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Abstract

Analyses of longitudinal categorical data are typically based on semiparametric

models in which covariate effects are expressed on marginal probabilities and esti-

mation is carried out based on generalized estimating equations (GEE). Methods

based on GEE are motivated in part by the lack of tractable models for clustered

categorical data. However such marginal methods may not yield fully efficient esti-

mates, nor consistent estimates when missing data are present. In the first part of

the thesis I develop a Markov model for the analysis of longitudinal categorical data

which facilitates modeling marginal and conditional structures. A likelihood formu-

lation is employed for inference, so the resulting estimators enjoy properties such as

optimal efficiency and consistency, and remain consistent when data are missing at

random. Simulation studies demonstrate that the proposed method performs well

under a variety of situations. Application to data from a smoking prevention study

illustrates the utility of the model and interpretation of covariate effects.

Incomplete data often arise in many areas of research in practice. This phe-

nomenon is common in longitudinal data on disease history of subjects. Progres-

sive models provide a convenient framework for characterizing disease processes

which arise, for example, when the state represents the degree of the irreversible

damage incurred by the subject. Problems arise if the mechanism leading to the

missing data is related to the response process. A naive analysis might lead to

biased results and invalid inferences. The second part of this thesis begins with

an investigation of progressive multi-state models for longitudinal studies with in-

complete observations. Maximum likelihood estimation is carried out based on an

EM algorithm, and variance estimation is provided using Louis method. In general,

the maximum likelihood estimates are valid when the missing data mechanism is

missing completely at random or missing at random. Here we provide likelihood

based method in that the parameters are identifiable no matter what the missing
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data mechanism. Simulation studies demonstrate that the proposed method works

well under a variety of situations.

In practice, we often face data with missing values in both the response and the

covariates, and sometimes there is some association between the missingness of the

response and the covariate. The proper analysis of this type of data requires taking

this correlation into consideration. The impact of attrition in longitudinal studies

depends on the correlation between the missing response and missing covariate.

Ignoring such correlation can bias the statistical inference. We have studied the

proper method that incorporates the association between the missingness of the

response and missing covariate through the use of inverse probability weighted gen-

eralized estimating equations. The simulation illustrates that the proposed method

yields a consistent estimator, while the method that ignores the association yields

an inconsistent estimator.

Many analyses for longitudinal incomplete data focus on studying the impact

of covariates on the mean responses. However, little attention has been directed to

address the impact of missing covariates on the association parameters in clustered

longitudinal studies. The last part of this thesis mainly addresses this problem.

Weighted first and second order estimating equations are constructed to obtain

consistent estimates of mean and association parameters.
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Chapter 1

Introduction

1.1 Overview

Longitudinal studies are increasingly common in many areas of research includ-

ing medicine, public health, and the social sciences. The defining characteristic of

longitudinal studies is the repeated measurements on the same subject over time.

The primary goal of a longitudinal study is often to characterize the change in

responses over time as well as factors that influence this change.

During the past a few decades, statistical methods for the analysis of longitudi-

nal data have been developed tremendously (e.g. Liang and Zeger, 1986; Prentice,

1988; Zhao and Prentice, 1990; Laird and Ware, 1982; Breslow and Clayton, 1993;

Albert and Waclawiw, 1998; Albert, 2000). Despite this progress, there remains

a need for further methodological research to develop analysis techniques suitable

for different data and different analysis objectives. There are three broad classes

of methods for the analysis of longitudinal data, namely, mixed effects models,

marginal (typically semiparametric) methods, and transition models.
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Mixed effects models are readily adapted if interest lies in cluster-specific or

subject-specific inferences regarding covariate effects. Harville (1977) introduced

a general class of linear mixed effects models for repeated measures and growth

curves and Laird and Ware (1982) proposed to fit linear mixed effects models with

the EM algorithm (Dempster et al., 1977). Cnaan et al. (1997) provided a detailed

review of linear mixed effects models with an application to a schizophrenia clinical

trial. Generally, the distribution of mixed effects is usually assumed to be normal.

This assumption brings mathematical simplicity and convenience to estimation and

inference for regression coefficients and also to the prediction of subject-specific

random effects. The most common strategy used to deal with the mixed effects

is to obtain the marginal likelihood by integrating the random effects out from

the joint likelihood of the observable responses and random effects. Stiratelli et

al. (1984) discussed an EM approach for the analysis of binary response data with

Gaussian random effects and Longford (1993) discussed an approach based on direct

maximization of the likelihood. A Gibbs sampling approach had been proposed by

Zeger and Karim (1991) for the generalized linear mixed effects model. Anderson

and Aitkin (1985) proposed to use adaptive Gaussian quadrature for the evaluation

of integrals over the random effects, but, in practice, the calculation of the marginal

likelihood can involve very intensive computation. As an alternative, Breslow and

Clayton (1993) proposed to use Laplace approximations in the likelihood evaluation.

Marginal methods are commonly used to describe the dependence of the marginal,

or “population averaged”, features of a joint distribution on the explanatory vari-

ables through a specified link function. Estimations of parameters can be carried

out without full distributional assumptions, but rather only require specification

of a regression model for the mean response; estimation is based on generalized
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estimating equations (GEE). The theoretical foundation for GEE can be found in

Godambe (1960). Liang and Zeger (1986) and Zeger et al. (1988) proposed a

class of GEEs for longitudinal data, now known as first order GEE. These meth-

ods do not require specification of the full joint distribution of the longitudinal

response, but only specifications regarding of the marginal mean and variance of

the response, and some “working” assumptions about the correlation of responses

over time. Provided that the model for the mean is correctly specified, Liang and

Zeger (1986) showed that this approach yields consistent estimates for regression

parameters. They further showed that the estimates are robust to misspecification

of the working correlation structure for the responses within subjects (Crowder,

2001).

Prentice (1988) and Zhao and Prentice (1990) proposed extensions of GEE

to incorporate assumptions about higher-order moments for binary data. These

methods are called GEE2 methods. The central idea is to model the marginal mean

of each binary response and the association between pairs of response separately,

and then construct a set of second-order joint estimating equations. Liang et al.

(1992) discussed this class of estimating equations and extended it to consider the

multivariate regression analysis for categorical data.

Transitional models examine the effect of covariates on the transition patterns

across a binary or categorical response over time. With this approach, one models

the probability distribution of the response at a particular time as a function of

the covariates and the individual’s past responses. Markov models are among the

most convenient transition models, where one assumes that given the history, the

conditional distribution of responses depends on only m prior observations, where

the integer m is referred to as the order of the model. These models are particularly
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attractive for categorical data that exhibit serial dependence since the coefficients

of the past responses indicate how strongly the past outcomes are associated with

the current response.

There are situations, however, where we do not want to condition on past out-

comes to make inferences regarding a covariate effect (Diggle et al., 2002). For

example, most clinical trials study the impact of treatment on the response at a

fixed, final follow up time or on the entire response profile over time. In this case,

we would not want to condition on past outcomes when making inferences regarding

the effect of treatment since the earlier outcomes are internal potentially responsive

“covariates”. The attractive characterization of serial dependence that a transition

model provides can be combined with a marginal regression structure by adopting

the framework of marginalized transition models (MTM) (Azzalini, 1994; Heagerty,

2002). Azzalini (1994) introduced a binary Markov chain model to accommodate

serial dependence arising in longitudinal studies. Heagerty and Zeger (2000) viewed

the approach of Azzalini (1994) as combining a marginal mean model that captures

systematic variation in the response as a function of covariates, with a conditional

mean model that describes serial dependence and identifies the joint distribution

of the current response. Inferences regarding the regression parameters are based

on the likelihood method.

Incomplete Data

Longitudinal studies often feature incomplete data because of a missed study as-

sessment or withdrawal. Problems arise if the mechanism leading to the missing

data is related to the response process. Little and Rubin (1987) gave a general

treatment of statistical analysis of missing data mechanisms, which includes a use-

ful hierarchy of missing-value models. A missing-data mechanism is called Missing

4



Completely at Random (MCAR) if the missing data process is independent of any

data, and Missing at Random (MAR) if the missing data process does not depend

on the unobserved data. In contrast, data are Missing Not at Random (MNAR)

if the missing data process depends on unobserved data. These notions will be

discussed more completely in Section 1.2.

Likelihood methods based on the fully specified models and marginal methods

based on GEE are two powerful statistical techniques that have been developed

to accommodate missing data for longitudinal data analysis. Under the MCAR

mechanism, the observed data are just a random sample of all the data, so a valid

analysis can be obtained through a likelihood-based approach that omits data from

individuals with incomplete data; this is known as a complete case (CC) analysis

and, it is the technique that is most commonly used in most software packages. A

CC analysis may lose efficiency because the smaller sample size will inflate the stan-

dard errors and reduce the power of tests, but no bias is introduced when the data

are MCAR. MAR is a more realistic assumption than MCAR, and in most MAR

scenarios, a CC analysis will be both inefficient and biased. When data are MAR

or MCAR, and the parameters of the missing data mechanism are distinct from

those of the sampling model, the data are said to be ignorably missing (Little and

Rubin, 1987). In these cases, the missing data mechanism can be ignored in making

likelihood-based inferences about the parameters in the sampling model. Under the

MNAR mechanism, likelihood based methods are generally biased. Valid inferences

generally require specifying the correct model for the missing data mechanism and

identifiability of the parameters.

Difficulties with likelihood-based methods are that they require specification of

the joint distributions of longitudinal responses, and sometimes, need specification
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of the missing data process. However, in practice there is not a rich class of models

for the joint distribution of longitudinal data, especially for discrete data, and it is

not easy to specify the missing data model. In addition, for a MNAR mechanism,

the likelihood based inferences are invalid and methods which attempt to correct

for bias must rely on sensitivity analysis because parameters are not identifiable in

general (Rotnitzky et al., 1998).

Marginal methods based on GEE are another alternative approach to accommo-

date problems with missing data. Under the MCAR mechanism, the GEE approach

yields consistent estimates for the regression parameters. When the data are MAR

or MNAR, an analysis based on GEE gives inconsistent estimates of parameters

for the regression model. Robins and Rotnitzky (1995), and Robins et al. (1994,

1995) developed a class of estimators based on an Inverse Probability Weighted

Generalized Estimating Equations (IPWGEE) in a regression setting when data

are MAR. Rotnitzky and Robins (1995) extended this methodology to account for

nonignorable nonresponse in the covariates or the outcomes. This approach involves

modeling the missing data process and weighting the estimating equations by the

inverse of a probability that is calculated based on the models for the missing data

process. If the models for both the marginal mean of the response and the missing

data process are correctly formulated, the IPWGEE approach corrects the bias and

gives consistent estimates under the MAR mechanism.
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1.2 Mechanisms and Methods for Incomplete Lon-

gitudinal Data

Let Yi = (Yi1, . . . , YiJ)
′ = (Y

(o)
i , Y

(m)
i )′ be the vector of J measurements for

subject i, i = 1, . . . , n, where Y
(o)
i represents the observed data part and Y

(m)
i

denotes the missing data part. Let Ri = (Ri1, . . . , RiJ)
′ be the corresponding

missing data indicator vector, where Rij = 1 if Yij is observed and Rij = 0 if

Yij is missing. Let Xij be the corresponding vector of covariates for subject i at

time point j. Let Xi = (X ′
i1, . . . , X

′
iJ)

′. Rubin (1976) and Little and Rubin (1987)

made the three classifications of missing data mechanisms, assuming Xi is always

observed:

1. Missing Completely at Random (MCAR): Data are said to be MCAR if the

probability of failure to observe a value does not depend on any observed or

unobserved measurements, i.e.

P (Ri|Yi, Xi) = P (Ri).

2. Missing at Random (MAR): Data are said to be MAR if, conditional on the

observed data, the probability of failure to observe a value does not depend

on the data that are unobserved. That is,

P (Ri|Yi, Xi) = P (Ri|Y (o)
i , Xi).

3. Missing Not at Random (MNAR): The missing data mechanism is said to

be MNAR if the probability of failure to observe a value depends on the

unobserved data, i.e.

P (Ri|Yi, Xi) = P (Ri|Y (o)
i , Y

(m)
i , Xi).
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1.2.1 Likelihood-Based Methods

The likelihood for incomplete longitudinal data is developed by specifying the

joint distribution of response variable Yi and the missing data indicators Ri, given

the covariates Xi. Two classes of likelihood-based models have been proposed based

on alternative factorizations of the joint distribution. One is based on selection

models (Little and Rubin, 1987), in which the joint distribution of Yi and Ri is

factorized as

f(Ri, Yi|Xi; β, α) = f(Ri|Yi, Xi;α)f(Yi|Xi; β),

where the distribution of Ri, f(Ri|Yi, Xi;α), is indexed by a vector of parameters

α and the distribution of Yi, f(Yi|Xi; β), is indexed by a vector of β. The other

is called pattern-mixture models (Little, 1993; Glynn et al., 1986), in which the

factorization of the joint distribution is

f(Ri, Yi|Xi; θ, γ) = f(Yi|Ri, Xi; γ)f(Ri|Xi; θ),

where f(Yi|Ri, Xi; γ), the distribution of Yi, is defined separately for each miss-

ing data configuration and indexed by parameters γ, and the distribution of Ri,

f(Ri|Xi; θ), is known up to parameters θ.

When we are concerned with the parameters of the marginal distribution of

Yi, averaged over the missing data patterns, it is more natural to use selection

models, because people do not want to make inference conditional on the missing

data indicators. In the followings, we focus on selection models.

There are two main methods for the likelihood-based methods; one is the ob-

served likelihood method and the other is the joint modeling method. To outline

this, we derive the joint density of the observed data (Y
(o)
i , Ri) by integrating out
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the missing data Y
(m)
i in the joint distribution as

f(Ri, Y
(o)
i |Xi;α, β) =

∫
f(Ri|Y (o)

i , Y
(m)
i , Xi;α)f(Y

(o)
i , Y

(m)
i |Xi; β)dY

(m)
i .

Then the joint likelihood for (α, β) is

L(α, β;Y (o), R) =

n∏

i=1

∫
f(Ri|Y (o)

i , Y
(m)
i , Xi;α)f(Y

(o)
i , Y

(m)
i |Xi; β)dY

(m)
i . (1.1)

When the missing data mechanism is MCAR or MAR, this likelihood becomes

L(α, β;Y (o), R) =
n∏

i=1

{
f(Ri|Y (o)

i , Xi;α)

∫
f(Y

(o)
i , Y

(m)
i |Xi; β)dY

(m)
i

}

=

n∏

i=1

{
f(Ri|Y (o)

i , Xi;α)f(Y
(o)
i |Xi; β)

}
.

Assuming the parameters α and β are functionally independent, then likelihood in-

ference for β from the likelihood L(α, β;Y (o), R) is the same as a likelihood inference

for β from the observed likelihood

L(β;Y (o)) =

n∏

i=1

f(Y
(o)
i |Xi; β). (1.2)

To get the maximum likelihood estimator, we aim to maximize the log likelihood

ℓ(β;Y (o)) =

n∑

i=1

logf(Y
(o)
i |Xi; β)

using a Newton-Raphson algorithm

β(h+1) = β(h) + [I(β(h))]−1S(β(h)), h = 0, 1, 2, . . .

or a Fisher-scoring algorithm

β(h+1) = β(h) + [J(β(h))]−1S(β(h)), h = 0, 1, 2, . . .

until β(h+1) converges, where

I(β(h)) = [−∂2ℓ(β;Y (o))/∂β∂β ′]β=β(h),
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S(β(h)) = [∂ℓ(β;Y (o))/∂β]β=β(h)

and

J(β(h)) = E[I(β(h))].

One problem with the Newton-Raphson algorithm and the Fisher-scoring algorithm

is that they require calculation of the second derivatives of the log likelihood and

this can be complicated. The Expectation Maximization (EM) algorithm offers

an alternative strategy to optimize the observed likelihood. Specifically, the EM

algorithm iterates between the following two steps:

1. E-step: Find the expectation of the complete data log likelihood over the

conditional distribution of the missing data, given the observed data and the

current estimate β(h),

Q(β; β(h)) = E(Y (m)|Y (o);β(h))[ℓ(β;Y )]

=

∫
ℓ(β;Y )f(Y (m)|Y (o); β(h))dY (m).

2. M-step: maximize Q(β; β(h)) with respect to β to obtain the estimate β(h+1).

The EM algorithm is remarkably simple, both conceptually and computationally.

Standard errors may be obtained by bootstrapping, or using Louis formula (Louis,

1982). However, the major drawbacks of the EM algorithm are that it can be very

slow to converge when the missing data proportion is large, and the M step may

be difficult (McLachlan and Krishnan, 1996).

When data are MNAR, the missing data model must be specified to make valid

inference because the likelihood can not be simplified. The joint likelihood of the

observed response Y (o) and the missing process R, (1.1), must be employed to make

10



inference and Newton-Raphson, Fisher-scoring and EM algorithms (Ibrahim et al.,

2001) can also be employed in this setting.

1.2.2 Marginal Methods

Marginal models characterize how moments of the marginal response depend on

explanatory variables. People often construct the generalized linear model as

g(µij) = X ′
ijβ,

where µij = E(Yij|Xi) is the marginal mean and g(·) is a known link function. If

the distribution of Yi is fully specified, likelihood-based method is a good choice

for the estimation of the parameters. However, in practice, there is not a rich class

of models for the joint distribution of longitudinal data. From this point of view,

GEE are appealing since they only require assumptions about the regression model

for the marginal mean and the variance function. Let µi(β) = (µi1, . . . , µiJ)
′, then

the GEE for β is given by

n∑

i=1

Ui(β) =

n∑

i=1

D′
i · V −1

i · (Yi − µi(β)) = 0, (1.3)

where Di = ∂µi(β)/∂β ′ and Vi is the covariance matrix of Yi. Liang and Zeger

(1986) suggest using a “working” covariance matrix to replace Vi, which can be

modeled as

Vi = a(φ)A
1/2
i Gi(ρ)A

1/2
i ,

where a(·) is a known function, φ is a scale parameter, Ai is a J×J diagonal matrix

with elements vij = Var(Yij), Gi(ρ) is a J × J “working” correlation matrix that is

fully specified by the vector of parameters ρ. Now these estimating equations are

not only functions of β, but of ρ and φ as well. We often write Ui(β) as Ui(β, ρ, φ)
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to incorporate these parameters. To solve this equation, ρ is often replaced by a

√
n-consistent estimate, ρ̂(Y, β, φ) and φ is replaced by a

√
n-consistent estimate,

φ̂(Y, β), then plug them into (1.3). Newton-Raphson algorithm is often employed

to obtain the solution of (1.3). Specifically, given the initial value β(0), we iterate

the following two steps until convergence.

1. Given β(h), obtain a
√
n-consistent estimate φ(h) = φ̂(Y, β(h)) and a

√
n-

consistent estimate ρ(h) = ρ̂(Y, β(h), φ(h)),

2. Then obtain β(h+1) as the solution of
∑n

i=1 Ui(β, ρ
(h), φ(h)) = 0 by a Newton-

Raphson algorithm, say.

Denoted the limit as β̂.

Under some regularity conditions and given that

1. ρ̂ is
√
n-consistent, given β and φ,

2. φ̂ is
√
n-consistent, given β, and

3. |∂ρ̂(β, φ)/∂φ| ≤ H(Y, β) which is Op(1),

Liang and Zeger (1986) gave the large-sample properties of β̂:
√
n(β̂−β) is asymp-

totically multivariate Gaussian as n → ∞ with mean zero and covariance matrix

Σ = I0(β)−1I1(β)I0(β)−1, where

I0 = E[−∂Ui(β, ρ, φ)/∂β]

and

I1 = E[Ui(β, ρ, φ)Ui(β, ρ, φ)′].
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This asymptotic covariance matrix Σ can be consistently estimated by

Σ̂ = Î−1
0 Î1Î

−1
0 ,

where Î0 = −n−1
∑n

i=1 ∂Ui(β̂, ρ̂, φ̂)/∂β and Î1 = n−1
∑n

i=1 Ui(β̂, ρ̂, φ̂)U ′
i(β̂, ρ̂, φ̂).

GEE analysis is valid when the data are complete or the missing data mechanism

is MCAR. When data are MAR or MNAR, GEE equations are biased. Rotnitzky

and Robins (1995), Robins and Rotnitzky (1995), and Robins et al. (1994, 1995)

developed a class of estimators based on Inverse Probability Weighted Generalized

Estimating Equations (IPWGEE) in a regression setting when the data are MAR.

The IPWGEE are given by

n∑

i=1

Ui(β, α) =
n∑

i=1

D′
i · V −1

i · ∆i(α) · (Yi − µi(β)) = 0, (1.4)

where ∆i(α) is a diagonal weight matrix that depends on the probabilities of the

data having missing. The matrix may be given by ∆i(α) = diag(I(Rij = 1)/πij(α) :

j = 1, 2, · · · , J), where πij(α) = P (Rij = 1|Yi, Xi;α) and I(Rij = 1)/πij(α) is the

so-called occasion-specific weight. Fitzmaurice et al. (1995) proposed a cluster

level weight as ∆i(α) = diag(I(Rij = 1)/πi(α) : j = 1, 2, · · · , J) in the monotone

missing data pattern (a monotone missing data process means Rij = 0 implies

Rik = 0 for k > j), where πi(α) = P (Ri = ri|Yi, Xi;α), is the missing data

probability for individual i over the entire observation period. The IPWGEE with

occasion-specific level weights is more efficient than an IPWGEE with cluster level

weights (Preisser et al., 2002).

Robins et al. (1995) gave the large-sample properties of the solution β̂ to this

equation, which stated that subject to some regularity conditions and given the

regression models for the response process and the missing data process are correctly
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specified,
√
n(β̂ − β) is asymptotically multivariate Gaussian with mean 0 and

asymptotic covariance matrix Γ−1CΓ−1′, where

Γ = E

{
∂Ui(β, α)

∂β ′

}
,

C = Var{Res(Ui(β, α), Si(α))},

in which

Res(Mi, Ni) = Mi − E[MiN
′
i ]{E(NiN

′
i)}−1Ni,

and Si(α) is the score function of the missing data model. Furthermore, this asymp-

totic covariance matrix can be consistently estimated by Γ̂−1ĈΓ̂−1′ with

Γ̂ = n−1

n∑

i=1

{
∂Ui(β̂, α̂)

∂β ′

}
,

Ĉ = n−1
n∑

i=1

{
R̂es[Ui(β̂, α̂), Si(α̂)]

}⊗ 2

,

R̂es(Mi, Ni) = Mi −
{

n∑

i=1

MiN
′
i

}{
n∑

i=1

NiN
′
i

}−1

Ni,

where A
⊗

2 = AA′.

1.2.3 Modeling the Missing Data Process

For the joint modeling method and the marginal method, modeling the distri-

bution of the missing data process is required. In the following, we discuss the

method of modeling the missing data process. One option is to use the binomial

model (Ibrahim et al., 2001)

P (Ri = ri|Yi, Xi;α) =

J∏

j=1

{
π
rij
ij (1 − πij)

1−rij
}
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assuming the conditional independence between the Rij , where πij = P (Rij =

1|Yi, Xi;α). Often a generalized linear model

g(πij) = Z ′
ijα

is specified to link the binomial probabilities to the covariate vector Zij. Here g(·)

is a known link function and α measures the influence of the covariates on these

probabilities.

A multinomial missing data model (Ibrahim et al., 2001) specifies the joint

distribution of Ri through a sequence of one-dimensional conditional distributions:

P (Ri|Yi, Xi;α) =
J∏

j=2

P (Rij|Hr
ij, Yi, Xi;αj) · P (Ri1|Yi, Xi;α1), (1.5)

where Hr
ij = {Ri,j−1, . . . , Ri1} and αj is a vector of indexing parameters for the jth

conditional distribution and α = (α1, . . . , αJ)
′. This accommodates nonmonotone

patterns of missing data, and provides a natural way to specify the joint distribu-

tion of the missing data indicators when knowledge about the missingness of one

response affects the probability of missingness of another. In practice, however,

interest often lies in the first order dependence of the serial probability, that is

P (Ri|Yi, Xi;α) =

J∏

j=2

P (Rij|Ri,j−1, Yi, Xi;αj) · P (Ri1|Yi, Xi;α1), (1.6)

where the first order Markov property is assumed for the indicator variable Ri. Let

λ∗ij(αj) = P (Rij = 1|Ri,j−1, Yi, Xi;αj) be the conditional probability, which it is

often modeled by a logistic regression model

logit(λ∗ij(αj)) = Z ′
ijαj , j = 2, . . . J,

where Zij features the missing data mechanism, which may include the response

Yi, the covariate Xi and the missing indicator Ri,j−1. If Zij does not include any
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observed or unobserved measurements, it leads to MCAR; if Zij only includes the

observed measurements, it leads to MAR; and if Zij includes the unobserved re-

sponse Y
(m)
i , it leads to MNAR. The joint probability of Ri is

P (Ri = ri|Yi, Xi;α) =

[
J∏

j=2

(
λ∗ij(αj)

)rij (1 − λ∗ij(αj)
)1−rij

]
· P (Ri1 = ri1|Yi, Xi;α1).

1.3 Outline of Thesis

The remaining chapters of this thesis are organized as follows.

Chapter 2

In Chapter 2, likelihood analysis of joint marginal and conditional models are

explored for longitudinal categorical data. We develop a Markov model for the

analysis of longitudinal categorical data which facilitates modeling marginal and

conditional structures. A likelihood formulation is employed for inference, so the

resulting estimators enjoy properties such as optimal efficiency and consistency,

and remain consistent when data are missing at random. Simulation studies are

given, which demonstrate that the proposed method performs well under a variety

of situations. Application to data from a smoking prevention study illustrates the

utility of the model and interpretation of covariate effects.

Chapter 3

Chapter 3 involves modeling progressive multi-state processes with incomplete ob-

servations, including the discrete time progressive process and continuous time pro-

gressive process. For the discrete time progressive process, we directly model the

conditional transition probability using the generalized linear model, while for the

continuous time progressive process, intensity based models are introduced to in-
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corporate the covariate effects. Although model formulations are different, the

estimation methods are the same, which is maximum likelihood based on the EM

algorithm. Louis method is used to calculate the standard errors. Simulations and

the asymptotic biases are explored to evaluate the performance of the proposed

method.

Chapter 4

In Chapter 4, we consider the inverse probability weighted generalized estimating

equations (IPWGEE) to handle longitudinal data with both missing response and

missing covariate. The idea behind this is that we incorporate the association

between the missing response and missing covariates. The simulations support the

assumptions that the proposed method gives consistent estimators and is more

efficient than the method that ignores the association when it is present.

Chapter 5

Chapter 5 involves addressing the impact of missing covariates on the association

parameters in clustered longitudinal studies. Weighted first and second order es-

timating equations are constructed to obtain consistent estimates of association

parameters. Clustering in the missing data process is addressed to get efficient

estimates.

Chapter 6

Chapter 6 briefly summarizes overall findings and outlines the future work.
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Chapter 2

Likelihood Analysis of Joint

Marginal and Conditional Models

for Longitudinal Categorical Data

2.1 Introduction

Marginal methods are commonly used to model longitudinal categorical data

through specification of covariate effects on marginal, or “population averaged”,

attributes via a specified link function. Liang and Zeger (1986) proposed a class of

first-order generalized estimating equations (GEE) for longitudinal data when the

marginal distributions are in the exponential family. Prentice (1988) and Zhao and

Prentice (1990) developed second order generalized estimating equations (GEE2)

which facilitate modeling covariate effects on parameters characterizing the associ-

ation between responses. Methods for regression with longitudinal categorical data

were developed by Liang et al. (1992), who again focussed on marginal models

18



for both the mean and association structures. Inference for semiparametric models

based on generalized estimating equations is attractive because it does not require

full model specification for such complex processes, however the resulting estimates

can be inefficient (e.g., Fitzmaurice et al., 1993).

Alternative approaches for dealing with longitudinal or clustered data include

the use of mixed effects models where covariate effects are specified given a latent

subject-specific random effect. The most common approach for inference is to base

it on the marginal (joint) distribution obtained by integrating the joint distribution

of the data and the random effect, with respect to the random effect. Limitations

of this approach include the need to specify the random effect distribution, the fact

that covariate effects have a subject-specific interpretation, and the computational

challenges associated with calculation of the marginal likelihood typically used for

estimation and inference.

Transition models are appealing when scientific interest is directed at how re-

sponses change over time (Neuhaus, 1992). In transition models, the probability

distribution of the response at a particular time is expressed as a function of an

individual’s past q responses and covariates. While likelihood-based inferences are

straightforward with transition models, a limitation is that the interpretation of

covariate effects change as the order q changes, and it may therefore be difficult

to interpret and compare models on the same dataset or inferences from models in

different datasets.

Azzalini (1994) introduced a Markov chain model which incorporated serial de-

pendence and facilitated expression of covariate effects on marginal features. Hea-

gerty and Zeger (2000) and Heagerty (2002) extended this work to a qth order
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marginalized transition model. These models are based on binary data, and do not

deal with the more general issue of categorical data which arise in many biomedical

studies. The objective here is to describe a general approach for modeling longi-

tudinal categorical data based on a Markov model which accommodates regression

modeling on marginal moments as well as on association parameters. Likelihood-

based inferences are possible since the model is fully specified, so the resulting

estimators are consistent and fully efficient.

The remainder of the chapter is organized as follows. In Section 2.2, we present

the details of the model formulation and describe a Fisher-scoring algorithm which

can be used for parameter estimation to avoid the need to compute the hessian ma-

trix in the spirit of Kalbfleisch and Lawless (1985). Numerical studies are conducted

in Section 2.3 which show that the proposed method works well. Adaptations for

handling incomplete data, including the EM algorithm (Dempster et al., 1977),

are discussed in Section 2.4. Data from the motivating study called the Waterloo

Smoking Prevention Project (Cameron et al., 1999) are analyzed in Section 2.5.

2.2 Model Formulation

2.2.1 Marginal and Conditional Models

Let Yi = (Yi1, Yi2, . . . , YiJi
)′ be a categorical response vector of subject i observed

at time t1, . . . , tJi
, and Xij be the covariate vectors recorded for subject i at the jth

time point, j = 1, . . . , Ji, i = 1, . . . , n. Each response component Yij may take a

value from the integers 0, 1, . . . , K. Here we may also think of those K+1 values as

K + 1 distinct states. Denote Xi = (X ′
i1, X

′
i2, . . . , X

′
iJi

)′. Let µMijk = P (Yij = k|Xi)
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be the marginal probability that subject i is in state k at the jth assessment given

the covariates Xi, k = 0, . . . , K. A regression model may be specified as

g

(
µMijk
µMij0

)
= X ′

ijkβk, k = 1, . . . , K, (2.1)

by using µMij0 as a reference, where g(·) is a monotone link function, Xijk may be a

subset of Xij , featuring the influence of the covariates on the average response in

state k at the jth assessment, and βk is the vector of regression coefficients. We

note that an implicit assumption P (Yij = k|Xi) = P (Yij = k|Xijk) is made here.

In practice, g(·) is often chosen as a logarithm function. If Yij is a binary variable,

(2.1) reduces to a standard logistic regression model; when Yij represents more than

two categories, (2.1) allows an analogous interpretation to the odds ratio for binary

outcomes. Let β = (β ′
1, β

′
2, . . . , β

′
K)′ denote the full vector of regression coefficients.

Sometimes, our interest centers on the dependence of Yij on its history Hij =

{Yi1, . . . , Yi,j−1} and covariates and indeed it is necessary to model this for full model

specification. Let µCijk = P (Yij = k|Hij, Xi) be the conditional probability, where

k = 0, 1, . . . , K. We may employ a regression model to feature the dependence

of Yij on its history and the covariates. That is, specify µCijk = h−1(Hij, Xijk) by

a known link function h(·). Again an implicit assumption P (Yij = k|Hij, Xi) =

P (Yij = k|Hij , Xijk) is made here. Typically, we consider a first order dependence

of Yij on its history that is of particular interest in practice. Extensions to any order

dependence of Yij on its history is straightforward though more involved notation

may be needed.

In the same spirit of (2.1), we may adopt the following model with µCij0 regarded

as a reference

log

(
µCijk
µCij0

)
= γijk +

K∑

k′=1

γijk′kI(Yi,j−1 = k′), k = 1, . . . , K, (2.2)
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where I(·) denotes the indicator function. Model (2.2) clearly reflects the depen-

dence of the conditional probability µCijk on the response history. Coefficients γijk

and γijk′k have clear interpretations of log odds and log odds ratios, respectively.

To be more specific, we have

γijk = log
P (Yij = k|Yi,j−1 = 0, Xi)

P (Yij = 0|Yi,j−1 = 0, Xi)
,

which is the log odds for categorical responses, and the log odds ratio

γijk′k = log
P (Yij = k|Yi,j−1 = k′, Xi)P (Yij = 0|Yi,j−1 = 0, Xi)

P (Yij = 0|Yi,j−1 = k′, Xi)P (Yij = k|Yi,j−1 = 0, Xi)
,

which gives a pairwise association between Yij and Yi,j−1.

The dependence of µCijk on the covariates may be incorporated by assuming

regression models for the coefficients γijk′k in (2.2). Specifically, we consider linear

regression models

γijk′k = Z ′
ijk′kαk′k, k′, k = 1, . . . , K, (2.3)

though in principle, other regression forms may be adopted as well. Here αk′k is the

parameter vector, and Zijk′k may be subsets of Xij , k
′, k = 1, . . . , K, which feature

various types of dependence of Yij on the covariates. For example, if Zijk′k simply

consists of the unit vector, models (2.2) and (2.3) do not contain any interaction

terms between the response history and the covariates. By enlarging Zijk′k we may

include interaction terms. Let α = (α′
k′k, k′, k = 1, 2, . . . , K)′ denote the full

parameter vector for the conditional models and θ = (β ′, α′)′ denote the vector of

parameters in both marginal and conditional models (2.1) and (2.2).

If Yij is a binary response, the proposed models reduce to the marginalized

transition models discussed in Heagerty (2002). With binary data, Heagerty (2002)
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showed that γijk
′s in (2.2) exist uniquely for any given values of α in (2.3). For

categorical data we can obtain the analogous result. That is, given mean model

(2.1) and dependence model (2.2) along with regression model (2.3), the intercepts

γijk
′s are uniquely determined. Therefore, under constraint (2.4) to be discussed,

the proposed models enable us to separate the marginal mean models from the

specification of the conditional dependence models. This is very attractive because

the interpretation of the regression parameter β does not change when we modify

assumptions regarding the conditional dependence models. In contrast, classical

transition models focus on modeling the response Yij conditional on the past re-

sponse outcomes Hij and covariates. These models may be useful for categorical

data which exhibit serial dependence, but the interpretation of the covariate pa-

rameters is not resistible to the inclusion of the response history. If the order of the

transition model changes, the meaning of the associated parameters would change

accordingly.

2.2.2 Estimation and Inference

The likelihood is given by L(θ) =
∏n

i=1 Li(θ), where

Li(θ) = P (Yi1, . . . , YiJi
|Xi) =

Ji∏

j=2

P (Yij|Yi,j−1, Xi) · P (Yi1|Xi)

=

Ji∏

j=2

K∏

k=0

(µCijk)
I(Yij=k) ·

K∏

k=0

(µMi1k)
I(Yi1=k),

where µMi1k and µCijk are determined from (2.1) and (2.2) respectively. Let S(θ) =

∑n
i=1 Si(θ) be the score vector, where Si(θ) is given by

Si(θ) =

Ji∑

j=2

K∑

k=0

I(Yij = k)
1

µCijk

∂µCijk
∂θ

+

K∑

k=0

I(Yi1 = k)
1

µMi1k

∂µMi1k
∂θ

.
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To calculate the score function, we need to evaluate the derivatives of the conditional

probabilities µCijk and the marginal probabilities µMi1k. As these probabilities are

constrained by the iterative equation

µMijk =

K∑

k′=0

P (Yij = k|Yi,j−1 = k′;Xi) × µMi,j−1,k′, k = 1, . . . , K, (2.4)

the required derivatives may be obtained by differentiating both sides of (2.4).

Details for the relevant expressions are provided in Section 2.6.

To solve S(θ) = 0 in order to obtain the estimate θ̂, we may, in principle,

apply the Newton-Raphson algorithm. Let I(θ) be the observed information matrix

constructed from the entire dataset, then the Newton-Raphson algorithm iterates

θ(h+1) = θ(h) + I−1(θ(h))S(θ(h)), h = 0, 1, · · ·

until it converges to θ̂. This requires the availability of the second derivatives of

the log-likelihood. Procedures of calculating the second derivatives are provided

in Section 2.6. Under the usual regularity conditions for maximum likelihood es-

timators,
√
n(θ̂ − θ)

d−→ N(0, J−1(θ)) as the sample size n approaches infinity.

Here J(θ) = E [−∂Si(θ)/∂θ], since the underlying assumption is that the responses

of all the subjects are independent and identically distributed conditional on the

covariates.

Because the marginal and conditional probabilities µMijk and µCijk are constrained

by the iterative equation (2.4), the second derivatives of the log-likelihood are te-

dious to derive and program. Here we develop a quasi-Newton (or Fisher-scoring)

method which eliminates the need for the second derivatives when the covariates

are discrete, as in Kalbfleisch and Lawless (1985).
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Note that the likelihood can be written as L(θ) =
∏n

i=1 Li(θ) with

Li(θ) =

Ji∏

j=2

K∏

k′,k=0

(
µCijk′k

)I(Yij=k,Yi,j−1=k
′) ·

K∏

k=0

(
µMi1k

)I(Yi1=k)

and µCijk′k = P (Yij = k|Yi,j−1 = k′, Xi). Accordingly, we obtain the score function

Su(θ) =
∂logL(θ)

∂θu

=
n∑

i=1

{
Ji∑

j=2

K∑

k′,k=0

I(Yij = k, Yi,j−1 = k′)

µCijk′k
·
∂µCijk′k
∂θu

+
K∑

k=0

I(Yi1 = k)

µMi1k
· ∂µ

M
i1k

∂θu

}
,

and the second derivative

∂2logL(θ)

∂θu∂θv
=

n∑

i=1

{
−

Ji∑

j=2

K∑

k′,k=0

I(Yij = k, Yi,j−1 = k′)
(
µCijk′k

)2 ·
∂µCijk′k
∂θu

·
∂µCijk′k
∂θv

+

Ji∑

j=2

K∑

k′,k=0

I(Yij = k, Yi,j−1 = k′)

µCijk′k
·
∂2µCijk′k
∂θu∂θv

−
K∑

k=0

I(Yi1 = k)

(µMi1k)
2 · ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv
+

K∑

k=0

I(Yi1 = k)

µMi1k
· ∂

2µMi1k
∂θu∂θv

}
.

Taking the expectation with respect to the conditional distribution of the response

vectors given the covariates, we obtain

E

{
−∂

2logL(θ)

∂θu∂θv

}
=

n∑

i=1

{
Ji∑

j=2

K∑

k′,k=0

P (Yi,j−1 = k′|Xi)

µCijk′k
·
∂µCijk′k
∂θu

·
∂µCijk′k
∂θv

+
K∑

k=0

1

µMi1k
· ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv

}
,

by noting that

E {I(Yij = k, Yi,j−1 = k′)} = P (Yij = k, Yi,j−1 = k′|Xi) = P (Yi,j−1 = k′|Xi) · µCijk′k,

E{I(Yi1 = k)} = P (Yi1 = k|Xi) = µMi1k,

K∑

k=0

µCijk′k = 1
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and
K∑

k=0

µMi1k = 1.

This expectation can be estimated by

Muv(θ) =

n∑

i=1

{
Ji∑

j=2

K∑

k′,k=0

pi,j−1,k′

µCijk′k
·
∂µCijk′k
∂θu

·
∂µCijk′k
∂θv

+

K∑

k=0

1

µMi1k
· ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv

}
,

where pi,j−1,k′ is the proportion of the subjects with covariate xi in state k′ at the

(j − 1)th time point. That is, if Ni,j−1,k′ =
∑n

i=1 I(Yi,j−1 = k′, Xi = xi) is the total

number of subjects with covariate vector Xi = xi and with response Yi,j−1 = k′,

and Ni,j−1 =
∑K

k′=0Ni,j−1,k′ is the total number of subjects with covariate vector

Xi = xi, then pi,j−1,k′ = Ni,j−1,k′/Ni,j−1.

Let S(θ) be the vector of (Su(θ)), and M(θ) be the matrix [Muv(θ)]. Then an

updated estimate is obtained as

θ(h+1) = θ(h) +M(θ(h))−1S(θ(h)), h = 0, 1, · · · , (2.5)

where M(θ(h)) is assumed nonsingular. The iteration is cycled through until con-

vergence of θ(h+1). Let θ̂ denote the corresponding limit.

Under the usual regularity conditions for maximum likelihood estimators,
√
n(θ̂−

θ)
d−→ N(0,Σ−1) as the sample size n approaches infinity. Here

Σ = E
[
−∂2logLi(θ)/∂θ∂θ

′
]
,

and it can be estimated by the observed information matrix given in Section 2.6 or

by the expected information matrix given here.

Here we comment that the mean parameter β and the association parameter α

are orthogonal if Yij are binary responses. This property is established by Azzalini
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Figure 2.1: Three states diagram of the transitions

 1  2

 0

(1994) for a restrictive scenario. Heagerty (2002) proved the properties by using

the log-linear parametrization of the first order marginalized transition model for

binary data. In Section 2.7 we establish an analogous property for categorical data.

Finally, we note that model checking can be conducted directly through score tests

or likelihood ratio tests as the proposed method is likelihood-based.

2.3 Numerical Studies

2.3.1 Performance of the Proposed Method

In this subsection we conduct simulation studies to assess the performance of

the proposed method. We set n = 500, K = 2 to give three categories and Ji = 4

to give four timepoints, for i = 1, . . . , n. Figure 2.1 illustrates the state diagram.

Two thousand simulations are run for each parameter configuration.
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The response vector is generated from the marginal model

log

(
µMijk
µMij0

)
= βk0 + βk1Xij1 + βk2Xij2, k = 1, 2, (2.6)

in combination with the conditional model

log

(
µCijk
µCij0

)
= γijk + γij1kI(Yi,j−1 = 1) + γij2kI(Yi,j−1 = 2), k = 1, 2, (2.7)

where γijk′k are specified as

γijk′k = αk′k0 + αk′k1Xij2, k′, k = 1, 2. (2.8)

Here Xij1 = Xi1 represents the treatment status, generated from the binomial dis-

tribution Bin(1, 0.5), andXij2 is specified as I(j = 3 or 4), indicating a temporal ef-

fect. Let βk = (βk0, βk1, βk2)
′ for k = 1, 2, and Xij = (1, Xij1, Xij2)

′ for j = 1, . . . , J .

Set β1 = (− log(3), log(0.8), log(1.2))′, β2 = (− log(3), log(0.6), log(1.5))′, α110 =

log(1.2), α210 = log(1.1), α120 = log(1.5), α220 = log(2.0), α111 = log(1.5), α211 =

log(1), α121 = log(1.5), and α221 = log(1.5).

Data are generated as follows. Given the covariate vectorXi = (X ′
i1, X

′
i2, . . . , X

′
iJ)

′,

with parameter θ specified as above, Yi1 is generated from a multinomial distribu-

tion with probabilities

µMi10 = P (Yi1 = 0|Xi) =
1

1 + eX
′

i1β1 + eX
′

i1β2
,

µMi11 = P (Yi1 = 1|Xi) =
eX

′

i1β1

1 + eX
′

i1β1 + eX
′

i1β2
,

µMi12 = P (Yi1 = 2|Xi) =
eX

′

i1β2

1 + eX
′

i1β1 + eX
′

i1β2
,

based on (2.6). Given Yi,j−1 then, Yij is generated from a multinomial distribution
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with conditional probabilities

µCij0 = P (Yij = 0|Yi,j−1, Xi)

=
1

1 + eγij1+γij11I(Yi,j−1=1)+γij21I(Yi,j−1=2) + eγij2+γij12I(Yi,j−1=1)+γij22I(Yi,j−1=2)
,

µCij1 = P (Yij = 1|Yi,j−1, Xi)

=
eγij1+γij11I(Yi,j−1=1)+γij21I(Yi,j−1=2)

1 + eγij1+γij11I(Yi,j−1=1)+γij21I(Yi,j−1=2) + eγij2+γij12I(Yi,j−1=1)+γij22I(Yi,j−1=2)
,

µCij2 = P (Yij = 2|Yi,j−1, Xi)

=
eγij2+γij12I(Yi,j−1=1)+γij22I(Yi,j−1=2)

1 + eγij1+γij11I(Yi,j−1=1)+γij21I(Yi,j−1=2) + eγij2+γij12I(Yi,j−1=1)+γij22I(Yi,j−1=2)
.

To determine these probabilities, we must first determine the values of γij1 and γij2

that satisfy the equations

µMijk = P (Yij = k|Xi) =
2∑

k′=0

P (Yij = k|Yi,j−1 = k′, Xi)µ
M
i,j−1,k′ k = 1, 2.

That is, we must solve the nonlinear equations

µMij1 =
eγij1

1 + eγij1 + eγij2
µMi,j−1,0 +

eγij1+γij11

1 + eγij1+γij11 + eγij2+γij12
µMi,j−1,1

+
eγij1+γij21

1 + eγij1+γij21 + eγij2+γij22
µMi,j−1,2

µMij2 =
eγij2

1 + eγij1 + eγij2
µMi,j−1,0 +

eγij2+γij12

1 + eγij1+γij11 + eγij2+γij12
µMi,j−1,1

+
eγij2+γij22

1 + eγij1+γij21 + eγij2+γij22
µMi,j−1,2

for γij1 and γij2, for i = 1, 2, . . . , n and j = 2, 3, 4. Here µMijk is determined by (2.6),

and γijk′k
′s are given by (2.8). Explicit expressions are typically not available and

so numerical methods must be employed to obtain solutions. Specifically, here we

use the software R in the numerical implementation. The detailed expression of

the first and second derivatives of the log likelihood are included in Appendix A.
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In this simulation, we consider the case with i) no covariates, ii) only a time

dependent covariate, and iii) the case with both a time dependent and a time inde-

pendent (treatment) covariate for the marginal model. Both the Newton-Raphson

and Fisher-scoring methods are employed. The results are reported in Table 2.1,

where ASE represents the average of the standard errors, ESE refers to the empir-

ical standard error, and CP denotes the coverage probability for 95% confidence

intervals. For the Fisher-scoring algorithm the confidence intervals were computed

using the expected information matrix. It is seen that the two methods give very

similar results. The biases for both β and α under the three scenarios are fairly

small, indicating that the estimators are consistent. The model-based standard

errors agree with the empirical standard errors reasonably well. It is not surprising

that standard errors for the estimates of mean parameters βk′k are smaller than

those for the estimates of association parameters αk′kr. The coverage probabilities

for all the parameters are in good agreement with the nominal level of 95%, sug-

gesting that the variance estimates obtained from the proposed method are valid.

2.3.2 Comparison of the Proposed Method and GEE

In this subsection we further evaluate the performance of the proposed method,

compared to the GEE approach, by focusing on the estimates of the marginal mean

parameter β. We consider two scenarios – correct model specification and model

misspecification. In particular, with model misspecification we examine the perfor-

mance of the proposed method only when the conditional model µCijk is misspecified.

For the first scenario that both marginal and conditional models are correctly

assumed, we use the same settings as those in Section 2.3.1. That is, a first order
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Table 2.1: Simulation results under the three scenarios using Newton-Raphson and Fisher-scoring method

No Covariate Trend Treatment and Trend
Parameter Value Method† ∗BIAS ASE ESE CP ∗BIAS ASE ESE CP ∗BIAS ASE ESE CP

Marginal Model:
β10 -log(3) NR -0.001 0.060 0.061 0.951 -0.002 0.080 0.081 0.949 -0.004 0.104 0.104 0.953

FS -0.001 0.061 0.060 0.949 -0.002 0.082 0.080 0.948 -0.005 0.104 0.103 0.951
β11 log(0.8) NR -0.005 0.124 0.124 0.954

FS -0.004 0.123 0.122 0.952
β12 log(1.2) NR 0.002 0.116 0.118 0.952 -0.000 0.115 0.115 0.950

FS 0.002 0.117 0.117 0.953 -0.001 0.114 0.114 0.948

β20 -log(3) NR -0.000 0.064 0.064 0.951 -0.006 0.086 0.086 0.951 -0.005 0.105 0.105 0.950
FS -0.000 0.065 0.064 0.952 -0.004 0.085 0.086 0.951 -0.006 0.103 0.104 0.951

β21 log(0.6) NR -0.000 0.122 0.124 0.950
FS -0.001 0.123 0.124 0.952

β22 log(1.5) NR 0.002 0.113 0.112 0.951 0.002 0.118 0.120 0.952
FS 0.002 0.112 0.112 0.949 0.002 0.118 0.119 0.953

Association Model:
α110 log(1.2) NR -0.005 0.297 0.297 0.955 -0.007 0.300 0.301 0.950 -0.006 0.326 0.327 0.952

FS -0.005 0.302 0.296 0.952 -0.005 0.302 0.300 0.951 -0.005 0.327 0.326 0.951
α111 log(1.5) NR 0.011 0.361 0.362 0.951 0.021 0.401 0.400 0.953 0.003 0.444 0.445 0.954

FS 0.013 0.360 0.363 0.950 0.018 0.402 0.401 0.952 0.002 0.450 0.443 0.949

α210 log(1.1) NR -0.005 0.313 0.313 0.950 -0.005 0.308 0.307 0.952 -0.004 0.313 0.315 0.954
FS -0.005 0.314 0.311 0.952 -0.006 0.310 0.310 0.950 -0.003 0.315 0.312 0.952

α211 log(1.0) NR 0.016 0.382 0.383 0.949 0.015 0.415 0.414 0.953 0.003 0.422 0.423 0.953
FS 0.013 0.384 0.384 0.948 0.016 0.412 0.413 0.949 0.006 0.420 0.422 0.949

α120 log(1.5) NR -0.001 0.300 0.301 0.952 -0.000 0.297 0.298 0.952 -0.002 0.301 0.301 0.952
FS -0.001 0.305 0.301 0.951 -0.002 0.301 0.299 0.950 -0.002 0.302 0.304 0.950

α121 log(1.5) NR 0.000 0.368 0.368 0.955 0.001 0.363 0.360 0.949 0.004 0.366 0.366 0.953
FS 0.001 0.367 0.368 0.953 0.001 0.361 0.362 0.947 0.002 0.368 0.366 0.948

α220 log(2.0) NR -0.009 0.283 0.282 0.952 -0.008 0.280 0.281 0.949 -0.005 0.282 0.281 0.951
FS -0.010 0.281 0.281 0.951 -0.009 0.282 0.282 0.947 -0.007 0.282 0.279 0.949

α221 log(1.5) NR 0.006 0.345 0.344 0.952 0.007 0.325 0.325 0.952 0.009 0.326 0.327 0.948
FS 0.007 0.342 0.343 0.955 0.008 0.325 0.324 0.948 0.008 0.324 0.328 0.947

† “NR” represents the Newton-Raphson algorithm, while “FS” denotes the Fisher-scoring method.
∗ Absolute bias.
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dependence is considered as specified in (2.7) and (2.8). With the GEE approach

we adopt the working independence correlation matrix as it has been shown to

provide fairly efficient estimates in many settings (e.g., Sutradhar and Das, 1999).

We particularly fit three marginal models with no covariates, only time trend and

both treatment and time trend included, respectively.

Table 2.2 shows the empirical bias (BIAS), the average standard error (ASE),

the empirical standard error (ESE) and the empirical coverage probability (CP)

of 95% confidence intervals for 2000 samples. For the GEE model the ASE is the

average of 2000 robust standard errors based on the sandwich variance formula and

for the proposed model the ASE is the average of the 2000 standard errors based

on the Fisher information matrix. It is seen that both methods give reasonably

comparable estimates with very small finite sample biases. Both methods yield

reasonable standard errors as the model based standard errors (ASE) agree very

well with the empirical standard errors (ESE). However, the proposed method seems

to be more efficient than the GEE method since it tends to produce smaller standard

errors and better coverage probabilities.

Now we investigate the performance of the proposed model by examining its

sensitivity to the model misspecification. We consider the same marginal model as

that in Section 3.1, but use a second order dependence model of the form

log

(
µCijk
µCij0

)
= γijk +

2∑

l=1

2∑

k′=1

γijlk′kI(Yi,j−l = k′), j = 3, 4, k = 1, 2,

γijlk′k = αlk′k0 + αlk′k1Xij2, k, k′ = 1, 2, l = 1, 2,

to accommodate serial correlation for j = 3 and 4. Here µCijk = P (Yij = k|Yi,j−1, Yi,j−2,

Xi) for j = 3, 4, are the second order dependence probabilities. When j = 2, we as-

sume a first order dependence model for Yi2 through the models (2.7) and (2.8) and
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take the same parameter values as in Section 2.3.1. For the α parameters in the sec-

ond order dependence model, we set αlk′k0 = log(1+((k−1)·22+(k′−1)·2+(l−1))/8)

and αlk′k1 = log(2 + ((k − 1) · 22 + (k′ − 1) · 2 + (l − 1))/8) to feature a weak

dependence, and αlk′k0 = log(5 + ((k − 1) · 22 + (k′ − 1) · 2 + (l − 1))/8) and

αlk′k1 = log(6 + ((k − 1) · 22 + (k′ − 1) · 2 + (l − 1))/8) to represent a strong

dependence, k, k′, l = 1, 2.

Table 2.3 shows that with a weak dependence among Y ′
ijs, both methods pro-

duce very small finite sample biases, the model based standard errors (ASE) agree

very well with the empirical standard errors (ESE), and the standard errors from

the two methods are fairly comparable. The proposed method seems to provide

better coverage probabilities than the GEE approach. When the strength of de-

pendence is large, however, it is evident from Table 2.4 that the proposed method

may fail to perform satisfactorily. The finite sample biases can be substantial, the

standard errors may be inflated, and hence the coverage probabilities deviate from

the nominal value considerably.

2.4 Inference with Missing Data

In practice, missing observations arise commonly. This is also the case of the

motivating example to be analyzed in Section 2.5. In this section we develop in-

ference methods to handle missing observations. Specifically, we discuss methods

based on the observed likelihood and the expectation-maximization (EM) algo-

rithm. Throughout we assume data are missing at random (MAR) (Diggle et al.,

2002).
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Table 2.2: Comparison of the frequency properties of estimators of regression coef-

ficients by the proposed method and GEE method with correctly specified models

True GEE Proposed Method

Parameters Value †BIAS% ASE ESE CP †BIAS% ASE ESE CP

No Covariate

β10 -log(3) 0.00 0.062 0.061 0.947 -0.09 0.061 0.060 0.949

β20 -log(3) -0.18 0.065 0.065 0.933 -0.00 0.065 0.064 0.952

Trend

β10 -log(3) 0.09 0.082 0.082 0.955 -0.18 0.080 0.080 0.948

β12 log(1.2) 1.64 0.115 0.116 0.951 1.10 0.113 0.112 0.953

β20 -log(3) -0.09 0.089 0.089 0.929 -0.36 0.085 0.086 0.951

β22 log(1.5) 0.25 0.116 0.117 0.934 0.49 0.112 0.112 0.949

Treatment and Trend

β10 -log(3) 0.00 0.106 0.105 0.945 -0.45 0.104 0.103 0.951

β11 log(0.8) -1.34 0.122 0.123 0.946 -1.79 0.123 0.122 0.952

β12 log(1.2) 1.10 0.118 0.120 0.936 -0.55 0.114 0.114 0.948

β20 -log(3) -0.55 0.109 0.110 0.933 -0.56 0.103 0.104 0.951

β21 log(0.6) 0.39 0.128 0.128 0.939 -0.20 0.123 0.124 0.952

β22 log(1.5) 1.23 0.125 0.126 0.953 0.49 0.118 0.119 0.953

† Percent relative bias (β̂ − βtrue)/βtrue × 100.
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Table 2.3: Comparison of the frequency properties of estimators of regression co-

efficients by the proposed method and GEE method with misspecified conditional

model: weak dependence

True GEE Proposed Method

Parameters Value †BIAS% ASE ESE CP †BIAS% ASE ESE CP

β10 -log(3) -0.18 0.107 0.108 0.939 -0.64 0.106 0.107 0.959

β11 log(0.8) 0.90 0.140 0.141 0.938 3.13 0.140 0.140 0.957

β12 log(1.2) 0.00 0.133 0.132 0.958 5.48 0.143 0.145 0.953

β20 -log(3) -0.46 0.115 0.115 0.928 -0.64 0.112 0.113 0.945

β21 log(0.6) 1.19 0.155 0.155 0.923 -0.59 0.147 0.149 0.947

β22 log(1.5) -1.73 0.134 0.133 0.966 1.97 0.137 0.136 0.965

† Percent relative bias (β̂ − βtrue)/βtrue × 100.

Table 2.4: Comparison of the frequency properties of estimators of regression co-

efficients by the proposed method and GEE method with misspecified conditional

model: strong dependence

True GEE Proposed Method

Parameters Value †BIAS% ASE ESE CP †BIAS% ASE ESE CP

β10 -log(3) -0.36 0.114 0.115 0.942 -10.56 0.135 0.137 0.806

β11 log(0.8) -0.45 0.155 0.153 0.919 0.90 0.160 0.164 0.912

β12 log(1.2) 2.19 0.131 0.130 0.966 57.59 0.166 0.168 0.866

β20 -log(3) -0.72 0.116 0.116 0.926 -15.84 0.175 0.178 0.668

β21 log(0.6) 0.00 0.164 0.162 0.917 -10.76 0.170 0.169 0.886

β22 log(1.5) 1.80 0.131 0.130 0.964 38.47 0.188 0.190 0.730

† Percent relative bias (β̂ − βtrue)/βtrue × 100.
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2.4.1 A Scoring Method

In this subsection we describe a Fisher-scoring method to handle incomplete

data. For a given q, let µ
C(q)
ijk′k be the q-step transition probability from state k′ at

the (j − q)th time point to state k at the jth time point, i.e.

µ
C(q)
ijk′k = P (Yij = k|Yi,j−q = k′, Xi)

=

K∑

l1=0

· · ·
K∑

lq−1=0

P (Yij = k, Yi,j−1 = l1, · · · , Yi,j−q+1 = lq−1|Yi,j−q = k′, Xi)

=
K∑

l1=0

· · ·
K∑

lq−1=0

(
q∏

m=1

µCi,j−q+m,lm−1lm

)

where we denote lq = k and l0 = k′.

Let j0 < j1 < · · · < jmi
be the ordered observed assessment points for subject i,

between two consecutive time points. Here j0 = 1. The likelihood can be written

as

L(θ) =
n∏

i=1

{
mi∏

m=1

K∏

k′,k=0

(
µ
C(jm−jm−1)
ijmk′k

)I(Yijm−1
=k′,Yijm=k)

·
K∏

k=0

(
µMi1k

)I(Yi1=k)

}
,

leading to the score function

Su(θ) =
n∑

i=1

{
mi∑

m=1

K∑

k′,k=0

I(Yijm−1 = k′, Yijm = k)

µ
C(jm−jm−1)
ijmk′k

·
∂µ

C(jm−jm−1)
ijmk′k

∂θu

+
K∑

k=0

I(Yi1 = k)

µMi1k
· ∂µ

M
i1k

∂θu

}
,
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and the second derivative

∂2ℓ(θ)

∂θu∂θv
=

n∑

i=1




−

mi∑

m=1

K∑

k′,k=0

I(Yijm−1 = k′, Yijm = k)
(
µ
C(jm−jm−1)
ijmk′k

)2 ·
∂µ

C(jm−jm−1)
ijmk′k

∂θu
·
∂µ

C(jm−jm−1)
ijmk′k

∂θv

+

mi∑

m=1

K∑

k′,k=0

I(Yijm−1 = k′, Yijm = k)

µ
C(jm−jm−1)
ijmk′k

·
∂2µ

C(jm−jm−1)
ijmk′k

∂θu∂θv

−
K∑

k=0

I(Yi1 = k)

(µMi1k)
2 · ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv
+

K∑

k=0

I(Yi1 = k)

µMi1k
· ∂

2µMi1k
∂θu∂θv

}
,

where ℓ(θ) is the log-likelihood and

∂µ
C(q)
ijk′k

∂θ
=

K∑

l1=0

· · ·
K∑

lq−1=0

(
q∑

r=1

q∏

m=1,m6=r

µCi,j−q+m,lm−1lm
·
∂µCi,j−q+r,lr−1lr

∂θ

)
.

Taking expectation yields

E

[
− ∂2ℓ(θ)

∂θu∂θv

]
=

n∑

i=1

mi∑

m=1

K∑

k′,k=0

P (Yijm−1 = k′)

µ
C(jm−jm−1)
ijmk′k

·
∂µ

C(jm−jm−1)
ijmk′k

∂θu
·
∂µ

C(jm−jm−1)
ijmk′k

∂θv

+

n∑

i=1

K∑

k=0

1

µMi1k
· ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv
,

due to the fact that

E[I(Yijm−1 = k′, Yijm = k)] = P (Yijm−1 = k′, Yijm = k|Xi)

= P (Yijm−1 = k′|Xi) · µC(jm−jm−1)
ijmk′k

,

E[Yi1 = k] = P (Yi1 = k|Xi) = µMi1k,

K∑

k=0

µ
C(jm−jm−1)
ijmk′k

= 1

and
K∑

k=0

µMi1k = 1.
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Applying the same argument as that in Section 2.2, if the covariates Xi are

discrete, E [−∂2ℓ(θ)/∂θu∂θv] can be estimated by

Muv(θ) =

n∑

i=1

{
mi∑

m=1

K∑

k′,k=0

pijm−1k′

µ
C(jm−jm−1)
ijmk′k

·
∂µ

C(jm−jm−1)
ijmk′k

∂θu
·
∂µ

C(jm−jm−1)
ijmk′k

∂θv

+

K∑

k=0

1

µMi1k
· ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv

}
,

where pijm−1k′ is the proportion of the subjects with covariate xi in state k′ at the

(jm−1)th time point. Therefore, the Fisher-scoring method in Section 2.2 may be

employed here to obtain the estimate θ̂. Analogously, we can get the estimate of

the asymptotic covariance matrix using the observed information matrix or the

expected information given here.

2.4.2 An EM Algorithm

When the missing data proportion is relatively small, the Fisher-scoring method

described above works well. However, if the missing proportion is large, the Fisher-

scoring method may become computationally burdensome since we need to calculate

the q step transition probabilities and their derivatives which will be very compu-

tationally intensive. In this subsection we describe an alternative method based on

the EM algorithm. The complete data likelihood for subject i is given by

Li(θ, yi) =

Ji∏

j=2

K∏

k′,k=0

(
µCijk′k

)I(Yij=k,Yi,j−1=k′) ·
K∏

k=0

(
µMi1k

)I(Yi1=k)
,

leading to the complete data log-likelihood

ℓi(θ, yi) =

Ji∑

j=2

K∑

k′,k=0

I(Yij = k, Yi,j−1 = k′) · log
(
µCijk′k

)
+

K∑

k=0

I(Yi1 = k) · log
(
µMi1k

)
.
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In the E step we construct the conditional expectation

Q(θ; θ(h)) =
n∑

i=1

Qi(θ; θ
(h)),

where yi is written as (y
(m)
i , y

(o)
i ) to explicitly indicate missing and observed com-

ponents, Qi(θ; θ
(h)) = E[ℓi(θ, yi)|Y (o)

i , θ(h)] =
∑

y
(m)
i

wi(yi; θ
(h)) · ℓi(θ, yi), and

wi(yi; θ
(h)) =

Li(θ
(h); y

(m)
i , y

(o)
i )

∑
y
(m)
i

Li(θ(h);Y
(m)
i = y

(m)
i , y

(o)
i )

,

may be viewed as a weight.

To maximize Q(θ; θ(h)), we may use the Newton-Raphson method in the same

spirit of Section 2.2. Note that the weighted score function is

Su(θ; θ
(h)) =

∂Q(θ; θ(h))

∂θu

=

n∑

i=1

Ji∑

j=2

K∑

k′,k=0

∑

y
(m)
i

wi(yi; θ
(h)) · I(Yij = k, Yi,j−1 = k′)

µCijk′k
·
∂µCijk′k
∂θu

+

n∑

i=1

K∑

k=0

I(Yi1 = k)

µMi1k
· ∂µ

M
i1k

∂θu

and the second derivative is

Iuv(θ; θ
(h)) = −∂

2Q(θ; θ(h))

∂θu∂θv

=
n∑

i=1

Ji∑

j=2

K∑

k′,k=0

∑

y
(m)
i

wi(yi; θ
(h)) · I(Yij = k, Yi,j−1 = k′)

(
µCijk′k

)2 ·
∂µCijk′k
∂θu

·
∂µCijk′k
∂θv

−
n∑

i=1

Ji∑

j=2

K∑

k′,k=0

∑

y
(m)
i

wi(yi; θ
(h)) · I(Yij = k, Yi,j−1 = k′)

µCijk′k
·
∂2µCijk′k
∂θu∂θv

+
n∑

i=1

K∑

k=0

I(Yi1 = k)

(µMi1k)
2 · ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv
−

n∑

i=1

K∑

k=0

I(Yi1 = k)

µMi1k
· ∂

2µMi1k
∂θu∂θv

.

Let S(θ; θ(h)) be the score vector (Su(θ; θ
(h))) and I(θ; θ(h)) be the matrix [Iuv(θ; θ

(h))],

then given the initial value θ(h,0), the Newton-Raphson method involves iterating
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as

θ(h,ℓ+1) = θ(h,ℓ) + I−1(θ(h,ℓ); θ(h,ℓ))S(θ(h,ℓ); θ(h,ℓ))

until convergence is achieved at the estimate, say θ(h+1). We then replace θ(h) by

θ(h+1), and iterate again using the E and M steps, until convergence is achieved at

the estimate θ̂.

Alternatively, we may employ the Fisher-scoring method discussed in Section

2.2. Specifically, the expectation of the second derivative is

E

{
−∂

2Q(θ; θ(h))

∂θu∂θv

}

=

n∑

i=1





Ji∑

j=2

K∑

k′,k=0

∑

y
(m)
i

wi(yi; θ
(h)) · P (Yi,j−1 = k′|Xi)

µCijk′k
·
∂µCijk′k
∂θu

·
∂µCijk′k
∂θv

+
K∑

k=0

1

µMi1k
· ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv

}
,

where the expectation is taken with respect to Li(θ
(h); yi). Again, this expectation

can be estimated by

Muv(θ; θ
(h)) =

n∑

i=1





Ji∑

j=2

K∑

k′,k=0

∑

y
(m)
i

wi(yi; θ
(h)) · pi,j−1,k′

µCijk′k
·
∂µCijk′k
∂θu

·
∂µCijk′k
∂θv

+

K∑

k=0

1

µMi1k
· ∂µ

M
i1k

∂θu
· ∂µ

M
i1k

∂θv

}
,

where pi,j−1,k′ is the proportion of the subjects in state k′ at the (j − 1)th time

point with Xi = xi. The iterative equation (2.5) can be used to obtain the estimate

θ(h+1). That is, we replace θ(h) by θ(h+1) and iterate between the E and M steps

until the estimates converge to the estimate θ̂.

To obtain the variance estimates for the estimator θ̂, we may apply the Louis’s
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method (Louis, 1982). That is, let

Σ(θ̂) = M(θ̂; θ̂)−
n∑

i=1

∑

y
(m)
i

wi(yi; θ̂)

(
∂ℓi(θ̂)

∂θ

)(
∂ℓi(θ̂)

∂θ

)′

+

n∑

i=1

(
∂Qi(θ̂; θ̂)

∂θ

)(
∂Qi(θ̂; θ̂)

∂θ

)′

,

then [Σ(θ̂)]−1 is the estimate of the asymptotic covariance matrix of θ̂. Alternatively,

one could use the expected information matrix from Section 2.1.

2.5 Application to Waterloo Smoking Prevention

Project

The Waterloo Smoking Prevention Project (WSPP) is a randomized longitudi-

nal study designed to investigate smoking behavior among school children (Cameron

et al., 1999). A total of 100 schools in seven Ontario school boards were randomized

to dispense either the regular health education programmes provided by the school

or a more intensive anti-smoking programme delivered by either a specially trained

teacher or a public health nurse. Questionnaires regarding smoking attitudes and

behavior were administered annually from grade 6 to grade 12. Here we use the

subjects who are present at the first assessment. The purposes of this study include

evaluating i) whether the intensive anti-smoking education programme is more ef-

fective than standard school education programme, ii) whether students’ smoking

behavior changes and iii) whether other factors have influence on the children’s

smoking behavior.

The smoking status based on the responses to the questionnaire items can be

coded as three states. Children who have never smoked, tried once or quit are

classified as ‘non-smoker’ and are represented by state 0. A child is in state 1 if
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Table 2.5: Sample data from two schools participating in the Waterloo Smoking Prevention Project

School A School B

Time 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Time 1 2 3 4 5 6 7 1 2 3 4 5 6 7

ID GENDER TRT SMR STATE ID GENDER TRT SMR STATE

1 0 1 1 1 2 1 2 1 2 1 1 2 1 1 1 1 1 0 0 1 1 2 2 2 2 2 1 1 1 3 1 3 3

2 1 1 2 2 1 1 1 2 1 1 1 . 1 1 3 3 2 1 0 1 1 2 2 2 2 2 1 1 2 3 3 3 3

3 0 1 1 1 1 1 1 1 1 1 2 2 3 3 . . 3 1 0 2 2 2 3 3 3 3 1 1 1 2 3 3 3

4 0 1 1 1 1 1 1 1 1 1 1 2 2 3 2 3 4 1 0 2 2 2 2 2 2 3 1 1 1 1 1 . .

5 1 1 2 2 2 2 2 3 3 1 1 1 1 1 . . 5 0 0 2 2 1 2 2 2 2 1 1 1 1 1 1 1

6 1 1 2 2 2 2 3 2 2 1 1 3 3 3 3 3 6 0 0 1 1 2 2 2 2 2 1 1 1 1 1 1 1

7 0 1 2 2 2 3 3 3 2 1 1 1 1 1 1 1 7 1 0 1 1 3 3 3 3 3 1 1 2 . . . .

8 1 1 2 2 3 3 3 3 3 1 1 2 . . . . 8 1 0 2 2 2 2 3 3 3 1 1 1 . . . .

9 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 0 1 1 1 2 2 2 2 1 1 1 2 3 3 3

10 1 1 2 2 3 2 2 2 3 1 1 3 3 3 3 3 10 1 0 1 1 2 2 2 2 2 1 1 . . . . .

11 0 1 2 3 3 3 3 3 3 1 2 1 3 1 1 . 11 1 0 2 2 3 3 3 3 3 1 1 1 . 1 1 1

12 0 1 2 3 2 2 2 2 2 1 1 2 2 3 1 2 12 0 0 2 2 2 2 2 2 3 1 1 1 1 1 1 3

13 0 1 1 2 3 3 3 3 3 1 1 1 3 . . 3 13 0 0 2 2 1 2 2 2 2 1 1 1 1 1 3 3

14 0 1 2 2 3 2 3 3 3 1 1 1 3 1 1 1 14 0 0 1 2 2 2 2 2 2 1 1 1 1 1 1 2
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he or she is experimenting with smoking. Children who are regular smokers are

classified as in state 2. A three-state diagram is displayed in Figure 2.2 to show

possible transitions among the states. Along with the responses, the factors that

may influence the children’s smoking behavior were recorded. These covariates

include gender (coded as GENDER, 0–female, 1–male), treatment group (coded as

TRT, 0–control; 1–intervention), social models risk score (coded as SMR, 1–none

of parents, siblings or friends smoke; 2–one of parents, siblings or friends smoke;

3–two or more of parents, siblings or friends smoke) and grade indicator (coded as

GRADE, 0–secondary school; 1–high school).

There are 3965 subjects in the data set who are present at the first assessment.

About 62.6% subjects have missing observations. The missing proportions from

grade 7 to grade 12 are 2%, 3%, 7%, 10%, 2% and 1% respectively. In Table 2.5

we display a sample data subset from two participating schools for illustration. We

first analyze the complete cases which contain the measurements of 1432 children

taken from grade 6 to grade 12.

We let Yij be the state student i was in at time j, i.e., in grade 5+j, j = 1, . . . , 7,

and use the subscripts for covariates in a similar fashion. Consider the model for

the marginal probabilities

log

(
µMijk
µMij0

)
= βk0 + βk1 · GENDERi + βk2 · TRTi + βk3 · SMR2ij

+βk4 · SMR3ij + βk5 · GRADEij, k = 1, 2,

where TRTi represents the treatment status for subject i, SMR2ij = I(SMRij = 2)

and SMR3ij = I(SMRij = 3), along with the model for the conditional probabilities

log

(
µCijk
µCij0

)
= γijk + γij1kI(Yi,j−1 = 1) + γij2kI(Yi,j−1 = 2), k = 1, 2,
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Figure 2.2: Three-state diagram for the analysis of the Waterloo Smoking Preven-

tion Project Data

STATE 2

(Experimenter)

STATE 3

(Regular)

STATE 1

(Non−smoker)

where the following regression models are assumed for the coefficients γijk′k:

γijk′k = αk′k0 + αk′k1 · GENDERi + αk′k2 · TRTi + αk′k3 · SMR2ij

+αk′k4 · SMR3ij + αk′k5 · GRADEij, k′, k = 1, 2.

As the data feature both the longitudinal correlation across subjects and cross-

sectional association across schools, here we use robust standard errors by adapting

the sandwich type variance formula discussed in Royall (1986) and Cook et al.

(2002) to accommodate potential cluster effects in the presence of missing values.

Let S(h)(θ) denote the score vector constructed by means of the formulation in Sec-

tion 2.4.1, based only on students from school h with the cross-sectional association

ignored, h = 1, 2, . . . , H , where H denotes the total number of schools. Modifying

the arguments in White (1982) that are applied to the cases without missing data,
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we can show that under MAR, the solution θ̂ to

S(θ) =

H∑

h=1

S(h)(θ) = 0

converges to θ∗ almost surely. Here θ∗ solves ET [S(θ)] = 0 with ET denoting the

expectation taken with respect to the true distribution. Furthermore,

√
H(θ̂ − θ∗)

d−→ N(0, A−1(θ∗) · B(θ∗) · A−1(θ∗)), asH −→ ∞,

where A(θ) = ET [∂S(h)(θ)/∂θ], and B(θ) = ET
[
S(h)(θ)[S(h)(θ)]′

]
. A(θ) and B(θ)

may be estimated by

Â(θ̂) = H−1

H∑

h=1

∂S(h)(θ)/∂θ|θ=θ̂

and

B̂(θ̂) = H−1

H∑

h=1

S(h)(θ)[S(h)(θ)]′|θ=θ̂,

respectively.

Table 2.6 reports on the complete case analysis results with 1432 children con-

tributing complete observations. In the marginal model, both gender and treat-

ment covariates are not statistically significant. However, social model risk score

and grade have significant negative effects on the probability of smoking (either

experimental or regular). Students are more likely to smoke if their parents, sib-

lings or friends are smokers. Students are more likely to smoke when they are in

high school as opposed to being in secondary school. The covariate effects in the

conditional model seem to be less striking. Grade and social model risk score have

negative effects only for some transitions (see α114, α125, α223, α224). The remaining

covariate effects are not statistically significant.

Next, we analyze the available data with 3965 subjects contributing complete

or partial observations, assuming the missing data mechanism is MAR. Table 2.7

45



Table 2.6: Complete case analysis of the Waterloo Smoking Prevention Project
data

Parameter Estimate S.E R.S.E† p-value

Marginal Model:
INTERCEPT1 (β10) -3.126 0.130 0.174 <0.001
GENDER (β11) 0.063 0.077 0.083 0.448
TRT (β12) 0.112 0.081 0.107 0.295
SMR2 (β13) 0.569 0.082 0.099 <0.001
SMR3 (β14) 1.320 0.096 0.111 <0.001
GRADE (β15) 1.214 0.094 0.135 <0.001

INTERCEPT2 (β20) -5.410 0.171 0.228 <0.001
GENDER (β21) 0.179 0.084 0.104 0.083
TRT (β22) 0.074 0.087 0.117 0.527
SMR2 (β23) 1.923 0.136 0.178 <0.001
SMR3 (β24) 3.629 0.128 0.180 <0.001
GRADE (β25) 2.114 0.126 0.186 <0.001

Association Model
INTERCEPT1 (α110) 2.712 0.335 0.345 <0.001
GENDER (α111) 0.086 0.168 0.157 0.584
TRT (α112) -0.108 0.177 0.185 0.559
SMR2 (α113) -0.277 0.207 0.205 0.177
SMR3 (α114) -0.517 0.229 0.168 0.002
GRADE (α115) -0.309 0.257 0.262 0.238

INTERCEPT2 (α210) -0.503 0.833 0.660 0.446
GENDER (α211) 0.694 0.335 0.367 0.059
TRT (α212) 0.639 0.375 0.333 0.055
SMR2 (α213) 0.570 0.457 0.501 0.255
SMR3 (α214) 0.376 0.499 0.486 0.439
GRADE (α215) 0.023 0.670 0.585 0.969

INTERCEPT3 (α120) 3.460 0.524 0.569 <0.001
GENDER (α121) -0.077 0.225 0.279 0.783
TRT (α122) -0.288 0.226 0.222 0.195
SMR2 (α123) 0.360 0.369 0.366 0.325
SMR3 (α124) 0.244 0.376 0.391 0.533
GRADE (α125) -1.393 0.358 0.351 <0.001

INTERCEPT4 (α220) 2.889 0.635 0.686 <0.001
GENDER (α221) -0.317 0.234 0.242 0.190
TRT (α222) 0.067 0.235 0.228 0.769
SMR2 (α223) 0.985 0.381 0.307 0.001
SMR3 (α224) 1.071 0.377 0.360 0.003
GRADE (α225) -0.022 0.497 0.609 0.971

loglik=-5010.54

† R.S.E is the robust standard error based on the sandwich variance formula. S.E is the naive
standard error that without accommodating the clustering.
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reports on the analysis results based on the observed data using the Fisher-scoring

method. It can be seen that the results are comparable with those for the com-

plete data analysis. Again, in the marginal model, both gender and treatment

covariates are not statistically significant. Social model risk score and grade have

significant negative effects on smoking incidence. Students are more likely to smoke

if their parents, siblings or friends are smokers. Students are more likely to smoke

when they are in high school as opposed to being in secondary school. Finally, we

comment on the difference in interpreting the parameters in the marginal and con-

ditional models. In the marginal models, the parameters reflect the covariate at the

population level for various time points. Typically, the social model risk score and

grade are statistically significant. However, in the conditional models, the parame-

ters feature the covariate effects on transitions among states. The analysis results

show that the covariate effects in the conditional model seem to be less striking.

Grade and social model risk score have negative effects on some transitions (see

α114, α125, α223, α224). Other covariate effects are not statistically significant.

47



Table 2.7: Available data analysis of the Waterloo Smoking Prevention Project
data

Parameter Estimate S.E R.S.E† p-value

Marginal Model:
INTERCEPT1 (β10) -3.181 0.109 0.141 <0.001
GENDER (β11) -0.119 0.068 0.078 0.127
TRT (β12) 0.095 0.076 0.093 0.307
SMR2 (β13) 0.457 0.073 0.088 <0.001
SMR3 (β14) 1.293 0.106 0.127 <0.001
GRADE (β15) 0.971 0.071 0.094 <0.001

INTERCEPT2 (β20) -3.642 0.111 0.157 <0.001
GENDER (β21) 0.014 0.059 0.118 0.906
TRT (β22) -0.041 0.072 0.086 0.634
SMR2 (β23) 0.805 0.084 0.127 <0.001
SMR3 (β24) 1.803 0.095 0.134 <0.001
GRADE (β25) 2.040 0.088 0.135 <0.001

Association Model
INTERCEPT1 (α110) 2.462 0.298 0.309 <0.001
GENDER (α111) 0.064 0.132 0.138 0.643
TRT (α112) -0.121 0.144 0.152 0.426
SMR2 (α113) -0.245 0.183 0.191 0.200
SMR3 (α114) -0.499 0.207 0.183 0.006
GRADE (α115) -0.318 0.224 0.230 0.167

INTERCEPT2 (α210) -0.429 0.679 0.656 0.513
GENDER (α211) 0.438 0.301 0.324 0.176
TRT (α212) 0.547 0.347 0.358 0.127
SMR2 (α213) 0.525 0.403 0.437 0.230
SMR3 (α214) 0.328 0.456 0.448 0.464
GRADE (α215) 0.030 0.618 0.632 0.962

INTERCEPT3 (α120) 3.906 0.483 0.504 <0.001
GENDER (α121) -0.082 0.211 0.227 0.718
TRT (α122) -0.297 0.208 0.213 0.163
SMR2 (α123) 0.347 0.334 0.362 0.338
SMR3 (α124) 0.208 0.338 0.368 0.572
GRADE (α125) -1.486 0.329 0.320 <0.001

INTERCEPT4 (α220) 2.978 0.592 0.633 <0.001
GENDER (α221) -0.326 0.218 0.235 0.165
TRT (α222) 0.052 0.221 0.241 0.829
SMR2 (α223) 0.884 0.337 0.364 0.015
SMR3 (α224) 1.009 0.343 0.337 0.003
GRADE (α225) -0.027 0.446 0.488 0.956

loglik=-13422.53

† R.S.E is the robust standard error based on the sandwich variance formula. S.E is the naive
standard error that without accommodating the clustering.
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2.6 Derivatives of the Log-Likelihood

In this section, we provide details on calculation of the first and second deriva-

tives of the log-likelihood in Section 2.2.

DERIVATION OF FIRST DERIVATIVES

By constraint (2.4) in the text, we obtain

∂µMijk
∂β

=

K∑

k′=0

{
K∑

l=1

∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂γijl
∂β

µMi,j−1,k′

+ P (Yij = k|Yi,j−1 = k′;Xi)
∂µMi,j−1,k′

∂β

}
.

Let

Bk =
∂µMijk
∂β

−
K∑

k′=0

P (Yij = k|Yi,j−1 = k′;Xi)
∂µMi,j−1,k′

∂β
,

Ak =

(
K∑

k′=0

∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl
µMi,j−1,k′, l = 1, . . . , K

)′

and Dβ = (∂γijl/∂β, l = 1, . . . , K)′, k = 1, . . . , K, then Bk = A′
kDβ. In matrix

notation, we have B = ADβ , where B = (B1, . . . , BK)′ and A = (A1, . . . , AK)′. If

A is not singular, then

Dβ = A−1B (2.9)

Therefore, the partial derivative ∂µCijk/∂β in the score functions is given by

∂µCijk
∂β

=

K∑

l=1

∂µCijk
∂γijl

∂γijl
∂β

,

where ∂µCijk/∂γijl is determined by (2.2), and ∂γijl/∂β is determined by (2.9).

Note that by (2.2), P (Yij = k|Yi,j−1 = k′;Xi) is a function of γijl, l = 1, ..., K and

γijk′m, m = 1, ..., K, where γijl, l = 1, ..., K and γijk′m, m = 1, ..., K are functions
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of α due to (2.3) and (2.4). So, taking the derivative on both sides of (2.4) with

respect to α, we obtain

0 =
∂µMijk
∂α

=
K∑

k′=0

{
K∑

l=1

∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂γijl
∂α

+
K∑

m=1

∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijk′m

∂γijk′m
∂α

}
µMi,j−1,k′

= A′
kDα +Mk

where Dα = (∂γijl/∂α, l = 1, . . . , K)′ and

Mk =
K∑

k′=0

K∑

m=1

∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijk′m
· ∂γijk′m

∂α
· µMi,j−1,k′.

In matrix form, we have ADα + M = 0, where M = (M1, . . . ,MK)′. If A is not

singular,

Dα = −A−1M. (2.10)

Note that µCijk is a function of γijl, l = 1, ..., K and γijmn, m, n = 1, ..., K, where

γijl, l = 1, ..., K and γijmn, m, n = 1, ..., K are functions of α. Therefore, by the

Chain Rule, the derivative of µCijk with respect to α may be written as

∂µCijk
∂α

=
K∑

l=1

∂µCijk
∂γijl

∂γijl
∂α

+
K∑

m=1

K∑

n=1

∂µCijk
∂γijmn

∂γijmn
∂α

, k = 1, . . . , K,

where ∂γijl/∂α is determined by (2.10), ∂µCijk/∂γijl and ∂µCijk/∂γijmn are determined

by (2.2) and ∂γijmn/∂α is determined by (2.3).

So, the score vector is given by

S(θ) =

n∑

i=1

{
Ji∑

j=2

K∑

k=0

I(Yij = k)
1

µCijk

∂µCijk
∂θ

+

K∑

k=0

I(Yi1 = k)
1

µMi1k

∂µMi1k
∂θ

}
,
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where ∂µCijk/∂θ = (∂µCijk/∂β
′, ∂µCijk/∂α

′)′, ∂µMi1k/∂θ = (∂µMi1k/∂β
′, ∂µMi1k/∂α

′)′, and

∂µMi1k/∂β can be obtained from (2.1), ∂µMi1k/∂α = 0.

DERIVATIONS OF SECOND DERIVATIVES

Taking second derivatives in the constraint (2.4), we obtain

∂2µMijk
∂βu∂βv

=
K∑

k′=0

K∑

l=1

{
K∑

m=1

∂2P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl∂γijm

∂γijl
∂βu

∂γijm
∂βv

µMi,j−1,k′

+
∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂2γijl
∂βu∂βv

µMi,j−1,k′

+
∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂γijl
∂βu

∂µMi,j−1,k′

∂βv

}

+
K∑

k′=0

{
K∑

l=1

∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂γijl
∂βv

∂µMi,j−1,k′

∂βu

+ P (Yij = k|Yi,j−1 = k′;Xi)
∂2µMi,j−1,k′

∂βu∂βv

}
.

Let

Ckuv =
∂2µMijk
∂βu∂βv

−
K∑

k′=0

K∑

l=1

{
K∑

m=1

∂2P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl∂γijm

∂γijl
∂βu

∂γijm
∂βv

µMi,j−1,k′

+
∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂γijl
∂βu

∂µMi,j−1,k′

∂βv

}

−
K∑

k′=0

{
K∑

l=1

∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂γijl
∂βv

∂µMi,j−1,k′

∂βu

+ P (Yij = k|Yi,j−1 = k′;Xi)
∂2µMi,j−1,k′

∂βu∂βv

}

and

Dβuv =

(
∂2γijl
∂βu∂βv

, l = 1, . . . , K

)′

,

we have

Cuv = ADβuv ,
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where Cuv = (C1uv, . . . , CKuv)
′. If A is non-singular, we have

Dβuv = A−1Cuv. (2.11)

So,

∂2µCijk
∂βu∂βv

=

K∑

l=1

(
K∑

m=1

∂2µCijk
∂γijl∂γijm

∂γijl
∂βu

∂γijm
∂βv

+
∂µCijk
∂γijl

· ∂2γijl
∂βu∂βv

)
, k = 1, . . . , K,

where ∂2γijl/∂βu∂βv is determined by (2.11), ∂2µCijk/∂γijl∂γijm and ∂µCijk/∂γijl are

determined by (2.2), and ∂γijl/∂βu and ∂γijm/∂βv are determined by (2.9).

Take second derivative on both sides of (2.4) with respect to αu and αv, we

obtain

0 =
∂2µMijk
∂αu∂αv

=

K∑

k′=0

K∑

l=1

{
K∑

m=1

∂2P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl∂γijm

∂γijl
∂αu

∂γijm
∂αv

+
∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl

∂2γijl
∂αu∂αv

}
µMi,j−1,k′

+
K∑

k′=0

K∑

m=1

{
K∑

n=1

∂2P (Yij = k|Yi,j−1 = k′;Xi)

∂γijk′m∂γijk′n

∂γijk′m
∂αu

∂γijk′n
∂αv

+
∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijk′m

∂2γijk′m
∂αu∂αv

}
µMi,j−1,k′

= A′
kDαuv + Ekuv,

where

Dαuv =

(
∂2γijl
∂αu∂αv

, l = 1, . . . , K

)
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and

Ekuv =
K∑

k′=0

K∑

l=1

K∑

m=1

∂2P (Yij = k|Yi,j−1 = k′;Xi)

∂γijl∂γijm

∂γijl
∂αu

∂γijm
∂αv

µMi,j−1,k′

+
K∑

k′=0

K∑

m=1

{
K∑

n=1

∂2P (Yij = k|Yi,j−1 = k′;Xi)

∂γijk′m∂γijk′n

∂γijk′m
∂αu

∂γijk′n
∂αv

+
∂P (Yij = k|Yi,j−1 = k′;Xi)

∂γijk′m

∂2γijk′m
∂αu∂αv

}
µMi,j−1,k′

In matrix form, we have ADαuv = Euv, where Euv = (E1uv, . . . , EKuv)
′. If A is

non-singular, we have

Dαuv = −A−1Euv. (2.12)

So,

∂2µCijk
∂αu∂αv

=
K∑

l=1

(
K∑

m=1

∂2µCijk
∂γijl∂γijm

· ∂γijl
∂αu

· ∂γijm
∂αv

+
∂µCijk
∂γijl

∂2γijl
∂αu∂αv

)

+
K∑

m1=1

K∑

n1=1

(
K∑

m2=1

K∑

n2=1

∂2µCijk
∂γijm1n1∂γijm2n2

∂γijm1n1

∂αu

∂γijm2n2

∂αv
+

∂µCijk
∂γijm1n1

∂2γijm1n1

∂αu∂αv

)
,

where ∂2γijl/∂αu∂αv is determined by (2.12), ∂2µCijk/∂γijl∂γijm, ∂µCijk/∂γijl and

∂2µCijk/∂γijm1n1∂γijm2n2 are determined by (2.2), ∂γijl/∂αu and ∂γijm/∂αv are de-

termined by (2.10), and ∂γijm1n1/∂αu, ∂γijm2n2/∂αv and ∂2γijm1n1/∂αu∂αv are de-

termined by (2.3).

We also note that ∂2µCijk/∂α∂β = 0 because α and β are orthogonal based on

Appendix B in the following and ∂2µMi1k/∂α∂β = 0. So, the second derivative of

the log-likelihood can be written as

∂2logL(θ)

∂θu∂θv
=

n∑

i=1

Ji∑

j=2

K∑

k=0

I(Yij = k)

{
− 1
(
µCijk

)2
∂µCijk
∂θu

∂µCijk
∂θv

+
1

µCijk

∂2µCijk
∂θu∂θv

}

+

n∑

i=1

K∑

k=0

I(Yi1 = k)

{
− 1

(µMi1k)
2

∂µMi1k
∂θu

∂µMi1k
∂θv

+
1

µMi1k

∂2µMi1k
∂θu∂θv

}
,
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and the observed information matrix is given by [−∂2logL(θ)/∂θu∂θv ].

2.7 Log-Linear Parametrization of Categorical Model

For ease of notation we drop the subject index i in the following discussion.

Note that

P (Y1 = y1) = exp

(
K∑

k=1

η1kI(y1 = k)

)/(
1 +

K∑

k=1

exp(η1k)

)

= exp

(
θ01 +

K∑

k=1

η1kI(y1 = k)

)

where η1k = X ′
1kβk, k = 1, . . . , K and θ01 = −log

(
1 +

∑K
k=1 exp(η1k)

)
.

P (Y1 = y1, Y2 = y2)

= P (Y2 = y2|Y1 = y1)P (Y1 = y1)

= exp

(
θ02 +

2∑

j=1

K∑

k=1

θjkI(yj = k) +

2∑

j=2

K∑

k=1

K∑

k′=1

γjk′kI(y1 = k′, y2 = k)

)

where θ02 = θ01 − log
(
1 +

∑K
k=1 exp(γ2k)

)
,

θ1k = η1k − log

(
1 +

K∑

k′=1

exp(γ2k′ + γ2kk′)

)
+ log

(
1 +

K∑

k′=1

exp(γ2k′)

)

and θ2k = γ2k for k = 1, . . . , K.

In general, we have

P (Y1 = y1, Y2 = y2, . . . , YJ = yJ)

=

J∏

j=2

P (Yj = yj|Yj−1 = yj−1) · P (Y1 = y1)

= exp

(
θ0J +

J∑

j=1

K∑

k=1

θjkI(yj = k) +

J∑

j=2

K∑

k=1

K∑

k′=1

γjk′kI(yj−1 = k′, yj = k)

)
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where θ0J = −
∑J

j=1 log
(
1 +

∑K
k=1 exp(γjk)

)
and

θjk = ηjk − log

(
1 +

K∑

k′=1

exp(γj+1,k′ + γj+1,kk′)

)
+ log

(
1 +

K∑

k′=1

exp(γj+1,k′)

)

for j < J , and θJk = γJk for k = 1, . . . , K, where for simplicity we adopt γ1k = η1k.

Here ηjk = X ′
jkβk.

Therefore, the proposed model is a reparametrization of the canonical log-linear

model (θ(1), γ(1)) to (µM , γ(1)), where θ(1) = (θjk) and γ(1) = (γjk′k) for j = 1, . . . , J

and k, k′ = 1, . . . , K. This implies β and α are orthogonal (Barndorff-Nielsen and

Cox, 1994).
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Chapter 3

Progressive Multi-State Models
for Incomplete Longitudinal and
Life History Data

3.1 Overview

Multi-state life history data commonly arise in many research areas such as

medicine, social sciences and public health. Multi-state models provide a convenient

method for characterizing the movement of individuals through a finite set of states.

In health research, the most common application of multi-state models is to provide

a comprehensive view of a disease process to allow estimation of proportions of

individuals who will be in various states at some time in the future, or rates of

transitions. Examples of these include illness-death models, competing risk models

and progressive models. In continuous time multi-state models, it is often the

transition intensities which are of interest. These are the instantaneous conditional

probability of transition at some time point given the covariates and the process

history. In practice, the intensities are frequently modeled as a function of covariates

that are believed to be relevant to the response process.

Sometimes individuals are observed at prespecified assessment times and their
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states are to be determined only at these times, so information about transitions

between successive observation times is unavailable. This type of data are some-

times referred to as panel data in the context of multi-state models (Kalbfleisch and

Lawless, 1989), and arise naturally in settings such as clinical trials where patients

are examined by physicians periodically and their states are assessed at those vis-

its. In an observational setting the psoriatic arthritis (PsA) study of Gladman et

al. (1995), involves radiological assessments of clinic patients at roughly one-year

intervals for much of their follow up, but the exact times of events are unknown.

Since the assessment times are prespecified, if patients completed their schedule

of assessments, only the disease process would need to be modeled (Gruger et al.,

1991).

Markov models are widely used in the analysis of multi-state data. These meth-

ods have been studied early by Bartholomew (1983), Singer and Spilerman (1976a,

b) and Wasserman (1980) among others. Kalbfleisch and Lawless (1985, 1989)

proposed a very efficient way of obtaining maximum likelihood estimates for time-

homogeneous Markov models with arbitrary transition structures. Gentleman et al.

(1994) adapted the method of Kalbfleisch and Lawless (1985, 1989) to incorporate

time nonhomogeneous intensities.

Typically, progressive models provide a convenient framework for characteriz-

ing the disease processes which arise, for example, when the state represents the

degree of the irreversible damage incurred by the disease. For the special case of

the progressive time-homogeneous Markov model, Satten (1999) gave a closed form

of the transition probability matrix expressed in terms of the transition intensities.

Cook et al. (2004) discussed the conditional Markov model for clustered progres-

sive multi-state process under incomplete observation through multivariate random
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effects.

Relatively little attention has been given to the analysis of progressive models

with incomplete assessment data. In general, individuals are observed at prespec-

ified assessment times and their states are determined only at these times. A

complete case analysis might lead to the biased results, and so invalid inferences.

Likelihood-based methods are commonly used to handle incomplete data problems.

It gives valid estimates when the missing data is MCAR and MAR. In this chapter,

we provide a general method to handle the incomplete data problem in the progres-

sive model. Maximum likelihood methods of estimation via the EM algorithm are

developed to calculate parameter estimates, and variance estimation is based on

Louis’s method. Section 3.2 is mainly concerned with the discrete time progressive

multi-state process, in which the EM algorithm is employed. Simulation studies

indicate that this method works well for many settings. Continuous time progres-

sive multi-state processes are considered in Section 3.3. Data from the Waterloo

Smoking Prevention Project (Cameron et al., 1999) and the psoriatic arthritis study

(Gladman et al., 1995) are analyzed in Section 3.4.

3.2 Modeling Transition Probabilities

Discrete time progressive models are widely used when the data structure is

panel data and the observed transition times are not available. In practice, inter-

est often lies in the transition probabilities between different states as well as the

association between the transition probabilities and the covariate effects. In this

section, we consider discrete time models via the transition probabilities.
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Figure 3.1: K-state diagram for progressive process

1 2 3 K

3.2.1 Notation and Model Formulation

We define an irreversible multi-state process as one in which a given state can

be entered at most once, but for the discussion that follows we consider models with

a state diagram as in Figure 3.1, which is a K-state transition model. If subjects

are to be observed at time points t1, t2, . . . , tJ , let Yi = (Yi1, Yi2, . . . , YiJ)
′ be the

response vector containing the states occupied at the assessment times, and Xij be

the vector of covariates recorded for subject i at the jth assessment, j = 1, . . . , J ,

i = 1, . . . , n. We let Xi = (X ′
i1, X

′
i2, . . . , X

′
iJ)

′ denote the full covariate vector.

Often, given the covariates, a first order dependence of Yij on its history is

appropriate and we discuss this model in what follows; extensions to models with

higher orders of dependence are straightforward. Let µCijk′k = P (Yij = k|Yi,j−1 =

k′, Xi) be the transition probability from state k′ to state k given Xi, where k′ ≤
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k ≤ K. The transition probability matrix for subject i at time j is then written as

Pij =




µCij11 µCij12 µCij13 · · · µCij1,K−1 µCij1K

0 µCij22 µCij23 · · · µCij2,K−1 µCij2K

0 0 µCij33 · · · µCij3,K−1 µCij3K
...

...
...

. . .
...

...

0 0 0 · · · µCij,K−1,K−1 µCij,K−1,K

0 0 0 · · · 0 1




,

where these transition probabilities satisfy

K∑

k=k′

µCijk′k = 1, for k′ = 1, 2, . . . , K − 1.

In general, we may adopt the following model with µCijk′k′ regarded as a reference

log

(
µCijk′k
µCijk′k′

)
= X ′

ijk′kβk′k, k = k′ + 1, . . . , K, (3.1)

where Xijk′k may be a subset of Xi, featuring the influence of the covariates on the

transition between the responses, and βk′k is the vector of regression coefficients. We

note that an implicit assumption P (Yij = k|Yi,j−1, Xi) = P (Yij = k|Yi,j−1, Xijk′k)

is made here, but Xijk′k can be easily expanded to ensure all important covariates

are included. We let β = (β ′
k′k, k > k′, k′ = 1, . . . , K − 1)′.

To model the missing data process, we let Rij be an indicator random variable,

which equals 1 if Yij is observed and 0 otherwise. We then letRi = (Ri1, Ri2, . . . , RiJ)
′,

and ri = (ri1, ri2, . . . , riJ)
′ be a realization of Ri. Here we assume all the subjects

are observed at the initial enrollment, i.e. Ri1 = 1. For ease of exposition, we

write yi = (y
(o)
i , y

(m)
i ) with y

(o)
i and y

(m)
i denoting the observed and missing compo-

nents of yi, respectively. Inference about β is based on the observed data likelihood

L =
∏n

i=1 Li, where

Li = P (Ri, Y
(o)
i |Xi) =

∫
P (Ri|Y (o)

i , Y
(m)
i , Xi) · P (Y

(o)
i , Y

(m)
i |Xi)dY

(m)
i . (3.2)
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Under a missing completely at random (i.e. P (Ri|Yi, Xi) = P (Ri)) or missing

at random (i.e. P (Ri|Yi, Xi) = P (Ri|Y (o)
i , Xi)) mechanism, P (Ri|Y (o)

i , Y
(m)
i , Xi)

does not depend on the missing components Y
(m)
i . Then Li ∝ P (Y

(o)
i |Xi) can be

used in lieu of (3.2), provided P (Ri|Yi, Xi) does not share any parameters with β.

Thus under these settings, inference about β may be directly conducted based on

P (Y
(o)
i |Xi) and the missing data process needn’t be modeled. However, if data are

missing not at random (MNAR), P (Ri|Y (o)
i , Y

(m)
i , Xi) does depend on Y

(m)
i , and

inferences must be based on (3.2) and a model must be specified for P (Ri|Yi, Xi).

In applications, incomplete data may arise for a variety of reasons, and it is

generally difficult to tell which missing data mechanism is reasonable. Flexible

models encompassing various missing data mechanisms are therefore desirable. To

this end, here we adopt models that accommodate a nonignorable missing data

mechanism. Specifically, let Hr
ij denote the history of the missing indicators until

the tj−1, and λ∗ij = P (Rij = 1|Hr
ij, Yi, Xi). Regression models may be employed to

link λ∗ij with functions of Yi, Xi and Hr
ij. Typically, a logistic regression model is

commonly used with

logit(λ∗ij) = Z ′
ijα, (3.3)

where Zij is a vector which may include functions of {Hr
ij, Yi, Xi}. As a typical

case, we may write

logit(λ∗ij) = α0 + α1 · ri,j−1 + α2 · ri,j−1yi,j−1 + α3 · yij + α′
x ·Xij

to reflect distinct missing data mechanisms. In this case, for example, α2 = α3 =

αx = 0 leads to a MCAR mechanism, α3 = 0 and α2 6= 0 corresponds to a MAR

mechanism, and α3 6= 0 represents a MNAR mechanism.
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3.2.2 Model Identifiability

Conditional on the initial state, the complete data likelihood for subject i is

written as

Li(θ; yi, ri) =
J∏

j=2

{
(λ∗ij)

rij (1 − λ∗ij)
1−rij ·

K∏

k′=1

K∏

k=k′

(
µCijk′k

)I(yi,j−1=k′,yij=k)

}
, (3.4)

where θ = (α′, β ′)′, and hence the observed data likelihood is

Li(θ; y
(o)
i , ri) =

∑

y
(m)
i

{
J∏

j=2

[
(λ∗ij)

rij (1 − λ∗ij)
1−rij ·

K∏

k′=1

K∏

k=k′

(
µCijk′k

)I(yi,j−1=k′,yij=k)

]}
.

(3.5)

With a MNAR mechanism, parameter identifiability is a central concern. Parame-

ters governing the missing data process may be nonidentifiable due to incomplete in-

formation on unobserved responses and sensitivity analyses are therefore often con-

ducted (e.g., Verbeke and Molenberghs, 2000). When the response process follows a

progressive model, both response and missing data parameters are identifiable, even

under a MNAR mechanism, provided standard conditions for (3.1) and (3.3) are

satisfied. That is, if θ and θ̃ are two values such that Li(θ; y
(o)
i , ri) = Li(θ̃; y

(o)
i , ri)

for any (y
(o)
i , ri), then θ = θ̃ must hold (Casella and Berger, 2002; Fitzmaurice,

Laird and Zahner, 1996). The detailed proof is included in Section 3.5.

3.2.3 EM Algorithm

Here we describe an expectation-maximization (EM) algorithm to maximize

(3.2). From (3.4), we obtain the log-likelihood for the complete data contribution

62



from subject i as

ℓi(θ; yi, ri) =
J∑

j=2

{rijlogλ∗ij + (1 − rij)log(1 − λ∗ij)}

+
J∑

j=2

K∑

k′=1

K∑

k=k′

I(yi,j−1 = k′, yij = k)log
(
µCijk′k

)
, (3.6)

where yi is a realization of Yi. In the expectation step (E-step), we require the

conditional expectation

Q(θ; θ(h)) =
n∑

i=1

Qi(θ; θ
(h)),

where Qi(θ; θ
(h)) = E[ℓi(θ; yi, ri)|y(o)

i , θ(h)] =
∑

y
(m)
i

wi(yi; θ
(h)) · ℓi(θ; yi, ri), and

wi(yi; θ
(h)) =

Li(θ
(h); y

(m)
i , y

(o)
i , ri)∑

y
(m)
i

Li(θ(h); y
(m)
i , y

(o)
i , ri)

.

The maximization step (M-step) maximizes the function Q(θ; θ(h)) with respect

to the parameter θ, and a Newton-Raphson algorithm can be used for this purpose.

Note that from (3.6), we can see that Q(θ; θ(h)) can be maximized with respect to

α and β by treating them separately since

Q(θ; θ(h)) = Q1(α; θ(h)) +Q2(β; θ(h)) ,

where

Q1(α; θ(h)) =
n∑

i=1

J∑

j=2

∑

y
(m)
i

wi(yi; θ
(h)){rijlogλ∗ij + (1 − rij)log(1 − λ∗ij)}

and

Q2(β; θ(h)) =
n∑

i=1

J∑

j=2

J∑

k′=1

J∑

k=k′

∑

y
(m)
i

wi(yi; θ
(h))I(yi,j−1 = k′, yij = k)log

(
µCijk′k

)
.
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Iterating between the E and M steps until convergence leads to the maximimum

likelihood estimator θ̂.

Standard errors for these parameter estimates can be calculated using Louis’s

method (Louis, 1982), which partitions the complete data information into two

parts: the information associated with the observed data and that associated with

the missing data. Louis (1982) showed that a consistent estimate of the second

derivative matrix could be calculated using

I(θ|Y (o)) = E[I(θ|Y )|Y (o)]−E[S(θ|Y )S ′(θ|Y )|Y (o)]+E[S(θ|Y )|Y (o)]E[S ′(θ|Y )|Y (o)] ,

where S(θ) =
∑n

i=1 ∂ℓi(θ; yi, ri)/∂θ is the score vector, and

I(θ) = −
n∑

i=1

∂2ℓi(θ; yi, ri)/∂θ∂θ
′

is the observed information matrix (Horton and Laird, 1998). Therefore, the esti-

mated observed information matrix of θ based on the observed data is given by

Σ(θ̂) = −∂
2Q(θ̂; θ̂)

∂θ∂θ′
−

n∑

i=1

∑

y
(m)
i

wi(yi; θ̂)Si(θ̂)Si(θ̂)
′ +

n∑

i=1

(
∂Qi(θ̂; θ̂)

∂θ

)(
∂Qi(θ̂; θ̂)

∂θ

)′

,

where Si(θ̂) = ∂ℓi(θ; yi, ri)/∂θ|θ=θ̂. The estimate of the asymptotic covariance ma-

trix of β̂ is the lower p2 × p2 block of [Σ(θ̂)]−1, where p2 is the dimension of β.

3.2.4 Simulation Studies

Now we conduct a simulation study to assess the performance of the proposed

method by examining finite sample biases and coverage probabilities for parameter

estimates. Our primary aim here is to compare the proposed method with the

methods which do not incorporate the missing data mechanism. We show that
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large biases and poor coverage probabilities in the parameter estimates can result

if the missing data mechanism is not accounted for when it should be.

Set n = 1000, K = 3 and J = 4. Two thousand simulations are run for each

parameter configuration. The response vector is generated from the conditional

model

log

(
µCijk′k
µCijk′k′

)
= βk′k0 + βk′k1Xij1 + βk′k2Xij2 + βk′k3Xij3, k′ < k ≤ 3,

for j = 2, 3, 4, where Xij1 = Xi1 represents a time invariant treatment indicator,

generated from the Binomial distribution Bin(1,0.5). Here Xij2 = I(j = 3) and

Xij3 = I(j = 4) facilitate the temporal effects. The true values for the parameters

are set as β120 = logit(0.5), β121 = log(0.5), β122 = log(uβ), β123 = 2log(uβ), β130 =

logit(0.25), β131 = log(0.5), β132 = log(uβ), β133 = 2log(uβ), β230 = logit(0.5),

β231 = log(0.5), and β233 = 2log(uβ). We take uβ = 1 or 1.2 to indicate whether

the response model is dependent on the temporal effects.

For the missing data process, assume the logistic regression model

logit(λ∗ij) = α0 + α1(1 − ri,j−1) + α2ri,j−1I(Yi,j−1 = 2) + α3I(Yij = 2)

+α4ri,j−1Xij1I(Yi,j−1 = 2) + α5Xij1I(Yij = 2), (3.7)

for j = 2, 3, . . . , J . Set α0 = logit(0.7), and α1 = log(0.75). When considering

an MAR, set α3 = α5 = 0, α2 = log(uα), and α4 = log(2); with an MNAR, set

α3 = log(uα), α5 = log(2) and α2 = α4 = 0. To alter the missing data proportion,

take uα = 0.5 or 2.

Data generation procedure for the responses is as follows: assume Yi1 = 1, i.e.,

all the subjects are in state 1 at the entrance of the study, and given the true

parameter vectors βk′k = (βk′k0, βk′k1, βk′k2, βk′k3)
′,
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1. generate the covariate vector Xij = (1, Xij1, Xij2, Xij3)
′, j = 2, 3, . . . , J ,

2. given Yi,j−1 = yi,j−1, calculate the transition probabilities µCijyi,j−1k
, yi,j−1 < k,

which is given by

µCijyi,j−1k
=

exp(X ′
ijβyi,j−1k)

1 +
∑K

k=yi,j−1+1 exp(X ′
ijβyi,j−1k)

,

3. generate the response Yij from the discrete distribution P (Yij = k|Xij) =

µCijyi,j−1k
for k > yi,j−1.

For the missing data process, assume Ri1 = 1. Given the true parameter α and

Ri,j−1 = ri,j−1, j > 1, the conditional probabilities λ∗ij can be calculated from (3.7),

and we generate the missing indicator Rij via the binomial distribution Bin(1, λ∗ij).

Here we conduct two methods, one is the proposed method, and the other is

available data analysis, in which we pick up the observations that are consecutively

observed and analyze them using the “GENMOD” command in SAS. In the sim-

ulation studies, we assume all the models are correctly specified. The simulation

results are reported in Tables 3.1-3.8, where SEL denotes the average standard error

calculated based on Louis method, ESE is the empirical standard errors and CP

represents the coverage probability of the 95% confidence intervals. In the simula-

tion, we considered two missingness proportions – 45% and 30%, corresponding to

uα = 0.5 and 2, respectively. It is seen that, as the missingness proportion increases,

biases of the parameters increase. It is not surprising that, under MAR, the biases

of β̂ for both the proposed method and the available data analysis are fairly small,

the coverage probabilities are very close to 95%, and the empirical standard errors

are in good agreement with the standard errors obtained by the Louis method. In

contrast, for the missing not at random cases, the biases of both β̂ and α̂ are very
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small for the proposed method, but the biases of β̂ in the available data analysis

are remarkable. The coverage probabilities for the proposed method are in good

agreement with the nominal level 95%, while the available data analysis produces

coverage probabilities that are far from the nominal level.

3.3 Modeling Transition Intensities

Besides the transition probabilities, sometimes interest lies in the transition in-

tensities. In this section, I consider the continuous time progressive model via the

transition intensities. In general, one could develop stochastic models for the as-

sessment times. In cohort studies, clinical assessments may be scheduled at roughly

equal intervals (e.g. annually), but patients may choose when they want to visit

clinics for clinical examination according to their degree of disease activity. This

creates a situation somewhat akin to incomplete data in longitudinal studies when

data may be missing at random (MAR) if missing status depends on the observed,

typically past, responses, or missing not at random (MNAR), where the missing

status may depend on the latent disease status. The latter situation is particularly

difficult to deal with in general and in most settings analysts must rely on sensitiv-

ity analyses to examine the possible effect of this type of observation scheme. We

consider, however, progressive models for chronic disease processes, which by their

progressive nature, are convenient for jointly modeling the disease and observation

processes. We provide a general method to handle this type of data. Maximum

likelihood methods are used with parameter estimation carried out via an EM al-

gorithm (Dempster et al., 1977), and variance estimation is performed using Louis’

(1982) method.
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Table 3.1: Simulation results under MAR: about 45% missingness (i.e. uα = 0.5)

with no temporal effect (i.e. uβ = 1.0)

Transition Model EM Available Data

Transition Parms True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) 0.002 0.101 0.099 0.955 -0.001 0.106 0.948

β121 log(0.5) 0.005 0.120 0.117 0.954 0.003 0.134 0.951

β122 log(1.0) -0.002 0.149 0.155 0.945 -0.003 0.163 0.953

β123 2log(1.0) 0.002 0.193 0.191 0.956 -0.002 0.209 0.961

1 → 3 β130 logit(0.25) 0.009 0.145 0.144 0.956 0.0091 0.153 0.953

β131 log(0.5) 0.002 0.180 0.178 0.955 0.0046 0.203 0.946

β132 log(1.0) -0.006 0.232 0.233 0.950 -0.0100 0.242 0.951

β133 2log(1.0) 0.007 0.313 0.312 0.957 -0.0119 0.325 0.951

2 → 3 β230 logit(0.5) 0.000 0.162 0.164 0.952 -0.0042 0.194 0.952

β231 log(0.5) 0.009 0.192 0.192 0.953 0.0194 0.233 0.956

β233 2log(1.0) -0.005 0.220 0.220 0.950 -0.0087 0.234 0.956

Missing Data Model

α0 logit(0.7) 0.002 0.053 0.051 0.951

α1 log(0.75) -0.003 0.104 0.095 0.948

α2 log(0.5) -0.001 0.130 0.131 0.950

α4 log(2.0) -0.000 0.191 0.190 0.956

† Absolute bias.

68



Table 3.2: Simulation results under MAR: about 45% missingness (i.e. uα = 0.5)

with temporal effect (i.e. uβ = 1.2)

Transition Model EM Available Data

Transition Parameter True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) -0.002 0.102 0.097 0.957 -0.001 0.105 0.952

β121 log(0.5) 0.002 0.125 0.121 0.954 0.001 0.140 0.945

β122 log(1.2) 0.006 0.148 0.150 0.948 0.004 0.160 0.954

β123 2log(1.2) 0.009 0.196 0.199 0.950 0.006 0.223 0.953

1 → 3 β130 logit(0.25) 0.006 0.146 0.146 0.953 0.006 0.155 0.948

β131 log(0.5) 0.002 0.179 0.175 0.955 0.002 0.198 0.954

β132 log(1.2) -0.007 0.227 0.225 0.953 -0.003 0.234 0.947

β133 2log(1.2) 0.016 0.314 0.309 0.957 -0.001 0.318 0.955

2 → 3 β230 logit(0.5) 0.003 0.163 0.165 0.948 0.004 0.196 0.951

β231 log(0.5) 0.003 0.190 0.192 0.948 0.001 0.236 0.951

β133 2log(1.2) -0.008 0.216 0.218 0.950 -0.008 0.237 0.949

Missing Data Model

α0 logit(0.7) -0.000 0.054 0.051 0.953

α1 log(0.75) -0.003 0.105 0.098 0.952

α2 log(0.5) 0.003 0.129 0.129 0.948

α4 log(2.0) -0.004 0.190 0.185 0.955

† Absolute bias.
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Table 3.3: Simulation results under MAR: about 30% missingness (i.e. uα = 2)

with no temporal effect (i.e. uβ = 1.0)

Transition Model EM Available Data

Transition Parms True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) -0.000 0.101 0.097 0.956 -0.000 0.104 0.948

β121 log(0.5) -0.001 0.120 0.117 0.954 0.001 0.135 0.950

β122 log(1.0) 0.001 0.149 0.146 0.949 0.001 0.155 0.960

β123 2log(1.0) 0.001 0.195 0.196 0.948 -0.000 0.217 0.948

1 → 3 β130 logit(0.25) 0.003 0.145 0.141 0.956 0.003 0.151 0.957

β131 log(0.5) -0.001 0.180 0.179 0.952 0.000 0.203 0.948

β132 log(1.0) 0.003 0.231 0.235 0.956 -0.002 0.242 0.955

β133 2log(1.0) 0.013 0.302 0.295 0.961 -0.005 0.310 0.960

2 → 3 β230 logit(0.5) 0.002 0.144 0.146 0.947 0.000 0.161 0.951

β231 log(0.5) 0.004 0.175 0.176 0.948 0.003 0.194 0.953

β233 2log(1.0) -0.002 0.183 0.185 0.948 -0.001 0.193 0.950

Missing Data Model

α0 logit(0.7) -0.000 0.052 0.051 0.956

α1 log(0.75) 0.001 0.106 0.101 0.951

α2 log(2.0) -0.006 0.162 0.162 0.947

α4 log(2.0) -0.000 0.268 0.268 0.958

† Absolute bias.
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Table 3.4: Simulation results under MAR: about 30% missingness (i.e. uα = 2.0)

with temporal effect (i.e. uβ = 1.2)

Transition Model EM Available Data

Transition Parameter True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) -0.003 0.104 0.096 0.958 -0.002 0.103 0.958

β121 log(0.5) 0.001 0.118 0.115 0.954 -0.000 0.134 0.952

β122 log(1.2) 0.002 0.148 0.148 0.947 0.001 0.159 0.952

β123 2log(1.2) -0.001 0.197 0.196 0.955 0.002 0.220 0.955

1 → 3 β130 logit(0.25) 0.001 0.146 0.142 0.957 0.002 0.151 0.952

β131 log(0.5) 0.006 0.189 0.183 0.961 0.006 0.209 0.938

β132 log(1.2) 0.009 0.228 0.228 0.951 0.004 0.235 0.955

β133 2log(1.2) 0.007 0.310 0.307 0.953 -0.007 0.320 0.956

2 → 3 β230 logit(0.5) 0.002 0.144 0.149 0.943 0.002 0.167 0.943

β231 log(0.5) 0.003 0.172 0.175 0.945 0.002 0.192 0.951

β233 2log(1.2) -0.004 0.180 0.181 0.946 -0.005 0.189 0.953

Missing Data Model

α0 logit(0.7) 0.001 0.053 0.052 0.955

α1 log(0.75) -0.001 0.107 0.103 0.949

α2 log(2.0) -0.003 0.161 0.164 0.952

α4 log(2.0) -0.015 0.265 0.265 0.956

† Absolute bias.

71



Table 3.5: Simulation results under MNAR: about 45% missingness (i.e. uα = 0.5)

with no temporal effect (i.e. uβ = 1.0)

Transition Model EM Available Data

Transition Parms True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) -0.015 0.103 0.110 0.943 0.259 0.111 0.359

β121 log(0.5) -0.001 0.125 0.119 0.957 -0.260 0.138 0.547

β122 log(1.0) 0.026 0.152 0.159 0.944 0.004 0.167 0.956

β123 2log(1.0) 0.024 0.197 0.199 0.954 -0.005 0.219 0.950

1 → 3 β130 logit(0.25) 0.006 0.147 0.142 0.959 0.004 0.150 0.950

β131 log(0.5) -0.002 0.189 0.182 0.958 0.001 0.197 0.958

β132 log(1.0) 0.016 0.233 0.239 0.943 0.004 0.244 0.949

β133 2log(1.0) 0.015 0.313 0.310 0.960 -0.007 0.316 0.960

2 → 3 β230 logit(0.5) 0.012 0.171 0.178 0.942 -0.266 0.213 0.751

β231 log(0.5) 0.024 0.198 0.200 0.944 0.273 0.241 0.809

β233 2log(1.0) -0.007 0.215 0.218 0.950 0.000 0.249 0.950

Missing Data Model

α0 logit(0.7) -0.016 0.080 0.081 0.945

α1 log(0.75) -0.007 0.120 0.109 0.953

α3 log(0.5) 0.025 0.203 0.174 0.944

α5 log(2.0) 0.029 0.148 0.163 0.955

† Absolute bias.
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Table 3.6: Simulation results under MNAR: about 45% missingness (i.e. uα = 0.5)

with temporal effect (i.e. uβ = 1.2)

Transition Model EM Available Data

Transition Parameter True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) -0.017 0.106 0.110 0.943 0.265 0.113 0.348

β121 log(0.5) -0.008 0.129 0.123 0.956 -0.262 0.139 0.535

β122 log(1.2) 0.025 0.151 0.155 0.946 0.003 0.164 0.961

β123 2log(1.2) 0.027 0.200 0.205 0.947 -0.000 0.228 0.948

1 → 3 β130 logit(0.25) 0.010 0.149 0.151 0.955 0.007 0.157 0.946

β131 log(0.5) -0.001 0.192 0.186 0.958 0.005 0.202 0.943

β132 log(1.2) 0.006 0.229 0.228 0.954 -0.007 0.232 0.963

β133 2log(1.2) 0.015 0.315 0.305 0.958 -0.005 0.315 0.953

2 → 3 β230 logit(0.5) 0.026 0.168 0.175 0.939 -0.255 0.205 0.772

β231 log(0.5) 0.019 0.189 0.192 0.943 0.267 0.232 0.813

β233 2log(1.2) -0.019 0.211 0.211 0.955 -0.004 0.238 0.957

Missing Data Model

α0 logit(0.7) -0.021 0.086 0.085 0.952

α1 log(0.75) -0.009 0.124 0.092 0.956

α3 log(0.5) 0.037 0.224 0.182 0.945

α5 log(2.0) 0.028 0.152 0.174 0.954

† Absolute bias.
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Table 3.7: Simulation results under MNAR: about 30% missingness (i.e. uα = 2.0)

with no temporal effect (i.e. uβ = 1.0)

Transition Model EM Available Data

Transition Parms True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) -0.007 0.100 0.103 0.941 -0.163 0.100 0.632

β121 log(0.5) -0.005 0.119 0.118 0.953 -0.091 0.128 0.882

β122 log(1.0) 0.007 0.135 0.139 0.945 -0.002 0.152 0.947

β123 2log(1.0) 0.008 0.173 0.176 0.944 -0.005 0.202 0.945

1 → 3 β130 logit(0.25) 0.011 0.143 0.141 0.948 0.009 0.152 0.951

β131 log(0.5) -0.003 0.181 0.176 0.959 -0.001 0.201 0.954

β132 log(1.0) 0.012 0.230 0.232 0.950 0.002 0.240 0.954

β133 2log(1.0) 0.012 0.310 0.313 0.957 -0.007 0.330 0.954

2 → 3 β230 logit(0.5) 0.000 0.144 0.151 0.940 0.159 0.154 0.821

β231 log(0.5) 0.018 0.170 0.174 0.943 0.100 0.186 0.928

β233 2log(1.0) 0.004 0.179 0.181 0.945 0.003 0.188 0.939

Missing Data Model

α0 logit(0.7) -0.009 0.067 0.065 0.956

α1 log(0.75) -0.004 0.117 0.114 0.955

α3 log(2.0) 0.003 0.217 0.218 0.952

α5 log(2.0) 0.041 0.303 0.306 0.956

† Absolute bias.

74



Table 3.8: Simulation results under MNAR: about 30% missingness (i.e. uα = 2.0)

with temporal effect (i.e. uβ = 1.2)

Transition Model EM Available Data

Transition Parameter True †BIAS SEL ESE CP †BIAS ESE CP

1 → 2 β120 logit(0.5) -0.006 0.100 0.108 0.941 -0.163 0.101 0.651

β121 log(0.5) -0.009 0.123 0.122 0.951 -0.003 0.130 0.878

β122 log(1.2) 0.011 0.140 0.141 0.947 0.004 0.155 0.946

β123 2log(1.2) 0.016 0.177 0.181 0.947 0.001 0.209 0.951

1 → 3 β130 logit(0.25) 0.001 0.143 0.137 0.958 0.001 0.146 0.963

β131 log(0.5) 0.006 0.183 0.172 0.959 0.007 0.197 0.957

β132 log(1.2) 0.015 0.226 0.226 0.954 0.006 0.233 0.956

β133 2log(1.2) 0.012 0.310 0.305 0.958 -0.009 0.321 0.955

2 → 3 β230 logit(0.5) 0.005 0.140 0.149 0.942 0.162 0.152 0.833

β231 log(0.5) 0.013 0.167 0.168 0.948 0.093 0.176 0.935

β233 2log(1.2) -0.002 0.176 0.173 0.951 -0.001 0.181 0.954

Missing Data Model

α0 logit(0.7) -0.012 0.069 0.079 0.947

α1 log(0.75) -0.006 0.118 0.114 0.954

α3 log(2.0) -0.003 0.227 0.300 0.951

α5 log(2.0) 0.042 0.317 0.485 0.949

† Absolute bias.
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3.3.1 Continuous Time Progressive Multi-State Models

Suppose there are K states and the transition direction is irreversible. Figure

3.2 is an illustrative diagram of a K-state progressive transition model. Let Y (t)

represent the state occupied at time t ≥ 0, and H(t) = {Y (s), 0 ≤ s < t} denote the

history of the response process which records the states occupied over the interval

[0, t). The transition probability function is written generally as P (Y (s + t) =

k|Y (s) = k′,H(s)) for s, t > 0, and k ≥ k′, but under a Markov model this simplifies

to P (Y (s+ t) = k|Y (s) = k′), which we denote compactly as Pk′k(s, s+ t), k ≥ k′.

Figure 3.2: A diagram of K-state progressive process

1 −→ 2 −→ 3 −→· · · −→ K

The corresponding transition intensity from state k to state k + 1 at time t is

λk(t) = lim
∆t→0

P (Y (t+ ∆t) = k + 1|Y (t) = k)

∆t
, k = 1, . . . , K − 1,

(Cox and Miller, 1977). A multi-state progressive model with state space {1, 2, . . . , K}

can then be described via the following transition intensity matrix, Q(t):

Q(t) =




−λ1(t) λ1(t) 0 · · · 0 0

0 −λ2(t) λ2(t) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −λK−1(t) λK−1(t)

0 0 0 · · · 0 0




.

Under a time-homogeneous Markov model, let λk(t) = λk, k = 1, . . . , K − 1,

and it follows from stationarity that Pk′k(s, s + t) = Pk′k(0, t), which we may now
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write simply as Pk′k(t). Let P (t) denote the K × K matrix with (k′, k) element

Pk′k(t). We assume λ1, . . . , λK−1 are distinct, and let λ = (λ1, . . . , λK−1)
′. For a

time-homogeneous model the transition probability from state k′ to state k over

[0, t] is given by

Pk′k(t) =





∑k
j=k′ C(k′, j, k;λ) exp(−λjt), k′ ≤ k,

0, k′ > k,

where the coefficients are given by

C(k′, j, k;λ) =

∏k−1
h=k′ λh∏k

h=k′,h 6=j(λh − λj)

for k′ ≤ j ≤ k, and C(j, j, j;λ) = 1, j = 1, 2, . . . , K (Satten, 1999). In the simu-

lations and application that follow we focus on time-homogeneous Markov models,

but extensions which accommodate nonhomogeneous Markov models can be de-

veloped in the same spirit, and so we retain the dependence on t in the following

remarks.

To model the dependence of the transition intensities on prognostic variables, we

may incorporate covariates in the preceding formulation by expressing the transition

intensities as functions of time (in the nonhomogenous case) and the covariates.

That is, let λk(t) = gk(t, X) for some non-negative known function gk(·, ·), k =

1, . . . , K − 1, where X represents the covariate vector. For a given individual i, we

often adopt models of the form

λik(t) = λ0k(t)exp(X ′
ikβk), k = 1, . . . , K − 1, (3.8)

where the λ0k(t) are the baseline transition intensities which may or may not depend

on t, and βk is a vector of regression coefficients associated with the covariates of

interest, Xik, k = 1, . . . , K−1. This setup permits the baseline transition intensities
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and the regression coefficients to vary across the possible transitions. We let Xi =

(X ′
i1, . . . , X

′
i,K−1)

′ and β = (β1, . . . , βK−1)
′ denote the vector of all covariates and

regression coefficients.

With continuous time models and observation schemes, the response process

{Y (t), t > 0} may be observed at any time point t over the period of observation.

In practice, however, individuals are often observed at random, individual-specific

times, which are not necessarily evenly spaced, and their states are determined

at these visit times. Let ti1 < ti2 < · · · < tiJi
denote variable assessment times

for subject i, Ha
ij = {tik, k = 1, . . . , j − 1}, Hy

ij = {Yi(tik), k = 1, . . . , j − 1},

and Hij = {(tik, Yi(tik)), k = 1, . . . , j − 1}. If we condition on the initial time of

assessment and the initial state, the full observed data likelihood contribution from

subject i, suppressing dependence on the covariates, is then

Li =

Ji∏

j=2

P (tij, Yi(tij)|Hij) =

Ji∏

j=2

P (Yi(tij)|Hij)

Ji∏

j=2

P (tij|Yi(tij), Hij) . (3.9)

The model for the underlying stochastic process does not typically feature a de-

pendence on the previous assessment times, and so P (Yi(tij)|Hij) = P (Yi(tij)|Hy
ij)

is a quite natural assumption. Indeed we usually desire to base inferences strictly

on the product of such terms. If P (tij|Yi(tij), Hij) does not depend on Yi(tij) (i.e.

the time of the assessment does not depend on the state of the underlying pro-

cess) then we can treat
∏Ji

j=2 P (Yi(tij)|Hy
ij) as if it were the probability of the

observed states, conditional on the assessment times, and this is typically an im-

plicit assumption in standard analyses. If, on the other hand, P (tij|Yi(tij), Hij)

does depend on Yi(tij), then we must consider the full likelihood based on (3.9).

In this case, one needs to model the conditional distributions of the examination

times (i.e. P (tij|Yi(tij), Hij)) which can be challenging. In this chapter we consider
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the problem in which subjects are scheduled to be examined at pre-specified assess-

ment times denoted a1, a2, . . . , aJ , and adopt the convenient framework commonly

employed to handle incomplete longitudinal data.

Let Rij be the indicator random variable, which equals 1 if response Yi(aj) is

observed and 0 otherwise. Let Ri = (Ri1, Ri2, . . . , RiJ)
′, and ri = (ri1, ri2, . . . , riJ)

′

be a realization of Ri. Here we assume all the subjects are observed at the initial

enrollment, i.e., Ri1 = 1. Let λ∗ij = P (Rij = 1|Hr
ij, Yi, Xi) be the conditional

probability, whereHr
ij denotes the history of the missing indicators until the (j−1)st

time point. When models with a first order dependence are of interest, we write

λ∗ij = P (Rij = 1|Ri,j−1, Yi, Xi). A logistic regression model is commonly employed

to postulate the conditional probability λ∗ij, i.e.,

logit(λ∗ij) = Z ′
ijα,

where α is a parameter vector, and Zij is a covariate vector featuring various miss-

ingness.

Let θ = (α′, β ′)′. Then the likelihood for the complete data is given by L(θ) =∏n
i=1 Li(θ; yi), where

Li(θ; yi) = P (Ri = ri|Yi = yi, Xi;α)P (Yi = yi|Xi;β) (3.10)

∝
J∏

j=2

{
(λ∗ij)

rij (1 − λ∗ij)
1−rij ·

K∏

k′=1

K∏

k=k′

{Pik′k(aj − aj−1)}I(Yi(aj−1)=k′,Yi(aj)=k)

}

or equivalently, its logarithm is

ℓi(θ; yi) =

J∑

j=2

{rijlogλ∗ij + (1 − rij)log(1 − λ∗ij)} (3.11)

+
J∑

j=2

K∑

k′=1

K∑

k=k′

I(Yi(aj−1) = k′, Yi(aj) = k)logPik′k(aj − aj−1),

with Pik′k(aj − aj−1) = P (Yi(aj) = k|Yi(aj−1) = k′, Xi).
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3.3.2 Asymptotic Bias Under Dependent Inspection

In the presence of missing values, we may base inference about θ on using (3.10)

or (3.11). The detail will be presented in Section 3.3.3. Here we investigate the

impact of ignoring missingness, or the fact of dependent inspection. Specifically,

we employ the available data analysis and the complete case analysis that are often

used in practice due to their simplicity of implementation. We investigate this

problem through application of the theory of misspecified models.

Let ℓ∗(β∗) =
∑n

i=1 logP (Y
(∗)
i |Xi) be the naive log-likelihood function where Y

(∗)
i

represents the available data or the complete case data. Here β∗ is used to stress

that the associated parameter may be different from the parameter of interest β.

Solving

S∗(β∗) =
∂ℓ∗(β∗)

∂β∗
= 0

leads to a naive estimate β̂∗.

White (1982) showed that β̂∗ converges to β∗ almost surely, where β∗ solves

EY,R,X [S∗(β∗)] = 0.

Here EY,R,X denotes the expectation taken with respect to the joint distribution

(3.11) of (Y,R,X) which depends on β and α. In general, it is difficult to obtain

an analytical expression for β∗ by solving this equation. Instead, to understand the

magnitude of the bias, or difference β∗ − β, we proceed with a numerical study.

Specifically, we solve the equation

∑

d∈D

S∗(β∗) · P (d;α, β) = 0,

where D is the sample space forD = (R, Y,X), and P (d;α, β) is the true probability
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of observing the realized value d of D. This can be easily solved using the standard

software.

We consider the case with K = 3 states and J = 3 or J = 5 time points, and

assume that the intensity function for transitions from state k to state k + 1 is

λk = λ0ke
βkx, k = 1, . . . , K − 1, (3.12)

where the baseline function is modeled as λ0k = λ0e
γ(k−1), and x is generated from

Bin(1,0.5), representing a treatment indicator, for instance. The true values of the

coefficients are taken to be λ0 = 0.5, γ = 0.2, and βk = 1/k, k = 1, . . . , K − 1. The

study duration, τ , is selected such that P (T < τ) = 0.9 where T denotes the time to

entry of state K. The assessment time points are chosen as aj = (j−1)/(J −1) · τ ,

j = 1, . . . , J , equally cutting the interval [0, τ ]. We assume that all of the subjects

are observed at the first assessment time, which is plausible in settings where the

observation process begins upon entry to a clinic. The conditional probabilities λ∗ij

are modeled as

logit(λ∗ij) = α0 + α1(1 − ri,j−1) + α2yi(aj−1) + α3(yi(aj) − yi(aj−1)) + α4xi. (3.13)

Note that α2 6= 0 or α3 6= 0 represents a nonignorable missing mechanism (Little

and Rubin, 1987; Laird, 1988).

In the study considered here we set α0 = log(4), α1 = log(0.75) and α4 = log(2).

The parameters α2 and α3 are changed from log(0.5) to log(2.0) to reflect varying

degrees of the missing data proportion and the dependence of the missingness on

the previous observation and the present observation. For example, as α2 and α3

increase, the missingness proportion reduces, and the dependence on unobserved

data becomes weaker (if α2 ≤ 0 and α3 ≤ 0) or stronger (if α2 ≥ 0 and α3 ≥ 0).
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The results are displayed in Figures 3.3 – 3.5. Not surprisingly, the asymptotic

biases for the complete case analysis are bigger than for the available data analysis,

and as the absolute values of α2 and α3 decrease, the biases become smaller. Note

that, for the baseline intensity function, the biases are all negative when α2 < 0 and

α3 < 0, which suggests the naive baseline intensity estimates are underestimates.

However, when α2 > 0 and α3 > 0, the biases of the baseline intensity function are

indicating overestimated results; yet the magnitudes are very small.

3.3.3 Maximum Likelihood Estimate and EM Algorithm

In this subsection we develop an EM algorithm for valid inference. In the E

step, we construct the conditional expectation, at the hth iteration,

Q(θ; θ(h)) =
n∑

i=1

Qi(θ; θ
(h)),

where Qi(θ; θ
(h)) = E[ℓi(θ, yi)|Y (o)

i , θ(h)] =
∑

y
(m)
i

wi(yi; θ
(h)) · ℓi(θ, yi), yi is written

as (y
(m)
i , y

(o)
i ) to explicitly indicate missing and observed components, and

wi(yi; θ
(h)) =

Li(θ
(h); y

(m)
i , y

(o)
i )

∑
y
(m)
i

Li(θ(h); y
(m)
i , y

(o)
i )

,

facilitating the conditional probability of the missing data given the observed data.

Here Li(·) and ℓi(·) are the complete data likelihood and log-likelihood given by

(3.10) and (3.11), respectively. The dependence on the covariates is suppressed in

the notation.

We note, by (3.11), that parameters α and β can be separated in the conditional

expectation Q(θ; θ(h)) with the form:

Q(θ; θ(h)) = Q1(α; θ(h)) +Q2(β; θ(h)),
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Figure 3.3: Asymptotic bias for missing not at random without covariates with 3 states.

The first and the third horizonal rows are plots for the complete case analysis and the

second and the fourth horizonal rows are plots for the available data analysis, with 3 and

5 observations, respectively.
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Figure 3.4: Asymptotic bias for missing not at random with one covariate with 3 states

3 observations.
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Figure 3.5: Asymptotic bias for missing not at random with one covariate with 3 states

5 observations.
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where

Q1(α; θ(h)) =

n∑

i=1

J∑

j=2

∑

y
(m)
i

wi(yi; θ
(h)) · {rij logλ∗ij + (1 − rij)log(1 − λ∗ij)}

and

Q2(β; θ(h)) =
n∑

i=1

J∑

j=2

K∑

k′=1

K∑

k=k′

∑

y
(m)
i

wi(yi; θ
(h)) · I(Yi(aj−1) = k′, Yi(aj) = k) · logPik′k(aj − aj−1).

Consequently, in the M-step we can separately maximize the progressive model

part Q2(β; θ(h)) and the missing data process part Q1(α; θ(h)). Standard statistical

software such as R can be readily adapted to implement this step. Iterate through

the E and M steps until θ(h) converges. Denote the limit as θ̂.

To estimate the variance for θ̂, we use the Louis formula (Louis, 1982), given by

Σ(θ̂) = −∂
2Q(θ̂; θ̂)

∂θ∂θ′
−

n∑

i=1

∑

y
(m)
i

wi(yi; θ̂)Si(θ̂)Si(θ̂)
′ +

n∑

i=1

(
∂Qi(θ̂; θ̂)

∂θ

)(
∂Qi(θ̂; θ̂)

∂θ

)′

,

where Si(θ̂) = ∂ℓi(θ; yi)/∂θ|θ=θ̂. The estimate of the asymptotic covariance matrix

of β̂ is the lower p2 × p2 block of [Σ(θ̂)]−1, where p2 is the dimension of β.

3.3.4 Identifiability of the Model

In this subsection, we show that the parameters of both the time homogeneous

progressive model and the missing data model are identifiable for general missing

data patterns for the panel data form. If we let Yij denote Yi(aj), and let µCijk′k =

Pik′k(aj − aj−1) = P (Yi(aj) = k|Yi(aj−1) = k′, Xi) denote the conditional transition

probability for subject i, then the likelihood can also be written as

Li(θ; yi) =

J∏

j=2

(λ∗ij)
rij(1 − λ∗ij)

1−rij

·
J∏

j=2

K∏

k′=1

K∏

k=k′+1

(
µCijk′k

)I(Yi,j−1=k′,Yij=k) · (1 −
K∑

l=k′+1

µCijk′l)
I(Yi,j−1=k′,Yij=k

′).
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Based on the results in Section 3.2.4, λ∗ij and µCijk′k are identifiable.

From the identifiability of λ∗ij, it is easy to show that α is identifiable. Now

we show that β is also identifiable. First we show that the intensity function

λk is identifiable. Given the time interval t, we need to show that λl = λ̃l for

l = 1, . . . , K − 1 if Pk′k(t) = P̃k′k(t) for all k′ ≤ k ≤ K, where P̃k′k(t) is Pk′k(t)

evaluated at λ̃. Note that for the time-homogeneous model, the expression for the

transition probability from state k′ to state k over [0, t] is

Pk′k(t) =





∑k
j=k′ C(k′, j, k;λ)exp(−λjt), k′ ≤ k,

0, k′ > k,

where the coefficients are given by

C(k′, j, k;λ) =

∏k−1
h=k′ λh∏k

h=k′,h 6=j(λh − λj)

for k′ ≤ j ≤ k, and C(j, j, j;λ) = 1, j = 1, 2, . . . , K (Satten, 1999). If we let k′ = k

for all k = 1, . . . , K−1, we get e−λkt = e−λ̃kt, thus λk = λ̃k for all k = 1, . . . , K−1.

The identifiability of β is easy to show from the identifiability of λk, k = 1, . . . , K−1.

3.3.5 Simulation Studies

In this subsection we report on a simulation study to assess the performance

of the proposed method. We consider the case with K = 3 states and J = 3

or J = 5 time points, and a sample of n = 500 individuals. We assume all the

subjects are in state 1 when entering the study. Data generation procedures are

very similar as in Section 3.2.4. Two thousand samples are simulated for each

parameter configuration. The intensity function and the missing data model are

the same as (3.12) and (3.13) in Section 3.3.2, respectively.
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Here we consider the cases with no covariates (i.e., λk = λ0k) and with one

covariate (i.e., λk = λ0ke
βkx, k = 1, 2) included in the response model. We conduct

three analyses – complete case analysis, available data analysis and the analysis

using the proposed method. The results are reported in Tables 3.9 to 3.12, where

SEL denotes the average standard error calculated based on the Louis formula,

ASE is the average naive standard error calculated using the Hessian matrix, ESE

is the empirical standard errors for the 2000 estimates, and CP represents the

95% coverage probability of the parameters. Table 3.9 displays the results for

the case without covariates under two scenarios for J = 3. In Scenario I the

missingness proportions for Y2 and Y3 are about 25% and 28%, respectively, while

in Scenario II the missingness proportions for Y2 and Y3 are about 55% and 65%,

respectively. Similarly, Table 3.10 reports the results for the case with one covariate

under two scenarios for J = 3. In Scenario I the missingness proportions for Y2

and Y3 are about 22% and 30%, respectively, while in Scenario II the missingness

proportions for Y2 and Y3 are about 50% and 60%, respectively. Table 3.11 displays

the results for the case without covariates under two scenarios for J = 5. In

Scenario I the missingness proportions for Y2 to Y5 are about 20%, 28%, 30% and

30%, respectively, while in Scenario II the missingness proportions for Y2 to Y5

are about 48%, 60%, 65% and 65%, respectively. Similarly, Table 3.12 reports the

results for the case with one covariate under two scenarios for J = 5. In Scenario

I the missingness proportions for Y2 to Y5 are about 25%, 28%, 30% and 30%,

respectively, while in Scenario II the missingness proportions for Y2 to Y5 are about

45%, 60%, 60% and 62%, respectively.

It can be seen that both the complete case analysis and the available data anal-

ysis produce biased estimates, whereas the proposed method yields satisfactory
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results with considerably smaller finite sample biases. As expected, as the propor-

tion of missing observations increases the biases produced by the complete case

and available data analyses become larger, but the proposed method retains small

bias. Comparisons between the ASE and ESE suggest that the effect of missing

data on variance estimation is not as striking as that on parameter estimation.

Variance estimation based on SEL adjusts for missingness and the results agree

with the empirical version (ESE) much better than the naive version of the ASE

does. Furthermore, the coverage probabilities of the parameters obtained from the

proposed method agree well with the nominal level 95% under different settings,

but the complete case and available data analyses yield coverage probabilities that

are far away from the nominal value, and in some situations they may completely

fail to capture the true values of the parameters.

In many settings, prevalence functions, such as the one giving the proportion of

subjects in the absorbing state, are of interest. Graphical plots in Figure 3.6 reveal

how the three methods differ in estimation of the survival function S(t) = 1−P1K(t)

for the case without covariates. The estimates obtained from the proposed method

are almost identical to the true survival functions, however, the survival functions

estimated from the available data analysis and the complete case analysis are both

above the true curve, revealing a positive bias in the survival probabilities. It is

not surprising that the complete case analysis produces a curve that is farther from

the true curve than the available data analysis. The differences among the curves

become more substantial as time increases.
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Table 3.9: Empirical performance of regression estimators by various methods for the case without covariates: J = 3
EM Complete Case Available Data

Parameters† BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model

λ1 0.6 0.030 0.026 0.030 0.955 -2.8 0.033 0.033 0.913 -0.004 5.6 0.027 0.952

λ2 0.6 0.044 0.038 0.044 0.952 -1.0 0.049 0.049 0.941 -0.003 6.8 0.042 0.943

Missing Data Model

α0 -0.2 0.172 0.159 0.171 0.949

α1 -0.7 0.214 0.177 0.214 0.952

α2 0.1 0.081 0.070 0.080 0.950

α3 0.1 0.051 0.039 0.050 0.950

Scenario II: Transition Model

λ1 0.6 0.029 0.026 0.030 0.953 -32.4 0.042 0.041 0.079 -21.1 0.028 0.029 0.076

λ2 0.8 0.065 0.062 0.064 0.948 -20.0 0.075 0.076 0.582 -14.7 0.049 0.047 0.509

Missing Data Model

α0 0.0 0.119 0.099 0.127 0.952

α1 1.0 0.181 0.143 0.186 0.954

α2 0.1 0.082 0.070 0.080 0.949

α3 0.5 0.050 0.038 0.048 0.947

† λ1 = 0.500 and λ2 = 0.611

Scenario I: α0 = log(4.0), α1 = log(0.75), α2 = log(0.85), α3 = log(0.95)

Scenario II: α0 = log(4.0), α1 = log(0.75), α2 = log(0.5), α3 = log(0.5)
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Table 3.10: Empirical performance of regression estimators by various methods for the case with covariates: J = 3

EM Complete Case Available Data
Parameters† BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model
λ01 0.8 0.044 0.037 0.043 0.953 5.0 0.073 0.061 0.967 2.2 0.059 0.046 0.976
λ02 1.3 0.064 0.052 0.064 0.948 3.3 0.060 0.069 0.915 1.6 0.051 0.061 0.914
β1 -0.4 0.252 0.212 0.252 0.952 6.8 0.253 0.244 0.981 5.2 0.225 0.214 0.977
β2 -1.6 0.182 0.169 0.180 0.951 -0.4 0.184 0.185 0.964 -1.0 0.163 0.179 0.954
Missing Data Model
α0 -0.1 0.258 0.201 0.262 0.949
α1 -1.0 0.221 0.188 0.215 0.951
α2 0.9 0.141 0.112 0.140 0.948
α3 0.2 0.146 0.121 0.147 0.947
α4 -0.1 0.151 0.118 0.150 0.953

Scenario II: Transition Model
λ01 1.2 0.042 0.037 0.043 0.951 -18.9 0.103 0.112 0.484 -17.0 0.058 0.053 0.528
λ02 1.1 0.076 0.059 0.077 0.946 -9.0 0.092 0.129 0.756 -12.3 0.055 0.072 0.616
β1 -0.4 0.255 0.227 0.261 0.957 34.0 0.429 0.417 0.984 20.4 0.271 0.263 0.992
β2 -1.0 0.187 0.175 0.195 0.949 20.1 0.321 0.322 0.964 14.7 0.205 0.199 0.943
Missing Data Model
α0 -0.1 0.154 0.129 0.161 0.950
α1 2.0 0.180 0.168 0.189 0.948
α2 -0.3 0.092 0.078 0.089 0.955
α3 0.3 0.066 0.060 0.065 0.952
α4 0.4 0.138 0.122 0.141 0.947

†λ1 = 0.500, λ2 = 0.611, β1 = 1.000 and β2 = 0.500

Scenario I: α0 = log(4.0), α1 = log(0.75), α2 = log(0.85), α3 = log(0.95), α4 = log(2.0)

Scenario II: α0 = log(4.0), α1 = log(0.75), α2 = log(0.5), α3 = log(0.5), α4 = log(2.0)
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Table 3.11: Empirical performance of regression estimators by various methods for the case without covariates: J = 5

EM Complete Case Available Data

Parameters† BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model

λ1 0.8 0.024 0.024 0.025 0.949 -7.1 0.040 0.037 0.840 -0.8 0.024 0.024 0.942

λ2 0.2 0.035 0.033 0.035 0.952 -2.4 0.056 0.056 0.928 -1.6 0.034 0.034 0.945

Missing Data Model

α0 0.4 0.134 0.115 0.134 0.948

α1 -0.8 0.124 0.114 0.124 0.952

α2 1.2 0.058 0.052 0.058 0.949

α3 1.3 0.051 0.048 0.052 0.947

Scenario II: Transition Model

λ1 0.2 0.026 0.023 0.026 0.958 -50.2 0.064 0.062 0.097 -18.0 0.023 0.023 0.044

λ2 0.5 0.041 0.040 0.042 0.948 -25.8 0.140 0.156 0.649 -12.9 0.039 0.038 0.448

Missing Data Model

α0 0.4 0.105 0.092 0.106 0.949

α1 -0.7 0.103 0.090 0.102 0.953

α2 -0.6 0.052 0.049 0.052 0.952

α3 -0.3 0.051 0.049 0.052 0.948

† λ1 = 0.500 and λ2 = 0.611

Scenario I: α0 = log(4.0), α1 = log(0.75), α2 = log(0.85), α3 = log(0.95)

Scenario II: α0 = log(4.0), α1 = log(0.75), α2 = log(0.5), α3 = log(0.5)
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Table 3.12: Empirical performance of regression estimators by various methods for the case with covariates: J = 5

EM Complete Case Available Data
Parameters† BIAS% SEL ASE ESE CP BIAS% ASE ESE CP BIAS% ASE ESE CP

Scenario I: Transition Model
λ01 0.2 0.033 0.031 0.033 0.950 7.8 0.045 0.060 0.827 2.4 0.028 0.035 0.887
λ02 0.8 0.051 0.046 0.050 0.953 5.6 0.054 0.078 0.822 1.8 0.035 0.049 0.852
β1 0.3 0.108 0.098 0.108 0.949 6.0 0.167 0.167 0.930 0.4 0.109 0.110 0.954
β2 0.2 0.117 0.102 0.116 0.954 3.7 0.173 0.177 0.943 0.8 0.114 0.116 0.949
Missing Data Model
α0 0.4 0.159 0.137 0.158 0.952
α1 1.4 0.125 0.110 0.125 0.952
α2 -0.8 0.063 0.056 0.064 0.946
α3 -0.9 0.063 0.059 0.062 0.949
α4 0.9 0.106 0.091 0.106 0.953

Scenario II: Transition Model
λ01 0.4 0.037 0.033 0.037 0.956 -32.4 0.078 0.088 0.397 -14.2 0.027 0.033 0.293
λ02 0.8 0.057 0.053 0.057 0.952 -14.1 0.124 0.154 0.609 -11.4 0.038 0.055 0.515
β1 0.3 0.116 0.105 0.116 0.954 52.9 0.478 0.460 0.861 9.1 0.125 0.119 0.904
β2 -0.6 0.126 0.117 0.127 0.947 43.0 0.534 0.533 0.934 9.8 0.141 0.141 0.937
Missing Data Model
α0 0.5 0.128 0.118 0.128 0.948
α1 -0.3 0.105 0.098 0.098 0.949
α2 -0.4 0.060 0.053 0.060 0.952
α3 -0.8 0.060 0.056 0.060 0.951
α4 0.6 0.099 0.090 0.099 0.953

†λ1 = 0.500, λ2 = 0.611, β1 = 1.000 and β2 = 0.500

Scenario I: α0 = log(4.0), α1 = log(0.75), α2 = log(0.85), α3 = log(0.95), α4 = log(2.0)

Scenario II: α0 = log(4.0), α1 = log(0.75), α2 = log(0.5), α3 = log(0.5), α4 = log(2.0)
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Figure 3.6: Survival functions for missing not at random without covariates with 3 states.
The left figure is for 3 observations and the right is for 5 observations.
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3.4 Applications

3.4.1 Application to a Smoking Prevention Project

Here we reanalyze the Waterloo Smoking Prevention Project data described in

Chapter 2. Here we focus on progression of students’ smoking behavior. That is,

we model the response process with a progressive model. It is often of interest to

understand the impact of covariates on the transition probability. Figure 3.7 is

an illustrative diagram for the progressive model. The description of the data set

and some notations are the same as in Chapter 2. To study this problem, we only

select subjects with the progressive transition patterns. There are 3027 subjects in

the data set who are present at the first assessment and in state 1. About 42.4%

subjects have missing observations. The missingness proportion is about 15.3%. In

the complete case analysis, there are 1849 subjects with complete observations.

Let Yij be the state student i was in at time j, i.e., in grade 5 + j, j = 1, . . . , 7,
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Figure 3.7: Three-state progressive diagram for the analysis of the Waterloo Smoking
Prevention Project Data

STATE 2

(Experimenter)

STATE 3

(Regular)

STATE 1

(Non−smoker)

and use the subscripts for covariates in a similar fashion. Consider the model for

the transitional probabilities

log

(
µCijk′k
µCijk′k′

)
= βk′k0 + βk′k1 · GENDERi + βk′k2 · TRTi + βk′k3 · GRADEij

+βk′k4 · SMR2ij + βk′k5 · SMR3ij, k′ = 1, 2, k′ < k ≤ 3,

where TRTi represents the treatment status for subject i, SMR2ij = I(SMRij = 2),

SMR3ij = I(SMRij = 3), GRADEij is the grade indicator for subject i at grade

5 + j, taking value 0 at secondary school (grade 6 to grade 8) and 1 at high school

(grade 9 to grade 12). For the missing data process Rij , we build the model

logit
(
λ∗ij
)

= α0 + α1 · GENDERi + α2 · TRTi + α3 · GRADEij + α4 · SMR2ij

+α5 · SMR3ij + α6 · ri,j−1 + α7 · Zij12 + α8 · Zij13 + α9 · Zij23

+α10 · I(yi,j−1 = 2) + α11 · I(yi,j−1 = 3),
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where Zijk′k = I(yi,j−1 = k′, yij = k) is the indicator covariate featuring the tran-

sitions from state k′ to state k at time j, k′ < k. Here α7, α8 and α9 measure

the influence of different transition occurrence on the missing process and α10 and

α11 measure the influence of the previous states on the missing probability of the

present responses. It leads to MNAR when at least one of α7 to α11 is not equal to

0.

We analyze the WSPP data with three methods– the proposed method, com-

plete case analysis and available data analysis. The results are reported in Table

3.13. Complete case and available data analyses produce generally agreeable esti-

mates. Although the estimated treatment effects for transitions from states 1 to 2,

and 1 to 3 are in opposite directions from both methods, they are not statistically

significant. As expected, the standard errors produced from the available data anal-

ysis are smaller than those obtained from the complete case analysis. The proposed

method reveals the same nature of statistical significance (or non-significance) as

that obtained from the complete case and available data analyses for each covariate

effect. The proposed method suggests that the gender and treatment effects are not

statistically significant in all the transition models. In the transition models from

state 1 to state 2 and from state 1 to state 3, social model risk score and grade have

significant negative effects on smoking incidence (β̂123 = 0.863, p-value< 0.001;

β̂124 = 0.427, p-value< 0.001; β̂125 = 0.658, p-value< 0.001; β̂133 = 1.408, p-

value< 0.001; β̂134 = 0.577, p-value< 0.001; β̂135 = 1.097, p-value< 0.001). Stu-

dents are more likely to smoke if their parents, siblings or friends are smokers.

Students are more likely to smoke when they are in high school as opposed to sec-

ondary school. In the transition from state 2 to state 3, no covariate is statistically

significant.
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The results regarding the missing data mechanism are reported on in the bottom

of Table 3.13. It is seen that α7, α8, α10 and α11 are statistically significant,

suggesting that a missing not at random mechanism is perhaps reasonable. The

occurrences of the transitions and the previous observations have negative effects

on the probabilities of observing the present observations (α̂7 = −3.863, p-value<

0.001; α̂8 = −2.145, p-value< 0.001; α̂10 = −3.072, p-value< 0.001; α̂11 = −2.229,

p-value< 0.001). The significance of α6 (α̂6 = 3.708, p-value< 0.001) indicates

that there is a serial dependence in the missingness of consecutive observations.

Moreover, if subjects have missing observations at the previous assessment time

then they are less likely to be observed at the present assessment. It is seen that

both gender and grade are significant, with females being more likely to appear

for the assessment (α̂2 = −0.183, p-value= 0.019), and students in public school

having a larger probability of being observed compared to those in secondary school

(α̂3 = −0.580, p-value< 0.001).

3.4.2 Application to Psoriatic Arthritis Data

Psoriatic arthritis (PsA) is a progressive disease in the sense that without treat-

ment, it can increase in severity causing disability through deformity and destruc-

tion of the joints. It is of interest to determine prognostic factors that relate to

disease severity and rates of disease progression (Gladman et al., 1995, 1998). Upon

entry to the clinic, a comprehensive list of demographic and clinical features are

recorded. Covariates include duration of psoriasis at clinic entry (in years) (coded as

PSORDUR), sex (coded as SEX, 0–Female, 1–Male), age at onset of PsA (in years)

(coded as AGEPSA), family history of psoriasis (coded as FMPS, 0–No, 1–Yes),

family history of PsA (coded as FMPSA, 0–No, 1–Yes) and erythrocyte sedimenta-
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Table 3.13: Analysis of the Waterloo Smoking Prevention Project data

Transition Model Proposed Method Complete Case Available Data

Transition Parameter Estimate SE† p-value Estimate SE p-value Estimate SE p-value

1 → 2 INTERCEPT (β120) -2.985 0.123 <0.001 -2.933 0.111 <0.001 -2.926 0.095 <0.001

GENDER (β121) -0.082 0.086 0.342 -0.200 0.080 0.012 -0.150 0.068 0.028

TRT (β122) 0.004 0.107 0.971 -0.026 0.098 0.793 0.018 0.084 0.833

GRADE (β123) 0.863 0.088 <0.001 0.955 0.080 <0.001 0.787 0.068 <0.001

SMR2 (β124) 0.427 0.088 <0.001 0.256 0.082 0.002 0.398 0.070 <0.001

SMR3 (β125) 0.658 0.183 <0.001 0.473 0.179 0.008 0.537 0.149 <0.001

1 → 3 INTERCEPT (β130) -4.697 0.183 <0.001 -4.475 0.180 <0.001 -4.343 0.148 <0.001

GENDER (β131) 0.180 0.118 0.127 0.038 0.112 0.737 0.002 0.097 0.981

TRT (β132) 0.122 0.150 0.416 -0.066 0.138 0.631 0.019 0.120 0.874

GRADE (β133) 1.408 0.125 <0.001 1.823 0.135 <0.001 1.648 0.106 <0.001

SMR2 (β134) 0.577 0.124 <0.001 0.415 0.118 <0.001 0.458 0.102 <0.001

SMR3 (β135) 1.097 0.214 <0.001 1.124 0.209 <0.001 1.150 0.175 <0.001

2 → 3 INTERCEPT (β230) -1.699 0.263 <0.001 -0.532 0.426 0.211 -0.555 0.307 0.071

GENDER (β231) 0.077 0.131 0.558 0.257 0.174 0.140 0.201 0.157 0.199

TRT (β232) 0.027 0.169 0.873 -0.297 0.214 0.165 -0.202 0.193 0.296

GRADE (β233) 0.926 0.210 0.105 0.246 0.375 0.512 0.186 0.246 0.450

SMR2 (β234) 0.098 0.135 0.469 0.132 0.179 0.459 0.252 0.161 0.118

SMR3 (β235) 0.154 0.265 0.562 0.313 0.399 0.431 0.180 0.342 0.599

Missing Data Model

α0 0.030 0.137 0.828

α1 -0.183 0.078 0.019

α2 0.092 0.096 0.339

α3 0.580 0.101 <0.001

α4 0.009 0.082 0.912

α5 -0.194 0.160 0.226

α6 3.708 0.095 <0.001

α7 -3.863 0.122 <0.001

α8 -2.145 0.245 <0.001

α9 0.191 0.165 0.246

α10 -3.072 0.132 <0.001

α11 -2.229 0.129 <0.001

† SE is the standard error based on the Louis formula (Louis, 1982). GENDER: 0–Female, 1–

Male; TRT: treatment effect (0–control, 1–intervention); GRADE: 0–secondary school, 1–high

school; SMR2: one of parents, siblings or friends smoke; SMR3: two or more of parents, siblings

or friends smoke.
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tion rate (ESR) which is a continuous variable measuring degree of inflammation.

Patients are then scheduled to be assessed annually and at each followup assessment

the number of damaged joints, as determined by clinical examination, is recorded.

Table 3.14 lists a sample data set. There are 703 subjects with complete covariates,

in which 28 subjects have complete observations over the first 10 years of their

participation in the clinic registry. That is, there are 675 subjects with missing

observations at different assessment time points, leading to a missing proportion

about 61.3%.

Here we consider a multi-state Markov model with four states defined by the

number of damaged joints determined by clinical assessment, as used by Gladman et

al. (1995, 1998). Specifically, 0, 1-4, 5-9 and 10 or more damaged joints correspond

to states 1, 2, 3 and 4 representing no damage, mild, moderate and severe damage,

respectively. The rationale behind this state structure is that a larger number

of damaged joints corresponds to a more severe disease. Figure 3.8 displays the

transitions among the four states.

Figure 3.8: Four-state progression diagram for psoriatic arthritis data

State 1
λ1−→ State 2

λ2−→ State 3
λ3−→ State 4

Let Yi(aj) denote the state subject i was in at time aj, j = 0, . . . , 10. The

transition intensity functions are modeled as

λik = λ0k exp(β1 · PSORDURi + β2 · AGEPSAi + β3 · FMPSi

+β4 · FMPSAi + β5 · ESRi + β6 · SEXi), k = 1, 2, 3,
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Table 3.14: Sample data of the psoriatic arthritis study

ASSESSMENT 0 1 2 3 4 5 6 7 8 9 10

ID PSORDUR AGEPSA FMPS FMPSA ESR SEX STATE

1 21.5 33 0 0 6 1 1 . . . . . 1 . 1 . 1

2 38.3 40 1 0 36 0 1 . . . . . . . . . 1

3 15.1 25 0 0 4 1 1 . . . . . . . . . 4

4 23.0 24 0 0 25 1 1 . . . . . . . . . 4

5 7.1 34 0 0 83 0 1 . . 1 1 . 1 1 1 . 1

6 11.7 24 0 0 2 1 1 . . . 1 . 1 2 . . 2

7 7.4 28 1 1 16 1 1 . . . 2 . 4 4 4 4 4

8 4.2 23 1 1 34 1 1 . . 2 . . 3 3 3 4 .

9 11.8 49 1 0 23 0 1 . . . . . . . . . 3

10 56.7 31 1 0 47 0 1 . . . . . . . . . 4

11 41.1 32 1 0 65 1 1 . . . . . . . . . 4

12 10.1 25 1 0 26 0 1 . . 4 . 4 . . . 4 4

13 31.6 70 1 0 25 0 1 1 . . . . . . . . .

14 33.0 40 1 0 17 1 1 . . 1 . . 1 . . 1 1

15 35.9 51 0 0 57 1 1 . . 1 . 2 . . . . 2

16 10.1 36 1 0 12 0 1 . . . . . . . . . 1

17 23.6 43 0 0 20 1 1 . . . 4 4 . . . . 4

18 16.8 10 1 0 74 0 1 . . . . . . . . . 1

19 0.2 43 0 0 24 0 1 . . . 2 2 2 2 2 4 4

20 19.9 26 0 0 40 0 1 . . . . . . . . . 1

21 29.9 25 0 0 99 0 1 . . . . . . . . . 4

22 11.9 21 1 1 15 0 1 . 1 1 . 1 1 1 1 1 1

23 12.3 23 1 0 16 1 1 . . . . . . 2 . . 2

24 31.0 36 1 1 73 0 1 . . . . . . . . . 4

25 10.6 36 1 0 8 0 1 1 1 1 . . . . . . .

26 9.1 50 1 0 10 1 1 . . . . . 1 1 1 . 1

27 30.2 36 0 0 30 1 1 . . . . . . . . . 1

PSORDUR: duration of psoriasis at time of clinic entry (years); AGEPSA: age at onset of psoriatic

arthritis (years); FMPS: family history of psoriasis (0–No, 1–Yes); FMPSA: family history of

psoriatic arthritis (0–No, 1–Yes); ESR: erythrocyte sedimentation rate; SEX: 0–Female, 1–Male.
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where the λ0k
′s are the baseline intensities. For the missing data process, we assume

logit(λ∗ij) = α0 + α1 · PSORDURi + α2 · AGEPSAi + α3 · FMPSi

+ α4 · FMPSAi + α5 · ESRi + α6 · SEXi + α7 · Zij12 + α8 · Zij13

+ α9 · Zij14 + α10 · Zij23 + α11 · Zij24 + α12 · Zij34

+ α13 · I(Yi(aj−1) = 2) + α14 · I(Yi(aj−1) = 3) + α15 · I(Yi(aj−1) = 4)

+ α16 · ri,j−1,

where Zijk′k = I(Yi(aj−1) = k′, Yi(aj) = k) is the indicator featuring the transitions

from states k′ to k at time aj , k
′ < k.

Table 3.15 reports the results obtained from the proposed method as well as

from the complete case and available data analyses that ignore the missing data

mechanism. The duration of psoriasis at clinic entry has a significant effect on the

rate of PsA progression (β̂1 = 0.057 with p-value<0.001); that is, the relative rate

of progression increases 5.9% for each additional year since diagnosis, controlling

for other factors. The age at onset of PsA is also significantly associated with

the rate of transition (β̂2 = −0.073; p-value<0.001); that is, the older the age at

onset the slower the rate of progression (the risk decreases about 7.0% for each

additional year of age at onset of PsA, when controlling other factors). A family

history of psoriasis or PsA were not significantly related to the rate of progression

(β̂3 = −0.064; p-value=0.560 and β̂4 = −0.103, p-value=0.423 respectively), but

ESR level has an effect on PsA progression (β̂5 = 0.013; p-value<0.001) such that

those with a higher ESR value have rates of damage (the relative risk increases

about 1.3% for one unit of ESR increasing when controlling other factors). The

effect of SEX is significant (β̂6 = 0.177; p-value=0.030), indicating that males have

higher rates of progression than females (RR = 1.194).
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Table 3.15: Analysis of the psoriatic arthritis data

Transition Model Proposed Method Complete Case Available Data

Parameter Estimate SE p-value Estimate SE p-value Estimate SE p-value

Baseline Intensities

λ01 0.064 0.016 <0.001 0.013 0.014 0.349 0.048 0.013 <0.001

λ02 0.116 0.030 <0.001 0.013 0.014 0.361 0.086 0.024 <0.001

λ03 0.150 0.042 <0.001 0.030 0.036 0.396 0.109 0.036 <0.001

Covariate Effects

PSORDUR 0.057 0.005 <0.001 0.044 0.022 0.047 0.078 0.004 <0.001

AGEPSA -0.073 0.007 <0.001 0.025 0.020 0.217 -0.063 0.005 <0.001

FMPS -0.064 0.110 0.560 0.579 0.371 0.119 -0.050 0.079 0.530

FMPSA -0.103 0.130 0.423 0.101 0.602 0.866 0.074 0.122 0.543

ESR 0.013 0.002 <0.001 0.012 0.009 0.180 0.007 0.002 <0.001

SEX 0.177 0.083 0.030 0.298 0.554 0.591 0.147 0.079 0.064

Missing Data Model

α0 -1.4979 0.1247 <0.001

α1 -0.0262 0.0028 <0.001

α2 0.0028 0.0024 0.2495

α3 0.0754 0.0661 0.2543

α4 0.0641 0.1026 0.5318

α5 -0.0019 0.0016 0.2119

α6 0.1122 0.0636 0.0776

α7 -0.4598 0.1489 <0.001

α8 1.4775 0.4276 <0.001

α9 3.0478 0.5670 <0.001

α10 -0.4507 0.2087 0.0308

α11 0.0699 0.4025 0.8620

α12 -0.6821 0.2674 0.0108

α13 0.4032 0.0822 <0.001

α14 0.7547 0.1359 <0.001

α15 0.7786 0.1174 <0.001

α16 1.8648 0.0627 <0.001

PSORDUR: duration of psoriasis at time of clinic entry (years); AGEPSA: age at onset of psoriatic

arthritis (years); FMPS: family history of psoriasis (0–No, 1–Yes); FMPSA: family history of

psoriatic arthritis (0–No, 1–Yes); ESR: erythrocyte sedimentation rate; SEX: 0–Female, 1–Male.
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In Figure 3.9 we plot the transition probabilities starting from state 1 to other

possible states to show the differences of the three analyses. It is seen that the

available data analysis tends to yield less different curves from those obtained from

the proposed method than the complete case analysis does. The probabilities stay-

ing in state 1 decrease as time goes by, while transition probabilities P13(t) and

P14(t) have increasing trends with time. However, transition probabilities P12(t)

obtained from the three methods are quite different. The proposed method pro-

duces a first-increasing-then-decreasing curve, the available data analysis yields a

first-increasing-then-stable curve, but the complete case analysis leads to a fairly

straight, increasing curve.

For the missing data process model, we find that the αj coefficients with j = 7,

8, 9, 10, 12, 13, 14 and 15 are all significant, suggesting that nonignorable miss-

ing mechanisms are perhaps reasonable. In particular, we report that α̂13 = 0.403

with p-value<0.001, α̂14 = 0.757 with p-value<0.001 and α̂15 = 0.779 with p-

value<0.001. It suggests that the more severe the disease at the previous assess-

ment, the more likely he or she would appear for the present assessment. This

seems to make intuitive sense since patients may be more likely to attend a clinic

when their disease becomes more severe. If subjects are missing at an assessment,

they are less likely to be observed at the next assessment because the estimate of

α16 is 1.865 with p-value<0.001. As for the covariates, only the duration of initial

psoriasis is significant (α̂1 = −0.026; p-value<0.001), indicating the shorter the

duration, the more likely for a patient to appear for assessment.
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3.5 Proof of the Identifiability of the Model

The parameter θ is identifiable if Li(θ; y
(o)
i , ri) = Li(θ̃; y

(o)
i , ri) if and only if θ = θ̃.

If θ = θ̃, it is easy to show Li(θ; y
(o)
i , ri) = Li(θ̃; y

(o)
i , ri). Now it suffices to show

that Li(θ; y
(o)
i , ri) = Li(θ̃; y

(o)
i , ri) implies θ = θ̃. If θ and θ̃ are two parameter values

such that Li(θ; y
(o)
i , ri) = Li(θ̃; y

(o)
i , ri) for all (y

(o)
i , ri), we now need to show that

θ = θ̃. First, we introduce some notation for ease of exposition. Let µ̃Cijk′k and µCijk′k

represent the conditional probability P (Yij = k|Yi,j−1 = k′, Xi) evaluated at θ̃ and

θ, respectively, and λ̃∗ij and λ∗ij are defined analogously. We use λ∗ij(yi) to explicitly

indicate the dependence of λ∗ij on response yi whenever needed. Identifiability is

established through two steps:

Step 1: We show that

λ∗ij = λ̃∗ij , for j = 2, 3, · · · , J,

and the identifiability of parameter α follows from a proper form of (3.3).

Step 2: We show that

µCijk′k = µ̃Cijk′k, for j = 2, 3, · · · , J ; k′ < k,

and the identifiability of parameter β follows from a proper form of (3.1).

We now proceed with the first step. Suppose J ≥ 3. First, take yi = (k, k, k, k4, . . . , kJ),

(i.e., subject i was in state k for the first three time points) then from Li(θ; y
(o)
i , ri) =

Li(θ̃; y
(o)
i , ri), we have

J∏

j=2

λ∗ij(yi) ·
{
µCi2kk · µCi3kk · µCi4kk4 ·

J∏

j=5

µCijkj−1kj

}

=

J∏

j=2

λ̃∗ij(yi) ·
{
µ̃Ci2kk · µ̃Ci3kk · µ̃Ci4kk4 ·

J∏

j=5

µ̃Cijkj−1kj

}
.

(3.14)

105



Now consider ỹi = (k, ∗, k, k4, . . . , kJ), i.e. the response of subject i is the same

as yi except that there is a missing value in the second time point. Then the

observed likelihood

Li(θ; ỹ
(o)
i , ri) =

∑

ỹi2

{
(1 − λ∗i2(ỹi)) ·

J∏

j=3

λ∗ij(ỹi) ·
[
µCi2kỹi2

· µCi3ỹi2k
· µCi4kk4 ·

J∏

j=5

µCijkj−1kj

]}
.

The feature of progressive process (if s < t, then y(s) ≤ y(t)) implies that the

missing observation ∗ should be k, and hence ỹi = yi. Then, from Li(θ; ỹ
(o)
i , ri) =

Li(θ̃; ỹ
(o)
i , ri) with the missingness probability incorporated, we have

{
(1 − λ∗i2(ỹi)) ·

J∏

j=3

λ∗ij(ỹi)

}
·
{
µCi2kk · µCi3kk · µCi4kk4 ·

J∏

j=5

µCijkj−1kj

}

=

{
(1 − λ̃∗i2(ỹi)) ·

J∏

j=3

λ̃∗ij(ỹi)

}
·
{
µ̃Ci2kk · µ̃Ci3kk · µ̃Ci4kk4 ·

J∏

j=5

µ̃Cijkj−1kj

}
.

(3.15)

Comparing (3.14) and (3.15) in combination with that yi = ỹi, we obtain that

λ∗i2(yi)

1 − λ∗i2(yi)
=

λ̃∗i2(yi)

1 − λ̃∗i2(yi)
,

and thus,

λ∗i2(yi) = λ̃∗i2(yi).

In the same spirit, we can get

λ∗ij(yi) = λ̃∗ij(yi)

for j = 2, 3, . . . , J−1. At time point J , if we consider yi = (yi1, yi2, . . . , yi,J−2, K,K)

and ỹi = (yi1, yi2, . . . , yi,J−2, K, ∗), we can obtain λ∗iJ(yi) = λ̃∗iJ(yi). Thus, we can

obtain

λ∗ij(yi) = λ̃∗ij(yi) (3.16)

for j = 2, 3, . . . , J for some patterns of yi.
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We assume, by examining all possible values of these special types of yi listed

above, that all the parameters α are identifiable. We comment that this assumption

is not rigorous in practice when the number of observations for each subjects is not

very small and the number of parameters in the missing data models is not very

large. For example, consider model (3.3) which is given by logitλ∗ij = α0 + α1xi +

α2yij , where xi is a binary covariate, say a treatment indicator. It is easy to obtain

that λ∗i2(yi) = λ̃∗i2(yi) for yi = (k, k, k) with k = 1, 2, 3. The identifiability of α can

be obtained from these patterns of yi. Taking yi = (1, 1, 1), (3.16) leads to

α0 + α1xi + α2 = α̃0 + α̃1xi + α̃2; (3.17)

taking yi = (2, 2, 2), (3.16) leads to

α0 + α1xi + 2α2 = α̃0 + α̃1xi + 2α̃2. (3.18)

From (3.17) and (3.18), we can get α0 = α̃0 and α2 = α̃2; by evaluating xi, we can

get α1 = α̃1. Therefore, we establish the identifiability of the parameters in λ∗ij.

Now it remains to show the second step. Since Li(θ; y
(o)
i , ri) = Li(θ̃; y

(o)
i , ri) holds

for any y
(o)
i and ri, we specifically examine those yi with complete observations.

With complete data yi, the corresponding missing data indicator Ri assumes value

1 at every time point. That is, the identity Li(θ; y
(o)
i , ri) = Li(θ̃; y

(o)
i , ri) leads to

J∏

j=2

{
λ∗ij ·

K∏

k′=1

K∏

k=k′+1

(
µCijk′k

)I(Yi,j−1=k′,Yij=k) · (1 −
K∑

l=k′+1

µCijk′l)
I(Yi,j−1=k′,Yij=k′)

}

=

J∏

j=2

{
λ̃∗ij ·

K∏

k′=1

K∏

k=k′+1

(
µ̃Cijk′k

)I(Yi,j−1=k′,Yij=k) · (1 −
K∑

l=k′+1

µ̃Cijk′l)
I(Yi,j−1=k′,Yij=k

′)

}

(3.19)
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for all complete data yi. As it has been shown that λ∗ij = λ̃∗ij, (3.19) then becomes

J∏

j=2

{
K∏

k′=1

K∏

k=k′+1

(
µCijk′k

)I(Yi,j−1=k′,Yij=k) · (1 −
K∑

l=k′+1

µCijk′l)
I(Yi,j−1=k′,Yij=k

′)

}

=
J∏

j=2

{
K∏

k′=1

K∏

k=k′+1

(
µ̃Cijk′k

)I(Yi,j−1=k′,Yij=k) · (1 −
K∑

l=k′+1

µ̃Cijk′l)
I(Yi,j−1=k′,Yij=k′)

} (3.20)

for any complete data yi. It suffices to show that

µCijk′k = µ̃Cijk′k for any j, k′ < k. (3.21)

To this end, we examine (3.20) for different values of yi for a fixed time point

j = J, J − 1, . . . , 1.

First, fix j = J and take yi = (k, . . . , k, k, k) with k < K, then we obtain, by

(3.20),
J∏

j=2

(1 −
K∑

l=k+1

µCijkl) =
J∏

j=2

(1 −
K∑

l=k+1

µ̃Cijkl). (3.22)

Now take yi = (k, . . . , k, k, k0), k0 ≥ k + 1, then we obtain, by (3.20),

J−1∏

j=2

(1 −
K∑

l=k+1

µCijkl) · µCiJkk0 =

J−1∏

j=2

(1 −
K∑

l=k+1

µ̃Cijkl) · µ̃CiJkk0. (3.23)

Comparing (3.22) and (3.23) leads to

1 −∑K
l=k+1 µ

C
iJkl

µCiJkk0
=

1 −∑K
l=k+1 µ̃

C
iJkl

µ̃CiJkk0
, k = 1, 2, · · · , K − 1, k0 ≥ k + 1. (3.24)

Repeatedly using this identity for different values of k establishes (3.21) for j = J .

To be specific, we proceed with the following steps.

(1). Let k = K − 1, then we obtain

1 − µCiJ,K−1,K

µCiJ,K−1,K

=
1 − µ̃CiJ,K−1,K

µ̃CiJ,K−1,K

,

and hence,

µCiJ,K−1,K = µ̃CiJ,K−1,K.
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(2). Let k = K − 2, then k0 = K − 1 or K, and hence,

1 − µCiJ,K−2,K−1 − µCiJ,K−2,K

µCiJ,K−2,K−1

=
1 − µ̃CiJ,K−2,K−1 − µ̃CiJ,K−2,K

µ̃CiJ,K−2,K−1

(3.25)

and

1 − µCiJ,K−2,K−1 − µCiJ,K−2,K

µCiJ,K−2,K

=
1 − µ̃CiJ,K−2,K−1 − µ̃CiJ,K−2,K

µ̃CiJ,K−2,K

, (3.26)

which gives

µCiJ,K−2,K

µCiJ,K−2,K−1

=
µ̃CiJ,K−2,K

µ̃CiJ,K−2,K−1

. (3.27)

Combining (3.27) and (3.25), we obtain

µCiJ,K−2,K−1 = µ̃CiJ,K−2,K−1,

and therefore,

µCiJ,K−2,K = µ̃CiJ,K−2,K,

which is from (3.27) and (3.26).

(3). In general, for k = 1, 2, · · · , K − 3 and k0 = k + 1, · · · , K, we have

1 −
∑K

l=k+1 µ
C
iJkl

µCiJk,k+1

=
1 −

∑K
l=k+1 µ̃

C
iJkl

µ̃CiJk,k+1

(3.28)

1 −
∑K

l=k+1 µ
C
iJkl

µCiJk,k+2

=
1 −

∑K
l=k+1 µ̃

C
iJkl

µ̃CiJk,k+2

(3.29)

1 −
∑K

l=k+1 µ
C
iJkl

µCiJk,k+3

=
1 −

∑K
l=k+1 µ̃

C
iJkl

µ̃CiJk,k+3

(3.30)

...

1 −∑K
l=k+1 µ

C
iJkl

µCiJkK
=

1 −∑K
l=k+1 µ̃

C
iJkl

µ̃CiJkK
(3.31)
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• Dividing (3.28) by (3.29), . . ., (3.31), respectively, we obtain

µCiJk,k+2

µCiJk,k+1

=
µ̃CiJk,k+2

µ̃CiJk,k+1

,

...

µCiJkK
µCiJk,k+1

=
µ̃CiJkK
µ̃CiJk,k+1

,

and hence, in combination with (3.28), we obtain

µCiJk,k+1 = µ̃CiJk,k+1.

• Dividing (3.29) by (3.30), . . ., (3.31), respectively, and combining those

identities with (3.29), we obtain

µCiJk,k+2 = µ̃CiJk,k+2.

• Analogously,

µCiJkk0 = µ̃CiJkk0

for all k = 1, 2, · · · , K − 3 and k0 = k + 1, . . . , K. That is

µCiJkk0 = µ̃CiJkk0, for all k < k0.

Secondly, fix j = J − 1 and take yi = (k, . . . , k, k0, k0), k0 ≥ k + 1. Then we

obtain, by (3.20),

J−2∏

j=2

(1 −
K∑

l=k+1

µCijkl) · µCi,J−1,kk0
(1 −

K∑

l=k0+1

µCiJk0l)

=
J−2∏

j=2

(1 −
K∑

l=k+1

µ̃Cijkl) · µ̃Ci,J−1,kk0
(1 −

K∑

l=k0+1

µ̃CiJk0l).

(3.32)

Comparing (3.32) and (3.22) leads to

µCi,J−1,kk0
(1 −

∑K
l=k0+1 µ

C
iJk0l

)

(1 −
∑K

l=k+1 µ
C
i,J−1,kl)(1 −

∑K
l=k+1 µ

C
iJkl)

=
µ̃Ci,J−1,kk0

(1 −
∑K

l=k0+1 µ̃
C
iJk0l

)

(1 −∑K
l=k+1 µ̃

C
i,J−1,kl)(1 −∑K

l=k+1 µ̃
C
iJkl)

,
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for k = 1, 2, . . . , K − 1; k0 = k + 1, . . . , K. As shown before, µCiJkk0 = µ̃CiJkk0 for all

k < k0, we then obtain

1 −
∑K

l=k+1 µ
C
i,J−1,kl

µCi,J−1,kk0

=
1 −

∑K
l=k+1 µ̃

C
i,J−1,kl

µ̃Ci,J−1,kk0

.

This structure is the same as (3.24) and therefore, repeating the same arguments

above, we establish

µCi,J−1,kk0
= µ̃Ci,J−1,kk0

for all k < k0.

Analogously, by the same arguments, we can show (3.21) for j = 2, . . . , J − 2.

Or more precisely, using mathematical induction we can establish (3.21). To be

specific, assume

µCijkk0 = µ̃Cijkk0

are true for all k < k0, j = j0 + 1, · · · , J . Now we need to show that

µCij0kk0 = µ̃Cij0kk0

for all k < k0.

Take yi = (k, . . . , k, k0, k0, . . . , k0), k0 ≥ k + 1, where the first k0 starts at time

point j0, then we obtain, by (3.20),

j0−1∏

j=2

(1 −
K∑

l=k+1

µCijkl) · µCij0kk0 ·
J∏

j=j0+1

(1 −
K∑

l=k0+1

µCijk0l)

=

j0−1∏

j=2

(1 −
K∑

l=k+1

µ̃Cijkl) · µ̃Cij0kk0 ·
J∏

j=j0+1

(1 −
K∑

l=k0+1

µ̃Cijk0l).

(3.33)

Comparing (3.33) and (3.22), we obtain

µCij0kk0 ·
∏J

j=j0+1(1 −
∑K

l=k0+1 µ
C
ijk0l

)

(1 −∑K
l=k+1 µ

C
ij0kl

) ·∏J
j=j0+1(1 −∑K

l=k+1 µ
C
ijkl)

=
µ̃Cij0kk0 ·

∏J
j=j0+1(1 −∑K

l=k0+1 µ̃
C
ijk0l

)

(1 −
∑K

l=k+1 µ̃
C
ij0kl

) ·
∏J

j=j0+1(1 −
∑K

l=k+1 µ̃
C
ijkl)

.
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By the hypothesis of the induction, then we obtain

1 −
∑K

l=k+1 µ
C
ij0kl

µCij0kk0
=

1 −
∑K

l=k+1 µ̃
C
ij0kl

µ̃Cij0kk0

for k = 1, 2, . . . , K − 1; k0 = k + 1, . . . , K. Then by using the arguments above, we

obtain

µCij0kk0 = µ̃Cij0kk0

for all k < k0. Therefore, we obtain that

µCijk′k = µ̃Cijk′k

for j = 2, 3, . . . , J and k′ < k.

Identifiability of the β parameters can be established, provided model (3.1) is

identifiable. For example, consider K = 3 and J = 4, and model (3.1) is given by

log

(
µCijk′k
µCijk′k′

)
= βk′k0 + βk′k1Xij1 + βk′k2Xij2 + βk′k3Xij3, k′ < k ≤ 3,

for j = 2, 3, 4, where Xij1 = Xi1 represents a time invariant treatment indicator,

and Xij2 = I(j = 3) and Xij3 = I(j = 4) facilitate the temporal effects. Taking

k′ = 2, Xij1 = 0, Xij2 = 0 and Xij3 = 0, then (3.21) leads to β230 = β̃230; taking

k′ = 2, Xij1 = 1, Xij2 = 0, Xij3 = 0, and using the fact that β230 = β̃230, we obtain

β231 = β̃231 from (3.21); taking k′ = 2, Xij1 = 0, Xij2 = 1, Xij3 = 0, and using

the fact that β230 = β̃230, we obtain β232 = β̃232 from (3.21); and taking k′ = 2,

Xij1 = 0, Xij2 = 0, Xij3 = 1, and using the fact that β230 = β̃230, we obtain β233 =

β̃233 from (3.21). Therefore, we show β23 = (β230, β231, β232, β233)
′ is identifiable.

Similarly, we can show β12 = (β120, β121, β122, β123)
′ and β13 = (β130, β131, β132, β133)

′

are identifiable.
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Chapter 4

Marginal Methods for

Longitudinal Data Analysis with

Missing Response and Missing

Covariates

4.1 Introduction

Incomplete longitudinal data often arise in clinical trials due to missing re-

sponses, partially filled out forms or questionnaires yielding missing covariate data,

or study subjects failing to attend a scheduled clinic visit. Problems arise if the

mechanism leading to the missing data is related to the values of response or co-

variates. For example, analyses based on individuals with complete data can lead

to invalid inferences. Under a missing completely at random (MCAR) mecha-

nism (Little and Rubin, 1987), analyses based on generalized estimating equations

(GEE) (Liang and Zeger, 1986) yields consistent estimates for the regression pa-

rameters. When the data are missing at random (MAR) or missing not at random

(MNAR) (Little and Rubin, 1987), analyses based on GEE give inconsistent param-
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eter estimates. Robins and Rotnitzky (1995) and Robins et al. (1995) developed a

class of estimators based on an inverse probability weighted generalized estimating

equations (IPWGEE) approach in a regression setting when data are MAR. This

approach involves modeling the missing data process and weighting the estimating

equations by the inverse of a probability that is calculated based on the models for

the missing data process. If the models for both the marginal mean of the response

and the missing data process are correctly formulated, the IPWGEE approach cor-

rects the bias and gives consistent estimates under the MAR mechanism.

The growing literature on methods for missing data has primarily dealt with

either missing response or missing covariates data (Horton and Laird, 1998; Molen-

berghs et al., 1997; Lipsitz et al., 1999; Ibrahim et al., 2001; Zhao et al., 1996), but

not both. In practice, of course, data are often unavailable for both responses and

covariates, and sometimes there is an association between the missingness of the

response and covariates. Valid analysis of this type of data therefore requires taking

this association into consideration. Ignoring such correlation can bias the statistical

inference. Chen et al. (2008) give theoretical investigation for inference with miss-

ing response and covariate data for general regression models using the likelihood

method via EM algorithm. Shardell and Miller (2008) propose a marginal modeling

approach to estimate the association between a time-dependent covariate and an

outcome in longitudinal studies with missing response and missing covariate, but

they focus on methods with an assumption that responses are independent. The

purpose of this manuscript is to describe a general approach to the construction

of estimating equations for parameters of marginal models for longitudinal data

with incomplete response and covariate data. The approach is based on inverse

probability weighted estimating equations for which the association between the
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missingness of the response and covariate is addressed. We also highlight the poor

properties of estimators when ignoring the correlations between the missingness of

responses and covariate.

The remainder of this chapter is organized as follows. In Section 4.2, we intro-

duce notation and models. In Section 4.3, we provide details on estimation and

inference. In Section 4.4, we provide a method which gives more efficient estimates.

Numerical studies concerning asymptotic bias are given in Section 4.5. Data arising

from the Waterloo Smoking Prevention Project (Cameron et al., 1999) and a study

of bone metastases are also analyzed for illustration in Section 4.5. In Section 4.6,

we extend the proposed methods to accommodate multiple missing covariates in

conjunction with possibly missing responses. Section 4.7 and 4.8 are appendices.

4.2 Notation and Model Formulation

Consider a trial comprised of n individuals, each with J visits planned. Let Yi =

(Yi1, Yi2, . . . , YiJ)
′ denote the response vector for subject i, some elements of which

may be unobserved. Let Xij denote a scalar time-dependent covariate for subject i

at the jth visit which may or may not be observed, and let Zij denote a covariate

vector for subject i at the jth visit which is fully observed. The case where multiple

covariates may be missing will be considered in Section 4.6. For convenience we let

Xi = (Xi1, Xi2, . . . , XiJ)
′ and Zi = (Z ′

i1, Z
′
i2, . . . , Z

′
iJ)

′. The conditional mean of Yij

is denoted µij = E(Yij|Xi, Zi), and we let µi = (µi1, µi2, . . . , µiJ)
′ denote the full

vector of means. We suppose the mean structure of Yij depends on the covariate

vector for subject i at time j (e.g., Pepe and Anderson, 1994; Robins, Greenland
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and Hu, 1999), and consider a model for the mean of the form

g(µij) = Xijβx + Z ′
ijβz

for j = 1, . . . , J, i = 1, . . . , n, where g(·) is a monotone differentiable link function

and β = (βx, β
′
z)

′ is a p × 1 vector of regression coefficients that is of interest

here. We assume the variance is vij = var(Yij|Xi, Zi) = κh(µij), where h(·) is the

variance function and κ is the dispersion parameter that is not of primary interest.

It is usually estimated from an additional source before performing estimation of

parameter β.

Let Ry
ij = 1 if Yij is observed and Ry

ij = 0 otherwise, Rx
ij = 1 if Xij is observed

and Rx
ij = 0 otherwise, Ry

i = (Ry
i1, R

y
i2, . . . , R

y
iJ)

′ and Rx
i = (Rx

i1, R
x
i2, . . . , R

x
iJ)

′.

We assume the response and covariate are always observed at the first assess-

ment so Ry
i1 = Rx

i1 = 1, and let future realizations be governed by the conditional

probability λyij = P (Ry
ij = 1|R̄y

ij, R̄
x
ij , Yi, Xi, Zi), where R̄y

ij = {ryi1, . . . , ryi,j−1}, and

R̄x
ij = {rxi1, . . . , rxi,j−1}; λxij is defined similarly. We model λyij and λxij via logistic

regression and specify

logit(λyij) = u′ijαy ,

and

logit(λxij) = v′ijαx ,

where uij and vij contain functions of {R̄y
ij , R̄

x
ij , Yi, Xi, Zi}, j = 2, 3, . . . , J , and αy

and αx are regression parameters; let αxy = (α′
y, α

′
x)

′.

At each time point j, the observation status of the response and covariate may

be associated within subjects because of common factors affecting the marginal

observation processes. To model this association we define the conditional odds
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ratio

ψij =
P (Ry

ij = 1, Rx
ij = 1|R̄y

ij, R̄
x
ij, Yi, Zi, Xi) · P (Ry

ij = 0, Rx
ij = 0|R̄y

ij, R̄
x
ij , Yi, Zi, Xi)

P (Ry
ij = 1, Rx

ij = 0|R̄y
ij, R̄

x
ij, Yi, Zi, Xi) · P (Ry

ij = 0, Rx
ij = 1|R̄y

ij, R̄
x
ij , Yi, Zi, Xi)

,

where the covariate and response variables appear symmetrically in this measure.

The parameter ψij can be viewed as the relative odds that Yij is observed (e.g.

Ry
ij = 1) when Xij is observed versus when Xij is missing.

We let λxyij = P (Ry
ij = 1, Rx

ij = 1|R̄y
ij, R̄

x
ij, Yi, Zi, Xi) be the joint probability for

the pair Rij = (Ry
ij, R

x
ij)

′, conditional on the histories of the indicator variables and

the entire vector of response and covariates. By noting that

ψij =
λxyij [1 − λxij − λyij + λxyij ]

(λxij − λxyij )(λyij − λxyij )
,

we write

λxyij =





aij−[a2ij−4ψij(ψij−1)λx
ijλ

y
ij ]

1/2

2(ψij−1)
, if ψij 6= 1,

λxij · λyij , if ψij = 1,

where aij = 1 − (1 − ψij)(λ
x
ij + λyij) (e.g. Lipsitz et al., 1991). Regression models

may be used to allow the odds ratio ψij to change with time-varying covariates.

We may specify, for example,

log(ψij) = u∗ij
′ · φj ,

where u∗ij is a covariate vector and φj is a vector of regression coefficients. Let

φ = (φ′
2, φ

′
3, . . . , φ

′
J)

′, and α = (α′
xy, φ

′)′ be of dimension q.

Here we consider a missing at random mechanism which assumes

P (Ry
ij = ryij , R

x
ij = rxij|R̄y

ij , R̄
x
ij, Yi, Xi, Zi) = P (Ry

ij = ryij, R
x
ij = rxij|R̄y

ij , R̄
x
ij, Y

(o)
i , X

(o)
i , Zi).

Informally, we write Xi = (X
(o)
i , X

(m)
i ) where X

(o)
i and X

(m)
i denote the observed

and missing components of Xi, respectively. For subject i, let πxyij = P (Ry
ij =
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1, Rx
ij = 1|Yi, Zi, Xi) be the conditional probability of complete data for subject i

at time j given the response vector Yi and covariates Zi and Xi, j ≥ 2; πxyi1 = 1 is

assumed. The joint probability πxyij can then be written as

πxy
ij =

∑

R̄
y

ij

∑

R̄x
ij

{
P (Ry

ij = 1, Rx
ij = 1|R̄y

ij , R̄
x
ij , Yi, Xi, Zi) ·

j−1∏

l=2

P (Ry
il = ry

il, R
x
il = rx

il|R̄y
il, R̄

x
il, Yi, Xi, Zi)

}

=
∑

R̄
y

ij

∑

R̄x
ij

{
λxy

ij · [
j−1∏

l=2

(λxy
il )r

y

il
rx

il(λx
il − λxy

il )(1−r
y

il
)rx

il(λy
il − λxy

il )(1−rx
il)r

y

il

·(1 − λx
il − λy

il + λxy
il )(1−r

y

il
)(1−rx

il)]
}

(4.1)

for j ≥ 2, where the summation is taken over all the possible values of the histories

R̄y
ij and R̄x

ij .

4.3 Estimation and Inference

4.3.1 Estimating Equations for Response Parameters

Following the same spirit of IPWGEE advocated by Robins et al. (1995), we

may include a weight matrix ∆∗
i (α) to the usual GEE to adjust for the effects of

missingness occurring in both the response and covariate variables. That is, let

∆∗
i (α) = diag(I(Ry

ij = 1, Rx
ij = 1)/πxyij , 1 ≤ j ≤ J),

then the product ∆∗
i (Yi − µi) yields an adjusted contribution from subject i which

involves the observed data alone yet retains the unbiasedness property, and hence

estimating equations for β can be given by

U∗(β, α) =
n∑

i=1

U∗
i (β, α) = 0, (4.2)

where U∗
i (β, α) = DiV

−1
i ∆∗

i (α)(Yi−µi) with Di = ∂µ′
i/∂β being a p× J derivative

matrix, and Vi the working covariance matrix for the response Yi.
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In practice, the covariance matrix Vi is often expressed as

Vi = κF
1/2
i Ri(ρ)F

1/2
i ,

where Ri(ρ) is a working correlation matrix which may contain parameter ρ that

is distinct from the β parameter, and Fi = diag(h(µij), j = 1, 2, . . . , J). When

the working correlation matrix Ri(ρ) is the identity matrix, (4.2) is computable.

However, when a working independence assumption is not adopted, (4.2) may not be

computable since elements of DiV
−1
i associated with those observed paired response

Yij and covariate Xij may still be unknown because of the involvement of other

missing covariates Xik
′s (k 6= j). Here we modify (4.2) to incorporate the general

working correlation matrices. We define

∆i(α) =




I(Ry
i1=1,Rx

i1=1)

πxy
i1

I(Rx
i1=1,Ry

i2=1,Rx
i2=1)

πxy
i12

· · · I(Rx
i1=1,Ry

iJ=1,Rx
iJ=1)

πxy
i1J

I(Rx
i2=1,Ry

i1=1,Rx
i1=1)

πxy
i21

I(Ry
i2=1,Rx

i2=1)

πxy
i2

· · · I(Rx
i2=1,Ry

iJ=1,Rx
iJ=1)

πxy
i2J

...
...

. . .
...

I(Rx
iJ=1,Ry

i1=1,Rx
i1=1)

πxy
iJ1

I(Rx
iJ=1,Ry

i2=1,Rx
i2=1)

πxy
iJ2

· · · I(Ry
iJ=1,Rx

iJ=1)

πxy
iJ



J×J

,

where πxyijk = P (Rx
ij = 1, Ry

ik = 1, Rx
ik = 1|Yi, Xi, Zi) for j 6= k, and denote

Mi = κ−1F
−1/2
i [R−1

i (ρ) • ∆i(α)]F
−1/2
i ,

where A •B = [aij · bij ] denotes the Hadamard product of J × J matrices A = [aij ]

and B = [bij ] (e.g., Horn and Johnson, 1994). By introducing the condition that

Xij must be observed for elements in row j of ∆i(α), we ensure that all required

elements of Di[V
−1
i • ∆i(α)](Yi − µi) can be computed.

The generalized estimating functions for β are given by

U(β, α) =
n∑

i=1

Ui(β, α) = 0, (4.3)
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where Ui(β, α) = DiMi(Yi − µi), and this yields consistent estimators since

E(Ry
i ,R

x
i )|(Yi,Xi,Zi)[R

−1
i (ρ) • ∆i(α)] = R−1

i (ρ)

and hence

E(Ry
i ,R

x
i ,Yi,Xi,Zi)[Ui(β, α)] = E(Yi,Xi,Zi)E(Ry

i ,R
x
i )|(Yi,Xi,Zi)[Ui(β, α)]

= E(Yi,Xi,Zi)[DiV
−1
i (Yi − µi)]

= E(Xi,Zi)EYi|(Xi,Zi)[DiV
−1
i (Yi − µi)]

= 0.

It is easy to see that estimating function (4.3) depends on the observed data and

the parameters only, and hence is computable. To employ (4.3) to estimate β, one

needs to evaluate the joint probability πxyijk which can be written as, for example,

for j < k

πxyijk =
∑

ry
i,k−1,r

x
i,k−1

· · ·
∑

ry
i,j+1,r

x
i,j+1

∑

ry
ij

{
λxyik ·

k−1∏

ℓ=j+1

[(λxyiℓ )r
y
iℓr

x
iℓ(λxiℓ − λxyiℓ )(1−ry

iℓ)r
x
iℓ

·(λyiℓ − λxyiℓ )(1−rx
iℓ)r

y
iℓ(1 − λxiℓ − λyiℓ + λxyiℓ )(1−ry

iℓ)(1−r
x
iℓ)] · (πxyij )r

y
ij (πxij − πxyij )1−ry

ij

}
,

where πxij = P (Rx
ij = 1|Yi, Xi, Zi), and it can be expressed in terms of λxij′, λ

y
ij′ and

λxyij′, j
′ ≤ j. Similar notation applies to πyij .

The working correlation matrix Ri(ρ) is usually unknown and must be esti-

mated. It is estimated in the iterative fitting process using the current value of β

to compute the appropriate function of the Pearson residual

eij =
yij − µij√
h(µij)

· δij ,
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where δij = ryijr
x
ij/π

xy
ij . The estimator of the parameter ρ is different for different

correlation structures. For example, for the unstructured correlation matrix that

Corr(Yij, Yik) = ρjk for j 6= k, we estimate ρjk by

ρ̂jk =
1

(n− p)κ

n∑

i=1

eijeik · πxyij πxyik /π∗
ijk,

where π∗
ijk = P (Rx

ij = 1, Ry
ij = 1, Rx

ik = 1, Ry
ik = 1|Yi, Xi, Zi) which can be calcu-

lated in the same spirit of calculation of πxyijk above, and the dispersion parameter

κ is estimated by

κ̂ =
1

nJ − p

n∑

i=1

J∑

j=1

e2ij · πxyij .

If α were known, then the estimate of β can be obtained by solving U(β, α) = 0.

In practice α is unknown and one must replace α in (3) with a consistent estimate

which may be obtained as we describe in the next subsection.

4.3.2 Estimation of Parameters for the Missing Data Pro-

cesses

Let Λij = (λyij, λ
x
ij)

′, Ri = (Ri2
′, Ri3

′, . . . , RiJ
′)′, Λi = (Λ′

i2,Λ
′
i3, . . . ,Λ

′
iJ)

′, and let

V ∗
i = diag(V ∗

i2, V
∗
i3, . . . , V

∗
iJ) be the covariance matrix of Ri, where

V ∗
ij =


 λyij(1 − λyij) λxyij − λyijλ

x
ij

λxyij − λyijλ
x
ij λxij(1 − λxij)




is the covariance matrix of Rij . If D∗
i = ∂Λ′

i/∂αxy, then the estimating functions

for αxy are given by
∑n

i=1 S1i(α), where S1i(α) = D∗
i [V

∗
i ]−1(Ri − Λi).

We use second order estimating equations for estimation of the association pa-

rameter φ. To construct these we define the pairwise product R∗
ij = Ry

ijR
x
ij and the

vector R∗
i = (R∗

i2, R
∗
i3, . . . , R

∗
iJ)

′, and let λxyi = (λxyi2 , λ
xy
i3 , . . . , λ

xy
iJ )′, C∗

i = ∂[λxyi ]′/∂φ,
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and W ∗
i = diag(λxyij · (1 − λxyij ), j = 2, 3, . . . , J). The estimating functions for φ

are then given by
∑n

i=1 S2i(α), where S2i(α) = C∗
i [W

∗
i ]−1 · (R∗

i − λxyi ). Then the

estimating equation for α are
n∑

i=1

Si(α) = 0. (4.4)

where Si(α) = (S ′
1i(α), S ′

2i(α))′.

4.3.3 Estimation and Inference

We may employ a Fisher-scoring algorithm for estimation of θ = (α′, β ′)′. To

do this we let

Hi(θ) =


 Si(α)

Ui(β, α)


 , M∗(α) =


 −∑n

i=1D
∗
i [V

∗
i ]−1[D∗

i ]
′

−
∑n

i=1C
∗
i [W

∗
i ]−1[C∗

i ]
′


 ,

and M(θ) = −
∑n

i=1DiMiD
′
i. As the estimating functions Si(α) are free of the β

parameters, the derivative matrix ∂Hi(θ)/∂θ
′ is lower triangular, i.e.,

∂Hi(θ)

∂θ′
=




∂Si(α)
∂α′

0

∂Ui(β,α)
∂α′

∂Ui(β,α)
∂β′


 ,

and therefore, given an initial value θ(0), an updated estimates are obtained with

the iterative equation

θ(t+1) = θ(t) −


 M∗(α(t)) 0
∑n

i=1[∂Ui(θ)/∂α
′]|θ(t) M(θ(t))




−1

∑n

i=1 Si(α
(t))

∑n
i=1 Ui(θ

(t))


 , (4.5)

t = 0, 1, · · · , until θ(t+1) converges to the solution θ̂.

Alternatively, one can invoke a two-stage estimation procedure. Under this

scheme an estimate of α is obtained as the solution to
∑n

i=1 Si(α) = 0 by Fisher-

scoring, and then a Fisher-scoring algorithm is employed to solve
∑n

i=1 Ui(β, α̂) = 0
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where α̂ is used in place of α in (3). This two-stage estimation procedure employs

the iterative equations

α(s+1) = α(s) − [M∗(α(s))]−1 ·
n∑

i=1

Si(α
(s)) s = 0, 1, · · · (4.6)

and

β(t+1) = β(t) − [M(β(t), α̂)]−1 ·
n∑

i=1

Ui(β
(t), α̂) t = 0, 1, · · · . (4.7)

The two-stage iterative equations (4.6) and (4.7) differ from joint iterative equation

(4.5). Even under the special situation that the components of the left lower corner

are zero in the inverse matrix of (4.5), (4.5) does not necessarily yield the same

updated values as those from (4.6) and (4.7). However, the updated values from

these two procedures converge to the same limit under mild regularity conditions

(e.g., Prentice, 1988; Lipsitz et al., 1991).

While the two-stage procedure based on (4.6) and (4.7) is much easier to use for

estimation of θ̂, the joint formulation based on Hi(θ) is more useful for developing

the asymptotic distribution for θ̂. Note that since E[Hi(θ)] = 0 and by Theorem

3.4 of Newey and McFadden (1993), under standard regularity conditions there is

a unique solution θ̂ to the equation
∑n

i=1Hi(θ) = 0 with probability approaching

1, that satisfies

n1/2(θ̂ − θ) = −{E[∂Hi(θ)/∂θ
′]}−1 · n−1/2

n∑

i=1

Hi(θ) + op(1) .

For the estimator β̂ of central interest, we have

n1/2(β̂ − β) = −Γ−1n−1/2 ·
n∑

i=1

Qi(β, α) + op(1),

where Γ = E[∂Ui(β, α)/∂β ′], and

Qi(β, α) = Ui(β, α) −E[∂Ui(β, α)/∂α′] · [E(∂Si(α)/∂α′)]−1 · Si(α).
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The central limit theorem then leads to the asymptotic distribution for n1/2(β̂−β),

which is normal with mean 0 and asymptotic variance Γ−1Σ[Γ−1]′, where Σ =

E[Qi(β, α)Q′
i(β, α)]. A discussion on the variance estimate is included in Section

4.7.

4.4 More Efficient Estimation via Augmented IP-

WGEE

Note that the estimating functions in (4.2) include merely the measurements

collected at those time points j when both Yij and Xij are observed, together with

an observed covariate Xik. There may be some information loss relative to the

methods that may include all the available measurements. Under the missing at

random mechanism, Robins et al. (1994, 1995), Robins and Rotnitzky (1995) and

Scharfstein et al. (1999) proposed methods to improve the efficiency of the inverse

probability weighted estimates. The notion is that adding a function with zero

expectation to the estimating function maintains an unbiased estimating function

but with suitable choice of this second function, efficiency may be improved. This

approach has, to our knowledge, only been investigated to address missingness in

either the response or covariates processes. In this section, we describe an efficient

method that applies to the case either response or covariate data may be missing

at any assessment time, or both.

Corresponding to each missingness pattern, we consider a vector Air (r = 1, 2, 3)

that picks up available measurements that may not be included in (4.3). For ex-

ample, we take

Ai1 =

([
I(Ry

ij = 1, Rx
ij = 0)

πyij − πxyij
· πyij − 1

]
· Ry

ijYij, j = 1, 2, . . . , J

)′

,
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Ai2 =

([
I(Ry

ij = 0, Rx
ij = 1)

πxij − πxyij
· πxij − 1

]
· Rx

ijXij, j = 1, 2, . . . , J

)′

,

Ai3 =

([
I(Ry

ij = 0, Rx
ij = 0)

1 − πxij − πyij + πxyij
− 1

]
· Z ′

ij, j = 1, 2, . . . , J

)′

,

and Ai = (A′
i1, A

′
i2, A

′
i3)

′. The key point here is to make Ai have zero mean and

be expressed in terms of the observed data. For ease of implementation, Ai is

often chosen to be free of the unknown β parameter, but it may depend on the α

parameter. We now explicitly denote it Ai(α).

Let Res{A,B} = A − E[AB′]{E[BB′]}−1B denote the residual obtained by

regressing A on B. Let

η = E[Res{Ui(β, α), Si(α)}Res{Ai(α), Si(α)}′][var(Res{Ai(α), Si(α)})]−1,

and U †
i (β, α) = Ui(β, α) − ηAi(α). Then, if α is known, the estimator β̃† obtained

from solving
n∑

i=1

U †
i (β, α) = 0 (4.8)

is consistent for β since U †
i (β, α) is unbiased.

Under regularity conditions of Robins et al. (1995), n1/2(β̃†−β) has an asymp-

totic distribution N(0,Γ−1Σ†[Γ−1]′) with Σ† = var{Res(Ui(β, α), H∗
i )}, where H∗

i =

(A′
i(α), S ′

i(α))′, and when η 6= 0, β̃† is more efficient than β̂; the proof is given in

Section 4.8. We note that the efficiency of β̃† relies on the choice of function Ai(α),

and there is no universal way to specify an optimal Ai(α) function to produce

the most efficient estimator β̃†. However, as long as that Ai(α) is correlated with

Ui(β, α) some improvement in efficiency will be realized.

In practice it is usually not possible to solve (4.8) since η will typically be

unknown. A modified version of (4.8) may be solvable, however, by replacing η
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with a n1/2-consistent estimate η̂ = η̂1η̂
−1
2 , where

η̂1 = n−1
n∑

i=1

R̂es[Ui(β̂, α̂), Si(α̂)]R̂es[Ai(α̂), Si(α̂)]′,

η̂2 = n−1

n∑

i=1

R̂es[Ai(α̂), Si(α̂)]R̂es[Ai(α̂), Si(α̂)]′,

and

R̂es(Ai, Bi) = Ai −
n∑

i=1

[AiB
′
i][

n∑

i=1

BiB
′
i]
−1Bi.

Under regularity conditions of Robins et al. (1995), the resultant estimator has

the same asymptotic distribution as β̃†, and variance matrix Γ−1Σ†[Γ−1]′ can be

consistently estimated by Γ̂−1Σ̂†[Γ̂−1]′ with

Σ̂† = n−1
n∑

i=1

{R̂es[Ui(β̂, α̂), {Ai(α̂), Si(α̂)}]}R̂es{[Ui(β̂, α̂), {Ai(α̂), Si(α̂)}]} .

4.5 Empirical Studies and Applications

4.5.1 Simulation Studies for Comparison of Procedures

In this section we assess the empirical performance of the methods through

simulation studies. We consider a setting with J = 3 and n = 500, and simulate

the longitudinal binary responses from a model with

logit(µij) = β0 + β1xij

where xij is a time-dependent binary covariate generated independently from Bin(1,0.5)

which may be missing at some time points. We set expit(β0) = 0.6 and exp(β1) =

0.5, where expit(t) = exp(t)/(1+exp(t)). The association between the responses is

specified as exchangeable with correlation coefficient ρ, which is specified as 0, 0.3

and 0.6. The data generation procedures follow Preisser et al. (2002).
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For the missing response process, we take

logit(λyij) = αy0 + αy1r
y
i,j−1 + αy2r

y
i,j−1yi,j−1, j = 2, 3 ,

and for the missing covariate process, we take

logit(λxij) = αx0 + αx1r
x
i,j−1 + αx2r

x
i,j−1xi,j−1, j = 2, 3 .

We assume the response and covariates are available at the first assessment time,

so ryi1 = rxi1 = 1. The association between Rx
ij and Ry

ij is assumed constant over

time with values of ψi2 = ψi3 = ψ = 8, 4, 2 or 1. The true values for the regression

parameters of the missing data processes are set to expit(αy0) = expit(αx0) = 0.5,

exp(αy1) = exp(αx1) = 1.5, and exp(αy2) = exp(αx2) = 0.1, 0.5 or 2.0. Five

hundred simulations are run for each parameter configuration.

Here we assess the performance of the proposed method along with other meth-

ods which might be used in practice using different models for the formulation of the

weight. The first method, labeled “GEE” in the tables, is based on generalized esti-

mating equations obtained by setting πxyij and πxyijk to be 1 in (4.3), for j = 1, 2, . . . , J .

The second and third methods, labeled “IPWGEE-M1” and “IPWGEE-M2” re-

spectively, use marginal weights in the generalized estimating equation (4.3) based

on a single missing data model for R∗
ij where R∗

ij = 1 if both Yij and Xij are

observed and R∗
ij = 0 otherwise. Then λ∗ij = P (R∗

ij = 1|R∗
i,j−1, Y

(o)
i , X

(o)
i ) and a

logistic model is formed as

logit λ∗ij = w′
ijα, j = 2, 3 . (4.9)

The second and third methods employ

{1, r∗i,j−1, r
∗
i,j−1yi,j−1, r

∗
i,j−1xi,j−1}
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and

{1, r∗i,j−1, r
y
i,j−1yi,j−1, r

x
i,j−1xi,j−1}

for wij in (4.9) respectively, accommodating different covariate dependencies of

the marginal missing data processes for the responses and covariates. The weight

matrix now is

∆i(α) =




I(R∗

i1=1)

πxy
i1

I(R∗

i1=1,R∗

i2=1)

π∗

i12
· · · I(R∗

i1=1,R∗

iJ=1)

π∗

i1J

I(R∗

i2=1,R∗

i1=1)

π∗

i12

I(R∗

i2=1)

πxy
i2

· · · I(R∗

i2=1,R∗

iJ=1)

π∗

i2J
...

...
. . .

...

I(R∗

iJ=1,R∗

i1=1)

π∗

i1J

I(R∗

iJ=1,R∗

i2=1)

π∗

i2J
· · · I(R∗

iJ=1)

πxy
iJ



J×J

,

where the probabilities πxyij in (4.3) are therefore determined by

πxy
ij = P (R∗

ij = 1|Y (o)
i , X

(o)
i ) =

∑

r∗

i2,r∗

i3,...,r∗

i,j−1

{
λ∗ij ·

j−1∏

l=2

(λ∗il)
r∗

il(1 − λ∗il)
1−r∗

il

}
, (4.10)

and π∗
ijk = P (R∗

ij = 1, R∗
ik = 1|Yi, Xi, Zi) can be expressed in terms of λ∗ij . Instead

of modeling Ry
ij and Rx

ij with a single indicator R∗
ij = Ry

ijR
x
ij , in the fourth and

fifth methods we use separate models described in Section 4.2 to characterize Ry
ij

and Rx
ij . The fourth method, labeled “IPWGEE-I”, constrains ψij to be 1, while

the fifth method, labeled “IPWGEE-J”, accommodates the association structure

through ψij . The sixth method, labeled “AIPWGEE-J”, is the augmented IP-

WGEE accommodating the association structure through ψij , where we specify

Ai(α) = (A′
i1, A

′
i2)

′ as

Ai1 =

([
I(Ry

ij = 1, Rx
ij = 0)

πyij − πxyij
· πyij − 1

]
· Ry

ijYij, j = 1, 2, . . . , J

)′

,

and

Ai2 =

([
I(Ry

ij = 0, Rx
ij = 1)

πxij − πxyij
· πxij − 1

]
· Rx

ijXij, j = 1, 2, . . . , J

)′

.
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The correlation parameter ρ is estimated by 1/(N∗−p)
∑n

i=1

∑
j<k eijeik·π

xy
ij π

xy
ik /π

∗
ijk

with N∗ = 1/2 · nJ(J − 1) as discussed in Section 4.3.1.

The results are reported in Tables 4.1 to 4.3, where ESE is the empirical

standard error, and CP represents the empirical coverage probability for 95%

confidence intervals. It is seen that the “GEE”, “IPWGEE-M1”, “IPWGEE-

M2” and “IPWGEE-I” approaches yield larger biases than the “IPWGEE-J” and

“AIPWGEE-J” methods. As the missing proportion increases, the bias increases.

When a high percentage of data are missing, the “GEE”, “IPWGEE-M1”, “IPWGEE-

M2” and “IPWGEE-I” methods provide confidence intervals with poor coverage

probabilities, while the “IPWGEE-J” and “AIPWGEE-J” methods give reliable

ones. As the association parameter ψ increases, performances of the “GEE”,

“IPWGEE-M1”, “IPWGEE-M2” and “IPWGEE-I” approaches become worse; bi-

ases are more substantial, and coverage probabilities are far from these nominal lev-

els. Their performances also deteriorate as the longitudinal association ρ increases.

However, under a wide range of scenarios, the “IPWGEE-J” and “AIPWGEE-J”

methods perform satisfactorily, but the “AIPWGEE-J” method gives more efficient

estimates than those obtained from the “IPWGEE-J” method. When the missing

proportion increases, the efficiency gain increases; when the association between

the missingness increases, the improvement becomes more considerable. Also note

that when the correlation ρ between the responses becomes stronger, the efficiency

gain increases.
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Table 4.1: Empirical bias, standard errors and coverage probabilities for six approaches to estimation and inference
with incomplete covariate and response data (ρ = 0.6)

α2 = 0.1 α2 = 0.5 α2 = 2.0

β‡
0 β‡

1 β‡
0 β‡

1 β‡
0 β‡

1

ψMethod Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP%

8 GEE -15.8 0.107 85.5 5.8 0.146 90.5 -8.6 0.109 85.5 0.1 0.123 89.0 7.0 0.110 86.0 0.7 0.107 92.5
IPWGEE-M1 91.2 0.577 88.0 11.5 0.336 90.6 6.2 0.292 90.2 -0.2 0.145 92.1 0.5 0.114 93.0 -0.2 0.103 93.0
IPWGEE-M2 50.1 0.582 94.8 11.2 0.326 92.4 -11.3 0.280 91.5 -1.9 0.147 93.8 -0.3 0.144 93.3 2.7 0.112 93.5
IPWGEE-I 75.6 0.561 93.1 18.1 0.550 95.8 21.8 0.181 91.2 1.0 0.165 93.8 -16.5 0.123 90.4 -0.9 0.121 93.0

IPWGEE-J 0.7 0.433 94.4 0.3 0.432 94.5 0.8 0.172 93.8 0.5 0.150 94.4 -0.8 0.118 94.7 -1.2 0.115 94.2
AIPWGEE-J 0.5 0.426 94.5 0.7 0.425 94.1 -0.6 0.166 94.9 -0.7 0.147 94.2 -0.9 0.116 94.4 -1.0 0.113 94.0

4 GEE -15.6 0.120 82.5 1.5 0.130 91.0 -8.1 0.110 84.0 -0.5 0.119 93.5 10.7 0.120 89.4 -0.5 0.111 93.8
IPWGEE-M1 90.2 0.585 89.3 7.7 0.378 91.7 5.4 0.395 91.4 -1.5 0.157 92.2 2.3 0.190 93.5 -0.7 0.124 93.5
IPWGEE-M2 46.4 0.514 92.5 7.2 0.335 87.6 3.1 0.305 92.1 -1.0 0.173 93.1 -3.0 0.130 93.5 -0.9 0.111 94.0
IPWGEE-I 64.1 0.608 93.4 10.8 0.551 96.9 20.4 0.189 91.2 1.4 0.180 92.6 -15.8 0.135 89.4 -1.2 0.127 94.0

IPWGEE-J 0.6 0.428 94.6 0.8 0.434 94.8 0.6 0.184 94.0 -1.3 0.178 93.9 -0.7 0.131 94.4 -0.1 0.114 95.1
AIPWGEE-J 0.8 0.420 94.8 0.7 0.429 94.7 -0.2 0.178 94.9 -0.7 0.175 95.0 -0.6 0.130 94.6 -0.3 0.113 94.3

2 GEE -15.3 0.117 85.5 3.6 0.134 91.5 -10.7 0.108 90.0 -0.2 0.133 93.5 10.9 0.110 91.0 -0.3 0.109 94.0
IPWGEE-M1 85.9 0.563 90.5 4.6 0.349 92.1 8.5 0.295 91.7 -0.8 0.168 93.1 -4.2 0.139 93.5 -0.6 0.121 94.0
IPWGEE-M2 43.4 0.469 93.0 17.7 0.403 89.0 -3.1 0.303 92.1 -0.4 0.157 93.4 1.7 0.152 93.9 -1.5 0.116 93.9
IPWGEE-I 46.0 0.552 96.8 6.7 0.544 94.8 16.4 0.188 94.0 0.2 0.182 93.6 -9.4 0.133 93.4 -0.6 0.129 94.6

IPWGEE-J 0.8 0.423 94.8 0.3 0.377 94.7 0.9 0.180 94.7 0.1 0.178 95.5 -0.4 0.130 94.4 -1.3 0.125 94.0
AIPWGEE-J -0.3 0.416 95.1 0.4 0.372 94.5 -0.6 0.176 94.6 -0.7 0.174 94.4 -0.5 0.128 94.3 -0.3 0.124 95.4

1 GEE -14.8 0.111 92.0 3.2 0.154 95.0 -11.3 0.111 92.5 -0.0 0.140 93.0 9.9 0.111 82.5 -2.0 0.113 93.5
IPWGEE-M1 83.7 0.609 90.8 6.3 0.360 94.4 -4.4 0.347 93.6 5.8 0.208 96.0 -7.5 0.154 95.4 0.0 0.117 94.4
IPWGEE-M2 42.8 0.421 93.7 1.1 0.359 89.6 11.8 0.302 93.0 -0.3 0.208 94.0 2.0 0.142 94.9 -0.8 0.139 94.8
IPWGEE-I 2.0 0.554 97.3 1.8 0.524 95.0 1.8 0.202 93.0 0.8 0.195 92.2 -1.4 0.124 96.0 -0.7 0.123 95.6

IPWGEE-J 1.2 0.421 95.1 1.2 0.477 95.2 0.1 0.205 94.6 -1.2 0.193 94.8 -0.8 0.130 95.0 -0.7 0.124 94.4
AIPWGEE-J 0.9 0.418 94.8 0.8 0.473 94.2 -0.4 0.203 94.7 -0.5 0.192 94.3 -0.3 0.131 94.4 -1.0 0.124 94.2

‡ The true values are β0 = log(1.5) and β1 = log(0.5).
∗ Relative bias defined by (β̂ − βtrue)/βtrue × 100.
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Table 4.2: Empirical bias, standard errors and coverage probabilities for six approaches to estimation and inference
with incomplete covariate and response data (ρ = 0.3)

α2 = 0.1 α2 = 0.5 α2 = 2.0

β‡
0 β‡

1 β‡
0 β‡

1 β‡
0 β‡

1

ψMethod Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP%

8 GEE -13.4 0.109 92.5 1.6 0.160 92.5 -5.7 0.091 97.0 0.8 0.124 96.0 5.3 0.101 93.5 2.8 0.118 93.5
IPWGEE-M1 15.7 0.283 88.8 1.7 0.328 90.4 0.5 0.126 91.5 1.3 0.149 94.5 -0.1 0.097 96.5 -0.1 0.137 91.0
IPWGEE-M2 15.4 0.374 87.1 2.8 0.336 90.5 -0.4 0.121 94.0 0.9 0.154 94.0 1.8 0.100 92.5 1.2 0.125 94.5
IPWGEE-I 28.3 0.472 93.0 6.7 0.579 96.0 9.8 0.156 96.3 3.8 0.178 94.3 -2.1 0.113 91.5 3.8 0.133 96.0

IPWGEE-J 1.2 0.239 94.7 0.5 0.299 94.8 -0.0 0.112 95.4 0.4 0.155 94.9 -1.0 0.095 95.4 -0.6 0.125 95.4
AIPWGEE-J -0.5 0.229 94.6 0.6 0.293 94.9 -0.4 0.109 94.4 -0.9 0.151 94.2 -0.3 0.093 95.1 0.3 0.123 94.8

4 GEE -12.3 0.117 90.5 -0.9 0.144 95.0 -3.0 0.107 95.0 1.7 0.134 93.5 4.3 0.097 93.0 -0.5 0.124 91.0
IPWGEE-M1 -14.9 0.265 92.6 -1.1 0.318 94.1 -2.7 0.135 94.5 1.9 0.154 96.5 0.5 0.097 97.5 3.5 0.128 93.0
IPWGEE-M2 14.5 0.338 87.9 2.6 0.370 85.4 -2.4 0.134 92.9 2.8 0.174 93.4 -3.1 0.111 94.0 -1.9 0.132 94.5
IPWGEE-I 10.5 0.492 97.4 5.0 0.410 96.5 6.6 0.175 91.8 0.5 0.183 95.4 -1.3 0.120 92.0 2.5 0.147 90.5

IPWGEE-J 0.5 0.254 95.4 0.9 0.319 94.4 0.3 0.121 95.0 0.4 0.166 95.0 -0.5 0.100 94.9 -0.4 0.126 95.4
AIPWGEE-J 0.4 0.246 94.6 0.7 0.314 94.7 0.7 0.118 95.2 0.7 0.163 94.6 -0.2 0.098 94.7 0.1 0.125 95.0

2 GEE -11.6 0.112 92.0 0.2 0.154 93.5 -1.4 0.107 94.5 1.1 0.123 95.5 5.1 0.101 93.0 -0.2 0.125 93.5
IPWGEE-M1 14.2 0.326 86.2 4.3 0.373 88.7 -2.2 0.149 94.0 -0.7 0.173 93.5 -2.7 0.111 92.0 -1.7 0.138 93.5
IPWGEE-M2 11.5 0.324 82.7 0.8 0.390 82.7 -2.5 0.139 95.0 0.1 0.183 94.5 2.4 0.105 95.0 2.0 0.134 94.5
IPWGEE-I 8.8 0.399 96.0 5.3 0.467 96.0 5.5 0.153 94.5 -1.2 0.194 94.0 -2.8 0.108 94.5 -0.6 0.132 94.0

IPWGEE-J -1.1 0.330 95.2 2.5 0.360 94.4 3.6 0.144 95.0 2.2 0.175 95.5 -0.7 0.105 95.5 -0.5 0.125 95.0
AIPWGEE-J -0.1 0.326 94.8 -0.6 0.355 94.5 0.6 0.140 94.1 0.3 0.173 95.5 -0.4 0.104 95.0 0.2 0.125 94.9

1 GEE -10.8 0.123 91.0 -0.2 0.149 96.0 -6.0 0.109 94.0 -0.6 0.148 94.5 5.7 0.097 93.5 -0.1 0.139 89.5
IPWGEE-M1 13.6 0.319 88.1 9.6 0.369 84.6 2.3 0.155 93.9 3.6 0.196 93.9 0.9 0.110 95.5 1.3 0.139 94.0
IPWGEE-M2 7.1 0.389 80.4 -0.2 0.407 86.4 -5.9 0.149 96.4 0.5 0.193 94.9 2.9 0.121 94.5 0.2 0.162 93.5
IPWGEE-I 1.1 0.307 97.1 1.6 0.373 93.0 2.3 0.143 95.5 0.5 0.182 95.5 0.8 0.104 94.5 1.1 0.145 94.0

IPWGEE-J -0.1 0.319 94.2 0.9 0.376 94.2 0.1 0.157 95.0 1.0 0.201 94.5 -0.3 0.110 94.5 0.0 0.141 94.0
AIPWGEE-J 0.7 0.318 94.6 -0.9 0.374 94.9 0.6 0.155 94.8 0.7 0.200 94.5 0.9 0.110 94.7 1.0 0.140 94.1

‡ The true values are β0 = log(1.5) and β1 = log(0.5).
∗ Relative bias defined by (β̂ − βtrue)/βtrue × 100.
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Table 4.3: Empirical bias, standard errors and coverage probabilities for six approaches to estimation and inference
with incomplete covariate and response data (ρ = 0.0)

α2 = 0.1 α2 = 0.5 α2 = 2.0

β‡
0 β‡

1 β‡
0 β‡

1 β‡
0 β‡

1

ψMethod Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP% Bias∗ ESE CP%

8 GEE 1.5 0.110 95.0 1.6 0.134 94.6 1.6 0.103 95.4 1.1 0.145 94.3 0.6 0.096 94.2 -0.0 0.134 94.2
IPWGEE-M1 1.5 0.357 93.7 -0.5 0.616 88.0 3.3 0.126 91.5 3.0 0.179 90.0 -1.4 0.097 96.0 -0.5 0.137 94.0
IPWGEE-M2 - 5.0 0.308 91.7 -11.5 0.530 93.6 1.3 0.116 95.0 1.7 0.160 96.5 -1.2 0.106 91.0 -2.0 0.138 95.0
IPWGEE-I - 1.9 0.413 87.8 -1.6 0.595 89.8 0.0 0.115 94.0 1.3 0.175 94.5 0.6 0.093 95.0 1.5 0.141 94.5

IPWGEE-J -1.1 0.197 95.9 0.2 0.275 94.8 -0.5 0.109 94.2 0.3 0.161 93.9 -0.6 0.086 95.9 -0.7 0.133 95.9
AIPWGEE-J 0.7 0.191 94.9 -0.6 0.271 94.2 -0.4 0.106 94.6 -0.5 0.156 94.4 -0.5 0.083 95.0 -0.1 0.132 94.8

4 GEE -0.6 0.101 95.2 -1.2 0.142 94.2 -1.1 0.101 94.5 -0.8 0.142 94.7 0.9 0.093 93.4 0.7 0.133 94.2
IPWGEE-M1 - 8.3 0.337 92.8 - 4.1 0.572 90.4 1.1 0.118 94.5 0.8 0.170 96.5 1.2 0.100 96.0 -0.4 0.132 95.0
IPWGEE-M2 -0.3 0.282 90.0 -1.5 0.466 90.5 -2.1 0.114 95.5 -0.3 0.166 95.0 -0.4 0.096 95.0 -0.1 0.133 97.0
IPWGEE-I -1.4 0.371 93.9 2.2 0.550 89.6 -2.2 0.124 95.0 -0.4 0.185 94.0 -1.9 0.096 96.0 -2.3 0.133 95.0

IPWGEE-J 0.5 0.196 94.7 -0.7 0.284 94.5 0.2 0.127 94.5 1.4 0.165 93.5 -0.2 0.095 95.4 -0.0 0.129 94.9
AIPWGEE-J -0.3 0.192 94.3 0.3 0.280 94.6 0.0 0.125 94.9 0.4 0.163 94.2 -0.9 0.094 94.6 -0.2 0.128 95.1

2 GEE -2.7 0.111 93.8 -2.8 0.157 93.2 1.5 0.110 94.8 1.4 0.148 93.7 -1.3 0.096 94.6 -1.1 0.135 96.2
IPWGEE-M1 -7.2 0.304 86.1 -0.3 0.449 93.0 0.6 0.117 96.5 0.8 0.175 93.0 -2.1 0.105 93.5 -0.0 0.150 95.0
IPWGEE-M2 -3.3 0.334 86.2 -0.0 0.501 86.2 -0.2 0.116 95.5 3.1 0.175 95.0 2.4 0.101 94.0 0.3 0.151 93.0
IPWGEE-I -1.7 0.390 94.1 11.9 0.473 92.9 0.3 0.134 93.5 0.4 0.175 97.5 0.1 0.108 92.5 -1.1 0.152 92.5

IPWGEE-J -0.7 0.236 94.9 0.8 0.324 94.1 0.8 0.124 94.5 -0.5 0.176 94.5 -0.1 0.096 95.5 -0.4 0.127 97.5
AIPWGEE-J -0.7 0.233 94.5 1.0 0.320 95.1 0.6 0.121 94.4 0.7 0.174 95.0 0.5 0.095 94.5 0.2 0.127 95.3

1 GEE 0.8 0.114 92.0 1.4 0.161 93.6 2.0 0.114 95.1 1.2 0.151 94.0 0.5 0.099 94.9 0.2 0.138 95.7
IPWGEE-M1 1.2 0.318 84.3 10.3 0.453 83.1 4.4 0.145 93.5 3.9 0.196 95.5 -2.2 0.111 93.5 -0.3 0.169 92.0
IPWGEE-M2 2.4 0.430 83.9 2.4 0.531 84.5 0.0 0.129 96.0 0.3 0.172 96.0 -0.5 0.103 95.0 0.6 0.136 96.0
IPWGEE-I -3.3 0.278 92.4 2.7 0.388 92.9 -4.3 0.123 98.0 -3.9 0.189 93.5 -1.2 0.101 95.5 -0.3 0.148 96.5

IPWGEE-J 0.7 0.287 95.3 0.7 0.422 94.4 0.9 0.136 95.5 0.4 0.197 94.0 -0.0 0.103 95.0 -0.1 0.142 95.0
AIPWGEE-J 0.3 0.285 94.2 0.7 0.419 95.3 -0.5 0.134 94.7 0.5 0.195 94.5 -0.7 0.103 94.9 0.6 0.142 95.4

‡ The true values are β0 = log(1.5) and β1 = log(0.5).
∗ Relative bias defined by (β̂ − βtrue)/βtrue × 100.
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4.5.2 Study of Asymptotic Bias under Misspecification of
Association Structure for Missing Data Procedures

We now focus on evaluating the asymptotic biases induced by misspecifying

the association structure between the missing data indicators of the response and

covariate. Specifically, we consider the scenario that Ry
ij and Rx

ij are regarded

as independent when they are actually correlated. Let β̂† denote the resultant

estimator for the response model.

To characterize the asymptotic bias of β̂†, we use the methods of White (1982)

to find the value to which β̂† converges. In the spirit of Rotnitzky and Wypij

(1994), Fitzmaurice et al. (1995) and Cook et al. (2004), we take the expectation

of U(β, α) with respect to the true distribution of G = (Ry
i , R

x
i , Yi, Xi, Zi) and set

it equal to zero. The solution to this equation, denoted β∗, is the value to which

β̂† converges in probability. If G is the sample space for G, we must therefore solve

the equation
∑

g∈G

DiMi(Yi − µi) · P (g;α, β) = 0, (4.11)

where P (g;α, β) is the true probability of observing the realized value g of G.

The asymptotic covariance matrix of n1/2(β̂† − β∗) is given by

ascov(
√
n(β̂† − β∗)) = A−1(β∗)B(β∗)A−1(β∗), (4.12)

where A(β) =
∑

g∈G ∂Ui(β, α)/∂β ′ · P (g;α, β), B(β) =
∑

g∈G Ui(β, α)U ′
i(β, α) ·

P (g;α, β), and the dependence on α is suppressed in the notation. To investigate

the asymptotic bias of the IPWGEE estimators under misspecification, we evaluate

the expectation (4.11), and solve for β∗
k , k = 0, 1. We consider ρ = 0.6, 0.3 and 0

to consider a decreasing strength of association among the response components.
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In the missing data model, we set αy2 = αx2 = α2 and for each setting, we take

ψi2 = ψi3 = ψ and alter it from 1 to 8 to represent different magnitudes of the

associations between the missing response and missing covariate indicators.

We report the asymptotic percent relative bias, defined by 100 × (β∗
k − βk)/βk,

k = 0, 1, in Figure 4.1 for different values of ρ. It can be seen that, as the missing

proportion increases, the relative bias increases if other conditions are held fixed.

Moreover, when the association between the missing data indicators increases, the

asymptotic relative bias increases. It is also interesting to note that the stronger

the correlation between responses the larger the relative bias.

4.5.3 Application to a Smoking Prevention Project

We now reanalyze the Waterloo Smoking Prevention Project data introduced

in Chapter 2. The smoking status can be represented by a binary variable. Yij = 1

indicates subject i is a smoker in grade j + 5, and 0 otherwise, j = 1, 2, 3. The

covariates that may influence the children’s smoking behavior include gender (coded

as GENDER, 0–female; 1–male), treatment indicator (coded as TRT, 0–control;

1–intervention), and social models risk score (coded as SMR, 0–none of parents,

siblings or friends smoke; 1– otherwise). There are 4400 subjects in the data set

who enter the study in grade 6. About 15.5% subjects have incomplete data;

13.7% of the students have no observations either in grade 7 or grade 8; 15.2% of

the students have no social models risk score either in grade 7 or grade 8; and 5.1%

of the students have no social models risk score and response either in grade 7 or

grade 8. Table 4.4 lists a sample of the dataset.
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Table 4.4: Sample data from the Waterloo Smoking Prevention Project

ID GENDER TRT SMR† RESPONSE†

1 2 3 1 2 3

1 1 1 0 0 . 0 1 1
2 1 1 1 . 1 1 1 1
3 0 1 0 . 1 1 . 1
4 0 1 0 0 1 1 . 1
5 1 1 1 . . 0 . .
6 1 1 1 . 1 0 1 1
7 0 1 1 1 1 1 1 1
8 1 1 1 . 1 0 . 1
9 0 1 1 1 1 1 1 1

10 1 1 1 1 1 1 0 1
11 0 1 1 1 . 0 1 .
12 0 1 1 . 1 1 . 1
13 0 1 0 1 . 0 . 1
14 1 1 0 . 1 1 1 .

† Missing data are denoted by ·.

Consider the regression model for the response process

logit(µij) = β0 + β1 · GENDERi + β2 · TRTi + β3 · GRADE7ij

+β4 · GRADE8ij + β5 · SMRij , j = 1, 2, 3,

where GRADE7ij is an indicator that student i is in grade 7 at time j, and

GRADE8ij is an indicator that student i is in grade 8 at time j.

For the missingness indicators, we assume models

logit(λyi2) = αy20 +αy21 · yi1 +αy22 ·GENDERi +αy23 ·TRTi +αy24 · SMRi1, (4.13)

logit(λyi3) = αy30+αy31·ryi2yi2+αy32·GENDERi+αy33·TRTi+αy34·rxi2SMRi2+αy35·ryi2,

(4.14)

and

logit(λxi2) = αx20 +αx21 · yi1 +αx22 ·GENDERi+αx23 ·TRTi+αx24 ·SMRi1, (4.15)

136



logit(λxi3) = αx30+αx31·ryi2yi2+αx32·GENDERi+αx33·TRTi+αx34·rxi2SMRi2+αx35·rxi2,

(4.16)

respectively.

In line with the simulation studies, here we undertake five methods to analyze

the data. The first analysis, labeled “GEE” , is an unweighted analysis based on

generalized estimating equations. The second analysis, labeled “IPWGEE-M2”, is

based on a weighted version of the generalized estimating equations in which the

weights are determined by fitting logistic models:

logit(λ∗i2) = α20 + α21 · yi1 + α22 · GENDERi + α23 · TRTi + α24 · SMRi1

and

logit(λ∗i3) = α30 +α31 ·ryi2yi2 +α32 ·GENDERi+α33 ·TRTi+α34 ·rxi2SMRi2 +α35 ·r∗i2,

where λ∗ij = P (R∗
ij = 1|R∗

i,j−1, Y
(o)
i , X

(o)
i ), j = 2, 3. The third analysis is the

“IPWGEE-I” method, in which the weights are determined from standard logistic

regression models given by (4.13), (4.14), (4.15) and (4.16) with the assumption

ψxyij = 1. The fourth analysis, labeled “IPWGEE-J”, is based on a weighted gen-

eralized estimating equations given by (4.13), (4.14), (4.15) and (4.16) by accom-

modating the association between the missingness indicators of the response and

the covariate, as described in Section 4.3. Namely, assume the model log(ψij) = φj

for j = 2, 3. The last method, entitled “AIPWGEE-J”, is the method described in

Section 4. 4, where we choose Ai(α) = (A′
i1, A

′
i2, A

′
i3)

′ with

Ai1 =

([
I(Ry

ij = 1, Rx
ij = 0)

πyij − πxyij
· πyij − 1

]
· Ry

ij · Yij, j = 2, 3

)′

,

Ai2 =

([
I(Ry

ij = 0, Rx
ij = 1)

πxij − πxyij
· πxij − 1

]
· Rx

ij · SMRij, j = 2, 3

)′

,
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Ai3 =

([
I(Ry

ij = 0, Rx
ij = 0)

1 − πxij − πyij + πxyij
− 1

]
· Z ′

ij , j = 2, 3

)′

,

and Zij = (GENDERi,TRTi,GRADE7ij ,GRADE8ij)
′, j = 2, 3.

To understand how the estimation of the mean parameter β may be influenced

by different specifications of the covariance structure, here we consider various

association structures for the response process, and the results are reported in Table

4.5. Under each association structure specification, these five methods produce

fairly comparable results, although the estimates obtained from the “IPWGEE-J”

and “AIPWGEE-J” methods tend to be closer than the estimates obtained from

other methods. The “AIPWGEE-J” method also gives smaller standard errors,

supporting the expectation that this method is more efficient than the “IPWGEE-J”

method. All the five methods reveal that both gender and treatment covariates are

not statistically significant, while social model risk score and grade have significant

negative effects on smoking incidence. Students are more likely to smoke if their

parents, siblings or friends are smokers, and they are more likely to smoke when in

higher grades.

Table 4.6 records the results for the missing data processes obtained from the

“IPWGEE-I”, “IPWGEE-J” and “IPWGEE-M2” methods. The “IPWGEE-I” and

“IPWGEE-J” methods lead to fairly comparable estimates for the marginal mean

parameters associated with both the missing response and missing covariate pro-

cesses in grade 7. The results for grade 8 differ more noticeably. However, both

methods reveal the same nature of the missing data mechanism. Specifically, αy21,

αy24, αy31, αy34 and αy35 are statistically significant, suggesting that a missing at

random mechanism is perhaps reasonable for the missing response process. Simi-

larly, significance of αx21, αx31 and αx34 suggests that a missing at random mech-
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Table 4.5: Results of estimation based on unweighted and weighted GEE when analyzing data from the Waterloo
Smoking Prevention Project: response models

GEE IPWGEE-M2 IPWGEE-I IPWGEE-J AIPWGEE-J
Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value

Exchangeable
β0 -4.093 0.146<0.001 -3.986 0.123<0.001 -3.977 0.151<0.001 -3.993 0.123<0.001 -3.992 0.121<0.001
β1 0.042 0.081 0.600 -0.015 0.071 0.829 -0.007 0.088 0.940 -0.017 0.070 0.810 -0.017 0.068 0.809
β2 -0.091 0.096 0.346 -0.098 0.084 0.243 -0.098 0.105 0.352 -0.096 0.084 0.253 -0.096 0.083 0.239
β3 0.747 0.085<0.001 0.730 0.068<0.001 0.762 0.082<0.001 0.728 0.069<0.001 0.727 0.067<0.001
β4 1.545 0.080<0.001 1.493 0.065<0.001 1.518 0.079<0.001 1.498 0.065<0.001 1.498 0.064<0.001
β5 1.745 0.100<0.001 1.731 0.087<0.001 1.720 0.106<0.001 1.734 0.088<0.001 1.736 0.086<0.001

AR(1)
β0 -4.104 0.178<0.001 -3.969 0.111<0.001 -3.961 0.123<0.001 -3.978 0.113<0.001 -3.977 0.110<0.001
β1 0.093 0.096 0.339 0.008 0.065 0.897 0.011 0.072 0.878 0.004 0.065 0.956 0.004 0.064 0.955
β2 -0.131 0.116 0.260 -0.122 0.077 0.115 -0.119 0.086 0.167 -0.120 0.077 0.120 -0.120 0.075 0.109
β3 0.753 0.102<0.001 0.738 0.061<0.001 0.767 0.066<0.001 0.737 0.063<0.001 0.736 0.061<0.001
β4 1.536 0.108<0.001 1.494 0.060<0.001 1.522 0.065<0.001 1.502 0.061<0.001 1.503 0.060<0.001
β5 1.760 0.122<0.001 1.717 0.077<0.001 1.705 0.084<0.001 1.720 0.080<0.001 1.721 0.077<0.001

Unstructured
β0 -4.094 0.146<0.001 -3.956 0.135<0.001 -3.943 0.124<0.001 -3.968 0.114<0.001 -3.969 0.111<0.001
β1 0.086 0.081 0.278 0.013 0.077 0.863 0.017 0.072 0.818 0.008 0.064 0.900 0.008 0.063 0.899
β2 -0.119 0.097 0.215 -0.116 0.092 0.207 -0.111 0.086 0.197 -0.113 0.077 0.142 -0.113 0.075 0.131
β3 0.752 0.087<0.001 0.740 0.073<0.001 0.772 0.065<0.001 0.737 0.061<0.001 0.738 0.060<0.001
β4 1.547 0.083<0.001 1.492 0.072<0.001 1.517 0.065<0.001 1.499 0.059<0.001 1.501 0.057<0.001
β5 1.742 0.100<0.001 1.701 0.096<0.001 1.685 0.089<0.001 1.706 0.082<0.001 1.707 0.080<0.001
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Table 4.6: Results of estimation based on unweighted and weighted GEE when an-
alyzing data from the Waterloo Smoking Prevention Project: missing data models

IPWGEE-I IPWGEE-J

Parameters Estimate S.E. p-value Estimate S.E. p-value

Marginal missing-response models:
Grade 7:
INTERCEPT αy20 3.073 0.165 < 0.001 3.041 0.163 < 0.001
PREV. RES αy21 -1.059 0.181 < 0.001 -1.060 0.181 < 0.001
GENDER αy22 -0.295 0.116 0.011 -0.286 0.115 0.013
TRT αy23 -0.164 0.144 0.255 -0.143 0.142 0.313
PREV. SMR αy24 -0.343 0.122 0.005 -0.325 0.121 0.007
Grade 8:
INTERCEPT αy30 -0.643 0.172 < 0.001 -0.318 0.162 0.050
PREV. RES αy31 -0.570 0.174 0.001 -0.503 0.175 0.004
GENDER αy32 -0.240 0.112 0.033 -0.289 0.109 0.008
TRT αy33 0.132 0.133 0.322 0.151 0.130 0.245
PREV. SMR αy34 -0.475 0.138 0.001 -0.461 0.137 0.001
PREV. MIS. IND. αy35 3.693 0.159 < 0.001 3.352 0.150 < 0.001

Marginal missing-covariate models:
Grade 7:
INTERCEPT αx20 2.882 0.157 < 0.001 2.881 0.156 < 0.001
PREV. RES αx21 -1.012 0.179 < 0.001 -1.020 0.178 < 0.001
GENDER αx22 -0.178 0.109 0.103 -0.179 0.109 0.102
TRT αx23 -0.273 0.140 0.052 -0.271 0.140 0.053
PREV. SMR αx24 -0.212 0.114 0.062 -0.212 0.114 0.063
Grade 8:
INTERCEPT αx30 -0.316 0.160 0.048 -0.264 0.159 0.097
PREV. RES αx31 -0.385 0.173 0.026 -0.399 0.173 0.021
GENDER αx32 -0.332 0.106 0.002 -0.321 0.106 0.002
TRT αx33 0.119 0.127 0.351 0.099 0.127 0.435
PREV. SMR αx34 -0.440 0.132 0.001 -0.370 0.129 0.004
PREV. MIS. IND αx35 3.266 0.149 < 0.001 3.170 0.144 < 0.001

Association:
φ2 8.860 4.586 0.053
φ3 6.877 1.252 <0.001

Estimates for IPWGEE-M2 Analysis:
Grade 7:
INTERCEPT α20 2.835 0.154 < 0.001
PREV. RES α21 -1.020 0.178 < 0.001
GENDER α22 -0.173 0.109 0.110
TRT α23 -0.237 0.138 0.086
PREV. SMR α24 -0.216 0.113 0.057
Grade 8:
INTERCEPT α30 -0.292 0.158 0.065
PREV. RES α31 -0.408 0.172 0.017
GENDER α32 -0.320 0.105 0.002
TRT α33 0.122 0.126 0.331
PREV. SMR α34 -0.367 0.129 0.004
PREV. MIS. IND α35 3.164 0.145 < 0.001
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anism is perhaps reasonable for the missing covariate process. Significance of φ2

and φ3 in the “IPWGEE-J” model indicates that there is association between miss-

ingness of the response and covariate, and this association should be taken into

account for the inference. Significance of αy35 and αx35 indicates there is a serial

dependence among consecutive observations. Moreover, if subjects have missing

observations at the previous assessment time, they are less likely to be observed at

the present assessment. Significance of αy21, αy31, αx21 and αx31 indicates that the

previously observed smoking status has a negative effect on observing the present

assessment. Significance of GENDER in the missing response model suggests that

female students are more likely to participate in the study compared to male stu-

dents. However, it is not significant in the missing covariate models. Treatment

has no significant effects on the missingness of response or covariate. Significance

of αy24, αy34, αx24 and αx34 suggests that the previously observed social models

risk score has a negative effect on the missingness of the assessment. Students

are more likely to participate in the study when none of their parents, siblings or

friends smoke. The estimates based on the “IPWGEE-M2” method are not com-

patible with those from the “IPWGEE-I” and “IPWGEE-J” methods. However,

it appears that the “IPWGEE-M2” modeling method also detects evidence for a

missing at random mechanism, indicating by the nature of the estimates for α21,

α24, α31 and α34.

4.5.4 Application to a Study of Patients with Skeletal Metas-
tases

In this subsection, we apply the proposed methods to study a bone metastases

data set (Hortobagyi et al., 1998). Women with advanced breast cancer often

experience bone metastases. From January 1991 to March 1994, the Protocol 19
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Aredia Breast Cancer Study Group of Novartis Pharmaceuticals Inc. conducted

a randomized clinical trial at 97 sites in the United States, Canada, Australia

and New Zealand. The osteoclast activating factors released by tumor cells cause

destruction of bone, which in turn leads to the occurrence of the aforementioned

skeletal complications. Radiographic surveys of bone lesions were performed and

new bone lesions were recorded. The objective of this study is to evaluate covariate

effects on the occurrence of bone lesions for patients with breast cancer. The

response is the lesion code. Covariates of interests include age at study entry

(coded as AGE: 1 for age ≥ 50, 0 for age < 50), ECOG score at study entry

(coded as ECOG: 1 for two or more, 0 otherwise), the number of fractures at

baseline (coded as FRACT: 1 for one or more, 0 for none), pain score at study

entry (coded as PSCORE) which is coded as four levels based on the 25%, 50% and

75% quantiles, and urinary hydroxyproline/creatinine ratio (coded as HYCRR).

Table 4.7 represents a sample dataset.

Two hundred and twenty patients entered the study and were intended to be

assessed at baseline, 6 months and 12 months from the baseline. However, the

collected measurements are incomplete. Proportions of various patterns of the

missingness (Ry
2, R

x
2) = (1, 1), (0, 0), (0, 1) and (1, 0) are 70.0%, 14.5%, 2.3% and

13.2%, respectively, and (Ry
3, R

x
3) = (1, 1), (0, 0), (0, 1) and (1, 0) are 70.0%, 9.1%,

1.8% and 19.1%, respectively.

Let Yij = 1 if patient i at time j has a new lesion, and 0 otherwise, j = 1, 2, 3.

Consider the model for the marginal probabilities

logit µij = β0 + β1 · AGEi + β2 · ECOGi + β3 · FRACTi + β4 · PSCORE1i

+β5 · PSCORE2i + β6 · PSCORE3i + β7 · HYCRRij , j = 1, 2, 3,
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Table 4.7: Sample data from a bone metastases study

HYCRR† LESION†

ID AGE ECOG FRACT PSCORE1 PSCORE2 PSCORE3 1 2 3 1 2 3

1 1 1 0 0 0 1 0.076 0.064 0.042 1 0 0
2 1 0 0 0 1 0 0.039 0.006 0.011 0 0 1
3 1 1 1 0 0 0 0.094 · 0.103 1 1 0
4 1 0 1 0 0 1 0.050 0.034 0.030 0 0 1
5 1 0 0 0 1 0 0.027 0.027 0.046 1 0 0
6 1 1 1 1 0 0 0.103 0.071 0.127 0 1 0
7 1 0 0 0 0 0 0.067 0.052 0.029 1 1 1
8 1 1 1 0 0 0 0.175 0.147 0.177 0 1 0
9 1 1 0 1 0 0 0.044 0.077 0.040 0 0 1
10 1 0 1 0 1 0 0.068 0.080 0.057 1 · 1
11 1 0 0 1 0 0 0.012 0.011 0.008 0 0 1
12 1 0 0 0 1 0 0.059 0.061 · 0 · 1
13 1 1 1 0 1 0 0.040 0.028 0.040 0 0 1
14 1 0 0 0 0 0 0.026 0.028 0.020 0 0 1
15 1 0 0 1 0 0 0.026 · 0.026 0 0 1
16 1 0 1 0 0 1 0.033 0.043 · 0 · 1
17 1 0 0 1 0 0 0.051 0.026 0.025 0 0 1
18 1 0 1 0 0 1 0.048 0.069 0.038 0 0 0
19 1 0 0 0 0 0 0.027 0.014 0.018 0 1 1
20 1 0 0 0 0 1 0.051 0.013 · 0 · 1
21 1 0 1 0 0 0 0.044 0.004 0.018 0 0 1
22 1 0 0 0 1 0 0.018 · 0.012 0 0 0
23 1 0 0 0 1 0 0.041 · · 0 0 1
24 1 0 0 1 0 0 0.039 0.028 0.032 1 · 0
25 1 1 0 1 0 0 0.077 0.051 · 0 · 1
26 1 1 0 0 0 0 0.173 0.152 0.106 0 0 1
27 1 0 0 0 0 0 0.201 0.104 0.063 0 0 1
28 1 0 0 0 1 0 0.048 0.022 0.019 0 0 1

† Missing data are denoted by ·.
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where PSCORE1i = 1 if the pain score at study entry is between the 25% and

50% quantiles, and 0 otherwise; PSCORE2i = 1 if the pain score at study entry is

between the 50% and 75% quantiles, and 0 otherwise; and PSCORE3i = 1 if the

pain score at study entry is higher than the 75% quantile, and 0 otherwise.

For the missing response and covariate indicators, we specify the models

logit λyij = αy0 + αy1 · AGEi + αy2 · ECOGi + αy3 · FRACTi + αy4 · PSCORE1i

+αy5 · PSCORE2i + αy6 · PSCORE3i + αy7 · rxi,j−1HYCRRi,j−1

+αy8 · ryi,j−1yi,j−1, j = 2, 3, (4.17)

and

logit λxij = αx0 + αx1 · rxi,j−1 + αx2 · AGEi + αx3 · ECOGi + αx4 · FRACTi

+αx5 · PSCORE1i + αx6 · PSCORE2i + αx7 · PSCORE3i

+αx8 · rxi,j−1HYCRRi,j−1 + αx9 · ryi,j−1yi,j−1, j = 2, 3. (4.18)

For the association between the missingness of the response and covariate, we

assume a common odds ratio at each assessment, i.e., log(ψij) = φ for j = 2, 3.

Analogous to Section 4.5.3, here we undertake five methods to analyze the data.

Specifically, in the “IPWGEE-M2” analysis we use the weights determined from the

model

logitλ∗ij = α0 + α1 · r∗i,j−1 + α2 · AGEi + α3 · ECOGi + α4 · FRACTi

+α5 · PSCORE1i + α6 · PSCORE2i + α7 · PSCORE3i

+α8 · rxi,j−1HYCRRi,j−1 + α9 · ryi,j−1yi,j−1,

where λ∗ij = P (R∗
ij = 1|R∗

i,j−1, Y
(o)
i . For the “AIPWGEE-J” method we choose
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Ai(α) = (A′
i1, A

′
i2, A

′
i3)

′ where

Ai1 =

([
I(Ry

ij = 1, Rx
ij = 0)

πyij − πxyij
· πyij − 1

]
· Ry

ij · Yij, j = 2, 3

)′

,

Ai2 =

([
I(Ry

ij = 0, Rx
ij = 1)

πxij − πxyij
· πxij − 1

]
· Rx

ij · HYCRRij , j = 2, 3

)′

,

Ai3 =

([
I(Ry

ij = 0, Rx
ij = 0)

1 − πxij − πyij + πxyij
− 1

]
· Z ′

ij , j = 2, 3

)′

,

and Zij = (AGEi,ECOGi,FRACTi,PSCORE1i,PSCORE2i,PSCORE3i)
′, j = 2, 3.

Table 4.8 reports on the results for the response model. The “GEE”, “IPWGEE-

M2” and “IPWGEE-I” methods give the estimates that are much different from

those obtained from those obtained from the “IPWGEE-J” and “AIPWGEE-J”

methods. Again, it is seen that the “AIPWGEE-J” method leads to smaller stan-

dard errors than the “IPWGEE-J” method, which agrees with our expectation that

the “AIPWGEE-J” method is more efficient. All these methods suggest that only

the HYCRR is statistically significant. The “GEE” method provides strongest

evidence of the HYCRR effect, while the “IPWGEE-M2” method tends to re-

veal weakest evidence for that. It even fails to support an HYCRR effect when

the association among the response components is assumed unstructured. The

“AIPWGEE-J” method seems to provide stronger evidence for the HYCRR effect

than the “IPWGEE-J” method.

Table 4.9 records the results for the missing data processes obtained from the

“IPWGEE-I”, “IPWGEE-J” and “IPWGEE-M2” methods. The “IPWGEE-I” and

“IPWGEE-J” methods lead to fairly comparable estimates for the parameters as-

sociated with both the missing response and missing covariate processes. Both

methods reveal the same nature of the missing data mechanism. Specifically, αy8
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Table 4.8: Results of estimation based on unweighted and weighted GEE when analyzing data from a bone metastases
study: response models

Unweighted IPWGEE-M2 IPWGEE-I IPWGEE-J AIPWGEE-J

Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value

Exchangeable
β0 -0.332 0.245 0.175 -0.572 0.357 0.109 -0.846 0.432 0.050 -0.806 0.413 0.051 -0.805 0.394 0.041
β1 -0.112 0.160 0.484 -0.111 0.234 0.635 -0.071 0.284 0.803 -0.075 0.272 0.783 -0.074 0.268 0.782
β2 -0.197 0.189 0.297 -0.226 0.270 0.403 -0.280 0.345 0.417 -0.266 0.332 0.423 -0.267 0.317 0.400
β3 -0.221 0.182 0.225 -0.128 0.231 0.580 -0.048 0.280 0.864 -0.044 0.273 0.872 -0.045 0.263 0.864
β4 0.076 0.224 0.734 0.090 0.323 0.781 0.110 0.391 0.778 0.110 0.376 0.770 0.109 0.368 0.767
β5 0.151 0.212 0.476 0.181 0.310 0.559 0.244 0.369 0.508 0.235 0.355 0.508 0.234 0.344 0.496
β6 0.188 0.201 0.350 0.239 0.335 0.476 0.202 0.412 0.624 0.196 0.397 0.622 0.195 0.389 0.616
β7 8.430 2.625 0.001 9.155 3.863 0.018 10.846 4.932 0.028 10.201 4.713 0.030 10.199 4.594 0.026

AR(1)
β0 -0.639 0.286 0.025 -0.969 0.339 0.004 -1.158 0.398 0.004 -0.785 0.395 0.047 -0.784 0.372 0.035
β1 -0.087 0.189 0.645 -0.090 0.221 0.684 -0.048 0.260 0.854 -0.041 0.257 0.873 -0.041 0.254 0.872
β2 -0.257 0.226 0.255 -0.315 0.262 0.229 -0.325 0.321 0.311 -0.295 0.317 0.352 -0.294 0.306 0.337
β3 -0.323 0.223 0.147 -0.182 0.213 0.393 -0.109 0.248 0.660 -0.102 0.253 0.687 -0.103 0.242 0.670
β4 0.086 0.273 0.753 0.123 0.308 0.690 0.125 0.356 0.725 0.107 0.355 0.763 0.107 0.349 0.759
β5 0.260 0.252 0.302 0.309 0.295 0.295 0.340 0.334 0.309 0.285 0.334 0.393 0.286 0.325 0.379
β6 0.271 0.240 0.259 0.328 0.325 0.313 0.287 0.376 0.445 0.217 0.380 0.568 0.219 0.375 0.559
β7 12.410 3.018<0.001 13.465 3.718<0.001 14.186 4.617 0.002 12.843 4.736 0.007 12.840 4.539 0.005

Unstructured
β0 0.037 0.120 0.758 -0.118 0.324 0.716 -0.372 0.278 0.181 -0.297 0.263 0.259 -0.298 0.248 0.230
β1 -0.153 0.075 0.041 -0.130 0.215 0.545 -0.078 0.186 0.675 -0.087 0.177 0.623 -0.086 0.174 0.621
β2 -0.096 0.087 0.270 -0.107 0.242 0.658 -0.179 0.217 0.409 -0.153 0.207 0.460 -0.152 0.198 0.443
β3 -0.197 0.086 0.022 -0.154 0.198 0.437 -0.075 0.175 0.668 -0.081 0.168 0.630 -0.082 0.162 0.613
β4 0.020 0.106 0.850 0.018 0.280 0.949 0.027 0.243 0.912 0.010 0.229 0.965 0.009 0.223 0.968
β5 0.066 0.100 0.509 0.141 0.276 0.609 0.180 0.233 0.440 0.168 0.221 0.447 0.167 0.213 0.433
β6 0.143 0.093 0.124 0.185 0.301 0.539 0.149 0.259 0.565 0.137 0.247 0.579 0.137 0.243 0.573
β7 3.269 1.279 0.011 5.766 3.398 0.090 7.698 3.061 0.012 6.716 2.871 0.019 6.719 2.755 0.015
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Table 4.9: Results of estimation based on unweighted and weighted GEE when
analyzing data from a bone metastases study: missing data models

IPWGEE-I IPWGEE-J

Parameters Estimate S.E. p-value Estimate S.E. p-value

Marginal missing-response models:
INTERC. αy0 0.837 0.343 0.015 0.802 0.338 0.018
AGE αy1 0.357 0.248 0.149 0.332 0.245 0.176
ECOG αy2 0.094 0.297 0.752 0.009 0.292 0.975
FRACT αy3 0.574 0.349 0.099 0.603 0.345 0.081
PSCORE1 αy4 -0.335 0.378 0.375 -0.263 0.372 0.480
PSCORE2 αy5 -0.127 0.356 0.721 -0.056 0.350 0.873
PSCORE3 αy6 -0.476 0.330 0.149 -0.394 0.322 0.221
PREV. HYCRR αy7 -0.422 3.340 0.899 0.285 3.310 0.931
PREV. RESP αy8 0.846 0.253 0.001 0.800 0.249 0.001

Marginal missing-covariate models:
INTERC. αx0 -0.841 0.353 0.017 -0.610 0.335 0.069
PREV. MIS. IND αx1 1.650 0.340 <0.001 0.915 0.281 0.001
AGE αx2 0.127 0.226 0.572 0.210 0.220 0.340
ECOG αx3 -0.133 0.268 0.619 -0.285 0.260 0.274
FRACT αx4 0.693 0.300 0.021 0.712 0.295 0.016
PSCORE1 αx5 -0.082 0.340 0.809 -0.065 0.330 0.845
PSCORE2 αx6 -0.123 0.311 0.693 -0.023 0.303 0.940
PSCORE3 αx7 -0.357 0.288 0.216 -0.318 0.281 0.257
PREV. HYCRR αx8 -2.450 3.393 0.470 2.814 3.295 0.393
PREV. RESP αx9 0.508 0.223 0.022 0.583 0.217 0.007

Association:
φ 3.929 1.547 <0.001

Estimates for IPWGEE-M2 Analysis:
INTERC. α0 -0.851 0.338 0.012
PREV. MIS. IND α1 1.668 0.317 <0.001
AGE α2 0.137 0.221 0.534
ECOG α3 -0.034 0.262 0.898
FRACT α4 0.651 0.291 0.025
PSCORE1 α5 -0.086 0.332 0.796
PSCORE2 α6 -0.160 0.302 0.597
PSCORE3 α7 -0.285 0.283 0.313
PREV. HYCRR α8 -2.916 3.192 0.361
PREV. RESP α9 0.279 0.221 0.206
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is statistically significant, suggesting that a missing at random mechanism is per-

haps reasonable for the missing response process. Similarly, little significance of

αx4 and αx9 suggests that a missing at random mechanism is perhaps reasonable

for the missing covariate process. Significance of the association parameter φ in

the “IPWGEE-J” method suggests there is association between missingness of the

response and covariate. Significance of αx1 indicates there is a serial dependence

among consecutive observations of covariate HYCRR. Moreover, if subjects have

missing covariate HYCRR at the previous assessment time, then they are more

likely to miss the present assessment. Significance of αy8 and αx9 indicates that

the previously observed new lesion has a positive effect on observing the present

assessment. FRACT in the missing response model is moderately significant, and

it is significant in the missing covariate model. The more number of fractures, the

larger probability to observe the responses and covariate. The estimates based on

the “IPWGEE-M2” method are not compatible with those from the “IPWGEE-I”

and “IPWGEE-J” methods. However, it appears that the “IPWGEE-M2” model-

ing method also detects evidence for a missing at random mechanism, indicating

by the nature of the estimates for α4.

4.6 Extension to Accommodate Multiple Missing

Covariates

In the preceding sections we focus on the case that only a single covariate, along

with the response, may be missing. In this section, we extend the proposed methods

to accommodate circumstances that multiple covariates could be missing. Slightly

different notation is used in this section.

148



Let Rijk be the missing indicator for covariate Xijk, k = 1, 2, . . . , p1 with p1 =

dim(Xij) where Xij = (Xij1, Xij2, . . . , Xijp1)
′, and Rij0 be the missing indicator for

the response Yij . Denote Rij = (Rij0, Rij1, . . . , Rijp1)
′. Assume Ri1 = 1, where 1 is

the (p1 +1)×1 vector of element 1. Let πij = P (Rij = 1|Yi, Xi, Zi). Under a MAR

mechanism with

P (Rij = rij|R̄i,j−1, Yi, Xi, Zi) = P (Rij = rij|R̄i,j−1, Y
(o)
i , X

(o)
i , Zi) ,

where R̄i,j−1 = {ri1, ri2, . . . , ri,j−1} with rik being a realization of Rik, we write

πij =
∑

R̄i,j−1

{P (Rij = 1|R̄i,j−1, Yi, Xi, Zi) ·
j−1∏

ℓ=1

P (Riℓ = riℓ|R̄i,ℓ−1, Yi, Xi, Zi)}, (4.19)

for j ≥ 2, where πi1 = 1 is assumed. To determine πij, we further model the joint

probability P (Riℓ = riℓ|R̄i,ℓ−1, Yi, Xi, Zi). More specifically, let δijk = P (Rijk =

1|R̄i,j−1, Yi, Xi, Zi) for k = 0, 1, . . . , p1. Let R∗
ijk = (Rijk − δijk)/

√
δijk(1 − δijk),

ρijst = E(R∗
ijsR

∗
ijt), and ρijs1s2···sK

= E(R∗
ijs1

R∗
ijs2

· · ·R∗
ijsK

) be the Kth-order corre-

lation among componentsRijs1, Rijs2, . . . , RijsK
ofRij, where ρ = (ρ01, ρ12, . . . , ρ01···p1)

′.

For given time point j, we employ the Bahadur representation (Bahadur, 1961; Cox,

1972) to express the joint probability

P (Rij = rij|R̄i,j−1, Yi, Xi, Zi)

=

p∏

k=0

{
δ
rijk

ijk (1 − δijk)
1−rijk

}
·
{

1 +
∑

s<t

ρijstr
∗
ijsr

∗
ijt

+
∑

u<s<t

ρijustr
∗
ijur

∗
ijsr

∗
ijt + · · ·+ ρ01···pr

∗
ij0r

∗
ij1 · · · r∗ijp1

}
. (4.20)

This strategy requires modeling the correlation structures of all orders. In prac-

tice, it is often the case that the second order dominates the association structure

while the third and higher order association is null or nearly null. Under such

circumstances, we may typically perform estimation along the lines of Sections 4.2
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and 4.3. That is, given j, for k′ > k = 0, 1, . . . , p1 − 1, let

ψijkk′ =
P (Rijk = 1, Rijk′ = 1|R̄i,j−1, Yi, Xi, Zi)P (Rijk = 0, Rijk′ = 0|R̄i,j−1, Yi, Xi, Zi)

P (Rijk = 0, Rijk′ = 1|R̄i,j−1, Yi, Xi, Zi)P (Rijk = 1, Rijk′ = 0|R̄i,j−1, Yi, Xi, Zi)

be the odds ratio featuring the association between Rijk and Rijk′. Regression

models may be invoked to characterize the building blocks δijk and ρijkk′ (or equiv-

alently, ψijkk′) in (4.20) where the third or higher order correlations are constrained

to be zero. Let α∗ and φ be the parameters associated with the models δijk and

ψijkk′ respectively, and denote α = (α∗′, φ′)′. Parameters α∗ and φ for the missing

data processes can be estimated by solving

S1(α) =

n∑

i=1

S1i(α) = 0

and

S2(α) =

n∑

i=1

S2i(α) = 0

where S1i(α) = [∂δi/∂α
∗′]W−1

i (Ri − δi), S2i(α) = [∂δ∗i /∂φ
′]W ∗

i
−1(R∗

i − δ∗i ), Ri =

(R′
ij , j = 2, 3, . . . , J)′, δi = (δ′ij, j = 2, 3, . . . , J)′, δij = (δij0, δij1, . . . , δijp1)

′, Wi =

diag(Wij , j = 2, 3, . . . , J), Wij is the (p1 + 1) × (p1 + 1) matrix with (k, k) element

δijk(1− δijk) and (k, k′) element δijkk′ − δijkδijk′, R
∗
i = (R∗

ij
′, j = 2, 3, . . . , J)′, R∗

ij =

(Rijk · Rijk′, k < k′)′, δ∗i = (δ∗ij
′, j = 2, 3, . . . , J)′, δ∗ij = (δijkk′, k < k′)′, and W ∗

i =

diag(δ∗i (1 − δ∗i )).

If the third or higher order correlation is not zero, we need to calculate πij using

(4.20) for which we may use an ad hoc way (e.g., Lipsitz et al., 1995) to replace the

ℓth order correlation ρijk1k2···kℓ
with

ρ̂ijk1k2···kℓ
= n−1

n∑

i=1

R̂∗
ijk1R̂

∗
ijk2 · · · R̂∗

ijkℓ
,
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where R̂∗
ijk = (Rijk−δ̂ijk)/

√
δ̂ijk(1 − δ̂ijk). Consequently, estimation of the response

parameter β can be performed by solving the estimating equations

n∑

i=1

[Ui(β, α̂) − η̂Ai(α̂)] = 0,

where Ui(β, α) = DiMi(Yi − µi) with Mi = κ−1F
−1/2
i [R−1

i (ρ) • ∆i(α)]F
−1/2
i ,

∆i(α) =




I(Ri1=1)
πi1

I(Ri11=1,··· ,Ri1p1=1,Ri2=1)
πi12

· · · I(Ri11=1,··· ,Ri1p1=1,RiJ=1)
πi1J

I(Ri21=1,··· ,Ri2p1=1,Ri1=1)
πi12

I(Ri2=1)
πi2

· · · I(Ri21=1,··· ,Ri2p1=1,RiJ=1)
πi2J

...
...

. . .
...

I(RiJ1=1,··· ,RiJp1=1,Ri1=1)
πi1J

I(RiJ1=1,··· ,RiJp1=1,Ri2=1)
πi2J

· · · I(RiJ=1)
πiJ




J×J

,

πijk = P (Rij1 = 1, · · · , Rijp1 = 1, Rik = 1|Yi, Xi, Zi), and η̂ = η̂1η̂
−1
2 with

η̂1 = n−1
n∑

i=1

R̂es[Ui(β̂, α̂), Si(α̂)]R̂es[Ai(α̂), Si(α̂)]′

and

η̂2 = n−1

n∑

i=1

R̂es[Ai(α̂), Si(α̂)]R̂es[Ai(α̂), Si(α̂)]′.

Ai(α) is a m× 1 vector, typically chosen by the investigator, that does not involve

unobserved data but satisfies E[Ai(α)] = 0. For example, we could choose Ai(α) =

(A′
i0, · · · , A′

ip1
)′ with

Aik =

([
I(Rij = rij)

πij(rij)
· πijk − 1

]
· Rijk ·Xijk, j = 0, 1, . . . , J

)′

,

where rij = (rij0, . . . , rijp1)
′ is a (p1 + 1) × 1 vector with rijk = 1, and πij(rij) =

P (Rij = rij |Yi, Zi, Xi). The choice of the Ai(α) functions is not unique. It is often

chosen for convenience, and in practice, a wide range of choices can lead to the

improvement in efficiency. The asymptotic distribution of the resulting estimator

can be established analogously to that in Section 4.4.
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4.7 Estimation of the Asymptotic Covariance

Matrix

For each component αℓ of α, ℓ = 1, 2, . . . , q, we define

Gℓ(β, α) =
n∑

i=1

Di · (∂Mi(α)/∂αℓ) · (Yi − µi).

Then E(∂Ui(β, α)/∂α′) is consistently estimated by, as n→ ∞,

G(β̂, α̂) = n−1
(
G1(β̂, α̂), G2(β̂, α̂), . . . , Gq(β̂, α̂)

)
.

If we let

M∗
21(α) = −

n∑

i=1

C∗
iW

∗
i
−1 · (∂λxyi /∂α′

xy),

then E(∂Si(α)/∂α′) is consistently estimated by, as n→ ∞,

M∗(α̂) = n−1


 −∑n

i=1D
∗
i V

∗
i
−1D∗′

i 0

M∗
21(α̂) −

∑n
i=1C

∗
iW

∗
i
−1C∗′

i


 .

The matrix Σ is consistently estimated by, as n→ ∞,

Σ̂ = n−1

n∑

i=1

Qi(β̂, α̂)Q′
i(β̂, α̂),

where Qi(β̂, α̂) = Ui(β̂, α̂)−G(β̂, α̂) · [M∗(α̂)]−1 · Si(α̂), and the matrix Γ is consis-

tently estimated by, as n→ ∞, Γ̂ = n−1M(β̂, α̂). Inference about β is conducted by

replacing Σ and Γ with these consistent estimates in the expression of the asymp-

totic covariance matrix.
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4.8 Some Proof for the Efficient Estimate via

Augmented IPWGEE

We first show that η is actually equal to the regression coefficient of Ai(α) in

the population regression of Ui(β, α) on H∗
i . To see this, let η∗ be the regression

coefficient of H∗
i in the population regression of Ui(β, α) on H∗

i , that is, η∗ =

E[UiH
∗
i
′][E(H∗

iH
∗
i
′)]−1, then by H∗

i = (A′
i(α), S ′

i(α))′, we have

η∗ = E[UiA
′
i, UiS

′
i]


 E[AiA

′
i] E[AiS

′
i]

E[SiA
′
i] E[SiS

′
i]




−1

= (E[UiA
′
i], E[UiS

′
i])


 A11 A12

A21 A22




=
(
E[UiA

′
i]A

11 + E[UiS
′
i]A

21 E[UiA
′
i]A

12 + E[UiS
′
i]A

22

)

where

A11 = (E[AiA
′
i] − E[AiS

′
i]E[SiS

′
i]
−1
E[SiA

′
i])

−1,

A21 = −E[SiS
′
i]
−1
E[SiA

′
i](E[AiA

′
i] − E[AiS

′
i]E[SiS

′
i]
−1
E[SiA

′
i])

−1,

A12 = −E[AiA
′
i]
−1
E[AiS

′
i](E[SiS

′
i] −E[SiA

′
i]E[AiA

′
i]
−1
E[AiS

′
i])

−1,

and

A22 = (E[SiS
′
i] − E[SiA

′
i]E[AiA

′
i]
−1
E[AiS

′
i])

−1.

Thus, the regression coefficient of Ai is E[UiA
′
i]A

11 +E[UiS
′
i]A

21, which is equal to

η after some algebra.

Subject to regularity conditions and that η is chosen as above, we obtain, using

the same arguments in Section 4.3.3,

n1/2(β̃† − β) = −Γ−1n−1/2

n∑

i=1

Qi + op(1),
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whereQi = U †
i−E[∂U †

i /∂α
′][E(∂Si/∂α

′)]−1·Si. Now we show thatQi = Res(Ui(β, α), H∗
i ).

Noting that E[∂U †
i /∂α

′] = −E[U †
i S

′
i] and E(∂Si/∂α

′) = −E[SiS
′
i], we write

Qi = U †
i −E[∂U †

i /∂α
′][E(∂Si/∂α

′)]−1 · Si

= Ui − ηAi −E[UiS
′
i − ηAiS

′
i][E(SiS

′
i)]

−1Si

= Ui − ηAi − η1Si,

where η1 = E[UiS
′
i − ηAiS

′
i][E(SiS

′
i)]

−1. Analogous to the preceding calculation,

we can show that η1 is the regression coefficient of Si in the regression of Ui on H∗
i ,

so we have Qi = Ui − η∗H∗
i = Res(Ui(β, α), H∗

i ) with η∗ = (η, η1). Thus, by the

Central Limit Theorem, n1/2(β̃† − β) has the asymptotic covariance Γ−1Σ†[Γ−1]′

where Σ† = var{Res(Ui(β, α), H∗
i )}.

Now it remains to show that β̃† is more efficient than β̂. Note that n1/2(β̂−β) has

the asymptotic covariance Γ−1Σ[Γ−1]′ where Σ can be written as var{Res(Ui(β, α), Si(α))}.

If letting η2 be the regression coefficient of Ui on Si, then

var{Res(Ui, Si)} = var[Ui − η2Si]

= E[Ui − η2Si][Ui − η2Si]
′

= E[(Ui − η∗H∗
i ) + (η∗H∗

i − η2Si)][(Ui − η∗H∗
i ) + (η∗H∗

i − η2Si)]
′

= E[[Ui − η∗H∗
i ][Ui − η∗H∗

i ]
′ + E[η∗H∗

i − η2Si][η
∗H∗

i − η2Si]
′

≥ E[[Ui − η∗H∗
i ][Ui − η∗H∗

i ]
′

= var{Res(Ui, H
∗
i )}.

The inequality is strict unless η∗ = 0. The third last step uses the fact that

E[η∗H∗
i − η2Si][Ui − η∗H∗

i ]
′ = 0 for the residual Ui − η∗H∗

i of the projection of Ui

on the expanded space of H∗
i . Therefore, β̃† is more efficient than β̂ when η 6= 0.
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Chapter 5

Association Studies for

Longitudinal Data Arising in

Clusters with Missing Covariates

5.1 Introduction

Many analyses for longitudinal incomplete data focus on studying the impact

of covariates on the mean responses. Fitzmaurice et al. (2001) considered the case

with missing responses for longitudinal binary data. A number of estimating equa-

tions approaches are considered for cases where drop-out cannot be assumed to be

missing completely at random. These approaches include first-order generalized

estimating equations (GEE) (Liang and Zeger, 1986), GEE based on conditional

residuals, GEE based on multivariate normal estimating equations for the covari-

ance matrix, and second-order generalized estimating equations (GEE2) that fea-

ture association structures among repeated measurements. Bias analyses may be

performed for estimation of both the association parameters and mean parameters.

However, in clinical trials and observational studies, complete covariate data are

often not available for every subject. Missing data may arise in many circumstances,
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including the unavailability of covariate measurements, survey nonresponse, study

subjects failing to report to a clinic for monthly evaluations, respondents refusing

to answer certain items on a questionnaire, and loss of data. Problems arise if the

mechanism leading to the missing data is related to these covariates. Complete

case analysis can give invalid inference. Under the missing completely at random

(MCAR) mechanism, the first-order GEE approach yields consistent estimates for

the regression parameters. When the data are missing at random (MAR) or missing

not at random (MNAR), an analysis based on first-order GEE gives inconsistent

estimates of parameters for the regression model. Robins and Rotnitzky (1995),

and Robins et al. (1994, 1995) developed a class of estimators based on an inverse

probability weighted generalized estimating equations (IPWGEE) in a regression

setting when data are MAR. This approach involves modeling the missing data

process and weighting the estimating equations by the inverse of a probability that

is calculated based on the models for the missing data process. If the models for

both the marginal mean of the response and the missing data process are correctly

formulated, the IPWGEE approach corrects the bias and gives consistent estimates

under the MAR mechanism.

In many situations, longitudinal data arise in clusters. Common examples in-

clude longitudinal community intervention studies (e.g., Perry et al., 1989), family

studies involving repeated assessments of individual members over time (Payment

et al., 1991), and longitudinal school-based studies in which individual schools are

randomized to receive an experimental or control intervention (Cameron et al.,

1999). Clustered longitudinal data feature both a cross-sectional and a longitudi-

nal correlation structure, and interest often resides in the strength of both types of

association. When the association parameters are of central importance, second-
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order GEEs can be constructed to facilitate their more efficient estimation. Prentice

(1988) developed such equations and emphasized estimation of correlation parame-

ters. Fitzmaurice et al. (1993) proposed a model that parameterizes the association

in terms of conditional odds ratios. Lipsitz, Laird and Harrington (1991), Liang,

Zeger and Qaqish (1992), Carey, Zeger and Diggle (1993), Molenberghs and Lesaffre

(1994), Lang and Agresti (1994), and Fitzmaurice and Lipsitz (1995) have proposed

models that parameterize the association in terms of marginal odds ratios. Yi and

Cook (2002) discussed marginal methods for incomplete responses in longitudinal

data arising in clusters, where the inverse probability weighted second-order esti-

mating equations are developed. Under MAR, this method facilitates consistent

estimation of the marginal mean parameters and association parameters as well.

However, little attention has been directed to address the impact of missing

covariates on the association parameters in clustered longitudinal studies. This

chapter mainly addresses this problem. Weighted first and second order estimating

equations may be constructed to obtain consistent estimates of association parame-

ters. In cross-sectionally clustered longitudinal data, clustering in the missing data

process may need to be addressed to get efficient estimates (Yi and Cook, 2002).

This chapter is organized as follows. Section 5.2 gives a special case by address-

ing the cross-sectional studies arising in clusters with missing covariates. Section 5.3

addresses the more general case of association studies for incomplete longitudinal

data.
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5.2 Cross-Sectional Studies

5.2.1 Notation and Model Assumptions

Response Process

Suppose that there are n clusters and Ji individuals within cluster i, i =

1, 2, . . . , n. Let Yi = (Yi1, . . . , YiJi
)′, where Yij denotes the binary response for

subject j in cluster i. Let Xij be a scalar covariate that may be missing and

Xi = (Xi1, . . . , XiJi
)′. Let Zij = (1, Zij1, Zij2, . . . , Zij,p−2)

′ be the covariate vector

that are always observed, and Zi = (Z ′
i1, . . . , Z

′
iJi

)′.

Define µij = E(Yij|Xi, Zi) = P (Yij = 1|Xi, Zi), and let µi = (µi1, . . . , µiJi
)′.

Provided that the mean structure of Yij depends only on the covariate vector for

subject j in cluster i, we may consider logistic regression models for the mean of

the form

logit(µij) = Xijβx + Z ′
ijβz

for j = 1, . . . , Ji. Let β = (βx, β
′
z)

′ be a vector of regression parameters. The

variance for the response Yij is specified as

vij = Var(Yij |Xi, Zi) = µij(1 − µij),

which depends on the regression parameter vector β.

The joint probability for any pair of binary responses

µijj′ = E(YijYij′|Xi, Zi) = P (Yij = 1, Yij′ = 1|Xi, Zi)

can be modeled in terms of the two marginal probabilities µij(β) and µij′(β) in

combination with an association parameter vector. One approach is to use the
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conditional correlation between Yij and Yij′, given Zi and Xi, where

φijj′ = Corr(Yij, Yij′|Xi, Zi) =
µijj′ − µijµij′

[µij(1 − µij)µij′(1 − µij′)]1/2
.

In terms of the correlation coefficient, the joint probability µijj′ can then be ex-

pressed as

µijj′ = µijµij′ + φijj′ · [µij(1 − µij)µij′(1 − µij′)]
1/2.

One may alternatively use odds ratio to characterize the association among re-

sponses. Let ψijj′ be the odds ratio between Yij and Yij′, which is defined by

ψijj′ =
P (Yij = 1, Yij′ = 1|Xi, Zi)P (Yij = 0, Yij′ = 0|Xi, Zi)

P (Yij = 1, Yij′ = 0|Xi, Zi)P (Yij = 0, Yij′ = 1|Xi, Zi)
. (5.1)

Regression models for the association are typically specified as

log(ψijj′) = u′ijj′ · φ,

where uijj′ is a vector of covariates which specifies the form of the association

between Yij and Yij′, and φ is a vector of regression parameters. Letting uijj′ be

the scalar 1, for example, leads to the exchangeable association between responses

(Yi and Cook, 2002).

The joint probability µijj′ is determined by the marginal means and the odds

ratio. Note that

ψijj′ =
µijj′(1 − µij − µij′ + µijj′)

(µij − µijj′)(µij′ − µijj′)
.

Using the quadratic formula, we can solve for µijj′ given by

µijj′ =





aijj′−[a2
ijj′

−4ψijj′ (ψijj′−1)µijµij′ ]
1/2

2(ψijj′−1)
, if ψijj′ 6= 1,

µij · µij′, if ψijj′ = 1,

where aijj′ = 1 − (1 − ψijj′)(µij + µij′) (Lipsitz et al., 1991). Given this, the

correlation φijj′ can be written in terms of the marginal means and the odds ratio

ψijj′.
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Missing Data Models

Let Rij be the missing data indicator for covariate Xij, where Rij = 1 if Xij is

observed and 0 otherwise. Let rij be a realization of Rij .

Let λij = P (Rij = 1|Yi, Xi, Zi), known up to a vector of unknown parameters

γ. Typically, a logistic link may relate λij to a linear function of Yi, Xi and Zi, i.e.

logit(λij) = u∗ij
′ · γ

where u∗ij may be a function of {Yi, Xi, Zi}.

We define the odds ratio for subject j and j′ in cluster i as

ψ∗
ijj′ =

P (Rij = 1, Rij′ = 1|Yi, Zi, Xi) · P (Rij = 0, Rij′ = 0|Yi, Zi, Xi)

P (Rij = 1, Rij′ = 0|Yi, Zi, Xi) · P (Rij = 0, Rij′ = 1|Yi, Zi, Xi)
.

Let φ∗ be the regression parameters linking the odds ratios ψ∗
ijj′ to the related

covariates, u∗ijj′, say. For example,

logψ∗
ijj′ = u∗

′

ijj′ · φ∗.

Denote α = (γ′, φ∗′)′ to be the q vector of parameters associated with the missing-

data process.

Let λijj′ = P (Rij = 1, Rij′ = 1|Yi, Zi, Xi) be the joint probability for (Rij , Rij′).

From

ψ∗
ijj′ =

λijj′[1 − λij − λij′ + λijj′]

(λij − λijj′)(λij′ − λijj′)

we can get

λijj′ =





a∗
ijj′

−[a∗2
ijj′

−4ψ∗

ijj′
(ψ∗

ijj′
−1)λijλij′ ]

1/2

2(ψ∗

ijj′
−1)

, if ψ∗
ijj′ 6= 1,

λij · λij′, if ψ∗
ijj′ = 1,

where a∗ijj′ = 1 − (1 − ψ∗
ijj′)(λij + λij′) (e.g. Lipsitz et al., 1991).
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Here we focus on dealing with the MAR mechanism, where we assume that

P (Rij = 1|Yi, Xi, Zi) = P (Rij = 1|Yi, X(o)
i , Zi)

ψ∗
ijj′ =

P (Rij = 1, Rij′ = 1|Yi, Zi, X(o)
i ) · P (Rij = 0, Rij′ = 0|Yi, Zi, X(o)

i )

P (Rij = 1, Rij′ = 0|Yi, Zi, X(o)
i ) · P (Rij = 0, Rij′ = 1|Yi, Zi, X(o)

i )
,

and hence λijj′ does not depend on the unobserved X
(m)
i .

5.2.2 Estimation Procedures

Our primary interest lies in estimating parameters β associated with the mean

responses as well as association parameters φ. Let θ = (β ′, φ′)′.

Estimating Equations for Mean Parameters

Let Di = ∂µ′
i/∂β be the p × Ji derivative matrix of the mean vector µi with

respect to β. Let

∆i(α) = diag(I(Rij = 1)/λij, 1 ≤ j ≤ Ji)

be the Ji × Ji weight matrix, and Vi = diag(µij(1 − µij), 1 ≤ j ≤ Ji).

The GEE for β are given by

U1(θ, α) =

n∑

i=1

U1i(θ, α) = 0, (5.2)

where U1i(θ, α) = DiV
−1
i ∆i(α)(Yi − µi).

Estimating Equations for Association Parameters

Let

∆∗
i (α) = diag(I(Rij = 1, Rij′ = 1)/λijj′, j < j′).
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The GEEs for φ are of the form

U2(θ, α) =

n∑

i=1

U2i(θ, α) = 0, (5.3)

where U2i(θ, α) = CiW
−1
i ·∆∗

i (α)·(Yi−ξi), Yi = (YijYij′, j < j′)′, ξi = E(Yi|Xi, Zi) =

(µijj′, j < j′)′, Ci = ∂ξ′i/∂φ is the derivative matrix of the mean vector ξi with

respect to φ, Wi is a working covariance matrix. The covariance matrix of Yi
involves third and forth moments of the responses, which we would rather not

estimate here. The independence working covariance matrix

Wi = diag(µijj′ · (1 − µijj′), j < j′)

is often used.

Here we remark that only the data with fully observed covariates are used

in the estimating equations (5.2) and (5.3). Therefore, the resulting estimators

may lose efficiency. As suggested in Chapter 4, we may employ the improved

inverse probability weighted estimates which are theoretically more efficient under

the assumption of data missing at random. Or, we can also develop doubly robust

estimators, which are robust under certain conditions to misspecification of the

model for the probability of response. Note that we only use the independence

working correlation matrix in (5.2) and (5.3). We can adapt the idea of Chapter 4

to incorporate the general correlation matrix, and this is the future research work.

Estimation for Parameters of Missing-Data Process

Let V ∗
i = (v∗ijj′) with v∗ijj′ = λij(1 − λij) if j = j′ and λijj′ − λij · λij′ otherwise.

Let Ri = (Ri1, Ri2, . . . , RiJi
)′, λi = (λi1, λi2, . . . , λiJi

)′, and D∗
i = ∂λ′i/∂γ, then the
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estimating equations for γ are of the form

n∑

i=1

S1i(α) = 0, (5.4)

where S1i(α) = D∗
i V

∗
i
−1(Ri − λi).

For second order estimating equations for the association parameter φ∗, we

define Ri = (Ri1Ri2, . . . , Ri,Ji−1RiJi
)′, Λi = E(Ri|Yi, Xi, Zi), C

∗
i = ∂Λi

′/∂φ∗ and

W ∗
i = diag(λijj′ · (1 − λijj′), j < j′).

Then estimating equations for φ∗ are given by

n∑

i=1

S2i(α) = 0, (5.5)

where S2i(α) = C∗
iW

∗
i
−1 · (Ri − Λi). Let Si(α) = (S ′

1i(α), S ′
2i(α))′.

5.2.3 Estimation and Inference

We estimate the parameters based on the following two stages in the same spirit

of Chapter 4:

Stage 1: Solve (5.4) and (5.5) for the missing data parameter α using Fisher-

scoring algorithm as follows. Define

M∗
1 (α) = −

n∑

i=1

D∗
i V

∗
i
−1D∗′

i

and

M∗
2 (α) = −

n∑

i=1

C∗
iW

∗
i
−1C∗′

i .

For any initial values α = α(0), simultaneously update α using

α(t) = α(t−1) −


 [M∗

1 (α(t−1))]
−1

[M∗
2 (α(t−1))]

−1


 ·



∑n

i=1 S1i(α
(t−1))

∑n
i=1 S2i(α

(t−1))



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until α(t) converges to α̂, say.

State 2: Replace α with the estimate α̂ and solve (5.2) and (5.3) for θ via

Fisher-scoring algorithm as follows:

Let

M1(θ, α̂) = −
n∑

i=1

DiV
−1
i · ∆i(α̂) ·D′

i

and

M2(θ, α̂) = −
n∑

i=1

CiW
−1
i · ∆∗

i (α̂) · C ′
i.

For any initial values θ = θ(0), simultaneously update β and φ by the iterative

equations

θ(t) = θ(t−1) −


 [M1(θ

(t−1), α̂)]
−1

[M2(θ
(t−1), α̂)]

−1


 ·


 U1(θ

(t−1), α̂)

U2(θ
(t−1), α̂)




until θ(t) converges to θ̂, say.

We conclude this section with a discussion of the asymptotic distribution of the

estimate θ̂ and inferential issues. Let Ui(θ, α) = (U ′
1i(θ, α), U ′

2i(θ, α))′. When α is

specified to be α0, under standard regularity conditions for estimating functions,

n1/2(θ̂ − θ)
d→ N(0,Γ−1

0 E(Ui(θ, α0)U
′
i(θ, α0))[Γ

−1
0 ]′), as n→ ∞

where Γ0 = E(∂Ui(θ, α0)/∂θ
′). When α is unspecified and estimated, the vari-

ation in the estimator α̂ must be taken into account, and under the regularity

conditions stated by Robins et al. (1995), n1/2(θ̂ − θ) is asymptotically normal

with mean 0 and asymptotic variance Γ−1Σ[Γ−1]′, where Γ = E[∂Ui(θ, α)/∂θ′], Σ =

E[Qi(θ, α)Q′
i(θ, α)], and Qi(θ, α) = Ui(θ, α)−E(∂Ui(θ, α)/∂α′)· [E(∂Si(α)/∂α′)]−1 ·

Si(α).
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For each component αℓ of α, ℓ = 1, 2, . . . , q, we define

G1ℓ(θ, α) =

n∑

i=1

DiV
−1
i · (∂∆i(α)/∂αℓ) · (Yi − µi)

and

G2ℓ(θ, α) =

n∑

i=1

CiW
−1
i · (∂∆∗

i (α)/∂αℓ) · (Yi − ξi).

Then E(∂Ui(θ, α)/∂α′) is consistently estimated by, as n→ ∞,

G(θ̂, α̂) = n−1


 G11(θ̂, α̂) G12(θ̂, α̂) · · · G1q(θ̂, α̂)

G21(θ̂, α̂) G22(θ̂, α̂) · · · G2q(θ̂, α̂)


 .

If we let

M∗
21(α) = −

n∑

i=1

C∗
iW

∗
i
−1 · (∂Λi/∂γ),

then E(∂Si(α)/∂α′) is consistently estimated by, as n→ ∞,

M(α̂) = n−1 ·


 M∗

1 (α̂) 0

M∗
21(α̂) M∗

2 (α̂)


 .

The matrix Σ is consistently estimated by, as n→ ∞,

Σ̂ = n−1
n∑

i=1

Qi(θ̂, α̂)Q′
i(θ̂, α̂),

where Qi(θ̂, α̂) = Ui(θ̂, α̂)−G(θ̂, α̂)·[M(α̂)]−1·Si(α), and the matrix Γ is consistently

estimated by, as n→ ∞,

Γ̂ = n−1


 M1(θ̂, α̂) 0

M21(θ̂, α̂) M2(θ̂, α̂)


 ,

where M21(θ̂, α̂) = −
∑n

i=1CiW
−1
i · ∆∗

i (α) · (∂ξi/∂β ′). Inferences about θ are con-

ducted by replacing Σ and Γ with these consistent estimates in the expression of

the asymptotic covariance matrix.
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5.2.4 Simulation Studies

In the simulation study, we focus on a setting where Ji = 3, i = 1, 2, . . . , n, and

n = 500. We simulate the longitudinal binary responses from a model with

logit(µij) = β0 + β1xij1 + β2xij2,

where xij1 is a time varying binary covariate which is independently generated

from Bin(1,0.5) and it may be missing at some time points, xij2 is another time

varying covariate generated from Bin(1,0.5), and it is always observed. We take

expit(β0) = 0.4, exp(β1) = 0.5 and exp(β2) = 0.8. The association between the

responses is specified through odds ratios given by (5.1) as ψijj′ = 2.

For the missing data process, we take

logit(λij) = α0 + α1yij + α2xij2.

We specify an exchangeable association structure with ψ∗
ijj′ = 1, 2 or 4 for j 6= j′.

The true values are taken as expit(α0) = 0.7, exp(α1) = 2.0, exp(α2) = 2.0 (leading

to 20% missingness) and exp(α1) = 0.5, exp(α2) = 0.5 (leading to 50% missingness).

Table 5.1 reports the simulation results. We compare the two methods. One is

to consider the analysis with the independence weights (assuming no clustering in

the missing data process). The second is the analysis with the clustered weights (as-

suming there is a clustering association). ASE is the average standard error based

on the robust variance estimators in Section 5.2.3, ESE is the empirical standard

error and CP is the 95% coverage probability. RE is the relative efficiency defined

by the the empirical variance of clustered weights estimators over the empirical

variance of independence weights estimators.
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It is seen that both methods give consistent results for the mean parameters,

because the equations for β in (5.2) have weights that are not functions of the

association parameters for the missing-data process; ASE is very close to ESE, and

the CP agrees well with the nominal level 95%. For the association parameters

ψijj′, independence weights analysis gives biased estimates when ψ∗
ijj′ 6= 1, while

estimates using clustered weights give very small finite sample biases.

For the regression coefficient β, the relative efficiency is very close to 1. It is

not surprising that there is not much difference in efficiency for inferences about

the regression coefficients, because the equations for β have weights that are not

functions of the association parameters for the missing-data process.

5.2.5 Asymptotic Studies

Interest here lies in studying the asymptotic biases due to assuming the associ-

ation of missingness of the covariate in the same cluster is independent while the

association should be considered.

In the spirit of Rotnitzky and Wypij (1994) and Fitzmaurice, Molenberghs,

and Lipsitz (1995), to identify the probabilistic limit of θ̂, we need to take the

expectation of Ui(θ, α) with respect to the joint distribution ofD = (Ri, Yi, X
(o)
i , Zi)

and set it equal to zero. The solution to this equation, which we denote θ†, is the

parameter to which θ̂ converges in probability. If D is the sample space for D, we

must solve the equation

E[Ui(θ, α)] =
∑

d∈D

DiV
−1
i ∆i(α)(Yi − µi) · P (d;α, θ) = 0, (5.6)

where d denotes a realized value for D ∈ D and P (d;α, θ) is the true probability of

observing the realized value d. Equation (5.6) can be solved using standard software
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Table 5.1: Simulation results for the association study with missing covariates

Percent True Independence Weights Clustered Weights

Missing Parameters Value Bias% ASE ESE CP Bias% ASE ESE CP RE

50% ψ∗
ijj′ = 4

β0 log(1.5) 0.00 0.114 0.114 0.952 -0.97 0.114 0.114 0.950 1.002
β1 log(0.5) -0.28 0.159 0.159 0.947 -0.14 0.158 0.158 0.948 0.987
β2 log(0.8) 3.14 0.151 0.151 0.946 -1.74 0.149 0.150 0.947 0.987

ψijj′ 2 58.75 1.455 1.472 0.814 4.08 0.779 0.786 0.939 –

ψ∗
ijj′ = 2

β0 log(1.5) 1.97 0.120 0.120 0.951 -0.74 0.121 0.121 0.951 1.016
β1 log(0.5) 2.02 0.162 0.162 0.943 -1.01 0.161 0.162 0.948 1.003
β2 log(0.8) 1.34 0.153 0.153 0.945 -1.74 0.152 0.152 0.944 0.987

ψijj′ 2 36.85 1.219 1.250 0.906 3.75 0.816 0.819 0.942 –

ψ∗
ijj′ = 1

β0 log(1.5) 0.94 0.116 0.116 0.950 -0.49 0.116 0.116 0.950 1.002
β1 log(0.5) 1.18 0.147 0.147 0.951 -0.28 0.146 0.146 0.952 0.993
β2 log(0.8) 1.34 0.148 0.148 0.949 0.00 0.148 0.148 0.950 1.001

ψijj′ 2 2.85 0.905 0.907 0.946 2.87 0.923 0.925 0.948 –

20% ψ∗
ijj′ = 4

β0 log(1.5) 0.00 0.106 0.106 0.950 1.97 0.105 0.106 0.945 0.998
β1 log(0.5) -0.14 0.126 0.126 0.950 -2.01 0.126 0.126 0.942 1.004
β2 log(0.8) 1.34 0.115 0.115 0.948 0.44 0.115 0.115 0.951 1.002

ψijj′ 2 -3.08 0.287 0.291 0.912 1.85 0.276 0.273 0.942 –

ψ∗
ijj′ = 2

β0 log(1.5) 1.97 0.100 0.100 0.943 -1.47 0.100 0.100 0.946 1.002
β1 log(0.5) -2.47 0.118 0.118 0.942 -0.29 0.119 0.118 0.950 1.001
β2 log(0.8) 1.34 0.118 0.118 0.945 2.25 0.117 0.118 0.946 0.994

ψijj′ 2 -3.06 0.310 0.307 0.936 0.65 0.297 0.299 0.945 –

ψ∗
ijj′ = 1

β0 log(1.5) -1.47 0.098 0.098 0.948 0.24 0.100 0.098 0.949 1.002
β1 log(0.5) 0.29 0.113 0.113 0.951 -0.57 0.113 0.113 0.948 1.000
β2 log(0.8) -2.25 0.118 0.118 0.946 -0.44 0.117 0.117 0.953 0.998

ψijj′ 2 0.67 0.351 0.352 0.948 0.05 0.359 0.357 0.947 –
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for generalized estimating equations by constructing a data set consisting of one

entry for each unique element of D and solving the corresponding set of equations

with a weight for outcome d given by ∆i(α) · P (d;α, θ).

The asymptotic covariance matrix of n1/2(θ̂ − θ†) is given by

ascov(
√
n(θ̂ − θ†)) = A−1(θ†)B(θ†)A−1(θ†), as n→ ∞ (5.7)

where

A(θ) = E(∂Ui(θ, α)/∂θ) =
∑

d∈D

∂Ui(θ, α)/∂θ · P (d;α, θ)

and

B(θ) = E(Ui(θ, α)U ′
i(θ, α)) =

∑

d∈D

Ui(θ, α)U ′
i(θ, α) · P (d;α, θ).

In this study, we assume the same physical settings as those in the simulation

studies. In the missing data model, we change α2 to adjust the missing proportion.

For each setting, we assume ψ∗
ijj′ = ψ∗ are the same for different subjects, and

change it from 1 to 10 to indicate the magnitude of the associations among the

missing covariate in the cluster.

It is easy to see that the estimates of the mean parameters β for independence

weights analysis (assuming there is no association) and clustered weights analysis

(considering the missing association) give the same results because the estimating

equations for the mean parameters do not depend on the association parameters.

So, here we focus on the association parameter ψijj′. We study the asymptotic

relative bias of independence weights analysis, where the relative asymptotic bias

is defined by (ψ†
ijj′−ψijj′)/ψijj′. Figures 5.1, 5.2 and 5.3 report the results. It is seen

that as the missing proportion increases, the relative bias increases if controlling

other conditions; also, as the missing association increases, the bias increases; the

relative bias increases as the association ψijj′ increases.
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Figure 5.1: Asymptotic relative bias of association parameter ψijj′ in independence
weights analysis with ψijj′ = 4
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Figure 5.2: Asymptotic relative bias of association parameter ψijj′ in independence
weights analysis with ψijj′ = 2
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Figure 5.3: Asymptotic relative bias of association parameter ψijj′ in independence
weights analysis with ψijj′ = 1
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5.3 Clustered Longitudinal Data

5.3.1 Notation and Model Assumptions

Response Process

Suppose that there are n clusters and Ji individuals within cluster i, i =

1, 2, . . . , n. Furthermore suppose that there are K visits planned. Let Yij =

(Yij1, Yij2, . . ., YijK)′ denote the K response vector for subject j which we assume

that it is always observed. Let Yi = (Y ′
i1, . . . , Y

′
iJi

)′. LetXij = (Xij1, Xij2, . . . , XijK)′

be the covariate vector subject to missingness that may have missing values, and

let Xi = (X ′
i1, . . . , X

′
iJi

)′. Let Zijk = (1, Zijk1, Zijk2, . . . , Zijk,p−2)
′ be the covariate

vector that are always observed, Zij = (Z ′
ij1, . . . , Z

′
ijK)′, and Zi = (Z ′

i1, . . . , Z
′
iJi

)′.

Define µijk = E(Yijk|Xi, Zi) = P (Yijk = 1|Xi, Zi), and let µij = (µij1, µij2, . . . , µijK)′,

j = 1, . . . , Ji and i = 1, . . . , n. Let µi = (µ′
i1, . . . , µ

′
iJi

)′. Provided that the mean

structure of Yijk depends only on the covariate vector for subject j at time k in

cluster i (e.g., Pepe and Anderson, 1994; Robins, Greenland and Hu, 1999), we

may consider logistic regression models for the mean of the form

logitµijk = Xijkβx + Z ′
ijkβz

for k = 1, . . . , K, j = 1, . . . , Ji. Let β = (βx, β
′
z)

′ be the vector of regression

parameters. The variance for the response Yijk is specified as

vijk = Var(Yijk|Xi, Zi) = µijk(1 − µijk),

which depends on the regression parameter vector β.

The joint probability for any pair of binary responses

µi;jk;j′k′ = E(YijkYij′k′|Xi, Zi) = P (Yijk = 1, Yij′k′ = 1|Xi, Zi)
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can be modeled in terms of the two marginal probabilities µijk(β) and µij′k′(β) in

addition to an association parameter vector. One approach is to use the correlation

between Yijk and Yij′k′ given Zi and Xi, where

φi;jk;j′k′ = Corr(Yijk, Yij′k′|Xi, Zi) =
µi;jk;j′k′ − µijkµij′k′

[µijk(1 − µijk)µij′k′(1 − µij′k′)]1/2
.

In terms of the correlation coefficient, the joint probability µi;jk;j′k′ can then be

expressed as

µi;jk;j′k′ = µijkµij′k′ + φi;jk;j′k′ · [µijk(1 − µijk)µij′k′(1 − µij′k′)]
1/2.

One may alternatively use odds ratio to characterize the association among re-

sponses. Let ψi;jk;j′k′ be the odds ratio between Yijk and Yij′k′, which is defined

by

ψi;jk;j′k′ =
P (Yijk = 1, Yij′k′ = 1|Xi, Zi)P (Yijk = 0, Yij′k′ = 0|Xi, Zi)

P (Yijk = 1, Yij′k′ = 0|Xi, Zi)P (Yijk = 0, Yij′k′ = 1|Xi, Zi)
. (5.8)

Regression models for the association are typically specified as

logψi;jk;j′k′ = u′i;jk;j′k′ · φ,

where ui;jk;j′k′ is a vector of covariates which specifies the form of the association be-

tween Yijk and Yij′k′, and φ is a vector of regression parameters. Letting ui;jk;j′k′ be

the scalar 1, for example, leads to the exchangeable association between responses

(Yi and Cook, 2002). Specifically, we can adopt the following structure

logψi;jk;j′k′ = φ0 + φ1 · I(j = j′) + φ2 · I(k = k′).

Let φ = (φ0, φ1, φ2)
′.

The joint probability µi;jk;j′k′ can be determined by the marginal means and the

odds ratio. Note that

ψi;jk;j′k′ =
µi;jk;j′k′(1 − µijk − µij′k′ + µi;jk;j′k′)

(µijk − µi;jk;j′k′)(µij′k′ − µi;jk;j′k′)
.
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Using the quadratic formula, we can solve for µi;jk;j′k′ given by

µi;jk;j′k′ =





ai;jk;j′k′−[a2
i;jk;j′k′

−4ψi;jk;j′k′(ψi;jk;j′k′−1)µijkµij′k′ ]
1/2

2(ψi;jk;j′k′−1)
, ψi;jk;j′k′ 6= 1

µijk · µij′k′, ψi;jk;j′k′ = 1,

where ai;jk;j′k′ = 1 − (1 − ψi;jk;j′k′)(µijk + µij′k′) (e.g. Lipsitz et al., 1991). Given

this, the correlation φi;jk;j′k′ can be written in terms of the marginal means and the

odds ratio ψi;jk;j′k′.

Missing Data Models

Let Rij = (Rij1, Rij2, . . . , RijK)′ be the missing data indicator vector for co-

variate vector Xij, where Rijk = 1 if Xijk is observed and 0 otherwise. Let

rij = (rij1, . . . , rijK)′ be a realization of Rij . Let Hr
ijk = {rij1, . . . , rij,k−1} de-

note the history of the missing data indicators for subject j up to but not include

visit k, k = 2, 3, . . . , K, j = 1, . . . , Ji. We shall focus on the monotone missing-data

patterns, that is, Rijk = 0 implies Rijk′ = 0 for k′ > k, in which case Hr
ijk consists

of a sequence of consecutive 1′s or 0′s.

Here we focus on dealing with MAR mechanism in marginal models, where we

assume that

P (Rijk = 1|Rij,k−1 = 1, Yi, Xi, Zi) = P (Rijk = 1|Rij,k−1 = 1, Yi, H
x
ijk, Zi)

where Hx
ijk = {xij1, . . . , xij,k−1}. We also assume, for j 6= j′

P (Rijk = 1, Rij′k = 1|Rij,k−1 = 1, Rij′,k−1 = 1, Yi, Xi, Zi)

= P (Rijk = 1, Rij′k = 1|Rij,k−1 = 1, Rij′,k−1 = 1, Yi, Zi, H
x
ijk, H

x
ij′k). (5.9)

Let λijk = P (Rijk = 1|Rij,k−1 = 1, Yi, Xi, Zi), known up to a vector of unknown

parameters γk, where Rij,k−1 = 1 represents the history Hr
ijk of the indicator vari-

ables. Typically, a logistic link may relate a linear function of Yi, H
x
ijk and Zi,
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i.e.

logit(λijk) = u∗ijk
′ · γk

where u∗ijk may be a subset of {Yi, Hx
ijk, Zi}.

Let πijk = P (Rijk = 1|Yi, Xi, Zi) be the marginal probability of observing sub-

ject j at time k in cluster i, given the entire vectors of responses and covariates; it

is given by πijk =
∏k

t=2 λijt for k ≥ 2, and we assume πij1 = 1.

In some situations subjects within the same cluster may have substantial influ-

ence on each other when assessed at the same time point in the dropout process.

We model the association of the dropout process at each fixed time point k, where

we assume that

P (Rijk = 1|Rij,k−1 = 1, Rij′k′ = 1, Yi, Xi, Zi)

= P (Rijk = 1|Rij,k−1 = 1, Yi, Zi, Xi) if j 6= j′ and k′ < k

which states that the probability of observing subject j at time k does not depend

on the missingness of other subjects at earlier observation times, given that subject

j is present at time k− 1. At time k, we define the odds ratio for subjects j and j′

in cluster i as

ψ∗
i;jk;j′k = (P (Rijk = 1, Rij′k = 1|Rij,k−1 = 1, Rij′,k−1 = 1, Yi, Zi, Xi)

·P (Rijk = 0, Rij′k = 0|Rij,k−1 = 1, Rij′,k−1 = 1, Yi, Zi, Xi))

/(P (Rijk = 1, Rij′k = 0|Rij,k−1 = 1, Rij′,k−1 = 1, Yi, Zi, Xi)

·P (Rijk = 0, Rij′k = 1|Rij,k−1 = 1, Rij′,k−1 = 1, Yi, Zi, Xi)).

Let φ∗
k be the regression parameters linking the odds ratios ψ∗

i;jk;j′k to the related

covariates, u∗i;jk;j′k, say. For example,

log(ψ∗
i;jk;j′k) = u∗

′

i;jk;j′k · φ∗
k.
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Denote γ = (γ′2, γ
′
3, . . . , γ

′
K)′, φ∗ = (φ∗

2
′, φ∗

3
′, . . . , φ∗

K
′)′, and let α = (γ′, φ∗′)′ be the q

vector of parameters associated with the missing-data process.

Let λi;jk;j′k = P (Rijk = 1, Rij′k = 1|Rij,k−1 = 1, Rij′,k−1 = 1, Yi, Zi, Xi) be the

joint probability for (Rijk, Rij′k). From

ψ∗
i;jk;j′k =

λi;jk;j′k[1 − λijk − λij′k + λi;jk;j′k]

(λijk − λi;jk;j′k)(λij′k − λi;jk;j′k)

we can get

λi;jk;j′k =





a∗
i;jk;j′k

−[a∗
i;jk;j′k

2−4ψ∗

i;jk;j′k
(ψ∗

i;jk;j′k
−1)λijkλij′k]1/2

2(ψ∗

i;jk;j′k
−1)

, for ψ∗
i;jk;j′k 6= 1

λijk · λij′k, for ψ∗
i;jk;j′k = 1,

where a∗i;jk;j′k = 1 − (1 − ψ∗
i;jk;j′k)(λijk + λij′k) (e.g. Lipsitz et al., 1991).

Let πi;jk;j′k′ = P (Rijk = 1, Rij′k′ = 1|Yi, Zi, Xi) be the marginal probability,

which is given by

πi;jk;j′k′ =





∏k′

t=2 λijt j = j′, k < k′

∏k
t=2 λijt j = j′, k > k′

∏k
t=2 λi;jt;j′t j 6= j′, k = k′

∏k
t=2 λi;jt;j′t ·

∏k′

t=k+1 λij′t j 6= j′, k < k′

∏k′

t=2 λi;jt;j′t ·
∏k

t=k′+1 λijt j 6= j′, k > k′

with πi;j1;j′1 = 1 for j 6= j′ (Yi and Cook, 2002).

5.3.2 Methods of Estimation

Our primary interest lies in estimating parameters β associated with mean re-

sponses as well as association parameters φ. Let θ = (β ′, φ′)′.
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Estimating Equations for Mean Parameters

Let Di = ∂µ′
i/∂β be the p× JiK derivative matrix of the mean vector µi with

respect to β. Let

∆i(α) = diag(I(Rijk = 1)/πijk, 1 ≤ j ≤ Ji, 1 ≤ k ≤ K)

be the JiK × JiK weight matrix. Let Vi = diag(µijk(1 − µijk), 1 ≤ j ≤ Ji, 1 ≤ k ≤

K).

The GEE for β are given by

U1(θ, α) =

n∑

i=1

U1i(θ, α) = 0, (5.10)

where U1i(θ, α) = DiV
−1
i ∆i(α)(Yi − µi).

Estimating Equations for Association Parameters

Define (j, k) < (j′, k′) if j < j′ or j = j′, k < k′. Let

∆∗
i (α) = diag(I(Rijk = 1, Rij′k′ = 1)/πi;jk;j′k′, (j, k) < (j′, k′))

The GEEs for φ are of the form

U2(θ, α) =

n∑

i=1

U2i(θ, α) = 0, (5.11)

where U2i(θ, α) = CiW
−1
i · ∆∗

i (α) · (Yi − ξi), Yi = (YijkYij′k′, (j, k) < (j′, k′))′,

ξi = E(Yi|Xi, Zi) = (µi;jk;j′k′, (j, k) < (j′, k′))′, Ci = ∂ξ′i/∂φ is the derivative matrix

of the mean vector ξi with respect to φ, Wi is a working covariance matrix. The

covariance matrix of Yj involves third and forth moments of the responses, which

we would rather not estimate. The independence working covariance matrix

Wi = diag(µi;jk;j′k′ · (1 − µi;jk;j′k′), (j, k) < (j′, k′))

is often used.
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Estimation for Parameters of Missing-Data Process

Let R∗
ik = (Ri1k, . . . , RiJik)

′ indicate the missingness for subjects in cluster i at

time k, and let R∗
i = (R′

i2, R
′
i3, . . . , R

′
iK)′. Let Λik = (λi1k, . . . , λiJik)

′ be the vector

of conditional expectations of R∗
ik, and let Λi = (Λ′

i2,Λ
′
i3, . . . ,Λ

′
iK)′. Because the

R∗
ik terms are binary, we specify the covariance matrix as V ∗

ik = (v∗i;jk;j′k) where

v∗i;jk;j′k = λijk(1 − λijk) if j = j′ and λi;jk;j′k − λijk · λij′k otherwise. Let Vi =

diag(Vik, k = 2, 3, . . . , K) be the covariance matrix for R∗
i . Let D∗

i = ∂Λ′
i/∂γ, then

the estimating equations for γ are of the form

n∑

i=1

S1i(α) = 0, (5.12)

where S1i(α) = D∗
i V

∗
i
−1(R∗

i − Λi).

For second order estimating equations for the association parameter φ∗, we

define Rik = (Ri1kRi2k, . . . , Ri,Ji−1,kRiJik)
′, and Ri = (Ri2

′,Ri3
′, . . . ,RiK

′)′. Let

Λ∗
i = E(Ri|Yi, Xi, Zi), C

∗
i = ∂Λ∗

i
′/∂φ∗ and

W ∗
i = diag(Λi · (1 − Λi)).

Then estimating equations for φ∗ are given by

n∑

i=1

S2i(α) = 0, (5.13)

where S2i(α) = C∗
iW

∗
i
−1 · (Ri − Λ∗

i ). Let Si(α) = (S ′
1i(α), S ′

2i(α))′.

5.3.3 Estimation and Inference

We also provide a two-stage estimate procedure here.
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Stage 1: Solve (5.12) and (5.13) for the missing data parameter α, using Fisher-

scoring algorithm as follows. Define

M∗
1 (α) = −

n∑

i=1

D∗
i V

∗
i
−1D∗′

i

and

M∗
2 (α) = −

n∑

i=1

C∗
iW

∗
i
−1C∗′

i .

For any initial values α = α(0), simultaneously update γ and φ∗ using

α(t) = α(t−1) −


 [M∗

1 (α(t−1))]
−1

[M∗
2 (α(t−1))]

−1


 ·



∑n

i=1 S1i(α
(t−1))

∑n
i=1 S2i(α

(t−1))




until α(t) converges to α̂, say.

State 2: Replace α with the estimate α̂ and solve (5.10) and (5.11) for θ via

Fisher-scoring algorithm as follows:

Let

M1(θ, α̂) = −
n∑

i=1

DiV
−1
i · ∆i(α̂) ·D′

i

and

M2(θ, α̂) = −
n∑

i=1

CiW
−1
i · ∆∗

i (α̂) · C ′
i.

For any initial values θ = θ(0), simultaneously update β and φ by the iterative

equations

θ(t) = θ(t−1) −


 [M1(θ

(t−1), α̂)]
−1

[M2(θ
(t−1), α̂)]

−1


 ·


 U1(θ

(t−1), α̂)

U2(θ
(t−1), α̂)




until θ(t) converges to θ̂, say.

We conclude this section with a discussion of the asymptotic distribution of the

estimate θ̂ and inferential issues. Let Ui(θ, α) = (U ′
1i(θ, α), U ′

2i(θ, α))′. When α is
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specified to be α0, under standard regularity conditions for estimating functions,

n1/2(θ̂ − θ)
d→ N(0,Γ−1

0 E(Ui(θ, α0)U
′
i(θ, α0))[Γ

−1
0 ]′), as n→ ∞

where Γ0 = E(∂Ui(θ, α0)/∂θ
′). When α is unspecified and estimated, the vari-

ation in the estimator α̂ must be taken into account, and under the regularity

conditions stated by Robins et al. (1995), n1/2(θ̂ − θ) is asymptotically normal

with mean 0 and asymptotic variance Γ−1Σ[Γ−1]′, where Γ = E[∂Ui(θ, α)/∂θ′], Σ =

E[Qi(θ, α)Q′
i(θ, α)], and Qi(θ, α) = Ui(θ, α)−E(∂Ui(θ, α)/∂α′)· [E(∂Si(α)/∂α′)]−1 ·

Si(α).

For each component αℓ of α, ℓ = 1, 2, . . . , q, we define

G1ℓ(θ, α) =

n∑

i=1

DiV
−1
i · (∂∆i(α)/∂αℓ) · (Yi − µi)

and

G2ℓ(θ, α) =
n∑

i=1

CiW
−1
i · (∂∆∗

i (α)/∂αℓ) · (Yi − ξi).

Then E(∂Ui(θ, α)/∂α′) is consistently estimated by, as n→ ∞,

G(θ̂, α̂) = n−1


 G11(θ̂, α̂) G12(θ̂, α̂) · · · G1q(θ̂, α̂)

G21(θ̂, α̂) G22(θ̂, α̂) · · · G2q(θ̂, α̂)


 .

If we let

M∗
21(α) = −

n∑

i=1

C∗
iW

∗
i
−1 · (∂ξ∗i /∂γ),

then E(∂Si(α)/∂α′) is consistently estimated by, as n→ ∞,

M(α̂) = n−1


 M∗

1 (α̂) 0

M∗
21(α̂) M∗

2 (α̂)


 .

The matrix Σ is consistently estimated by, as n→ ∞,

Σ̂ = n−1

n∑

i=1

Qi(θ̂, α̂)Q′
i(θ̂, α̂),
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where Qi(θ̂, α̂) = Ui(θ̂, α̂)−G(θ̂, α̂)·[M(α̂)]−1·Si(α), and the matrix Γ is consistently

estimated by, as n→ ∞,

Γ̂ = n−1


 M1(θ̂, α̂) 0

M21(θ̂, α̂) M2(θ̂, α̂)


 ,

where M21(θ̂, α̂) = −
∑n

i=1CiW
−1
i · ∆∗

i (α) · (∂ξi/∂β ′). Inferences about θ are con-

ducted by replacing Σ and Γ with these consistent estimates in the expression of

the asymptotic covariance matrix.

5.3.4 Simulation Studies

In the simulation study, we focus on a setting with K = 3 and Ji = 3, i =

1, 2, . . . , n, and n = 500. We simulate the longitudinal binary responses from a

model with

logit(µijk) = β0 + β1xijk1 + β2xijk2 + β3xijk3,

where xijk1 is time varying binary covariate which is independently generated from

Bin(1,0.5) and it may be missing at some time points, xijk2 = I(k = 2), and

xijk3 = I(k = 3). We take expit(β0) = 0.4, expit(β0+β2) = 0.5, expit(β0+β3) = 0.6,

exp(β1) = 0.5. The association between the responses is specified through odds

ratios given by (5.8) as ψi;jk;j′k′ = 1.2 if j 6= j′, k 6= k′, ψi;jk;j′k = 1.5 if j 6= j′, and

ψi;jk;jk′ = 2.0 if k 6= k′.

For the missing data process, we take

logit(λijk) = α0 + α1yij,k−1 + α2yijk + α3xij,k−1,1, k = 2, 3.

We specify an exchangeable association structure with ψ∗
i;jk;j′k = 1, 2 or 4 for j 6= j′.

The true values are take as expit(α0) = 0.7, exp(α1) = 0.75. Here α2 and α3 are

used to adjust the missing proportion.
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Tables 5.2 to 5.5 report the results. Here we compare two methods. One is

the analysis that uses independence weights in the missing-data process based on

standard logistic regression models; the empirical variance is denoted var1. The

second is the analysis that uses clustered weights based on the second order es-

timating equations accommodating cross-sectional association within clusters; the

empirical variance is denoted var2. Empirical relative efficiency (RE) is defined as

var2/var1×100. It is seen that both methods give consistent results for the regres-

sion coefficients and there is not much difference in efficiency for inference about

the regression coefficients because the equation for β have weights that are not

functions of the association parameters for the missing-data process.

However, for the association parameters, independence weights analysis gives

bigger bias than that for clustered weights analysis when there is cross-sectional

association within clusters. As the missing proportion increases, the bias increases.

When there is no cross-sectional association within clusters, i.e. ψ∗
i;j2;j′2 = 1 and

ψ∗
i;j3;j′3 = 1, both methods give consistent estimators, and the relative efficiency is

close to one with a minor loss for the estimators based on the association weights

approach.

5.3.5 Intermittently Missing Data

Monotone missing-data patterns have been the focus of much work in the anal-

ysis of longitudinal incomplete data. In practice, however, subjects may miss one

or more visits before returning for a subsequent visit, creating what is termed in-

termittently missing data, where Rijk = 0 does not necessarily imply Rijk′ = 0 for

k < k′.

In this section we investigate estimation of response parameters with inter-
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Table 5.2: Simulation results for the association study with missing covariates:
about 20% missing (i.e. exp(α2) = 2.0, exp(α3) = 1.5)

Independence Weights Clustered Weights

Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 4)

β0 0.74 0.106 0.105 94.3 1.84 0.105 0.105 94.8 99.9
β1 0.14 0.114 0.114 94.6 0.72 0.114 0.114 95.4 99.9
β2 0.73 0.124 0.125 95.2 0.42 0.125 0.125 94.2 100.1
β3 0.25 0.140 0.138 94.4 -0.76 0.138 0.138 95.4 100.1

φ0 2.09 0.129 0.130 93.5 -0.51 0.126 0.127 95.4 –
φ1 2.68 0.167 0.166 93.0 0.76 0.161 0.161 94.5 –
φ2 -5.41 0.150 0.149 93.6 0.70 0.142 0.142 94.2 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 2)

β0 -2.71 0.111 0.111 94.3 -0.94 0.111 0.111 95.3 100.1
β1 0.54 0.114 0.114 94.5 -0.14 0.115 0.114 94.9 100.1
β2 0.49 0.127 0.126 94.4 0.24 0.126 0.126 94.6 99.8
β3 0.65 0.127 0.128 95.5 0.98 0.128 0.128 94.8 99.9

φ0 -1.63 0.132 0.132 93.8 -1.02 0.129 0.129 95.1 –
φ1 1.02 0.171 0.171 93.4 0.08 0.167 0.167 94.6 –
φ2 -4.33 0.156 0.154 93.6 0.060 0.147 0.146 94.4 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (2, 2)

β0 -0.49 0.104 0.104 94.2 -0.24 0.104 0.104 95.1 99.8
β1 0.86 0.114 0.114 94.8 -0.54 0.114 0.114 94.6 100.1
β2 0.00 0.118 0.120 94.2 0.49 0.120 0.120 95.0 99.9
β3 0.36 0.130 0.131 94.9 0.49 0.131 0.131 95.1 100.0

φ0 -6.58 0.127 0.127 93.6 -1.24 0.125 0.125 94.5 –
φ1 1.69 0.172 0.171 93.4 0.23 0.170 0.170 93.4 –
φ2 -3.31 0.149 0.151 93.9 0.20 0.145 0.147 94.4 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (1, 1)

β0 -2.19 0.106 0.106 94.4 -1.03 0.109 0.106 94.6 100.0
β1 -0.86 0.112 0.111 94.4 0.79 0.110 0.111 94.5 100.0
β2 2.71 0.126 0.126 94.4 0.73 0.124 0.126 94.5 100.0
β3 1.23 0.129 0.131 94.3 1.02 0.131 0.131 94.6 100.0

φ0 -4.38 0.129 0.128 94.4 -1.09 0.128 0.128 94.4 100.1
φ1 0.56 0.156 0.156 94.6 0.23 0.157 0.156 94.5 100.3
φ2 -0.40 0.152 0.152 94.6 0.71 0.152 0.152 94.5 100.2
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Table 5.3: Simulation results for the association study with missing covariates:
about 25% missing (i.e. exp(α2) = 2.0, exp(α3) = 1.0)

Independence Weights Clustered Weights

Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 4)

β0 -0.94 0.113 0.114 94.4 -0.42 0.115 0.114 94.0 99.6
β1 0.43 0.115 0.115 94.9 -1.00 0.115 0.115 94.5 99.9
β2 -0.94 0.124 0.124 94.8 1.06 0.124 0.124 94.7 100.0
β3 0.49 0.141 0.141 94.5 0.24 0.141 0.141 95.3 100.0

φ0 -6.24 0.144 0.144 94.0 -1.05 0.137 0.138 94.2 –
φ1 1.22 0.175 0.175 93.9 0.42 0.171 0.170 94.2 –
φ2 -5.72 0.162 0.162 93.1 0.90 0.155 0.152 93.9 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 2)

β0 0.24 0.109 0.109 94.9 -0.49 0.108 0.109 95.1 100.2
β1 -0.13 0.117 0.117 94.4 -0.72 0.117 0.117 95.4 100.2
β2 -0.24 0.124 0.124 95.0 0.49 0.124 0.124 95.6 99.9
β3 1.42 0.140 0.139 94.9 0.36 0.139 0.139 94.6 100.1

φ0 -5.75 0.148 0.149 94.3 -0.54 0.144 0.143 94.3 –
φ1 1.68 0.185 0.186 93.3 0.23 0.180 0.181 94.1 –
φ2 -5.52 0.162 0.163 93.1 0.60 0.155 0.157 94.0 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (2, 2)

β0 -1.72 0.113 0.112 94.0 0.49 0.112 0.112 94.2 100.2
β1 0.00 0.115 0.114 94.4 -0.86 0.114 0.114 94.2 99.8
β2 2.09 0.131 0.132 94.2 0.73 0.132 0.132 94.6 100.1
β3 0.87 0.142 0.143 95.0 0.12 0.143 0.143 94.5 100.0

φ0 -3.12 0.134 0.133 94.2 -1.08 0.128 0.130 94.4 –
φ1 1.34 0.162 0.163 93.7 0.77 0.160 0.160 95.0 –
φ2 -3.34 0.166 0.166 93.7 0.60 0.161 0.161 94.1 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (1, 1)

β0 -1.08 0.112 0.112 94.4 0.00 0.111 0.112 94.3 100.0
β1 0.00 0.114 0.115 94.4 -1.00 0.113 0.115 94.9 100.1
β2 2.09 0.135 0.132 94.3 0.95 0.132 0.132 94.4 100.1
β3 0.98 0.141 0.142 94.5 0.36 0.140 0.142 94.8 100.0

φ0 -2.14 0.134 0.133 94.5 -1.00 0.135 0.133 94.5 100.2
φ1 0.34 0.159 0.160 94.7 0.08 0.159 0.160 94.6 100.3
φ2 -0.60 0.167 0.164 94.3 0.60 0.164 0.164 94.3 100.3
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Table 5.4: Simulation results for the association study with missing covariates:
about 30% missing (i.e. exp(α2) = 0.5, exp(α3) = 1.5)

Independence Weights Clustered Weights

Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 4)

β0 -0.98 0.111 0.111 95.5 0.49 0.111 0.111 95.0 100.2
β1 -0.28 0.125 0.125 95.2 0.28 0.126 0.125 94.4 100.1
β2 1.09 0.129 0.130 94.2 -1.01 0.130 0.130 95.2 100.0
β3 0.12 0.146 0.148 94.1 0.36 0.149 0.148 95.4 99.9

φ0 10.97 0.207 0.206 93.0 1.26 0.190 0.190 93.9 –
φ1 -2.03 0.262 0.263 93.2 -0.45 0.249 0.249 93.5 –
φ2 5.02 0.260 0.261 92.5 -0.20 0.240 0.240 94.3 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 2)

β0 -1.46 0.113 0.113 94.3 -0.73 0.113 0.113 95.1 100.0
β1 0.54 0.133 0.132 95.2 0.72 0.132 0.131 94.4 99.8
β2 -0.55 0.124 0.125 95.5 -0.24 0.125 0.125 94.4 100.1
β3 -0.23 0.152 0.152 94.5 -0.12 0.152 0.152 94.7 99.9

φ0 6.01 0.197 0.198 92.6 1.04 0.185 0.188 93.9 –
φ1 -2.47 0.250 0.250 93.7 -0.68 0.239 0.240 94.2 –
φ2 3.73 0.272 0.272 92.6 -0.20 0.252 0.250 94.4 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (2, 2)

β0 -1.47 0.114 0.114 94.8 -0.84 0.114 0.114 94.5 100.0
β1 0.52 0.125 0.126 94.5 0.28 0.126 0.126 94.7 100.4
β2 0.42 0.132 0.131 94.7 -0.95 0.131 0.131 94.3 99.9
β3 -0.23 0.152 0.151 94.3 0.77 0.151 0.151 95.4 99.8

φ0 -5.51 0.222 0.222 94.0 1.04 0.212 0.213 93.2 –
φ1 -1.88 0.275 0.278 92.9 -0.42 0.272 0.274 94.2 –
φ2 2.82 0.280 0.281 93.2 -0.30 0.266 0.267 94.2 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (1, 1)

β0 -1.25 0.105 0.104 94.5 -0.15 0.103 0.104 94.5 100.0
β1 0.86 0.129 0.128 94.4 0.75 0.129 0.128 94.3 100.1
β2 -0.24 0.133 0.132 95.2 -0.25 0.130 0.132 94.6 100.0
β3 0.98 0.150 0.149 94.7 0.65 0.150 0.149 94.4 100.0

φ0 3.02 0.226 0.224 94.2 1.08 0.222 0.224 94.4 100.4
φ1 -0.33 0.275 0.273 94.6 -0.79 0.272 0.273 94.4 100.2
φ2 0.80 0.280 0.278 94.4 -0.20 0.278 0.278 94.6 100.4
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Table 5.5: Simulation results for the association study with missing covariates:
about 35% missing (i.e. exp(α2) = 0.5, exp(α3) = 1.0)

Independence Weights Clustered Weights

Parameters Bias% ASE ESE CP Bias% ASE ESE CP RE

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 4)

β0 -0.98 0.112 0.113 96.2 -0.96 0.113 0.113 95.4 99.9
β1 -0.29 0.137 0.134 94.9 -0.31 0.135 0.134 94.9 100.0
β2 0.73 0.130 0.130 93.4 0.79 0.130 0.130 94.8 100.2
β3 -0.76 0.152 0.152 93.7 0.64 0.152 0.152 95.1 99.9

φ0 10.97 0.234 0.234 93.4 1.38 0.213 0.214 95.2 –
φ1 -2.34 0.320 0.317 92.9 -0.42 0.296 0.296 94.3 –
φ2 6.041 0.309 0.308 93.8 -0.70 0.279 0.278 94.1 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (4, 2)

β0 0.24 0.118 0.117 94.6 -0.98 0.117 0.117 95.3 99.9
β1 -1.00 0.141 0.142 95.9 -0.54 0.141 0.142 95.5 99.9
β2 1.07 0.128 0.127 94.1 0.91 0.127 0.127 93.9 99.7
β3 -1.09 0.150 0.149 96.1 0.74 0.149 0.149 95.2 99.9

φ0 7.62 0.249 0.248 92.8 1.31 0.233 0.232 94.4 –
φ1 -3.18 0.295 0.293 92.6 -0.33 0.279 0.280 96.3 –
φ2 6.76 0.304 0.305 93.3 -0.70 0.280 0.283 94.2 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (2, 2)

β0 0.98 0.116 0.116 94.4 -1.00 0.116 0.116 94.4 100.2
β1 -0.86 0.134 0.135 94.7 -0.43 0.135 0.135 93.2 100.0
β2 0.12 0.124 0.124 94.5 0.37 0.124 0.124 94.1 99.8
β3 -0.12 0.154 0.152 94.9 0.73 0.152 0.152 94.0 99.9

φ0 6.36 0.236 0.236 93.1 1.02 0.223 0.225 93.7 –
φ1 -3.27 0.287 0.287 93.3 -0.45 0.278 0.276 94.1 –
φ2 3.62 0.297 0.296 92.9 -0.80 0.276 0.275 94.4 –

(ψ∗
i;j2;j′2, ψ

∗
i;j3;j′3) = (1, 1)

β0 -1.08 0.118 0.117 94.6 -1.00 0.117 0.117 94.4 100.0
β1 0.20 0.139 0.137 95.4 0.28 0.135 0.137 94.5 100.0
β2 0.49 0.133 0.134 94.5 0.95 0.134 0.134 94.3 100.0
β3 0.49 0.153 0.153 94.4 0.12 0.153 0.153 94.4 100.0

φ0 3.26 0.242 0.241 94.7 1.63 0.241 0.241 94.5 100.5
φ1 -0.34 0.301 0.301 95.2 -0.45 0.301 0.301 94.6 100.3
φ2 1.60 0.306 0.307 94.5 -0.80 0.307 0.307 94.5 100.4
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mittently missing patterns along the same line as the preceding discussion with

monotone missing-data patterns. We let H
(o)
ijk denote the history of the observed

components in Hx
ijk, k = 2, . . . , K, j = 1, . . . , Ji and i = 1, . . . , n. We assume that

P (Rijk = 1|Hr
ijk, Yi, Xi, Zi) = P (Rijk = 1|Hr

ijk, Yi, H
(o)
ijk, Zi)

and

P (Rijk = 1, Rij′k = 1|Hr
ijk, H

r
ij′k, Yi, Xi, Zi)

= P (Rijk = 1, Rij′k = 1|Hr
ijk, H

r
ij′k, Yi, H

(o)
ijk, H

(o)
ij′k, Zi) for j 6= j′. (5.14)

Assumption (5.14) reduces to (5.9) when the missing-data patterns are monotone,

but it facilitates the derivations that follow for the intermittently missing-data

patterns.

For cluster i and time k, let λijk = P (Rijk = 1|Hr
ijk, Yi, Xi, Zi) be the conditional

probability for subject j being observed at time k, given the history of the indicator

variable and entire vectors of responses and covariates. For assessment on subject

j in cluster i at times k, we assume that

P (Rijk = 1|Hr
ijk, H

r
ij′k, Yi, Xi, Zi) = P (Rijk = 1|Hr

ijk, Yi, Xi, Zi) for j 6= j′.

This states that the probability of observing subject j at time k does not depend

on the history of missingness of other subjects at time k, given the history of

missingness of subject j at time k and the entire vector of response and covariates.

For two subjects j and j′ in cluster i, define the odds ratio at time k,

ψ∗
i;jk;j′k = (P (Rijk = 1, Rij′k = 1|Hr

ijk, H
r
ij′k, Yi, Xi, Zi)

·P (Rijk = 0, Rij′k = 0|Hr
ijk, H

r
ij′k, Yi, Xi, Zi))

/(P (Rijk = 1, Rij′k = 0|Hr
ijk, H

r
ij′k, Yi, Xi, Zi)

·P (Rijk = 0, Rij′k = 1|Hr
ijk, H

r
ij′k, Yi, Xi, Zi)),
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and let λi;jk;j′k = P (Rijk = 1, Rij′k = 1|Hr
ijk, H

r
ij′k, Yi, Xi, Zi) be the joint probabil-

ity for the pair (Rijk, Rij′k), conditional on the histories the indicator variables and

the entire vectors of response and covariates.

Regression models may be used to characterize the probability λijk and the

odds ratio ψ∗
i;jk;j′k for each fixed time point k as in Section 5.3.2, and the resulting

parameters may be estimated as in Section 5.3.3. For cluster i, let πijk = P (Rijk =

1|Yi, Xi, Zi) be the conditional probability of the missingness for subject j at time

k, and let πi;jk;j′k′ = P (Rijk = 1, Rij′k′ = 1|Yi, Xi, Zi) be the conditional probability

of the missingness for subject j and j′ at time k and k′, respectively.

The weight matrices in the estimation equations are then given by ∆i = diag(I(Rijk =

1)/πijk, 1 ≤ j ≤ Ji, 1 ≤ k ≤ K) and ∆∗
i = diag(I(Rijk = 1, Rij′k′ = 1)/πi;jk;j′k′, (j, k) <

(j′, k′)).
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Chapter 6

Discussion and Future Research

6.1 Likelihood Analysis of Joint Marginal and

Conditional Models for Longitudinal Cate-

gorical Data

In Chapter 2 we proposed a likelihood-based inference method for categorical

longitudinal data. The proposed method allows modeling marginal and conditional

structures separately, and this is a particular appealing property for longitudinal

data analysis. As the likelihood formulation is employed for inferential procedures,

the resulting estimators enjoy nice properties of maximum likelihood estimators

such as high efficiency; the simulation results suggest that the proposed method

performs well in a wide range of settings. A further advantage of a likelihood based

procedure is that model checking can be carried out through score tests or likelihood

ratio tests of null and expanded models.

In Chapter 2 we focus on modeling the conditional probability µCijk by the first

order dependence of Yij on its history. Generalizations to accommodate any qth
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order dependence may proceed in the same manner. For example, we may specify

log

(
µCijk
µCij0

)
= γijk +

q∑

l=1

K∑

k′=1

γijlk′kI(Yi,j−l = k′), k = 1, . . . , K,

γijlk′k = Z ′
ijlk′kαlk′k, k, k′ = 1, . . . , K, l = 1, . . . , q.

The likelihood can then be factored as the product of the distribution of the first

q response variables P (Yi,j−1 = yi,j−1, . . . , Yi,j−q = yi,j−q) and the subsequent likeli-

hood contributions with parameters µCijk.

Note that computational complexity of a model with first order dependence

included increases linearly with the length of the observation series, Ji. However,

with qth order dependence modeled, computational complexity of evaluating the

resultant likelihood for subject i increases linearly with Ji(K+1)q. This is because,

calculations required to compute and update the q−dimension history increase lin-

early with (K+1)q, and each observation requires such calculations. This computa-

tion becomes intensive as Ji increases. How to find a feasible way to handle larger

observation times Ji and reduce the computational complexity will be a further

research direction.

In Chapter 2, we also develop inference procedures to handle incomplete data.

One can proceed based on the observed data likelihood when little data are missing,

but the described EM algorithm can be particularly useful if more data are missing.

The development here rests on the assumption that the data are missing at random

(or missing completely at random) (Diggle et al., 2002). As it is generally not

possible to verify missing data mechanisms, it is also desirable to develop estimation

procedures for data arising from missing not at random mechanisms (MNAR).

A Monte Carlo EM algorithm could be developed in the spirit of Ibrahim et al.

(2001), where the missing data process must be modeled. Sensitivity analysis may
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be conducted as parameter nonidentifiability may become an issue with MNAR

mechanisms (Rotnitzky et al., 1998).

6.2 Progressive Multi-State Models for Incom-

plete Longitudinal and Life History Data

In Chapter 3 we first proposed a likelihood-based method for the analysis of

progressive processes with missing observations. In typical analyses of missing data,

parameter nonidentifiability is an issue for MNAR mechanisms. With progressive

models, however, we have shown that the model parameters are identifiable for all

missing mechanisms. This property is very appealing because it allows us to use

a large class of progressive models to analyze incomplete longitudinal data with

various missing data mechanisms. Under this setup, the likelihood formulation

is easily implemented and the resulting estimators enjoy good properties. The

simulation demonstrates that the proposed method performs well under various

situations.

A number of important questions can be posed. We note that the WSPP data

analyzed in Section 3.4.1 are clustered by school. One can use the same idea as

employed in the data analysis section of Chapter 2 to incorporate the cluster effects

in the calculation of standard errors. Alternatively, a natural way of addressing

this clustering is to develop a random effect model, but this would require high

dimensional integration. Or, one could also adapt the idea of Zeng and Cook

(2007) to explicitly model the cross-sectional association structure at a particular

time point, given the history of the process. This could be achieved using more

elaborate fully specified models for maximum likelihood estimation, or by adopting
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an estimating function approach for the cross-sectional association parameters. A

third approach, which is receiving increasing attention in recent years, would be

to apply methods based on composite likelihoods (Cox and Reid, 2004, Fieuws

and Verbeke, 2006). Composite likelihood methods have been shown to provide

estimators with good properties for a range of settings including in the context of

longitudinal data.

Second, as it is generally not possible to verify missing data mechanisms, there-

fore it is useful to conduct sensitivity analysis (Rotnitzky et al., 1998) for the missing

not at random models. Also, our proposed method gives consistent estimates when

all the models are correctly specified. However, in practice, we do not know the

true models. Therefore, model checking methods in general are important.

Third, in Chapter 3 we focus the discussion on incomplete response data, but in

practice data often feature missing covariates. In principle, the proposed method

can be adapted to accommodate missing covariate data, or missing covariate and

response data. The joint likelihood of the two types of missing data indicators,

the response and the covariates that may be missing, need to be formulated for

complete data, and an EM algorithm can be used again for estimation in the spirit

discussed here.

Fourth, a number of important questions can be posed using the covariate in-

formation provided at clinic entry. However, in other settings interest may lie in

the effect of time-varying covariates. Relatively little work has been done on fitting

regression models with interval censored time-dependent covariates. In the special

case of a single interval censored covariate that indicates the development of a par-

ticular condition, Goggins et al. (1999) develop methods for Cox regression for a
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right censored event time. Cook et al. (2008) consider an extension to the bivariate

setting where both the covariate and failure times are interval censored.

Fifth, We have focussed on the time-homogeneous Markov model in Chapter

3. This assumption can be easily relaxed to increase the flexibility of the model.

Weakly parametric (e.g. piecewise constant intensities) models may be adopted

to model λ0k(t) in model (3.8) along the lines of Gentleman et al. (1994). Alter-

natively, one can use splines to obtain smoother estimates of transition intensities

if desired (Staniswalis et al., 1997), or local likelihood methods (Loader, 1996,

1999). Nonparametric methods such as those of Turnbull (1976) can in principle be

adapted for the setting of dependent observation schemes when models are progres-

sive. Interval censored recurrent event data (e.g., Thall and Lachin, 1988; Wellner

and Zhang, 2000) arise from progressive models, and further work in this area is

warranted.

6.3 Longitudinal Data Analysis with Incomplete

Response and Covariates

The impact of attrition in longitudinal studies depends on the correlation be-

tween the missing response and missing covariate. Ignoring this correlation can

induce bias and loss of efficiency to statistical inferences. We have developed and

studied a method that incorporates the association between the missing response

and missing covariate. The simulations demonstrate that the proposed method

gives consistent and reliable estimators.

However, a number of important questions can be posed. First, note that we

only considered the estimation and inference for the mean model parameters; one of
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the future directions is to consider the estimation and inference for the association

parameters, in which the second order estimating equations may be used to estimate

the association parameters by adapting the idea of Yi and Cook (2002). Also,

following the idea of Yi and Cook (2002), we can further extend the proposed

method to incorporate the clustered longitudinal data.

Second, the development here rests on the assumption that the data are at

most missing at random (MAR) (Diggle et al., 2002). In practice, we often face

data missing not at random (MNAR) and generalizations of the proposed method

to deal with this type of data would be worthwhile. One may adapt the method

of Rotnitzky et al. (1998) and Scharfstein et al. (1999) to deal with missing

response and missing covariates problem through semiparametric methods when

the mechanism is MNAR. Alternatively, a Monte Carlo EM algorithm could be

developed in the spirit of Ibrahim et al. (2001). As it is generally not possible to

check the nature of missing data mechanisms, sensitivity analysis may be warranted

to assess the effect of MNAR mechanisms (Rotnitzky et al., 1998).

The third research direction is to develop doubly robust, or doubly protected, es-

timators (Robins and Rotnitzky, 2001; Van der Laan and Robins, 2003; Scharfstein

et al., 1999), which are robust under certain situations of model misspecification.

This method is a refinement of a weighted estimating equation approach proposed

by Robins et al. (1995) and Rotnitzky et al. (1998). Further explanation and

evaluation of doubly robust estimators have been given by Lunceford and Davidian

(2004), Carpenter et al. (2006), Davidian et al. (2005), Bang and Robins (2005),

and Kang and Schafer (2007). With increasingly complex models for the missing

data process, the double robustness is increasingly important.
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