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Abstract

Analyses of longitudinal categorical data are typically based on semiparametric
models in which covariate effects are expressed on marginal probabilities and esti-
mation is carried out based on generalized estimating equations (GEE). Methods
based on GEE are motivated in part by the lack of tractable models for clustered
categorical data. However such marginal methods may not yield fully efficient esti-
mates, nor consistent estimates when missing data are present. In the first part of
the thesis I develop a Markov model for the analysis of longitudinal categorical data
which facilitates modeling marginal and conditional structures. A likelihood formu-
lation is employed for inference, so the resulting estimators enjoy properties such as
optimal efficiency and consistency, and remain consistent when data are missing at
random. Simulation studies demonstrate that the proposed method performs well
under a variety of situations. Application to data from a smoking prevention study

illustrates the utility of the model and interpretation of covariate effects.

Incomplete data often arise in many areas of research in practice. This phe-
nomenon is common in longitudinal data on disease history of subjects. Progres-
sive models provide a convenient framework for characterizing disease processes
which arise, for example, when the state represents the degree of the irreversible
damage incurred by the subject. Problems arise if the mechanism leading to the
missing data is related to the response process. A naive analysis might lead to
biased results and invalid inferences. The second part of this thesis begins with
an investigation of progressive multi-state models for longitudinal studies with in-
complete observations. Maximum likelihood estimation is carried out based on an
EM algorithm, and variance estimation is provided using Louis method. In general,
the maximum likelihood estimates are valid when the missing data mechanism is
missing completely at random or missing at random. Here we provide likelihood

based method in that the parameters are identifiable no matter what the missing
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data mechanism. Simulation studies demonstrate that the proposed method works

well under a variety of situations.

In practice, we often face data with missing values in both the response and the
covariates, and sometimes there is some association between the missingness of the
response and the covariate. The proper analysis of this type of data requires taking
this correlation into consideration. The impact of attrition in longitudinal studies
depends on the correlation between the missing response and missing covariate.
Ignoring such correlation can bias the statistical inference. We have studied the
proper method that incorporates the association between the missingness of the
response and missing covariate through the use of inverse probability weighted gen-
eralized estimating equations. The simulation illustrates that the proposed method
yields a consistent estimator, while the method that ignores the association yields

an inconsistent estimator.

Many analyses for longitudinal incomplete data focus on studying the impact
of covariates on the mean responses. However, little attention has been directed to
address the impact of missing covariates on the association parameters in clustered
longitudinal studies. The last part of this thesis mainly addresses this problem.
Weighted first and second order estimating equations are constructed to obtain

consistent estimates of mean and association parameters.
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Chapter 1

Introduction

1.1 Overview

Longitudinal studies are increasingly common in many areas of research includ-
ing medicine, public health, and the social sciences. The defining characteristic of
longitudinal studies is the repeated measurements on the same subject over time.
The primary goal of a longitudinal study is often to characterize the change in

responses over time as well as factors that influence this change.

During the past a few decades, statistical methods for the analysis of longitudi-
nal data have been developed tremendously (e.g. Liang and Zeger, 1986; Prentice,
1988; Zhao and Prentice, 1990; Laird and Ware, 1982; Breslow and Clayton, 1993;
Albert and Waclawiw, 1998; Albert, 2000). Despite this progress, there remains
a need for further methodological research to develop analysis techniques suitable
for different data and different analysis objectives. There are three broad classes
of methods for the analysis of longitudinal data, namely, mixed effects models,

marginal (typically semiparametric) methods, and transition models.



Mixed effects models are readily adapted if interest lies in cluster-specific or
subject-specific inferences regarding covariate effects. Harville (1977) introduced
a general class of linear mixed effects models for repeated measures and growth
curves and Laird and Ware (1982) proposed to fit linear mixed effects models with
the EM algorithm (Dempster et al., 1977). Cnaan et al. (1997) provided a detailed
review of linear mixed effects models with an application to a schizophrenia clinical
trial. Generally, the distribution of mixed effects is usually assumed to be normal.
This assumption brings mathematical simplicity and convenience to estimation and
inference for regression coefficients and also to the prediction of subject-specific
random effects. The most common strategy used to deal with the mixed effects
is to obtain the marginal likelihood by integrating the random effects out from
the joint likelihood of the observable responses and random effects. Stiratelli et
al. (1984) discussed an EM approach for the analysis of binary response data with
Gaussian random effects and Longford (1993) discussed an approach based on direct
maximization of the likelihood. A Gibbs sampling approach had been proposed by
Zeger and Karim (1991) for the generalized linear mixed effects model. Anderson
and Aitkin (1985) proposed to use adaptive Gaussian quadrature for the evaluation
of integrals over the random effects, but, in practice, the calculation of the marginal
likelihood can involve very intensive computation. As an alternative, Breslow and

Clayton (1993) proposed to use Laplace approximations in the likelihood evaluation.

Marginal methods are commonly used to describe the dependence of the marginal,
or “population averaged”, features of a joint distribution on the explanatory vari-
ables through a specified link function. Estimations of parameters can be carried
out without full distributional assumptions, but rather only require specification

of a regression model for the mean response; estimation is based on generalized



estimating equations (GEE). The theoretical foundation for GEE can be found in
Godambe (1960). Liang and Zeger (1986) and Zeger et al. (1988) proposed a
class of GEEs for longitudinal data, now known as first order GEE. These meth-
ods do not require specification of the full joint distribution of the longitudinal
response, but only specifications regarding of the marginal mean and variance of
the response, and some “working” assumptions about the correlation of responses
over time. Provided that the model for the mean is correctly specified, Liang and
Zeger (1986) showed that this approach yields consistent estimates for regression
parameters. They further showed that the estimates are robust to misspecification
of the working correlation structure for the responses within subjects (Crowder,

2001).

Prentice (1988) and Zhao and Prentice (1990) proposed extensions of GEE
to incorporate assumptions about higher-order moments for binary data. These
methods are called GEE2 methods. The central idea is to model the marginal mean
of each binary response and the association between pairs of response separately,
and then construct a set of second-order joint estimating equations. Liang et al.
(1992) discussed this class of estimating equations and extended it to consider the

multivariate regression analysis for categorical data.

Transitional models examine the effect of covariates on the transition patterns
across a binary or categorical response over time. With this approach, one models
the probability distribution of the response at a particular time as a function of
the covariates and the individual’s past responses. Markov models are among the
most convenient transition models, where one assumes that given the history, the
conditional distribution of responses depends on only m prior observations, where

the integer m is referred to as the order of the model. These models are particularly



attractive for categorical data that exhibit serial dependence since the coefficients
of the past responses indicate how strongly the past outcomes are associated with

the current response.

There are situations, however, where we do not want to condition on past out-
comes to make inferences regarding a covariate effect (Diggle et al., 2002). For
example, most clinical trials study the impact of treatment on the response at a
fixed, final follow up time or on the entire response profile over time. In this case,
we would not want to condition on past outcomes when making inferences regarding
the effect of treatment since the earlier outcomes are internal potentially responsive
“covariates”. The attractive characterization of serial dependence that a transition
model provides can be combined with a marginal regression structure by adopting
the framework of marginalized transition models (MTM) (Azzalini, 1994; Heagerty,
2002). Azzalini (1994) introduced a binary Markov chain model to accommodate
serial dependence arising in longitudinal studies. Heagerty and Zeger (2000) viewed
the approach of Azzalini (1994) as combining a marginal mean model that captures
systematic variation in the response as a function of covariates, with a conditional
mean model that describes serial dependence and identifies the joint distribution
of the current response. Inferences regarding the regression parameters are based

on the likelihood method.

Incomplete Data

Longitudinal studies often feature incomplete data because of a missed study as-
sessment or withdrawal. Problems arise if the mechanism leading to the missing
data is related to the response process. Little and Rubin (1987) gave a general
treatment of statistical analysis of missing data mechanisms, which includes a use-

ful hierarchy of missing-value models. A missing-data mechanism is called Missing
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Completely at Random (MCAR) if the missing data process is independent of any
data, and Missing at Random (MAR) if the missing data process does not depend
on the unobserved data. In contrast, data are Missing Not at Random (MNAR)
if the missing data process depends on unobserved data. These notions will be

discussed more completely in Section 1.2.

Likelihood methods based on the fully specified models and marginal methods
based on GEE are two powerful statistical techniques that have been developed
to accommodate missing data for longitudinal data analysis. Under the MCAR
mechanism, the observed data are just a random sample of all the data, so a valid
analysis can be obtained through a likelihood-based approach that omits data from
individuals with incomplete data; this is known as a complete case (CC) analysis
and, it is the technique that is most commonly used in most software packages. A
CC analysis may lose efficiency because the smaller sample size will inflate the stan-
dard errors and reduce the power of tests, but no bias is introduced when the data
are MCAR. MAR is a more realistic assumption than MCAR, and in most MAR
scenarios, a CC analysis will be both inefficient and biased. When data are MAR
or MCAR, and the parameters of the missing data mechanism are distinct from
those of the sampling model, the data are said to be ignorably missing (Little and
Rubin, 1987). In these cases, the missing data mechanism can be ignored in making
likelihood-based inferences about the parameters in the sampling model. Under the
MNAR mechanism, likelihood based methods are generally biased. Valid inferences
generally require specifying the correct model for the missing data mechanism and

identifiability of the parameters.

Difficulties with likelihood-based methods are that they require specification of

the joint distributions of longitudinal responses, and sometimes, need specification

bt



of the missing data process. However, in practice there is not a rich class of models
for the joint distribution of longitudinal data, especially for discrete data, and it is
not easy to specify the missing data model. In addition, for a MNAR mechanism,
the likelihood based inferences are invalid and methods which attempt to correct
for bias must rely on sensitivity analysis because parameters are not identifiable in

general (Rotnitzky et al., 1998).

Marginal methods based on GEE are another alternative approach to accommo-
date problems with missing data. Under the MCAR mechanism, the GEE approach
yields consistent estimates for the regression parameters. When the data are MAR
or MNAR, an analysis based on GEE gives inconsistent estimates of parameters
for the regression model. Robins and Rotnitzky (1995), and Robins et al. (1994,
1995) developed a class of estimators based on an Inverse Probability Weighted
Generalized Estimating Equations (IPWGEE) in a regression setting when data
are MAR. Rotnitzky and Robins (1995) extended this methodology to account for
nonignorable nonresponse in the covariates or the outcomes. This approach involves
modeling the missing data process and weighting the estimating equations by the
inverse of a probability that is calculated based on the models for the missing data
process. If the models for both the marginal mean of the response and the missing
data process are correctly formulated, the IPWGEE approach corrects the bias and

gives consistent estimates under the MAR mechanism.



1.2 Mechanisms and Methods for Incomplete Lon-
gitudinal Data

Let Y; = (Yi,...,Y:,) = (Y, Y™ be the vector of J measurements for

) represents the observed data part and Yi(m)

subject 7, i = 1,...,n, where YZ.(O
denotes the missing data part. Let R; = (R;,...,R;;)" be the corresponding
missing data indicator vector, where R;; = 1 if Y}; is observed and R;; = 0 if

Y;; is missing. Let X;; be the corresponding vector of covariates for subject 7 at
time point j. Let X; = (X}, ..., X/;)". Rubin (1976) and Little and Rubin (1987)
made the three classifications of missing data mechanisms, assuming X; is always

observed:

1. Missing Completely at Random (MCAR): Data are said to be MCAR if the
probability of failure to observe a value does not depend on any observed or

unobserved measurements, i.e.

P(Rz’|Yi,Xz') = P(Ri)'

2. Missing at Random (MAR): Data are said to be MAR if, conditional on the
observed data, the probability of failure to observe a value does not depend

on the data that are unobserved. That is,
P(R|Y,, X)) = P(RJY", X)).

3. Missing Not at Random (MNAR): The missing data mechanism is said to
be MNAR if the probability of failure to observe a value depends on the

unobserved data, i.e.

P(R,|Y;, X;) = P(R|Y”, Y™ X,).



1.2.1 Likelihood-Based Methods

The likelihood for incomplete longitudinal data is developed by specifying the
joint distribution of response variable Y; and the missing data indicators R;, given
the covariates X;. Two classes of likelihood-based models have been proposed based
on alternative factorizations of the joint distribution. One is based on selection
models (Little and Rubin, 1987), in which the joint distribution of Y; and R; is
factorized as

(R, Y| X5 8, ) = f(R|Y:, Xy ) f(Yi| X35 8),

where the distribution of R;, f(R;|Y:, Xi; ), is indexed by a vector of parameters
a and the distribution of Y;, f(Y;|X;;3), is indexed by a vector of 5. The other
is called pattern-mizture models (Little, 1993; Glynn et al., 1986), in which the

factorization of the joint distribution is
f(R:, Yl Xis0,7) = f(Yi|Ri, Xis ) f(Ri] X35 0),

where f(Y;|R;, X;;7), the distribution of Y;, is defined separately for each miss-
ing data configuration and indexed by parameters ~, and the distribution of R;,

f(R;|X;;0), is known up to parameters 6.

When we are concerned with the parameters of the marginal distribution of
Y;, averaged over the missing data patterns, it is more natural to use selection
models, because people do not want to make inference conditional on the missing

data indicators. In the followings, we focus on selection models.

There are two main methods for the likelihood-based methods; one is the ob-
served likelihood method and the other is the joint modeling method. To outline

this, we derive the joint density of the observed data (Yi(o), R;) by integrating out



the missing data Y,"™

in the joint distribution as
J(R:, Y| X0, ) = / FRYE Y, X ) f Y X ),
Then the joint likelihood for («, 3) is
Lo, 3 YO, R H / ORIV, Y™, X 0) 7, Y X pav™. (1)

When the missing data mechanism is MCAR or MAR, this likelihood becomes

Uaus:v O, 8) = [T o) [ 10007 s pyav™ |

i=1

I

{ PRV, X550 (V) ﬁ)} .

=1

Assuming the parameters o and 3 are functionally independent, then likelihood in-
ference for 3 from the likelihood L(a, 3; Y, R) is the same as a likelihood inference

for 3 from the observed likelihood
L(3:v ) = TL A X ). (12
i=1
To get the maximum likelihood estimator, we aim to maximize the log likelihood
0B Y@y = Z logf (Y| Xi; 8)
i=1
using a Newton-Raphson algorithm
BT = g0 [I(BM)] IS (BM), h=0,1,2,...
or a Fisher-scoring algorithm
B = 0 - [J(BM)]1S(BW), h=0,1,2,...

until 4**Y converges, where

[(BM) = [-0%¢(3;Y?) /0BOB | g—pm,



S(B™) = [00(3; Y ) /08 5—pom
and
J(B™) = E[1(8™)].

One problem with the Newton-Raphson algorithm and the Fisher-scoring algorithm
is that they require calculation of the second derivatives of the log likelihood and
this can be complicated. The Expectation Maximization (EM) algorithm offers
an alternative strategy to optimize the observed likelihood. Specifically, the EM

algorithm iterates between the following two steps:

1. E-step: Find the expectation of the complete data log likelihood over the
conditional distribution of the missing data, given the observed data and the

current estimate S,

Q(B; B™) = Eywmyo.sm(B;Y)]
= [aB s g0y

2. M-step: maximize Q(3; 3") with respect to 3 to obtain the estimate 3%+1.

The EM algorithm is remarkably simple, both conceptually and computationally.
Standard errors may be obtained by bootstrapping, or using Louis formula (Louis,
1982). However, the major drawbacks of the EM algorithm are that it can be very
slow to converge when the missing data proportion is large, and the M step may

be difficult (McLachlan and Krishnan, 1996).

When data are MNAR, the missing data model must be specified to make valid
inference because the likelihood can not be simplified. The joint likelihood of the

observed response Y (©) and the missing process R, (1.1), must be employed to make
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inference and Newton-Raphson, Fisher-scoring and EM algorithms (Ibrahim et al.,

2001) can also be employed in this setting.

1.2.2 Marginal Methods

Marginal models characterize how moments of the marginal response depend on

explanatory variables. People often construct the generalized linear model as
9(pij) = Xi;8,

where ;; = E(Y;;]|X;) is the marginal mean and g(-) is a known link function. If
the distribution of Y; is fully specified, likelihood-based method is a good choice
for the estimation of the parameters. However, in practice, there is not a rich class
of models for the joint distribution of longitudinal data. From this point of view,
GEE are appealing since they only require assumptions about the regression model
for the marginal mean and the variance function. Let p;(3) = (w1, - - -, iis)’, then
the GEE for (3 is given by
D U3 =D D Vit (Yi = pi(3) =0, (1.3)
i=1 i=1
where D; = 0u;(3)/0F" and V; is the covariance matrix of Y;. Liang and Zeger
(1986) suggest using a “working” covariance matrix to replace V;, which can be
modeled as

Vi = a(¢)A?Gi(p) A2,

)

where a(+) is a known function, ¢ is a scale parameter, A; is a J x J diagonal matrix
with elements v;; = Var(Y;;), Gi(p) is a J x J “working” correlation matrix that is
fully specified by the vector of parameters p. Now these estimating equations are

not only functions of 3, but of p and ¢ as well. We often write U;(3) as U;(53, p, ¢)

11



to incorporate these parameters. To solve this equation, p is often replaced by a

\/n-consistent estimate, p(Y, 3, ®) and ¢ is replaced by a y/n-consistent estimate,

~

o(Y, 3), then plug them into (1.3). Newton-Raphson algorithm is often employed
to obtain the solution of (1.3). Specifically, given the initial value 3, we iterate

the following two steps until convergence.
1. Given ™, obtain a y/n-consistent estimate ¢ = (Y, 3M) and a /n-
consistent estimate p(*) = p(Y, B o),

2. Then obtain "1 as the solution of Y"1 U;(3, p™, ¢) = 0 by a Newton-

Raphson algorithm, say.

Denoted the limit as ﬁ

Under some regularity conditions and given that

1. pis y/n-consistent, given (3 and ¢,
2. ¢ is \/n-consistent, given (3, and
3. 10p(8,9)/ 0| < H(Y,5) which is Op(1),
Liang and Zeger (1986) gave the large-sample properties of 3: \/ﬁ(ﬁ —[3) is asymp-

totically multivariate Gaussian as n — oo with mean zero and covariance matrix

Y= Io(ﬂ)_lll(ﬂ)]()(ﬂ)_l, where
Iy = E[-0U;(B, p, ¢)/00]

and

]1 = E[Ul(ﬁa P ¢)Uz(/6> P ¢)/]

12



This asymptotic covariance matrix X can be consistently estimated by

~

P—17 71

where [y = —n~! D i1 OU (B3, p, $)/08 and I = n™? > i Ui(8, p, 9)UL(B, p, ).

GEE analysis is valid when the data are complete or the missing data mechanism
is MCAR. When data are MAR or MNAR, GEE equations are biased. Rotnitzky
and Robins (1995), Robins and Rotnitzky (1995), and Robins et al. (1994, 1995)
developed a class of estimators based on Inverse Probability Weighted Generalized
Estimating Equations (IPWGEE) in a regression setting when the data are MAR.
The IPWGEE are given by

Do Ui(Ba) = 3 D5Vt M) - (Y = () = 0. (1.4)

where A;(a) is a diagonal weight matrix that depends on the probabilities of the
data having missing. The matrix may be given by A;(a) = diag(I(R;; = 1)/m;(a) :
j=12,---.J), where m;;(a) = P(R;; = 1|Y;, X;; @) and I(R;; = 1)/m;;(«) is the
so-called occasion-specific weight. Fitzmaurice et al. (1995) proposed a cluster
level weight as A;(«a) = diag({(R;; = 1)/mi(a) : 5 = 1,2,---,J) in the monotone
missing data pattern (a monotone missing data process means R;; = 0 implies
Ry, = 0 for k > j), where m;(a) = P(R; = r|Y;, X;; ), is the missing data
probability for individual ¢ over the entire observation period. The IPWGEE with
occasion-specific level weights is more efficient than an IPWGEE with cluster level

weights (Preisser et al., 2002).

Robins et al. (1995) gave the large-sample properties of the solution ﬁ to this
equation, which stated that subject to some regularity conditions and given the

regression models for the response process and the missing data process are correctly
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specified, \/ﬁ(ﬂA — [3) is asymptotically multivariate Gaussian with mean 0 and

asymptotic covariance matrix I'"?CT ", where
aUz(ﬁaa)
r = pi&inq
7t
C = Var{Res(U;(8,a), Si(a))},

in which

and S;(«) is the score function of the missing data model. Furthermore, this asymp-

totic covariance matrix can be consistently estimated by I1CT~" with

&~ — " 8UZ(6A70A‘)}
I = n! o

O — n‘li{I?\es[Ui(A,d),Si(d)]}(gz,

n n -1
Res(M;, N;) = M,-—{ZMZ-NZ-’ {ZNZ-NZ.’} N,
i=1 =1

where A®2 = AA’

1.2.3 Modeling the Missing Data Process

For the joint modeling method and the marginal method, modeling the distri-
bution of the missing data process is required. In the following, we discuss the
method of modeling the missing data process. One option is to use the binomial

model (Ibrahim et al., 2001)

P(R=rilYi Xsa) = J{m(1-m)' 7}
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assuming the conditional independence between the R;;, where m;; = P(R;; =

1Y;, Xi; ). Often a generalized linear model
9(mi;) = Zja

is specified to link the binomial probabilities to the covariate vector Z;;. Here g(-)
is a known link function and o measures the influence of the covariates on these

probabilities.

A multinomial missing data model (Ibrahim et al., 2001) specifies the joint

distribution of R; through a sequence of one-dimensional conditional distributions:

J
P(Ri|Y;, X;;) = [ [ P(RylH, Vi, X5 ) - P(Ra|Y;, X35 0n), (1.5)
=2
where H}; = {R;;1,..., R} and a; is a vector of indexing parameters for the jth
conditional distribution and o = (a,...,ay)". This accommodates nonmonotone

patterns of missing data, and provides a natural way to specify the joint distribu-
tion of the missing data indicators when knowledge about the missingness of one
response affects the probability of missingness of another. In practice, however,

interest often lies in the first order dependence of the serial probability, that is

—

[|
I\

P(Ri\YmX@'; a) = P(Rij\Ri,j—th,Xi; aj) 'P(Ri1|Yi,Xi; 041)7 (1-6)

J

where the first order Markov property is assumed for the indicator variable R;. Let
Nj(aj) = P(Rij = 1|R;;j-1,Y; Xi; ;) be the conditional probability, which it is
often modeled by a logistic regression model

logit(\j;(ay)) = Zjjoy, j=2,...J,
where Z;; features the missing data mechanism, which may include the response

Y, the covariate X; and the missing indicator R, ;_;. If Z;; does not include any
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observed or unobserved measurements, it leads to MCAR; if Z;; only includes the
observed measurements, it leads to MAR; and if Z;; includes the unobserved re-

sponse Y;(m), it leads to MNAR. The joint probability of R; is

J

7
P(R; =1|Y;, Xi;00) = (AZ(%))W (1- Afj(aj))l_rij - P(Ra = ralYs, Xi aq).
=2

1.3 Outline of Thesis

The remaining chapters of this thesis are organized as follows.

Chapter 2

In Chapter 2, likelihood analysis of joint marginal and conditional models are
explored for longitudinal categorical data. We develop a Markov model for the
analysis of longitudinal categorical data which facilitates modeling marginal and
conditional structures. A likelihood formulation is employed for inference, so the
resulting estimators enjoy properties such as optimal efficiency and consistency,
and remain consistent when data are missing at random. Simulation studies are
given, which demonstrate that the proposed method performs well under a variety
of situations. Application to data from a smoking prevention study illustrates the

utility of the model and interpretation of covariate effects.

Chapter 3

Chapter 3 involves modeling progressive multi-state processes with incomplete ob-
servations, including the discrete time progressive process and continuous time pro-
gressive process. For the discrete time progressive process, we directly model the
conditional transition probability using the generalized linear model, while for the

continuous time progressive process, intensity based models are introduced to in-
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corporate the covariate effects. Although model formulations are different, the
estimation methods are the same, which is maximum likelihood based on the EM
algorithm. Louis method is used to calculate the standard errors. Simulations and
the asymptotic biases are explored to evaluate the performance of the proposed

method.

Chapter 4

In Chapter 4, we consider the inverse probability weighted generalized estimating
equations (IPWGEE) to handle longitudinal data with both missing response and
missing covariate. The idea behind this is that we incorporate the association
between the missing response and missing covariates. The simulations support the
assumptions that the proposed method gives consistent estimators and is more

efficient than the method that ignores the association when it is present.

Chapter 5

Chapter 5 involves addressing the impact of missing covariates on the association
parameters in clustered longitudinal studies. Weighted first and second order es-
timating equations are constructed to obtain consistent estimates of association
parameters. Clustering in the missing data process is addressed to get efficient

estimates.

Chapter 6

Chapter 6 briefly summarizes overall findings and outlines the future work.
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Chapter 2

Likelihood Analysis of Joint
Marginal and Conditional Models

for Longitudinal Categorical Data

2.1 Introduction

Marginal methods are commonly used to model longitudinal categorical data
through specification of covariate effects on marginal, or “population averaged”,
attributes via a specified link function. Liang and Zeger (1986) proposed a class of
first-order generalized estimating equations (GEE) for longitudinal data when the
marginal distributions are in the exponential family. Prentice (1988) and Zhao and
Prentice (1990) developed second order generalized estimating equations (GEE2)
which facilitate modeling covariate effects on parameters characterizing the associ-
ation between responses. Methods for regression with longitudinal categorical data

were developed by Liang et al. (1992), who again focussed on marginal models
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for both the mean and association structures. Inference for semiparametric models
based on generalized estimating equations is attractive because it does not require
full model specification for such complex processes, however the resulting estimates

can be inefficient (e.g., Fitzmaurice et al., 1993).

Alternative approaches for dealing with longitudinal or clustered data include
the use of mixed effects models where covariate effects are specified given a latent
subject-specific random effect. The most common approach for inference is to base
it on the marginal (joint) distribution obtained by integrating the joint distribution
of the data and the random effect, with respect to the random effect. Limitations
of this approach include the need to specify the random effect distribution, the fact
that covariate effects have a subject-specific interpretation, and the computational
challenges associated with calculation of the marginal likelihood typically used for

estimation and inference.

Transition models are appealing when scientific interest is directed at how re-
sponses change over time (Neuhaus, 1992). In transition models, the probability
distribution of the response at a particular time is expressed as a function of an
individual’s past g responses and covariates. While likelihood-based inferences are
straightforward with transition models, a limitation is that the interpretation of
covariate effects change as the order ¢ changes, and it may therefore be difficult
to interpret and compare models on the same dataset or inferences from models in

different datasets.

Azzalini (1994) introduced a Markov chain model which incorporated serial de-
pendence and facilitated expression of covariate effects on marginal features. Hea-

gerty and Zeger (2000) and Heagerty (2002) extended this work to a gth order
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marginalized transition model. These models are based on binary data, and do not
deal with the more general issue of categorical data which arise in many biomedical
studies. The objective here is to describe a general approach for modeling longi-
tudinal categorical data based on a Markov model which accommodates regression
modeling on marginal moments as well as on association parameters. Likelihood-
based inferences are possible since the model is fully specified, so the resulting

estimators are consistent and fully efficient.

The remainder of the chapter is organized as follows. In Section 2.2, we present
the details of the model formulation and describe a Fisher-scoring algorithm which
can be used for parameter estimation to avoid the need to compute the hessian ma-
trix in the spirit of Kalbfleisch and Lawless (1985). Numerical studies are conducted
in Section 2.3 which show that the proposed method works well. Adaptations for
handling incomplete data, including the EM algorithm (Dempster et al., 1977),
are discussed in Section 2.4. Data from the motivating study called the Waterloo

Smoking Prevention Project (Cameron et al., 1999) are analyzed in Section 2.5.

2.2 Model Formulation

2.2.1 Marginal and Conditional Models

Let Y; = (Y1, Yo, ..., Y;s) be a categorical response vector of subject i observed
at time ¢4, ...,ty, and X;; be the covariate vectors recorded for subject 7 at the jth
time point, j = 1,...,J;, 4 = 1,...,n. BEach response component Y;; may take a
value from the integers 0, 1, ..., K. Here we may also think of those K + 1 values as

K + 1 distinct states. Denote X; = (X}, Xy, ..., X[;). Let ul = P(Yy; = k| X;)
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be the marginal probability that subject ¢ is in state k at the jth assessment given

the covariates X;, k =0,..., K. A regression model may be specified as

M
M50

by using uf\fo as a reference, where g(-) is a monotone link function, X;;; may be a
subset of X;;, featuring the influence of the covariates on the average response in
state k at the jth assessment, and [y is the vector of regression coefficients. We
note that an implicit assumption P(Y;; = k|X;) = P(Y;; = k|Xj;) is made here.
In practice, g(-) is often chosen as a logarithm function. If Yj; is a binary variable,
(2.1) reduces to a standard logistic regression model; when Y;; represents more than
two categories, (2.1) allows an analogous interpretation to the odds ratio for binary

outcomes. Let = (51,035, .., %) denote the full vector of regression coefficients.

Sometimes, our interest centers on the dependence of Y;; on its history H;; =
{Yi1,...,Y: 1} and covariates and indeed it is necessary to model this for full model
specification. Let ,ug-k = P(Y;; = k|H;;,X;) be the conditional probability, where
k=20,1,..., K. We may employ a regression model to feature the dependence
of Y;; on its history and the covariates. That is, specify M%k = h™Y(H;;, Xijx) by
a known link function A(-). Again an implicit assumption P(Y;; = k|H;;, X;) =
P(Y;; = k|H;;, Xijx) is made here. Typically, we consider a first order dependence
of Y;; on its history that is of particular interest in practice. Extensions to any order
dependence of Y;; on its history is straightforward though more involved notation

may be needed.

In the same spirit of (2.1), we may adopt the following model with ,uiojo regarded

as a reference

c K
Hj
log ( C]k> = Yijk + Z%’jk'k[(yi,j—l = k/>7 k=1,...,K, (2.2)
k=1
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where () denotes the indicator function. Model (2.2) clearly reflects the depen-
dence of the conditional probability uicjk on the response history. Coefficients ;s
and 7;jxx have clear interpretations of log odds and log odds ratios, respectively.

To be more specific, we have

P(Yy; =k|Yi; 1 =0,X;)
P(Yy; =0[Yi;21=0,X;)’

Yijk = log

which is the log odds for categorical responses, and the log odds ratio

g Py = K[ = K XG) (Y = 050 = 0, X)
Tk = O By 0|V = K, X)) P(Yy = k[Yi1 = 0, X;)

which gives a pairwise association between Y;; and Y; ;_1.

The dependence of uicjk on the covariates may be incorporated by assuming
regression models for the coefficients ;7 in (2.2). Specifically, we consider linear

regression models
Yijk'k = Zz(jk’kak’ka k/> k= ]-7 R Ka (23)

though in principle, other regression forms may be adopted as well. Here oy, is the
parameter vector, and Z;;, may be subsets of X;;, ',k =1, ..., K, which feature
various types of dependence of Y;; on the covariates. For example, if Z;;;4 simply
consists of the unit vector, models (2.2) and (2.3) do not contain any interaction
terms between the response history and the covariates. By enlarging Z;;,/, we may
include interaction terms. Let a = (o), K,k = 1,2,...,K)" denote the full
parameter vector for the conditional models and 6§ = (7', /)’ denote the vector of

parameters in both marginal and conditional models (2.1) and (2.2).

If Y;; is a binary response, the proposed models reduce to the marginalized

transition models discussed in Heagerty (2002). With binary data, Heagerty (2002)
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showed that 7,;;'s in (2.2) exist uniquely for any given values of a in (2.3). For
categorical data we can obtain the analogous result. That is, given mean model
(2.1) and dependence model (2.2) along with regression model (2.3), the intercepts
vijk's are uniquely determined. Therefore, under constraint (2.4) to be discussed,
the proposed models enable us to separate the marginal mean models from the
specification of the conditional dependence models. This is very attractive because
the interpretation of the regression parameter # does not change when we modify
assumptions regarding the conditional dependence models. In contrast, classical
transition models focus on modeling the response Y;; conditional on the past re-
sponse outcomes H;; and covariates. These models may be useful for categorical
data which exhibit serial dependence, but the interpretation of the covariate pa-
rameters is not resistible to the inclusion of the response history. If the order of the
transition model changes, the meaning of the associated parameters would change

accordingly.

2.2.2 Estimation and Inference
The likelihood is given by L(6) = [[;—, L;(¢), where

Li#) = P(Yn,...,Yi HP YY1, Xi) - P(Yi| X))

j=2

= T Tl ™=

where 1Y, and ), are determined from (2.1) and (2.2) respectively. Let S(6) =
> i, Si(0) be the score vector, where S;(6) is given by
Ji

Si0) = > D I(Vy=k)— !

j=2 k=0 'uwk

0

’uUk . 1 a:uzlk
o6 Z[ n=k e
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To calculate the score function, we need to evaluate the derivatives of the conditional
probabilities ,uicjk and the marginal probabilities p . As these probabilities are
constrained by the iterative equation
K
pl =Y Py =k[Yija =k X)) xplt 4y, k=1, K (2.4)
k'=0
the required derivatives may be obtained by differentiating both sides of (2.4).

Details for the relevant expressions are provided in Section 2.6.

To solve S(A) = 0 in order to obtain the estimate 5, we may, in principle,
apply the Newton-Raphson algorithm. Let 7(6) be the observed information matrix

constructed from the entire dataset, then the Newton-Raphson algorithm iterates
gh+1) — gh) [—1((9(h))5((9(h))7 h=01,---

until it converges to 0. This requires the availability of the second derivatives of
the log-likelihood. Procedures of calculating the second derivatives are provided
in Section 2.6. Under the usual regularity conditions for maximum likelihood es-
timators, /n(6 — 6) 4N (0, J71(0)) as the sample size n approaches infinity.
Here J(0) = E[—05,(0)/06], since the underlying assumption is that the responses
of all the subjects are independent and identically distributed conditional on the

covariates.

Because the marginal and conditional probabilities y;7, and pg, are constrained
by the iterative equation (2.4), the second derivatives of the log-likelihood are te-
dious to derive and program. Here we develop a quasi-Newton (or Fisher-scoring)
method which eliminates the need for the second derivatives when the covariates

are discrete, as in Kalbfleisch and Lawless (1985).
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Note that the likelihood can be written as L(0) =[]}, L;(#) with

J; K

K
=k,Yi 1=K M\ (Yii=k)
— J J—
= :umk’k : H (:uilk)
j=2 k' k=0 k=0

and uicjk,k = P(Y;; = k|Y; j—1 = k', X;). Accordingly, we obtain the score function

OlogL(0
Su(0) T()
— zn:{zjbjzl{:ly;]_ky;jl_k aluzyk’k_'_zK:] zl_k aﬂ%k}
i=1 \ j=2 k" k=0 'uwk’k =0 1t 90.,

and the second derivative

89u890 i—1 2 k' k=0 (lu’z]k’k) aeu aev
Ji K
! ] k‘ Y; 1= kf/) a :uz ik'k
+2 Z - :
2 b0 :uijk’k 89“89”
2 M '
P J\{I (%u 00, PR itk 90,00,

Taking the expectation with respect to the conditional distribution of the response

vectors given the covariates, we obtain

8210gL(9)} - { i & P(Y; ;-1 =KX;) aﬂqk/k &U‘C'k/k
E{_i — Z Z ¥ . 1 . ]

00,00, = = e u?jk,k 00, 00,
K
i Z 1 Oty . Oty
pa it 00, 00,

by noting that
E{I(Yi; =k, Yijo1 =k)} = P(Yy = k,Yijo1 = K|X;) = P(Yijo1 = K|X0) - 1Sn
E{I(Ya = k)} P(Ya = k| X;) = ity
Zﬂicjk'k =1
k=0
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and
K
Zﬂf‘fk =1
k=0

This expectation can be estimated by

K

M, (6) = Z {Z Z Pm 1/ algéz'k ‘ a:uzjk’k +Z L aﬂuk _ agéﬂfk}’

i=1 =2 k' k=0 lu’mk’k -0 Hitg

where p; j_1 4 is the proportion of the subjects with covariate z; in state &’ at the
(4 — 1)th time point. That is, if N; j_1 0 =Y 0 I(Yi;—1 = k', X; = ;) is the total
number of subjects with covariate vector X; = x; and with response Y; ;_; = £/,
and N; ;1 = Zk, N; j—1, is the total number of subjects with covariate vector

Xi=ua;, then p; j_1 0 = Nij_10/Nij-1.
Let S(0) be the vector of (S,(#)), and M(#) be the matrix [M,,(¢)]. Then an
updated estimate is obtained as
gUHD = g 4 M (pW)LS (™), h=0,1,---, (2.5)
where M (6™) is assumed nonsingular. The iteration is cycled through until con-
vergence of 1) Let 9 denote the corresponding limit.
Under the usual regularity conditions for maximum likelihood estimators, \/5(5 —
0) 4N (0,371 as the sample size n approaches infinity. Here
Y=F [—8210gLi(9)/8989’] ,
and it can be estimated by the observed information matrix given in Section 2.6 or
by the expected information matrix given here.
Here we comment that the mean parameter § and the association parameter a

are orthogonal if Y;; are binary responses. This property is established by Azzalini
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Figure 2.1: Three states diagram of the transitions

0

/7 N\

1 2

(1994) for a restrictive scenario. Heagerty (2002) proved the properties by using
the log-linear parametrization of the first order marginalized transition model for
binary data. In Section 2.7 we establish an analogous property for categorical data.
Finally, we note that model checking can be conducted directly through score tests

or likelihood ratio tests as the proposed method is likelihood-based.

2.3 Numerical Studies

2.3.1 Performance of the Proposed Method

In this subsection we conduct simulation studies to assess the performance of
the proposed method. We set n = 500, K = 2 to give three categories and J; = 4
to give four timepoints, for ¢ = 1,...,n. Figure 2.1 illustrates the state diagram.

Two thousand simulations are run for each parameter configuration.
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The response vector is generated from the marginal model

M
Hij
log ( 1{;) = Bro + B Xij1 + BraXije, k=1,2, (2.6)

50

in combination with the conditional model

c
Hij
log ( ék> = Yijk + Yijied (Yijo1 = 1) +vijord (Yijo1 = 2), k=1,2, (2.7)

i50

where 7,1, are specified as
Yijirk = Qo + Qwr1 Xijo, K k=1,2. (2.8)

Here X;;1 = X represents the treatment status, generated from the binomial dis-
tribution Bin(1,0.5), and X;;» is specified as I(j = 3 or 4), indicating a temporal ef-
fect. Let Br, = (Bro, Brk1, Bre) for k = 1,2, and X;; = (1, Xj51, Xyj0) forj=1,...,J.
Set £ = (—1log(3),1log(0.8),log(1.2))", B2 = (—1log(3),10g(0.6),log(1.5))", a110 =
log(1.2), ag10 = log(1.1), a0 = log(1.5), aaze = 1log(2.0), aq1; = log(1.5), a1 =
log(1), a1 = log(1.5), and age; = log(1.5).

Data are generated as follows. Given the covariate vector X; = (X[}, X/5, ..., X[,),
with parameter 0 specified as above, Y;; is generated from a multinomial distribu-

tion with probabilities

1
M - N
pio = P(Ya =0[X;) = 1+ eXabr 1 eXiif2’
eXz{lﬁl

M - N
i = P(Ya=11X;) = 1+ eXabr 1 eXiif2’

6X1{162

iy = P(Ya=2X;) =

1+ eXi1b + eXif’

based on (2.6). Given Y; ;_; then, Y;; is generated from a multinomial distribution
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with conditional probabilities

/J“go = P(}/;] = OD/i,j—l?Xi)
1

1+ eYiittvigind (Vi j—1=1)+viz21 1 (Yi,-1=2) + eYisztvigi2d (Yij—1=1) 475221 (Yi,;—1=2) ’

/’l’gl = P(}/Zj = 1|}/;j,j—17Xi)

e%‘ﬂ+%‘j111(Yi,j71=1)+%'j211(Yi,j71=2)

1+ eYiittviginl (Vi j—1=1)+7ijo1 1 (Yi,j—1=2) + eYisztviji2d (Yij—1=1)+7ije2 1 (Yi,;—1=2)’

WSy = P(Yy=2[Y;;1.X,)

eigztvijiad (Yij—1=1)+7ij22 1 (Y j—1=2)

1+ eYiittvijind (Yij—1=1)+7ijo1 1 (Yi,j—1=2) + eYisztvigi2d (Yij—1=1)+7ije2 I (Y ;1=2) ~

To determine these probabilities, we must first determine the values of 7;;1 and ;;2

that satisfy the equations

2
Mz]'\]/'[k = PV =k|X;) = Z P(Yij=k|Yij1= k‘/,Xz')M%_w k=12

k'=0
That is, we must solve the nonlinear equations

eYiil e'Yij1+'Yij11

M M M
Hijr = 1 + eYisl 4 eYis2 Fij—1,0 + 1 4+ et tvigin 4 eYigz+ijnz Hij—1,1
Yij1+Yij21
6 ¥} 1] MM
1 + eYiirtrij2r 4 eYij2tij22 4,j—1,2
v e7ii2 Y eVii2+ij12 M
Hija = 1 + eYisl 4 eYis2 Fij—1,0 + 1 4+ et +vigin 4 eYigz+ijnz Fij—1,1

eYis2 +vij22

LM
1 4 eviartvigar L gvijatyijez I 12

for v;;1 and ;j9, for i =1,2,...,n and j = 2,3,4. Here uﬁ‘fk is determined by (2.6),
and v;;.'s are given by (2.8). Explicit expressions are typically not available and
so numerical methods must be employed to obtain solutions. Specifically, here we
use the software R in the numerical implementation. The detailed expression of

the first and second derivatives of the log likelihood are included in Appendix A.
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In this simulation, we consider the case with i) no covariates, i) only a time
dependent covariate, and i7) the case with both a time dependent and a time inde-
pendent (treatment) covariate for the marginal model. Both the Newton-Raphson
and Fisher-scoring methods are employed. The results are reported in Table 2.1,
where ASE represents the average of the standard errors, ESE refers to the empir-
ical standard error, and CP denotes the coverage probability for 95% confidence
intervals. For the Fisher-scoring algorithm the confidence intervals were computed
using the expected information matrix. It is seen that the two methods give very
similar results. The biases for both § and « under the three scenarios are fairly
small, indicating that the estimators are consistent. The model-based standard
errors agree with the empirical standard errors reasonably well. It is not surprising
that standard errors for the estimates of mean parameters (3 are smaller than
those for the estimates of association parameters ay,.. The coverage probabilities
for all the parameters are in good agreement with the nominal level of 95%, sug-

gesting that the variance estimates obtained from the proposed method are valid.

2.3.2 Comparison of the Proposed Method and GEE

In this subsection we further evaluate the performance of the proposed method,
compared to the GEE approach, by focusing on the estimates of the marginal mean
parameter 3. We consider two scenarios — correct model specification and model
misspecification. In particular, with model misspecification we examine the perfor-

mance of the proposed method only when the conditional model ,uicj , 1s misspecified.

For the first scenario that both marginal and conditional models are correctly

assumed, we use the same settings as those in Section 2.3.1. That is, a first order
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Table 2.1: Simulation results under the three scenarios using Newton-Raphson and Fisher-scoring method

No Covariate Trend Treatment and Trend

Parameter ~ Value  Method” *BIAS ASE ESE CP *BIAS ASE ESE CP *BIAS ASE ESE CP

Marginal Model:

Bio -log(3) NR -0.001 0.060 0.061 0.951 -0.002 0.080 0.081 0.949 -0.004 0.104 0.104 0.953
FS -0.001 0.061 0.060 0.949 -0.002 0.082 0.080 0.948 -0.005 0.104 0.103 0.951
B11 log(0.8) NR -0.005 0.124 0.124 0.954
FS -0.004 0.123 0.122 0.952
B2 log(1.2) NR 0.002 0.116 0.118 0.952 -0.000 0.115 0.115 0.950
FS 0.002 0.117 0.117 0.953 -0.001 0.114 0.114 0.948
B20 -log(3) NR -0.000 0.064 0.064 0.951 -0.006 0.086 0.086 0.951 -0.005 0.105 0.105 0.950
FS -0.000 0.065 0.064 0.952 -0.004 0.085 0.086 0.951 -0.006 0.103 0.104 0.951
21 log(0.6) NR -0.000 0.122 0.124 0.950
FS -0.001 0.123 0.124 0.952
B2z log(1.5) NR 0.002 0.113 0.112 0.951 0.002 0.118 0.120 0.952
FS 0.002 0.112 0.112 0.949 0.002 0.118 0.119 0.953
Association Model:
o110 log(1.2) NR -0.005 0.297 0.297 0.955 -0.007 0.300 0.301 0.950 -0.006 0.326 0.327 0.952
FS -0.005 0.302 0.296 0.952 -0.005 0.302 0.300 0.951 -0.005 0.327 0.326 0.951
o111 log(1.5) NR 0.011 0.361 0.362 0.951 0.021 0.401 0.400 0.953 0.003 0.444 0.445 0.954
FS 0.013 0.360 0.363 0.950 0.018 0.402 0.401 0.952 0.002 0.450 0.443 0.949
210 log(1.1) NR -0.005 0.313 0.313 0.950 -0.005 0.308 0.307 0.952 -0.004 0.313 0.315 0.954
FS -0.005 0.314 0.311 0.952 -0.006 0.310 0.310 0.950 -0.003 0.315 0.312 0.952
211 log(1.0) NR 0.016 0.382 0.383 0.949 0.015 0.415 0.414 0.953 0.003 0.422 0.423 0.953
FS 0.013 0.384 0.384 0.948 0.016 0.412 0.413 0.949 0.006 0.420 0.422 0.949
o120 log(1.5) NR -0.001 0.300 0.301 0.952 -0.000 0.297 0.298 0.952 -0.002 0.301 0.301 0.952
FS -0.001 0.305 0.301 0.951 -0.002 0.301 0.299 0.950 -0.002 0.302 0.304 0.950
121 log(1.5) NR 0.000 0.368 0.368 0.955 0.001 0.363 0.360 0.949 0.004 0.366 0.366 0.953
FS 0.001 0.367 0.368 0.953 0.001 0.361 0.362 0.947 0.002 0.368 0.366 0.948
290 log(2.0) NR -0.009 0.283 0.282 0.952 -0.008 0.280 0.281 0.949 -0.005 0.282 0.281 0.951
FS -0.010 0.281 0.281 0.951 -0.009 0.282 0.282 0.947 -0.007 0.282 0.279 0.949
991 log(1.5) NR 0.006 0.345 0.344 0.952 0.007 0.325 0.325 0.952 0.009 0.326 0.327 0.948

FS 0.007 0.342 0.343 0.955 0.008 0.325 0.324 0.948 0.008 0.324 0.328 0.947

t “NR” represents the Newton-Raphson algorithm, while “FS” denotes the Fisher-scoring method.
* Absolute bias.



dependence is considered as specified in (2.7) and (2.8). With the GEE approach
we adopt the working independence correlation matrix as it has been shown to
provide fairly efficient estimates in many settings (e.g., Sutradhar and Das, 1999).
We particularly fit three marginal models with no covariates, only time trend and

both treatment and time trend included, respectively.

Table 2.2 shows the empirical bias (BIAS), the average standard error (ASE),
the empirical standard error (ESE) and the empirical coverage probability (CP)
of 95% confidence intervals for 2000 samples. For the GEE model the ASE is the
average of 2000 robust standard errors based on the sandwich variance formula and
for the proposed model the ASE is the average of the 2000 standard errors based
on the Fisher information matrix. It is seen that both methods give reasonably
comparable estimates with very small finite sample biases. Both methods yield
reasonable standard errors as the model based standard errors (ASE) agree very
well with the empirical standard errors (ESE). However, the proposed method seems
to be more efficient than the GEE method since it tends to produce smaller standard

errors and better coverage probabilities.

Now we investigate the performance of the proposed model by examining its
sensitivity to the model misspecification. We consider the same marginal model as

that in Section 3.1, but use a second order dependence model of the form

C 2 2
Hij .
log ( ]k> = fyljk + Z nyijlk’k[(}/i,j—l = kl)? J = 3747 k= 1727

C
Hizo =1 k'=1

Yijik'k = Quirko + Oézk'me, k, K = L2, 1=1,2,

to accommodate serial correlation for j = 3 and 4. Here ,uic;-k = P(Y;; = k|Y; j-1,Yi -2,
X;) for j = 3,4, are the second order dependence probabilities. When j = 2, we as-

sume a first order dependence model for Y;, through the models (2.7) and (2.8) and
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take the same parameter values as in Section 2.3.1. For the a parameters in the sec-
ond order dependence model, we set ayro = log(1+((k—1)-22+(k'—1)-2+(1—1))/8)
and apg; = log(2 + (k—1)-22+ (K — 1) -2+ (I — 1))/8) to feature a weak
dependence, and appo = log(b + ((k — 1) - 22 + (K —1) -2+ (I — 1))/8) and
apr = log(6+ ((k—1)-22+ (K —1)-2+ (I —1))/8) to represent a strong
dependence, k, k', =1, 2.

Table 2.3 shows that with a weak dependence among Y:s, both methods pro-
duce very small finite sample biases, the model based standard errors (ASE) agree
very well with the empirical standard errors (ESE), and the standard errors from
the two methods are fairly comparable. The proposed method seems to provide
better coverage probabilities than the GEE approach. When the strength of de-
pendence is large, however, it is evident from Table 2.4 that the proposed method
may fail to perform satisfactorily. The finite sample biases can be substantial, the
standard errors may be inflated, and hence the coverage probabilities deviate from

the nominal value considerably.

2.4 Inference with Missing Data

In practice, missing observations arise commonly. This is also the case of the
motivating example to be analyzed in Section 2.5. In this section we develop in-
ference methods to handle missing observations. Specifically, we discuss methods
based on the observed likelihood and the expectation-maximization (EM) algo-
rithm. Throughout we assume data are missing at random (MAR) (Diggle et al.,
2002).
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Table 2.2: Comparison of the frequency properties of estimators of regression coef-

ficients by the proposed method and GEE method with correctly specified models

True GEE Proposed Method
Parameters Value "BIAS% ASE ESE CP 'BIAS% ASE ESE CP
No Covariate
Bio -log(3) 0.00 0.062 0.061 0.947 -0.09 0.061 0.060 0.949
Ba0 -log(3) -0.18 0.065 0.065 0.933 -0.00 0.065 0.064 0.952
Trend
Bio -log(3) 0.09 0.082 0.082 0.955 -0.18 0.080 0.080 0.948
B2 10g(1.2) 1.64 0.115 0.116 0.951 1.10  0.113 0.112 0.953
Bao -log(3) -0.09  0.089 0.089 0.929 -0.36  0.085 0.086 0.951
B2 log(1.5) 0.25 0.116 0.117 0.934 0.49 0.112 0.112 0.949
Treatment and Trend
Bio -log(3) 0.00 0.106 0.105 0.945 -0.45 0.104 0.103 0.951
O log(0.8) -1.34  0.122 0.123 0.946 -1.79 0.123 0.122 0.952
B2 log(l.Q) 1.10 0.118 0.120 0.936 -0.55 0.114 0.114 0.948
Bao -log(3) -0.55 0.109 0.110 0.933 -0.56 0.103 0.104 0.951
o1 log(0.6) 0.39 0.128 0.128 0.939 -0.20 0.123 0.124 0.952
3o log(L.5) 123 0.125 0.126 0.953 049 0.118 0.119 0.953

t Percent relative bias (6 — Buue)/Birue X 100.
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Table 2.3: Comparison of the frequency properties of estimators of regression co-

efficients by the proposed method and GEE method with misspecified conditional

model: weak dependence

True GEE Proposed Method
Parameters Value 'BIAS% ASE ESE CP  'BIAS% ASE ESE CP
Bro -log(3)  -0.18 0.107 0.108 0.939 -0.64 0.106 0.107 0.959
11 log(0.8)  0.90 0.140 0.141 0.938 3.13  0.140 0.140 0.957
Gr2 log(1.2)  0.00 0.133 0.132 0.958 548  0.143 0.145 0.953
20 -log(3) -0.46  0.115 0.115 0.928 -0.64 0.112 0.113 0.945
(a1 log(0.6)  1.19  0.155 0.155 0.923 -0.59  0.147 0.149 0.947
22 log(1.5) -1.73  0.134 0.133 0.966 1.97  0.137 0.136 0.965

t Percent relative bias (@ — Birue)/ Birue X 100.

Table 2.4: Comparison of the frequency properties of estimators of regression co-

efficients by the proposed method and GEE method with misspecified conditional

model: strong dependence

True GEE Proposed Method

Parameters Value 'BIAS% ASE ESE CP  'BIAS% ASE ESE CP

1o -log(3) -0.36  0.114 0.115 0.942 -10.56 0.135 0.137 0.806
B log(0.8) -0.45 0.155 0.153 0.919 0.90 0.160 0.164 0.912
12 log(1.2) 2.19  0.131 0.130 0.966 57.59 0.166 0.168 0.866
(20 -log(3) -0.72 0.116 0.116 0.926 -15.84 0.175 0.178 0.668
Ba1 log(0.6) 0.00 0.164 0.162 0.917 -10.76  0.170 0.169 0.886
a2 log(1.5) 1.80 0.131 0.130 0.964 38.47 0.188 0.190 0.730

T Percent relative bias (ﬁ — Birue)/ Birue X 100.
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2.4.1 A Scoring Method

In this subsection we describe a Fisher-scoring method to handle incomplete
data. For a given ¢, let ufjﬁf,}f be the ¢-step transition probability from state &’ at

the (j — ¢)th time point to state k at the jth time point, i.e.
c
/Lz’jgi = P(Y;=k|Y, ;- =K, X;)

K K
= D D Py =k Y=k Yigegn = g Yi = K, X))

K

where we denote [, = k and [y = K.

Let jo < 71 < -++ < Jm, be the ordered observed assessment points for subject 4,
between two consecutive time points. Here jo, = 1. The likelihood can be written
as

no m . I(Yi; =K Yij=k) & -

. C(]m—jm— ) YIm—1 s LiIm M I(Y’Zl_k)

- H { H H (:U’umk’k 1 ) : H (:U'ilk) )
i=1 Um=1k k=0 k=0

leading to the score function

Yijur = K.Yy, = k) A (Jm Jm-1)
Su( Z{Z Z J L o —— f) ]ake/;

=1 m=1k’ k=0 quymk k
K a M

4 Z I(Y =k) Opiy
k=0 :uzlk 80“
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and the second derivative

8ﬂc(jm—jmfl) C(jm—jmfl)

826(9) Z,?m 1 k/ }/Z.Ym = k) igmk'k Mij7rzklk
90,00, Z Z Z 88, 0,

2
i=1 m=1k’ k=0 <Iuwi;gnlkjm 1))

= K.Yy, = k) Puii
Z]m 1 ) T Um 1)m
BIPOE |

c im—Jm—1
m=1 k' k=0 'U“ij,(jk’k] ) aeuaev
K M K 2, M
_ 1Y = k) Oy, _a:uzlk +ZI Y = k) Oy, }
2
k=0 (lu’%k) aeu k=0 :uzlk aeuaev

where £() is the log-likelihood and

a ! : : a ic'— 7l
Mmkk Z Z (Z H ng_qum’lmﬂm.W).

l1 0 q 1= =0 r=1 m:l,m;é?“

Taking expectation yields

n ( m m— ) C( ‘m_ "mf )
g [ 0*L(0 } Z Yijuor = k') 8“19731«1@] L
96,00, i=1 m=1 k' k=0 szz;:’k]m R 00 90,
n K
1 3/~L e OMi
2D o e e
i=1 ko Hilk 09,

due to the fact that

EI(Yj, ., =K ,Yy, =k)] = Py, , =k.Y,, =kX)
= P(}/;]m 1= k |X) 2]73;:%)7”71)7

E[Y, = k] = P(Yy = k| X;) = s,

E C mT m 1 ]

K
Z pi = 1.
k=0
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Applying the same argument as that in Section 2.2, if the covariates X; are
discrete, E [—0%((0)/00,,00,] can be estimated by

Jm Jm— 1) a/ic(]m_}mfl)

ij k' aluz ! imk’
Manl®) ;{zz et an M

m=1k’ k=0 Umk’k

1 Oply Opdi
+Z o0, o6, [

k=0 :uzlk

where p;;,. & is the proportion of the subjects with covariate z; in state k" at the
(Jm—1)th time point. Therefore, the Fisher-scoring method in Section 2.2 may be
employed here to obtain the estimate 9. Analogously, we can get the estimate of
the asymptotic covariance matrix using the observed information matrix or the

expected information given here.

2.4.2 An EM Algorithm

When the missing data proportion is relatively small, the Fisher-scoring method
described above works well. However, if the missing proportion is large, the Fisher-
scoring method may become computationally burdensome since we need to calculate
the ¢ step transition probabilities and their derivatives which will be very compu-
tationally intensive. In this subsection we describe an alternative method based on
the EM algorithm. The complete data likelihood for subject 7 is given by

K
Li(0,ys) H H :U’mk’k I(Yu_k T =k H (M%k)lml:k) )
J=2 k' k=0 k=0

leading to the complete data log-likelihood

K

0:(0,v:) Z Z I(Yy =k, Yijo1 = k) -log (uSp) + > 1Yo = k) -log (1) -

§=2 k' k=0 k=0
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In the E step we construct the conditional expectation

> Qi(0:0"
i=1
(m) . (0)

where y; is written as (y, ,v; ) to explicitly indicate missing and observed com-
ponents, Q;(6;0) = E[6;(0, )Y, 6™ = 3 o wi(ys; 0™) - £:(0, ), and

Li(0®; 5™ )

Z

wl(ylae(h)): m o)y ’
Zyﬁ"” L;(6* ;Yi( ™ = yi( ),y,( ))

may be viewed as a weight.

To maximize Q(#;0™), we may use the Newton-Raphson method in the same

spirit of Section 2.2. Note that the weighted score function is

(h)
s.(0s0m) = FET)
n J; K
LTS S ek =)
wl y’H C ae
i=1 =2 K k=0 ,(m) ik u
n K

sy Il 855%’“

i=1 k=0 /J“zlk

and the second derivative is

200(p- p(h)
L,(0;6W) = _m

00,00,
S S gy 0= BT =) i W
Wi A% 90, 0
i=1 j=2 K k=0, (m) (:uijk’k) v v

n J; K
ST S w0 [(Yy = b Yijr = F)  Ppijen
i\Yis Mgkk 00,00,

=1 j=2 k' k=0 ,(m)

’L

n K

+Z (Y = k) 0uz1k . aﬂuk Z Z i d) g;féﬂgi

i=1 k=0 :uzl —1 k=0 :Uuk

Let S(6; 0")) be the score vector (S, (#; 8™)) and I(6; 0™)) be the matrix [I,,(6; 0)],

then given the initial value 0% the Newton-Raphson method involves iterating

39



as

e(h,f-i-l) _ e(h,f) + ]—1(9(h,€); e(h,ﬁ))s(e(h,f); e(h,ﬂ))

until convergence is achieved at the estimate, say #**Y. We then replace 6" by
6+ and iterate again using the E and M steps, until convergence is achieved at

the estimate @.

Alternatively, we may employ the Fisher-scoring method discussed in Section

2.2. Specifically, the expectation of the second derivative is

. {_8%2(9; 9(’”)}

00,00,
— - Ji i Zwi(yﬁ‘g(h)) ) P(Y;'J—lcz k;’|XZ) ' 8ufjk,k ' 8/“Lic;'k’k
i=1 | j=2 k' k=0, (m) Kigkrk 00, 00,
K M v
o3 ol Sl
k=0 itk u v

where the expectation is taken with respect to L;(0™; ;). Again, this expectation

can be estimated by

n Ji

;0" 3 )y Pig—1K a:“icjk'k aﬂicjk'k
M, (0;0) = Z Zzzwi(%e ) - o

ué,
i=1 | J=2 K k=0, (™ ijk'k
1

4 i 1 ) Ol ) Ol
prd pM 08, 90, |’

where p; j_1 4 is the proportion of the subjects in state k' at the (j — 1)th time
point with X; = x;. The iterative equation (2.5) can be used to obtain the estimate
6+ That is, we replace 8™ by 9"+ and iterate between the E and M steps

until the estimates converge to the estimate 9.

To obtain the variance estimates for the estimator 5, we may apply the Louis’s
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method (Louis, 1982). That is, let

_ . N\ (o000)\ <= [00:6:0)\ [00,6:8)\
s 5o () ()£ (26%) (369

()
Z

then [2(A)]~! is the estimate of the asymptotic covariance matrix of 6. Alternatively,

one could use the expected information matrix from Section 2.1.

2.5 Application to Waterloo Smoking Prevention

Project

The Waterloo Smoking Prevention Project (WSPP) is a randomized longitudi-
nal study designed to investigate smoking behavior among school children (Cameron
et al., 1999). A total of 100 schools in seven Ontario school boards were randomized
to dispense either the regular health education programmes provided by the school
or a more intensive anti-smoking programme delivered by either a specially trained
teacher or a public health nurse. Questionnaires regarding smoking attitudes and
behavior were administered annually from grade 6 to grade 12. Here we use the
subjects who are present at the first assessment. The purposes of this study include
evaluating i) whether the intensive anti-smoking education programme is more ef-
fective than standard school education programme, i) whether students’ smoking
behavior changes and i) whether other factors have influence on the children’s

smoking behavior.

The smoking status based on the responses to the questionnaire items can be
coded as three states. Children who have never smoked, tried once or quit are

classified as ‘non-smoker’ and are represented by state 0. A child is in state 1 if
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Table 2.5: Sample data from two schools participating in the Waterloo Smoking Prevention Project

School A School B

Time 1234567 1234567 Time 1234567 1234567
ID GENDER TRT SMR STATE ID GENDER TRT SMR STATE
1 0 1 1121212 112111 1 0 0 1122222 1113133
2 1 1 2211121 11.113 2 1 0 1122222 1123333
3 0 1 1111111 12233. 3 1 0 2223333 1112333
4 0 1 1111111 112232 4 1 0 2222223 11111
5 1 1 2222233 11111 . 5 0 0 2212222 1111111
6 1 1 2222322 113333 6 0 0 1122222 1111111
7 0 1 2223332 111111 7 1 0 1133333 112.
8 1 1 2233333 112 8 1 0 2222333 111.
9 0 1 2111111 111111 9 1 0 1112222 1112333
10 1 1 2232223 113333 10 1 0 1122222 11
11 0 1 2333333 121311. 11 1 0 2233333 111.111
12 0 1 2322222 112231 12 0 0 2222223 1111113
13 0 1 1233333 1113. 13 0 0 2212222 1111133
14 0 1 2232333 111311 14 0 0 1222222 1111112




he or she is experimenting with smoking. Children who are regular smokers are
classified as in state 2. A three-state diagram is displayed in Figure 2.2 to show
possible transitions among the states. Along with the responses, the factors that
may influence the children’s smoking behavior were recorded. These covariates
include gender (coded as GENDER, O—female, 1-male), treatment group (coded as
TRT, O—control; 1-intervention), social models risk score (coded as SMR, 1-none
of parents, siblings or friends smoke; 2-one of parents, siblings or friends smoke;
3-two or more of parents, siblings or friends smoke) and grade indicator (coded as

GRADE, 0-secondary school; 1-high school).

There are 3965 subjects in the data set who are present at the first assessment.
About 62.6% subjects have missing observations. The missing proportions from
grade 7 to grade 12 are 2%, 3%, 7%, 10%, 2% and 1% respectively. In Table 2.5
we display a sample data subset from two participating schools for illustration. We
first analyze the complete cases which contain the measurements of 1432 children

taken from grade 6 to grade 12.

We let Y;; be the state student ¢ was in at time j, i.e., in grade 5+7, 7 =1,...,7,
and use the subscripts for covariates in a similar fashion. Consider the model for

the marginal probabilities

M
log (ng/lk> = Bro + Br1 - GENDER; + Bye - TRT; + Bis - SMR2;;
ij0

+6k4 ‘ SMR?)ZJ + ﬁkf) . GRADEW, ]{7 - 1, 2,

where TRT; represents the treatment status for subject 7, SMR2;; = I(SMR,; = 2)

and SMR3;; = I(SMR;; = 3), along with the model for the conditional probabilities

C
Hij
log < ék> = Vijk T+ %’jlk[(Yi,jA =1)+ 7ij2kl(}/i,j—1 =2), k=12,
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Figure 2.2: Three-state diagram for the analysis of the Waterloo Smoking Preven-

tion Project Data

STATE 1

(Non—smoker)

/7 N\

STATE 2

(Experimenter)

STATE 3

(Regular)

where the following regression models are assumed for the coefficients ;i

Yijk'k = Ok + Qg GENDERZ + Qo TR,TZ + Qs SMRQU

+rpy SMRBZ] + Qgrgs - GRADE,], k‘/, k= 1, 2.

As the data feature both the longitudinal correlation across subjects and cross-

sectional association across schools, here we use robust standard errors by adapting

the sandwich type variance formula discussed in Royall (1986) and Cook et al.

(2002) to accommodate potential cluster effects in the presence of missing values.

Let S™(6) denote the score vector constructed by means of the formulation in Sec-

tion 2.4.1, based only on students from school h with the cross-sectional association

ignored, h = 1,2,..., H, where H denotes the total number of schools. Modifying

the arguments in White (1982) that are applied to the cases without missing data,
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we can show that under MAR, the solution 0 to

S@O)=>_SM(®) =0
h=1

converges to #* almost surely. Here 0* solves E7[S(0)] = 0 with Er denoting the

expectation taken with respect to the true distribution. Furthermore,
VH(@O - 67) =% N(0, A~1(6%) - B(6%) - A~1(6%)), as H — oo,

where A(6) = Er[0S™(6)/06], and B(0) = Er [S®(0)[S™()]']. A(6) and B(6)

may be estimated by
H

AO)=H1Y 0s™M(0)/00],_;
h=1

and
H
B@O) =H"Y>"s™0)sM )],
respectively.

Table 2.6 reports on the complete case analysis results with 1432 children con-
tributing complete observations. In the marginal model, both gender and treat-
ment covariates are not statistically significant. However, social model risk score
and grade have significant negative effects on the probability of smoking (either
experimental or regular). Students are more likely to smoke if their parents, sib-
lings or friends are smokers. Students are more likely to smoke when they are in
high school as opposed to being in secondary school. The covariate effects in the
conditional model seem to be less striking. Grade and social model risk score have
negative effects only for some transitions (see aq14, 125, a23, i224). The remaining

covariate effects are not statistically significant.

Next, we analyze the available data with 3965 subjects contributing complete

or partial observations, assuming the missing data mechanism is MAR. Table 2.7
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Table 2.6: Complete case analysis of the Waterloo Smoking Prevention Project
data

Parameter Estimate S.E R.S.Ef p-value
Marginal Model:

INTERCEPT1 (B1o) -3.126 0.130  0.174 <0.001
GENDER (B11) 0.063 0.077  0.083 0.448
TRT (B12) 0.112 0.081 0.107 0.295
SMR2 (Bis) 0.569 0.082  0.099 <0.001
SMR3 (Bua) 1.320 0.096  0.111 <0.001
GRADE (B1s) 1.214 0.094  0.135 <0.001
INTERCEPT?2 (Ba0) -5.410 0.171 0.228 <0.001
GENDER (Ba1) 0.179 0.084  0.104 0.083
TRT (Baz) 0.074 0.087  0.117 0.527
SMR2 (Bas) 1.923 0.136  0.178 <0.001
SMR3 (Bas) 3.629 0.128  0.180 <0.001
GRADE (Bas) 2.114 0.126  0.186 <0.001
Association Model

INTERCEPT1 (av110) 2.712 0.335  0.345 <0.001
GENDER (ov11) 0.086 0.168  0.157 0.584
TRT (o112) -0.108 0.177  0.185 0.559
SMR2 (o113) -0.277 0.207  0.205 0.177
SMR3 (ov114) -0.517 0.229  0.168 0.002
GRADE (o115) -0.309 0.257  0.262 0.238
INTERCEPT?2 (v210) -0.503 0.833  0.660 0.446
GENDER (o211) 0.694 0.335  0.367 0.059
TRT (a212) 0.639 0.375  0.333 0.055
SMR2 (o213) 0.570 0.457  0.501 0.255
SMR3 (v214) 0.376 0.499  0.486 0.439
GRADE (Qv215) 0.023 0.670  0.585 0.969
INTERCEPT3 (ov120) 3.460 0.524  0.569 <0.001
GENDER (ov21) -0.077 0.225  0.279 0.783
TRT (Qv122) -0.288 0.226  0.222 0.195
SMR2 (ov123) 0.360 0.369  0.366 0.325
SMR3 (0v124) 0.244 0.376  0.391 0.533
GRADE (ov125) -1.393 0.358  0.351 <0.001
INTERCEPT4 (v290) 2.889 0.635  0.686 <0.001
GENDER (va21) -0.317 0.234 0.242 0.190
TRT (v202) 0.067 0.235  0.228 0.769
SMR2 (0r223) 0.985 0.381 0.307 0.001
SMR3 (0vo4) 1.071 0.377  0.360 0.003
GRADE (0v225) -0.022 0.497  0.609 0.971

loglik=-5010.54

T R.S.E is the robust standard error based on the sandwich variance formula. S.E is the naive
standard error that without accommodating the clustering.



reports on the analysis results based on the observed data using the Fisher-scoring
method. It can be seen that the results are comparable with those for the com-
plete data analysis. Again, in the marginal model, both gender and treatment
covariates are not statistically significant. Social model risk score and grade have
significant negative effects on smoking incidence. Students are more likely to smoke
if their parents, siblings or friends are smokers. Students are more likely to smoke
when they are in high school as opposed to being in secondary school. Finally, we
comment on the difference in interpreting the parameters in the marginal and con-
ditional models. In the marginal models, the parameters reflect the covariate at the
population level for various time points. Typically, the social model risk score and
grade are statistically significant. However, in the conditional models, the parame-
ters feature the covariate effects on transitions among states. The analysis results
show that the covariate effects in the conditional model seem to be less striking.
Grade and social model risk score have negative effects on some transitions (see

Q14, (125, (993, (ang ). Other covariate effects are not statistically significant.
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Table 2.7: Available data analysis of the Waterloo Smoking Prevention Project
data

Parameter Estimate S.E R.S.Ef p-value
Marginal Model:

INTERCEPT1 (B1o) -3.181 0.109  0.141 <0.001
GENDER (B11) -0.119 0.068  0.078 0.127
TRT (Br2) 0.095 0.076  0.093 0.307
SMR2 (Bis) 0.457 0.073  0.088 <0.001
SMR3 (Br4) 1.293 0.106  0.127 <0.001
GRADE (B15) 0.971 0.071 0.094 <0.001
INTERCEPT?2 (Ba0) -3.642 0.111 0.157 <0.001
GENDER (Ba1) 0.014 0.059  0.118 0.906
TRT (Baz) -0.041 0.072  0.086 0.634
SMR2 (Bas) 0.805 0.084  0.127 <0.001
SMR3 (Bas) 1.803 0.095  0.134 <0.001
GRADE (Bas) 2.040 0.088  0.135 <0.001
Association Model

INTERCEPT1 (ev110) 2.462 0.298  0.309 <0.001
GENDER (c111) 0.064 0.132 0.138 0.643
TRT (o112) -0.121 0.144  0.152 0.426
SMR2 (o113) -0.245 0.183  0.191 0.200
SMR3 (ov114) -0.499 0.207  0.183 0.006
GRADE (cv115) -0.318 0.224 0.230 0.167
INTERCEPT?2 (v210) -0.429 0.679  0.656 0.513
GENDER (o211) 0.438 0.301 0.324 0.176
TRT (a212) 0.547 0.347  0.358 0.127
SMR2 (a213) 0.525 0.403  0.437 0.230
SMR3 (v214) 0.328 0.456 0.448 0.464
GRADE (cv215) 0.030 0.618 0.632 0.962
INTERCEPT3 (av120) 3.906 0.483  0.504 <0.001
GENDER (ov21) -0.082 0.211 0.227 0.718
TRT (v122) -0.297 0.208  0.213 0.163
SMR2 (v123) 0.347 0.334  0.362 0.338
SMR3 (ov124) 0.208 0.338  0.368 0.572
GRADE (ov125) -1.486 0.329  0.320 <0.001
INTERCEPT4 (v290) 2.978 0.592  0.633 <0.001
GENDER (0v221) -0.326 0.218  0.235 0.165
TRT (Cv922) 0.052 0.221 0.241 0.829
SMR2 (0ro23) 0.884 0.337  0.364 0.015
SMR3 (cvo4) 1.009 0.343  0.337 0.003
GRADE (0v225) -0.027 0.446  0.488 0.956

loglik=-13422.53

T R.S.E is the robust standard error based on the sandwich variance formula. S.E is the naive
standard error that without accommodating the clustering.



2.6  Derivatives of the Log-Likelihood

In this section, we provide details on calculation of the first and second deriva-

tives of the log-likelihood in Section 2.2.

DERIVATION OF FIRST DERIVATIVES

By constraint (2.4) in the text, we obtain

O, & OP(Yy; = kYo = K X3) 0vint
= E E Mi,j—l,k’
op i ap

k'=0 \Il=1

ouM
_'_ P(}/;j — k|}/;,j—1 — k/,XZ) /"Ll,j—l,k } .

B
Let
Opl < Ol
By= 20 N7 P(Y = kYigo = K X T
k 8/6 k,Z::O ( J ‘ J—1 ) 0/6
K OP(Yy = k|Yi, 1 = K: X,) /
Ak - Z Y il . : I[’L%—l,k”l - 17...7K
=0 Miji

and Dy = (07;;1/08,l=1,...,K)', k = 1,... K, then B, = A, Dg. In matrix
notation, we have B = ADg, where B = (By,...,Bg) and A = (A, ..., Ag). If

A is not singular, then
Ds=A"'B (2.9)

Therefore, the partial derivative Ouicjk /0p in the score functions is given by

K
8/MC;'k Z 8/%6;% a%’jz
=1

05— = vy 0B

where Ous, /071 is determined by (2.2), and 9v;;,/00 is determined by (2.9).

Note that by (2.2), P(Y;; = k|Y; ;-1 = k'; X;) is a function of 7,5, [ = 1, ..., K and

Vijkm,m = 1,.., K, where v;;;,1 = 1,..., K and 7;jim, m = 1,..., K are functions
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of a due to (2.3) and (2.4). So, taking the derivative on both sides of (2.4) with

respect to «, we obtain

0 — a#?fk
oo
K K
_ Z Z OP(Yy; = k|Yi ;-1 = K; Xi) Oviji
k=0 \ =1 0% Oa
I i 3P(Yij = k|Yi,j—1 =k Xi) 8%'jkfm M ,
ot ijkrm oo’ S
= A\.D,+ M,
where D, = (0v;1/0a,1 =1, .. ., K) and
K K
OP(Y;; =k|Yi;-1 =K Xi) Ovijrr
M — 1] 1,] bl 1 . JR'Mm A M_ ..

In matrix form, we have AD, + M = 0, where M = (My,..., Mg)'. If A is not

singular,
D,=—-A"'M. (2.10)

Note that ,uicjk is a function of ~;;,l = 1,..., K and %;jmn, m,n = 1, ..., K, where
Yiji, ! = 1,..., K and 7jmn,m,n = 1,..., K are functions of o. Therefore, by the

Chain Rule, the derivative of ,ug-k with respect to a may be written as

0u ous,. o KK ous, o
zyk ijk OYijl Z]k fYZJmn

§ +3°3 . k=1,... K,
8713l Oa m—=1 n—1 afymmn

where 07;;;/0a is determined by (2.10), 0uicj /) 07iji and 8,uicj i/ 0Yijmn are determined
by (2.2) and 07;jms/0c is determined by (2.3).

So, the score vector is given by

1 ous 18Z
Z{ZZIYU‘H LUk ZI (Yi = k) g;’f},

§=2 k=0 ik :uzlk
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where 8ﬂgk/89 = (8/~Lgk/85,73/~05k/80/)/7 Ot/ 00 = (Ot /0B, Oy /0a’)', and
Ou, /OB can be obtained from (2.1), Oul, /0a = 0.

DERIVATIONS OF SECOND DERIVATIVES

Taking second derivatives in the constraint (2.4), we obtain

02#“2]]@ j = k|Y; j—1 — =k X ) a’yzyl a’yzym M
(9&&@; B Z:O; mz:l 8%]-18%]-,” 8ﬁu 8/61) ” Lk
aP(YzJ = k|Y2J 1= k5 XG) d” Vijl M
872][ aﬂuﬁﬁv Zj Lk
I 8P(Yij = k‘}/z’,j—l =k, z) a%’jl aﬂz’,j—l,k’
Miji OBu 9By
OP(Yy; = k|Yi 1 = k'3 X;) Oyiji Ops_1 o
+ J J= J J=
Z {Z 8719l 85@ 8ﬂu
/ 82M%_1 K
+P(Yz’j:k|Yz’,j—1:k‘,Xi)W :
Let
Ck _ 82/”L£\]Jk - i i i 82P(Y;] = ]f‘YVZ'J'_l )Ehwl Ehwm M /
u 8&85@ =0 =1 Lm=1 8’}/2‘j18’}/2‘jm 8ﬂu 851, ” Lk
I 8P(Yij = k\Yi,j—1 =k X;) Miji a#%—l,k/
i IBu 0B,
_ i ZK: OP(Yi; = k|Y; 1 = k'; Xi) Oyizi a#%_w
k'=0 =1 a%jl a/61) aﬁu
! 82:“’2%—1 k'
FPO = W = 05 s,
and
82%7‘1 '
= (=1 K
D,Buu (aﬂuﬁﬂv7 Y ) ) Y
we have



where Cy, = (Cluw, - - -, Cruw)’- If A is non-singular, we have

Dg,, = A7'Cy. (2.11)
So,
a2luzyk ZK: Mgk a’%]l a’me + aﬂgk . 02%31 k=1. K
aﬁuaﬁv =1 a')/mla’yzym aﬁu aﬁv a’)/ijl aﬁuaﬁv ’ ’ T

where 0%v5,/00,00, is determined by (2.11), 8*u$ /07i5107ijm and Opug,./Oyij are
determined by (2.2), and 0v,;,/08, and 07;jm/03, are determined by (2.9).

Take second derivative on both sides of (2.4) with respect to «, and «,, we

obtain
0 — 0%%
O, Oavy,
_ i i ZK: PP(Yy = kY1 = K; Xi) 0Viji Mijm
=0 =1 ULm=1 07,-]-;0%-]-,” aOéu 8ozv
X 8P( ij = |Yi,j—1 = k‘/;Xz') 52%3’1 M
afyijl 80@80@ b =Lk
‘I’ZZ Zﬁpym—k‘ym 1—147 X)a%yk’ 8’ngk'n
—0m=1 872]k’mafyzyk’n aau 80&1)
4 aP(Yij = k‘|Yi,j—1 = k‘/;Xz') az%jk'm M
avijk’m aauaav i1
= A;gDauU + Ekuva
where

it
D,,, = Lol=1,...,K
“ (80@80@ )
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and

K K
PP(Yy = k|Yi_1 = K X;) 0vi1 0
E w = v % ) LR ] ym M )
k Z Z Z 0Yij10%ijm da, Doy Hij—1,k

K K K
O*P(Yy; = k|Yij—1 = K'; Xi) OVijkrm OVijirn
I I I o

NijkrmOVijhrn

aP(Yz’j k‘|Y;gl KX )62%jk'm M
Nijk'm Oa, 0a, Hig—1e

In matrix form, we have AD,,, = E,,, where E,, = (Euw, ..., Exw)’. If Ais
non-singular, we have

D,,, = —A " E,,. (2.12)

K K
— Z 82’uic]’k i 872']'[ . 8%'jm + 8/~Lgk 82’)/2']'[
a%’jla%'jm Oay,  Oay, 8%]-1 O, Oy,

K K K K 2 C C
d Hijk a%’jmﬂn a%’jmﬂm 8lu’ijk az%'jmlnl
Yy(ry i Dl |

i1 =1 \ma=1rna=1 Nijmyny Mijmans Nijmany O Oau,
where 027,j1/0a,0c, is determined by (2.12), 82u2]k/8ywl87wm, 8,u”k/8%ﬂ and
02“% / Mijminy OVijman, are determined by (2.2), 07;;1/0c, and 07, /0, are de-
termined by (2.10), and 07ijmyn, /O, MVijmans /0y and 9*Vijm,n, /0,0, are de-
termined by (2.3).

We also note that 9%uf, /0ad3 = 0 because a and [ are orthogonal based on

Appendix B in the following and 9?2l /0adB = 0. So, the second derivative of

the log-likelihood can be written as

PlogL(0) 1 oulS,ous, 1 0*ul,
[ ij ij ij
90,00, 89 Z Z Z { (N'C' )2 20, 06, + us, 06,00,
ijk 1

i=1 j=2 k=0

n

K
1 Oplh Oy 1 Puih,
+ I Y; =k — L L + - ’
Sy -n{ -
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and the observed information matrix is given by [—9%logL(6)/d6.,,06,).
2.7 Log-Linear Parametrization of Categorical Model

For ease of notation we drop the subject index ¢ in the following discussion.

Note that
K K
PMi=y) = exp <Z mel (1 = kr)) / (1 + Zexp(mk)>
k=1 k=1
K
= exp (901 + kaf(% = k))
k=1

where m = X{,. 0,k =1,..., K and 6y = —log (1 + 215:1 eXp(mk)).

P(Y1 =1y1,Ys = y)

= P(Yz = y2|Y1 = yl)P(Yl = yl)

2 K 2 K K
= exp <902 Y 0Ty =R+ D> DD vl =Ky = k))

j=1 k=1 =2 k=1 k'=1

where 902 = 901 — IOg (1 —+ 2521 exp(ygk)>,

K K
01, = My — log (1 + Z exp(Yor + ’ygkkr)> + log (1 + Z exp(72k1)>

=1 k=1

and g = yo for k=1,..., K.

In general, we have

P(Y'l:ylv}/é:y%'“)YJ:yJ)

J
= [I P = wlYi1 =y51) - PO = 1)
§=2



where 0y; = — Z;-Izl IOg (1 + Zszl eXp(’yjk)) and

K K
Ok = 1 — log (1 + ) exp(yiw + 7j+1,kk/)> + log (1 +> GXP(%H,M)

k=1 k=1
for j < J,and 05, = vy for k=1,..., K, where for simplicity we adopt v1x = M-
Here ik = X]/kﬂk

Therefore, the proposed model is a reparametrization of the canonical log-linear
model (0, v to (u™,4V), where 81 = (0;;,) and YV = (y) for j =1,...,J
and k, k' =1,..., K. This implies § and « are orthogonal (Barndorff-Nielsen and
Cox, 1994).
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Chapter 3

Progressive Multi-State Models
for Incomplete Longitudinal and
Life History Data

3.1 Overview

Multi-state life history data commonly arise in many research areas such as
medicine, social sciences and public health. Multi-state models provide a convenient
method for characterizing the movement of individuals through a finite set of states.
In health research, the most common application of multi-state models is to provide
a comprehensive view of a disease process to allow estimation of proportions of
individuals who will be in various states at some time in the future, or rates of
transitions. Examples of these include illness-death models, competing risk models
and progressive models. In continuous time multi-state models, it is often the
transition intensities which are of interest. These are the instantaneous conditional
probability of transition at some time point given the covariates and the process
history. In practice, the intensities are frequently modeled as a function of covariates

that are believed to be relevant to the response process.

Sometimes individuals are observed at prespecified assessment times and their
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states are to be determined only at these times, so information about transitions
between successive observation times is unavailable. This type of data are some-
times referred to as panel data in the context of multi-state models (Kalbfleisch and
Lawless, 1989), and arise naturally in settings such as clinical trials where patients
are examined by physicians periodically and their states are assessed at those vis-
its. In an observational setting the psoriatic arthritis (PsA) study of Gladman et
al. (1995), involves radiological assessments of clinic patients at roughly one-year
intervals for much of their follow up, but the exact times of events are unknown.
Since the assessment times are prespecified, if patients completed their schedule

of assessments, only the disease process would need to be modeled (Gruger et al.,

1991).

Markov models are widely used in the analysis of multi-state data. These meth-
ods have been studied early by Bartholomew (1983), Singer and Spilerman (1976a,
b) and Wasserman (1980) among others. Kalbfleisch and Lawless (1985, 1989)
proposed a very efficient way of obtaining maximum likelihood estimates for time-
homogeneous Markov models with arbitrary transition structures. Gentleman et al.
(1994) adapted the method of Kalbfleisch and Lawless (1985, 1989) to incorporate

time nonhomogeneous intensities.

Typically, progressive models provide a convenient framework for characteriz-
ing the disease processes which arise, for example, when the state represents the
degree of the irreversible damage incurred by the disease. For the special case of
the progressive time-homogeneous Markov model, Satten (1999) gave a closed form
of the transition probability matrix expressed in terms of the transition intensities.
Cook et al. (2004) discussed the conditional Markov model for clustered progres-

sive multi-state process under incomplete observation through multivariate random
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effects.

Relatively little attention has been given to the analysis of progressive models
with incomplete assessment data. In general, individuals are observed at prespec-
ified assessment times and their states are determined only at these times. A
complete case analysis might lead to the biased results, and so invalid inferences.
Likelihood-based methods are commonly used to handle incomplete data problems.
It gives valid estimates when the missing data is MCAR and MAR. In this chapter,
we provide a general method to handle the incomplete data problem in the progres-
sive model. Maximum likelihood methods of estimation via the EM algorithm are
developed to calculate parameter estimates, and variance estimation is based on
Louis’s method. Section 3.2 is mainly concerned with the discrete time progressive
multi-state process, in which the EM algorithm is employed. Simulation studies
indicate that this method works well for many settings. Continuous time progres-
sive multi-state processes are considered in Section 3.3. Data from the Waterloo
Smoking Prevention Project (Cameron et al., 1999) and the psoriatic arthritis study

(Gladman et al., 1995) are analyzed in Section 3.4.

3.2 Modeling Transition Probabilities

Discrete time progressive models are widely used when the data structure is
panel data and the observed transition times are not available. In practice, inter-
est often lies in the transition probabilities between different states as well as the
association between the transition probabilities and the covariate effects. In this

section, we consider discrete time models via the transition probabilities.
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Figure 3.1: K-state diagram for progressive process

3.2.1 Notation and Model Formulation

We define an irreversible multi-state process as one in which a given state can
be entered at most once, but for the discussion that follows we consider models with
a state diagram as in Figure 3.1, which is a K-state transition model. If subjects
are to be observed at time points t1,ts,...,t, let Y; = (Y;1,Y}e,...,Y;;) be the
response vector containing the states occupied at the assessment times, and X;; be
the vector of covariates recorded for subject ¢ at the jth assessment, 7 =1,...,J,

i=1,...,n. Welet X; = (X}, X],,...,X!;)" denote the full covariate vector.

Often, given the covariates, a first order dependence of Y;; on its history is
appropriate and we discuss this model in what follows; extensions to models with
higher orders of dependence are straightforward. Let uly, = P(Yy; = k|Y;;-1 =

k', X;) be the transition probability from state k' to state k given X;, where £’ <
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k < K. The transition probability matrix for subject ¢ at time j is then written as

N%ll M%m Mgli’; T Nicj1,K—1 /%'CﬂK
0 Micﬂz N%z:’) T :U'%ZK—I N%zK
0 0 Wiss o Mk Hijsrc
P = )
0 0 0 T Micj,K—l,K—1 Micj,K—LK
0 0 o .- 0 1

where these transition probabilities satisfy

K
Zuf’}w = 1, fork=1,2,...,K—1.
k=K'

In general, we may adopt the following model with ,u%k,k, regarded as a reference

C
lOg (Mgk/k) :Xz(jk/kﬁk’ky k= k’l‘l‘l,...,K, (31)
gk

where X may be a subset of X;, featuring the influence of the covariates on the
transition between the responses, and [y, is the vector of regression coefficients. We
note that an implicit assumption P(Y;; = k|Y; 1, X;) = P(Yy; = k|Yi -1, Xijik)
is made here, but Xj;i/, can be easily expanded to ensure all important covariates

are included. We let 8 = (6L, k > K, kK'=1,..., K — 1)".

To model the missing data process, we let ?;; be an indicator random variable,
which equals 1 if Y}; is observed and 0 otherwise. We thenlet R; = (R;1, R, - - ., Riy)’,
and r; = (741,742, . ..,7i7)" be a realization of R;. Here we assume all the subjects
are observed at the initial enrollment, i.e. R;; = 1. For ease of exposition, we
O), yi(m)) with yi(o) and yfm) denoting the observed and missing compo-

write y; = (y-(

2

nents of y;, respectively. Inference about (3 is based on the observed data likelihood

L =]\, L;, where
L; = P(R;,Y"|X;) = / PR Y™, X5 - PV, Y™ X)av, ™. (3.2)
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Under a missing completely at random (i.e. P(R;|Y;, X;) = P(R;)) or missing
at random (i.e. P(Ri|Y;, X;) = P(R;|Y\), X;)) mechanism, P(R;|Y,”, V™ X,)
does not depend on the missing components Y;-(m). Then L; x P(Yi(o)\Xi) can be
used in lieu of (3.2), provided P(R;|Y;, X;) does not share any parameters with [.
Thus under these settings, inference about § may be directly conducted based on
P (Yi(o)\Xi) and the missing data process needn’t be modeled. However, if data are
missing not at random (MNAR), P(R;|Y.”, Y™, X;) does depend on Y™, and

inferences must be based on (3.2) and a model must be specified for P(R;|Y;, X;).

In applications, incomplete data may arise for a variety of reasons, and it is
generally difficult to tell which missing data mechanism is reasonable. Flexible
models encompassing various missing data mechanisms are therefore desirable. To
this end, here we adopt models that accommodate a nonignorable missing data
mechanism. Specifically, let H;; denote the history of the missing indicators until

the tj—la and >\:} = P(RU = 1‘HT

i Yi, X;). Regression models may be employed to
link Aj; with functions of Y;, X; and H;. Typically, a logistic regression model is
commonly used with

logit(A;) = ijoz, (3.3)

where Z;; is a vector which may include functions of {H];,Y;, X;}. As a typical

case, we may write
. % /
logit(\j;) = o+ - 11 + g Ty + Qs Y+ Al - X

to reflect distinct missing data mechanisms. In this case, for example, ap, = ag =
a, = 0 leads to a MCAR mechanism, a3 = 0 and ay # 0 corresponds to a MAR

mechanism, and ag # 0 represents a MNAR mechanism.
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3.2.2 Model Identifiability

Conditional on the initial state, the complete data likelihood for subject i is
written as
J K K i o
(03 i, i) H{ (A5 (1 — )\;kj)l_”j . H H (M'Cjk/k) Yoo == }, (3.4)
j k'=1 k=K’
where 0 = (¢/, #')’, and hence the observed data likelihood is

J K K
L0y r) = {H [(A;;-)”J‘u ) TT T () ™" *“F’f’] } .
Jj=2

y{m™ k=1 k=k'

(3.5)
With a MNAR mechanism, parameter identifiability is a central concern. Parame-
ters governing the missing data process may be nonidentifiable due to incomplete in-
formation on unobserved responses and sensitivity analyses are therefore often con-
ducted (e.g., Verbeke and Molenberghs, 2000). When the response process follows a
progressive model, both response and missing data parameters are identifiable, even
under a MNAR mechanism, provided standard conditions for (3.1) and (3.3) are
satisfied. That is, if # and 6 are two values such that L;(6; yi(o), ) = Li(0; yi(o), i)
for any (yi(o),ri), then # = 6 must hold (Casella and Berger, 2002; Fitzmaurice,
Laird and Zahner, 1996). The detailed proof is included in Section 3.5.

3.2.3 EM Algorithm

Here we describe an expectation-maximization (EM) algorithm to maximize

(3.2). From (3.4), we obtain the log-likelihood for the complete data contribution
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from subject i as

J
(O yi i) = Z{ﬁ'leg)\Z + (1 = ry5)log(1 = Aj;)}

j=2
J K K
+ Z Z Z I(Yij1 = K, Yij = k)log (/izcjk'k) ) (3.6)
J=2 k'=1 k=K’
where y; is a realization of Y;. In the expectation step (E-step), we require the

conditional expectation

n

QB;6M) = > Qi(6;60™),

=1
where Qy(0;0%) = E[(;(6; ys, ri) [y, 0®) = 3 o wiys; 0M)) - £:(6; 93, 7), and

Li(6®; ™ y() 1)

]

Z(m)L( 7yz 7yi()7ri)'

wz’(?ﬁ% 9(h))

The maximization step (M-step) maximizes the function Q(#; 0™) with respect
to the parameter 0, and a Newton-Raphson algorithm can be used for this purpose.
Note that from (3.6), we can see that Q(6;0(") can be maximized with respect to

«a and ( by treating them separately since
Q(8;6") = Qu(c; 6") + Qa(3: 6",

where

n J

Qe 0M) =Y 3 (i 07) {ryjloghs; + (1 — ryj)log(1 — A3))}

=1 j=2 (m)

3

J o J
Q2(; e(h)) = Z Z Z sz Yi; ") (yij1 = k', yij = k)log (/iicjk/k) :

1=1 j=2 k'=1k=k' (M)
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[terating between the E and M steps until convergence leads to the maximimum

likelihood estimator 6.

Standard errors for these parameter estimates can be calculated using Louis’s
method (Louis, 1982), which partitions the complete data information into two
parts: the information associated with the observed data and that associated with
the missing data. Louis (1982) showed that a consistent estimate of the second

derivative matrix could be calculated using
1Y) = B[L@Y)|[Y]=E[S(O]Y)S'(0]Y) Y ]+E[S@]Y) Y V] BLS'(0]Y) Y],
where S(0) = >, 0;(0;y;,1;)/00 is the score vector, and

1(0) = = 0°0:(0; yi,m:) /0000
i=1
is the observed information matrix (Horton and Laird, 1998). Therefore, the esti-
mated observed information matrix of € based on the observed data is given by

L 8206;0) & j 00,(6;0)\ (00:(6:6)\
SOMSCAICUNS o SIORIGE Z<Q )(Qa(e >),

=1 (M)

where S;(0) = 8;(0; y;, ;) /00| g—o- The estimate of the asymptotic covariance ma-

trix of 3 is the lower py X py block of [E(é)]_l, where p, is the dimension of (3.
3.2.4 Simulation Studies

Now we conduct a simulation study to assess the performance of the proposed
method by examining finite sample biases and coverage probabilities for parameter
estimates. Our primary aim here is to compare the proposed method with the

methods which do not incorporate the missing data mechanism. We show that
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large biases and poor coverage probabilities in the parameter estimates can result

if the missing data mechanism is not accounted for when it should be.

Set n = 1000, K = 3 and J = 4. Two thousand simulations are run for each
parameter configuration. The response vector is generated from the conditional

model

c

s ger

log (Mcjk u ) = Bwio + B Xiji + Bk Xijo + BrrsXijs, Kk <k <3,
k'K

for j = 2, 3, 4, where X;;; = X, represents a time invariant treatment indicator,
generated from the Binomial distribution Bin(1,0.5). Here X;;» = I(j = 3) and
Xijs = 1(j = 4) facilitate the temporal effects. The true values for the parameters
are set as (1p0 = logit(0.5), Bia1 = log(0.5), Bize = log(ug), Bi2s = 2log(ug), Biz0 =
logit(0.25), G131 = log(0.5), Biza = log(ug), fiz3 = 2log(ug), P2z = logit(0.5),
Baz1 = log(0.5), and [fagz = 2log(ug). We take ug = 1 or 1.2 to indicate whether

the response model is dependent on the temporal effects.

For the missing data process, assume the logistic regression model

lOglt(AZ}) = og+ 041(1 — Ti,j—l) + OéQ’f’@j_l](Y;’j_l = 2) + 043[(}/@')' = 2)

+Oé47’i,j—1Xij1[(Y;‘,j—1 =2)+ 045Xij1[(yz‘j =2), (3.7)

for j = 2,3,...,J. Set ag = logit(0.7), and o; = log(0.75). When considering
an MAR, set a3 = a5 = 0, ap = log(u,), and oy = log(2); with an MNAR, set
az = log(u,), s = log(2) and ay = ay = 0. To alter the missing data proportion,

take u, = 0.5 or 2.

Data generation procedure for the responses is as follows: assume Y;; = 1, i.e.,

all the subjects are in state 1 at the entrance of the study, and given the true

parameter vectors Spx = (Owko, Brrkts Brrk2s Beks)’ s
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1. generate the covariate vector X;; = (1, Xjj1, Xijo, Xij3)', 7 =2,3,..., J,

2. given Y; j_1 = y; j_1, calculate the transition probabilities ,ug-yi ko Yig—1 < k,

which is given by

eXP(Xi/jﬂyi,j—lk)
K b
1+ Zk:yi,jfﬁ‘l eXp(Xi,j/gyi,jflk)

C _
'uijyi,jﬂk -

3. generate the response Y;; from the discrete distribution P(Y;; = k|X;;) =

C
'uijyi,j71k for k > Yij—1-

For the missing data process, assume R;; = 1. Given the true parameter o and
Rij_1 =7ij-1,j > 1, the conditional probabilities \j; can be calculated from (3.7),

and we generate the missing indicator R;; via the binomial distribution Bin(1, ;).

Here we conduct two methods, one is the proposed method, and the other is
available data analysis, in which we pick up the observations that are consecutively
observed and analyze them using the “GENMOD” command in SAS. In the sim-
ulation studies, we assume all the models are correctly specified. The simulation
results are reported in Tables 3.1-3.8, where SEL denotes the average standard error
calculated based on Louis method, ESE is the empirical standard errors and CP
represents the coverage probability of the 95% confidence intervals. In the simula-
tion, we considered two missingness proportions — 45% and 30%, corresponding to
u, = 0.5 and 2, respectively. It is seen that, as the missingness proportion increases,
biases of the parameters increase. It is not surprising that, under MAR, the biases
of ﬁ for both the proposed method and the available data analysis are fairly small,
the coverage probabilities are very close to 95%, and the empirical standard errors
are in good agreement with the standard errors obtained by the Louis method. In

contrast, for the missing not at random cases, the biases of both ﬁ and & are very
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small for the proposed method, but the biases of ﬁ in the available data analysis
are remarkable. The coverage probabilities for the proposed method are in good
agreement with the nominal level 95%, while the available data analysis produces

coverage probabilities that are far from the nominal level.

3.3 Modeling Transition Intensities

Besides the transition probabilities, sometimes interest lies in the transition in-
tensities. In this section, I consider the continuous time progressive model via the
transition intensities. In general, one could develop stochastic models for the as-
sessment times. In cohort studies, clinical assessments may be scheduled at roughly
equal intervals (e.g. annually), but patients may choose when they want to visit
clinics for clinical examination according to their degree of disease activity. This
creates a situation somewhat akin to incomplete data in longitudinal studies when
data may be missing at random (MAR) if missing status depends on the observed,
typically past, responses, or missing not at random (MNAR), where the missing
status may depend on the latent disease status. The latter situation is particularly
difficult to deal with in general and in most settings analysts must rely on sensitiv-
ity analyses to examine the possible effect of this type of observation scheme. We
consider, however, progressive models for chronic disease processes, which by their
progressive nature, are convenient for jointly modeling the disease and observation
processes. We provide a general method to handle this type of data. Maximum
likelihood methods are used with parameter estimation carried out via an EM al-
gorithm (Dempster et al., 1977), and variance estimation is performed using Louis’

(1982) method.
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Table 3.1: Simulation results under MAR: about 45% missingness (i.e. u,

with no temporal effect (i.e. ug = 1.0)

= 0.5)

Transition Model EM Available Data
Transition Parms True BIAS SEL ESE CP BIAS ESE CP
1—2 B0 logit(0.5) 0.002 0.101 0.099 0.955 -0.001 0.106 0.948

121 log(0.5) 0.005 0.120 0.117 0.954  0.003 0.134 0.951

B2 log(1.0) -0.002 0.149 0.155 0.945 -0.003 0.163 0.953

B1a3  2log(1.0)  0.002 0.193 0.191 0.956 -0.002 0.209 0.961
1—3 G130 logit(0.25) 0.009 0.145 0.144 0.956  0.0091 0.153 0.953

Biz1 log(0.5) 0.002 0.180 0.178 0.955 0.0046 0.203 0.946

Bizz log(1.0) -0.006 0.232 0.233 0.950 -0.0100 0.242 0.951

fi33  2log(1.0)  0.007 0.313 0.312 0.957 -0.0119 0.325 0.951
2—3 Bazo  logit(0.5) 0.000 0.162 0.164 0.952 -0.0042 0.194 0.952

Ba31 log(0.5) 0.009 0.192 0.192 0.953 0.0194 0.233 0.956

Ba33  2log(1.0) -0.005 0.220 0.220 0.950 -0.0087 0.234 0.956
Missing Data Model

Qo logit(0.7)  0.002 0.053 0.051 0.951

q log(0.75)  -0.003 0.104 0.095 0.948

Qg log(0.5) -0.001 0.130 0.131 0.950

Qy log(2.0) -0.000 0.191 0.190 0.956

T Absolute bias.
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Table 3.2: Simulation results under MAR: about 45% missingness (i.e. u, = 0.5)

with temporal effect (i.e. ug = 1.2)

Transition Model EM Available Data
Transition Parameter True BIAS SEL ESE CP TBIAS ESE CP
1—2 B120 logit(0.5) -0.002 0.102 0.097 0.957 -0.001 0.105 0.952

P21 log(0.5) 0.002 0.125 0.121 0.954 0.001 0.140 0.945

B2z log(1.2) 0.006 0.148 0.150 0.948 0.004 0.160 0.954

P23 2log(1.2)  0.009 0.196 0.199 0.950 0.006 0.223 0.953
1—3 (130 logit(0.25) 0.006 0.146 0.146 0.953  0.006 0.155 0.948

Bzt log(0.5) 0.002 0.179 0.175 0.955 0.002 0.198 0.954

P32 log(1.2) -0.007 0.227 0.225 0.953 -0.003 0.234 0.947

B33 2log(1.2)  0.016 0.314 0.309 0.957 -0.001 0.318 0.955
2—3 (230 logit(0.5)  0.003 0.163 0.165 0.948 0.004 0.196 0.951

B231 log(0.5) 0.003 0.190 0.192 0.948 0.001 0.236 0.951

B33 2log(1.2) -0.008 0.216 0.218 0.950 -0.008 0.237 0.949
Missing Data Model

% logit(0.7) -0.000 0.054 0.051 0.953

o log(0.75)  -0.003 0.105 0.098 0.952

Qo log(0.5) 0.003 0.129 0.129 0.948

oy log(2.0) -0.004 0.190 0.185 0.955

T Absolute bias.
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Table 3.3: Simulation results under MAR: about 30% missingness (i.e. u, = 2)

with no temporal effect (i.e. ug = 1.0)

Transition Model EM Available Data
Transition Parms True fBIAS SEL ESE CP 'BIAS ESE CP
1—2 B0 logit(0.5) -0.000 0.101 0.097 0.956 -0.000 0.104 0.948

fB1o1 log(0.5)  -0.001 0.120 0.117 0.954 0.001 0.135 0.950

Brze  log(1.0) 0.001 0.149 0.146 0.949 0.001 0.155 0.960

B2z 2log(1.0)  0.001 0.195 0.196 0.948 -0.000 0.217 0.948
1—3 Biz0  logit(0.25) 0.003 0.145 0.141 0.956  0.003 0.151 0.957

fBiz1 log(0.5)  -0.001 0.180 0.179 0.952 0.000 0.203 0.948

Bize log(1.0) 0.003 0.231 0.235 0.956 -0.002 0.242 0.955

B3z 2log(1.0)  0.013 0.302 0.295 0.961 -0.005 0.310 0.960
2—3 Baz0  logit(0.5) 0.002 0.144 0.146 0.947 0.000 0.161 0.951

Ba31 log(0.5) 0.004 0.175 0.176 0.948 0.003 0.194 0.953

Bazz  2log(1.0) -0.002 0.183 0.185 0.948 -0.001 0.193 0.950
Missing Data Model

% logit(0.7) -0.000 0.052 0.051 0.956

a1 log(0.75)  0.001 0.106 0.101 0.951

Qg log(2.0)  -0.006 0.162 0.162 0.947

oy log(2.0)  -0.000 0.268 0.268 0.958

T Absolute bias.
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Table 3.4: Simulation results under MAR: about 30% missingness (i.e. u, = 2.0)
with temporal effect (i.e. ug = 1.2)

Transition Model EM Available Data
Transition Parameter True fBIAS SEL. ESE CP 'BIAS ESE CP
1—2 B120 logit(0.5) -0.003 0.104 0.096 0.958 -0.002 0.103 0.958

Biai log(0.5)  0.001 0.118 0.115 0.954 -0.000 0.134 0.952
B log(1.2)  0.002 0.148 0.148 0.947 0.001 0.159 0.952
Bz 2log(1.2) -0.001 0.197 0.196 0.955 0.002 0.220 0.955

1—3 B30 logit(0.25) 0.001 0.146 0.142 0.957 0.002 0.151 0.952
P31 log(0.5) 0.006 0.189 0.183 0.961 0.006 0.209 0.938
Bis2 log(1.2) 0.009 0.228 0.228 0.951 0.004 0.235 0.955
Piss 2log(1.2)  0.007 0.310 0.307 0.953 -0.007 0.320 0.956

23 Bazo logit(0.5) 0.002 0.144 0.149 0.943 0.002 0.167 0.943
Bez1 log(0.5)  0.003 0.172 0.175 0.945 0.002 0.192 0.951
B33 2log(1.2) -0.004 0.180 0.181 0.946 -0.005 0.189 0.953

Missing Data Model
% logit(0.7)  0.001 0.053 0.052 0.955
aq log(0.75)  -0.001 0.107 0.103 0.949
Qo log(2.0)  -0.003 0.161 0.164 0.952
ay log(2.0)  -0.015 0.265 0.265 0.956

T Absolute bias.
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Table 3.5: Simulation results under MNAR: about 45% missingness (i.e. u, = 0.5)

with no temporal effect (i.e. ug = 1.0)

Transition Model EM Available Data
Transition Parms True TBIAS SEL ESE CP 'BIAS ESE CP
1—2 B0 logit(0.5) -0.015 0.103 0.110 0.943 0.259 0.111 0.359

B121 log(0.5)  -0.001 0.125 0.119 0.957 -0.260 0.138 0.547

B2 log(1.0) 0.026 0.152 0.159 0.944 0.004 0.167 0.956

f1a3  2log(1.0)  0.024 0.197 0.199 0.954 -0.005 0.219 0.950
1—3 B30 logit(0.25) 0.006 0.147 0.142 0.959 0.004 0.150 0.950

f131 log(0.5)  -0.002 0.189 0.182 0.958 0.001 0.197 0.958

Bizz log(1.0) 0.016 0.233 0.239 0.943 0.004 0.244 0.949

fiz3 2log(1.0) 0.015 0.313 0.310 0.960 -0.007 0.316 0.960
2—3 Bazo  logit(0.5) 0.012 0.171 0.178 0.942 -0.266 0.213 0.751

Ba31 log(0.5) 0.024 0.198 0.200 0.944 0.273 0.241 0.809

Bazz  2log(1.0) -0.007 0.215 0.218 0.950  0.000 0.249 0.950
Missing Data Model

% logit(0.7) -0.016 0.080 0.081 0.945

o1 log(0.75) -0.007 0.120 0.109 0.953

a3 log(0.5) 0.025 0.203 0.174 0.944

Qs log(2.0) 0.029 0.148 0.163 0.955

T Absolute bias.
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Table 3.6: Simulation results under MNAR: about 45% missingness (i.e. u, = 0.5)

with temporal effect (i.e. ug = 1.2)

Transition Model EM Available Data
Transition Parameter True fBIAS SEL ESE CP BIAS ESE CP
1—2 G120 logit(0.5) -0.017 0.106 0.110 0.943 0.265 0.113 0.348

Br21 log(0.5)  -0.008 0.129 0.123 0.956 -0.262 0.139 0.535

B2z log(1.2) 0.025 0.151 0.155 0.946 0.003 0.164 0.961

(123 2log(1.2)  0.027 0.200 0.205 0.947 -0.000 0.228 0.948
1—3 B130 logit(0.25) 0.010 0.149 0.151 0.955 0.007 0.157 0.946

P31 log(0.5)  -0.001 0.192 0.186 0.958 0.005 0.202 0.943

P32 log(1.2) 0.006 0.229 0.228 0.954 -0.007 0.232 0.963

(133 2log(1.2)  0.015 0.315 0.305 0.958 -0.005 0.315 0.953
2—3 B230 logit(0.5) 0.026 0.168 0.175 0.939 -0.255 0.205 0.772

Ba31 log(0.5) 0.019 0.189 0.192 0.943 0.267 0.232 0.813

(233 2log(1.2) -0.019 0.211 0.211 0.955 -0.004 0.238 0.957
Missing Data Model

g logit(0.7) -0.021 0.086 0.085 0.952

o log(0.75)  -0.009 0.124 0.092 0.956

a3 log(0.5) 0.037 0.224 0.182 0.945

as  log(2.0)  0.028 0.152 0.174 0.954

T Absolute bias.
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Table 3.7: Simulation results under MNAR: about 30% missingness (i.e. u, = 2.0)

with no temporal effect (i.e. ug = 1.0)

Transition Model EM Available Data
Transition Parms True fBIAS SEL ESE CP 'BIAS ESE CP
1—2 B0 logit(0.5) -0.007 0.100 0.103 0.941 -0.163 0.100 0.632

fB1o1 log(0.5)  -0.005 0.119 0.118 0.953 -0.091 0.128 0.882

Brze  log(1.0) 0.007 0.135 0.139 0.945 -0.002 0.152 0.947

B2z 2log(1.0)  0.008 0.173 0.176 0.944 -0.005 0.202 0.945
1—3 Biz0  logit(0.25) 0.011 0.143 0.141 0.948 0.009 0.152 0.951

Biz1 log(0.5)  -0.003 0.181 0.176 0.959 -0.001 0.201 0.954

Bize log(1.0) 0.012 0.230 0.232 0.950 0.002 0.240 0.954

fizs  2log(1.0)  0.012 0.310 0.313 0.957 -0.007 0.330 0.954
2—3 Baz0  logit(0.5) 0.000 0.144 0.151 0.940 0.159 0.154 0.821

Ba31 log(0.5) 0.018 0.170 0.174 0.943 0.100 0.186 0.928

Bazz  2log(1.0)  0.004 0.179 0.181 0.945 0.003 0.188 0.939
Missing Data Model

% logit(0.7) -0.009 0.067 0.065 0.956

a1 log(0.75) -0.004 0.117 0.114 0.955

Qs log(2.0) 0.003 0.217 0.218 0.952

Qs log(2.0) 0.041 0.303 0.306 0.956

T Absolute bias.
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Table 3.8: Simulation results under MNAR: about 30% missingness (i.e. u, = 2.0)
with temporal effect (i.e. ug = 1.2)

Transition Model EM Available Data
Transition Parameter True BIAS SEL ESE CP TBIAS ESE CP
1—2 B120 logit(0.5) -0.006 0.100 0.108 0.941 -0.163 0.101 0.651

P21 log(0.5) -0.009 0.123 0.122 0.951 -0.003 0.130 0.878

B2z log(1.2) 0.011 0.140 0.141 0.947 0.004 0.155 0.946

P23 2log(1.2)  0.016 0.177 0.181 0.947 0.001 0.209 0.951
1—3 (130 logit(0.25) 0.001 0.143 0.137 0.958 0.001 0.146 0.963

Bzt log(0.5) 0.006 0.183 0.172 0.959 0.007 0.197 0.957

P32 log(1.2) 0.015 0.226 0.226 0.954 0.006 0.233 0.956

B33 2log(1.2)  0.012 0.310 0.305 0.958 -0.009 0.321 0.955
2—3 (230 logit(0.5)  0.005 0.140 0.149 0.942 0.162 0.152 0.833

B231 log(0.5) 0.013 0.167 0.168 0.948 0.093 0.176 0.935

B233 2log(1.2) -0.002 0.176 0.173 0.951 -0.001 0.181 0.954
Missing Data Model

% logit(0.7) -0.012 0.069 0.079 0.947

o log(0.75) -0.006 0.118 0.114 0.954

o log(2.0) -0.003 0.227 0.300 0.951

Qs log(2.0) 0.042 0.317 0.485 0.949

T Absolute bias.
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3.3.1 Continuous Time Progressive Multi-State Models

Suppose there are K states and the transition direction is irreversible. Figure
3.2 is an illustrative diagram of a K-state progressive transition model. Let Y'(t)
represent the state occupied at time ¢ > 0, and H(t) = {Y(s),0 < s < t} denote the
history of the response process which records the states occupied over the interval
[0,¢). The transition probability function is written generally as P(Y(s +t) =
kY (s) = k', H(s)) for s,t > 0, and k > k', but under a Markov model this simplifies

to P(Y(s+1t) = k|Y(s) = k'), which we denote compactly as Pyy(s,s+1t), k > K.

Figure 3.2: A diagram of K-state progressive process

1] —[2] —[B}— —[K]

The corresponding transition intensity from state k to state k + 1 at time ¢ is

. PY({t+At)=k+1|Y(t) =k)
At—0 At ’

(Cox and Miller, 1977). A multi-state progressive model with state space {1,2,..., K}

can then be described via the following transition intensity matrix, (():

Nl ME 0 0 0

0 () Ne(t) - 0 0

0 . . o . .
0 0 0 o At Ax_i(D)

0 0 0 - 0 0

Under a time-homogeneous Markov model, let \p(t) = A\, K =1,..., K — 1,

and it follows from stationarity that Pyy(s,s +t) = Py (0,t), which we may now
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write simply as Pyy(t). Let P(t) denote the K x K matrix with (k’, k) element
Pu(t). We assume Aq, ..., A\g_1 are distinct, and let A\ = (Aq,...,Ag_1)". For a
time-homogeneous model the transition probability from state k' to state k over

[0,¢] is given by

Sk O 4, ks A) exp(=Ajt), K <k,
07 k' > /{?,

Pui(t) =

where the coefficients are given by

C(K.j, ks A) = Ak

Hz:k’,h;ﬁj ()‘h - )‘j)

for ¥ < j <k, and C(j,7,75;A) = 1,5 = 1,2,..., K (Satten, 1999). In the simu-

lations and application that follow we focus on time-homogeneous Markov models,
but extensions which accommodate nonhomogeneous Markov models can be de-
veloped in the same spirit, and so we retain the dependence on t in the following

remarks.

To model the dependence of the transition intensities on prognostic variables, we
may incorporate covariates in the preceding formulation by expressing the transition
intensities as functions of time (in the nonhomogenous case) and the covariates.
That is, let Ag(t) = gx(t, X) for some non-negative known function gx(-,-), k =
1,..., K —1, where X represents the covariate vector. For a given individual i, we

often adopt models of the form
Aik(t) = Ao (t)exp(XB), k=1,....,K -1, (3.8)

where the Aok (t) are the baseline transition intensities which may or may not depend
on t, and [ is a vector of regression coefficients associated with the covariates of

interest, X;x, k = 1,..., K—1. This setup permits the baseline transition intensities
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and the regression coefficients to vary across the possible transitions. We let X; =
(Xips o, Xig 1) and B = (Bi,...,8k-1)" denote the vector of all covariates and

regression coefficients.

With continuous time models and observation schemes, the response process
{Y(t),t > 0} may be observed at any time point ¢ over the period of observation.
In practice, however, individuals are often observed at random, individual-specific
times, which are not necessarily evenly spaced, and their states are determined
at these visit times. Let t;; < t;5 < --- < t;;, denote variable assessment times
for subject i, H, = {tu,k = 1,...,5 — 1}, Hj; = {Yi(tu),k = 1,...,5 — 1},
and H;; = {(tu,Yi(ti)),k = 1,...,7 — 1}. If we condition on the initial time of
assessment and the initial state, the full observed data likelihood contribution from
subject i, suppressing dependence on the covariates, is then

L —HP s 2 tij |HZJ HP it ‘HU HP ZJ‘Y( ZJ) Hij)- (3-9)

j=2

The model for the underlying stochastic process does not typically feature a de-
pendence on the previous assessment times, and so P(Y;(ti;)|Hi;) = P(Yi(ti;)| H};)
is a quite natural assumption. Indeed we usually desire to base inferences strictly
on the product of such terms. If P(¢;;|Y;(t;;), H;j) does not depend on Y;(¢;;) (i.e.
the time of the assessment does not depend on the state of the underlying pro-
cess) then we can treat Hj:2 P(Y;(ti;)|H};) as if it were the probability of the
observed states, conditional on the assessment times, and this is typically an im-
plicit assumption in standard analyses. If, on the other hand, P(t;;|Yi(t:;), Hij)
does depend on Y;(t;;), then we must consider the full likelihood based on (3.9).
In this case, one needs to model the conditional distributions of the examination

times (i.e. P(t;;|Yi(ti;), Hi;)) which can be challenging. In this chapter we consider
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the problem in which subjects are scheduled to be examined at pre-specified assess-
ment times denoted ai, as,...,ay, and adopt the convenient framework commonly

employed to handle incomplete longitudinal data.

Let R;; be the indicator random variable, which equals 1 if response Y;(a;) is
observed and 0 otherwise. Let R; = (R, Rio, ..., Riy)', and r; = (ri1, 10, .., i)
be a realization of R;. Here we assume all the subjects are observed at the initial
enrollment, ie., Ry = 1. Let \j; = P(R;; = 1|H];,Y;, X;) be the conditional
probability, where H;; denotes the history of the missing indicators until the (j—1)st
time point. When models with a first order dependence are of interest, we write

A = P(Rij = 1|R; j1,Y;, X;). A logistic regression model is commonly employed

to postulate the conditional probability Aj;, i.e.,
logit(\j;) = Zj;a,

where a is a parameter vector, and Z;; is a covariate vector featuring various miss-

ingness.

Let 6 = (o/,5")'. Then the likelihood for the complete data is given by L(6) =
[T Li(0; v:), where

Li(0;y;) = P(R; =ri|Yi =i, Xi; ) P(Y; = yi| X5 B) (3.10)
K K
x H{ X = )t 1 H{Pm,kmj—aj_l)}w1*’““”@”"“)}
k'=1 k=K’
or equivalently, its logarithm is
J
(6 ;) Z{rmlog)\ —rij)log(1 — A})} (3.11)

2

.

J K K
+ Z Z Z I(Yi(aj-1) = K',Y(a;) = k)logPipr(a; — aj-1),

=2 k'=1 k=k'

.

with Pik/k(a]‘ — CLj_l) = P(Y;(aj) = ]{Z|Y;‘(CLJ'_1) = ]{3/, Xz)

79



3.3.2 Asymptotic Bias Under Dependent Inspection

In the presence of missing values, we may base inference about # on using (3.10)
or (3.11). The detail will be presented in Section 3.3.3. Here we investigate the
impact of ignoring missingness, or the fact of dependent inspection. Specifically,
we employ the available data analysis and the complete case analysis that are often
used in practice due to their simplicity of implementation. We investigate this

problem through application of the theory of misspecified models.

Let 0*(5*) = Y1, logP(Yi(*) | X;) be the naive log-likelihood function where Yi(*)
represents the available data or the complete case data. Here 3* is used to stress
that the associated parameter may be different from the parameter of interest [3.

Solving
_or(pr)

05" =0

5*(6%)

leads to a naive estimate 3*.

White (1982) showed that 3* converges to 3* almost surely, where 3* solves

EY,R,X [S* (ﬁ*)] — 0

Here By r x denotes the expectation taken with respect to the joint distribution
(3.11) of (Y, R, X) which depends on [ and «. In general, it is difficult to obtain
an analytical expression for §* by solving this equation. Instead, to understand the
magnitude of the bias, or difference 3* — (3, we proceed with a numerical study.
Specifically, we solve the equation

> S8 Pldia, B) =0,

deD

where D is the sample space for D = (R, Y, X), and P(d; «, ) is the true probability
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of observing the realized value d of D. This can be easily solved using the standard

software.

We consider the case with K = 3 states and J = 3 or J = 5 time points, and

assume that the intensity function for transitions from state k to state k 4+ 1 is
e = dowe™®, k=1,..., K —1, (3.12)

where the baseline function is modeled as Agr = A\oe?* ™Y, and x is generated from
Bin(1,0.5), representing a treatment indicator, for instance. The true values of the
coefficients are taken to be \g = 0.5,7 =0.2, and B, = 1/k,k=1,..., K — 1. The
study duration, 7, is selected such that P(T" < 7) = 0.9 where T" denotes the time to
entry of state . The assessment time points are chosen as a; = (j —1)/(J —1) -,
j=1,...,J, equally cutting the interval [0, 7]. We assume that all of the subjects
are observed at the first assessment time, which is plausible in settings where the
observation process begins upon entry to a clinic. The conditional probabilities A},

are modeled as
10glt()\;k]) = Qo+ Oél(]. — 7’,’7]'_1) + agyi(aj_l) + ozg(y,-(aj) — y,-(aj_l)) + aux;. (313)

Note that ag # 0 or ag # 0 represents a nonignorable missing mechanism (Little

and Rubin, 1987; Laird, 1988).

In the study considered here we set oy = log(4), oy = log(0.75) and ay = log(2).
The parameters as and az are changed from log(0.5) to log(2.0) to reflect varying
degrees of the missing data proportion and the dependence of the missingness on
the previous observation and the present observation. For example, as as and as
increase, the missingness proportion reduces, and the dependence on unobserved

data becomes weaker (if ap < 0 and a3 < 0) or stronger (if ay > 0 and a3 > 0).
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The results are displayed in Figures 3.3 — 3.5. Not surprisingly, the asymptotic
biases for the complete case analysis are bigger than for the available data analysis,
and as the absolute values of s and a3 decrease, the biases become smaller. Note
that, for the baseline intensity function, the biases are all negative when oy < 0 and
a3 < 0, which suggests the naive baseline intensity estimates are underestimates.
However, when as > 0 and a3 > 0, the biases of the baseline intensity function are

indicating overestimated results; yet the magnitudes are very small.

3.3.3 Maximum Likelihood Estimate and EM Algorithm

In this subsection we develop an EM algorithm for valid inference. In the E

step, we construct the conditional expectation, at the hth iteration,
QB;6M) = > Qi(6;60™),
i=1

where Q;(6;0™) = E[(:(6, y,)| Y, 0] = 32 o wi(ys; 00) - £:(0,y3), yi is written

as (yi(m), yi(o)) to explicitly indicate missing and observed components, and

Li(0™; y™ 4
3o Li(0®: ™y

wi(ys; 0™) =

Y

facilitating the conditional probability of the missing data given the observed data.
Here L;(-) and /¢;(-) are the complete data likelihood and log-likelihood given by
(3.10) and (3.11), respectively. The dependence on the covariates is suppressed in

the notation.

We note, by (3.11), that parameters a and 3 can be separated in the conditional

expectation Q(6; ™) with the form:

Q(0;0™) = Q1(c; 0™) + Qo(3;6™),
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Figure 3.3: Asymptotic bias for missing not at random without covariates with 3 states.
The first and the third horizonal rows are plots for the complete case analysis and the
second and the fourth horizonal rows are plots for the available data analysis, with 3 and

5 observations, respectively.
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Figure 3.4: Asymptotic bias for missing not at random with one covariate with 3 states

3 observations.
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Figure 3.5: Asymptotic bias for missing not at random with one covariate with 3 states

5 observations.
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where

n J
Q1(a; M) = Z Z w; (yi; M) - {rijlogAi; + (1 —rij)log(1 — Aj;)}
and

n J K K
Q2(3:0M) =3 "% "N N> wilyis07) - 1(Yi(aj—1) = K, Yi(ay) = k) - logPyvr(a; — aj—1).

Consequently, in the M-step we can separately maximize the progressive model
part Qz(3;0™) and the missing data process part Q;(a;0"). Standard statistical
software such as R can be readily adapted to implement this step. Iterate through

the E and M steps until 8% converges. Denote the limit as 6.
To estimate the variance for é, we use the Louis formula (Louis, 1982), given by

Q) & 00:(6:0)\ [ 00Q:6:6)\
%(0) = - 562989' =) wilys 6)Si( +Z<Q )(Qa(e )),

=1, (m)
Z

where S;(0) = 8¢;(0; ;)00 g—o- The estimate of the asymptotic covariance matrix

of (3 is the lower py X pa block of [Z(é)]_l, where p, is the dimension of 3.

3.3.4 Identifiability of the Model

In this subsection, we show that the parameters of both the time homogeneous
progressive model and the missing data model are identifiable for general missing
data patterns for the panel data form. If we let Y;; denote Y;(a;), and let ugk,k =
Pyi(a; —aj—1) = P(Yi(a;) = k|Yi(aj—1) = k', X;) denote the conditional transition

probability for subject i, then the likelihood can also be written as

J
Li(9§yz’) = H()\jj)rij(l_)\:j)l_mj

Jj=2
J K K ,
c I(Yi,j—1=KYij=Fk) Y; j_1=K'Yi;=k')
' H H H (’uijk,k) 1 - Z luzyk’l I & .
§=2 k'=1 k=k'+1 I=k'+1
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Based on the results in Section 3.2.4, X¥; and uf,,,. are identifiable.

From the identifiability of A7, it is easy to show that « is identifiable. Now
we show that (3 is also identifiable. First we show that the intensity function
A is identifiable. Given the time interval ¢, we need to show that A\, = N, for
I =1,...,K — 1if Pyy(t) = Pup(t) for all ¥ < k < K, where Pyy(t) is Puy(t)

evaluated at \. Note that for the time-homogeneous model, the expression for the

transition probability from state £k’ to state k over [0, 1] is

Z?:k’ C(klv.jv ku >\)6,Tp(—)\Jt), k' < k,
Pk/k(t> =
0, K >k,

where the coefficients are given by
k—
h:i’ )\h
k
Hh:k’,h;ﬁj()\h - )‘j)

for ¥ < j <k, and C(j,5,7;\) =1,7=1,2,..., K (Satten, 1999). If we let ¥’ = k

C(K,j, k; A) =

forallk::1,...,K—1,wegete_’\kt:e_;\kt, thus A\, = Ay forallk=1,..., K —1.

The identifiability of 3 is easy to show from the identifiability of Ay, k =1,..., K—1.

3.3.5 Simulation Studies

In this subsection we report on a simulation study to assess the performance
of the proposed method. We consider the case with K = 3 states and J = 3
or J = 5 time points, and a sample of n = 500 individuals. We assume all the
subjects are in state 1 when entering the study. Data generation procedures are
very similar as in Section 3.2.4. Two thousand samples are simulated for each
parameter configuration. The intensity function and the missing data model are

the same as (3.12) and (3.13) in Section 3.3.2, respectively.
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Here we consider the cases with no covariates (i.e., A\, = Agx) and with one
covariate (i.e., \p = Agpe®®, k = 1,2) included in the response model. We conduct
three analyses — complete case analysis, available data analysis and the analysis
using the proposed method. The results are reported in Tables 3.9 to 3.12, where
SEL denotes the average standard error calculated based on the Louis formula,
ASE is the average naive standard error calculated using the Hessian matrix, ESE
is the empirical standard errors for the 2000 estimates, and CP represents the
95% coverage probability of the parameters. Table 3.9 displays the results for
the case without covariates under two scenarios for J = 3. In Scenario I the
missingness proportions for Y5 and Y3 are about 25% and 28%, respectively, while
in Scenario II the missingness proportions for Y, and Y3 are about 55% and 65%,
respectively. Similarly, Table 3.10 reports the results for the case with one covariate
under two scenarios for J = 3. In Scenario I the missingness proportions for Y5
and Y3 are about 22% and 30%, respectively, while in Scenario II the missingness
proportions for Y3 and Y3 are about 50% and 60%, respectively. Table 3.11 displays
the results for the case without covariates under two scenarios for J = 5. In
Scenario I the missingness proportions for Y5 to Y5 are about 20%, 28%, 30% and
30%, respectively, while in Scenario II the missingness proportions for Y5 to Yj
are about 48%, 60%, 65% and 65%, respectively. Similarly, Table 3.12 reports the
results for the case with one covariate under two scenarios for J = 5. In Scenario
I the missingness proportions for Y5 to Y5 are about 25%, 28%, 30% and 30%,
respectively, while in Scenario II the missingness proportions for Y; to Y; are about

45%, 60%, 60% and 62%, respectively.

It can be seen that both the complete case analysis and the available data anal-

ysis produce biased estimates, whereas the proposed method yields satisfactory
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results with considerably smaller finite sample biases. As expected, as the propor-
tion of missing observations increases the biases produced by the complete case
and available data analyses become larger, but the proposed method retains small
bias. Comparisons between the ASE and ESE suggest that the effect of missing
data on variance estimation is not as striking as that on parameter estimation.
Variance estimation based on SEL adjusts for missingness and the results agree
with the empirical version (ESE) much better than the naive version of the ASE
does. Furthermore, the coverage probabilities of the parameters obtained from the
proposed method agree well with the nominal level 95% under different settings,
but the complete case and available data analyses yield coverage probabilities that
are far away from the nominal value, and in some situations they may completely

fail to capture the true values of the parameters.

In many settings, prevalence functions, such as the one giving the proportion of
subjects in the absorbing state, are of interest. Graphical plots in Figure 3.6 reveal
how the three methods differ in estimation of the survival function S(t) = 1— P x(t)
for the case without covariates. The estimates obtained from the proposed method
are almost identical to the true survival functions, however, the survival functions
estimated from the available data analysis and the complete case analysis are both
above the true curve, revealing a positive bias in the survival probabilities. It is
not surprising that the complete case analysis produces a curve that is farther from
the true curve than the available data analysis. The differences among the curves

become more substantial as time increases.
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Table 3.9: Empirical performance of regression estimators by various methods for the case without covariates: J =3
EM Complete Case Available Data
Parameters! BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model

A1 0.6 0.0300.026 0.0300.955 -2.8 0.0330.0330.913 -0.004 5.6 0.027 0.952
A2 0.6 0.044 0.0380.044 0.952 -1.0 0.049 0.049 0.941 -0.003 6.8 0.0420.943
Missing Data Model

Qo -0.2 0.1720.1590.171 0.949

1 -0.7 0.2140.177 0.214 0.952

Q9 0.1 0.081 0.070 0.080 0.950

Q3 0.1 0.0510.039 0.050 0.950

Scenario II: Transition Model

A1 0.6 0.0290.026 0.0300.953 -32.4 0.0420.041 0.079 -21.1 0.028 0.029 0.076
A2 0.8 0.0650.0620.064 0.948 -20.0 0.0750.076 0.582 -14.7 0.0490.047 0.509
Missing Data Model

Qo 0.0 0.1190.099 0.127 0.952

a1 1.0 0.1810.143 0.186 0.954

Q9 0.1 0.0820.070 0.080 0.949

Q3 0.5 0.0500.038 0.048 0.947

T A1 = 0.500 and Xy = 0.611
Scenario It ap = log(4.0), anq = log(0.75), aa = 1og(0.85), ag = log(0.95)
Scenario II: o = log(4.0), a3 = 1og(0.75), aa = log(0.5), ag = log(0.5)
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Table 3.10: Empirical performance of regression estimators by various methods for the case with covariates: J =3

EM

Complete Case

Available Data

Parameters’ BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model

)\01 0.8
Ao2 1.3
o3 -0.4
(3 -1.6
Missing Data Model
(&%) -0.1
aq -1.0
(6D) 0.9
(0%} 0.2
Qg -0.1
Scenario II: Transition Model
Aot 1.2
Ao2 1.1
o3 -0.4
( -1.0
Missing Data Model
(&%) -0.1
(0%} 2.0
(6D) -0.3
Qa3 0.3
iy 0.4

0.044 0.037 0.043 0.953
0.064 0.052 0.064 0.948
0.252 0.212 0.252 0.952
0.1820.169 0.180 0.951

0.258 0.201 0.262 0.949
0.221 0.188 0.215 0.951
0.141 0.112 0.140 0.948
0.146 0.121 0.147 0.947
0.151 0.118 0.150 0.953

0.042 0.037 0.043 0.951
0.076 0.059 0.077 0.946
0.255 0.227 0.261 0.957
0.1870.175 0.195 0.949

0.154 0.129 0.161 0.950
0.180 0.168 0.189 0.948
0.092 0.078 0.089 0.955
0.066 0.060 0.065 0.952
0.138 0.122 0.141 0.947

5.0 0.0730.061 0.967
3.3 0.060 0.069 0.915
6.8 0.2530.244 0.981
-0.4  0.1840.1850.964

-18.9 0.1030.1120.484
-9.0 0.0920.129 0.756
34.0 0.4290.417 0.984
20.1 0.3210.322 0.964

2.2
1.6
5.2
-1.0

-17.0
-12.3
204
14.7

0.059 0.046 0.976
0.051 0.061 0.914
0.2250.214 0.977
0.163 0.179 0.954

0.058 0.053 0.528
0.055 0.072 0.616
0.271 0.263 0.992
0.205 0.199 0.943

fA1 = 0.500, A2 = 0.611, 3; = 1.000 and (2 = 0.500
Scenario I ag = log(4.0), oy = log(0.75), ae = 10g(0.85), ag = 1og(0.95), ay = log(2.0)
Scenario II: ap = log(4.0), a; = log(0.75), ae = 1log(0.5), ag = log(0.5), as = log(2.0)
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Table 3.11: Empirical performance of regression estimators by various methods for the case without covariates: J =5

EM

Complete Case

Available Data

Parameters! BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model

A1 0.8
A2 0.2
Missing Data Model
Qg 0.4
o7 -0.8
Qg 1.2
Qa3 1.3
Scenario II: Transition Model
A1 0.2
A2 0.5
Missing Data Model
Qg 0.4
aq -0.7
Qo -0.6
Q3 -0.3

0.024 0.024 0.025 0.949
0.035 0.033 0.035 0.952

0.134 0.115 0.134 0.948
0.124 0.114 0.124 0.952
0.058 0.052 0.058 0.949
0.051 0.048 0.052 0.947

0.026 0.023 0.026 0.958
0.041 0.040 0.042 0.948

0.105 0.092 0.106 0.949
0.103 0.090 0.102 0.953
0.052 0.049 0.052 0.952
0.051 0.049 0.052 0.948

-7.1 0.040 0.037 0.840
-2.4  0.056 0.056 0.928

-50.2 0.064 0.062 0.097
-25.8 0.140 0.156 0.649

-0.8 0.0240.024 0.942
-1.6  0.0340.034 0.945

-18.0 0.023 0.023 0.044
-12.9 0.039 0.038 0.448

T Ay = 0.500 and Xy = 0.611

Scenario I: ag = log(4.0), a1 = 10g(0.75), as
Scenario IT: ag = log(4.0), oy = 1log(0.75), «

=1og(0.85), ag = log(0.95)
o = log(0.5), as = log(0.5)
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Table 3.12: Empirical performance of regression estimators by various methods for the case with covariates: J =5

EM

Complete Case

Available Data

Parameters’ BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model

)\01 0.2
)\02 0.8
51 0.3
0o 0.2
Missing Data Model
Qp 0.4
o 1.4
(65) -0.8
Qa3 -0.9
QY 0.9
Scenario II: Transition Model
)\01 0.4
)\02 0.8
o3 0.3
0o -0.6
Missing Data Model
(&%) 0.5
(03] -0.3
(0] -0.4
Qa3 -0.8
QY 0.6

0.033 0.031 0.033 0.950
0.051 0.046 0.050 0.953
0.108 0.098 0.108 0.949
0.1170.102 0.116 0.954

0.159 0.137 0.158 0.952
0.1250.110 0.125 0.952
0.063 0.056 0.064 0.946
0.063 0.059 0.062 0.949
0.106 0.091 0.106 0.953

0.037 0.033 0.037 0.956
0.057 0.053 0.057 0.952
0.116 0.105 0.116 0.954
0.126 0.117 0.127 0.947

0.128 0.118 0.128 0.948
0.105 0.098 0.098 0.949
0.060 0.053 0.060 0.952
0.060 0.056 0.060 0.951
0.099 0.090 0.099 0.953

7.8
5.6
6.0
3.7

-32.4
-14.1
52.9
43.0

0.045 0.060 0.827
0.054 0.078 0.822
0.167 0.167 0.930
0.1730.177 0.943

0.078 0.088 0.397
0.124 0.154 0.609
0.478 0.460 0.861
0.534 0.533 0.934

24
1.8
0.4
0.8

-14.2
-11.4
9.1
9.8

0.028 0.035 0.887
0.035 0.049 0.852
0.109 0.110 0.954
0.114 0.116 0.949

0.027 0.033 0.293
0.038 0.055 0.515
0.1250.119 0.904
0.1410.141 0.937

A, = 0.500, Ay = 0.611, B; = 1.000 and S5 = 0.500
Scenario I: ap = log(4.0), ag = log(0.75), az = 10g(0.85), ag = log(0.95), ay = log(2.0)
Scenario II: ag = log(4.0), ag = 1og(0.75), as = 1og(0.5), ag = log(0.5), g = log(2.0)



Figure 3.6: Survival functions for missing not at random without covariates with 3 states.
The left figure is for 3 observations and the right is for 5 observations.

1.0
1.0

0.8
|
0.8
|

Complete

n Complete
- Available

- Available

Survival Probability
Survival Probability
0.6

0.4

0.2

3.4 Applications

3.4.1 Application to a Smoking Prevention Project

Here we reanalyze the Waterloo Smoking Prevention Project data described in
Chapter 2. Here we focus on progression of students’ smoking behavior. That is,
we model the response process with a progressive model. It is often of interest to
understand the impact of covariates on the transition probability. Figure 3.7 is
an illustrative diagram for the progressive model. The description of the data set
and some notations are the same as in Chapter 2. To study this problem, we only
select subjects with the progressive transition patterns. There are 3027 subjects in
the data set who are present at the first assessment and in state 1. About 42.4%
subjects have missing observations. The missingness proportion is about 15.3%. In

the complete case analysis, there are 1849 subjects with complete observations.

Let Y;; be the state student ¢ was in at time j, i.e., in grade 5+ 7, 5 =1,...,7,
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Figure 3.7: Three-state progressive diagram for the analysis of the Waterloo Smoking
Prevention Project Data
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STATE 2 STATE 3

(Experimenter) (Regular)

and use the subscripts for covariates in a similar fashion. Consider the model for

the transitional probabilities

C
ijk'k!

+Bkka - SMR2;5 + Bis - SMR3,5, F=12K<k<3,

where TRT; represents the treatment status for subject i, SMR2;; = I(SMR;; = 2),
SMR3;; = I(SMR;; = 3), GRADE;,; is the grade indicator for subject i at grade
5+ j, taking value 0 at secondary school (grade 6 to grade 8) and 1 at high school

(grade 9 to grade 12). For the missing data process R;;, we build the model

10glt ()\;k]) = qp+ag- GENDERZ + o - TR,TZ + ag - GR,ADEU + oy - SMRQU
+as - SMR3;; + ag - 15 j1 + o7 - Zijio + as - Zijig + g - Zijos

a0 - I(Yij—1 = 2) + an - I(yij—1 = 3),
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where Zjpr = I(yij—1 = K, y;; = k) is the indicator covariate featuring the tran-
sitions from state k' to state k at time j, &’ < k. Here a7, ag and ag measure
the influence of different transition occurrence on the missing process and a;¢ and
a1 measure the influence of the previous states on the missing probability of the

present responses. It leads to MNAR when at least one of a7 to a;q is not equal to

0.

We analyze the WSPP data with three methods— the proposed method, com-
plete case analysis and available data analysis. The results are reported in Table
3.13. Complete case and available data analyses produce generally agreeable esti-
mates. Although the estimated treatment effects for transitions from states 1 to 2,
and 1 to 3 are in opposite directions from both methods, they are not statistically
significant. As expected, the standard errors produced from the available data anal-
ysis are smaller than those obtained from the complete case analysis. The proposed
method reveals the same nature of statistical significance (or non-significance) as
that obtained from the complete case and available data analyses for each covariate
effect. The proposed method suggests that the gender and treatment effects are not
statistically significant in all the transition models. In the transition models from
state 1 to state 2 and from state 1 to state 3, social model risk score and grade have
significant negative effects on smoking incidence (ﬁAug = 0.863, p-value< 0.001;
Biaq = 0.427, p-value< 0.001; Bias = 0.658, p-value< 0.001; Bi33 = 1.408, p-
value< 0.001; fi34 = 0.577, p-value< 0.001; B35 = 1.097, p-value< 0.001). Stu-
dents are more likely to smoke if their parents, siblings or friends are smokers.
Students are more likely to smoke when they are in high school as opposed to sec-
ondary school. In the transition from state 2 to state 3, no covariate is statistically

significant.
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The results regarding the missing data mechanism are reported on in the bottom
of Table 3.13. It is seen that a7, ag, aig and «q; are statistically significant,
suggesting that a missing not at random mechanism is perhaps reasonable. The
occurrences of the transitions and the previous observations have negative effects
on the probabilities of observing the present observations (G; = —3.863, p-value<
0.001; &g = —2.145, p-value< 0.001; &9 = —3.072, p-value< 0.001; &1; = —2.229,
p-value< 0.001). The significance of ag (g = 3.708, p-value< 0.001) indicates
that there is a serial dependence in the missingness of consecutive observations.
Moreover, if subjects have missing observations at the previous assessment time
then they are less likely to be observed at the present assessment. It is seen that
both gender and grade are significant, with females being more likely to appear
for the assessment (& = —0.183, p-value= 0.019), and students in public school
having a larger probability of being observed compared to those in secondary school

(&g = —0.580, p-value< 0.001).

3.4.2 Application to Psoriatic Arthritis Data

Psoriatic arthritis (PsA) is a progressive disease in the sense that without treat-
ment, it can increase in severity causing disability through deformity and destruc-
tion of the joints. It is of interest to determine prognostic factors that relate to
disease severity and rates of disease progression (Gladman et al., 1995, 1998). Upon
entry to the clinic, a comprehensive list of demographic and clinical features are
recorded. Covariates include duration of psoriasis at clinic entry (in years) (coded as
PSORDUR), sex (coded as SEX, 0-Female, 1-Male), age at onset of PsA (in years)
(coded as AGEPSA), family history of psoriasis (coded as FMPS, 0-No, 1-Yes),

family history of PsA (coded as FMPSA, 0—No, 1-Yes) and erythrocyte sedimenta-
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Table 3.13: Analysis of the Waterloo Smoking Prevention Project data

Transition Model Proposed Method Complete Case Available Data
Transition Parameter Estimate SE' p-value Estimate SE p-value Estimate SE p-value
1—2 INTERCEPT (f120) -2.985 0.123 <0.001 -2.933 0.111 <0.001 -2.926 0.095 <0.001

GENDER (B121) -0.082 0.086 0.342 -0.200 0.080 0.012 -0.150 0.068 0.028
TRT (B122) 0.004 0.107 0.971 -0.026 0.098 0.793  0.018 0.084 0.833
GRADE (B123) 0.863 0.088 <0.001 0.955 0.080 <0.001 0.787 0.068 <0.001
SMR2 (B124) 0.427 0.088 <0.001 0.256 0.082 0.002  0.398 0.070 <0.001
SMR3 (B125) 0.658 0.183 <0.001 0.473 0.179 0.008  0.537 0.149 <0.001

1—-3 INTERCEPT (f130) -4.697 0.183 <0.001 -4.475 0.180 <0.001 -4.343 0.148 <0.001

GENDER (fS131) 0.180 0.118 0.127  0.038 0.112 0.737  0.002 0.097 0.981
TRT (B132) 0.122 0.150 0.416 -0.066 0.138 0.631  0.019 0.120 0.874
GRADE (8133) 1.408 0.125 <0.001 1.823 0.135<0.001 1.648 0.106 <0.001
SMR2 (B134) 0.577 0.124 <0.001 0.415 0.118 <0.001 0.458 0.102 <0.001
SMR3 (B135) 1.097 0.214 <0.001  1.124 0.209 <0.001 1.150 0.175 <0.001

2—3 INTERCEPT (f230) -1.699 0.263 <0.001 -0.532 0.426 0.211 -0.555 0.307 0.071

GENDER (f231) 0.077 0.131 0.558  0.257 0.174 0.140 0.201 0.157 0.199
TRT (B232) 0.027 0.169 0.873 -0.297 0.214 0.165 -0.202 0.193 0.296
GRADE (fa33) 0.926 0.210 0.105 0.246 0.375 0.512  0.186 0.246 0.450
SMR2 (B234) 0.098 0.135 0.469 0.132 0.179 0.459  0.252 0.161 0.118
SMR3 (B235) 0.154 0.265 0.562  0.313 0.399 0.431  0.180 0.342 0.599

Missing Data Model

a0 0.030 0.137 0.828
o -0.183 0.078 0.019
s 0.092 0.096 0.339
as 0.580 0.101 <0.001
oy 0.009 0.082 0.912
s 20.194 0.160 0.226
a6 3.708 0.095 <0.001
ar -3.863 0.122 <0.001
as -2.145 0.245 <0.001
g 0.191 0.165 0.246
a0 -3.072 0.132 <0.001
o -2.229 0.129 <0.001

T SE is the standard error based on the Louis formula (Louis, 1982). GENDER: 0-Female, 1-
Male; TRT: treatment effect (0—control, 1-intervention); GRADE: 0-secondary school, 1-high
school; SMR2: one of parents, siblings or friends smoke; SMR3: two or more of parents, siblings

or friends smoke.
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tion rate (ESR) which is a continuous variable measuring degree of inflammation.
Patients are then scheduled to be assessed annually and at each followup assessment
the number of damaged joints, as determined by clinical examination, is recorded.
Table 3.14 lists a sample data set. There are 703 subjects with complete covariates,
in which 28 subjects have complete observations over the first 10 years of their
participation in the clinic registry. That is, there are 675 subjects with missing
observations at different assessment time points, leading to a missing proportion

about 61.3%.

Here we consider a multi-state Markov model with four states defined by the
number of damaged joints determined by clinical assessment, as used by Gladman et
al. (1995, 1998). Specifically, 0, 1-4, 5-9 and 10 or more damaged joints correspond
to states 1, 2, 3 and 4 representing no damage, mild, moderate and severe damage,
respectively. The rationale behind this state structure is that a larger number
of damaged joints corresponds to a more severe disease. Figure 3.8 displays the

transitions among the four states.

Figure 3.8: Four-state progression diagram for psoriatic arthritis data

2, | State 2] ﬁ‘ State 3] iﬁ State 4|

Let Y;(a;) denote the state subject ¢ was in at time a;, j = 0,...,10. The

transition intensity functions are modeled as

483, - FMPSA; + 35 - ESR; + 3 - SEX,), k=1,2,3,
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Table 3.14: Sample data of the psoriatic arthritis study

ASSESSMENT 012345678910
ID PSORDUR AGEPSA FMPS FMPSA ESR SEX STATE
1 21.5 33 0 0 6 1 ... .. 1.1 1
2 38.3 40 1 0 36 0 1. .. .. 1
3 15.1 25 0 0 4 1 ... .. 4
4 23.0 24 0 0 25 1 ... .. o 4
3 7.1 34 0 0 8 0 1. .11.111 1
6 11.7 24 0 0 2 1 1...1.12. 2
7 7.4 28 1 1 16 1 1. ..2.4444 4
8 4.2 23 1 1 34 1 1. .2 3334 .
9 11.8 49 1 0 23 0 1. .. .. 3
10 56.7 31 1 0 47 0 1 . . o .. 4
11 41.1 32 1 0 65 1 ... .. ..o 4
12 10.1 25 1 0 26 0 1. .4 .4 .4 4
13 31.6 70 1 0 25 0 11. o .
14 33.0 40 1 0 17 1 1. T N A |
15 35.9 51 0 0 57 1 1. .2 2
16 10.1 36 1 0 2 0 1. . ... 1
17 23.6 43 0 0 20 1 1 .. .44 4
18 16.8 10 1 0 4 0 1. .. .. |
19 0.2 43 0 0 240 1...222224 4
20 19.9 26 0 0 40 0 1 . . . .. 1
21 29.9 25 0 0 9 0 1. . ... o 4
22 11.9 21 1 1 5 0 1.11.111111
23 12.3 23 1 0 16 1 T .2 2
24 31.0 36 1 1 30 1. .. .. 4
25 10.6 36 1 0 8 0 1111 . :
26 9.1 50 1 0 10 1 ... .. 111 1
27 30.2 36 0 0 30 1 T 1

PSORDUR: duration of psoriasis at time of clinic entry (years); AGEPSA: age at onset of psoriatic
arthritis (years); FMPS: family history of psoriasis (0-No, 1-Yes); FMPSA: family history of
psoriatic arthritis (0-No, 1-Yes); ESR: erythrocyte sedimentation rate; SEX: 0-Female, 1-Male.
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where the \g.’s are the baseline intensities. For the missing data process, we assume
lOglt(AZ}) = op+aq- PSORDURZ + Qo - AGEPSAZ + s - FI\/IPSZ

Qy - FMPSAZ + a5 - ESR, + Qg - SEXZ + - Zijlg + ag - Zijlg

Qg - Zijia + oo - Zijoz + oun - Zijoa + Qg - Zijaa

arg - I(Yi(aj-1) = 2) + a - 1(Yi(aj—1) = 3) + aus - 1(Yi(aj-1) = 4)

+ o+ 4+

a6 - T 51,

where Z;i, = I(Yi(aj—1) = k', Y;(a;) = k) is the indicator featuring the transitions

from states k' to k at time a;, K’ < k.

Table 3.15 reports the results obtained from the proposed method as well as
from the complete case and available data analyses that ignore the missing data
mechanism. The duration of psoriasis at clinic entry has a significant effect on the
rate of PsA progression (Bl = 0.057 with p-value<0.001); that is, the relative rate
of progression increases 5.9% for each additional year since diagnosis, controlling
for other factors. The age at onset of PsA is also significantly associated with
the rate of transition (Bg = —0.073; p-value<0.001); that is, the older the age at
onset the slower the rate of progression (the risk decreases about 7.0% for each
additional year of age at onset of PsA, when controlling other factors). A family
history of psoriasis or PsA were not significantly related to the rate of progression
(ﬁg = —0.064; p-value=0.560 and ﬁ4 = —0.103, p-value=0.423 respectively), but
ESR level has an effect on PsA progression (ﬁ}, = 0.013; p-value<0.001) such that
those with a higher ESR value have rates of damage (the relative risk increases
about 1.3% for one unit of ESR increasing when controlling other factors). The
effect of SEX is significant (/36 = 0.177; p-value=0.030), indicating that males have

higher rates of progression than females (RR = 1.194).
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Table 3.15: Analysis of the psoriatic arthritis data

Transition Model

Proposed Method

Complete Case

Available Data

Parameter Estimate SE  p-value Estimate SE p-value Estimate SE p-value
Baseline Intensities

Ao1 0.064 0.016 <0.001 0.013 0.014 0.349 0.048 0.013 <0.001
Ao2 0.116  0.030 <0.001 0.013 0.014 0.361 0.086 0.024 <0.001
Ao3 0.150  0.042 <0.001 0.030 0.036 0.396 0.109 0.036 <0.001
Covariate Effects

PSORDUR 0.057  0.005 <0.001 0.044 0.022 0.047 0.078 0.004 <0.001
AGEPSA -0.073  0.007 <0.001 0.025 0.020 0.217 -0.063 0.005 <0.001
FMPS -0.064 0.110 0.560 0.579 0.371 0.119 -0.050  0.079 0.530
FMPSA -0.103  0.130 0.423 0.101  0.602 0.866 0.074 0.122 0.543
ESR 0.013  0.002 <0.001 0.012 0.009 0.180 0.007 0.002 <0.001
SEX 0.177  0.083 0.030 0.298 0.554 0.591 0.147 0.079 0.064
Missing Data Model

g -1.4979 0.1247 <0.001

o2 -0.0262 0.0028 <0.001

Qg 0.0028 0.0024 0.2495

Qs 0.0754 0.0661 0.2543

Qy 0.0641 0.1026 0.5318

Qs -0.0019 0.0016 0.2119

g 0.1122 0.0636 0.0776

a7 -0.4598 0.1489 <0.001

Qs 1.4775 0.4276 <0.001

Qg 3.0478 0.5670 <0.001

Q10 -0.4507 0.2087 0.0308

11 0.0699 0.4025 0.8620

a1 -0.6821 0.2674 0.0108

13 0.4032 0.0822 <0.001

14 0.7547 0.1359 <0.001

Q15 0.7786 0.1174 <0.001

Q16 1.8648 0.0627 <0.001

PSORDUR: duration of psoriasis at time of clinic entry (years); AGEPSA: age at onset of psoriatic
arthritis (years); FMPS: family history of psoriasis (0-No, 1-Yes); FMPSA: family history of
psoriatic arthritis (0-No, 1-Yes); ESR: erythrocyte sedimentation rate; SEX: 0-Female, 1-Male.
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In Figure 3.9 we plot the transition probabilities starting from state 1 to other
possible states to show the differences of the three analyses. It is seen that the
available data analysis tends to yield less different curves from those obtained from
the proposed method than the complete case analysis does. The probabilities stay-
ing in state 1 decrease as time goes by, while transition probabilities Pj3(¢) and
Py4(t) have increasing trends with time. However, transition probabilities Pya(t)
obtained from the three methods are quite different. The proposed method pro-
duces a first-increasing-then-decreasing curve, the available data analysis yields a
first-increasing-then-stable curve, but the complete case analysis leads to a fairly

straight, increasing curve.

For the missing data process model, we find that the «; coefficients with j =7,
8,9, 10, 12, 13, 14 and 15 are all significant, suggesting that nonignorable miss-
ing mechanisms are perhaps reasonable. In particular, we report that a;3 = 0.403
with p-value<0.001, &4 = 0.757 with p-value<0.001 and &5 = 0.779 with p-
value<0.001. It suggests that the more severe the disease at the previous assess-
ment, the more likely he or she would appear for the present assessment. This
seems to make intuitive sense since patients may be more likely to attend a clinic
when their disease becomes more severe. If subjects are missing at an assessment,
they are less likely to be observed at the next assessment because the estimate of
a1 1s 1.865 with p-value<0.001. As for the covariates, only the duration of initial
psoriasis is significant (&3 = —0.026; p-value<0.001), indicating the shorter the

duration, the more likely for a patient to appear for assessment.
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Figure 3.9: Transition probabilities for the analyses of the psoriatic arthritis data
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3.5 Proof of the Identifiability of the Model

The parameter 6 is identifiable if L;(0; yi(o), ) = Ll(é : yi(o), r;) if and only if 6 = 6.
If 6 = 6, it is easy to show L;(0;4\”,r;)) = L;(6;4\”,r;). Now it suffices to show
that L;(6; yi(o), ) = Li(6; yi(o), r;) implies @ = 6. If 6 and 0 are two parameter values
such that L;(0; 5\, r;) = Li(0;4\”,r;) for all (y\”,7;), we now need to show that
6 = . First, we introduce some notation for ease of exposition. Let A o and p
represent the conditional probability P(Y;; = k|Y; ;-1 = K/, X;) evaluated at 6 and
0, respectively, and S\jj and Aj; are defined analogously. We use \j;(y;) to explicitly

indicate the dependence of Aj; on response y; whenever needed. Identifiability is

established through two steps:

Step 1: We show that
A=Ay, forj=23-- 1]
and the identifiability of parameter « follows from a proper form of (3.3).
Step 2: We show that
Hiin = gy forj =2,3,--  JiK <k,
and the identifiability of parameter [ follows from a proper form of (3.1).
We now proceed with the first step. Suppose J > 3. First, take y; = (k, k, k, kq, ..., kj),

(i.e., subject 7 was in state k for the first three time points) then from L;(6; yi(o), i) =

Li(0; yl-(o), r;), we have

J J
H Aij (vi) - {:ugkk : M%kk : Nﬁkm ) H,Uicjkjlkj}

j=5

J J
= H A:j( i) {ﬂgkk ) ﬂ%kk ’ ﬂﬁkm ’ H/lzcjkjlkj} .

J=5

(3.14)
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Now consider g; = (k, *, k, ky,...,ky), i.e. the response of subject i is the same
as y; except that there is a missing value in the second time point. Then the
observed likelihood

J
Li(0; ??EO)JH') = Z { 1= N5(9i H Aij [Mgkgig ./J“%gmk ) Mﬁkm ) Hﬂicjkjlkj] } .
U2 Jj=5
The feature of progressive process (if s < t, then y(s) < y(¢)) implies that the
missing observation * should be k, and hence ; = y;. Then, from L;(6; yji(o), i) =

Li(é; gjl-(o), r;) with the missingness probability incorporated, we have

J J
{(1 = Ap(8) - H )‘:j(gi)} ) {:ugkk : M%kk : Mikm : Hﬂicjkjlkj}

=3 =5
- - (3.15)
_ {(1 Sn0) A;(g»} - {u T u} |
j=3 j=5

Comparing (3.14) and (3.15) in combination with that y; = ¢;, we obtain that

Noy)  _ Na(w)
L=Xo(u) 1= No(y)

and thus,
Aio(yi) = 5\?2(?/2’)-

In the same spirit, we can get
)‘;'kj(yi) = AZj(yi)

forj =2,3,...,J—1. At time point J, if we consider y; = (Yi1, Yiz, - - - » Yi.s—2, K, K)
and ¥; = (Yi, Yiz, - - -, Yig—2, K, %), we can obtain Af,(y;) = S\fJ(yZ) Thus, we can
obtain

)‘;'kj(yi) = S\Z(yz) (3.16)
for j =2,3,...,J for some patterns of y;.
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We assume, by examining all possible values of these special types of y; listed
above, that all the parameters « are identifiable. We comment that this assumption
is not rigorous in practice when the number of observations for each subjects is not
very small and the number of parameters in the missing data models is not very
large. For example, consider model (3.3) which is given by logit)}; = ag + ayz; +
awy;;, where z; is a binary covariate, say a treatment indicator. It is easy to obtain
that X5 (y;) = N5 (i) for y; = (k, k, k) with k& = 1,2, 3. The identifiability of o can

be obtained from these patterns of y;. Taking y; = (1,1,1), (3.16) leads to
ag + 1T + Qo = Qo + Qi + Qo; (3.17)
taking y; = (2,2,2), (3.16) leads to
oo + a1 + 200 = G + QT + 20, (3.18)

From (3.17) and (3.18), we can get oy = &y and ay = ay; by evaluating x;, we can
get @y = &;. Therefore, we establish the identifiability of the parameters in A;.

Now it remains to show the second step. Since L;(6; yio), i) = Ly (0; yio), r;) holds

for any y”

./ and r;, we specifically examine those y; with complete observations.

With complete data y;, the corresponding missing data indicator R; assumes value

1 at every time point. That is, the identity L;(0; yl-(o), i) = Ly(0; yfo), r;) leads to

J K K
'L]lkY'LJ—k Y 1k)Y—k‘)
H H H :U’mk’k 1_ § :umk’l "o Y
K

j=2 k'=1k=k"+1 I=k"+1
J K
Yi;1=k',Yi;=k) Z Y
= H H /”Lljk/k 7 ’ ]'_ :uzyk’l Y”71 k,ng ¥
j=2 k'=1k=k'+1 I=k'+1
(3.19)
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for all complete data y;. As it has been shown that \j; = >\:}, (3.19) then becomes

- T T 1(Y; j-1=K'Yi;=Fk)
H{H H (i) T (1= Z u?jk,l)f(”»jlzk%Fk)}

=2 \k'=1k=k'+1 I=K"+1
J . K (3.20)
_ H { H H :uzgk’k Yij—1=k"Yij= (1 - Z ﬂgk/ly(yi,j—l:k Yij=k )}
=2 \k'=1k=k'+1 I=kK'+1
for any complete data y;. It suffices to show that
/’l’gk"k‘ - /]/gklk fOl" any j, ]f, < k (321)

To this end, we examine (3.20) for different values of y; for a fixed time point

j=JJ—1,...,1.

First, fix j = J and take y; = (k,..., k, k, k) with k < K, then we obtain, by
(3.20),

H(l - Z Mz’cjkz) H (1- Z :U’zjkl (3:22)

=2 I=k+1 =2 I=k+1
Now take y; = (k,...,k, k, ko), ko > k + 1, then we obtain, by (3.20),

J—1 K J—-1 K
H(l - Z ,Uicjkz) 'Mg]kko = H(1 - Z raicjkl) ’ ﬁg]kko' (3.23)
j=2 Jj=2

I=k+1 I=k+1
Comparing (3.22) and (3.23) leads to

1-SK ue 1-%FK i€
21—kt Migk _ Z;lgk+1 Mka17 k=1,2- KLk >k+1 (3.24)

c
i 7k i gkkg

Repeatedly using this identity for different values of k establishes (3.21) for j = J.

To be specific, we proceed with the following steps.

(1). Let k = K — 1, then we obtain

c ~C
I- Hijk-1,K 1- Hijk—1,K

C ~C J
Higr-1,K Hig -1,k
and hence,

,uzJK 1L,K = :uzJK 1,K-
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(2). Let k= K — 2, then kg = K — 1 or K, and hence,

c c ~C ~C
1- Hig k-2 k-1~ MijK-2K 1- Higx—2 k-1 MiJK-2K

= — (3.25)
:ug],K—ZK—l :Ug],K—ZK—l
and
1- ,ug],K—ZK—l - NE],K—ZK - 1 - ﬂg],K—ZK—l - ﬂg],K—ZK
C - ~C s (326)
Hig k2K Hig k-2 K
which gives
MgI,K—zK o Iag],K—ZK
5 =—5 ) (3.27)
Higk—2.K-1 Hig k-2 K1
Combining (3.27) and (3.25), we obtain
,ug],K—ZK—l = [LE],K—ZK—D
and therefore,
,ug],K—ZK = [LEJ,K—2,K7
which is from (3.27) and (3.26).
(3). In general, for k=1,2,--- K —3 and kg =k +1,---, K, we have
K K -
1=> 0t 15k 1= D ikt 5k
5 = = (3.28)
7k k1 gk k1
K C K ~C
1- Zl:k—i—l Higer 1- Zl:kﬂ i gk
C - ~C (329)
o 7k, k42 i1k ko2
K C K ~C
1= i Higw 1= D k1 Pk
5 = = (3.30)
Kigke kv3 M 7k k+3
1=K ul, 1=K al
Zl_k+1 Figki _ Zl_k+1 i gk (3.31)

C ~C
2207 Higkr
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e Dividing (3.28) by (3.29), ..., (3.31), respectively, we obtain

c ~C
Higkk+2  Higkk+2

C = =C )
Higke kvl Mgk k1

c ~C
Mgk Mgk

C - =C J
Higkk+1 Migkk+1

and hence, in combination with (3.28), we obtain

:Ug]k,k—i-l = ﬁz’c}k,kﬂ-
e Dividing (3.29) by (3.30), ..., (3.31), respectively, and combining those
identities with (3.29), we obtain
Ng]k,k+2 = ﬂz’%k,k-ﬁ-?
e Analogously,
Ng]kko = lag]kko

forall k=1,2,--- K —3and kg =k +1,..., K. That is

Secondly, fix j = J — 1 and take y; = (k,...,k, ko, ko), ko > k + 1. Then we
obtain, by (3.20),

J—2 K K
(L= > miu) - 1 vawe (L= Y i)
=2 I=k+1 I=kot1
J—2 K K (3.32)
=110~ Z /licjkl) 'ﬂgJ—kao(l - Z ﬂglkol)'
=2 I=k+1 I=kot1

oL

Comparing (3.32) and (3.22) leads to

K
MgJ—1,kko(1 - Zl:ko-i-l Mg]kol)
K K
(1- Zl:k-ﬁ-l :ugJ—l,kl)(l - Zl:k—i—l NEJM)
- K -
NEJ—I,kko(l - Zl:ko-i-l :ug]kol)

K ~ K ~ )
(1- Zl:k-ﬁ-l :ugJ—l,kl)(l - Zl:k—i—l NEJM)
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fork=1,2,..., K —1;kg=k+1,..., K. As shown before, ,uf]kko = /lf,kko for all
k < kg, we then obtain

K c
1—- Zl:k+1 Hig—1kl Ez k+1 /% Tk

c
i 71 kko /% J—1,kko

This structure is the same as (3.24) and therefore, repeating the same arguments
above, we establish
c ~C
Hi g—1kko — Mi,J—1,kkg

for all k < k.

Analogously, by the same arguments, we can show (3.21) for j =2,...,J — 2.
Or more precisely, using mathematical induction we can establish (3.21). To be

specific, assume

c ~C
Hijkky =  Hijkko
are true for all k < kg, j =jo+1,---,J. Now we need to show that
c ~C
Hijokko =  HMijokko

for all k£ < k.

Take y; = (k,..., k, ko, ko, ..., ko), ko > k+ 1, where the first ky starts at time
point jo, then we obtain, by (3.20),

— J K
H 1 - Z :umkl /”LZ]()k‘k)() H (1_ Z :U“gkol)

I=k+1 Jj= jo+1 l—k0+1

E : zykl /”LZ]()k‘k)() H E /"LZ]k‘Ol

j:2 k41 Jj=jo+1 I=ko+1
Comparing (3.33) and (3. 22) we obtain

(3.33)

J K
'uijokko ) Hj=j0+1(1 o Zl:ko+1 Ngkol)
K J K
(=221 “icjokl) ’ Hj=j0+1(1 = D ikt :Uicjkz)
~ J K ~
'uz'c;'okko ' Hj=j0+1(1 - Zl:ko+1 Ngkol)

K - T K ~ :
(1- Zl:k+1 Nz’Cjokz) : Hj=j0+1(1 - Zl:k—i—l /J’ic;'kl)
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By the hypothesis of the induction, then we obtain

K C K ~C
1- Zl:k-i-l Hijokl 1- Zl:k+1 Hijoki

:uz‘c;‘okko ﬁgokko
fork=1,2,...., K—1;kg=k+1,..., K. Then by using the arguments above, we

obtain

'ugokko = ﬁgokko
for all k < kg. Therefore, we obtain that

/%'Cjk'k = ﬁicjk'k
for j=2,3,...,J and k' < k.

Identifiability of the 3 parameters can be established, provided model (3.1) is

identifiable. For example, consider K = 3 and J = 4, and model (3.1) is given by

c

Hw

log (Iucjk - ) = Brko + B Xiji + BereXijo + BrisXijs, kK <k <3,
ik

for j = 2,3,4, where X;;; = X represents a time invariant treatment indicator,
and X0 = I(j = 3) and X;;3 = I(j = 4) facilitate the temporal effects. Taking
K =2, X;;1 =0, X;j2 =0 and X;;3 = 0, then (3.21) leads to [0 = Baso: taking
E=2 X, =1 X,;;2=0, X;;3 =0, and using the fact that fa3p = ngo, we obtain
Boz1 = [z from (3.21); taking k' = 2, X;;1 = 0, X;50 = 1, X,;;3 = 0, and using
the fact that Bazo = [aso, We obtain Bags = [ogo from (3.21); and taking k' = 2,
Xijn =0, X;j2 =0, X;;3 =1, and using the fact that Bs39 = ngo, we obtain (33 =
[Ba33 from (3.21). Therefore, we show a3 = (B30, P31, G232, Po33)’ is identifiable.
Similarly, we can show B12 = (B120, S121, Br22, Br23)” and Biz = (B0, Fis1, Piz2, Bi33)’

are identifiable.
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Chapter 4

Marginal Methods for
Longitudinal Data Analysis with
Missing Response and Missing
Covariates

4.1 Introduction

Incomplete longitudinal data often arise in clinical trials due to missing re-
sponses, partially filled out forms or questionnaires yielding missing covariate data,
or study subjects failing to attend a scheduled clinic visit. Problems arise if the
mechanism leading to the missing data is related to the values of response or co-
variates. For example, analyses based on individuals with complete data can lead
to invalid inferences. Under a missing completely at random (MCAR) mecha-
nism (Little and Rubin, 1987), analyses based on generalized estimating equations
(GEE) (Liang and Zeger, 1986) yields consistent estimates for the regression pa-
rameters. When the data are missing at random (MAR) or missing not at random

(MNAR) (Little and Rubin, 1987), analyses based on GEE give inconsistent param-
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eter estimates. Robins and Rotnitzky (1995) and Robins et al. (1995) developed a
class of estimators based on an inverse probability weighted generalized estimating
equations (IPWGEE) approach in a regression setting when data are MAR. This
approach involves modeling the missing data process and weighting the estimating
equations by the inverse of a probability that is calculated based on the models for
the missing data process. If the models for both the marginal mean of the response
and the missing data process are correctly formulated, the IPWGEE approach cor-

rects the bias and gives consistent estimates under the MAR mechanism.

The growing literature on methods for missing data has primarily dealt with
either missing response or missing covariates data (Horton and Laird, 1998; Molen-
berghs et al., 1997; Lipsitz et al., 1999; Ibrahim et al., 2001; Zhao et al., 1996), but
not both. In practice, of course, data are often unavailable for both responses and
covariates, and sometimes there is an association between the missingness of the
response and covariates. Valid analysis of this type of data therefore requires taking
this association into consideration. Ignoring such correlation can bias the statistical
inference. Chen et al. (2008) give theoretical investigation for inference with miss-
ing response and covariate data for general regression models using the likelihood
method via EM algorithm. Shardell and Miller (2008) propose a marginal modeling
approach to estimate the association between a time-dependent covariate and an
outcome in longitudinal studies with missing response and missing covariate, but
they focus on methods with an assumption that responses are independent. The
purpose of this manuscript is to describe a general approach to the construction
of estimating equations for parameters of marginal models for longitudinal data
with incomplete response and covariate data. The approach is based on inverse

probability weighted estimating equations for which the association between the
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missingness of the response and covariate is addressed. We also highlight the poor
properties of estimators when ignoring the correlations between the missingness of

responses and covariate.

The remainder of this chapter is organized as follows. In Section 4.2, we intro-
duce notation and models. In Section 4.3, we provide details on estimation and
inference. In Section 4.4, we provide a method which gives more efficient estimates.
Numerical studies concerning asymptotic bias are given in Section 4.5. Data arising
from the Waterloo Smoking Prevention Project (Cameron et al., 1999) and a study
of bone metastases are also analyzed for illustration in Section 4.5. In Section 4.6,
we extend the proposed methods to accommodate multiple missing covariates in

conjunction with possibly missing responses. Section 4.7 and 4.8 are appendices.

4.2 Notation and Model Formulation

Consider a trial comprised of n individuals, each with J visits planned. Let Y; =
(Y1, Yia, ..., Y;s) denote the response vector for subject i, some elements of which
may be unobserved. Let X;; denote a scalar time-dependent covariate for subject ¢
at the jth visit which may or may not be observed, and let Z;; denote a covariate
vector for subject ¢ at the jth visit which is fully observed. The case where multiple
covariates may be missing will be considered in Section 4.6. For convenience we let
Xi = (X1, Xig, ..., Xiy) and Z; = (Z},,Zl,, ..., Z!;). The conditional mean of Y;;
is denoted p;; = E(Y;;|X;, Z;), and we let p; = (i1, fia, - - -, ftig)’ denote the full
vector of means. We suppose the mean structure of Y;; depends on the covariate

vector for subject ¢ at time j (e.g., Pepe and Anderson, 1994; Robins, Greenland
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and Hu, 1999), and consider a model for the mean of the form
9(pis) = XijBe + Zi; 5.

for j=1,...,J,i =1,...,n, where g(-) is a monotone differentiable link function
and f = (6., 0)) is a p x 1 vector of regression coefficients that is of interest
here. We assume the variance is v;; = var(Y;;|X;, Z;) = kh(u;;), where h(-) is the
variance function and « is the dispersion parameter that is not of primary interest.
It is usually estimated from an additional source before performing estimation of

parameter (3.

Let R, = 1if Yj; is observed and R}; = 0 otherwise, R, = 1 if X;; is observed
and Rf; = 0 otherwise, R} = (R}, R}, ..., R);) and Rf = (Rj, R, ..., Rf;).
We assume the response and covariate are always observed at the first assess-
ment so RY, = R% = 1, and let future realizations be governed by the conditional
probability A}, = P(R}; = 1\R%,R%,K,Xi,Zi), where Rfj ={r},...,r{;_1}, and
RE = {rf,...,rE 1} MY is defined similarly. We model AY; and X{; via logistic

regression and specify

logit(\Y;) = uj;a,
and

logit(Af;) = vi;0

where u;; and v;; contain functions of { R}, Rf;,

Y, X, Z;}, j=2,3,...,J, and o

and «a, are regression parameters; let o, = (a;, a)".

At each time point 7, the observation status of the response and covariate may
be associated within subjects because of common factors affecting the marginal

observation processes. To model this association we define the conditional odds
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ratio

’ P(RY; = 1,R}; = 1|RY;, R%,, Y, Z;, X;) - P(RY, = 0, RY; = O|RY,, R, Y;, Zi, X;)
ij = _ T D, DT _ T D, DT ’
P(RY, = 1,R% = O|RY;, R, Y;, Zi, X;) - P(RY; = 0, R, = 1|RY,, R%,\Y;, Z;, X,)

where the covariate and response variables appear symmetrically in this measure.
The parameter 1;; can be viewed as the relative odds that Y;; is observed (e.g.

Rfj = 1) when X;; is observed versus when X;; is missing.

Y Re

We let \j/ = P(R); =1, Rj; = 1|le, 7., Yi, Z;, X;) be the joint probability for

the pair R;; = (R;?’j, Rfj)’ , conditional on the histories of the indicator variables and

the entire vector of response and covariates. By noting that

ATV — A — AL+ ATV

Y= T e n )
we write agj—[ag; =4 (i —DAGALIY2
)\Zy = 2(tij—1) Wy £ L,
LAY if i; =1,

where a;; = 1 — (1 — ;) (Af; + A;) (e.g. Lipsitz et al., 1991). Regression models
may be used to allow the odds ratio 1;; to change with time-varying covariates.

We may specify, for example,
log(vi;) = ujj’ - &5,

where u; is a covariate vector and ¢; is a vector of regression coefficients. Let

¢ = (¢, @3, ..., #)', and a = (o, ¢')" be of dimension g.

Here we consider a missing at random mechanism which assumes

P(RY, =r% R =1)|R

iy 1J

v RLYi X, Zi) = P(RY, =¥, RE = r2|RY, RE, Y, X[, Z,).

YR YR K i) Vg T

Informally, we write X; = (X'”, X"™) where X(* and X™ denote the observed

3 3

and missing components of X;, respectively. For subject i, let 7/ = P(R}, =
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1, Rf; = 1|Y;, Z;, Xi) be the conditional probability of complete data for subject i
at time j given the response vector Y; and covariates Z; and X;, j > 2; mjy = 1 is

assumed. The joint probability 7T Y can then be written as

j—1
Y = ZZ{ P(RY, =1,RY = 1|RY, R}, Y;, X, Z;) - HP(Rg_rzl,Rl_de, ll,YZ—,Xl-,Zi)}
Y Rz =2

-1
ZZ{)\MJ H ,\Z”ly)rizru( /\ZU)(l T ()‘gl /\fly)(lfﬁl)ﬁl
Y Rz =2

(1= X = N+ X O] (4.1)

for j > 2, where the summation is taken over all the possible values of the histories

Rfj and Rj;.

4.3 Estimation and Inference
4.3.1 Estimating Equations for Response Parameters

Following the same spirit of IPWGEE advocated by Robins et al. (1995), w
may include a weight matrix Aj(«) to the usual GEE to adjust for the effects of

missingness occurring in both the response and covariate variables. That is, let
Aj(a) = diag(I(R}; = 1, Rj; = 1) /7,1 < j < J),

then the product A (Y; — p;) yields an adjusted contribution from subject i which
involves the observed data alone yet retains the unbiasedness property, and hence

estimating equations for 3 can be given by

= i U (B, a) =0, (4.2)

where U (3, a) = D;V; ' A (a)(Y; — p;) with D; = Op/ /O being a p x J derivative

matrix, and V; the working covariance matrix for the response Y;.
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In practice, the covariance matrix V; is often expressed as
1/2 1/2

where R;(p) is a working correlation matrix which may contain parameter p that
is distinct from the § parameter, and F; = diag(h(w;),7 = 1,2,...,J). When
the working correlation matrix R;(p) is the identity matrix, (4.2) is computable.
However, when a working independence assumption is not adopted, (4.2) may not be
computable since elements of D;V; " associated with those observed paired response
Y;; and covariate X;; may still be unknown because of the involvement of other
missing covariates X;;'s (k # 7). Here we modify (4.2) to incorporate the general

working correlation matrices. We define

I(RY,=1,R%,=1) I(Rh=1,R%,=1,RE=1)  I(R%=1,RY,=1,R?=1)
fed ) i
il 112 ilJ
I(RR=LRA=LRA=1)  IELp=LRp=1)  I(RH=1LRL=1R;=1)
Al(a) — 7%"21 7%;2 ﬂi.ZJ ,
I(R?,=1,RY=1,R%=1) [(R},=1,RY,=1,RE=1) I(RY,=1,R?,=1)
Y ) B e
iJ1 iJ2 iJ JxJ

where 7y = P(Rf; = 1, R} = 1, R, = 1|Y;, X;, Z;) for j # k, and denote

Mi = k7 PR (p) @ A(e)]F2,

(2 (2

where A e B = [a;; - b;;] denotes the Hadamard product of J x J matrices A = [a;;]
and B = [b;;] (e.g., Horn and Johnson, 1994). By introducing the condition that
X;; must be observed for elements in row j of A;(«), we ensure that all required

elements of D;[V;™" e A;(a)](Y; — ;) can be computed.

The generalized estimating functions for 3 are given by
U(B.a) =Y Ui(B,a) =0, (43)
i=1
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where U;(83, a) = D;M;(Y; — p;), and this yields consistent estimators since

Ery rp)ivix.20 [Bi ' (p) @ Ai()] = R (p)

and hence

E(R%’Rf’yi’Xi’Zi) [Ul(ﬁ’ Oé)] - E(Y“Xivzi)E(R?va)\(nvxivzi) [U,(ﬁ, Oé)]
= By, x.z) DV (Vi — )]
= E(Xini)EYiKXmZi)[Div;'_l(yi - ,Uz)]

= 0.

It is easy to see that estimating function (4.3) depends on the observed data and
the parameters only, and hence is computable. To employ (4.3) to estimate /3, one

needs to evaluate the joint probability 7% which can be written as, for example,

zyk

for j < k

k—1
— Ty zy\rYr zy\(1—rY,)re,
Tijk = E E E:{)‘m H (AZ) e (NG, — A

T k1T e k=1 ERTRRC SR =i+t

v

(N = XYL X = N4 X)) ey (o w%l—f%},
where 7f; = P(R; = 1|Y;, X;, Z;), and it can be expressed in terms of A}, >\y/ and
Aij 3" < j. Similar notation applies to ;.

The working correlation matrix R;(p) is usually unknown and must be esti-
mated. It is estimated in the iterative fitting process using the current value of (3

to compute the appropriate function of the Pearson residual

Yij — Hij
eij = ——— " 0ij,
h(,uij)
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where d;; = r{irf; /7. The estimator of the parameter p is different for different
correlation structures. For example, for the unstructured correlation matrix that

Corr(Y;;, Yik) = pji for j # k, we estimate p;j, by

pjk_ § :61J61k 7T ﬂ-zk/ﬂ-zﬂw

where 77, = P(Rf; = 1, R}, = 1, Rj, = 1, R} = 1[Y;, X;, Z;) which can be calcu-
lated in the same spirit of calculation of W;Z;g above, and the dispersion parameter

k is estimated by

/%:nJ pzz Ty

i=1 j=1
If o were known, then the estimate of 3 can be obtained by solving U(f3, a) = 0.
In practice « is unknown and one must replace « in (3) with a consistent estimate

which may be obtained as we describe in the next subsection.

4.3.2 Estimation of Parameters for the Missing Data Pro-
cesses
Let A” = ()\ZZJJ, )\x) R = (Rigl, Rig/, ey RiJ/)/, Az = (AQQ, Agg, Ceey AQJ)/, and let
V¥ = diag(V;5, Vi, ..., V) be the covariance matrix of R;, where

ML= A AT — AL

LAY

AV NEAT AE(1 - L)

LAY

v =
is the covariance matrix of R;;. If Df = OA}/Ocy,, then the estimating functions
for a,, are given by > | Si;(«), where Sy;(a) = D[V H(R; — Ay).

We use second order estimating equations for estimation of the association pa-

rameter ¢. To construct these we define the pairwise product R}, = R%Rfj and the

vector RY = (R}, Ri, ..., Ri;), and let \Y = (\5Y, \5Y, .. ATYY, CF = O[ATY] /0g,
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and W = diag(Nj} - (1 = Nj/), j = 2,3,...,J). The estimating functions for ¢
are then given by > 1" | So;(a), where Sy;(a) = CH[Wi]™1 - (R — AY). Then the
estimating equation for « are

Z Si(a) = 0. (4.4)

where Si(a) = (S;(a), Sy ()"

4.3.3 Estimation and Inference

We may employ a Fisher-scoring algorithm for estimation of § = (o/, 3")". To

do this we let

Si _ 7}_ D;k Vz* -1 D:« /
o= 5O ) ape [ TEROTLTY
Ui(8,a) -2 WG
and M(0) = =31, D;M;D.. As the estimating functions S;(«) are free of the

parameters, the derivative matrix 0H;(#)/06’ is lower triangular, i.e.,

oHi(0) [ B 0
00\ i) UiBa) |’
Y el

and therefore, given an initial value 8(°), an updated estimates are obtained with

the iterative equation

-1

pu+1) — gt _ M* (o) 0 Dizt 5i(a) . (4.5)
>[0T (0) /0 gy M(0V) > Ui(0Y)
t=0,1,---, until 8¢+Y converges to the solution 0.

Alternatively, one can invoke a two-stage estimation procedure. Under this
scheme an estimate of « is obtained as the solution to > | S;(a) = 0 by Fisher-

scoring, and then a Fisher-scoring algorithm is employed to solve > " U;(83,4&) =0
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where & is used in place of « in (3). This two-stage estimation procedure employs

the iterative equations

ot = o — (M (a)]7H Y T 5(a) s=0,1,-- (4.6)
i=1
and
gD = 5O _ [p(30 @)t ZUi(ﬁ(t)v@) t=0,1,--- . (4.7)

The two-stage iterative equations (4.6) and (4.7) differ from joint iterative equation
(4.5). Even under the special situation that the components of the left lower corner
are zero in the inverse matrix of (4.5), (4.5) does not necessarily yield the same
updated values as those from (4.6) and (4.7). However, the updated values from
these two procedures converge to the same limit under mild regularity conditions

(e.g., Prentice, 1988; Lipsitz et al., 1991).

While the two-stage procedure based on (4.6) and (4.7) is much easier to use for
estimation of 4, the joint formulation based on H;(6) is more useful for developing
the asymptotic distribution for §. Note that since E[H;(6)] = 0 and by Theorem
3.4 of Newey and McFadden (1993), under standard regularity conditions there is
a unique solution # to the equation >y Hi(0) = 0 with probability approaching

1, that satisfies
n'?(0 — 0) = —{E[0H;(0)/90']} " - n/? Z H;(0) + 0,(1
For the estimator ﬁ of central interest, we have
n'?(B-p) = —IT~'n7'2. ZQ, (8, @) + 0p(1),
where I' = E[0U; (5, «) /0], and

Qi(B, ) = Ui(B, o) — EOU:(B, @) /0c] - [E(S;(cr) /0a')] 7 - Si(ax).
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The central limit theorem then leads to the asymptotic distribution for n'/? (ﬁ -5),
which is normal with mean 0 and asymptotic variance ' *X[I'™!]", where 3 =
E[Qi(8,a)Q}(8,a)]. A discussion on the variance estimate is included in Section

)

4.7.

4.4 More Efficient Estimation via Augmented IP-
WGEE

Note that the estimating functions in (4.2) include merely the measurements
collected at those time points j when both Y;; and X;; are observed, together with
an observed covariate X;,. There may be some information loss relative to the
methods that may include all the available measurements. Under the missing at
random mechanism, Robins et al. (1994, 1995), Robins and Rotnitzky (1995) and
Scharfstein et al. (1999) proposed methods to improve the efficiency of the inverse
probability weighted estimates. The notion is that adding a function with zero
expectation to the estimating function maintains an unbiased estimating function
but with suitable choice of this second function, efficiency may be improved. This
approach has, to our knowledge, only been investigated to address missingness in
either the response or covariates processes. In this section, we describe an efficient
method that applies to the case either response or covariate data may be missing

at any assessment time, or both.

Corresponding to each missingness pattern, we consider a vector A;. (r = 1,2, 3)
that picks up available measurements that may not be included in (4.3). For ex-

ample, we take

I(RY. =1,R* =0 !
Aﬂ:({< ij ij ).W%/._l -Rijij,jZLQ,...,J),

y Yy ij

124



I(RY, =0,R% =1) , !
Ajp = = REX, 5=1,2,0.., )

o
I(RY, =0, R% =0) /

A’i: 1) P ¥} _1 'Z/ :12J
s <[1—7T%-7T%—|—7Txy :| 2]’] ) < ; s

ij

and A; = (A}, ALy, Al;)'. The key point here is to make A; have zero mean and
be expressed in terms of the observed data. For ease of implementation, A; is
often chosen to be free of the unknown (3 parameter, but it may depend on the «

parameter. We now explicitly denote it A;(a).

Let Res{A,B} = A — E[AB|{E[BB’'|}'B denote the residual obtained by

regressing A on B. Let
n = E[Res{Ui(8, ), S;() }Res{A;(a), Si(a)}][var(Res{A;(a), S;(a) })] ",

and UZ-T (B,a) = Uy(B,a) — nA;(«). Then, if « is known, the estimator A" obtained
from solving

S Ul =0 (48)

is consistent for 3 since U] (8, a) is unbiased.

Under regularity conditions of Robins et al. (1995), n!/2(3" — 3) has an asymp-
totic distribution N(0, P! 1)) with 37 = var{Res(U;(3, o), H})}, where H} =
(Al(), S)()), and when 5 # 0, 31 is more efficient than [3; the proof is given in
Section 4.8. We note that the efficiency of 3 relies on the choice of function A;(a),
and there is no universal way to specify an optimal A;(«) function to produce
the most efficient estimator 3. However, as long as that A;(a) is correlated with

Ui (3, a) some improvement in efficiency will be realized.

In practice it is usually not possible to solve (4.8) since n will typically be

unknown. A modified version of (4.8) may be solvable, however, by replacing n
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with a n!'/2-consistent estimate 7 = 77, *, where

in=n""3"Res[U;(3,a), Si(a)Res[Ai(a), Si(a)],
=1

iy =171 Res[A;(a), S;(a)|Res[ A (), Si()],
=1
and
=1 =1

Under regularity conditions of Robins et al. (1995), the resultant estimator has
the same asymptotic distribution as @T, and variance matrix [''1XT[['1]’ can be

consistently estimated by I'"'St[[~] with

St =p! Z{Ee\sw,@), {Ai(a), S(@)}}Res{[Ui(B, &), {Ai(&), Si(a)}]} -

4.5 Empirical Studies and Applications
4.5.1 Simulation Studies for Comparison of Procedures

In this section we assess the empirical performance of the methods through
simulation studies. We consider a setting with J = 3 and n = 500, and simulate

the longitudinal binary responses from a model with

logit(uij) = Bo + (14

where z;; is a time-dependent binary covariate generated independently from Bin(1,0.5)
which may be missing at some time points. We set expit(5y) = 0.6 and exp(/3;) =
0.5, where expit(t) = exp(t)/(1 +exp(t)). The association between the responses is
specified as exchangeable with correlation coefficient p, which is specified as 0, 0.3

and 0.6. The data generation procedures follow Preisser et al. (2002).
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For the missing response process, we take
lOglt(A?ZJ]) = Oéyo + Oéyl’f’g-{j_l + ay2r§”j_1yi,j_1, j = 2, 3 y

and for the missing covariate process, we take
logit()\fj) = Qo + Oé:clr;c’j_l + ax2rgij_1xi,j—la Jj=2,3.

We assume the response and covariates are available at the first assessment time,
so 1)y = rj = 1. The association between Rj; and R}; is assumed constant over
time with values of ¥;5 = ;3 =19 =8, 4, 2 or 1. The true values for the regression
parameters of the missing data processes are set to expit(ayg) = expit(ag) = 0.5,

exp(ay1) = exp(az) = 1.5, and exp(ay2) = exp(agz) = 0.1, 0.5 or 2.0. Five

hundred simulations are run for each parameter configuration.

Here we assess the performance of the proposed method along with other meth-
ods which might be used in practice using different models for the formulation of the
weight. The first method, labeled “GEE” in the tables, is based on generalized esti-
mating equations obtained by setting 7 and 77 to be 1in (4.3), for j = 1,2,..., J.
The second and third methods, labeled “IPWGEE-M1” and “IPWGEE-M2” re-
spectively, use marginal weights in the generalized estimating equation (4.3) based
on a single missing data model for R;; where R}, = 1 if both Y;; and X;; are
observed and R;; = 0 otherwise. Then \j; = P(R}; = 1|RZ]—_1,YZ-(O),XZ-(O)) and a

logistic model is formed as

logit \j; = w0, 5 =2,3. (4.9)

/
ij
The second and third methods employ

* * *
{1, Tij—1Tij-1Yi,5-1s Ti,j—lx@j—l}
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and
* Y x
{1>Ti,j—l>ri,j—1yi7j—1’ri,j—lxivj—l}
for w;; in (4.9) respectively, accommodating different covariate dependencies of

the marginal missing data processes for the responses and covariates. The weight

matrix now is

I(R:=1) I(Ry=1,R5,=1)  I(Ri=1,R;;=1)
T *
i T2 Ti1g
I(RE:LR;H:I) I(RZ’.‘2:1) . I(R:.‘zzl,R;.‘le)
* TY *
Al(a) — 7%;12 7%;2 7Ti.2J ,
I(R;‘J:LRz‘lzl) I(R;‘J:LRz‘Qzl) . I(R;‘le)
X
g ey Wi} IxJ

where the probabilities 7;;" in (4.3) are therefore determined by

j—1
Y = PRy =17, x7) =Y {A;;-H< ) - ;z)”u}, (4.10)
; 1

and 7}, = P(R; = 1, Ry, = 1]V}, X;, Z;) can be expressed in terms of A};. Instead
of modeling R, and Rj; with a single indicator R;; = R};Rf;, in the fourth and
fiftth methods we use separate models described in Section 4.2 to characterize Rfj
and Rj;. The fourth method, labeled “IPWGEE-I", constrains ¢;; to be 1, while
the fifth method, labeled “IPWGEE-J”, accommodates the association structure
through 1;;. The sixth method, labeled “AIPWGEE-J", is the augmented IP-

WGEE accommodating the association structure through 1);;, where we specify

Ai(e) = (A, Ajp)' as

I(RY. =1,R* =0 !
Aﬂ:({( g 4 )~7ry.—1]-R?j}ﬁj,jzl,l...,J),

Yy _ 1Y 1]

and

I(R}; = 0,Rj; = 1) . '
Ajp = sl — 1 'R%Xij,jzl,l...,g] .

r _ LY ©]
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The correlation parameter p is estimated by 1/(N*—p) 37, >,y eijeam - m! /75,

with N* =1/2-nJ(J — 1) as discussed in Section 4.3.1.

The results are reported in Tables 4.1 to 4.3, where ESE is the empirical
standard error, and CP represents the empirical coverage probability for 95%
confidence intervals. It is seen that the “GEE”, “IPWGEE-M1", “IPWGEE-
M2” and “IPWGEE-I" approaches yield larger biases than the “IPWGEE-J” and
“AIPWGEE-J” methods. As the missing proportion increases, the bias increases.
When a high percentage of data are missing, the “GEE”, “IPWGEE-M1”, “IPWGEE-
M2” and “IPWGEE-I" methods provide confidence intervals with poor coverage
probabilities, while the “IPWGEE-J" and “AIPWGEE-J” methods give reliable
ones. As the association parameter 1 increases, performances of the “GEE”,
“IPWGEE-M1”, “IPWGEE-M2” and “IPWGEE-I" approaches become worse; bi-
ases are more substantial, and coverage probabilities are far from these nominal lev-
els. Their performances also deteriorate as the longitudinal association p increases.
However, under a wide range of scenarios, the “IPWGEE-J” and “AIPWGEE-J”
methods perform satisfactorily, but the “AIPWGEE-J” method gives more efficient
estimates than those obtained from the “IPWGEE-J” method. When the missing
proportion increases, the efficiency gain increases; when the association between
the missingness increases, the improvement becomes more considerable. Also note
that when the correlation p between the responses becomes stronger, the efficiency

gain increases.
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Table 4.1: Empirical bias, standard errors and coverage probabilities for six approaches to estimation and inference
with incomplete covariate and response data (p = 0.6)

Qg = 0.1 Qg = 0.5 Qg = 2.0
% o % o % o
1) Method Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP%
8 GEE -15.80.107 85.5 5.8 0.146 90.5 -8.6 0.109 85.5 0.1 0.123 89.0 7.0 0.110 86.0 0.7 0.107 92.5
IPWGEE-M1 91.2 0.577 88.0 11.5 0.336 90.6 6.2 0.292 90.2 -0.2 0.145 92.1 0.5 0.114 93.0 -0.2 0.103 93.0
IPWGEE-M2 50.1 0.582 94.8 11.2 0.326 92.4 -11.30.280 91.5 -1.9 0.147 93.8 -0.3 0.144 93.3 2.7 0.112 93.5
IPWGEE-I  75.6 0.561 93.1 18.1 0.550 95.8 21.8 0.181 91.2 1.0 0.165 93.8 -16.50.123 90.4 -0.9 0.121 93.0
IPWGEE-J 0.7 0433944 0.3 0.43294.5 0.8 0.172 93.8 0.5 0.150 94.4 -0.8 0.118 94.7 -1.2 0.115 94.2
AIPWGEE-J 0.5 0.426 94.5 0.7 0.425 94.1 -0.6 0.166 94.9 -0.7 0.147 94.2 -0.9 0.116 94.4 -1.0 0.113 94.0
4 GEE -15.60.120 82.5 1.5 0.130 91.0 -8.1 0.110 84.0 -0.5 0.119 93.5 10.7 0.120 89.4 -0.5 0.111 93.8
IPWGEE-M1 90.2 0.585 89.3 7.7 0.378 91.7 5.4 0.39591.4 -1.5 0.157 92.2 2.3 0.190 93.5 -0.7 0.124 93.5
IPWGEE-M2 46.4 0.514 92.5 7.2 0.33587.6 3.1 0.30592.1 -1.0 0.173 93.1 -3.0 0.130 93.5 -0.9 0.111 94.0
IPWGEE-I  64.1 0.608 93.4 10.8 0.551 96.9 20.4 0.189 91.2 1.4 0.180 92.6 -15.80.135 89.4 -1.2 0.127 94.0
IPWGEE-J 0.6 0428 94.6 0.8 0.43494.8 0.6 0.184 94.0 -1.3 0.178 93.9 -0.7 0.131 94.4 -0.1 0.114 95.1
AIPWGEE-J 0.8 0.420 94.8 0.7 0.429 94.7 -0.2 0.178 94.9 -0.7 0.175 95.0 -0.6 0.130 94.6 -0.3 0.113 94.3
2 GEE -15.30.117 85.5 3.6 0.134 91.5 -10.70.108 90.0 -0.2 0.133 93.5 10.9 0.110 91.0 -0.3 0.109 94.0
IPWGEE-M1 85.9 0.563 90.5 4.6 0.349 92.1 8.5 0.295 91.7 -0.8 0.168 93.1 -4.2 0.139 93.5 -0.6 0.121 94.0
IPWGEE-M2 43.4 0.469 93.0 17.7 0.403 89.0 -3.1 0.303 92.1 -0.4 0.157 93.4 1.7 0.152 93.9 -1.5 0.116 93.9
IPWGEE-I  46.0 0.552 96.8 6.7 0.544 94.8 16.4 0.188 94.0 0.2 0.182 93.6 -9.4 0.133 93.4 -0.6 0.129 94.6
IPWGEE-J 0.8 0.423 94.8 0.3 0.37794.7 0.9 0.180 94.7 0.1 0.178 95.5 -0.4 0.130 94.4 -1.3 0.125 94.0
AIPWGEE-J -0.3 0.416 95.1 0.4 0.372 94.5 -0.6 0.176 94.6 -0.7 0.174 94.4 -0.5 0.128 94.3 -0.3 0.124 95.4
1 GEE -14.80.111 92.0 3.2 0.154 95.0 -11.30.111 92.5 -0.0 0.140 93.0 9.9 0.111 82.5 -2.0 0.113 93.5
IPWGEE-M1 83.7 0.609 90.8 6.3 0.360 94.4 -4.4 0.347 93.6 5.8 0.208 96.0 -7.5 0.154 95.4 0.0 0.117 94.4
IPWGEE-M2 42.8 0.421 93.7 1.1 0.359 89.6 11.8 0.302 93.0 -0.3 0.208 94.0 2.0 0.142 94.9 -0.8 0.139 94.8
IPWGEE-I 2.0 0.554 97.3 1.8 0.524 95.0 1.8 0.202 93.0 0.8 0.19592.2 -1.4 0.124 96.0 -0.7 0.123 95.6
IPWGEE-J 1.2 0421 95.1 1.2 0477 95.2 0.1 0.20594.6 -1.2 0.193 94.8 -0.8 0.130 95.0 -0.7 0.124 94.4
AIPWGEE-J 0.9 0418 94.8 0.8 0.473 94.2 -0.4 0.203 94.7 -0.5 0.192 94.3 -0.3 0.131 94.4 -1.0 0.124 94.2

! The true values are 3y = log(1.5) and 3; = log(0.5).
* Relative bias defined by (5 — Birue)/Birue X 100.
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Table 4.2: Empirical bias, standard errors and coverage probabilities for six approaches to estimation and inference
with incomplete covariate and response data (p = 0.3)

Qg = 0.1 Qg = 0.5 Qg = 2.0
5 G 5 G 5 G
1) Method Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP%
8 GEE -13.40.109 92,5 1.6 0.160 92.5 -5.7 0.091 97.0 0.8 0.124 96.0 5.3 0.101 93.5 2.8 0.118 93.5
IPWGEE-M1 15.7 0.283 88.8 1.7 0.328 90.4 0.5 0.126 91.5 1.3 0.149 94.5 -0.1 0.097 96.5 -0.1 0.137 91.0
IPWGEE-M2 15.4 0.374 87.1 2.8 0.336 90.5 -0.4 0.121 94.0 0.9 0.154 94.0 1.8 0.100 92.5 1.2 0.125 94.5
IPWGEE-I  28.3 0.472 93.0 6.7 0.579 96.0 9.8 0.156 96.3 3.8 0.178 94.3 -2.1 0.113 91.5 3.8 0.133 96.0
IPWGEE-J 1.2 0.239 94.7 0.5 0.299 94.8 -0.0 0.112 954 0.4 0.155 94.9 -1.0 0.095 95.4 -0.6 0.125 95.4
AIPWGEE-J -0.5 0.229 94.6 0.6 0.293 94.9 -0.4 0.109 94.4 -0.9 0.151 94.2 -0.3 0.093 95.1 0.3 0.123 94.8
4 GEE -12.30.117 90.5 -0.9 0.144 95.0 -3.0 0.107 95.0 1.7 0.134 93.5 4.3 0.097 93.0 -0.5 0.124 91.0
IPWGEE-M1 -14.90.265 92.6 -1.1 0.318 94.1 -2.7 0.13594.5 1.9 0.154 96.5 0.5 0.097 97.5 3.5 0.128 93.0
IPWGEE-M2 14.5 0.338 87.9 2.6 0.370 85.4 -2.4 0.134 929 2.8 0.174 93.4 -3.1 0.111 94.0 -1.9 0.132 94.5
IPWGEE-I  10.5 0.492 974 5.0 0.410 96.5 6.6 0.17591.8 0.5 0.183 95.4 -1.3 0.120 92.0 2.5 0.147 90.5
IPWGEE-J 0.5 0.254 954 0.9 0319944 0.3 0.121 95.0 0.4 0.166 95.0 -0.5 0.100 94.9 -0.4 0.126 95.4
AIPWGEE-J 0.4 0.246 94.6 0.7 0.314 94.7 0.7 0.118 95.2 0.7 0.163 94.6 -0.2 0.098 94.7 0.1 0.125 95.0
2 GEE -11.60.112 92.0 0.2 0.154 93.5 -1.4 0.107 94.5 1.1 0.123 95.5 5.1 0.101 93.0 -0.2 0.125 93.5
IPWGEE-M1 14.2 0.326 86.2 4.3 0.373 88.7 -2.2 0.149 94.0 -0.7 0.173 93.5 -2.7 0.111 92.0 -1.7 0.138 93.5
IPWGEE-M2 11.5 0.324 82.7 0.8 0.390 82.7 -2.5 0.139 95.0 0.1 0.183 94.5 2.4 0.105 95.0 2.0 0.134 94.5
IPWGEE-I 8.8 0.399 96.0 5.3 0.467 96.0 5.5 0.153 94.5 -1.2 0.194 94.0 -2.8 0.108 94.5 -0.6 0.132 94.0
IPWGEE-J -1.1 0.330 95.2 2.5 0.360 94.4 3.6 0.144 95.0 2.2 0.175 95.5 -0.7 0.105 95.5 -0.5 0.125 95.0
AIPWGEE-J -0.1 0.326 94.8 -0.6 0.355 94.5 0.6 0.140 94.1 0.3 0.173 95.5 -0.4 0.104 95.0 0.2 0.125 94.9
1 GEE -10.80.123 91.0 -0.2 0.149 96.0 -6.0 0.109 94.0 -0.6 0.148 94.5 5.7 0.097 93.5 -0.1 0.139 89.5
IPWGEE-M1 13.6 0.319 88.1 9.6 0.369 84.6 2.3 0.15593.9 3.6 0.196 93.9 0.9 0.110 95.5 1.3 0.139 94.0
IPWGEE-M2 7.1 0.389 80.4 -0.2 0.407 86.4 -5.9 0.149 96.4 0.5 0.193 94.9 2.9 0.121 94.5 0.2 0.162 93.5
IPWGEE-I 1.1 0.30797.1 1.6 0.37393.0 2.3 0.143 95.5 0.5 0.18295.5 0.8 0.104 94.5 1.1 0.145 94.0
IPWGEE-J -0.1 0.31994.2 0.9 0.376 94.2 0.1 0.157 95.0 1.0 0.201 94.5 -0.3 0.110 94.5 0.0 0.141 94.0
AIPWGEE-J 0.7 0.318 94.6 -0.9 0.374 94.9 0.6 0.15594.8 0.7 0.200 94.5 0.9 0.110 94.7 1.0 0.140 94.1

! The true values are 3y = log(1.5) and 3; = log(0.5).
* Relative bias defined by (5 — Birue)/Birue X 100.
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Table 4.3: Empirical bias, standard errors and coverage probabilities for six approaches to estimation and inference
with incomplete covariate and response data (p = 0.0)

Qg = 0.1 Qg = 0.5 Qg = 2.0
5 G 5 G 5 G
1) Method Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP% Bias* ESE CP%
8 GEE 1.5 0.11095.0 1.6 0.13494.6 1.6 0.103 954 1.1 0.14594.3 0.6 0.096 94.2 -0.0 0.134 94.2
IPWGEE-M1 1.5 0.357 93.7 -0.5 0.616 88.0 3.3 0.126 91.5 3.0 0.179 90.0 -1.4 0.097 96.0 -0.5 0.137 94.0
IPWGEE-M2 - 5.0 0.308 91.7 -11.50.530 93.6 1.3 0.116 95.0 1.7 0.160 96.5 -1.2 0.106 91.0 -2.0 0.138 95.0
IPWGEE-I -1.90.41387.8 -1.6 0.59589.8 0.0 0.11594.0 1.3 0.17594.5 0.6 0.093 95.0 1.5 0.141 94.5
IPWGEE-J -1.1 0.197 959 0.2 0.275 94.8 -0.5 0.109 94.2 0.3 0.161 93.9 -0.6 0.086 95.9 -0.7 0.133 95.9
AIPWGEE-J 0.7 0.191 949 -0.6 0.271 94.2 -0.4 0.106 94.6 -0.5 0.156 94.4 -0.5 0.083 95.0 -0.1 0.132 94.8
4 GEE -0.6 0.101 95.2 -1.2 0.142 94.2 -1.1 0.101 94.5 -0.8 0.142 94.7 0.9 0.093 93.4 0.7 0.133 94.2
IPWGEE-M1 - 8.3 0.337 92.8 -4.10.57290.4 1.1 0.118 94.5 0.8 0.170 96.5 1.2 0.100 96.0 -0.4 0.132 95.0
IPWGEE-M2 -0.3 0.282 90.0 -1.5 0.466 90.5 -2.1 0.114 95.5 -0.3 0.166 95.0 -0.4 0.096 95.0 -0.1 0.133 97.0
IPWGEE-I -1.4 0.371 93.9 2.2 0.550 89.6 -2.2 0.124 95.0 -0.4 0.185 94.0 -1.9 0.096 96.0 -2.3 0.133 95.0
IPWGEE-J 0.5 0.196 94.7 -0.7 0.284 94.5 0.2 0.127 94.5 1.4 0.165 93.5 -0.2 0.095 95.4 -0.0 0.129 94.9
AIPWGEE-J -0.3 0.192 94.3 0.3 0.280 94.6 0.0 0.12594.9 0.4 0.163 94.2 -0.9 0.094 94.6 -0.2 0.128 95.1
2 GEE -2.7 0.111 93.8 -2.8 0.15793.2 1.5 0.110 94.8 1.4 0.148 93.7 -1.3 0.096 94.6 -1.1 0.135 96.2
IPWGEE-M1 -7.2 0.304 86.1 -0.3 0.449 93.0 0.6 0.117 96.5 0.8 0.175 93.0 -2.1 0.105 93.5 -0.0 0.150 95.0
IPWGEE-M2 -3.3 0.334 86.2 -0.0 0.501 86.2 -0.2 0.116 95.5 3.1 0.175 95.0 2.4 0.101 94.0 0.3 0.151 93.0
IPWGEE-I -1.7 0.390 94.1 11.9 0473929 0.3 0.134 93.5 0.4 0.17597.5 0.1 0.108 92.5 -1.1 0.152 92.5
IPWGEE-J -0.7 0.236 94.9 0.8 0.324 94.1 0.8 0.124 94.5 -0.5 0.176 94.5 -0.1 0.096 95.5 -0.4 0.127 97.5
AIPWGEE-J -0.7 0.233 94.5 1.0 0.320 95.1 0.6 0.121 944 0.7 0.174 95.0 0.5 0.09594.5 0.2 0.127 95.3
1 GEE 0.8 0.114 920 1.4 0.161 93.6 2.0 0.11495.1 1.2 0.15194.0 0.5 0.099 94.9 0.2 0.138 95.7
IPWGEE-M1 1.2 0.318 84.3 10.3 0.453 83.1 4.4 0.14593.5 3.9 0.196 95.5 -2.2 0.111 93.5 -0.3 0.169 92.0
IPWGEE-M2 2.4 0.430 83.9 2.4 0.531 84.5 0.0 0.129 96.0 0.3 0.172 96.0 -0.5 0.103 95.0 0.6 0.136 96.0
IPWGEE-I -3.3 0.278 92.4 2.7 0.388 92.9 -4.3 0.123 98.0 -3.9 0.189 93.5 -1.2 0.101 95.5 -0.3 0.148 96.5
IPWGEE-J 0.7 0.28795.3 0.7 0.42294.4 0.9 0.136 95.5 0.4 0.197 94.0 -0.0 0.103 95.0 -0.1 0.142 95.0
AIPWGEE-J 0.3 0.28594.2 0.7 0.419 95.3 -0.5 0.134 94.7 0.5 0.195 94.5 -0.7 0.103 94.9 0.6 0.142 95.4

! The true values are 3y = log(1.5) and 3;

= log(0.5).

* Relative bias defined by (8 — Berue)/Berue X 100.



4.5.2 Study of Asymptotic Bias under Misspecification of
Association Structure for Missing Data Procedures

We now focus on evaluating the asymptotic biases induced by misspecifying
the association structure between the missing data indicators of the response and
covariate. Specifically, we consider the scenario that Rﬁ’j and Rj; are regarded
as independent when they are actually correlated. Let ﬁT denote the resultant

estimator for the response model.

To characterize the asymptotic bias of ﬂAT, we use the methods of White (1982)
to find the value to which 57 converges. In the spirit of Rotnitzky and Wypij
(1994), Fitzmaurice et al. (1995) and Cook et al. (2004), we take the expectation
of U(8, @) with respect to the true distribution of G = (RY, R?,Y;, X;, Z;) and set
it equal to zero. The solution to this equation, denoted 3*, is the value to which
ﬁT converges in probability. If G is the sample space for GG, we must therefore solve

the equation

Z D M;(Y; — ;) - P(g; v, B) = 0, (4.11)

geg

where P(g;a, 3) is the true probability of observing the realized value g of G.

The asymptotic covariance matrix of n*/2(3" — 3*) is given by

~

ascov(y/n(B' — 3%)) = A7H(B) B(B) AT (5"), (4.12)

where A(8) = X,eg 0U(5.0)/05' - Pla;06), B(B) = Syeg Uil )UI(0,0)
P(g;a, 3), and the dependence on « is suppressed in the notation. To investigate
the asymptotic bias of the IPWGEE estimators under misspecification, we evaluate
the expectation (4.11), and solve for 55, k = 0,1. We consider p = 0.6, 0.3 and 0

to consider a decreasing strength of association among the response components.
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In the missing data model, we set oo = a2 = ay and for each setting, we take
Vo = Y3 = 1 and alter it from 1 to 8 to represent different magnitudes of the

associations between the missing response and missing covariate indicators.

We report the asymptotic percent relative bias, defined by 100 x (85 — Bx)/ Bk,
k = 0,1, in Figure 4.1 for different values of p. It can be seen that, as the missing
proportion increases, the relative bias increases if other conditions are held fixed.
Moreover, when the association between the missing data indicators increases, the
asymptotic relative bias increases. It is also interesting to note that the stronger

the correlation between responses the larger the relative bias.

4.5.3 Application to a Smoking Prevention Project

We now reanalyze the Waterloo Smoking Prevention Project data introduced
in Chapter 2. The smoking status can be represented by a binary variable. Y;; =1
indicates subject 7 is a smoker in grade j + 5, and 0 otherwise, 5 = 1,2,3. The
covariates that may influence the children’s smoking behavior include gender (coded
as GENDER, O0-female; 1-male), treatment indicator (coded as TRT, 0—control;
l-intervention), and social models risk score (coded as SMR, O-none of parents,
siblings or friends smoke; 1- otherwise). There are 4400 subjects in the data set
who enter the study in grade 6. About 15.5% subjects have incomplete data;
13.7% of the students have no observations either in grade 7 or grade 8; 15.2% of
the students have no social models risk score either in grade 7 or grade 8; and 5.1%
of the students have no social models risk score and response either in grade 7 or

grade 8. Table 4.4 lists a sample of the dataset.
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Figure 4.1: Asymptotic relative bias of regression coefficients under a misspecified models

of the association structures for the missing covariate and response processes
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Table 4.4: Sample data from the Waterloo Smoking Prevention Project
ID GENDER TRT SMR/ RESPONSE'

1 2 3 1 2 3
1 1 1 0 0 . 0 1 1
2 1 1 1 1 11 1
3 0 1 0 . 1 1 1
4 0 1 0 0 1 1 1
b} 1 1 1 . 0 . .
6 1 1 1 1 0 1 1
7 0 1 1 11 11 1
8 1 1 1 .1 0 . 1
9 0 1 1 11 11 1
10 1 1 1 11 10 1
11 0 1 1 1 . 0 1 :
12 0 1 1 .1 1 1
13 0 1 0 1 . 0 . 1
14 1 1 0 1 11

T Missing data are denoted by -.
Consider the regression model for the response process
logit(ui;) = [Bo+ 31 - GENDER, + 8, - TRT; + 33 - GRADE7,;
+084 - GRADES;; + 35 - SMR;;, j=1,2,3,

where GRADET;; is an indicator that student ¢ is in grade 7 at time j, and

GRADES;; is an indicator that student 7 is in grade 8 at time j.
For the missingness indicators, we assume models
logit(A%) = oo + o1 - Yin + ez - GENDER; + ayyes - TRT; + s - SMR;, (4.13)

10g1t()\§/3) = Oéygo—l—aygl-7’?2’3/,'2—}—(1@/32'GENDERi—I—Oéygg'TRTZ'—I—Oéygzl"f’fQSMRZQ—Faygg,'7“?2,
(4.14)

and
1Og1t()\zc2) = Qlpo0 + Qpo1 * Yi1 + Q99 GENDERZ + Qpo3 - TRTZ + Qg SMRH, (415)
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1Og1t()\f3) = Oém30—|—04x31'7”?2:%'2—'—0(9032'GENDERi—FOémgg'TRTi+Oéx34'TZ-m2SMRZ’2+O@35'Tig,
(4.16)

respectively.

In line with the simulation studies, here we undertake five methods to analyze
the data. The first analysis, labeled “GEE” | is an unweighted analysis based on
generalized estimating equations. The second analysis, labeled “IPWGEE-M27 | is
based on a weighted version of the generalized estimating equations in which the

weights are determined by fitting logistic models:
logit(\y) = o + Qa1 - Yi1 + ey - GENDER,; + a3 - TRT; + agy - SMRj;
and
logit(Aj) = ago+ st rhyie + sy - GENDER, 4 aigs - TRT; + azq - 755 SMR o + aigs - 1),

where A, = P(R; = 1|R:,_,Y\”, X)), j = 2,3. The third analysis is the
“IPWGEE-I" method, in which the weights are determined from standard logistic
regression models given by (4.13), (4.14), (4.15) and (4.16) with the assumption
;i = 1. The fourth analysis, labeled “IPWGEE-J”, is based on a weighted gen-
eralized estimating equations given by (4.13), (4.14), (4.15) and (4.16) by accom-
modating the association between the missingness indicators of the response and
the covariate, as described in Section 4.3. Namely, assume the model log(v;;) = ¢,

for j = 2,3. The last method, entitled “AIPWGEE-J", is the method described in

Section 4. 4, where we choose A;(«a) = (A%, Aly, Als)" with

I(RY. =1,R* =0 !
A21:<|:( ij ;Z/ )ﬂ-zy]_]-:|R;y]Y;]>]:2>3>a

[(R%IO,R%:U . !
Ai2: -h—1 RZSMR”,]:2,3 ,

r _ -TY 1
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I(RY, =0,R% =0 ’
A23:<|:( Y . )_1:|Z7{]7.]:273)7

— z _ v Ty
1 T — W + T

and Z;; = (GENDER;, TRT;, GRADE7,;, GRADES;;), j = 2, 3.

To understand how the estimation of the mean parameter § may be influenced
by different specifications of the covariance structure, here we consider various
association structures for the response process, and the results are reported in Table
4.5. Under each association structure specification, these five methods produce
fairly comparable results, although the estimates obtained from the “IPWGEE-J”
and “AIPWGEE-J” methods tend to be closer than the estimates obtained from
other methods. The “AIPWGEE-J” method also gives smaller standard errors,
supporting the expectation that this method is more efficient than the “IPWGEE-J”
method. All the five methods reveal that both gender and treatment covariates are
not statistically significant, while social model risk score and grade have significant
negative effects on smoking incidence. Students are more likely to smoke if their
parents, siblings or friends are smokers, and they are more likely to smoke when in

higher grades.

Table 4.6 records the results for the missing data processes obtained from the
“IPWGEE-I", “IPWGEE-J” and “IPWGEE-M2” methods. The “IPWGEE-I" and
“TPWGEE-J” methods lead to fairly comparable estimates for the marginal mean
parameters associated with both the missing response and missing covariate pro-
cesses in grade 7. The results for grade 8 differ more noticeably. However, both
methods reveal the same nature of the missing data mechanism. Specifically, a1,
Quou, Qya1, Quze and aus are statistically significant, suggesting that a missing at
random mechanism is perhaps reasonable for the missing response process. Simi-

larly, significance of ao1, au31 and a3y suggests that a missing at random mech-
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Table 4.5: Results of estimation based on unweighted and weighted GEE when analyzing data from the Waterloo

Smoking Prevention Project: response models
GEE IPWGEE-M2 IPWGEE-I IPWGEE-J AITPWGEE-J
Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value

Exchangeable
By -4.093 0.146 <0.001 -3.986 0.123 <0.001 -3.977 0.151<0.001 -3.993 0.123 <0.001 -3.992 0.121<0.001
£1 0.042 0.081 0.600 -0.015 0.071 0.829 -0.007 0.088 0.940 -0.017 0.070 0.810 -0.017 0.068 0.809
By -0.091 0.096 0.346 -0.098 0.084 0.243 -0.098 0.105 0.352 -0.096 0.084 0.253 -0.096 0.083 0.239
B3 0.747 0.085<0.001 0.730 0.068 <0.001 0.762 0.082<0.001 0.728 0.069 <0.001 0.727 0.067 <0.001
B4 1.545 0.080<0.001 1.493 0.065<0.001 1.518 0.079<0.001 1.498 0.065<0.001 1.498 0.064 <0.001
05 1.745 0.100<0.001 1.731 0.087<0.001 1.720 0.106 <0.001 1.734 0.088 <0.001 1.736 0.086 <0.001

AR(1)
By -4.104 0.178<0.001 -3.969 0.111<0.001 -3.961 0.123<0.001 -3.978 0.113<0.001 -3.977 0.110<0.001
Bi 0.093 0.096 0.339 0.008 0.065 0.897 0.011 0.072 0.878 0.004 0.065 0.956 0.004 0.064 0.955
By -0.131 0.116 0.260 -0.122 0.077 0.115 -0.119 0.086 0.167 -0.120 0.077 0.120 -0.120 0.075 0.109
By 0.753 0.102<0.001 0.738 0.061<0.001 0.767 0.066<0.001 0.737 0.063<0.001 0.736 0.061 <0.001
By 1.536 0.108<0.001 1.494 0.060<0.001 1.522 0.065<0.001 1.502 0.061<0.001 1.503 0.060<0.001
Bs 1760 0.122<0.001 1.717 0.077<0.001 1.705 0.084<0.001 1.720 0.080<0.001 1.721 0.077 <0.001

Unstructured
By -4.094 0.146 <0.001 -3.956 0.135<0.001 -3.943 0.124 <0.001 -3.968 0.114<0.001 -3.969 0.111<0.001
£y 0.086 0.081 0.278 0.013 0.077 0.863 0.017 0.072 0.818 0.008 0.064 0.900 0.008 0.063 0.899
By -0.119 0.097 0.215 -0.116 0.092 0.207 -0.111 0.086 0.197 -0.113 0.077 0.142 -0.113 0.075 0.131
B3 0.752 0.087<0.001 0.740 0.073<0.001 0.772 0.065<0.001 0.737 0.061 <0.001 0.738 0.060 <0.001
By 1.547 0.083<0.001 1.492 0.072<0.001 1.517 0.065<0.001 1.499 0.059<0.001 1.501 0.057 <0.001
b5 1.742 0.100<0.001 1.701 0.096 <0.001 1.685 0.089<0.001 1.706 0.082<0.001 1.707 0.080<0.001




Table 4.6: Results of estimation based on unweighted and weighted GEE when an-
alyzing data from the Waterloo Smoking Prevention Project: missing data models

IPWGEE-I IPWGEE-J

Parameters Estimate S.E. p-value Estimate S.E. p-value
Marginal missing-response models:

Grade 7:

INTERCEPT ay  3.073  0.165 < 0.001 3.041  0.163 < 0.001
PREV. RES ayor -1.059  0.181 < 0.001 -1.060 0.181 < 0.001
GENDER ayee  -0.295 0.116  0.011 -0.286 0.115  0.013
TRT ayes  -0.164  0.144  0.255  -0.143 0.142  0.313
PREV. SMR g -0.343 0122 0.006  -0.325 0.121  0.007
Grade 8:

INTERCEPT ayz  -0.643  0.172 < 0.001 -0.318 0.162  0.050
PREV. RES ayz -0.570  0.174  0.001 -0.503 0.175  0.004
GENDER ay3o -0.240  0.112  0.033  -0.289 0.109  0.008
TRT ayss 0132 0133 0.322 0.151 0.130  0.245
PREV. SMR e -0.475  0.138  0.001 -0.461 0.137  0.001

PREV. MIS. IND. a,3; 3.693 0.159 < 0.001 3.352  0.150 < 0.001

Marginal missing-covariate models:

Grade 7:

INTERCEPT 0go0 2.882  0.157 < 0.001 2.881 0.156 < 0.001

PREV. RES oz -1.012 0.179 < 0.001 -1.020 0.178 < 0.001

GENDER Qoo -0.178 0.109  0.103 -0.179 0.109  0.102

TRT o3 -0.273  0.140  0.052 -0.271  0.140  0.053

ER%V. SMR agpoa  -0.212 0.114 0.062 -0.212 0.114 0.063
rade 8:

INTERCEPT ogz0  -0.316  0.160  0.048 -0.264 0.159  0.097

PREV. RES gz -0.385  0.173  0.026 -0.399 0.173  0.021

GENDER ogze -0.332  0.106  0.002 -0.321 0.106  0.002

TRT ogzz  0.119  0.127  0.351 0.099 0.127 0.435

PREV. SMR ogza -0.440 0.132  0.001 -0.370 0.129 0.004

PREV. MIS. IND «,3; 3.266 0.149 < 0.001 3.170 0.144 < 0.001

Association:

o 8.860 4.586  0.053

®3 6.877 1.252 <0.001

Estimates for IPWGEE-M2 Analysis:

Grade 7:

INTERCEPT s 2.835  0.154 < 0.001

PREV. RES as -1.020 0.178 < 0.001

GENDER a9 -0.173  0.109  0.110

TRT o3 -0.237  0.138  0.086

PREV. SMR agq  -0.216  0.113  0.057

Grade &:

INTERCEPT aszg -0.292  0.158  0.065

PREV. RES a3 -0.408 0.172  0.017

GENDER a3y -0.320 0.105  0.002

TRT aszs  0.122  0.126  0.331

PREV. SMR ass  -0.367  0.129  0.004

PREV. MIS. IND a3 3.164 0.145 < 0.001
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anism is perhaps reasonable for the missing covariate process. Significance of ¢,
and ¢3 in the “IPWGEE-J” model indicates that there is association between miss-
ingness of the response and covariate, and this association should be taken into
account for the inference. Significance of ayss and aygs indicates there is a serial
dependence among consecutive observations. Moreover, if subjects have missing
observations at the previous assessment time, they are less likely to be observed at
the present assessment. Significance of a1, qy31, 021 and oy indicates that the
previously observed smoking status has a negative effect on observing the present
assessment. Significance of GENDER in the missing response model suggests that
female students are more likely to participate in the study compared to male stu-
dents. However, it is not significant in the missing covariate models. Treatment
has no significant effects on the missingness of response or covariate. Significance
of ayou, Qyaa, agzos and ayge suggests that the previously observed social models
risk score has a negative effect on the missingness of the assessment. Students
are more likely to participate in the study when none of their parents, siblings or
friends smoke. The estimates based on the “IPWGEE-M2” method are not com-
patible with those from the “IPWGEE-I" and “IPWGEE-J” methods. However,
it appears that the “IPWGEE-M2” modeling method also detects evidence for a
missing at random mechanism, indicating by the nature of the estimates for awy,
oy, 31 and asy.

4.5.4 Application to a Study of Patients with Skeletal Metas-
tases

In this subsection, we apply the proposed methods to study a bone metastases
data set (Hortobagyi et al., 1998). Women with advanced breast cancer often

experience bone metastases. From January 1991 to March 1994, the Protocol 19
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Aredia Breast Cancer Study Group of Novartis Pharmaceuticals Inc. conducted
a randomized clinical trial at 97 sites in the United States, Canada, Australia
and New Zealand. The osteoclast activating factors released by tumor cells cause
destruction of bone, which in turn leads to the occurrence of the aforementioned
skeletal complications. Radiographic surveys of bone lesions were performed and
new bone lesions were recorded. The objective of this study is to evaluate covariate
effects on the occurrence of bone lesions for patients with breast cancer. The
response is the lesion code. Covariates of interests include age at study entry
(coded as AGE: 1 for age > 50, 0 for age < 50), ECOG score at study entry
(coded as ECOG: 1 for two or more, 0 otherwise), the number of fractures at
baseline (coded as FRACT: 1 for one or more, 0 for none), pain score at study
entry (coded as PSCORE) which is coded as four levels based on the 25%, 50% and
75% quantiles, and urinary hydroxyproline/creatinine ratio (coded as HYCRR).

Table 4.7 represents a sample dataset.

Two hundred and twenty patients entered the study and were intended to be
assessed at baseline, 6 months and 12 months from the baseline. However, the
collected measurements are incomplete. Proportions of various patterns of the
missingness (Ry, RY) = (1,1), (0,0), (0,1) and (1,0) are 70.0%, 14.5%, 2.3% and
13.2%, respectively, and (R§, RY) = (1,1), (0,0), (0,1) and (1,0) are 70.0%, 9.1%,

1.8% and 19.1%, respectively.

Let Y;; = 1 if patient ¢ at time j has a new lesion, and 0 otherwise, j = 1,2, 3.

Consider the model for the marginal probabilities

logit Hij = /60 + ﬁl : AGE, + ﬁg : ECOGZ + ﬁg : FRACTZ + 64 . PSCOREL

+B5 - PSCORE2; + 3 - PSCORES; + 3; - HYCRRy;, j=1,2,3,
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Table 4.7: Sample data from a bone metastases study

HYCRR' LESIONT

ID AGE ECOG FRACT PSCORE1 PSCORE2 PSCORE3 1 2 3 12

3

1 1 1 0 0 0 1 0.076 0.064 0.042 10 O
2 1 0 0 0 1 0 0.039 0.006 0.011 00 1
3 1 1 1 0 0 0 0094 - 0103 11 O
4 1 0 1 0 0 1 0.050 0.034 0.030 00 1
5 1 0 0 0 1 0 0.027 0.027 0.046 10 O
6 1 1 1 1 0 0 0.103 0.071 0.127 01 O
7 1 0 0 0 0 0 0.067 0.052 0.029 11 1
8§ 1 1 1 0 0 0 0.175 0.147 0.177 01 O
9 1 1 0 1 0 0 0.044 0.077 0.040 00 1
10 1 0 1 0 1 0 0.068 0.080 0.057 1 - 1
1 1 0 0 1 0 0 0.012 0.011 0.008 00 1
12 1 0 0 0 1 0 0.069 0.061 - O0- 1
13 1 1 1 0 1 0 0.040 0.028 0.040 00 1
14 1 0 0 0 0 0 0.026 0.028 0.020 00 1
15 1 0 0 1 0 0 0.026 - 0026 00 1
16 1 0 1 0 0 1 00330043 - 0- 1
17 1 0 0 1 0 0 0.051 0.026 0.025 00 1
18 1 0 1 0 0 1 0.048 0.069 0.038 00 O
19 1 0 0 0 0 0 0.027 0.014 0018 01 1
20 1 0 0 0 0 1 0.061 0013 - 0- 1
21 1 0 1 0 0 0 0.044 0.004 0.018 00 1
22 1 0 0 0 1 0 0.018 - 0012 00 O
23 1 0 0 0 1 0 0.041 - - 00 1
24 1 0 0 1 0 0 0.039 0.028 0.032 1 - 0
25 1 1 0 1 0 0 0.0770.051 - 0- 1
26 1 1 0 0 0 0 0.173 0.152 0.106 00 1
271 1 0 0 0 0 0 0.201 0.104 0.063 00 1
1 0 0 0 1 0 1

0.048 0.022 0.019 00

t Missing data are denoted by -.

143



where PSCORE1; = 1 if the pain score at study entry is between the 25% and
50% quantiles, and 0 otherwise; PSCORE2; = 1 if the pain score at study entry is
between the 50% and 75% quantiles, and 0 otherwise; and PSCORE3; = 1 if the

pain score at study entry is higher than the 75% quantile, and 0 otherwise.

For the missing response and covariate indicators, we specify the models

logit )\;l-’j = a0 + a1 - AGE; + ay - ECOG; + a3 - FRACT,; + oy - PSCOREL,
+ay5 . PSCORE2Z + Qg - PSCORE3Z + Q7+ re. HYCRRZ'J_l

i,j—1

+ays Y Yo, J=2,3, (4.17)
and

lOglt )\ZC] = Qo+ Qy1 - ng'fj—l + Qo - AGEZ + Qg3 - ECOGZ + Qupy - FRACTZ
+a,s - PSCOREL; + a6 - PSCORE2; + a7 - PSCORES;

+agg8 . sz_lHYCRRi,j—l + Qg9 * TZj_lyi,j—la ] = 27 3. (418)

For the association between the missingness of the response and covariate, we

assume a common odds ratio at each assessment, i.e., log(v;;) = ¢ for j = 2, 3.

Analogous to Section 4.5.3, here we undertake five methods to analyze the data.
Specifically, in the “IPWGEE-M2” analysis we use the weights determined from the

model

10g1t)\;k] = oo+ aq- ’r’;-':j_l + o - AGEZ + o - ECOGZ + ay - FRACT,
+as - PSCOREL; + a5 - PSCORE2; + a7 - PSCORES;

T y
+asg - 7’2-7]-_1HYCRRZ'J’_1 + ag - Tij—1Yi5-1,

where \;; = P(R;; = 1|R;,;_,,Y”. For the “AIPWGEE-J” method we choose

ij—10 44
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Al(a) = (Aglu A;27 Agg), where

I(RY. =1,R* =0 !
Ail:<|:( zyy ;; )_ﬂ%_l].R?j.Kj’jZQ’g)’

r _ -TY 1

I(R!. =0,R% =0 ’
A23:<|:( 1) 1) )—1:|'Z/ 92273)7

T Y xy iy
1 T — W + T

I(R}; =0,R}; = 1) ‘ '

Table 4.8 reports on the results for the response model. The “GEE”, “IPWGEE-
M2” and “IPWGEE-I" methods give the estimates that are much different from
those obtained from those obtained from the “IPWGEE-J” and “AIPWGEE-J”
methods. Again, it is seen that the “AIPWGEE-J” method leads to smaller stan-
dard errors than the “IPWGEE-J” method, which agrees with our expectation that
the “AIPWGEE-J” method is more efficient. All these methods suggest that only
the HYCRR is statistically significant. The “GEE” method provides strongest
evidence of the HYCRR effect, while the “IPWGEE-M2” method tends to re-
veal weakest evidence for that. It even fails to support an HYCRR effect when
the association among the response components is assumed unstructured. The
“AIPWGEE-J” method seems to provide stronger evidence for the HYCRR effect
than the “IPWGEE-J” method.

Table 4.9 records the results for the missing data processes obtained from the
“IPWGEE-I", “IPWGEE-J" and “IPWGEE-M2” methods. The “IPWGEE-I" and
“IPWGEE-J” methods lead to fairly comparable estimates for the parameters as-
sociated with both the missing response and missing covariate processes. Both

methods reveal the same nature of the missing data mechanism. Specifically, cs
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Table 4.8: Results of estimation based on unweighted and weighted GEE when analyzing data from a bone metastases
study: response models

Unweighted IPWGEE-M2 IPWGEE-I IPWGEE-J ATPWGEE-J
Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value
Exchangeable
Go -0.332 0.245 0.175 -0.572 0.357 0.109 -0.846 0.432 0.050 -0.806 0.413 0.051 -0.805 0.394 0.041
Gy -0.112 0.160 0.484 -0.111 0.234 0.635 -0.071 0.284 0.803 -0.075 0.272 0.783 -0.074 0.268 0.782
By -0.197 0.189 0.297 -0.226 0.270 0.403 -0.280 0.345 0.417 -0.266 0.332 0.423 -0.267 0.317 0.400
B3 -0.221 0.182 0.225 -0.128 0.231 0.580 -0.048 0.280 0.864 -0.044 0.273 0.872 -0.045 0.263 0.864
B4 0.076 0.224 0.734 0.090 0.323 0.781 0.110 0.391 0.778 0.110 0.376 0.770  0.109 0.368 0.767
Os 0.151 0.212 0.476 0.181 0.310 0.559 0.244 0.369 0.508 0.235 0.355 0.508 0.234 0.344 0.496
Bs 0.188 0.201 0.350 0.239 0.335 0.476 0.202 0.412 0.624 0.196 0.397 0.622 0.195 0.389 0.616
G, 8430 2.625 0.001 9.155 3.863 0.018 10.846 4.932 0.028 10.201 4.713 0.030 10.199 4.594 0.026
AR(1)
By -0.639 0.286 0.025 -0.969 0.339 0.004 -1.158 0.398 0.004 -0.785 0.395 0.047 -0.784 0.372 0.035
Gy -0.087 0.189 0.645 -0.090 0.221 0.684 -0.048 0.260 0.854 -0.041 0.257 0.873 -0.041 0.254 0.872
By -0.257 0.226 0.255 -0.315 0.262 0.229 -0.325 0.321 0.311 -0.295 0.317 0.352 -0.294 0.306 0.337
B3 -0.323 0.223 0.147 -0.182 0.213 0.393 -0.109 0.248 0.660 -0.102 0.253 0.687 -0.103 0.242 0.670
By 0.086 0.273 0.753 0.123 0.308 0.690 0.125 0.356 0.725 0.107 0.355 0.763  0.107 0.349 0.759
Os 0.260 0.252 0.302 0.309 0.295 0.295 0.340 0.334 0.309 0.285 0.334 0.393 0.286 0.325 0.379
Bs 0.271 0.240 0.259 0.328 0.325 0.313 0.287 0.376 0.445 0.217 0.380 0.568 0.219 0.375 0.559
G 12.410 3.018<0.001 13.465 3.718 <0.001 14.186 4.617 0.002 12.843 4.736 0.007 12.840 4.539 0.005
Unstructured

Go 0.037 0.120 0.758 -0.118 0.324 0.716 -0.372 0.278 0.181 -0.297 0.263 0.259 -0.298 0.248 0.230
£y -0.153 0.075 0.041 -0.130 0.215 0.545 -0.078 0.186 0.675 -0.087 0.177 0.623 -0.086 0.174 0.621
By -0.096 0.087 0.270 -0.107 0.242 0.658 -0.179 0.217 0.409 -0.153 0.207 0.460 -0.152 0.198 0.443
B3 -0.197 0.086 0.022 -0.154 0.198 0.437 -0.075 0.175 0.668 -0.081 0.168 0.630 -0.082 0.162 0.613
Gy 0.020 0.106 0.850 0.018 0.280 0.949 0.027 0.243 0.912 0.010 0.229 0.965 0.009 0.223 0.968
G5 0.066 0.100 0.509 0.141 0.276 0.609 0.180 0.233 0.440 0.168 0.221 0.447 0.167 0.213 0.433
B 0.143 0.093 0.124 0.185 0.301 0.539 0.149 0.259 0.565 0.137 0.247 0.579 0.137 0.243 0.573
G 3.269 1.279 0.011 5.766 3.398 0.090 7.698 3.061 0.012 6.716 2.871 0.019 6.719 2.755 0.015




Table 4.9: Results of estimation based on unweighted and weighted GEE when
analyzing data from a bone metastases study: missing data models

IPWGEE-I [IPWGEE-J

Parameters Estimate S.E. p-value Estimate S.E. p-value
Marginal missing-response models:

INTERC. ayo 0837 0343 0.015  0.802 0.338 0.018
AGE a,; 0357 0.248  0.149 0332 0.245 0.176
ECOG ay,  0.094 0297 0.752  0.009 0.292 0.975
FRACT ayz 0574 0349 0.099  0.603 0.345 0.081
PSCORE1 aye -0.335 0378 0375 -0.263 0.372  0.480
PSCORE2 a5 -0.127 0356 0.721  -0.056  0.350  0.873
PSCORE3 aye  -0.476 0330 0.149  -0.394 0.322 0.221

PREV. HYCRR «y; -0.422 3.340 0.899  0.285 3.310 0.931
PREV. RESP a,g  0.846  0.253 0.001  0.800 0.249 0.001

Marginal missing-covariate models:

INTERC. oy -0.841 0.353 0.017 -0.610 0.335 0.069
PREV. MIS. IND «,; 1.650 0.340 <0.001 0915 0.281 0.001
AGE oy 0127 0 0.226 0572 0.210 0.220 0.340
ECOG oyz -0.133  0.268  0.619  -0.285 0.260 0.274
FRACT oz 0693 0300 0.021  0.712 0.295 0.016
PSCORE1 oays  -0.082  0.340 0.809  -0.065 0.330 0.845
PSCORE2 oz -0.123  0.311  0.693  -0.023 0.303 0.940
PSCORE3 oy7 -0.357  0.288 0.216  -0.318 0.281  0.257

PREV. HYCRR «a,s -2.450 3.393 0470 2814 3.295 0.393
PREV. RESP oz 0508  0.223  0.022  0.583 0.217  0.007

Association:

) 3.929  1.547 <0.001
Estimates for IPWGEE-M2 Analysis:
INTERC. ap  -0.851 0.338 0.012
PREV. MIS. IND «a; 1.668 0.317 <0.001
AGE as  0.137  0.221 0.534
ECOG as  -0.034 0.262 0.898
FRACT ay 0.651  0.291  0.025
PSCORE1 as  -0.086 0.332 0.796
PSCORE2 ag  -0.160 0.302 0.597
PSCORE3 ar  -0.285 0.283 0.313

PREV. HYCRR «ag -2916 3.192 0.361
PREV. RESP ag 0279 0.221  0.206
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is statistically significant, suggesting that a missing at random mechanism is per-
haps reasonable for the missing response process. Similarly, little significance of
g4 and g9 suggests that a missing at random mechanism is perhaps reasonable
for the missing covariate process. Significance of the association parameter ¢ in
the “IPWGEE-J” method suggests there is association between missingness of the
response and covariate. Significance of «,; indicates there is a serial dependence
among consecutive observations of covariate HYCRR. Moreover, if subjects have
missing covariate HYCRR at the previous assessment time, then they are more
likely to miss the present assessment. Significance of ayg and ag9 indicates that
the previously observed new lesion has a positive effect on observing the present
assessment. FRACT in the missing response model is moderately significant, and
it is significant in the missing covariate model. The more number of fractures, the
larger probability to observe the responses and covariate. The estimates based on
the “IPWGEE-M2” method are not compatible with those from the “IPWGEE-I”
and “TPWGEE-J” methods. However, it appears that the “IPWGEE-M2” model-
ing method also detects evidence for a missing at random mechanism, indicating

by the nature of the estimates for ay.

4.6 Extension to Accommodate Multiple Missing
Covariates

In the preceding sections we focus on the case that only a single covariate, along
with the response, may be missing. In this section, we extend the proposed methods
to accommodate circumstances that multiple covariates could be missing. Slightly

different notation is used in this section.
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Let R;ji be the missing indicator for covariate X;;r, k = 1,2,...,p; with p; =
dim(X;;) where X;; = (Xjj1, Xijo, - - ., Xijp ), and R;jo be the missing indicator for
the response Y;;. Denote R;; = (Ryjo, Riji, ..., Rijp,)'. Assume R;; = 1, where 1 is
the (p1+1) x 1 vector of element 1. Let m;; = P(R;; = 1|Y;, X;, Z;). Under a MAR

mechanism with

P(Rij = Tij‘Ri,j—lu}/iaXia Zi) = P(Rij = Tij‘Ri,j—hY;‘(O)uXi(O)a Zi) )

where R; ;1 = {ri1,mia, ..., 7i;—1} with 7y being a realization of Ry, we write
j—1
T = Z {P(RZJ = ]]-|Ri,j71;}/i; Xl', Zl) . H P(Rze = T’L’Z|R’i,271; }/iin; Z’L)}? (419)
Rij-1 =1

for j > 2, where m;; = 1 is assumed. To determine 7;;, we further model the joint
probability P(Ry = ry|Rie—1,Y:, Xi, Z;). More specifically, let 6, = P(Rii =
1|Ri,j—17 Y;‘,XZ', Zz) fOI' ]{Z = 0, 1, ey P1- Let Rik = (Rmk — 52]k)/ (ka(l — 5ijk>7

ijk

pijst = BE(Rj Ri5,), and pijsyy..sre = E(Rj;, R, -+ B, ) be the Kth-order corre-
lation among components R;js,, Rijs,, - - -, Rijs, of Rij, where p = (po1, p12, - - -, Po1-p1 ) -

For given time point j, we employ the Bahadur representation (Bahadur, 1961; Cox,

1972) to express the joint probability

P(RU = Tij‘Ri,j—h }/;7 Xia ZZ)

p
_ Tigk (1 _ S \1=7riye U, T S
= H {5ijk (1 — i) } {1 + § PijstTijsTijt
k=0 s<t
* * * * * *
+ E PijustTijuTijsTije T+ Po1-p 5507551 " Tijpy } (4.20)
u<s<t

This strategy requires modeling the correlation structures of all orders. In prac-
tice, it is often the case that the second order dominates the association structure
while the third and higher order association is null or nearly null. Under such

circumstances, we may typically perform estimation along the lines of Sections 4.2
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and 4.3. That is, given j, for ¥ > k=0,1,...,p; — 1, let

ij =

P(Riji = 0, Rijiw = 1| R; j_1,Y;, X;, Z;)P(Riji = 1, Rijw = O|Ry j_1, Vi, X, Z))
be the odds ratio featuring the association between R;;;, and R;j. Regression
models may be invoked to characterize the building blocks d;;x and p;jrr (or equiv-
alently, 1;;xx) in (4.20) where the third or higher order correlations are constrained
to be zero. Let o and ¢ be the parameters associated with the models d;;, and
Vyjkke respectively, and denote v = (™, ¢')’. Parameters o* and ¢ for the missing

data processes can be estimated by solving

Si(a) = Z Si(a) =0

and
Sy(a) = Z Spi(a) =0

where Sy;(a) = [00;/0a*'TW, H(R; — 6;), Sas(a) = [00F )0 |W;H(R: — 67), Ry =
(RL.,j=2,3,....J), 6 = (J

15 5

J=2,3,....J), 0ij = (00, Oijns- s 0ijpy) s, Wi =
diag(Wi;,7 = 2,3,...,J), W;; is the (p; + 1) X (p1 + 1) matrix with (k, k) element
diji(1 — 0ix) and (k, k') element dyjppr — dijrdijnr, R = (R;;,
(Rijk - Rije k < K'Y, 07 = (65

ij )

j:2a3>"'7‘])/7 R;kj =
j = 2,3, ey J),, 5:} = (52jkk’7k < ]{?/)/, and WZ* =
diag(5(1 - 57)).

If the third or higher order correlation is not zero, we need to calculate ;; using

(4.20) for which we may use an ad hoc way (e.g., Lipsitz et al., 1995) to replace the

¢th order correlation p;jk,k,...k, With

n
N 1 P P >
Pijkikg-ky = 1 E Rijk1 ighs © " M lijkeo
i=1
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where R;k]k = (Rijk—gijk)/ &jk(l — &Jk) Consequently, estimation of the response

parameter 3 can be performed by solving the estimating equations

n
=1
here U — D;M;(Y, ith M; = k' F, *[R;Y(p) @ Ai(a)]F, /2
where U;(8, ) = D;M;(Y; — p;) with M; = = F; 7[R (p) @ Ay(a)]F; 7,
I(R;1=1) I(Rinn=1, ,Ri1p; =1,Riz=1)  I(Rin=1,,Ri1p =1,Ri;=1)
i1 Ti12 Ti1J
I(Ri21=1,"--,Ri2p, =1,R;1=1) I(Ri2=1) I(Ri21=1,"--,Ri2p; =1,R;;=1)
Adfa) = |
I(Rij1=1, ,Rijp,=1,Rn=1) I(Rij1=1,,Rijp, =1,Rip=1) I(Riy=1)
Ti1J Ti2.J T JxJ

T = P(Riji =1, -, Rijp, = 1, Ry = 1|Y;, X;, Z;), and /) = i), ' with
A -1 — — Ao~ AN e A AN/
i =n""> Res[Ui(3,a), Si(a)Res[4(d), Si(a)]
i=1

and

h=n"'Y Res[A;(a), S;(a)Res[4;(&), Si(a)]-

A;(a) is a m x 1 vector, typically chosen by the investigator, that does not involve
unobserved data but satisfies E[A;(a)] = 0. For example, we could choose A4;(a) =

(Aly, -+, AL ) with

p1

I(Ryj =1y . ’
Aip = <|:M'7Tijk_1 'Rijk'Xijkujzoulv---vj) ;

mij (7ij)
where r;; = (rijo, ..., Tijp) 18 & (p1 + 1) X 1 vector with 7, = 1, and m;;(r;;) =
P(R;; = 14j|Yi, Zi, X;). The choice of the A;(«) functions is not unique. It is often
chosen for convenience, and in practice, a wide range of choices can lead to the
improvement in efficiency. The asymptotic distribution of the resulting estimator

can be established analogously to that in Section 4.4.
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4.7  Estimation of the Asymptotic Covariance
Matrix

For each component oy of o, £ = 1,2,...,q, we define

Ge(B,0) = ZDi (OM;() /Ocwg) - (Vi — ).
Then E(OU;(3,a)/da’) is consistently estimated by, as n — oo,
G(3,0) =n" (G1(8,0), Ga(B.d), ..., Gy(B, ) )
If we let
Mi(o) = = S0 CIW - (X ).
then E(0S;(a)/0d) is consistentlylzelstimated by, as n — oo,

- DDy 0

M* (&) = nt ,
M3, (&) — i Crw;r'Cr

The matrix ¥ is consistently estimated by, as n — oo,
S =n"") " QiB.&)Qi(B, &),
i=1

where Q;(3, &) = Ui(3,a) — G(B, &) - [M*(&)] ™" - Si(a), and the matrix I" is consis-
tently estimated by, as n — oo, L=n'M (@ ,@&). Inference about /3 is conducted by
replacing ¥ and I" with these consistent estimates in the expression of the asymp-

totic covariance matrix.
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4.8 Some Proof for the Efficient Estimate via
Augmented IPWGEE

We first show that n is actually equal to the regression coefficient of A;(«) in
the population regression of U;(3,«) on Hf. To see this, let n* be the regression
coefficient of H in the population regression of U;(3,a) on H}, that is, n* =

E[U;H|[E(H; H)| 71, then by Hf = (Ai(«a), Si(a)), we have
n* = E[U;A,US] (

(All A12)
= (E[U:A] EIU:S])

BlAA EAS) )
E[SA)  E[S:S]

A21 A22

— ( BlU.AA" + BU.S)A7 E[UA)A™ 4 B[U,S)A2 )

where
A" = (E[A;A]] - E[AS)E[S;S] 7 E[S;A)]) ™,
A = —E[S:5]) 7' B[S A)(E[A; A)) — E[AS]E[S:S] T E[S; A]) Y,
A® = —E[AA) 7 E[AiS](E[S:S)) — E[S: A E[A;A)) 7 E[A:S]) ™,
and

AP = (E[S,S]) - B[S, A)E[AA] T EIAS]) ™

Thus, the regression coefficient of A; is E[U; Al] A" + E[U;S!]A?!, which is equal to

n after some algebra.

Subject to regularity conditions and that 7 is chosen as above, we obtain, using

the same arguments in Section 4.3.3,
n1/2(BT —B) = T2 ZQ" + 0,(1),
i=1
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where Q; = U] —E[0U] /0a/][E(8S;/da’)]1-S;. Now we show that Q; = Res(U;(5, o), H}).

Noting that E[QU] /da'] = —E[U} S!] and E(9S;/d¢/) = —E[S;S!], we write
Q; = Ul — E[QU! /8a/|[E(DS;/da)) ™t - S;
= Ui —nA; — B[U;S; = nAS[E(SiS)] ™' Si

= Ui —nAi —ms;,

where 1, = E[U;S! — nA;S!][E(S;S!)]™!. Analogous to the preceding calculation,
we can show that 7, is the regression coefficient of \S; in the regression of U; on H;,
so we have Q; = U; — n*H} = Res(U;(B, «), H}) with n* = (n,m). Thus, by the
Central Limit Theorem, n'/?(" — () has the asymptotic covariance I~'Sf[[~1]/

where X1 = var{Res(U;(3, ), H})}.

Now it remains to show that 31 is more efficient than 3. Note that n'/ 2( G- () has
the asymptotic covariance I'"'X[['~!] where ¥ can be written as var{Res(U;(3, o), S;(«))}.

If letting 72 be the regression coefficient of U; on S;, then

var{Res(U;, S;)} = var[U; — nS;]
= EU; —nSi][Us — mSi]
= E[Ui—n"H)+ (" H —n25)][(Us — 0" H) + (n"H —m2S;)]
= ElU =0 H][U; =" H)' + Elg"Hi = npSil[n" H} — 255
> E[[Ui —n"H|[U; — g H]

= var{Res(U;, H)}.

The inequality is strict unless n* = 0. The third last step uses the fact that
En*H; — n2Si][U; — n*H}|" = 0 for the residual U; — n*H; of the projection of U;

on the expanded space of H*. Therefore, 3! is more efficient than 3 when 7 # 0.
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Chapter 5

Association Studies for
Longitudinal Data Arising in
Clusters with Missing Covariates

5.1 Introduction

Many analyses for longitudinal incomplete data focus on studying the impact
of covariates on the mean responses. Fitzmaurice et al. (2001) considered the case
with missing responses for longitudinal binary data. A number of estimating equa-
tions approaches are considered for cases where drop-out cannot be assumed to be
missing completely at random. These approaches include first-order generalized
estimating equations (GEE) (Liang and Zeger, 1986), GEE based on conditional
residuals, GEE based on multivariate normal estimating equations for the covari-
ance matrix, and second-order generalized estimating equations (GEE2) that fea-
ture association structures among repeated measurements. Bias analyses may be

performed for estimation of both the association parameters and mean parameters.

However, in clinical trials and observational studies, complete covariate data are

often not available for every subject. Missing data may arise in many circumstances,
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including the unavailability of covariate measurements, survey nonresponse, study
subjects failing to report to a clinic for monthly evaluations, respondents refusing
to answer certain items on a questionnaire, and loss of data. Problems arise if the
mechanism leading to the missing data is related to these covariates. Complete
case analysis can give invalid inference. Under the missing completely at random
(MCAR) mechanism, the first-order GEE approach yields consistent estimates for
the regression parameters. When the data are missing at random (MAR) or missing
not at random (MNAR), an analysis based on first-order GEE gives inconsistent
estimates of parameters for the regression model. Robins and Rotnitzky (1995),
and Robins et al. (1994, 1995) developed a class of estimators based on an inverse
probability weighted generalized estimating equations (IPWGEE) in a regression
setting when data are MAR. This approach involves modeling the missing data
process and weighting the estimating equations by the inverse of a probability that
is calculated based on the models for the missing data process. If the models for
both the marginal mean of the response and the missing data process are correctly
formulated, the IPWGEE approach corrects the bias and gives consistent estimates

under the MAR mechanism.

In many situations, longitudinal data arise in clusters. Common examples in-
clude longitudinal community intervention studies (e.g., Perry et al., 1989), family
studies involving repeated assessments of individual members over time (Payment
et al., 1991), and longitudinal school-based studies in which individual schools are
randomized to receive an experimental or control intervention (Cameron et al.,
1999). Clustered longitudinal data feature both a cross-sectional and a longitudi-
nal correlation structure, and interest often resides in the strength of both types of

association. When the association parameters are of central importance, second-

156



order GEEs can be constructed to facilitate their more efficient estimation. Prentice
(1988) developed such equations and emphasized estimation of correlation parame-
ters. Fitzmaurice et al. (1993) proposed a model that parameterizes the association
in terms of conditional odds ratios. Lipsitz, Laird and Harrington (1991), Liang,
Zeger and Qaqish (1992), Carey, Zeger and Diggle (1993), Molenberghs and Lesaffre
(1994), Lang and Agresti (1994), and Fitzmaurice and Lipsitz (1995) have proposed
models that parameterize the association in terms of marginal odds ratios. Yi and
Cook (2002) discussed marginal methods for incomplete responses in longitudinal
data arising in clusters, where the inverse probability weighted second-order esti-
mating equations are developed. Under MAR, this method facilitates consistent

estimation of the marginal mean parameters and association parameters as well.

However, little attention has been directed to address the impact of missing
covariates on the association parameters in clustered longitudinal studies. This
chapter mainly addresses this problem. Weighted first and second order estimating
equations may be constructed to obtain consistent estimates of association parame-
ters. In cross-sectionally clustered longitudinal data, clustering in the missing data

process may need to be addressed to get efficient estimates (Yi and Cook, 2002).

This chapter is organized as follows. Section 5.2 gives a special case by address-
ing the cross-sectional studies arising in clusters with missing covariates. Section 5.3
addresses the more general case of association studies for incomplete longitudinal

data.
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5.2 Cross-Sectional Studies

5.2.1 Notation and Model Assumptions

Response Process

Suppose that there are n clusters and J; individuals within cluster i, i =
1,2,...,n. Let Y; = (Y;,...,Y.;,)’, where Yj; denotes the binary response for
subject j in cluster 7. Let X;; be a scalar covariate that may be missing and
X = (Xa, ..., Xoy) Let Zy; = (1, Zij1, Zija, - - -, Zijp—2)" be the covariate vector
that are always observed, and Z; = (Z};,..., Z;;)"

Define p;; = E(Yij|XiaZi) = P(Yij = 11Xy, Z;), and let p; = (par, - - -, fig,)'-
Provided that the mean structure of Yj; depends only on the covariate vector for
subject j in cluster ¢, we may consider logistic regression models for the mean of

the form
logit(pi;) = XijBe + Z;8.
for j = 1,...,J;. Let 8 = (8,,3) be a vector of regression parameters. The

variance for the response Y;; is specified as
vij = Var(Yy| X, Zi) = pij (1 — pig),

which depends on the regression parameter vector 3.

The joint probability for any pair of binary responses
pijy = E(Yi;Yip| Xi, Zi) = P(Yi; = 1, Y55 = 1|1X5, Z;)

can be modeled in terms of the two marginal probabilities y;;(5) and p;;(5) in

combination with an association parameter vector. One approach is to use the
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conditional correlation between Y;; and Y, given Z; and X;, where

Fijjr — HijHij!
¢ = Corr(Yy;, Yii| Xi, Z;) = '
43 7Y [ (1 = paig) prigr (1 — pagge )|/

In terms of the correlation coefficient, the joint probability p;;; can then be ex-

pressed as

Higg = Hightigr + igg+ [ig (L= pgg )i (1 — puag)]V2.

One may alternatively use odds ratio to characterize the association among re-

sponses. Let 1);;;, be the odds ratio between Y;; and Y;;/, which is defined by

Yijjr = (5.1)

Regression models for the association are typically specified as
log(vij5) = u;jj’ -0,
where wu;;;; is a vector of covariates which specifies the form of the association

between Y;; and Y;;, and ¢ is a vector of regression parameters. Letting w;;;: be

the scalar 1, for example, leads to the exchangeable association between responses

(Yi and Cook, 2002).

The joint probability p;;; is determined by the marginal means and the odds

ratio. Note that
i = frigyr (1 — paj — prigr =+ pijjr)
7 (Mz’j - Mz’jj')(ﬂij’ - Mz’jj')

Using the quadratic formula, we can solve for p;;;» given by

a...,_[ 2

igg! %40 —4¢¢jj’ (wijj’_l)ﬂij/»‘ij’]l/2

XY iy £ 1,

Mg * Mg if iz =1,

Hijjr =

where a;;;; = 1 — (1 — 9y;5)(ji; + i) (Lipsitz et al., 1991). Given this, the
correlation ¢;;;; can be written in terms of the marginal means and the odds ratio
Dijjr-
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Missing Data Models

Let R;; be the missing data indicator for covariate X;;, where R;; = 1 if Xj; is

observed and 0 otherwise. Let 7;; be a realization of R;;.
Let \jj = P(R;; = 1|Y;, X, Z;), known up to a vector of unknown parameters

~v. Typically, a logistic link may relate A;; to a linear function of Y;, X; and Z,, i.e.

lOglt()\w) = ufj' e
where uj; may be a function of {Y;, X;, Z;}.

We define the odds ratio for subject j and j’ in cluster i as

Vi =

Let ¢* be the regression parameters linking the odds ratios ¢7;; to the related

covariates, u;; ., say. For example,

’

Denote a = (v, ¢*')’ to be the ¢ vector of parameters associated with the missing-

data process.

Let )\ijj’ = P(R” = 1, Rij’ = ].|Y;, ZZ', XZ) be the jOiIlt probablhty for (Rz’j, Rij’)-

From
Wi = Aijir[L = Aij = Aijr £ Aijjr]
(Aij = Aiggr) (Nagr — Aigyr)
we can get
w1 %2 gk D112
)\ij . >\ij’7 iflp;-kjj/ == 1,

where aj;;, =1 — (1 = ¥5)(Aij + Aij) (e.g. Lipsitz et al., 1991).
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Here we focus on dealing with the MAR mechanism, where we assume that
P(Ry; = 1|Y;, X;, Zi) = P(Ry; = 1|Y;, X, Z)

P(Rij =1, Ri; = 1|Y;, Z;, X\”) - P(Rij = 0, Ry; = 0|Y;, Z;, X))
P(Rij =1,Ri; = 0|Y;, Z;, X\”) - P(Ryj = 0, Ry = 1|Y;, Zi, X))

w:jj’ =
and hence \;;;» does not depend on the unobserved Xi(m).

5.2.2 Estimation Procedures

Our primary interest lies in estimating parameters § associated with the mean

responses as well as association parameters ¢. Let 0 = (5, ¢')".
Estimating Equations for Mean Parameters

Let D; = Oul/0B be the p x J; derivative matrix of the mean vector p; with

respect to 3. Let
Ai(a) = diag(I(Ry; = 1)/ A, 1 < j < Jj)

be the J; x J; weight matrix, and V; = diag(p;;(1 — p45),1 < j < Jp).

The GEE for 3 are given by
Uy(0,a) = i Uyi(0,a) =0, (5.2)
i=1
where Uy (6, o) = DV, A (@) (Y — ;).
Estimating Equations for Association Parameters

Let

Af(a) = diag(I(Rij = 1, Riyy = 1)/ Nijyrs 5 <)
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The GEEs for ¢ are of the form
Ua(0,0) = Uni(f,0) =0, (5.3)
i=1

where Uy;(0, ) = CiW; 1A (@) (Vi=&), Vi = (YiYiy,j < '), & = E(Vi|Xi, Z) =
(pijir, g < 3", Ci = 0€/0¢ is the derivative matrix of the mean vector & with
respect to ¢, W; is a working covariance matrix. The covariance matrix of )
involves third and forth moments of the responses, which we would rather not

estimate here. The independence working covariance matrix
Wi = diag(pijy - (1= pagyr), j < 5)

is often used.

Here we remark that only the data with fully observed covariates are used
in the estimating equations (5.2) and (5.3). Therefore, the resulting estimators
may lose efficiency. As suggested in Chapter 4, we may employ the improved
inverse probability weighted estimates which are theoretically more efficient under
the assumption of data missing at random. Or, we can also develop doubly robust
estimators, which are robust under certain conditions to misspecification of the
model for the probability of response. Note that we only use the independence
working correlation matrix in (5.2) and (5.3). We can adapt the idea of Chapter 4

to incorporate the general correlation matrix, and this is the future research work.
Estimation for Parameters of Missing-Data Process

Let V;* = (vj;;) with v, = A (1 — Ayy) if = 5" and Aijr — Aij - Aijr otherwise.

Let Rz = (Ril,RiQ, .. ’7RiJi)/7 >\2 = ()\i17>\i27 .. ‘7)‘iJi>/7 and D;k = 8)\;/8’}/, then the
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estimating equations for v are of the form

> Si(a) =0, (5.4)

i=1
where Sy;(a) = DIV Y (R; — \i).
For second order estimating equations for the association parameter ¢*, we
deﬁne Rz = (RileQ, ey Ri,Ji—lRiJi),7 Az = E(RZD/;, XZ', ZZ), Cz* = 0/\//&15* and
Wi* = diag(Aijj/ . (1 — >\ijj’)7 j < j/)
Then estimating equations for ¢* are given by

Z Sai(ar) = 0, (5.5)

where Sy;(a) = C;W; = (R; — Ay). Let Si(a) = (5;(), Sh;(a))".
5.2.3 Estimation and Inference

We estimate the parameters based on the following two stages in the same spirit

of Chapter 4:

Stage 1: Solve (5.4) and (5.5) for the missing data parameter « using Fisher-

scoring algorithm as follows. Define
M; () ==Y DiV;i'Dy
i=1

and

Mi(a) == crwiiey

i=1
For any initial values a = o?), simultaneously update o using
* - -1 n _
(M (al=1)] ) >ic Sii(al=)
% - -1 n _
(M ()] Dict Sai(al=)

a® = oD _
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until o converges to &, say.

State 2: Replace a with the estimate & and solve (5.2) and (5.3) for 6 via

Fisher-scoring algorithm as follows:

Let
My (0,6) = = DVt - Ay(&) - D
=1

and

M2(97d) == ZCZ'VVi_l ) A:(d) ’ Cz{‘
i=1

For any initial values 8 = 0© simultaneously update 3 and ¢ by the iterative
equations

-1

[Ml (9(1&—1) ) d)]

P — pt=1) _ .
[M(04D), &) U»(64-Y), &)

until 80 converges to 6, say.

We conclude this section with a discussion of the asymptotic distribution of the
estimate  and inferential issues. Let U;(0, o) = (Ul,(0, o), Ub;(8, ). When « is

specified to be ag, under standard regularity conditions for estimating functions,
n'2(0 — ) 5 N(0, T3 E(Us (0, ao)UL(0, ao))[T5']), asn — oo

where 'y = E(0U;(0,a0)/00"). When « is unspecified and estimated, the vari-
ation in the estimator & must be taken into account, and under the regularity
conditions stated by Robins et al. (1995), n'/2(§ — 6) is asymptotically normal
with mean 0 and asymptotic variance I '3[, where I = E[0U;(0, ) /00|, 2 =
ElQi(0,0)Q;i(0, )], and Qi(0, ) = Ui(0, ) = E(OU;(0, ) / 0a) - [E(9Si () [0 )| -
Si(a).
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For each component oy of o, £ =1,2,...,q, we define

G0, ) = ZDV1 (0A()/ay) - (Y; = ps)

i=1

and

Gae(0, ) ZCW (0N () /Day) - (Vi — &).

Then E(0U;(0,«)/0a’) is consistently estimated by, as n — oo,

) Gn(0,a) Gia(6, 6 Gr(0, 6
a6, a) = n-l 11(A @) 12(A @) 1q(A @)
Ga(0,a) Gao(l,a) Gay(8, &)
If we let
M;, (o ZC*W* L (0A:/07),
=1

then E(0S;(a)/0a’) is consistently estimated by, as n — oo,

Mi(@) 0
M;, (&) M;3(&)

M(a)=n""t-

The matrix Y is consistently estimated by, as n — oo,

)y —n_le (0,8)Q.(0, &),

A~

where Q;(0, &) = U; (0, &)—G(0, &)-[M(&)]1-S;(r), and the matrix T is consistently

estimated by, as n — oo,

where Mo, (0, &) = — S W AR () - (0€,/03'). Inferences about 6 are con-
ducted by replacing ¥ and I'" with these consistent estimates in the expression of

the asymptotic covariance matrix.
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5.2.4 Simulation Studies

In the simulation study, we focus on a setting where J; =3,i=1,2,...,n, and

n = 500. We simulate the longitudinal binary responses from a model with
logit(ui;) = Bo + Brwijn + Batijo,

where z;;; is a time varying binary covariate which is independently generated
from Bin(1,0.5) and it may be missing at some time points, z;j2 is another time
varying covariate generated from Bin(1,0.5), and it is always observed. We take
expit(Fy) = 0.4, exp(1) = 0.5 and exp(fz) = 0.8. The association between the

responses is specified through odds ratios given by (5.1) as v, = 2.

For the missing data process, we take
logit(\ij) = g + cuyij + axyjo.

We specify an exchangeable association structure with 7., = 1,2 or 4 for j # j'.

*
ijj'

The true values are taken as expit(ag) = 0.7, exp(ay) = 2.0, exp(az) = 2.0 (leading

to 20% missingness) and exp(ay) = 0.5, exp(as) = 0.5 (leading to 50% missingness).

Table 5.1 reports the simulation results. We compare the two methods. One is
to consider the analysis with the independence weights (assuming no clustering in
the missing data process). The second is the analysis with the clustered weights (as-
suming there is a clustering association). ASE is the average standard error based
on the robust variance estimators in Section 5.2.3, ESE is the empirical standard
error and CP is the 95% coverage probability. RE is the relative efficiency defined
by the the empirical variance of clustered weights estimators over the empirical

variance of independence weights estimators.
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It is seen that both methods give consistent results for the mean parameters,
because the equations for § in (5.2) have weights that are not functions of the
association parameters for the missing-data process; ASE is very close to ESE, and
the CP agrees well with the nominal level 95%. For the association parameters

Yij;, independence weights analysis gives biased estimates when ;. # 1, while

i’
estimates using clustered weights give very small finite sample biases.
For the regression coefficient 3, the relative efficiency is very close to 1. It is
not surprising that there is not much difference in efficiency for inferences about
the regression coefficients, because the equations for 3 have weights that are not

functions of the association parameters for the missing-data process.
5.2.5 Asymptotic Studies

Interest here lies in studying the asymptotic biases due to assuming the associ-
ation of missingness of the covariate in the same cluster is independent while the

association should be considered.

In the spirit of Rotnitzky and Wypij (1994) and Fitzmaurice, Molenberghs,
and Lipsitz (1995), to identify the probabilistic limit of é, we need to take the
expectation of U;(6, o) with respect to the joint distribution of D = (R;, Y}, XZ-(O), Z;)
and set it equal to zero. The solution to this equation, which we denote 67, is the
parameter to which 0 converges in probability. If D is the sample space for D, we
must solve the equation

EUi(0, )] = Z Divi_lAi(a)(Yi — i) - P(d; o, 0) = 0, (5.6)

deD

where d denotes a realized value for D € D and P(d; «, 0) is the true probability of

observing the realized value d. Equation (5.6) can be solved using standard software
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Table 5.1: Simulation results for the association study with missing covariates

Percent

True

Independence Weights

Clustered Weights

Missing Parameters Value Bias% ASE ESE CP  Bias% ASE ESE CP RE
50% Vi =4
Bo log(1.5) 0.00 0.1140.114 0.952 -0.97 0.1140.114 0.950 1.002
51 log(0.5) -0.28 0.1590.159 0.947 -0.14 0.158 0.158 0.948 0.987
Ba log(0.8) 3.14 0.1510.151 0.946 -1.74 0.1490.150 0.947 0.987
Vijjr 2 58.75 1.4551.472 0.814  4.08 0.7790.786 0.939 —
@ijj' =2
Bo log(1.5) 1.97 0.1200.120 0.951 -0.74 0.1210.121 0.951 1.016
51 log(0.5) 2.02 0.1620.162 0.943 -1.01 0.1610.162 0.948 1.003
(B log(0.8) 1.34 0.1530.153 0.945 -1.74 0.1520.1520.944 0.987
Vi 2 36.85 1.2191.250 0.906  3.75 0.8160.8190.942 -
Vi =1
Bo log(1.5) 0.94 0.1160.116 0.950 -0.49 0.116 0.116 0.950 1.002
O log(0.5) 1.18 0.1470.147 0.951  -0.28 0.146 0.146 0.952 0.993
B2 log(0.8) 1.34 0.1480.148 0.949  0.00 0.148 0.148 0.950 1.001
Vi 2 2.85 0.9050.907 0.946  2.87 0.9230.9250.948 -
20% Vi =4
Bo log(1.5) 0.00 0.106 0.106 0.950 1.97 0.1050.106 0.945 0.998
o3 log(0.5) -0.14 0.1260.126 0.950  -2.01 0.126 0.126 0.942 1.004
(s log(0.8) 1.34 0.1150.115 0.948  0.44 0.1150.1150.951 1.002
(Y 2 -3.08 0.2870.291 0.912 1.85 0.2760.2730.942 -
@D;'kjj’ =2
Bo log(1.5) 1.97 0.1000.100 0.943  -1.47 0.100 0.100 0.946 1.002
51 log(0.5) -2.47 0.1180.118 0.942 -0.29 0.1190.118 0.950 1.001
B log(0.8) 1.34 0.1180.118 0.945 2.25 0.1170.118 0.946 0.994
Vijjr 2 -3.06 0.3100.307 0.936  0.65 0.2970.2990.945 -
Vigy =1
Bo log(1.5) -1.47 0.0980.098 0.948  0.24 0.100 0.098 0.949 1.002
O log(0.5) 0.29 0.1130.113 0.951 -0.57 0.1130.113 0.948 1.000
B log(0.8) -2.25 0.1180.118 0.946  -0.44 0.1170.117 0.953 0.998
Vi 2 0.67 0.3510.352 0.948 0.05 0.3590.3570.947 —
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for generalized estimating equations by constructing a data set consisting of one
entry for each unique element of D and solving the corresponding set of equations

with a weight for outcome d given by A;(«) - P(d; a, 0).

The asymptotic covariance matrix of n*/2(4 — 61) is given by

ascov(y/n(0 — 07)) = A7Y (0N B(OH A0, asn — oo (5.7)
where

A(0) = E(0U(0,0)/00) =Y 0U;(0, ) /00 - P(d; v, 6)
and

B(6) = E(U/(6,)U}(60. ) = Y Ui(6, a)U(6, ) - P(d; ., 0).

deD

In this study, we assume the same physical settings as those in the simulation
studies. In the missing data model, we change as to adjust the missing proportion.

For each setting, we assume v}, = ¢* are the same for different subjects, and

ijj’
change it from 1 to 10 to indicate the magnitude of the associations among the

missing covariate in the cluster.

It is easy to see that the estimates of the mean parameters 3 for independence
weights analysis (assuming there is no association) and clustered weights analysis
(considering the missing association) give the same results because the estimating
equations for the mean parameters do not depend on the association parameters.
So, here we focus on the association parameter 1;;;;. We study the asymptotic
relative bias of independence weights analysis, where the relative asymptotic bias
is defined by (ngj/ —i51) /g Figures 5.1, 5.2 and 5.3 report the results. It is seen
that as the missing proportion increases, the relative bias increases if controlling

other conditions; also, as the missing association increases, the bias increases; the

relative bias increases as the association 1;;;s increases.
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Figure 5.1: Asymptotic relative bias of association parameter 1);;; in independence
weights analysis with 1);;;, = 4
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Figure 5.2: Asymptotic relative bias of association parameter 1);;; in independence
weights analysis with 1);;;, = 2
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Figure 5.3: Asymptotic relative bias of association parameter 1);;; in independence
weights analysis with 1;;;, = 1
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5.3 Clustered Longitudinal Data

5.3.1 Notation and Model Assumptions

Response Process

Suppose that there are n clusters and J; individuals within cluster i, i =
1,2,...,n. Furthermore suppose that there are K visits planned. Let Y;; =
(Yij1,Yijo, ..., Yijx)" denote the K response vector for subject j which we assume
that it is always observed. Let Y; = (Y}},..., Y/, )". Let Xy; = (X1, Xijo, ..., Xijx)'
be the covariate vector subject to missingness that may have missing values, and
let X; = (Xjy,...,Xi;)" Let Zyr = (1, Zijrr, Zijia, - - - » Zijkp—2) be the covariate

vector that are always observed, Zi; = (Zj;, . ..

Define ;i = E(Yiju| Xy, Zi) = P(Yige = 1|X;, Z), and let pi; = (pij, pago, - - -, pajirc)'s
j=1,...,Jiand i =1,...,n. Let p; = (py,...,;;)". Provided that the mean
structure of Y;j; depends only on the covariate vector for subject j at time k in
cluster i (e.g., Pepe and Anderson, 1994; Robins, Greenland and Hu, 1999), we
may consider logistic regression models for the mean of the form

logituie = XijrBe + Zi;1,0-
for k = 1,...,K,5 = 1,...,J;. Let f = (0, 3.) be the vector of regression
parameters. The variance for the response Y is specified as
viji = Var(Yije| X, Zi) = pigi(1 — pijn),
which depends on the regression parameter vector 3.
The joint probability for any pair of binary responses
isjksine = E(YieYijw | Xi, Zi) = P(Yige = 1, Y = 11X, Z;)
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can be modeled in terms of the two marginal probabilities j1;5(3) and g4 (5) in
addition to an association parameter vector. One approach is to use the correlation

between Yj;, and Yj; given Z; and X;, where

Hisik;i'k’ — HijkHij'k!
Gicjrey = Corr(Yijn, Yo | Xs, Z;) = -
7 ’ ’ [Mijk(l - ,uijk):uij’k’(l - Mij'k')]1/2

In terms of the correlation coefficient, the joint probability ji k. can then be

expressed as

Wisjksjk! = MijkMig'k + (bi;jk;j’k’ : [:uijk(l - ,uijk),uij’k’(l - Mij'k')]1/2-

One may alternatively use odds ratio to characterize the association among re-
sponses. Let ;.5 be the odds ratio between Y;;, and Y, which is defined
by

IR PV = 1, Y = 01X;, Z)P(Yyr = 0, Vi = 11X, Z)

(5.8)
Regression models for the association are typically specified as

log Yiyjjw = u;;jk;j’k’ -0,
where u; 5.1 is a vector of covariates which specifies the form of the association be-
tween Y, and Y, and ¢ is a vector of regression parameters. Letting u; k. be

the scalar 1, for example, leads to the exchangeable association between responses

(Yi and Cook, 2002). Specifically, we can adopt the following structure
log Yijrigin = do+ &1 - I(j = j') + ¢ - I(k = k).

Let ¢ = (¢o, d1, $2)".
The joint probability g i/ can be determined by the marginal means and the
odds ratio. Note that

Ni;jk;j’k’(l — Mijk — Mgk T ,ui;jk;j’k’)
(Hige — Higrsinr ) (Hijrer — Mgk )

Visjhsjn =

174



Using the quadratic formula, we can solve for pi; i, given by
[ 20 Ay ./—[a?, . —41!1-4- il /(1!1 il ./—1)/.1" Mt /}1/2
i5k;5"k isgk;i’ k! 55k K \Wisjksi’ k ijk il ¢ # 1
g(wi;jk;j,k,_l) ) 1;5k;5' K

Wijk * Fhijk! s Visikite = 1,

O

where ;i = 1 — (1 — Yijujnr ) (fije + pije) (e.g. Lipsitz et al., 1991). Given
this, the correlation ¢;. ./ can be written in terms of the marginal means and the

odds ratio ¥ jk. k-

Missing Data Models

Let R;; = (Rij1, Rijo, ..., Rijx) be the missing data indicator vector for co-
variate vector X;, where R;;, = 1 if X;j;; is observed and 0 otherwise. Let
rij = (rij1,...,rijx) be a realization of R;;. Let H] e = = {rij1,...,rije—1} de-

note the history of the missing data indicators for subject j up to but not include
visit k, k=2,3,...,K,j=1,...,J;. We shall focus on the monotone missing-data
patterns, that is, R;j, = 0 implies R;;r = 0 for k' > k, in which case H ik consists

of a sequence of consecutive 1’s or 0's.
Here we focus on dealing with MAR mechanism in marginal models, where we

assume that

P(Rzyk 1|Rzyk 1 — =1 n7X27Z) P(Rmk 1|Rzyk 1 — =1 }/;7 Z)

zyk?
where HJ) = {zij1, ..., xij—1}. We also assume, for j # j’
P(Rij = 17Rij’k = 1|Rij,k—1 = 17 Rij’,k—l = 17}/;:7Xi7 ZZ)

- P(Rij = 17Rij’k == 1|Rij,k—1 = 17 Rij’,k—l == 17}/;7 Zi? zjkﬂHw ) (59)

Let Aijr = P(Riji = 1| Rij—1 = 1,Y:, Xi, Z;), known up to a vector of unknown
parameters 7y, where R;;,_1 = 1 represents the history H ik of the indicator vari-

ables. Typically, a logistic link may relate a linear function of Y;, H7; and Z;,
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ie.
logit(Aijk) = ulj -
where ujj;;, may be a subset of {Y;, Hf,, Z;}.

Let m;jx = P(Rir = 1Y, X, Z;) be the marginal probability of observing sub-
ject j at time k in cluster ¢, given the entire vectors of responses and covariates; it
is given by m;j, = Hf:2 Aije for k> 2, and we assume m;;; = 1.

In some situations subjects within the same cluster may have substantial influ-
ence on each other when assessed at the same time point in the dropout process.
We model the association of the dropout process at each fixed time point k, where
we assume that

P(Rijx = 1|Rij—1 =1, Ry = 1Y, X;, Z;)
= P(Riyr=1Rijr1=1Y,2,X;) ifj#7 and k¥ <k
which states that the probability of observing subject j at time k does not depend
on the missingness of other subjects at earlier observation times, given that subject
j is present at time k — 1. At time k, we define the odds ratio for subjects j and 5’
in cluster ¢ as
Vign = (P(Rijr =1, Rije = Y Rijpe1 =1, Ry = 1,Y5, Z;, Xi)
‘P(Riji = 0, Rijix = O|Rijr—1 =1, Rijrp1 = 1,Y3, Z;, X))
J(P(Rijr =1, Rijipy = 0| Rije1 = 1, Rijr 1 = 1, Y5, Z3, Xi)

P(lek == 07 le’k = 1‘Rij,k—1 == 17 Rij’,k—l = 17 }/Zﬁ Zi7 XZ))

Let ¢}, be the regression parameters linking the odds ratios ¢} ;.. to the related

covariates, uj .., say. For example,

/
log(w;jk;j’k) = “ij;j'k “ P
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Denote v = (5, V4, -, Vi), @F = (03,03, ..., &%), and let a = (7', ¢*')’ be the ¢
vector of parameters associated with the missing-data process.

Let Nijeje = P(Rijk = 1, Rijig = 1|Rij—1 = 1, Rijo 1 = 1,Y;, Z;, X;) be the
joint probability for (R;;k, Rijx). From

Nisgge[1 = Nije — Nigri + Nigjisgoe]

* —_—
¢i;jk;j’k =
(Aijie = Nisjiire) Nigre — Nigjsgrne)
we can get
* 2 * - 1/2
O ki~ gt~ i Phnegrn— DAiakAigri] / for ¥, . #1
A — 2007 1) ’ i7k;i'k
isjksj'k — =
* —
Nijk * Nij'ks for oy = 1,

where aj ;o =1 — (1 — 95 m) (Nijr + Aijre) (e.g. Lipsitz et al., 1991).
Let mjkjw = P(Rijr = 1, Rijww = 1|Y;, Z;, X;) be the marginal probability,

which is given by

K/ . .
o Aijt =7 k<K
T Nije =7 k>F
Tisjksj'k! = Hf:2 Nisjtsjit J# i k=FK

k K . .

Ht:2 )‘i;jt;j’t L=kt )‘ij’t J 75 j', k<K
K’ k . )

L t=2 )‘i;jt;j’t ’ Ht:k’+1 )\ijt J 7"é ]/, k> K

with 51,51 = 1 for j §£ j/ (Yl and COOk, 2002)

5.3.2 Methods of Estimation

Our primary interest lies in estimating parameters [ associated with mean re-

sponses as well as association parameters ¢. Let 6 = (3, ¢')'.
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Estimating Equations for Mean Parameters
Let D; = 0u;/00 be the p x J;K derivative matrix of the mean vector p; with
respect to 3. Let
Ai(a) = diag(I (R = 1) /71, 1 < j < J;, 1 <k < K)

be the J; K x J;K weight matrix. Let V; = diag(;x(1 — piji), 1 <j < J;,1 <k <
K).

The GEE for 3 are given by
Ui(0,0) = Uy, a) =0, (5.10)
i=1
where Uy (6, o) = DV, Ay (@) (Y — ).

Estimating Equations for Association Parameters

Define (j, k) < (7,K') if j <j or j =4k <k Let
Al(e) = diag(I(Rijr = 1, Rijow = 1) /Tisjsjrs (7,F) < (7', K))
The GEEs for ¢ are of the form
Us(0, ) = zn:Ugi(Q,a) =0, (5.11)
i=1

where Uy(0, ) = CiW; " - Af(a) - (V; = &), Vi = YipYyw, k) < (41, K))',
&= EVilXi, Z) = (lisjrgrer, (3, k) < (', K))', C; = 0./ 0¢ is the derivative matrix
of the mean vector & with respect to ¢, W; is a working covariance matrix. The
covariance matrix of ); involves third and forth moments of the responses, which

we would rather not estimate. The independence working covariance matrix
W; = diag(pisjrsgne - (1 — pigrgn)s (5, k) < (5, )
is often used.
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Estimation for Parameters of Missing-Data Process

Let R}, = (Rik,-- ., Risx) indicate the missingness for subjects in cluster i at
time k, and let R} = (R}, Ri5,..., Rix)'. Let Ajg = (Nitk, - - -, Aisir)” be the vector
of conditional expectations of R}, and let A; = (Aly, Als, ..., Al,)". Because the
R}, terms are binary, we specify the covariance matrix as Vi = (v];.;) where
U ikeik = Nije(1 — Nji) if 7 = j" and Ajjkje — Nijk - Aijoe otherwise. Let V; =
diag(Vig, k = 2,3,..., K) be the covariance matrix for R}. Let D} = 0A}/0, then

the estimating equations for v are of the form
> Si(a) =0, (5.12)

where Sy;(a) = D}V YR — Ay).

For second order estimating equations for the association parameter ¢*, we
define R, = (RilkRZQka .- -vRi,Ji—l,kRiJik)la and R; = (Ri2/7Ri3/7 . 7RiK,)/- Let
Ar = E(R|Y;, Xi, Z;), CF = 0N} /0¢* and

Wi = diag(A, - (1— A)).

Then estimating equations for ¢* are given by

n

> Saila) =0, (5.13)
where Sy;(a) = C;W;~1 - (R; — AY). Let Si(a) = (57;(), Sh;(a))'.

5.3.3 Estimation and Inference

We also provide a two-stage estimate procedure here.
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Stage 1: Solve (5.12) and (5.13) for the missing data parameter «, using Fisher-

scoring algorithm as follows. Define
Mi(a) ==Y DV 'D;
i=1

and
Mi(a) = =S crwrler
i=1

0)

For any initial values a = o!?), simultaneously update v and ¢* using

-1

(M@= [0 Si(at)
(M3 (a7 S Sai(altD)

a® = oD _

until a® converges to &, say.

State 2: Replace o with the estimate & and solve (5.10) and (5.11) for 6 via

Fisher-scoring algorithm as follows:

Let
My(0,6) = =) DVt Ay(a) - D
=1

and

My(0,6) = — ZCZ'VVi_l A (@) - Cz(‘
i=1

For any initial values 8 = 0© simultaneously update 3 and ¢ by the iterative

equations

-1

(M (04D, 4))] U, (640, &)
[M(04D), &))" U(64D, &)

[oN
joN

P — gt=1) _

until #®) converges to 0, say.

We conclude this section with a discussion of the asymptotic distribution of the

estimate  and inferential issues. Let U;(0, o) = (Ul,(0, o), Ub;(8, ). When « is
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specified to be ag, under standard regularity conditions for estimating functions,
n'2(6 — 6) & N(0,T5  E(U(0, a0)UL (0, a0))[T5']), asn — oo

where I'y = E(0U;(6,a0)/00"). When « is unspecified and estimated, the vari-
ation in the estimator & must be taken into account, and under the regularity
conditions stated by Robins et al. (1995), n'/2(f — 6) is asymptotically normal
with mean 0 and asymptotic variance I '3[, where I = E[0U;(0, ) /00|, 2 =
E[Q:(0, ) @0, )], and Qu(0, ) = Us(6, @) — EQU,(0, o) /00 - [E(DSi(x) /0a’)]
Si(a).

For each component oy of o, £ =1,2,...,q, we define

GleGOé ZDV ! (8A( )/&u)-(Yi—ui)

=1

and

Gae(0, ) ZCW (DA () /Oayg) - (Vs — &).

Then E(0U;(0,«)/0d’) is consnstently estimated by, as n — oo,

R Gu(6,8) Gpa(6,a G, (0,4
G(6,4) =n 1 11(A @) 12(A @) 1q(A @)
G21 (67 OA[) G22(97 OA{) G2q(‘97 OA{)
If we let
Mz, (o ZC*W* L (0g 0),
=1

then F(0S;(a)/0a’) is consistently estimated by, as n — oo,

o M@ 0
M(a)=n A A .
M; (&) M;3(a)

The matrix Y is consistently estimated by, as n — oo,



where Q;(0, &) = U; (0, &)—G(0, &)-[M(&)]1-S;(r), and the matrix T is consistently

estimated by, as n — oo,

where My (6, 6) = — S0, C; WL - Ax(a) - (9€/8'). Inferences about 6 are con-
ducted by replacing ¥ and I' with these consistent estimates in the expression of

the asymptotic covariance matrix.
5.3.4 Simulation Studies

In the simulation study, we focus on a setting with K = 3 and J; = 3, i =
1,2,...,n, and n = 500. We simulate the longitudinal binary responses from a
model with

logit(wijr) = Bo + Fr%ijkn + Botijre + B3%ijis,

where ;1 is time varying binary covariate which is independently generated from
Bin(1,0.5) and it may be missing at some time points, z;jx2 = I(k = 2), and
Tijrs = I(k = 3). We take expit(8y) = 0.4, expit(Gy+52) = 0.5, expit(Fy+033) = 0.6,
exp(f1) = 0.5. The association between the responses is specified through odds
ratios given by (5.8) as ¥k = 1.2 j # 7,k # K, Vi = 1.5 1 j # 7/, and
Vi = 2.0 if kK # K.

For the missing data process, we take
logit(\ijx) = a0 + cqyije—1 + QoYije + Q3Tijk—11, k=2,3.

We specify an exchangeable association structure with o7, ., =1, 2 or 4 for j # j'.
The true values are take as expit(ag) = 0.7, exp(ay) = 0.75. Here as and a3 are

used to adjust the missing proportion.

182



Tables 5.2 to 5.5 report the results. Here we compare two methods. One is
the analysis that uses independence weights in the missing-data process based on
standard logistic regression models; the empirical variance is denoted var;. The
second is the analysis that uses clustered weights based on the second order es-
timating equations accommodating cross-sectional association within clusters; the
empirical variance is denoted vary. Empirical relative efficiency (RE) is defined as
vary /vary X 100. It is seen that both methods give consistent results for the regres-
sion coefficients and there is not much difference in efficiency for inference about
the regression coefficients because the equation for § have weights that are not

functions of the association parameters for the missing-data process.

However, for the association parameters, independence weights analysis gives
bigger bias than that for clustered weights analysis when there is cross-sectional
association within clusters. As the missing proportion increases, the bias increases.
When there is no cross-sectional association within clusters, i.e. 955 = 1 and
Y7 a3 = 1, both methods give consistent estimators, and the relative efficiency is
close to one with a minor loss for the estimators based on the association weights

approach.

5.3.5 Intermittently Missing Data

Monotone missing-data patterns have been the focus of much work in the anal-
ysis of longitudinal incomplete data. In practice, however, subjects may miss one
or more visits before returning for a subsequent visit, creating what is termed in-
termittently missing data, where R;;; = 0 does not necessarily imply R;; = 0 for

k<k.
In this section we investigate estimation of response parameters with inter-
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Table 5.2: Simulation results for the association study with missing covariates:
about 20% missing (i.e. exp(az) = 2.0, exp(as) = 1.5)

Independence Weights Clustered Weights
Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

(Vg0 Vigaygra) = (4:4)

o 0.74 0.106 0.105 94.3 1.84 0.105 0.105 94.8 99.9
631 0.14 0.114 0.114 946 0.72 0.114 0.114 954 999
0o 0.73 0.124 0.125 95.2 0.42 0.125 0.125 94.2 100.1
03 0.25 0.140 0.138 94.4 -0.76 0.138 0.138 95.4 100.1
oo 2.09 0.129 0.130 93.5 -0.51 0.126 0.127 954 —
03] 2.68 0.167 0.166 93.0 0.76 0.161 0.161 94.5 —
103 -5.41 0.150 0.149 93.6 0.70 0.142 0.142 94.2 -

(Vi josgr20 Vigaigra) = (4:2)
0o -2.71 0.111 0.111 94.3 -0.94 0.111 0.111 95.3 100.1
51 0.54 0.114 0.114 94.5 -0.14 0.115 0.114 94.9 100.1
6 0.49 0.127 0.126 94.4 0.24 0.126 0.126 94.6 99.8
03 0.65 0.127 0.128 95.5 0.98 0.128 0.128 94.8 99.9
oo -1.63 0.132 0.132 93.8 -1.02 0.129 0.129 95.1 -
03] 1.02 0.171 0.171 93.4 0.08 0.167 0.167 94.6 —
103 -4.33 0.156 0.154 93.6 0.060 0.147 0.146 94.4 —

(Vi jsgr20 Visgaygrs) = (2,2)
0o -0.49 0.104 0.104 94.2 -0.24 0.104 0.104 95.1 99.8
51 0.86 0.114 0.114 94.8 -0.54 0.114 0.114 94.6 100.1
6 0.00 0.118 0.120 94.2 0.49 0.120 0.120 95.0 99.9
03 0.36 0.130 0.131 94.9 0.49 0.131 0.131 95.1 100.0
oo -6.58 0.127 0.127 93.6 -1.24 0.125 0.125 94.5 —
03] 1.69 0.172 0.171 93.4 0.23 0.170 0.170 93.4 —
103 -3.31 0.149 0.151 93.9 0.20 0.145 0.147 94.4 -

(Vo2 Vi ga) = (1, 1)
0o -2.19 0.106 0.106 94.4 -1.03 0.109 0.106 94.6 100.0
51 -0.86 0.112 0.111 944 0.79 0.110 0.111 94.5 100.0
6 271 0.126 0.126 94.4 0.73 0.124 0.126 94.5 100.0
03 1.23 0.129 0.131 94.3 1.02 0.131 0.131 94.6 100.0
o -4.38 0.129 0.128 944 -1.09 0.128 0.128 94.4 100.1
01 0.56 0.156 0.156 94.6 0.23 0.157 0.156 94.5 100.3
103 -0.40 0.152 0.152 94.6 0.71 0.152 0.152 94.5 100.2
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Table 5.3: Simulation results for the association study with missing covariates:
about 25% missing (i.e. exp(az) = 2.0, exp(as) = 1.0)

Independence Weights

Clustered Weights

Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

( Zj2;jf2v¢§k;j3;j'3) = (474)
o -0.94 0.113 0.114 94.4 -0.42 0.115 0.114 94.0 99.6
631 0.43 0.115 0.115 94.9 -1.00 0.115 0.115 94.5 99.9
0o -0.94 0.124 0.124 94.8 1.06 0.124 0.124 94.7 100.0
03 0.49 0.141 0.141 94.5 0.24 0.141 0.141 95.3 100.0
oo -6.24 0.144 0.144 94.0 -1.05 0.137 0.138 94.2 -
03] 1.22 0.175 0.175 93.9 042 0.171 0.170 94.2 -
103 -5.72 0.162 0.162 93.1 0.90 0.155 0.152 93.9 -

( Zj2;jf2v¢§k;j3;j'3) = (4,2)
0o 0.24 0.109 0.109 94.9 -0.49 0.108 0.109 95.1 100.2
51 -0.13 0.117 0.117 944 -0.72 0.117 0.117 95.4 100.2
6 -0.24 0.124 0.124 95.0 0.49 0.124 0.124 95.6 99.9
03 1.42 0.140 0.139 94.9 0.36 0.139 0.139 94.6 100.1
oo -5.75 0.148 0.149 94.3 -0.54 0.144 0.143 94.3 —
03] 1.68 0.185 0.186 93.3 0.23 0.180 0.181 94.1 -
103 -5.52 0.162 0.163 93.1 0.60 0.155 0.157 94.0 —

(Vi gsgr20 Visgaggra) = (2,2)
0o -1.72 0.113 0.112 94.0 049 0.112 0.112 94.2 100.2
51 0.00 0.115 0.114 944 -0.86 0.114 0.114 94.2 99.8
6 2.09 0.131 0.132 94.2 0.73 0.132 0.132 94.6 100.1
03 0.87 0.142 0.143 95.0 0.12 0.143 0.143 94.5 100.0
oo -3.12 0.134 0.133 94.2 -1.08 0.128 0.130 94.4 -
03] 1.34 0.162 0.163 93.7 0.77 0.160 0.160 95.0 -
103 -3.34 0.166 0.166 93.7 0.60 0.161 0.161 94.1 -

(Vi 55020 Visgaygr) = (1, 1)
0o -1.08 0.112 0.112 944 0.00 0.111 0.112 94.3 100.0
51 0.00 0.114 0.115 944 -1.00 0.113 0.115 94.9 100.1
6 2.09 0.135 0.132 94.3 0.95 0.132 0.132 94.4 100.1
03 0.98 0.141 0.142 94.5 0.36 0.140 0.142 94.8 100.0
o -2.14 0.134 0.133 94.5 -1.00 0.135 0.133 94.5 100.2
03] 0.34 0.159 0.160 94.7 0.08 0.159 0.160 94.6 100.3
103 -0.60 0.167 0.164 94.3 0.60 0.164 0.164 94.3 100.3
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Table 5.4: Simulation results for the association study with missing covariates:
about 30% missing (i.e. exp(az) = 0.5, exp(ag) = 1.5)

Independence Weights Clustered Weights
Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

(Vi josgr20 Vijaygra) = (4:4)

o -0.98 0.111 0.111 955 0.49 0.111 0.111 95.0 100.2
631 -0.28 0.125 0.125 95.2  0.28 0.126 0.125 94.4 100.1
0o 1.09 0.129 0.130 94.2 -1.01 0.130 0.130 95.2 100.0
03 0.12 0.146 0.148 94.1 0.36 0.149 0.148 954 99.9
oo 10.97 0.207 0.206 93.0 1.26 0.190 0.190 93.9 —
03] -2.03 0.262 0.263 93.2 -0.45 0.249 0.249 93.5 —
103 5.02 0.260 0.261 92.5 -0.20 0.240 0.240 94.3 —

(Vi josgr20 Vijaigra) = (4:2)
0o -1.46 0.113 0.113 94.3 -0.73 0.113 0.113 95.1 100.0
51 0.54 0.133 0.132 95.2 0.72 0.132 0.131 94.4 99.8
6 -0.55 0.124 0.125 95.5 -0.24 0.125 0.125 94.4 100.1
03 -0.23 0.152 0.152 94.5 -0.12 0.152 0.152 94.7 99.9
oo 6.01 0.197 0.198 92.6 1.04 0.185 0.188 93.9 —
03] -2.47 0.250 0.250 93.7 -0.68 0.239 0.240 94.2 -
103 3.73 0.272 0.272 92.6 -0.20 0.252 0.250 94.4 -

(Vi gsgr20 Visgaygrs) = (2,2)
0o -1.47 0.114 0.114 94.8 -0.84 0.114 0.114 94.5 100.0
51 0.52 0.125 0.126 94.5 0.28 0.126 0.126 94.7 100.4
6 0.42 0.132 0.131 94.7 -0.95 0.131 0.131 94.3 99.9
03 -0.23 0.152 0.151 94.3 0.77 0.151 0.151 95.4 99.8
oo -5.51 0.222 0.222 94.0 1.04 0.212 0.213 93.2 -
03] -1.88 0.275 0.278 92.9 -0.42 0.272 0.274 94.2 —
103 2.82 0.280 0.281 93.2 -0.30 0.266 0.267 94.2 -

(Vo2 Vijaa) = (1,1)
0o -1.25 0.105 0.104 94.5 -0.15 0.103 0.104 94.5 100.0
51 0.86 0.129 0.128 94.4 0.75 0.129 0.128 94.3 100.1
6 -0.24 0.133 0.132 95.2 -0.25 0.130 0.132 94.6 100.0
03 0.98 0.150 0.149 94.7 0.65 0.150 0.149 94.4 100.0
o 3.02 0.226 0.224 94.2 1.08 0.222 0.224 94.4 100.4
03] -0.33 0.275 0.273 94.6 -0.79 0.272 0.273 94.4 100.2
103 0.80 0.280 0.278 94.4 -0.20 0.278 0.278 94.6 100.4
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Table 5.5: Simulation results for the association study with missing covariates:
about 35% missing (i.e. exp(az) = 0.5, exp(as) = 1.0)

Independence Weights

Clustered Weights

Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

(Vi josgr20 Vijaygra) = (4:4)
o -0.98 0.112 0.113 96.2 -0.96 0.113 0.113 954 99.9
631 -0.29 0.137 0.134 94.9 -0.31 0.135 0.134 94.9 100.0
0o 0.73 0.130 0.130 93.4 0.79 0.130 0.130 94.8 100.2
03 -0.76 0.152 0.152 93.7 0.64 0.152 0.152 95.1 99.9
oo 10.97 0.234 0.234 93.4 1.38 0.213 0.214 95.2 -
03] -2.34 0.320 0.317 92.9 -0.42 0.296 0.296 94.3 —
103 6.041 0.309 0.308 93.8 -0.70 0.279 0.278 94.1 —

(Vi josgr20 Vigaygra) = (4:2)
0o 0.24 0.118 0.117 94.6 -0.98 0.117 0.117 95.3 99.9
51 -1.00 0.141 0.142 959 -0.54 0.141 0.142 95.5 99.9
6 1.07 0.128 0.127 94.1 091 0.127 0.127 93.9 99.7
03 -1.09 0.150 0.149 96.1 0.74 0.149 0.149 95.2 99.9
oo 7.62 0.249 0.248 92.8 1.31 0.233 0.232 94.4 —
03] -3.18 0.295 0.293 92.6 -0.33 0.279 0.280 96.3 —
103 6.76 0.304 0.305 93.3 -0.70 0.280 0.283 94.2 —

(Vi j5gr20 Visgaggra) = (2,2)
0o 0.98 0.116 0.116 94.4 -1.00 0.116 0.116 94.4 100.2
51 -0.86 0.134 0.135 94.7 -0.43 0.135 0.135 93.2 100.0
6 0.12 0.124 0.124 94.5 0.37 0.124 0.124 94.1 99.8
03 -0.12 0.154 0.152 94.9 0.73 0.152 0.152 94.0 99.9
oo 6.36 0.236 0.236 93.1 1.02 0.223 0.225 93.7 —
03] -3.27 0.287 0.287 93.3 -0.45 0.278 0.276 94.1 -
103 3.62 0.297 0.296 92.9 -0.80 0.276 0.275 94.4 —

( ;j2;j/27¢;j3;j/3) = (17 1)
0o -1.08 0.118 0.117 94.6 -1.00 0.117 0.117 94.4 100.0
51 0.20 0.139 0.137 954 0.28 0.135 0.137 94.5 100.0
6 0.49 0.133 0.134 94.5 0.95 0.134 0.134 94.3 100.0
03 0.49 0.153 0.153 94.4 0.12 0.153 0.153 94.4 100.0
o 3.26 0.242 0.241 94.7 1.63 0.241 0.241 94.5 100.5
03] -0.34 0.301 0.301 95.2 -0.45 0.301 0.301 94.6 100.3
103 1.60 0.306 0.307 94.5 -0.80 0.307 0.307 94.5 100.4
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mittently missing patterns along the same line as the preceding discussion with

monotone missing-data patterns. We let H ) denote the history of the observed

zyk

components in H% k=2,...,K,j=1,...,J;and i =1,...,n. We assume that
P(Rij = 1|H}}y. Vi, Xi, Z;) = P(Riyi = 1| H}y, Vi, HS), Z0)
and
PRy = 1, Riji, = 1 Hiy, Hi, Vi, Xiy Zi)
= P(Rije = 1 Ry = U Hjjy Hipy Vi H H) Z0) forj # 5. (5.14)

Assumption (5.14) reduces to (5.9) when the missing-data patterns are monotone,
but it facilitates the derivations that follow for the intermittently missing-data
patterns.

For cluster 7 and time k, let \ij, = P(Ry = 1| HJ;, Ys, Xy, Z;) be the conditional
probability for subject j being observed at time k, given the history of the indicator
variable and entire vectors of responses and covariates. For assessment on subject

J in cluster ¢ at times k, we assume that

P(Rij 1‘ ij’ ’k:7 }/;7Xi7 ZZ) == P(Rij 1‘ }/;7 Xi7 ZZ) fOI'j ;é j/‘

ks
This states that the probability of observing subject j at time k£ does not depend
on the history of missingness of other subjects at time k, given the history of
missingness of subject j at time k and the entire vector of response and covariates.
For two subjects j and j’ in cluster 7, define the odds ratio at time k,
¢ij;j’k = (P(ka =1, Ry = 1] Uk? ,k,Yi,XZ-,Zi)

P(Rijr = 0, Rijip = O|H ., Hyo, Vi, Xiy Z3)

[(P(Rijk = 1, Riji, = O|H[y., Hisn, Yi, Xi, Z;)

P(Rijr = 0, Rijie = 1 Hy, Hip, Vi, Xi, Zi)),
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and let \; k. = P(Rijr = 1, Rijip = 1|H[jk, Hin, Yi, Xi, Z;) be the joint probabil-
ity for the pair (R;jx, Riji), conditional on the histories the indicator variables and

the entire vectors of response and covariates.

Regression models may be used to characterize the probability \;j; and the
odds ratio 97 ;. ., for each fixed time point k as in Section 5.3.2, and the resulting
parameters may be estimated as in Section 5.3.3. For cluster i, let m;;, = P(R;jx =
11Y;, X;, Z;) be the conditional probability of the missingness for subject j at time
k, and let 7, 5. = P(Riji = 1, Rijuy = 1|Y;, Xi, Z;) be the conditional probability

of the missingness for subject j and j’ at time k and &', respectively.

The weight matrices in the estimation equations are then given by A; = diag(/ (R, =
1)/mije, 1 <j < Ji, 1 <k < K)and A} = diag((Rije = 1, Ry = 1)/ Tijsjner, (3, k) <
(' k)
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Chapter 6

Discussion and Future Research

6.1 Likelihood Analysis of Joint Marginal and
Conditional Models for Longitudinal Cate-
gorical Data

In Chapter 2 we proposed a likelihood-based inference method for categorical
longitudinal data. The proposed method allows modeling marginal and conditional
structures separately, and this is a particular appealing property for longitudinal
data analysis. As the likelihood formulation is employed for inferential procedures,
the resulting estimators enjoy nice properties of maximum likelihood estimators
such as high efficiency; the simulation results suggest that the proposed method
performs well in a wide range of settings. A further advantage of a likelihood based
procedure is that model checking can be carried out through score tests or likelihood

ratio tests of null and expanded models.

In Chapter 2 we focus on modeling the conditional probability uicjk by the first

order dependence of Y;; on its history. Generalizations to accommodate any gth
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order dependence may proceed in the same manner. For example, we may specify

c q K
Hij
log < c]*k> = ijk T Z Z%’jlk'kf(yi,j_z =kK), k=1,... K,
' =1 k'=1

Vijik'k = Zz{jlk’kalk"ka kkE=1. . K I[I=1,....4q.

The likelihood can then be factored as the product of the distribution of the first
q response variables P(Y; ;1 = y; j_1, ..., Yij—q = Ui j—q) and the subsequent likeli-

hood contributions with parameters pg;.

Note that computational complexity of a model with first order dependence
included increases linearly with the length of the observation series, .J;. However,
with ¢th order dependence modeled, computational complexity of evaluating the
resultant likelihood for subject i increases linearly with J;(/K +1)9. This is because,
calculations required to compute and update the g—dimension history increase lin-
early with (K +1)4, and each observation requires such calculations. This computa-
tion becomes intensive as J; increases. How to find a feasible way to handle larger
observation times J; and reduce the computational complexity will be a further

research direction.

In Chapter 2, we also develop inference procedures to handle incomplete data.
One can proceed based on the observed data likelihood when little data are missing,
but the described EM algorithm can be particularly useful if more data are missing.
The development here rests on the assumption that the data are missing at random
(or missing completely at random) (Diggle et al., 2002). As it is generally not
possible to verify missing data mechanisms, it is also desirable to develop estimation
procedures for data arising from missing not at random mechanisms (MNAR).
A Monte Carlo EM algorithm could be developed in the spirit of Ibrahim et al.

(2001), where the missing data process must be modeled. Sensitivity analysis may
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be conducted as parameter nonidentifiability may become an issue with MNAR

mechanisms (Rotnitzky et al., 1998).

6.2 Progressive Multi-State Models for Incom-
plete Longitudinal and Life History Data

In Chapter 3 we first proposed a likelihood-based method for the analysis of
progressive processes with missing observations. In typical analyses of missing data,
parameter nonidentifiability is an issue for MNAR mechanisms. With progressive
models, however, we have shown that the model parameters are identifiable for all
missing mechanisms. This property is very appealing because it allows us to use
a large class of progressive models to analyze incomplete longitudinal data with
various missing data mechanisms. Under this setup, the likelihood formulation
is easily implemented and the resulting estimators enjoy good properties. The
simulation demonstrates that the proposed method performs well under various

situations.

A number of important questions can be posed. We note that the WSPP data
analyzed in Section 3.4.1 are clustered by school. One can use the same idea as
employed in the data analysis section of Chapter 2 to incorporate the cluster effects
in the calculation of standard errors. Alternatively, a natural way of addressing
this clustering is to develop a random effect model, but this would require high
dimensional integration. Or, one could also adapt the idea of Zeng and Cook
(2007) to explicitly model the cross-sectional association structure at a particular
time point, given the history of the process. This could be achieved using more

elaborate fully specified models for maximum likelihood estimation, or by adopting
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an estimating function approach for the cross-sectional association parameters. A
third approach, which is receiving increasing attention in recent years, would be
to apply methods based on composite likelihoods (Cox and Reid, 2004, Fieuws
and Verbeke, 2006). Composite likelihood methods have been shown to provide
estimators with good properties for a range of settings including in the context of

longitudinal data.

Second, as it is generally not possible to verify missing data mechanisms, there-
fore it is useful to conduct sensitivity analysis (Rotnitzky et al., 1998) for the missing
not at random models. Also, our proposed method gives consistent estimates when
all the models are correctly specified. However, in practice, we do not know the

true models. Therefore, model checking methods in general are important.

Third, in Chapter 3 we focus the discussion on incomplete response data, but in
practice data often feature missing covariates. In principle, the proposed method
can be adapted to accommodate missing covariate data, or missing covariate and
response data. The joint likelihood of the two types of missing data indicators,
the response and the covariates that may be missing, need to be formulated for
complete data, and an EM algorithm can be used again for estimation in the spirit

discussed here.

Fourth, a number of important questions can be posed using the covariate in-
formation provided at clinic entry. However, in other settings interest may lie in
the effect of time-varying covariates. Relatively little work has been done on fitting
regression models with interval censored time-dependent covariates. In the special
case of a single interval censored covariate that indicates the development of a par-

ticular condition, Goggins et al. (1999) develop methods for Cox regression for a
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right censored event time. Cook et al. (2008) consider an extension to the bivariate

setting where both the covariate and failure times are interval censored.

Fifth, We have focussed on the time-homogeneous Markov model in Chapter
3. This assumption can be easily relaxed to increase the flexibility of the model.
Weakly parametric (e.g. piecewise constant intensities) models may be adopted
to model Ao (f) in model (3.8) along the lines of Gentleman et al. (1994). Alter-
natively, one can use splines to obtain smoother estimates of transition intensities
if desired (Staniswalis et al., 1997), or local likelihood methods (Loader, 1996,
1999). Nonparametric methods such as those of Turnbull (1976) can in principle be
adapted for the setting of dependent observation schemes when models are progres-
sive. Interval censored recurrent event data (e.g., Thall and Lachin, 1988; Wellner
and Zhang, 2000) arise from progressive models, and further work in this area is

warranted.

6.3 Longitudinal Data Analysis with Incomplete
Response and Covariates

The impact of attrition in longitudinal studies depends on the correlation be-
tween the missing response and missing covariate. Ignoring this correlation can
induce bias and loss of efficiency to statistical inferences. We have developed and
studied a method that incorporates the association between the missing response
and missing covariate. The simulations demonstrate that the proposed method

gives consistent and reliable estimators.

However, a number of important questions can be posed. First, note that we

only considered the estimation and inference for the mean model parameters; one of
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the future directions is to consider the estimation and inference for the association
parameters, in which the second order estimating equations may be used to estimate
the association parameters by adapting the idea of Yi and Cook (2002). Also,
following the idea of Yi and Cook (2002), we can further extend the proposed

method to incorporate the clustered longitudinal data.

Second, the development here rests on the assumption that the data are at
most missing at random (MAR) (Diggle et al., 2002). In practice, we often face
data missing not at random (MNAR) and generalizations of the proposed method
to deal with this type of data would be worthwhile. One may adapt the method
of Rotnitzky et al. (1998) and Scharfstein et al. (1999) to deal with missing
response and missing covariates problem through semiparametric methods when
the mechanism is MNAR. Alternatively, a Monte Carlo EM algorithm could be
developed in the spirit of Ibrahim et al. (2001). As it is generally not possible to
check the nature of missing data mechanisms, sensitivity analysis may be warranted

to assess the effect of MNAR mechanisms (Rotnitzky et al., 1998).

The third research direction is to develop doubly robust, or doubly protected, es-
timators (Robins and Rotnitzky, 2001; Van der Laan and Robins, 2003; Scharfstein
et al., 1999), which are robust under certain situations of model misspecification.
This method is a refinement of a weighted estimating equation approach proposed
by Robins et al. (1995) and Rotnitzky et al. (1998). Further explanation and
evaluation of doubly robust estimators have been given by Lunceford and Davidian
(2004), Carpenter et al. (2006), Davidian et al. (2005), Bang and Robins (2005),
and Kang and Schafer (2007). With increasingly complex models for the missing

data process, the double robustness is increasingly important.
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