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Abstract 

Data clustering plays an important role in many disciplines, including data mining, machine learning, 

bioinformatics, pattern recognition, and other fields, where there is a need to learn the inherent 

grouping structure of data in an unsupervised manner. There are many clustering approaches 

proposed in the literature with different quality/complexity tradeoffs. Each clustering algorithm works 

on its domain space with no optimum solution to all datasets of different properties, sizes, structures, 

and distributions. Challenges in data clustering include, identifying proper number of clusters, 

scalability of the clustering approach, robustness to noise, tackling distributed datasets, and handling 

clusters of different configurations. This thesis addresses some of these challenges through 

cooperation between multiple clustering approaches.  

We introduce a Cooperative Clustering (CC) model that involves multiple clustering techniques; the 

goal of the cooperative model is to increase the homogeneity of objects within clusters through 

cooperation by developing two data structures, cooperative contingency graph and histogram 

representation of pair-wise similarities. The two data structures are designed to find the matching sub-

clusters between different clusterings and to obtain the final set of cooperative clusters through a 

merging process. Obtaining the co-occurred objects from the different clusterings enables the 

cooperative model to group objects based on a multiple agreement between the invoked clustering 

techniques. In addition, merging this set of sub-clusters using histograms poses a new trend of 

grouping objects into more homogenous clusters. The cooperative model is consistent, reusable, and 

scalable in terms of the number of the adopted clustering approaches.  

In order to deal with noisy data, a novel Cooperative Clustering Outliers Detection (CCOD) algorithm 

is implemented through the implication of the cooperation methodology for better detection of 

outliers in data. The new detection approach is designed in four phases, (1) Global non-cooperative 

Clustering, (2) Cooperative Clustering, (3) Possible outlier’s Detection, and finally (4) Candidate 

Outliers Detection. The detection of outliers is established in a bottom-up scenario.  

The thesis also addresses cooperative clustering in distributed Peer-to-Peer (P2P) networks. Mining 

large and inherently distributed datasets poses many challenges, one of which is the extraction of a 

global model as a global summary of the clustering solutions generated from all nodes for the purpose 

of interpreting the clustering quality of the distributed dataset as if it was located at one node. We 

developed distributed cooperative model and architecture that work on a two-tier super-peer P2P 
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network. The model is called Distributed Cooperative Clustering in Super-peer P2P Networks 

(DCCP2P). This model aims at producing one clustering solution across the whole network. It 

specifically addresses scalability of network size, and consequently the distributed clustering 

complexity, by modeling the distributed clustering problem as two layers of peer neighborhoods and 

super-peers. Summarization of the global distributed clusters is achieved through a distributed 

version of the cooperative clustering model.  

Three clustering algorithms, k-means (KM), Bisecting k-means (BKM) and Partitioning Around 

Medoids (PAM) are invoked in the cooperative model. Results on various gene expression and text 

documents datasets with different properties, configurations and different degree of outliers reveal 

that: (i) the cooperative clustering model achieves significant improvement in the quality of the 

clustering solutions compared to that of the non-cooperative individual approaches; (ii) the 

cooperative detection algorithm discovers the nonconforming objects in data with better accuracy 

than the contemporary approaches, and (iii) the distributed cooperative model attains the same quality 

or even better as the centralized approach and achieves decent speedup by increasing number of 

nodes. The distributed model offers high degree of flexibility, scalability, and interpretability of large 

distributed repositories. Achieving the same results using current methodologies requires polling the 

data first to one center location, which is sometimes not feasible.  



 

  v

Acknowledgements 

I want to start by expressing my deep gratitude to God for giving me the strength and faith to start this 

journey and the ability to finally complete this work. 

This thesis would not be possible without the support of many individuals, to whom I would like to 

express my gratitude. First and foremost, I would like to thank my supervisor, Prof. Mohamed Kamel 

for the opportunity of working with him, and for his continuous guidance, motivations, and 

encouragement throughout my Ph.D. studies at the University of Waterloo. His invaluable 

suggestions and precious ideas have helped me to walk through various stages of my research, while 

his passion and extraordinary dedication to work have always inspired me and encouraged me to 

work harder. His trust and support in delegation have instilled in me great confidence and were key 

factors in my development as a person and as a researcher. 

I would like also to thank many faculty members of the University of Waterloo, most notably my 

committee members, Prof. Otman Basir, Prof. Fakhri Karray, and Prof. Ali Ghodsi, for their valuable 

input and suggestions. I would like also to thank my external examiner, Prof. David Chiu for his 

discussions and ideas. 

I am grateful to my colleagues in the PAMI lab especially Shady Shehata, Moataz El-Ayadi, and 

Mohamed El-Abd for valuable discussions and feedback. I would like also to thank former members 

of the PAMI group, especially Khaled Hammouda and Masoud Makrehchi for many useful 

discussions and insights. I also wish to express my gratitude to Hazem Shehata and Ahmed Yousef 

for their support and help during my graduate studies. 

I would like to thank the administrative secretaries Heidi Campbell and Wendy Boles for their 

support and encouragement during the whole course of my PhD. program. 

I would like to thank Wessam El-Tokhi, Noha Yousri, Reem Adel, Rania El-Sharkawy, Walaa 

ElShabrawy, Noran Magdi, Walaa Khaled, Safaa Mahmoud, and Hanan Saleet, for being such great 

friends.  

Finally, words fail me to express my appreciation to my father Farouk, my mother Amal, my sisters, 

Reham, Rania, Randa, my brother Mostafa, and my brother-in-law Ahmed Hussein for their support 

and encouragement throughout my life. I also wish to thank my little niece Icel and nephew Eyad for 

encouraging me to finish this work with their few lovely words. 



 

  vi

Dedication 

 

I would like to dedicate this thesis to my family for living with the thesis as well as me, and for 

countless ways they ensured that I would finish every bits and pieces. Without their patience, 

encouragement and understanding, this work would have not been possible. 

 
 
 

To my Father, Mother, Sisters, and Brother 

 

 

 

 



 

  vii 

Table of Contents 

List of Figures .................................................................................................................................. xi 

List of Tables ................................................................................................................................. xiii 

List of Abbreviations ...................................................................................................................... xiv 

Chapter 1 Introduction....................................................................................................................... 1 

1.1 Overview ................................................................................................................................. 1 

1.1.1 Data Clustering ................................................................................................................. 1 

1.1.2 Applications of Data Clustering ........................................................................................ 1 

1.1.3 Challenges in Data Clustering ........................................................................................... 2 

1.2 Cooperative Clustering Model ................................................................................................. 3 

1.3 Outliers Detection Using Cooperative Clustering ..................................................................... 4 

1.4 Distributed Cooperative Clustering .......................................................................................... 4 

1.4.1 Distributed Clustering: An Overview ................................................................................ 5 

1.4.2 Cooperative Clustering Model in Distributed Super-Peer P2P Networks............................ 6 

1.5 Thesis Organization ................................................................................................................. 6 

Chapter 2 Background and Related Work .......................................................................................... 7 

2.1 Data Clustering in General ....................................................................................................... 7 

2.1.1 Similarity Measures .......................................................................................................... 9 

2.1.2 Taxonomies of Data Clustering Algorithms .................................................................... 10 

2.1.3 Clustering Evaluation Criteria ......................................................................................... 12 

2.1.4 Data Clustering Algorithms ............................................................................................ 17 

2.2 Combining Multiple Clustering.............................................................................................. 27 

2.3 Parallel Data Clustering ......................................................................................................... 28 

2.3.1 Parallel Hybrid Approaches ............................................................................................ 29 

2.4 Distributed Data Clustering.................................................................................................... 31 

2.4.1 Distributed Clustering Definition and Goals .................................................................... 32 

2.4.2 Challenges in Distributed Data Clustering ....................................................................... 34 

2.4.3 Distributed Clustering Architectures ............................................................................... 34 

2.4.4 Locally and Globally Optimized Distributed Clustering .................................................. 37 

2.4.5 Communication models .................................................................................................. 38 

2.4.6 Exact vs. Approximate Distributed Clustering Algorithms ............................................... 38 

2.4.7 Distributed Clustering Algorithms .................................................................................. 38 



 

  viii

2.4.8 Distributed Clustering Performance Evaluation ............................................................... 46 

2.5 Discussions ............................................................................................................................ 47 

Chapter 3 Cooperative Clustering .................................................................................................... 48 

3.1 An Overview ......................................................................................................................... 48 

3.2 Inputs .................................................................................................................................... 50 

3.3 Preprocessing Stage ............................................................................................................... 50 

3.4 The Cooperative Clustering Model ......................................................................................... 51 

3.4.1 Generation of Sub-clusters .............................................................................................. 51 

3.4.2 Similarity-Histogram (SH) .............................................................................................. 52 

3.4.3 Cooperative Contingency Graph (CCG) .......................................................................... 54 

3.4.4 Coherent Merging of Sub-Clusters .................................................................................. 56 

3.4.5 Complexity Analysis ....................................................................................................... 58 

3.5 Overall Weighted Similarity Ratio (OWSR) ............................................................................ 59 

3.6 Scatter F-measure .................................................................................................................. 59 

3.7 Scalability of the Cooperative Model ..................................................................................... 60 

3.8 Intermediate and End-results Cooperation .............................................................................. 61 

3.8.1 Example of Cooperation at Intermediate Levels of Hierarchical Clustering ...................... 61 

3.8.2 Example of Cooperation at Intermediate Iterations of Partitional Clustering .................... 61 

3.9 Discussions ............................................................................................................................ 63 

Chapter 4 Cooperative Clustering Experimental Analysis ................................................................ 64 

4.1 Adopted Clustering Algorithms .............................................................................................. 64 

4.2 Data Sets ............................................................................................................................... 65 

4.2.1 Gene Expression Datasets ............................................................................................... 65 

4.2.2 Document Datasets ......................................................................................................... 67 

4.3 Significance Testing .............................................................................................................. 69 

4.4 Quality Measures ................................................................................................................... 70 

4.5 Cooperative Clustering Performance Evaluation .................................................................... 70 

4.5.1 Clustering Quality ........................................................................................................... 71 

4.5.2 Scatter-F-measure Evaluation .......................................................................................... 78 

4.5.3 Performance Evaluation at c=3 ........................................................................................ 80 

4.5.4 Performance Evaluation at c=4 (adding FCM) ................................................................. 81 

4.6 Scalability of the Cooperative Clustering (CC) Model ............................................................ 83 



 

  ix

4.7 Variable Number of Clusters.................................................................................................. 85 

4.8 Intermediate Cooperation ....................................................................................................... 86 

4.9 Discussions ........................................................................................................................... 88 

Chapter 5 Outliers Detection Using Cooperative Clustering ............................................................. 89 

5.1 Outliers Detection .................................................................................................................. 90 

5.1.1 Distance-based Outliers Detection .................................................................................. 91 

5.1.2 Distribution-based Outliers Detection ............................................................................. 92 

5.1.3 Density-based Outliers Detection .................................................................................... 92 

5.1.4 Deviation-based Outliers Detection ................................................................................. 94 

5.1.5 Clustering-based Outliers Detection ................................................................................ 94 

5.2 Outliers in Clustering ............................................................................................................. 95 

5.2.1 Find Cluster-based Local Outlier Factor (FindCBLOF) ................................................... 95 

5.3 Outliers Detection Using Cooperative Clustering ................................................................... 97 

5.3.1 Cooperative Outlier Factor .............................................................................................. 97 

5.3.2 Cooperative Clustering-based Outlier Detection (CCOD) Algorithm ............................... 99 

5.3.3 Complexity Analysis..................................................................................................... 102 

5.4 Discussions ......................................................................................................................... 102 

Chapter 6 Cooperative Clustering Outliers Detection: Experimental Results .................................. 103 

6.1 Data Sets ............................................................................................................................. 103 

6.2 Detection Accuracy ............................................................................................................. 103 

6.3 Enhancing Clustering Quality .............................................................................................. 109 

6.4 Discussions ......................................................................................................................... 111 

Chapter 7 Cooperative Clustering in Distributed Super-Peer P2P Network .................................... 112 

7.1 Overview ............................................................................................................................. 113 

7.1.1 Pure P2P Networks ....................................................................................................... 114 

7.1.2 Super-Peers P2P Networks ........................................................................................... 115 

7.1.3 Neighborhoods ............................................................................................................. 115 

7.2 Two-Tier Hierarchical Overlay Super-peer P2P Network ..................................................... 116 

7.2.1 Peer-Clustering Algorithm ............................................................................................ 117 

7.2.2 Selection of Super Peers (SP) ........................................................................................ 118 

7.3 Distributed Cooperative Clustering in a Hierarchical Super-Peer P2P Network (DCCP2P) ... 120 

7.3.1 Building Local Models ................................................................................................. 121 



 

  x

7.3.2 Global Model ................................................................................................................ 121 

7.3.3 Peer-leaving .................................................................................................................. 123 

7.3.4 Peer-Joining .................................................................................................................. 124 

7.4 Complexity Analysis ............................................................................................................ 124 

7.4.1 Computation Complexity .............................................................................................. 125 

7.4.2 Communication Cost..................................................................................................... 125 

7.5 Discussions .......................................................................................................................... 126 

Chapter 8 Cooperative Clustering in Super P2P Networks: Experimental Analysis ........................ 127 

8.1 Experimental Setup .............................................................................................................. 127 

8.2 Data Sets ............................................................................................................................. 127 

8.3 Evaluation Measures ............................................................................................................ 127 

8.4 Distributed Clustering Performance Evaluation .................................................................... 128 

8.5 Scalability of the Network.................................................................................................... 131 

8.6 Discussions .......................................................................................................................... 135 

Chapter 9 Conclusions and Future Research .................................................................................. 136 

9.1 Conclusions and Thesis Contributions .................................................................................. 136 

9.1.1 Cooperative Clustering .................................................................................................. 136 

9.1.2 Cooperative Clustering Outliers Detection..................................................................... 136 

9.1.3 Cooperative Clustering in Super-Peer P2P Networks ..................................................... 137 

9.2 Challenges and Future work ................................................................................................. 137 

9.2.1 Challenges .................................................................................................................... 137 

9.2.2 Future Work ................................................................................................................. 139 

9.3 List of Publications .............................................................................................................. 141 

Appendix A Message Passing Interface ......................................................................................... 143 

Bibliography ................................................................................................................................. 144 



 

  xi

List of Figures 

Fig. 2. 1. The Partitional k-means Clustering Algorithm .................................................................. 18 

Fig. 2. 2. The divisive Bisecting k-means Clustering Algorithm ....................................................... 20 

Fig. 2. 3. The Partitioning Around Medoids (PAM) Clustering Algorithm ....................................... 21 

Fig. 2. 4. The Fuzzy c-Means (FCM) Clustering Algorithm ............................................................. 22 

Fig. 2. 5. The DBSCAN Algorithm ................................................................................................. 24 

Fig. 2. 6. The Orthogonal Range Search (ORS) ............................................................................... 25 

Fig. 2. 7. The k-windows Clustering Algorithm ............................................................................... 26 

Fig. 2. 8. The PDDP Clustering Algorithm ...................................................................................... 27 

Fig. 2. 9. Parallel PDDP Clustering Algorithm................................................................................. 30 

Fig. 2. 10. Parallel Hybrid PDDP and k-means Clustering Algorithm ............................................... 31 

Fig. 2. 11. Distributed Data Clustering............................................................................................. 33 

Fig. 2. 12. Peer-to-Peer Communication through Exchanging of Local Models ................................ 35 

Fig. 2. 13. Taxonomies of Distributed Clustering Algorithms in [83] ............................................... 39 

Fig. 2. 14. The Distributed k-means (DKM) Clustering Algorithm ................................................... 40 

Fig. 2. 15. The Distributed Bisecting k-means Clustering Algorithm ................................................ 41 

Fig. 2. 16. DCC Algorithm: Collecting Prototypes and Recommending Merge of Objects................ 43 

Fig. 2. 17. DCC Algorithm: Collecting Recommendations and Merging Peer Objects ...................... 43 

Fig. 2. 18. Further Local DBSCAN Clustering using k-means Algorithm ......................................... 44 

Fig. 2. 19. The DDBC Algorithm .................................................................................................... 45 

Fig. 3. 1. Cooperative Clustering Model……………………………………………………………... 49 

Fig. 3. 2. Similarity Histogram of a Sub-cluster (NumBins=20)……………………………………... 53 

Fig. 3. 3. Build-Histogram……………………………………………………………………………. 53 

Fig. 3. 4. The CCG Graph……………………………………………………………………………. 55 

Fig. 3. 5. Building the Cooperative Contingency Graph (CCG)……………………………………... 56 

Fig. 3. 6. The Multi-Level Cooperative Clustering Model……………………………………………57 

Fig. 3. 7. Cooperation at Intermediate Iterations between KM and FCM……………………………. 62 

Fig. 4. 1. Coefficients of SVD modes for (a)  Leukemia dataset, (b) Yeast dataset, (c) Breast Cancer 

dataset, and (d) Serum dataset……………………………………………………………... 66 

Fig. 4. 2. Further Improvement in F-measure using CC(KM,BKM,PAM)………………………….. 80 

Fig. 4. 3. Further Improvement in SI using CC(KM,BKM,PAM)…………………………………… 81 

Fig. 4. 4. Improvement in F-measure by adding FCM………………………………………………. 82 



 

  xii 

Fig. 4. 5. Improvement in SI by adding FCM……………………………………………………...… 82 

Fig. 4. 6. Scalability of the Cooperative Model [Leukemia]…………………………………………. 83 

Fig. 4. 7. Scalability of the Cooperative Model [Yeast]……………………………………………… 84 

Fig. 4. 8. Scalability of the Cooperative Model [UW]………………………………………………...84 

Fig. 4. 9. Finding Proper Number of Clusters (k is unknown) [Serum]……………………………… 85 

Fig. 4. 10. Finding Proper Number of Clusters (k is known) [UW]………………………………….. 86 

Fig. 4. 11. KM Convergence with and without Cooperation [UW]………………………………….. 87 

Fig. 4. 12. FCM Convergence with and without Cooperation [UW]………………………………… 87 

Fig. 4. 13. Quality of BKM using Intermediate Cooperation for Variable Number of Clusters [UW] .88 

Fig. 5. 1. FindCBLOF Algorithm……………………………………………………………………..96 

Fig. 5. 2. Outliers in Large and Small Sub-Clusters…………………………………………………..98 

Fig. 5. 3. The Cooperative Clustering-based Outlier Detection (CCOD)…………………………... 101 

Fig. 6. 1. Performance Evaluation before and after Deleting Outliers [Yeast]……………………... 110 

Fig. 6. 2. Performance Evaluation before and after Deleting Outliers [Breast Cancer]……………. 110 

Fig. 6. 3. Performance Evaluation before and after Deleting Outliers [UW]……………………….. 111 

Fig. 6. 4. Performance Evaluation before and after Deleting Outliers [Yahoo]…………………….. 111 

Fig. 7. 1. Pure P2P Topology……………………………………………………………………….. 114 

Fig. 7. 2. Super-Peers and Ordinary Peers…………………………………………………………...115 

Fig. 7. 3. Two-tier Hierarchical Super-peer P2P Network………………………………………….. 116 

Fig. 7. 4. Peer-Clustering Algorithm………………………………………………………………... 118 

Fig. 7. 5. Super-Peer Selection Algorithm………………………………………………………….. 119 

Fig. 7. 6. Two-Tier Super-peer Network Construction……………………………………………... 120 

Fig. 7. 7. Cooperative Centroids Generation within a Neighborhood Qi at Super-peer SPi…………122 

Fig. 7. 8. DCCP2P Clustering………………………………………………………………………. 123 

Fig. 8. 1. Quality of the Distributed Cooperative Clustering Models measured by F-measure 

[Yahoo]…………………………………………………………………………………… 132 

Fig. 8. 2. Quality of the Distributed Cooperative Clustering Models measured by SI [Yahoo]…….. 132 

Fig. 8.3. Scalability of the Distributed Cooperative Clustering Models [Yahoo]…………………... 133 

Fig. 8. 4. Quality of the Distributed Cooperative Clustering Models (F-measure) [Breast Cancer]. 134 

Fig. 8. 5. Quality of the Distributed Cooperative Clustering Models (SI) [Breast Cancer]………... 134 

Fig. 8.6. Scalability of the Distributed Cooperative Clustering Models [Breast Cancer]………….. 135 

 



 

  xiii

List of Tables 

Table 2. 1: Symbols and Notations .................................................................................................... 8 

Table 3. 1: Cooperative Clustering Symbols and Notations………………………………………… 50 

Table 4. 1: Parameters Settings of the Adopted Clustering Techniques……………………………...64 

Table 4. 2: Summary of the Gene Expression Datasets……………………………………………… 65 

Table 4. 3: Documents Datasets……………………………………………………………………… 67 

Table 4. 4: Performance Evaluation of the Cooperative and Non-cooperative Approaches [Leuk]…. 72 

Table 4. 5: Performance Evaluation of the Cooperative and Non-cooperative Approaches [Yeast]… 73 

Table 4. 6: Performance Evaluation of the Cooperative and Non-cooperative Approaches [BC]…… 74 

Table 4. 7: Performance Evaluation of the Cooperative and Non-cooperative Approaches [UW]…... 75 

Table 4. 8: Performance Evaluation of the Cooperative and Non-cooperative Approaches [SN]…… 76 

Table 4. 9: Performance Evaluation of the Cooperative and Non-cooperative Approaches [Yahoo]... 77 

Table 4. 10: Scatter F-measure and Quality of Clusters [Yeast]……………………………………...78 

Table 4. 11: Scatter F-measure and Quality of Clusters [Breast Cancer]…………………………… 79 

Table 4. 12: Scatter F-measure and Quality of Clusters [UW]………………………………………. 79 

Table 4. 13: Scatter F-measure and Quality of Clusters [SN]………………………………………...79 

Table 4. 14: Scatter F-measure and Quality of Clusters [Yahoo]……………………………………. 79 

Table 6. 1: Parameters Settings……………………………………………………………………... 103 

Table 6. 2: Number of the Detected Outliers for the Yeast Dataset………………………………… 105 

Table 6. 3: Number of the Detected Outliers for the Breast Cancer  Dataset………………………. 106 

Table 6. 4: Number of the Detected Outliers for the UW Dataset…………………………………... 107 

Table 6. 5: Number of Detected Outliers for the Yahoo  Dataset……………………………………108 

Table 7.1: Distributed Clustering Symbols and Notations…………………………………………. 114 

Table 8.1: Distributed DCCP2P(KM,BKM ) vs. Centralized CC(KM,BKM) [Yahoo]……………. 129 

Table 8.2: Distributed DCCP2P(KM,PAM ) vs. Centralized CC(KM,PAM) [Yahoo]……………...129 

Table 8.3: Distributed DCCP2P(BKM,PAM ) vs. Centralized CC(BKM,PAM) [Yahoo]…………. 129 

Table 8.4: Distributed DCCP2P(KM,BKM,PAM ) vs. Centralized CC(KM,BKM,PAM) [Yahoo].. 129 

Table 8.5: Distributed DCCP2P(KM,BKM ) vs. Centralized CC(KM,BKM) [Breast Cancer]……. 130 

Table 8.6: Distributed DCCP2P(KM,PAM ) vs. Centralized CC(KM,PAM) [Breast Cancer]……..130 

Table 8.7: Distributed DCCP2P(BKM,PAM) vs. Centralized CC(BKM,PAM) [Breast Cancer]…. 130 

Table 8.8: Distributed DCCP2P(KM,BKM,PAM) vs. Centralized CC(KM,BKM,PAM) [Breast 

Cancer]……………………………………………………………………………………130 



 

  xiv

List of Abbreviations 

BKM: Bisecting k-means 

BOINC: Berkeley Open Infrastructure for Network Computing 

CBLOF: Cluster-based Local Outlier Factor 

CC: Cooperative Clustering 

CCG: Cooperative Contingency Graph 

CCOD: Cooperative Clustering Outliers Detection 

CD: Cluster Distance  

CL: Complete Linkage 

CLARA: Clustering Large 

CLARANS: Clustering Large Applications based on Randomized Search 

COF: Cooperative Outlier Factor 

CSR: Compressed Sparse Row 

DBSCAN: Density Based Spatial Clustering of Applications with Noise 

DCCP2P: Cooperative Clustering in P2P networks 

DCC: Distributed Collaborative Clustering 

DDBC: Distributed Density-Based Clustering  

DKM: Distributed k-means 

DBKM: Distributed Bisecting k-means 

DI: Dunn Index 

DMBC: Distributed Model-based Clustering 

FCM: Fuzzy c-means 

KDEC: Kernel Density Estimation Based Clustering  

KM: k-means 

LOF: Local Outlier Factor 

MDBT: Multidimensional Binary Tree  

MPI: Message Passing Interface 

MPMD: Multiple Program Multiple Data 

OP: Ordinary Peer 

ORS: Orthogonal Range Search  



 

  xv

OWSR: Overall Weighted Similarity Ratio 

PAM: Partitioning Around Medoids 

PDDP: Principal Direction Divisive Partitioning  

P2P: Peer to Peer 

RCSP: Row-wise Cyclic Striped Partitioning 

RMSSD: Root Mean Square Standard Deviation 

ROCK: Robust Clustering for Categorical Attributes 

SC: Partition Index 

 SI: Separation Index 

SH: Similarity Histogram 

SHC: Similarity Histogram Clustering 

SL: Single Linkage 

SM: Similarity Matrix 

SODON: Self-Organized Download Overlay Network 

SOM: Self Organizing Map 

SPMD: Single Program Multiple Data 

SP: Super Peer 

VSM: Vector Space Model 

VoIP: Voice over IP  

http://en.wikipedia.org/wiki/VoIP




 1 

Chapter 1 

Introduction 

This thesis embodies research that aims at advancing the state of art in data clustering, clustering-based 

outlier detection, and the application of clustering in distributed environments. The first section gives an 

overview of the data clustering problem, clustering applications, and current challenges in clustering. The 

following sections give an overview of the main contributions of this thesis to address some of the 

identified challenges by developing the Cooperative Clustering (CC) model, Cooperative Clustering 

Outliers Detection (CCOD) algorithm, and finally the Cooperative Clustering model in Distributed super-

peer P2P networks (DCCP2P).  

1.1 Overview 

Analysis of data can reveal interesting, and sometimes important, structures or trends in the data that 

reflect a natural phenomenon. Discovering regularities in data can be used to gain insight, interpret certain 

phenomena, and ultimately make appropriate decisions in various situations. Finding such inherent but 

invisible regularities in data is the main subject of research in data mining, machine learning, and pattern 

recognition.  

1.1.1 Data Clustering  

Data clustering is a data mining technique that enables the abstraction of large amounts of data by 

forming meaningful groups or categories of objects, formally known as clusters, such that objects in the 

same cluster are similar to each other, and those in different clusters are dissimilar. A cluster of objects 

indicates a level of similarity between objects such that we can consider them to be in the same category, 

this simplifying our reasoning about them considerably.  

1.1.2 Applications of Data Clustering 

Clustering is used in a wide range of applications, such as marketing, biology, psychology, astronomy, 

image processing, and text mining. For example, in biology it is used to form taxonomy of species based 

on their features and to group the set of co-expressed genes together into one group. In image processing 

it is used to segment texture in images to differentiate between various regions or objects. Clustering is 

also practically used in many statistical analysis software packages for general-purpose data analysis. A 
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large number of clustering methods  [1]- [27] have been developed in several different fields, with different 

definitions of clusters, methodologies, and similarity metrics between objects.  

1.1.3 Challenges in Data Clustering  

There are number of problems associated with clustering, some of these issues are: 

• Determining number of clusters a priori 

• Obtaining the natural grouping of data (i.e. proper number of clusters) 

• Handling datasets of different properties, structures, and distributions 

• Performing incremental update of clusters without re-clustering 

• Dealing with noise and outliers 

• Clustering large and high dimensional data objects (i.e. data scalability) 

• Tackling distributed datasets 

• Evaluating clustering quality 

• Dealing with different types of attributes (features) 

• Interpretability and usability 

Much of the related work does not attempt to confront all the above mentioned issues directly; for 

example k-means is very simple and it is known for its convergence property, but on the other hand, it 

cannot handle clusters with different shapes, it is vulnerable to the existence of outliers and it needs 

number of clusters to be known a priori. In general, there is no one clustering technique that will work for 

all types of data and conditions. Thus most of the well known clustering algorithms work on their own 

problem space with their own criteria and methodology. 

In this thesis, four of those challenges are addressed: handling datasets of different configurations and 

properties, achieving better detection of outliers, handling large datasets, and finally tackling distributed 

data. Dealing with datasets of different properties is addressed through developing a novel cooperative 

clustering model that uses two data structures, the pair-wise similarity histogram and the cooperative 

contingency graph. Achieving better detection of outliers than the traditional clustering-based outlier’s 

detection approaches is obtained through the bottom-up detection algorithm using the cooperative 

clustering methodology. Finally, the data scalability and tackling distributed data are addressed through a 
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novel distributed cooperative clustering model in two-tier super-peer P2P networks.  Each of the above 

contributions is described in the following sections with a brief insight into each of the mentioned 

challenges that we need to solve. 

1.2 Cooperative Clustering Model 

It is well known that no clustering method can effectively deal with all kinds of cluster structures and 

configurations. In fact, the cluster structure produced by a clustering method is sometimes an artifact of 

the method itself. Combining clusterings invokes multiple clustering algorithms in the clustering process 

to benefit from each other to achieve global benefit (i.e. they cooperate together to attain better overall 

clustering quality).  

Ensemble clustering is based on the idea of combining multiple clusterings of a given dataset to produce a 

superior aggregated solution based on aggregation function  [28]- [30]. Ensemble clustering techniques 

have been shown to be effective in improving the quality. However, inherent drawbacks of these 

techniques are: (1) the computational cost of generating and combining multiple clusterings of the data, 

and (2) designing a proper cluster ensemble that addresses the problems associated with high 

dimensionality and parameter tuning. 

Another form of combining multiple clusterings is Hybrid Clustering. Hybrid clustering assumes a set of 

cascaded clustering algorithms that cooperate together for the goal of refining the clustering solutions 

produced by a former clustering algorithm(s). However, in hybrid clustering one or more of the clustering 

algorithms stays idle till a former algorithm(s) finishes its clustering which causes a significant waste in 

the total computational time  [31], [32]. 

The work presented in this thesis enables concurrent implementation of the multiple clustering algorithms 

and benefit from each other with better performance for datasets with different configurations by using 

cooperative clustering.  The cooperative Clustering (CC) model achieves synchronous execution of the 

invoked techniques with no idle time and obtains clustering solutions with better homogeneity than those 

of the non-cooperative clustering algorithms. The cooperative clustering model is mainly based on four 

components (1) Co-occurred sub-clusters, (2) Histogram representation of the pair-wise similarities 

within sub-clusters, (3) The cooperative contingency graph, and (4) The coherent merging between the set 

of histograms. These components are developed to obtain a cooperative model that is capable of 

clustering data with better quality than that of the adopted non-cooperative techniques. Experimental 

results on various gene expression and document datasets in chapter 4 illustrate a significant improvement 



 

  4 

in the clustering quality using the cooperative models compared to that using the individual non-

cooperative algorithms.  

1.3 Outliers Detection Using Cooperative Clustering 

Outlier detection refers to the problem of discovering objects that do not conform to expected behavior in 

a given dataset. These nonconforming objects are called outliers. A variety of techniques have been 

developed to detect outliers in several research applications including: bioinformatics and data mining 

 [33]- [43]. Current clustering-based approaches for detecting outliers explore the relation of an outlier to 

the clusters in data. For example, in medical applications as gene expression analysis, the relation of 

unknown novel genes (outliers) to the gene clusters in data is important in studying the function of such 

novel genes. Traditional clustering-based outlier detection techniques are based only on the assumption 

that outliers either do not belong to any cluster or form very small-sized clusters.  

In this thesis, a novel clustering-based outlier detection method is proposed and analyzed, it is called 

Cooperative Clustering Outliers Detection (CCOD) algorithm. It provides efficient outlier detection and 

data clustering capabilities in the presence of outliers. It uses the notion of cooperative clustering towards 

better discovery of outliers. The CCOD is mainly based on three assumptions: 

• First, outliers form very small clusters,  

• Second, outliers may exist in large clusters, and  

• Third, outliers reduce the homogeneity of the clustering process. 

Based on these assumptions, the algorithm of our outlier detection method first obtains a set of sub-

clusters as an agreement between the multiple clusterings using the notion of cooperative clustering. Thus 

a large sub-cluster means strong agreement while a small sub-cluster indicates week agreement. The 

following stages on the CCOD involve an iterative identification of possible and candidate outliers of 

objects in a bottom-up fashion. The empirical results in chapter 6 indicate that the proposed method is 

successful in detecting outliers compared to the traditional clustering-based outlier’s detection techniques. 

1.4 Distributed Cooperative Clustering  

The problem of clustering large, high dimensionality, and distributed data becomes more complex under 

the new emerged fields of text mining and bioinformatics. How can distributed objects across a large 

number of nodes be clustered in an efficient way? And can we interpret the results of such distributed 

clustering? The work presented in this thesis answers these questions. This section first discusses the 



 

  5 

problem of distributed clustering and then presents the new cooperative clustering model in distributed 

super-peer P2P networks to address the identified questions. 

1.4.1 Distributed Clustering: An Overview 

With the continuous growth of data in distributed networks, it is becoming increasingly important to 

perform clustering of distributed data in-place, without the need to pool it first into a central location. In 

general, centralized clustering usually implies high computational complexity, while distributed clustering 

usually aims for speedup but suffers from communication overhead. In general, distributed clustering 

achieves a level of speedup that outweighs communication overhead. The goal of distributed clustering 

can be either to produce globally or locally optimized clusters. Globally optimized clusters reflect the 

grouping of data across all nodes, as if data from all nodes were pooled into a central location for 

centralized clustering  [44]. On the other hand, locally optimized clusters create a different set of clusters 

at each node, taking into consideration remote clustering information and data at other nodes. This 

implies exchange of data between nodes so that certain clusters appear only at specific nodes  [45]. 

Locally optimized clusters are useful when the whole clusters are desired to be in one place rather than 

fragmented across many nodes. It is also only appropriate when data privacy is not a big concern. 

In general, there are two architectures in distributed clustering: facilitator-workers and peer-to-peer (P2P). 

In the facilitator-workers architecture one node is designed as a facilitator, and all other nodes are 

considered as worker nodes. The facilitator is responsible for dividing the task among workers and 

aggregating their partial results. In the peer-to-peer architecture, all nodes perform the same task and 

exchange the necessary information to perform their clustering goals. P2P networks can be structured and 

unstructured. Unstructured networks are formed arbitrarily by establishing and dropping links over time, 

and they usually suffer from flooding of traffic to resolve certain requests. Structured networks, on the 

other hand, make an assumption about the network topology and implement a certain protocol that 

exploits such a topology. P2P networks are different from facilitator-workers architecture as there is no 

central control (i.e. no single point of failure), each peer has equal functionality: a peer is a facilitator and 

a worker; it is dynamic where each peer can join and leave the network. In P2P networks, nodes (peers) 

communicate directly with each other to perform the clustering task. On the other hand, communication 

in P2P networks can be very costly if care is not taken to localize traffic, instead of relying on flooding of 

control or data messages. 
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1.4.2 Cooperative Clustering Model in Distributed Super-Peer P2P Networks 

In this thesis, we propose a new Distributed Cooperative Clustering model in super-peer P2P networks 

(DCCP2P). The proposed distributed architecture deviates from the standard definition of P2P networks, 

which typically involves loose structure (or no structure at all). The DCCP2P on the other hand, is based 

on a dynamic two-tier hierarchy structure that is designed up front, upon which the peer network is 

formed. The first layer of the network consists of a set of neighborhoods where a novel peer-clustering 

algorithm is applied, such that the closest peers are grouped together into one neighborhood. Then a 

super-peer is selected as a representative of the neighborhood using a super-peer selection algorithm. The 

second layer of the network is comprised of the selected super-peers from each neighborhood. All super-

peers are connected to one root peer that is responsible for generating the global model. The designed 

two-tier super-peer network allows peers to join and leave the network by proposing two algorithms, the 

peer-join and peer-leave algorithms. Using the DCCP2P model, we can partition the problem into a 

modular way, solve each part individually, and then successively combines solutions to find a global 

solution. Using this approach, we avoid four main problems in the current state of art of distributed data 

clustering: (1) The high communication cost usually associated with a structured fully connected network, 

(2) The uncertainty in the network topology usually introduced by unstructured P2P networks, (3) The 

central control in the facilitator-workers architecture, and finally (4) the static structure of the network 

architecture. Experiments performed on the distributed cooperative clustering model show that we can 

achieve comparable results to centralized cooperative clustering with high gain in speedup. 

1.5 Thesis Organization 

The rest of this thesis is organized as follows: Chapter 2 provides a background and review of the 

research subjects related to the work herein. Chapters 3 and 4 introduce the cooperative clustering model 

and its empirical results, respectively. Chapters 5 and 6 present the novel cooperative clustering outliers 

detection algorithm and its experimental detection accuracy, respectively. Chapters 7 and 8 introduce the 

distributed cooperative clustering model in two tier super-peer P2P networks and its experimental setup 

and analysis, respectively. Finally, a thesis summary, conclusions, and future work are presented in 

chapter 9. 
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Chapter 2 

Background and Related Work 

In this chapter a relevant literature review of the various topics that fall under data clustering and 

distributed data clustering is discussed. The first section discusses classical clustering notations and 

formulations, different similarity criteria, internal and external quality measures to assess the clustering 

solutions, and finally some of the well known clustering algorithms along with their computational 

complexity. The following section discusses the current approaches in combining multiple clustering. The 

later two sections focus on parallel and distributed architectures and algorithms for performing the 

equivalent task of the centralized approaches in distributed environments with a brief insight into the 

different distributed performance measures that are used to evaluate the performance of the distributed 

approaches in distributed networks. 

2.1 Data Clustering in General 

The clustering task is to partition a dataset into meaningful groups (clusters) such that objects within a 

cluster are similar to one another (high intra-cluster similarity), but differ from objects in other clusters 

(low inter-cluster similarity) according to some similarity criteria.  

The subject has been explored extensively under various disciplines in the past three decades. For 

example, in the context of text mining, clustering is a really powerful method for discovering interesting 

(inherent) grouping of documents, may be to form a computer-aided information hierarchy, such as 

Yahoo-like topic directory. Also in biology, co-expressed genes in the same cluster are likely to be 

involved in the same cellular processes, and a strong correlation of expression patterns between those 

genes indicates co-regulation. Clustering techniques have been proven to be helpful to understand gene 

function, gene regulation, cellular processes, and subtypes of cells.  

A large number of clustering algorithms have been devised in statistics  [1]- [4], data mining  [6], [11], [13] 

pattern recognition  [1], [7], bioinformatics [18]- [23] and other related fields. Some terminologies and 

notations are best presented at this point to pave the way for discussion of the different concepts and 

strategies of classical and distributed data clustering and also for the proposed models and algorithms 

defined in the next chapters. Table 2. 1 summarizes the notations and symbols that are used throughout 

this thesis.  
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Table 2. 1: Symbols and Notations 

Symbol Definition 

c Number of clustering algorithms 

X The whole dataset 

x 
Object or pattern or data vector or data point represented as 

a vector of features 

xi The ith object 

d Dimensionality of the object x 

x
i
 The ith feature of the object x 

n Number of objects 

k Number of clusters 

Sj The jth cluster 

Rj The jth class (External labeling of objects) 

cj The centroid of cluster Sj 

mj The medoid of cluster Sj 

zj The prototype of cluster Sj 

P Number of distributed  (or parallel) nodes 

Np The pth processing node or peer (processor, process or site) 

Xp Local dataset at node Np 

 

Definition 

The data clustering problem can be formulated as: given a dataset of n objects, each having 

dimensionality d, the dataset is partitioned into subsets (clusters) Si; i=0,1..,k-1, such that the Intra-cluster 

distance is minimized and the Inter-cluster distance is maximized. The quality of the produced clusters is 

evaluated using different external and internal quality measures.  

Due to the large freedom of choices in the interpretation of the definition, particularly the notion of 

similarity, many clustering algorithms have been reported in the literature. Different notations to 

similarity, various types of clustering algorithms, and quality measures are defined in the following 

subsections. 
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2.1.1 Similarity Measures 

A key factor in the success of any clustering algorithm is the similarity measure adopted by the algorithm. 

In order to group similar data objects, proximity metric has to be used to find which objects (or clusters) 

are similar. There is a large number of similarity metrics reported in the literature, only most of the 

common ones are reviewed in this subsection. The calculation of the (dis) similarity between two objects 

is achieved through some distance function, sometimes also referred to as a dissimilarity function. Given 

two data vectors x and y representing two data points in the d-dimensional space, it is required to find the 

degree of dis(similarity) between them. A very common class of distances functions is known as the 

family of Minkowski distances  [24], described as: 
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This distance function actually describes an infinite number of distances indexed by r, which assumes 

values greater than or equal 1. Some of the common values of r and their respective distance functions 

are:  
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A more common similarity measure that is used specifically in document clustering is the cosine 

correlation (Similarity) measure (used by  [6], [16]), defined as: 

.
( , )

|| || || ||
cosSim =

x y
x y

x y
 (2. 5) 

Where (.) indicates the vector dot product and || . || indicates the length of the vector. Another commonly 

used similarity measure is the Jaccard measure (used by  [24], [25]), defined as: 
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Which for the case of binary features vectors, could be simplified to: 
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∩
=

∪

x y
x y

x y
 (2. 7) 

Many algorithms employ the distance function (or similarity function) to calculate the similarity between 

two clusters, a cluster and an object, or two objects. Calculating the distance between clusters (or clusters 

and objects) requires a representative feature vector of that cluster (sometimes referred to as prototype, 

e.g. centroid or medoid). Some clustering algorithms make use of a similarity matrix. A similarity matrix 

is an n x n matrix recording the distance (or degree of similarity) between each pair of objects. Obviously 

the similarity matrix is a positive definite symmetric matrix so we only need to store the upper right (or 

lower left) portion of the matrix. 

2.1.2 Taxonomies of Data Clustering Algorithms  

Clustering algorithms can be classified along different independent dimensions. For instance, different 

starting points, methodologies, algorithmic point of view, clustering criteria, and output representations, 

usually lead to different taxonomies of clustering algorithms. Different properties of clustering algorithms 

can be described as follows: 

Agglomerative vs. Divisive Clustering: This concept relates to algorithmic structure and operation. An 

agglomerative approach begins with each object in a distinct (singleton) cluster, and starts merging 

clusters together until a stopping criterion is satisfied (bottom-up hierarchical clustering). On the other 

hand, a divisive method begins with all objects in a single cluster and iteratively performs splitting until a 

stopping criterion is met (top-down hierarchical clustering). 

Monothetic vs. Polythetic Clustering: Both the monothetic and polythetic issues are related to the 

sequential or simultaneous use of features in the clustering algorithm. Most algorithms are polythetic; that 

is, all features enter into the computation of distances (or similarity functions) between objects, and 

decisions are based on those distances, whereas, a monothetic clustering algorithm uses the features one 

by one. 
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Hard vs. Fuzzy Clustering: A hard clustering algorithm allocates each object to a single cluster during 

its operation and outputs a Boolean membership function either 0 or 1. A fuzzy clustering method assigns 

degrees of membership for each input object to each cluster. A fuzzy clustering can be converted to a hard 

clustering by assigning each object to the cluster with the largest degree of membership. 

Distance vs. Density Clustering: A distance-based clustering algorithm assigns an object to a cluster 

based on its distance from the cluster or its representative(s), whereas a density-based clustering grows a 

cluster as long as the density (or number of objects) in the neighborhood satisfies some threshold. It is not 

difficult to see that distance-based clustering algorithms can typically find only spherical-shaped clusters 

and encounter difficulty at discovering clusters of arbitrary shape, whereas density-based clustering 

algorithms are capable of finding arbitrary shape clusters. 

Partitional vs. Hierarchical Clustering: A Partitional clustering algorithm obtains a single partition of 

the data instead of a clustering structure, such as the dendrogram produced by a hierarchical technique. 

Partitional methods have advantages in applications involving large data sets for which the construction 

of a dendrogram is computationally prohibitive. A problem accompanying the use of Partitional 

algorithms is the choice of the number of clusters. 

Deterministic vs. Stochastic Clustering: This issue is most relevant to Partitional techniques designed to 

optimize a squared error function. Deterministic optimization can be accomplished using traditional 

techniques in a number of deterministic steps. Stochastic optimization randomly searches the state space 

consisting of all possible solutions.  

Incremental vs. Non-incremental Clustering: This issue arises when the objects set to be clustered is 

large, and constraints on execution time or memory space need to be taken into consideration in the 

design of the clustering algorithm. Incremental clustering algorithms minimize the number of scans 

through the objects set, reduce the number of objects examined during execution, or reduce the size of 

data structures used in the algorithm’s operations. Also incremental algorithms do not require the full data 

set to be available beforehand. New data can be introduced without the need for re-clustering.  

Intermediate vs. Original Representation Clustering: Some clustering algorithms use an intermediate 

representation for dimensions reduction when clustering large and high dimensional datasets. It starts with 

an initial representation, considers each data object and modifies the representation. These classes of 

algorithms use one scan of the dataset and its structure occupies less space than the original representation 

of the dataset, so it may fit in the main memory. 
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2.1.3 Clustering Evaluation Criteria  

The previous subsection has reviewed taxonomy of a number of clustering algorithms which partition the 

data set based on different clustering criteria. However, different clustering algorithms, or even a single 

clustering algorithm using different parameters, generally result in different sets of clusters. Therefore, it 

is important to compare various clustering results and select the one that best fits the “true” data 

distribution by using an informative quality measure that reflects the “goodness” of the resulting clusters.  

Definition 

Cluster validation is the process of assessing the quality and reliability of the cluster sets derived from 

various clustering processes.  

Generally, cluster validity has two aspects: (1) first, the quality of clusters can be measured in terms of 

homogeneity and separation on the basis of the definition of a cluster: objects within one cluster are 

similar to each other, while objects in different clusters are dissimilar. Thus if the data is not previously 

classified, internal quality measures are used to compare different sets of clusters without reference to 

external knowledge, and (2) the second aspect relies on a given “ground truth” of the clusters. The 

“ground truth” could come from domain knowledge, such as known function families of objects, or from 

other knowledge repositories (e.g. such as the clinical diagnosis of normal or cancerous tissues for gene 

expression datasets). Thus, cluster validation is based on the agreement between clustering results and the 

“ground truth”. Consequently, the evaluation depends on a prior knowledge about the classification of 

data objects, i.e. class labels. This labeling is used to compare the resulting clusters with the original 

classification; such measures are known as external quality measures. 

External Quality Measures 

Three external quality measures (used by  [13], [16]) are reviewed, which assume that a prior knowledge 

about the data objects (i.e. class labels) is given. 

F-measure 

One external measure is the F-measure, a measure that combines the Precision and Recall ideas from the 

information retrieval literature. The precision and recall of a cluster Sj with respect to a class Ri, i, 

j=0,1,..,k-1 are defined as: 
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Where Lij is the number of objects of class Ri in cluster Sj, |Ri| is the number of objects in class Ri and |Sj| 

is the number of objects in cluster Sj. The F-measure of a class Ri is defined as: 
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With respect to class Ri we consider the cluster with the highest F-measure to be the cluster Sj that is 

mapped to class Ri, and that F-measure becomes the score for class Ri. The overall F-measure for the 

clustering result of k clusters is the weighted average of the F-measure for each class Ri: 
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The higher the F-measure the better the clustering due to the higher accuracy of the resulting clusters 

mapped to the original classes. 

Entropy  

The second external quality measure is the Entropy, which provides a measure of “goodness” for un-

nested clusters or for the clusters at one level of hierarchical clustering. Entropy tells us how homogenous 

a cluster is. The higher the homogeneity of a cluster, the lower the entropy is, and vice versa. The entropy 

of a cluster containing only one object (perfect homogeneity) is zero. Assume a partitioning result of a 

clustering algorithm consisting of k clusters. For every cluster Sj we compute prij, the probability that a 

member of cluster Sj belongs to class Ri.  The entropy of each cluster Sj is calculated using the following 

standard formula, where the sum is taken over all classes: 
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The overall entropy for a set of k clusters is calculated as the sum of entropies for each cluster weighted 

by the size of each cluster. 
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Where |Sj| is the size of cluster Sj, and n is the total number of objects. As mentioned earlier, we would 

like to generate clusters of lower entropy, which is an indication of the homogeneity (or similarity) of 

objects within the clusters. The overall weighted entropy formula avoids favoring smaller clusters over 

larger clusters. The F-measure is a better quality measure than Entropy for evaluating the clustering 

quality. Normally the Entropy measure will report a perfect cluster if the Entropy of the cluster is zero 

(i.e. totally homogeneous). However, if a cluster contains all the objects from two different classes, its 

entropy will be zero as well. Hence Entropy does not tell us if a cluster maps totally to one class or more, 

but the F-measure does. 

Purity 

The Purity of a clustering solution is the average precision of the clusters relative to their best matching 

classes. For a single cluster Sj, Purity is defined as the ratio of the number of objects in the dominant 

cluster to the total number of objects in the cluster: 
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Where Lij is the number of objects from class Ri into cluster Sj, and |Sj| is the number of objects in cluster 

Sj. To evaluate the total purity for the entire k clustering, the cluster-wise purities are weighted by the 

cluster size and the average value is calculated: 
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We are looking for higher values of the Purity measure which indicate better partitioning of objects.  

Internal Quality Measures 

Different scalar validity indices have been proposed in  [46]- [48] as internal quality measures, none of 

them is perfect by itself, and therefore several indices should be used to evaluate the quality of the 

clustering algorithm. Some indices are used to assess the quality of un-nested clusters produced by hard 

clustering; others are used to evaluate the quality of fuzzy clusters generated by fuzzy clustering 

approaches. Another family of indices is applicable in the cases where the hierarchical clustering 

algorithms are used to cluster the data. In addition, we can use one index to assess two different partitions 

produced from two different clustering algorithms. Some of these internal indices are described next. 
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Partition Index (SC) 

It is the ratio of the sum of compactness and separation of clusters. It is a sum of individual clusters 

internal quality normalized through division by the cardinality of each cluster. The CS index for a 

clustering solution of k clusters is defined as: 
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 (2. 16) 

Where m is the weighting exponent, |Si| is the size of cluster Si, and n is the total number of objects. SC is 

useful when comparing different partitions having equal number of clusters. A lower value of SC 

indicates better partitioning. 

Dunn Index (DI) 

An internal quality index for crisp clustering that aims at the identification of “compact” and “well 

separated” clusters. The Dunn Index is defined in Eq. (2.17) for a specific number of k clusters. 
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Where ||Si-Sj||2 is the dissimilarity function (Euclidian distance) between two clusters Si and Sj and 

diam(Sr) is the diameter of cluster Sr, which may be considered as a measure of clusters’ dispersion. If the 

dataset contains compact and well-separated clusters, the distance between clusters is expected to be large 

and the diameter of the cluster is expected to be small, thus large values of the index indicate the presence 

of compact and well-separated clusters. The problems with the Dunn Index are (1) its considerable time 

complexity for large n, and (2) its sensitivity to the presence of noise in the dataset, since these are likely 

to increase the values of the diam(S). 

Separation Index (SI) 

Separation Index is a cluster validity measure that utilizes cluster prototypes to measure the dissimilarity 

between clusters, as well as between objects in a cluster to their respective cluster prototypes.  
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Where ||x-zi||2 is the Euclidian distance between object x and the cluster prototype zi. For centroid-based 

clustering, zi is the corresponding centroid of the cluster Si while in medoid-based clustering, zi refers to 

the medoid of the cluster Si. Clustering solutions with more compact clusters and larger separation have 

lower separation index, thus lower values indicates better solutions. The index is more computationally 

efficient than Dunn’s index, and is less sensitive to noisy data. 

Root Mean Square Standard Deviation (RMSSTD) Index  

The RMSSTD index measures the homogeneity of the formed clusters at each level of a hierarchical 

clustering algorithm. The RMSSTD of a new clustering solution defined at a level of a clustering 

hierarchy produced by a hierarchal clustering algorithm is the square root of the variances of all the 

variables (objects used in the clustering process). Since the objective of cluster analysis is to form 

homogenous groups, the RMSSTD should be as small as possible. In the case that the values of RMSSTD 

are higher than the ones of the previous step of a hierarchical clustering algorithm, we have an indication 

that the new clustering solution is worse. In the centroid hierarchical clustering where the centroids are 

used as clusters representatives, the RMSSTD takes the form:  
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Cluster Distance Index (CD)  

The CD index measures the distance between the two clusters that are merged in a given step of a 

hierarchical clustering algorithm. This distance depends on the selected representatives for the 

hierarchical clustering performed. For instance, for centroid-based hierarchical clustering the 

representatives of the formed clusters are the centroids of each cluster, so CD index is the distance 

between the centroids of the clusters as shown in equation Eq. (2.20). 

 2( , ) || ||
i j i j

CD S S c - c=   (2. 20) 

Where Si and Sj are the merged clusters and ci and cj are the centroids of the clusters Si and Sj, 

respectively. In the Single linkage (SL) hierarchical clustering, the CD index is defined as the minimum 

Euclidian distance between all possible pairs of points. 
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The Complete linkage (CL) hierarchical clustering defines the CD index as the maximum Euclidian 

distance between all pairs of data points. 
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Overall Similarity 

A common internal quality measure is the overall similarity and it is used in the absence of any external 

information such as class labels. The overall similarity measures cluster cohesiveness by using the 

weighted similarity of the internal cluster similarity. 

 ( ) 2

1
 ( , )

| |
i

i

Si

Overall Similarity S Sim
S ∀ ∈

= ∑
x, y

x y  (2. 23) 

Where Si is the cluster under consideration and Sim(x,y) is the similarity value between the two objects x 

and y in the cluster Si. Different similarity measures can be used to express the internal cluster similarity 

(e.g. cosine correlation). 

2.1.4 Data Clustering Algorithms 

In this subsection, some of the methods that have been reported in the literature on data clustering are 

presented along with their complexity analysis.  Jain and Murty  [1] give a comprehensive account of 

clustering algorithms. By definition, clustering is an unsupervised learning technique, and that will be the 

focus of this subsection. Some of these techniques are employed in the experimental results for a 

comparison purpose.  

k-means (KM) Clustering Algorithm 

The classical k-means (KM) algorithm is considered as an effective clustering algorithm in producing 

good clustering results for many practical applications  [1]- [4], [7]. The algorithm is an iterative procedure 

and requires the number of clusters k to be given a priori. The initial partitioning is randomly generated, 

that is, the centroids are randomly initialized to some points in the region of the space. k-means partitions 

the dataset into k non-overlapping regions identified by their centroids based on objective function 

criterion where objects are assigned to the closest centroid (Calculation Step). The most widely used 

objective function criterion is the distance criterion,  
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Where distance is the metric distance between any data vector and the corresponding cluster centroid 

where the vector belongs to. Thus this criterion minimizes the objective function J defined as: 
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= ∀ ∈

−
= ∑ ∑ x ,  (2. 25) 

Both Euclidian distance, ||x-ci||2 (Eq. (2.3)) and the cosine correlation cosSim(x,ci) (Eq. (2.5)) are 

commonly used distance (or similarity) measures. The algorithm converges when re-computing the 

partitions (Updating Step) does not result in a change in the partitioning. For configurations where no data 

vector is equidistant to more than one centroid, the above convergence condition can always be reached.  

This convergence property along with its simplicity adds to the attractiveness of the k-means.  KM often 

terminates at a local optimum. The global optimum maybe found using other techniques such as 

deterministic annealing and generic algorithms. On the other hand, k-means clustering is vulnerable to the 

existence of noise and cannot handle datasets with different shapes. It is biased to datasets of globular 

shapes. The description of the Partitional k-means algorithm is shown in Fig. 2. 1.  

Algorithm: k-means Clustering : KM( X, k, ε) 

Input: The dataset X, number of clusters k, and convergence threshold ε. 

Output: Set of k clusters, S={Si, i=0,1,..,k-1} 

Initialization: Select randomly a set of k initial cluster centroids ci, i=0,1,..,k-1. 

Begin 

 Repeat 

        Step1: For each data vector xj , j =1,..,n, compute its distance to each cluster centroid ci, i=0,1,..,k-1 

and assign it to the cluster with the closest cluster centroid. 

        Step2: Compute the objective function 2
2

1
(|| || )

0

k
J ci

i x Si

−
= −∑ ∑

= ∀ ∈
x  

        Step3: Re-compute cluster centroids ci for the k clusters; where the new centroid ci is the mean of all 

the data vectors in the cluster Si. 

 Until Convergence (Change in the objective function ≤ ε) 

Return S 

End  

Fig. 2. 1. The Partitional k-means Clustering Algorithm 
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The computational complexity of KM is determined by: number of objects (n), dimension of each vector 

(d), number of clusters (k), and number of loops (Lops). At each loop, the computational complexity of 

the calculation step is dominated by the clustering criterion function J, which has f (n, k, d) operations. 

For the updating step, recalculating the centroids needs kd operations. Thus, the time complexity of the 

KM is: 

 T
KM(k) = ( f (n, k, d) +kd)*Lops   (2. 26) 

In this thesis, we use the cosine similarity as a measure of similarity between objects, clusters, objects and 

clusters. Thus for cosine similarity, f (n, k, d) = 2nkd + nk + nd. Then, the cost of a single iteration of the 

KM is of O(kdn). 

Bisecting k-means (BKM) Clustering Algorithm 

The basic bisecting k-means  [6], [13] is a variant of the k-means algorithm. Bisecting k-means uses k-

means to partition the data set into two clusters. Then one of the two clusters is selected and bisected 

further (Bisecting Step). This process is repeated until the desired number of clusters k is obtained. There 

are a number of different ways (i.e. homogeneity criteria) to choose which cluster to split. For example, 

we can choose (1) the largest cluster at each step, (2) the one with the least overall similarity, or (3) a 

criterion based on both size and overall similarity. Note that by recursively using a divisive bisecting 

clustering procedure, the dataset can be partitioned into any given number of clusters. The bisecting k-

means algorithm can produce either an un-nested (flat) clustering or a hierarchical clustering. 

Interestingly enough, the clusters obtained are structured as a hierarchical binary tree (or a binary 

taxonomy). The bisecting divisive approach is very attractive in many applications as document-

retrieval/indexing problems. However, sometimes a “refinement” is needed to re-cluster the results as a 

fraction of the dataset is left behind with no way to re-cluster it again at each level. Recent studies  [13] 

conclude that, the BKM is better than the standard k-means and as good as or better than the hierarchical 

approaches. The BKM is presented in Fig. 2. 2. 

For the BKM algorithm, assume the largest remaining cluster is always split. The computational 

complexity of the BKM at each level of the hierarchical tree is determined by the size of the cluster Sj at 

each bisecting step |Sj|, the dimension of the vector (d), the number of clusters (k), the number of loops of 

k-means in each bisecting step (Loops), and the number of iterations for each bisecting step (ITER) 

(which is usually specified in advance). In the bisecting step, f (|Sj|,2,d) operations are required for the k-
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means calculation step, and 2d operations for the centroids updating step. The time complexity of the 

BKM at each level of the tree can be represented as: 

 T
BKM = ( f (|Sj| , 2, d) + 2d)*Loops* ITER  (2. 27) 

Algorithm: Bisecting k-means Clustering: BKM (X, ITER, ζ, k) 

Input: The dataset X, number of iterations ITER for the bisecting step, homogeneity criterion ζ, and the 

desired number of clusters k 

Output: The set of k clusters S={S0,S1,..,Sk-1} 

Initialization: Let V = X, S={ } 

Begin 

  For number of clusters l =2 to k (Clustering Step) 

 Step1: For i=1 to ITER (Bisecting Step) 

  - Select randomly two initial centroids c1 and c2 from the set V. 

  - Find two partitions from the set V using the basic k-means algorithm. 

  End   

 Step2: Take the best of these splits as V1 and V2 with the corresponding centroids c1 and c2, 

respectively. 

 Step3: Select the cluster that satisfies the homogeneity criterion ζ as V1  

 Step4: Assign V to the remaining partition, V=V2 

 Step5: Add V1 to the set of desired clusters S=S ∪ V1 

  End 

Add V2 to the set of desired clusters S=S ∪ V2 

Return S 

End 

Fig. 2. 2. The divisive Bisecting k-means Clustering Algorithm 

Partitioning Around Medoids (PAM) Clustering Algorithm 

Rather than calculating the mean of the objects in each cluster as in the k-means (KM) clustering, the 

Partition Around Medoids (PAM) algorithm  [14] chooses a representative object, or medoid, for each 

cluster at each iteration. Medoids for each cluster are calculated by finding an object mi within the cluster 
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that minimizes the objective function defined as the sum of distances of all objects within the clusters to 

the cluster medoid. PAM has the advantage of its robustness to noisy data and outliers compared to k-

means. PAM works well for small datasets but cannot scale for large datasets. Thus,  [14] also presents 

Clustering Large Applications (CLARA), which draws one or more random samples from the whole data 

set and runs PAM on the samples. Ng and Han  [15] propose Clustering Large Applications based on 

Randomized Search (CLARANS) as an extension to PAM. Although CLARA and CLARANS are more 

scalable than PAM, they are inefficient for disk-resident datasets as they require multiple scans of the 

entire dataset and also a good clustering of a sample does not mean good clustering for the whole dataset.  

Algorithm: Partitioning Around Medoids Clustering: PAM(X, k, npass) 

Input: The dataset of objects X, number of clusters k, and number of iterations npass  

Output: set of k clusters, S={S0,S1,..,Sk-1} 

Initialization: Select k objects randomly as medoids (m0,m1,..,mk-1) 

Begin 

 Repeat  

 Step1:  Assign each remaining non-medoid object to the cluster with the nearest medoid and 

compute Total Distances of cluster Si, TD(Si), i=0,1,..,k-1, as the sum of distances 

from all objects to their nearest medoid mi. 

 Step2: For each pair of medoid mi, i=0,1,..,k-1, and non-medoid xj, j=1,2,…,|Si|,  

 - Compute the value TD(Si)(mi↔xj); i.e. the value of the compactness of cluster Si 

that results when swapping mi with xj 

 - Select the non-medoid object x∈Si for which TD(Si)(mi↔x) is minimal 

 - If TD(Si)(mi↔x) is smaller than the current TD(Si ),  

   Then swap mi with x and set TD(Si) = TD(Si)(mi↔x)  

 End 

 Until (no Change in medoids or number of iterations <npass) 

Return S 

End 

Fig. 2. 3. The Partitioning Around Medoids (PAM) Clustering Algorithm 
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PAM cannot recognize relatively small clusters in situations where good partitions around medoids 

clearly exist. Also PAM needs O(k(n-k)2) operations to cluster a given dataset, which is computationally 

prohibited for large n and k. A new bisecting PAM algorithm is proposed in  [49] that takes less 

computational time with comparable performance relative to the PAM algorithm. 

Fuzzy c-means (FCM) Clustering Algorithm 

A variant of k-means that allows overlapping clusters is known as Fuzzy c-means (FCM). The task of the 

traditional crisp clustering approach is to assign each data point to exactly one cluster. For fuzzy 

clustering, k membership values are calculated for each data point xj, which are denoted by uij ∈ [0,1], 

i=0,1…,k-1 and j=1,…,n. FCM allows for varying degrees of object memberships  [50]. The fuzzy c-

means clustering algorithm is shown in Fig. 2. 4. Krishnapurn et al  [25] proposed a modified version of 

FCM called “Fuzzy c-medoids” (FCMdd) where the means are replaced with medoids. They claim that 

their algorithm converges very quickly and has a worst case of O(n2) and is an order of magnitude faster 

than the traditional FCM.  

Algorithm: Fuzzy c-means Clustering Algorithm: FCM (X, m, k) 

Input: The dataset X, the weighting exponent m, and number of clusters k 

Output: Set of k clusters, S={S0,S1,..,Sk-1} 

Initialization: - Initialize the membership matrix U with random numbers between 0 and 1 such 

that
1
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 Until Convergence 

End 

Fig. 2. 4. The Fuzzy c-Means (FCM) Clustering Algorithm 
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As m→1, the partitions become increasingly crisp; and as m increases the memberships become fuzzy. 

The value of m=2 is often chosen for computational convenience. 

Density Based Spatial Clustering of applications with Noise (DBSCAN) Algorithm 

The density-based clustering algorithm DBSCAN (Density Based Spatial Clustering of Applications with 

Noise)  [51] is used because it yields the following advantages: 

• DBSCAN is a very efficient and effective density-based clustering algorithm 

• DBSCAN is rather robust concerning outliers 

• DBSCAN can be easily implemented 

In density-based clustering, clusters are regarded as regions in the data spaces in which objects are dense, 

and which are separated by regions of low object density (noise). The key idea of density-based clustering 

is that for each object of a cluster the neighborhood of a given radius (Eps) has to contain at least a 

minimum number of objects (MinPts), i.e. the cardinality of the neighborhood ≥ some threshold.  

Definition 

An object x is directly-reachable from an object y wrt. Eps and MinPts in a set of objects X, if x belongs 

to the neighborhood of y and number of objects in the neighborhood of y ≥ MinPts 

Definition 

An object x is density-reachable from an object y wrt. Eps and MinPts in the set of objects X, denoted as 

X>x y , if there is a chain of objects x1,x2,…,xs, x1 = y , xs = x such that xi ∈X and xi+1 is directly-

reachable from xi wrt Eps and MinPts. 

Definition 

 An object x is density-connected from an object y wrt. Eps and MinPts in the set of objects X if there is 

an object o∈X such that both x and y are density reachable from o wrt Eps and MinPts in X. 

Definition 

 A cluster is defined as a set of density-connected objects, which is maximal wrt. density-reachability. 

 There are different kinds of objects in density-based clustering: core objects (neighborhood 

cardinality ≥ MinPts) or non-core objects (neighborhood cardinality < MinPts). The non-core objects are 

either border objects (not a core object but density reachable from another core object) or noise objects 
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(not a core object and not a density reachable from other objects). The procedure of finding a cluster is 

based on the fact that a cluster as defined is uniquely determined by any of its core objects. The DBSCAN 

algorithm can be described as in Fig. 2. 5. 

Algorithm: DBSCAN (X, Eps, MinPts) 

Input: The dataset X, radius Eps, and minimum neighborhood cardinality MinPts.  

Output: The core objects of each cluster and the actual number of clusters k 

Begin 

 Repeat 

 Step1: Start with an arbitrary object x which is not yet clustered  

 Step2: Retrieve all objects y which are density-reachable from x wrt Eps and MinPts 

 Step3: If x is a core object, a cluster S is formed wrt Eps and MinPts 

 Step4: If x is a border point, no points are density-reachable from x; then visit the next point of X 

 Until (All objects have been clustered) 

Return (the core objects and the final set of k clusters) 

End  

Fig. 2. 5. The DBSCAN Algorithm 

After clustering the data, representatives are needed to describe the clustering results accurately. We have 

to find an optimum trade-off between having small number of representatives and having an accurate 

description of the clusters. The core objects computed during the DBSCAN algorithm serve as good 

representatives. Unfortunately, the number of the produced core objects can become very large, especially 

in very dense areas of clusters. Thus a new set of core objects called a complete set of specific core points 

with less number of representatives is used. 

Definition 

Let S ⊆ X be a cluster wrt. Eps and MinPts. Furthermore, let CorS ⊆  S be the set of core points 

belonging to cluster S. Then ScorS ⊆ S is called a complete set of specific core points of S iff the following 

conditions are satisfied:  

 (1) ScorS ⊆ CorS  

 (2) , ; ( )
i j S i Eps j

Scor N∀ ∈ ∉x x x x  

 (3) ; ( )
S i S Eps i

Cor Scor N∀ ∈ ∃ ∈ ∈x x x x  
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k-Windows Clustering Algorithm 

The idea behind the k-windows algorithm  [10] is the use of windows to determine clusters. A window is 

defined as an orthogonal range  [52], [53] in d-dimensional Euclidian space. Therefore each window is a d-

range of initial fixed area a. Every object that lies within a window is considered to belong to the 

corresponding cluster. The main idea is to construct a tree-like data structure with the properties that give 

the ability to perform a fast search of the set of objects. An orthogonal range search is based on this pre-

processing where the tree is constructed. Thus objects that lie within a d-range can be found by traversing 

the tree. Let Xs be a subset of the set X. The middle object xh of Xs with respect to the coordinate i (1≤ i ≤ 

d) is defined as the object which divides the set Xs-{xh} into two subsets 1sX and 2sX , such that: 

1 2and ,
s s i i i

x X x X x x xg r g rh
∀ ∈ ∀ ∈ ≤ ≤  and both 1sX and 2s

X have approximately equal number of 

vectors. The multidimensional binary tree (MDBT) TR that stores the data vectors of the set X is 

constructed as follows: 

• Let xr be the middle object of the given set X, with respect to the first coordinate x1
r. Let X1 and 

X
2 be the corresponding partitions of the set X-{xr}. The object xr is stored in the root of TR. 

• Each node x of TR obtains a left child left[x] and a right child right[x] which are created by 

recursive construction of the MDBT for both the left and right nodes of the node x with respect to 

the next coordinate. 

Let us consider a d-range query 1 1 2 2[ , ] [ , ] ... [ , ]d dQ a b a b a b= × × ×  specified by two points 

(a1,a2,…,ad) and (b1,b2,…,bd) with aj ≤ bj; j=1,2,..,d. The search in the tree TR is affected by the orthogonal 

search algorithm, which accumulates the retrieved points in a set V. The Orthogonal Range Search (ORS) 

is shown in Fig. 2. 6. 

Algorithm: Orthogonal Range Search: ORS(TR, Q, i) 

Input: The tree TR, the d-range query Q and the coordinate i  

Output: The set V 

Begin 

Step1: set V= { }, Let xr be the root of TR 

Step2: Search TR, if xr ∈Q, then Add xr to V, else recursively search both the left and right trees of xr 

with respect to coordinate i+1 

End 

Fig. 2. 6. The Orthogonal Range Search (ORS) 
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Iteratively, the k-windows algorithm moves each window in the Euclidian space by centering them on the 

mean of the included data vectors. This iterative process continues until no further movement results in an 

increase in the number of vectors that lie within each window. Subsequently the algorithm enlarges every 

window in order to contain as many vectors as possible from the corresponding cluster. The description of 

the k-windows algorithm is shown in Fig. 2. 7. 

Algorithm: k-windows Algorithm(X, l, d, a) 

Input: The dataset X and number of initial windows l, the d-ranges, and area a. 

Output: Set of k clusters 

Initialization: At first, l centroids are selected (possibly in a random way). Initial windows Wi, i=1,2,..,l 

in the d-ranges are centered on these initial centroids and each one is of area a. 

Begin 

Phase1 (Moving Phase):  

 Repeat  

          Step1: The vectors that lie within each window Wi are found, using the Orthogonal Range Search 

technique of Computational Geometry  [52], [53].  

 Step2: The centroid of the vectors that lie within each window Wi is calculated. Each centroid 

defines a new d-range, which is considered as a movement of the previous one.  

       Until no window includes a significant increment of vectors  

Phase2 (Enlarging Phase): 

 Repeat 

 The d-range windows Wi are enlarged in order to include as many vectors of the corresponding 

cluster as possible. 

 Until no further enlargement increases the number of vectors included in the window Wi 

Phase3 (Checking Phase):  

 The relative frequency of vectors assigned to a d-range window Wi in the whole set of vectors is 

calculated. If the relative frequency is small with respect to a user specified threshold,  

  Then both Phase1 and Phase2 are repeated. 

Phase4 (Merging Phase): Any two overlapped windows Wi and Wj are merged, and the remaining set of k 

windows defines the final set of k clusters. 

End 

Fig. 2. 7. The k-windows Clustering Algorithm 
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Principal Direction Divisive Partitioning (PDDP) 

The Principal Direction Divisive Partitioning (PDDP)  [11] is an unsupervised clustering algorithm based 

on the principal component analysis  [54]. The quality of the clustering solutions obtained and the cost of 

the computations are shown to be good. The PDDP algorithm starts with a root cluster comprising the 

entire set of documents. Then it splits the set into two parts using the principal directions. This process 

runs recursively. The result is a binary tree. To avoid generating clusters of unbalanced sizes, PDDP 

selects the next cluster with the largest scatter value to be split. The scatter value measures the 

cohesiveness of the objects within a cluster. The set of objects are represented by a features-objects 

matrix M, in which each column corresponds to an object and each row corresponds to a particular 

feature. The PDDP algorithm is shown in Fig. 2. 8 . 

Algorithm: PDDP Clustering (X, k) 

Input: The dataset X and number of clusters k 

Output: Set of k clusters. 

Initialization: - Start with the entire set of objects X as the initial matrix M 

Begin 

 Repeat 

 Step1: Split the matrix M into two partitions M1 and M2 using the principal direction  [54] 

 Step2: Take the partition with largest scatter value as the new set M 

 Until the desired number of clusters is reached 

End 

Fig. 2. 8. The PDDP Clustering Algorithm 

2.2 Combining Multiple Clustering 

Combining multiple clustering is considered as an example to further broaden and stimulate a new 

progress in the area of data clustering. Combining clusterings can be classified into two categories based 

on the level of cooperation between the clustering algorithms; either they cooperate on the intermediate 

level or at the end-result level. Examples of end-result cooperation are the ensemble clustering and the 

hybrid clustering  [28]- [32]. Ensemble clustering is based on the idea of combining multiple clusterings of 

a given dataset X to produce a superior aggregated solution based on aggregation function. Ensemble 

clustering integrates a collection of “base clusterings” to produce a more accurate partition of a dataset. 
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Recent ensemble clustering techniques have been shown to be effective in improving the accuracy and 

stability of standard clustering algorithms and also it can provide novel, robust, and stable solutions. 

However, inherent drawbacks of these techniques are: (1) the computational cost of generating and 

combining multiple clusterings of the data, and (2) designing a proper cluster ensemble that addresses the 

problems associated with high dimensionality and parameter tuning. Hybrid clustering assumes a set of 

cascaded clustering algorithms that cooperate together for the goal of refining the clustering solutions 

produced by a former clustering algorithm(s) or to reduce the size of the input representatives to the next 

level of the cascaded model. Hybrid PDDP-k-means algorithm  [32] starts by running the PDDP algorithm 

 [11] and enhances the resulting clustering solutions using the k-means algorithm. Hybrid clustering 

violates the synchronous execution of the clustering algorithms at the same time, as one or more of the 

clustering algorithms stays idle till a former algorithm(s) finishes it clustering. 

2.3 Parallel Data Clustering 

Parallelization of data clustering algorithms to adapt the massive data sets requires dividing up the 

clustering task on multiple P nodes1 so that each node can perform part of the clustering process in 

parallel with the other nodes. Thus each node is responsible for n/P vectors rather than the whole entire 

dataset X, where n is the total number of objects. The results are thus achieved faster than those obtained 

using single node architecture. In clustering parallelization, the computational task must be equally 

balanced among the processing nodes such that each node can access an equal portion of the data set, the 

balancing scheme is essential to minimize data communication cost during the clustering process, and to 

parallelize the access to the data set. Different strategies in parallelizing clustering algorithms can be 

adopted depending on the computational load at each node as follows  [55]- [66]: 

• Independent-Parallel: This strategy uses a single partitioning as a unit of parallelism. Each 

processing node has access to the whole data set and it performs a different partitioning based on 

different number of clusters used to partition the data set. At the end of the computation, all the 

resulting partitions performed in parallel by each node are collected and their accuracy is 

evaluated and compared by the user. The computational load of each node depends on the number 

of clusters used to partition the data set, thus the larger the number of cluster, the higher the 

computational load.   

                                                   

1 The term “node” is used in this thesis to denote a processor, a process, a computer or a site. 
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• Task-Parallel: This strategy would involve getting each processing node to run a complete 

version of the clustering algorithm over the entire data set X, but dividing up the search space into 

a set of regions and assigning each single region to a single node. This parallel strategy could 

initially require a significant startup cost for partitioning the search space among the nodes; 

however the nodes would then be independent until the gathering of results at the end of the 

clustering process. This strategy allows a good balance of computational costs of each node. 

• Single Program Multiple Data (SPMD) Parallelization: SPMD parallelism typically involves 

mapping a problem that manipulates a data structure of size n into P instances of a program so 

that each instance manipulates an n/P-sized block of the original domain. In other words, in the 

single program multiple data parallelization, each processing node executes the same code, but 

runs through different data. Communication occurs among the nodes when data, local (and/or) 

global representatives are exchanged between two or more nodes that compose the SPMD 

computations.  

• Multiple Program Multiple Data (MPMD) Parallelization: MPMD parallelism can be divided 

into multiple levels, where different cluster algorithms are used at different levels to enhance the 

clustering quality of the former algorithm(s) or to reduce the size of the representatives as an 

input to the next level. 

Most of the parallel clustering algorithms presented in the literature follow the Single Program Multiple 

Data parallelization strategy; some of these algorithms are: parallel k-means  [62], parallel fuzzy c-means 

 [63], parallel AutoClass  [66], and many others.  

2.3.1 Parallel Hybrid Approaches 

The parallel hybrid  [32] clustering assumes multiple parallel clustering algorithms are used in cascade 

(i.e. the clustering algorithms cooperate with each other at the end-result level) to cluster the dataset. This 

cascading model is mainly used to enhance the clustering quality produced by a former algorithm(s). The 

parallel hybrid clustering is carried out by either communication between all the different nodes or 

through the interaction between only facilitator (master) nodes.  

Parallel Hybrid Principal Direction Divisive Partitioning and k-means Algorithm  

For parallel PDDP, the matrix M (features-object matrix) is stored in the Compressed Sparse Row (CSR) 

format. Each of the P nodes has a data structure consisting of the three arrays: 
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• MM: A real number array containing the real values of the nonzero elements of M (features-

object matrix) stored on each node row by row 

• CM: An integer array for the column indices corresponding to the array MM 

• RM: An integer number array containing the pointers to the beginning of each row in the arrays 

MM and CM 

Each data vector is broken into many parts, and different parts are distributed to different nodes. Each row 

of the nonzero entries is distributed to its corresponding node in a row-wise cyclic striped partitioning 

(RCSP) form  [60]. To compute the mean vector of the global cluster, all nodes can compute its own part 

of the mean vector in parallel. The mean vector is also distributed among the nodes, in the same way as 

for each vector. A high level description of the parallel PDDP algorithm is illustrated in Fig. 2. 9. 

Algorithm: Parallel PDDP Clustering (M, h, P) 

Input: The matrix M, the tree height h, and number of nodes P  

Output: Set of global k centroids 

Initialization: - Let M be the root of the global tree and divide M on the P nodes 

Begin  

Step1: For each level i =1 to h 

 For each cluster Si at level i 

 If Si is singleton, (A singleton means that its object set is exactly the same as that of its parent 

cluster) then process the next cluster, else                 

 - Each node Np evaluates local part of the mean vector cp
i of the cluster Si and local part of the 

leading eigenvector (the eigenvector of the covariance matrix with maximum variance) ui
p
 

using local matrices in a CSR format. 

 - Global centroid ci of cluster Si and global leading eigenvector u are produced in a CSR 

representation using the local parts at each node. 

 For each document x in the cluster Si 

  If dot product (u,x ) ≥ 0, then assign x to the left child of cluster Si 

    Else assign x to the right child of cluster Si 

 End 

Step2: The leaf nodes of the tree comprise the final set of k clusters  

End 

Fig. 2. 9. Parallel PDDP Clustering Algorithm 
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The parallel PDDP algorithm is fast in clustering web documents datasets. However, the quality of its 

clustering for some cases may not be good as that produced by the parallel k-means clustering  [62] 

algorithm. Thus the parallel k-means is used to refine the clustering solutions that results from the parallel 

PDDP algorithm. This hybrid combination is based on end-result cooperation between both the parallel 

PDDP and parallel k-means, this strategy of cooperation is mainly to enhance the clusters produced by the 

PDDP algorithm and to give the k-means algorithm a good initial points. The parallel hybrid PDDP and k-

means clustering algorithm is shown in Fig. 2. 10. 

Algorithm: Parallel Hybrid PDDP and PKM Clustering(M, h, P, k) 

Input: The matrix M, the tree height h, number of nodes P, and number of clusters k 

Output: The set of k clusters 

Initialization: Divide the matrix M on the P nodes 

Begin 

 Step1: Run the Parallel PDDP and generate centroids for the k clusters 

 Step2: Use these k centroids as initial centroids to the parallel k-means algorithm 

 Step3: The parallel k-means generates the final set of clusters k 

End 

Fig. 2. 10. Parallel Hybrid PDDP and k-means Clustering Algorithm 

2.4 Distributed Data Clustering 

Advances in computing and communications over wired and wireless networks have resulted in many 

pervasive distributed computing environments. The internet, intranets, local area networks, ad hoc 

wireless networks, and sensor networks are some examples. These environments often come with 

different distributed sources of data and computations. The transmission of huge amounts of data from 

nodes to another central node is in some application areas almost impossible. Distributed data clustering 

is a generalization of parallel data clustering where data is equally partitioned among nodes. In 

astronomy, for instance, several highly sophisticated space telescopes are spread all over the world. These 

telescopes gather data unceasingly. Each of them is able to collect 1GB of data per hour  [67] which can 

only, with difficulty, be transmitted to a central node to be analyzed centrally there. On the other hand, it 

is possible to analyze the data locally where it has been generated and stored. Aggregated information of 

different local nodes are combined and analyzed. The result of the central analysis may be returned to the 

local nodes, so that the local nodes are able to put their data into a global context. Also, centralized 
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clustering can hardly scale to magnitude of the data e.g. the Web. Google for example, is able to index the 

web daily and responds to millions of queries per day because it employs a farm of distributed computing 

nodes that apply distributed algorithms for content indexing and query processing. Also a major thrust of 

gene expression analysis over the last twenty years has been the acquisition of enormous amount of 

various distributed sources of gene expression datasets. Thus, it is becoming increasingly important to 

perform clustering of distributed data in-place, without the need to pool it first into a central node. 

Applications of distributed clustering are numerous. They often try to solve problems in mathematics and 

science. Specific areas and examples include:  

• Specific projects include: astronomy (SETI@home), biology (Folding@home, Predictor@home), 

climate change (CPDN), physics (LHC@home), cryptography (distributed.net), and biomedicine 

(grid.org). Those projects are usually built on top of a common platform providing low level 

services for distributed or grid computing. Examples of those platforms include: Berkeley Open 

Infrastructure for Network Computing (BOINC), Grid.org, World Community Grid, and Data 

Mining Grid. 

• Supermarket chains where check-out scanners that located at different stores gather data 

unremittingly. 

• Furthermore, international companies such as DaimlerChrysler2 have some data which is located 

in Europe and some data in the US, those companies have various reasons why the data cannot be 

transmitted to a central site, e.g. limited bandwidth or security aspects. 

2.4.1 Distributed Clustering Definition and Goals 

Distributed clustering in general deals with the problem of finding patterns in an environment where data 

is either naturally distributed, or could be artificially partitioned across computing nodes. It implies 

distribution of one or more of: users, data, hardware, or software  [68], [69]. Centralized data clustering 

systems do no address some of the requirements of the distributed environments, such as data distribution 

across nodes, scalability and changing information between nodes. The main assumption in distributed 

clustering is that data is distributed over a number of nodes, and that is desirable through distributed 

clustering techniques a global model that reflects the characteristics of clustering the whole data set. In 

general, the attributes ascribed to the distributed clustering system can be identified in terms of its local 

models, a global model of the clustering process, and the clustering algorithm itself.  

                                                   

2 http://www.chryslercanada.ca/en/ 



 

  33

Local Models 

Each node is required to build and maintain a local model of the problem space it is responsible for. In 

terms of data clustering this is the cluster prototype. Let N0, N1, .. , NP-1 be the set of nodes in the system 

running the clustering algorithm A. Let Z0, Z1,..,ZP-1 be the corresponding set of local models. Each local 

data model Zp; p=0,1,..,P-1 consists of the prototype representation (e.g. centroids) of the collection of 

local data objects Xp the node Np owns.  

Global Model 

The global model is a representation of the whole cluster sets produced by all nodes, it is constructed 

based on the local models generated at each node and it is considered as a common repository of 

knowledge that is accessible to all nodes. Global model is what makes individual nodes aware of the big 

picture and serves as a catalog which nodes consult to find out if the desired clustering quality is achieved 

or not and then update their local models based on the generated global model. At the level of generating 

the global model, nodes are communicating through sharing and negotiating by using only the local 

models while data are preserved for privacy issues. Distributed data clustering can be illustrated as in Fig. 

2. 11. The architecture design of the distributed system relies on the presence of multiple nodes, not 

necessarily running on the same machine, that are able to communicate and negotiate among themselves 

to achieve better performance. The nodes cooperate by sharing resources, such as data objects and 

information about their local (and/or) global models such as clusters prototypes. 
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Fig. 2. 11. Distributed Data Clustering 
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2.4.2 Challenges in Distributed Data Clustering 

A number of challenges (often conflicting) arise when developing distributed clustering approaches:  

• Communication model and complexity: It is desirable to develop methods that have low 

communication complexity, especially in mobile applications such as sensor networks, where 

communication consumes battery power. In addition, although many distributed systems are 

designed for sharing large data files (e.g. music, movies), a distributed clustering system that 

involves analyzing such data, may not have the luxury to frequently exchange large volume of 

data among the nodes in the distributed network just for data clustering purposes. Thus 

distributed clustering environment should be “light-weight”; it should be able to perform 

distributed data analysis with minimal communication overhead. 

• Quality of the global model: in distributed systems, data is clustered locally at each node. 

Afterwards only the information (summary) about the local clusters is aggregated from all nodes 

to construct a global model of data. Quality of the global model derived from the data should be 

either equal or comparable to a model derived by a centralized method. 

• Privacy of local data: in some situations when local data is sensitive and not easily shared, it is 

desirable to achieve a certain level of privacy of local data while deriving the global model. 

Although not yet proven, usually deriving high quality models requires sharing as much data as 

possible, thus incurring higher communication cost and sacrificing privacy at the same time. 

2.4.3 Distributed Clustering Architectures 

There are two architectures in distributed clustering: Peer-to-Peer and facilitator-workers. In the Peer-to-

Peer model, all peers (nodes) perform the same task and exchange the necessary information to perform 

their clustering goals. In the facilitator-workers model, one node is designed as a facilitator (master node), 

and all other nodes are considered as worker (slave) nodes. The facilitator is responsible for partitioning 

the task among the workers and aggregating their partial results.  

Peer-to-Peer (P2P) Architecture 

P2P networks are networks where peers communicate and transport information directly with each other. 

All nodes communicate with each other either to generate the global model or to enhance the performance 

of each other either by broadcasting messages or exchanging the local models (and/or) global models. An 

example of communication between peers through exchanging of local models is illustrated in Fig. 2. 12. 
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Fig. 2. 12. Peer-to-Peer Communication through Exchanging of Local Models 

P2P networks are different from facilitator-workers model as there is no central control, each peer has 

equal functionality: a peer is a facilitator and a worker; it is dynamic where each peer can join and leave 

the network. Benefits of P2P networks include: 

• Efficient use of resources 

• Scalability 

o Consumers of resources also donate resources 

o Aggregate resources grow naturally with utilization 

• Reliability 

o Geographic distribution 

o No single point of failure 

• Second generation P2P overlay networks have the following characteristics 

o Ease of administration 

o Nodes self organize 

o No need to deploy servers to satisfy demand (i.e. peer-scalability) 

o Built-in fault tolerance, replication, and load balancing 
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The P2P networks have been applied in many applications where the datasets are inherently distributed, 

some of these applications include: 

• Bioinformatics: P2P networks have begun to attract attention from scientists in many 

disciplines, especially those that deal with large datasets such as bioinformatics. P2P networks 

can be used to run large programs designed to carry out tests to identify drug candidates. The 

first such program was begun in 2001 by the Centre for Computational Drug Discovery3 at 

Oxford University4 in cooperation with the National Foundation for Cancer Research5. 

• Education and Academia: Due to the fast distribution and large storage space features, many 

organizations are trying to apply P2P networks for educational and academic purposes. For 

instance, Pennsylvania State University6, MIT7, and Simon Fraser University8 are carrying on a 

project called LionShare
9 designed for facilitating file sharing among educational institutions 

globally. 

• Business: P2P networks have already been used in business areas, but it is still in the beginning 

stages. Currently, Kato et al’s studies 10 indicate over 200 companies with approximately $400 

million USD are investing in P2P network. Besides file sharing, companies are also interested 

in distributing computing, distributed clustering, content distribution, e-marketplace, 

distributed search engines, groupware and office automation via P2P networks. There are 

several reasons why companies prefer P2P sometimes, such as: Real-time collaboration, a 

server cannot scale well with increasing volume of content; a process requires strong 

computing power; a process needs high-speed communications, etc. At the same time, P2P is 

not fully used as it still faces a lot of security issues.  

                                                   

3
 http://www.chem.ox.ac.uk/ccdd/ccdd.html 

4
 www.ox.ac.uk/ 

5
 http://www.nfcr.org/ 

6
 www.psu.edu/ 

7
 http://web.mit.edu/ 

8
 www.sfu.ca/ 

9
 www.lionshare.its.psu.edu/ 

10
 www.en.wikipedia.org/wiki/Peer-to-peer 

http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Oxford_University
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• Additional applications of peer-to-peer networks include: 

o VoIP (Voice over IP) 

o Streaming media 

o Instant messaging 

o Software publication and distribution 

o Media publication and distribution. 

Facilitator-Workers Architecture 

A facilitator node is used to collect local models from all nodes. Its job then is constructing the global 

model and sending this global model back to the worker nodes to update their local models. A facilitator-

workers network has the advantage over P2P network as it consumes lower communication cost 

compared that of a P2P network. However, if the facilitator fails or decides to leave the network, all the 

other nodes will remain in an idle state until a new facilitator joins the system. Limitations of the 

facilitator-workers architecture that the peer-to-peer networks try to solve are:  

• Presents a single point of failure 

• Requires administration 

• Provides unused resources at the network edge 

• Scalability is hard to achieve 

2.4.4 Locally and Globally Optimized Distributed Clustering 

The objective of locally-optimized distributed clustering is to employ collaboration between nodes to 

improve the quality of local clustering solutions  [45]. This implies that there is no common set of clusters 

across nodes, but rather local clusters that reflect the characteristics of local data sets. However, by 

strategically moving (or copying) certain data objects from one node to another the quality of local 

clusters is boosted. This effectively creates a network where certain nodes have authority over certain 

clusters, which can simplify query-answering in P2P networks by routing queries to relevant nodes only, 

instead of flooding the query throughout the network. Collaboration between nodes is achieved through 

sharing of summarized local clustering information across the network.  

The goal of globally-optimized distributed clustering is to compute one set of clusters over all local data 

sets, as if the data were pooled into one location and a centralized clustering algorithm was applied to it. 

As a result, at the end all nodes require the same clustering solution, but local data stays the same. 

Globally optimized clustering is suitable for speeding up clustering of large datasets by partitioning the 

http://en.wikipedia.org/wiki/VoIP
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data among nodes. Both the Peer-to-Peer  [44], [70], [71], and the facilitator-workers  [72]- [76] architectures 

can be used to achieve globally optimized clustering. 

2.4.5 Communication models 

Communication between nodes in distributed clustering can be categorized into three classes (in 

increasing order of communication cost): 

• Communication Prototypes, which involves calculating local models that are then sent to peers 

or a central node. These models often are comprised of cluster prototypes, e.g. centroids in P2P k-

means  [44], cluster dendrogram in RACHET  [77], or generative models as in DMBC  [78]. 

• Communication Representatives, in which nodes select a number of representative samples of 

the local data to be sent to a central node for global model generation, such as the case in the 

KDEC distributed clustering algorithm  [76] and the DBDC algorithm  [79].  

• Communication Data, in which nodes exchange actual data objects, i.e. data objects can change 

their nodes to facilitate construction of clusters that exist in certain nodes only, such as the case in 

collaborative clustering scheme in  [80], and the distributed signature-based clustering in  [81]. 

2.4.6 Exact vs. Approximate Distributed Clustering Algorithms 

A distributed clustering algorithm can be described as exact or approximate. Exact algorithms produce a 

final global model identical to a hypothetical model generated by a centralized approach having access to 

the full data set. The exact algorithm works as if the local data sets at each node were bought together into 

one data set first, then a centralized clustering algorithm had been performed on the whole data set. The 

clustering solutions are then distributed again by intersecting the local data sets with the global clustering 

solutions. Approximate algorithms on the other hand, produce a model that closely approximates a 

centrally-generated model. Most distributed data clustering research focuses on approximate algorithms 

as they tend to produce comparable results to exact algorithms with far less complexity  [82]. 

2.4.7 Distributed Clustering Algorithms 

To summarize the state of art of distributed clustering, In  [83], they illustrate the various distributed 

clustering algorithms and their taxonomies according to the time frames and the different classification of 

the original centralized approaches as shown in Fig. 2. 13. We updated the taxonomy with the recent 

research work in distributed clustering during the last year. Some of these distributed clustering 

algorithms are described next.  
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Distributed k-Means (DKM) Clustering Algorithm  

The classical k-means  [7] needs to perform a large number of "nearest-neighbor" queries for the data 

vectors in the dataset. As one would have to run several iterations, it is generally not feasible to run the 

naïve k-means for large datasets. Because of this drawback of the KM clustering, a distributed scalable 

version is developed. In the DKM  [84], [85], initially each node will receive the entire centroid list, but 

only the “root node”, N0 ,will compute the initial centroids and then broadcasts these k initial centroids to 

all other nodes. Thus each node will compute the distances between its local vectors to each of the 

centroids. A series of assignments are generated mapping vectors to the closest centroid. Each node then 

gathers the sum of all vectors allocated to a given cluster and computes the mean of the vectors assigned 

to a particular cluster using Message Passing Interface (MPI) reduction routine  [86]. The MPI reduction 

routine sums all the local copies of centroids from all nodes (reduction operation) and broadcasts the sum 

to all the nodes (broadcast operation). This is repeated for every cluster and a new set of centroids is 

available at each node. Then the local data vectors can be reassigned with respect to the newly calculated 

centroids. The objective function J (Eq.(2.25)) is used as the quality measure of clustering. Each node 

computes the local J for the portion of the dataset over which it is working. Then, a simple reduction (by 

summing all values of local J and broadcasting the global value to all nodes) of local J values among all 

nodes will determine the overall performance of clustering. The DKM is shown in Fig. 2. 14. 

Algorithm: Distributed k-means Clustering: DKM(P, Xp, k) 

Input: Number of nodes P, local datasets Xp, and number of clusters k 

Output: Set of global k centroids 

Initialization: The root node N0 selects randomly the initial global centroids ci, i=0,1,..,k-1 and broadcasts 

(replicates) these initial centroids to the P-1 nodes. 

Begin 

Repeat 

 Step1: Each node Np, p=0,1,..P-1 computes the distance of each local vector to the k global centroids. 

      Step2: The local objects are assigned to the closest centroid and the local J is computed at node Np. 

 Step3: A reduction of the local centroids and local objective functions is performed to produce the 

global k centroids and global J using MPI reduction routine. 

   Until Convergence 

End 

Fig. 2. 14. The Distributed k-means (DKM) Clustering Algorithm 
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Distributed Bisecting k-means (DBKM) Clustering Algorithm 

In the distributed bisecting k-means  [65], the root node N0 selects randomly the two initial centroids c1 

and c2 as centroids for the initial partitions V1 and V2, and then broadcasts the selected initial centroids to 

all other nodes. Each node applies the basic k-means algorithm and finds two local sub clusters My_V1 

and My_V2 from the local objects. This step is called the Bisecting step. This step is repeated for every 

number of iterations ITER until the best global splits V1 and V2 are found. The global partition (V1 or V2) 

with the lowest similarity (or any other splitting criterion) is chosen to be split next; this step is called the 

Picking step and it is repeated until the desired number of clusters k is reached. The local partitioning at 

each node is updated after the picking step is performed. Fig. 2. 15 outlines the DBKM clustering. 

Algorithm: Distributed Bisecting k-means Clustering : DBKM(P, Xp, ITER, k) 

Input: Number of nodes P, local datasets Xp, number of iteration ITER, and number of clusters k 

Output:  Set of global k centroids 

Initialization: - At each node Np let My_Vp = Xp                     

Begin 

For level =1 to k-1 (The Picking Step) 

 Step1: For I=1 to ITER (The Bisecting Step) 

           - N0 selects randomly the initial global centroids c1 and c2 and broadcasts them to the P-1 nodes. 

 - Each node Np p=0,1,..,P-1, finds two local sub-clusters 1_ pMy V  and 2_ pMy V from the local 

dataset Xp using the basic k-means clustering algorithm  

 - Global V1 and V2 are found such that, V1=
1

1

0

_
P

p

p

My V
−

=

∪ and V2=
1

2

0

_
P

p

p

My V
−

=

∪  

 Step2: Take the best of these splits as V1 and V2 and update My_V1
p and My_V2

p 

       Step3: The global centroids c1 and c2  are updated using MPI reduction routine. 

 Step4: Each node Np evaluates the similarity of the local partitions My_V1
p and My_V2

p, and global 

internal similarity of the partitions V1 and V2 are found using MPI reduction routine. 

 Step5: Take the split V1 or V2 that produces the clustering with the highest overall similarity (or any 

other homogeneity criterion) and set V to the remaining partition. 

 Step6: Each node Np updates the local My_Vp based on the new set V found in step5. 

End 

Fig. 2. 15. The Distributed Bisecting k-means Clustering Algorithm 
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The communication between nodes to is facilitated using the Message Passing Interface (MPI), more 

details about the MPI routines are defined in Appendix A. 

Distributed Collaborative Clustering (DCC) Algorithm 

The Distributed Collaborative Clustering (DCC) algorithm  [45] belongs to the family of distributed 

homogenous collaborative clustering. In this model the goal is not to achieve one global clustering 

solution, but rather maximizing the quality of the local clustering solutions at each node through 

collaboration. This is achieved through augmenting and enriching the local clustering solutions with 

recommendations from peer nodes after exchanging summarized cluster information.  

The (DCC) algorithm assumes a set of P nodes, where the data at each node is clustered independently to 

form an “initial local clustering.” The goal is to enhance the local clustering by gaining access to 

summarized cluster information from other nodes. Each node broadcasts its summarized cluster 

information to all other nodes. Each other node collects this information from its peers, calculates 

similarity values between local data and the peer cluster summaries, then it sends a list of recommended 

local objects to be merged with the peer clusters. The original node receives recommendations from all its 

peers, and based upon its own judgment it either merges the recommended objects or rejects them. This 

process results in an expanded local clustering that is both of higher quality and of more coverage than the 

initial local clustering.  

Algorithms in Fig. 2. 16 and Fig. 2. 17 describe the DCC algorithm. In Fig. 2. 16 the algorithm 

recommends objects to peers based on the received peer cluster prototypes. It starts by exchanging cluster 

prototypes between peers. Each node receives P-1 peer summaries; each peer summary is a list of cluster 

prototypes ci. The receiving node compares the cluster prototypes to its own local dataset and builds a 

similarity matrix SM  between its local objects and peer cluster prototypes. The node then sends to each 

peer those objects that are most similar (above similarity threshold rT) to the cluster prototype summaries; 

those objects are called “peer-positive” objects. 

In Fig. 2. 17 the algorithm merges the recommendations of each peer node. It starts by receiving 

recommended objects from each peer. It then follows the same logic of the SHC  [16] clustering 

algorithm, except that it does not create new clusters for objects that were not assigned to any cluster. 
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Algorithm: DCC: (Recommend to Peers)(Xp, peer cluster prototypes, P) 

Input: local objects Xp, peer cluster prototypes and number of nodes P 

Output: Recommendation {X+} of local objects to peer node  

Initialization: Initial clustering done at each node and cluster prototypes are calculated 

Begin 

 Step1: Each node Np receives cluster prototypes from a peer node. 

 Step2: The node Np initializes similarity matrix SM  to hold similarity values between peer clusters 

and local data objects. 

 Step3: The node Np updates SM  by calculating the similarity between each cluster prototype ci and 

each local object xj. 

 Step4: At each node Np, 

  For each cluster prototype  

 Calculate a set of recommended objects Xi
+ for peer cluster Si, such that the objects 

in Xi
+ have SM(xj , ci ) > rT  (similarity threshold) 

 Step5:  Np sends recommended sets {X+} to peer to be merged with its local clusters 

End 

Fig. 2. 16. DCC Algorithm: Collecting Prototypes and Recommending Merge of Objects 

Algorithm: DCC (Merge Peer Recommendations)({X+}) 

Input: Recommendation {X+} from peer node 

Output: Modified local clusters after merging peer recommendation 

Begin 

 For each peer 

 Step1: Receive a set of recommendations {X+} from peer 

 Step2: For each recommendation set Xi
+ 

       Consider recommendation set Xi
+ (corresponding to cluster Si) as a partial data set to 

be clustered with the existing local clusters and apply the SHC algorithm on it 

End 

Fig. 2. 17. DCC Algorithm: Collecting Recommendations and Merging Peer Objects 

In Fig. 2. 17, to avoid the side effect of creating small clusters of objects that did not fit into any existing 

cluster, do not allow the creation of new clusters in Step 2. Those objects that do not fit into existing 

clusters are simply dropped.  
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Distributed Density-Based Clustering (DDBC) Algorithm 

The DDBC  [87] algorithm first clusters the data locally and extracts suitable representation out of these 

clusters. These representatives are sent to a facilitator node where the complete clustering is stored based 

on the local clustering. For both the local and global clustering the DBSCAN  [51] algorithm is used.  Two 

suitable local models called REPscor and REPk-means are designed to create the local model based on the 

definition of the complete set of specific core points, ScorSi. In REPscor, each local cluster Si is represented 

by the set ScorSi. If we assumed that we have found k clusters on a local node Np, the local model 

LocalModelp is formed by the union of the different sets ScorSi. A specific ε-range is assigned to all the 

specific core points x in the set ScorSi, which indicates the representing area of each point. This ε-range 

value is a part of the local model and is evaluated on the facilitator node to develop an accurate global 

model. If we assume that k clusters are found at each node, then the local model on node Np is defined as:  

1,..,

{( , ) | }
p x Si

i k

LocalModel Scorε
=

= ∈∪ x x  (2. 28) 

The REPk-means approach is also based on the complete set of specific core points. In contrast to the 

foregoing approach, the specific core points are not directly used to describe a cluster. Instead, the 

number |ScorSi| and the elements of ScorSi are used as input parameters for further “clustering step” using 

the k-means clustering algorithm. For each cluster Si, found by DBSCAN, k-means yields |ScorSi| 

centroids within Si. These centroids are used as representatives. The local model REPk-means at each node 

Np is found using the k-means algorithm as described in Fig. 2. 18. 

Algorithm: Further Local DBSCAN Clustering using k-means(Si) 

Input: Each local cluster Si , i=0,1,..,k-1, which was found throughout the DBSCAN at the local node Np 

Output: Local model REPk-means 

Begin 

 Step1: Each local cluster Si on the local node Np is again re-clustered using the k-means algorithm, 

then a set of |ScorSi| centroids ci,1,ci,2,.., ,| |Si
i Scorc  is produced. 

 Step2: Each centroid ci,j, j=1,2,..,|ScorSi| is assigned with a ε-range value which indicates the 

represented area by cij.  

 Step3: The local model describing the set of k clusters on the node Np is 

,, ,

0 ,1,.., 1 1,..,| |

{( , )}
i jp i j c

i k j ScorS
i

LocalModel c ε
= − =

= ∪ ∪
 

End 

Fig. 2. 18. Further Local DBSCAN Clustering using k-means Algorithm 
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In the DBSCAN algorithm, each specific local representative forms a cluster on its own. After the local 

models have been constructed on each node, where each local model consists of a set of k local clusters 

with the corresponding representatives; a global model based on the created local models is created at the 

facilitator node. These local models are sent to the facilitator node and the facilitator nodes checks 

whether it is possible to merge two or more of these clusters together. These merged local representatives 

together with the unmerged local representatives form the global model at the facilitator node. Thus the 

global model consists of clusters containing one or several local representatives. To find such a global 

model, the density-based clustering algorithm DBSCAN is used again. We would like to create a 

clustering similar to the one produced by DBSCAN if applied to the complete dataset with the central 

parameters settings. As we have access to the set of all local representatives, the global parameter setting 

for both the MinPtsglobal and Epsglobal values has to be adapted to this aggregated local information. 

Suitable values for MinPtsglobal and Epsglobal can be found in  [87] such that Epsglobal= 2Epslocal and 

MinPtsglobal =2. After having created a global clustering, the facilitator node sends the complete global 

model to all other nodes. Each node reassigns all locally objects independently from each other. On each 

node, two former independent clusters may be merged together due to this new re-labeling. Furthermore, 

points, which were formerly assigned to local noise, are now part of a global cluster. The DDBC 

algorithm is presented in Fig. 2. 19. 

Algorithm: Distributed Density-Based Clustering : DDBC(Xp, Epslocal, MinPtsLocal) 

Input: Local datasets Xp, p=0,1,..,P-1, local Epslocal , and local MinPtsLocal 

Output: Set of global k clusters  

Begin 

 Step1: Each node Np runs the DBSCAN algorithm with input parameters Epslocal and MinPtsLocal 

locally, and generates the local model LocalModelp  

 Step2: Each node Np sends its local model LocalModelp to the facilitator node.  

 Step3: The facilitator node runs DBSCAN algorithm globally with global parameters MinPtsglobal and 

Epsglobal such that Epsglobal= 2Epslocal  and MinPtsglobal =2 

 Step4: The facilitator node sends the global model to each node Np. 

 Step5: Each node Np re-labels all local objects, such that two former independent clusters are merged 

together due to this new re-labeling. 

End 

Fig. 2. 19. The DDBC Algorithm 
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2.4.8 Distributed Clustering Performance Evaluation 

The performance of the distributed algorithm in comparison with the corresponding centralized algorithm 

is evaluated by different measures of performance; some of these measures are illustrated next. 

Distributed Time (Td) 

The time taken by a clustering algorithm to execute on a single node is called the centralized execution 

time and is denoted by Tc. The execution time of the corresponding distributed clustering algorithm on P 

identical nodes is called the distributed execution time and is denoted by Td. A distributed clustering 

algorithm incurs several overheads during execution. These include overheads due to idling, 

communication, and contention over shard data structure. The sum total of time spent by all nodes doing 

work, which is not done by the centralized technique, is termed as the total overhead To. Since the sum 

total of time spent by all nodes is PTd, and the total overhead is To, we can see that, 

 PTd= Tc+ To (2. 29) 

Or  Td=
0c

T T

P

+
 (2. 30) 

Speedup 

The Speedup performance measure is defined as the ratio of the execution time for clustering a dataset 

into k clusters on one node to the execution time for identically clustering the same dataset on P nodes. 

Speedup is a summary of the efficiency of the distributed clustering algorithm. The speedup measure is 

defined as: 

 Speedup =
1Running time with node

Running time with P nodes
= c

d

T

T
 (2. 31) 

Efficiency 

The Efficiency of a distributed clustering algorithm is defined as the ratio of the speedup obtained to the 

number of nodes used. Therefore, 

 Efficiency =
Speedup

P
= c

c o

T

T T+
% (2. 32) 
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2.5 Discussions 

The various fields relevant to the research in this thesis have been reviewed so as to give the reader the 

necessary background to follow the work introduced in later chapters, specifically: intensive background 

on data clustering similarity and evaluation criteria, clustering algorithms, and distributed data clustering 

paradigm. The background on clustering in general will be of benefit throughout this thesis, since it is the 

backbone of the work introduced herein. Specifically, in chapter 3, where the cooperative model invokes 

multiple clustering techniques into one model of cooperation. The background on distributed data 

clustering will be of benefit when discussing chapter 7, where the cooperative clustering model is applied 

in distributed environments.  
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Chapter 3 

Cooperative Clustering 

It is well known that no clustering method can adequately handle all sorts of cluster structures and 

properties (e.g. overlapping, shape, size and density). In fact, the cluster structure produced by a 

clustering method is sometimes an artifact of the method itself that is actually imposed on the data rather 

than discovered about its true structure. Combining clusterings invokes multiple clustering algorithms in 

the clustering process to benefit from each other to achieve global benefit (i.e. they cooperate together to 

attain better overall clustering quality). One way to enable concurrent implementation of the multiple 

clustering algorithms and benefit from each other with better performance synchronously is by using 

cooperative clustering. The cooperative clustering model is mainly based on four components (1) co-

occurred sub-clusters, (2) histogram representation of the pair-wise similarities within the sub-clusters, (3) 

cooperative contingency graph, and (4) coherent merging of sub-clusters. These components are 

developed to obtain a cooperative model that is capable of clustering data with better quality than that of 

the adopted individual techniques. 

This chapter is organized as follows: Section 3.1 gives an overview of the proposed model. Sections 3.2 

and 3.3 illustrate the set of inputs to the cooperative model and the preprocessing steps of data, 

respectively. The cooperative clustering model and its complexity are illustrated in section 3.4. The 

Overall Weighted Similarity Ratio (OWSR) measure and the Scatter F-measure are presented in sections 

3.5 and 3.6, respectively. The scalability of the cooperative model in terms of number of clustering 

techniques is discussed in section 3.7. Section 3.8 discusses the cooperation on the intermediate levels, 

and finally some discussions and conclusions are shown in section 3.9. 

3.1 An Overview 

The cooperative clustering (CC) model is mainly based on a cooperative methodology between multiple 

clustering approaches for the goal of achieving better clustering quality than that of the non-cooperative 

approaches. The cooperative model takes first the dataset and a set of clustering algorithms as inputs. A 

number of preprocessing steps is performed on the dataset before entering to the model. Each clustering 

algorithm generates a set of k clusters. The cooperative model employs an agreement strategy between the 

multiple clustering algorithms to find the set of intersections between the different clusterings informs of 

sub-clusters. 
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The extracted sub-clusters are then represented by similarity histograms, then each sub-cluster acts as a 

node in a cooperative contingency graph (CCG). Edges of the CCG are weighted by a cohesiveness factor 

for merging two sub-clusters into one cluster. Finally, a coherent merging of sub-clusters is performed to 

attain the original number of clusters. Fig. 3. 1 illustrates the different components of the cooperative 

clustering model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 1. Cooperative Clustering Model 

We shall use all notations and definitions discussed in chapter 2 in our model and also introduce some 

new concepts that add an advantage to the proposed model. Thus, at this point, some terminologies and 

notations are best presented to pave the way for discussion of the different concepts of the cooperative 

clustering model. Table 3. 1 summarizes the notations and symbols that are used throughout this chapter. 
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Table 3. 1: Cooperative Clustering Symbols and Notations 

Symbol Definition 

Ai A clustering algorithm 

ζi Parameters setting for the clustering algorithm Ai 

c Number of clustering algorithms 

δ Similarity threshold 

NumBins Number of bins in a similarity histogram 

BinSize The size of the histogram’s bins 

Sb Set of sub-clusters 

Sbi The ith sub-cluster 

nsb Number of sub-clusters 

Hi Histogram of the sub-cluster Sbi 

nsim(Sbi) Number of pair-wise similarities in a sub-cluster Sbi 

3.2 Inputs 

The cooperative clustering model takes a set of resources as inputs; the input set includes the dataset of d-

dimensional vectors represented by a n × d matrix X ={xi},i=1,..n, where n is the number of objects and 

the row vector xi represents the i
th object, a pool of c clustering algorithms (A1,A2,..,Ac), and set of 

parameters ζi that are associated with each clustering technique Ai.   

3.3 Preprocessing Stage 

The dataset X is first passed through a number of preprocessing steps before being entered into the 

cooperative clustering model. These steps include: 

1) Feature Selection:  This step is applied in order to (1) assure the selection of the most important 

features, (2) eliminate any redundant features, and (3) reduce the dimensionality of the selected 

dataset. In the experimental results we used a simple selection technique as will be illustrated in 

chapter 4. 

2) Proximity Calculations: In this step, the pair-wise similarities between objects are stored in a 

two dimensional n x n similarity (distance) matrix, SM. The similarity matrix is a symmetric 
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matrix, so we store only (n x (n-1)/2) elements. The cosine similarity (Eq. (2.5)) is adopted to 

calculate the similarity between objects, such that Sim(x, y)∈[-1,1], x and y∈X. 

3.4 The Cooperative Clustering Model 

The cooperative clustering model relies on four main components: co-occurred sub-clusters, similarity 

histograms, a cooperative contingency graph and a coherent merging of the sub-clusters histograms. Each 

of those components is discussed in the following sub-sections. 

3.4.1 Generation of Sub-clusters  

In general, let A= {A1, A2,.., Ac} be a set of c clustering techniques in the model. Assume ( )
A
iS k ={

A
i

j
S , 

0≤ j ≤k-1} is a set of k clusters generated by a clustering technique Ai. We assume that number of clusters 

k is the same for each clustering algorithm. For each object x ∈  X, a cluster membership value, 

A( )|
i

mem x is assigned by each clustering algorithm Ai such that A( )|
i

mem x ∈{0,1,..,k-1}.  

In order to find the co-occurrence of objects between the multiple c clusterings, a new set of disjoint sub-

clusters Sb is generated. The maximum number of disjoint sub-clusters nsb is kc. If number of clusters is 

different from one partitioning to another, for example A1 generates k1 clusters, A2 generates k2 

clusters,…, and Ac generates kc clusters, then the upper bound of number of sub-clusters is k1*k2*..*kc. In 

order to find the association of objects in the corresponding set of sub-clusters, a new sub-cluster 

membership is assigned to each object. This clusterings-mapping recognizes the set of disjoint sub-

clusters
1

0{ } sbn

i i
Sb Sb

−

== , generated by the intersection of the c clusterings. Thus, the underlying model 

indicates the agreement between the various clustering techniques on clustering the data into a set of 

clusters. The new cooperative sub-cluster membership is defined as: 

 ( ) ( ) ( ) ( ) ( )
1 2 1 2 3

2 1

A , A ,..,A A A A A|  |  | * | * . | *
c c

cmem mem mem k mem k mem k −= + + +… +x x x x x  (3. 1) 

Definition 

For any two objects x and y ∈  X, if mem(x) = mem(y), then x and y belong to the same cluster (or sub-

cluster) 

For simplicity, assume that only two clustering techniques A1 and A2 are available in the model. Let 

( )
A
1S k ={

A
1

j
S , 0 ≤ j ≤ k-1} and ( )

A
2S k  ={

A
2

j
S , 0 ≤ j ≤ k-1} be the set of k clusters, generated by A1 and 
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A2, respectively. Each sub-cluster Sb(Si, Sj) contains the set of objects from cluster Si (Si∈ ( )
A
1S k ) that are 

co-occurred into cluster Sj (Sj ∈ ( )
A
2S k ), i=0,1,..,k-1 and j=0,1,..,k-1. This set of disjoint sub-clusters, Sb 

is generated by the A1’s clusterings that are co-occurred in the A2’s clusterings (and vice versa). 

In the formulation of sub-cluster memberships, we assume that the number of generated clusters is the 

same for each clustering algorithm. This assumption is made based on the assigned membership values to 

each object which involves the parameter k as a factor of evaluating the cooperative memberships and 

also for further benefits in the cooperative model. A future work involves applying the same cooperative 

methodology if number of the generated clusters is different from one partitioning to another and 

employing a new membership function to find the intersection between the c clustering solutions. 

3.4.2 Similarity-Histogram (SH) 

Each sub-cluster is represented as concise statistical representation called Similarity Histogram  [16].  

Definition 

Similarity Histogram H is a concise statistical representation of the set of pair-wise similarities 

distribution in a collection of objects. Number of bins in the histogram corresponds to fixed similarity 

value intervals. Each bin contains the count of pair-wise similarities in the corresponding interval.  

Regardless of which similarity function is chosen, the similarity histogram concept remains neutral to our 

choice. The only requirement is that the similarity measure constitutes a metric on the vector space. 

Euclidian distance (Eq.(2.3)), cosine similarity (Eq.(2.5)), and Jaccard coefficient (Eq.(2.6)) are the 

commonly used similarity measures. In this thesis, we calculate the similarity between any pair of objects 

using the widely used cosine coefficient. Thus the similarity histogram in our model is built over the 

interval [-1, 1] with fixed size of bins, BinSize. The number of bins in the histogram is NumBins (a user 

input parameter), thus BinSize equals 2/NumBins.  

A coherent cluster should have high pair-wise similarities. A typical cluster has a histogram where the 

distribution of similarities is almost a normal distribution, while an ideal cluster would have a histogram 

where all similarities are of maximum values, and a loose similarity histogram is a histogram where 

similarities in the cluster are all of minimum values. A typical histogram of a sub-cluster with 

NumBins=20 is illustrated in Fig. 3. 2. For a fixed bin size, BinSize, the binId
th bin in the histogram 

contains the count of similarities that fall in the 
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interval ] ]( ( / 2)) * , ( ( / 2)) *binId NumBins BinSize binId NumBins BinSize BinSize− − + . The first bin (i.e. bin 

with index =0) also contains similarities equal to -1. In general, the Build-Histogram utility is shown in 

Fig. 3. 3. 
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Fig. 3. 2. Similarity Histogram of a Sub-cluster (NumBins=20) 

Algorithm: Build-Histogram (Sbi, NumBins, SM) 

Input: Sub-cluster Sbi, number of bins NumBins, and the pair-wise similarity matrix SM. 

Output: Similarity histogram Hi of size NumBins 

Initializations: Let Hi(bin)=0, ∀ bin=0,..,NumBins-1 

Begin 

As similarities range from -1 to 1 then BinSize=2/NumBins 

 For each pair of objects x and y in Sbi 

 Sim(x,y) = SM(x,y) 

 If (Sim(x,y)=-1) then binId=0  

 Else If( Sim(x,y)=1) then binId=NumBins-1 

  Else binId=-1+ ( ), /Sim BinSize  yx  + (NumBins/2)  

 Increment Hi(binId) by one 

 End 

Return Hi 

End 

Fig. 3. 3. Build-Histogram 
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3.4.3 Cooperative Contingency Graph (CCG) 

The cooperative clustering model is primarily based on the construction of the Cooperative Contingency 

Graph (CCG).  

Definition 

The CCG is an undirected graph G={Sb,E} where the co-occurred sub-clusters  represent the vertices Sb 

of the graph. The relationships among sub-clusters are represented by the set E; E is the set of edges in the 

graph such that each edge eij represents the relationship between any pair of nodes Sbi and Sbj in the 

graph.  

Based on the fact that a coherent cluster should have a similarity histogram where most similarities fall 

close to the maximum range of the similarity interval; while a loose cluster will have most similarities lie 

on the minimum range of the similarity interval, each edge in the graph is assigned a weight, we will refer 

to this weight as a merging factor. This factor represents the coherency (quality) of merging two sub-

clusters into a new coherent cluster. We will call this factor the merging cohesiveness factor (mcf), 

defined as the ratio of the similarities above a certain similarity threshold δ to the total count of 

similarities in the sub-cluster.  The quality of merging two sub-clusters is calculated by the coherency of 

merging the corresponding histograms. We assume that number of bins is the same in each sub-cluster’s 

histogram. The process of merging two sub-clusters obtains a new histogram; this histogram is 

constructed by adding the corresponding counts of each bin from the two merged histograms, and also by 

adding the additional pair-wise similarities that are obtained during merging of the two sub-clusters that 

were not calculated in each individual histogram. The new histogram is constructed as in Eq.(3.2). 

 

{(( ( / 2)) * ) ( , ) (( ( / 2)) * )}

1
( ) ( ) | ( , ) | ; , ,

0
j i j

Such that bin NumBins BinSize Sim bin NumBins BinSize BinSize

NumBins
H bin H bin Sim Sb SbiH binij

=

− < ≤ − +

 − 
+ + ∀ ∈ ∈∑  

=  
 
 x y

x y x y
(3. 2) 

Where Hij is the histogram of the new cluster and Hi(bin) is the count of similarities in the bin
th bin of the 

similarity histogram Hi,. |Sim(x,y)| refers to the number of the additional pair-wise similarities due to the 

merging. Let |Sbi| and |Sbj| be the number of objects in sub-clusters Sbi, Sbi, respectively. The number of 

pair-wise similarities in each sub-cluster Sbi and Sbi, are nsim(Sbi) = |Sbi|*(|Sbi|-1)/2, and nsim(Sbj) = 

|Sbj|*(|Sbj|-1)/2, respectively. The number of similarities for merging the two sub-clusters together is 

nsim(Sbi,Sbj) = (|Sbi|+|Sbj|)*(|Sbi|+|Sbj|-1)/2.  
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The merging cohesiveness factor (mcf) between any two sub-clusters is computed by calculating the ratio 

of the count of similarities weighted by the bin similarity above a certain similarity threshold δ to the total 

count of similarities in the new merged histogram. The, mcf (Sbi, Sbj) is calculated by the following 

formula:  

 ( )

1

(( * ) 1 ( / 2))* ( )

,   
( , )

numBins

ij

bin binThreshold

i j

Sim i j

bin binSize binSize H bin

mcf Sb Sb
n Sb Sb

−

=

 
− + 

 =
∑

 (3. 3) 

Where binThreshold  is the bin corresponding to the similarity threshold δ. The higher the mcf, the more 

coherent the new generated cluster. The mcf(Sbi, Sbj) corresponds to the weight of the edge eij between 

two sub-clusters (Sbi, Sbj) in the cooperative contingency graph (CCG). The CCG is illustrated in Fig. 3.4 

and the pseudo code of constructing the CCG graph using the concepts of sub-clusters and histograms is 

illustrated in Fig. 3.5. 

 

Fig. 3. 4. The CCG Graph 
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Algorithm: Build-CCG Graph  (S
Ai

(k)={Sj
Ai

, 0≤ j ≤k-1}, SM, δ,NumBins) 

Input:  A set of c clusterings, each clustering solution consists of k clusters S0,S1,..,Sk-1, similarity Matrix 

SM, similarity threshold δ, and number of bins in each histogram, NumBins. 

Output: The Cooperative Contingency Graph (CCG) 

Initialization: Sb={}, nsb=0 

Begin 

 Step1: For all x ∈  X 

  mem(x)|A1, A2,.., Ac= mem (x)|A1 + mem(x)|A2*k+ mem(x)|A3*k
2+….+ mem(x)|Ac*k

c -1 

  Assign index= mem(x)|A1, A2,.., Ac 

 If Sbindex is empty, then  

  Create new sub-cluster Sbindex, insert x to it, add Sbindex to Sb, and increment nsb by 1 

  Else add x directly to the sub-cluster Sbindex  

  End 

PS: The set Sb contains nsb disjoint sub-clusters, Sb={Sbi, i=0,1,… ,nsb -1≤ kc}  

 Step2: For each sub-cluster Sbi ∈Sb 

  Build-Histogram (Sbi, NumBins,SM) 

  End 

 Step3: Create the cooperative contingency graph CCG=G(Sb,E), where Sb={Sbi.i=0,..,nsb-1}, 

E={eij(Sbi,Sbj)} where each edge eij is assigned a weight = mcf(Sbi,Sbj)(Eq. (3.3)) 

Return CCG 

End 

Fig. 3. 5. Building the Cooperative Contingency Graph (CCG) 

3.4.4 Coherent Merging of Sub-Clusters 

The cooperative clustering model CC(A1,A2,…,Ac) is comprised of two main phases Phase 1 and Phase 

2, the first phase includes building the Cooperative Contingency Graph (CCG) and associating edges with 

the corresponding cohesiveness factors. The second phase includes attaining the same number of clusters 

k as the original designed clustering problem “finding k-clusters” through merging of sub-clusters within 

the CCG. The first phase has been discussed in details in sub-section  3.4.3 where the c clusterings 

solutions are obtained synchronously and the CCG is built. In the second phase, the CCG graph has nsb 

sub-clusters and the goal is to obtain k homogenous clusters. The best combined sub-clusters (most 

similar sub-clusters) are defined as the ones that have maximal mcf value. Thus, the two most similar sub-
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clusters are merged first into a new cluster; i.e. cluster with better homogeneity than the two sub-clusters; 

and then both the vertices and edges in the CCG are updated based on the new added cluster. This step is 

repeated until the desired number of clusters k is reached. As clustering is unsupervised classification of 

objects, thus number of clusters is not known, then in the cooperative clustering model both Phase 1 and 

Phase 2 are repeated for different number of clusters l≥2, then the cooperative model reveals a 

homogenous clustering solution at number of clusters l=k with the maximum quality value. In the 

experimental results, we rely on the SI index (as internal quality measure) defined in section  2.1.3 to 

assess finding the proper number of clusters (k). The multi-level cooperative clustering model using 

different number of clusters l is described in Fig. 3. 6. 

Algorithm: Multi-Level Cooperative Clustering: CC(X, SM, A1,A2,..,Ac, ζ, δ,NumBins) 

Input: Dataset X, similarity matrix SM, set of clustering algorithms, A1,A2,..,Ac, a set of input parameters 

ζ={ζi} for each clustering technique Ai, similarity threshold δ, and number of bins, NumBins. 

Output: Set of Cooperative Clusters, SCooperative(k)={S0,S1,..,Sk-1} 

Initializations: Let kinitial =2 

Begin 

 For number of partitions l =k
initial

 to k
final

 (Non-cooperative Clustering Step) 

 Phase 1:  

  Step1: Synchronously generate the c clusterings sets SA1(l), SA2(l) ,..,and SAc(l) where SAi(l)= 

Ai(X, l, ζi)={Sj
Ai, 0≤ j ≤l-1} 

 Step2: Build_CCG(SAi
(l), SM, δ, NumBins) (Cooperation Step) 

  Phase 2:  Repeat (Merging Step) 

    Step 1: Merge the two most similar sub-clusters into one cluster, i.e. two sub-

clusters with the highest mcf in the graph and update the CCG. 

    Step2: Reduce the number of sub-clusters nsb by one 

     Until (number of sub-clusters nsb =l) 

 S
cooperative(l)= final set of the merged l sub-clusters   

 End 

Return the final set of k clusters Scooperative(k) with the maximum quality 

End 

Fig. 3. 6. The Multi-Level Cooperative Clustering Model 

In Fig. 3. 6, if external information about the dataset is given (i.e. class labels) then the CC model will be 

performed at the given number of clusters k such that kinitial = kfinal =k. 
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3.4.5 Complexity Analysis 

All the basic operations are assumed to have the same unit operation time. Assume 1 ( )A
T l , 

2 ( )A
T l ,.., ( )cA

T l  are the computational time complexity of the clustering algorithms A1,A2,..,Ac, 

respectively, at a given number of clusters l=2,3,..,k.  The analysis of the cooperative model can be 

divided in two stages based on the processing of each individual phase of the cooperative model: 

• Phase 1: Complexity of constructing the contingency cooperative graph, (T
Phase1

) 

a. Finding the set of sub-clusters takes n operations where n is the total number of objects. 

b. Building a histogram of a sub-cluster Sbi needs (|Sbi|*(|Sbi|-1))/2 operations. Thus 

1

0

| | * | (| | 1)

2

sbn

i i

i

Sb Sb
−

=

−
∑  operations are required to construct the nsb histograms, where 

|Sbi| is the size of the sub-cluster Sbi. 

c. Calculating the mcf for each pair of sub-clusters Sbi and Sbj in the CCG takes (NumBins-

binThreshold) +|Sbi|*|Sbj| operations. Where binThreshold is the bin corresponds to 

similarity threshold δ. 

d. Thus Phase 1 is of order O(n+|Sbi|
2), 0,1,.., 1

sb
i n∀ = −  <<< O(n2).  

The number of sub-clusters nsb ≤ lc, and the size of sub-clusters determine the cost of generating the CCG. 

• Phase 2: Complexity of merging histograms, (T
Phase2

) 

e. Finding the two most homogenous sub-clusters to be merged generate a new cluster Si is 

of order O (nsb
2) operations, nsb ≤ l

c. 

f. Updating the CCG with the new added cluster takes 
3

0

( | |*| |) 
sbn

i j

j

NumBins* S Sb
−

=

∑  

operations. 

g. Thus Phase 2 is of order O(nsb
2
+|Si|*|Sbj|) , 0,.., 1

sb
i j n∀ = − <<< O(n2). 

The time complexity of the Cooperative Clustering (CC) model for l partitions is computed as: 

 T
CC(l)=max(TAi(l)))+ TPhase1

 + TPhase2
 (3. 4) 

The time complexity of the CC model is based on the clustering algorithm with the maximum running 

time, and the additional computational costs of both phases that is mainly based on the number of sub-

clusters and the size of each sub-cluster which is much lower than n2.  
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3.5 Overall Weighted Similarity Ratio (OWSR) 

We developed a new measure called the Overall Weighted Similarity Ratio (OWSR) that monitors the 

quality of the set of sub-clusters, such that for any sub-cluster Sbi, we define the SimRatio measure as: 

( )

1

( )*(( * ) 1 ( / 2))

| | 1
| | *(| | 1) / 2

0 | | 1

NumBins

i

bin BinThreshold
ii

i i

i

H bin bin binSize binSize

if SbSimRatio Sb
Sb Sb

if Sb

−

=

 
− + 

 >=  − 
 = 

∑
 (3. 5) 

Where Hi is the histogram representation of the sub-cluster Sbi, |Sbi| is the number of objects in the sub-

cluster Sbi, and binThreshold is the bin corresponding to the similarity threshold δ. The value of the 

SimRatio(Sbi) increases if objects within the sub-cluster Sbi are of maximum similarity above the 

similarity threshold δ. Sub-clusters of only one object have the lowest similarity ratio. The Overall 

Weighted Similarity Ratio (OWSR) for a set of nsb sub-clusters is calculated as the average of the 

similarity ratio of each sub-cluster weighted by the size of each sub-cluster.  

 

1

0

( )* | |

( ) ( )

sbn

i i

i
sb sb

SimRatio Sb Sb

OverallWeighted Similarity Ratio n OWSR n
n

−

== =
∑

 (3. 6) 

Where n is the total number of objects. This measure is used to compare two partitioning having different 

number of sub-clusters. 

3.6 Scatter F-measure 

The traditional F-measure measures the difference between the original labeling of the dataset (i.e. class 

labels) and the resulting clustering of the data. The proposed scatter F-measure measures the diversity of 

the clustering solutions obtained from two clustering algorithms. Given two clustering algorithms A1 and 

A2, each algorithm generates a clustering set of k clusters SA1(k)={Si
A1, 0≤ i ≤k-1}, and SA2(k)={Sj

A2, 0≤ j 

≤k-1}, respectively. Assume | Si
A1

| is the number of objects in cluster Si
A1 (Si

A1 ∈  SA1(k)), and | Sj
A2| is the 

number of objects in cluster Sj
A2

 (Sj
A2∈  SA2(k)). The F-score of a cluster Si

A1 is defined as: 

 1

1 2

2*
-  ( )

| | | |j

n
ijA

F score S max
i A Aj S S

i

=

+

 (3. 7) 

Where nij is the number of objects of cluster Si
A1 that co-occurred in the cluster Sj

A2. With respect to cluster 

Sj
A1 we consider the cluster with the highest value of F-score to be the cluster Sj

A2 that is mapped to 
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cluster Si
A1, and that value becomes the score for cluster Si

A1
. The overall scatter F-measure for the 

clustering result of k clusters is the weighted average of the F-score for each cluster Si
A1: 

 
1 1

1

1
(| | ( ))

0=
1

| |
0

k A A
S F S
i i

i Scatter F - measure
k A

S
i

i

−
×∑

=
−
∑
=

  (3. 8) 

The higher the overall Scatter F-measure, the close solution both A1 and A2 generate due to the higher 

accuracy of the resulting clusters of A2 mapping to the clusters generated by A1. In the cooperative 

clustering model, we seek lower values of the scatter F-measure between the adopted clustering 

approaches in order to obtain significant improvement in the clustering performance. As if the clustering 

solutions of the invoked algorithms are almost the same, then the generated set of sub-clusters will be the 

same as the original non-cooperative clusters of the adopted techniques. Thus, in turn no additional 

information is obtained within the set of sub-clusters. We rely on the Overall Weighted Similarity Ratio 

(OWSR) as an internal quality measure to evaluate the homogeneity of sub-clusters at different values of 

the Scatter F-measure. 

3.7 Scalability of the Cooperative Model 

Let B be the clustering technique that will be added to the cooperative model (that already contains c 

clustering algorithms). If the set of sub-clusters Sb remains the same, i.e. ∃  Ai ∈{A1, A2,.., Ac} such that 

the Scatter F-measure between B and Ai is of maximum value, then the resulting c+1 cooperation is 

almost the same as the c cooperation. However, if adding B to the model will generate a new set of sub-

clusters with better homogeneity than the old sub-clusters then the new set of sub-clusters acts as 

incremental agreement between the c clustering techniques and the additional approach B. Thus adding 

the new technique B to the system was beneficial and it moved the clustering process into a more 

homogenous clustering process. The homogeneity is evaluated using the OWSR measure. In general, 

increasing number of algorithms in the model will in turn increase the number of sub-clusters nsb; the 

upper bound of number of sub-clusters is kc, where k is number of clusters and c is number of clustering 

techniques.  Thus if c is large enough with different clustering solutions then the number of the generated 

sub-clusters nsb→n, which extremely increases the computational complexity of the cooperative model. In 

this case, each sub-cluster will be a singleton sub-cluster with a maximum of one object and with a 

similarity ratio of value equals zero (Eq. (3.5)) then the quality of the sub-clusters will be of a minimum 

value. Thus after a specific value of c, c*, the cooperative clustering quality degrades rapidly. Then after 
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c
*, no more techniques can be added to the model. The value of c*

 was determined experimentally as will 

be illustrated in chapter 4. Future work involves evaluating the value of c* theoretically.  

3.8 Intermediate and End-results Cooperation 

The cooperative model is applied at the end-result level; that means cooperation is established after the 

clustering process is performed for each clustering algorithm and the final k clusters are obtained. An 

additional advantage of the cooperative model is that it could be applied at the intermediate steps, e.g. 

intermediate iterations for iterative clustering approaches as k-means  [7] or intermediate levels of the 

hierarchical tree (or dendrogram) for hierarchical techniques as bisecting k-means  [13]. This sort of 

cooperation can be used to enhance either the time (e.g. fast convergence) (and/or) quality performance 

(i.e. clustering quality) as will be illustrated in the experimental results. 

3.8.1 Example of Cooperation at Intermediate Levels of Hierarchical Clustering 

The hierarchical bisecting k-means (BKM)  [13] is better than the standard k-means (KM)  [7] and as good 

as or better than the hierarchical approaches. However, in some scenarios when a fraction of the dataset is 

left behind with no other way to re-cluster it again at each level of the binary tree, a “refinement” is 

needed to re-cluster the resulting solutions. Current approaches for enhancing the performance of the 

BKM use end-result cooperation  [13], such that the final set of centroids obtained from the BKM are used 

as initial seeds for further refinement using k-means clustering. These approaches involve wasting time 

due to the idle status that KM is performing until BKM finishes it clustering. Enhancing the performance 

of the BKM synchronously can be achieved by intermediate cooperation at each level i of the binary tree 

with another clustering technique, e.g. k-means such that it provides the BKM with better clusterings 

obtained from the cooperative model. These results replace the current solutions of the BKM and 

consequently better selection and splitting criteria will be achieved at the next level i+1. These enhanced 

solutions guide the BKM towards better clustering along the tree. Undertaken experimental results in 

chapter 4 show that the BKM algorithm with intermediate cooperation outperforms the traditional 

bisecting k-means. 

3.8.2 Example of Cooperation at Intermediate Iterations of Partitional Clustering 

Another example of cooperation at the intermediate steps is illustrated through cooperation between two 

well known iterative clustering approaches, k-means and fuzzy c-means (FCM) at each iteration. In fuzzy 

clustering, each data point gets multiple and non-dichotomous cluster memberships. FCM can be seen as 

an improvement and generalization of KM and produces better results than KM when the clusters are 
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overlapped. However, it suffers from the high computational load and similarity to KM. Both KM and 

FCM attempt to reduce the objective function in every step, and may terminate at a solution that is locally 

optimal. A bad choice of initial centroids can have a great impact on both the performance and quality of 

the clustering. Also a good choice of initial centroids reduces the number of iterations that are required 

for the algorithm to converge. So when KM or FCM are fed by good cluster centroids through 

cooperation, they will result in a better clustering quality and thus faster convergence to the desired 

solutions will be achieved. The intermediate cooperation between KM and BKM aims at reducing the 

total computational time and achieving faster convergence to solutions. Fig. 3.7 outlines the cooperation 

at the intermediate iterations between KM and FCM through replacing their centroids with the newly 

received set of cooperative centroids at each iteration. Undertaken experimental results in chapter 4 show 

that intermediate cooperation provides faster convergence. 

 

 

Fig. 3. 7. Cooperation at Intermediate Iterations between KM and FCM 
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3.9 Discussions 

In this chapter, a new cooperative clustering (CC) model was presented targeting better clustering 

solutions than the traditional non-cooperative techniques. The CC model is primary based on finding the 

intersection between the multiple clusterings in terms of a set of sub-clusters. Each sub-cluster is 

represented by a similarity histogram. By carefully monitoring the pair-wise similarities between objects 

in the sub-clusters, the CC model applies a homogeneous merging procedure on the cooperative 

contingency graph to attain the same number of clusters. The complexity analysis of the cooperative 

model was presented and analyzed. Also the notion of the Scatter F-measure was presented to show the 

scattering in clustering solutions between two clustering approaches. Also, a new internal quality measure 

named, Overall Weighted Similarity Ratio was formally defined and proposed to assess the quality of the 

generated sub-clusters. Finally, the advantage of the cooperative model for enhancing the time (and/or) 

quality performances at the intermediate steps was presented. 
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Chapter 4 

Cooperative Clustering Experimental Analysis 

In this chapter, evidence in support of the three major contributions of the cooperative clustering model is 

presented, namely: attaining better clustering quality, achieving scalability in terms of the number of 

clustering techniques and enhancing the performance of individual algorithms using intermediate 

cooperation. Evaluation of the algorithms and the cooperative models presented in this chapter is done 

through conducting a set of experiments using various gene expression and document data sets. The main 

measures of evaluation are the external and internal quality of the output clusters generated by the non-

cooperative algorithms and the cooperative models. The evaluation measures discussed in section  2.1.3 

are used for this purpose, with an emphasis on using F-measure, Entropy, and Purity as external quality 

measures and SI-Index and Overall Weighted Similarity Ratio (OWSR) as internal quality measures. This 

chapter is organized as follows. Section 4.1 describes the different clustering techniques that are adopted 

in our experiments. Different datasets that are used are presented in section 4.2. Section 4.3 discusses the 

statistical t-test. External and internal quality measures are discussed in section 4.4, the performance of 

the non-cooperative algorithms and the cooperative models is illustrated in section 4.5. The scalability of 

the cooperative model is presented in section 4.6. Some experiments for showing the performance of the 

cooperative model with variable number of clusters are illustrated in section 4.7. The intermediate 

cooperation results are shown in section 4.8, and finally discussions and conclusions are illustrated in 

section 4.9. 

4.1 Adopted Clustering Algorithms 

Three well known clustering algorithms, KM, BKM, and PAM are invoked in the cooperative model. The 

following table describes the parameter setting of each of the clustering techniques. 

Table 4. 1: Parameters Settings of the Adopted Clustering Techniques 

Algorithm Parameters Setting 

KM Convergence Threshold=0.001 

BKM ITER=3 

PAM npass=10 
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4.2 Data Sets 

Experiments were performed on a number of gene expression and documents datasets with various 

characteristics, dimensions, and sizes. There are four gene expression datasets and three document 

datasets. The gene expression datasets are Leukemia, Yeast, Breast Cancer, and Serum and the three 

document datasets are UW, SN, and Yahoo.  

4.2.1 Gene Expression Datasets 

Four gene expression datasets were used to test the performance of the cooperative models as well as the 

KM, BKM, and PAM algorithms. The data sets are: Leukemia dataset  [88], Yeast gene expression dataset 

 [89], Breast Cancer data set  [90], and Serum dataset  [91]. The classification model (i.e. class labels) for 

both the Leukemia and the Breast Cancer datasets is discovered using the same approach as in  [92]. The 

characteristics of the gene expression datasets are depicted in Table 4. 2. The SVD (Singular Value 

Decomposition) representation of each dataset is illustrated in Fig. 4. 1. 

Table 4. 2: Summary of the Gene Expression Datasets 

Dataset n k d 

Leukemia(Leuk) 999 3 38 

Yeast 703 5 73 

Breast Cancer 7129 4 49 

Serum 517 No External Classification 12 

 

Leukemia(Leuk)  

Leukemia (leuk) dataset is an example of a non-temporal gene expression set. The dataset contains the 

expression of 999 genes along 38 samples obtained from ALL (Acute Lympboblastic 

Leukemia) (27 samples) and AML (Acute Myeloblastic 

Leukemia) (11 samples). Furthermore, the ALL samples are arranged in 18 B lineage and 9 T lineage 

samples. The order of samples along the data set columns is: ALL-B lineage, ALL-T lineage and AML.  

Yeast 

The yeast cell cycle time series dataset contains the expression levels of 6,218 gene transcripts (identified 

as ORFs) measured at 10-minutes intervals over two cell cycles (160 minutes). The same filtering and 
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data normalization procedures of  [93] are applied resulting in a set of 703 genes. Based on the analysis 

conducted by Spellman et al  [94], the five main clusters are G1-peaking genes, S-peaking genes, G2-

peaking genes, M -peaking genes, and M/G1-peaking genes. 

Breast Cancer (BC) 

The Breast Cancer dataset was primary used in the work done by  [90]. The dataset contains 7129 gene 

expressions and 49 tumors. The tumor samples are labeled according to the examination of Estrogen 

Receptor (ER) and Lymph Nodes (LN). The tumor samples are given labels ER+/LN+, ER+/LN-, ER-

/LN+, and ER-/LN-. 

Serum  

The Serum dataset is a time series gene expression dataset contains 12 time point expressions for about 

500 genes; it is obtained from  [91].  

 

(a)     (b) 

  

   (c)      (d)  

Fig. 4. 1. Coefficients of SVD modes for (a)  Leukemia dataset, (b) Yeast dataset, (c) Breast Cancer 

dataset, and (d) Serum dataset 
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4.2.2 Document Datasets 

Experiments were also performed on a number of document datasets with different configurations and 

sizes. The datasets are: UW, SN, and Yahoo. The Yahoo is a standard text mining data set, while UW was 

manually collected and labeled; SN was manually collected but was labeled. Below is a brief description 

of each data set. Table 4. 3 lists the document datasets that are used for the evaluation.  

Table 4. 3: Documents Datasets 

Dataset Name Type #Documents(n) #Terms(d) #Categories(k) 
Average 

terms/document 

UW UW HTML 314 10 15,134 469 

SN SchoolNet Metadata 2,371 17 7,166 145 

Yahoo Yahoo News! HTML 2,340 20 28,298 289 

UW dataset 

The UW dataset contains manually collected documents from the University of Waterloo (www. 

uwaterloo.ca) various web sites, such as the Graduate Studies Office, Information Systems and 

Technology, Career Services, Cooperative Education, Health Services, and others. The dataset also 

contains various documents from other Canadian web sites. The total number of documents in this set is 

314 documents, categorized into 10 different categories (with some relevancy between the categories.) 

and the average number of words per document is 469. The UW dataset was primarily used for the work 

presented in  [16], [17].  

SN dataset 

The SN dataset is a data set of 2371 metadata records collected from the Canada's SchoolNet learning 

resources web site (http://www.schoolnet.ca/). Specifically, the data was collected from the "Curriculum 

Area" of the web site. The fields containing text from the metadata records (title, description, and 

keywords) are extracted and combined to form one document per metadata record. The 17 top-level 

categories from the SN data set are used.   

Yahoo dataset 

The Yahoo dataset is a collection of news articles from the Yahoo! News website. The set contains 2340 

documents classified into 20 different categories (such as health, entertainment, etc), which have rather 

unbalanced distributions. There is some relevancy between the categories as well. The average number of 
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words per document is 289 words. The degree of overlapping between classes is quite low in this dataset. 

The Yahoo
11 dataset was used in document clustering-related research conducted by Boley et al in 

 [11], [95], [96].  

Text Preprocessing 

For text data, we used the Vector Space Model (VSM) which is the most common document 

representation model used in text mining. In VSM each document is represented by a vector x, in the term 

space, x = [tf1, tf2. . . tfd], where tfi, i = 1, . . . , d is the term frequency in the document, or the number of 

occurrences of the term ti in a document x. To represent every document with the same set of terms, we 

have to extract all the terms found in the documents and use them as our feature vector12. Sometimes 

another method is used which combines the term frequency with the inverse document frequency (TF-

IDF)  [97], [98]. The document frequency dfi is the number of documents in a collection of n documents in 

which the term ti occurs. A typical inverse document frequency (idf) factor of this type is given by 

log(n/dfi). The weight of a term ti in a document is given by: 

 weighti = tfi × log(
i

n

df
)  (4. 1) 

The words are tokenized in the UW, SN, and Yahoo datasets in the following way:  

� Words consisting of numbers only are removed,  

� All words are converted to lower case letters,  

� Stop words13 are removed,  

� Words of length less than 3 are removed, and finally 

� The remaining words were stemmed using the popular Porter stemmer algorithm  [99]. 

                                                   

11 The dataset is available at: http//ftp.cs.umn.edu/dept/users/boley/. 

12 Obviously the dimensionality of the feature vector is always very high, in the range of hundreds and 

sometimes thousands. 

13 Stop-words are very common words that have no significance for capturing relevant information about a 

document (such as “the”,”and”,”a”,..,etc). 
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4.3 Significance Testing 

To back the claim of clustering quality improvement, statistical significance testing is presented here, 

where the average values of a variable taken by any two approaches are compared. Assume q (e.g. F-

measure or Entropy or Purity or SI) is the quality measure used for comparison between any two 

clustering techniques A1 and A2. Let q1 and q2 be the two samples of the quality measure q for the 

clustering results of both A1 and A2, respectively. Our Null hypothesis (which we will argue to be rejected 

in favor of the alternate hypothesis) is that the average values of q for A1 and A2 are the same (i.e. no 

significance difference). 

 H0: 1 2q q=  (No significant improvement in q using A1) (4. 2) 

Where 1q  is the average q value for A1 clustering over n1 samples, and 2q  is the corresponding average 

value of q for A2 clustering over n2 samples. The alternative hypothesis is: 

 H1: 1 2q q≠ (Better improvement in q using A1) (4. 3) 

For directional difference, for example for F-measure, the null hypothesis H0 is 1 2F F=  and the 

alternative hypothesis is 1 2F F> , where 1F  is the average F-measure of the cooperative model clustering 

over all runs and 2F  is the corresponding average F-measure obtained from the non-cooperative 

clustering algorithm. Since the actual underlying means and standard deviations are not known, we are 

going to use a two-sample t-statistic, in which the population standard deviations are estimated by the 

calculated standard deviations sd1 and sd2 from the samples. The t-statistic  [100], [101] is given by: 

 1 2

2 2

1 2

1 2

( )q q
t

sd sd

n n

−
=

+

 (4. 4) 

Where sd1 and sd2 are the calculated standard deviations and n1 and n2 are the sample sizes from the two 

populations.  To compute a (1-α) % confidence interval (usually 95%) for the difference between the two 

means, 
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1. First, find the t
critcial value from the t-distribution table14 at degree of freedom df and 

confidence interval α. Where tcritical is the upper (1-α)/2 critical value for the t distribution 

with degree of freedom df equals (n1+n2-2).   

2. If the calculated t value < t
critcial then the null hypothesis H0 is accepted otherwise the 

“significance difference “hypothesis H1 is accepted and H0 is rejected.  

In our experiments, we obtained 20 runs of each algorithm. Thus at df=38 and confidence interval 95%, 

the critical value of t (cut off), tcritcial equals 2.024. Thus, in each experiment we evaluate the t-test value 

of the evaluation measure and compare this value to the assigned critical t-value at 95% confidence 

interval.  

4.4 Quality Measures 

In order to evaluate the quality of the clustering, we adopted four quality measures widely used in the data 

clustering literature. The first is the F-measure, which combines the Precision and Recall ideas from the 

information retrieval literature. The second is Entropy, which provides a measure of "goodness" for un-

nested clusters or for the clusters at one level of a hierarchical clustering. Entropy tells us how 

homogeneous a cluster is. The third is the Purity measure, and finally the internal measure, SI index (See 

section  2.1.3 for details about these evaluation measures.) Basically we would like to maximize the F-

measure, minimize the Entropy of clusters, maximize the Purity of solutions, and minimize the separation 

index of the obtained clusters to achieve high quality clustering. By using both external and internal 

measures we have confidence that our evaluation of both the cooperative and non-cooperative approaches 

will be justified. 

4.5 Cooperative Clustering Performance Evaluation 

In this section, the performance of the cooperative models is presented. Initially, let c=2, thus we assume 

only two clustering techniques are available in the system. We will refer to the cooperation between KM 

and BKM by CC(KM,BKM), cooperation between KM and PAM by CC(KM,PAM), and finally 

cooperation between BKM and PAM by CC(BKM,PAM). 

                                                   
14 http://www.medcalc.be/manual/t-distribution.php 
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4.5.1 Clustering Quality 

Tables 4.4 - 4.9 show the average performance of 20 runs of the non-cooperative KM, BKM, and PAM 

algorithms as well the three cooperative models. The value of the similarity threshold δ ∈  [0.1, 0.25] for 

the gene expression datasets and δ ∈  [0.2, 0.3] for the document datasets. In each table, there are two 

types of cells, one that describes the non-cooperative algorithm and another one that describes the 

performance of any model of the cooperative models. Assume a random variable q, where q is any 

measure of the quality measures described above.  

For the non-cooperative KM, BKM, and PAM, each cell contains two entities: 

• q : The average value of the variable q over 20 runs 

• ±sd: The standard deviation of the variable q over the calculated 20 runs 

For any cooperative model CC(A1, A2), where A1 and A2 ∈  {KM, BKM, PAM}, each cell contains 5 

components that describe the random variable q, each cell can be described by the tuple ( q , sd, t1, t2, 

+q% ); the description of the each component is as follow: 

• q : The average value of the variable q over 20 runs 

• ±sd: The standard deviation of the variable q over the 20 runs 

• t1: the t-test value between the results of the cooperative model CC(A1, A2) and the results of A1 

• t2: the t-test value between the results of the cooperative model CC(A1, A2) and the results of A2 

• +q%: the percentage in improvement in q using the cooperative model CC(A1, A2) compared to 

the value of q that is calculated by A1 and A2 

In each table, t1 and t2 >2.024, thus the Null hypothesis H0 is rejected and that means the obtained 

clustering results from the cooperative models are better that those obtained from the individual 

approaches using the t-test values, t1, t2, respectively. 
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Table 4. 4: Performance Evaluation of the Cooperative and Non-cooperative Approaches [Leuk] 

(k=3) F-measure Entropy Purity SI 

KM 0.8366± (0.021) 0.4086± (0.032) 0.8328±(0.036) 0.3921± (0.034) 

BKM 0.8073± (0.022) 0.4738± (0.011) 0.8048±(0.028) 0.4502± (0.025) 

PAM 0.8754± (0.033) 0.3971± (0.026) 0.8478±(0.020) 0.3615± (0.024) 

CC(KM,BKM) 

 

 

Improvement (%) 

0.9375± (0.019) 

t1=15.93 

t2=20.03 

(%12) 

0.3109± (0.026) 

t1=10.59 

t2=25.81 

(%24) 

0.9096± (0.019) 

t1=8.43 

t2=13.85 

(%9) 

0.2647± (0.018) 

t1=15.16 

t2=26.23 

(%32) 

CC(KM,PAM) 

 

 

Improvement (%) 

0.9485± (0.013) 

t1=20.26 

t2=9.21 

(%8) 

0.2966± (0.017) 

t1=13.82 

t2=14.46 

(%25) 

0.9381± (0.011) 

t1=12.51 

t2=17.69 

(%11) 

0.2385± (0.017) 

t1=18.50 

t2=18.70 

(%34) 

CC(BKM,PAM) 

 

 

Improvement (%) 

0.9630± (0.010) 

t1=24.65 

t2=11.36 

(%10) 

0.2673± (0.028) 

t1=30.69 

t2=15.19 

(%32) 

0.9565± (0.035) 

t1=15.13 

t2=12.05 

(%13) 

0.2071± (0.029) 

t1=27.91 

t2=18.34 

(%42) 
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Table 4. 5: Performance Evaluation of the Cooperative and Non-cooperative Approaches [Yeast] 

(k=5) F-measure Entropy Purity SI 

KM 0.6301± (0.040) 0.4351± (0.032) 0.6715± (0.031) 1.6303± (0.206) 

BKM 0.6784± (0.011) 0.4136± (0.024) 0.7496± (0.020) 1.2991± (0.185) 

PAM 0.6922± (0.035) 0.4032± (0.031) 0.7667± (0.028) 1.0433± (0.176) 

CC(KM,BKM) 

 

 

Improvement (%) 

0.8175± (0.041) 

t1=14.63 

t2=14.65 

(+21%) 

0.2748± (0.022) 

t1=18.46 

t2=19.07 

(+34%) 

0.8946± (0.019) 

t1=27.44 

t2=23.50 

(+19%) 

0.6162± (0.092) 

t1=20.10 

t2=15.38 

(+52%) 

CC(KM,PAM) 

 

 

Improvement (%) 

0.8586± (0.026) 

t1=21.42 

t2=17.07 

(+24%) 

0.2463± (0.020) 

t1=22.37 

t2=19.02 

(+39%) 

0.9326± (0.017) 

t1=33.02 

t2=22.64 

(+22%) 

0.5815± (0.066) 

t1=21.68 

t2=10.98 

(+44%) 

CC(BKM,PAM) 

 

 

Improvement (%) 

0.7812± (0.012) 

t1=28.24 

t2=10.75 

(+13%) 

0.3047± (0.030) 

t1=12.67 

t2=10.21 

(+24%) 

0. 8792± (0.011) 

t1=25.39 

t2=16.72 

(+15%) 

0.7757± (0.057) 

t1=12.09 

t2=6.46 

(+26%) 
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Table 4. 6: Performance Evaluation of the Cooperative and Non-cooperative Approaches [BC] 

(k=4) F-measure Entropy Purity SI 

KM 0.4271± (0.011) 0.8031± (0.032) 0.5734± (0.018) 0.7578± (0.024) 

BKM 0.4355± (0.020) 0.7948± (0.041) 0.5825± (0.016) 0.7363± (0.018) 

PAM 0.5012± (0.023) 0.7114± (0.022) 0.6107± (0.017) 0.6930± (0.033) 

CC(KM,BKM) 

Improvement (%) 

0.4915± (0.016) 

t1=24.01 

t2=10.02 

(+12%) 

0.7042± (0.015) 

t1=11.46 

t2= 10.35 

(+11%) 

0.6606± (0.020) 

t1=14.48 

t2=13.64 

(+13%) 

0.6998± (0.015) 

t1=9.16 

t2= 6.96 

(+5%) 

CC(KM,PAM) 

Improvement (%) 

0.5935± (0.020) 

t1=32.60 

t2=13.54 

(+18%) 

0.6102± (0.012) 

t1=23.35 

t2= 20.19 

(+14%) 

0.7294± (0.013) 

t1=31.43 

t2= 32.55 

(+19%) 

0.5418± (0.019) 

t1=31.55 

t2= 17.75 

(+22%) 

CC(BKM,PAM) 

Improvement (%) 

0.6402± (0.017) 

t1=34.87 

t2=21.73 

(+28%) 

0.5188± (0.029) 

t1=25.31 

t2= 23.66 

(+27%) 

0.7637± (0.012) 

t1=40.51 

t2= 32.87 

(+25%) 

0.4943± (0.027) 

t1=33.35 

t2= 20.84 

(+29%) 
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Table 4. 7: Performance Evaluation of the Cooperative and Non-cooperative Approaches [UW] 

(k=10) F-measure Entropy Purity SI 

KM 0.6988± (0.027) 0.2579± (0.022) 0.6879± (0.031) 1.6921± (0.152) 

BKM 0.7520± (0.031) 0.2281± (0.024) 0.7334± (0.024) 1.3772± (0.140) 

PAM 0.6463± (0.041) 0.3592± (0.013) 0.6490± (0.033) 3.1932± (0.543) 

CC(KM,BKM) 

 

 

Improvement (%) 

0.8387± (0.018) 

t1=19.28 

t2= 10.81 

(+12%) 

0.1819± (0.011) 

t1=13.82 

t2= 7.82 

(+20%) 

0.8420± (0.015) 

t1=20.01 

t2= 17.16 

(+15%) 

1.0559± (0.019) 

t1=18.57 

t2=10.17 

(+23%) 

CC(KM,PAM) 

 

 

Improvement (%) 

0.8672± (0.013) 

t1=25.13 

t2=22.96 

(+24%) 

0.1646± (0.028) 

t1=11.71 

t2= 28.19 

(+36%) 

0.8734± (0.029) 

t1=19.54 

t2=22.84 

(+27%) 

0.9678± (0.112) 

t1=17.32 

t2=17.97 

(+43%) 

CC(BKM,PAM) 

 

 

Improvement (%) 

0.8746± (0.024) 

t1=13.99 

t2=21.49 

(+16%) 

0.1513± (0.035) 

t1=8.09 

t2=24.90 

(+34%) 

0.8819± (0.017) 

t1=22.58 

t2=28.05 

(+20%) 

0.8707± (0.185) 

t1=9.76 

t2=18.10 

(+37%) 
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Table 4. 8: Performance Evaluation of the Cooperative and Non-cooperative Approaches [SN] 

(k=17) F-measure Entropy Purity SI 

KM 0.4927± (0.029) 0.3787± (0.018) 0.6449± (0.025) 1.7441± (0.215) 

BKM 0.5281± (0.037) 0.3585± (0.022) 0.6867± (0.024) 1.2876± (0.146) 

PAM 0.3412± (0.034) 0.5831± (0.072) 0.4787± (0.042) 4.2001± (0.833) 

CC(KM,BKM) 

Improvement (%) 

0.5823± (0.013) 

t1=12.61 

t2= 6.18 

(+10%) 

0.3374± (0.016) 

t1=7.67 

t2= 3.45 

(+6%) 

0.7661± (0.023) 

t1=15.95 

t2= 10.45 

(+12%) 

1.0955± (0.086) 

t1=12.52 

t2= 4.96 

(+15%) 

CC(KM,PAM) 

Improvement (%) 

0.6184± (0.015) 

t1=17.22 

t2= 33.36 

(+26%) 

0.3244± (0.037) 

t1=5.90 

t2= 14.29 

(+14%) 

0.7903± (0.043) 

t1=13.07 

t2= 23.21 

(+23%) 

0.8531± (0.065) 

t1=17.74 

t2= 17.91 

(+51%) 

CC(BKM,PAM) 

Improvement (%) 

0.6436± (0.022) 

t1=11.99 

t2= 33.39 

(+22%) 

0.3153± (0.031) 

t1=5.08 

t2= 15.28 

(+12%) 

0.8457± (0.029) 

t1=18.89 

t2= 32.15 

(+23%) 

0.7517± (0.039) 

t1=15.85 

t2= 18.49 

(+42%) 
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Table 4. 9: Performance Evaluation of the Cooperative and Non-cooperative Approaches [Yahoo] 

(k=20) F-measure Entropy Purity SI 

KM 0.4585± (0.011) 0.3815± (0.025) 0.6192± (0.024) 2.3246± (0.134) 

BKM 0.5501± (0.031) 0.3128± (0.029) 0.7171± (0.017) 1.6641± (0.089) 

PAM 0.4476± (0.016) 0.4876± (0.034) 0.5381± (0.053) 2.5138± (0.206) 

CC(KM,BKM) 

 

 

Improvement (%) 

0.6619 ± (0.023) 

t1=35.67 

t2= 12.95 

(+20%) 

0.2397 ± (0.014) 

t1=22.13 

t2= 10.15 

(+23%) 

0.8078 ± (0.011) 

t1=31.95 

t2= 20.03 

(+13%) 

1.1272 ± (0.055) 

t1=36.97 

t2= 22.95 

(+32%) 

CC(KM,PAM) 

 

 

Improvement (%) 

0.4794 ± (0.010) 

t1=6.29 

t2= 7.54 

(+5%) 

0.3674± (0.009) 

t1=2.373 

t2=15.28 

(+4%) 

0.6474± (0.022) 

t1=3.87 

t2= 8.51 

(+5%) 

2.1764± (0.026) 

t1=4.86 

t2= 7.27 

(+6%) 

CC(BKM,PAM) 

 

 

Improvement (%) 

0.6162 ± (0.018) 

t1=8.24 

t2= 31.30 

(+12%) 

0.2687 ± (0.028) 

t1=4.89 

t2=22.23 

(+14%) 

0.7788 ± (0.012) 

t1=13.26 

t2= 19.80 

(+9%) 

1.3695 ± (0.033) 

t1=13.88 

t2= 16.76 

(+18%) 
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The cooperation between KM and BKM, CC(KM,BKM), achieves improvement of up to 21% in F-

measure, up to %34 in Entropy, up to 19% in Purity, and up to 52% in SI index for the Yeast dataset. The 

cooperative model CC(KM,PAM) achieves improvement up to 26% in F-measure (SN dataset), up to 

39% in Entropy (Yeast dataset),  up to  27% in Purity (UW dataset), and up to 51% in SI index for the SN 

dataset. Finally, CC(BKM,PAM) achieves improvement up to 28% in F-measure (Breast Cancer 

dataset), up to 34% in Entropy (UW dataset), up to 25 % in Purity (Breast Cancer dataset), and up to 42% 

in SI index for the Leukemia dataset. It can be shown that the cooperation between the adopted clustering 

techniques produces clustering solutions with higher values for both F-measure and Purity and lower 

values for Entropy and SI index than those of the individual algorithms. The main reason for this 

improvement in the clustering quality is that, each of the cooperative models takes the intersection of the 

individual clusterings and obtains new clusterings with maximum Intra cluster homogeneity and 

maximum Inter-cluster separation using both the notion of similarity histograms and cooperative merging. 

4.5.2 Scatter-F-measure Evaluation 

In this sub-section, we use the Scatter F-measure (defined in section  3.6) as a measure of diversity 

between the clustering algorithms. The higher the Scatter F-measure, the lower improvement in the 

clustering quality of the cooperative models. As if there is no scattering between the clustering results of 

the adopted approaches (i.e. they generate the same solution), it would lead to the same set of sub-clusters 

as the original set of clusters. Then the final set of clusters after merging will be almost the same as that of 

the original non-cooperative approaches.  On the other hand, when two clustering approaches generate 

two different clustering solutions (i.e. lower value of the Scatter F-measure) then a new set of sub-

clusters with better homogeneity than the original clusters is generated. Thus better improvement in the 

clustering quality is achieved. The Scatter F-measure, number of sub-clusters, quality of sub-clusters 

(measured by the OWSR measure (section  3.5)) and the corresponding values of the SI index of the 

obtained k clusters are reported in tables 4.10 - 4.14. 

Table 4. 10: Scatter F-measure and Quality of Clusters [Yeast] 

k=5 CC(KM,BKM) CC(KM,PAM) CC(BKM,PAM) 

Scatter F-measure 0.6956 0.5309 0.7363 

# Sub-clusters 15 18 10 

Quality of Sub-clusters (OWSR)↑ 0.2871 0.2914 0.2755 

SI↓ 0.6162 0.5815 0.7757 
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Table 4. 11: Scatter F-measure and Quality of Clusters [Breast Cancer] 

k=4 CC(KM,BKM) CC(KM,PAM) CC(BKM,PAM) 

Scattering-F-measure 0.8432 0.6306 0.6175 

# Sub-clusters 10 14 15 

Quality of Sub-clusters (OWSR)↑ 0.7543 0.8623 0.8955 

SI↓ 0.6998 0.5418 0.4943 

Table 4. 12: Scatter F-measure and Quality of Clusters [UW] 

k=10 CC(KM,BKM) CC(KM,PAM) CC(BKM,PAM) 

Scattering-F-measure 0.6672 0.5655 0.4618 

# Sub-clusters 28 32 44 

Quality of Sub-clusters (OWSR)↑ 0.2441 0.2657 0.2932 

SI↓ 1.0559 0.9678 0.8707 

Table 4. 13: Scatter F-measure and Quality of Clusters [SN] 

k=17 CC(KM,BKM) CC(KM,PAM) CC(BKM,PAM) 

Scattering-F-measure 0.6109 0.4835 0.4312 

# Sub-clusters 139 208 214 

Quality of Sub-clusters (OWSR)↑ 0.6473 0.7647 0.7887 

SI↓ 1.0955 0.8531 0.7517 

Table 4. 14: Scatter F-measure and Quality of Clusters [Yahoo] 

k=20 CC(KM,BKM) CC(KM,PAM) CC(BKM,PAM) 

Scattering-F-measure 0.4075 0.7612 0.4563 

# Sub-clusters 231 131 225 

Quality of Sub-clusters (OWSR)↑ 0.7788 0.59554 0.7601 

SI↓ 1.1272 2.1764 1.3695 

In the Breast Cancer dataset, both KM and BKM are close to each in terms of their clustering solutions 

(measured by both internal and external quality measures) where the value of the scatter F-measure is 

0.8432. Thus the quality of the generated clusters is almost the same as that of both of them and the 

percentage of improvement is only 12% for F-measure and 5% for SI Index. On the other hand, the 
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cooperative models CC(KM,PAM) and CC(BKM,PAM) achieve an improvement in the performance of 

up to 28% for F-measure and 29% for SI. The main reason for this significant improvement is that either 

CC(BKM,PAM) or CC(KM,PAM) generates solutions that are different and that reveals different set of 

sub-clusters with better quality. For the Yahoo dataset, the least improvement in the clustering quality is 

provided by the CC(KM,PAM), where the cooperation results in an improvement of only 5% for F-

measure and 6% for SI for large value of the Scatter F-measure (0.7612) while CC(KM,BKM) for 

example achieves improvement up to 20% for F-measure and 32% for SI at scatter F-measure equals 

0.4075 for the same dataset. We can conclude that the scattering between the clustering results of the 

adopted clustering techniques enables the cooperative model to work with more homogenous set of sub-

clusters that yield better final cooperative clustering results.  

4.5.3 Performance Evaluation at c=3  

In this section we evaluate the performance of the cooperative model by combining the clustering 

solutions of the three approaches, KM, BKM, and PAM together in one solution (i.e. c=3). We will refer 

to the cooperation between KM, BKM, and PAM by CC(KM,BKM,PAM). The values of both F-measure 

and SI index using the cooperative and non-cooperative approaches for Leukemia, Yeast, Breast Cancer, 

UW, SN, and Yahoo datasets are reported in Figures 4.2 and 4.3, respectively.  
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Fig. 4. 2. Further Improvement in F-measure using CC(KM,BKM,PAM) 
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Fig. 4. 3. Further Improvement in SI using CC(KM,BKM,PAM) 

We can see that the triple cooperation between the three clustering techniques achieves better clustering 

quality than the pair-wise cooperation measured by higher values for F-measure and lower values for SI 

index. This enhancement in the performance caused by the triple cooperation is mainly because a new set 

of sub-clusters is obtained with better homogeneity than that of the pair-wise cooperation. This set of sub-

clusters acts as an agreement between the three techniques together which gives an additional confidence 

of the distribution of objects within clusters. This agreement directs the cooperative model in such away 

to group more homogenous sub-clusters than those of the pair-wise cooperation. 

4.5.4 Performance Evaluation at c=4 (adding FCM) 

The performance of the fuzzy c-means (FCM)  [12] is added to the model as shown in Figures 4.4 and 4.5 

for both the Yeast and UW datasets. We will refer to the cooperative model that combines the clustering 

solutions of the four techniques as CC(KM,BKM,PAM,FCM). 
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Fig. 4. 4. Improvement in F-measure by adding FCM 
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Fig. 4. 5. Improvement in SI by adding FCM 

It can be shown that adding FCM to the cooperative model maintains the same clustering quality for the 

Yeast dataset, as the performance of FCM is almost the same as KM. Thus adding FCM has no additional 

benefit to the cooperative model. On the other hand, for the UW dataset, FCM has better performance 

than KM, this difference in the performance with better sub-clusters homogeneity provides the 

cooperative model CC(KM,BKM,PAM,FCM) with more homogenous set of sub-clusters that achieves a 
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better clustering quality. Thus adding FCM provides clustering solutions with higher values of F-measure 

and lower values for the SI index as illustrated in figures 4.4 and 4.5, respectively. 

4.6 Scalability of the Cooperative Clustering (CC) Model 

In order to evaluate the scalability of the cooperative model in terms of number of clustering techniques, 

we use combinations of KM, BKM and PAM such that c (number of clustering techniques) ranges from 2 

up to 100 algorithms as shown in Figures 4.6, 4.7, and 4.8, for Leukemia, Yeast, and UW datasets, 

respectively. In each table, we plot the ratio of number of singleton sub-clusters (sub-clusters with size 1) 

to the total number of sub-clusters, the quality of sub-clusters (measured by the OWSR measure), and the 

quality of the overall set of k clusters (measured by F-measure).  

For the Leukemia dataset, it can be noticed that the cooperative model achieves better clustering results 

using up to 39 algorithms measured by higher values of the OWSR of the generated set of sub-clusters as 

well as the higher values of the F-measure for the overall set of k clusters. For the Yeast dataset, a 

combination of up to 37 algorithms is used to obtain better results than the original individual approaches, 

and finally for the UW dataset, up to 13 algorithms are invoked to obtain the best cooperative clustering 

results than those of the adopted non-cooperative approaches. 

Leukemia Dataset [k=3]
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Fig. 4. 6. Scalability of the Cooperative Model [Leukemia] 
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Yeast Datset [k =5]
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Fig. 4. 7. Scalability of the Cooperative Model [Yeast] 

UW Dataset [k =10]
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Fig. 4. 8. Scalability of the Cooperative Model [UW] 

An interesting observation is that the cooperative clustering model after a specific value of c, c* (e.g. c
*
 = 

39 in the Leukemia dataset), the cooperative clustering quality degrades rapidly. It is not surprising that 

this is the case, since at larger number of algorithms with different clustering solutions; the generated set 

of sub-clusters is expected to have larger number of singleton sub-clusters which drops the overall quality 

of the set of sub-clusters. The value of c
* provides a clue of the relation between the number of sub-

clusters, number of singleton sub-clusters, and the overall quality of the set of sub-clusters (measured by 
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OWSR), beyond which the number of algorithms should not be increased. An appropriate strategy for 

automatically detecting the value of c
* is to compare the values of OWSR before and after adding the 

additional clustering techniques, if a sufficiently drop in the OWSR is noticed then no more algorithms 

can be added to the cooperative clustering model. 

4.7 Variable Number of Clusters 

As clustering is known as unsupervised classification of data, thus number of clusters is unknown as in 

the Serum dataset. In this experiment, we investigate the performance of the cooperative models as well 

as the individual approaches along with variable number of clusters. The proper number of clusters (i.e. 

natural grouping of data) is obtained based on the lowest value of the SI index. Fig. 4. 9 shows the 

performance of the cooperative models as well as the non-cooperative algorithms for the Serum dataset at 

variables number of clusters.  
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Fig. 4. 9. Finding Proper Number of Clusters (k is unknown) [Serum] 

For the non-cooperative algorithms, it can be shown that the best performance of KM is achieved at k=2, 

BKM at k=2, and PAM at k=4. The CC(KM,BKM) has the lowest value of the SI index at k=2, the 

CC(KM,PAM) achieves its best performance also at k=2, CC(BKM,PAM) has the best results at k=2. 

Finally, for the triple cooperation model, CC(KM,BKM,PAM), the best results are obtained at k=2. The 

natural grouping of data (i.e. proper number of clusters) is determined by a majority vote between the four 

cooperative models as they have better clustering quality than the non-cooperative approaches. Then best 

performance is obtained at k=2. 
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The UW dataset has external information about its true class labels where k is known apriori as 10 

clusters. In Fig. 4. 10, It can be illustrated that the four cooperative models, CC(KM,BKM), 

CC(KM,PAM), CC(BKM,PAM), and CC(KM,BKM,PAM) obtain the true number of clusters (k=10) 

while the non-cooperative BKM achieves its best performance at k=9 and PAM declares that its best 

results are obtained at k=7. KM obtains the best results at k=10. Thus, the cooperation between the 

invoked algorithms is capable of finding the proper number of clusters in data. 
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Fig. 4. 10. Finding Proper Number of Clusters (k is known) [UW] 

For both the Serum and UW datasets, we can see that the cooperative models outperform the individual 

clustering techniques for variable number of clusters measured by lower values of the SI index. 

4.8 Intermediate Cooperation 

An additional advantage of the cooperative clustering is that, it is used to enhance the time (e.g. fast 

convergence) (and/or) quality performance (i.e. clustering quality) of the adopted techniques based on 

cooperation at the intermediate steps. Figures 4.11 and 4.12 illustrate the convergence of both KM and 

FCM with different initializations, respectively, with and without cooperation between them at the 

intermediate iterations of each algorithm for the UW dataset. Similar performance is achieved for the rest 

of the datasets. Figures 4.11 and 4.12 show that cooperation at intermediate steps enables both KM and 

FCM to achieve faster converge to solutions with minimum number of iterations. The main reason for this 

enhancement is that both KM and FCM are vulnerable to the initial seed of centroids. That means good 

initial centroids lead to better and faster convergence to solution. Using cooperation at the intermediate 
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steps provides KM and FCM with a set of centroids of lower value of the objective function (Figures. 2.1 

and 2.4) than the current objective function value. This new set of centroids enables KM and FCM to find 

the desired clustering quality with lower number of iterations. Thus KM with intermediate cooperation 

with FCM takes only 8 iterations to converge instead of 15 iterations. In addition, FCM needs only 6 

iterations to find its local optimum instead of 11 iterations.  

UW DataSet

176

178

180

182

184

186

188

0 2 4 6 8 10 12 14 16

#Iterations

O
b

je
c
ti

v
e
 F

u
n
c
ti
o

n
(J

)

Non_Cooperative KM Cooperative KM

 

Fig. 4. 11. KM Convergence with and without Cooperation [UW] 
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Fig. 4. 12. FCM Convergence with and without Cooperation [UW] 

Fig. 4.13 shows the performance of the BKM with the intermediate feedback at each level of the 

hierarchical tree with cooperation with KM for the UW dataset. It can be shown from Fig. 4.13 that BKM 

takes better clustering solutions at each level with better homogeneity than the original clustering, thus in 



 

  88

the splitting stage different partitions with less homogeneity will be selected and split further along the 

tree which enables the BKM to enhance its clustering quality along each level of the hierarchical tree. 
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Fig. 4. 13. Quality of BKM using Intermediate Cooperation for Variable Number of Clusters [UW] 

4.9 Discussions 

In this chapter, an evaluation of the cooperative model using multiple clustering techniques with various 

clustering results is presented. Experiments were performed on actual gene expression datasets and text 

documents datasets representing different characteristics. Based on the experimental results, we can 

conclude that cooperative clustering achieves better clustering quality measured by both internal and 

external quality measures than the non-cooperative traditional clustering algorithms. Also a number of 

experiments were conducted to show the capability of the cooperative model to generate better clustering 

solutions with variable number of clusters. Also, undertaken experimental results show that the 

cooperative clustering model is scalable in terms of number of clustering techniques. Finally, the 

capability of the cooperative model to enhance the performance in terms of convergence property and 

clustering quality was illustrated. The conducted experiments conclude that the cooperative clustering 

introduced in this thesis is successful with respect to its goals. Detailed summary, conclusions, and 

recommendations are discussed in the last chapter. 
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Chapter 5 

Outliers Detection Using Cooperative Clustering 

Outlier detection refers to the problem of discovering objects that do not conform to expected behavior in 

a given dataset. These nonconforming objects are called outliers while the set of remaining objects are 

called inliers.  A variety of techniques have been developed to detect outliers in several research 

applications including: bioinformatics and data mining  [33]- [43]. Current approaches for detecting 

outliers using clustering techniques explore the relation of an outlier to the clusters in data. For example, 

in medical applications as gene expression analysis, the relation of unknown novel genes (outliers) to the 

gene clusters in data is important in studying the function of such novel genes. Also, in disease diagnosis 

analysis, the relation of an unknown pattern of symptoms (outlier) to a known cluster of symptoms can 

reveal important information related to the known disease. Some clustering algorithms find outliers as a 

side-product of the clustering process. For example, DBSCAN  [51] can also handle outliers, but its 

main concern is clustering the dataset, not detecting outliers. The recent clustering-based outlier 

detection technique, FindCBLOF  [39] is only based on the assumption that outliers form very small-

sized clusters, also the detection accuracy of the FindCBLOF is mainly based on the clustering quality of 

the adopted clustering technique. 

In this chapter, a novel clustering-based outlier detection method is proposed and analyzed; it is called 

Cooperative Clustering Outliers Detection (CCOD). Unlike the traditional clustering-based methods, e.g. 

FindCBLOF, the CCOD algorithm provides efficient outliers detection and data clustering capabilities. 

It uses the notion of cooperative clustering towards better discovery of outliers. The algorithm of our 

outlier detection method is divided into four stages. The first stage provides individual clustering. 

The second stage obtains the set of sub-clusters. The main objective of the third and four stages is an 

iterative identification of possible and candidate outliers of objects. The empirical results in chapter 6 

indicate that the proposed method was successful in detecting outliers compared to the traditional 

clustering-based outlier’s detection technique, FindCBLOF. 

This chapter is organized as follows. Section 5.1 describes the different approaches for discovering 

outliers in data. Section 5.2 discusses current clustering-based detection approaches. The CCOD 

algorithm is presented and analyzed in section 5.3. Finally some discussions about the proposed 

cooperative clustering-based detection are presented in the last section. 
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5.1 Outliers Detection  

Outlier’s detection is a critical task in many safety critical environments as outliers indicate abnormal 

running conditions from which significant performance degradation may result. For example, in 

databases, outliers may indicate fraudulent cases or they may just denote an error by the entry clerk or 

misinterpretation of a missing value code, either way detection of the anomaly is vital for database 

consistency and integrity. Also to detect the onset of news stories, for topic detection and tracking or for 

traders to pinpoint equity, commodities, outperforming or underperforming commodities, this detection 

discovers the novelty in text  [43]. 

Definition 

Outlier detection can be described as follows: Given a set of n objects and TopRatio, the expected number 

of outliers, find the top objects TopRatio that are considerably dissimilar, exceptional, or inconsistent with 

respect to the remaining data. 

Outliers may be erroneous or real in the following sense: Real outliers are observations whose actual 

values are very different than those observed for the rest of the data and violate plausible relationships 

among variables. Erroneous outliers are observations that are distorted due to misreporting or 

misrecording errors in the data-collection process. Outliers of either type may exert undue influence on 

the results of statistical analysis, so they should be identified using reliable detection methods prior to 

performing data analysis  [102]. A more exhaustive list of applications that utilize outlier detection 

includes: 

• Fraud detection: detecting fraudulent applications for credit cards, state benefits or detecting 

fraudulent usage of credit cards or mobile phones 

• Intrusion detection: detecting unauthorized access in computer networks. 

• Satellite image analysis: identifying novel features or misclassified features 

• Medical condition monitoring such as heart-rate monitors 

• Handwritten word recognition: some errors were caused by non-character images that were 

assigned a high character confidence value  [103] 

• Pharmaceutical research: identifying novel molecular structures 
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• Detecting unexpected entries in databases, for data mining to detect errors, frauds or valid but 

unexpected entries. 

• Detecting mislabeled data in a training data set. 

How the outliers detection systems deal with the outliers depends on the application area and the context 

where outliers are defined. Some of the well known outlier detections approaches are illustrated next. 

5.1.1 Distance-based Outliers Detection 

In distance-based outlier detection, an outlier is defined as an object that having a far distance to other 

objects in the data space.  

Definition 

 An object x in a dataset is an outlier with respect to the parameters MinPts and r, if no more than MinPts 

objects in the dataset are at a distance r or less from x. 

This approach does not require any a prior knowledge of data distributions as the statistical methods do. 

However, this distance-based approach has certain shortcomings: 

• It requires the user to specify a distance r, which could be difficult to determine apriori. 

• It does not provide a ranking for the outliers: for instance an object with a very few neighboring 

objects within a distance r can be regarded in some sense as being a stronger outlier than an 

object with more neighbors within distance r. 

• It becomes increasingly difficult to estimate parameter r with increasing dimensionality. Thus, if 

one picks radius r slightly small, then all objects are outliers. If one picks r slightly large, then no 

object is an outlier. So, user needs to pick r to a very high degree of accuracy in order to find a 

modest number of objects, which can be defined as outliers  [104].  

The definition, proposed by Ramaswamy et al.  [105], for outliers in the high dimensional data does not 

require users to specify the distance parameter r. Instead, it is based on the distance of the MinPts
th 

nearest neighbor of a point. The Hybrid-random algorithm  [106] belongs to this family of outlier 

detection techniques. 
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5.1.2 Distribution-based Outliers Detection 

In these techniques, the data points are modeled using a stochastic distribution and points are determined 

to be outliers depending upon their relationship with this model. However, with increasing 

dimensionality, it becomes increasingly difficult and inaccurate to estimate the multidimensional 

distributions of the data points. 

Definition 

An object is defined as an outlier if it is significantly different from the underlying distribution. 

An on-line outlier detection algorithm called SmartSifter  [107] takes a data sequence as input in an on-

line way, learns an underlying model from the given examples and assigns a score to each object based on 

the underlying learned model. Thus a high score indicates a high probability that the object is an 

outlier. The central idea of SmartSifter is to learn the model with on-line learning algorithms and to 

calculate a score for a data. The main advantages of the method are that the computational time is 

inexpensive and it can deal with both categorical and continuous variables. 

Also a Gaussian mixture model is used in  [37] to present the normal behaviors and each datum is given a 

score on the basis of changes in the model. High score indicates high possibility of being an outlier. This 

approach has been combined with a supervised-based learning approach to obtain general patterns for 

outlier. The main problem with this method is that it assumes that the underlying data distribution is 

known a prior. However, for many applications, it is an impractical assumption and the cost for fitting 

data with standard distribution is significantly considerable. 

5.1.3 Density-based Outliers Detection 

Density-based methods have been developed for finding outliers in a spatial data. These methods can be 

grouped into two categories called multi-dimensional metric space-based methods and graph-based 

methods. In the first category, the definition of spatial neighborhood is based on Euclidean distance, while 

in graph-based spatial outlier detection the definition is based on graph connectivity. Density-based 

approaches consider both attribute values and spatial relationship in data. 

Definition 

Outliers are objects having low local density of an object’s neighborhood of objects. 



 

  93

Local Outlier Factor (LOF) 

Local Outlier Factor (LOF)  [36] is the density-based method, which detects local outliers based on the 

local density of an object’s neighborhood. LOF is intuitively a measure of difference in density between 

an object and its neighborhood objects. We refer to LOF as a method from multi-dimensional metric 

space-based category of density-based approach. In a multidimensional dataset it is more meaningful to 

assign for each object a degree of being an outlier. The key difference between LOF approach and 

existing notions of outliers is that being outlier is not a binary property. Local outliers are the set of 

objects, which relative to their local neighborhoods have low densities of the neighborhoods. Let MinPts 

specifies the minimum number of objects in the neighborhood of an object. 

Definition (MinPts-distance neighborhood of an object x) 

The MinPts-distance neighborhood of x contains every object whose distance from x is not greater than 

the MinPts-distance. These objects are called the MinPts-nearest neighbors of x, NMinPts(x). 

Definition (reachability distance of an object x w.r.t. object y) 

The reachability distance of object x with respect to object y is defined as reach_distMinPts(x, y) = 

max{MinPts-distance(x), distance(x, y)}. 

If object x is far away from y, then the reachability distance between the two is simply their actual 

distance. However, if they are close, the actual distance is replaced by the MinPts-distance of x. 

Definition (local reachability density of x, lrd(x)) 

The local reachability density of an object x is the inverse of the average reachability distance from the 

MinPts-nearest neighbors of x. 
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The local outlier factor (LOF) is a measure of outlying-ness that is calculated for each object. LOF is the 

average of the ratios of the local reachability density of x and those of x’s MinPts nearest-neighbors. 

The local outlier factor of an object x is defined as: 
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Intuitively, x’s local outlier factor will be very high if its local reachability density is much lower than 

those of its neighbors  [108], [109]. Local outliers are objects having considerable density difference from 

their neighboring objects, i.e. they have high LOF values. 

5.1.4 Deviation-based Outliers Detection 

Deviation-based outlier detection does not use statistical tests or distance-based measures to identify 

exceptional objects. Instead, it identifies outliers by examining the main characteristics of objects in a 

group. Objects that “deviate” from this description are considered outliers. 

Definition 

Outliers are discovered by inspecting the characteristics of objects and consider an object that deviates 

from this description as an outlier.  

The sequential exception technique simulates the way in which humans can distinguish unusual objects 

from among a series of supposedly similar objects  [38].  

5.1.5 Clustering-based Outliers Detection 

These set of techniques employ clustering approaches to discover outliers in data. Thus, the ability to 

detect outliers can be improved using a combined perspective from outlier detection and cluster 

identification. 

Definition 

Inliers are defined as objects that belong to large and dense clusters, while outliers either do not belong to 

any cluster or form very small clusters. Thus any object, which does not fit in any cluster, is called outlier.  

The FindCBLOF algorithm  [39] uses a clustering algorithm called Squeezer  [40] and determines the 

Cluster-based Local Outliers Factor (CBLOF) for each object. As the focus of this chapter is on 

clustering-based outlier detection, the next section illustrates the state of art of discovering outliers based 

on clustering in more details. 
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5.2 Outliers in Clustering 

The main concern of clustering-based outlier detection algorithms is to find clusters and outliers, which 

are often regarded as noise that should be removed in order to make more reliable clustering  [39]. Some 

noisy points may be far away from the data points, whereas the others may be close. The far away noisy 

points would affect the result more significantly because they are more different from the data points. It is 

desirable to identify and remove the outliers, which are far away from all the other points in cluster  [110] 

So, to improve the clustering such algorithms use the same process and functionality to solve both 

clustering and outlier discovery. Some clustering algorithms find outliers as a side-product of 

clustering algorithms. For example, DBSCAN  [51] and ROCK  [111] can also handle outliers, but 

their main concern is clustering the dataset, not detecting outliers. However these techniques define 

outliers as points, which do not lie in clusters or form very small clusters. Thus, the techniques 

implicitly define outliers as the background noise in which the clusters are embedded. Another class 

of techniques defines outliers as points, which are neither a part of a cluster nor a part of the 

background noise; rather they are specifically points which behave very differently from the norm 

 [104]. The clustering-based outlier detection approach, known as FindCBLOF algorithm  [39], assigns 

a cluster-based local outlier factor to each object and returns objects with the highest local factors as 

outliers. More details on the FindCBLOF algorithm are discussed next. 

5.2.1 Find Cluster-based Local Outlier Factor (FindCBLOF) 

To identify the physical significance of the definition of an outlier, each object is assigned an outlier 

factor, namely, CBLOF, which is a measure of both the size of the cluster the object belongs to and the 

distance between the object and its closest cluster (if the object lies in a small cluster)  [39]. Here, the 

clustering algorithm used for partitioning the dataset into disjoint clusters can be chosen freely. The only 

requirement for the selected clustering algorithm is that it should have the ability to produce good 

clustering results. A critical problem that must be solved before defining the cluster-based local outlier 

factors is how to identify whether a cluster is large or small.  Suppose S={S0,S1,…,Sk-1} is the set of 

clusters in the sequence that |S0|≥|S1|≥..≥|Sk-1|. Given two numeric parameters α and β, the boundary of 

large and small cluster, u, is defined as following (if one of the two following formulas holds): 

 0 1(| | | | ..... | |) (| X | * )
u

S S S α+ + + ≥  (5. 3) 

 1| | / | |
u u

S S β+ ≥  (5. 4) 
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The CBLOF of an object x belongs to cluster Si represented by a prototype zi is defined as: 

 
2

2

| | * (|| || , , )
( ) |

, | | * || || , ,

i j i i j

i i i

S min z S S Small Set and S Large Set
CBLOF

S z S S Large Set
i

α β

− ∈ ∈ ∈
=  − ∈ ∈

x x
x

x x
 (5. 5) 

The CBLOF of an object is determined by the size of its cluster, and the distance between the object and 

its closest cluster (if this object lies in small cluster) or the distance between the object and the cluster it 

belongs to (if this object belongs to large cluster). For the computation of distance between an object and 

a cluster, it is sufficient to adopt the similarity measure used in the clustering algorithm. 

The FindCBLOF algorithm first partitions the dataset into clusters with the Squeezer algorithm  [40]; the 

Squeezer algorithm works only with categorical attributes. The sets of large and small clusters are derived 

using the parameters α and β. Then, for every data point in the data set, the value of CBLOF is computed. 

Outliers are returned as objects with higher CBLOF values.  

Algorithm: FindCBLOF (X, α ,β, TopRatio, A) 

Input: The dataset X, two numeric parameters α and β, and the invoked clustering approach A 

Output: The set of Outliers, OL  

Begin 

 Step1: Partition the dataset into a set of k clusters using the clustering Algorithm A, thus S=A(X,k,ζ) 

where S={Si,i=0,..,k-1} and ζ is the set of parameters of the clustering algorithm A 

 Step2: Obtain the LargeSet and the SmallSet using the parameters α, β 

 Step3: For each object x in the dataset X 

 If x ∈ Si and Si ∈ the SmallSet then 2( ) | | * (|| || , ,
j ji

CBLOF S min x z S Si LargeSet= − ∈ ∈x x  

 Else ( )CBLOF x = 2| |*|| || , , ii i i
S z S S LargeSet− ∈ ∈x x   

  End 

Return the set of TopRatio% objects with the highest CBLOF values as the outliers list, OL 

End 

Fig. 5. 1. FindCBLOF Algorithm 

The efficiency of the clustering-based FindCBLOF approach for detecting outliers in data is constrained 

to the quality of the adopted clustering technique. In  [112], it has been experimentally approved that 

better clustering solutions reveal better detection of outliers using the notion of CBLOF. 
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5.3 Outliers Detection Using Cooperative Clustering 

In this section, we introduce a new clustering-based outlier’s detection algorithm called Cooperative 

Clustering Outliers Detection (CCOD) that uses the notion of cooperative clustering towards better 

discovery of outliers. The purpose of our method is not only to perform data clustering but at the same 

time it discovers outliers. The CCOD algorithm detects outliers in a bottom-up scenario. The proposed 

outlier detection is divided into four stages. The first stage provides non-cooperative clustering for a set of 

c clustering algorithms, the second stage obtains the set of sub-clusters, the third stage identifies a 

possible set of outliers by assigning a cooperative outlier factor to each object in each sub-cluster, and 

finally the last stage returns the overall set of candidate outliers that affects on the homogeneity of the 

cooperative clustering process. 

5.3.1 Cooperative Outlier Factor 

Our outlier detection method employs three facts of outliers: 

• Objects are considered as outliers if they either do not belong to any cluster or form very small 

clusters 

• Outliers may exist in large clusters 

• Outliers affect on the homogeneity of the clustering results of any clustering technique 

Assume the similarity threshold at which the histograms in the Cooperative Clustering (CC) model 

(Section  3.4) were truncated for the merging process is δ. Also in our detection approach we will 

differentiate between small and large sub-clusters in order to find the set of possible outliers at different 

number of partitions where a large sub-cluster means strong agreement while small sub-cluster indicates 

week agreement and higher possibility of being an outlier. 

Let Sb={Sb0,Sb1,…,Sbnsb-1} be the set of nsb sub-clusters generated by the CC model in the sequence 

|Sb0|≥|Sb1|≥..≥|Sbnsb-1|. Given two numeric parameters αSb and βSb, the boundary of large and small sub-

cluster, v, is defined as following (if one of the two following formulas holds): 

 0 1(| | | | ..... | |) (| X | * )v SbSb Sb Sb α+ + + ≥  (5. 6) 

 1| | / | |v v SbSb Sb β+ ≥  (5. 7) 

Equations (5.6) and (5.7) give a quantitative measure to distinguish large and small sub-clusters, and then 

the sets of large and small sub-clusters are defined as: 
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Two types of outliers are defined and proposed, the Intra_outliers and the Inter_outliers. An illustrative 

example of Intra_outliers and the Inter_outliers in small and large sub-clusters is illustrated in Fig. 5. 2, 

where we refer to inliers with the symbol x and outliers with the circle o. 

Definition (Intra_outliers) 

Intra_outliers are objects having far distances from objects in the same sub-cluster, thus x is an intra-

outlier in a sub-cluster Sbi, if , , | ( , ) |
i

y Sb x y Sim x y is maximumδ∀ ∈ ≠ < , where δ is the similarity 

threshold and | ( , ) |Sim x y δ<  refers to the number of pair-wise similarities that are lower than δ. 

Definition (Inter_outliers) 

Inter-outliers are objects of a small sub-cluster that have far distances from objects in large sub-clusters. 

 

Fig. 5. 2. Outliers in Large and Small Sub-Clusters 

Each object is assigned an outlier factor called Cooperative Outlier Factor, COF.  The COF monitors the 

pair-wise similarities between objects in the same sub-cluster where objects with the highest count of 

similarities below the similarity threshold are identified as Intra-Outliers. Intra-Outliers can be found in 

both large and small sub-clusters. For objects in small sub-clusters, the COF combines both the weight of 
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being Intra-Outlier and Inter-Outlier. The distances between the Inter-outliers and large sub-clusters are 

calculated as the distance to their centroids. The COF of an object x belongs to sub-cluster Sbi is defined 

as: 
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The cosine similarity is used to compute the pair-wise similarities between objects in the same sub-

clusters as well as the similarity between objects in small sub-clusters and the centroids of large sub-

clusters. Objects with high values of the COF are considered as outliers within the set of sub-clusters. 

The key difference between the CCOD and the FindCBLOF is that the COF is assigned to objects within 

the set of sub-clusters, which composes an additional confidence of being an outlier, where the set of sub-

clusters acts as an agreement between the multiple clusterings. In addition, the COF takes into account 

that outliers may exist in both large and small sub-clusters, where it detects both Intra and Inter outliers in 

the set of sub-clusters which are not discovered by the traditional CBLOF. 

5.3.2 Cooperative Clustering-based Outlier Detection (CCOD) Algorithm 

The cooperative clustering CC model (section  3.4) generates a set of sub-clusters at different number of 

partitions l=2,..,k. The size of the resulting sub-clusters is smaller than the size of the original clusters. 

The small size of sub-clusters enables the discovering of local outliers in each sub-cluster by assigning 

local cooperative outlier factors (COF) to local objects in each sub-cluster. Local objects in each sub-

cluster with the highest COF are selected as local outliers within sub-clusters. These discovered set of 

local outliers provides the possible set of outliers for the whole set of k clusters. Then, in order to obtain 

the same number of clusters, the most similar two sub-clusters are merged. The set of possible outliers are 

tested against the merging process in order to identify the candidate outliers that affect on the 

homogeneity of the merging process which consequently affect on the overall homogeneity of the 

clustering procedure. The Cooperative Clustering Outlier Detection (CCOD) algorithm works in a 

bottom-up scenario. The bottom-up detection is an iterative approach that starts form level l =2(i.e. 

number of partitions l= 2) to level l=k (i.e. number of partitions l= k). It detects a set of outliers at level l, 

these set of outliers are considered as candidate outliers at level l and possible outliers at level l+1.  
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For number of partitions l=2,3,..,k, the bottom-up cooperative clustering-based outliers detection is 

performed in the following four phases: 

• Phase 1 (Non-Cooperative Clustering):  The c clustering algorithms {A1,A2,..,Ac} are executed 

concurrently, each algorithm takes its input parameters ζi and generates a set of l clusters thus the 

clusterings sets SAi
(l) , i =1,..,c are generated, where SAi

(l)=  Ai(X, l, ζi) ={Sj
Ai, 0≤ j ≤l-1}. 

• Phase 2 (Sub-clusters Generation):  based on the cooperative model CC, the c sets SAi
(l), i =1,..,c, 

are employed to construct the CCG graph and consequently a new set of sub-clusters Sb is 

generated. Each sub-cluster Sbi, i=0,1,…,nsb-1 is represented with a histogram Hi as a 

representative of the pair-wise similarities between objects in the sub-cluster.  

• Phase 3 (Possible Outliers Detection): for each sub-cluster Sbi, a COF (defined in Eq.(5.9)) is 

assigned to each local object in the sub-cluster Sbi. The COF is mainly based on the distribution 

of objects within sub-clusters and distance between objects and sub-clusters using the notion of 

histograms. Then, the set of %LocalTopRatio (a user defined parameter) outliers is selected. This 

set is the set of possible outliers POl  at level l. 

• Phase 4 (Merging Process and Candidate Outliers Detection):  

o At this stage, we consider the number of clusters as the number of sub-clusters nsb. In 

order to obtain the same number of clusters as the original l clusters, the two most similar 

sub-clusters (sub-clusters with the highest value of mcf) are selected for merging into a 

new cluster.   

o For each object o in the set POl, if removing o results in a selection of two other sub-

clusters with better homogeneity (i.e. higher value of the mcf than the old value), then o 

becomes a candidate outlier at level l.  

o Finally, the selected two most similar sub-clusters are then merged. 

Phase 4 is repeated until the number of clusters equals l. Then, the set of candidate outliers at level l will 

be added to the set of possible outliers at level l+1. The four phases are repeated until the desired number 

of clusters k is reached. The resulting set of candidate outliers are sorted according to their COF and the 

TopRatio outliers from the final candidate set are returned. Finally the final set of top outliers and the set 

of k cooperative clusters are obtained. The four-phases cooperative clustering-based outlier detection 

algorithm is presented in Fig. 5. 3. 
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Algorithm: Cooperative Clustering-based Outlier Detection (X, SM,k, {Ai},{ζi},δ,LocalTopRatio,αsb,βsb) 

Input: : Dataset X, similarity matrix SM, number of clusters k, set of clustering algorithms, A1,A2,..,Ac, a 

set of input parameters ζ={ζi} for each clustering technique Ai, similarity threshold δ, number of 

local top outliers LocalTopRatio, and two numeric local parameters αsb,βsb. 

Output: Set of candidate outliers COk , and set of cooperative Clusters Scooperative(k) 

Initializations: CO1={}, Scooperative(k)={} 

Begin 

 For number of clusters l =2 to k  

 Phase 1: Generate the c clustering sets,  SAi
(l)  , i =1,..,c , ,  SAi

(l) ,where SAi
(l)=Ai(X ,ζi, l) 

 Phase 2: Construct the CCG; a new set of disjoint sub-clusters Sb={Sbi, i=0,1,..,nsb-1} is 

generated. 

 Phase 3: Initially, POl ={}, assign COF factor to each object in the sub-clusters using the 

parameters αsb, βsb, δ, a new set of possible LocalTopRatio outliers POl with the 

highest COF values is obtained. 

 Phase 4: S
cooperative(l) =Sb, COl ={},POl= POl ∪ COl-1 

        Repeat  

            - Select the two most similar sub-clusters Sbi, Sbj 

           For each object o in the list POl 

 Select the two most similar sub-clusters Sbx,Sby excluding o,  

 If(Sbx,Sby) has better homogeneity than (Sbi,Sbj) then if o ∉  COl then 

COl=COl+{o}   

 End   

  - Merge the selected homogeneous sub-clusters 

 - decrement number of sub-clusters, nsb by one             

         Until (number of sub-clusters nsb = l) 

   End 

Return COk  and S
cooperative

(k) 

End 

Fig. 5. 3. The Cooperative Clustering-based Outlier Detection (CCOD) 



 

  102

5.3.3 Complexity Analysis 

Assume 1 ( )A
T l , 2 ( )A

T l ,.., ( )cA
T l are the computational time complexity of the clustering techniques 

A1,A2,..,Ac, respectively, at a given number of clusters l=2,3,..,k. In Phase 1, a set of c clustering 

approaches are employed in the CCOD algorithm, thus Phase 1 takes the computational time of the 

clustering approach with the maximum processing time,  

 T
Phase 1

 =max( 1 ( )A
T l , 2 ( )A

T l ,.., ( )cA
T l ) (5. 10) 

In the sub-clusters generation phase, Phase 2 takes n operations to find the set of sub-clusters, where n is 

the total number of objects,  and building histograms is of order O(|Sbi|
2) thus Phase 2 is of O(n+|Sbi|

2). 

In Phase 3, assigning COF for each object requires |Sbi|
2 operations, Thus Phase 3 is of order O(|Sbi|

2). 

Finally, in Phase 4, finding the most homogenous sub-clusters to be merged is of order O(n2
sb), nsb ≤ l

c , 

this merging testing is repeated for each possible outlier. Thus Phase 4 is of order O(LocalTopRatio* 

n
2

sb). Updating the CCG is of order O(nsb
2
+|Si|*|Sbj|). The total time complexity of the proposed CCOD 

algorithm at level l is:  

 T
CCOD

(l)=O(max( 1 ( )A
T l , 2 ( )A

T l ,.., ( )cA
T l ))+ O(n+|Sbi|

2
+ nsb

2)  (5. 11) 

5.4 Discussions 

Using the same process and functionality to solve both clustering and outlier discovery is highly desired. 

Such integration will be of great benefit to discover outliers in data and consequently obtain better 

clustering results after eliminating the set of outliers. It is known that the capability of discovering outliers 

using clustering-based techniques is mainly based on the quality of the adopted clustering approach. In 

this chapter, we presented a novel clustering-based outliers detection algorithm (CCOD) that uses the 

notion of cooperative clustering towards better detection of outliers. This approach is based on assigning 

a cooperative outlier factor to each object and recognizing the set of candidate outliers after each 

merging step in the cooperative clustering model. The CCOD algorithm relies on the fact that 

cooperative clustering outperforms non-cooperative clustering to achieve better detection of outliers in 

data. Experimental results illustrate that the detection accuracy of the CCOD in terms of number of the 

discovered outliers is higher than that of the traditional clustering-based detections.  
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Chapter 6 

Cooperative Clustering Outliers Detection: Experimental Results  

In this chapter, the detection accuracy of the cooperative detection algorithms is compared to that of the 

FindCBLOF  [39] approach using the non-cooperative KM  [7] , BKM  [13], or PAM  [14] algorithms to 

show its important advantage of better detection of outliers. In the experiments, the CCOD(A1,A2) refers 

to the cooperative detection between the clustering algorithms A1 and A2. Consequently, the 

CCOD(A1,A2,A3) refers to the cooperative detection between A1, A2, and A3 where A1, A2, and A3 ∈  

{KM, BKM, PAM}. Also we will refer to the FindCBLOF(Ai) as the FindCBLOF detection algorithm 

using the individual non-cooperative clustering algorithm Ai. Table 6.1 illustrates the parameters setting 

of the adopted approaches. 

Table 6. 1: Parameters Settings 

Parameter Algorithm Value 

α FindCBLOF 90% 

β FindCBLOF 5 

αsb CCOD 70% 

βsb CCOD 5 

MinPts LOF 10 

6.1 Data Sets 

Experiments were performed on a number of gene expression and documents datasets with various 

characteristics and degree of outliers. There are two gene expression data sets and two document datasets. 

The gene expression datasets are Yeast and Breast Cancer, and the two document datasets are UW and 

Yahoo. Detailed description of the characteristics of these datasets is presented in section  4.2. 

6.2 Detection Accuracy 

In this section, we obtained 20 runs of the FindCBLOF(Ai) algorithm using KM, BKM, or PAM as well 

as 20 runs of each of the cooperative detection algorithms. The t-test is also used to assess whether the 

means of two groups are statistically different from each other or not. The critical t-value at degree of 

freedom equals 38 and 95% confidence interval is 2.024. More detailed discussion of the t-test can be 

found in section  4.3. For any cooperative detection algorithm CCOD(A1,A2), t1 and t2, refer to the 



 

  104

calculated t values between the results of CCOD(A1,A2) and those of A1 and A2, respectively. We will add 

t3 to t1 and t2 such that t1, t2, and t3 refer the t-test values between the combined cooperative detection 

algorithm CCOD(A1,A2,A3) and the three non-cooperative detection algorithms. For each of the non-

cooperative detection and the cooperative detection, the %TopRatio outliers are returned. In the following 

tables, the comparison is established based on the number of matched outliers from the TopRatio outliers 

that are occurred in the top list of outliers detected by the LOF algorithm. We use the LOF just as a 

common base of comparison between the adopted approaches as well as the cooperative detection 

algorithms. The number of the selected top outliers ranges from 10% to 30% of the dataset size. We 

selected the LocalTopRatio possible outliers as ( )log( ) / log( )) *
Sb

n k TopRatio , where nsb is the number 

of generated sub-clusters and k is the number of clusters. 

Tables 6.2-6.5 show the number of the discovered outliers using the cooperative detection algorithms, 

CCOD(KM,BKM), CCOD(KM,PAM), CCOD(BKM,PAM), and CCOD(KM,BKM,PAM) compared to 

that of the traditional FindCBLOF using KM, BKM, or PAM for the four datasets. In each table the value 

of the calculated t is greater than the critical value of t (from the t-distribution tables) which means that 

there is a statistical difference in the obtained results of the non-cooperative and cooperative approaches 

and thus the Null hypothesis (no significance difference) is  rejected.  

Also, it can be shown from tables 6.2-6.5 that the cooperative detection algorithms, CCOD(KM,BKM), 

CCOD(KM,PAM), CCOD(BKM,PAM), and CCOD(KM,BKM,PAM) are able to detect more outliers 

than the traditional FindCBLOF using the non-cooperative clustering approaches at different values of the 

TopRatio ranges from 10% to 30% across the four datasets. As the bottom-up cooperative detection 

method from level l to level l+1 assigns a cooperative outlier factor to each object in a sub-cluster and 

assures that the discovered candidate outliers at level l are also considered as possible outliers at level l+1. 

This set of candidate outliers are accumulated along the bottom-up path till the final set of candidate 

outliers for k clusters is obtained. For example for the Yeast dataset, FindCBLOF(KM), 

FindCBLOF(BKM), and FindCBLOF(PAM) detect only 33%, 45%, and 50% of the top outliers, 

respectively, while the CCOD(KM,BKM), CCOD(KM,PAM), CCOD(BKM,PAM), and 

CCOD(KM,BKM,PAM) detect 57%, 63%, 54%, and 70%, respectively, of the top outliers at 

TopRaio=30%. Also for the UW dataset, the CCOD(KM,BKM,PAM) achieves up to 97% accuracy 

compared to only 66%, 78%, 54% accuracy of the FindCBLOF using the individual KM, BKM, or PAM, 

respectively, at TopRaio=30%.  The same interpretation of results is achieved for the rest of datasets. 
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Table 6. 2: Number of the Detected Outliers for the Yeast Dataset 

 

CCOD 

(KM,BKM,PAM) 

31±(3) 

t1=20.57 

t2=22.32 

t3=22.32 

57±(3) 

t1=19.94 

t2=17.88 

t3=18.97 

77±(5) 

t1=21.75 

t2=17.07 

t3=15.77 

120±(3) 

t1=45.25 

t2=33.09 

t3=31.62 

147±(6) 

t1=23.47 

t2=31.63 

t3=37.83 

CCOD 

(BKM,PAM) 

19±(2) 

t1=9.48 

t2=3.16 

43±(2) 

t1=4.74 

t2=4.96 

61±(3) 

t1=8.43 

t2=3.72 

99±(4) 

t1=17.39 

t2=5.36 

114±(4) 

t1=14.23 

t2=5.58 

CCOD 

(KM,PAM) 

29±(3) 

t1=18.78 

t2=14.88 

53±(4) 

t1=15.36 

t2=12.52 

69±(4) 

t1=20.46 

t2=11.00 

113±(4) 

t1=36.31 

t2=20.57 

133±(6) 

t1=31.27 

t2=15.46 

CCOD 

(KM,BKM) 

24±(4) 

t1=12.64 

t2=11.00 

46±(3) 

t1=11.50 

t2=8.05 

63±(3) 

t1=16.00 

t2=9.97 

105±(4) 

t1=26.54 

t2=12.64 

121±(4) 

t1=28.84 

t2=19.76 

FindCBLOF 

(PAM) 

17±(2) 

39±(3) 

58±(2) 

90±(3) 

106±(5) 

FindCBLOF 

(BKM) 

13± (2) 

37± (4) 

50± (5) 

83± (4) 

96± (4) 

FindCBLOF 

(KM) 

8± (4) 

31± (5) 

39± (6) 

61± (5) 

69± (7) 

TopRatio 

10% 

15% 

20% 

25% 

30% 
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Table 6. 3: Number of the Detected Outliers for the Breast Cancer  Dataset 

 

CCOD 

(KM,BKM,PAM) 

88±(6) 

t1=37.21 

t2=35.34 

t3=28.66 

97±(7) 

t1=35.62 

t2=27.18 

t3=26.42 

127±(8) 

t1=40.30 

t2=32.50 

t3=30.35 

139±(8) 

t1=37.16 

t2=31.40 

t3=21.00 

152±(7) 

t1=44.62 

t2=35.35 

t3=32.72 

CCOD 

(BKM,PAM) 

79±(5) 

t1=33.52 

t2=26.08 

83±(4) 

t1=27.77 

t2=27.72 

104±(5) 

t1=29.33 

t2=26.84 

118±(6) 

t1=26.00 

t2=22.94 

139±(6) 

t1=31.49 

t2=14.26 

CCOD 

(KM,PAM) 

67±(4) 

t1=30.83 

t2=17.39 

79±(5) 

t1=33.21 

t2=12.27 

98±(6) 

t1=32.00 

t2=19.33 

107±(5) 

t1=29.91 

t2=18.16 

125±(7) 

t1=28.77 

t2=17.75 

CCOD 

(KM,BKM) 

55 ±(3) 

t1=24.14 

t2=21.46 

63±(3) 

t1=29.76 

t2=13.42 

83 ±(4) 

t1=29.51 

t2=16.60 

97 ±(3) 

t1=30.56 

t2=18.97 

116±(6) 

t1=26.66 

t2=18.32 

FindCBLOF 

(PAM) 

45±(3) 

52±(3) 

69±(3) 

81±(4) 

93±(4) 

FindCBLOF 

(BKM) 

31±(4) 

48±(4) 

62±(4) 

79±(3) 

84± (5) 

FindCBLOF 

(KM) 

28±(4) 

39±(2) 

50±(3) 

68±(3) 

76 ±(3) 

TopRatio 

10% 

15% 

20% 

25% 

30% 
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Table 6. 4: Number of the Detected Outliers for the UW Dataset 

 

CCOD 

(KM,BKM,PAM) 

28±(2) 

t1=35.00 

t2=23.71 

t3=34.78 

45±(3) 

t1=31.11 

t2=22.32 

t3=31.62 

59±(2) 

 t1=39.52 

t2=22.33 

t3=33.00 

75±(4) 

t1=22.00 

t2=14.31 

t3=33.00 

91±(5) 

t1=24.08 

t2=13.03 

t3=33.22 

CCOD 

(BKM,PAM) 

24±(2) 

t1=17.39 

t2=28.46 

42±(2) 

t1=23.71 

t2=33.48 

55±(4) 

t1=12.52 

t2=22.93 

72±(3) 

t1=13.70 

t2=37.21 

87±(3) 

t1=13.70 

t2=44.65 

CCOD 

(KM,PAM) 

19±(2) 

t1=18.00 

t2=20.55 

37±(2) 

t1=28.00 

t2=27.28 

50±(3) 

t1=19.84 

t2=21.46 

69±(4) 

 t1=16.00 
t2=27.00 

83±(3) 

t1=26.04 

t2=39.69 

CCOD 

(KM,BKM) 

15±(1) 

t1=15.81 

t2=4.00 

31±(3) 

t1=11.31 

t2=4.96 

46±(2) 

t1=18.97 

t2=6.20 

64±(3) 

t1=13.64 

t2=5.27 

78±(3) 

t1=19.84 

t2=4.21 

FindCBLOF 

(PAM) 

6±(2) 

15±(3) 

26±(4) 

42±(2) 

51±(2) 

FindCBLOF 

(BKM) 

13±(2) 

27±(2) 

41±(3) 

59±(3) 

74±(3) 

FindCBLOF 

(KM) 

10±(1) 

23±(1) 

34±(2) 

53±(2) 

62±(2) 

TopRatio 

10% 

15% 

20% 

25% 

30% 
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Table 6. 5: Number of Detected Outliers for the Yahoo  Dataset 

 

CCOD 

(KM,BKM,PAM) 

71±(4) 

t1=28.46 

t2=15.81 

t3=35.78 

86±(5) 

t1=32.97 

t2=16.76 

t3=35.28 

116±(7) 

t1=28.84 

t2=19.75 

t3=34.64 

124±(3) 

t1=32.98 

t2=22.36 

t3=46.51 

147±(6) 

t1=32.86 

t2=22.13 

t3=34.36 

CCOD 

(BKM,PAM) 

58±(3) 

t1=6.26 

t2=28.46 

69±(2) 

t1=7.00 

t2=35.97 

85±(3) 

t1=5.36 

t2=29.51 

106±(2) 

t1=7.00 

t2=34.00 

113±(3) 

t1=5.33 

t2=19.94 

CCOD 

(KM,PAM) 

40±(3) 

t1=4.47 

t2=9.49 

47±(4) 

t1=3.58 

t2=6.26 

67±(2) 

t1=3.00 

t2=12.40 

86±(3) 

t1=3.84 

t2=12.52 

97±(3) 

t1=7.66 

t2=2.86 

CCOD 

KM,BKM) 

67±(3) 

t1=28.62 

t2=14.32 

75±(4) 

t1=28.62 

t2=10.28 

94±(5) 

t1=20.95 

t2=10.12 

117±(3) 

t1=27.61 

t2=17.89 

124±(7) 

t1=16.64 

t2=9.21 

FindCBLOF 

(PAM) 

31±(3) 

40±(3) 

57±(3) 

72±(4) 

87±(5) 

FindCBLOF 

(BKM) 

51±(4) 

62±(4) 

78±(5) 

99±(4) 

105±(6) 

FindCBLOF 

(KM) 

35±(4) 

43±(3) 

64±(4) 

81±(5) 

94±(4) 

TopRatio 

10% 

15% 

20% 

25% 

30% 
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An interesting observation is that, the detection accuracy of each cooperative algorithm is mainly based 

on the original cooperative clustering model, where better clustering indicates better ability of discovering 

outliers. For example, for the Yeast dataset, we can see that the cooperation between KM and PAM, 

CC(KM,PAM), obtains clustering solutions of higher values of F-measure and Purity and lower values of 

Entropy and SI (Table 4. 5) than those of the CC(KM,BKM) and CC(BKM,PAM). Thus the 

corresponding CCOD(KM,PAM) detects up to 133 outliers compared to only 121 and 114 outliers by 

CCOD(KM,BKM) and CCOD(BKM,PAM), respectively, at TopRatio=30%. Also for the UW dataset, the 

CC(BKM,PAM) achieves better clustering than the other two cooperative models, thus the 

CCOD(BKM,PAM) discovers 87 outliers compared to 78 and 83 by the CCOD(KM,BKM) and 

CCOD(KM,PAM), respectively, at TopRatio=30%. The same interpretation of results is reported for both 

the Breast Cancer and the Yahoo datasets. A second interesting observations is that across the four 

datasets, the detection accuracy of the triple cooperation CCOD(KM,BKM,PAM) is much better than that 

of the other three pair-wise cooperative algorithms at different values of the TopRatio ranges from 10% to 

30%. This better discovery of outliers is mainly based on the capability of obtaining better clustering 

solutions using the triple cooperative clustering than that of the pair-wise cooperative clustering models. 

6.3 Enhancing Clustering Quality 

In order to illustrate the significance of the discovered outliers using both the non-cooperative and 

cooperative detection methods, the clustering performance of the KM, BKM, and PAM is compared to 

that of the cooperative models using the SI index before and after removing the discovered set of outliers 

at variable number of top ratios for Yeast, Breast Cancer, UW, and Yahoo datasets. In figures 6.1-6.4, the 

SI at 0% means the value of the SI index with the existence of outliers. It can be shown that the ability of 

detecting more outliers in the datasets using the notion of cooperative clustering enhances the clustering 

quality measured by lower values of the SI index. For example, the CCOD(KM,BKM) achieves reduction 

in the SI index (compared to the value of SI at 0% TopRatio) of up to 56% compared to only 44% by KM 

and 36% by BKM (Yeast dataset), CCOD(KM,PAM) achieves reduction in the SI index of up to 61% 

compared to 40% by KM and 34% by PAM (UW dataset), CCOD(BKM,PAM) improves SI with a 

percentage of up to 62% compared to BKM (33%) and PAM (34%) (UW dataset) at TopRatio=30% after 

removing the discovered set of outliers. The CCOD(KM,BKM,PAM) achieves up to 62% improvement 

in the SI index for Yeast dataset, up to 60% improvement for Breast Cancer dataset, 75% improvement 

for UW dataset, and up to 60% improvement for Yahoo dataset at TopRatio=30% compared to that of the 

non-cooperative KM, BKM, and PAM approaches after removing the discovered set of outliers. 
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Yeast  Dataset [k =5]
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Fig. 6. 1. Performance Evaluation before and after Deleting Outliers [Yeast] 

Breast Cancer  Dataset [k =4]
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Fig. 6. 2. Performance Evaluation before and after Deleting Outliers [Breast Cancer] 
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UW  Dataset [k =10]
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Fig. 6. 3. Performance Evaluation before and after Deleting Outliers [UW] 

Yahoo  Dataset [k =20]
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Fig. 6. 4. Performance Evaluation before and after Deleting Outliers [Yahoo] 

6.4 Discussions 

This chapter analyzes a new outlier detection method called Cooperative Clustering Outliers Detection 

(CCOD). It provides efficient outlier detection and data clustering capabilities in the presence of outliers. 

Experimentally, the CCOD is applied on both gene expression datasets and text documents datasets. 

Undertaken experimental results indicate that CCOD works better than the traditional clustering-based 

outlier’s detection techniques with better improvement in the clustering quality after removing the 

discovered set of outliers. 
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Chapter 7 

Cooperative Clustering in Distributed Super-Peer P2P Network 

Traditional data clustering technologies have been fundamentally based on centralized operation; data sets 

were of small manageable sizes, and usually reside on one node that belongs to one organization. Today, 

data is of enormous sizes and is usually located on distributed nodes; examples are the World Wide Web 

(WWW) and distributed gene expression repositories. This has created a need for performing clustering in 

distributed environments. Distributed clustering solves two problems: infeasibility of collecting data at a 

central node, due to either technical or privacy limitations, and intractability of traditional clustering 

algorithms on huge data sets.  

In distributed data clustering environments, adopting a flat node distribution topology can affect on the 

scalability of the network. To address the problem of modularity, flexibility, and scalability, a dynamic 

hierarchical two-tier architecture and model for cooperative clustering in distributed super-peer P2P 

network is presented. The proposed model is called Distributed Cooperative Clustering in super-peer P2P 

networks (DDCP2P). It involves a hierarchy of two layers of P2P neighborhoods. In the first layer, peers 

in each neighborhood are responsible for building local cooperative sub-clusters from the local data sets 

that they are responsible for. The main objective is to allow nodes in a network to first form independent 

partitioning of local data, and then they send their local clustering to a super-peer in their neighborhood to 

aggregate the local models from its ordinary peers (workers). Each node sends only cluster 

representatives to its super-peer in a form of sub-cluster’s centroids extracted from the local cooperative 

clustering. This summarized view of local data at each node minimizes the exchange of information 

between nodes and their super-peers. As we move up to the next layer, sub-clusters are merged at each 

super-peer and at the root of the hierarchy one global clustering can be derived. The distributed 

cooperative clustering approach finds globally-optimized clusters. This approach achieves significant 

improvement in the global clustering solutions without the cost of centralized clustering. 

This chapter is organized as follows. Section 7.1 gives an overview of the current approaches of 

distributed clustering. Section 7.2 discusses the proposed hierarchical two-tier super-peer network. The 

distributed cooperative clustering model is presented in section 7.3. Both the computational and 

communication complexity of the distributed cooperative model are discussed in section 7.4. Finally 

some discussions and conclusions are presented in section 7.5. 
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7.1 Overview 

Huge data sets are being collected daily in different fields; e.g. retail chains, banking, biomedicine, 

astronomy, and many others, but it is still extremely difficult to draw conclusions or make decisions 

based on the collective characteristics of such disparate data. Two main approaches for performing 

distributed clustering can be identified: 

• A common approach is to perform local clustering at each node to generate a local model. Then 

all local models can be transmitted to a central node that aggregates them together into one global 

model  [76], [77], [82]. While this approach many not scale well with the number of nodes, it can 

be considered as a better alternative than pooling the data to one central node. 

• A better strategy is that each node selects a small set of representative objects and transmits them 

to a central node, while combines the local representatives into one global representative of the 

whole data set. Then data clustering can be carried out on the global representatives  [76], [79]. 

The two previous approaches involve one central node to facilitate the distributed clustering process. A 

more departing approach does not involve centralized operation, and this belongs to the peer-to-peer 

(P2P) class of algorithms. P2P networks can be unstructured and structured. Unstructured networks are 

formed arbitrarily by establishing and dropping links over time, and they usually suffer from flooding of 

traffic to resolve certain requests. Structured networks, on the other hand, make an assumption about the 

network topology and implement a certain protocol that exploits such a topology. In P2P networks, nodes 

(peers) communicate directly with each other to perform the clustering task  [70], [71], [113]. 

Communication in P2P networks can be very costly if care is not taken to localize traffic, instead of 

relying on flooding of control or data messages. 

To pave the way for discussion of the different concepts and strategies of super-peer P2P networks and 

for the proposed distributed cooperative clustering model and architecture, some terminologies and 

notations that are used throughout this chapter are summarized in Table 7.1.  
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Table 7.1: Distributed Clustering Symbols and Notations 

Symbol Definition 

nQ Number of neighborhoods 

Qi The i
th neighborhood 

|Qi|  Number of peers in the neighborhood Qi 

SPi Super peer of a neighborhood Qi 

Np The pth peer in a network 

|
pN

Sb  Local set of sub-clusters at node Np 

|
pSb N

n  Number of local sub-clusters at node Np 

7.1.1 Pure P2P Networks 

A pure P2P overlay network can be shown as an undirected graph, where the vertices correspond to nodes 

in the network, and the edges correspond to open connections maintained between the nodes. Two nodes 

maintaining an open connection between them are known as neighbors. Messages may be transferred in 

either direction along the edges. For a message to travel from one node to another node, it must travel 

along a path in the graph. The length of this traveled path is known as the number of hops taken by the 

message. Similarly, two nodes are said to be h “hops apart” if the shortest path between them has length 

h. A pure P2P topology is shown in Fig. 7. 1.  

 

Fig. 7. 1. Pure P2P Topology 
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7.1.2 Super-Peers P2P Networks 

At this point we will refer to facilitator node as a super-peer (SP) and a worker node as ordinary peer 

(OP). Many P2P systems use stronger peers (super-peers) as a representative of other ordinary nodes. A 

super-peer is a node in a peer-to-peer network that operates both as a facilitator to a set of workers 

(ordinary peers), and as an equal in a network of super-peers.  

 

 

Fig. 7. 2. Super-Peers and Ordinary Peers 

A “super-peer network” is simply a pure P2P network consisting of super-peers and their worker nodes. 

Each worker node is only connected to its super-peer. We will refer to systems that obtain super-peers as 

a Super-peer based P2P system. A pure P2P network is actually a “degenerate” super-peer network where 

neighborhood size is 1 (i.e. every node is a super-peer with no workers). 

7.1.3 Neighborhoods 

A Neighborhood, Q, is a group of workers (ordinary peers) forming a logical unit of isolation in an 

otherwise unrestricted open P2P network that are mapped to the same super-peer. Peers in a neighborhood 

cannot communicate with peers in other neighborhoods. Communication between neighborhoods is 

achieved through their respective super-peers.  

 Neighborhood Qi=(SPi, OPj  ,j=0,1,..,|Qi|-1) (7. 1) 

Super Peers 

Ordinary Peers 
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Examples of super-peer-based networks include FastTrack  [114], SODON  [115], and ECSP  [116]. 

FastTrack is a so-called second generation P2P networks. It uses super-peers to improve scalability. 

FastTrack was the most popular file sharing network, being mainly used for the exchange of music. 

SODON (Self-Organized Download Overlay Network) is a distributed multi-source content distribution 

system. It uses super-trackers to maintain neighborhood state information and guide peers to other 

neighborhood members for piece exchange. Finally, the ECSP is an Efficient Clustered Super-Peer 

architecture for P2P Networks. These architectures involve a super-peer as a representative of each 

neighborhood to communicate with other super-peers to obtain the global model at the root peer. 

7.2 Two-Tier Hierarchical Overlay Super-peer P2P Network 

The proposed distributed architecture deviates from the standard definition of P2P networks, which 

typically involve loose structure (or no structure at all), based on peer connections that are created and 

dropped frequently. The DCCP2P model on the other hand, is based on a two-tier hierarchy structure that 

is designed up front, upon which the peer network is formed. Although we focus on a two tier-hierarchy 

of super-peer neighborhoods, the architecture can be extended to a general tier hierarchy in a 

straightforward manner. In the two-tier architecture, the lower layer represents neighborhoods of peers 

and the higher layer connects representatives from each neighborhood (i.e. super-peers) to ensure good 

global connectivity. The two-tier hierarchical super-peer P2P architecture is illustrated in Fig. 7.3. 

 

 

Fig. 7. 3. Two-tier Hierarchical Super-peer P2P Network 

Q0 Q1 1QnQ −
 

SP0 SP1 1Q
SPn −  

Root Peer (Nr) 

Ordinary Peer Super Peer Backup Super Peer 

http://en.wikipedia.org/wiki/Supernode_%28networking%29


 

  117

The following neighborhood properties are enforced in the proposed architecture: 

• Each node receives information (in forms of messages) only from its super-peer  

• Each node is connected only to either super-peer or peers in the same neighborhood 

• A set of neighborhoods, Q={Qi},i=0,1,..,nQ-1 covers the first overlay network 

• Neighborhoods do not overlap: , :
i j

i j i Q Q∀ ≠ ∩ = ∅  

• A node must belong to some neighborhood: , 0,1,.., 1: some
p p i

N p P N Q∀ = − ∈  

The number of neighborhoods in the networks nQ depends on the number of partitions generated by the 

proposed peer-clustering algorithm described next. At one extreme of the resulting clustering solution 

when nQ=1 there is only one neighborhood that contains all peers. On the other hand, when nQ=P, where P 

is the total number of nodes in the network, there are P neighborhoods, each containing one peer only. In 

between the value of nQ is set to a value that determines the number of neighborhoods as a result of the 

peer-clustering algorithm and consequently the size of each neighborhood. In addition, super-peers are 

selected from ordinary peers in a neighborhood to act as cluster leaders and service providers using the 

super-peer selection algorithm as illustrated in sub-section  7.2.2. 

7.2.1 Peer-Clustering Algorithm 

The first problem in flat peer-to-peer networks is that random connections among peers in the network 

make it possible for geographically far-distance peers to connect and consequently an increase in the 

connection time is obtained. The second problem is that a large number of peers can cause bottleneck in 

the network bandwidth. It is possible to obviate these problems by using a hierarchical architecture to 

construct large-scale P2P overlay network in a form of a structured architecture. In such an approach, the 

network is composed of several (or tens of) clusters of peers. Each cluster behaves as a neighborhood of 

ordinary peers and it selects a super-peer as a representative peer for the cluster. When peers in P2P 

topology form clusters (representing, for example, thematic partitioning), then the whole topology is 

arranged in hierarchical structure of neighborhoods and super-peers. Current approaches for clustering 

P2P network use a graph-based partitioning techniques which is of order O(P2)  [116] which is extremely 

expensive for large number of nodes in the network.  

For simplicity, we propose a peer-clustering algorithm that uses a variant of the k-medoids clustering 

algorithm  [14] to cluster the pure P2P network into a set of nQ neighborhoods (clusters) such that the total 

communication cost is minimized as shown in Fig. 7. 4. We assume that the P2P network is formed as a 
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graph where its nodes are the set of peers and its edges are the set of connections between peers. The 

weight of each edge is the geographical proximity distance between nodes; this is simulated by measuring 

the similarity of the local objects. Such that each node Np, p=0,..,P-1 is represented by the centroid of its 

local dataset Xp. We adopted the cosine similarity (Eq. (2.5)) to calculate the similarity between nodes, 

where similarity close to 1 means close peers in the network.  

Algorithm: Peer-Clustering (P, {Np},nQ) 

Input: Number of peers in the network P, set of peers {Np}, and number of neighborhoods (clusters) nQ. 

Output: a set of nQ neighborhoods. 

Begin 

 Step1: Partition the set of P nodes into nQ initial clusters; we determine nQ initial medoids (seed points) 

first by randomly choosing nQ nodes (represented by their centroids) locating to act as the nQ 

cluster’s representatives. 

 Step2: Proceed through the list of nodes in the network, assigning a node to the specific cluster whose 

medoid is the shortest in terms of proximity distance. Re-computation of the medoid is done for 

the cluster having gained a new node as in the traditional PAM algorithm (Fig. 2. 3) 

 Step3: Repeat Step 2 until no more assignments take place. 

Return nQ neighborhoods with the corresponding representatives (medoids) 

End 

Fig. 7. 4. Peer-Clustering Algorithm 

The method attempts to minimize the sum of the within cluster variances where peers are organized into 

groups such that peers in the same group are topologically close to each other.  

7.2.2 Selection of Super Peers (SP) 

The SP selection problem is highly challenging because, in the pure P2P network, a large number of SP 

must be selected from a huge and dynamically changing network in which neither the peer’s 

characteristics nor the network topology are known a prior  [117]. Often simple strategy such as random 

selection is used, where each OP chooses a random SP from the whole network. The selected super-peer 

is of maximally distant from other super-peers. Although this technique is simple, it does not deal well 

with the heterogeneity of the participating peers both in terms of dynamic capabilities, a content 

similarity, and geographical allocations. In our two-tier overlay super-peer network, if we can group peers 

according to their proximity, we can further reduce average cost for message delivery between peers and 
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increase the network bandwidth usage by using the proposed super-peer selection algorithm. Our criteria 

for selecting a peer form a neighborhood of ordinary nodes to become a candidate super-peer are based on 

the following factors: 

• A super peer should not have limited capabilities that can cause bottlenecks capacities. 

• A super peer is centrally distant from all existing ordinary peers in a neighborhood.  

The selected super-peers should be evenly distributed in a neighborhood such that each cluster has a 

super-peer at its center. However, this architecture is more sensitive to the failure of super peers and faces 

similar problems of central servers. Thus, in order to enhance the reliability and scalability of the system, 

the super-peer selection algorithm allows each neighborhood to select a backup peer, which copies the 

entire neighborhood (cluster) state information periodically from the super-peer.  

Algorithm: Peer-Selection (Qi) 

Input: a neighborhood of peers, Qi 

Output: Super-peer SP and a back-up super-peer bSP 

Begin 

 Step1: Select peer SP from Qi such that SP has a central distance from all peers in the neighborhood, 

this super peer is selected as the cluster medoid that is returned by the peer-clustering algorithm 

(F.g. 7.4). 

 Step2: Select the second peer with the closest distance to the central super-peer as a back-up super-peer, 

bSP, and copy the entire neighborhood state information into it. 

Return SP and bSP 

End 

Fig. 7. 5. Super-Peer Selection Algorithm 

In general, the entire P2P network is structured into two-tier hierarchical structure which clearly separates 

the super-peers neighborhoods from the ordinary-peers neighborhood such that the overall 

communication cost is minimized. In addition, this hierarchical structure maintains data privacy between 

peers in the same neighborhood. Where ordinary peers only establish a connection with its super peer and 

the local datasets at each ordinary peer is capsulated by its peer. The only form of information that is 

transferred to the super-peer is a cluster summary (i.e. sub-clusters centroids). First layer is a clustered 

P2P network of P nodes, which is partitioned into a set of nQ neighborhood using the peer-clustering 

algorithm. A connection is only established between peers in a neighborhood and its super-peer. The 
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second layer is a network of super-peers nodes connected to the root peer. The root peer is responsible of 

aggregating the local models allocated at each super-peer and building the global model out of the whole 

data set as if it was transferred into a central node. This hierarchical architecture reduces flooding 

problems usually encountered in large P2P networks. The construction of the proposed two-tier 

architecture is illustrated in Fig. 7. 6. 

Algorithm: Two-Tier Super-peer Network-Construction({Xp},{Np}, P, nQ) 

Input: Local datasets {Xp}, set of nodes {Np}, number of nodes P, and number of neighborhoods nQ. 

Output: Two-tier Network (T2N) 

Initialization: T2N={}, allocate Nr as a root peer 

Begin 

 Step1: Let cp be the centroid of the local dataset Xp. Represent each node Np with the 

corresponding centroid cp. 

 Step2: Neighborhoods {Qi}= Peer-Clustering(P,{Np},nQ) 

  Add each neighborhood Qi to the first layer of T2N 

 Step3: For each neighborhood Qi, i=0,1..,nQ -1 

  {SPi, bSPi}=Peer-Selection(Qi) 

  - Designate SPi, bSPi as the super-peer and backup super-peer for the neighborhood Qi 

  - Add each super-peer SPi ,i=0,1,..,nQ-1 to the second layer of T2N 

  - Connect peers in the neighborhood Qi to their super peer SPi 

 End 

Step4: Connect the selected super-peers to the root peer Nr at the top-level of the hierarchy. 

Return (T2N)  

End 

Fig. 7. 6. Two-Tier Super-peer Network Construction 

7.3 Distributed Cooperative Clustering in a Hierarchical Super-Peer P2P Network 

(DCCP2P) 

In the centralized cooperative clustering CC approach, the dataset is centralized and the cooperative 

clustering process is performed on the data. The DCCP2P is a distributed globally-optimized clustering 

technique. It is a centroid-based clustering algorithm, where a set of centroids is generated to describe the 

clustering solution both on the local level and at the global level. The distributed cooperative algorithm is 
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a distributed variant of the cooperative clustering model (chapter 3) in a distributed super-peer P2P 

network that involves a series of steps including: 

• Generation of local sub-clusters at each peer 

• Each ordinary peer sends representatives of its local sub-clusters to its super-peer in the local 

neighborhood 

• Each super peer builds one cooperative solution from the local representatives it receives and 

then it transfers the cooperative solution to the root peer, and finally, 

• At the root peer, building the global clustering solution is taken place 

7.3.1 Building Local Models 

In the DCCP2P, each node Np, p=0,..,P-1, obtains a set of local sub-clusters Sb|Np  from the local data set 

Xp it owns using the notion of cooperative sub-clusters memberships (Eq. (3.1)). This set acts as the 

agreement between the c clustering algorithms on clustering the local data set Xp into a set of k clusters. 

Let nsb|Np be the number of local sub-clusters at node Np. One strives to characterize the distributed data 

distribution via clustering using high-level information that provides a trade-off between privacy and 

quality. Thus each node in a neighborhood Qi sends representatives of its sub-clusters to its super-peer in 

the same neighborhood. If each peer sends its local histograms (as in centralized cooperative clustering ) 

to its super-peer, the size of the transmitted information will be of order (np
2) where np is the number of 

local objects at peer Np, which is extremely large for huge datasets. In addition the super-peer will 

perform an additional overhead of accumulating the pair-wise similarities between objects from different 

peers. Thus, in order to minimize the communication cost taken by sending messages between peers and 

their super-peer, we assume that each sub-cluster Sbj is represented by a representative, cj a sub-cluster 

centroid, so local models at each node are represented by a set of centroids instead of transmitting the 

whole histograms. Thus the DCCP2P is considered as an approximate distributed clustering algorithm. 

The communication between peers and super-peer is facilitated through the send and receive operations 

(messages). The size of the messages is computed by the size of the representatives sent from each peer.  

7.3.2 Global Model 

The super-peer of a neighborhood Qi is responsible of building an aggregated cooperative clustering 

solution of the local models it receives from the ordinary peers in the same neighborhood. The underlying 

aggregation process comprises of the following steps: 
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• Each peer sends a set of sub-clusters centroids {cl}|Np to its super-peer, SPi, such that the super 

peer SPi receives order of O(|Qi|*{cl}|Np) centroids where |Qi| is the size of the neighborhood Qi. 

• The goal is to obtain a number of clusters k at the super-peer from the set of received centroids, so 

the SPi merges centroids such that the overall homogeneity of clusters in the neighborhood Qi is 

maximized, where the two local sub-clusters Sbl and Sbj with the closest centroids cl and cj are 

merged. The new generated centroid is calculated as (cl*|Sbl|+cj*|Sbj|)/(|Sbl|+|Sbj|). 

• The merging step is repeated at the super-peer until the number of centroids equals k. 

The generation of cooperative centroids at super-peer SPi within a neighborhood Qi is shown in Fig. 7.7. 

 

Fig. 7. 7. Cooperative Centroids Generation within a Neighborhood Qi at Super-peer SPi 

Once a neighborhood Qi, i=0,1,..,nQ-1, converges to a set of cluster centroids at its super-peer SPi, those 

centroids are acquired by the root-peer in order to build the global model from all neighborhoods. The 

root peer receives a set of k centroids from each super-peer such that k*nQ centroids are available for 

merging. The root peer follows the same merging procedure as super-peers; it merges two clusters with 

the closest centroids until the number of global centroids equals k. These final k centroids represent the 
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global model of the distributed cooperative clustering model. The Distributed cooperative clustering in 

the two-tier hierarchical super-peer network is illustrated in Fig. 7. 8. 

Algorithm: DCCP2P({Ac},k,{Xp},{Np}, P, nQ) 

Input: c clustering techniques {Ai}, number of clusters k, local datasets {Xp}, set of nodes {Np}, number 

of nodes P, and number of neighborhoods nQ. 

Output: global k centroids 

Begin 

T2N=Two-Tier Super-peer Network-Construction ({Xp},{Np}, P, nQ), Nr is the root peer 

For each neighborhood Qi ∈T2N, i =0,1,..,nQ-1 

 For each peer Np, p=0,1,..,|Qi|-1 in the neighborhood Qi 

 - Perform the c clustering algorithms, {Ac} synchronously on the local dataset Xp. 

 - A set Sb|Np is obtained using Eq.(3.1), then each local sub-cluster is represented by its 

centroid such that nsb|Np centroids are available at node Np. 

 - Send the local centroids to the super-peer SPi. 

End 

 - The super-peer SPi recursively merges the received centroids into k centroids, such that the 

two sub-clusters |Sbl|, |Sbj| with the closest centroids cl and cj are merged. The new 

generated centroid is calculated as (cl*|Sbl|+cj*|Sbj|)/(|Sbl|+|Sbj|). 

 - Send the merged k centroids to the root peer Nr 

End 

Recursively merge the received k*nQ centroids into k centroids in the same scenario as super-peers 

Return the k global centroids. 

End 

Fig. 7. 8. DCCP2P Clustering 

Due to the dynamic environment of peer-to-peer networks, we also allow peers to leave and join the two-

tier super-peer network using two novel algorithms, the peer joining and peer leaving algorithms. 

7.3.3 Peer-leaving 

The P2P network is known of its dynamic nature, thus the overlays of super-peers or ordinary peers may 

be broken by peers’ ungraceful departures. This departure of peers causes incompleteness of the two-tier 

structure. When peer leaves a network, two possible alternatives are taken into consideration: 
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• A super-peer SPi fails or simply leaves: all its ordinary peers become temporarily disconnected 

until they can find a new candidate super-peer to connect to. The new super-peer is a selected 

backup peer that takes over the idle super-peer, which is assigned by the super-peer selection 

algorithm. Thus once a super-peer fails, automatically the backup peer takes place. 

• An ordinary peer Np leaves or turns offline: let the set of local data objects of the leaving peer 

is identified as {Xp
-}.  

o The corresponding super-peer frees the resources corresponding to its connection to the 

leaving peer after observing a missing signal from the departing peer 

o The super-peer de-allocates the datasets assigned to the failed peer 

o Then it updates the received set of local models by removing the received set of centroids 

from the idle node. Then it remerges the new set of centroids 

o The super-peer sends a new copy of the updated cooperative centroids to the root peer to 

update its global model in the same manner 

7.3.4 Peer-Joining  

Peers are allowed to join the neighborhood in which it is closest to its super-peer among all super-

peers. As a result, all peers in a neighborhood are proximate in the underlying network topology. If there 

is more than one neighborhood, the new peer Np receives a list of all super-peers. From these super-peers, 

the new arriving peer selects the nearest super-peer and joins its neighborhood. Assume the incremental 

datasets associated with the joining peer as {Xp
+}. The new peer performs the cooperative membership 

generation procedure and obtains a new set of sub-clusters. Each sub-cluster is represented with the 

corresponding centroid. Then Np sends the generated centroids to the corresponding selected super-peer. 

The super peer follows the following steps: 

• It starts remerging the set of sub-clusters based on the new added set of centroids 

• It sends an update message with the newly generated centroids to the root peer to update its 

global model  

7.4 Complexity Analysis 

The complexity of the DCCP2P model is divided into two parts, the computational complexity (Tcomp) and 

the communication complexity (Tcomm). 
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7.4.1 Computation Complexity 

Assume the whole data set size for all nodes is X. Data is equally divided among nodes, so each node Np 

holds np=|Xp|=|X|/P local data objects. At the first layer, we have nQ neighborhoods each with variables 

sizes. In each neighborhood Qi, each node performs the cooperative clustering that involves c clustering 

techniques each of computational complexity time equals T
Ac, and then it needs additional np operations to 

find the set of sub-clusters.  Thus node Np in neighborhood Qi needs computational complexity time TNp= 

max(TAc)+np. Assume the super-peer SPi of a neighborhood Qi receives nsb centroids from all nodes, it 

performs O(d*n
2

sb) operations for merging the set of sub-clusters, where d is the dimension of each 

centroid. The total computational complexity within neighborhood Qi is defined as: 
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Since each neighborhood’s computations are done in parallel with other neighborhoods then the total 

computational complexity at the first layer of the network is: 

 
0,.., 1

( ) ( ( ))
Q

Comp comp

i
i n

T Layer1 max T Q
= −

=  (7. 3) 

At the root peer, a total of nQ*k centroids are received, and it needs a total of d*nQ*k*(nQ*k -1)/2 

operations for obtaining only a set of k global centroids. The total computational complexity of the second 

layer is defined as: 

 
2( 2) ( *  ( * ) )Comp

Q
T Layer O d n k=  (7. 4) 

The total computational cost is calculated as: 

 T
Comp= ( 1) ( 2)Comp CompT Layer T Layer+   (7. 5) 

7.4.2 Communication Cost 

The communication cost can be divided into two parts, Intra-Neighborhood Messaging Cost and Inter-

Supper-peers Messaging Cost. The Intra-Neighborhood Messaging Cost is calculated within a 

neighborhood Qi of |Qi| peers at the fist layer of the network between peers and their super-peer, and the 

Inter-Super-peers Messaging Cost is computed based on the communication cost between a super-peer 

and the root peer at the second layer of the network.  

At the first layer, for number of clusters k, every peer Np in neighborhood Qi sends nsb|Np messages to its 

super-peer SPi, and each message of size d. Then the communication complexity for a neighborhood Qi 

is:  
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We can see that the Intra-Neighborhood Messaging cost is greatly affected by the size of neighborhood 

and consequently the number of generated sub-clusters at each node. 

The total communication requirement for the first layer is: 
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At the root peer, each super-peer sends k messages each of size d. Then the communication cost at the 

second layer is calculated as: 

 Inter-Supper-peers Messaging Cost ( ( 2)) * *comm

Q
T Layer k n d=  (7. 8) 

The total communication cost is calculated as: 

 T
Comm= ( 1) ( 2)Comm CommT Layer T Layer+   (7. 9) 

7.5 Discussions 

In this chapter, the Distributed Cooperative Clustering (DCCP2P) in super-peer P2P networks 

architecture and model were presented. DCCP2P aims to computing a single set of clusters across all 

nodes in the network, and addresses scalability and modularity through the concept of hierarchical two-

tier super-peer network. Using the DCCP2P model, we can partition the problem into a modular way, 

solve each part individually, and then successively combine solutions to find a global solution. By 

developing this approach, we avoid two main problems in the current state of art of distributed data 

clustering (1) we avoid high communication cost usually associated with a structured fully connected 

network, and (2) we avoid uncertainty in the network topology usually introduced by unstructured P2P 

networks. Experiments performed on the distributed cooperative clustering model in the next chapter 

show that we can achieve comparable results to centralized cooperative clustering with high gain in 

speedup with large number of nodes, showing the scalability of the distributed DCCP2P model.  
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Chapter 8 

Cooperative Clustering in Super P2P Networks: Experimental Analysis  

In this chapter, three of the well known clustering techniques namely, KM, BKM, and PAM are invoked. 

Detailed discussions of these algorithms are presented in section  2.1.4. We will refer to the distributed 

cooperation between KM and BKM as DCCP2P(KM,BKM), the distributed cooperation between KM 

and PAM as DCCP2P(KM,PAM), distributed cooperation between BKM and PAM as 

DCCP2P(BKM,PAM), and finally the distributed cooperation between the three adopted algorithms 

together as DCCP2P(KM,BKM,PAM). Experimental results on the distributed cooperative clustering 

models in super-peer P2P networks show that we can achieve good speedup with large number of nodes, 

showing the scalability of the distributed cooperative models in terms of number of nodes. The rest of the 

chapter gives detailed description of the experiments and provides interpretation of results and 

discussions on their implications. Both internal and external quality measures (Section  2.1.3) are called 

for to test the performance of the generated global model. 

8.1 Experimental Setup 

A simulation environment was used to evaluate the cooperative clustering model on distributed super-

peer P2P network. During simulation, data was partitioned randomly over all nodes of the network. The 

number of clusters k was specified to the c algorithms such that it corresponds to the actual number of 

classes in each dataset.  

8.2 Data Sets 

Experiments on large number of nodes and different number of neighborhoods require a large number of 

data to keep the size of each local datasets reasonable. For this reason, the datasets Breast Cancer of 7129 

objects and Yahoo of 2340 objects are used to avoid fine-grained partitioning of data across such a large 

number of nodes. Detailed discussions on these datasets are presented in section  4.2.  

8.3 Evaluation Measures 

Two aspects of the distributed cooperative models were evaluated: clustering quality and speedup. For 

evaluating clustering quality, we relied on both external (F-measure) and internal (SI index) evaluation 

measures. Detailed discussion of the clustering quality measures is given in section  2.1.3. Speedup is a 

measure of the relative increase in the speed of the distributed algorithm on P nodes over the centralized 
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approach. For evaluating the distributed models, it is calculated as the ratio of the time taken by the 

centralized cooperative clustering, CC(A1,A2) (or CC(A1,A2,A3)) model to the time taken by the 

distributed model DCCP2P(A1,A2) (or DCCP2P(A1,A2,A3)), including communication cost, where A1 , A2 

, and A3 ∈  {KM, BKM, PAM}. 

8.4 Distributed Clustering Performance Evaluation 

Experiments are performed on a network of 50 nodes with different size of neighborhoods, nQ= 3, 5, and 

7 neighborhoods. The effect of neighborhood’s size on the clustering quality (F-measure and SI) and 

speedup over the centralized cooperative clustering were measured.  

Tables 8.1- 8.4 summarize those results for the Yahoo dataset for the three network configurations, 3-

Neighborhoods, 5-Neighborhoods, and 7-Neighborhoods. For each configuration the results of 20 runs 

are obtained, and the average value bounded by its standard deviation is reported. We can see that 

changing number of neighborhoods nQ affects on the quality of the distributed cooperative models. The 

main reason is that the peer-clustering algorithm (section  7.2) partitions the network of peers into number 

of neighborhoods with the minimum communication cost such that similar peers are grouped into the 

same neighborhood. It can be shown from Tables 8.1-8.4 that the four cooperative models obtain the best 

clustering solutions measured by high values for F-measure and lower values for the SI index than those 

of the centralized cooperative approaches at number of neighborhoods nQ equals 5. In a network of 50 

nodes and number of neighborhoods equal 5, the DCCP2P(KM,BKM) achieves a speedup up to 37 and 

the DCCP2P(KM,PAM) achieves a speedup up to 42, the DCCP2P(BKM,PAM) has a speedup of up to 

39, and finally the triple cooperation distributed model, DCCP2P(KM,BKM,PAM) achieves a speedup up 

to 33. 

The same results for the Breast Cancer dataset are illustrated in Table 8.5 to Table 8.8, respectively. 

Tables 8.5 -8.8 show that the best performance of the cooperative models compared to the centralized 

approaches is achieved at number of neighborhoods nQ equals 7. In a network of 50 nodes and for a 7-

neighborhoods configuration, the DCCP2P(KM,BKM) model achieves a speedup up to 39 and the 

DCCP2P(KM,PAM) model achieves a speedup up to 36, the DCCP2P(BKM,PAM) model obtains a 

speedup of up to 35, and finally the triple distributed cooperative model, DCCP2P(KM,BKM,PAM) 

achieves a speedup up to 34. 
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Table 8.1: Distributed DCCP2P(KM,BKM ) vs. Centralized CC(KM,BKM) [Yahoo] 

 Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

 F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.6619 1.1272 0.6712 1.0453 39.7652 0.7182 0.8108 37.072 0.6677 1.1138 33.369 

Std-Dev ±0.023 ±0.055 ±0.019 ±0.026 ±2.312 ±0.022 ±0.044 ±2.776 ±0.031 ±0.035 ±1.594 

Table 8.2: Distributed DCCP2P(KM,PAM ) vs. Centralized CC(KM,PAM) [Yahoo] 

 Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

 F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.4794 2.1764 0.4861 2.0037 43.587 0.5642 1.4041 42.332 0.4817 2.1182 37.839 

Std-Dev ±0.010 ±0.026 ±0.017 ±0.034 ±2.018 ±0.032 ±0.023 ±2.345 ±0.027 ±0.041 ±1.712 

Table 8.3: Distributed DCCP2P(BKM,PAM ) vs. Centralized CC(BKM,PAM) [Yahoo] 

 Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

 F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.6162 1.3695 0.6234 1.2486 40.775 0.6983 0.9642 39.231 0.6203 1.2685 37.981 

Std-Dev ±0.018 ±0.033 ±0.023 ±0.042 ±1.784 ±0.028 ±0.021 ±1.954 ±0.032 ±0.023 ±2.394 

Table 8.4: Distributed DCCP2P(KM,BKM,PAM ) vs. Centralized CC(KM,BKM,PAM) [Yahoo] 

 Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

 F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.6698 1.0073 0.6811 0.8905 33.457 0.7434 0.6523 32.993 0.6702 0.9234 31.021 

Std-Dev ±0.022 ±0.064 ±0.036 ±0.025 ±2.341 ±0.031 ±0.037 ±1.934 ±0.029 ±0.026 ±2.002 
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Table 8.5: Distributed DCCP2P(KM,BKM ) vs. Centralized CC(KM,BKM) [Breast Cancer] 

 Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

 F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.4915 0.6998 0.5011 0.6836 41.235 0.5297 0.6771 40.485 0.5911 0.5374 39.212 

Std-Dev ±0.016 ±0.015 ±0.039 ±0.025 ±3.073 ±0.025 ±0.023 ±2.176 ±0.022 ±0.017 ±2.342 

Table 8.6: Distributed DCCP2P(KM,PAM ) vs. Centralized CC(KM,PAM) [Breast Cancer] 

 Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

 F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.5935 0.5418 0.6112 0.5231 41.449 0.6328 0.4847 39.384 0.7033 0.3717 36.518 

Std-Dev ±0.020 ±0.019 ±0.021 ±0.026 ±2.029 ±0.033 ±0.042 ±3.112 ±0.036 ±0.011 ±3.020 

Table 8.7: Distributed DCCP2P(BKM,PAM) vs. Centralized CC(BKM,PAM) [Breast Cancer] 

Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.6402 0.4943 0.6472 0.4727 38.024 0.6512 0.4632 36.985 0.7422 0.3172 35.401 

Std-Dev ±0.017 ±0.027 ±0.034 ±0.013 ±2.992 ±0.037 ±0.010 ±2.923 ±0.036 ±0.029 ±2.134 

Table 8.8: Distributed DCCP2P(KM,BKM,PAM) vs. Centralized CC(KM,BKM,PAM) [Breast Cancer] 

Centralized 3-Neighorhoods 5-Neighborhoods 7-Neighborhoods 

F-

measure 
SI 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

F-

measure 
SI Speedup 

Average 0.6487 0.4767 0.6538 0.4728 37.222 0.6639 0.4525 36.394 0.7611 0.2783 34.246 

Std-Dev ±0.023 ±0.031 ±0.024 ±0.017 ±2.345 ±0.024 ±0.053 ±2.212 ±0.041 ±0.029 ±3.274 
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8.5 Scalability of the Network 

In this sub-section, a set of experiments are conducted to test the effect of increasing number of nodes on 

the clustering quality as well as the speedup of the distributed cooperative models in the network with a 

fixed number of neighborhoods nQ=5 for the Yahoo dataset and nQ=7 for the Breast Cancer dataset. 

Figures 8.1-8.3 report the outcome of those experiments for networks sizes range from 5-100 nodes for 

the Yahoo dataset. The first observation that we can notice in figures 8.1 and 8.2 is that increasing number 

of nodes affects on the quality of the cooperative model. We can see that the cooperative models obtain 

better clustering solutions with increasing number of nodes where the distribution of data is changing 

within each node. This change in the data distribution provides diversity in the clustering solutions of the 

adopted KM, BKM and PAM algorithms. The resulting diversity in the solutions generates sub-clusters 

with better homogeneity that reveals better overall global clustering quality.  

The second observation is that, for networks with larger number of nodes above a specific number of 

nodes (P > Pcritical), the clustering quality is dropped. Thus after some value of P equals Pcritical, the data is 

finely partitioned and consequently, the quality of the distributed cooperative models degrades rapidly. 

The value of Pcritical provides a clue of the relation between the data set size and the number of nodes, 

beyond which the number of nodes should not be increased without increasing the dataset size. An 

appropriate strategy for automatically detecting the value of Pcritical is to compare the values of F-measure 

and SI before and after adding nodes, if a sufficiently drop in the F-measure and increase in the SI is 

noticed then the network growth should be suspended until more data is available. We can see from 

figures 8.1 and 8.2 that the value of P
critical for the Yahoo dataset equals 50 nodes. Fig. 8.3 shows the 

speedup of each of the cooperative models along with increasing number of nodes. It can be shown that at 

P= P
critical= 50 nodes, DCCP2P(KM,BKM) achieves a speedup up to 37, DCCP2P (KM,PAM) achieves a 

speedup up to 42, and DCCP2P(KM,BKM,PAM) achieve a speedup up to 39, while the 

DCCP2P(KM,BKM,PAM) achieves a speedup up to 33. 
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Fig. 8. 1. Quality of the Distributed Cooperative Clustering Models measured by F-measure [Yahoo] 
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Fig. 8. 2. Quality of the Distributed Cooperative Clustering Models measured by SI [Yahoo] 
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Yahoo Dataset (k=20)
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Fig. 8.3. Scalability of the Distributed Cooperative Clustering Models [Yahoo] 

Results are also reported in Figures 8.4-8.6 showing the quality and speedup of the cooperative models 

compared to that of the centralized cooperative approaches with increasing number of nodes for the 

Breast Cancer dataset. Figures 8.4 and 8.5 show that the value of P
critical after which the performance 

starts to degrade for the Breast Cancer dataset is 60 nodes. Fig. 8.6 shows the speedup of each 

cooperative model along with increasing number of nodes. We can see that at P= P
critical= 60, the 

DCCP2P(KM,BKM) achieves a speedup up to 49, DCCP2P (BKM,PAM) achieves a speedup up to 46, 

DCCP2P(KM,PAM) achieves a speedup up to 45, and finally the DCCP2P(KM,BKM,PAM) achieves a 

speedup up to 43. 
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Fig. 8. 4. Quality of the Distributed Cooperative Clustering Models (F-measure) [Breast Cancer] 
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Fig. 8. 5. Quality of the Distributed Cooperative Clustering Models (SI) [Breast Cancer] 
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Breast Cancer Dataset (k=4)
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Fig. 8.6. Scalability of the Distributed Cooperative Clustering Models [Breast Cancer] 

8.6 Discussions 

In this chapter an evaluation of the various methods and algorithms presented in this chapter was 

presented. Experiments were performed on actual document and gene expression datasets representing 

different characteristics. Evaluation of the distributed cooperative clustering models with networks of 

different sizes, neighborhoods and configurations was presented and discussed. Based on the 

experimental results, we can conclude that the distributed cooperative clustering methods in this thesis are 

successful with respect to their goals, with certain limitations that mostly can be accommodated. In 

addition to improving quality and gaining speedup, providing accurate interpretations for cooperative 

clustering results through contingency and merging phases makes the results available for interpretations. 

Detailed summary, conclusions and recommendations are discussed in the next chapter. 
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Chapter 9 

Conclusions and Future Research 

9.1 Conclusions and Thesis Contributions 

In this thesis new models and algorithms have been proposed to advance the performance of data 

clustering, outlier’s detection, and distributed data clustering. In this section, we conclude and summarize 

the main contributions of this thesis as follows: 

9.1.1 Cooperative Clustering 

In the problem of data clustering, we proposed a new cooperative clustering (CC) model. The cooperative 

model finds the agreement between multiple clusterings in forms of sub-clusters. Each sub-cluster is 

represented with a statistical concise representation of data within the sub-cluster; this form of 

representation is identified as a Similarity-Histogram (SH). A cooperative Contingency Graph (CCG) is 

built, in which nodes are the set of sub-clusters and edges are weighted by cohesiveness merging factors 

for merging sub-clusters. The merged sub-clusters attain new clusters with better homogeneity which 

direct the clustering process into a more coherent grouping of data. The cooperative model specifically (1) 

obtains better clustering quality than the traditional non-cooperative clustering techniques, (2) enhances 

the clustering quality of the adopted clustering techniques, and (3) handles datasets with different 

configurations. Experimental results show that the cooperative model achieves its goals with comparable 

results to the adopted clustering techniques. 

9.1.2 Cooperative Clustering Outliers Detection 

In the area of clustering-based outlier detection, we introduced a new cooperative clustering outlier’s 

detection (CCOD) algorithm for better detection of outliers. The proposed CCOD algorithm comprises of 

four stages, the first stage includes a synchronous non-cooperative clustering where c clusterings 

solutions are obtained. The second stage obtains the set of sub-clusters as an agreement between the 

invoked clustering algorithms.  The CCOD algorithm then assigns a cooperative outlier factor (COF) to 

each object based on the size of sub-clusters and the distributions of similarities within sub-clusters before 

a certain threshold. This outlier factor identifies the set of possible outliers within the set of sub-clusters. 

Finally, in order to find the global set of outliers within the whole set of clusters, a bottom-up detection 

scenario is performed.  
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The CCOD outperforms the traditional clustering-based outlier’s detection, e.g. FindCBLOF, as it 

distinguishes objects with low or high similarities within small and large sub-clusters, in addition 

candidate outliers are found based on their effect on the merging process of the cooperative clustering 

model. 

9.1.3 Cooperative Clustering in Super-Peer P2P Networks 

Distributed environments provide both opportunities and challenges for distributed data clustering. In the 

context of distributed data clustering, we proposed a dynamic two-tier super-peer P2P cooperative 

clustering architecture and model for obtaining globally-optimized clusters. The distributed model is 

called Distributed Cooperative Clustering in Peer-to-Peer networks (DCCP2P). The proposed distributed 

model addresses the modularity and scalability of the network in terms of number of nodes and 

consequently the scalability of the distributed approach. It involves a hierarchy of two layers of P2P 

neighborhoods. In the first layer, peers in each neighborhood are responsible for building local models 

from the local data sets that they are responsible for. This summarized view of local data at each node 

minimizes the exchange of information between nodes and their super-peers. As we move up to the next 

layer, clusters are merged at each super-peer and at the root of the hierarchy one global clustering can be 

derived. This approach achieves significant improvement in the global clustering solutions without the 

cost of centralized clustering. Experimental results showed that good speedup can be achieved using this 

model with comparable results to centralized cooperative clustering. 

9.2 Challenges and Future work 

A number of challenges arose during this research. Some of those challenges and how they were 

addressed with extended future work are listed here. 

9.2.1 Challenges 

Data 

Both gene expression and text documents datasets with different characteristics are used in this thesis. We 

used the Vector Space Model (VSM), which is the most common document representation model used in 

text mining.  Other representations success such as (1) the N-gram  [118] model, the N-gram model 

assumes that the document is a sequence of characters, (2) the Suffix tree model  [119] which finds 

common phrases suffixes between documents and builds a suffix tree where each node represents part of 
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a phrase and associated with it are the documents containing this phrase-suffix, and (3) Finally, a phrase-

based approach proposed in  [82] to facilitate matching phrases effectively between documents. 

Large Datasets & High Dimensionality 

Due to the new trends on text mining and bioinformatics, the size of datasets in addition to its 

dimensionality have become extremely large (tens of thousands in both data and features levels). To be 

able to properly handle such high size and dimensionality, sampling and feature selection methods are 

employed to bring the size of data and the number of dimensions to a manageable level. Both sampling 

and feature selection are two wide research areas. We used a simple document feature selection method to 

reduce the number of features in large datasets. As for the text document datasets UW and Yahoo, features 

of weight equals 1 were removed. This reduced features set was used during cooperative clustering, 

outlier detection and distributed cooperative clustering. 

Similarity Measures 

Unsupervised cluster analysis is considered highly dependent on and sensitive to similarity measures. A 

bad similarity measure can have drastic effect on the clustering quality. In the work presented in this 

thesis we counted on the cosine similarity as a widely similarity measure in text mining and 

bioinformatics. Finding better similarity measures that are applicable on different types of datasets is of 

interest. 

Clustering Algorithms 

There is a wide range of clustering algorithms in the literature including: Partitional clustering, 

hierarchical clustering, graph-based clustering, model-based clustering, and many others. In the 

experimental section we employed four of the well known clustering algorithm from the two main family 

of clustering, Partitional and Hierarchical. Of course investigating the capability of the cooperative model 

with all clustering techniques is infeasible, but adding some other clustering algorithms to the model will 

be of interest. 

Clustering Quality Measures 

Two evaluation methodologies can be chosen for evaluating the clustering quality of a clustering 

algorithm, which can be complimentary, evaluation against a reference classification (ground truth) and 

evaluation against internal structure of the clusters. We used both external (F-measure, Entropy, and 

Purity) and internal quality measures (SI index and OWSR) to assess the clustering quality of the proposed 
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models as well as the contemporary approaches. Investigating the quality performance of the cooperative 

clustering model using additional quality measures (e.g. the figure of merit validity measure) is an 

interesting issue. 

Distributed Architecture 

Simulation of peer-to-peer networks is not a trivial process. Experiments that involve hundreds on nodes 

were not possible due to limited number of computers available. Due to these limitations of resources, and 

in order to maintain simplicity and feasibility, we opted to do simulations on a single computer, rather 

than on a real network.  

9.2.2 Future Work 

The future work planned to be addressed can be categorized into three areas: 

Cooperative Data Clustering 

In the area of cooperative clustering, future directions include:  

• Finding the optimum value of the similarity threshold as well as the optimum bin size in each 

histogram. 

• Applying the same cooperative methodology if the number of the generated clusters is different 

from one partitioning to another and employing a new membership function to find the 

intersection between the c clustering solutions. 

• Developing a scatter F-measure that finds the diversity in the clustering solutions between two or 

more approaches.  

• Comparing the time and quality performances of the cooperative clustering model to those of the 

current state of art in combining multiple clusterings such as ensemble clustering and hybrid 

clustering. 

• Calculating the value of c* (the maximum number of cluster techniques in the cooperative model 

to maintain better clustering quality) is done experimentally, proving the value of c* theoretically 

will be of interest as a future work. 
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Clustering-Based Outliers Detection 

For outlier’s detection, the following issues are of interest as a future work to the current work in this 

thesis: 

• Comparing the detection accuracy of the CCOD with that if the cooperative outlier factor is 

assigned to each object after the cooperative clustering is performed. 

• Determining the proper value of the ratio between the LocalTopRatio and the TopRatio 

parameters in order to achieve the desired detection capability of the proposed algorithm. 

• Testing the scalability of the detection approach using more than three clustering techniques 

• Developing a distributed outlier’s detection using cooperative clustering can be investigated to 

examine the performance of the cooperative clustering in detecting outliers in distributed 

networks and also finding the global set of outliers across the whole network needs more 

investigation. 

Distributed Data Clustering 

For distributed clustering, the following issues can be investigated as a future work of this thesis: 

• So far data partitioning has been done equally across nodes. Different partitioning strategies can 

be investigated to see the effect of unbalanced distribution of data in a network.  

• Also, in the current architecture we use two-tier P2P architecture, an extension to multiple 

overlay hierarchical networks will be of interest.  

• The ability of designing informative distributed internal and external quality measures that are 

suitable for distributed hierarchical super-peer networks is considered as interesting issue, more 

research work is needed in this track. 

• A formal evaluation of the value of the critical number of nodes in the network after which the 

performance of the distributed cooperative model decays will be of interest as a future work. 

• Finally, the effect of the set of parameters used in the distributed cooperative model needs to be 

formally analyzed to provide error estimates that can guide the proposed model towards its goals.  
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9.3 List of Publications 

The work in this thesis has resulted in a number of publications (Journal, conference proceedings, as well 

as posters) which are listed below. 

Journal Articles: Submitted 

• R. Kashef, M. S. Kamel, “Enhanced Bisecting K-means Clustering Using Intermediate 

Cooperation”, Pattern Recognition, submitted and under second revision.  

• R. Kashef, M. S. Kamel, “Cooperative Clustering Model”, Pattern Recognition, Submitted. 

Journal Articles: In Preparation 

• R. Kashef, M. S. Kamel, “Cooperative Clustering Outliers Detection”, written and will be 

submitted. 

• R. Kashef, M. S. Kamel, “Cooperative Clustering in Distributed Super-Peer P2P networks“, in 

progress. 

Conference Proceedings 

• R. Kashef, M. S. Kamel, "Towards Better Outliers Detection for Gene Expression Datasets", 

2008 IEEE International Conference on Biocomputation, Bioinformatics, and Biomedical 

Technologies (BIOTECHNO08), pp: 149-154, 2008. 

• R. Kashef, M. S. Kamel, “Distributed Cooperative Partitional Divisive Clustering for Gene 

Expression Datasets”, the 2008 IEEE Symposium on Computational Intelligence in 

Bioinformatics and Computational (CIBCB08), 2008. 

• R. Kashef, M. S. Kamel, “Efficient Bisecting k-medoids and Its Application in Gene Expression 

Analysis", International Conference on Image Analysis and Recognition (ICIAR08), pp: 423-343, 

2008. 

• R. Kashef, M. S. Kamel, “Hard-Fuzzy Clustering: A Cooperative-based Approach”, 2007 IEEE 

International Conference on Systems, Man and Cybernetics. pp: 425-430, 2007. 

• R. Kashef, M. S. Kamel, “Cooperative Partitional-Divisive Clustering and Its Application in 

Gene Expression Analysis”, IEEE 7th International Conference on BioInformatics and 

BioEngineering (BIBE07), pp: 116-122, 2007. 
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• R. Kashef, M. S. Kamel, “Distributed Cooperative Hard-fuzzy Document Clustering”, 3rd 

Annual Scientific Conference of the LORNET Research Network (I2LOR 2006), Montreal, Nov 

8-10, 2006.  

Posters 

• R. Kashef, M. S. Kamel, “Cooperative Clustering and its Application in Gene Expression 

Analysis”, Poster Presentation, Graduate Research Conference, 2008. 

• R. Kashef, M. S. Kamel, “Hard-Fuzzy Clustering: A Cooperative-based Approach”, Poster 

Presentation, Graduate Research Conference, 2007. 

• R. Kashef, M. S. Kamel,  “Cooperative Partitional-Divisive Clustering and Its Application in 

Text Mining”, L2lOR2007, Montreal, Canada.  

• R. Kashef, M. S. Kamel, “Distributed Cooperative Hard-fuzzy Document Clustering”, Poster 

Presentation, Knowledge and Data Mining Workshop (KDM06), University of Waterloo, 

Waterloo, Canada, 2006. 
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Appendix A 

Message Passing Interface 

The Message Passing Interface (MPI)  [86] communication tool consists of a group of processes that have 

only local memory but are able to communicate with other processes by sending and receiving messages. 

It is a defining feature of the message-passing model, such that data transfers from the local memory of 

one process to the local memory of another process require operation to be performed by both processes. 

MPI is a standardized, portable, and widely available message passing system. A typical parallel program 

can be written in any high level language, which is then compiled and linked with the MPI library. The 

resultant object code is distributed to each process for parallel execution. Each process is assigned a 

unique identifier between 0 and P-1 where P is the number of parallel processes. Depending on its process 

identifier, each process may follow a distinct execution path through the same code. These processes may 

communicate with each other by calling appropriate routines in the MPI library, which encapsulates the 

details of communications between various processes. Table 1 lists some of the various MPI routines, 

which are used in most of the Single Program Multiple Data (SPMD) clustering algorithms. 

Table 1: Functionality of MPI routines 

MPI routine Functionality 

MPI_init() Initialize the MPI execution environment 

MPI_Comm_size() Returns the number of processes. 

MPI_Comm_rank() Returns the process identifier for the calling 

process. 

MPI_Bcast(message,root) Broadcasts “message” from a process with 

identifier “root” to all the processes. 

MPI_Allreduce(A,B,MPI_SUM) Sums all the local copies of “A” in all the 

processes (reduction operation) and replace the 

result in “B” on all the processes (broadcast 

operation) 

MPI_Wtime() Returns the number of seconds since some 

fixed, arbitrary point of time in the past. 

MPI_Finalize() Terminate the MPI execution environment 
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