging direction in computational intelligence. Mixed-initiative interaction represents

a link between AI (artificial intelligence) and human-computer interaction, and refers to a

flexible interaction strategy in which each agent (user or computer) contributes what it is

best suited for at the most appropriate time [23].

In this technique the mixed initiative interaction is employed to provide a feedback

for the agent and increase the chance of detecting the object of interest and learning the

optimal threshold by the agent. Otherwise, the poor resolution of ultrasound images will

have a negative effect on the learning process of RL agent.

After pre-processing the image will be presented to the user. User clicks on the object

of interest. Then, the coordinates of the clicked pixel are extracted. The clicked pixel

is used as a pivot for calculating reward and punishment and segmenting image to four

sub-images.

After pre-processing a separate copy of the pre-processed image is filtered by median

filter to reduce the noise. Then each of the filtered image, gold standard image and the

pre-processed image are divided into four sub-images based on the coordinates extracted

from the clicked pixel. Each preprocessed sub-image with its corresponding sub-gold image

and sub-filtered image will be provided to the NOQ(λ) algorithm. The algorithm learns

the optimal threshold value for each sub-image separately (Figure 5.8).

The median value in a 5× 5 window around the central clicked pixel is also calculated

which will be provided for the NOQ(λ) technique for calculating reinforcement signal. As

mentioned earlier, the NOQ(λ) algorithm is applied for learning the optimal threshold for

each sub-image. The states are defined based on the gray level values of the image. In

other words, each gray level value represents a single state of the environment. Hence, the

number of states is varying from one image to the other one and is equal to the number of

gray level values in the image.
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Figure 5.8: Expert user clicks on the object of interest on the image (marked by a cross)
which divides the image into four sub-images

The states are stored in a vector with two rows. The first row indicates the state

numbers and the second row is the gray level values associated to that state. To calculate

the states for each image the pixels are sorted (the repeated gray levels are also eliminated).

The MATLAB function, “unique”, is used to return the same gray level values in the image

but without repetitions. It also sorts the gray level values in the image.

Actions and opposite actions change the state of the environment (gray values). It

should be emphasized that the goal of the agent is to find the optimal or near optimal

policy to mark the best gray level value as a threshold by considering accumulated rewards

generated by reinforcement signal in each step of the episode. In the implementation of

the proposed technique1, 53 actions and opposite actions are responsible for changing the

threshold values. They are defined arbitrarily as g+0, g+1, g−1, g+10, g−10, g+20, g−

20, ..., g + 250, g− 250 assuming that g is a gray level value in a given state. It is assumed

that if the agent takes the action ai where i is an even number then ai+1 is its associated

opposite action. If the agent selects the action ai where i is an odd number, then ai−1 is its

associated opposite action. Hence, the set of even numbers is presenting the actions and

1The implementation process is described here because the emphasis of this work is introducing the
concept of opposition for the selected RL-based algorithms and discussing how the opposition can be
employed in the components of RL-techniques
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the set of odd numbers contains their associated opposite actions and vice versa. There is

not any opposite action for a1 (a1 is g + 0) in this scheme.

The reinforcement signal is a scalar number quantifying reward or punishment. If the

consequence of an action is a gray level which is not available in the state vector then the

agent should stay in the current state (and not go to the next state) but receive punishment

(= -10) for that action and reward (= 10) for the opposite action. It should be emphasized

that agent would not know the next state of the opposite action in the NOQ(λ) technique.

If the consequence of an action is a gray level which is presented in the state vector then

the reinforcement signal is calculated based on the thresholded result and is a combination

of three measurements.

As mentioned earlier the agent filters a separate copy of the pre-processed image with

the median filter and divides it into four sub-images which are given to the NOQ(λ) algo-

rithm for calculating reinforcement signal. Then each of these sub-images are normalized

to have values in the interval [0,1]. If matrix N presents the normalized smooth image

then M = 1−N is a matrix of membership values for object pixels. These values will be

used in calculating the reinforcement signal.

There are three measures applied to calculate reinforcement signal. One of them is a

measure reported in the author’s previous works [71, 75] where it was assumed that there

are no ground-truth images available for the training, hence, a possible way to assess the

agent performance during the training is to compare the binary image with membership

matrix corresponding the original gray-level image. Therefore, the agent calculates a fuzzy

dissimilarity measure Fdissim as follows:

Fdissim =
∑∑

|B −M |, (5.9)

where B is the binary image and M is the membership matrix generated earlier. The
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values of M which are less than a constant membership value ψ are set to zero. The agent

must be configured with the appropriate value of ψ based on image content. The difference

between the binary value and the membership values is a convenient way to quantify the

discrepancy between black-and-white objects and gray-level image. The agent receives the

fuzzy reward and updates the Q-matrix. The fuzzy reward is defined as follows:

r1 = 1
Fdissim+δ

, (5.10)

where δ is positive constant (e.g. δ = 0.001) and Fdissim is the fuzzy dissimilarity provided

earlier. Therefore, r1 presents a fuzzy similarity between the binarized image and the

original image; the higher the similarity, the more reward the agent will receive. In this

case the measure that will be applied for calculating opposite reinforcement signal is −r1.

Another measurement which is applied in evaluating agent’s action and calculating rein-

forcement signal is based on comparing the binary result with its associated gold standard

image [61]. The gold standard image is also divided into four sub-images. The binarized

segmented image now can be compared with the associated gold standard sub-image. The

Hamming distance H [20, 22] between the foreground of the gold standard sub-segment

image and the foreground of the thresholded sub-image2 is calculated.

The Hamming distance H presents the difference between two parts. Hence, r2 = 1/H

represents a measure that is used for calculating reinforcement signal and −1/H is used

for calculating opposite reinforcement signal. The value of H can be set arbitrarily. In

this work, the constant numbers are used to define H. If H = 0, then r2 = 200 and its

associated opposite reward r̆2 is -200.

The third measure is based on median value med in the 5×5 window around the central

2The foreground of thresholded sub-image is the parts witch is related to the object of interest and is
determined by using MTLAB function, “bwlabel”.
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Table 5.5: The Initial Parameters for all experiments

nE Imax α γ λ ψ

1000 20 0.3 0.2 0.5 0.99

clicked pixel calculated earlier and can be given as r3 = 1
‖med−T‖ . Its associated opposite

value is presented by the equation r̆3 = −r3.

The reinforcement signal is a combination of r1, r2, and r3 and is presented by r =

σ × r1 + r2 + r3 where 0 < σ < 0.1. The effect of r1 is reduced because it depends on the

initial constant membership value ψ. This value can be changed based on the application.

Hence, in order to reduce the dependency of the proposed technique from a new variable,

the weight of r1 is less than the other measures. The opposite reinforcement signal is

r̆ = −σ × r1 − r2 − r3 which is equals to −r.

The choice of reinforcement signal may vary depending on the application and the

availability of image features for implementation. In this work the effort is to reduce the

dependency of the technique from the features and keep the implementation general and

independent from the application at hand.

The initial parameters for the algorithms are presented in Table 5.5. The weight w is

linear which is based on Equation 5.2. The ε-greedy policy is applied for action selection

by the agent.

At the end of the learning, agent has four learned threshold values associated with

four sub-images. We can interpolate these threshold values to generate thresholds for each

pixel. Then the thresholded image will be presented to the user based on interpolated

values.

The mixed initiative interaction has a positive effect on the performance of the al-

gorithm. However, we need to reduce or simplify the tasks for the user to prevent any
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tiredness and confusion for the user. At the beginning of the learning the user is engaged

by providing one click on the object of interest on the image. At the end of the learning and

before interpolation we can also have user interactions to verify which of the four threshold

values are acceptable and which ones are not. Therefore, at the end of the learning, the

algorithm can be slightly changed. The modified algorithm is depicted in Figure 5.9. The

agent applies the learned threshold values to their associated pre-processed sub-images

(without interpolation) and presents the result to the expert. After that, the expert se-

lects the proper thresholds. Then the agent calculates average of the proper thresholds.

Subsequently, the improper threshold values will be replaced by the calculated average

value of the proper thresholds. At the end, we can again interpolate the four threshold

values, threshold the image and present the binary image to the user.

5.5.4 Experimental Results

Reinforcement learning has been successfully employed to threshold images for the appli-

cations that the sufficient training samples are not available [60, 70, 69, 71, 75, 61]. The

goal of the proposed technique is to apply an opposition-based reinforcement learning tech-

nique to perform faster during the learning process. Meanwhile, a new implementation is

presented here in terms of implementing the components of NOQ(λ) algorithm such as

states, actions, and reinforcement signal. It generates a more universal approach which is

less dependent on image features comparing with the work reported in [61].

In order to verify the advantage of using opposition for RL-based image thresholding,

the results are presented and compared for two RL algorithms NOQ(λ) and Q(λ). The

results show three images, Breast Implant Hematoma3, Intraductal Carcinoma4, and Post

3Hematoma is “a mass of usually clotted blood that forms in a tissue, organ, or body space as a result
of a broken blood vessel” [44].

4Carcinoma is “a malignant tumor of epithelial origin” [44].
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Figure 5.9: Overall structure of the NOQ(λ)-based image thresholding using expert feed-
back to improve the results; The gray boxes present the difference of this algorithm with
the technique presented in Figure 5.7
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Figure 5.10: First row: Original images (Left - Image1 - Breast Implant Hematoma; Middle
- Image2 - Intraductal Carcinoma; Right - Image3 - Post Surgical Breast Scar); Second
row: The associated gold standard images of the first row; Third row: Histograms of the
images

Surgical Breast Scar. The original images, their associated gold standard images, and the

image histograms are presented in the Figure 5.10.

The number of states is 182 for Image1, 177 for Image2, and 180 for Image3 (based on

the gray level values in the image). As a quantitative performance measure, the ratio of

Hamming distance H(IB, IG) [20, 22] between the binary image IB and the gold standard

image IG to the number of pixels Nim for each image is calculated as a dissimilarity measure

χ:

χ = H(IB ,IG)
Nim

. (5.11)
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Results of NOQ(λ) are presented in the Table 5.6 and compared with the results of

Q(λ). Each algorithm has been run 10 times. The average running time T and the average

dissimilarity measure χ is calculated for each technique. The overall average iterations

and average episodes required for the convergence of the algorithms are observed for each

segment of the image. I i and ei represent the overall average iterations and average episodes

for each segment.

The results of the proposed thresholding algorithm based on NOQ(λ) are presented in

Figures 5.11 and 5.13. The results of the proposed thresholding method based on Q(λ) are

presented in Figures 5.12 and 5.14. For all the figures (5.11, 5.12, 5.13, 5.14) columns from

left to right are the results corresponding to Image1, Image2, and Image3 respectively and

each row demonstrates the results for one run.

As apparent in the Table 5.6, the average running time of the proposed algorithm

(algorithm in Figure 5.7) with the NOQ(λ) is less than average running time of the same

algorithm with Q(λ). In the results of thresholding with NOQ(λ), either the overall

average iterations or the average episodes for the segments are less than the overall average

iterations or the average episodes of the same technique with Q(λ) (for all the images).

The only exception is segment 3 of the image3. However, the average running time of the

NOQ(λ)-based thresholding is less than Q(λ)-based technique for all the cases.

The other measure introduced is χ (see Equation 5.11) which is the relative inaccuracy

of the technique. As shown in the Table 5.6, there is a small difference between Q(λ)

and NOQ(λ) thresholding techniques. For the Image1 the inaccuracy is 0.23 for NOQ(λ)

and 0.26 for Q(λ), for Image2 this is 0.23 for NOQ(λ) and 0.22 for Q(λ), and for the

last Image it is 0.31 for NOQ(λ) and 0.29 for Q(λ). The NOQ(λ) can perform faster by

keeping almost the same level of accuracy as Q(λ).

As mentioned before, user can play an important role to improve the results at the end
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Figure 5.11: From left to right: Results based on NOQ(λ) algorithm for Image1, Image2,
Image3
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Figure 5.12: From left to right: Results based on Q(λ) algorithm for Image1, Image2,
Image3
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Figure 5.13: From left to right: Results based on NOQ(λ) algorithm for Image1, Image2,
Image3
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Figure 5.14: From left to right: Results based on Q(λ) algorithm for Image1, Image2,
Image3
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of the learning. For this reason the algorithm presented in the Figure 5.9 is tested for the

same images by using NOQ(λ). The results are presented in Figures 5.15, 5.16, 5.17, and

5.18. Columns from left to right are the results corresponding to Image1, Image2, and

Image3 respectively and each row demonstrates the results for one run. Figures 5.15 and

5.17 illustrate the images after learning without interpolation. Figures 5.16 and 5.18 are

the corresponding images after user intervention, respectively.

For the first column (Image1 in Figure 5.15) from top to bottom the segments that are

replaced (improper segments) are Seg1-Seg3, Seg1-Seg2-Seg3, Seg1-Seg3, Seg1-Seg2, Seg3.

For the first column (Image1 in Figure 5.17) from top to bottom the segments that

are replaced (improper segments) are Seg1-Seg2-Seg4, Seg1-Seg3, Seg1-Seg3, Seg1-Seg2,

Seg1-Seg2-Seg3.

For the second column (Image2 in Figure 5.15) from top to bottom the segments that

are replaced (improper segments) are Seg2-Seg3, Seg2, Seg3-Seg4, Seg1-Seg4, Seg1-Seg2-

Seg3.

For the second column (Image2 in Figure 5.17) from top to bottom the segments that

are replaced (improper segments) are Seg1-Seg3, Seg1-Seg3-Seg4, Seg1-Seg3, Seg2-Seg3,

Seg1-Seg3-Seg4.

For the third column (Image3 in Figure 5.15) from top to bottom the segments that

are replaced (improper segments) are Seg3-Seg4, Seg1, Seg1-Seg3, Seg1-Seg2-Seg3, Seg1-

Seg3-Seg4.

For the third column (Image3 in Figure 5.17) from top to bottom the segments that are

replaced (improper segments) are Seg1-Seg2-Seg3, Seg2-Seg3-Seg4, Seg1-Seg2, Seg1-Seg2-

Seg3, Seg1-Seg2-Seg3.

The elimination of improper thresholds improves the accuracy of the technique by

decreasing χ from 0.23 ± 0.07 to 0.13 ± 0.05 for the first image, from 0.23 ± 0.09 to
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Figure 5.15: Results based on the algorithm presented in the Figure 5.9 using NOQ(λ);
From left to right (Results for image1, image2, and image3): Results (using NOQ(λ))
which were demonstrated to the user after learning (without interpolation); Each row is
related to one run.
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Figure 5.16: Results based on the algorithm presented in the Figure 5.9 using NOQ(λ);
From left to right (Results for image1, image2, and image3): Results (using NOQ(λ)) after
the proper threshold selection by the user and applying the procedures presented in the
gray boxes in the Figure 5.9; Eeach row is related to one run.
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Figure 5.17: Results based on the algorithm presented in the Figure 5.9 using NOQ(λ);
From left to right (Results for image1, image2, and image3): Results (using NOQ(λ))
which were demonstrated to the user after learning (without interpolation); Each row is
related to one run.
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Figure 5.18: Results based on the algorithm presented in the Figure 5.9 using NOQ(λ);
From left to right (Results for image1, image2, and image3): Results (using NOQ(λ)) after
the proper threshold selection by the user and applying the procedures presented in the
gray boxes in the Figure 5.9; Each row is related to one run.
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0.09± 0.03 for the second image, and from 0.31± 0.10 to 0.14± 0.09 for the third image.

It should be mentioned that the author selected the improper segments and served as

a user (expert). However, for more accurate results a radiologist with expertise in this

field should participate in this study which is a subject for future works. Different post-

processing approach also must be employed and studied to have better and more accurate

results.

5.5.5 Concluding Remarks: NOQ(λ) for Image Thresholding

Image thresholding techniques are applied in many applications such as medical imaging to

facilitate the detection and diagnostics of the object of interest by increasing the contrast

of foreground and background of the images and eliminating the irrelevant details in the

image. Training samples are either not available or not sufficient in many learning-based

segmentation techniques. In some applications the environment is dynamic and training

examples may not be effective. Reinforcement learning is reported to be used as an al-

ternative approach because it can perform with a few training samples [61] or in some

applications without any training examples [75].

The goal of this work was to introduce and examine the effects of opposition in RL-

based image thresholding techniques. Opposition-based Q-learning has been applied in

image thresholding in the paper presented by Sahba et al. [61]. As mentioned before, the

opposition in the Q-learning may yield to reward/punishment confusion. Hence, in this

work a solution for this problem is introduced which is using NOQ(λ) technique. Earlier in

this work it was mentioned that the eligibility trace and opposition trace helps to prevent

reward/punishment confusion because of multiple update of Q-matrix for all states and

actions as well as all states and opposite actions. In this work the NOQ(λ) algorithm

which is the modified version of opposition-based Q(λ) algorithm was implemented and
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the results are compared with the results of Q(λ) algorithm.

The results show that NOQ(λ) algorithm can perform faster with almost the same

level of accuracy as Q(λ) algorithm. The mixed initiative interaction was implemented to

engage the user in the learning process to employ the expert’s knowledge in the learning

process but meanwhile prevent the user from tiredness by limited user dependency. At the

beginning of the learning user provides the feedback by one click on the object of interest.

At the end of the learning user can also select the segments with improper threshold to

help providing more accurate results.

In this work, all the gray levels available in the image were considered in the definition

of states. The dependency of reward and punishment on the image features is reduced

in this work comparing to the research reported in literature to provide a more universal

approach and a more general platform to compare the effects of NOQ(λ) with Q(λ) in the

proposed image thresholding algorithm. The choice of pre-processing should be further

investigated. In future works, the post-processing techniques should be employed to pro-

vide more accurate results and the expert user should participate to provide appropriate

feedbacks for the agent.
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Summary and Conclusions

This research has explored the potentials of oppositional concepts to expedite the learning

of popular reinforcement algorithms. Several types of opposition have been scrutinized

in this thesis and the type-II opposition was employed in the framework of the proposed

algorithms to initialize, learn/search in a shorter time. Hence, the developed extensions of

RL techniques belong to the class of initializing and somatic E-OBC Algorithms.

In this thesis the initial motivation was to apply the idea of opposition to reinforcement

learning focusing on its essential components. The concept of opposition was first applied

to states, actions and reward/punishment which resulted in development of the OTE (op-

positional target domain estimation) technique (Chapter 3). OTE is based on grid-based

simulation and can successfully perform state-space reduction for search and navigation

problems and achieve high reduction rates. Since the model of the environment must be

available, the OTE technique is limited to model-based applications.

In many applications the model of the environment may not be existent. Hence, the

challenge is how to use the concept of opposition for such applications. Since the knowledge

of the states may not be available for some problems, the concept of opposition was em-

121
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ployed to include actions. The knowledge about actions was used to integrate the opposite

actions within the RL paradigm.

The problem of reward-punishment confusion was addressed by introducing the opposi-

tion traces and OQ(λ) algorithm. Another issue elucidated in this research was the problem

of the impractical Markovian update of opposite actions, which was resolved by introduc-

ing non-Markovian update for opposite actions representing a-priori knowledge integration

during the learning. An opposition weight was implemented in the opposition-based update

of Q values to control the trade off between exploration and exploitation of the learning

process for NOQ(λ) algorithm. Opposition is a novel approach in reinforcement learning

and its implementation may be challenging in some cases. Hence, real-world case studies

such as navigation, elevator control and image thresholding were selected to address the

design issues in Chapter 5. The proposed technique was verified by investigation of op-

position for these challenging applications of dynamic and non-deterministic nature. The

results for different application areas demonstrated the advantage of using opposition in the

framework of reinforcement learning techniques in terms of faster performance comparing

the proposed technique with Q(λ).

The objective of this research was to expedite some of RL-techniques using the concept

of opposition by maintaining the same level of accuracy. It should be mentioned that the

opposition-based RL algorithms presented in this research can be implemented whenever

the opposite actions are known. In the applications such as backgammon which the op-

posite actions are not known the opposite actions should be extracted during the learning

process. Hence, opposition mining should be further investigated.
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6.1 Contributions

The contributions of this thesis can be summarized as follows:

• Opposition-based computing and its potentials for incremental learning has been

investigated in details.

• The nature of opposition in reinforcement learning has been examined and the ap-

plicability of oppositeness in different components of RL paradigm has been dis-

cussed [77].

• The OTE algorithm has been introduced for model-based search and navigation [78].

• The problem of reward-punishment confusion in opposition-based Q-learning has

been recognized and the opposition trace as well as opposition-based Q(λ) algorithm

have been introduced to address this issue [73].

• The opposition-based Q(λ) has been developed for applications, for which the model

of the environment is not available. Thus, the NOQ(λ) algorithm has been intro-

duced for model-free applications. The problem of impractical Markovian update has

been solved by introducing non-Markovian update [74].

• Appropriate tradeoff between exploration and exploitation inOQ(λ) with non-Markovian

update in dynamic environments has been realized by introducing the opposition

weight [76].

• The benefits of oppositional concepts in reinforcement learning has been demon-

strated by detailed investigations of three major real-world examples, namely navi-

gation, elevator control and medical image processing.
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• A mixed initiative interaction [72, 88] has been applied to provide a feedback for the

agent and increase the chance of learning the optimal threshold by the agent in the

image thresholding application.

6.2 Future Works

The future work should focus on several remaining issues. The first emphasis should be

on extending the concept of opposition to other reinforcement learning techniques. This

may constitute applying the opposition to other components of reinforcement learning

model such as states. Here, opposition mining will be a major research field, in which

opposites can be extracted during learning and employed as they become available. The

applicability of modeling the environment by opposite concepts should be investigated both

in theoretical and experimental settings. The effects of opposition in hybrid techniques

should be studied in future works as well. The choice of reinforcement signal and opposite

reinforcement signal is also a crucial aspect, which should not be neglected.
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Glossary of Terms

RL Reinforcement learning

TD Temporal difference

Q Q-learning technique

DP Dynamic programming

MC Monte Carlo

MDP Markov decision process

Sarsa State action reward state action

OBL Opposition-based learning

OBC Opposition-based computing

I-OBC Implicit OBC

E-OBC Explicit OBC

OTE Oppositional target domain estimation

RTE Randomized target domain estimation

OBL Opposition-based learning

OQ(λ) Opposition-based Q(λ)

NOQ(λ) Non-Markovian opposition-based Q(λ)
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