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Abstract

The ambulance offload delay problem is a well-known result of overcrowding and

congestion in emergency departments. Offload delay refers to the situation where

area hospitals are unable to accept patients from regional ambulances in a timely

manner due to lack of staff and bed capacity. The problem of offload delays is not

a simple issue to resolve and has caused severe problems to the emergency medical

services (EMS) providers, emergency department (ED) staff, and most importantly

patients that are transferred to hospitals by ambulance. Except for several reports

on the problem, not much research has been done on the subject. Almost all

research to date has focused on either EMS or ED planning and operation and as

far as we are aware there are no models which have considered the coordination of

these units. We propose an analytical model which will allow us to analyze and

explore the ambulance offload delay problem. We use queuing theory to construct a

system representing the interaction of EMS and ED, and model the behavior of the

system as a continuous time Markov chain. The matrix geometric method will be

used to numerically compute various system performance measures under different

conditions.

We analyze the effect of adding more emergency beds in the ED, adding more

ambulances, and reducing the ED patient length of stay, on various system perfor-

mance measures such as the average number of ambulances in offload delay, average

time in offload delay, and ambulance and bed utilization. We will show that adding

more beds to the ED or reducing ED patient length of stay will have a positive im-

pact on system performance and in particular will decrease the average number of

ambulances experiencing offload delay and the average time in offload delay. Also,

it will be shown that increasing the number of ambulances will have a negative

impact on offload delays and increases the average number of ambulances in offload

delay. However, other system performance measures are improved by adding more
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ambulances to the system. Finally, we will show the tradeoffs between adding more

emergency beds, adding more ambulances, and reducing ED patient length of stay.

We conclude that the hospital is the bottleneck in the system and in order to re-

duce ambulance offload delays, either hospital capacity has to be increased or ED

patient length of stay is to be reduced.
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Chapter 1

Introduction

Healthcare is a large component of the Canadian economy that affects each and

every citizen of this country. According to the latest OECD (Organization for

Economic Co-operative and Development) health data, health spending accounted

for 10% of the GDP in 2006 and is projected to reach 160 billion or 10.6% of the

GDP in 2007 [2]. Canada has long been known for its good healthcare system. The

ability to provide high quality care is one of the main reasons why Canada is among

the best countries to live in, according to the United Nation’s Quality of Life Survey.

However, there have been some concerns in recent years regarding the quality of

healthcare being provided to the Canadian public. Long waiting times due to

overcrowded hospitals and shortage of medical practitioners are among the major

complaints about the Canadian healthcare system. Studies conducted in 2007 have

found that 57% of Canadians waited more than 4 weeks to see a specialist and

24% waited for more than 4 hours in the emergency room [12]. Also, Canada is

well below the OECD average of 3 doctors per thousand population with only 2.2

doctors per thousand population [2].

In order to ensure continuous high quality healthcare is being provided to the

Canadian public, healthcare issues such as those mentioned above must be dealt
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with effectively and quickly. One challenge is that our healthcare system is complex

and there are many different decision making units involved with any one healthcare

issue. Therefore, coordinated decision making is of utmost importance, since each

unit acting on its own may not produce the best overall solution.

One example of a system where co-ordination is necessary is in the provision

of Emergency Medical Services (EMS). Over two million patients are treated by

Canadian EMS every year. Traditionally, EMS have focused on emergency trans-

port and inter-facility transfers for both emergency and non-emergency situations.

However, due to demographic and health care trends in recent decades, EMS now

integrate aspects of both health care and public safety services. Perhaps the most

common and organized type of EMS is an ambulance organization. In general, an

EMS provider such as an ambulance organization should be able to:

1. Detect and report an emergency incident

2. Identify the severity of the incident and its degree of urgency (call screening)

3. Respond to the incident as quickly as possible by dispatching appropriate

number of ambulances to the scene

4. provide necessary care on emergency scene and while transferring the patient

to the emergency department (ED) of the hospital

Unfortunately, long waiting times and congestion in the ED of the hospitals have

caused serious problems with transfer of care for the EMS providers in recent years.

When a patient is transferred to the hospital by ambulance, in order for the transfer

of care to occur there has to be an emergency bed available. However with EDs

becoming more and more crowded, many hospitals are experiencing staff and bed

shortages. As a result, ambulance paramedics must spend time waiting for an

emergency bed to become available since they cannot legally leave the patient
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without the hospital accepting transfer of care of the patient. This situation is

commonly known as ”ambulance offload delay” and has a significant impact on the

EMS response times 1 since it affects the availability of ambulances for emergency

calls.

1.1 The Problem of Ambulance Offload Delay

Offload delays in Ontario have become more and more common and they are not

a simple issue to resolve. In some regions such as Ottawa, the severity of the

problem has reached the point where ambulances must leave patients unattended

on stretchers at the hospital since offload delays have seriously impeded the delivery

of EMS to the community. In other areas, ambulances from other regions have been

called in to assist with offload delays; however, they have become more reluctant to

respond since they also experience offload delays in their home regions and might

not have enough ambulances to respond to their own emergency calls.

The region of Waterloo is among the regions suffering from the problem of offload

delays. According to the latest statistics provided by the Region of Waterloo Public

Health [34] in December of 2007, the region incurred as many as 22 offload delays in

a single day and the number of ambulances lost to offload delays totaled to as many

as 13.25 ambulance days per month in 2005. In 2006, Waterloo region incurred more

than 6000 hours of offload delays and lost 12.36 ambulance days per month to offload

delays. Cities such as Toronto and Ottawa have been experiencing even more severe

offload delays. In order to prevent offload delays from increasing response times,

EMS managers must employ additional resources to service emergency calls. Longer

response times could be life-threatening when the patient requesting EMS service

1Response time is the time elapsed from notification of emergency until an ambulance arrives
at the scene
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is in a critical condition. In the region of Waterloo, the average response time

was 13.43 minutes in 2005 [35] which was significantly higher than the provincially

established response time of 10 minutes and 30 seconds for the Region of Waterloo.

Offload delays not only increase the EMS response times, they financially cost

EMS providers as well. They cost, because EMS has to apply extra resources in

order to keep response times low. When an offload delay occurs, EMS staff has

to work overtime which is very costly to the EMS provider. In 2006, the city of

Toronto spent $3,906,700 in overtime expenditures [46]. Overtime costs are not the

only ones, when ambulances are operating for more hours than they are supposed to,

EMS incurs ambulance operation costs as well. As mentioned before, the region of

Waterloo incurred more than 6000 hours of offload delays in 2006 which, according

to the EMS of the region of Waterloo, translates to a financial loss of approximately

$840,000 in ambulance operations [34].

Perhaps the most negative impact of offload delays is on patients, paramedics,

and emergency department (ED) staff. There have been some occasions where

a patient died while waiting with paramedics for an emergency bed to become

available [1]. ED staff have to work extremely hard to provide care to patients

already in beds and at the same time manage to service the patients who arrive

with an ambulance as well as the ones already waiting for service. Offload delays

are frustrating to paramedics as well since in most cases they are unable to take a

meal break and have to work overtime to provide necessary care to patients while

waiting at the hospital.

As mentioned before the ambulance offload delay problem is not a simple issue

to resolve. This is due to the fact that the offload delay problem is a component

of a much larger problem stemming from ED overcrowding. The ED overcrowding

problem is further a product of several internal and external factors not attributable

to a single factor.
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One of the factors contributing to ED overcrowding is a lack of availability of

in-patient beds. When an ED patient’s health condition becomes stable, he/she is

usually transferred to an in-patient bed (if not sent home) where further care will

take place. In this case, an ED bed can be used to treat another patient whose

condition is not stable. However, lack of in-patient beds is itself another major

problem in many Canadian hospitals. According to the study done by Estey et al.

[14], it is commonly believed that lack of in-patient beds is one of the main causes

of ED overcrowding and long ED waiting times. When there are no in-patient

beds available patients have to stay in ED beds and as a result, the ED becomes

congested. There are many other factors contributing to the ED overcrowding

problem [15], some of them are:

• Use of an ED bed for non-emergency cases

• Staff shortages

• Aging population and increasing patient acuity

This discussion of ambulance offload delays clearly shows the severity and com-

plexity of the problem. There have been various reports on offload delays indicating

the need for long term plans to prevent the problem. There are also various ana-

lytical models, not specifically on offload delays, but on EMS operations that are

focused on improving the efficiency of the EMS system. Most of these models are

focused on ambulance location and relocation, status management systems, and

staff optimization that are aimed to improve EMS performance. There are also

several analytical and simulation models on ED planning and operation that are

focused on improving waiting times and reducing ED overcrowding. However, what

is important in situation of ambulance offload delay is the coordination between

the ED of a hospital and the EMS provider. Each unit has its own performance
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measures and each unit acting on its own may not produce the best overall solution

to the problem. Therefore, coordinated decision making between these units is nec-

essary. How does one tradeoff resource allocation to each unit in order to provide

the best quality care for patients? We currently do not have models that allow us

to evaluate tradeoffs in this specific context. Such a model is the main contribution

of this thesis.

1.2 Contributions of this Work

The main focus of this thesis is on the interaction between the EMS provider and the

cumulative effect of congestion in the ED of a hospital on ambulance offload delays.

As mentioned before, most of the work done by researchers focuses on either ED or

EMS operations and there are no analytical models specifically dealing with their

interactions. We have developed an analytical model that allows us to analyze

and explore the interaction between the two units by evaluating various system

performance measures such as:

• The distribution of the number of patients waiting for ambulance

• The distribution of the number of ED beds occupied

• The distribution of the number of ambulances in offload delay

• Expected waiting time for an ambulance and the mean time in offload delay

• Expected ambulance and ED bed utilization

In our work we show that adding more emergency beds or reducing the ED patient

treatment time have a similar effect on system performance and they both improve

the overall system performance. Also, we analyze the effect of varying the number
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of ambulances on the system performance and show that, although adding more

ambulances would improve some of the system performance measures, it increases

the average number of ambulances in offload delay. We also consider the tradeoffs

between the number of ED beds, the number of ambulances, and the ED patient

length of stay and show that how one can substitute a resource with another to

achieve a similar system performance improvement. For example, instead of adding

an extra bed in the ED to improve system performance, is it possible to add more

ambulances or reduce ED treatment time (if possible) to achieve a similar gain in

system performance measures.

1.3 Outline of the Report

The remainder of this thesis is organized as follows: In Chapter 2, we review models

on EMS and ED planning and operations mainly focused on the areas of ambulance

location and relocation, bed management and ED occupancy, staff optimization and

scheduling. In Chapter 3, we introduce the ambulance offload delay model. We use

queuing theory and continuous time Markov Chain concepts to model the situation.

The matrix geometric method is then used in Chapter 4 to obtain the steady

state probability distribution of the system. The results of Chapter 4 are used

in Chapter 5 to compute the distribution of various system performance measures

which allow us to compute more aggregate system performance measures. Chapter

6 contains sensitivity analysis and finally, conclusions and future research directions

are discussed in chapter 7.
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Chapter 2

Literature Review

There is a long history of research in both EMS and ED planning and operation.

In this chapter, we provide an overview of various models developed in these areas.

First, we will focus on ambulance location and relocation models used in the area

of EMS planning and operation and next we will review various analytical and

simulation models on staff scheduling and bed management in the area of ED

operation. Finally we discuss the fact that, although there are similar analytical

models in other areas of research such as manufacturing flow-lines that are useful

when modeling the situation of offload delays, they are not directly applicable since

design issues and performance measures are different.

2.1 EMS Planning and Operation

Two of the most important EMS operations that emergency managers are concerned

with are call screening, determining the type and number of ambulances to dispatch

to the incident, and ensuring response times are adequate. In emergency situations

response time is vital and ambulances must be located in a way to ensure adequate

coverage for fast response times. Most of the research done in EMS planning and
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operation is focused on the problem of ambulance location and relocation. Most of

the models in this area are based on the mathematical programming techniques and

they are divided into three main categories: static and deterministic, probabilistic,

and dynamic. Brotcorne, Laporte, and Semet [5] have done an extensive review of

various ambulance location and relocation models in each of the above mentioned

categories.

Static ambulance location models are among the early models that are meant

to be used at the planing stage. One of the early static ambulance location models,

known as Location Set Covering Model (LSCM), was introduced in 1971 [48] and

was aimed to minimize the number of ambulances needed to service all demand

points in the service area. The LSCM model did not take into account the fact

that once an ambulance is dispatched, some demand points are no longer covered.

Also, the model ignores the cost of the system since the optimal solution of the

model usually requires many ambulances in order to provide complete coverage.

To counter some of the shortcomings of LSCM models, Church and Revelle pro-

posed Maximal Covering Location Problem (MCLP) model (1974) which aims to

maximize population coverage subject to limited ambulance availability [9]. Al-

though the MCLP model is more practical than the LSCM model, it has two major

shortcomings: first, it assumes that response times are known and second that an

ambulance close to the demand point is always available. Both models were useful

in their own ways with LSCM determining the appropriate number of ambulances

to cover all demand points and MCLP making the best possible use of limited

ambulance resources.

When an emergency incident is identified, often two types of units with different

capabilities are dispatched to the scene: Basic Life Support (BLS) and Advance

Life Support (ALS) units. BLS is typically provided by firemen who are trained as

paramedics and they are often the first to arrive on scene. ALS is covered by ambu-
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lances. Both LSCM and MCLP models ignore the fact that, on occasion, different

types of vehicles may be dispatched to the incident. A number of deterministic

models were proposed to deal with this issue. Schilling et al. [42] was among the

first to develop a model, known as Tandem Equipment Allocation Model (TEAM),

to serve for this purpose. The model is capable of handling two types of vehicles

and is a direct extension of MCLP, therefore the objective is still to maximize the

demand covered. One problem with the TEAM is inadequate coverage when am-

bulances become busy. Researchers Daskin and Stern [11], and Hogan and Revelle

[39], proposed extensions to the TEAM by introducing a second objective that

would provide better ambulance coverage compared to the original model.

Deterministic models ignore the stochastic nature of the ambulance location

problem and the fact that ambulances operate as servers in a queuing system

and are sometimes unavailable. Hence, probabilistic models were then developed

to overcome these shortcomings of deterministic models. Daskin [10] proposed a

probabilistic model known as the Maximum Expected Covering Location Problem

(MEXCLP) in which the same probability of q (called busy fraction) is assigned

to each ambulance, where q is the fraction of time that an ambulance is unavail-

able. The model further assumes that all ambulances operate independently of

each other. The objective of the MEXCLP is to maximize the expected demand

covered and can only handle one type of vehicle. The MEXCLP model was later

applied to the city of Bangkok by Fujiwara et al. [18] in which they considered 59

demand points and 46 ambulance location sites. Also, Repede and Bernardo [38]

developed and applied an extension of MEXCLP model known as TIMEXCLP, to

the city of Louisville, Kentucky. Authors considered variations in ambulance travel

speed throughout the day in the TIMEXCLP formulation and used simulation to

validate the proposed solution.

Revelle and Hogan [40] proposed two other probabilistic models with an ob-
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jective of maximizing the demand covered with a given probability α. In the first

model, they assumed the same busy fraction of q for all potential location sites as

opposed to the same busy fraction of q for all ambulances that Daskin assumed.

In their second model, they relaxed this assumption and assumed that different

location sites have different busy fraction probabilities.

Erdogan, Erkut, and Ingolfsson [13] analyzed the effect of incorporating a sur-

vival function, which maps the response time to survival probability, into existing

probabilistic location covering models. The authors generated 4 models (from ex-

isting models) with an objective of maximizing the expected number of patients

who survive. The models were applied to the city of Edmonton, Canada where

180 demand points and 16 possible locations for EMS stations were considered. By

comparing the results of the developed models with the existing location covering

models such as the MEXCLP and MCLP, the authors were able to show that in-

troducing a survival function can result in significantly better EMS unit locations

with respect to the probability of survival.

Both deterministic and probabilistic ambulance location models did not consider

the dynamic nature of the location problem and the need to repeatedly relocate

ambulances in the same day. Kolesar and Walker [24] were among the first to

recognize this and proposed a dynamic model for fire departments that was also

applicable to ambulance systems. However, the model was not suitable enough for

ambulance systems due to the fact that ambulances need to be relocated in short

period of times, meaning that the model needed to be solved repeatedly. With an

advancement of computer technology and development of faster heuristics, it is now

possible to quickly solve the ambulance location problem in real time. Gendreau

et al. [20] developed a model that uses the available information at any time

t to recompute a new ambulance redeployment strategy. This model solves the

ambulance relocation problem at each instant time t when a call is registered.
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Gendreau et al’s model also considers a number of practical considerations, such

as:

• Long trips are avoided if they are between the first and final location sites,

• Repeated round trips are avoided if they are between the same two location

sites,

• Ambulances moved in successive relocations cannot be always the same.

Another similar model known as the System Status Management (SSM) model was

proposed by consultant Jack Stout [45]. The model uses historical data to predict

when and where emergency calls will come in, and how to locate sufficient resources

close enough to those anticipated calls to provide reasonable response times. There-

fore, the SSM model aims to optimize response times while maximizing the use of

personnel and vehicles. Many EMS systems are now employing models based on

the concept of SSM. In general, dynamic models are becoming more popular these

days and their advancement depends on sophisticated system technologies, and the

availability of fast and accurate search heuristics.

One of the earliest models to incorporate queuing theory is the hypercube model

developed by Larson [25]. The model was aimed at analyzing the problem of vehicle

location and response district design in urban emergency services. Given a region

with N response units such as ambulance stations that are spatially distributed

throughout the region, and a certain spatial distribution of demands for service,

the model is aimed to analyze the problem of:

1. How to partition the region into several districts in order to achieve certain

levels of service

2. How to locate or position the N response units in different districts
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Later, Larson proposed an approximate procedure to his queuing model for a faster

and easier computation of system performance characteristics [26]. However, the

approximate model assumes that there is only one server (ambulance) at each sta-

tion and an ambulance is unavailable to respond to new emergency calls while

providing service to a specific call. Further, the average service time is assumed to

be independent of the location of the call and the location of ambulance’s home

station. Budge, Ingolfsson, and Erkut [6] proposed an extension to Larson’s ap-

proximate model that allows for having multiple ambulances at each station and

average service times that are dependent on call location and vehicle location. The

model computes station-specific dispatch probabilities (the probability that a par-

ticular station will respond to an emergency call at a particular location) which

allow for easy calculation of many system performance measures.

Taylor and Templeton [47] proposed and applied a queuing model to determine

the optimal number of ambulances required in an urban fleet which serves two types

of customers (low priority vs. high priority). They considered a priority queuing

system with N servers and a cutoff service discipline where low priority customer

arrivals are cutoff and placed in a queue whenever there are more than 0 < N1 < N

servers busy. Two models were proposed, one for the situation where high priority

customers are lost if all N servers are busy; and one for the case where high priority

customers join a queue for service if all servers are occupied.

In general, most of the models in the area of EMS planning and operation have

focused on ambulance location and relocation as well as determining the optimal

number of ambulances to optimize system performance measures such as response

times and demand coverage. However, none of the models have looked at the link

between EMS and ED. Next, we will provide a brief review of some of the analytical

and simulation models used in the area of ED planning and operation.
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2.2 Emergency Department Planning and Oper-

ation

As mentioned in the introduction, the problem of overcrowded emergency depart-

ments due to increased demand for ED services has reached a critical state [14].

Overcrowding has led to a number of problems including prolonged waiting times,

ambulance diversions, offload delays, patient dissatisfaction, and many more [14].

Staff shortages and inefficient staff schedules are identified among causes of emer-

gency overcrowding. Therefore, one of the areas in healthcare research that has

been of interest to many scholars and it is becoming more crucial to assist with

the problem of emergency overcrowding is nurse scheduling and rostering. Models

in this area are mainly focused on determining the number of nursing personnel

and their shifts to meet service demands while (in most cases) minimizing costs

and other constraints such as nurse preferences, skill classes, and etc. Siferd and

Benton [43] have done an extensive review on nurse scheduling models in which

they have provided classifications of nurse rostering systems and review of methods

for solving different classes of problems. Another similar literature review was done

by Bradley and Martin on continuous nurse scheduling algorithms [3]. In general,

most of the scholars in this area have used mathematical programming techniques

to tackle the problem of nurse scheduling. As an example, Warner and Prawda [51]

proposed a large scale mixed integer quadratic programming for allocating a fixed

number of nursing staff in a number of skill classes to a number of units and shifts.

Miller and Pierskalla [31] recognized the fact that it is necessary to consider

nurse preferences and proposed a mathematical programming model with an ob-

jective of minimizing the total penalties associated with a failure to provide min-

imum required coverage and nursing staff preferences for schedules. One of the

benefits of this model is the fact that it is flexible enough to include a large number
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of constraints, and it can also be used to solve part-time and full-time employee

schedules. Another similar mathematical programming model which considered

nursing staff preferences, rotation patterns, and requests for days off was proposed

by Warner [50]. The author also incorporated multiple classes of nursing staff, a

cyclical weekend coverage policy, and a four or six week planning horizon.

Beside models that used mathematical programming techniques, perhaps the

most widely used models in the area of ED operations are simulation models. ED

operations can easily be represented as a queuing system where a simulation ap-

proach can be used to model all the processes in the system. One of the main

advantages of the simulation approach is its ability to model large systems with

many processes. When developing a simulation model, the most important and

time consuming step is data collection and validation. Although in some cases data

has to be collected manually; with the advancement of technology and information

systems, this is done automatically by computer systems nowadays. Therefore, easy

availability of system data and the fact that many simulation software packages

are now available are the main reasons why the simulation approach is becoming

more and more popular. Most emergency departments are now using simulation

to model their emergency system to shorten waiting times, and to optimize staff

requirements.

McGuire [30] proposed a simulation model to reduce the length of stay of pa-

tients in the emergency department of a medium to large sized hospital in the

southeast of Charlotte. With the help of the simulation model, Mcguire suggested

five alternatives to the hospital’s executive management to help reduce the average

patient waiting time of 157 minutes. Similarly, Rossetti et al. [41] used simulation

to determine the optimal staff schedules based on the emergency department at the

University of Virginia Medical Center in Charlottesville, Virginia. They considered

eighteen different alternatives for ED staff schedules and analyzed the impact of
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each alternative on patient throughput and resource utilization.

Several researchers proposed analytical and simulation models in the area of bed

management and ED occupancy which are found to be effective ways to control

ED overcrowding. Forster et al. [17] analyzed the effect of hospital occupancy,

measured by dividing the number of patients to the number of beds, on ED patient

length of stay. Their analysis was based on an observational study design using

administrative data and all patients presented in the ED between the years of 1993

to 1999. The authors showed that there is a positive correlation between hospital

occupancy and the length of stay of patients in ED, and increasing hospital bed

availability might reduce ED overcrowding.

Among researchers whom used queuing theory in the area of bed management,

Gorunescu et al. [21] proposed a queuing model to optimize the allocation and

use of hospital beds to improve patient care. The authors assumed Poisson patient

arrivals, phase-type hospital service times, and c beds (M/PH/c). The queuing

model was used to determine system performance characteristics such as mean

bed occupancy and the probability of a patient being lost when there are no beds

available. The authors also demonstrated a method to optimize the number of

beds, c, to minimize the cost for a given arrival rate and average length of stay.

Further, the model allows hospital managers to minimize the average cost per day

by balancing costs of empty beds against costs of delayed patients.

In general, models in the area of ED planning and operation are mostly focused

on optimizing the number of staff or ED beds while minimizing costs and improving

ED performance measures such as ED patient length of stay. Again, there are no

models which have specifically considered the interaction between EMS and ED.

As we discussed, the problem of offload delays is a two sided problem that

affects both EMS and ED operations. Each unit has its own performance measures,
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however each unit acting on its own may not produce the best overall solution.

Unfortunately there are no models analyzing the interaction of these units in a

situation such as ambulance offload delays. Therefore, our work is focused on

developing a model to represent the situation of offload delays which allows for

analysis of the tradeoffs between the two units. Albeit the fact that there are

no analytical models specifically dealing with ambulance offload delays, there are

similar analytical models in the area of manufacturing flow-lines.

2.3 Manufacturing Flow-lines

Manufacturing flow-line is one of the most studied class of manufacturing systems

characterized by the pattern of material flow. A flow-line system is composed of m

production stages in which materials or parts flow from stage 1 to stage m in order

of 1, 2, ...,m. Each stage consists of a number of functionally identical resources

such as machines that process a variety of materials. There is a buffer between two

consecutive stages where materials queue-up if machines at the next stage are not

available. Therefore in order to produce a product, which consists of several tasks

that need to be performed in the flow-line, materials has to flow from stage 1 to

stage m where at each stage a certain task is being performed. In order for the

performance of the system to be optimized, the following design issues need to be

considered:

• The number of production stages

• The number of machines at each stage 1, 2, ...,m

• The workload allocated to each stage

• The production capacity of each stage
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Figure 2.1: 2 Stage Flow-line Representation of Offload Delays

Buzacott and Shanthikumar [7] have done an excellent job in addressing the

above mentioned design issues and reviewed various approaches using queuing mod-

els to resolve these issues. Another similar work is done by Govil and Fu [22] in

which authors review the contributions and applications of queuing theory in the

field of manufacturing systems including flow-lines.

The situation of ambulance offload delays has some similarities to a manufac-

turing flow-line system. It is possible to represent it as a two stage manufacturing

flow-line shown in Figure 2.1, where patients have a similar role as parts. In this

system, stage 1 consists of N ambulances and stage 2 consists of M emergency

beds. Similarly there are two buffers, one in stage 1 with unlimited capacity for

patients waiting for ambulance and the other one in stage 2 with a capacity of N

for ambulances experiencing offload delay.
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Although there are similarities between both system, there is one important

difference and that is the fact that performance measures used are completely dif-

ferent. In the offload delay situation we are interested in evaluating performance

measures such as the average time in offload delay, number of ambulances in offload

delay, number of hospital beds occupied, and the number of patients waiting for

ambulance. Whereas, in a flow-line system the two common performance measures

used are the number of jobs in the system and the total time a job spends in the

system. Also, most of the design issues are different between the two systems. As

a result, the manufacturing flow-line models are not applicable to the situation of

ambulance offload delays; however, knowledge and understanding of these models

is helpful when designing a model for the ambulance offload delay problem.

In this chapter we reviewed several analytical and simulation models in the

area of EMS and ED planning and operation and showed that although there are

no models analyzing the interaction of these units, similar models exist in other

areas of research such as the manufacturing flow-lines. In the next chapter, we

use queuing theory to construct a system representing the problem of ambulance

offload delay and model the behavior of the system as a continuous time Markov

chain.
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Chapter 3

The Ambulance Offload Delay

Model

In this chapter, we propose a queuing system to represent the interaction between

the EMS provider and the ED of a hospital. In section 3.1, we describe the queuing

system and its components used to represent the situation of ambulance offload

delay. In section 3.2, a continuous time Markov Chain (MC) representation of our

queuing system is discussed in detail. The model state variables, transition rates

between states, and the infinitesimal generator matrix and its components are all

discussed in section 3.2. At last, a detailed example to illustrate the ideas presented

and discussed in the chapter is presented in section 3.3.

3.1 Model Description

We consider a system with a single hospital that has a total of M ≥ 1 emergency

beds and an EMS center with a total of N ≥ 1 ambulances to provide service to

emergency calls. Both N and M are assumed to be integers. Calls arrive at the

EMS center according to a Poisson process with rate λ and are served in a first come
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first serve basis. When an emergency call arrives and an ambulance is available, it is

dispatched to the incident scene. We define the ”ambulance transit time” to be the

time it takes for an ambulance to reach the emergency scene, performs on scene care,

travels back to the hospital, offloads the patient and returns to its base location.

The ambulance transit time is assumed to follow an Exponential distribution with

rate τ . If there are no ambulances available to serve the emergency call, the patient

will join a queue to wait until an ambulance becomes available in order to be served.

An ambulance is assumed to be unavailable when it is either in transit (transferring

a patient to the hospital) or experiencing an offload delay at the hospital.

It is important to note the difference between offload delay and offload time

used in the ambulance transit time. As we defined in chapter 1, offload delay refers

to the situation where an ambulance is unable to transfer care of a patient to the

ED due to unavailability of an emergency bed. On the other hand, offload time

is the time that it normally takes for an ambulance to offload a patient and to

transfer him/her to the hospital ED when a bed is available. According to [35], the

EMS in the region of Waterloo has set an offload time of twenty minutes, which

means that if an ambulance takes forty five minutes to offload a patient; the first

twenty minutes is considered as offload time and the extra twenty five minutes is

considered as an offload delay. Another differentiation is based the fact that offload

time is a part of the ambulance transit time which is an input parameter, whereas

offload delay is an output of the system.

Once an ambulance transfers a patient to the hospital’s ED, the time it takes

for the hospital to treat the patient (the hospital service time) is assumed to be

Exponentially distributed with rate µ1. In the situation where there are no beds

available at the ED and the ambulance is experiencing offload delay, we assume

that it is possible to provide treatment in the ambulance and to directly transfer

the patient to an in-patient bed without going through ED. If an emergency bed
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becomes available while patient is being treated in an ambulance, we assume that

the patient is transferred to the bed immediately and the treatment time is reset

to the ED treatment time (exp (µ1)). The treatment time in an ambulance is

assumed to follow an exponential distribution with rate µ2. Basically, we assume

that ambulances can be used as extra beds in the ED but with a treatment time

of much longer than a regular ED bed due to the fact that there are not as many

resources available in an ambulance as compared to the ED of a hospital. It is

important to note that the ambulance treatment time parameter adds flexibility

to our modeling. By appropriately setting the value of µ2 we can model different

policies with respect to offload delays. For example, suppose that the EMS policy

with respect to offload delays is that ambulances must wait at the ED until a bed

becomes available This policy can easily be adopted by setting the value of µ2

to 0 which simply means that the rate at which ambulances treat patients is 0

(patients/time).

Patients arriving via ambulance are not the only arrivals to the ED of the

hospital. In fact, according to [35] small percentage of ED’s volume arrive by

ambulance. In our model, we use the term ”outside patients” to refer to those

majority of patients that arrive at the hospital’s ED without using an ambulance

resource. There is no priority between the outside patients and the patients who

arrive by ambulance in our model. That is, all patients that arrive to the ED

are served in a FCFS basis. Further, we assume that outside patients are lost if

the hospital’s ED has reached its maximum capacity - i.e. no emergency beds are

available. Simply put, if an outside patient arrives at the hospital when there are

no emergency beds available, he/she will not wait to receive care and simply goes

to another hospital. We assume that outside patients arrive according to a Poisson

process with rate δ. These patients have the same service rate µ1 as the patients

arriving by an ambulance.
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The Above mentioned queuing system is shown in Figure 3.1. The dashed line

from the ”Ambulance in offload delay” queue to the ”inpatient/discharge” end point

represents the situation where µ2 > 0. That is, the patient can either be transfer

to a ED bed or can be treated in an ambulance and transferred to an inpatient bed

or discharged. If a bed becomes available, then the patient is transferred to the ED

bed and the treatment time is set to ED’s treatment time with rate µ1. However,

if an ED bed does not become available and ambulance finishes its treatment with

rate µ2, the patient is either transferred to an in-patient bed or discharged from

the hospital. For the case where µ2 = 0, the dash line is simply ignored since

ambulances must wait at the ED until a bed becomes available.

Figure 3.1: The Ambulance Offload Delay System
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The following table summarizes the model parameters discussed above:

Parameter Parameter Description

M Total number of hospital beds

N Total number of ambulances

λ Patient arrival rate

τ Ambulance transit time rate

δ outside patient arrival rate

µ1 Hospital service rate

µ2 Ambulance service rate

Table 3.1: Model Parameters

The model assumptions can be summarized in the following points:

• Emergency calls arrive according to a Poisson process with rate λ and are

served in a FCFS basis

• If an ambulance is not available when an emergency call arrives, the patient

joins a queue

• The ambulance transit time, hospital treatment time, and ambulance treat-

ment times are assumed to follow an Exponential distribution with rates τ ,

µ1, and µ2 respectively.

• When µ2 = 0 and there are no beds available at the ED of the hospital,

ambulances must wait at the hospital until a bed becomes available (offload

delay).

• When µ2 > 0 and an ED bed becomes available while a patient is receiving

care in an ambulance, he/ she is transferred to the ED bed immediately and

the treatment time is reset to ED’s treatment time with rate µ1.
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• Outside patients are assumed to arrive according to a Poisson process with

rate δ and have a service rate of µ1.

• Patients arriving from outside and those arriving by ambulance have equal

priority.

• Outside patients are lost in the case where the hospital’s ED has reached its

maximum capacity.

In the next section, we will show how this system can be modeled in a continuous

time Markov Chain framework.

3.2 The Markov Chain

The system described in the previous section can be modeled by a continuous time

Markov Chain (MC) with a discrete state space. In order to describe the system

precisely at time t : t > 0 we define the following set of state variables:

1. {NA(t) = 0, 1, ...}: Number of patients waiting for an ambulance at time t

2. {NT (t) = 0, 1, ..., N}: Number of ambulances in transit (on the way to the

hospital)

3. {ND(t) = 0, 1, ..., N}: Number of ambulances experiencing offload delay at

time t

4. {NB(t) = 0, 1, ...,M} Number of emergency beds occupied at time t

N is the total number of ambulances and M is the total number of emergency

beds. Although the state of the system can be represented by the above 4 variables,

we were able to simplify this representation by combining and reducing the above

variables into the following 2 variables:
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1. {I(t) = 0, 1, ..., N, ...} : The number of patients waiting for an ambulance at

time t, NA(t), plus the number of ambulances in transit at time t, NT (t).

I(t) = NA(t) +NT (t) (3.1)

2. {J(t) = 0, 1, ...,M, ...,M+N} : The number of ambulances in offload delay at

time t, ND(t) plus the number of emergency beds occupied at time t, NB(t).

J(t) = ND(t) +NB(t) (3.2)

This way of system representation has some benefits. It allows us to precisely

describe the state of the system at any given point in time with only two variables,

and more importantly it will dramatically reduce the amount of computations and

calculations required. However, this representation comes with a price. It will

complicate system performance measure calculations as we will see in Chapter 5.

We use the notation (I(t), J(t)) to represent the state of the system at time t.

Table 3.2 shows how to properly interpret the state of the system, (I(t), J(t)) =

(i, j) at time t for i = 0, 1, 2, ... and j = 0, 1, ...,M +N .

To show how Table 3.2 can be used, suppose the hospital under consideration has

four emergency beds, and there are 3 ambulances in the system (N = 3 and M = 4).

Say we want to interpret state (4, 5) where i = 4 and j = 5. Since i = 4 > N = 3

and j = 5 > M = 4, we are looking at the case number four in Table 3.2 which

indicates that the system is in a state where four emergency beds are occupied; one

ambulance is experiencing offload delay at the hospital; two ambulances in transit;

and two patients are waiting for ambulance. Another example would be state (2, 6)

which falls under the second case since i = 2 < N = 3 and j = 6 > M = 4. This

state indicates that four beds are occupied; two ambulances are in offload delay;
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Case Condition Interpretation

1 i ≤ N , j ≤M
i patients in transit, j beds occupied, no ambulances
stock at the hospital, and no patients waiting for an
ambulance

2 i ≤ N , j > M
M beds occupied, j − M ambulances stock at the
hospital, N − (j−M) ambulances are in transit, and
i− (N − (j −M)) patients waiting for an ambulance

3 i > N , j ≤M N ambulances in transit, i − N patients waiting for
an ambulance, and j beds occupied

4 i > N , j > M
M beds occupied, j − M ambulances stock at the
hospital, N − (j − M) ambulances in transit, and
i− (N − (j −M)) patients waiting for an ambulance

Table 3.2: How to interpret state descriptor (I(t), J(t)) = (i, j)

one patient is waiting for an ambulance; and one ambulance is in transit. Other

states can be interpreted in a similar way.

There are 5 events in our system that can cause the state of the system to be

changed at any given point in time, they are: an emergency call arrival, patient

transfer completion to the hospital, hospital service completion, ambulance service

completion when µ2 > 0, and an outside patient arrival. Suppose the system is

in state (I(t), J(t)) = (i, j) at time t > 0, Table 3.3 summarizes all the possible

transitions that can occur from this state to all other possible states when one of

the above mentioned events occur.
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We will leave our discussion of Table 3.3 until section 3.3 where we extensively

analyze and explain it in a context of a numerical example. Now that we have all

the required transition rates, it is possible to construct the infinitesimal generator

matrix Q which shows all the transition rates between the states of the MC for our

queuing system. The Q matrix and its components are shown below:



0 1 2 3 . . . N − 2 N − 1 N N + 1 N + 2 N + 3 . . .

0 B0 A0

1 C1 B1 A0

2 C2 B2 A0

3 C3 B3
. . .

...
. . . . . . . . .

N − 2
. . . BN−2 A0

N − 1 CN−1 BN−1 A0

N A2 A1 A0

N + 1 A2 A1 A0

N + 2 A2 A1 A0

N + 3 A2 A1 A0
...

. . . . . .


Figure 3.2: The Infinitesimal Generator Matrix Q

where A0, A1, A2, {Cn : n = 1, 2, ..., N − 1}, and {Bn : n = 0, 1, ..., N − 1} are of

size (M +N + 1) ∗ (M +N + 1), and

B0 = −A0

Bn = −(Cn + A0), n = 1, 2, ..., N − 1

A1 = −(A0 + A2)

In order to properly interpret the infinitesimal generator matrix Q and its com-

ponent matrices, we need to define the state level of the system. We define the level

of the MC as the subset of all states that have the same I(t), and the phase of the

MC as the subset of all states that have the same J(t).

29



First, we note that the generator matrix has a repetitive structure after the N th

column (N th column included). The jth column for j ≥ N + 1 is the same as the

N th column except that it is shifted down by j −N steps. We call this portion of

the generator matrix, the repeating portion since it has a repetitive structure. In

the repeating portion, A0 represents the transition rate matrix at which the system

moves up one level, A1 is the transition rate matrix at which the system returns to

the same level, and A2 is the transition rate matrix at which the system moves down

one level. Note that the transition rates within the component matrices correspond

to the movement along phases of the MC. The A0, A1, and A2 matrices have the

following form:



phase 0 1 2 . . . M − 1 M M + 1 . . . M +N − 1 M +N

0 λ
1 λ
2 λ
...

. . .

M − 1 λ
M λ
M + 1 λ
...

. . .

M +N − 1 λ
M +N λ


Figure 3.3: Transition Rate Matrix A0



phase 0 1 . . . M − 1 M M + 1 . . . M +N − 1 M +N

0 βN,0,0,1 δ
1 µ1 βN,1,0,1

2 2µ1

...
. . .

M − 1 βN,M−1,0,1 δ
M Mµ1 βN,M,0,0 0
M + 1 Mµ1 + µ2 βN−1,M,1,0

M + 2 Mµ1 + 2µ2

...
. . .

M +N − 2 0
M +N − 1 β1,M,N−1,0 0
M +N Mµ1 +Nµ2 β0,M,N,0


Figure 3.4: Transition Rate Matrix A1
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

phase 0 1 . . . M M + 1 M + 2 . . . M +N − 1 M +N

0 Nτ
1
2
...

. . .

M − 1 Nτ
M Nτ
M + 1 (N − 1)τ
...

. . .

M +N − 2 2τ
M +N − 1 τ
M +N 0


Figure 3.5: Transition Rate Matrix A2

βn,i,j,k = −(λ+ nτ + iµ1 + jµ2 + kδ) (3.3)

where βn,i,j,k is the function that makes the sum of the elements along each row of

the Q matrix zero.

Next, we focus on the matrices prior the N th column. We call this portion of

the generator matrix the ”boundary portion”. The A0 matrix in this portion is

the same as the A0 matrix in the repeating portion and corresponds to transitions

from level n to n+ 1 for n < N . Matrices Bn and Cn have a similar interpretation

to the A1 and A2 matrices. {Bn : n = 0, 1, ..., N − 1} is the transition rate matrix

where the the system returns to the same level n whereas {Cn : n = 1, 2, ..., N − 1}

is the transition rate matrix at which the system moves down from level n to n− 1

given that the process started at level n < N . The Bn and Cn matrices have the

following form:
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

phase 0 1 2 3 . . . M M + 1 . . . M +N − (n− 1) . . . M +N − 1 M +N

0 nτ
1 nτ
2 nτ
...

. . .

M − 1 nτ
M nτ
...

. . .

M +N − n (n− 1)τ
...

. . .

M +N − 2 2τ
M +N − 1 τ
M +N 0


Figure 3.6: Transition Rate Matrix Cn



phase 0 1 . . . M M + 1 . . . M +N − n . . . M +N − 1 M +N

0 βn,0,0,1 δ
1 µ1 βn,1,0,1

2 2µ1

...
. . .

M − 1 δ
M βn,M,0,0 0

...
. . .

M +N − n βn,M,N−n,0

...
. . .

M +N − 2 0
M +N − 1 βn,M,N−1,1 0
M +N Mµ1 +Nµ2 βn,M,N,1


Figure 3.7: Transition Rate Matrix Bn

Although matrices Bn and Cn have a similar interpretation in the boundary

portion as the A1 and A2 in the repeating portion, there is major difference between

these matrices. Matrices Bn and Cn have different entries depending on the level

of the MC. For example, the transition rate matrix with which the process moves

from the second level to the first level, C2 is not the same as the transition rate

matrix corresponding to the movement from the third level to the second level,

C3. We refer to these matrices as level dependent matrices. On the other hand,

the entries of matrices A0, A1 and A2 are always fixed and they do not depend

on the level of MC. These matrices are referred to as level independent matrices.

Simply put, the process we are considering is a mixture of what is so called level

dependent quasi-birth-death process and level independent quasi-birth-death process.
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The process is level independent when the MC is in a level I(t) ≥ N and it is level

dependent for I(t) < N .

Let π(i, j) denote steady state probability or the long run (mean) fraction of

time the system spends in state (i, j). For example, given that there are four beds

and two ambulances in the system, π(3, 5) denotes the mean fraction of time the

system spends in state (3, 5) in which four beds are occupied, one ambulance is

in offload delay, one ambulance is in transit, and two patients are waiting for an

ambulance. Now, let

πi = {π(i, 0), π(i, 1), ..., π(i,M), ..., π(i,M +N)}

π = {π0, π1, ..., πN , ...}

We are interested in calculating the steady state probability vector π, since having

these long run probabilities will allow us to compute various system performance

measures as we will see in Chapter 5.

The essential problem is in determining the steady state probability vector π.

This requires the solution to a set of linear flow balance equations, where there is

an equation associated with each level of the MC. For a continuous time Markov

chain process with an infinitesimal generator matrix Q, the balance equations are

given by the following system of equations:

πQ = 0 (3.4)

πe = 1

π ≥ 0

where e is a column vector of ones and the equation πe = 1 is known as the

normalization equation. In general, for a continuous time MC process we have that
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the rate out of state i must be equal to the rate into state i for i > 0, and that is

why we have πQ = 0. The following table expands the πQ = 0 and shows the

balance equation for each specific level in our case:

Level Balance Equation

0 π0B0 + π1C1 = 0

1 π0A0 + π1B1 + π2C2 = 0
...

...

i πi−1A0 + πiBi + πi+2Ci+1 = 0
...

...

N − 1 πN−2A0 + πN−1BN−1 + πNA2 = 0

N πN−1A0 + πNA1 + πN+1A2 = 0

N + 1 πNA0 + πN+1A1 + πN+2A2 = 0
...

...

j πj−1A0 + πjA1 + πj+1A2 = 0
...

...

Table 3.4: System Balance Equations

Therefore, the general form of the balance equations in the repeating portion is

given by:

πi−1A0 + πiA1 + πi+1A2 = 0, i = N,N + 1, ... (3.5)

For the boundary portion, we have:

π0B0 + π1C1 = 0 (3.6)

πi−1A0 + πiBi + πi+2Ci+1 = 0, i = 1, 2, ..., N − 2 (3.7)

πN−2A0 + πN−1BN−1 + πNA2 = 0 (3.8)

34



Before we proceed to the next chapter and discuss our approach to solve for the

steady state probability distribution π, we present a numerical example to illustrate

the ideas presented in this chapter and to discuss Table 3.3.

3.3 Numerical Example

In order to keep the example simple but at the same time be illustrative we consider

a system with N = 3 and M = 4 - i.e. four emergency beds and three ambulances.

For now we do not assign any numerical values to the rest of the model parameters

i.e arrival and service rates. By the definition of the state variables we know that

I(t) ≥ 0 and 0 ≤ J(t) ≤ 7. The transition rates for this example are given in Table

3.5. Now we will take some time to explain Table 3.5.

When an emergency call arrives, regardless of the system state, the MC level

increases by one with rate λ. Suppose the system is currently in state (5, 7) where

four hospital beds are occupied, three ambulances are in offload delay, and five

patients are waiting for an ambulance. In an event of call arrival, the system

will make a transition to state (6, 7), where now six patients are waiting for an

ambulance instead of 5.

The situation is more complicated in the case of ambulance transfer completion

event (transferring a patient to the hospial). In order to explain cases 2, 3, 4, and

5 we use the following fact: if {Ti : i = 1, 2, ..., N} are N i.i.d exponential random

variables with rate τ , then Tmin = min(T1, T2, ..., TN) is exponentially distributed

with rate Nτ . We know that the ambulance transit time is exponentially distributed

with rate τ . Therefore, if there are n > 0 ambulances in transit, the rate at which a

patient is transferred to the hospital is nτ since we are looking at the the minimum

of n Exponential distributions with rate τ .
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According to case 2, if there are no ambulances in offload delay, 0 ≤ j ≤ 4, and

no patients waiting for an ambulance, 0 < i ≤ 3, the rate at which patients are

transferred to the hospital depends on the number of ambulances in transit. The

rate is given by the “number of ambulances in transit ×τ”. An ambulance transfer

completion event would cause the MC level to decrease by one and the phase of the

system to increase by one To illustrate this, suppose the system is in state (3, 3),

that is 3 beds are occupied and 3 ambulances are in transit. When a patient is

successfully transferred to the hospital, the system will make a transition into state

(2, 4) with rate 3τ since at the same time a patient is transferred to the hospital

and an emergency bed is occupied. As a result, the level of MC is decreased by one

and the phase of the MC is increased by one.

Case 3 is similar to case 2 except that there are {i− 3 : i > 3} patients waiting

for an ambulance, 3 ambulances in transit, and no ambulances in offload delay. In

this situation, the rate at which an ambulance transfer completion occurs is always

3τ since there are 3 ambulances in transit. As an example, consider state (10, 3).

The only difference between this state and state (3, 3) discussed for case 2 is the

fact that there are 7 patients waiting for ambulance but the number of ambulances

in transit is still 3. Therefore the rate at which an ambulance transfer completion

occurs is still 3τ and in this case the system makes a transition into state (9, 4).

Cases 4 and 5 are similar to cases 2 and 3 except that there are (j−4) ambulances

experiencing offload delay at the hospital. This results in (3− (j − 4)) ambulances

available that are either in transit or idle depending on the value of i. Again, the

transition rates depend on the number of ambulances in transit only.

The hospital service completion event is similar to ambulance transfer comple-

tion event in the sense that the rate at which a patient is discharged from the

hospital depends on the number of beds occupied. Again, we know that the hos-

pital service rate is exponentially distributed with rate µ1, therefore if there are
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n > 0 beds occupied, the rate at which a bed becomes available is nµ1. Unlike

an ambulance transfer completion event, a hospital service completion only affects

the MC phase by increasing its value by one. An example of a hospital service

completion for case 6 would be transition from state (4, 3), with 3 beds occupied,

to the state (4, 2) where a patient is discharged from the hospital. In this case,

the rate of transition is 3µ1 since there were 3 beds occupied. Now, if there are

ambulances experiencing offload delay at the hospital (case 7), the rate at which a

patient is discharged from the hospital is Mµ1 since all beds are occupied; that is

why an ambulance is in offload delay.

In case 8, all the emergency beds are occupied which means that there are

ambulances experiencing offload delay. Suppose the system is in the state (2, 6)

where all beds are occupied, 2 ambulances are in offload delay, 1 ambulance is in

transit, and 1 patient is waiting for an ambulance. Given that µ2 > 0, a patient can

be discharged either through the hospital or an ambulance depending on whichever

finishes its service first. If the patient is discharged through the hospital the rate

is 4µ1 since there are 4 beds occupied; and if the patient is discharged through an

ambulance the rate is 2µ2 since there are 2 ambulances in offload delay. Therefore

the overall rate would be 4µ1 + 2µ2 since we are looking at the minimum of two

exponential random variables with corresponding rates 4µ1 and 2µ2. Hence, the

rate at which the system makes a transition from state (2, 5) to state (2, 4) is given

by 4µ1 + 2µ2. Now if we assume that µ2 = 0, that is ambulances do not have the

ability to provide treatment to patients within ambulance, case 8 is the exact same

as case 7.

Finally, outside patient arrivals (case 9) can only occur when there is an emer-

gency bed available i.e 0 ≤ j < 4, and this would cause the MC phase to increase by

one. The rate at which this transition occurs is simply δ. As an example, suppose

an outside patient arrives when the system is in the state (1, 3) where 3 beds are
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occupied but one bed is still available. This arrival would cause the system to make

a transition into state (1, 4) where all emergency beds are now occupied.

Using the transition rates from Table 3.5, we can construct the infinitesimal

generator matrix Q and its components for this example:

Q =



0 1 2 3 4 5 . . .

0 B0 A0

1 C1 B1 A0

2 C2 B2 A0

3 A2 A1 A0

4 A2 A1 A0

5 A2 A1
. . .

...
. . . . . .



B0 =



0 1 2 3 4 5 6 7

0 β0,0,0,1 δ

1 µ1 β0,1,0,1 δ

2 2µ1 β0,2,0,1 δ

3 3µ1 β0,3,0,1 δ

4 4µ1 β0,4,0,0 0

5 4µ1 + µ2 β0,4,1,0 0

6 4µ1 + 2µ2 β0,4,2,0 0

7 4µ1 + 3µ2 β0,4,3,0


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B1 =



0 1 2 3 4 5 6 7

0 β1,0,0,1 δ

1 µ1 β1,1,0,1 δ

2 2µ1 β1,2,0,1 δ

3 3µ1 β1,3,0,1 δ

4 4µ1 β1,4,0,0 0

5 4µ1 + µ2 β1,4,1,0 0

6 4µ1 + 2µ2 β1,4,2,0 0

7 4µ1 + 3µ2 β1,4,3,0



B2 =



0 1 2 3 4 5 6 7

0 β2,0,0,1 δ

1 µ1 β2,1,0,1 δ

2 2µ1 β2,2,0,1 δ

3 3µ1 β2,3,0,1 δ

4 4µ1 β2,4,0,0 0

5 4µ1 + µ2 β2,4,1,0 0

6 4µ1 + 2µ2 β2,4,2,0 0

7 4µ1 + 3µ2 β1,4,3,0


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C1 =



0 1 2 3 4 5 6 7

0 τ

1 τ

2 τ

3 τ

4 τ

5 τ

6 τ

7



C2 =



0 1 2 3 4 5 6 7

0 2τ

1 2τ

2 2τ

3 2τ

4 2τ

5 2τ

6 τ

7



41



A1 =



0 1 2 3 4 5 6 7

0 β3,0,0,1 δ

1 µ1 β3,1,0,1 δ

2 2µ1 β3,2,0,1 δ

3 3µ1 β3,3,0,1 δ

4 4µ1 β3,4,0,0 0

5 4µ1 + µ2 β3,4,1,0 0

6 4µ1 + 2µ2 β2,4,2,0 0

7 4µ1 + 3µ2 β1,4,3,0



A2 =



0 1 2 3 4 5 6 7

0 3τ

1 3τ

2 3τ

3 3τ

4 3τ

5 2τ

6 τ

7



A0 = λ · I8
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where I8 is an identity matrix of size 8 and βn,i,j,k is given by equation 3.3.

The balance equations for this example have the general form given by equations

3.5-3.8.

This concludes the presentation of our MC model. In Chapter 4, we continue

our discussion of steady state probabilities and present a method to numerically

compute the steady state probability distribution. We also extend example 3.3

discussed above by assigning numerical values to the rest of the model parameters

and solve for its steady state probability distribution.
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Chapter 4

Calculating Steady State

Probabilities

In this chapter we present a computational procedure to allow us to numerically

compute the steady state probability distribution π for the Markov Chain model

developed in chapter 3. Recall the system of balance equations (3.4) presented in

Section 3.2:

πQ = 0 (4.1)

πe = 1

π ≥ 0

Various methods can be used to solve the above system of equations with each

one having its own strengths and weaknesses. A simple (but not efficient) approach

to solve 4.1 is the substitution method. This is possible since the number of equa-

tions in 4.1 is always one more than the number of variables due to the normalization

equation πe = 1. However, this method gets extremely tedious as the number of
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variables increases. Fortunately, several researchers have been able to recognize

possible structural features of these equations, and were able to develope efficient

and more sophisticated algorithms compared to the simple substitution method.

Snyder and Stewart [44] reviewed two commonly used computational approaches

for solving the above set of equations. The first approach, called the explicit ap-

proach, was developed by Marie and Pellaumail in scalar form [29] and Carroll et

al. in matrix form [8]. In these approaches, an expression for the steady state

probabilities is explicitly written as the function of the server parameters. Snyder

and Stewart show how this approach applies to a queuing system with phase type

distribution service times where (n, j) represents the state of the system with n

number of customers in a service facility and j being the current stage of service.

The explicit approach constructs an extra set of balance equations that would re-

duce the normal balance equations from second order difference equations to first

order difference equations. This allows for defining a coefficient matrix Hn that

relates the steady state probabilities in the form πi−1 = Hn ·πi, where Hn elements

are given explicitly as a function of server parameters.

The second approach discussed by Snyder and Stewart is based on Neuts’ work

[33]. Neuts was able to show that if one can group the states of the Markov

Chain (MC) into vectors which possess a certain repetitive structure, there exists a

recursive relationship between the steady state probabilities that can be expressed

in the following form:

πi+1 = R · πi

where R is a constant matrix of an appropriate dimension. This approach is

called the matrix geometric method and it was proposed by Evans [16] and Wal-

lace [49] and extensively developed by Neuts later. There are a wide range of
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processes that have a regular structure which lead to Markov models with a repet-

itive structure that could fit within the matrix geometric framework. Examples

of such processes are various types of queueing systems, computer performance

models, and telecommunication models. For many problems it is possible to use

either the explicit or the matrix geometric approach, but some of the problems

are more amenable to solution via the matrix geometric method. In our work, we

will use Neuts’ matrix geometric approach to numerically compute the steady state

probability distribution.

4.1 The Matrix Geometric Approach

Recall the infinitesimal generator matrix, Q, from Chapter 3:



0 1 2 3 . . . N − 2 N − 1 N N + 1 N + 2 N + 3 . . .

0 B0 A0

1 C1 B1 A0

2 C2 B2 A0

3 C3 B3
. . .

...
. . . . . . . . .

N − 2
. . . BN−2 A0

N − 1 CN−1 BN−1 A0

N A2 A1 A0

N + 1 A2 A1 A0

N + 2 A2 A1 A0

N + 3 A2 A1 A0

...
. . . . . .


We know that the process is in the repeating or level independent portion when-

ever the MC is in the level I(t) ≥ N and it is in the boundary, or level dependent
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portion whenever I(t) < N . For now, let us focus on the level independent portion.

From chapter 3, the set of balance equations for the repeating portion have the

following form:

πi−1A0 + πiA1 + πi+1A2 = 0, i = N,N + 1, ... (4.2)

First we note that the transition rates between the adjacent levels in the re-

peating portion do not depend upon the level. For example, the rate at which the

process moves up from level i to i + 1 is A0 for all i ≥ N . Similarly, the rates

at which the process moves down from level i to i − 1 or returns to i are A2 and

A1 respectively and are the same for all i ≥ N . Therefore it is not surprising to

see that the value of {πi, i ≥ N} is a function of the transition rates between the

adjacent levels. Hence, this suggests that there is some constant matrix R such

that

πi+1 = R · πi i = N − 1, N, ... (4.3)

which is what Neuts discovered. The matrix R is usually called the “Rate Matrix”

(not to be confused with the transition rate matrices) and in our case has a di-

mension of (M + N + 1) × (M + N + 1). According to Ramaswami and Taylor

[37], the rate matrix, R, has the following physical interpretation: given that the

process starts in state (k, i) for k ≥ N and 0 ≤ i ≤ M + N , the (i, j)th entry of

the matrix R is the expected sojourn time in state (k + 1, j) for 0 ≤ j ≤ M + N ,

before returning to level k. Note that the expected sojourn time in state i is the

expected number of visits to state i multiplied by the expected time spent in state

i per visit.

Rewriting equation 4.3 results in the following matrix geometric form:

πk = Rk−N+1 · πN−1 k ≥ N (4.4)
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Now we substitute this equation into equation 4.2:

Ri−N πN−1A0 +Ri−N+1 πN−1A1 +Ri−N+2πN−1A2 = 0. i = N,N + 1, ... (4.5)

Multiplying both sides by RN−i and simplifying yields:

A0 +RA1 +R2A2 = 0 (4.6)

This is a quadratic equation that is normally solved numerically. Computing the

rate matrix R in 4.6 will allow us to compute the repeating portion steady state

probability distribution (πN , πN+1, ...).

Computing steady state probabilities (π0, π1, ..., πN−1) for the level dependent

portion is not as simple as the level independent portion due to the fact that

transition rate matrices depend on the level of MC. Because of this, relationship

4.3 is no longer applicable to the level dependent portion of the generator matrix.

Although the rate at which the process moves up a level (A0) is still the same, the

rates at which the process moves down a level or returns to the same level are not

the same and they depend on the level I(t). Neuts also considered such processes

and showed that in the level dependent process the following relationship holds

among the steady steady probabilities:

πi = Ri · πi−1 i = 0, 1, ..., N − 1 (4.7)

The only difference between relationship 4.3 and 4.7 is in the fact that in 4.7

the rate matrix Ri is also level dependent. The rate matrix Ri has a similar inter-

pretation as the rate matrix R in the level independent portion. The (j, k)th entry

of the matrix Ri is the expected sojourn time in state (i + 1, k), before returning

to level i given that the process started in state (i, j) for i < N .
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Similar to 4.4 rewriting 4.7 yields:

πi = π0

i−1∏
j=0

Rj i = 1, 2, ..., N − 1 (4.8)

Now recall the boundary balance equations from chapter 3:

π0B0 + π1C1 = 0 (4.9)

πiA0 + πi+1Bi + πi+2Ci+1 = 0, i = 1, 2, ..., N − 2 (4.10)

πN−2A0 + πN−1BN−1 + πNA2 = 0 (4.11)

Substituting 4.8 in 4.10-4.11 and simplifying yields:

A0 +RiBi +RiRi+1Ci+1 = 0, i = 0, 1, 2, ..., N − 3 (4.12)

A0 +RN−2BN−1 +RN−2RN−1A2 = 0 (4.13)

Note that equations 4.12-4.13 and 4.6 are very similar. Simply, the rate matrix Ri

is replaced with R and matrices A1 and A2 are replaced with Bi and Ci respec-

tively. Therefore, by first solving the family of matrices {Ri, i = 0, 1, ..., N − 2}, we

can compute the steady state probabilities associated with the boundary portion,

(π0, π1, ..., πN−1) through equation 4.7.

As you can see, the rate matrix R is the heart of the matrix geometric method.

Several scholars such as Neuts [33], Lucantoni and Ramaswami [36], and Latouche

and Ramaswami [28] have proposed iterative algorithms to solve for the rate matrix

R in equation 4.6. Researchers such as Gaver, Jacobs and Latouche [19], Bright and

Taylor [4], and Ye and Li [52] are among the ones who have developed algorithms

for calculating the rate matrices Ri in the level dependent case. However, as Bright

and Taylor pointed out in [4] it is not necessary to solve the system of equations
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4.12 and 4.13 in our case. Let us rewrite equations 4.12 and 4.13 in the following

form:

Ri = −A0(Bi +Ri+1Ci+1)
−1, i = 0, 1, 2, ..., N − 3 (4.14)

RN−2 = −A0(BN−1 +RN−1CN)−1 (4.15)

Note that now we can recursively calculate {Ri, i = 0, 1, ..., N − 2} if we know

the value of RN−1. However, RN−1 is basically the rate matrix R for the repeating

portion. Therefore, if we calculate the rate matrix R in 4.6, we can recursively cal-

culate the rest of rate matrices {Ri, i = 0, 1, ..., N−2} by using equations 4.14-4.15.

Now that we have all the required rate matrices, we can use {Ri, i = 0, 1, ..., N −2}

in equation 4.7 to compute (π0, π1, ..., πN−1) and then use R in equation 4.3 to

calculate (πN , πN+1, ...).

First we need to compute the value of π0 in order to use equations 4.7 and 4.3 to

calculate the rest of the steady state probabilities. This is where the normalization

equation πe = 1 becomes handy.

The balance equation for state 0 is given by equation 4.9. Rewriting this equa-

tion using equation 4.8 gives:

π0(B0 +R0C1) = 0 (4.16)

Also, we can use equations 4.3 and 4.7 to simplify the normalization equation and

get the following result (see Appendix B for the complete proof):

π0[
N−1∑
i=0

i−1∏
j=0

Rj +
N−1∏
j=0

Rj(I −R)−1]e = 1 (4.17)
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Therefore, to solve for π0 we need to solve the following system:

π0(B0 +R0C1) = 0 s.t. (4.18)

π0[
N−1∑
i=0

i−1∏
j=0

Rj +
N−1∏
j=0

Rj(I −R)−1]e = 1

We have all the necessary tools to calculate the steady state probabilities but

first we have to solve for the rate matrix R in 4.6 in order to compute {Ri, i =

0, 1, ..., N−2} and hence the steady state probability distribution. As we mentioned

before there are several iterative algorithms for solving equation 4.6. Below, we will

discuss and present two of these algorithms.

4.1.1 Simple Iterative Algorithm

The algorithm that we are about to present is very simple and performs well for

small size problems. This algorithm has also been presented by Neuts [33] and has

been used by many researchers. We will start from equation 4.6 and rewrite it in

the following form:

R = −(A0 +R2A2)A1
−1 (4.19)

Hence the rate matrix R can be computed through the following iterative procedure:

Rn+1 = −(A0 +Rn
2A2)A1

−1, R0 = 0 (4.20)

until |Rn+1 − Rn| < ε, where ε represents the accuracy of the calculation. The

following figure shows this algorithm in more detail:

Note that smaller values of ε represent more accurate calculations. As Nelson

[32] also points out, the number of iterations required for convergence in this method

(and most of other methods) increases as the spectral radius of the rate matrix R
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R0 = 0

i = 0

Repeat

Ri+1 = −(A0 +Ri
2A2)A1

−1

diff = max |Ri+1 −Ri|(i,j)
Rtemp = Ri+1

i = i+ 1

Until diff < ε

R = Rtemp

Figure 4.1: Simple Iterative Algorithm

increases. If we let λi be the eigenvalues of the rate matrix R, then its spectral

radius ρ(R) is defined by:

ρ(R) = max(|λi|) (4.21)

The spectral radius of R can be interpreted as the measure of the utilization

of the system. As the system becomes more utilized, equation 4.20 needs more

iterations in order to converge. Therefore, a highly utilized system or a spectral

radius close to 1 results in computationally intensive calculations depending on the

size of the problem. In general this approach is very easy to implement and it

produces quite similar results in comparison with other approaches.

4.1.2 The Logarithmic Reduction Algorithm

The second approach is based on the logarithmic reduction algorithm developed by

Latouche and Ramaswami [28] for the level independent QBDs. This approach has

also been extended by Bright and Taylor [4] to handle the case of level dependent

QBDs. We will not get into the detail of how this algorithm is derived since it is not
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the focus of our work. Refer to [28] for detailed implementation of the algorithm.

Figure 4.2 shows the algorithm in detail, where I is an identity matrix of size

M +N + 1 and e is a column vector of ones:

i = 0

B0 = (−A1)
−1A0

B2 = (−A1)
−1A2

S1 = B2

S2 = B0

Repeat

i = i+ 1

(A1)
′
= B0B2 +B2B0

(A0)
′
= (B0)

2

(A2)
′
= (B2)

2

B0 = (I − (A1)
′
)−1(A0)

′

B2 = (I − (A1)
′
)−1(A2)

′

S1 = S1 + S2B2

S2 = S2B0

Until |e− S1e| < ε

G = S1

U = A1 + A0G

R = A0(−U−1)

Figure 4.2: Logarithmic Reduction Algorithm

This algorithm is based on calculating the matricesG and U which are analogous

to the rate matrix R, and are used to define most of the characteristics of the

Markov Chain. The (i, j)th entry of matrix G represents the probability that a

process starting in phase i of level k+1 will first enter level k in phase j for k ≥ N .

The (i, j)th entry of the matrix U is the probability that starting in phase i of level

k + 1 the process eventually returns to phase j of the same level k + 1 without
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visiting any state in level k for k ≥ N . The algorithm presented in Figure 4.2

uses an iterative procedure to calculate the G matrix and then uses the following

relationships derived by Hajek [23] and Latouche [27] to compute the U matrix and

hence the R matrix:

U = A1 + A0G

R = A0(−U)−1

According to Latouche and Ramaswami [28], the logarithmic reduction algorithm

is numerically very stable, converges much faster on large problems compared to

other similar algorithms, and performs very well on simpler problems.

The simple iterative algorithm or the logarithmic reduction algorithm allow us

to compute the R matrix for the repeating portion. Setting RN−1 = R in equations

4.14 and 4.15, we can compute the family of matrices {Ri : i = 0, 1, ..., N − 2}

for the boundary portion of the process. Finally, equations 4.7 and 4.3 allow us

to compute the steady state probabilities for the boundary and repeating portion

respectively after π0 is calculated through 4.18. Before we discuss how the above

algorithms are implemented, we have to check whether the system is stable in the

long run or not since equations 4.3 and 4.7 will not produce correct results if the

system is not stable in the long run. Therefore, we will discuss and present the

stability conditions next.

4.2 Stability Conditions

The queuing system we are considering is said to be stable in the long run if the

expected drift towards lower states exceeds that towards the higher states [33].

That is, in the long run, the system tends to move to lower levels rather than
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higher level states, or the rate at which the system moves down a level exceeds the

rate at which the system moves up a level. According to Neuts [33] the process is

stable when the MC is positive recurrent.

One way to check for the stability condition is to compute the spectral radius of

the R matrix. If it is less than 1 we know that the system is stable [33]. However,

this requires calculating the R matrix. Another method, perhaps a more efficient

one, is to compute the stationary distribution f = (f0, f1, ..., fM + N) for the

following set of linear equations:

fA = 0 (4.22)

fe = 1

where e is a column vector of ones and A = A0 + A1 + A2. Then, the stability

condition is given by

fA0e < fA2e (4.23)

If this condition holds, we know that the system is stable. This method is dis-

cussed in more detail by Neuts in [33]. We know that A2 is the matrix corresponding

to moving down a level and A0 corresponds to moving up a level. Therefore, equa-

tion 4.23 simply states that in the long run we want the rate at which the process

moves down a level to exceed the rate at which it moves up a level. For our model,

the above stability condition can be explicitly given by:

[
f0 · · · fM fM + 1 · · · fM+N

]
·



Nτ

...

Nτ

(N − 1)τ

...

τ


>

[
f0 · · · fM fM + 1 · · · fM+N

]
·



λ

...

λ

λ

...

λ



which reduces to:
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[
Nτ ·

M∑
i=0
fi +

M+N∑
i=M+1

(N − i+M + 1)τfi

]
>

[
λ ·

M+N∑
i=0

fi

]

Now if we let:

α1 =
M+N∑
i=0

fi, α2 =
M∑
i=0
fi, α3 =

M+N∑
i=M+1

(N − i+M + 1)τfi

The stability condition for our case is simplified to the following condition:

λα1

Nτα2 + α3

< 1

In some systems it is possible to derive an explicit expression for fi in terms

of the arrival and service rates, which makes it very easy to check for the stability

condition without the need to compute the stationary distribution f . In our case,

it is possible to derive an explicit expression for {fi, i = 0, 1, ...,M +N}; however,

this expression gets very complicated as the number of ambulances (N) and beds

(M) increases. To illustrate this, for the case where there is only a single ambulance

and bed (N = 1,M = 1) the stationary distribution f = (f0, f1, f2) is given by:

f0 =
µ1(µ1 + µ2)

τ 2 + τδ + τµ1 + τµ2 + δµ1 + δµ2 + µ2
1 + µ1µ2

(4.24)

f1 =
(δ + τ)(µ1 + µ2)

τ 2 + τδ + τµ1 + τµ2 + δµ1 + δµ2 + µ2
1 + µ1µ2

(4.25)

f2 =
τ(τ + δ)

τ 2 + τδ + τµ1 + τµ2 + δµ1 + δµ2 + µ2
1 + µ1µ2

(4.26)

As you can see, with a single ambulance and emergency bed, the explicit ex-

pressions are already complicated and hard to interpret. Increasing the values of

M and N would result in even more complicated expressions.
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Finally, having the stability condition and all the required tools to calculate the

steady state probabilities, we can show how all the above ideas are implemented in

the mathematical software, Matlab. The following points summarize the step by

step algorithm for calculating the steady state probability distribution π:

1. Calculate the rate matrix R using either the simple iterative algorithm or the

logarithmic reduction algorithm presented in Figures 4.1 and 4.2.

2. Set RN−1 = R and recursively calculate RN−2, RN−3, ..., R1, R0 using equa-

tions 4.14 and 4.15.

3. Compute π0 by solving 4.18.

4. Use equation 4.7 to recursively compute π1, π2, ..., πN−1.

5. Use πN−1 in equation 4.3 to recursively compute πN , πN+1, ...

4.3 Implementation

We used Matlab 7.1 to implement the matrix geometric method described in the

previous section. All of the Matlab codes for calculating the steady state probabil-

ities can be found in Appendix A. The calculations are done through “The Main

Execution File” (found in Appendix A.1) which manages all the functions written

in Matlab. In this file, the model parameters presented in Figure 3.2 are first ini-

tialized. Next, the boundary portion matrices Bn and Cn and the repeating portion

matrices A0, A1, and A2 are constructed. The Matlab code for constructing these

matrices are all included in Appendix A.2. After the model has been setup, the

stability conditions are checked. This is done through the “stabilitycond(A,A0,A2)”

function found in Appendix A.3. This function returns 1 if the model is stable and

returns 0 otherwise. If the model is stable, the rate matrix R for the repeating
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portion and {Ri : i = 0, 1, ..., N − 2} for the boundary portion are calculated (refer

to Appendix A.4). The output of the “Main Execution File” is the steady state

probability matrix in the following form:

π =



π0,0 π0,1 · · · π0,(M+N)

π1,0 π1,1 · · ·
...

... · · · · · · ...

πL,0 · · · · · · πL,(M+N)


The (i, j)th entry of the π matrix above can be interpreted as the long run frac-

tion of time that the process spends in state [I(t), J(t)] = (i, j). For computational

purposes, in calculating the steady state probabilities we need to truncate the state

space I(t) = i at some point, which we call “L”. The value of L must be chosen in

a way that πi ' 0 for i > L. That is, the probability of having more than a certain

number of patients waiting for an ambulance (i > L) is approximately zero. One

way to do this is to set an arbitrary value for L. However, this might cause a few

problems. If the value is set too high it might lead to unnecessary calculations for

models that are small and have low utilization. On the other hand, if the value is

set too low, we might end up not calculating some of steady state probabilities that

are needed. To prevent these problems, we will truncate the state space at a point

where:

1− ε <
L∑
i=0

πi < 1

where ε is a number close to zero. With the above condition, we will make sure

that the state space is truncated at a point where the sum of {πi : i = 0, 1, ..., L}

is close to 1.

We will extend the numerical example 3.3 and compute the steady state prob-

ability distribution matrix π for it in the section section.
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4.4 Numerical Example (3.3) Continued

In this section, we continue the numerical example that we presented in section 3.3

by calculating the steady state probability distribution. In order to do so, we will

assign a numerical value to the input parameters presented in Figure 3.2 in chapter

3. The assigned values are presented in the following table:

Parameter λ τ δ µ1 µ2 M N

Value (avg/hour) 2 2 4 2 0.25 4 3

We are assuming that the time unit that we are working with is in “hours”.

According to the above set of input, on average, 2 patients arrive at the hospital

by ambulance every hour, and 4 patients arrive by means other than ambulance

every hour. Also, it takes an ambulance 30 minutes to transfer a patient to the

hospital from the time it is dispatched to the scene. µ1 = 2 indicates that the

hospital discharges a patient every 30 minutes on average. Further, we assume that

the ambulance treatment time is on average 4 hours ( 1
µ2

) for each patient. That is,

if there are no beds available at the ED and an ambulance is experiencing offload

delay, it is possible to treat the patient in the ambulance (takes on average 4 hours)

and transfer him/her to an in-patient bed directly. As we assumed in chapter 3,

if an emergency bed becomes available, the patient is transferred to the bed right

away. Note that the above assigned values are for illustration purposes only; they

are not intended to be realistic.

In section 3.3 we presented the general form of the boundary and repeating

portion matrices for the numerical example in terms of the input parameters. Below

we restate these matrices, now in terms of the assigned values:
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B0 =



0 1 2 3 4 5 6 7

0 −6 4

1 2 −8 4

2 4 −10 4

3 6 −12 4

4 8 −10 0

5 8.25 −10.25 0

6 8.5 −10.5 0

7 8.75 −10.75



B1 =



0 1 2 3 4 5 6 7

0 −8 4

1 2 −10 4

2 4 −12 4

3 6 −14 4

4 8 −12 0

5 8.25 −12.25 0

6 8.5 −12.5 0

7 8.75 −10.75



60



B2 =



0 1 2 3 4 5 6 7

0 −10 4

1 2 −12 4

2 4 −14 4

3 6 −16 4

4 8 −14 0

5 8.25 −14.25 0

6 8.5 −12.5 0

7 8.75 −10.75



C1 =



0 1 2 3 4 5 6 7

0 2

1 2

2 2

3 2

4 2

5 2

6 2

7


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C2 =



0 1 2 3 4 5 6 7

0 4

1 4

2 4

3 4

4 4

5 4

6 2

7



A1 =



0 1 2 3 4 5 6 7

0 −12 4

1 2 −14 4

2 4 −16 4

3 6 −18 4

4 8 −16 0

5 8.25 −14.25 0

6 8.5 −12.5 0

7 8.75 −10.75



62



A2 =



0 1 2 3 4 5 6 7

0 6

1 6

2 6

3 6

4 6

5 4

6 2

7



A0 = 2 · I8

where I8 is an identity matrix of size 8.

Now we can check to see whether the system is stable in the long run or not.

In order to do this, first we need to compute the A matrix which is the sum of A0,

A1, and A2 matrices and then solve for the stationary distribution f in 4.22. Using

Matlab, we get the following result for f :

f =

(
0.0105 0.0525 0.1312 0.2187 0.2734 0.1988 0.0936 0.0214

)

Now checking inequality 4.23 for the stability condition yields the following results:

fA0e = 2 < fA2e = 5.1
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Therefore, we conclude that the system is stable. Using either algorithm presented

in Figures 4.1 and 4.2 we get the following rate matrix R:

R =



0 1 2 3 4 5 6 7

0 0.1796 0.0774 0.0388 0.0215 0.0129 0.0044 0.0010 0.0001

1 0.0294 0.1764 0.0711 0.0337 0.0185 0.0057 0.0012 0.0001

2 0.0089 0.0534 0.1705 0.0645 0.0303 0.0079 0.0016 0.0002

3 0.0038 0.0229 0.0721 0.1642 0.0618 0.0117 0.0021 0.0002

4 0.0022 0.0133 0.0416 0.0926 0.1707 0.0179 0.0027 0.0003

5 0.0016 0.0096 0.0295 0.0642 0.1144 0.1656 0.0108 0.0008

6 0.0014 0.0086 0.0261 0.0554 0.0953 0.1299 0.1801 0.0066

7 0.0016 0.0094 0.0284 0.0590 0.0980 0.1254 0.1605 0.1977



Setting R2 = R and using equations 4.14 and 4.15, we get the following results

for the rate matrices R0 and R1:

R0 =



0 1 2 3 4 5 6 7

0 0.3080 0.2321 0.1874 0.1428 0.0976 0.0261 0.0059 0.0007

1 0.0872 0.3489 0.2430 0.1719 0.1135 0.0291 0.0065 0.0007

2 0.0442 0.1766 0.3701 0.2279 0.1407 0.0333 0.0072 0.0008

3 0.0296 0.1183 0.2454 0.3626 0.1967 0.0395 0.0081 0.0009

4 0.0238 0.0951 0.1962 0.2858 0.3426 0.0474 0.0091 0.0010

5 0.0196 0.0785 0.1612 0.2322 0.2724 0.2180 0.0181 0.0016

6 0.0168 0.0671 0.1374 0.1960 0.2254 0.1710 0.1862 0.0072

7 0.0177 0.0709 0.1446 0.2043 0.2303 0.1653 0.1669 0.1983


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R1 =



0 1 2 3 4 5 6 7

0 0.2243 0.1214 0.0729 0.0450 0.0278 0.0077 0.0017 0.0002

1 0.0457 0.2283 0.1148 0.0637 0.0370 0.0095 0.0020 0.0002

2 0.0170 0.0848 0.2254 0.1045 0.0547 0.0124 0.0024 0.0003

3 0.0087 0.0437 0.1149 0.2180 0.0960 0.0172 0.0030 0.0003

4 0.0058 0.0292 0.0763 0.1424 0.2200 0.0243 0.0038 0.0004

5 0.0041 0.0206 0.0535 0.0983 0.1478 0.1700 0.0115 0.0009

6 0.0036 0.0181 0.0467 0.0844 0.1234 0.1335 0.1807 0.0066

7 0.0039 0.0196 0.0502 0.0894 0.1271 0.1292 0.1611 0.1977



At last, using equations 4.3, 4.7, and 4.18 we get the following steady state

probability matrix:

π =



0 1 2 3 4 5 6 7

0 0.0208 0.0623 0.0934 0.0934 0.0700 0.0168 0.0038 0.0007

1 0.0208 0.0624 0.0936 0.0936 0.0702 0.0169 0.0037 0.0005

2 0.0104 0.0313 0.0470 0.0471 0.0354 0.0087 0.0019 0.0002

3 0.0035 0.0105 0.0158 0.0160 0.0123 0.0035 0.0008 0.0001

4 0.0012 0.0035 0.0054 0.0055 0.0043 0.0013 0.0003 0.0000

5 0.0004 0.0012 0.0018 0.0019 0.0015 0.0005 0.0001 0.0000

6 0.0001 0.0004 0.0006 0.0007 0.0005 0.0002 0.0000 0.0000

7 0.0000 0.0001 0.0002 0.0002 0.0002 0.0001 0.0000 0.0000

8 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


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To interpret some of the above results, consider π(1, 3), π(1, 5), and π(4, 4)

underlined in the above π matrix. According to the value of π(1, 3), in 9.36% of

the time the system is in the state (1, 3) where 1 ambulance is in transit and 3

emergency beds are occupied. In 1.69% of the time the system is found to be in

the state (1, 5) where 1 ambulance is in transit, all hospital beds are occupied,

and 1 ambulance is experiencing offload delay. Finally, the probability of finding

the system in the state (4, 4) where all ambulances are in transit, all hospital are

occupied, and 1 patient is waiting for an ambulance is 0.43%. The rest of the values

of the π matrix are interpreted in the similar way.

In the next chapter we will show how the steady state probability distribution

π can be used to compute more aggregate system performance measures.
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Chapter 5

System Performance Measures

In this chapter, first we will discuss some of the important performance measures

for our model and demonstrate how they can be computed using the steady state

probability distribution π. Next, we will compute these performance measures for

the numerical example presented in Section 3.3 and extended in Section 4.4. Finally,

simulation is used to validate the basic model and performance measures derived

from it.

5.1 Computing Various Performance Measures

Let us define the following set of variables for our model:

Random variable Description

Pw = 0, 1, 2, ... Number of patients waiting for ambulance

Hb = 0, 1, ...,M Number of ED beds occupied

At = 0, 1, ..., N Number of ambulances in transit

Ad = 0, 1, ..., N Number of ambulances experiencing offload delay

Ab = 0, 1, ..., N Number of ambulances busy

Table 5.1: System Random Variables
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Recall that N is the total number of ambulances and M is the total number of

emergency beds. The steady state probability distribution π can be used to compute

the distribution (probability function) of each of the above random variables which

will allow us to compute aggregate system performance measures. For example,

if we know the distribution of the number of ambulances in offload delay, we can

easily compute the expected number of ambulances in offload delay by computing

E[Ad]. Below we will show how the distribution of the above mentioned random

variables are derived from the steady state probability distribution π.

5.1.1 Distribution of Pw

Consider a system with N = 2 ambulances and M = 4 emergency beds. Suppose

we are interested in computing the probability that 1 patient is waiting for an

ambulance. To compute this, we would have to sum over all states with a level

of 3 and a phase of less than 5, since in those states all ambulances are in transit

and 1 patient is waiting for an ambulance. However, we should also consider states

(2, 5) and (1, 6) since they also correspond to the situation where there is 1 patient

waiting for an ambulance. In state (2, 5), there are 4 beds occupied, 1 ambulance

in offload delay, 1 ambulance in transit, and 1 patient waiting for an ambulance. In

state (1, 6) we have all beds occupied, all ambulances in offload delay, and 1 patient

waiting for an ambulance. Therefore we have:

Pr(Pw = 1) =
4∑
j=0

π(3, j) + π(2, 5) + π(1, 6)

Similarly, to compute the probability of having 2 patients waiting for ambulance,

we would have to sum over states (4, 0), ..., (4, 4), (3, 5), and (2,6), since in all those

states there are 2 patients waiting for ambulance. In general, for this example, the
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probability that i > 0 patients are waiting for ambulance is given by:

Pr(Pw = i) =
4∑
j=0

π(2 + i, j) + π(2 + i− 1, 5) + π(2 + i− 2, 6)

Now, to compute the case where i = 0, that is no patients are waiting for an

ambulance, we can use the fact that the sum of (Pw = i) for i = 0, 1, ..., L is 1 and

calculate the (Pw = 0) in the following way:

Pr(Pw = 0) = 1−
L∑
n=1

Pr(Pw = n)

Note that from chapter 4, ”L” is the point where πi ' 0 for i > L. For the

general case where we have N ambulances and M patients, the distribution of Pw

is given by:

Pr(Pw = n) =


1−

L∑
n=1

Pr(Pw = 0) n = 0,

M∑
j=0

π(N + n, j) +
N∑
i=1

π(N + n− i,M + i) n = 1, 2, ..., L.

(5.1)

5.1.2 Distribution of Hb

To compute the distribution of the number of emergency beds occupied, first we

define πJ(t)(j), which is the marginal distribution of the phase of the MC, J(t):

πJ(t)(j) =
L∑
i=0

π(i, j), j = 0, 1, ...,M +N (5.2)

Now, the p.f. of Hb is given by:

Pr(Hb = n) =


πJ(t)(n) n = 0, 1, ...,M − 1,

1−
M−1∑
i=0

πJ(t)(i) n = M.

(5.3)
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Basically, to compute the probability of having n < M beds occupied, we would

have to sum over all states with a phase n. However, for the case where n = M ,

we should note that all states with a phase greater than M represent the situation

where M beds are occupied. Therefore, we would have to sum over all states with

phase M,M + 1, ...,M +N .

5.1.3 Distribution of At

Again we will use an example to show how the distribution of At can be calculated.

Consider a system with N = 2 ambulances and M = 4 emergency beds. To

compute the probability of having no ambulances in transit we would have to sum

over all states with a level of 0 since they all correspond to the situation where

none of the ambulances are in transit. However, we should also consider states

with a phase of 6, {(1, 6), (2, 6), ..., (L, 6)} since they represent the situation where

all ambulances are in offload delay, which means that there are no ambulances in

transit. Therefore, the probability of having no ambulances in transit is given by:

Pr(At = 0) =
6∑
j=0

π(0, j) +
L∑
i=1

π(i, 6)

Similarly, to compute the probability of having 1 ambulance in transit, we have

to consider states (1, 0), (1, 1), ..., (1, 5) where there is one ambulance in transit,

and states (2, 5), (3, 5), ..., (L, 5) where there is one ambulance experiencing offload

delay and one ambulance in transit. Therefore, we have:

Pr(At = 1) =
5∑
j=0

π(1, j) +
L∑
i=2

π(i, 5)

To calculate the probability of having 2 ambulances in transit, we note that

all the other states that were not considered before correspond to the situation
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where there are 2 ambulances in transit. Basically, all states with a level I(t) ≥

2 and a phase J(t) ≤ 4 refer to the situation where there are 2 ambulances in

transit. Instead of summing over all those states we can calculate Pr(At = 2) in

the following way:

Pr(At = 2) = 1− [Pr(At = 0) + Pr(At = 1)]

since
2∑

n=0

Pr(At = n) = 1. For the general case where there are N ambulances

and M emergency beds, we have:

Pr(At = n) =


N+M−n∑
j=0

π(n, j) +
L∑

i=n+1

π(i, N +M − n) n = 0, 1, ..., N − 1,

1−
N−1∑
i=0

Pr(At = i) n = N.

(5.4)

5.1.4 Distribution of Ad

To compute the distribution of the number of ambulances in offload delay, we would

have to consider all states with a phase greater than M since in those states all

hospital beds are occupied and ambulances are experiencing offload delay. The p.f.

of Ad is given by:

Pr(Ad = n) =


M∑
j=0

πJ(t)(j) n = 0,

πJ(t)(M + n) n = 1, 2, ..., N.

(5.5)

where πJ(t)(j) is defined in 5.2. For example, if we are interested in calculating the

probability that there is one ambulance in offload delay in as system where N = 2

and M = 4, we have to sum over all states that have phase of 5. States with a

phase of 5 are those states where all hospital beds are occupied and one ambulance
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is in offload delay.

5.1.5 Distribution of Ab

At last, we will show how to compute the probability that 0 ≤ n ≤ N ambulances

are busy in a context of an example. A busy ambulance refers to the situation

where the ambulance is either in offload delay or it is transferring a patient to

the hospital. Consider a system with 3 ambulances and 4 emergency beds, hence

N = 3 and M = 4. The probability of having zero ambulances busy can be easily

calculated by:

Pr(Ab = 0) =
4∑
j=0

π(0, j)

In the above formula we did not include states with level 0 and phase greater than

4 since they represent the situation where at least one ambulance is in offload delay.

To calculate the probability of 1 ambulance busy, we have to consider states where

there is either 1 ambulance in transit,{(1, 0), (1, 1), ..., (1, 4)}, or 1 ambulance in

offload delay {(0, 5)}. Therefore, the probability of having 1 ambulance busy is

given by:

Pr(Ab = 1) =
4∑
j=0

π(1, j) + π(0, 5)

Similarly, in order to compute the probability of 2 ambulances being busy, we have

to consider states {(2, 0), (2, 1), ..., (2, 4)}, (1, 5), and (0, 6) since they represent the

situation where there are 2 ambulances in transit, 1 ambulance in transit and 1 in

offload delay, and 2 ambulances in offload delay, respectively. Therefore, we have:

Pr(Ab = 2) =
4∑
j=0

π(2, j) + π(1, 5) + π(0, 6)
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Again, we can use the fact that:

3∑
n=0

Pr(Ab = n) = 1

to compute the probability of having 3 ambulances busy:

Pr(Ab = 3) = 1− [Pr(Ab = 0) + Pr(Ab = 1) + Pr(Ab = 2)]

In general, for the case of N ambulances and M emergency beds we have:

Pr(Ab = n) =



M∑
j=0

π(0, j) n = 0

M∑
j=0

π(n, j) +
n∑
i=1

π(n− i,M + i) n = 1, ..., N − 1,

1−
N−1∑
i=0

Pr(At = i) n = N.

(5.6)

As can be seen, computing the distribution of some of the random variables defined

in Table 5.1 is quite complicated. As we mentioned in chapter 3, this is due to the

fact that we combined and reduced 4 system state variables into 2 state variables.

However as you can see, computing various performance measures is still manage-

able and not problematic at all. Using the above distributions next we show how

to compute more aggregate performance measures.

5.1.6 System Performance Measures

The expected value of the random variables defined in Table 5.1 can easily be

calculated using the definition of expectation. For example, the expected number

of patients waiting for an ambulance is calculated in the following way:

E[Pw] =
L∑
n=1

nPr(Pw = n) (5.7)
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Another performance measure of interest is the expected waiting time for an

ambulance. It is important to note the expected waiting time for ambulance refers

to the time from emergency call arrival until an ambulance is dispatched to the

scene. The time it takes for an ambulance to reach the scene is not included in

this performance measure since it is a part of the ambulance transit time. We can

apply Little’s law to compute the expected waiting time for ambulance. All we need

is the average number of patients waiting for ambulance, E(Pw), and the rate of

emergency call arrival, λ. Given these, the average waiting time for an ambulance

is given by:

E[W ] =
E[Pw]

λ
(5.8)

where W is the waiting time random variable. Similarly, we can compute the

expected time in offload delay by applying Little’s law. Given the average number

of ambulances in offload delay, E(Ad) and the rate at which ambulances arrive at

the hospital, Nτ , the average time in offload delay is given by:

E(D) =
E[Ad]

Nτ
· Pr(at least one ambulance in offload delay) (5.9)

where E[Ad] =
N∑
n=1

nPr(Ad = n) and D is the offload delay time random variable.

Note that the average time in offload delay is calculated over the ambulances that

actually experience offload delay, and they are the ones contributing to the average.

That is why the E[Ad]
Nτ

factor is multiplied by the probability of having at least one

ambulance in offload delay. Also in 5.9, we are using the fact that the minimum of

N Exponential distributions with rate τ results in another exponential distribution

with a rate Nτ .

Another important performance measure of interest is the expected ambulance

utilization. It can be calculated by dividing the expected number of ambulances

busy by the total number of ambulances:
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UA =
E[Ab]

N
(5.10)

Similarly, the expected emergency bed utilization is given by:

UB =
E[Hb]

M
(5.11)

In section 4.4 we computed the steady state probability distribution π for the

numerical example presented in section 3.3. Next, we will further extend example

4.4 and compute the above mentioned performance measures.

5.2 Numerical Example (4.4) Continued

In this section we use the steady state probability distribution computed in example

4.4 in chapter 4 and compute the above mentioned performance measures. Again,

we have used Matlab 7.1 to numerically compute the performance measures (refer

to Appendix A.6 for the performance measure calculation codes). Let us restate

the assigned values for the model parameters from section 4.4:

Parameter λ τ δ µ1 µ2 M N

Value (avg/hour) 2 2 4 2 0.25 4 3

Table 5.2 shows the distribution and the expected value of the random variables

defined in Table 5.1 for this example. Table 5.3 shows the average waiting time for

ambulance, the average time in offload delay, and the expected ambulance and ED

bed utilization.

There are 4 emergency beds in the system and on average 4 outside patients and

2 patients via ambulance arrive at the hospital every hour. With these arrival rates
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n Pr(At = n) Pr(Hb = n) Pr(At = n) Pr(Ad = n) Pr(Ab = n)

0 0.9602 0.0572 0.3620 0.9399 0.3398

1 0.0257 0.1718 0.3643 0.0479 0.3574

2 0.0091 0.2580 0.1854 0.0107 0.1919

3 0.0032 0.2585 0.0883 0.0016 0.1109

4 0.0011 0.2546

5 0.0004

6 0.0001

Mean 0.0614 2.4815 1 0.0730 1.0739

Table 5.2: Example 4.4 - Performance Measure Distribution Results

E(W) (minutes) E(D) (minutes) UA (%) UB (%)

1.84 12.29 35 62

Table 5.3: Example 4.4 - Aggregate Performance Measure Results

to the hospital, we would expect the hospital to be somewhat busy considering the

hospital’s overall treatment rate of 8 patients per hour. According to Tables 5.2

and 5.3, in 25.46% (Pr(Hb = 4)) of the time all emergency beds are occupied and

the expected ED bed utilization is 62%. Also, by looking at the value of E[Hb] we

can see that on average 2.5 out of 4 hospital beds are occupied all the time. In this

case, if more than roughly two ambulances arrive at the hospital we would have an

ambulance offload delay. However, the chances of having an offload delay is only

6% (1− Pr(Ad = 0)) and the average time in offload delay is about 12.3 minutes.

From the input parameter values, we know that on average 2 emergency call

arrive every hour and there are 3 ambulances that can transfer 2 patients per

hour on average. We would expect to see almost no queue for patient waiting

for ambulance since there enough ambulances to transfer patients to the hospital.

From Table 5.2 we can see that there are no patients waiting for ambulance in 96%

(Pr(Pw = 0)) of the time and if there is a patient waiting (4% of the time), the
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average waiting time is very small (2 minutes). Tables 5.2 and 5.3 further show

that in 34% (Pr(Ab = 0)) of the time all ambulances are available (idle) and the

ambulance utilization is 35%.

5.3 Model Validation

In the previous sections we demonstrated how to compute various system perfor-

mance measures for our model and computed them for the example 4.4 in chapter 4.

In this section we will show that the results obtained for the performance measures

using our model are accurate and valid. Simulation is chosen for our model valida-

tion. Developing a simulation model for the system that we described in section 3.1

is quite easy and simple. In general, designing a simulation model is always easier

than an analytical model. However, one of the main advantages of the analytical

approach (such as the matrix geometric method) over the simulation is the fact

that the analytical approach produces more accurate results in general; especially

when system is highly utilized as we will see below. For a low utilized system we

would expect to achieve similar results using either approach.

We have used the simulation software Simul8 to model the system that we

described in section 3.1. All of the assumptions that were made in section 3.1 hold

for the simulation model as well. We will compare the results of the analytical

approach with the simulation approach for a fairly large system (compared to our

previous examples) with 7 ambulances n = 7 and 12 emergency beds M = 12.

Three sets of input parameters, shown in Table 5.5 were chosen for the arrival

and service rates. Again, assigned parameter values are for illustration purposes

only and they are not intended to be realistic. The first set of input parameters

correspond to a low utilized system where there is almost no queue for ambulance

and on average most ambulances are available. The second set represents a system
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with a medium utilization. The third set of the input parameters correspond to a

high utilized system where almost all ambulances are busy most of the time and the

probability of having at least one patient waiting for an ambulance is quite high.

λ τ δ µ1 µ2 M N

Set 1-Low Utilization System 4 2 6 2 1 12 7

Set 2-Medium Utilization System 6.5 1.2 6 0.9 0.5 12 7

Set 3-High Utilization System 6.2 1.5 10 0.5 0.25 12 7

Table 5.4: Input Parameter Sets for Model Validation

Let us briefly discuss the simulation model shown in Appendix C. Emergency

calls arrive through the “Call Arrival” entry point and outside patients arrive

through the ”Outside Patients” entry point. As you can see, there is no queue

between the “hospital” work center and the “Outside Patients” entry point since

we assumed that outside patients are lost when there are no emergency beds avail-

able. Note that the replication property of the “hospital” work center has been set

to 12 since M = 12. Also we are assuming that µ2 > 0, that is, it is possible to

treat patients in the ambulance without the need of occupying an emergency bed.

To validate our model we will compute the distribution of the random variables

Pw, At, Ad, Ab, and Hb as well as their expected values for both the simulation

model and the analytical model, and compare the results. For each set of the input

parameters, we will conduct a simulation trial with 20 runs, each with a results

collection period and warm-up period of 1000 and 100 hours, respectively.

We have used the PASTA (Poisson Arrival See Time Averages) property in our

simulation model to compute the above mentioned distributions. For example, to

compute the distribution of the number of patients waiting for ambulance (Pw), first

we recorded the number of work items in the “Call Queue” each time an arrival

occurred. Next, we counted the total number of times that there were n work
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items in the “Call Queue” at the end of each run. The probability of n patients

waiting for an ambulance was then calculated by dividing the value of n by the

total number of arrivals. The validation results are summarized in Tables 5.4-5.61.

Note that we have abbreviated the simulation approach to “SA” and the analytical

approach (Matrix Geometric Method) to “AA” in Tables 5.4-5.6.

1Note that thorough analysis would include constructing confidence intervals; however, we did
not go into such detail since it is not the focus of our work
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As you can see, the results are fairly close for the parameter set 1. The same

holds for the parameter set 2 except for the case of Pw where we can see some

deviation between the two approaches. For the high utilized system (parameter

set 3) the results deviate the most. As we mentioned before, producing inaccurate

results as the system becomes more and more utilized is the major downfall of the

simulation approach. On the other hand, in the analytical approach we always

achieve consistent and accurate results no matter what the system utilization is.

In this chapter we demonstrated how to compute some of the important per-

formance measures for our model and we validated the results of our model by

simulation. In the next chapter we will perform sensitivity analysis by varying

some of the input parameters and analyzing their effect on a number of system

performance measures.
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Chapter 6

Sensitivity Analysis

In this chapter we use sensitivity analysis to analyze the effect of varying some

of the input parameters on a number of system performance measures. In section

6.1, we develop and present a base case for our sensitivity analysis. In subsequent

sections, we examine the impact of changing some of the input parameters such as

the number of beds, ED treatment time (or patient length of stay), and the number

of ambulances, on system performance measures.

6.1 The Base Case Model

In this section, we construct a base case model for the purposes of analyzing the im-

pact of parameter changes on system performance. In order to present a reasonable

base case, the parameter values are based on those of the public health system of

the region of Waterloo. For some parameters we had to make some approximating

assumptions due to the complexity of the real system, but we have attempted to

retain as much reality as possible. In this way, the model, though approximate,

can still provide some useful insights into the ambulance offload time problem. Ex-

tensions to the model (future research) are necessary to make the model highly
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accurate, but the current level of detail still provides good insight into the tradeoffs

involved in capacity planning.

The region of Waterloo has a population of approximately 509,000 and geo-

graphic area of 1382 sq.kms. There are three community hospitals in the region:

Grand River Hospital, St. Mary’s Hospital, and Cambridge Memorial Hospital.

The delivery of ambulance services is the responsibility of the EMS division of pub-

lic health which operates a fleet of 29 vehicles including 18 ambulances through 8

stations. Among the above mentioned hospitals in the region, we have chosen the

Grand River Hospital (GRH) to develop our base case on since it has the largest

emergency department in the region.

When a patient arrives at the ED via ambulance, the hospital must accept

transfer of care of the patient before the paramedic staff can remove the patient

from the ambulance. If the patient is in a stable health condition, they can be moved

into the waiting room of the ED for further care. If, however, their condition is not

stable, the hospital will not accept transfer of care until there are sufficient facilities

available (i.e. a bed). In these cases, the paramedics and ambulance must continue

to provide care at the hospital until such time as a bed opens up.

In the base model, we capture only the most severely ill patients - those that are

classified as CTAS level I and II. CTAS (The Canadian Triage and Acuity Scale) is

a scheme that allows medical staff to rank the severity of a patients health condition

to ensure that the sickest patients are seen first. Patients that arrive to emergency

and are classified as CTAS level I or II are in the worst health condition and are

in need of immediate care. They typically arrive by ambulance. Patients with a

CTAS level IV and V are in a stable health condition and are the least urgent.

These patients typically arrive to the ED via means other than ambulance. The

base case focuses on the flow of patients delivered by ambulance i.e. the most

severely ill. That said, the model also includes non-ambulance arrivals of CTAS
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levels III to V patients, as some of them do become more ill and take up a hospital

bed. This is necessary to capture the overall arrivals of patients to the hospital beds

not only those delivered by ambulance. Next, we will discuss the input parameter

values that we have chosen for our base case.

6.1.1 Input Parameter set values

The input parameter values used for our base case are as follows:

• We let M , the number of beds, to be equal to 12 since the GRH currently

has 12 beds in its emergency department.

• We assume that 40% of emergency calls result in a patient being transferred

to the GRH. Given this and using the data provided in the report prepared by

the region of Waterloo’s public health [34] the rate of emergency call arrival

or λ is computed to be 1.2 emergency calls/hour. This rate only represents

the patients with a CTAS level of I and II.

• Since we assumed that 40% of emergency calls result in a patient being trans-

ferred to the GRH, we also assume that 40% of EMS ambulances in the region

of Waterloo (7 out of 18) are dedicated to serve those calls. The remaining

11 ambulances are used to service the other two hospitals. As a result we let

N , the number of ambulances, to be equal to 7.

• The average transit time for an ambulance (τ) which includes the travel time

to the emergency scene, on scene care time, travel time to the hospital and

offload time is assumed to be 1 patient/hour based on the discussions with

EMS staff in the region of Waterloo.
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• Using the raw data that we were provided from the GRH on their ED op-

eration1, we were able to calculate the average time a patient spends on an

emergency bed to be 6.75 hours ( 1
µ1

) which gives the value of the hospital’s

service rate µ1 in our model. Note that the value of 6.75 hours is only valid

for the patients that are assigned a CTAS level of I or II.

• The ambulance service rate µ2 is assumed to be zero in our sensitivity analysis.

That is, we are assuming that it is not possible to treat a patient in an

ambulance and transfer him/her to an in-patient bed without going through

the ED of the hospital. Therefore ambulances must wait at the hospital until

a bed at the ED becomes available.

• We used the given raw data from the GRH and computed the rate at which

outside patients arrive at the ED of the GRH (δ) which is given by 0.97

patients/hour. Note that this value corresponds to all patients that occupy

an ED bed no matter what their CTAS level is.

Table 6.1 below summarizes the input parameter values chosen for our base

case model. Next we will compute various performance measures for our base case

model.

Parameter λ τ δ µ1 µ2 M N

Value (avg/hour) 1.2 1 0.97 0.148 0 12 7

Table 6.1: Input Parameter Values for the Base Case Model

6.1.2 Performance Measure Results

Figures 6.1-6.4 show the distribution of the number of patients waiting for ambu-

lance (Pw), the number of ambulances in offload delay (Ab), the number of ambu-

1The raw data that we were provided with corresponds to 7 months worth of data that were
collected between January 2007 and August 2007 by the Grand River Hospital
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lances busy (Ab), and the number of beds occupied (Hb), respectively. Table 6.2

shows the average waiting time for an ambulance (W ), the average time in offload

delay (D), and ambulance and bed utilization (UA and UB), as well as the mean

value of the distributions presented in Figures 6.1-6.4. By looking at the results of

Table 6.2 and Figure 6.1 we can see that in 95% of the time there are no patients

waiting for an ambulance, but if there is a patient waiting for an ambulance (5%

of the time), he/she must wait for approximately 6.6 minutes. It is important to

note the waiting time for an ambulance corresponds to the time from an arrival of

an emergency call to the time when an ambulance is dispatched. Now looking at

the distribution of Ad, we would expect to have no ambulances in offload delay in

62% of the time and at least one ambulance in offload delay in 38% of the time.

The mean value of Ad however indicates that on average there is one ambulance in

offload delay at the GRH and the average time in offload is estimated to be around

23 minutes per ambulance.

Table 6.2 shows a 32% utilization for ambulances and 91% utilization for the ED

beds of the GRH. The distribution of Hb in Figure 6.2 further indicates that all ED

beds are occupied in 57% of the time. It is interesting to note that the utilization

results are very well matched with the actual results in the region. Based on the

discussion we had with the director of the EMS in Waterloo and the data provided in

the report prepared by the region of Waterloo’s public health (reference), ambulance

utilization is usually between 30% to 35% and our result of 32% is indeed in this

range. The 91% ED bed utilization result is also quite reasonable based on the

talk we had with the GRH staff and it also matches the results of the surrounding

areas. According to the report on the hospital care in the Greater Toronto Area

(GTA) (reference) the ED bed occupancy rate is around 94% for GTA hospitals.

Now that we have our base case setup we can start our sensitivity analysis.

First we are interested to see what happens if the number of beds in the ED is
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either increased or decreased. Increasing the number of beds would definitely help

the ED of the GRH to treat more patients which in turn would increase the flow

of patients through the hospital. Being able to treat more patients would also

benefit the EMS of Waterloo since it decreases the probability that an ambulance

experiences an offload delay. This would result in more ambulances to be available

and provide service to emergency calls which in turn reduces patient waiting time

for an ambulance. In the following section we will analyze the effect of adding more

beds to the ED of the GRH on various system performance measures.

Figure 6.1: Distribution of the Number of Patients Waiting for Ambulance
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Figure 6.2: Distribution of the Number of Emergency Beds Occupied

Figure 6.3: Distribution of the Number of Ambulances in Offload Delay
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Figure 6.4: Distribution of the Number of Ambulances Busy

E(W )(minutes) E(D)(minutes) UA(%) UB(%) E(Pw) E(Ad) E(Ab) E(Hb)

6.62 23.41 32 91 0.13 1.04 2.24 10.93

Table 6.2: Base Case Performance Measure Results

6.2 Varying the Number of Emergency Beds

As we discussed, increasing the number of beds in the ED of the GRH would

improve many system performance measures. The performance measures that we

are considering in our analysis are:

1. E(Pw): Expected number of patients waiting for ambulance

2. E(Ab): Expected number of ambulances experiencing offload delay

3. E(D): Average time in offload delay

4. UA: Expected ambulance utilization
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5. UB: Expected ED bed utilization

We will start by analyzing the effect of adding extra beds in the ED on the

expected number of patients waiting for ambulance (Figure 6.5). Point “C” rep-

resents the ED’s current operation point throughout the chapter. As can be seen

when the number of beds increases, the expected number of patients waiting for

ambulance approaches zero, which is what we had expected. Note that the same

pattern also holds for the average waiting time for ambulance, since the average

waiting time is calculated by dividing the average number of patients waiting for

ambulance by the call arrival rate λ. With more beds in the ED, it is less likely for

an ambulance to experience an offload delay. This is further proven by looking at

Figures 6.6 and 6.7. As can be seen, the expected number of ambulances in offload

delay and the average time in offload delay are similarly decreasing as the number

of ED beds increases. Therefore, with more ambulances available less number of

patients have to wait for an ambulance and they have to wait for a much shorter

period of time.

Now let us look at the ambulance and the ED bed utilization results shown

in Figures 6.8 and 6.9. Both ambulance and ED bed utilization decreases as the

number of beds increases. With 20 ED beds, ambulance utilization reaches below

20% from 32% and similarly bed utilization reaches around 70% from 91% before.

As can be seen all performance measures improved dramatically as the number of

ED beds increased from 12 to 20.
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Figure 6.5: Number of Beds vs. Expected Number of Patients Waiting

Figure 6.6: Number of Beds vs. Expected Number of Ambulances in Offload Delay
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Figure 6.7: Number of Beds vs. Mean Time in Offload Delay

Figure 6.8: Number of Beds vs. Ambulance Utilization
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Figure 6.9: Number of Beds vs. ED Bed Utilization

By looking at the above figures we also see how all performance measures worsen

as we decrease the number of ED beds to 10. In particular, the average number of

ambulances in offload delay is increased to 2.3 and the average time in offload delay

is now 31 minutes compared to 23 minutes before. It is interesting to note that how

a small decrease in number of ED beds has a big impact on system performance.

This clearly shows that the results are very sensitive to the number of beds.

As we saw in this section, increasing the number of beds would allow the ED

of the GRH to provide treatment to more patients every hour and as a result we

saw a successful improvement in system performance. Another way of achieving

similar performance results is by shortening the ED patient treatment time (µ1)

which would have a similar effect as adding more beds.
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6.3 Varying ED Treatment Time

According to our base case, it takes 6.75 hours for the ED of the GRH to treat

a patient. In this section we will discuss the effect of reducing the ED treatment

time by up to 1 hour in 15 minutes intervals on the same performance measures

considered in the previous section. We will also show the effect of increasing the ED

treatment time by up to 1 hour, since this situation is quite possible, considering

the population and emergency call growth in the region.

The results for the mean number of patients waiting for ambulance, mean num-

ber of ambulances in offload delay, and average time in offload delay are shown in

Figures 6.10-6.12. The average number of patients waiting for ambulance is ap-

proaching zero when the ED treatment time is reduced to 5.75 hours from 6.75

hours per patient. Similarly, the average number of ambulances in offload delay is

reduced to 0.5 from 1, a 50% improvement, and the average time in offload delay

is reduced to 19 minutes from roughly 23 minutes before. Again this is what we

had expected due to the fact that having faster treatment times would increase the

availability of ambulances to service more emergency calls. On the other hand, if

treatment times worsen by up to 1 hour to 7.75 hours from 6.75 hours, The average

number of ambulances in offload delay increases to 1.89 from 1.04 and the aver-

age time in offload delay rises to 29 minutes from 23 minutes. Other performance

measures are similarly effected.

A similar pattern can be seen in ambulance and ED bed utilization (Figures 6.13

and 6.14). Reducing ED treatment time decreases ambulance and bed utilization to

roughly 25% and 85% respectively. Whereas if treatment times worsen, ambulance

and bed utilization rise to 95% and 44% from 91% and 32% respectively.
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Figure 6.10: ED Treatment Time vs. Expected Number of Patients Waiting

Figure 6.11: ED Treatment Time vs. Expected Number of Ambulances in Offload
Delay
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Figure 6.12: ED Treatment Time vs. Mean Time in Offload Delay

Figure 6.13: ED Treatment Time vs. Ambulance Utilization
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Figure 6.14: ED Treatment Time vs. ED Bed Utilization

As the results indicated, reducing ED treatment times produces similar results in

comparison with adding extra beds in the ED. An interesting question to consider

is by how much ED treatment times need to be reduced to, in order to achieve

similar performance results as if we had added an extra bed. We will analyze this

situation next.

6.4 ED expansion vs. ED Treatment Time Re-

duction

In the previous sections we showed how adding more beds in the ED or reducing the

ED treatment time would improve the system performance. But we are interested to

know which one is a better option in terms of costs and performance results. Several

factors must be considered in this situation. Adding extra beds on a temporary

basis or even permanently if possible seems to be a reasonable and easy way to

improve system performance but it comes with a hefty cost. First, there has to

be enough space available. Second and most importantly, more resources such as
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equipment, nurses, and physicians are needed to accommodate this. On the other

hand, reducing the ED treatment time is a possible alternative but it is limited

and depends on the situation. It is possible that the reason why treatment times

are high is because of the fact that there are no in-patient beds available in the

hospital causing patients to stay in ED beds when they are ready to be transferred

to in-patient beds. In this case it is possible to improve treatment times. Another

possibility is technological advancements in medicine and medical equipment that

could shorten service times. Also, if there are not enough staff resources such as

nurses and physicians, staff addition could improve treatment times.

Perhaps a more cost effective way to achieve better performance results is to

add certain number of beds while reducing treatment times at the same time. For

example, instead of adding 2 extra beds in the ED, it could be more cost effective

to add 1 extra bed and reduce the ED treatment times by say 15 minutes. This

combination might achieve the same performance results as having 2 extra beds

but might cost less. There are several possibilities that can be considered and our

model can be used to analyze and compare these alternatives.

The first thing we are interested inn knowing by how much ED service times

should be reduced, in order to achieve the same performance results as adding an

extra bed. Given that the number of ED beds is N and the ED treatment time

is µ1, we want the overall ED treatment time with N + 1 beds to be equal to the

overall ED treatment time with N beds but improved service time. That is on

average we want

(N + 1)µ1 = Nµ1
1

α
N > 0

where 0 < α < 1. Therefore, the new ED treatment rate µ
′
1 corresponding to an

extra bed is given by:
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µ
′

1 =
Nµ1

N + 1
N > 0 (6.1)

Using the above relationship the following figure shows the tradeoff between the

number of beds and the ED treatment time:

Figure 6.15: Tradeoff Curve

Point ‘C’ with 12 beds and 6.75 hours of treatment time per patient is the

current ED operation point. The above figure shows that if the ED of the GRH

can reduce its treatment time to roughly 6.25 hours per patient (point D) from 6.75

hours (point C) they can achieve the same performance results as if they had added

an extra bed (13 beds). We used our model to confirm this and have constructed

the following table:

UA (%) UB (%) E(D) (minutes) E(Pw) E(Ad)

ED with 13 Beds 27.43 88.96 21.06 0.06 0.72

6.25 hours Treatment Time 27. 75 88.68 21.14 0.06 0. 74

As can be seen, the results are quite similar in both cases. A very simple cost

analysis would indicate that if the cost of adding an extra bed is less than the cost
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of reducing the ED treatment time to 6.25 hours, the GRH should consider adding

an extra bed. So far we only analyzed the effect of hospital capacity and service

times on system performance. In the next section we will focus on EMS capacity

and analyze the effect of increasing and decreasing the number of ambulances on

the same performance measures we have considered so far.

6.5 Varying the Number of Ambulances

In our base case we assumed that 7 out of 18 EMS ambulances in the region of

Waterloo are dedicated to serve the emergency calls that result in a patient being

transferred to the GRH. Let us see what happens to the system performance as

we vary the number of ambulances. The first thing we expect to see is that when

we increase the number of ambulances, the average number of patients waiting

for ambulance and their average waiting time should decrease. The results shown

in Figure 6.16 indeed shows this pattern. Again, the average waiting time for

ambulance has the exact same shape as in Figure 6.16 since it is scaled by a factor

of λ.

The results for the average number of ambulances in offload delay and the

average time in offload delay are shown in Figures 6.17 and 6.18. It is interesting to

note that the average number of ambulance in offload delay increases as we increase

the number of ambulances. When the number of ambulances increase there will be

more ambulances available to service emergency calls and hence more patients will

be transferred to the hospital. But, the rate at which the ED of the GRH discharges

patients is the same as before which causes more ambulances to experience offload

delay. This clearly shows that hospital is the bottleneck in the system.

The average time in offload delay on the other hand decreases as we increase

the number of ambulances since the offload delay time is spread over more number
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of ambulances. Recall the average offload delay time formula, E(D):

E(D) =
E[Ad]

Nτ
· Pr(at least one ambulance in offload delay)

As we increase the number of ambulances, the Nτ factor in the denominator of

E(D) increases faster than the E[Ad] factor in the nominator causing the E(D) to

decrease.

The results for ambulance and ED bed utilization are shown in Figures 6.19 and

6.20. As we can see, increasing the number of ambulances will not have any effect on

the ED bed utilization. It is important to note that this is not always the case and it

depends on the input parameters such as the hospital’s service rate and call arrival

rate. For example, if the ED of a hospital has a utilization rate of 50% and the

rate of call arrivals is high, increasing the number of ambulances would cause more

patients to be transferred to the hospital and hence bed utilization rate is increased.

But when the utilization rate is already high like in our case, increasing the number

of ambulances will not have much effect on the ED bed utilization. However, the

ambulance utilization rate always decreases as the number of ambulances increase

as we can see in Figure 6.19. Recall the ambulance utilization formula, UA:

UA =
E[Ab]

N
(6.2)

Again as we increase the number of ambulances, the denominator of UA increases

faster than the nominator and hence UA decreases.
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Figure 6.16: Number of Ambulances vs. Expected Number of Patients Waiting

Figure 6.17: Number of Ambulances vs. Expected Number of Ambulances in Of-
fload Delay
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Figure 6.18: Number of Ambulances vs. Mean Time in Offload Delay

Figure 6.19: Number of Ambulances vs. Ambulance Utilization
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Figure 6.20: Number of Ambulances vs. ED Bed Utilization

In this section we analyzed the effect of the number of ambulances on various

system performance measures and showed that hospital is the bottleneck in the

system. In the next section, we will combine all of our analysis so far in this

chapter and discuss the tradeoffs between the ED of the GRH and the EMS of

Waterloo.

6.6 Tradeoffs

In Figure 6.15 we showed the tradeoffs between emergency beds and ED treatment

time. It was shown that in order to achieve the same performance results as adding

an extra bed, ED treatment time has to be reduced by a certain amount. In this

section we will perform a similar analysis as in section 6.4, but now we will consider

ambulances as well. That is, we will show the tradeoffs between emergency beds,

EMS ambulances, and the ED treatment time. We have used our model to analyze

this situation and have constructed the following table:

The above table shows the tradeoffs based on our base case between emergency

106



Table 6.3: Tradeoffs Between ED beds, EMS Ambulances, and the ED Treatment
Time

beds, ambulances, and the ED treatment time. Let us demonstrate how the above

table can be used. Consider the row which contains the Pw performance measure,

the average number of patients waiting for ambulance. According to the table, in-

stead of adding an extra bed in the ED, it is possible to add 2 more ambulances or

reduce the ED treatment to 6.25 hours to achieve the same performance results in

terms of E(Pw). If the performance measure under consideration is the ambulance

utilization (UA), again we can add 2 ambulances or reduce the ED treatment time

to 6.2 hours to achieve the same ambulance utilization result as if we had added

an extra bed. Therefore, results depend on the performance measure under consid-

eration. Note that it is not possible to achieve the same ED bed utilization result

of adding an extra bed by adding more ambulances. This is due to the fact that

in our case adding more ambulances did not have any effect on ED bed utilization,

whereas adding an extra bed reduces the ED bed utilization. So by looking at the

results of Table 6.3 we can see that adding an extra bed is equivalent to adding

2 more ambulances or the ED treatment time of 6.25 hours. That is, we can get

a similar performance improvement by either adding an extra bed or adding two

more ambulances or reduce the ED treatment time to 6.25 hours. Again we can

see that hospital is the bottleneck in the system. It is important to note that the
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result presented in table 6.3 only hold for the case where we are expanding the ED

of the GRH from 12 beds to 13 beds. The results would have been different if were

to add 2 or more extra beds. But all those scenarios can easily be analyzed by our

model.

There are other sensitivity analyses that can be done in a similar way we did

in this chapter. Those would include analyzing the effect of emergency call growth

and changing the rate of outside patient arrivals on system performance. Another

possible scenario that can be considered is when it is possible to have µ2 > 0.

That is ambulances have the ability to treat patients in the ambulance and directly

transfer them to in-patient beds. Again, our model can easily be used to analyze

these possible scenarios. In the next chapter we conclude our work and set some

future directions for our research.
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Chapter 7

Conclusions and Future Research

Long waiting times and congestion in the emergency department of hospitals have

caused serious problems in recent years in Canada and several other countries.

Perhaps one of the most known causes of this problem is the inability of hospitals

to accept patients from regional emergency medical services (EMS) ambulances in

a timely manner. When a patient arrives at the ED via ambulance, the hospital

must accept transfer of care of the patient before the paramedic staff can remove

the patient from the ambulance. However, many hospital are experiencing bed

and staff shortages due to increased demand of emergency services, and as a result

ambulances must spend hours waiting at the hospital while providing care until

an emergency bed becomes available. This situation is well-known as ”ambulance

offload delay” and it is not a simple issue to resolve.

Ambulance offload delays have a significant impact on EMS response times

due to the fact that they affect ambulance availability to respond to emergency

calls. As more ambulances experience offload delay, less ambulances are available

to service emergency calls and hence patients have to wait longer to be taken

care of by ambulance. Offload delays financially cost the EMS provider as well,

since extra resources are required to provide quality service. Even though offload
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delays considerably affect EMS performance and costs, but patients, paramedics

and emergency department staff are the ones that are mostly hurt in this situation

due to the mental and physical stress and pressure of the offload delays.

Although there is a long history of research in both EMS and ED planning and

operation, except several reports on offload delays there are no models specifically

dealing with the problem. In a situation such as offload delays one has to focus on

the interaction between the EMS provider and the ED of the hospital, but most of

the proposed models only focus on either EMS or ED. In this thesis we developed

an analytical model that allowed us to extensively analyze and explore the situa-

tion of ambulance offload delays. We constructed a queuing system representing

the interaction between these units and modeled the behavior of the system in a

continuous time Markov chain framework. The matrix geometric method was used

to numerically compute the steady state probability distribution for the Markov

chain model developed. We computed the steady state probability distribution of

our system and used it to compute the distribution of the following set of random

variables defined on the system:

1. Number of patients waiting for ambulance

2. Number of ED beds occupied

3. Number of ambulances in transit

4. Number of ambulances experiencing offload delay

5. Number of ambulances busy

The distribution of the above random variables allowed us to compute more aggre-

gate performance measures such as the expected number of ambulances in offload

delay, mean number of beds occupied, expected ambulance and bed utilization,
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average waiting time for ambulance, and average time in offload delay. The effect

of varying some of the model input parameters such as the number of beds, ED

treatment time, and the number of ambulances, on various system performance

measures were analyzed extensively. We showed that adding more beds in the

ED and reducing ED treatment time have a positive effect on system performance

measures. We also showed that increasing the number of ambulances would in-

crease the average number of ambulances in offload delay which indicates that the

hospital is clearly the bottleneck in the system. Tradeoffs between adding extra

emergency beds, adding more ambulances, and reducing ED treatment time were

also discussed and analyzed.

The model we proposed and developed in this thesis can easily be extended to

be more realistic. In particular we may consider the following enhancements in near

future:

• A more complicated set of performance measures can be calculated by com-

puting the distribution of offload delay time and patient waiting time. In

our work we only computed the average time in offload delay and the average

waiting time for ambulance. Calculating the distribution of offload delay time

D and patient waiting time W would allow us to compute other useful perfor-

mance measures such as the probability that an ambulance will be in offload

delay for more than ’x’ minutes before it becomes available, or the probability

that a patient has to wait for more than ’y’ minutes for an ambulance.

• In our work we assumed that outside patients are lost if there are no emer-

gency beds available at the ED of the hospital. In future research we will

relax this assumption and allow outside patients to wait for an emergency

bed when there are no beds available. An additional state variable needs to

be introduced in our model to keep track of the number of outside patients
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waiting for a bed at any time t. This would also change the generator matrix

and will likely introduce further complications in modeling and performance

measure calculations.

• The total number of ambulances was assumed to be fixed in our work and

ambulances were dedicated to serve a specific hospital only. In future research

we may consider the total number of ambulances as a variable with its initial

value to be the total number of ambulances for the region and allow for the

fact that ambulances can service other hospitals in the region as well. In this

case, when an emergency call arrives which requires a patient to be transferred

to the hospital under consideration, an ambulance is pulled and the number

of ambulances is reduced by one. But at the same time we may introduce

a rate that would cause the number of ambulances to decrease by one every

time an ambulance is needed to service another hospital.

• In our work we assumed that all emergency calls result in patient being trans-

ferred to the hospital. In reality, there are situations where an ambulance is

sent to the scene and provided care but there was no need to transfer the

patient to the hospital. In such a system there are emergency calls and non-

emergency calls. In this case we would likely to have another input parameter

which corresponds to non-emergency call arrivals. An even more realistic sys-

tem would include calls that require an ambulance to be sent to another

region to provide coverage. This case can be handled in a similar way as

non-emergency call as well.

In conclusion we believe that all this work will lead to a better understanding

of the ambulance offload delay problem.
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Appendix A

Matlab Code

A.1 The Main Execution File

%% Parameter initialization %%

% Total number of ED beds

global M

M = 1;

% Total number of ambulances

global N

N = 1;

global limit

% Emergency call arrival rate

global lambda

lambda = 2;

% Hospital service rate

global mu1

mu1 = 5;

% Ambulance service rate
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global mu2

mu2 = 1;

% Ambulance transit rate

global theta

theta = 3;

% Outside patient arrival rate

global delta

delta = 2;

%% A0 matrix setup %%

A0 = Generate(’A0’);

%% A2 matrix function called%%

A2 = Generate(’A2’);

%% A1 matrix function called %%

A1 = Generate(’A1’);

A = A1+A2+A0;

%% Checking for the stability condition

if(stabilitycond(A,A0,A2) == 1)

Rmatrix = RecR();

P = Xmatrix(Rmatrix);

L = limit;

P1 = PnumQ(P);

P2 = PnumTransit(P);

P3 = PnumBeds(P);

P4 = PnumStock(P);

P5 = PnumAmbBusy(P);

%% The distribution of the random variables presented in Table 5.1
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P1

P2

P3

P4

P5

%% Computing the expected value of the above random variables P1-P5

Ex = zeros(5,1);

for i=1:size(P1,1)

Ex(1,1)=(i-1)*P1(i,1)+Ex(1,1);

end;

for i=1:size(P2,1)

Ex(2,1)=(i-1)*P2(i,1)+Ex(2,1);

end;

for i=1:size(P3,1)

Ex(3,1)=(i-1)*P3(i,1)+Ex(3,1);

end;

for i=1:size(P4,1)

Ex(4,1)=(i-1)*P4(i,1)+Ex(4,1);

end;

for i=1:size(P5,1)

Ex(5,1)=(i-1)*P5(i,1)+Ex(5,1);

end;

Ex

%% Average waiting time for ambulance and average time in offload delay

((Ex(4,1)/(N*theta))*60)/(1-P4(1,1))

(Ex(1,1)/lambda)*60

%% Ambulance and bed utilization
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(Ex(3,1)/M)

(Ex(5,1)/N)

else

message = ’The system is not stable we the given set of parameters’;

message

end;

A.2 The Infinitesimal Generator Component Ma-

trices

%% B Matrix Setup %%

function B = Bmatrix(n)

global M

global N

global lambda

global mu1

global mu2

global theta

global delta

if(n > N-1)

B = A1matrix();

else

B1 = zeros(M+1,M+1);

for k=0:M-1

B1(k+1,k+1) = -(lambda + k*mu1 + delta);

end;
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B1(M+1,M+1)= -(lambda + M*mu1);

for h=1:M

B1(h+1,h)=h*mu1;

end;

B2=zeros(M+1,N);

B12 = horzcat(B1,B2);

B3 = zeros(N,M+1);

B3(1,M+1) = M*mu1+mu2;

B4 = zeros(N,N);

for s=1:N

B4(s,s) = -(lambda + M*mu1 + s*mu2);

end;

for t=1:N-1

B4(t+1,t)=M*mu1+(t+1)*mu2;

end;

B34 = horzcat(B3,B4);

B = vertcat(B12,B34);

B(M+N+1,M+N+1) = beta(0,M,N);

for i = 0:n-1

B(M+N-i,M+N-i)=B(M+N-i,M+N-i)-(i+1)*theta;

end;

for i = n:M+N-1

B(M+N-i,M+N-i)=B(M+N-i,M+N-i)-n*theta;

end;

end;

for h=1:M

B(h,h+1)=delta;
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end;

%% C Matrix Setup %%

function c = Cmatrix(n)

global M

global N

global theta

if(n >= N)

c = A2matrix();

else

a = (n*theta)*eye(M+N,M+N);

c = vertcat(horzcat(zeros(M+N,1),a),zeros(1,M+N+1));

for i = 0:n-1

c(M+N-i,M+N+1-i)=(i+1)*theta;

end;

end;

%% This function generates an A1, A2, and A0 matrix

function matrix = Generate(m)

if(m == ’A1’)

matrix = A1matrix();

elseif(m == ’A2’)

matrix = A2matrix();

elseif(m == ’A0’)

matrix = A0matrix();
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end;

%% A0 Matrix Setup %%

function A0 = A0matrix()

global M

global N

global lambda

I = eye(M+N+1);

A0 = lambda * I;

%% A1 Matrix Setup %%

function A1 = A1matrix()

global M

global N

global lambda

global mu1

global mu2

global theta

global delta

B1 = zeros(M+1,M+1);

for k=0:M

B1(k+1,k+1)=beta(N,k,0)-delta;

end;

for h=1:M

B1(h+1,h)=h*mu1;
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B1(h,h+1)=delta;

end;

B1(M+1,M+1)=beta(N,M,0);

B2=zeros(M+1,N);

B12 = horzcat(B1,B2);

B3 = zeros(N,M+1);

B3(1,M+1) = M*mu1+mu2;

B4 = zeros(N,N);

for s=1:N

B4(s,s)=beta(N-s,M,s);

end;

for t=1:N-1

B4(t+1,t)=M*mu1+(t+1)*mu2;

end;

B34 = horzcat(B3,B4);

A1 = vertcat(B12,B34);

%% A2 Matrix Setup %%

function A2 = A2matrix()

global M

global N

global theta

b1 = (N*theta) * eye(M+1,M+1);

b2 = zeros(M+1,N-1);

b12 = horzcat(b1,b2);

b3 = zeros(N,M+1);
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b4 = zeros(N,N-1);

for i=1:N-1

b4(i,i)= (N-i)*theta;

end;

b34 = horzcat(b3,b4);

A2 = horzcat(zeros(M+N+1,1),vertcat(b12,b34));

%% Beta function used in A1 and B matrices %%

function b = beta(n,i,j)

global lambda

global mu1

global mu2

global theta

b=-(lambda + n*theta + i*mu1 + j*mu2);

A.3 Stability Condition Check

%% The following function returns 1 if the system is stable with the

%% given set of parameters and returns 0 otherwise.

function s = stabilitycond(A,A0,A2)

global M

global N

%% calculating the f vecto by solving the system of equations represented

%% by 53 and 54.

e = ones(M+N+1,1);

xx = A;
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xx(:,M+N+1) = 1;

vec=zeros(1,M+N+1);

vec(M+N+1)=1;

s = vec*inv(xx);

%% left hand side of inequality 55

exp1 = s*A0*e;

%% Right hand side of inequality 55

exp2 = s*A2*e;

%%checking the inequality 55 and returning 1 if it holds and 0 otherwise.

if(exp1 < exp2)

s = 1;

else

s = 0;

end;

A.4 Computing the Rate Matrices

Simple Iterative Aprroach

% Recursive equation used to calculate the R matrices. See Equation 2.8 on

% page 501.

function R = RecR()

global N

global M

A0 = Generate(’A0’);

A1 = Generate(’A1’);

A2 = Generate(’A2’);
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R0 = zeros(M+N+1,M+N+1);

eps1 = 1.0;

eps = 0.000001;

while (eps1 > eps)

R1 = -(A0 + R0*R0*A2)*inv(A1);

eps1 = max(max(abs(R1-R0)));

R0 = R1;

end;

s = R1;

R(:,:,N) = s;

for i = N-1:-1:1

R(:,:,i) = -A0*inv(Bmatrix(i)+R(:,:,i+1)*Cmatrix(i+1));

end;

The Logarithmic Reduction Algorithm

function R = R();

global M

global N

i = 0;

A0 = Generate(’A0’);

A1 = Generate(’A1’);

A2 = Generate(’A2’);

B0 = inv(-A1)*A0;

B2 = inv(-A1)*A2;

S = B2;

P = B0;
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I = eye(M+N+1);

eps1 = 1.0;

eps = 0.000001;

while (eps1 > eps)

i = i+1;

A11 = B0*B2 + B2*B0;

A00 = B0^2;

A22 = B2^2;

B0 = inv(I-A11)*A00;

B2 = inv(I-A11)*A22;

S = S+P*B2;

P = P*B0;

eps1 = max(abs(ones(M+N+1,1)-S*ones(M+N+1,1)));

end;

G = S;

U = A1 + A0*G;

R = A0*inv(-U);

R(:,:,N) = R;

for i = N-1:-1:1

R(:,:,i) = -A0*inv(Bmatrix(i)+R(:,:,i+1)*Cmatrix(i+1));

end;

A.5 Calculating the Steady State Probability Dis-

tribution

%% This function calculates the steady state probabilities

function X = Xmatrix(R)
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global N

global M

global limit

limit = M+N;

eps1 = 0;

eps = 0.99999;

while(eps > eps1)

xx = Bmatrix(0) + R(:,:,1)* Cmatrix(1);

xx(:,M+N+1) = 1;

vec = zeros(1,M+N+1);

vec(M+N+1)=1;

X0 = vec*inv(xx);

I = eye(M+N+1);

NM = X0 *normcond(N,R)*ones(M+N+1,1);

X0 = X0/NM;

X = zeros(limit,M+N+1);

for j = 1:M+N+1

X(1,j)=X0(j);

end;

for i = 1:limit

if(i <= N)

X1 = X0 * R(:,:,i);

for j = 1:M+N+1

X(i+1,j) = X1(j);

end;

X0 = X1;

else
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X1 = X0 * R(:,:,N);

for j = 1:M+N+1

X(i+1,j) = X1(j);

end;

X0 = X1;

end;

end;

eps1 = sum(X*ones(M+N+1,1));

limit = limit + 1;

end;

%% The following function computes the normalization condition 4.17

function NM = normcond(L,R)

global M

global N

if(L == 0)

NM = R(:,:,1)*inv(I - R(:,:,N));

else

I = eye(M+N+1);

E = eye(M+N+1);

NM1 = zeros(M+N+1,M+N+1);

for k = 0:L

for m = 0:k-1

if(m <= N-1)

R1 = R(:,:,m+1);

E = E*R1;
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else

R1 = R(:,:,N);

E = E*R1;

end;

end;

NM1 = E + NM1;

E = eye(M+N+1);

end;

A = inv(I - R(:,:,N));

NM2 = eye(M+N+1);

for m = 0:L

if(m <= N-1)

R2 = R(:,:,m+1);

NM2 = NM2*R2;

else

R2 = R(:,:,N);

NM2 = NM2*R2;

end;

end;

NM2 = NM2 * A;

end;

NM = NM1 + NM2;

A.6 Computing the Distribution of Performance

Measures

%% The following function computes the distribution of the
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number of patients waiting for ambulance

function P_Q = PnumQ(P)

global N

global M

global limit

L = limit;

if(L<=N)

P_Q=1;

else

Pmod = zeros(L-N,M+N+1);

P_Q = zeros(L-N,1);

for i = 2:L-N

for j = 1:M+1

Pmod(i,j)=P(i+N,j);

end;

end;

for i = 2:L-N

k = 1;

for j = M+2:M+N+1

Pmod(i,j)=P(i+N-k,j);

k = k + 1;

end;

end;

for j = 1:M+1

for k = 1:N+1

Pmod(1,j) = Pmod(1,j) + P(k,j);

128



end;

end;

for j = M+N:M+N+1

K = N;

for i = 1:N

Pmod(1,j)= Pmod(1,j) + P(i,j);

end;

k = k - 1;

end;

for i = 2:L-N

P_Q(i,1) = sum(Pmod(i,:));

end;

P_Q(1,1) = sum(sum(P)) - sum(P_Q);

end;

%% The following function computes the distribution of

the number of ED beds occupied

function P_B = PnumBeds(P)

global M

global N

P_B = zeros(M+1,1);

for i = 1:M

P_B(i,1) = sum(P(:,i));

end;

P_B(M+1,1) = sum(sum(P)) - sum(P_B);
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%% The following function computes the distribution of

the number of ambulances in transit

function P_transit = PnumTransit(P)

global M

global N

global limit

L = limit;

P_transit = zeros(N+1,1);

j = M+N+1;

for i = 1:N

for r = j:-1:1

P_transit(i,1) = P_transit(i,1) + P(i,r);

end;

for c = i+1:L

P_transit(i,1) = P_transit(i,1) + P(c,j);

end;

j = j - 1;

end;

P_transit(N+1,1) = sum(sum(P)) - sum(P_transit);

%% The following function computes the distribution of

the number of ambulances in offload delay

function P_stock = PnumStock(P)

global M

global N
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P_stock = zeros(N+1,1);

for i = 1:M+1

P_stock(1,1) = P_stock(1,1) + sum(P(:,i));

end;

for j = 2:N+1

P_stock(j,1) = sum(P(:,M+j));

end;

%% The following function computes the distribution of

the number of ambulances busy

function P_ambbusy = PnumAmbBusy(P)

global M

global N

global limit

L = limit;

P_ambbusy = zeros(N+1,1);

P_ambbusy(1,1) = sum(P(1,1:M+1));

k = M+2;

for i = 2:N

P_ambbusy(i,1) = sum(P(i,1:M+1));

for j = i-1:-1:1

P_ambbusy(i,1) = P_ambbusy(i,1) + P(j,k);

k = k + 1;

end;

k = M+2;

end;

P_ambbusy(N+1,1) = sum(sum(P)) - sum(P_ambbusy);
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Appendix B

Proof of the Normalization

Condition 4.17

In this appendix we will prove the relationship 4.17:

πe = π0[
N−1∑
i=0

i−1∏
j=0

Rj +
N−1∏
j=0

Rj(I −R)−1]e = 1 (B.1)

We will start with the left hand side of B.1 and expand it:

πe =
limit∑
i=0

πi e

=
N−1∑
i=0

πi e+
∞∑
i=N

πi e (B.2)
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Using equations 4.4 and 4.8, we can further expand B.2:

B.2 =
N−1∑
i=0

π0

i−1∏
j=0

Rj e+
∞∑
i=N

Ri−N+1πN−1 e

=
N−1∑
i=0

π0

i−1∏
j=0

Rj e+
∞∑
i=N

Ri−N+1π0

N−2∏
j=0

Rj e

= π0 [
N−1∑
i=0

i−1∏
j=0

Rj e+
∞∑
i=N

Ri−N+1

N−2∏
j=0

Rj] e (B.3)

We can simplify B.4 using the fact that
∞∑
i=N

Ri−N+1 = R(I −R)−1:

B.3 = π0 [
N−1∑
i=0

i−1∏
j=0

Rj e+R(I −R)−1

N−2∏
j=0

Rj] e

= π0 [
N−1∑
i=0

i−1∏
j=0

Rj e+
N−1∏
j=0

Rj (I −R)−1] e

= 1

133



Appendix C

Simulation Model
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