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Abstract

The focus of this research is on the development of a novel multi-disciplinary design opti-

mization scheme for micro-compliant devices. Topology optimization is a powerful tool that

can address the need for a systematic method to design MEMS. It is expected that systematic

design methods will make the design of micro devices transparent to the user and thus spur

their use. Although topology optimization of MEMS devices with embedded actuation has

received a great deal of attention among researchers recently, there is not a significant amount

of literature available on the subject. The limited literature available addresses multi-physics

topology optimization, which employs the homogenization method. However, the products of

this method inherit the drawbacks of homogenized material discretization, including checker-

board pattern, gray-scale material and narrow flexural hinges in the optimum solution. In

this thesis, a new topology optimization scheme is introduced that addresses the specific needs

of MEMS domain. A new discretization approach with frame-ground structure is introduced.

This approach offers significant conceptual and practical advantages to the compliant MEMS

optimization problem, including compatibility with MEMS fabrication processes. The design

spaces of compliant mechanisms are non-convex and it is critical to employ an algorithm ca-

pable of converging to the global optimum without the need to evaluate gradients of objective

function. In this thesis, an efficient real-coded genetic algorithm is implemented, which shows a

better repeatability and converges to very similar solutions in different runs. This new method

of optimization facilitates the use of a coarse subdivision of the design domain rather than

the homogenized material method, for the same resolution of shape definition. Therefore, the

topology optimization scheme developed in this thesis significantly reduces the computational

burden without compromising the sharpness of the shape definition. As the problem of com-

pliant mechanism design is posed as a set of conflicting objectives, a well-posed multi-criteria

objective function is introduced which avoids one objective dominating the solution. Moreover,

the formulation is modified to incorporate electro-thermal boundaries and enables the opti-

mization of the compliant mechanisms to transfer maximum motion or maximum force at the

output. A number of design examples are used to demonstrate the ability of the procedure to

generate non-intuitive topologies. Their performance is verified using ANSYS and compared

with results from the homogenization method and designs reported in the available literature.
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Chapter 1

Introduction

Compliant mechanisms offer great promise in providing new and better solutions to many

mechanical-design problems. A compliant mechanism is a single-piece flexible structure in

which the structural deformation is utilized to transmit force or deliver motion due to an input

actuation. It works as a transmission that is designed to have the desirable characteristics

between the input actuation and the output to the environment. Since compliant mechanisms

are jointless, they have many desirable features, such as no assembly, no backlash, low cost,

and low maintenance.

Compliant mechanisms attain their mobility from flexibility of their constituents as opposed

to their rigid-body counterparts, which attain their mobility from hinges, bearings and sliders.

The main advantages of compliant mechanisms are that they can be built using fewer parts,

require little assembly and need no lubrication [15].

An important application of compliant mechanisms lies in MicroElectroMechanical Systems

(MEMS), which cannot be manufactured using typical assembly processes and can not make

use of hinges and bearings since friction dominates at small scales. The most common method

for MEMS fabrication uses planar layers of material. Surface micromachining uses multiple

layers of material that are deposited, then patterned using planar lithography. The constraints

introduced by the planar nature of MEMS fabrication and the difficulty of parts assembly in

micro-scale introduces a number of challenges in constructing mechanical devices at the micro-

level. Compliant mechanisms offer solutions to many of these problems [15]. This field is

expected to grow dramatically in the near future. The advantages of compliant mechanisms at
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the micro-level are that they:

• can be fabricated in a plane;

• require no assembly;

• require less space and are less complex;

• have less need for lubrication;

• have reduced friction and wear;

• have less clearance due to pin joints, resulting in higher precision; and

• integrate energy storage elements (springs) with other components.

Tests have demonstrated that compliant components can be very robust at the micro-level

and often last longer than components that use pin joints or other elements that induce wear.

Micro-compliant devices are predominantly utilized at the micro-scale as feasible solutions for

the realization of force/motion transmission [3]. Microsensors [16] (e.g. accelerometers for

automobile crash detection and pressure sensors for biomedical applications) and microactuators

[17] (e.g. for moving arrays of micromirrors in projection systems, for position manipulation of

micro-objects and for tuning MEMS filters) are examples of commercial applications of MEMS.

Typical compliant mechanism synthesis involves the use of a homogenization method [18] or

of truss/beam ground structures [19] originally seen in structural optimization. These methods

can be incorporated with different objective functions to design compliant mechanisms for

various purposes, such as compliant grippers for object manipulation [17], compliant motion

amplifiers in MEMS [20], and compliant end-effectors for minimally invasive surgery [21].

This thesis addresses the present difficulties in systematic synthesis of compliant micro

mechanisms. With a focus on novel applications in MEMS actuator design, existing methods

are improved and a new method for the systematic design of micro-compliant mechanisms with

multi-physics boundary conditions is introduced.
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1.1 Motivation for this thesis

Due to the lack of a systematic design method, typical MEMS design procedures rely on trial and

error and are based on designer intuition. Obviously, such structures cannot be optimum and

better design methodologies are needed to arrive at optimum design solutions. The feasibility

of using Electro-Thermo-Compliant (ETC) devices in microsystems, as demonstrated by many

intuitive designs described in the literature [16, 22, 23, 24, 21], drives the need for a systematic

method to design these devices. It is expected that systematic design methods will make the

design of micro-devices transparent to the user and therefore spur their use.

A method that is able to solve some of above-mentioned problems is the topology opti-

mization method [25]. Any topology optimization process involves discretization of the design

domain into elements. The optimization process selectively removes elements from the domain

to define an optimal topology for the design objective without relying upon human intuition.

It is a powerful method to determine the best design of a structure in a given design domain,

for a given loading and output condition.

The possible applications of topology optimization in multi-physics problems are numerous,

however one very interesting application is in the systematic design of MEMS [9]. Synthesis

of compliant mechanisms for MEMS has typically been based on modifications of rigid-body

mechanisms with similar functionality [15]. Although the topology optimization method has

been around since 1970 [26], the first applications of topology optimization methods to compli-

ant mechanism synthesis appeared in literature in 1996 [5]. Since then, an increasing number

of researchers are working on theoretical development of compliant mechanism and MEMS

synthesis algorithms, but there is still not a wide-spread knowledge of the method. This may

partly be due to the fact that the programming of a topology optimization code seems to be

an overwhelming problem to a newcomer in this field [27]. Because of this, there is a high

need to improve the synthesis method and modify the algorithms to address the need of to-

days research. For instance, in MEMS design, actuation principles for micro-actuators may be

thermal, electro-thermal, piezoelectric, electrostatic and many others. Compliant mechanism

synthesis procedures must therefore be extended to take such possibilities into account.

Although developing a systematic approach to design optimum MEMS devices has recently

received a great deal of attention among researchers, there is not a significant amount of liter-
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ature available on the subject. The majority of the literature in this field addresses the single

physics problems using force or displacement, as an input similar to optimization of mechanical

structures with constraint on structural weight [28, 29, 30, 31, 32]. However, applying mechan-

ical actuation in the micro-domain is not very easy and sometimes impossible. However, the

recent developments in theory, computational speed and large-scale optimization algorithms,

such as genetic algorithms, allow for extensions of the topology optimization method to prob-

lems involving multi-physics and multiple constraints.

The limited literature available addresses the multi-physics topology optimization, which

employs the homogenization method [33, 13, 34, 10, 9, 35]. The homogenized material method

uses a fictitious material density as the design variable and optimizes the material density at each

cubic element [36]. Optimization methods based on homogenized material distribution often

produce solutions with checkerboard areas, which cause discontinuity in the material in the

final solution. Moreover, the optimum solution consists of several flexural hinges with narrow

and long slender sections that are prone to failure. The final topologies resulting from the

homogenization method usually need extensive post-processing to filter out the checkerboard

pattern and interpret the layout of physical device and therefore, are computationally extensive

[37]. Thus a new optimization scheme is required for MEMS compliant devices.

The feasibility of using ETC devices in microsystems, as demonstrated by numerous in-

tuitive designs, drives the need for a systematic method to design these devices [24, 9]. This

research is motivated by understanding the critical role of electro-thermo-mechanical compliant

mechanisms in MEMS design and the need to develop a topology optimization method which

can address the specific problems of MEMS, including enabling multi-physics on-chip actuation

and compatibility with available fabrication processes. It is expected that systematic design

methods will make the design of electro-thermo-mechanical devices transparent to the user and

thus spur their use in MEMS.

1.2 Objectives

This research is focused on the development of a novel multi-disciplinary design optimization

scheme for micro-compliant devices, which includes:
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• Developing a new, fully coupled analysis method capable of solving multi-physics domains

efficiently. The solver addresses the micro-domain physics and the coupled field of the

electro-thermo-mechanical domain.

• Employing a new frame ground structure to address the shortcomings of previous methods,

which are based on homogenized material optimization, to generate feasible to fabricate

designs. The motivation for using the frame-ground structure approach stems from the

advantages it brings to the ETC optimization problem. The advantages of frame-ground

structure are:

— It allows for a coarser subdivision of the design domain than the continuum element

approach for the same resolution of shape definition. Therefore, the frame-element-

based formulation reduces the computational burden for the synthesis procedure

without compromising sharpness of the shape definition.

— The resulting geometry adheres to the original discretization and therefore is clean

and easy to fabricate using photolithography-based microfabrication processes.

— It is not necessary to interpolate thermophysical properties between existing and

nonexisting states in the frame ground structure approach, unlike in the material

distribution approach. The use of frame element cross section area as the design

variable obviates the use of a constitutive model for interpolating electrical and

thermal properties as a function of a fictitious density.

— It helps to model surface heat transfer more easily than the material distribution

approach. It is difficult to model surface heat transfer accurately in the continuum

element approach because the number, shape, and size of holes are not specified

initially as new faces arise and disappear during the iterative optimization procedure.

The frame-ground structure approach avoids these difficulties elegantly. The location

and length of all the elements are specified in advance. The heat transfer from

surfaces is properly accounted for at every step of the optimization process.

• Developing a novel optimization scheme with multi-disciplinary boundary conditions.
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The actuation scheme plays an important role in MEMS devices. As mechanical boundaries,

such as force and displacement, are not very easy or sometimes impossible to apply in micron

dimensions, the compliant mechanism optimization for MEMS devices should be able to account

for multi-disciplinary inputs. Electro-thermal is the most commonly used actuation scheme in

MEMS. This thesis addresses the extension of compliant mechanism synthesis procedures to

take into account the possibility of electro-thermal boundary conditions. The novel optimization

scheme includes:

• Implementation of a new element removal policy to impose the MEMS fabrication con-

straints and lithography tolerances to the optimization procedure and upper and lower

limits on design variables.

• Addressing the failure criterion of the optimized designs by imposing new strength con-

straints on the optimization problem. The goal is to ensure a fully distributed compliance

throughout the mechanism and to prevent the appearance of long, slender elements prone

to failure and narrow hinges with high stress concentration in the optimized design, which

are often seen in lumped compliant design.

• The non-convexity of the design spaces of compliant mechanisms is noted in the literature

[38, 39]. The optimization problem is posed as a balance between stiffness and flexibility

of the design. When the number of elements and design variables increase, the number of

design possibilities increases exponentially and conventional gradient-based optimization

techniques can not be used effectively. For some local optima, compliant topologies may

either be overly stiff or overly flexible and therefore, do not achieve the desired balance

between the two criterion. It is critical therefore, to employ an algorithm capable of

searching noisy spaces and converging to global optimum without the need to evaluate

gradients of objective function. This is addressed by:

— Implementing an effective real-coded genetic algorithm with elitism, which shows

a better repeatability i.e. it converges to very similar solutions in different runs,

compared with Sequential Linear Programming (SLP) or Sequential Quadratic Pro-

gramming (SQP), in which the solutions are strongly dependent on an initial guess

[19].
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— Introducing a multi-criteria objective function to address the current difficulties in

behavior of objective functions. The goal is to avoid one objective dominating the

solution [27].

— Improving the formulation to provide the option to design the compliant mechanisms

specifically for transfer of maximum motion or maximum force at the output.

• Designing a user friendly Graphical User Interface (GUI) for the optimization scheme to

make the developed method available to the MEMS design community.

1.3 Outline of the dissertation

Following the motivations and objectives given in Chapter 1 of this thesis, Chapter 2 presents an

overview of the different methods available for synthesis of compliant mechanisms and the limi-

tations of these methods. Different discretization methods and solution techniques described in

the literature are reviewed and their shortcomings are highlighted. The necessity of developing

a new optimization scheme for MEMS applications is emphasized.

Chapter 3 introduces the general problem. A modified objective function and a custom

coded genetic algorithm are introduced to address the convergence and computational cost

difficulties. Also, frame-ground structures are verified as a suitable solution to generate feasible

to fabricate optimal designs for MEMS. A base optimization scheme with GUI and compatible

with specific needs of MEMS applications is developed. The superiority of the optimization

scheme is validated by comparing its results with examples from the available literature. This

optimization scheme serves as a basis for extending the proposed synthesis method to multi-

disciplinary domains.

In Chapter 4, the extension of the optimization scheme continues with the development

of a new analysis method for micro-electro-thermo-mechanical domain. A new, fully coupled

formulation is developed, which sequentially solves electrical, thermal and thermo-elastic do-

mains. An algorithm is proposed that builds a resistive circuit model of electrical domain with

Modified Nodal Analysis (MNA) and effectively couples its matrix equations to a finite element

model of thermo-elastic domain. The finite element analysis (FEA) includes the micro-physics

effects and is implemented in a complete package with GUI. This FEA serves as the main solver
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in the optimization scheme. The performance and accuracy of the proposed coupled FEA is

verified with examples.

In Chapter 5, the topology scheme is extended to multi-physics domain, employing the finite

element solver developed in Chapter 4 as the core solver. Since the design variables can have

any real value inside the bounds, the solution technique is further improved by a real-coded

genetic algorithm. The complete optimization package includes a GUI, postprocessing option

and a filtering scheme to impose the MEMS fabrication limits and lithography tolerances on

the optimal solution. Also, a new buckling constraint is introduced and implemented in the

scheme that effectively generates optimum solutions with strength considerations.

In Chapter 6, examples of optimized actuators resulting from the optimization scheme are

presented and verified. The result of this optimization package is verified by comparing its

results with examples from the literature and simulations in ANSYS.

Chapter 7 concludes the thesis, highlights the contributions and discusses the future research

expansions.
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Chapter 2

Background and Literature Review

In this chapter, the current research in systematic synthesis of compliant mechanisms is reviewed

and the difficulties are addressed.

2.1 Compliant Mechanisms

Compliant mechanisms are mechanical devices that rely on elastic deformation to achieve force

and motion transmission. compliant mechanisms are joint-free monolithic substitutes for multi-

membered rigid-body mechanisms. Compliant mechanisms derive their name from the fact

that they achieve mobility, at least in part, through compliance, i.e. elastic deformations

of one or more links or joints, rather than exclusively through relative motion at joints, as in

traditional rigid-link mechanisms. Compliant mechanisms function as a synergistic combination

of a structure and a mechanism, or as a structure with mobility.

Compliant mechanisms are important in mechanical design because they offer distinct ad-

vantages over conventional rigid-link mechanisms. An advantage of a compliant mechanism is

the potential for a dramatic reduction in the total number of parts required to accomplish a spe-

cific task. The reduction in number of parts may reduce manufacturing and assembly time and

cost. Compliant mechanisms also have fewer movable joints, such as pin and sliding joints; this

results in reduced wear and need for lubrication. These are valuable characteristics for appli-

cations in which the mechanism is not easily accessible, or for operation in harsh environments

that may adversely affect joints. Reducing the number of joints can also increase mechanism
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precision, as backlash may be reduced or eliminated. It is also possible to realize a significant

reduction in weight by using compliant mechanisms rather than their rigid-body counterparts.

This may be a significant factor in aerospace and other applications. Another advantage of

compliant mechanisms is the ease with which they are miniaturized. Simple microstructures,

actuators, and sensors are experiencing wide usage, and many other MEMS show great promise.

The reduction in the total number of parts and joints offered by compliant mechanisms is a

significant advantage in the fabrication of micromechanisms [15]. As flexure is permitted, com-

pliant mechanisms can be readily integrated with non-mechanical actuation schemes, such as

thermal and electro-thermal effects.

Due to the many advantages they offer, the field of compliant mechanisms has received a

great deal of attention in recent years. Compliant mechanisms have been designed for shape

reconfiguration in aerodynamic applications, such as aerofoil adaptive mechanisms, where a

flexible member adapts a desired shape for specific loading [40]. They find numerous applica-

tions in product design as compliant clutches [41] and fishing pliers [17]. Compliant parallel

guiding mechanisms [42], constant force mechanisms [43], single piece staplers [44], disk drive

loading mechanisms [45], and mechanisms with bistable behavior [46] are some notable exam-

ples where flexibility in members is desired for special objectives. As friction and backlash

losses are negligible, compliant mechanisms are ideal for high precision instrumentation [47].

2.1.1 Lumped versus distributed compliance

Compliant mechanisms can be classified into several categories. The main classification, as

described in [48], is that of fully compliant versus partially compliant. A partially compliant

mechanism employes rigid-body joints, rigid members and elastically deforming flexible mem-

bers for accomplishing a force/motion transmission task. A fully compliant mechanism on the

other hand, uses only the preferred elastic deformation of its flexible members; they have no

rigid-body joints. Fully compliant mechanisms are preferred where assembly part manufactur-

ing is difficult and friction is dominant, e.g. in MEMS applications.

Compliant mechanisms may also be classified as non-monolithic and monolithic or lumped

and distributed.

In lumped compliant mechanisms, the flexibility is concentrated in localized areas, usually
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at flexural hinges. A compliant mechanism with a discrete number of flexural pivots is said to

possess lumped compliance. The drawback with flexural joints include high stress concentration,

low static and fatigue strength, and difficultly in manufacturing very thin and thick sections.

Lumped compliance can cause high stress concentrations at the flexural hinges. These areas of

high stress are prone to fatigue and/or failure.

In distributed compliant mechanisms, the flexibility is not concentrated in specific areas,

but is distributed throughout the mechanism over a range of segment. The mechanism as a

whole is flexible and there are no joints; it is a monolithic fully compliant mechanism. Such

mechanisms are called fully compliant mechanisms with distributed compliance. Distributed

compliance should offer superior performance and reliability compared to lumped compliance

because deformation is not concentrated in a few regions; stress concentrations are therefore

avoided.

In distributed compliance mechanisms, it is the topology and shape of the material contin-

uum that give these mechanisms the ability to deform and, therefor, the motion and the force

transmission capability. Compliant mechanical devices can provide distinct advantages over

conventional rigid-link devices; however, including compliance complicates the design process.

The design of monolithic electro-thermo-mechanical artifacts, based on the topology synthesis

of compliant mechanism with distributed compliance, is the primary focus of this research.

2.1.2 Micro-Compliant Mechanisms

Compliance in design leads to jointless, no-assembly, monolithic mechanical devices and is

particularly suited for applications with small range of motions. Although simple deformable

structures, such as beams and diaphragms, have performed adequately in many micro-devices,

more sophisticated micromechanical functions can be realized by fully exploiting the preferred

use of elastic deformation via compliant mechanisms. The small scale and high aspect ratio of

micromechanical structures makes them inherently flexible. Therefore, in MEMS, a compliant

design that needs no assembly is not merely a prudent choice, it is a necessity [21].

In recent years, several applications of compliant mechanisms in MEMS have been intro-

duced. Single piece devices can be used in motion sensing as accelerometers [16], gyroscopes [22]

and as micro-actuators for position manipulation of micro objects [23]. Compliant mechanisms
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have also been designed for displacement manipulation tasks, such as displacement amplifiers

[24] and inverters [49].

Micro-actuators that are responsible for movement play a crucial role in MEMS. Electro-

thermo-compliant (ETC) microdevices provide arbitrary in-plane displacements through non-

uniform Joule heating by virtue of their specially designed topology and shape. In addition to

the advantages of embedded actuation, large forces and displacements, and ease of microfabri-

cation, one more attractive feature of ETC devices is their suitability for systematic synthesis

directly from behavioral specifications [9].

In MEMS design, since electro-thermal actuation is a very common actuation principle,

compliant mechanism synthesis procedures must be extended to take such possibilities into

account. Design of ETC for MEMS is a new era in topology optimization and no effort to

include electro-thermal actuation into existing topology optimization schemes with discrete

ground structure has been reported in the literature to date.

2.1.3 Background of compliance theory

In compliant mechanisms, flexibility and deflections are of utmost concern. This section dis-

cusses a useful method to determine the deflections of structural systems. This method is used

in the compliant mechanism design problem formulation.

Unit dummy load method

The ”unit dummy load” method is based on the principles of virtual work, where a special case

of the principle of virtual forces is used to evaluate the displacements of a deformable body.

Specifically, the value of the displacement of a deformable body at a particular point can be

determined by applying a fictitious or “dummy” load at that point in a particular direction.

The magnitude of this force is arbitrary, so for simplicity it is assumed unity. It is for this

reason that the procedure is called the unit dummy load method. A general statement is given

as follows [50]:

“ The true displacement ∆i of a point i in a deformable body in a given direction is equal

to the integral over the volume of the body of the product of the true strains, ε and the virtual

stresses produced by a unit virtual force at i in the direction of ∆i. Physically, ∆i is a measure
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of the flexibility of the structure.”

In mathematical terms:

∆i =

Z
V

εσddV (2.1)

where ε is the true strain field and σd is the virtual stress due to the dummy load.

For example, consider a linear elastic beam with negligible shear deformation. To determine

the beam deflection at a particular point, a unit dummy load is applied at the point of interest,

and the resulting moment distribution due to this loading is calculated. The deflection at the

point of interest is given by [25]:

∆ =

LZ
0

MMd

EI
dx (2.2)

where ∆ is the deflection at desired point, L is the length of the beam, M is the moment due to

the actual loading, Md is the moment due to the virtual loading, E is the modulus of elasticity,

and I is the area moment of inertia of the cross section.

Beam Design for Required Deflection

The unit dummy load method has been used in conjunction with optimal design methods for

problems in which the goal is to achieve the minimum weight design with a specified deflection

at a certain point [51], [26]. These types of optimal design problems can be called “design for

required deflection” problems. This design for required deflection problem was considered for

a linear elastic beam by Barnett [51] and Shield and Prager [26]. This beam problem provides

valuable insight into the requirements for compliant mechanism design problem. Consider a

simply supported linear elastic beam, as shown in Figure 2-1. The objective is to predict the

optimal beam width that minimizes the material volume while achieving the specific deflection

∆ at point x∗ when subject to the loading P (x). In this case, the topology (a single segment)

and shape (a straight line) are known, and it is the size that is optimized. The optimization
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Figure 2-1: Design of a beam for specified deflection.

problem then is [25]:

Minimize : V olume =

LZ
0

A(x)dx (2.3)

subject to : ∆ =

LZ
0

M(x)Md(x)

EI(x)
dx

equilibrium equations for M and Md

Assuming that the beam has a rectangular cross-section with constant height, h, the problem

can be written as follow where, I(x) = %A(x) and % = h2

12 :

Minimize : V olume =

LZ
0

A(x)dx (2.4)

subject to :

LZ
0

M(x)Md(x)

E%A(x)
dx−∆ = 0

Using the calculus of variation and Lagrange multipliers, the unconstraint optimization problem

is [25]:

Minimize : £(A(x),λ) =

LZ
0

A(x)dx+ λ

⎛⎝ LZ
0

M(x)Md(x)

E%A(x)
dx−∆

⎞⎠ (2.5)
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The optimal distribution of the cross-section is:

A∗(x) =
1

E%∆

⎛⎝ LZ
0

q
M(x)Md(x)dx

⎞⎠qM(x)Md(x) =
1

E%

q
ΛLM(x)Md(x) (2.6)

where ΛL is the Lagrange Multiplier and 1
∆

LR
0

p
M(x)Md(x)dx = Λ

1/2
L is a constant.

Notice that when the quantity M(x)Md(x) becomes less than zero anywhere in the design

domain, the value of A∗(x) will be imaginary and there is, therefore, no solution. This implies

that the design problem is not well posed. One way to solve this problem is to introduce

a constraint on the mean compliance. The mean compliance or stiffness of a linearly elastic

structure is defined as the work done by the applied loads on the displacements they produce

[26]. This constraint for a beam is shown as:

LZ
0

M2(x)

E%A(x)
dx− CC = 0 (2.7)

and in Lagrangian form as:

ΓL

⎛⎝ LZ
0

M2(x)

E%A(x)
dx− CC

⎞⎠ = 0 (2.8)

where ΓL is the Lagrange Multiplier and CC is the bound on the mean compliance. With the

addition of this constraint to Equation (2.4), the optimal beam cross section is:

A∗(x) =
1

E%

p
ΛLM(x)m(x) + ΓLM2(x) (2.9)

The Lagrange Multipliers ΛL and ΓL, both non-negative, can be found from the two con-

straints. By choosing an appropriate value for CC in Equation (2.7), the value of ΓL can

be controlled, thereby avoiding a situation where there is a negative quantity underneath the

square root sign. Therefore, a solution is guaranteed for any load condition.

As this beam example illustrates, including a deflection constraint alone is not sufficient

for design for required deflection problems. An additional constraint on the mean compliance

or “stiffness” is necessary to guarantee a well-posed problem. The physical interpretation of
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this notion is that both the flexibility (deflection constraint) and stiffness (mean compliance

constraint) must be considered simultaneously [19].

The next section discusses a method in which control over the deflection or flexibility is

incorporated with control over the stiffness in the design of compliant mechanisms, which leads

to a multicriteria formulation.

2.2 Review of Compliant Mechanism Design

An introduction and a historical background of topology optimization can be found in the book

by Bendsoe [36]. Topology optimization is a method to find the best design of a structure in a

given design domain Ω, for a given loading and output condition.

In general, closed-form analytical solutions are not possible for irregular geometries. There-

fore, these equations are solved using numerical methods such as finite element method, finite

difference method, boundary element method, chain algorithm and so on. In this thesis, the

finite element method is used when the design of compliant mechanisms is considered.

Two main approaches have been developed thus far for systematic synthesis and design of

compliant mechanisms. The first is kinematics based or the pseudo rigid-body model approach,

wherein a compliant mechanism is presented by an equivalent rigid-link mechanism, which can

be synthesized using well established kinematic techniques. The second is the continuum based

approach, which employs structural optimization techniques to determine a suitable topology,

shape and size of a compliant mechanism for desired specifications. These approaches are

described in the following sections.

2.2.1 Methods based on rigid-link mechanisms

The elastic deformation in a compliant mechanism can be limited only to a small portion as in

mechanisms with flexural hinges. Such mechanisms are called lumped compliant mechanisms

and they can be analyzed and designed using rigid-body kinematic techniques.

The kinematic approach for synthesis and design of compliant mechanisms involves methods

developed by Midha and his associates [15]. The purpose of the pseudo rigid-body model is to

provide a simple method for analyzing systems that undergo large, nonlinear deflections. The
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pseudo rigid-body model concept is used to model the deflection of flexible members using rigid-

body components that have equivalent force-deflection characteristics. Rigid link mechanism

theory may then be used to analyze the compliant mechanism.

Different types of segments require different models. Pseudo rigid-body models have been

derived for flexural pivots [52], straight slender beams with tip forces [53] and initially curved

beams with tip forces [54]. In [55] a pseudo rigid-body model for cantilever beams with tip loads

comprising positive end moments is developed. For each flexible segment, a pseudo rigid-body

model predicts the deflection path and force-deflection relationships. The motion is modeled

by rigid links attached at pin joints. Springs are added to the model to accurately predict

the force-deflection relationship. The key for each pseudo rigid-body model is to decide where

to place the pin joints and what value to assign the spring constant [15]. This method begins

with a known rigid-link mechanism and an iterative process generates an appropriate compliant

mechanism design. Further study of rigid-link compliant mechanisms is out of the scope of this

thesis, since the focus is on topology optimized MEMS structures with distributed compliance

throughout the structure.

2.2.2 Methods based on structural optimization

The region in which the mechanism to be designed must fit is called the design domain. The

design domain is modelled by a ground structure. The ground structure can be discretized by

different kinds of finite elements, e.g. continuum, truss and beam elements. Only the most vital

members are retained to optimize with respect to prescribed loadings and performance criteria.

In the ground structures, the height, the thickness or the area of the element can be chosen

as the design variable. The unique feature of this design method is that optimal solutions

of compliant mechanisms can be generated automatically to obtain the desired input-output

behavior and the mechanism topology is not known in advance.

Ananthasuresh [56] and colleagues [57, 58, 59] developed a methodology for the synthesis of

compliant mechanisms with distributed compliance using continuum mechanics and a structural

optimization technique called the homogenization method. The homogenization method is a

numerical optimization technique originally developed by Bendsoe and Kikuchi [18] to obtain

topologies for the stiffest possible structures to satisfy given boundary conditions and resource
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constraints. In adopting this technique for compliant mechanisms, the formulation of the orig-

inal objective in the homogenization was the key issue in the synthesis approach developed by

Ananthasuresh [56].

Frecker and colleagues [5, 19, 1] extended the topological synthesis work of compliant mech-

anism by modifying the objective expression in the multicriteria model attempted by Anan-

thasuresh [56]. Furthermore, to improve the convergence of optimization routine, two more

modifications were implemented: (a) use of an initial design domain compromising a frame-

work of truss elements, wherein every node in the structure is connected to every other node

instead of a continuum domain used in [56], and (b) initiation of the optimization by biasing the

design variables such that the initial guess topology is that of a rigid link mechanism suitable

for the task on the basis of kinematic design intuition. The continuum mechanics approach

for design of compliant mechanisms was later explored by Sigmund [49] and Larsen [60] by

modifying the design objective of the optimization scheme.

Over the past two decades techniques for both continuum and discrete ground structure

topology optimization have been actively investigated. Is either method clearly superior to the

other for design of compliant mechanisms? What are the relative strengths/weaknesses of the

two approaches?

In this thesis, a discrete ground structure which consists of beam elements with rectangular

cross sections is chosen. The beam elements can transfer both longitudinal forces and bending

moments and the beams are connected by stiff joints; therefore the optimized structure ends

up being a frame.

There are several reasons for choosing a ground structure consisting of discrete beam el-

ements in this thesis instead of continuum elements. The most important advantage of this

method is that it produces structures which are feasible for MEMS fabrication. The main dis-

advantage is that when the number of members and discrete design variable values increases,

the number of design possibilities quickly increases towards infinity. Consequently, only prob-

lems with coarse node distributions and few sectional possibilities can currently be solved.

This problem is addressed by adopting evolutionary algorithms to search for a global optimum.

Continuum based solutions sometimes generate a checkerboard problem, which causes a dis-

continued distribution of material in the final solution. Also, sometimes the optimum solution
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consists of several flexural hinge-like regions with narrow sections and high stress concentrations.

Discrete type solutions allow modelling of cross-sections, which are more suitable for MEMS

applications. The resulting structures from discrete optimization need no interpretation or

post-processing and can be directly mapped for fabrication.

The conclusion is that discrete methods seem more naturally suited to MEMS compliant

structures using beam/frame type structural members.

2.3 Review of discrete topology optimization methods for me-

chanical domain

Figure 2-2(a) shows the optimization domain Ω with mechanical boundary conditions at input

and output ports. In Figure 2-2 P1 is the point of application of the input force Fin, and ∆out

is the direction of desired output deformation at output point P2. An analytical expression

for ∆out is obtained by applying a virtual force at the point of interest P2 along the desired

direction. This unit dummy load is denoted by Fd and is shown in Figure 2-2(b) for a general

design domain subject to Fin at point P1 and some specified mechanical boundary conditions.

The general problem statement is:

Maximize : ∆out (2.10)

subject to : lower and upper bounds on design variables

flexibility constraints

stiffness constraints (2.11)

Now it is important to obtain analytical measures for flexibility and stiffness of the domain

subject to applied force and boundary conditions.

2.3.1 Flexibility requirement

To facilitate the use of variational calculus, the virtual work principle is employed to compute

the output displacements as the mutual strain energy. The unit dummy load method is used

to specify the deflection at a particular point, which serves as a measure of the flexibility.
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Figure 2-2: (a) Design domain Ω with input force and desired output direction ∆ (b) set of
loading for measure of flexibility, MSE and (c) set of loading for measure of stiffness, SE.

The output deflection can be expressed as the “mutual strain energy” MSE. Maximizing the

deflection at boundary P2 in the direction of ∆ is equivalent to maximizing the MSE at port

P2. For given design specifications, from Equation (2.1) [19]:

MSE = ∆out =

Z
Ω

εσddΩ (2.12)

where ε is the strain field when only the actual input force is applied and σd is the stress field

in the continuum when only the unit dummy load is applied.

The concept of mutual strain energy, MSE, was proposed in [51], [26] and [61], and is

simply the mutual energy of a structural system resulting from two sets of loadings. Assuming

that the problem is linear elastic, the continuum can be approximated using a finite element

model. In such a set up:

MSE = FdU1 = U
T
d K2U1 (2.13)

where K1 is the global symmetric stiffness matrix, U1 is the nodal displacement vector due to

Fin, K1U1 = Fin and Ud is the nodal displacement due to the dummy load Fd, as seen in Figure

2-2(b), and K2Ud = Fd. The maximization of output displacement is posed as a maximization
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of the MSE:

Maximize : MSE = UTd K2U1 (2.14)

subject to : K1U1 = Fin

K2Ud = Fd

2.3.2 Stiffness requirement

Now the stiffness requirements need to be imposed on the design. Control over the stiffness

of the structure is equivalent to control over the mean compliance. The principal of virtual

work states that if the point of interest is given a virtual displacement in the direction of load,

the position of all the other loads (P1) must be considered fixed. The point P1 is considered

fixed and the load Fd is applied at point P2 in the opposite direction of ∆ as shown in Figure

2-2(c). Maximizing the stiffness of the structure is equivalent to minimizing the Strain Energy

SE throughout the domain [19]:

SE =
1

2

Z
Ω

εσdΩ (2.15)

where σ is the stress field due to the actual input force. In finite element form:

Minimize : SE =
1

2
UT3 K3U3 (2.16)

Subject to : K3U3 = −Fd

where U3 and K3 are the nodal displacement vector and stiffness matrix, respectively, resulting

from this set of loading, as shown in Figure 2-2(c). Now that the two criteria are modelled in

terms of potential energies, they must be combined in some way. In the following section, the

proposed multicriteria objective functions described in the literature are reviewed.

2.3.3 Review of multi-criteria objective functions

For topology synthesis of compliant mechanisms, Ananthasuresh et. al. [59] have posed the

deformation requirements as maximizing the displacement at the output port along a given

direction. Linear elasticity and small deformation theories are used for function evaluation.
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Strain energy, which is inversely proportional to the stiffness of the mechanism, is simultane-

ously minimized to enable the mechanism to sustain loads. The two objectives are mutually

complementary, i.e. an increase in the output deformation results in lowering the overall stiffness

of the compliant continuum and vice versa. To obtain an optimum balance between the flexi-

bility and stiffness objectives, based on the notion that a compliant mechanism needs to satisfy

the flexibility (MSE) and the stiffness (SE) requirements simultaneously, a flexibility-stiffness

multicriteria formulation was proposed in [56] and [59]. This formulation involves maximizing

their weighted linear combination using the optimality criteria approach, as described by:

Maximize : ξMSE + (1− ξ)SE (2.17)

0 ≤ ξ ≤ 1

where ξ is a user-specified control parameter that assigns relative weights to the two objectives.

Quite often in this formulation, the orders of magnitude of the two objectives may not be

comparable and one of the objectives may dominate the other. This effect can be compensated

for by choosing an appropriate weighting factor, which may vary from one problem to another.

In general, choosing a value of the normalized weight, ξ, in the global sense is very difficult.

One way to avoid problems of selecting parameters in linear combinations is by using a

ratio. An alternative multicriteria objective of maximizing the ratio of the mutual strain energy

(the output displacement of the mechanism) and the strain energy (the stiffness between the

input and output port) was proposed in [19, 1], with a Sequential Linear Programming (SLP)

approach and a truss ground structure. In other words,

Maximize :
MSE

SE
(2.18)

Also, in [62] the two criteria were posed as a ratio; however, the homogenization approach

was also used and expanded the formulation for plural multi-flexibility cases. This multicriteria

objective improves the convergence behavior in optimization. This problem formulation results

in mechanisms optimized for efficiency (i.e. minimum input energy lost in the mechanism);

however, the formulation gives no control over output/input behavior, such as geometrical or

mechanical advantages. For example, it is not possible to specify whether a mechanism should
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produce a force or a displacement amplification. In this regard, it should be noted that later in

[63] a more sensible objective function, including geometrical and mechanical advantages, has

been defined. The latter formulation has been applied to shape design of mechanisms.

The energy-based multicriteria function proposed in [64] uses the ratio of squared output

displacement and the strain energy. This work employs Sequential Quadratic Programming

(SQP) as the optimization routine. The notion here is that a compliant mechanism can recon-

figure itself to deliver maximum available energy at the output port while storing minimum

energy within its deformed continuum. Mathematically, the energy based objective can be

posed as:

Maximize : sign(MSE)
1
2ksMSE

2

SE
(2.19)

where ks is a spring at output port that models the resistance or contact at output and

1
2ksMSE

2 is the energy stored in the output spring ks. The term, sign(MSE) is introduced

to restore the direction of the output deformation, which is lost in the squared term in the

numerator.

While past work has provided much insight into fundamentals for designing compliant mech-

anisms, the main drawback of these approaches is that the flexibility of a structure is theoreti-

cally unbounded. Formulations that maximize flexibility have been shown to be ill-formulated

for compliant mechanism optimization [65]. As a solution, stress constraints were employed to

count for failure modes in [66]. In this thesis, realizing that the stiffness objective may yield

overly stiff topologies and that it may also be inadequate to model the failure criteria directly,

a buckling instability constraint is employed while maximizing the output displacement. This

proposed formulation with buckling constraint prevents long slender beams in final optimized

solutions and addresses the strength of the solution, which is a major concern in the current

methods.

2.3.4 Review of ground structures

Since the most common element used in the literature is truss elements, theories and exist-

ing approaches to truss-ground structure optimization are reviewed here. In [67], Kirsch and

Rosvany pointed out that truss structures by their very nature are most suitable for topology

optimization problems. They comment on a truss structure:
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”It possesses unusually many nodes and elements that can be deleted or retained without

affecting the functional requirements. In addition, a truss is a relatively simple yet nontrivial

structure. It is therefore an ideal system for the investigation of some properties and charac-

teristics associated with optimal topologies.”[67]

Although truss elements can support only tension and compression modes of loading, they

were chosen by many researchers as finite elements because of their simplicity [19, 5, 1].

Frecker, in [19], noted that it is very important to incorporate bending modes of loading

when modelling compliant mechanisms. In [19] and [68], it is noted that a sufficient number of

truss elements must be used to indirectly account for the mechanics of bending. For instance,

a pair of truss elements can simulate a beam in bending, where one element acts as the portion

of the beam in tension, and the other beam acts as the portion of the beam in compression.

Certain shortcomings were found with this approach, as described below:

1. In a truss ground structure, the needs of individual truss elements are constrained from

x and y displacements but are free to rotate at the joints. Therefore, when a truss

ground structure is the reference structure, the resulting compliant mechanisms tend to

have relatively thinner segments at the joints. This will result in lumped compliance and

higher stress distribution at the joints.

2. Because the function of a compliant mechanism relies on bending of constituent elements,

it is more natural to employ beam elements than truss elements. Although two truss

elements do simulate the bending of a beam, use of beam elements more directly mimics

the function of a compliant mechanism.

3. The results from two different reference structures may look similar, however, the de-

formation mechanism is totally different. In a compliant mechanism based on a truss

element ground structure, the motion is generated from deflection at the joints as well

as deformation of the elements. In a compliant mechanism based on a beam-element

ground structure, however, the motion is generated from the deformation of elements

alone, regardless of the extent of deflection.

4. In practice, truss ground structure results in large number of nodes and elements for

accurate analysis of compliant mechanisms. Also elements are overlapping each other
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which makes the solutions infeasible to fabricate through planar fabrication.

The conclusion is that frame ground structures are more naturally suited to topology opti-

mization of micro compliant structures.

2.3.5 Review of Solution Techniques

The sequential linear programming (SLP) and sequential quadratic programming (SQP) meth-

ods for constrained optimization are the most popular methods used for multi-criteria topology

optimization problems. Generally, the topology of the optimal solution is dependent on the

starting point and/or the value of the constraints, indicating that there are several possible so-

lutions or local maxima. Further, the design objective, which is a ratio of two convex functions,

is not itself a convex function. One can conclude, therefore, that there are many solutions for

this problem, and that the solution obtained by starting with an unbiased initial guess is not

unique. SQP provides a faster convergence; however, considering the fact that objective func-

tion is a ratio of two convex functions, it may not be adequately approximated by a quadratic

function. On the other hand, SLP provides a conservative approximation to the objective func-

tion and requires many algorithm iterations. Also, in discrete optimization, when the number

of members and discrete design variable values increases, the number of design possibilities

quickly increases towards infinity.

Despite their computational efficiency, calculus-based optimization procedures ([69, 70])

have two primary shortcomings. First, they require the design variables to be continuous.

This is because they rely on the gradient information to guide their search towards an optimal

solution. Second, they are sensitive to an initial guess and quite often converge to a nearby local

optimum. Evidently, for optimization problems that require the variables to be strictly discrete,

calculus-based search procedures are unsuitable. An alternative is to employ procedures that

rely only on the zero-order function information.

Also, for problems where design spaces are non-convex and where some local optima may

not be acceptable, gradient-based algorithms may not be a good choice. In the case of compliant

mechanisms, Saxena and Ananthasuresh [38, 39] have demonstrated the non-convexity of the

design spaces. For some local optima, compliant topologies may be either overly stiff or overly

flexible and, therefore, do not achieve the desired balance between the two. It then becomes
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necessary to choose a procedure that is capable of converging to a global optimum as well.

Genetic algorithm [71], a stochastic approach, meets the aforementioned requirement and,

therefore, can be applied in the topology design of compliant mechanisms with discrete finite el-

ement parametrization. A genetic algorithm simulates nature’s mechanism of natural selection

and survival of the fittest and is inherently parallel, dealing with a large number of solutions

simultaneously, as opposed to the hill-climbing approaches that employ a point to point search.

This gives the algorithm the ability to search noisy spaces comprising local optima and subse-

quently employs the payoff or fitness values to guide its search towards the global optimum.

In this thesis, genetic algorithms are developed to solve the stated optimization problems.

The genetic algorithm (GA) is beneficial, as the design spaces for compliant mechanisms are

often multi-modal.

2.4 Topology optimization methods for multi-physics domains

In recent years, applications of topology optimization for MEMS design have received a great

deal of attention from researchers. However, the majority of the research focuses on improving

the homogenization method for a single-physics case of mechanical domain [28, 29, 30, 31, 32].

Structural optimization techniques have only recently been applied to automate multi-

physics, micro-compliant mechanism design and there is not a significant amount of literature

available on the subject. The previous research involves employing the homogenization method

or distributed material method. The idea was first introduced by Sigmund [33] and followed

by him using homogenization method [13, 34, 10]. Also, topology optimization of thermally

and electro-thermally actuated compliant micromechanisms has been addressed using a modi-

fied form of the homogenization method [9, 35] and some numerical examples were presented.

However, the presented method contains the addressed difficulties and disadvantages of homog-

enization method.

Topology optimization with homogenization method does not provide any control over min-

imum length scale of the optimized design. In [14], fabrication yield of topology optimized

electro-thermal actuator with homogenization method was studied. It is shown that the major

hurdle in applying the topology optimization method in MEMS design is the difficulty to control
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production yield rate. The production yield rate is primarily related to the minimum length

scale of the optimized layout by the topology optimization. The success yield was reported to

be less than 10% in [14]. The failure was mostly due to residual stress developed during the

MEMS process, especially prevalent at the narrow thin parts of the actuator. From the failed

results it was concluded that design optimization targeted only at performance hardly produces

actuators at a high yield rate. Therefore, it is needed to consider the issue of production rate

either directly or indirectly in design optimization process. If a design optimization method can

consider all MEMS design issues such as failure criterion and manufacturabilty, the actuator

failure rate can be substantially reduced [14]. However, to our knowledge, no such method is

yet available, so far. A frame ground structure can effectively address this problem since the

design variables are the dimensional length scales of the domain, e.g. in plane width of the

elements. Moreover, using frame elements allows to directly address the failure criterion and

manufacturability of the design.

Discretized domains are the best suitable solution when the target is a micro-domain. To the

best knowledge of author, discrete optimization of multi-physics domain has not been addressed

in the literature to date and is in the main objective of the research in this thesis.

2.5 Conclusions

In this chapter, compliant mechanisms were introduced along with a review on history of com-

pliance theory. The advantages and applications of compliant mechanisms were listed and the

need for use of compliance in MEMS design was explained.

It was highlighted that the focus of this thesis is to improve the existing topology opti-

mization methods for mechanical structures by proposing a new optimization formulation and

employing evolutionary algorithms to overcome the convergence difficulties addressed in the

literature. Moreover, utilization of the improved optimization method for micromechanical

applications by incorporating MEMS limits and concerns in the scheme may produce devices

which are feasible to fabricate through available MEMS planar micromachining technologies.

Since MEMS structures are multi-disciplinary in nature, it is necessary to extend the topology

optimization to multidisciplinary domains for microelectromechanical structures and to improve
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the optimization statement and solution techniques for the specific needs of a multi-disciplinary

domain (e.g. preventing long slender elements in the final solution by considering buckling

constraints in optimization statement).

In the next chapter, an improved objective function for topology optimization of mechan-

ical micro-actuators is proposed and implemented using genetic algorithms. The results are

compared with the available literature and demonstrate the superiority of this new scheme over

existing methods.
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Chapter 3

Discrete topology optimization with

evolutionary algorithms

In this chapter, the general coupled governing equations of a multi-physics domain are presented

and the specific case of micromechanical domain is studied. An improved objective function

is proposed for the topology optimization of micromechanical actuators. The design domain

is discretized using a frame-ground structure. A binary coded genetic algorithm is developed

to solve the optimization problem. A GUI is designed to ease the trace of the optimization

results. Several numerical examples are compared with topologies reported in the available

literature; these comparisons confirm the superiority of the new optimization scheme over the

current methods described in the literature.

3.1 General Multi Physics Domain

The region in which the mechanism to be designed must fit is called the design domain. The

design domain can be discretized by different kinds of finite elements, for example, continuum,

truss and beam elements.

In Figure 3-1 the general design domain Ω with multi-disciplinary boundary conditions is

shown. The material is distributed in the gray area and the white area refers to void areas of the

domain. In the figure, Γ is the boundary of domain Ω ,where the subscripts E, T andM refer to

electrical, thermal and mechanical type boundary conditions, respectively, and subscriptsD and
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Figure 3-1: Schematic of the general design domain Ω with mixed boundary conditions.

N refer to Dirichlet (natural) and Neumann (essential) type boundary conditions, respectively.

In mathematics, a Dirichlet boundary condition imposed on an equation specifies the values a

solution is to take on the boundary of the domain and a Neumann boundary condition imposed

on an equation specifies the values the derivative of a solution is to take on the boundary of

the domain.

The boundary Γ is composed of six regions: ΓMD ∪ΓMN in mechanical domain, ΓTD ∪ΓTN
in thermal domain and ΓED ∪ ΓEN in electrical domain. The regions ΓMD, ΓTD and ΓED can

coincide, partly overlap or be fully disjointed; This holds for regions ΓMN , ΓTN and ΓEN as

well.

The domain Ω contains a linear electro-thermo-elastic material. Small displacements and

constant material properties are assumed. MEMS actuators undergo rather large displacements;

however, experimental results at moderate temperatures have shown no sign of plastic defor-

mation [10], which would have been seen as hysteresis or failure in returning the output point

to the original position after actuation. Therefore, small strains and linear material behavior

in the modelling of the actuators are assumed [10].

The design domain is two dimensional considering the planar nature of MEMS process. The

effect of strain gradient and average residual stress in the thin film is neglected and the out of

plane deflection in the optimum design is zero.

30



Let V , T and u be the voltage, temperature and displacement field, respectively, at a point

in the domain. These are the independent variables in electrical, thermal and elastic energy

domains, respectively. The problem, for a homogenous isotropic material in these three energy

domains can therefor be formulated as follows.

The boundary value problem in the electrical energy domain is stated as:

ke∇V + iE = 0 in Ω (3.1)

V = V0 on ΓED

n̂ke∇V = ı̄ on ΓEN

where ke is the electrical conductivity matrix of the material. Generally, ke is a function of

temperature and the doping level, which are both functions of position. In an electrically

isotropic material ke is not dependent on orientation. A homogenous material has a constant

doping level for the entire domain. However, temperature is a function of position; therefore

ke is also an implicit function of position. The internal current source per unit volume is

denoted by iE, which is assumed to be zero for electro-thermo-mechanical domain as there are

no internal current sources. This makes Equation (3.1) homogenous. The imposed voltage at

the boundary ΓED is denoted by V0 and ı̄ is the current flux vector imposed on boundary ΓEN .

n̂ is a unit vector normal to the surface directed outward from the boundary Γ.

The thermal boundary value problem is formulated as:

kt∇T + qj = 0 in Ω (3.2)

qj = V ke∇V in Ω

T = T0 on ΓTD

n̂kt∇T = q̄ on ΓTN

where kt is the thermal conductivity matrix of the material. kt is a function of temperature and,

to a lesser extent, of the doping level. For a thermally isotropic material, kt is not dependent

on orientation of the material. Also, for a homogenous material, kt is only an implicit function

of position. The heat generation rate per unit volume, qj , is a function of voltage. The imposed
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temperature on ΓTD is denoted by T0 and q̄ is the specified heat flux vector on ΓTN .

The mechanical boundary value problem for linear elastic material is given as:

∇σ + Fb = 0 in Ω (3.3)

σ = C(ε− αT ) in Ω

ε =
1

2
(∇u+∇uT )

u = u0 on ΓMD

σn̂ = F̄ on ΓMN

where Fb is the body force, σ and ε are the symmetric stress and Green-Lagrange infinitesi-

mal strain tensors, respectively, and C is the elasticity tensor. For homogenous and isotropic

elastic material, C is independent of position and orientation. The parameter α is the thermal

expansion coefficient vector, which is also a function of temperature and hence of position. u0

is the imposed displacement on surface ΓMD and F̄ is the specified traction force applied to

the surface ΓMN . Note that the stress σ is a function of temperature T .

As posed in Equations (3.1), (3.2) and (3.3), the problem has no closed-form analytical

solution. Indeed, it is a formidable problem even for iterative numerical solution techniques

such as finite element method.

In the following, the equations are simplified for the single field of mechanical domain. A

new topology scheme is developed for MEMS mechanical actuators and the results are compared

with examples from the available literature. Since the focus of this thesis is on micromechanical

applications, the optimization scheme is designed to meet the limitations and concerns of micro-

device operations.

3.2 Mechanical Domain

Consider the design domain with boundary conditions shown in Figure 3-2. Assuming that

there is no internal body force, Fb = 0, the simplified governing equations for this mechanical
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Figure 3-2: Schematic of design domain Ω in single physics of mechanical boundaries.

domain are:

∇σ = 0 in Ω (3.4)

σ = Cε in Ω

u = u0 on ΓMD

σn̂ = F̄ on ΓMN

3.2.1 Constitutive Equations

The governing Equation (3.4) for each element at local coordinate x− y in xy plane is stated

as:

EA
∂u

∂x
+EI

∂2v

∂x2
= 0 (3.5)

where first term refers to axial truss element, second term refers to bending beam element, A

is the cross section of the beam element and I is the moment of inertia around the third axis

and E is the Young’s modulus of elasticity of the material.

The Duhamel-Neuman relation for a elastic body is written as:

σijkl = Cijklεkl (3.6)
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There exist no more than 21 distinct stiffness coefficients, Cijkl, even for the most general type

of anisotropic material. The Duhamel-Neumann equation in explicit matrix form is written as

[72]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ32

σ31

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1111 c1122 c1133 c1123 c1113 c1112

− c2222 c2233 c2223 c2213 c2211

− − c3333 c3323 c3313 c3312

− − − c2323 c2313 c2312

− − − − c1313 c1312

− − − − − c1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε32

2ε31

2ε12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

where 1, 2, and 3 correspond to general coordinates in x, y and z direction, respectively. When-

ever a material displays some kind of elastic symmetry, the number of distinct coefficients drops.

It is often customary to call the direction perpendicular to the planes of elastic symmetry the

principal elastic directions.

A special case of Equation (3.7) is when the material exhibit no preferred directions with

regard to its physical properties. Such materials are called isotropic. For isotropic material,

the elasticity matrix is [72]:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μ+ λ λ λ 0 0 0

λ 2μ+ λ λ 0 0 0

λ λ 2μ+ λ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.8)

where λ and μ are the Lamė elastic constants and, in terms of Young’s modulus E and Poison’s

ratio ν, are represented by:

μ =
E

2(1 + ν)
(3.9)

λ =
Eν

(1 + ν)(1− 2ν) (3.10)
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For isotropic materials the Duhamel-Neumann constitutive equations simplify to:

σij = 2μεij + λ²kkδij (3.11)

where δij , known as the Kronecker delta, satisfies the relations:⎧⎨⎩ 0 if i 6= j

1 if i = j
(3.12)

Equation (3.7) in 2D plane x− y is simplified to [72]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ11

σ22

σ12

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
2μ+ λ λ 0

λ 2μ+ λ 0

0 0 μ

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε11

ε22

2ε12

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.13)

For the bars and frames with solid cross sections, it can be assumed that Poisson’s ratio is zero,

so that [73]:

2μ = E (3.14)

λ = 0 (3.15)

which results in reducing Equation (3.13) to:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ11

σ22

σ12

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
E 0 0

0 E 0

0 0 E
2

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε11

ε22

2ε12

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.16)

and, assuming that shear strain effect is negligible in frame elements, results in:⎧⎨⎩ σ11

σ22

⎫⎬⎭ =

⎡⎣ E 0

0 E

⎤⎦⎧⎨⎩ ε11

ε22

⎫⎬⎭ (3.17)

Combining Equations (3.5) and (3.17), the finite element equation for a frame element in matrix
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form is [73]:

{σ} = [C]{ε} (3.18)

A frame structure is composed of beam elements that can transfer both axial forces and

bending moments. Because the assumption of linear small deformations is followed here, it

is assumed that they are decoupled and can be superpositioned. With this assumption, from

Equation (3.5) the elasticity matrix for a frame element is:

C =

⎡⎣ EAe 0

0 EI

⎤⎦ (3.19)

where I is the moment of inertia of the cross section around neutral axis, Ae is the cross section

of element, which is assumed constant along its length, and C is the elasticity matrix for a

frame element.

3.2.2 Finite Element Discretization

The design domain Ω is discretized with plane frame elements with prismatic cross sections.

Members in plane frame are designed to resist axial and bending deformations and are connected

by stiff joints. The two-node beam element and the axial-truss element are combined together

to form an element that can be used to analyze rigid-joint planar frameworks. It is assumed that

the axial and bending effects are uncoupled from each other, which is a reasonable assumption

within the framework of small deformation theory [74].

As shown in Figure 3-3(a), a local coordinate system is established for each element. Each

node has three degrees of freedom, two translations and one rotation. The moment of inertia

is assumed constant over each element and concentrated loads are allowed only at the nodes

of an element. In the local coordinate system, the element equations are a combination of the

truss element and beam element. The displacement vectors are:

{un} =
n
d1 d2 d3 d4 d5 d6

oT
(3.20)

{u} =
n
u1 v1 θz1 u2 v2 θz2

oT
(3.21)
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Figure 3-3: Degrees of freedom of a two-node frame element in (a) local coordinate and (b)
global coordinate.

where {un} and {u} are the local and global nodal displacements, respectively, ui represents the

axial deformation, and vi and θzi represent the bending deformations. The element equations

in the finite element method are derived using Rayleigh-Ritz method [74] with Hermitian shape

functions for displacement interpolation. Using the Hermitian interpolation shape functions,

the matrix of shape functions, N, is:

N =

⎡⎣ N1 0 0 N4 0 0

0 N2 N3 0 N5 N6

⎤⎦T (3.22)

where Ni is the Hermitian shape function. The total strain in Equation (3.18) is expressed in

terms of nodal displacements as:

{ε} = [B]T {d} (3.23)

B =

⎡⎣ N 0
1 0 0 N 0

4 0 0

0 N 00
2 N 00

3 0 N 00
5 N 00

6

⎤⎦T (3.24)

where prime denotes the differentiation with respect to x. Substitution in Equation (3.18) gives:

{σ} = [C][B]T {u} (3.25)

The element matrices are then assembled through enforcement of compatibility and equilibrium
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for nodes and elements and:

K =

Z
Ω
[B] [C] [B]T dΩ (3.26)

{F} = [K]{u} (3.27)

where [K], {F}and {u} are the global stiffness matrix, force vector and nodal displacements,

respectively. The boundary conditions are then imposed to solve the finite element equation

for displacement field [73].

The design domain is meshed with a finite number of nodes and elements. A full ground

structure is a set of elements in a grid of points where each point is connected to every other

point. In the literature, a full ground structure is recommended for the topology synthesis using

truss, beam or frame elements. A full ground structure is impractical to use as it involves very

long and overlapping elements in the continuum. Instead, the ground structure shown in Figure

3-4 is proposed here. The design domain is discretized with frame-like ground structure with

two different meshing policies to enable the study of mesh dependency of the solutions.

(a) (b)

Figure 3-4: Frame ground structure with (a) light mesh (b) dense mesh.

3.2.3 Statement of Problem

Because the compliant system optimization is posed in terms of a set of conflicting design

requirements, a type of optimization scheme is required to determine a compromise solution.

One way to handle conflicting design objectives is by using the multicriteria optimization.

The basis for the multicriteria formulation of an optimal compliant topology problem is the
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physical intuition that a compliant mechanism should meet both the flexibility and stiffness

requirements.

The multicriteria formulation based on the ratio of objectives, stated in Equation (2.18), is

the basis to derive the optimal topology of compliant mechanisms in this chapter. The strain

energy, SE from Equation (2.16) is the measure of stiffness and mutual strain energy, MSE

from Equation (2.17) is the measure of flexibility. To overcome the problem of one objective

dominating the solution in Equation (2.18), a new objective function is proposed here as:

Maximize :
(sign(MSE))m−1MSEm

SEn
(3.28)

where m and n are user defined power coefficients and (sign(MSE))m−1 is a term that keeps

the sign of MSE and the direction of output deflection, when m > 0 is an even number.

Note that SE is always a positive number. Addition of user defined power coefficients m and n

provides the option to scale the orders of magnitude of the two objectives to arrive at the desired

balance between the two criteria, avoiding one objective dominating the solution. The resulted

optimum topology is sensitive to the choice of the power coefficients, similar to Equation (2.17).

However, using the ratio type objective function reduces the sensitivity of solution to m and n

coefficients.

For a system with mechanical boundary conditions, as shown in Figure 3-2, the optimization

problem is stated as:

Maximize :
(sign(MSE))m−1MSEm

SEn
(3.29)

Subject to : lower and upper bounds on design variables

Mechanical equilibrium equations

flexibility constraints

stiffness constraints

Including the finite element discretization of design domain into Equation (3.29), and consider-

ing Ae, the cross section area of each element as the design variable, the optimization problem
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is posed as:

Maximize : (sign(MSE))m−1
(UTd K2U1)

m

(12U
T
3 K3U3)

n
(3.30)

Subject to :Alower ≤ Ae ≤ Aupper

K1U1 = Fin

K2Ud = Fd

K3U3 = −Fd

u = u0 on ΓMD

where Ae is the cross section area of the eth element and, Alower and Aupper are the lower and

upper bounds on design variable. In the next section, details of the mathematical solution and

implementation for this optimization problem are presented.

3.3 Implementation and Simulation Results

Here, the computational procedure and solution algorithm for the optimization statement of

Equation (3.30) is presented. Some examples are studied that illustrate the results of the

algorithm and compare these results with truss-element-based designs and continuum method

designs in the available literature.

3.3.1 Solution Technique

A genetic algorithm (GA) is adopted to solve the optimization problem stated in Equation

(3.30). Solving with GA requires no gradient information and can, in principle, achieve the

global optimum in multiple runs. The flow chart of binary-coded GA implemented in Matlab

[75] is presented in Figure 3-5. This algorithm finds the maximum of the fitness function. The

user may define all or part of an initial population, e.g. xi = 0.5(xupper + xlower), or leave the

program to choose an initial population randomly between the lower and upper bounds.

The default algorithm uses a fixed population size and no generational overlap. Three ge-

netic operations: reproduction, crossover, and mutation are performed during procreation. The

probability that an individual of the population will reproduce is proportional to its fitness.
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Figure 3-5: Flow chart of implemented binary-coded genetic algorithm.
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Individuals chosen for reproduction are mated randomly. Mating produces two offspring (con-

stant population size). Crossover in mating occurs with probability Pc and the crossover index

is randomly selected. Each feature of the offspring can mutate independently with probability

Pm.

Convergence of the algorithm is based on two criteria. First, the change in the design

variable must be sufficiently small. Second, the value of the design objective is compared to

the value from the previous iteration. Since this is a maximization problem, the algorithm is

considered to have converged when the design objective stops increasing. If one of these criteria

is not met, the algorithm returns and repeats the procedure using the updated population

as the starting point until the maximum number of generations is reached. If the number of

maximum generations is reached and the algorithm has not yet converged, a message will show

that: ”Maximum number of generations reached without termination criterion met. Either

increase maximum generations or ease termination criterion.”

Graphical User Interface

The binary-coded GA was implemented in Matlab [75]. A graphical user interface (GUI) is

designed to ease the monitoring of the results. Figure 3-6 presents a schematic flow chart of

the main optimization program developed in Matlab [75].

Because the focus of this research is on micro-compliant mechanisms, the program is de-

signed to use μm − kg − s system of units. In this case, dimensions are in μm, forces are in

μN , and pressure is in MPa.

This details of designing a user interface for a topology optimization package are explained

in Appendix A. The GUI designed for a single field of a mechanical domain is a simplified

version of the GUI presented in Appendix A for the multi-physics optimization package and

follows the same procedure.

In the following section, several design examples illustrating the results of the algorithm are

presented.
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Figure 3-6: Flow chart of Graphical User Interface of program, implemented in Matlab.
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3.4 Numerical Examples

In this section, compliant mechanism design examples are presented which illustrate the results

of the algorithm and compares them with truss-element-based designs and continuum method

designs. In all of the examples, the design problem is illustrated in terms of the design do-

main, boundary conditions, applied load, and required output deflection. The agreement of the

optimal solution with the problem specifications is discussed.

The objective here is to synthesize the topology of a compliant mechanism and satisfy the

given input and output specifications and other constraints. The space constraints within which

the mechanism should fit are defined as a rectangular design domain. The prescribed design

domain is divided into a number of nodes and a network of frame elements connecting these

nodes which serves as an initial guess. The optimized compliant mechanism is a network of a

subset of frame structure.

3.4.1 Compliant Gripper Mechanism

For the purpose of comparison, solutions to the compliant gripper problem using both discrete

optimization with truss elements and using a continuum formulation with the homogenization

method are presented [1].

A compliant gripper is a one-piece device that has no kinematic joints and requires no assem-

bly. It can effectively transmit the input force/displacement to the output due to the absence

of wear and backlash. Potential application areas include MEMS, nano-scale manipulators, and

precision tools.

Figure 3-7(a) shows a concept of an compliant gripper. A symmetric half-view of the design

problem is shown in Figure 3-7(b), where the dashed line represents the design domain, and the

boundary conditions (nodal constraints) are as indicated. The design specifications are that an

applied force, Fin, causes the motion, ∆, in the vertical direction. The direction of the desired

output displacement is specified in terms of a unit vector. Note that the point of application of

the applied force is constrained to move only in the horizontal direction due to the symmetry
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Figure 3-7: (a) Schematic of a compliant gripper mechanism and (b) the symmetric half view
of the design domain.

of the problem. The other problem specifications are [1]:

Fin = [−10, 0] kN (3.31)

∆ in the direction of [0,−1]

E = 2.0 GPa

0.001 < A < 0.5

A = tw, t = 0.5, 0.002 < w < 1

Convergence Criteria = 1e− 5

Figure 3-8(a), shows the initial frame ground structure. Each node has three degrees of freedom

(x, y, θ). The objective function is:

Maximize : sign(MSE)
MSE2

SE
(3.32)

where the initial guess is randomly generated between upper and lower bounds. In order to

maximize the design objective while satisfying the constraints, the algorithm changes the value

of the design variables in each iteration so that the uneconomical members tend toward the

lower bound constraints and the economical members tend toward the upper bound constraints.

The optimal solution is the most efficient arrangement of beam members in terms of the design
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objective and constraints. The optimum gripper mechanism is illustrated in Figure 3-8(b). The

remaining members are superimposed on the initial frame structure with thick lines. Figure

3-8(e) shows the full schematic of the optimized solution of the compliant gripper.

The algorithm converged to optimal solution after 44 iterations, as shown in Figure 3-8(c).

A finite element analysis of this solution was performed in order to verify the solution behavior.

The result is shown in Figure 3-8(d), in which the undeformed shape is denoted by the solid

lines and the deformed shape is denoted by the dashed lines. The displacements calculated here

are for the optimal design subjected to the applied load Fin.

The algorithm generated a solution that efficiently connects the point of application of

the load, the point of desired output displacement and the support points. The use of frame

elements tends to yield solutions without flexural pivots because the elements bend as a whole.

Therefore, qualitatively speaking, the resulting designs tend to have distributed compliance

rather than lumped compliance.

Mesh refinement should ideally yield the same topology. To study the mesh dependency

of the optimum design, the domain is discretized with a dense meshing scheme, as shown in

Figure 3-9(a). The resulted optimum solution from this meshing scheme is shown in Figure

3-9(b). The optimum solution resulting from dense meshing is compared with the mechanism

in Figure 3-8(d). These two structures are very similar in principle, which indicates the mesh

independency of the optimum solution configuration. Figure 3-10 shows the topology design

of the gripper with full truss-ground structure as the initial guess (Figure 3-10(a)). Figures

3-10(b) and (c) show the convergence of the topology to the optimum solution in Figure 3-

10(d). Compared with the frame-ground structure in Figure 3-8(d), these designs share some

similarities in topology but are different in principle. This resultant topology has overlapping

elements which are connected with pin joints.

In terms of manufacturability, the frame element approach provides designs that can be

most authentically realized. The optimum solution is Figure 3-10(d) is not feasible to fabri-

cate through MEMS fabrication techniques. The joints connecting the truss elements must

be replaced by pseudo hinge-like structures if a jointless compliant mechanism is to be physi-

cally realized. The physical characteristics of the optimized design may be lost in making that

conversion to flexural hinges. In addition, high stress concentrations in flexural hinges are a
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Figure 3-8: Compliant gripper mechanism design (a) Initial guess, (b) optimized solution (c)
convergence history, (d) finite element model and (e) full view of optimum gripper mechanism.
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Figure 3-9: (a) Dense meshing scheme for gripper mechanism design and, (b) deformed and
undeformed shape of optimal mechanism.
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(a) (b)

(c) (d)

Figure 3-10: Compliant gripper design generated by truss elements [1]. (a) initial guess, (b)
125 iterations (c) 250 iterations and (d) optimal solution after 448 iterations with finite element
model.

drawback.

Figure 3-11 shows the optimum solution of a gripper using the continuum homogenization

method [2]. The solution shows the checkerboard patterns and narrow flexural hinges in areas.

Checkerboard patterns often appear in the optimal configuration when using the continuum

method because of numerical instability. A Checkerboard patch is a pattern of alternating

solid and void elements in an optimal topology. The appearance of such patterns is common in

topology optimization and is attributed to poor numerical modelling and the use of lower order

finite elements [76].

From a computational efficiency point of view, the proposed GA is the most efficient, fol-

lowed by truss ground structure. The continuum method generates more sophisticated struc-

tures than the other two and is therefore the most computationally expensive. From the re-

peatability of the resulted design point of view, the implemented GA shows a better convergence

to an unique solution when compared with SLP or SQP, which have been used in the literature
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Checkerboard patterns and 
gray scale material

Flexural hinge

Figure 3-11: Compliant gripper design generated by continuum homogenization method after
350 iterations [2]. This design is not compatible for MEMS fabrication because of checkerboard
patterns. It also involves high stress concentration in narrow sections and flexural hinges.

and are highly dependent on the initial guess. The algorithm results show very similar designs

in different runs.

Once the mechanism topology is determined, an actual compliant mechanism prototype can

be designed. If the performance of the modified solution is satisfactory, the process is continued

and a CAD interface file in the IGES format is generated. The IGES format is chosen for its

compatibility with many modelling and analysis software packages, e.g. ANSYS [11].

When MEMS compliant structures are the target, this layout can be transferred to the

commercial layout editors available to create required masks for fabrications. Manufacturability

of the resulted design depends on input parameters, such as the lower limits on design variables.

To guarantee the compatibility of the optimum design with available MEMS processes, the

design rules and limited features of the PolyMUMPs [77] process have been included in the

element removal scheme inside the algorithm. These, of course, can be changed according to

any other process limits.

3.4.2 Compliant Crimping Mechanism

An example of a compliant crimping mechanism is shown in Figure 3-12(a). The input force

is transferred to the output port and some energy is stored in the form of strain energy in the
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flexible members. Note that if the entire device were rigid, it would have no mobility and it

would be a structure.

(a) (b)

Δ

inFF

F

Δ

Figure 3-12: (a) Compliant crimping mechanism [3] [4] and, (b) upper half view of compliant
crimping mechanism design domain.

The design domain shown in Figure 3-12(b) represents the upper half view of a crimping

mechanism, since it is assumed to be a symmetric problem without any loss of generality in the

solution procedure. The design specifications are that an applied force, Fin, causes the motion,

∆, in the horizontal direction. The direction of the desired output displacement is specified in

terms of a unit vector. Notice that the point of application of the applied force is constrained to

move only in the horizontal direction due to the symmetry of the problem. The other problem

specification are:

Fin = [−1,−5] kN (3.33)

∆ in the direction of [−1, 0]

E = 2.0 GPa

A = tw, t = 0.5, 0.002 < w < 0.5

Convergence Criteria = 1e− 5

The initial guess is a modular frame structure, shown in Figure 3-13(a), with a random
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distribution of cross sectional areas. The node and element numbering and the optimized

solution is shown in Figure 3-13(b) with thick lines. The GA converged to optimal solution

after 25 iterations, as shown in Figure 3-13(c), and generated a solution that efficiently connects

the point of application of the load, the point of desired output displacement and the support

points. The corresponding finite element model of the optimum solution is shown in Figure

3-13(d), in which the deformed shape is denoted by the dashed lines and the undeformed shape

is denoted by the solid lines. Figure 3-13(e) shows the complete crimping mechanism and the

finite element model. With inspection, it is evident that the output displacement is in the

specified direction. Figure 3-14 shows the initial guess with full truss-ground structure and

resulting optimum mechanism [5]. When compared with frame elements, the initial meshing is

extensive and the algorithm converges after 386 iterations. In comparison, the GA converged

after 23 iterations. As mentioned previously, this optimum solution is not compatible for MEMS

fabrication because of element overlapping and pin joints.

3.4.3 Design issues

Having defined the objective function to synthesize a compliant mechanism starting from the

desired input/output specifications, the influence of the following design parameters on the

behavior of the objective function is discussed here.

One limitation of previous formulations in the literature is that the MSE (see Equations

(2.14) and (2.17)) plays a dominant role in controlling the behavior of the entire objective

function. Subsequent studies revealed that the MSE tends to approach infinity because of the

attempt to maximize MSE with force as input. Therefore, to maximize MSE, or compliance,

the design variables, which are cross sectional area, approach lower bounds, leading to imprac-

tical results. The first attempt to remedy the situation involves proper scaling of the two terms,

MSE and SE. Having user-defined powers m and n in the proposed formula serve this scaling

purpose. By employing the proposed formulation in Equation (3.28), MSE and SE can be

scaled properly, avoiding domination of the objective function by MSE.

Formulations that maximize flexibility have been shown to be ill-formulated for compliant

mechanism optimization [15]. As a solution, in [16] stress constraints were employed to account

for failure modes. However, the stress constraint may yield to overly stiff topologies and may
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Figure 3-13: Compliant crimping mechanism design (a) Initial guess frame ground structure,
(b) optimized solution (c) convergence history of GA (d) finite element model of optimum
solution and (e) full view of optimum crimping mechanism.
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Figure 3-14: Initial guess and resulted compliant crimping mechanism design using truss ele-
ments [5].
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also be inadequate to model the failure criteria directly. As a solution, a new strength constraint

should be employed while maximizing the output displacement .

The optimized solution depends on the lower limits on the design variable and in order to

avoid mathematically viable but physically impractical designs, one should avoid using meaning-

less bounds. Typically, in MEMS applications the design domain is restricted by the packaging

constraints, and the bounds on design variables are constrained by the fabrication process limits.

For instance, the minimum width of the beam element cannot be less than 2 [μm] using multi-

user microfabrication techniques available though MUMPs [77]. The current element removal

policy in the literature is to eliminate the beam members whose design variables reached the

lower bound constraint, when the algorithm converges. The solution consists of beam members

whose [design variable reaches (or is close to) the upper bound. If the lower bound is defined

considering MEMS fabrication limits, e.g. 2 [μm], the final design consists of elements on or

close to 2 [μm], which still significantly contribute to the stiffness of the structure. If these

elements are eliminated, the resulting structure may not perform as desired. This issue should

be addressed by a new element removal policy for topology optimization in MEMS.

The designer has to strike a balance between the choice of material and actuator displace-

ment. For a design domain described by bounds on the design variables and materials, the

designer may wish to adjust the magnitude of the input load. The structure becomes more

flexible as the magnitude of the input force is increased. The choice of material has an effect

on the behavior of the objective function, similar to that of the magnitude of the input force.

That is, when the material becomes stiffer, when all other parameters are fixed, the individual

element of the structure becomes thinner.

These identified design issues will be addressed in Chapter 5.

3.5 Conclusions

In this chapter, an improved multi criteria objective function was proposed. The proposed

multi criteria formulation was implemented with genetic algorithm. The potential issues in

implementing the algorithm with MEMS fabrication limits were addressed for further extension

of this method to multi-disciplinary domains. Topology optimization of a compliant gripper
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and a compliant crimping mechanism were compared with those of a truss ground structure

and homogenization method from the literature. The comparison verifies that the frame-ground

structure is the most suitable for MEMS applications. In addition, the developed GA effectively

overcomes the previous convergence difficulties. The proposed objective function implemented

with the genetic algorithm shows distinct advantages over other methods, such as:

• The proposed objective function provides control over the importance of flexibility or

stiffness with user control power coefficients. Using proper powers, the problem of one

objective dominating the solution can be avoided.

• The resulting design is a frame-like structure, which is feasible for MEMS fabrication.

There is no joint or element overlapping, as seen in truss element method, or hinges,

checkerboards and gray-material regions, as seen in homogenization method. The use

of beam elements tends to yield solutions without flexural pivots because the elements

bend as a whole. Therefore, qualitatively speaking, the resulting designs tend to have

distributed compliance rather than lumped compliance.

• The GA shows a better repeatability. It converges to very similar solutions in different

runs, when compared with SLP or SQP, in which the solutions are strongly dependent on

an initial guess.

• The continuum method generates more sophisticated structures than the other two and is,

therefore, the most computationally expensive. The frame ground structure is the most

efficient, followed by the truss-ground structure.

In the next chapter, the analysis is extended to multi-disciplinary micro-domains with cou-

pled boundary conditions. The governing equations for the case of electro-thermo-mechanical

domain are derived and solved with a new, fully coupled analysis method. This new coupled

field solver enables pre-fabrication study of electro-thermo-mechanical devices and allows de-

signers to modify their designs. It is also developed to serve as the core finite element solver in

the topology optimization scheme developed later in this thesis.
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Chapter 4

A New Fully-Coupled Analysis

Method for Multi-physics Domains

Although there is a wealth of literature in the modelling of thermal and electro-thermal ac-

tuators, the literature is limited to particular systems with a limited number of elements.

Developing a new, fully-coupled, finite element formulation is necessary to solve a general multi-

disciplinary domain with arbitrary arrangement of boundary conditions and large number of

nodes and elements. This method of solving is essential in developing topology optimization of

MEMS devices in which an automated modelling and solution procedure is required. This chap-

ter presents a new, coupled formulation for automated modelling of multi-disciplinary domains

using a coupled resistive circuit method, modified nodal analysis (MNA), and finite element

analysis (FEA). An algorithmic approach for sequential analysis of an arbitrary ground struc-

ture with multi-disciplinary boundaries is developed and implemented in Matlab [75] with a

graphical user interface. The results are then applied to examples from previous work in the

literature. This formulation provides a fast and reliable tool to analyze electro-thermo-elastic

devices, which allows large flexibility in the selection of mechanical, thermal and electrical

boundary conditions. It also enables topology optimization in thermal and electro-thermal ac-

tuators. Moreover, it provides a powerful tool for the development, evaluation, and modification

of electro-thermal actuators and sensors.
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Figure 4-1: Electro-thermo-elastic domain with applied voltage, specified temperature, fixed
displacements and specified heat flux at the boundary Γ.

4.1 Coupled Field Modelling

4.1.1 Governing equations

For an electro-thermo-mechanical actuator, the general multi-physics domain presented in

Chapter 3, Figure 3-1, is simplified as seen in Figure 4-1. The design domain Ω is defined

as the solid design region. The boundary conditions on boundary Γ, as shown in Figure 4-1,

are applied voltage, in the electrical boundary condition ΓED, the internal current source is

zero, the thermal boundary conditions are a specified temperature at ΓTD and a specified heat

flux at ΓTN , the mechanical boundaries are fixed displacements at ΓMD and there is no exter-

nal applied force in the form of input in the micro-domain. There are reaction forces at the

mechanical boundary, which will be calculated in FE analysis.

A constrained elastic structure deforms upon heating. The geometrical shape of the struc-

ture, the manner in which the structure is supported at its boundaries, and the material prop-

erties influence the thermally induced deformation. In micromechanical structures, achieving

Joule heating is possible through internal heat generation due to current distribution.

For the domain shown in Figure 4-1, the general Equations (3.1), (3.2) and (3.3) are sim-
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plified as:

∇2V = 0 in Ω (4.1)

qj = J
2Re in Ω

kt∇T + qj = 0 in Ω

∇σ = 0 in Ω

σ = C(ε− αT ) in Ω

subject to:

V = V0 on ΓED (4.2)

T = T0 on ΓTD

n̂kt∇T = q̄ on ΓTN

u = u0 on ΓMD

The equations are solved in the listed order. The first step is to solve the continuity equations

of the current with a given voltage boundary condition. The current flow in each element causes

Joule heating. This internal heat source is the input to the next step, which is the steady-

state heat transfer equation. The heat transfer equilibrium is solved to find the temperature

distribution in the structure. The thermo-elastic equation is then solved to find thermally

induced displacements.

Electro-thermo-mechanical actuators undergo rather large displacements; however, evalua-

tion of each element in the finite element model shows that the strain level is still small and a

linear elastic model is sufficient to study the problem.

4.2 Voltage and Current Distribution

The design domain is defined and discretized into a finite number of nodes and frame elements.

The continuity equation of current in the electrical field is solved using modified nodal analysis

method (MNA) [78] and resistive circuit method [79]. Although the node voltage method and
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loop current method are the most widely used, MNA is a powerful technique that results in

larger systems of equations than the other methods, but it is easier to implement algorithmically.

This offers a substantial advantage for automating the procedure and enables multiple input

voltages. The method described here, with some modifications, as explained in the following, is

compatible with finite element analysis and produces matrix form equations to solve for both

the voltage at each node and the current through each element with the resistive circuit method.

Since the meshing policy for all the domains is unified, the set of equations fromMNA should

be compatible with finite element discretization. To overcome this problem, after the initial FEA

mesh is generated, a search algorithm is developed inside the program to unify the MNA and

FEA node and element connectivities in mesh structure. The result of this search algorithm is

a resistive circuit that enables coupling of electrical, thermal and mechanical domains properly.

Each element is placed in its expected place to form the MNA main matrices and solve

the voltage distribution equation. The general rule in MNA is to number the ground node

to 0 and continue numbering the other nodes to avoid singularity in matrix equations. To

solve this problem, another search algorithm is developed that searches for specified ground

voltage in boundary conditions and eliminates that node from the connectivity matrices of the

electrical domain. After the voltage distribution is solved, the search algorithm places the node

and corresponding elements back in their corresponding place to form the FEA matrices. This

method results in a fully-coupled, resistive circuit and finite element analysis between electrical

and thermo-elastic fields.

4.2.1 Equivalent Resistive Circuit

The first step is to generate an equivalent resistive circuit from the initial mesh of the frame

ground structure. A beam element has an equivalent electrical resistance, as in [80]:

Re = ρ0
Le
Ae

(4.3)

where Re is the beam equivalent electrical resistance [Ω], ρ0 is the electrical resistivity of the

material at room temperature [Ω-μm], Ae is the cross section area of the element [μm2], and

Le is the element length [μm]. Usually, the resistivity ρ is assumed to have a linear dependency
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Figure 4-2: (a) Frame structure with voltage at input and (b) its equivalent resistive circuit.

on the temperature of the material, as in [80]:

ρ = ρ0[1 + ξ(T − T0)] (4.4)

where ρ is the material resistivity at temperature T [◦C], ξ is the temperature coefficient of

electrical resistivity and T0 is the initial temperature. Using Equation (4.3), ρ0 is replaced by

ρ to incorporate the resistivity dependency to temperature. As an example, Figures 4-2(a) and

(b) show an initial frame structure generated with 8 nodes and 15 elements and its equivalent

resistive circuit, respectively. Solving a set of equations that represent a circuit of resistive

elements is straightforward; however, forming the matrix equations requires more attention to

ensure compatibility with the FE mesh. The procedure is described in the following section.

4.2.2 Modified Nodal Analysis Method, MNA

Applying MNA to a circuit of resistors and independent voltage sources, as shown in Figure

4-2, results in a matrix equation of the form:

AX = Z (4.5)
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Voltage across an independent voltage source is specified independently of any other variable

in a circuit (e.g. current).

For a circuit with g node and h independent voltage source:

• A is (g + h)(g + h) matrix in size. The (g × g) part of the matrix holds the known

quantities, which are the resistance of elements, and the rest of A matrix contains only 0,

1 and -1.

• X matrix is an (g + h) × 1 vector that holds the unknown quantities, nodal voltages

and the current through the independent voltage source. The top g elements are the

nodal voltages. The bottom m elements represent the current through the h independent

voltage sources.

• Z matrix is an (g + h) × 1 vector that holds only known quantities, which are voltage

boundary conditions. The top n elements are zero. The bottom h elements represent the

h independent voltage sources in the circuit.

The circuit is then solved by a matrix manipulation:

X = A−1Z (4.6)

MNA Algorithmic Approach

An algorithmic method for generating MNA equations is described here. There are three

matrices that must be generated: the A matrix, the X matrix and the Z matrix, as explained

previously. Developing the X and Z matrices is rather straightforward and was explained

previously.

The A matrix will be developed as the combination of four smaller matrices, G, B, C, and

D in the form:

A =

⎡⎣ [G] [B]

[B]T [C]

⎤⎦ (4.7)

where G matrix is (g×g) and is determined by the interconnections between the resistive circuit

elements, B matrix is (h× g) and is determined by the connection of the voltage sources and
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C matrix is (h× h) and is zero when independent voltage sources are considered. G matrix is

an (g × g) symmetric matrix formed in two steps:

• each element in the diagonal matrix is equal to the sum of the conductance (one over the

resistance) of each element connected to the corresponding node. So, the first diagonal

element is the sum of conductances connected to node 1, the second diagonal element is

the sum of conductances connected to node 2, and so on.

• the off diagonal elements are the negative conductance of the element connected to the

pair of corresponding node. Therefore, a resistor between nodes 1 and 2 goes into the G

matrix at location (1,2) and locations (2,1).

Rules for making B matrix:

• B matrix is an (g×h) matrix with only 0, 1 and -1 elements. Each location in the matrix

corresponds to a particular voltage source (first dimension) at a node (second dimension).

If the positive terminal of the ith voltage source is connected to node k, then the element

(i, k) in the B matrix is a 1. If the negative terminal of the ith voltage source is connected

to node k, then element (i, k) in B matrix is a -1. Otherwise, elements of B matrix are

zero.

Rules for making the C matrix

• C matrix is an (h× h) matrix that is composed entirely of zeros.

Following this algorithmic approach, Equation (4.6) is solved for the nodal voltages and

current distribution in each element.

Implementing MNA inside the FEA mesh

Here the method of coupling resistive circuit to initial FEA mesh is explained. For the example

of Figure 4-2, g = 9 and h = 2, the voltage source V1 is connected between two nodes 1

(positive) and 6 (negative), V2 is connected to node 2 (negative) and 3 (positive) and the
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ground is connected to node 7. The MNA equations are formed as:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 1
R1,2,4

− 1
R1

0 − 1
R2

0 ... ... ...

...
P 1

R1,3,8,9,10
− 1
R9

− 1
R3

− 1
R10

... ... ...

... ...
P 1

R9,11,15
0 − 1

R11
... ... ...

... ... ...
P 1

R2,3,5,6
0 ... ... ...

... ... ... ...
P 1

R10,11,12,13
... ... ...

... ... Sym ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)

B =
h
1 −1 1 0 0 −1 0 0

iT
C =

⎡⎣ 0 0

0 0

⎤⎦
X =

h
V1 V2 V3 V4 V5 V6 V7 V8 IV1 IV2

iT
Z =

h
0 0 0 0 0 0 0 0 V1 V2

iT
where Ri are equivalent resistivity for ith element, Vi are the nodal voltages and IV1 and IV2 are

the current through voltage sources 1 and 2, respectively. The rest of the elements of matrix G

in Equation (4.8) are derived following the guidelines outlined above.

To apply MNA to the initial FEA meshing, the ground node is eliminated from the set of

the equations and, after solving for the nodal voltages, it is placed back into voltage vector at

its corresponding node number. It is obvious that for a ground node the voltage is zero. For

the example shown here, corresponding rows and columns to node 7 are eliminated from all the

matrices. After solving for nodal voltages, V7 = 0 is placed back in the voltage vector at row

7. The first 8 numbers in voltage vector are the nodal voltages and the last two numbers are

currents through voltage sources. Then the current through each element is calculated as

Ie =
Ve2 − Ve1
Re

(4.9)
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where Ie is the current through element e, Ve1 and Ve2 are the nodal voltages at the nodes of

element and Re is the equivalent resistant of element e. The current distribution in each element

is calculated from MNA analysis. The internal Joule heating for each element becomes:

Qe = I
2
eRe [W ] (4.10)

where Qe is the internal heat generation in element e. The internal heat generation in Equation

(4.10) is used in next step for thermo-elastic finite element analysis and is the key quantity that

couples the electrical and thermo-elastic field.

4.3 Temperature Field

In this section, the derivation of the finite element equations and matrices for steady state heat

transfer in a generated mesh of frame elements is explained. Since a beam element is long and

slender, a one-dimensional analysis of the heat flow longitudinally along the beam length is

performed.

For a body with internal heat generation, as shown in Figure 4-3, the governing differential

equation in expressed as strong form of 1-D Poisson’s equation, which is as follows for heat

transfer at steady-state [81]:
∂

∂x
(k
∂T

∂x
) + qj = 0 (4.11)

where k is the thermal conductivity of the material, qj is the internal heat generation per unit

volume and T is the temperature of interest within the domain.

The boundary of the domain is divided into two types of boundary conditions: 1) essential

boundaries, which represent the fixed temperatures and 2) natural boundaries, which represent

heat flux. Figure 4-3 shows thermal boundary conditions on the surface of a domain with

internal heat generation. The heat loss is considered positive direction of flux. The natural

boundary conditions can be expressed in terms of a statement of equilibrium between internal

and external heat flux at any point on the boundary as:

qxn̂x = qs + qh + qT on S1, S2 and S3 (4.12)
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Figure 4-3: Thermal boundary conditions on the surface of a domain with internal heat gener-
ation. The heat loss is considered positive direction of flux.

where qx is the internal heat flux in x direction and qxn̂x represents the proportion of qx normal

to the boundary, qs is conductive heat loss flux on surface S1, qh is the convective heat flux

on surface S2, qT is the reaction heat flux due to specified temperatures on surface S3. In

general, one never knows the actual distribution of qn, only the reaction forces it causes on the

boundary. The remaining component of qx will run parallel to the body and, therefor, will stay

inside the boundary. Knowing that qx = −k ∂T∂x , Equation (4.12) is rewritten as [82]:

−k∂T
∂x
n̂x = qs + h(T − T∞) + qT Natural boundary on ΓTN (4.13)

where h is the convection heat transfer coefficient, and T∞ is the ambient temperature. This is

valid for any point on the boundary Γ.

The essential boundary conditions are the fixed temperatures on the surface S3 represented

as:

T = TS3 Essential boundary on surface S3 (ΓTD) (4.14)

and TS3 is the specified temperature on surface S3. Galerkin’s method is employed to solve

Equation (4.11). To apply the Galerkin method, the equation is multiplied by a weight function
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and integrated over the domain Ω of the element as [83]:

Z
Ω
Ni

µ
∂

∂x
(k
∂T

∂x
) + Q̃

¶
dΩ = 0 i = 1, 2, ...,m (4.15)

where Ni is the weight function which is the element temperature interpolation shape function

and m is the number of nodes.

Applying the Green-Gauss theorem to the first term and knowing that div(−q) = ∂(−qx)
∂x ,

Equation (4.15) results in:

I
Γ
Ni(k

∂T

∂x
n̂x)dΓ−

Z
Ω
(k
∂Ni
∂x

∂T

∂x
)dΩ+

Z
Ω
NiQ̃dΩ = 0 i = 1, 2, ...,m (4.16)

Substituting natural boundary conditions from Equation (4.13) into Equation (4.16):

Z
Ω
(k
∂Ni
∂x

∂T

∂x
)dΩ =

I
Γ
Ni(−qs−h(T −T∞)−qT )dΓ+

Z
Ω
NiQ̃dΩ i = 1, 2, ...,m (4.17)

To form the finite element matrix equations, temperature T should be expressed in terms of

the shape function as T = [N ]T{T}, where T is the temperature of interest within the body,

[N ] is the matrix of shape functions, [N ] = [ N1 ... Nm ]Tand {T} is the vector of nodal

temperatures, {T} = { T1 ... Tm }T . Also temperature gradients are expressed as [84]:

½
∂T

∂x

¾
= [ ∂N1

∂x ... ∂Nm
∂x

]T{T} = [B]T{T} (4.18)

Also from Fourier law:

qx = −k
∂T

∂x
= −[k]{∂T

∂x
} = −[D][B]T{T} (4.19)

Substituting Equations (4.18) and (4.19) in Equation (4.17) results in general matrix form of

finite element equation for one-dimensional steady-state heat transfer as:

Z
Ω
[B][D][B]T{T}dΩ = (4.20)

−
I
S1

qs[N ]dΓ−
I
S2

h[N ][N ]T{T}dΓ+
I
S2

hT∞[N ]dΓ−
I
S3

qT [N ]dΓ+

Z
Ω
Q̃[N ]dΩ
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4.3.1 Heat transfer in micro domain

In the following section, the effects of micro-dimensions on general heat transfer in Equation

(4.20) are discussed.

There are three possible modes of heat transfer: convection, conduction and radiation.

Natural Convection

The dimensionless number that describes buoyancy driven flow from a hot surface and indicates

the importance of natural convection is Raleigh number, Ra [82]:

Ra =
gαair
υβ

(T − T∞)D3 (4.21)

where g is the acceleration due to gravity, αair is the coefficient of thermal expansion of air,

υ is the kinematic viscosity of air, β is the thermal diffusivity of air, T is the heating element

temperature, T∞ is the ambient temperature, and D is the characteristic dimension, which is

width or thickness for a beam, depending on the convecting surface. In the macro-world, Ra is

typically large, i.e. in the order of 105 to 109, and convection is therefore important. For a beam

of 2 [μm] in width and thickness at a temperature of 650 [◦C], Ra = 2.7× 10−8. Therefore, the

micro-scale heat transfer takes place by conduction, as opposed to convection.

Conduction

The heat is transferred to substrate by conduction between the microstructure and the substrate

through air. As shown in Figure 4-4, if the vertical spacing between the beam and the substrate,

δ, is 2 [μm], the conduction heat transfer coefficient hs can be approximated by [6]:

hs =
kair
δ

(4.22)

where kair is the air thermal conductivity [W/m◦C].Using a kair of approximately 0.03 [W/m◦C]

for air, hs is calculated to be 15,000 [W/m2 ◦C]. Note that this value of hs is much larger than

typical macro-scale values. The thermal conductivity of material reduces as temperature in-

creases but its effect is negligible for air [85]. In [86] a shape factor is proposed to account for
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Figure 4-4: Convective heat loss to substrate in micro-dimensions.

the impact of the shape of the element on heat conduction to the substrate. For a beam with a

rectangular cross section and dimensions as shown in Figure 4-4, shape factor S is defined as:

S =
t

w
(2
δ

t
+ 1) + 1 (4.23)

where S is the non-dimensional shape factor and:

qs = Shs(T − Ts) (4.24)

where hs = kair/δ is the equivalent conduction coefficient and Ts is the substrate temperature.

One may notice that hs has the same units as the convection coefficient [W/m2 ◦C].

Radiation

A micro-beam may reach a very high temperature due to current through element and material

high resistivity. In this case, radiation effects may become important. The radiation heat

transfer coefficient is given by [81]

Kr = ²σs(T + T∞)(T
2 + T 2∞) (4.25)

where ² is the emissivity of material, which is 0.77 for polysilicon, and σs is the Stefan-Boltzman

constant. The heat transfer coefficient for radiation was found to be roughly 5-20 [W/m2 ◦C],

compared to 15000 [W/m2 ◦C] for conduction. Even at very high temperatures, i.e. 1000 [◦C],

less than 1% of the heat is lost to the surrounding by radiation [87]. It can be concluded that,

in micro-scale, the heat lost to surrounding by conduction and convection and radiation effect
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is negligible [85].

4.3.2 Finite element formulation for heat transfer in micro-domain

Substituting qs from Equation (4.24) into Equation (4.20) and collecting the temperature terms

in left hand side, the general finite element equation for micro-domain is written as:

Z
Ω
[B][D][B]T {T}dΩ+

I
S1

Shs[N ][N ]
T{T}dΓ+

I
S2

h[N ][N ]T{T}dΓ = (4.26)

+

I
S1

ShsTs[N ]dΓ+

I
S2

hT∞[N ]dΓ−
I
S3

qT [N ]dΓ+

Z
Ω
Q̃[N ]dΩ

where the right hand side contains the thermal stiffness matrix terms and the left hand side

terms are the thermal forces. As mentioned before, in the micro-domain conduction through

air is similar to natural convection and h and hs have the same units of dimensions. Therefore,

qh and qs both contribute to the thermal stiffness matrix in the right hand side.

Taking into account the micro-domain effects on the heat transfer phenomenon, the effect

of the natural convection can be neglected and Equation (4.26) is rewritten as:

∙Z
Ω
[B][D][B]TdΩ+

I
S1

Shs[N ][N ]
TdΓ

¸
{T} = (4.27)I

S1

ShsTs[N ]dΓ−
I
S3

qT [N ]dΓ+

Z
Ω
Q̃[N ]dΩ

and in finite element form:

[Kc +Ks] {T} = {fs}+ {fT}+ {fQ} (4.28)

where Kc is the conductive thermal stiffness matrix, Ks is the stiffness matrix, a component

of conduction through air gap. Ks is one of the two components of the heat conduction to

substrate through air gap. The other component is fs, the heat flux vector due to conduction

through air. fQ is the heat flux vector due to internal heat generation and fT is the reaction

heat flux vector resulting from specified temperatures. The reaction heat flux due to specified
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temperatures, fT , are always left as nodal values.

Kc =

Z
Ω
[B][D][B]TdΩ (4.29a)

Ks =

I
S1

Shs[N ][N ]
TdΓ (4.29b)

fs =

I
S1

ShsTs[N ]dΓ (4.29c)

fT = −
I
S3

qT [N ]dΓ (4.29d)

fQ =

Z
Ω
Q̃[N ]dΩ (4.29e)

Note that in driving finite element equations, heat flux out of the surface, i.e. heat loss,

was defined positive. Now the temperature interpolation functions (shape functions) must be

defined, in order to continue with development of finite element formulation. Two sets of shape

functions are considered here: linear and quadratic.

4.3.3 Linear temperature interpolation

Considering linear shape function for temperature distribution in a two node beam element,

T (x) = α0 + α1x and interpolation matrices for element are:

[T ] =
h
T1 T2

iT
(4.30a)

[N ] =
h
1− x

L
x
L

iT
(4.30b)

[B] =
h
− 1
L

1
L

iT
(4.30c)

and the finite element matrices for element stiffness and forces are:

Kc = k

LZ
0

AZ
0

[B][B]TdAdx = k
A

L

⎡⎣ 1 −1

−1 1

⎤⎦ (4.31)

Ks = Shs

LZ
0

wZ
0

[N ][N ]Tdwdx = ShswL

⎡⎣ 1/3 1/6

1/6 1/3

⎤⎦ (4.32)
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fs = ShsTs

LZ
0

wZ
0

[N ]dwdx = ShsTswL

⎡⎣ 1/2
1/2

⎤⎦ (4.33)

fQ = Q̃

LZ
0

AZ
0

[N ]dAdx = Q̃AL

⎡⎣ 1/2
1/2

⎤⎦ = Q
⎡⎣ 1/2
1/2

⎤⎦ (4.34)

4.3.4 Quadratic temperature interpolation

Considering Quadratic shape function for temperature distribution in a two node beam element,

T (x) = α0 + α1x+ α2x
2 and interpolation matrices are:

[T ] =
h
T1 T2 T3

iT
(4.35)

[N ] =
h
1− 3 xL + 2(

x
L)
2 4 xL − 4(

x
L)
2 2( xL)

2 − x
L

iT
(4.36)

[B] =
h
− 3
L + 4

x
L2

4
L − 8

x
L2

4 x
L2
− 1

L

iT
(4.37)

and finite element equations of the element are:

Kc = k

LZ
0

AZ
0

[B][B]TdAdx = k
A

L

⎡⎢⎢⎢⎣
7
3 −83

1
3

−83
16
3 −83

1
3 −83

7
3

⎤⎥⎥⎥⎦ (4.38)

Ks = Shs

LZ
0

wZ
0

[N ][N ]Tdwdx = ShswL

⎡⎢⎢⎢⎣
2
15

1
15 − 1

30

1
15

8
15

1
15

− 1
30

1
15

2
15

⎤⎥⎥⎥⎦ (4.39)

fs = ShsTs

LZ
0

wZ
0

[N ]dwdx = ShsTswL

⎡⎢⎢⎢⎣
1
6

2
3

1
6

⎤⎥⎥⎥⎦ (4.40)

fQ = Q̃

LZ
0

AZ
0

[N ]dAdx = Q̃AL

⎡⎢⎢⎢⎣
1
6

2
3

1
6

⎤⎥⎥⎥⎦ = Q
⎡⎢⎢⎢⎣

1
6

2
3

1
6

⎤⎥⎥⎥⎦ (4.41)
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After assembly of the matrices based on nodal connectivities and applying the fixed temper-

ature boundary conditions, the nodal temperature distribution is calculated by solving Equation

(4.28) for T :

T = [Kc +Ks]
−1(fs + fQ + fT ) (4.42)

These nodal temperature values are input to thermo-elasticity formulation to calculate ther-

mally induced stresses and strains in the mesh of frame element.

The coupled field analysis package developed in this chapter is capable of implementing

both linear and quadratic temperature interpolation.

4.4 Thermo-elastic field

This section will deal with the finite element formulation of thermo-elastic stress and strain

analysis for the generated mesh of frame elements. Thermal effects will be included in the

formulation in the form of dilatational strains. The theoretical formulation presented in this

section is intended for two-dimensional planar frames. The finite element formulation is based

on the linear elastic small deformations. The temperature distribution is assumed to be uniform

over the section of the structural member.

The following assumptions are made for the thermo-elastic formulation:

• A transverse plane is assumed to remain plane and normal to the beam axis throughout

deformation, i.e. the Bernolli-Euler hypothesis.

• The cross-sectional area of the member is assumed undistorted due to elevated tempera-

tures.

• The frame element is assumed doubly symmetric in its cross section so that the shear

center and the centroid coincide.

• The strain is small but rotation is allowed.

4.4.1 Thermal strain and stress

Temperature change in a structure causes thermal strain. When the thermal strain is con-

strained, thermal stress occurs in the structure. The total strain is the sum of mechanical and
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thermal strains:

{ε} = {εm}+ {εth} (4.43)

where superscripts m and th denotes mechanical and thermal strains, respectively. The me-

chanical strain is caused by an applied mechanical load.

The thermo-elastic Duhmel-Neumann relation for a general thermo-elastic body is [72]:

σijkl = Cijklεkl + βij∆T (4.44)

where ∆T is the temperature change in body and βij is the thermal moduli.

From Equation (3.7), the Duhamel-Neumann equation for a general thermo-elastic body in

explicit matrix form is written as [72]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ32

σ31

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1111 c1122 c1133 c1123 c1113 c1112

− c2222 c2233 c2223 c2213 c2211

− − c3333 c3323 c3313 c3312

− − − c2323 c2313 c2312

− − − − c1313 c1312

− − − − − c1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε32

2ε31

2ε12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+∆T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β11

β22

β33

β32

β31

β12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.45)

For an isotropic material, the Duamel-Neuman constitutive equations are simplified to [88]:

σij = 2μεij + λ²kkδij + β∆Tδij (4.46)

where λ and μ are the Lame elastic constants from Equations (3.9) and (3.10) and δij is the

Kronecker delta from Equation (3.12) and:

β = − Eα

1− 2ν (4.47)

Equation (4.46) states that, for an isotropic material, temperature change results in a body

expansion or shrinkage but no distortion. In other words, temperature change affects the

normal strains but not shear strains.
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Equation (4.46) in 2D plane x− y is simplified to [72]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ11

σ22

σ12

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
2μ+ λ λ 0

λ 2μ+ λ 0

0 0 μ

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε11

ε22

2ε12

⎫⎪⎪⎪⎬⎪⎪⎪⎭+∆T
⎡⎢⎢⎢⎣

β 0 0

0 β 0

0 0 β

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.48)

For the frames with solid cross sections, it can be assumed that Poisson’s ratio is zero, so that:

2μ = E (4.49)

λ = 0 (4.50)

β = −Eα (4.51)

and Equation (4.48) for frame elements is rewritten as [88]:

⎧⎨⎩ σx

σy

⎫⎬⎭ =

⎡⎣ E 0

0 E

⎤⎦⎧⎨⎩ εx

εy

⎫⎬⎭+
⎡⎣ −Eα 0

0 −Eα

⎤⎦∆T
⎧⎨⎩ 1

1

⎫⎬⎭ (4.52)

where α is the coefficient of thermal expansion of the material, εx and εy are the total strains

in x and y direction, respectively, ∆T is the element temperature change, A is the cross section

of the beam element and I is the moment of inertia around the third axis. As the temperature

increases, the coefficient of thermal expansion of material increases, although for polysilicon

in air these variations are neglected. The mechanical strain is related to stress through the

constitutive equation. Equation (4.52) yields the constitutive equation for a frame structure:

{σ} = [C] ({ε}− {εth}) (4.53)

where εth is thermal strain and is denoted by:⎧⎨⎩ εthx

εthy

⎫⎬⎭ = α

⎧⎨⎩ ∆T

∆T

⎫⎬⎭ (4.54)
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4.4.2 Finite element formulation for thermo-elastic frames

In a linear analysis using the finite element formulation, it is customary to use a simplified form

of Green’s strain tensor to express the strain-displacement relation as [88]:

∂u

∂x
+

∂2v

∂x2
= 0 (4.55)

where u and v are the displacements in x and y direction, respectively. On the right hand side,

the first term is a pure axial deformation and the second term is pure bending. Because the

assumption of linear small deformations is followed here, it is assumed that they are decoupled

and can be superpositioned and the elasticity matrix is as Equation (3.19).

Displacement interpolation functions

The nodal displacement functions of the element at elevated temperatures are assumed to be

the same as those at room temperature. Using the Hermitian interpolation shape functions,

the total strain in Equation (4.53) is expressed in terms of nodal displacements as:

{ε} = [B]T {u} (4.56a)

B =

⎡⎣ N 0
1 0 0 N 0

4 0 0

0 N 00
2 N 00

3 0 N 00
5 N 00

6

⎤⎦T (4.56b)

Substitution in Equation (4.53) gives:

{σ} = [C][B]T {u}− [C] {εth} (4.57)

The total potential energy denoted by Π consists of two parts, internal energy U and external

energy Wm, which is equal to work done by external loads, that is:

Π = U −Wm (4.58)
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The internal energy is the strain energy caused by deformation of the frame and can be written

as:

U =
1

2

Z
Ω
{ε}T {σ} dΩ = 1

2

Z
Ω
{ε}T ([C] ({ε}− {εth})) dΩ (4.59)

substituting total strain with Equation (4.56a) gives:

U =
1

2

Z
Ω
{u}T [B]

³
[C] [B]T {u}− [C] {εth}

´
dΩ = (4.60)

1

2
{u}T

Z
Ω
[B] [C] [B]T {u}− [B] [C] {εth} dΩ

On the other hand, the work done by external load Fm can be written as:

Wm =
1

2
{u}T {Fm} (4.61)

Substitute U and Wm in the potential energy:

Π =
1

2
{u}T

Z
Ω
[B] [C] [B]T {u}− [B] [C] {εth} dΩ−

1

2
{u}T {Fm} (4.62)

In order to find the equilibrium solution, the principal of minimum total potential energy is

applied. Solving for the stationary value in Equation (4.62), results in [84]:

X ∂Π

∂ {u} =
Z
Ω
[B] [C] [B]T {u} dΩ−

Z
Ω
[B] [C] {εth} dΩ− {Fm} = 0 (4.63a)Z

Ω
[B] [C] [B]T {u} dΩ =

Z
Ω
[B] [C] {εth} dΩ+ {Fm} (4.63b)

[Km] {u} = {FT}+ {Fm} (4.63c)

where Fm is the external applied force vector and Km and FT are the mechanical stiffness

matrix and thermal force vector, respectively, defined as:

Km =

Z
Ω
[B] [C] [B]T dΩ (4.64a)

FT =

Z
Ω
[B] [C] {εth} dΩ (4.64b)
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.Substituting Equation (4.52) into (4.64b), the thermal force vector for a beam element with

Hermitian shape functions is:

FT = α

Z
Ω
[B] [C]

©
∆T̄

ª
dΩ = (4.65)n

−EAα∆T̄ 0 −EIα∆T̄ EAα∆T̄ 0 EIα∆T̄
oT

where ∆T̄ is the average temperature change in the element, defined as:

∆T̄ =
1

L

LZ
0

T (x)dx =
T1 + T2
2

(4.66)

where T1 and T2 are the nodal temperatures. Equation (4.65) verifies that the temperature

field has no effect on the stiffness matrix and contributes to loads applied to the body.

By this formulation, solving the thermo-elastic displacement filed is summarized as:

• forming the element local stiffness and force matrices and transferring them to global

coordinate using transformation matrix.

• assembling the element matrices based on node and element connectivity.

• applying the mechanical boundary conditions and solving Equation (4.28) for nodal dis-

placements and reaction forces.

4.5 Implementation of Coupled Field Solver

The proposed finite element formulation coupled with MNA is implemented in Matlab [75]. A

GUI is designed to ease the user interface and monitoring the results. Because the focus of this

research is on micro-compliant mechanisms, the program is designed to use μm−kg− s system

of units. In this case, dimensions are in [μm], forces are in [μN ], and pressure is in [MPa].

The program starts with opening two main menus for the graphical representation of the

design and user command, respectively, as shown in Figure 4-5. The domain is generated and

meshed and material properties, displacement, voltage and temperature boundary conditions

are entered in the form of nodal values. The cross section area of each element is specified.
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Figure 4-5: FEA solver user interface and main menus.

The data are loaded into the main program and the graphical representation window. Now

the user can run the FEA solver. The finite element result is plotted as the deformed shape of

the structure and nodal displacements and temperature distributions are plotted. The program

saves the solution in data files for future reference. This implementation is part of the GUI

designed for the optimization package and is explained in details in Appendix A.

4.5.1 Temperature Dependency of Material Properties

In the above development, the change in material properties due to temperature change is as-

sumed negligible; however, in real applications, electro-thermal actuators endure high temper-

ature changes over their range of operation. For this reason, the material property dependency

on temperature is implemented inside the FEA to enable accurate modelling of the actuator

behavior. Thermal behavior of material is added as an option inside the FEA solver and can be

enabled by user. Since the focus of the analysis is on electro-thermo-mechanical domain, elec-

trical resistivity, thermal conductivity and Young’s modulus are identified as the key properties.

The temperature dependency of these three material properties is implemented in FEA.

Thermal coefficient of electrical resistivity

In general, electrical resistivity of metals increases with increasing temperature, whereas in

semiconductors electrical resistivity decreases with increasing temperature. Equation (4.4)
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shows the linear temperature dependency of electrical resistivity. If the value of the temperature

coefficient of electrical resistivity, ξ is provided at input, the electrical resistivity of each element

is updated according to average temperature change in that element and Equation (4.4).

Thermal coefficient of thermal conductivity

The thermal conductivity of most of the materials reduces as temperature increases but its effect

is usually negligible in air. Nevertheless, its dependency to temperature is captured through

Thermal Coefficient TCkt :

kT = k0(1 + TCkt∆T ) (4.67)

where kT and k0 are thermal conductivity at temperature T and reference temperature, respec-

tively, and ∆T = ∆T̄ − T0.

Thermal coefficient of Young’s modulus of elasticity

As temperature changes, Young’s modulus of elasticity of material changes. This behavior is

explained through thermal coefficient of Young’s modulus denoted as TCE and::

ET = E0(1 + TCE.∆T ) (4.68)

where ET and E0 are Young’s modulus at temperature T and reference temperature, respec-

tively, and ∆T = ∆T̄ − T0.

This equation is implemented inside the FEA code and, if the value of TCE is provided

at input, the Young’s modulus of each element is updated according to average temperature

change in that element and Equation (4.68).

4.6 Verification

The above automated algorithm to solve electro-thermo-mechanical domain is implemented in

Matlab [75] and here its results are verified in comparison with analytical and experimental

data of some of the actuators in the literature.
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One of the most popular actuators in the MEMS community is the pseudo-biomorph that

relies on differential expansion of a cold and hot arm to cause it to bend in plane (parallel to

the substrate). These thermal actuators, are called electro-thermal compliant actuators (ETC).

Another popular actuator is the chevron actuator, in which an array of buckle beams are packed

close together and link two common anchored arms with a movable third arm.

In the following section, the results of FEA with experimental results of samples of both

these type of actuators from the literature are compared.

4.6.1 Example 1: Electrothermal compliant actuator (ETC)

The ETC actuator consists of two asymmetric parallel arms connected at one end forming an

electrical loop. One arm is long and thin and the other arm consists of a wide section and

a shorter thin flexure section, as shown in Figure 4-6(a). When a current passes through the

loop, the thin arm will heat more than the wide arm and will tend to rotate the actuator. A

disadvantage of this type of actuator is that it moves in an arc where most desired movements

are linear.

The size of the cross section of the actuator is much smaller than the actuator length.

Therefore, the electrothermal analysis of the hot arm actuator is generally simplified as a one-

dimensional problem [86]. The thermal actuator domain in Figure 4-6(a) is discretized into finite

number of nodes and elements, as shown in Figure 4-6(b). Figure 4-6(c) shows the deformed

shape of the actuator for the input voltage of 5 [V]. The boundary conditions for this actuator

are:

V = Vdc at anchors (4.69)

V = 0 at ground

T = Ts at anchors

u = v = θz = 0 at anchors

The device is anchored to the substrate at two places, called the device anchor, which provide

mechanical support as well as electrical and thermal connections to the substrate. The thermal

model imposes an ambient temperature thermal boundary condition at the device anchors. This
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Figure 4-6: (a) Schematic of the thermal actuator ETC, (b) distribution of nodes and elements
along the actuator length for finite element analysis, and (c) deformed actuator with 5 [V] at
input.

choice of thermal boundary condition, referred to as the essential or Dirichlet thermal boundary

condition, is justified when the substrate is thermally grounded by contact with a large thermal

mass at the ambient temperature. However, for devices that do not have access to ideal heat

sinking, for example due to device packaging, this model is inappropriate.

Material and geometrical properties for a sample actuator fabricate with MUMPs [77] are

listed in Table 4.1. For these dimensions and properties, the experimental measurements of

vertical deflection versus voltage and the predicted results from closed form equations are shown

in Figure 4-7 [6]. The finite element prediction for deflection versus voltage for the same actuator

is superimposed in Figure 4-7. The actuator was modelled with 203 nodes and 202 elements.

Comparison between these two values shows the accuracy of finite element in analysis of thermal

actuators. As mentioned previously, heat dissipation through radiation and free convection

are neglected in comparison with the conductive heat loss through air to substrate. From Table

4.1, the conduction coefficient between the actuator and the substrate is:

hs =
kair
δ
=
0.03× 106

2
= 0.015× 106 [pW/μm2 ◦C] (4.70)
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Table 4.1: Material and geometrical properties for the thermal actuator.
Material Properties
Property Value Unit
Young’s modulus E of polysilicon 160× 103 MPa

Thermal expansion coefficient α of polysilicon 3× 10−6 C−1

Thermal conductivity of polysilicon k 50× 106 pWμm−1C−1

Thermal conductivity of air kair 0.03× 106 pWμm−1C−1

Resistivity of polysilicon 22 Ω− μm

Geometrical Data [6]
L1, L2, L3, L4 200, 164, 36, 4 μm

w, t,W 2, 2, 15 μm

Vdc 5 V

air gap to substrate δ 2 μm

Ts, T∞ 25 ◦C

FEA prediction

Figure 4-7: Plot of simplified analytical and measured deflection as a function of voltage re-
ported in [6] and tip deflection versus voltage from the FEA code.
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Figure 4-8: Temperature distribution (a) simplified analytical solution [6] (b) finite element
solution with 203 nodes and 202 elements along the actuator length.

where comparing with air convection coefficient, h = 25 [pW/μm2 ◦C], confirms the importance

of conduction.

Figure 4-8(a) shows the simplified analytical solution for the temperature distribution along

the actuator at input voltage of 5 [V] [6]. In the figure, the maximum temperature is shown in

the middle of the arm. The hot arm can reach temperatures as high as 500 [◦C]. Since the hot

arm and flexure arm are both connected to the anchor, the temperature at those points is equal

to the substrate temperature, Ts = 25 [◦C]. At the joint point between the hot arm and the cold

arm, the temperature changes abruptly, because the cold arm acts as a heat sink. To evaluate

the finite element model, nodal temperature values are plotted, as shown in Figure 4-8(b). As

seen in the figure, finite element can predict the temperature distribution as accurately as the

closed form solution plotted in Figure 4-8(a). Comparison among the data reported in [6],

illustrated here, and the data from finite element analysis shows a good agreement.

Mesh dependency of finite element solution

To study the mesh dependency of the FEA solution, Figure 4-9(a) shows the convergence of the

maximum temperature and tip deflection by increasing the number of nodes per actuator length.

As seen in Figure 4-9(a), the values merge to analytical solution at 18 nodes and increasing

the number of nodes does not have a significant effect on the results for node numbers larger
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Figure 4-9: (a) Tip deflection and maximum temperature converge to exact solution with 30
nodes and 29 elements (b) convergence of deflection and maximum temperature versus voltage.

than 18. Comparing the values for 30 and 203 nodes in Figure 4-9(a) for both temperature and

displacements verifies this concept. Figure 4-9(b) shows how the displacement and maximum

temperature versus voltage curves converge to the analytical solution by increasing the number

of nodes. Again as seen in this figure, the solutions for 18 nodes and higher overlap. In addition,

Figure 4-9(b) clearly shows that the maximum temperature increases with the input voltage.

In general, for polysilicon, the maximum temperature should be kept below 1000 [◦C] to avoid

thermal failure and self annealing. For this actuator, finite element predicts the thermal failure

at V = 7 [V], as seen in Figure 4-7.

To further investigate the convergence dependency of solution, Figure 4-10 shows the tem-

perature profile along the actuator length with respect to increasing the number of nodes. As
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Figure 4-10: Comparison of temperature distribution for input voltage 5 [V] with 5, 10, 18
and 30 nodes per length of the actuator. It is shown that with 30 nodes, FEA converges to
analytical solution in Figure 4-8(a).

seen, by increasing the number of nodes, the solution converges to the analytical solution in

Figure 4-8(a) at the node numbers are increased.

Effect of element length on FEA results:

The ETC domain is discretized with frame elements. Frame elements, like Euler beam elements,

are assumed to be long enough to neglect the effect of shear stresses. The question that might

arise is whether analysis will fail if one discretizes the domain with short length elements.

To investigate the effect of element length on the FEA solution, the domain is discretized

with 2 [μm] length elements. The cross section of the hot arm is also 2×2 [μm2] so the elements

are cubes along the hot arm and flexure. This results in 203 nodes and 202 elements along the

actuator length. Figures 4-8(b) and 4-9 show the temperature profile, maximum temperature
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and tip deflection for this set up. As see in the figures, the FEA analysis converges to the exact

solution.

The explanation is that in an electro-thermo-mechanical domain, the shear stresses in the

whole domain are very small. Since the dominant forces are axial, expansion, and bending,

neglecting the shear effect will not disturb the solution even in small length elements. This

analysis shows that frame elements are proper for analysis of this type of domains in general.

4.6.2 Example 2: Chevron actuator (TIM)

Figure 4-11 shows a schematic of a chevron actuator, also known as in plane thermal actuator

(TIM), where an array of buckle beams are packed close together and link two common anchored

arms with a movable third arm. The actuator array consists of only one thermal expansion

beam per actuator. The results of a chevron actuator fabricated with MUMPs [77] process as

presented in [7], are described herein. Figure 4-11(b) shows a single arm actuator. As a voltage

is applied between the mechanical anchors, ohmic heating of the two half-beams causes them

to expand and ultimately buckle. The beam is designed with a prebend angle αb so buckling

will have an affinity to move in plane. Here again, the buckle beam temperature should be kept

below 1000 [◦C] to prevent self annealing, which can cause irreversible damage.

Arrays of buckle beam devices can be easily designed by arranging them in a pattern resem-

bling a chevron, as shown in Figure 4-11(a). A center beam is added to stiffen the midpoint and

allow mechanical coupling of the individual beams. There is no theoretical limit to the number

of beams that can be added, as long as the device and conductors can handle the current and

heat, the beams can lose heat rapidly and there is no cross coupling of heat from one beam to

another [7].

The actuator array tested in [7] consists of 218 [μm] half beams and a 2 [μm] by 2 [μm]

cross sectional area. It is reported that when the pre-bend angel is close to zero, most actuators

attempt to buckle out of plane. The full array response can be predicted as the displacements

are the same and the forces from each arm add linearly.

The pre-bend angle is usually very small, on the order of a fraction of a degree. The

measured deflection is dependent on actuation voltage, beam length and pre-bend angle and

not on actuator thickness or number of actuator pairs. Figure 4-13(a) is a graph of measured
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Figure 4-11: Schematic of a chevron actuator (a) an array of four buckle beam actuators with
the addition of a coupling beam. The output displacement is the same as the single actuator and
the output force is linear, four times that of a single actuator (b) single buckle beam actuator
[7].
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Figure 4-12: Node and element distribution along chevron actuator and deflected actuator at
4 [V].

deflection for a series of actuators with various pre-bend angles and excitation voltages. It

indicates that the actuators exhibit a linear response when excitation is above 3 [V]. The slope

of the curves indicated the higher the pre-bend angle, the lower the deflection.

Figure 4-12 shows the node and element distribution for the finite element analysis and the

deflected shape of the actuator after applying the voltage. As shown in this figure, element 9

is the coupling beam, center section, with 5 [μm] length and width. Figure 4-13(b) shows the

finite element result for the same actuator. As one can compare, the result of FEA matches

the test results.

The exact analytical solution of temperature distribution for a chevron thermal actuator is

shown in Figure 4-14(a) [8]. This sample was fabricated with the PolyMUMPs [77] process.

This chevron actuator has two 95 [μm] half beams, hot arms, and a 5 [μm] center section,

for a total length of 195 [μm], and 2 [μm] by 2 [μm] cross sectional area. Figure 4-14(b)
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mal actuator at 3 [V] [8] and, (b) nodal temperatures from finite element analysis.
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shows the temperature distribution predicted by multi-domain FEA developed in this chapter.

The maximum temperature is 500 [oC] at the tip of the actuator, predicted by simplified

analytical steady-state temperature profile in Figure 4-14(a) [8] and nodal temperatures from

finite element analysis in Figure 4-14(b) predicts the maximum temperature with less than 1%

accuracy. Again these two graphs match which indicates the validity of the analysis.

4.7 Conclusions

A new, fully-coupled field analysis method using combined MNA, resistive circuit modelling

and finite element analysis was developed for an electro-thermo-mechanical domain and its re-

sults were verified with reported analytical and experimental results in the literature. Thermal

dependency of material properties was implemented in the formulation to allow accurate mod-

elling of the actuator when it undertakes large temperature changes during operation. This

method of analysis serves as the core FEA solver for the topology optimization of an electro-

thermo-mechanical domain, which is presented in the next chapter. Moreover, it provides a

powerful tool for fast and reliable development, evaluation, and modification of electro-thermal

actuators and sensors.
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Chapter 5

A Novel Topology Optimization

Scheme for Micro-Compliant

Mechanisms with Embedded

Multi-Physics Actuation

Applications of topology optimization in multi-physics problems are numerous but one very

interesting application is in the systematic design of MEMS. Manufacturing and processing

techniques for MEMS have reached a high level of maturity and new devices can be built in a

matter of days in labs and foundries. By contrast, modelling and, in particular, development of

systematic design methods for MEMS is still in its infancy. Due to the lack of existing systematic

design methods for MEMS, many devices are designed using intuition, experience and trial and

error approaches. Obviously, such structures cannot be optimal solutions and systematic design

methods, such as topology optimization, should be able to considerably improve existing designs

and develop entirely new or more efficient devices or devices with increased functionality [10].

Until now, however, no method has been able to predict better designs for MEMS.

A method that may be able to solve some of the above-mentioned problems is topology opti-

mization. The topology optimization method solves the problem of distributing a given amount

of elements freely in a design domain such that some performance criteria are maximized. In
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this chapter, the method is applied to systematic design of thermal and electro-thermal micro-

actuators.

Any topology optimization process involves discretization of the design domain into ele-

ments. The optimization process selectively removes elements from the domain to define an

optimal topology for the design objective. In the frame-element-based approach, the design do-

main is discretized into a network of frame elements called the ground structure. The continuum

element method uses a fictitious material density as the design variable. In contrast, the line

element approach uses the in-plane width of the line elements as the design variable. The out-

of-plane thickness can be fixed so that it is compatible with microfabrication processes, which

make it difficult to vary device thickness continuously. Nevertheless, frame ground structure

can also incorporate the cross section area of each element as the design variable.

This chapter presents an extension of previous topology optimization work, presented in

Chapter 3, on design of passive MEMS. In Chapter 3, topology optimization was used to design

micromanipulators, which were operated using external probes (i.e. external applied forces).

To allow for on-chip actuation, the principles of thermal and electro-thermal actuations are

embedded into the optimization scheme in this chapter. The result of the research described in

this chapter is a novel topology scheme for electro-thermo-mechanical micro-domains.

In the following sections, the design problem is defined and the computational procedure is

described.

5.1 Modelling

A common problem in micro-actuator or MEMS design is the conversion of an electrical input to

a mechanical output, i.e. voltage to displacement. In the electro-thermo-mechanical actuation

principle, an electrical current is converted to heat by Joule’s heating and the heat then causes

thermal strain, which in turn causes structural deformation. Developing a design for an efficient

electro-thermo-mechanical actuator is obviously a complicated task.

The first step in the topology optimization procedure is to develop a model for the evaluation

of the mechanical response of the micro-actuator subject to an applied electric or thermal field.

Assuming that the geometrical changes do not influence the convection or conduction properties,
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the small strain allows for modelling of the electrical and thermal fields linearly; therefore, the

system is only weakly coupled in the sense that the heat equations do not depend on the

elasticity equations and that the electric field equations are independent of heat equations. To

simplify the equations, it is assumed that the body force and the internal electric current source

are zero.

The structure to be analyzed is a sub-domain of the open domain Ω, as shown in Figure 4-1.

The governing equations for a general electro-thermo-mechanical structure are as formulated in

Equations (4.1)-(4.2). Note that the internal heat generation is a function of the electric field

and that the stress is a function of the temperature field.

5.2 Topology Optimization Problem

Compliant structure design is motivated by the fact that the mechanism should possess enough

flexibility to deform in the desired shape, yet it should contain enough stiffness to resist failure

and external forces.

The concept of compliant mechanism design for single-physics of mechanical domain with

force at input was addressed in Chapter 3, where mutual strain energy (MSE) and strain energy

(SE) were employed as the measure of flexibility and stiffness of the mechanism. For design of

a compliant mechanism, MSE is maximized, while SE is minimized, simultaneously. However,

to apply the compliance theory to electro-thermal domains, the flexibility and stiffness require-

ments should be expressed in terms of electro-thermal inputs. To address the electro-thermal

compliant mechanism design, a new formulation is proposed as described in the following sec-

tions.

In thermally and electro-thermally activated compliant mechanisms, the deformation is

caused by thermal expansion of material due to change of temperature distribution. The dif-

ference with thermal actuation is that, instead of elastic strain energy, the system stores the

thermal strain energy. In this chapter, the case of non-uniform temperature distribution due

to an applied voltage is considered.

From Equation (4.53), the strain-stress relation with temperature change can be written as:

ε = C−1σ + εth (5.1)
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where C is the matrix of material elasticity coefficients, σ is the stress distribution and εth is

the thermal strain defined in Equation (4.54). In addition, initial and boundary conditions are

needed to achieve the solution.

The equilibrium equation can be expressed in an integration form according to the principle

of virtual work as: Z
Ω
εTσdΩ =

Z
Ω
εTC (ε− εth) dΩ = 0 (5.2)

Assuming infinitesimal strains in Equation (3.3) and fT = Cα∆T̄ from Equation (4.64b),

Equation (5.2) is simplified in a general form as:

Z
Ω
εTCεdΩ =

Z
Ω
εT fTdΩ = FT (5.3)

where fT is regarded as the differential operator of equivalent thermal body force and FT is the

total thermal load vector from Equation (4.65).

Equation (5.3) leads to a new formulation to accommodate thermal and electro-thermal

load effects in flexibility and stiffness design. This is explained in the fallowing.

5.2.1 Problem Formulation

The topology optimization of compliant mechanisms with voltage and heat actuation shares

similar design criteria with the general compliant mechanism with force actuation (as described

in Chapter 3). The optimization scheme follows the basic concept of a compliant mechanism,

which is supposed to be flexible enough to deform and stiff enough to resist failure or an external

resistance. Two types of design criteria are considered to formulate an optimization problem:

flexibility requirement and stiffness requirement.

The flexibility requirement, also called the mechanisms requirement, means the designed

compliant structure must be deformed in a favorable manner to complete its functionality.

Mathematically, this requirement can be captured by using the concept of mutual strain energy

(MSE) based on the reciprocal theorem for linear elasticity [61], [51], [26]. The mathematical

representation of MSE in the case of an applied force at input port was derived in Equation

(2.14). Here an improved formulation is presented that extends the compliance theory to

electro-thermal boundaries.
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Figure 5-1: Design requirements for electro-thermo-mechanical compliant mechanism, (a) load
case (1): thermal expansion, (b) load case (2): flexibility requirement, and (c) load case (3):
stiffness requirement.

Considering the loading cases shown in Figure 5-1, if the displacement field in Figure 5-1(a)

load case (1), denoted as U1, caused by temperature change is used as the virtual displacement

for equilibrium equation under the dummy loading case (2) (Figure 5-1(b)), the principal of

virtual work can be expressed as the following:

Z
Ω
εT1 σ2dΩ =

Z
Ω
εT1Cε2dΩ = F

T
2 U1A (5.4)

where εi, σi, Ui and Fi refer to strain, stress, displacement field, and load at loading case (i)

respectively, and U1A is the actual displacement at output point A due to actual forces at case

(1). If U2 is used as the virtual displacement for case (1), it results in:

Z
Ω
εT2 σ1dΩ =

Z
Ω
εT2Cε1dΩ (5.5)

Considering that the loading at case (1) is, in fact, the thermal load vector FT , Equation (5.5)

is rewritten as:

Z
Ω
εT2 σ1dΩ =

Z
Ω
εT2 fTdΩ (5.6)

The bilinear form Υ(U1, U2) =
R
Ω ε

T
1Cε2dΩ = F

T
2 U1A defines the mutual strain energy between

case (1) and case (2). When the dummy load F2 is a unit load, this mutual strain energy equals

to the displacement at A, in the desired direction due to temperature change, denoted by U1A.
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The stiffness requirement provides the compliant mechanism with the internal ability to

resist failure or external loading. Mathematically it can be formulated as the concept of com-

pliance. Consider loading case (3) in Figure 5-1(c), if an external force is to be loaded to the

mechanism at location B, in the form of resistive force or functioning disturbance force, the

stiffness required to sustain the loading is characterized by the displacement at the loading

location. Using the same displacement field as the virtual displacement:

Υ(U3, U3) =

Z
Ω
εT3Cε3dΩ = F

T
3 U3B (5.7)

where U3B is the displacement field at resistant point B due to resistive force F3. When the

resistive dummy force F3 is a unit load, Equation (5.7) results in displacement at B.

The directions and locations of required flexibility, as well as those of required stiffness, need

to be determined according to individual design problems. The formulation here is simplified

for two general common cases: design for maximum displacement and design for maximum

force.

To design a mechanism that transfers maximum displacement at point A, denoted as motion

transfer type, the required flexibility is in the direction of desired output displacement at the

desired location, while the required stiffness does not necessarily need to be in the similar

direction or location. It can be at the stiffness resistive to input motion (or thermal expansion)
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or any other locations and directions the specified mechanism requires (e.g. location B). This

concept is the familiar MSE and SE of the system as a measure for flexibility and stiffness,

where F2 = Fd is the unit dummy load in direction of desired output displacement ∆out and

F3 = −Fd is the unit dummy load at resistive point B. This problem is shown in Figure 5-2

and is formulated as:

MSE = Υ(U1, U2) =

Z
Ω
εT1Cε2dΩ = F

T
d U1A = U

T
2 KU1A (5.8a)

SE = Υ(U3, U3) =

Z
Ω
εT3Cε3dΩ = −FTd U3B = UT3 K3U3B (5.8b)

where K1U1 = FT , K2U2 = Fd, K1 = K2 = K and K3U3 = −Fd.

To design a mechanism that transfers force at point B, denoted as force transfer type,

the required flexibility is in the direction of desired output forces at the actuation location B,

while required stiffness is in the direction opposite to the output force at the same location.

This concept is shown in Figure 5-3, where F3 = −Fd is a unit dummy load. This problem is

formulated as:

MSE = Υ(U1, U2) =

Z
Ω
εT1Cε2dΩ = F

T
d U1B = U

T
2 KU1B (5.9a)

SE = Υ(U3, U3) =

Z
Ω
εT3Cε3dΩ = −FTd U3B = UT3 K3U3B (5.9b)
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where K1U1 = FT , K2U2 = Fd, K1 = K2 = K and K3U3 = −Fd. ks [μN/μm] is a linear spring

that simulates the resistance from a workpiece at output point B and K3 is the stiffness matrix

in load case (3) in Figure 5-3(b), representing the combined stiffness of the structure and the

resistive spring ks. The output force on work piece resistance is then:

Fout = U3Bks (5.10)

5.2.2 Multi-Criteria Objective Functions

Because the compliant systems optimization is posed in terms of a set of conflicting design

requirements, an optimization scheme is required to determine a compromise solution. The

conflicting design objectives are handled using the multi-criteria objective function.

Mutual strain energy (MSE) as a measure of flexibility is maximized, while strain energy

(SE), which is inversely proportional to the stiffness of the mechanism, is simultaneously mini-

mized to enable the mechanism to sustain loads.

The multi-objective optimization is formulated as:

Maximize : Ψ(MSE,
1

SE
) (5.11)

Subject to : electrical equilibrium equations

thermal equilibrium equations

elastic equilibrium equations

stiffness requirement

flexibility requirement

lower and upper bounds on design variables

constraints

Using the proposed power multi-objective formula in Chapter 3, Equation(3.28), the problem
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of topology optimization in finite element form is stated as:

Maximize : (sign(MSE))m−1
(UT2 KU1A)

m

(UT3 K3U3B)
n

Motion transfer type (5.12a)

or (sign(MSE))m−1
(UT2 KU1B)

m

(UT3 K3U3B)
n

Force transfer type (5.12b)

Subject to : Alower ≤ Ae ≤ Aupper

V = V0 on ΓED

T = T0 on ΓTD

n̂kt∇T = q̄ on ΓTN

u = u0 on ΓMD

K1U1 = FT

K2U2 = Fd

K3U3 = −Fd

K1 = K2 = K

Υ(U1, U1) =

Z
Ω
εT1 fTdΩ

Υ(U2, U2) =

Z
Ω
εT2Cε2dΩ

Υ(U3, U3) =

Z
Ω
εT3Cε3dΩ

Υ(U2, U1) =

Z
Ω
εT2 fTdΩ

constraints

where Ae is the cross section area of the eth element and, Alower and Aupeer are the lower and

upper bounds on design variable, respectively.

5.2.3 Constraints

While past work had provided a great deal of insight into the fundamentals of designing com-

pliant mechanisms, the main drawback of these approaches is that the flexibility of a structure

is theoretically unbounded. Formulations that maximize flexibility have been shown to be ill-
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formulated for compliant mechanism optimization [65]. As a solution, in [66], stress constraints

were employed to count for failure modes. In this thesis, realizing that the stiffness objective

may yield overly stiff topologies and that it may also be inadequate to model the failure criteria

directly, a buckling instability constraint is employed while maximizing the output displace-

ment. This proposed formulation, with buckling constraint, prevents long slender beams in

final optimized solutions and addresses the strength of the solution, which is a major concern

in current methods.

Buckling Constraint

The buckling constraint is imposed on the problem in the form of maximum force allowed in

each member before buckling. During the optimization process, the axial forces in individual

elements are constantly monitored so that they remain lower than the critical buckling of that

element. The maximum force before buckling for a beam subject to axial load is described with

Euler’s limit as [89]:

PE =
π2EI

(αL)2
(5.13)

where PE is the maximum allowed axial force before buckling, I is the area moment of inertia,

L is the beam length, and α is a constant, which depends on beams boundary conditions. For

typical boundary conditions, α is listed in Table 5.1 [89]. Frame elements mimic the clamped-

clamped boundary condition for a beam; therefore, α = 0.5 is used here. Although Euler’s

limit does not count for transverse shear effects, a new formula is proposed [89] for beams with

different cross sections to explain the buckling behavior including transverse shear effect. That

is [89]:

P̄ =
π2EI

(αL)2
(1− β P̄

A G
) (5.14)

where P̄ is the maximum allowed force before buckling, A is the cross section area, G is the shear

modulus and β is the cross section shape factor, where β = 3/2 and β = 4/3 for a rectangular

and circular cross section, respectively [89]. Combining Equations (5.14) and (5.13) results in:

P̄ =
PE

1 + β PEAG
(5.15)

100



Table 5.1: Euler’s buckling limit constants for beams with various boundary conditions.
Boundary Condition α in Eq.(5.13)
clamped - free 2

clamped - clamped 0.5

clamped - pinned 0.7

pinned - pinned 1

Equation (5.15) shows that by including the transverse shear effect, the maximum allowed force

is lowered before buckling occurs in a beam. By examining the terms in Equation (5.15) and

the definition of PE in Equation (5.13) one can conclude that the influence of transverse shear

stiffness on beam buckling is primarily caused by a cross section shape function (βL/A) rather

than a material properties function (E/G) because the E/G depends, for an isotropic material,

only on Poisson’s ratio, which does not vary enough to have significant effect on β Pe
AG . The

reduction in buckling limit in Equation (5.15) is negligible for solid cross-section beams, but

can approach 50% for some open cross-section beams [90]. If the forces in any element exceed

the allowed limit before buckling from Equation(5.15), design variables are updated such that

the buckling constraint is met.

Volume Constraint

From results of study described in Chapter 3, it was concluded that it was unnecessary to

introduce a volume constraint in the optimization of micro-actuators using the present model,

both because the material cost for such small devices is low and also because the initial guess

for the frame ground structure does not entirely fill the design domain with material.

5.3 Implementation and Optimization Procedure

Figure 3-6 represents the flow of implementing the optimization scheme. A domain is generated

and modified to the desired shape. It is then meshed, modified and boundary conditions are

applied. The optimization variable and its upper and lower limits are defined. The objective

function and corresponding exponents are entered. The optimization is then ready to be solved

with the genetic algorithm (GA). When the convergence limit is met, the optimized design and

convergence history are plotted and the data are saved in data files for further processing. Data
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are filtered out and the final solution is solved using built-in finite element analysis (FEA) code

from Chapter 4. The optimized design is saved and exported to IGES format. The IGES file is

then transferred to other CAD based software for fabrication and further investigation.

This flow is implemented with a user-friendly graphical user interface (GUI), which will

enable MEMS designers to easily define and solve their domains. Appendix A contains the de-

tailed description of the GUI which was designed to enable the use of this topology optimization

package.

5.3.1 Coupled Field Analysis

To solve the optimization problem stated in Equation (5.11) and the governing Equations

(4.1)-(4.2), the design domain is discretized using a frame ground structure. The ground for

employing a discretized optimization method with frame ground structure was described in

Chapter 2. Moreover, in Chapter 3, the superiority of its results versus the homogenization

method was proven.

As mentioned previously, the cross section of each element is the design variable. Considering

the planar micro-domain, the width of the elements are a suitable design variable.

The fully-coupled analysis method for micro-domain, which was developed in Chapter 4, is

used to solve the response of the design and evaluate the objective function. This fully coupled

formulation is tailored for frame ground structures with multi-physics boundary conditions,

coupling electrical field to thermo-elastic field using the resistive circuit method and modified

nodal analysis (MNA).

5.3.2 Optimization Algorithm

The ground for choosing the genetic algorithm (GA) for the optimization was described in detail

in Chapter 2. In the study of mechanical domain in Chapter 3, the chromosome was limited to

binary digits. However, it has been shown that more natural representations are more efficient

and produce better solutions [91]. For any GA, a chromosome representation is needed to

describe each individual in the population of interest. The representation scheme determines

how the problem is structured in the GA and also determines the genetic operators that are used.

One useful representation of an individual or chromosome for function optimization involves
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genes or variables from an alphabet of floating point numbers with values within the variables

upper and lower bounds. In [91], extensive experimentation is done comparing real and binary

coded GAs and shows that the real-valued GA is an order of magnitude more efficient in terms

of CPU time. It is also shown that a real-valued representation moves the problem closer to

the problem representation, which offers higher precision with more consistent results across

replications [91].

As mentioned previously, in the topology optimization scheme presented here, design vari-

ables are considered as continuous variables allowed to take intermediate values in the con-

strained upper and lower bounds. To meet the nature of the problem, an efficient, real-coded

GA with elitism is developed in Matlab as the core optimization solver.

Real-Coded Genetic Algorithm

Figure 5-4 shows the flow chart of the implemented GA. The initial population is generated by

populating real valued random numbers between the upper and lower bounds up to the specified

size of the initial population. A normalized Geometric Selection function is employed to rank

the population and reproduction is performed using non-uniform mutation and heuristic cross-

over operators [91]. The GA is coded with elitism. After creating a new population by crossover

and mutation, at least one best solution is copied without changes to the new population, so

the best solution found can survive. Elitism can very rapidly increase performance of the GA,

because it prevents losing the best found solution. The GA moves from generation to generation

selecting and reproducing parents until a termination criterion is met. The GA structure may

be resumed as follows:

1. Supply a population P0 of N individuals and respective function values.

2. i← 1

3. P 0i ←selection function (Pi − 1)

4. Pi ←reproduction function (P 0i )

5. evaluate (Pi)

6. i← i+ 1
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Figure 5-4: Flow chart of implemented real-coded genetic algorithm with elitism.

7. Repeat step 3 until termination

8. Print out best solution fond

Two criterion are set to terminate the GA: 1) meeting the convergence criterion or 2) lack

of improvement in the best solution over a specified number of generations. In the following,

each of the major components of the implemented GA is discussed.

Initialization The GA must be provided by an initial population. Initial population is gen-

erated by populating real-valued random numbers between upper and lower bounds up to the

specified size of the initial population, e.g. 100 to 500 times the number of elements. If the

104



initial population seeded to the code is empty or the number of population is less than speci-

fied, automatically a set of random solutions are added to the population, preserving the initial

individuals. For example, the beginning population might be seeded with potentially good

solutions, with the remainder of the population being randomly generated solutions.

Elitism The implemented GA is coded with elitism to improve the convergence behavior.

Elitism can very rapidly increase the performance of the GA, because it prevents loss of the

best found solution. After creating a new population by crossover and mutation, if the algorithm

has not yet converged, at least one best solution is copied to next generation without changes

to the new population, so the best solution found can survive.

Selection Function The selection of individuals to produce successive generations plays

an extremely important role in a GA. A probabilistic selection is performed based on the

individual’s fitness, such that the better individuals have an increased chance of being selected.

An individual in the population can be selected more than once, with all individuals in the

population having a chance of being selected to reproduce into the next generation. There are

several schemes for the selection process: roulette wheel and its extensions, scaling techniques,

tournament, elitist models, and ranking methods [71].

Ranking methods require the evaluation function to map the solution to a partially ordered

set, thereby allowing for minimization and negativity. Ranking methods assign Pi based on

the rank of solution i when all solutions are sorted. Normalized Geometric Selection is used as

follows.

Normalized Geometric Selection Normalized Geometric Selection is a ranking selec-

tion function based on the normalized geometric distribution. Normalized geometric ranking

defines Pi for each individual by [92]:

Pi = q
0(1− q)r−1 (5.16)
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where Pi is the probability of selecting the ith individual and r is the rank of the individual,

where 1 is the best and r = U(0, 1):

q = the probability of selecting the best individual (5.17)

P = the population size

q0 =
q

1− (1− q)P

GA Operators Let X̄ and Ȳ be two n-dimensional row vectors denoting n individuals (par-

ents) from the population. Operators for real-valued representations, i.e. an alphabet of floats,

were developed in [91]. A non-uniform mutation and heuristic crossover are chosen as the GA

operators here.

Non-uniform mutation For real valued X̄ and Ȳ , the non-uniform mutation was se-

lected. non-uniform mutation randomly selects one variable, j, and sets it equal to a non-

uniform random number [93]:

x
0
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi + (xupper − xi)f(Gr) if r1 < 0.5

xi − (xlower + xi)f(Gr) if r1 ≥ 0.5

xi otherwise

(5.18)

where xlower and xupper are the lower an upper bound for variable i, respectively and

f(Gr) =

µ
r2(1−

Gr
Gmax

¶b
(5.19)

r1, r2 = a uniform random number between (0,1)

Gr = the current generation number

Gmax = the maximum number of generations

b = a shape parameter

Heuristic Crossover Heuristic crossover produces a linear extrapolation of the two in-

dividuals. Heuristic crossover was chosen because it is the only operator that utilizes fitness

information. A new individual X̄ 0 is created using Equation (5.20a), where r3 = U(0, 1) and X̄
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is better than Ȳ in terms of fitness [93].

X̄ 0 = X̄ + r3(X̄ − Ȳ ) (5.20a)

Ȳ 0 = X̄

If feasibility of X̄ 0 equals zero, as given by Equation (5.21), then it generates a new random

number, r3, and creates a new solution using Equation (5.20a), otherwise crossover stops. To

ensure halting after tr failures, it lets the children equal the parents and stops.

feasibility =

⎧⎨⎩ 1, if x0i ≥ xlower, x0i ≤ xupper ∀i

0, otherwise
(5.21)

Termination Criteria The GA moves from generation to generation selecting and reproduc-

ing parents until a termination criterion is met. Two criterion are set to terminate the GA. One

is a specified maximum number of generations. Another termination strategy involves popula-

tion convergence criteria, ²G. In general, GAs force much of the entire population to converge

to a single solution. When the sum of the deviations among individuals becomes smaller than

specified threshold ²G , the algorithm is terminated. Also the algorithm is terminated due to

a lack of improvement in the best solution over a specified maximum number of generations,

Gmax.

If the maximum number of generations is reached and the algorithm has not yet converged, a

warning message will show that: ”Maximum number of generations reached without termination

criterion met. Either increase maximum generations or ease termination criterion.”

Default values The default values for the GA operators are listed in Table 5.2; however,

these parameters can be adjusted for specific needs of the problems. The listed parameters are

described previously in formulations.

5.3.3 Design Issues

The optimized solution depends on the lower limits on the design variable. In MEMS appli-

cations, the bounds on design variables are constrained by the fabrication process limits. For
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Table 5.2: Default values for GA algorithm operators.
GA Operator Input parameter default values

Initial population size P 300×number of elements
Normalized Geometric Selection q 0.08

Heuristic Cross Over tr 2
Non Uniform Mutation b 3
Termination Criteria ²G 1e-6

Maximum number of generations Gmax 300

instance, the minimum width of the beam element cannot be less than 2 [μm] using multi user

microfabrication techniques. The conventional element elimination policies are to remove beam

members whose design variables reached the lower bound constraint, after algorithm converges.

But in MEMS, elements on or close to the lower bound, e.g. 2 [μm] , still significantly contribute

to the stiffness of the structure. If these elements are eliminated, the resulted structure may

not perform as desired. This issue is addressed by a new element removal policy for topology

optimization in MEMS.

The minimum feasible geometric limits on design variables are usually defined with fabrica-

tion and lithography process limitations. Minimum dimensions are always subject to fabrication

tolerance limits in a typical MEMS process. For example, if the design rule for minimum feature

is 2 [μm] in design, and the lithography tolerance is δf = ±0.1 [μm] on the minimum feature,

2 [μm] elements on wafer will have a distribution between 1.9 [μm] to 2.1 [μm]. It is preferred

then to keep the elements inside the fabrication limit at the lower bound.

As a solution, at the start of the algorithm, the lower bound is modified to account for the

fabrication tolerance provided by the designer as xlow − |δf |. After the algorithm converges,

the optimized solution contains elements at the modified bound of xlow − |δf | ≤ xi ≤ xup. In

the optimization process, a filtering scheme is implemented that allows the designer to preserve

elements at the vicinity of the modified lower bound. The filtering factor, ∆f is defined as:

∆f =
xi + |δf |− xlow
xup − xlow

(5.22)

where 0 ≤ ∆f ≤ 1. Elements with ∆f < 0 will be permanently removed from the mesh in post

processing. For example, if the upper and lower bounds on the design variable are defined as

2 ≤ xi ≤ 5 and minimum feature tolerance is δf = ±0.2 [μm], the optimized topology contains
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elements at lower bound of 1.8 [μm].It might be desired to preserve the elements with a 1.8

[μm] design variable, which is achieved through filtering out with ∆f = 0. However, if the

designer decides to keep the elements at the ±0.1 vicinity of lower bound, then the optimized

configuration is filtered out with:

∆f =
1.9 + 0.2− 2.0
5.0− 2.0 = 0.0333 (5.23)

Applying a filtering factor equal to 0.0333 preserves all the elements at 1.9 [μm] and higher and

elements with less than 1.9 [μm] will be permanently removed in post processing.

5.4 Conclusions

Results presented in this chapter indicate that the topology optimization method can produce

highly efficient micro-actuators. Topology optimization of MEMS devices was formulated and

the genetic algorithm was discussed as a solver.

In the next chapter, the proposed topology optimization scheme is applied to the design of

compliant thermal and electro-thermal micro-actuators. The performance values for the electro-

thermal actuators are compared with the performance of a finite element model in ANSYS

[11]. Furthermore, some examples of optimized configuration of electro-thermal actuators are

presented and their performances are validated.
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Chapter 6

Numerical Examples and

Verification

In this chapter, numerical examples of the novel optimization scheme proposed in Chapter 5 are

presented. The performance of the optimized actuators are extensively studied using the fully-

coupled analysis method developed in Chapter 4, with the resistive circuit method, modified

nodal analysis and finite element. For further verification, the performance and robustness

of the optimized topologies are validated with finite element analysis in ANSYS [11] and, if

applicable, with their counterparts from the available literature.

The design domain is two dimensional considering the planar nature of MEMS processes.

The effect of strain gradient and average residual stress in the thin film is neglected and the

out of plane deflection in the optimum design is zero, which is also confirmed in 3D ANSYS

simulations in this Chapter. However, the out of plane deflection may occur in some of the

beam members due to thermal buckling if the applied voltage exceeds the input requirement.

The buckling constraint however, prevents appearance of buckling members in the optimized

topology at the applied voltages close to specified input voltage.

This chapter covers three design examples, with the following objectives:

1. Compare results obtained by the frame element approach with both intuitive designs and

designs from the continuum element approach reported in the literature and verification

of results with ANSYS [11] models.
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2. Study the influence of the specification for force transfer and motion transfer type mech-

anisms on the resulting optimal designs.

3. Illustrate the influence of the varying workpiece resistance on the final optimal design.

4. Demonstrate the ability of the optimization procedure to generate non-intuitive topolo-

gies.

6.1 Example 1: Voltage Activated Micro-Manipulator

A compliant electro-thermal micro-manipulator is a one piece device that can effectively trans-

mit precise horizontal motion due to applied voltage at input ports. Micro-manipulators have

numerous applications in MEMS, including motion amplifiers.

6.1.1 Design Domain

The design domain of a voltage activated micro-manipulator is shown in Figure 6-1. An op-

timized actuator is desired to have maximum deflection in output direction ∆ at prescribed

location, subject to 0.5 [V] applied voltage and thermal and mechanical boundary conditions

at anchors. Output direction ∆ is defined with vector [1,0] denoting that, at the target out-

put location, the actuator moves only in X direction and should have no vertical movement,

where X and Y are the coordinates of the 2D space, as shown in Figure 6-1.

In Figure 6-2 the resulting optimized mechanism from the homogenization method is shown

[9]. As seen in Figure 6-2(b), the optimized design has gray materials which do not interpolate

as either void or filled material. This layout needs manual interpolation in order to transfer to

fabrication layout. Further, it is noted that the two ports of the voltage are shorted through

the thick arm in the left side of the design domain. The performance of this design is not

reported in the literature for comparison [9], but study of the optimized configuration raises

the feasibility question.

The material for the design is assumed to be electroplated Nickel. Material properties of

electroplated Nickel are listed in Table 6.1. These material properties are not exactly equal

to the bulk values of Nickel and are found from literature [33, 94, 95]. Electroplated nickel

is selected due to its suitability for electro-thermal actuator design, although the topology
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Figure 6-1: Design domain and problem specification for electro-thermal actuator in Example
1.

Figure 6-2: Optimal solution for design of example 1 reported in [9]. The presence of gray
material and a short loop of voltage through the left arm of the design is observed. The
performance of the actuator is not reported in [9].
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Table 6.1: Material properties of Electroplated Nickel and geometrical dimensions for the
electro-thermal micro-actuator in Example 1.

Material Properties
Property Value Unit
Young’s modulus E of Nickel 200× 106 MPa

Thermal expansion coefficient α of Nickel 13.4× 10−6 C−1

Thermal conductivity of Nickel k 90.7× 10−6 Wμm−1C−1

Thermal conductivity of air kair 0.03× 10−6 Wμm−1C−1

Resistivity of Nickel 67× 10−3 Ω− μm

Geometrical Data
Design domain dimensions 200× 100 μm

Void domain dimensions 50× 50 μm

Vdc 0.5 V

Thickness 2 μm

air gap to substrate δ 2 μm

Ts 0 ◦C
T∞ 25 ◦C

optimization scheme is not limited to a specific material or fabrication process and any available

material can be used. Dimensions of the design domain Ω, as listed in Table 6.1, are 200 [μm]

by 100 [μm] and it has an out-of-plane thickness of 2 [μm]. The void area is shown in white.

The substrate temperature is 0 [oC] and the surrounding air is at room temperature of 25 [oC].

The in-plane width of elements is the design variable with lower and upper bounds of 1 [μm]

and 5 [μm], respectively.

6.1.2 Problem Statement using the Proposed Topology Optimization

The design specifications are that an applied voltage, Vdc, causes the motion,∆, in the horizontal

direction. The multi-criteria objective function in Equation (5.12a) was employed, wherem = 2

and n = 1 and the buckling constraint is active. The choice of exponents for the objective

function was made by considering that design specifications require a maximum motion transfer
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type mechanism. The optimization problem is then formulated as:

Maximize : sign(MSE)(
MSE2

SE
) (6.1)

Subject to : 1 < we < 5 μm

Fe < P̄

ks = 0

electrical equilibrium equations

thermal equilibrium equations

elastic equilibrium equations

flexibility requirement

stiffness requirement

Convergence criteria =1e-6

∆ in the direction of [1,0]

where we is the in-plane width of element e and is the design variable for the optimization

algorithm and P̄ is the maximum allowable force before buckling from Equation (5.15).

Figure 6-3(a) shows the initial frame ground structure with applied boundary conditions and

output specification. The initial guess is randomly generated between upper and lower bounds.

In order to maximize the design objective while satisfying the constraints, the algorithm changes

the value of the design variables in each iteration so that the uneconomical members tend

toward the lower bound constraints and the economical members tend toward the upper bond

constraints. The optimal solution is the most efficient arrangement of beam members in terms

of design objective and constraints.

The initial ground structure consists of 45 nodes and 109 beam elements. Initial population

is randomly generated between upper and lower bounds. For fabrication feasibility, variables

can have numbers in 0.1 [μm] increments. The design specification requires a motion transfer

mechanism where ks = 0.
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6.1.3 Optimized Configuration

The optimized frame configuration is shown in Figure 6-3(b), which consists of 40 nodes and

88 beam elements; node 22 is the desired output location. The real-coded GA converges after

98 iterations, as shown in Figure 6-4.

After the algorithm converges, the optimized configuration is analyzed with a built-in FEA

code, as described in Chapter 4, and nodal and element data files are saved for further study.

The actual layout of the actuator is shown in Figure 6-3(c), where dashed lines show the

deformed shape at 0.5 [V]. The displacement field is scaled for better illustration. The variation

in the element sizes shown in Figure 6-3(c) actually represents the in-plane widths of the

remaining elements.

As shown in Figure 6-3(c), the top and bottom arms move 2 [μm] in Y direction to allow a 7.3

[μm] forward deflection in X direction at output node 22. It is noted that output has no vertical

displacement and is only moving in specified direction of ∆ to satisfy the design requirement.

The deformation of the actuator in Figure 6-3(c) confirms that the resulting mechanism is a

fully compliant mechanism in which the whole body deforms to transfer the output deflection.

Achieving a fully compliant design was one of the main targets of the optimization scheme and

has been successfully implemented.

6.1.4 Verification

The performance of the optimized electro-thermal actuator is extensively studied here. For

verification, its performance from built-in FEA is compared with solid model finite element

in ANSYS [11]. The schematic layout in Figure 6-3(c) was automatically transferred to IGES

format using the fabrication module of the graphical user interface (GUI), designed for this

optimization package (Appendix A). Figure 6-5(a) shows the optimized actuator in IGES for-

mat. The IGES file was then imported into ANSYS [11] to built the solid model. Boundary

conditions were applied and the solid model was meshed with SOLID 226, which is a 3D 20-

node coupled-field element with displacement, voltage and temperature degrees of freedom [11].

The model was simulated with large deflections activated in ANSYS. Figure 6-5(b) shows the

deformed meshed solid and undeformed edge of the actuator at 0.5 [V] in ANSYS [11].

In Figure 6-6 the maximum deflection at output location in X direction and the maximum
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Figure 6-3: (a) Initial frame ground structure of Example 1, (b) optimized frame structure
after convergence which contains 41 nodes and 88 elements, and (c) layout schematic of the
optimized actuator, solid lines presents the remaining elements and dashed lines denote the
deflected shape at 0.5 [V].
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Figure 6-5: (a) Optimized topology of actuator transferred to IGES format (b) Solid model in
ANSYS showing deformed shape and undeformed edge of the actuator at 0.5 [V].
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Figure 6-6: Comparison of maximum deflection dX at output node 22 and maximum temper-
ature in the body from the FEA solver and ANSYS model for 0 [V] to 1 [V]. The operation
range of the actuator is 12 [μm] at 0.65 [V], set by the critical temperature of Nickel at 800
[oC].

temperature in the body of actuator for 0 [V] to 1 [V] are plotted. This figure compares the

results from the FEA solver in the optimization package and the ANSYS [11] solid model. As

seen in the figure, the FEA results agree with ANSYS with less than 1% error. It is concluded

that the optimized topology is meeting the design specifications and that FEA formulation

can precisely predict actuator performance. This plot also helps to understand the range of

operation of the actuator. As shown in Figure 6-6, the maximum operation range of the actuator

is 12 [μm] at 0.65 [V], which is set by critical temperature of Nickel at 800 [oC]. At the specified

operation point of 0.5 [V], the maximum temperature in the body is 570 [oC], which is well

bellow critical point.

To further study and verify the performance of the actuator, in Figures 6-7(a) and (c) nodal

displacement solutions dX and dY are compared with ANSYS results in Figures 6-7(b) and

(d) at operation point of 0.5 [V]. Node numbers in Figures 6-7(a) and (c) are referenced to

the optimized frame structure in Figure 6-3(b). As seen in these figures, node 22, the specified

output node, has the maximum dX of 7.3 [μm], which is confirmed with ANSYS model in

Figure 6-7(b) with maximum dX = 7.253 [μm] with less than 0.7% error. Figures 6-8(a)
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Figure 6-7: Comparison of (a) nodal dX solution from the FEA, (b) dX from ANSYS, (c) nodal
dY solution from the FEA and (d) dY from ANSYS.
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and (b) show the nodal voltage values from the FEA and the voltage distribution in ANSYS,

respectively. The voltage is distributed in a loop from 0 [V] to −0.5 [V] between DC source

terminals. Voltage at output node 22 is −0.248 [V], which is also verified in the ANSYS model

with a specified value of −0.25 [V] with less than 0.9% error.

The nodal temperatures from the FEA are plotted in Figure 6-8(c) and compared to temper-

ature distribution from ANSYS in Figure 6-8(d). The prescribed temperature value at anchor

points is 0 [0C] and the FEA predicts the maximum temperature of 570 [oC], which agrees with

567 [oC] in ANSYS with 0.5% error.

The comprehensive study of the optimized topology confirms the following observations:

• Comparison of Figures 6-7(b) and (d) shows that the output node has close to zero

deflection in Y direction, satisfying the design specification of direction ∆.

• It is noted that the active buckling constraint effectively prevents the presence of long

unsupported beams in the optimized configuration to impose the strength constraint on

the final solution.

• The resulted topology encompasses the fully distributed compliant characteristic. The

actuator is expanding as a whole to transfer the motion.

• The built-in, fully-coupled FEA can precisely predict the behavior of the optimized ac-

tuator. Reliability of the built-in FEA code eliminates the necessity of transferring the

solution to commercial software for further simulations.

• The resulted topology can easily be mapped for fabrication through the available GUI in

Appendix A.

• Comparison of the optimized configuration from the proposed method with results of

homogenization method in Figure 6-2(b) verifies that frame elements are a more suitable

choice for MEMS domain. The performance of the actuator in Figure 6-2 is not reported

for comparison [9].

120



ΔsT

sT

sk

Ω

ΔsT

sT
Ω

(b)

(a)

0GNDV =

dcV

dcV

X

Y

X

Y

Figure 6-9: (a) Motion transfer and (b) force transfer electro-thermal actuator design domain
and corresponding boundary conditions, where ks = 100 [μN/μm].

6.2 Example 2: Electro-thermal Compliant Actuator, ETC

In this example, to further demonstrate the advantages of the proposed method, examples of

optimized electro-thermo-mechanical actuators are compared with available results of homoge-

nization method in the literature [33, 94, 10].

6.2.1 Design Domain

As an example, design of an electro-thermal micro-actuator, sketched in Figures 6-9(a) and

(b), is considered and results are compared with reported topologies in [33] and [10] from

homogenization method. The design domain is rectangular and dimensions are listed in Table

6.2. The left edge has two terminals where a prescribed voltage Vdc is applied. A rectangular

domain shown in white is fixed to be void. The actuators are fabricated with electroplated

Nickel. Material properties of Nickel are listed in Table 6.1. The optimization consists in

maximizing the deflection ∆ at the output point in the desired shown direction ∆, for two

cases:

a) Motion transfer mechanism as sketched in Figure 6-9(a). The optimized topology is

desired to transfer the maximum deflection at output location in direction of ∆.
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Table 6.2: Geometrical dimensions for the electro-thermal actuator in Example 2.
Geometrical Data
Design domain dimensions 500× 150 μm

Void domain dimensions 200× 50 μm

Vdc 0.4 V

Thickness 7 μm

air gap to substrate δ 2 μm

Ts, T∞ 0 ◦C

b) Force transfer mechanism as sketched in Figure 6-9(b). The optimized topology is desired

to transfer the maximum deflection at the output location in the direction of ∆ at he presence

of a workpiece resistance at output. Linear spring ks = 100 [μN/μm] simulates the resistance

from a workpiece at the output point.

6.2.2 Problem Statement

The design specifications are that an applied voltage, Vdc, causes the motion, ∆, in the vertical

direction. The direction of the desired output displacement is specified in terms of a unit vector

[0,1]. The optimization problem is formulated as:

Maximize :
MSE

SE
(6.2)

Subject to : 1 < we < 8 μm

Fe < P̄

ks = 0, 100 [μN/μm]

electrical equilibrium equations

thermal equilibrium equations

elastic equilibrium equations

flexibility requirement

stiffness requirement

Convergence criteria =1e-5

∆ in the direction of [0,1]
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Figure 6-10: Design domain and boundary conditions of an electro-thermal actuator, discretized
with frame elements.

where we is the in-plane width of element e and is the design variable for optimization algorithm.

Boundary conditions applied to equilibrium equations are shown in Figure 6-9. The initial

guess is randomly generated between the upper and lower bounds. For fabrication feasibility,

variables can have numbers in 0.1 [μm] increments. In order to maximize the design objective

while satisfying the constraints, the algorithm changes the value of the design variables in each

iteration so that the uneconomical members tend toward the lower bound constraints and the

economical members tend toward the upper bond constraints. The optimal solution is the most

efficient arrangement of beam members in terms of design objective and constraints.

Power coefficients of the objective function are chosen as m = n = 1 to provide a balanced

objective function for both motion transfer and force transfer designs.

6.2.3 Optimized ETC Configuration

The design domain is discretized and boundary conditions are applied, as shown in Figure 6-10.

The optimized topologies are shown in Figure 6-11 (a) and (b) for motion transfer and force

transfer mechanisms, respectively. Figure 6-12 (a) and (b) shows the algorithm convergence

history in both cases. As shown in the figures, for both cases, the algorithm converges in less

than 100 iterations. This is one of the advantages of the implemented GA over other gradient-

based methods applied in the literature, which usually require more than 500 iterations to

converge.
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(a)

(b)

Figure 6-11: Optimized topology of (a) motion transfer electro-thermal actuator and (b) force
transfer electro-thermal actuator where ks = 100 [μN/μm].
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Figure 6-12: Convergence history of real-coded GA for (a) motion transfer and (b) force transfer
mechanism.

Since the terminals are connected to voltage pads and to the substrate, they have the

prescribed temperature as the substrate temperature. They act as heat sinks and, as a result,

the local heating is lower near the terminals. Applying the buckling constraint prevents the

creation of long, slender, single piece beam elements in the final solution.

A finite element analysis (FEA) of the solution was performed in order to verify the solution

behavior. The result is shown in Figure 6-13, in which the undeformed shape is denoted by the

solid lines and the deformed shape is denoted by the dashed lines. The displacements calculated

here are for the optimal design subject to the applied voltage Vdc = 0.4 [V]. The output node

number is 25 in both optimized configurations, as shown in Figure (6-13).

Comparison of the motion transfer mechanism in Figure 6-13(a) and the force transfer

mechanism in 6-13(b) shows the effect of workpiece resistance on the optimized topology. As

seen in these figures, the force transfer design has additional supporting elements in the arms

that provide the required stiffness in the mechanism to resist the workpiece at output during

actuation, in comparison with 6-13(a). The effect of workpiece resistance on optimized topology

is illustrated in more detail in next example.

Figure 6-14 shows the optimized topologies for this actuator, using the same dimensions,

material properties and boundary conditions presented in [10], where homogenized material
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Figure 6-13: Deformed and undeformed shape of resulting optimal mechanisms for (a) motion
transfer and (b) force transfer actuator where ks = 100 [μN/μm].
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distribution was used.

Comparison of the topologies in Figures 6-13 and 6-14 highlight the following points:

• The homogenized material method results in a mechanism that relies on localized de-

flection at narrow flexural joints to provide the output motion; whereas, in Figure 6-13

(a) and (b), the compliance is distributed throughout the mechanism and the structure

deforms as a whole.

• The mechanisms in Figure 6-13 are designed with strength consideration. The active

buckling constraint ensures that all the elements are connected properly to avoid occur-

rence of buckling in elements during actuation. In Figure 6-14, the presence of a buckling

element is observed.

• The optimized design from the homogenization method in Figure 6-14 requires manual

interpolation to extract the actual layout, whereas, the design in 6-13 can be directly

mapped to a feasible layout.

• Using a frame ground structures allows for a coarser subdivision of the design domain

than the homogenized material method for the same resolution of the shape definition.

Therefore, the frame ground structure significantly reduces the computational burden of

the optimization procedure.

The optimization procedure for this example converges in less than 5 minutes on a regular

PC, and after the convergence, the optimized topology is instantaneously analyzed with a

built in FEA and data files are available for further study. It is also possible to conveniently

extract the fabrication layout by exporting the topology to an IGES file in the GUI. The full

optimization procedure from problem specification to fabrication is packaged with a GUI, which

enables the efficient use of the method for users. Details of the implemented GUI are presented

in Appendix A.

6.2.4 Study of Performance and Verification

To study the performance of the optimized actuator, the voltage-displacement characteristic

and nodal temperature and voltage distribution of mechanisms in Figure 6-13, derived from
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Buckling member

Hinges

Figure 6-14: (a) Optimal actuator topology for the design problem sketched in Figure 6-9 and
(b) actuated structure [10]. The design domain is discretized with 17856 elements. Deformation
takes place through high stress hinges and narrow members that are prone to buckling.
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the built-in FEA, are presented in the following. To further verify the results from the built-in

FEA, optimized topologies are simulated in ANSYS and the results are compared with the FEA

simulations. The performance of the force transfer mechanism is compared with results of same

actuator optimized using the homogenization method described in the literature [33].

Figures 6-16 and 6-15 show the FEA results for nodal displacements dX and dY at Vdc = 0.4

[V] for both motion transfer and force transfer type actuators, respectively.

The output node, 25, is marked on the plots. The vertical displacements, dY, at the output

node are 7.9 [μm] and 4.7 [μm] for motion transfer and force transfer, respectively. It is also

noted that the horizontal deflection, dX, is 0.85 [μm] for the motion transfer and 0.41 [μm] for

the force transfer mechanism. This confirms that the design specification of output direction

∆ is met in both cases.

In Figures 6-18 and 6-17, the nodal voltage and temperatures of the designs are plotted from

the FEA results. The voltage is distributed from 0 [V] to 0.4 [V] between the input DC terminals.

The prescribed temperature value at anchors is 0 [oC] and the maximum temperatures in the

body are 543 [oC] and 519 [oC] for motion transfer and force transfer, respectively. It is shown

here that the transferred force at output is obtained at the cost of lower displacement at the

output.The optimized mechanisms are simulated in ANSYS for verification of the above FEA

results. The layouts in Figures 6-11 are exported to IGES format and the solid model in ANSYS

is built by importing the IGES file, meshing and applying boundary conditions. Figure 6-19

shows the ANSYS solid model of the motion transfer type actuator.

Figure 6-20(a) and Figure 6-20(b) show the displacement field contour plot of the motion

transfer mechanism for dX and dY , respectively. The displacement field in ANSYS and the

FEA results in Figure 6-15 agree with less than 1% error.

In Figure 6-21(a) and (b), voltage distribution and temperature distribution in the body of

the actuator are plotted in ANSYS for the motion transfer mechanism. Figure 6-21(a) shows

that voltage is distributed in a loop between the upper and lower arms of the actuator, from 0

[V] to 0.4 [V]. In Figure 6-21(b) the principal of actuation is shown. The formation of the cold

arm in the upper region and hot arm in lower region enable the structure to deform upward

in the Y direction. Also, the comparison of the temperature contour to the nodal temperature

values from the FEA in Figure 6-17(b) confirms the FEA results
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Figure 6-15: Nodal displacements of motion tansfer type actuator at 0.4 [V], plotted from FEA
solver.

The voltage-displacement characteristic of both the motion transfer and force transfer mech-

anisms is listed in Table 6.3 and is also plotted in Figure 6-22, along with same results from

ANSYS [11] simulations for comparison. The FEA and ANSYS results agree, as shown in

Figure 6-22.

The performance of the force transfer mechanism in Figure 6-13(b) is compared to the one

resulting from the homogenization method in [33], as shown in Figure 6-14.

In Figure 6-23, the force-displacement characteristic of the device is shown. The force

transfer actuator in 6-13(b) achieves the maximum vertical deflection of 4.7 [μm] subject to 0.4

[V] applied voltage and the maximum temperature in the body is 530 [oC]. The force exerted

on the spring ks is approximately 500 [μN ] at this deflection. In [33], a vertical displacement of

7 [μm] and output force of 700 [μN ] is reported for the mechanism in Figure 6-14.

It is concluded that the optimized force transfer actuator in Figure 6-13(b) can closely meet

the performance of its counterpart with a reliable well posed configuration.

It should be noted that a compliant mechanism gains its mobility from flexibility of its
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Figure 6-16: Nodal displacements of force tansfer type actuator at 0.4 [V], plotted from FEA
solver.
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Figure 6-17: (a) Nodal voltage values and (b) nodal temperature values of the motion transfer
type mechanism in Figure 6-13(a), plotted from the FEA results.
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Figure 6-18: (a) Nodal voltage values and (b) nodal temperature values for the force transfer
type mechanism in Figure 6-13(b), plotted from the FEA results.
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Figure 6-19: ANSYS [11] model of the motion trasfer mechanism, showing the mesh and bound-
ary conditions applied.
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Figure 6-20: ANSYS [11] simulation results for the motion transfer actuator (a) dX and (b)
dY . The simulations verify the nodal displacements plotted in Figure 6-15.

Table 6.3: Value of vertical displacement at output point from the optimization package for the
motion transfer and the force transfer actuators

dY [μm]

Voltage [V] Motion Transfer Force Transfer
0.1 0.7 0.3
0.2 2.01 1.1
0.3 4.5 2.7
0.4 7.9 4.7
0.5 12.2 7.5
0.6 17.2 10.5
0.7 23.1 13.9
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plotted in Figure 6-20.
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Figure 6-22: Comparison of vertical displacement, dY [μm] at the output point from the opti-
mization package and ANSYS [11] for both motion transfer and force transfer type actuators.

members. A compliant mechanism will always perform worse than its rigid-body counterparts

since some of the input energy will be stored as elastic energy in its members. This fact also

justifies the difference in performance between the frame based mechanism and the homoge-

nized material result. As mentioned previously, the mechanism resulting from the homogenized

material method gains its mobility through solid blocks of material connected together with

narrow hinges and is categorized as a lumped compliance mechanism. In contrast, the frame

structure mechanism bends as a whole to transfer the force and motion and is categorized as

a fully distributed compliant mechanism. It is then expected that a fully distributed compli-

ant mechanism has a lower performance than its lumped compliant counterpart. However, the

difference in performance is off-set by the robustness, reliability and manufacturability of the

fully compliant mechanisms.

A comprehensive study of the optimized topologies and comparison with their counterparts

from the homogenized material method highlights the following conclusions for this example:

• The design domain was discretized with 17854 elements to achieve the optimized topology

in Figure 6-14 [33]. The initial frame ground structure in Figure 6-10 consists of 37

nodes and 88 elements. The significant decrease in number of elements results in a low
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Figure 6-23: Force- displacement characteristic of the force transfer type mechanism in Figure
6-13(b).

computational cost.

• The simulation results from ANSYS [11] verify the accuracy of the optimization package

and its finite element solver. They prove that this package is reliable to be used as a

powerful tool to provide designers with novel ideas to design electro-thermo-mechanical

components for MEMS.

6.3 Example 3: High Force Actuator

In this example, the effect of workpiece resistance on the final optimal topology is studied in

detail and the optimum topologies are compared with a conventional actuator [12] and results

from the homogenization method described in the literature [13].

6.3.1 Design Domain

Figure 6-24(a) shows the schematic of problem specification in example 3. In this example, the

effect of workpiece resistance, ks, on optimized actuator configuration is studied. In Table 6.4,

the design domain dimensions and input specifications are listed.

The material properties are that of Polysilicon, which are listed in Table 4.1. A voltage

of 10 [V] is applied across input DC terminals, which are also the locations where the domain
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Table 6.4: Geometrical dimensions for the high force compliant actuator in Example 3.
Geometrical Data
Design domain dimensions 200× 500 μm

Void domain dimensions 67× 84 μm

Vdc 10 V

Thickness 2 μm

air gap to substrate δ 2 μm

Ts, T∞ 0 ◦C
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Figure 6-24: (a) Design domain for Example 3 and (b) initial frame structure with applied
boundary conditions.

is mechanically fixed to the ground. The optimized actuator should have maximum deflection

in output direction, ∆, at prescribed location, subject to applied voltage and thermal and

mechanical boundary conditions at anchors. Output direction ∆ is defined with the vector

[1,0], denoting that, at target output location, the actuator moves only in X direction and

should have no vertical movement, where X and Y are the coordinates of the 2D space, as

shown in Figure 6-24(a).

Figure 6-24(b) shows the initial frame ground structure with the applied boundary condi-

tions and output specification. The initial ground structure is discretized with 43 nodes and

106 elements.
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Figure 6-25: (a) Intuitive design for Example 3 [12] (b) optimized topology with homogenization
method [13] and (c) equivalent rigid link mechanism.

Figure 6-25(a) shows the intuitive bent beam actuator reported in the literature [12].

In Figure 6-25(b) the result of the homogenized material method described in the literature

for the same domain is shown [13]. Figure 6-25(c) shows the kinematic equivalent configuration

of this design. It is shown in [14] that the continuum-based design in Figure 6-25(b) results

in a very low yield in fabrication due to very narrow hinges, which are below the lithography

reliability limit. This mechanism consists of rigid links connected together through flexural

hinges to achieve the flexibility. In [14] fabrication yield of this device is reported to be less

than 10% due to residual stress build up at narrow thin parts, as shown in Figure 6-26. From

the failure analysis in [14] it is concluded that design optimization targeted only at performance

hardly produces actuators at a high yield rate. In [14] it is stated ” if a design optimization

method can consider MEMS design issues such as stresses, the actuator failure rate can be

substantially reduced. However, to our knowledge, no such method is yet available, so far.”

It will be shown in the following that frame ground structure with active buckling constraint

can result in topologies compatible with microfabrication processes and as a result they can
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potentially have a high yield rate.

6.3.2 Problem Statement

The design specifications are that an applied voltage, Vdc, causes the motion,∆, in the horizontal

direction. The multi-criteria objective function in Equation (5.12a) was employed where m = 3

and n = 2 and the buckling constraint is active. The exponents of objective function are chosen

to provide a balance between high force and deflection. The optimized topology should transfer

the maximum force and deflection at the output location in direction of ∆, while the workpiece

resistance, ks, is increased at the output point. The optimization problem is then formulated

as:

Maximize : sign(MSE)2(
MSE3

SE2
) (6.3)

Subject to : 1 < we < 5 [μm]

Fe < P̄

ks = 0, 100, 500, 1000 [μN/μm]

electrical equilibrium equations

thermal equilibrium equations

elastic equilibrium equations

flexibility requirement

stiffness requirement

Convergence criteria =1e-6

∆ in the direction of [1,0]

where we is the in-plane width of element e and is the design variable for the optimization

algorithm and P̄ is the maximum allowed force before buckling from Equation (5.15).

6.3.3 Optimized Configuration

In Figure 6-27 the optimized topology is shown with solid lines and the deformed shape of the

mechanism at 10 [V] is superimposed with dashed lines, for listed values of ks. The displacement
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Figure 6-26: Failure of a optimized thermal actuator in Figure 6-25(b) due to stress concentra-
tion in narrow hinges and violating minimum length scale [14].

field in this figure is scaled for better presentation and is, therefore, not to scale with the figure.

As shown in Figure 6-27, for ks = 0 [μN/μm], optimum design tends to the configuration of

the intuitive design shown in Figure 6-25(a); however, the active buckling constraint prevents

formation of long and slender elements. The actuator main body is a V shape element in the

middle, supported by connecting elements to satisfy the strength consideration. As shown in

this figure, the optimized topology becomes stiffer by increasing the workpiece resistance. The

required stiffness for sustaining the external resistance is automatically provided by adding

supporting elements to the main V shape actuator.

It is observed that the optimization scheme is capable of satisfying the symmetry nature

of the design domain without imposing a symmetry condition on the formulation. It is also

noted that the direction of the output deflection is fully satisfied and the optimized designs

have almost zero vertical displacement at output. These observations confirm that topology

optimization is well-posed to satisfy the full set of design specifications.

6.3.4 Study of performance

The performance of the optimized structures in Figure 6-27 are studied here. Figure 6-28 shows

the plot of tip displacement, dX [μm], versus applied voltage [V]. This plots shows that the

actuator displacement decreases with increased workpiece resistance. In the neighborhood of

the specified input voltage of 10 [V], the displacement of the actuator is linear. This linear
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Figure 6-27: Optimized configuration of Example 3 for an increasing value of workpiece resis-
tance ks.
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Figure 6-28: Tip displacement versus applied voltage of optimized configurations with varying
ks, shown in Figure 6-27.

displacement behavior is also seen in intuitive designs found in the literature [12].

For high values of ks, the actuator has thicker arms supported with more elements, whereas

for low values of ks, the optimal topology shows thin members and a reduced number of sup-

porting elements around the main V shape arm. In Figure 6-29, the force-displacement char-

acteristics of the actuators are plotted for ks = 100, 500 and 1000 [μN/μm] and it is shown

that the optimized actuator have a linear force-displacement characteristic. However, it is

observed that the large output forces with an increasing value of ks are obtained at the cost of

low deflection at output.

The intuitive design for this domain is shown in Figure 6-25(a). This type of bent beam

actuator, also known as TIM, was studied in Chapter 4, Section 4.6.2. Figure 4-13 shows that

the output displacement of the actuator decreases as the pre bend angle αb increases. For

the conventional TIM, the pre bend angle is usually very small, on the order of a fraction of

a degree. However, the pre bend angle αb in the optimized topology in Figure 6-27 is 38.66

degree. In Figure 6-30 performance of the TIM with same dimensions and material properties

as example 3 is compared with optimized topology in Figure 6-27 for the case ks = 0. The

actuator in Figure 6-30(b) consist of 320 [μm] half beams with cross sectional area of 5 [μm] in

width and by 2 [μm] in thickness connected with a 5 [μm] by 2 [μm] connector. The actuator is
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Figure 6-29: Force-displacement characteristic of optimized actuators of Example 3 for ks = 100,
500 and 1000 [μN/μm] .

simulated with FEA package developed in Chapter 4 at 10 [V] applied voltage. It is seen in the

deflected form of the actuator that TIM is not a feasible design for this domain. At pre bend

angel of αb = 38.66 deg. the beam buckle in plane and the output displacement is less than 1.5

[μm]. The deformed shape pattern is magnified 15 times in Figure 6-30(b) for visibility. On

the other hand, the topology optimization is capable of optimizing the design for any pre bend

angel and best performance. To transfer high forces, bent beam actuators are placed in an

array of connected actuators as shown in Figure 4-11 but topology optimization can produce a

design that can transfer high forces at the output in one actuator. This comparison also applies

to Example 1, where αb = 75.96 deg. The result confirms that topology optimization can be

used to generate non-intuitive optimized designs.

6.4 Conclusions

The novel topology optimization scheme from Chapter 5 was applied to the design of compliant

electro-thermal micro-actuators. The performance values of the optimized electro-thermal ac-
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Figure 6-30: (a) optimized actuator for ks = 0 with pre-bend angel of αb = 38.66 deg. and (b)
The conventional actuator with same material and dimensions, simulated with FEA at 10 [V].
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tuators were studied and compared with the performance of the finite element model in ANSYS

[11], the resulting topologies from the homogenization method and intuitive actuators described

in the literature.

The comparisons verify that, for MEMS applications, the frame ground structure is more

suitable. The developed genetic algorithm effectively overcomes the previous convergence dif-

ficulties. The proposed objective function implemented with the real-coded genetic algorithm

shows distinct advantages over other methods, such as:

• The new formulation provides the option to design the compliant mechanisms for specified

motion or force transfer.

• The resulting design is a frame-like structure, which is feasible to fabricate in MEMS.

There are no hinges, checkerboards or gray material regions, which do occur in the ho-

mogenization method. The use of beam elements tends to yield solutions without flexural

pivots because the elements bend as a whole. Therefore, qualitatively speaking, the re-

sulting designs tend to have distributed compliance rather than lumped compliance.

• The real-coded genetic algorithm shows a better repeatability. It converges to very similar

solutions in different runs, as compared with SLP or SQP, in which the solutions are

strongly dependent on an initial guess.

• The ground structure domain discretization, in conjunction with an efficient genetic al-

gorithm, facilitated the use of a coarse mesh, which resulted in a low computational cost.

The presented approach therefore provides a computationally efficient alternative to the

continuum-element-based approach for the topology optimization of ETC mechanisms.

• The built-in FEA code is verified as an efficient and reliable tool for analysis of compliant

designs.
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Chapter 7

Conclusions

7.1 Summary of Contributions

Micro-compliant devices, which are predominantly utilized at micro-scale as force and motion

transmitters are at the core of microsystems. This research deals with topology optimization

of micro-compliant devices. The main application is in designing optimum MEMS compliant

actuators with embedded actuation. Since electro-thermal actuation is very common in MEMS,

the focus of this thesis is on the development of an optimization scheme for multi-disciplinary

domains, especially an electro-thermo-mechanical domain.

An optimization algorithm for the design of compliant mechanisms with electro-thermo

mechanical boundaries was developed. Several examples were used to validate and compare the

results with previous research in this field. Improvements in optimum solutions are highlighted

below:

• A new fully coupled analysis method for electro-thermo-mechanical domain was devel-

oped. A new algorithm was proposed to couple the resistive circuit method to finite

element analysis (FEA) by Modified Nodal Analysis (MNA). This formulation provides

a fast and reliable tool to analyze electro-thermo-elastic devices, which allows for large

flexibility in the selection of mechanical, thermal and electrical boundary conditions.

• A novel topology optimization scheme for MEMS compliant electro-thermo-mechanical

devices was developed. The superiority of the new optimization method was illustrated
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with examples of novel electro-thermal actuators.

• Embedded electro-thermal actuation was implemented in the topology optimization scheme.

• Multiple inputs were enabled through the new formulations, which allows for topology

optimization with an unlimited number of electrical, thermal and mechanical boundary

conditions for the domain.

• A new multi-criteria objective function was proposed for electro-thermal and thermal

domain optimization to balance flexibility and stiffness requirements. The new formula

also enables optimization of the domain for force transfer or motion transfer compliant

mechanisms.

• Practical solutions for several identified issues in topology optimization of MEMS devices

were proposed and implemented:

— An efficient real-coded genetic algorithm (GA) with elitism was implemented for the

optimization procedure, which significantly improves the computation cost, conver-

gence and repeatability of the optimization problem. The ground structure domain

discretization, in conjunction with implemented genetic algorithm, facilitated the

use of a coarse mesh, which results in a low computational cost. The presented ap-

proach therefore provides a computationally efficient alternative to the continuum-

element-based approach for the topology optimization of electro-thermo-mechanical

mechanisms.

— A new element removal policy was implemented to include MEMS fabrication limits

and tolerances in the optimization procedure.

— The strength and reliability of the optimized designs were addressed by imposing a

new buckling constraint on elements of optimization.

— It was confirmed through examples that the frame ground structure produces optimal

designs that can be directly mapped for fabrication and need no further interpreta-

tion, post processing or gray zone filtering, as required in previous research based on

the homogenization method.
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— It was shown that frame ground structure discretization allows the use of a coarse

subdivision of the design domain than the continuum-element approach for the same

resolution of shape definition. Therefore, in conjunction with genetic algorithm,

the frame-element-based formulation reduces the computational burden for the op-

timization procedure without compromising the sharpness of the shape definition.

The presented approach therefore provides a computationally efficient alternative to

the homogenized material approach.

— The issue of producing optimal designs with fully distributed compliance versus

lumped compliance was addressed by employing a new frame ground structure for

domain discretization and imposing a strength constraint through a buckling limit.

• The topology optimization scheme developed in this thesis is made available for MEMS

designers and other researchers with a graphical user interface (GUI).

7.2 Future Research

The new topology optimization method implemented in this thesis provides a flexible ground for

expansion and future research. The following directions for future research are recommended:

• It can be used as the basis for design of compliant mechanisms for optimum dynamic

responses. The potential applications of optimum dynamic compliant systems are numer-

ous, including the design of resonators and filters for optimum tunability and low power

consumption.

• The systematic approach to topology optimization of MEMS presented in this thesis pro-

vides a basis for designing compliant MEMS with multiple materials. The discretization

scheme with frame ground structure used in this thesis, is specially suited to incorpo-

rate multiple materials, since each element of the frame can possess different material

properties.

• The focus of the topology optimization scheme presented in this thesis was on electro-

thermal actuation, as the most common actuation scheme used in MEMS community.

However, this optimization package can be extended to include other actuation schemes
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(e.g. piezoelectric actuation) using fully coupled resistive circuit and finite element

method.

• In this research, the problem of multiple inputs was addressed with a new proposed

coupled analysis method; however, the optimization scheme can be expanded to optimized

compliant mechanisms with two-phase and multiple outputs.

• The method developed in this thesis for two dimensional in-plane domains can easily be

extended to 3D domains with expansion of matrix equations to 3D frame structure.

• In the finite element formulation of thermo-elastic field the assumption of linear small

deformations was followed. Although the frame structure may undergo large deformations,

individual beams in the frame structure stay in the small deformations regime. The

formulation however, can be exteded to include the second order bending terms in the

stress-strain equation of the beam to consider the effect of geometric stiffness at large

deformations.

• In this thesis, genetic algorithm was employed to improve the convergence of the optimiza-

tion problem. More improvement in the convergence is possible using multiple objective

functions with Pareto optimization to find the optimal compromised solution in the Pareto

set.
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Appendix A

Designing GUI for Topology

Optimization Scheme

In this appendix, a software with graphical user interface (GUI) that provides an automated

design route from problem specification to fabrication of fully compliant electro-thermal mech-

anisms is presented in detail.

The new formulation for multi-criteria objective function with genetic algorithm (GA),

proposed in Chapter 5, is employed as the optimization algorithm. The topology optimization

GUI described herein is the extended version of the GUI developed for the mechanical domain

and the FEA package described in Chapters 3 and 4. The design continuum is presented using

ground structures of frame finite elements. As noted in the thesis, these elements are easy

and robust in implementation and help provide effortless extraction and transfer of optimal

topologies into commercial CAD packages.

An edge detection algorithm is also used with the GUI for boundary extraction of optimal

compliant geometries. The resulting data is stored in IGES format for easy portability into

commercial modelling and analysis software packages for further investigation. Because the

focus of this research is on micro-compliant mechanisms, the program is designed to use the

μm − kg − s system of units. In this case, dimensions are in [μm], forces are in [μN ], and

pressure is in [MPa].

From the findings of this research, it is clear that compliant mechanisms have numerous
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advantages in product design especially for newer technologies, such as MEMS. Despite the ad-

vances in developing design techniques in the recent past, the broader research community and

the commercial arena have not yet utilized them in synthesizing compliant mechanisms. This

can be attributed to the lack of access to the synthesis codes developed by various researches.

Recently, TOPOPT was made available by Sigmund [96]. TOPOPT is a synthesis software

that utilizes SIMP models [97] for topology optimization of compliant mechanisms, yet it nei-

ther addresses the MEMS domain nor the coupled field domain design (e.g. electro-thermal).

It is limited to a single field of mechanical design and uses the homogenized material topol-

ogy optimization scheme, which fails to provide designs compatible with MEMS fabrication

requirements.

The synthesis software explained here is developed to make the program implementation

available to MEMS designers at large. There is an added benefit when this software is used

by device designers who are not necessarily familiar with the details of topology optimization

techniques. When designers use it in situations not foreseen while developing the software,

its generality is challenged providing valuable feedback for further improvement. The base

software is a graphical user interface (GUI) implemented in Matlab [75] for the synthesis of

optimal compliant topologies. The software provides an interactive and automated design

route to synthesis of micro-electro-thermal compliant mechanisms from function specifications

to fabrication.

In Figure A-1, the two main menus of the GUI are shown, including the display menu and

parent menu, also referred to as the top level design menu. The graphical representation of

design domain and results of optimization are presented in the display menu, while the parent

menu contains inputs and controls for the optimization scheme.

The top level design menu is shown in Figure A-2. The user interface of this menu is divided

into four sections, as follows:

Function specifications where decisions on the geometry and discretization of the design

domain are made, and input and output ports with electrical and thermal loading, displacement

boundary conditions and output specifications are specified. Data processing in which mesh

information is made available to the optimization algorithm, specifically, real-coded genetic

algorithm via the Optimization module. Finally, the Fabrication module allows interactive
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Figure A-1: Two main menus of the GUI, display menu and parent menu.
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Figure A-2: Parent design menu for the GUI software.
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modification of the optimal solutions and helps in creating a CAD interface to transfer the

optimal continuum geometry to existing commercial software such as ANSYS [11].

A.1 Designing Compliant MEMS With GUI

The software uses frame element mesh to represent a design region. The optimal geometries are

well defined when using these element types, as apposed to implementation with homogenized

material elements, in which serrated edges or regions with only a node shared by two elements

may be obtained, which are difficult to interpret in a CAD package. With relatively fewer

degrees of freedom required to model a design domain, synthesis with frame elements is more

robust and results in designs that are feasible for manufacturing, as previously discussed in this

thesis.

A.1.1 Function Specification

Figure A-3 shows the details of Function Specifications module. The initial design domain is

assumed to be rectangular. The dimensions, specifically, the region’s length and width, can be

specified using the Domain Generation icon in the Function Specifications module but can be

modified to any shape, as explained below with Design Domain Modification. A full ground

structure is ideal for discrete representation of the design region, i.e. nodes are placed at

regular intervals in the region, and comprises an array of unit cells, as shown in Figure A-3.

Two meshing policies are implemented that allow for control over meshing quality with coarse

or fine mesh options. The number of cells along the domain length and width can be specified

with the pop-up menu (Figure A-3) that appears when choosing Domain Generation option.

In Figure A-3, node numbers are annotated with a large font size, while element numbers are

shown using a smaller size.

With the Design Domain Modification option (Figure A-3), software allows interactive re-

moval of elements from the domain boundary or its interior to define the proper domain shape

or specify the void area. The user can select such elements using the left button of the mouse

near their mid-points. Selected elements show red in the prompt window, while deselected

elements are shown in black. Elements can be deselected using the left mouse button again.
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Figure A-3: Function Specification pop-up menus.
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The user can register his/her decision by using the right mouse button on the last element to

be deleted. Domain geometry can also be modified by selecting a group of elements within a

rectangular region. The prompt window is updated and a query on further domain modification

is issued. If region modification is not required, this option can be ignored.

The displacement boundary conditions are entered using the Displacement Boundary Con-

ditions icon in Figure A-3. For frame elements, three check boxes corresponding to x, y and

slope degrees of freedom are depicted. The user is required to enter the node number and check

the dofs which he/she wants fixed. The list box in the middle shows the number of nodal

entries made and the box to its right depicts the total number of degrees of freedom checked.

The information is not registered unless Enter icon is used. When finished specifying the fixed

dofs, the Exit icon is used.

The electrical boundary conditions are applied using Applied Voltage Boundary Conditions

icon. The magnitude of the applied DC voltage, the node numbers corresponding to positive

and negative DC source connections, and the reference ground node for the voltage source are

entered. The list box on the top left shows the total number of DC sources specified for the

domain. There is no limit on the number of DC sources connected to one domain. The user

is required to hit Enter after entering the parameters for each source. When finished, the Exit

icon is used.

The thermal boundary conditions are applied through the Thermal Boundary Conditions

window. The temperature imposed on a specific node and corresponding node number are

entered in the top right boxes in degrees Celsius. The substrate temperature and ambient

temperature are entered in the two bottom boxes in the right. There is no limit on the number of

nodal thermal boundary conditions imposed on domain but substrate and ambient temperature

are entered once and remain constant for the total domain. The total number of temperature

boundaries applied is shown in the top left box and the user needs to hit Enter after entering

each set. When finished, the Exit icon is used.

The output port is specified using the Output Displacement Direction icon in Figure A-3.

The node number is entered in the top left edit box in the pop up menu and the direction

corresponding to x, y and slope dofs are checked. Appropriate linear spring constants, ks ,

across the checked directions may be provided. They not only help in modelling the reaction
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forces but also control the output direction of deformation indirectly. Edit boxes on the extreme

right depict unit dummy loads along the direction checked for the MSE and SE calculation. For

direct control, these values can be changed in the data files inside program functions. Positive

signs, by convention, signify right and upward directions along the horizontal and vertical axes,

respectively. When finished, the Exit icon is used.

A.1.2 Data Processing

The input requirements generated using the Function Specifications module, or generated else-

where, can be made available to the optimization algorithms using the Load Input Data Files

icon in Figure A-4. At Load Input Data Files, seven data files are generated with the input

information, as follows:

• The node.dat file contains node numbers in the first column and x and y coordinates in

the second and third columns, respectively.

• Element numbers appear in the first column of the elem.dat file. The node connectivity

information, or the nodes to which elements are connected, appear across appropriate

element numbers in the second and third columns, respectively, in elem.dat file. Mate-

rial properties associated with each element are also stored in elem.dat, columns 5 to 8

for Young’s modulus, electrical resistivity, thermal conductivity and thermal expansion

coefficient, respectively.

• In data file dispbc.dat, mechanical boundary conditions associated with each node are

arranged in columns. The first column is the count, the second column is the node

number and the third column carries the associated degree of freedom fixed in that node.

By convention, entry 1 in the third column represents the x dof , 2 denotes the y dof and

3 implies the slope.

• Data file voltbc.dat contains the applied voltage information, where the first column is

the count, the second column is the positive node, the third column is the negative node

connection of DC source, the fourth column is the magnitude of applied DC and the fifth

column is the ground reference for that DC source.
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• Data file thermbc.dat contains the information for thermal boundary conditions, where

the first column is the count, the second column is the node number, the third column is

the imposed temperature and the fourth and fifth columns are the substrate and ambient

temperatures, respectively.

• Material properties at reference temperature are stored in elemprop.dat. Upon loading

data files, they will be copied to elem.dat file for each element. If the temperature depen-

dence of material properties is provided for each element, the elem.dat columns containing

material properties are updated according to the average temperature of that element.

• forces.dat contains the data for specified output, where the first column is the count,

the second column is the node number for desired output, the third and fourth columns

contain the direction of the output, for example [0,1] for x direction displacement, and

the fifth column is the value of linear spring for resistance of the workpiece, ks [μN/μm].

It should be noted that any arbitrary shape planar domain of frame elements generated

externally can be used with this GUI, so long as the input information adheres to the format

described above. After loading the input data files, boundary conditions appear in the display

menu with the domain geometry. The triangles in red depict fixed x or y dofs and the squares

represent fixed slopes. The voltage and thermal boundary conditions are noted with text and

the arrow in green shows the output direction of displacement.

Either in-plane widths or out of plane thicknesses can be chosen as variable for frame

elements. Then the user is required to specify the lower and upper bounds on the chosen design

variables for frame elements as shown in Figure A-4.

A.1.3 Optimization Module

Decisions on the optimization function and algorithm are made using the Optimization module,

as shown in Figure A-5. The multi-criteria objective function proposed in this thesis is used as

the primary choice but any other special case of objective function can easily be implemented as

well. The user can specify the tolerance limit for convergence and the corresponding exponents

of the objective function, as shown in Figure A-5.
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Figure A-4: Data processing module: loading the input data files, optimization variable and its
upper and lower bounds.
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Figure A-5: Optimization module: choosing the optimization objective function, algorithm and
applied constraints and also modifying the optimal solution using the post process options.
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The preferred optimization algorithm is selected through the drop off menu in optimization

method. Here, the real-coded GA is implemented but the GUI can accommodate more desired

methods (e.g. SQP and optimality criteria method).

The active constraints are specified through selection in the drop off menu of constraints.

In the default situation, the buckling constraint is active.

By hitting the Run Optimization button, the optimization algorithm starts iterating and,

after convergence, the optimized configuration is plotted in the display menu. The finite element

solution of the optimized design is superimposed in the display with dashed lines. After the

algorithm converges, the convergence history is plotted in a graph and new topology data is

saved in a new set of data files for further study. The genetic algorithm data for each population

is stored in GA.dat file where the first column is the generation number, the second column is

the fitness of that generation and the third column is the best fitness for each generation.

At this stage the elements on the lower bound are not shown in the display menu but are still

not removed from finite element matrices and they can contribute to the stiffness matrix. In

the Filter out menu, the user can specify the desired filtering coefficient, explained in Equation

(5.22), to gauge the removal of elements considering the fabrication tolerances.

Some elements that do not offer significant contribution in improving the design objective

may be retained in the optimal solution. They may exist alone without proper material con-

nectivity in their neighborhood. It is then desired to eliminate those entities subject to user’s

discretion; however, through the study of many cases, it was observed that appearance of such

dangling elements is very rare if the domain is properly defined. This is accomplished using the

Post Process option in this module, as shown in Figure A-5.

If the performance of the modified solution is satisfactory, the final solution is saved in

new set of data files. Elements outside specified bounds are permanently removed and node

and element numbers are updated. The final design variables are stored in x.dat file for each

element. The final optimized solution is analyzed using the FEA Results option. At this stage,

the nodal solutions from the final finite element analysis are stored in the FEA.dat data file for

further study.

In the FEA.dat file, the first column is the node number, x, y and slope of that node are

stored in the second to fourth columns, the fifth column is the nodal voltage and the sixth
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column is the nodal temperature. The nodal solutions are also plotted in separate graphs if

desired. The optimized solution can now be transferred to a CAD or layout software.

A.1.4 Fabrication Module

The layout of the final optimized topology is transferred to IGES format in the Fabrication

module, as shown in Figure A-6.

Initially, the elements are transported in the form of closed boxes with intersecting ends.

This is done to facilitate the extrusion of such boxes if out-of-plane thicknesses are chosen

as design variables. However, for in-plane-widths as design variables, for a large number of

elements, trimming the edges in CAD software is a tedious task. An alternative, then, is

to employ an edge detection algorithm on the image containing the optimal geometry. Such

procedures are common and have been widely used as solid modelling interfaces [20]. The edge

detection process is accomplished by scanning the binary image from left to right for each row.

All pixels that are black in color are compared with neighboring pixels to determine if they

lie on an edge. Pixels constituting the edges are retained as black while those in the interior

are modified to white. The new image comprising the edge information is now scanned row-

wise to locate a black pixel, which is an edge point. From this starting point, neighboring

black pixels are located maneuvering clockwise. If the chaining process ends with the starting

point, a closed loop is obtained. Otherwise, some open entities are found. Nevertheless, the

connectivity information for individual entities is stored for further processing. Arc extraction

is preferred over line extraction to avoid some circular arcs being modeled as multiple line

segments. First from the connectivity data, three points (start, middle and end) are picked to

retrieve the characteristic parameters of the arc, namely, its center and the radius. If a pixel

lies on this arc, the arc is extended and the process is continued until the deviation violates

a heuristically chosen threshold. The deviation here is the difference between the distance of

the pixel from the center point and the radius. These arcs are stored in IGES format (center,

start and end points). Second, from the remaining edge points, line extraction is performed by

picking two pixels and fitting a candidate line. Deviations of each pixel from the line decide

if the pixel lies on it. If so, the line is extended to the pixel and the procedure is continued

until the deviation criteria is violated. The output is a collection of lines stored in the IGES
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Figure A-6: Fabrication module: creating IGES CAD interface file for the optimal topology.

format (start and end point). Finally, a transportable wire frame for planar objects is obtained.

Starting with the binary image, in pixmap or PM format, of the optimal compliant topology,

edge detection is performed using the edgerun command in the optimization package to obtain

a wire frame, as shown in Figure A-6. The corresponding IGES CAD file can be imported into

any other package for solid model creation, fabrication and evaluating the performance of the

optimized topology.
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