
A Hybrid Model for

Object-Oriented Software Maintenance

by

Xinyi Dong

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2008

c©Xinyi Dong 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144143023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Xinyi Dong

ii

Abstract

An object-oriented software system is composed of a collection of communicating objects

that co-operate with one another to achieve some desired goals. The object is the basic

unit of abstraction in an OO program; objects may model real-world entities or inter-

nal abstractions of the system. Similar objects forms classes, which encapsulate the data

and operations performed on the data. Therefore, extracting, analyzing, and modelling

classes/objects and their relationships is of key importance in understanding and main-

taining object-oriented software systems. However, when dealing with large and complex

object-oriented systems, maintainers can easily be overwhelmed by the vast number of

classes/objects and the high degree of interdependencies among them.

In this thesis, we propose a new model, which we call the Hybrid Model, to represent

object-oriented systems at a coarse-grained level of abstraction. To promote the com-

prehensibility of objects as independent units, we group the complete static description

of software objects into aggregate components. Each aggregate component logically rep-

resents a set of objects, and the components interact with one other through explicitly

defined ports.

We present and discuss several applications of the Hybrid Model in reverse engineering

and software evolution.

The Hybrid Model can be used to support a divide-and-conquer comprehension strategy

for program comprehension. At a low level of abstraction, maintainers can focus on one

aggregate-component at a time, while at a higher level, each aggregate component can

be understood as a whole and be mapped to coarse-grained design abstractions, such as

subsystems.

Based on the new model, we further propose a set of dependency analysis methods.

The analysis results reveal the external properties of aggregate components, and lead to

better understand the nature of their interdependencies.

In addition, we apply the new model in software evolution analysis. We identify a

collection of change patterns in terms of changes in aggregate components and their in-

terrelationships. These patterns help to interpret how an evolving system changes at the

architectural level, and provides valuable information to understand why the system is

designed as the way it is.

iii

Acknowledgements

I am immensely grateful to my supervisor, Professor Michael W. Godfrey, for his continual

support throughout my doctoral studies. Michael gave me the freedom to pursue research

while providing valuable guidance and advice when I needed. He substantially helped me

to shape my ideas, supported me in technical and organizational issues, and reviewed the

drafts of this document.

Special thanks to my dissertation committee members, Professor Daniel Berry, Pro-

fessor Krzysztof Czarnecki, Professor Ladan Tahvildari, and Professor Ralf Laemmel, for

their time and effort put into reading my thesis.

I sincerely appreciate the academic support of Professor Richard C. Holt and Professor

Andrew Malton. I also thank many current and previous members of SWAG, in particular,

Olga Baysal, John Champaign, Abram Hindle, Cory Kapser, Yuan Lin, Jingwei Wu, and

Lijie Zou. I appreciate their great friendship as well as many interesting discussions that

have broadened my perspective.

I am greatly indebted to my parents and my brother. Without their understanding and

support, I would not have been able to come this far.

Last but not least, I thank my husband, Bing Li, who has been my best friend and

help me through all of this. His patience, encouragement, and unconditional love are my

greatest source of strength throughout this long journey.

iv

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 The Importance of High-level Modelling 2

1.1.1 Aiding High-level Understanding 2

1.1.2 Coping with the Scalability Challenge 3

1.1.3 Facilitating Architectural Analysis 4

1.2 High-level Representations in OO Reverse Engineering 4

1.2.1 Design- or Specification-level Class Diagrams 6

1.2.2 Coarse-grained Representations . 8

1.3 Thesis Statement . 10

1.4 Contributions . 12

1.5 Organization of the thesis . 12

2 Background and Related Research 15

2.1 Key Object-Oriented Concepts . 16

2.2 Coarse-grained Entities . 17

2.2.1 Containers . 17

2.2.2 Conceptual Entities . 19

2.3 Representations in Architectural Design 21

2.3.1 Module Interconnection Languages 21

v

2.3.2 Architecture Description Languages 22

2.3.3 UML Component Diagrams . 23

2.4 Model Creation in OO Reverse Engineering 24

2.4.1 Code-Level Representations . 25

2.4.2 Class- or Object-Level Representations 25

2.4.3 Coarse-grained Representations . 30

2.5 Discussion . 32

3 A Hybrid Model 35

3.1 Overview . 35

3.1.1 Objectives . 36

3.1.2 Units of Composition and Decomposition 36

3.1.3 Essential Properties . 37

3.2 Notation . 38

3.2.1 Resource . 39

3.2.2 Component . 39

3.2.3 Ports . 42

3.2.4 Connectors . 42

3.3 Constructing Hybrid Models . 43

3.4 Customizing Hybrid Models . 45

3.4.1 Frameworks . 45

3.4.2 External Behavior . 47

3.5 Why Not UML Diagrams? . 47

3.6 Summary . 48

4 Applications in Program Comprehension 51

4.1 Introduction . 52

4.2 A Motivational Example . 53

4.3 Program Comprehension using Hybrid Models 54

4.3.1 Supporting Bottom-up Comprehension 55

4.3.2 Supporting Top-down Comprehension 56

4.4 Tool Support . 57

vi

4.5 Case Studies . 58

4.5.1 Chunking . 58

4.5.2 Constructing Hypotheses . 62

4.5.3 Confirm/Reject Hypotheses . 64

4.5.4 Derive Design Rationale . 66

4.5.5 Case Study Summary . 67

4.6 Summary . 68

5 High-level Dependency Analysis 69

5.1 Introduction . 70

5.2 Component Analysis . 71

5.2.1 Internal Structure and Cross-Package Inheritance 71

5.2.2 Inports and Data Abstraction . 74

5.2.3 Inports and Modularity . 75

5.2.4 Outports and Reuse . 76

5.3 Assembly Connector Analysis . 78

5.3.1 Types of Assembly Connectors . 78

5.3.2 Strength of Assembly Connectors 79

5.3.3 Connectors and Package Dependencies 80

5.4 Delegation Connector Analysis . 82

5.5 Visualization Support . 82

5.6 Case Study . 83

5.6.1 A Big Picture of Apache Ant . 83

5.6.2 Refactoring Opportunities . 87

5.6.3 Summary of Case Study . 90

5.7 Summary . 91

6 Architectural Change Analysis 93

6.1 Introduction . 94

6.2 Change in Aggregate Components . 95

6.3 Change in Assembly Connectors . 97

6.3.1 Co-change between the client and server component 98

vii

6.3.2 Reuse Resources . 99

6.3.3 Re-implement Resources . 99

6.3.4 Summary . 100

6.4 Change in Delegation Connectors . 100

6.4.1 Internal change leads to external change 100

6.4.2 Exposing or hiding internal resources 101

6.4.3 Reusing or re-implementing external resources 101

6.5 Visualization Support . 102

6.6 Case Study: The Evolution of Apache Ant 104

6.6.1 How has the package tools.ant evolved? 105

6.6.2 Evolution at the Finer-grained Level 111

6.6.3 Discussion . 115

6.7 Related Work . 116

6.7.1 Change Pattern Detection . 116

6.7.2 Evolutionary Visualization . 116

6.8 Summary . 117

7 Conclusion 119

7.1 Contributions . 119

7.2 Future Work . 121

7.2.1 Improving the Accuracy of Hybrid Model 121

7.2.2 Visualization Support . 122

7.2.3 Architecture of A Product Family 122

Appendix 123

A Toolkit 123

Bibliography 127

viii

List of Tables

5.1 A list of aggregate component metrics used in dependency analysis 73

5.2 A list of inport metrics used in dependency analysis 74

5.3 A list of outport metrics used in dependency analysis 77

5.4 The relationship between assembly connectors and package dependencies. . 81

5.5 A list of connector metrics used in dependency analysis 82

6.1 The size and release date of the studied versions. 104

ix

List of Figures

1.1 Object-oriented Representations . 5

1.2 The Hybrid Model of a Library System . 10

2.1 An Example Composite Structure Diagram (Adapted from Reference [5]) . 21

2.2 Source Code of an Example Library Management System 26

2.3 Reverse Engineered UML Sequence Diagram of the Example Library System 28

2.4 Reverse Engineered UML Class Diagram of the Example Library System . 29

2.5 Coarse-grained Interaction Diagram of the Example Library System 31

2.6 Package Diagram of the Example Library System 32

3.1 Hybrid Model Notations . 39

3.2 Expanded Hybrid Model of the Example Library Management System . . . 40

3.3 Constructing Hybrid Models . 43

4.1 A partial view of composition add-on map. 60

4.2 Conceptual Model of LSEdit in CRC Notation 63

4.3 Concrete Model of LSEdit (calls Add-on Map) 65

5.1 Example Aggregate Components . 72

5.2 Visualization Support for Dependency Analysis 83

5.3 The Hybrid Model of Apache Ant 1.6.5. 84

5.4 Assembly Connectors among 5 third-level Components. 86

5.5 Incoming Assembly Connectors of ant.taskdefs. 89

6.1 Change in Assembly Connectors. 97

x

6.2 Change in Delegation Connectors. 102

6.3 Visualization Support for Evolutionary Analysis 104

6.4 The history of pkg. tools.ant is displayed in an Evolution Matrix. 106

6.5 Assembly connector change in pkg. tools.ant caused by co-change 110

6.6 Assembly connector change in pkg. tools.ant for reuse purpose. 112

6.7 Assembly connector change in pkg. tools.ant for reimplementation purpose. 113

6.8 Delegation connector change in pkg. util 114

6.9 Delegation connector change in pkg. taskdefs 114

6.10 Delegation connector change in pkg. types 115

A.1 The Architecture of Hybrid Model Toolkit 124

A.2 Data Structure of Class Level Repository 126

A.3 Data Structure of Hybrid Model Repository 126

A.4 Analysis results are stored in the Hybrid Model Repository 126

xi

Chapter 1

Introduction

Software maintenance is the most expensive phase of the software life-cycle. Several case

studies show that the cost of software maintenance accounts for 50% to 75% of the overall

cost of a software system [53, 71]. Some even believe that as more and more software is

legacy software, the percentage is growing asymptotically towards, but never at, 100%.

The maintenance of poorly-documented, large-scale, legacy software is especially problem-

atic, because necessary information for the maintenance task at hand is often outdated,

incomplete or non-existent.

Maintainers can benefit from reverse engineering in that it helps them reconstruct the

design information that has become lost or obscured over time. Chikofsky and Cross [11]

define reverse engineering as “the process of analyzing a subject system to identify the

system’s components and their interrelationships, and create representations of the system

in another form or at a higher level of abstraction.” The ability to synthesize high-level

representations is extremely desirable for the comprehension and maintenance of large

software systems.

The work presented in this thesis aims at methods and tools to model large object-

oriented systems at a coarse level of granularity in support of software maintenance. We

have focused on the reverse engineering of object-oriented systems because object-oriented

programming has been widely used when dealing with large-scale, modular and component-

based software. Although the object-oriented paradigm is often claimed to support devel-

opment and evolution of software through various techniques, such as data abstraction,

1

2 A Hybrid Model for Object-Oriented Software Maintenance

inheritance, and polymorphism, those features also present their own set of problems to

software maintainers [105]. Reverse engineering techniques have to be customized to ad-

dress the special problems that object-oriented paradigm poses to software engineers during

the maintenance phrase. This includes extracting, modelling, and analyzing object-oriented

systems at a higher level of abstraction than objects and classes.

1.1 The Importance of High-level Modelling

Creating, managing, and manipulating high level design views of large systems is a key

aspect of software development. Recently, research in Architecture-Driven Modernization

has explored ways in which design views of a system can be automatically extracted from

and then kept consistent with the source code [73]. Our work concentrates on modelling

high-level views of a system at varying levels of abstraction, from the class and package

level up to the architectural.

Garlan describes the major impacts of a software architecture in six aspects of soft-

ware development: understanding, reuse, construction, evolution, analysis, and manage-

ment [27]. In this section, we will discuss the importance of high-level representations from

the perspective of maintenance and evolution.

1.1.1 Aiding High-level Understanding

High-level understanding is especially important in the comprehension of large software

systems. Cognitive studies show that maintainers who work with large programs usually

evolve their internal mental representations — known as mental models — in a top-down

manner using a pragmatic as-needed strategy [46, 88]. Instead of reading the entire source

code of a system, a maintainer conjectures the goals of the program and program segments

based on function and variable names, continually searches for the items of interest, and

focuses only on the source code that he believes is related to the particular task at hand.

During the comprehension process, he gains weak knowledge of the causal interactions

between functional components. As a result, he may perform an unwary modification to

one part of a system, which may in turn have a negative impact on other parts of the

system.

Introduction 3

An effective high-level representation captures the overall architecture of a system.

It helps maintainers to identify the key components of the system, and reason about

the interactions among them without having to descend into the source code. When

maintainers focus on one portion of the system, the high-level representation provides a

context for the understanding of more detailed information. Therefore, it is important for

reverse engineering tools to have the capability of synthesizing representations at a higher

level of abstraction.

1.1.2 Coping with the Scalability Challenge

Reverse engineering tools typically provide visualization of recovered information, since

graphical representations have long been used as comprehension aids. The biggest design

challenge for such tools is to capture a large amount of information using descriptive and un-

derstandable representations, while at the same time not overwhelming users with too much

detail. A complex object-oriented system typically consists of hundreds of classes, which

in turn may exhibit a high degree of inter-dependency among them. However, humans

have limited information storing and manipulating abilities [64]. If the provided represen-

tation is too complex, maintainers may drown in the information overload and be unable

to utilize the potentials of reverse engineering tools. Moreover, too much information on

one diagram may degrade tool performance significantly, making for an unsatisfactory user

experience [35].

Abstraction is a powerful technique in dealing with the complexity involved in the de-

scription of large software systems. Current reverse engineering tools, such as Swagkit [93]

and Rigi [66], create representations of a software system at successively levels of ab-

straction, organize the representations in a hierarchical structure, and support navigation

among different levels of abstraction. At the highest level, a maintainer can gain a concise

overview of a system, while at a low level of abstraction, he can focus on the more detailed

information required by a specific maintenance task.

4 A Hybrid Model for Object-Oriented Software Maintenance

1.1.3 Facilitating Architectural Analysis

Reverse engineering aims at recovering lost design information about the target software

system. The recovered representations provide valuable information for subsequent main-

tenance activities. If a target system can be specified by a model at a higher level of

abstraction, then new opportunities for analysis are provided.

The typical search for the big picture of a large system can bring up a clear under-

standing of its major components and their interactions. The big picture exposes the

structural dependencies and constraints that are often unclear or hidden at a lower level

of abstraction. The big picture can serve as the underlying model for performing various

kind of analyses on the system, such as checking the conformance to a specific architectural

style, identifying large reusable components, evaluating the design quality of a system, and

assessing the consequences of change.

1.2 High-level Representations in OO Reverse Engi-

neering

An object-oriented system is composed of a collection of communicating objects that co-

operate with one another to achieve some desired goals. Objects that are similar to each

other comprise classes, and class definitions provide the static description of the properties

and behaviors that their instances will have. Since objects are the basic building blocks

of object-oriented systems, the majority of the existing reverse engineering tools focus on

modelling objects, their classes, and the interrelationships among objects.

However, when dealing with large and complex object-oriented systems, maintainers

can easily be overwhelmed by the large number of objects and the high degree of inter-

dependencies among them. A commonly used strategy to address the scalability problem

is to synthesize high-level representations. As Figure 1.1 shows, there are two main ap-

proaches to creating high-level representations of object-oriented systems: One is to syn-

thesize design- or specification-level class diagrams, the other is to create coarse-grained

representations.

Introduction 5

����������	
���

����
�����	
���

���������

�

���

	���
�������

���

������������������
��

��������

����� ���	
�

���

����� ���	
��

���

�!�

"	�

������#$��	
��

����� ���	
�

���

!#$��#�����
��������

%$�����##
�����������&

	��
��������

%���
���$�������'�

��()
��(������������&

$�(
�
(��
��������

%"$$�
(��
�����#�
�&

���(��(��������� �����*�+,�(������� "�()
��(�����������

-
��
��
��
�.
��

�
��
�
�
�

��
�/
��
��
.
��

�
��
�
�
�

��"�������

��	�������

(�$������ ��/�����

-�������.��
�������������

Figure 1.1: Object-oriented Representations

6 A Hybrid Model for Object-Oriented Software Maintenance

1.2.1 Design- or Specification-level Class Diagrams

One claimed advantage of OO development is that the developers can apply the same

notation for representing objects and their relations throughout the development process.

For example, UML Class Diagrams [72] can be used to describe an object-oriented system

at different stages of development. However, those representations, as Figure 1.1 shows,

are at different levels of abstraction, and capture different types of knowledge. OO analysis

(OOA) is a process of modelling and understanding the system requirements. The main

product of OOA is a model of a part of the real world. While an OOA model is in the

problem domain, OO design (OOD) produce a model of the proposed system’s internal

construction. An OOD model describes how the system will be built without actually

building it. It is often independent of the programming language used.

Reverse engineering tools often recover class diagrams from the source code to describe

the structure and global behavior of object-oriented systems. The extracted class diagrams

are typically at the implementation level of abstraction, and composed of programming

language classes. One way to create high-level representations of object-oriented systems

is to derive class diagrams at the design or higher level of abstraction.

Recovering Design-level Class Diagrams

Object-oriented design models are often documented in UML, which is a standardized

object modelling language that is not tied to a particular programming language [82, 72].

For most OO programming languages, such as JAVA and C++, it is simple to infer the

classes and inheritance relations that one would find in a typical class diagram. However,

other relationships, such as associations, are much harder to infer from code. In UML,

the semantic meaning of a relation may be modified by applying adornments, such as

aggregation, navigability, multiplicity, and role name, to its ends. None of them are the

first-class constructs in most object-oriented programming languages. As a result, it is

difficult to precisely derive design-level class diagrams from source code.

Some reverse engineering tools, especially research tools, seek to bridge the semantic

gap between UML class diagram and programming language. IDEA [47] and RevEng [98]

are able to conjecture the existence of associations based on the presence of weakly typed

containers; Pilfer [92] is able to identify associations, as well as aggregation semantics,

Introduction 7

based on the mappings between the constructs of the UML class model and the C++

idioms; Ptidej [33] analyzes both static and dynamic information of Java programs to infer

use, association, aggregation, and composition relationships.

These tools may help recover some lost design information. However, there is no stan-

dardized way of mapping between UML design models to source code: a given design model

might be reasonably implemented in any of several ways, and a given implementation might

reasonably by modelled by several different UML design diagrams. Furthermore, the re-

covered UML class diagram is still at a low level of abstraction, and unable to describe the

whole system in a concise view.

Slicing Class Diagrams

Objects in analysis models often have counterparts in design models and source code. If the

key objects that model real world concepts and their interrelationships can be extracted

from the source code, then it is possible to reproduce models of object-oriented systems at

the design, and even the specification level of abstraction.

Most reverse engineering tools, such as Rose r© [81] and Together
TM

[96], allow main-

tainers to choose the classes that they are interested in and show the relationships among

the selected classes. However, reasoning based on an incomplete class diagram can be

error prone, as maintainers are unaware of the implicit dependencies that exist through

unselected classes.

Egyed and Kruchten addressed this problem by proposing 60 rules, which are used to

simplify a class diagram by excluding unselected classes and replacing them with transitive

relations between remaining classes [20]. Such an approach relies heavily on maintainers’

expertise in the application domain. Whenever maintainers change the level of abstraction

using a different set of key classes, a new class diagram has to be created from scratch.

Furthermore, the transition from OO analysis to design may not be as smooth as it

might seem. Several researchers believe that an OOA model cannot simply become an

OOD model because the two models represent the aspects of a system that are inherently

distinct [39, 44]: the OOA model is an abstraction of real world, while the OOD model

reflects design decisions necessary to create a practical implementation of the abstraction.

For any system, if they happen to be similar, then it’s an explicit decision of the designer

8 A Hybrid Model for Object-Oriented Software Maintenance

that could have gone another way.

Detecting Design Patterns

A design pattern is a standard solution for a common problem in a given context. It is

often described together with the problem it concerns and the trade-offs it must balance.

If the solution part of a design pattern is identifiable from source code, then it is possible

to deduce design intention and to understand what factors designers may have considered.

Based on this assumption, a number of patten detection approaches have been proposed [2,

34, 36, 48, 70].

Most pattern detection approaches aim to identify a set of well-known patterns, es-

pecially, the twenty-three design patterns defined by the Gang of Four [26]. Researchers

predefine a collection of search criteria, which formalize the constraints that a program

must satisfy to make it an instance of a design pattern. However, the efficacy of design

pattern recovery tools is variable for several reasons: patterns are often hard to encode

precisely, exist in many possible variations, and may depend on run-time structures that

are not statically identifiable. Furthermore, while identifying pattern instances can help

maintainers to recognize and better understand design decisions that have been make, it

does not typically provide a high-level overview of system design and evolution.

1.2.2 Coarse-grained Representations

Another approach to creating a high-level representation is to partition fine-grained entities

into containers, which act as coarse-grained proxies for their contained entities. Such an

approach can be applied recursively to produce a set of representations in a hierarchical

structure.

Coarse-grained representations have already been widely adopted in reverse engineering

for procedural programs because they provide an efficient way to recover the top-down

functional decomposition. Swagkit [87], Rigi [66] and RMTool [67] decompose a program

into a containment hierarchy and show it at different levels of granularity.

Some reverse engineering tools borrow the similar clustering approach to create UML

Package Diagrams [72] for describing object-oriented systems at a coarse-grained level

Introduction 9

of abstraction [40, 68, 80, 84, 99]. They group classes into packages, and then lift the

interrelationships between classes in different packages to become package dependencies.

This approach has several advantages. First, a package diagram can be automatically

generated from source code, as long as the containment hierarchy is given. Second, a

package diagram improves the readability of an implementation-level class diagram, and

provides a big picture of how source code is organized. Third, it is simple to customize ex-

isting reverse engineering tools for extracting, analyzing, and presenting package diagrams.

The biggest disadvantage of this approach is that package diagrams provide little help

in design recovery. A coarse-grained representation is useful if it allows maintainers to focus

on a small number of coarse-grained entities while omitting their internal details. However,

when using package diagrams to understand an object-oriented system, maintainers cannot

ignore the classes and their relations that are hidden within packages because a package

cannot meaningfully represent its contained classes.

A class can be seen as a namespace that encapsulates a set of attributes and the set

of operations performed on the attributes. More importantly, a class defines a type of

objects, and represents the entire collection of the objects of that type [72]. There are

two basic kinds of relationships between classes: inheritance and usage dependencies. An

inheritance relation allows a class to inherit attributes and operations from another class.

A usage dependency, such as calls, between two classes indicates the possible relations

between the objects they represent. Since an object of a class is also polymorphically an

object of the ancestors of the class, usage dependencies must be interpreted in the context

of a class hierarchy.

A package is not a type but a namespace. It does not represent the objects that

its contained classes represent due to the presence of cross-package inheritance. When

classes are grouped into packages, classes become indistinguishable. Hence, knowledge

about class hierarchies is not easily accessible at the package level, and cross-package

usage dependencies no long connote the dependencies between objects because of the loss

of interpretation context. As a result, a package fails to capture the important properties

of classes as types of objects at a coarse-grained level.

10 A Hybrid Model for Object-Oriented Software Maintenance

����

����

���������	
�

�
�	�	�

�����
�

���	
�

����

���	
�

����

���	
�

����

�
�	�	�

�����
�

�
�	�	�

�����
�

�

�

�

Figure 1.2: The Hybrid Model of a Library System

1.3 Thesis Statement

In this thesis, we propose a new program model, called Hybrid Model, for describing object-

oriented software systems at a coarse level of granularity. A Hybrid Model is derived from

a package diagram, and preserves the original package containment hierarchy, but it differs

from the package diagram in that it summarizes the essential properties of classes as both

namespaces and the types of objects.

Figure 1.2 shows an example Hybrid Model, which is derived from the package diagram,

shown in Figure 2.4, of a library management system. Each node of a Hybrid Model

represents a package, as well as the collection of objects that can be instantiated from the

Introduction 11

concrete classes of the package. On the boundary of each package, we explicitly describe

the classes that the package inherits from others (top boundary), and the classes that

the package is expected to be extended by others (bottom boundary). In addition, we

describe how the objects the package represent use (right boundary), and are used by

(left boundary) objects outside the package. The edges of a Hybrid Model represent the

communication path among objects.

We argue that

The Hybrid Model is useful in reverse engineering large object-oriented software

systems. It provides a foundation for reverse engineering analysis at a coarse

level of granularity.

The goal of this thesis is to show the usefulness of Hybrid Models in software main-

tenance and evolution. In particular, we develop several approaches and techniques that

make use of Hybrid Models to assist:

1. Program Comprehension. A Hybrid Model captures the essential properties of an

object-oriented system on successively higher levels, and supports program compre-

hension at various levels of granularity. At a high level, the Hybrid Model describes

the structural and behavioral information of packages that are externally visible to

others. This information is useful for understanding a package as a whole, analyzing

its responsibilities, and mapping it to real world concepts. At a low level, a Hybrid

Model provides necessary context for a selected scope, and allows maintainers to

study one package at a time. With the Hybrid Model, maintainers can comprehend

an object-oriented system top-down, bottom-up, or both.

2. Architectural Analysis. A Hybrid Model explicitly captures cross-package inheri-

tance relations and all possible usage dependencies between packages. It enables us

to perform dependency analysis at the architectural level. We identify a selection of

patterns based on the external properties of packages. Those patterns help better

understand the overall structures of packages, the nature of their interdependen-

cies, and the application of key object-oriented concepts, such as data abstraction,

inheritance, encapsulation.

12 A Hybrid Model for Object-Oriented Software Maintenance

3. Evolutionary Analysis. The difference between the Hybrid Models of successive ver-

sions of a software system provides not only an overall picture of the system evolution,

but also an opportunity to investigate the detailed structural change in a selection

scope at a preferred level of granularity. Using the Hybrid Model, we identify a col-

lection of change patterns, which help capture and better comprehend architectural

evolution of object-oriented software systems.

1.4 Contributions

The contribution of this thesis can be summarized as follows:

1. Identify the important properties of an object-oriented program at coarse-grained

levels.

2. Provide a coarse-grained program model notation to represent object-oriented sys-

tems at system level.

3. Provide tool support for constructing, analyzing and visualizing the new program

model.

4. Support a divide-and-conquer strategy to deal with the complexity in program com-

prehension.

5. Provide a means to analyze the architecture of object-oriented programs.

6. Facilitate evolutionary analysis at the architectural level.

1.5 Organization of the thesis

This thesis is structured as follows:

• In Chapter 2, we present an overview of the state-of-the-art in model creation for

object-oriented systems. We study existing coarse-grained representations used in the

analysis and design stage of the software development process, and describe current

Introduction 13

approaches to extract those representations from the source code, as well as the

advantages and drawbacks of those solutions.

• In Chapter 3, we argue that a novel program model is needed to capture the essential

properties of an object-oriented system, and we define such a model, called Hybrid

Model. We present the notation of the Hybrid Model and elaborate its constructs.

• In Chapter 4, we apply the Hybrid Model to aid program comprehension and remod-

ularization using LSEdit system as a case study.

• In Chapter 5, we use the Hybrid Model to analyze object-oriented systems at the

system level of abstraction using Apache Ant as a case study.

• In Chapter 6, we apply the Hybrid Model to analyze the evolution of Apache Ant.

• In Chapter 7, we summarize the main contributions of our work and describe possible

future work in this research field.

Chapter 2

Background and Related Research

This thesis concerns creating high-level design models of object-oriented software systems.

The topic is not new. In fact, models are the major products of both forward and reverse

engineering. Forward engineering may be defined as “the process of moving from high-level

abstractions and logical, implementation-independent designs to the physical implemen-

tation of a system.” [11] Reverse engineering, on the other hand, typically starts from an

existing implementation, and seeks to recreate representations of software systems at the

design, architectural, or even specification level of abstraction.

This chapter presents the state of the art in representations for object-oriented systems.

We particularly focus on coarse-grained representations, since they play an important role

in modelling large software systems.

Structure of the chapter. The chapter is organized as follows. Section 2.1 presents

some key object-oriented concepts. Section 2.2 discusses several programming abstractions

that are coarser than classes. Section 2.3 review several influential descriptions of large

systems at the architectural level of abstraction. Section 2.4 discusses existing represen-

tations used in reverse engineering. Finally, we discuss the problems in the area of model

creation for reverse engineering purposes.

15

16 A Hybrid Model for Object-Oriented Software Maintenance

2.1 Key Object-Oriented Concepts

An object-oriented system is typically composed of a collection of communicating objects

that cooperate with one another to achieve some desired goals. Each object has identity,

state, and behavior. It can be thought of as a black box, which receives messages, processes

them, and provides services that other objects require.

Similar objects form classes. According to UML 2.0 specification, a class is both a

namespace and a type [72]. As a namespace, a class encapsulates a set of attributes and

the set of operations performed on the attributes. At the same time, a class is a type of

objects, and represents the entire collection of the objects of that type.

Besides objects and classes, object-oriented design is based on several powerful mod-

elling techniques, including abstraction, encapsulation, inheritance, and polymorphism.

• Inheritance is the mechanism to form new classes based on existing ones. A new

class (also known as a derived class or subclass) extends or tailors the properties and

behaviors of an existing class (also known as a base class or superclass), while adding

its own functionalities to meet special needs. With inheritance, programmers can

reuse the common code among classes. A class, along with its ancestors, describes the

common structure and behavior that are shared by the objects the class represents.

• Abstraction is the ability to deal with objects in a general sort of way, and only de-

notes the essential properties and methods of objects. A class is a unit of abstraction

in object-oriented analysis, design and programming.

• Encapsulation (also known as information hiding) is the ability to separate interface

from implementation. With encapsulation, each object hides its data and methods,

while interacting with other objects through a deliberately designed interface.

• Polymorphism is the ability for objects of different types to respond to the same

message in different ways. In object-oriented programming, an object of a derived

class is also an object of the base class of the class. Programmers can treat the

derived class’s members just like the base class’s members, and write generic code

based on the interface of the base class. At run-time, a reference (or pointer) of the

base class may refer to objects of the class or any of its inheritance descendants, and

Background and Related Research 17

dynamic dispatch may be used to decide which implementation of a given method

should be called.

2.2 Coarse-grained Entities

Object orientation is a paradigm of software development that models the problem and its

solution in terms of a collection of objects. Both analysis and design focus on identifying

objects, and modelling their interrelationships. Various models can be created to show

the static structure, dynamic behavior, and run-time deployment of these collaboration

objects, such as UML class diagrams [72], sequence diagrams [72], etc. However, classes

and objects are too fine-grained level to model large-scale systems. OO methodologists

address the scale issue by inventing more coarse-grained entities for modelling software

systems at a higher level of abstraction.

Existing coarse-grained entities in object-oriented analysis and design can be roughly

classified into two categories: containers and conceptual entities. Both are composed of

a collection of classes, but are introduced to software development for different purposes.

A container is mainly used to organize classes, while a conceptual entity is a unit of

abstraction in analysis and design.

2.2.1 Containers

A container is a mechanism for organizing identified classes. Containers are often intro-

duced after the classes are well understood. OO methodologists often give general guide-

lines of how to partition classes. For example, the classes that change together belong

together, and classes that are not reused together should not be grouped together [59].

However, these guidelines typically do not specify how containers should communicate

with each other. Therefore, a containers contains a collection of abstraction units, but the

container need not be a design abstraction, or represent real-world entities. Examples of

containers include Coad and Yourdon’s Subjects [13], Booch’s Class Categories [6], and

UML Packages [72].

18 A Hybrid Model for Object-Oriented Software Maintenance

Coad and Yourdon’s Subjects

Coad and Yourdon create subjects based on initial OOA investigations. When there are

too many classes in an analysis model, subjects are added to the model by promoting the

classes at the top level of the class hierarchy. The main purpose of subjects is to guide

readers through a large model. A class may be placed in more than one subject for the

navigation purposes. Although the authors suggest that a large system can be decomposed

into subjects just as a problem domain is decomposed into sub-domains, they provide little

discussion about the relationships between subjects.

Booch’s Class Categories

Booch introduces class categories for modularization of object-oriented systems. A class

category is defined as “a cluster of classes that are themselves cohesive, but are loosely

coupled relative to other clusters.” Each class category represents an encapsulated name

space, which can contain other class categories, and use other non-nested class categories.

A using relationship between two class categories indicates classes in one category inherit

or use classes in another. The idea of class categories is an informal one. Booch does

not explicitly define what the structure or interface of a class category might look like,

although he does state that it should be possible for a class category to enforce visibility

constraints on its contained elements with respect to the outside world.

UML Packages

A UML packages is a construct that can contain a set of any UML model elements of the

same kind, such as use cases, classes, and other packages. A package diagram describes

the organization of packages and their elements. When used to organize classes, a package

represents a namespace, and a package diagram provides a visualization of the namespaces.

In UML, there are three types of relationships between packages: PackageMerge, Pack-

ageImport, and Dependency.

• A PackageMerge relation indicates the model elements in the target package are

merged into the source package. Model elements in the target package that do not

Background and Related Research 19

have a corresponding element with the same name in the source package are sim-

ply copied into the source package. If two elements have the same name, the the

characteristics of both elements are merged together into one elements.

• A PackageImport relation indicate that model elements from the source package can

refer the elements within the target package with unqualified names.

• A Dependency between two packages indicates that the source package depends on

— that is, has semantic, structural, or syntactic knowledge of — the elements in the

target package.

2.2.2 Conceptual Entities

Conceptual entities are typically used in top-down decomposition. Each conceptual en-

tity is a unit of abstraction in analysis or design, which can be further decomposed into

a collection of classes or objects. A conceptual entity hides its implementation details,

and communicates with others through its explicitly defined interface. Examples of con-

ceptual entities includes Wirfs-Brock et al. Subsystems [106], De Champeaux’s Ensem-

bles [15], UML Composite Objects [72], and Components in architectural representations

(Section 2.3).

Wirfs-Brock et al. Subsystems

Wirfs-Brock et al. introduced subsystems to their responsibility-driven design. A sub-

system is defined as a group of classes or other subsystems collaborating to accomplish a

set of related responsibilities. Subsystems can be used in both bottom-up and top-down

design. In bottom-up design, subsystems can be identified through inspection of collabo-

ration diagrams, while in top-down design, subsystems allow designers to start with the

system responsibility, partition system into parts, and assign responsibility to each part

of the system. Wirfs-Brock et al. also stated that a subsystem is a kind of UML compo-

nent [65]. Thus, a system can be represented using UML component diagrams, which will

be discussed in Section 2.3.3, along with other architectural representations.

20 A Hybrid Model for Object-Oriented Software Maintenance

De Champeaux’s Ensembles

De Champeaux uses Ensembles to partition large systems in order to support a top-down

object-oriented analysis method. An ensemble encapsulates a group of objects or other

ensembles that “naturally go together — usually because they participate in whole-to-part

relationships”. It hides the details of composing objects that are irrelevant to outside the

ensemble, and acts as a proxy that forwards messages to external objects and ensembles.

An ensemble class is the class of ensembles. It allows designers to define the types of

ensembles, instead of individual ensembles. In another word, ensembles are analogous to

conventional objects and ensemble classes are analogous to conventional classes, especially

those that make use of composition or aggregation.

Composite Objects

A composite object is an object that is composed of other objects. UML 2 introduces a new

model, the composite structure diagram to describe the internal structure of a composite

objects, and explore the collaborations that this structure makes possible [72]. The diagram

provides an alternative to model the whole-part relations that is more powerful that UML

class diagrams.

Figure 2.1 shows an composite structure diagram that depicts an instance of FTP

session. It is composed of the following UML constructs.

• Parts, which are the instances of classes that participating in an internal structure.

For example, ftpVisitor represents the instance that is owned by a containing classifier

instance visitor.

• Ports, which are the externally visible properties of containing classifier instances.

For example, ftpIn and ftpOut define the interface between the classifier Computer

and its environment.

• Connectors, which represent communication links between parts. For example,

FTPConnection binds visitor and host together, allowing them to interact at run-time.

Background and Related Research 21

���������	

������
�
�������� ����
�
��������

����������
�
�������

�������
�
�������

�����		�����	

����	
�
�����������

������
�
��������

Figure 2.1: An Example Composite Structure Diagram (Adapted from Reference [5])

In addition, a composite structure diagram may contain collaborations, which defines

the cooperation between instances, indicating the objects and the roles that they take

within the collaborations.

2.3 Representations in Architectural Design

Architectural design is vital in the development of large software systems. It divides

a system into components, and allows multiple teams to work on different parts of the

system at the same time. Architectural design has become an important part of object-

oriented design. Many OO methodologists claim that components should identified before

the objects [32]. In this section, we review several influential descriptions of large systems

at the architectural level of abstraction.

2.3.1 Module Interconnection Languages

In their foundational paper on Module Interconnection Languages (MILs), DeRemer and

Kron distinguish programming-in-the-large (PitL) from programming-in-the-small (PitS).

PitL focuses on the the composition of large systems out of modules, while PitS is concerned

about the implementation of the individual modules. The authors believe that a separate

22 A Hybrid Model for Object-Oriented Software Maintenance

language, other than the traditional programming languages, should be used to accurately

record the overall architecture of software system. They proposed such a language, called

MIL75 [17].

A MIL75 specification describes a large system as an inverted tree. The root represents

the whole system. A system is decomposed into modules, which can be further decomposed

into sub-modules. Another key construct of MIL75 is resource. A resource is any entity

that can be named in a programming language, such as a variable, a procedure, or a type.

A MIL75 specification also includes the description stating the relationships among

modules and resources. These relationships can be divided into three categories.

• The contain relationship captures the hierarchical relation between modules and

submodules.

• The function of the modules are described in terms of define, provide, and require

relationships among the modules and the resources.

• The access relationship specifies the channels for resources flow among the constituent

modules of the system.

A MIL75 specification can be checked for consistency by a compiler using static type-

checking at an intermodule level of abstraction. For example, a resource can only be defined

in one module; a provided resource comes from either the module or one of its submodules;

the actual usage of resources by module conforms to the access channel.

Most modern views of software architecture are strongly influenced by the MIL75 ap-

proach. That is, a software system consists of a hierarchical containment tree of pro-

gramming entities, such as procedures, variables, etc., and their containers overlaid with

relationships between those entities, which in turn induce relationships between their re-

spective containers.

2.3.2 Architecture Description Languages

Architecture Description Languages (ADLs) are used to formally represent the architecture

of software systems. A number of ADLs have been developed, primarily by researchers, to

Background and Related Research 23

allow for formal and unambiguous descriptions of architecture. Examples include C2 [62],

Darwin [56], MetaH [4], Rapide [54], UniCon [86], Weaves [30] and Wright [1].

In their survey of existing ADLs, Medvidovic and Taylor summarized the key concepts

that an ADL must be able to explicitly model about an software architecture: [63]

1. Components — The functionality of a system is divided into smaller computation

units called components. Some ADLs utilize formal semantics to define component

behaviors. Example formal specification theory includes Communicating Sequential

Processes (CSP) [37], partially-ordered event sets [55], and the Z notation [90]. The

others capture component behaviors as an implicit part of the component interfaces

and the collaboration with others.

2. Interfaces of components — A component’s interface specifies the services that

the component provides. It is composed of a set of interaction points, through which

the component communicates with others. All ADLs explicitly model a component

interface besides the component that exhibits the interface. Most ADLs distinguish

between provided and required interfaces.

3. Connectors — The connectors model the interrelationship among components.

Connector semantics, as well as the rules that the connector must obey, can be

used for reasoning about the behaviors of attached components.

4. Architectural configurations — Architectural configurations, or topologies, are

connected graphs of components and connectors that describe architectural structure.

Due to the usage of formal methods, ADLs are typically expressive and powerful. Their

rich semantics enables extensive analysis on designed architectures. But at the same time,

they require a steep learning curve. Developers typically need specialized training to un-

derstand and use ADL technology, which may explain why they have had little use outside

of research.

2.3.3 UML Component Diagrams

Unlike MILs and ADLs, component diagrams of UML 2.0 [72] use a graphic represen-

tation to model software architectures. The key constructs of a component diagram are

24 A Hybrid Model for Object-Oriented Software Maintenance

components and connectors.

Like an ADL component or a MIL module, a component of a UML component diagram

is self-contained. The behavior of a component is defined in terms of the services it provides

to its environment as well as the services that it expects from its environment.

A component communicates with other components through a set of interaction points,

called ports. Interfaces associated with a port specify the nature of the interactions that

may occur over a port.

Connectors specify the links that enable communication between two components.

There are two types of connectors: assembly connectors and delegation connectors.

• An assembly connector specify a usage dependency between two component. One

component provides the services that another component requires.

• A delegation connector links the externally provided interfaces of a component to the

parts that realize or require them.

As a part of the standard modelling language, a component diagram offers a vehi-

cle of expression and communication among wider users. Compared to MILs and ADLs,

however, a component diagram is less formal and less powerful in terms of precisely de-

scribing the software architecture [63]. The relative simplicity of UML components is also

an advantage. Developers intuitively understand that they model “containers” without

requiring advanced mathematical expertise to create system models. when more advanced

semantics are needed in the models, they can be added using Object Constraint Language

(OCL) [103]; Medvidovic and Rosenblum introduced specialized extensions to the standard

component diagram, exploring OCL to specify the ADL-specific concepts [61].

2.4 Model Creation in OO Reverse Engineering

Reverse engineering tools focus on abstraction and analysis of software systems in an

effort to create accurate and meaningful representations from the source code. According

to the level of details, the extracted representations of object-oriented systems can be

classified into three categories: code level, class or object level, and coarse-grained level.

Background and Related Research 25

The representations at a lower level of abstraction are often used to create the ones at a

higher level of abstraction.

In this section, we use an example program to discuss how existing representations

depict an object-oriented program. Figure 2.2 shows partial code of a simple library man-

agement system. This example program is also used in Chapter 3.

2.4.1 Code-Level Representations

A code-level model of an object-oriented system contains almost the same amount of in-

formation as the source code of the system. Examples of the code-level representations

include Datrix Model and Object Flow Graph (OFG).

Datrix is a source code analysis tool developed at Bell Canada [49]. It uses the Datrix

Model, an Abstract Semantics Graph (ASG), to model software systems. The Datrix Model

of a system is semantically equivalent to the source code of the system. Thus, it contains

sufficient information for any kind of reverse engineering analysis, such as control-flow

analysis and program slicing. CPPX, a C/C++ fact extractor, can also produce Datrix

Models from C/C++ programs [14].

Tonella and Potrich use Object Flow Graphs (OFGs) to represent Java programs [97].

Each node on an OFG represents a program location, such a local variable, a parameter,

etc. An edge is present between two nodes if one location is used to define the other

location. The authors perform static analysis on OFG in order to create representations at

a higher level of abstraction, including UML class diagram, UML sequence diagram, and

UML state diagram.

2.4.2 Class- or Object-Level Representations

Most existing reverse engineering tools seeks to create representations at the class or object

level of abstraction because classes and objects are the basic building blocks of object-

oriented programs. A class- or object-level Representation contains information about

classes or objects, their fields and methods that are visible to others, and their interrela-

tionship. The representations at this level of abstraction can be further divided into two

categories: object-centered and class-centered representations.

26 A Hybrid Model for Object-Oriented Software Maintenance

/* From Library.java */ /* From Catalog.java */

package A; package A;

public class Library extends Object { public class Calalog {

private Hashtable fUsers; public void retriveInfo(String key) {

private Catalog fCatalog; ...

public Patron login(String id, String pwd) { while (iter.hasNext()) {

user = (Patron)fUsers.get(id); Item it = (Item) iter.next();

if (user.verifyUser(pwd)) it.showDetails();

... }

} }

public void logout(Patron){...} ...

... }

} /* From Item.java */

/* From Patron.java */ package A;

package B; public interface Item {

public abstract class Patron { public void showDetails();

public abstract boolean verifyUser(String pwd); public boolean okToBorrow(Patron p);

public void search (String key) { }

... /* From Student.java */

Catalog mCatalog = ...; package B;

mCatalog.retrieveInfo(key); public class Student extends Patron {

} public void verifyUser (String pwd) {...}

public void borrow(Book bk) { ...

if (bk.okToBorrow(this)) }

... /* From Book.java */

} package B;

... public class Book implements Item {

} public void showDetails() {...}

/* From Faculty.java */ public boolean okToBorrow(Patron p) {...}

package C; ...

public class Faculty extends Patron { }

public void verifyUser (String pwd) {...} /* From Video.java */

public void borrow(Video vd) { package C;

if (vd.okToBorrow(this)) public class Video implements Item {

... public void showDetails() {...}

} public boolean okToBorrow(Patron p) {...}

... ...

} }

Figure 2.2: Source Code of an Example Library Management System

Background and Related Research 27

Object-Centered Representations

An object-centered representation depicts a sequence of messages that occurs among a

number of objects. In object-centered representations, objects are the basic units since an

object can not be partially instantiated. Those objects can be thought of as black boxes,

which receive messages, process them, and provide services that other objects require. Since

the behavior of an object-oriented system emerges from the interactions occurring among

the run-time objects of the system, object-centered representations provide the behavioral

information of the system. Examples of object-centered representations include sequence

diagrams [72] and collaboration diagrams [82], and call trees [77].

Object-centered representations can be static or dynamic. A dynamic object-centered

representation is extracted from the execution trace of a target system. Thus, it contains

a precise description of the system’s behavior during one particular run. The completeness

of a dynamic representation relies on the execution scenarios chosen during extraction.

Reverse engineering tools, such as CAFFEINE [33], Jinsight [77], and Fujaba [69], can

produce dynamic object-centered representations to capture the behavioral perspective of

object-oriented systems. Figure 2.3 shows a sequence diagram that represents the partial

execution trace of the example library management system during a borrowing scenario.

A static object-centered representation is extracted from the information available dur-

ing the compile time. It is intended to represent every possible run of a target system.

Due to the use of polymorphism and late binding, the extracted static representations are

generally conservative; that is, some of the extracted interactions may never occur in ac-

tual runs of the system. Borland Together
TM

can statically derive sequence diagram, which

can approximate the run-time behavior of a single method [96]. RevEng can also produce

static collaboration diagrams using OFG [99].

Class-Centered Representations

A class-centered representation focuses on composing classes and their relations. In a

class-centered representation, a class is a software module, which is composed of a set of

related variables and the methods that operate on them. A class can inherit attributes and

methods from other classes. Some reverse engineering tools can also extract association,

aggregation, and composition relationships between classes. As a class-centered represen-

28 A Hybrid Model for Object-Oriented Software Maintenance

� � �

�����������	���
��
��� ���������

����������

���

������

������	�

�	����

�	���	�	����

�����	�����

���������

�����

�����	�����

������

����������

������	�

����
�

����
�

�	������	�

Figure 2.3: Reverse Engineered UML Sequence Diagram of the Example Library System

Background and Related Research 29

����

����

�	
��

����
��

����
��

���
���

������

�	�����

�

�

�

�������� ��������

��������

�
�
�
�
��
�
�

��������

�
�
�
�
��
�
�

Figure 2.4: Reverse Engineered UML Class Diagram of the Example Library System

30 A Hybrid Model for Object-Oriented Software Maintenance

tation captures the static structure of an object-oriented system, it is the primary source

of information used to acquire a logical view of the system. Examples of class-centered

representations include ER-style diagrams and class diagrams [72]. Most existing reverse

engineering tools can produce class-centered representations.

In addition, reverse engineering tools often use class-centered representations to de-

scribe the global behavior information of object-oriented systems. In the object-oriented

paradigm, a class is a type of objects, and represents the entire collection of the objects

of the type. Thus, a method invocation or variable access between two classes indicates

the possible communication between the objects they represent. For example, Figure 2.4

is the class diagram of the example library management system. It depicts all possible

call dependencies, which are viewed as stereotyped dependencies, between classes. A call

dependency, as well as other usage dependencies, must be interpreted in the context of a

class hierarchy, since an object of a class is also polymorphically an object of the ancestors

of the class.

2.4.3 Coarse-grained Representations

Some object-oriented reverse engineering tools apply automated clustering techniques to

generate coarse-grained representations of object-oriented systems in order to provide bet-

ter readability of fine-grained representations. Since object-oriented systems are often

modelled in terms of either objects or classes, there are two corresponding clustering ap-

proaches: class clustering and object clustering.

Object Clustering

In object clustering, the set of all run-time objects is partitioned into groups, and the

communications between objects of different groups become the interrelationships at a

coarse-grained level. AVID[102] and Program Explorer [50] support the visualization of

dynamic execution trace at different levels of granularity by grouping run-time objects.

Figure 2.5 is a package diagram that summarizes the collaboration among objects at a

package level of abstraction. It is generated from the sequence diagram of Figure 2.3 by

clustering objects into their created classes, and then into packages. For each package, we

Background and Related Research 31

�

�

�

������	

��
���

�����

�����
	

����

Figure 2.5: Coarse-grained Interaction Diagram of the Example Library System

list the types of the objects that are depended on by objects in other packages.

When used to organize objects, package diagrams help maintainers to understand the

assignment of system responsibility. However, it can be difficult to identify the structure

of a system, because classes and inheritance hierarchy are not part of object-centered

representations. In Figure 2.5, there is no information about abstract classes, such as

Patron and Item, because they cannot be instantiated, although they do contribute to the

behavior of their subclasses, and message dispatching at run time.

Class Clustering

Class clustering combines the classes of a system into containers, typically packages or

namespaces. For example, class clustering may be applied to a class diagram to create

a package diagram, which is a higher-level structural model of a system. Both inheri-

tance and usage dependencies between classes contribute to the inter-package dependen-

cies. Most reverse engineering tools using static analysis support the generation of package

diagrams [40, 68, 80, 84, 99].

Figure 2.6 depicts the package diagram of the example library management system,

32 A Hybrid Model for Object-Oriented Software Maintenance

�

�

�

������	

��
���

�
��

��
���

Figure 2.6: Package Diagram of the Example Library System

which was created from the class diagram of Figure 2.4 by clustering classes into packages.

For each package, we list the classes that are depended on by classes in other packages.

When used to organize classes, package diagrams capture the compilation dependen-

cies among a set of namespaces. While a package diagram provides better readability of

classes and their interrelations, it harms the comprehensibility of objects as independent

units, because the full semantics of an object can end up being distributed across multiple

packages due to the presence of inheritance. In Figure 2.6, package A provides class Item,

however, the behavior of an object Item is defined in the other two packages. It is diffi-

cult to capture the collaboration between objects using the package diagram, although the

underlying class diagram does contain some behavioral information.

2.5 Discussion

Both forward and reverse engineering produce coarse-grained representations of object-

oriented software systems. However, those representations are at different levels of ab-

straction, as shown in Figure 1.1. In software development, a large system is typically

Background and Related Research 33

divided into a collection of coarse-grained entities. Each entity fulfills certain responsibili-

ties, and collaborates with others to achieve the system responsibilities. Those design-level

coarse-grained entities are eventually implemented as a collection of classes in the source

code. Reverse engineering tools often use package diagrams to describe object-oriented

systems at the implementation level of abstraction, because package diagrams are the only

coarse-grained representations that can be automatically derived from the source code.

The main purpose of reverse engineering package diagrams is to summarize the im-

portant properties of the fine-grained entities, and help maintainers to identify the coun-

terparts of physical packages in the design-level models. To achieve this goal, reverse

engineering tools must be able to capture both the structure and behavior information of a

group of objects. However, for object-oriented programs, this is particularly hard because

“An object-oriented program’s run-time structure often bears little resemblance to its code

structure” [26], and a coarse-grained representation fails to capture information from both

structures.

An object-oriented system is typically composed of a collection of communicating ob-

jects that cooperate with one another to achieve some desired goals. While objects are the

basic units of object-oriented systems, it is difficult to manipulate them directly as they ex-

ist only during run-time. Instead, programmers write classes to describe the properties and

behaviors that their objects will have. As a result, the source code of an object-oriented

program is organized in terms of classes, while the execution of the program is composed

of run-time objects.

The use of OO features, such as inheritance and polymorphism, further widens the gap

between the code structure and the run-time structure of an object-oriented program. Be-

cause of the presence of inheritance, full semantic description of an object can be dispersed

within the inheritance hierarchy. The use of polymorphism makes it difficult to trace

the communication between objects based on the static information. To acquire needed

information from both the code and run-time structure of an object-oriented system, pro-

grammers rely heavily on the mapping relations between classes and objects. However,

the only connection between the two structures is no longer available at the coarse-grained

level of abstraction.

Due to the gap between the code and run-time structure of an object-oriented system,

34 A Hybrid Model for Object-Oriented Software Maintenance

neither object clustering nor class clustering can produce accurate and meaningful high-

level representations that summarizes all important information about a target system.

Each clustering approach promotes the comprehensibility of one structure while ignoring

the other one. This make it more difficult to make use of information of both structures

at the coarse-grained level of abstraction. Therefore, the traditional clustering approach is

ill-suited for creating high-level abstractions of object-oriented systems.

To summarize, to recover high-level representations of an object-oriented system, we

must be able to capture both structural and behavioral information of a group of ob-

jects. In the remainder of this thesis, we propose and validate a new program model of

object-oriented systems, called Hybrid Model, which can be extracted from code using

reverse engineering techniques and can aid software developers in performing a variety of

maintenance tasks.

Chapter 3

A Hybrid Model

In this chapter, we present a new program model of object-oriented systems at a coarse-

grained level of abstraction. We call the new model the Hybrid Model.

Structure of the chapter. We discuss the important design decisions we have made

about the new model (Section 3.1). Then we introduce the new mode, and interpret its

the notation (Section 3.2). We also present the approach to construct Hybrid Models

(Section 3.3), and describe the means to customize Hybrid Models (Section 3.4). Finally,

we compare the Hybrid Model with traditional architectural representations (Section 3.5).

3.1 Overview

Abstraction is the mechanism to omit details in order to expose the essential informa-

tion that is relevant for a particular purpose. Our approach to modelling object-oriented

systems applies the concept of abstraction to deal with the complexity involved in the

description of large software systems. Thus, before describing the new program model, we

have to consider the following questions:

• What are the objectives of the new model?

• What are the decomposition or composition units?

• What properties of the units are important and what are not?

35

36 A Hybrid Model for Object-Oriented Software Maintenance

3.1.1 Objectives

Chikofsky and Cross state that “the primary purpose of reverse engineering a software

system is to increase the overall comprehensibility of the system for both maintenance

and new development.” [11] They list six key reverse engineering objectives: cope with

complexity, generate alternate views, recover lost information, detect side effects, synthesize

higher abstractions, and facilitate reuse.

We intent to create a program model for reverse engineering and maintenance of object

oriented software systems. Our main focus is to automatically extract a coarse-grained

level representation from source code, in order to help recover the architectural design of

a target system. In particular, we seek to

• provide a concise overview of the implemented program, and improve the readability

of fine-grained representations;

• summarize the essential properties of the programming language classes and objects,

and form a foundation for various reverse engineering analysis at a coarse-grained

level; and

• support the detection of design-level coarse-grained entities, facilitate the recovery of

architectural design, and aid high-level program comprehension.

3.1.2 Units of Composition and Decomposition

Problem decomposition and solution composition is a problem-solving technique commonly

applied in software development. A complex system is typically decomposed into compo-

nents, subsystems, or objects. Those design abstractions focus on what they do, while

hiding their detailed implementation. They collaborate with one another through their

well-defined interfaces to achieve system-level responsibilities. Each design abstraction can

be implemented independently into one or more run-time objects, which are manipulated

through their static description organized in terms of programming language classes.

Reverse engineering is about moving backward from some physical implementation

to more abstract models. To recover the design model, it would be ideal for reverse

A Hybrid Model 37

engineering tools to group together the programming language objects that implements

a design abstraction, and describe how the group communicates with others.

We consider a concrete class as the basic unit of composition and decomposition. Each

concrete class not only is a compilation unit, but also represents the entire collection of the

objects that can be instantiated from the class. Thus, when we divide the concrete classes

of an object-oriented program into groups, we also divide all possible run-time objects of

the program.

A group of concrete classes form a coarse-grained entity, called an Aggregate Compo-

nent. It can be derived from a container that contains a group of programming language

classes, such as a Java package, a C++ namespace, a file-system directory, or a user-defined

container. However, unlike the original container, an aggregate component represents not

only the container, but also the collection of objects that can be instantiated from the

concrete classes that the container contains.

As discussed in the previous chapter, there is a semantic gap between objects and

their static description due to the presence of inheritance. Conceptually, an abstract class

contains a partial blueprint of the objects that its concrete subclasses will implement, and

should be understood along with its subclasses. Therefore, while some classes may not be

members of the underlying container, their presence is felt in the contributions they make

to the concrete subclasses that are contained in the container. Some abstract classes, on

the other hand, may indeed belong to the container, but logically they are a part of the

container that contain their subclasses.

To bridge the gap between objects and their static description, we allow an aggregate

component to contain the classes that are physically contained in the original container, or

logically contribute to the static description of the objects that the component represents.

In UML terminology, aggregate components are compositions of objects, and aggregations

of classes, because an class may belong to multiple aggregate components if the descendants

of the class belong to different containers.

3.1.3 Essential Properties

Our approach uses aggregate components to group objects and classes in order to yield a

simplified view. The relationships of the collapsed classes and objects become part of the

38 A Hybrid Model for Object-Oriented Software Maintenance

interface of the aggregate components.

We treat inheritance relations and usage dependencies separately at a coarse-grained

level, because they are different from each other. An inheritance relation is a structural

dependency, in which one class requires another class for its full definition, while in a usage

dependency, one class requires another class for its specification. An inheritance hierarchy

provides the the necessary context for the interpretation of usage dependencies. As a result,

the external visible properties of aggregate components come from two sources:

• Inheritance relations between classes:

An aggregate component is derived from a container. It summarizes the inheritance

relations the original container involves in terms of the classes that the container

inherits from others, and the classes that the container expects to be extended by

others.

• Usage dependencies between objects:

An aggregate component serves as a proxy for the objects it represents. Its interface

describes how those objects use and are used by the objects outside the component.

3.2 Notation

In this section, we present the notation of Hybrid Models in order to facilitate further

discussion. Figure 3.1 graphically represents a Hybrid Model using a tree-like hierarchy,

in which a container component is arranged on the top of its containee components. Al-

ternatively, a Hybrid Model can be displayed using a nested graph, in which a containee

component is nested inside its container component. For example, Figure 3.2 depicts the

Hybrid Model of the example library management system.

As shown in Figure 3.1 and Figure 3.2, resources, components, ports, and connectors

are the four key elements of a Hybrid Model.

A Hybrid Model 39

��
��
��
��

���������
	

	�
��
��
��

��
�	
��
��
�

�
	
	�������

���	�����

���
	��

���	�

������

���	�

������
�	���	��

���	�

�������

����	���	�
�����	���� ����	���	�
�����	����

����	���	�
�����	����

���	��
�

���	�����

 	!	
�"

 	!	
�"#$

Figure 3.1: Hybrid Model Notations

3.2.1 Resource

We define a resource [17] as any entity that can be named in a programming language,

such as an instance or class variable, a method, or a type. For example, login is a method

resource, and Library is a type resource.

3.2.2 Component

A component [63, 72] is a logical computation unit that provides resources to its environ-

ment and may also require resources from its environment. The internal implementation

is encapsulated and hidden from its environment. There are two types of components:

• A Class Component, Class for short, is derived directly from a programming language

class. It is a specialized UML class that can be linked to other components via con-

nectors. For example, Library, Book and Faculty in Figure 3.2 are class components.

• An Aggregate Component, Component for short, corresponds to a container in a

40 A Hybrid Model for Object-Oriented Software Maintenance

����

����

���������	
�

����

�

����

�����
�

�������

�������

���	
�

���	�	�

����

���	
�

���	�	�

�����
�

����

���	
�

���	
�

����

���	
�

����

���	�	�

�����
�

���	�	�

�����
�

�

�

�

Figure 3.2: Expanded Hybrid Model of the Example Library Management System

A Hybrid Model 41

containment hierarchy. In Figure 3.2, A, B and C are aggregate components. An

aggregate component can be shown either collapsed or expanded. In Figure 3.2, all

aggregate components are expanded, and their internal structures are visible. In

Figure 1.2, all components are collapsed and labelled with the properties that are

externally visible.

As discussed in the previous section, an aggregate component is derived from a con-

tainer, and represents the collection of objects that can be instantiated from the concrete

classes contained in the container. According to the physical location and the contribution

to the objects represented by a given aggregate component, the classes of an object-oriented

system fall into one of four categories:

• Defined Classes, visually represented as the solid boxes in the center of a component,

are contained in the original container, and contribute to the static description of the

objects the component represents. In Figure 3.2, Book is a defined class of component

B, since Book is declared and defined in package B.

• Ghost classes, visually represented as the dashed boxes in the center of a component,

contribute to the static description of the objects the component represents, but do

not physically belong to the original container. The names of ghost classes are also

listed on the top boundary of the component, as they reflect the cross-boundary

inheritance the original container involves. In Figure 3.2, Item is a ghost class of

both component B and C. It is originally declared in package A, and implemented in

package B and C.

• Exiled classes, visually represented as the bottom boundary of a component, are

contained in the original container, but make no contribution to the static description

of the objects the component represents. In Figure 3.2, Item is an exiled resource of

component A, since it is declared but not implemented in package A.

• External classes neither belong to the original container, nor contribute to the static

description of the objects the component represents. In Figure 3.2, Library is an

external class of component B, since it is declared and defined outside package B.

42 A Hybrid Model for Object-Oriented Software Maintenance

To sum it up, an aggregate component is composed of defined, ghost, and exiled classes.

The defined and exiled classes of a component describes the scope of the container from

which the component is created, while the ghost and defined classes of a component provide

the complete static description for the objects the component represents.

3.2.3 Ports

Ports are the interfaces through which a component interacts with its environment. We

distinguish two kinds of ports: inports and outports [72].

• An inport, visually represented as the left boundary of a component, is the interface

through which the component provides resources to others. An inport represents the

subset of the available resources that the component provides and are actually used

by other components; resources that are provided by the component but not used by

the system are not considered to be part of the inport list. In Figure 3.2, component

C provides two type resources: Patron and Item.

• An outport, visually represented as the right boundary of a component, describes

the resources that the component requires from others. In Figure 3.2, component C

requires two type resources: Library, and Catalog.

3.2.4 Connectors

A connector [63, 72] specifies the interrelationship among two components. There are three

types of connectors: inheritance, delegation [72], and assembly [72] connectors.

• An inheritance connector, visually represented as a solid line with an empty arrow-

head, specifies the inheritance relation between two classes. It can exist within an

aggregate component, and cannot cross component boundaries. In Figure 3.2, class

Faculty inherits class Patron.

• A delegation connector, visually represented as a dotted arrow, links ports of an

aggregate component and the ports of the components it contains. A delegation con-

nector promotes the required interfaces and the provided interfaces of the contained

A Hybrid Model 43

����

�����

�	
	���

	���
�

�
����

����	��

�

�

�

����

����

���������	
�

����

�

����

�����
�

�������

�������

���	
�

���	�	�

�������	
�

�

�

�

Step 1 Step 2

Figure 3.3: Constructing Hybrid Models

components to the corresponding interfaces of its container components. In Fig-

ure 3.2, component A provides resources that Library provides, and requires resources

that Library requires.

• An assembly connector, visually represented as a solid arrow, specifies the client-

server relationship between two components. The client component uses resources

provided by the server component. For example, component A uses the resource

Patron and Item provided by component B and C.

3.3 Constructing Hybrid Models

In this section, we use the example library management system to show how to create

a Hybrid Model. We assume that we start with a collection of classes organized into a

tree-like hierarchy of containers, such as Java packages or C++ namespaces. For example,

44 A Hybrid Model for Object-Oriented Software Maintenance

we may use the package containment hierarchy shown in Figure 2.4. The construction of

a Hybrid Model for an object-oriented program consists of three steps.

1. All abstract classes, including Java-style interfaces, are initially removed from their

containers. An abstract class is intended to be a superclass and cannot be instan-

tiated. Conceptually, it contains partial blueprint of the objects that its subclasses

represent, and should be understood along with its subclasses. For example, Item

and Patron in Figure 2.4 are removed from components A and B, respectively.

2. For each concrete class in each container, all ancestors of that class are pulled into the

container. An abstract class with multiple implementations in different containers

will appear in each such container. As Figure 3.3 shows, Item is pulled into both

components B and C.

3. Any dependencies between classes that are not in the same container become de-

pendencies of their corresponding aggregate containers. That is, external usages and

unfulfilled requirements of the parts become, respectively, usages and requirements

of the whole. The interface of each aggregate container is calculated automatically

from the dependencies of the contained elements. Figure 3.2 shows the Hybrid Model

of the example program at the top-level abstraction.

A Hybrid Model can be extracted from any program written in an object-oriented

programming language that uses static typing, such as Java or C++. Although those lan-

guages share many common features, there are also a number of differences between them.

We now discuss some programming language features that may affect the construction of

Hybrid Models.

• Global functions and global variables. Classes are the basic building blocks of object-

oriented programs, but in some programming languages, such as C++, functions and

variables can be declared to be globally scoped, outside of any class definition. When

encountering a global function or a global variable, we first create a pseudo concrete

class as if the function or variable were a member of the pseudo class. Then we

perform the three steps to construct a Hybrid Model.

A Hybrid Model 45

• Function and class templates. Function and class templates in C++ allows skeleton

code that is parameterized by type to be used to create for different data types.

At compile time, a C++ compiler generates the appropriate functions or classes for

handling the individual data types. When encountering templates, we can rely on a

C++ compiler to expand them before constructing a Hybrid Model; that is, we use

the concrete (expanded) types in our models.

• Reflection. Reflection is a feature in Java and other programming languages that

allows a running program to examine and possibly modify its runtime behavior. Hy-

brid Models are created from the static information available during the compilation

process. Thus, it is difficult for a Hybrid Model to capture the dynamic dependencies

introduced by reflection. One way to improve the accuracy of a Hybrid Model is to

search for the code patterns that indicate the use of reflection, and estimate which

classes or methods will be executed at run-time. However, it is impossible to recover

all possible dynamic dependencies unless dynamic information is used.

• Pointers. Pointers is a powerful feature of the C++ language that allows a program

to directly access objects or values that are not explicitly declared beforehand. It is

difficult for naive static analysis to extract the dependencies involving pointers. More

time-consuming techniques, such as points-to analysis, may be applied to improve

the accuracy of Hybrid Models.

3.4 Customizing Hybrid Models

A Hybrid Model can be automatically generated from the source code, as long as the

containment hierarchy is given. However, in some cases, we need additional information

to make the Hybrid Model more accurately reflect the implementation.

3.4.1 Frameworks

Object-oriented frameworks have been identified by both academics and practitioners as

having the potential to provide the benefits of large-scale software reuse [43, 85, 10]. A

46 A Hybrid Model for Object-Oriented Software Maintenance

framework is typically composed of a collection of inter-dependent classes that provide

partial implementations of a set of related tasks, or a toolkit for creating complex system

components, such as GUIs. Consequently, it is typical that many of the classes in a

framework are abstract, since it is expected that programmers will extend and customize

the parts provided by the framework. Those abstract classes and their interdependencies

describe the software architecture for a family of applications in a given domain. When

building an application, programmers reuse, extend, tailor frameworks to address special

needs, and the semantics of the resulting system is usually tightly bound to the semantics

of the underlying frameworks. Consequently, understanding such a system requires that

maintainers comprehend the structure and behavior of the underlying frameworks as well.

There are three possible ways to create Hybrid Models for the applications that are

built on object-oriented frameworks.

1. Import the entire source code of the frameworks as if it was a part of the application.

This approach will pull in all the abstract classes defined in frameworks, as well as

all the interdependencies between those abstract classes.

2. Import only the inheritance hierarchy of the frameworks. The resulting Hybrid Model

contains the abstract classes defined in the frameworks, and captures the usage de-

pendencies from the application to the frameworks. However, it ignores the interde-

pendencies between the abstract classes pulled from the frameworks.

3. Ignore the underlying frameworks. The resulting Hybrid Model contains no informa-

tion about the underlying frameworks.

The Hybrid Model resulting from Approach 1 contains the most complete information

about the application, while Approach 3 leads to most concise Hybrid Model. The end users

of Hybrid Models should choose from the three approaches according to their knowledge of

the framework and the nature of the target application. If a maintainer has little knowledge

of the frameworks or the application massively extends the frameworks, then Approach 1

or 2 is desired. If the maintainer has some knowledge of the underlying framework or

knows that the information about the frameworks has little to do with the maintenance

task at hand, then Approach 3 is preferred.

A Hybrid Model 47

3.4.2 External Behavior

Reusability is one of the claimed benefits of object-oriented technology. Object-oriented

systems are often designed to be reused by others, and built on library systems that are

created for general reuse purpose. Thus, to understand an object-oriented system, we need

to take the external links in consideration.

At the highest level of granularity, an object-oriented system can be viewed as a single

aggregate component. It provides and requires services to other external applications. This

information is not available in the source code, but can be specified by the end users. In

the example library management system, shown in Figure 3.2, if class Book is expected

to be reused by other applications, then component B should provide Book through its

inport, even though components A and C do not require such a type resource.

3.5 Why Not UML Diagrams?

Hybrid Models might appear to be superficially similar to existing architecture descrip-

tion models, particularly UML component diagrams. One might ask: Why not use UML

component diagrams instead?

UML is a general-purpose modeling language. It might be possible to customize a UML

Component Diagram so that it can capture the information that a Hybrid Model represents.

However, since the Hybrid Model is a special model for reverse engineering, it can represent

the as-implemented architecture of an object-oriented system in a more concise and precise

way. It allows us to build more efficient tools to automate the extraction, analysis, and

presentation of software systems.

More importantly, Hybrid Models and UML component diagrams are different since

they are designed for different purposes. UML component diagrams are typically used

in forward engineering, especially component-based development [94], aiming to describe

software architecture and promote software reuse. The main focus of UML component dia-

grams is to capture the functionalities of components, while ignoring their implementation

details. Hybrid Models, on the other hand, are used in reverse engineering to represent

the implementation of a design. The main goal of Hybrid Models is to help maintainers to

identify what is implemented by providing information about how it is implemented. That

48 A Hybrid Model for Object-Oriented Software Maintenance

is, in Hybrid Models, the details are considered to be important. Because of the different

purposes, Hybrid Models differ from UML Component Diagrams in key ways:

Difference in Components :

A UML component represents a modular unit, which is self-contained, independent,

and substitutable. It may be created during early design, long before its internal

structure is fully developed. Thus, a UML component diagram describes a design,

and contains little information about how each component is implemented.

An aggregate component in Hybrid Models is created from bottom up. It summarizes

the important properties of the fine-grained programming language constructs in

support of design recovery. The ghost and exiled classes of an aggregate component

indicate the inheritance relations that the component involves. They are part of

implementation details, but are important to understand a system at a high level.

Difference in ports :

The ports of a UML component are typically associated with interfaces, or abstract

classes, while the ports of an aggregate component can be associated with any named

programming language constructs, such as classes, methods, and attributes.

Difference in connectors :

A connector in a UML component diagram is deliberately designed to represents

a communication path between two components. A connector in a Hybrid Model,

on the other hand, indicates a possible communication path between two groups

of objects. As Hybrid Models are constructed based on static analysis, they may

contain the connectors that are logically impossible depending on the logic of the

source code.

3.6 Summary

In this chapter, we have defined the Hybrid Model for describing object-oriented software

systems at a coarse level of granularity. It is aimed at explicitly capturing the essential

A Hybrid Model 49

properties of classes as both namespaces and the types of objects at the package level.

We describe the notation of the Hybrid Model, and present the approach to construct and

customize Hybrid Models.

The usefulness of the Hybrid Model as a program model for software maintenance

has been validated in following ways. We apply the Hybrid Model to assist program

comprehension (Chapter 4). We perform architectural analysis on object-oriented systems

over Hybrid Models (Chapter 5). We use Hybrid Models to explicitly model and analyze

software change (Chapter 6).

Chapter 4

Applications in Program

Comprehension

Summary A commonly used strategy to address the scalability challenge in object-

oriented reverse engineering is to synthesize coarse-grained representations, such as pack-

age diagrams. However, the traditional coarse-grained representations are poorly suited

to object-oriented program comprehension as they can be difficult to map to the domain

object models, contain little real detail, and provide few clues to the design decisions made

during development.

In this chapter, we apply Hybrid Models to support object-oriented program com-

prehension. Each aggregate component of a Hybrid Model represents a set of software

objects, and contains the complete static description of the objects it represents. Thus,

Hybrid Models allow maintainers to understand objects as independent units, and focus

on their external properties and their interrelationships at different levels of granularity.

We show the usefulness of the Hybrid Model to program comprehension by means of an

exploratory case study.

Contributions. The contributions of this chapters are the following:

• The description of the comprehension process using Hybrid Models.

• The application of Hybrid Models in a real-world comprehension scenario.

51

52 A Hybrid Model for Object-Oriented Software Maintenance

Structure of the chapter. Section 4.1 introduces cognitive models, and existing

approaches to support program comprehension. Section 4.2 analyzes the reasons why

package diagrams are ill suited to object-oriented program comprehension. In section 4.3,

we apply Hybrid Models to support both top-down and bottom-up comprehension strategy.

Section 4.4 describes the tool used to create and manipulate Hybrid Models. Section 4.5

demonstrates a real-world comprehension scenario using Hybrid Models, and section 4.6

presents our conclusion.

4.1 Introduction

Program comprehension plays an important role in the process of software maintenance.

It is the vital first step of most maintenance activities, such as correcting faults, adding

new functionality, improving performance, and adapting to a new environment. Several

studies indicate that more than 50 percent of the total maintenance effort is devoted to

understanding the software to be modified [12, 21].

Research into software comprehension models suggests that programmers attempt to

understand code using bottom-up, top-down, or integrated comprehension strategies. Pen-

nington et al. observed that programmers build their mental models from bottom up [78].

They collect small-sized program units, such as sequences, loops and conditional patterns.

Then they mentally “chunk” those structures into more generalized structures, until an

overall understanding of the program is attained. Several researchers observed that pro-

grammers evolve their mental models in a top-down manner [8, 89]. The comprehension

process begins with a primary “hypothesis” about program functions. The primary hy-

pothesis is progressively refined into more specific and less functional subsidiary hypotheses

until a hierarchical structure is constructed. During the comprehension process, program-

mers scan source code or other related artifacts, looking for beacons which indicate the

occurrence of certain structures or operations. The discovery of beacons help to verify

existing hypotheses, form new hypotheses, and further refine the subsidiary hypotheses.

Von Mayrhauser and Vans observed that comprehension of large scale programs involves

both top-down and bottom-up activities [101].

It is commonly accepted that a tool to aid program comprehension should support both

Applications in Program Comprehension 53

top-down and bottom-up comprehension strategy. To achieve this goal, current reverse

engineering tools often assist maintainers in building abstractions through chunking from

lower level program constructs, creating a hierarchy of abstractions, and exploring the

hierarchy in a top-down fashion.

In object-oriented reverse engineering, package diagrams are commonly used to support

the exploration at higher levels of abstraction than objects and classes. Many existing

tools offer to generate package diagrams by dividing classes into packages, which act as

coarse-grained proxies for their contained classes [74, 80, 84, 99]. While grouping classes

into packages provides better readability of classes and their interrelations, it harms the

comprehensibility of objects as independent units.

In this chapter, we utilize Hybrid Models to represent object-oriented systems at differ-

ent levels of granularity. Instead of grouping programming language classes, we aggregate

the complete static description of software objects, so that each coarse-grained entity of

the Hybrid Model represents a set of objects. At a low level of abstraction, software ob-

jects can be understood as independent units, while at a higher level, each coarse-grained

entity can be understood as a whole and be mapped to real-world objects. In addition,

Hybrid Models serve as a kind of palette that allows users to mix the relationships that

maintainers are interested in, and interpret them at different levels of granularity.

4.2 A Motivational Example

In this section, we use the example library management system to show why package

diagrams may not satisfy the comprehension needs at a high level. Figure 2.4 depicts

the class diagram of the example system, in which the method invocation relationship

between classes is modelled as a stereotyped dependency. This diagram is similar to what

most reverse engineering tools are capable of generating to model the system as a whole; a

package diagram is created by dividing the eight classes into three distinct packages. Using

the package diagram, as shown in Figure 2.6, maintainers may face the following issues

during program comprehension.

First, it may not be possible for maintainers to understand — that is, create a coherent

mental model of — one package independently of the others. In this example, none of the

54 A Hybrid Model for Object-Oriented Software Maintenance

three packages can be understood solely based on the code they contain. Item in package

A is an abstract class. It is implemented by its subclasses contained in package B and C.

When studying package A, maintainers can only guess the behavior of class Item based on

its method signatures. On the other hand, when studying package B or C, maintainers

must investigate the internal details of package A, since both packages inherit attributes

or methods from class Item, and contains partial blueprint of the objects they represents.

If maintainers limit their investigation in only one package, they could misunderstand the

package and make ill-advised modifications to the code.

Second, the external properties of a package may not reflect the external properties

of the set of objects that its contained classes represent. A package is composed of a set

of classes, and thus its external properties are the properties that the contained classes

export to outside packages. In this example, class Item is part of the external properties

of package A, even though it is only partially implemented.

Third, the interrelationship between packages may not capture the interrelationship

between objects contained in the packages. Class interrelationship, such as calls, must be

interpreted in the context of class hierarchy, as implicit dependencies may be derived from

the ones that are explicitly defined in source code. For example, in the class diagram shown

in Figure 2.4, an object of Catalog could send messages to an object of Video. However,

there is no communication path from package A to package C.

Due to the above issues, it is difficult for maintainers to use the package diagram to

derive the design intentions, such as how the system is decomposed, how system function-

alities are distributed among the packages, and what is the responsibility of each package.

Therefore, package diagrams are of limited usefulness to developers seeking to acquire a

high-level understanding of an object-oriented system.

4.3 Program Comprehension using Hybrid Models

With respect to comprehension, the major limitation of a package diagram is that the full

definition of a class may be spread across different packages; the semantics of any given

object may not be understandable by examining only the package of the defining class. If

we view a class as a collection of objects with common structure and behaviors, we note

Applications in Program Comprehension 55

this view does not scale up to the next level. That is, a package is not a collection of

objects, but a collection of partially defined types. The interrelationships among packages

represent the compilation dependencies among program language constructs, but cannot

be interpreted as the relations among objects or classes.

We use Hybrid Models to address the issues mentioned above. In Hybrid Models,

each coarse-grained entity includes the complete static descriptions of the objects that are

defined and implemented within it. Thus, an aggregate component, like a class, can be

interpreted as the set of objects it represents. An interdependency between two aggregate

components arises when there is a possible relation between the objects they represent.

We apply Hybrid Models to support both bottom-up and top-down comprehension

strategies.

4.3.1 Supporting Bottom-up Comprehension

The main activities in the process of bottom-up comprehension are building abstractions

from lower level program constructs. A tool to support bottom-up comprehension must

provide such abstraction mechanisms [91].

Hybrid Models support bottom-up comprehension by aggregating classes into aggregate

components. Each component summarizes the important properties of a group of classes,

which in turn helps to answer questions that are commonly asked about the group, such

as

• What classes does the group inherit from other groups?

• Which classes does the group expect others to extend?

• What are the responsibilities or the functionalities that the group provides?

• What collaboration does the group requires from other?

the Hybrid Model of an object-oriented system can be automatically generated as long

as a containment hierarchy is given. To support bottom-up comprehension strategy, we al-

low the maintainers to create their own abstractions. Currently, we support three different

approaches to aggregate classes:

56 A Hybrid Model for Object-Oriented Software Maintenance

1. Aggregate all the classes that physically belong to a given package, and name the

resulting component after the package.

2. Aggregate all inheritance descendants of a given class, and name the resulting com-

ponent after the given classes.

3. Select an arbitrary group of class, and name the resulting component to reflect their

meaning.

4.3.2 Supporting Top-down Comprehension

Top-down comprehension involves two main activities: forming hypotheses based on the

maintainers’ previous experience, and reading the code in a depth-first manner to verify

or reject these hypotheses. A tool that supports top-down comprehension may provide

representations of a system at various levels of abstraction, and allow maintainers to explore

the system in a top-down fashion [91].

Not only does a Hybrid Model captures the architecture of an object-oriented system

at various levels of abstraction, it also enables a top-down divide-and-conquer exploration

of the object-oriented system. At a high level of abstraction, a maintainer can focus on the

external properties of aggregate components, and the connectors between them without

worrying about the internal implementation. At a low level of abstraction, the maintainer

can focus on one aggregate component to acquire deeper knowledge.

Overviews

With a Hybrid Model, maintainers are able to focus on the external properties of a compo-

nent at a higher level of granularity. For example, component C in Figure 3.2 contains four

classes. Among them, Item and Patron are known to other components. Video and Faculty

provide the implementation for the two resources, but they are at a low data abstraction

level and are not of great interest at a coarse-grained level. Hence, component C can be

understood as a whole, and known as a service provider for type resources Item and Patron,

while its internal details, Video and Faculty, are hidden.

Applications in Program Comprehension 57

With a Hybrid Model, maintainers are able to study all possible relations between

objects in different components. As each component contains the complete blueprints

of the objects they represent, the connectors between components reflect both explicit

dependencies, which are explicitly defined in source code, and implicit dependencies, which

are derived from explicit dependencies through inheritance. Therefore, the presence of a

connector indicates a possible relation between two components, while the absence of a

connector between two components indicates they are not directly connected. For example,

Figure 3.2 shows that there are bidirectional communication path between component A

and component B.

Context for a Detailed View

With a Hybrid Model, maintainers are able to study one component at a time. Each

component represents a set of objects, and contains the complete static description of those

objects. Therefore, the structure and the behavior of those objects can be understood solely

based on the code contained in the component, along with the resources that component

requires from outside components. For example, according to the Hybrid Model shown in

Figure 3.2, the boundary of component C provides the necessary context to understand the

class Video and Faculty. Therefore, to understand the component, maintainers can limit

their investigation within that component.

4.4 Tool Support

We have implemented a tool, called the Hybrid Model Extractor. It provides an interactive

environment in which maintainers can manipulate the containment hierarchy of an object-

oriented system. Hybrid Model Extractor automatically create a Hybrid Model based on an

input containment hierarchy. The resulting Hybrid Model is visualized using Graphviz [31].

A user may choose from primitive class interrelations, e.g. calls, instantiates, aggre-

gation, etc., or their combinations, e.g. union, intersection, difference, etc., so that he

can study various relations individually or in groups. Object-oriented program compre-

hension requires both structural and behavioral information. From a structural viewpoint,

maintainers may focus on aggregation and composition, while from a behavioral viewpoint,

58 A Hybrid Model for Object-Oriented Software Maintenance

they may focus on calls and instantiates. Different relations generate different views of

the Hybrid Model, but share the containment relation among components. We consider

those views of the Hybrid Model as a set of layered maps. The base map is composed

of components and the inheritance connectors among class components. Ports, assembly

connectors and delegate connectors forms an add-on map, which is determined by the class

relation under consideration. For example, Figure 3.2 shows calls add-on map. As the

base map remains unchange, the Hybrid Model severs a platform to compare or combine

different relations.

4.5 Case Studies

In this section, we present an exploratory case study to show how Hybrid Models can be

used in a realistic software comprehension scenario. The subject system is LSEdit, a Java

system currently under development in Software Architecture Group at the University

of Waterloo. It is a part of Swagkit [93], a reverse engineering toolkit for extracting,

abstracting, and exploring software architectures. LSEdit is an interactive visualization

tool designed to enable users to explore and edit software landscapes in TA format [38].

LSEdit version 7.1.25 consists of total 348 classes, including 5 Java interfaces, 9 abstract

classes, and 334 concrete classes. All of the classes are organized in a single package. It

is impractical for a maintainer to comprehend the entire system at once, so we employ a

divide-and-conquer strategy. We have chosen not to use an automated or semi-automated

approach, such as software clustering [100, 104], to create the system model. Instead,

we will create it manually to show how Hybrid Models can help maintainers to perform

several tasks: to chunk fine-grained entities into a higher-level structure, to form meaningful

hypotheses at a high-level abstraction, to confirm or reject those hypotheses using low-level

information, and to derive design rationales during the program comprehension process.

4.5.1 Chunking

Initially, we knew little about the source code. We had to read through Java files, and group

logically related classes into coarse-grained entities. Based on our knowledge of object-

oriented paradigm and Java programming language, we knew that classes may connect

Applications in Program Comprehension 59

with each other through a variety of relations, such as inheritance, association, composition,

instantiates, etc. With a Hybrid Model, we are able to choose relations, and perform

analysis on one perspective of the system at a time.

Step 1. We started with inheritance, which is often the semantic backbone of an object-

oriented system. The descendants of the same class often describe the variants for

an abstract domain object. Therefore, it is reasonable to group the classes related

through inheritance.

The base map is particularly suitable for this purpose as it only contains the inheri-

tance among classes. Among the total 348 classes, 192 classes are not involved in any

inheritance relation, 114 classes are in hierarchical trees, and other 42 classes are in

hierarchical graphs due to the presence of multiple interfaces. We grouped each hier-

archy tree into a component, and named it after the root of the tree. For example, the

class ToolBarButton was grouped with its 18 subclasses to form a component called

‘ToolBarButton’. This component can be cross-referred to a general toolbar button.

For those classes with multiple parents, we subjectively assigned them with one of

their ancestors according to the naming convention. For example, EntityInstance waas

grouped with LandscapeObject instead of DiagramCoordinates, as its name is similar

to EntityClass and RelationInstance, the descendants of LandscapeObject.

Step 2. We also examined the inner-outer-class relation. In Java, an inner class is a class

nested in another class. An inner class is often tightly coupled with its outer class

as it has access to the outer’s private members. Therefore, it makes sense to group

inner classes with their outer class, and map the resulting component to the domain

objects that the outer class models.

We studied the inner-outer-class add-on map, gathered Java inner classes with their

outer classes, and named the groups after the outer classes. For example, LegendBox

has 17 inner classes, 2 of which are types of graphic components while the other

15 implement GUI event listeners to handle the events that occur on those graphic

components. The inner classes are not useful on their own, but together with their

outer class, they can be cross-referred to the ‘Legend’ page on the right side of LSEdit

60
A

H
y
b
rid

M
o
d
el

fo
r

O
b
ject-O

rien
ted

S
o
ftw

a
re

M
a
in

ten
a
n
ce

 SortVector

 CompareFn

ClientSupplierCompareFn
DistanceCompareFn

HorizontalCompareFn
IdCompareFn

PositionCompareFn
PreorderCompareFn

StringCompareFn
VerticalCompareFn

 Do

 ToolBarEventHandler

ClipboardBox
HistoryBox

RightTabbedPane
UndoBox

 ResultBox

ResultBox

 MySplitPane

AttributeBox

 MyCheckBoxMenuItem MyMenuItem ChkBox

LegendBox
QueryBox

 MapBox

MapBox

 Ta

Diagram

 AttributeValueItem

 DiagramCoordinates

 Attribute

 LandscapeViewer

LandscapeEditorCore

 LandscapeEditorFrame

LandscapeEditorCore

 ClusterMetrics

 MetricsEntry

 LandscapeObject EdgesContainer Clipboard EntityCache

ClientSet
SupplierSet

RelationClass
EntityClass

RelationInstance
EntityInstance

EntityCache

F
igu

re
4.1:

A
p
artial

v
iew

of
co

m
po

sitio
n

ad
d
-on

m
ap

.

Y
ellow

b
ox

es
rep

resen
t

class-com
p
on

en
ts,

an
d

are
lab

elled
w

ith
class

n
am

es.
W

h
ite

b
ox

es

rep
resen

t
aggregate

com
p
on

en
ts,

an
d

are
lab

elled
w

ith
u
ser-d

efi
n
ed

n
am

es.
C

on
n
ectors

to

con
tain

er-com
p
on

en
ts

are
lab

elled
w

ith
asso

ciated
resou

rces.

Applications in Program Comprehension 61

user interface. After the above two steps, we reduced the number of top-level entities

to 97.

Step 3. After inheritance, aggregation and composition are the most important depen-

dencies in traditional structural representations of object-oriented systems. An ag-

gregation specifies a whole-part relationship. A composition is a special aggregation

where the lifetime of the part is controlled by the whole. The group of the parts

and the whole can be mapped to the complicated real-world object that the whole

models.

In the context of reverse engineering, an aggregation can be roughly interpreted as

the phenomenon that a class (whole) has an attribute whose type is the aggregated

classes (part), and a composition is an aggregation in which the whole instantiates

the part. Based on the above consideration, we calculated composition, which is the

intersection of aggregation and instantiates, and created an add-on map. Figure 4.1

shows the most complicated part of the composition add-on map.

From Figure 4.1, we were able to identify three groups. The left bottom shows that

LandscapeEditorFrame is composed of LandscapeEditorCore, whose family members,

including ancestors, descendants, and inner classes, are composed MyMenuItem, Att-

tibuteBox, LegendBox, MapBox, etc. The names of those involved classes reminded

us of the user interface of LSEdit. Each name corresponds to a graphic component

on the screen. Therefore, it is natural to group them together to form an aggre-

gate component representing the GUI part of the system. The classes on the right

top of the figure, starting with Ta, can be grouped together because the composi-

tion relation among them is consistent with the structure of TA files in real world

— a TA file specifies a typed graph (Ta) which includes the types (EntityClass, Re-

lationClass) of nodes and edges as well as the attributes (Attribute) of those nodes

(EntityInstance) and edges (RelationInstance). Finally, the right bottom of the figure

shows the composition relationship among utility classes.

In addition, we reviewed other relationships, such as instantiates, aggregation, refers,

calls, static-method-invocation, etc. As we analyzed one relation at a time, we found that

the clustering result from previous steps may seem inappropriate when viewed from a

62 A Hybrid Model for Object-Oriented Software Maintenance

different perspective. For example, if EntityInstance is separated from LandscapeObject but

is often referred as an object that provides the responsibilities of LandscapeObject, then

unexpected coupling to the component that contains EntityInstance will be revealed when

calls is examined. In such a case, we adjusted the clustering, and checked other relations

iteratively.

4.5.2 Constructing Hypotheses

Once we had acquired some knowledge of the code, such as by studying Figure 4.1, we

considered the system within its problem domain, and formed hypotheses about how the

system’s design can be decomposed. One well-known way to describe a system in an object-

oriented manner is to use Class-Responsibility-Collaborator (CRC) cards [3]. A CRC card

is composed of three parts: a class name, responsibilities and collaborators. Responsibilities

are what the class knows and does, and collaborators are those classes that the class needed

to fulfill its responsibilities. CRC cards were original introduced to teach object-oriented

thinking, and later became a modelling technique that is often applied to identify classes

and their interactions at the early stage of object-oriented analysis and design. Here we

use CRC cards to describe our mental image of the system.

Figure 4.2 depicts our conceptual model in CRC notation. A typical application with a

user interface often follows the MVC architectural pattern [9], in which the user interface

is isolated from the underlying business logic, so that the data and the visual appearance

of the application can be modified independently. After studying Figure 4.1, we surmised

that the LSEdit system may indeed implement the MVC architectural pattern. Thus, we

further conjectured that LSEdit could be decomposed into three main parts: the graph

user interface (GUI), the typed graph specified in a TA file (TA), and some utility classes

(UTIL).

• GUI consists of a set of smaller graphic components. It renders graphics, handles user

interaction events, and dispatches some user commands to TA. It may require some

common algorithms or methods from UTIL.

• TA understands the data structure of the typed graphs specified in TA files. It

provides means to modify, load and store graphs. It may also require the collaboration

Applications in Program Comprehension 63

GUI

TA
UTIL

know gui components
handle events
visualize graph

UTIL

know common alg.
(eg. sort)

TA

UTIL

know graph structure
modify graph
load graph from TA file
store graph to TA file

Figure 4.2: Conceptual Model of LSEdit in CRC Notation

64 A Hybrid Model for Object-Oriented Software Maintenance

from UTIL.

• UTIL encapsulates common algorithms or methods required from the other two com-

ponents.

4.5.3 Confirm/Reject Hypotheses

In order to confirm or reject the top-level hypothesis, we need to identify the components

that correspond to the three domain objects, and analyze the interaction among them.

Hence, we divided all classes of the system into three regions: 223 classes for the component

GUI, 96 classes for the component TA, and 29 classes for the component UTIL. Then we

created the calls add-on map as shown in Figure 4.3.

In Hybrid Models, the responsibilities of a class component can be derived from the re-

sources that are declared or defined in it, and the responsibilities of an aggregate component

can be interpreted as the union of the responsibilities that its internal components have.

The inports of components indicate the responsibilities that they reveal to the outside.

Therefore, Figure 4.3 give us a peek into the responsibilities of the top-level components.

Comparing the conceptual and concrete model of LSEdit, we found that the inports

of the top-level components roughly match their responsibilities in the conceptual model.

The inport of the component TA includes most classes that correspond to constructs of a

TA file, such as Ta, Attribute, EntityClass, etc. This indicates that the component TA has

the responsibilities to maintain TA files. From the inport of the component GUI, we are

able to identify some GUI related classes, such as ResultBox and ToolBarButton, the classes

that deal with user input event, such as EditModelHandler, and the classes related to graph

rendering, such as LandscapeLayouter. The inport of the component UTIL includes 3 classes

that encapsulate common algorithms. After checking the static-method-invocation add-on

map, we found that most classes in the component UTIL contain only static methods and

are not meant to be instantiated.

The assembly connectors in Figure 4.3 describe the interaction among components, and

can be interpreted as the collaboration among domain objects. All of the collaboration in

the conceptual model can be identified from the concrete model. However, there are some

unexpected collaborations. For example, the component UTIL requires resources from both

Applications in Program Comprehension 65

Attribute
AttributeValueItem

Clipboard
ClipboardEnumerator

Diagram
Distance
EdgePoint

EntityClass
EntityClassPair

EntityComponent
EntityInstance

LandscapeClassObject
LandscapeObject

LandscapeObject3D
LandscapeTokenStream

MyPaintableUndoableEdit
RealPoint

RelationClass
RelationInstance

Ta

TA

Cardinal
ColorChooser

EditModeHandler
HashEntry

LandscapeEditorCore
LandscapeLayouter

MapBox
MyCompoundEdit

ResultBox
TaFeedback
TaListener
TextTree

ToolBarButton

ColorChooser
EditModeHandler

HiArc
HiGraph

LandscapeEditorCore
LandscapeLayouter

MapBox
MyCompoundEdit

ResultBox
TaFeedback
TaListener
TextTree

ToolBarButton

GUI

Attribute
AttributeValueItem

Clipboard
ClipboardEnumerator

DataInputStream
Diagram
Distance
EdgePoint

EntityClass
EntityClassPair

EntityComponent
EntityInstance

LandscapeClassObject
LandscapeObject

LandscapeObject3D
LandscapeTokenStream

MyPaintableUndoableEdit
RealPoint

RelationClass
RelationInstance

Ta

Cardinal
DataInputStream

HashEntry
UTIL

Diagram
Distance

EntityInstance
HiArc

HiGraph
LandscapeClassObject
LandscapeEditorCore

RealPoint
RelationClass

RelationInstance

Figure 4.3: Concrete Model of LSEdit (calls Add-on Map)

66 A Hybrid Model for Object-Oriented Software Maintenance

components GUI and TA. We examined the internal structure and behavior of the compo-

nent UTIL, and found that some utility classes, such as Util and SortVector, take objects

as parameters and retrieve run-time data stored in those objects. Such collaboration is

necessary and should be added to our conceptual model.

The biggest surprise is that the component TA requires many resources from the compo-

nent GUI, especially some graphic components. This can be caused by two reasons: either

the partitioning is not reasonable, or some responsibilities and collaborations are missing

from the conceptual model. We studied the component TA. After examining the low-level

representation, we found that the classes that model the typed graphs from TA files are not

pure data. The Java class Diagram can be cross-referred to the visualized graph in LSEdit,

and EntityInstance and RelationInstance correspond to nodes and edges of the visualized

graph respectively. They not only keep the structure of the graph, but also are responsible

for rendering the graph. Therefore, both responsibilities and collaborators of the compo-

nent TA in our conceptual model should be synchronized with the concrete model. If a

maintainer decides to re-architect the LSEdit system using Model-view-controller (MVC)

architectural pattern, he may consider of isolating GUI related responsibilities from the

component TA and moving them to the component GUI.

4.5.4 Derive Design Rationale

A Hybrid Model organizes the system in a hierarchical structure. Components at dif-

ferent levels of granularity can be mapped to domain objects or submodules. Therefore,

navigating along the hierarchical abstraction enable maintainers to derive the rationale

behind system decomposition and responsibility assignment. For example, LSEdit system

is decomposed into three parts, GUI, TA and UTIL. The decomposition indicates designers’

intention to separation user interface from application data. GUI is further decomposed

into small graphic components according to the structure of user interface arrangement.

TA is decomposed into a group of classes that model the constructs of real-world TA files.

In a good design, an object or a module reveals only the interface that clients need to

interact with it. With Hybrid Models, it is possible for maintainers to deduce important

design decisions about program logic encapsulation made during software development.

The inport of a component in the Hybrid Model shows the resources that the component

Applications in Program Comprehension 67

reveals to the outside through a particular relationship. In a calls add-on map, the inports

can be interpreted as the service that the component provides to others. By comparing

the revealed functionalities with the responsibilities that a component has, maintainers are

able to uncover the design rationale about program logic encapsulation. For instance, the

component GUI in Figure 4.3 reveals 13 out of the 223 classes it contains. This indicates that

most responsibilities this component has are not pertinent to the use of the component and

are hidden from the rest of the system. The internal details of TA and UTIL further show

that most classes know GUI through LandscapeEditorCore, the core of the user interface,

and only a small portion of classes in TA rely on other GUI elements. If maintainers

plan to further reduce the coupling between GUI and other components, they may wish to

investigate how the classes exposed by GUI are used by the other two components.

A Hybrid Model also helps to derive the purpose of inheritance. An inheritance re-

lationship can be introduced to reuse implementation, specialize behaviors, or establish

a contract. Without knowing the context where the inheritance is used, maintainers can

not determine the rationale behind such inheritance. The Hybrid Model, which integrates

inheritance and calls, is able to provide such a context. For example, 59 classes in LSEdit

system accomplish layout related responsibilities, and 11 of them are descendant of Land-

scapLayouter. The rest of the system interacts with this region only through LandscapLay-

outer. This indicates that the LandscapLayouter serves as a contract about how the region

is used. For another example, Diagram is a descendant of DiagramCoordinates, Ta, Tem-

poralTa, EditableTa and UndoableTa. Diagram is often accessed directly, and occasionally

accessed as an object of DiagramCoordinates or Ta. However, it is never used as an object

of TemporalTa, EditableTa or UndoableTa. Therefore, the main purpose of this inheritance

is code reuse.

4.5.5 Case Study Summary

The case study presented above illustrates how Hybrid Models can aid program comprehen-

sion at coarse-grained level. With Hybrid Models, maintainers are able to map components

extracted from source code to objects or subsystems in the problem domain at different

levels of granularity. When a component is mapped to a subsystem, the resources attached

to its inport can be interpreted as the functionalities of the subsystem. When it is cross-

68 A Hybrid Model for Object-Oriented Software Maintenance

referred to a complicated domain object, the resources attached to its inport indicate the

responsibilities expected from other domain objects. Therefore, maintainers can think in

a problem domain using an appropriate Hybrid Model.

In addition, the integration problem can be mitigated. Hybrid Models serve as a kind

of palette that allows maintainers to mix the relationships that they are interested in. As

structural and behavioral properties of an object-oriented system can be integrated and

visualized in one single view, maintainers do not have to search for the required information

from other perspectives of programs or constantly shift between different views.

However, the Hybrid Model approach has limitations. First, it is based on static analy-

sis, and so suffers from the usual conservatism about relation information. Low-level data

and control dependency analysis may help narrow the set of potential targets of polymor-

phic calls, and reduce the impossible relations. Second, the construction of a Hybrid Model

may introduce a large number of ghost classes when a system has a deep class hierarchy

and many instances of cross-package inheritance. To our experience, however, this case is

very rare. Inheritance, especially implementation inheritance, often leads to tight coupling

between the subclass and the superclass. They are often grouped in the same package as

they are logically related, and should be understood together.

4.6 Summary

In this chapter, we have applied Hybrid Models to support the comprehension of object-

oriented systems. Maintainers who attain high-level understanding of an object-oriented

system can benefit from the proposed Hybrid Model. It allows maintainers to apply a

divide-and-conquer comprehension strategy to deal with the complexity of large systems.

At a low level of abstraction, maintainers can study one component at a time, and under-

stand its composing software objects as independent units. At a high level, maintainers

can focus on the external properties of components and their interrelationships. In addi-

tion, the Hybrid Models may help maintainers to identify domain objects at coarse-grained

levels, and may provide clues to the important design decision made during development.

An exploratory case study has been performed to show the usefulness of Hybrid Models to

program comprehension in a realistic comprehension scenario.

Chapter 5

High-level Dependency Analysis

Summary Uncovering, modelling, and understanding architectural level dependencies of

software systems is a key task for software maintainers. However, current dependency

analysis techniques for object-oriented software are targeted at the class or method level;

this is because most dependencies — such as instantiates, references, and calls — must be

interpreted in the context of one or more class hierarchies.

Hybrid Models capture inheritance relations and all possible usage dependencies of

object-oriented software systems at the package level of granularity. In this chapter, we

propose a set of dependency analysis methods based on the Hybrid Models. We present

an exploratory case study of the Apache Ant build system; we show how the dependency

analysis using Hybrid Models can help maintainers capture external properties of packages,

and better understand the nature of their interdependencies.

Contributions. The contributions of this chapters are the following:

• The dependency analysis approach using Hybrid Models.

• The list of architectural patterns that help understand the design at a coarse-grained

level of abstraction.

Structure of the chapter. This chapter is organized as follows. Section 5.1 briefly

introduces the importance of dependency analysis, and reviews the existing approaches of

dependency analysis at a coarse-grained level. Section 5.2, Section 5.3, and Section 5.4

69

70 A Hybrid Model for Object-Oriented Software Maintenance

describe the dependency analysis methods over Hybrid Models. Section 5.5 presents the

visualization support for the dependency analysis. In section 5.6, we apply these methods

on an exploratory case study that show how maintainers can benefit from the dependency

analysis approach. Finally, section 5.7 summarizes our work.

5.1 Introduction

Dependency analysis is a key activity in program comprehension and software maintenance.

To a maintainer, a software system is usually modelled abstractly as a collection of entities

with dependencies among them. Extracting, analyzing, and modelling these dependencies

is of key importance in acquiring in-depth understanding of the structure and behavior of

the software system. Many maintenance activities — such as impact analysis, code reuse,

and remodularization — rely heavily on having a deep understanding of dependencies that

exist between software components. Therefore, it is essential for maintainers to be able to

accurately and confidently identify, analyze, and model the dependencies within a software

system.

In practice, dependency analysis for object-oriented systems is often performed primar-

ily at the class or method level of abstraction; this is because usage dependencies — such

as instantiates, references, and calls — must be interpreted in the context of one or more

class hierarchies [7]. However, dependency analysis at a fine-grained level is often unable

to deal with large complex systems.

A commonly used strategy to address the scalability problem is to partition the set of

all classes into packages, lift both inheritance relations and usage dependencies between

classes to become dependencies between packages, and then analyze package dependencies.

Sangal and Waldman use the Dependency Structure Matrix (DSM) to present package de-

pendencies and help maintainers to identify unexpected dependencies [84]. JDepend [40]

and NDepend [68] use package dependencies to calculate design quality metrics, such as

afferent and efferent coupling [57]. The existing approaches ignore the difference between

inheritance relations and usage dependencies at the package level, which make it difficult to

analyze the design properties of key object-oriented concepts, such as abstraction, encap-

sulation, inheritance, polymorphism, which are vital to the quality of an object-oriented

High-level Dependency Analysis 71

design.

In this chapter, we propose a set of methods to analyze the dependencies of object-

oriented systems over Hybrid Models. As discussed in the Chapter 3, a Hybrid Model

explicitly captures the cross-package inheritance relations, as well as all possible usage de-

pendencies between objects at the package level. It provides a basis for system-level depen-

dency analysis, which is essential to reconstruct software architecture, provide overviews

of software systems, and facilitate the maintenance activities at the architecture level.

Our approach is to analyze high-level dependencies from two perspectives: the external

properties of components, and the characteristics of connectors.

5.2 Component Analysis

We now describe some patterns that involve a single aggregate component. These patterns

are based on the numbers and types of resources that are associated with the internal

structure, the inport, and the output of an aggregate component. It is possible that an

aggregate component may satisfy multiple patterns at the same time.

5.2.1 Internal Structure and Cross-Package Inheritance

The ghost classes of an aggregate component represent the classes that the component

inherits from others, and the exiled classes of an aggregate component represent the classes

that the component expects to be extended by others. Thus, the number of ghost classes

and the number of exiled classes reveal the cross-package inheritance that the original

package of an aggregate component involves, and provide clues for the role the component

plays in a software system.

We calculate three metrics, shown in Table 5.1, for each aggregate component of a Hy-

brid Model. According to those metrics, we define four categories of aggregate components:

interface, implementation, mixed, and self-implemented.

Interface Aggregate Component α: NOG(α) = 0 ∧ NOX (α) > 0

An aggregate component that contains exiled classes but no ghost classes is called

an interface component. Such a component declares a set of classes, but provides

72 A Hybrid Model for Object-Oriented Software Maintenance

���������	
�

�������������

������	������������

���������	������������

��������	��

�����������������

����������������
����������	��

������	��

���������	��

�������������

����������������� �!

��������	�"�

����������#����$���

�����������������

����������������

�������������

���������	
��

����������

��������	

��
�������	

���������	

������������

������������

�������	
�

������������������
���������	��

�������������

�������	��

���������������������

�����������������������

(a) (b)

���������	

�

�������������

������	��

���������	��

����������� �

��������	��

�������������

����������	�
�

����������� ���

������	��

���������������

���������	���

����� !����

�����"��#

������

$�����%

��������	��

����������� &����'�

�������������

������	��

����������������� ���

��������������������

���������	
�

������������
���������

������������
���������

����������� �

�������	��

���������	��

��������	��

����������	��

����������� ���

�������	��

���������	��

�����������

��� ��
�� !

(c) (d)

���������	
���

����������
�������

�����������������������

�������������

�������	
��

��������������

�����������

���������	
��

����������� ����������

��������	
�

����������� ����������

����������	�
�

����������� ����������

�������	� �

�������!��"

����#�"���

��������

���������	 �

����$��$�%%���

�����������������

�����

&������!����������'

��������	(�

�����������

�������	�)�

����������� �

���������	
�

����������� �

������	��

���������	��

��������	��

�����������������
����������	��

������	��

���������	��

������������

��������	��

�����������������

(e) (f)

Figure 5.1: Example Aggregate Components

High-level Dependency Analysis 73

Name Description

NOG(α) # of the ghost classes in aggregate component α

NOD(α) # of the defined classes in aggregate component α

NOX (α) # of the exiled classes in aggregate component α

Table 5.1: A list of aggregate component metrics used in dependency analysis

no implementations for them. Those exiled classes are usually deliberately designed

in order to allow a group of possible behaviors. For example, in Figure 5.1(a), 21 out

of 26 classes declared in jhotdraw.framework.* are exiled classes. All of them are Java

interfaces. This component defines the framework for the JHotDraw program [42].

Implementation Aggregate Component α: NOG(α) > 0 ∧ NOX (α) = 0

An aggregate component that contains ghost classes but no exile classes is called an

implementation component. It occurs when the classes within the original package

inherit from classes declared outside the component. Such a component relies on

the definition of its ghost classes. For example, junit.awtui.* in Figure 5.1(b) has

two ghost classes. It implements a listener for test progress, and reuses the code in

BaseTestRunner via inheritance.

Mixed Aggregate Component α: NOG(α) > 0 ∧ NOX (α) > 0

An aggregate component that contains both ghost and exiled classes is called a mixed

component. Mixed components often have complicated structure. Like an interface

component, a mixed component declares a group of classes, but provides only in-

complete description of their behaviors. At the same time, it implements or reuses

the classes that are defined in other components. For example, jedit.*, shown in Fig-

ure 5.1(c), is a mixed component. It contains the main logic of the JEdit system [41],

and is coupled with many other components of the system.

Self-implemented Aggregate Component α: NOG(α) = 0 ∧ NOX (α) = 0

A self-implemented component has neither ghost nor exiled classes. It declares

classes and provides complete description for their behaviors. A utility compo-

74 A Hybrid Model for Object-Oriented Software Maintenance

nent is often self-implemented. For example, ant.input.* in Figure 5.1(d) is a self-

implemented component that provides resources to handle user inputs.

5.2.2 Inports and Data Abstraction

Inheritance is a key modelling tool in the object-oriented paradigm. An inheritance rela-

tion can be introduced for a variety of reasons, such as reusing implementation, specializing

behaviors, or establishing contracts. Consequently, it is important for maintainers to un-

derstand the purpose of inheritance. The inport of an aggregate component reflects how a

component is used by others. It provides the context where inheritance is used, and helps

to derive the design rationales behind inheritance.

Both ghost and defined classes of an aggregate component may provide resources

through the inport of the component. We count the number of resources associated to

an inport as shown in Figure 5.2. Based on the composition of the inports, a component

can be classified as directly used, indirectly used, or a combination of the two.

Name Description

NOPT (α) # of type resources provided by component α

NOPTG(α) # of type resources provided by the ghost classes of component α

NOPTD(α) # of type resources provided by the defined classes of component α

Table 5.2: A list of inport metrics used in dependency analysis

Directly-used Aggregate Component α: NOPTG(α) = 0 ∧ NOPTD(α) > 0

A directly-used component exports only resources provided by its defined classes.

Those resources are known to other components, and thus are important at the

coarse-grained level. A utility component, such as ant.input.* in Figure 5.1(d), is

directly used by others.

Indirectly-used Aggregate Component α: NOPTG(α) > 0 ∧ NOPTD(α) = 0

An indirectly-used component exports only resources provided by its ghost classes.

Those resources are usually designed to model abstract concepts in the real world.

High-level Dependency Analysis 75

An indirectly-used component is known to other components as the implementation

of some abstract concepts. However, the classes that implement those concepts are at

a low data abstraction level, and are typically of low interest at a coarse-grained level.

For example, junit.awtui.* in Figure 5.1(b), is known to others as the component that

provide the service of TestListener, while its implementation is not exported by the

component.

Mixed-use Aggregate Component α: NOPTG(α) > 0 ∧ NOPTD(α) > 0

An inport revealing both ghost and defined resources often results from mixed design

intentions. For example, jedit.* in Figure 5.1(c) is known to others as an abstract

concept, XmlHandler, instead of a particular implementation of XML processing han-

dler. At the same time, it also provides some defined resources, such as Buffer and

View.

In practice, we have found that most aggregate components are mixed-use components.

To further investigate the design intention about how a component is used, we compare

the number of the resources provided by the ghost classes of a component to the number

of all resources provided by the component.

Rindirect(α) =
NOPTG(α)

NOPT (α)
(5.1)

We note that Rindirect is a numeric value between 0 and 1. If the rate of a component

is close to 1, then the component is likely designed to be used indirectly.

5.2.3 Inports and Modularity

In a good design, an object or a module reveals only the interface needed to interact with

it. Therefore, the size of an inport can sometime provide important clues to the design

decisions about program logic encapsulation made during development [75]. According to

the number of exported resources, a component can have an empty, narrow or wide

inport.

76 A Hybrid Model for Object-Oriented Software Maintenance

Empty Inport: NOPT (α) = 0

An empty inport does not export any resources. This pattern occurs when a com-

ponent is unused, or is the starting point of the system, or accessed through other

means, such as Java reflection or pointer “tricks” in C++. In the case of ant.launch.*

in Figure 5.1(f), its empty inport indicates that it is the starting point of the system.

Narrow Inport: NOPT (α)� (NOG(α) + NOD(α))

A narrow inport of a component exports a small portion of the resources the compo-

nent contains, while keeps most resources hidden from the outside. A narrow inport

implies the designers’ intention to hide complicated implementation details, such as

a class serves as an interface to a large, complicated component within a system. For

example, junit.awtui.* in Figure 5.1(b) encapsulates 18 classes, but it exports only 1

resource.

Wide Inport: NOPT (α) ∼ (NOG(α) + NOD(α))

A wide inport of an aggregate component exports many of its defined resources

to other components. It often occurs when the component acts as a library, pro-

viding general-purpose utilities that are used throughout the rest of the system.

For example, ant.input.* in Figure 5.1(d) exports four of the five resources it de-

fines; this component provides I/O related functionality to the rest of the system.

jhotdraw.standard.* in Figure 5.1(e) also has a wide inport; it provides a standard

implementation of the resources that are originally defined in jhotdraw.framework.

5.2.4 Outports and Reuse

The outport of an aggregate component reveals the services that the component requires

from others. In a Hybrid Model, a class can belong to multiple aggregate components.

Thus, an aggregate component may require resources that are already provided by its ghost,

defined, or exiled classes. We classify the required resources and count their numbers, as

shown in Table 5.3.

There are three patterns that describe the components regarding their outports: self-

sufficient, open-for-extension, and open-for-variation components.

High-level Dependency Analysis 77

Name Description

NORT (α) # of the required type resources of component α

NORTG(α) # of the required type resources of component α

that are also provided by its ghost classes of

NORTD(α) # of the required type resources of component α

that are also provided by its defined classes of component α

NORTX(α) # of the required type resources of component α

that are also provided by its exiled classes of component α

Table 5.3: A list of outport metrics used in dependency analysis

Self-sufficient Aggregate Component α: NORTG(α)+NORTD(α)+NORTX (α) = 0

A self-sufficient component requires few, if any, resources that are external to it.

That is, the resources that the component defines are fully implemented within it.

For example, ant.input.* in Figure 5.1(d) is self-sufficient.

Open-for-extension Aggregate Component α: NORTX (α) > 0

An open-for-extension component requires exiled resources of the component. This

pattern indicates that the required resources are “open for extension” [60], and could

have an unlimited collection of possible behaviors. For example, jhotdraw.framework.*

in Figure 5.1(a) requires the exiled resources Drawing and Figure, both of which have

dozens of implementations in other components of JHotdraw system.

Open-for-variation Aggregate Component α: NORTG(α) + NORTD(α) > 0

An open-for-variation component requires ghost or defined resources of the com-

ponent. The required resources have a number of possible behaviors. Some are

defined in the components, while others are implemented externally. This pattern

may exist if each derivative is tightly coupled with different classes. For exam-

ple, jhotdraw.standard.* in Figure 5.1(e) is open for variation of resource Tool. jhot-

draw.standard.* provides some standard tools, such as NullTool, a tool to do nothing,

and SelectionTool, a tool to select figures. These tools are logically different from the

additional tools defined in other components, such as text tool, zoom tool, etc., and

78 A Hybrid Model for Object-Oriented Software Maintenance

are tightly coupled with other classes in jhotdraw.standard.*.

We use ROpenForVariantion value to measure the extends to which a component is open

for variation.

ROpenForVariantion(α) =
NORTG(α) + NORTD(α)

NOTR(α)
(5.2)

A self-sufficient component can be replaced within the system by another component

that conforms to the specification of its exported resources, and be reused in another project

or for another purpose. An open-for-extension or an open-for-variation component, on the

other hand, cannot be reused on its own.

5.3 Assembly Connector Analysis

An assembly connector between two aggregate components exists if the classes in one

component uses the resources provided by the classes in the other. It also indicates a

possible communication path between the objects represented by the two components.

Any changes to the server component might lead to changes in the client component.

Therefore, analysis of the directions, the types, and the strength of assembly connectors

between two components can help to understand how tightly two components are coupled,

and what causes the dependency between them.

5.3.1 Types of Assembly Connectors

When a Hybrid Model is derived from a package diagram, classes are regrouped into aggre-

gate components. As a result, a resource shared between the client and sever component

may physically belong the package the client component is derived from (DIC), or the pack-

age the sever component is derived from (DIS), or neither (DIT). To investigate the nature

of usage dependencies between components, we count each types of resources associated

with an assembly connector.

Based on the types of the associated resources, an assembly connector (α, β) can be

classified into four types:

High-level Dependency Analysis 79

Rely-on-Behavior (RB): #DIS (α, β) = 0 ∧#DIC (α, β) = 0 ∧#DIT (α, β) > 0

In a Rely-on-Behavior (RB) assembly connector, all associated resources are DIT

resources. A RB connector links to an inport with ghost resources, because the

associated resources are not originally declared in the server component, but the

server component provides at least one possible behavior for those resources.

Rely-on-Declaration (RD): #DIS (α, β) > 0 ∧#DIC (α, β) = 0

A Rely-on-Declaration (RD) assembly connector is associated with DIS resources and

optional DIT resources. A RD connector links to an inport with defined resources,

because the associated resources that are originally declared and implemented in the

server component.

Provide-Structure (PS): #DIS (α, β) = 0 ∧#DIC (α, β) > 0

A Provide-Structure (PS) assembly connector is associated with DIC resources and

optional DIT connectors. A PS connector links an outport with defined or exiled re-

sources to an inport with ghost resources, since the associated resources are originally

declared in the client components and implemented in the server component. In this

pattern, the server component either reuses the code from the client, or implements

the contacts specified by the client.

Provide-Structure-Rely-on-Declaration (PSRD): #DIS (α, β) > 0 ∧#DIC (α, β) > 0

A Provide-Structure-Rely-on-Declaration (PSRD) assembly connector is associated

with both DIS resources and DIC resources. Some of the shared resources are orig-

inally declared in the client component, while others are originally declared in the

server component.

5.3.2 Strength of Assembly Connectors

Assembly connectors in a Hybrid Model show the presence of usage dependencies between

components. The common mechanisms that constitute usage dependencies between classes

include: one method invokes another; one class is the type of a method’s parameter, local

variable, or return value; and one class is related to another by an aggregation. These

80 A Hybrid Model for Object-Oriented Software Maintenance

mechanisms also constitute interaction coupling and component coupling [7, 19]. Although

inheritance relations in a Hybrid Model are hidden within components, a Hybrid Model of

a system makes evident most coupling dependencies between components.

We measure the strength of an assembly connector using the number of its associated

DIS, DIC and DIT resources.

SOAC (α, β) = #DIS (α, β) + #DIC (α, β) + #DIT (α, β) (5.3)

This number reflects how many type resources in one component are used by the other.

The strengthes and the directions of the assembly connectors between two components give

maintainers an idea of how tightly the two components are coupled. Generally speaking,

two components are more tightly coupled if there is a bidirectional assembly connector and

the numbers of associated resources are high.

5.3.3 Connectors and Package Dependencies

Classes of object-oriented programs are often organized into packages. Both inheritance

relations and usage dependencies between classes contribute to the dependencies between

their packages. Package dependencies provide a convenient way for maintainers to check

for compilation and deployment dependencies at a high level of abstraction. It is gener-

ally agreed that a good object-oriented design should minimize the dependencies between

packages, and try to avoid dependency cycles [24, 58].

Unlike a package diagram, a Hybrid Model does not directly capture dependencies

between original packages since classes are regrouped into aggregate components during

construction. However, most package dependencies can be easily derived from the assembly

connectors. Table 5.4 shows how the assembly connectors between two components can be

mapped to the package dependencies between their corresponding containers.

A rely-on-behavior assembly connector indicates no package dependencies between the

original packages, because the associated resources are originally declared in a third com-

ponent. A rely-on-declaration assembly connector indicates a possible package dependency

in the same direction; the client component uses resources that originally defined in the

corresponding package of the server component.

High-level Dependency Analysis 81

connector connector package

A→ B A← B dependency

RB

RD PA → PB

PS PA ← PB

RB RB

RD RB PA → PB

PS RB PA ← PB

RD PS PA → PB

RD RD PA ↔ PB

PS PS PA ↔ PB

PSRD ∗ PA ↔ PB

Table 5.4: The relationship between assembly connectors and package dependencies.

A and B are aggregate components. PA and PB are the original packages.

A provide-structure assembly connector implies that designer’s intention to apply the

“Dependency Inversion Principle” [58]. The original package of the client component con-

tains classes at a high abstraction level, and is designed to be more stable than the cor-

responding package of the server component. A provide-structure assembly connector is

often accompanied by a rely-on-declaration connector in the reverse direction. This is

desirable in an object-oriented design, as it allows bidirectional control flow but does not

cause a compilation dependency cycle between two packages.

If two components are linked with a provide-structure-rely-on-declaration connector,

bidirectional rely-on-declaration connectors, or bidirectional provide-structure connectors,

then there is a possible compilation dependency cycle between the two corresponding pack-

ages. To break down the dependency cycle, maintainers may consider applying “Extract

Interface” [25] and “Move Class” [23] refactoring techniques.

82 A Hybrid Model for Object-Oriented Software Maintenance

Name Description

SOAC (α, β) Strength of assembly connector between component α and beta

SODC (α, β) Strength of delegation connector between component α and beta

Table 5.5: A list of connector metrics used in dependency analysis

5.4 Delegation Connector Analysis

A delegation connector promotes the ports of the sub-components to their container com-

ponent. It is associated with a collection of resources shared by the ports of the container

and containee component. We calculate the strength of a delegation connector as the

number of the resources associated with the connector.

The strength of a delegation connector between two aggregate components reveals how

the containee component contributes to the externally visible properties of the container

component. Examining all delegation connectors of a given container component, we are

able to answer questions, such as

• Which containee components contributes the most to the externally visible properties

of the container component?

• Which component has no contribution to the externally visible properties of the

container component?

• Do the containee components equally contribute to the properties of their container,

or is there a dominant contributor?

5.5 Visualization Support

We apply polymetrics visualization technique [51] to highlight the key properties of Hybrid

Models. The goal of visualization support is to help maintainers to identify patterns listed

in the previous sections, and gain insights of the design at a high level.

As Figure 5.2 depicts, the height of a component is determined by the size of its ghost

classes, defined classes, and exiled classes, while the width of a component is determined by

High-level Dependency Analysis 83

Figure 5.2: Visualization Support for Dependency Analysis

the size of its ports. The color of the parts of an aggregate component are determined by the

important metrics of the component, which help identify patterns involving a component.

In addition, we use the color shade of edges to indicate the strength of a delegate

connector, and use different styles of edges to represent the different types of assembly

connectors.

5.6 Case Study

In this section, we present an exploratory case study to show how maintainers can ben-

efit from dependency analysis at the architectural level. Our choice of case study was

Apache Ant [22], a Java-based build tool. It was selected for the case study because it

is a medium-sized object-oriented system that is in wide use. Apache Ant version 1.6.5

consists of approximately 170,000 lines of code, 70 packages and 1014 classes, including 64

Java interfaces, 62 abstract classes, and 888 concrete classes.

5.6.1 A Big Picture of Apache Ant

In this case study, we used a prototype tool that we built to extract static information from

Java class files, construct Hybrid Models based on the package containment hierarchy, and

automatically create visualizations of the Hybrid Models using GraphViz [31].

Figure 5.3 depicts the Hybrid Model of the Ant system in a hierarchy structure. The

84
A

H
y
b
ri
d

M
o
d
el

fo
r

O
b
je

ct
-O

ri
en

te
d

S
o
ft
w

a
re

M
a
in

te
n
a
n
ce

1

2

tools

ant

bzip2 mail tar zip

3
* filters helper input launch listener loader

taskdefs

types util

4
* util

*
compilers condition cvslib email

optional

rmic * mappers optional resolver selectors * depend facade optional regexp

5
* ccm depend ejb extension ide image javacc jsp junit net pvcs sitraka ssh vss * depend image * modifiedselector * bcel

6 * constantpool * resolvers * compilers * bytecode

7 * attributes

F
ig

u
re

5.
3:

T
h
e

H
y
b
ri
d

M
o
d
el

of
A

p
ac

h
e

A
n
t

1.
6.

5.

High-level Dependency Analysis 85

color shades of delegation connectors are determined by their strength. This figure provides

a big picture of the Ant system. With the big picture, we can detect most patterns

of individual aggregate components. According the color of the inports, we found that

component optional at the fourth level is used indirectly by others. It is composed a group

of sub-components, which are in similar shape. Most of them are also used indirectly by

others, and equally contribute to the external visible properties of component optional.

Two components at the third level, types and util, are both composed of a set of sub-

components in different shapes, and both have one dominant contributor to their external

properties.

Figure 5.3 shows no assembly connectors, but we can study assembly connectors by

focusing our attention on a selected level of granularity. The third-level Hybrid Model

of Apache Ant is composed of 10 components and 45 assembly connectors between them.

During the construction of the Hybrid Model, 55 abstract classes (41 distinct classes)

are duplicated in 8 aggregate components. This indicates that the Ant system has many

instances of cross-package inheritance. Some ghost resources, such as BuildListener and

EnumeratedAttribute, specify the services that their components provide. Others, such

as AbstractSelectorContainer and AbstractAnalyzer, are not exported by their components.

Thus, it is very likely that their descendants inherit those classes for the purpose of code

reuse.

A total 178 type resources are shared among the 10 third-level aggregate components. 5

of them provide more than 80% of those shared resources, and compose the backbone of the

Ant system. Figure 5.4 depicts the interrelation among the five components. Component

ant.* appears to be the framework of the system, because it contains more exiled resources

than any other components. Moreover, almost half of the resources it requires are originally

defined in its corresponding package. ant.taskdefs is an implementation component. It

exports more ghost resources than defined resources. Thus, its corresponding package

defines classes at a low data abstraction level. ant.types, ant.util, and ant.filters can be

utility components because they all have wide inports and export about half of their

defined resources. 20 assembly connectors, including 8 PSRD connectors, among them

show that the five components are tightly coupled, and there are many dependency cycles

between their corresponding packages.

86 A Hybrid Model for Object-Oriented Software Maintenance

#gho= 25
Commandline.Argument

FileNameMapper
...

#def= 9

ant.taskdefs
#gho= 30
#def=665
#exi= 3

#gho= 18
Commandline.Argument

FileNameMapper
...

#def= 0
#exi= 0

#ext=103

#gho= 3
#def= 26

ant.*
#gho= 3
#def= 59
#exi= 7

#gho= 0
#def= 11
#exi= 3
#ext= 16

20;0;1

#gho= 6
FileNameMapper

...
#def= 64

Commandline.Argument

ant.types
#gho= 7
#def=116
#exi= 1

#gho= 4
FileNameMapper

...
#def= 7

Commandline.Argument
...

#exi= 0
#ext= 47

60;0;4

#gho= 2
Commandline.Argument

...
#def= 31

FileNameMapper
...

ant.util
#gho= 3
#def= 64
#exi= 1

#gho= 2
#def= 2

FileNameMapper
...

#exi= 1
#ext= 11

26;0;2

#gho= 2
#def= 23

ant.filters
#gho= 4
#def= 36
#exi= 0

#gho= 2
#def= 2
#exi= 0
#ext= 10

1;0;2

3;10;1

 6;1;0

3;1;0

0;1;0

 1;7;6

14;1;0

11;1;0

23;0;0

0;3;5

6;0;1

6;1;1

1;0;1

0;0;1

3;0;0

6;2;0

3;0;0

Figure 5.4: Assembly Connectors among 5 third-level Components.

Bold solid lines represent PSRD connectors; Blue solid lines represent RD connectors;

Red dashed lines represent PS connectors. Black dotted lines represent RB connectors.

Each connector is labelled with strength(#DIS; #DIC; #DIT).

High-level Dependency Analysis 87

The remaining five third-level components, which are not shown in Figure 5.4, are either

small or have thin inports. In a Hybrid Model, the inport of a component indicates the

responsibilities that it reveals to the outside through usage dependencies. Therefore, we

are able to peek into the responsibilities of the five components by reviewing only a few

classes associated with their inports.

5.6.2 Refactoring Opportunities

Dependency analysis over Hybrid Models not only helps to identify architecturally signifi-

cant information, such as the external properties of groups of objects and the collaboration

between them, but also can help to identify the design intention about program logic en-

capsulation and data abstraction. Some design decisions may become inappropriate as

software evolves. In this case study, we found at least three types of potential design

problems.

Intimate Collaboration

Components collaborate with each other by providing the resources required by others. A

resource may have multiple servers and multiple clients. However, it is undesirable that a

component provides a resource to its clients, and requires the same resource from its servers.

It indicates that the resource has multiple implementations in different components, and

those implementations requires intimate collaboration from one another. As the result,

their containing components are tightly coupled, and the modularity of the system is poor.

For example, Figure 5.4 shows that ant.taskdefs and ant.types are open for variation of

the same resource, Argument. ant.util also provides an implementation of Argument. After

examining the internal structure of ant.util, we found that the subcomponent ant.util.facade

contains a subclass of Argument, which is further inherited by some classes defined in

ant.taskdefs. This subcomponent is not used by any other subcomponents within ant.util.

It is likely that programmers intend to reuse the code from Argument without changing the

existing code. At the same time, it is also likely that the developers wanted to maximize

the code reuse by putting common code in the subclass of Argument in ant.util. As a result,

the possible behaviors of Argument are described in three different packages, maintainers

88 A Hybrid Model for Object-Oriented Software Maintenance

may have to examine several levels of class hierarchy to get a complete description of an

object of Argument. “Replace Inheritance with Delegation“ [25] refactoring technique can

be applied to reuse code of Argument via composition instead of via inheritance [26].

The three components also provide and require resource FileNameMapper. After ex-

amining the internal structure of ant.util, we found that there is an implementation of

Composite design pattern [26]. FileNameMapper is the base class, and ant.util contains the

composite classes and most leaf classes. ant.types and ant.taskdefs both have a couple of

leaf classes. Maintainers need to determine whether it is necessary to define similar objects

in different packages. “Replace Inheritance with Delegation“ [25] and “Move Class“ [23]

refactoring techniques can be applied to regroup classes.

Conflicting design intentions

An indirectly-used inport reflects the designers’ intention to allow a component to hide

implementations of abstract concepts, so that the component can be extended without

changing other components. If a maintainer allows the component to be used by other

components directly, the original design intention is violated. Such modification may lead

to architectural decay. Based on this assumption, we searched for any components whose

inport exports more resources provided by its ghost classes than the resources provided by

its defined classes. In this case study, we found a possible conflicted design intention in

ant.taskdefs.

Component ant.taskdefs in Figure 5.4 is likely designed to be used indirectly. It is

a giant component with relatively thin port. Most of its exported resources are ghost

resources. Figure 5.5 shows that half of its incoming dependencies are either RB or PS

connectors; two PSRD connectors from ant.types and ant.* are associated with more DIC

resources than DIS resources. Therefore, ant.taskdefs are often known as a provider of

abstract concepts. In fact, it was always used indirectly until version 1.5.

Refactoring techniques [25] can be applied to turn ant.taskdef back into an indirectly-

used component. The 9 defined resource that ant.taskdefs provides are used by four different

components, likely in different usage scenarios. ant.listener.* and ant.loader.* use resources,

which are originally only used within ant.taskdefs. Those resources can be split from the

ant.taskdefs and moved to a utility packages, e.g. ant.util. Newly added class Redirec-

High-level Dependency Analysis 89

ant.types

#gho= 25
#def= 9

ant.taskdefs
#gho= 30
#def=665
#exi= 3

#gho= 18
#def= 0
#exi= 0

#ext=103

1;7;6
Redirector

...

ant.filters
0;0;1

ant.util
0;3;5

ant.*

3;10;1
Definer$OnError

PreSetDef$PreSetDefinition
Typedef

...

ant.helper.*

0;0;3

ant.input.*

0;0;1

ant.listener.*

3;0;1
EmailAddress

Mailer
Message

...

ant.loader.*

2;0;1
Manifest

Manifest$Section
...

Figure 5.5: Incoming Assembly Connectors of ant.taskdefs.

torElement in ant.types uses Redirector in ant.taskdefs, which leads to a dependency cycle

between two packages. To break the package dependency cycles, maintainers may apply

“Extract Interface” refactoring technique [25] on the exported resources, separate their

implementation from their interface, and let both packages depends on the interface. The

same approach can be applied to change the PSRD connector from ant.* and ant.taskdefs

into a PS connector.

90 A Hybrid Model for Object-Oriented Software Maintenance

Fat Connectors

An assembly connector specifies a client-server relationship between two components. A

strong assembly connector indicates tight coupling between the components. Reducing the

strength of an assembly connector may reduce the coupling between the original packages.

ant.filters as shown in Figure 5.4, collaborates with four other components. Compared

to other incoming connectors of ant.filters, the connector from ant.types is much stronger

than the others. It also contribute a large portion of the required resources of ant.types.

We examine the internal structure of component ant.types, and found that only one

class, FilterChain, uses the 21 resources provided by ant.filters. FilterChain is packaged in

ant.types mainly because it inherits DataType as most of the other classes in ant.types.

Other than inheritance, FilterChain has few dependencies with other classes in ant.types.

Therefore, it is possible to reduce the strength of the connector between the two compo-

nents by simply moving FilterChain into ant.filters. Maintainers may also considering using

“Replace Inheritance with Delegation“ and “Extract Class” [25] refactoring techniques to

further decouple the two components and allow the implementations of the same abstract

concept remain in the same package.

5.6.3 Summary of Case Study

Hybrid Models provide a promising approach to visualize and analyze object-oriented sys-

tems at coarse-grained levels of abstraction. A Hybrid Model captures all possible usage de-

pendencies between components. As cross-package inheritance relationships are removed,

we not longer need to consider how inheritance affects the interpretation of usage depen-

dencies. More importantly, when we focus on a particular region of a system, there is no

need to think about the implicit dependencies that exist through classes outside the region.

Dependency analysis over Hybrid Models reveals the external properties of a compo-

nent, such as the number and types of resources that the component provides to and

requires from others. We can derive the role that a component plays in the system based

on its external properties. Especially, when a component has a thin inport, we are able to

learn its responsibilities, and better understand the component as a whole.

Hybrid Models can also help maintainers to recover original design intentions of the sys-

High-level Dependency Analysis 91

tem, including data abstraction, program logic encapsulation. Furthermore, Hybrid Models

can help to identify potential design problems — such as tight coupling and compilation

dependency cycles — and suggest possible solutions to the problems.

5.7 Summary

In this chapter, we apply Hybrid Models to analyze dependencies at coarse-grained level

of abstraction. Our approach focus on two perspectives: the external properties of com-

ponent, and the characteristics of connectors. The exploratory case study of Apache Ant

system shows that the dependency analysis results can help maintainers capture the exter-

nal properties of coarse-grained entities and better understand the nature of their interde-

pendencies.

Chapter 6

Architectural Change Analysis

Summary As an object-oriented system evolves, its architecture tends to drift away from

the original design. Knowledge of how the system has changed at coarse-grained levels is

key to understanding the de facto architecture, as it helps to identify potential architec-

tural decay and can provide guidance for further maintenance activities. However, current

studies of object-oriented software changes are mostly targeted at the class or method level.

In this chapter, we propose a new approach to modelling the evolution of object-oriented

software changes at coarse-grained levels. We take snapshots of an object-oriented system,

represent each version of the system as a Hybrid Model, and detect software changes at

coarse-grained level by comparing two Hybrid Models. Based on this approach, we further

identify a collection of change patterns, which help interpret how a system changes at

the architectural level. Finally, we present an exploratory case study to show how our

approach can help maintainers capture and better comprehend architectural evolution of

object-oriented software systems.

Contributions. The contributions of this chapters are the following:

• The evolutionary analysis approach based on Hybrid Models.

• The list of architectural change patterns involving individual components and mul-

tiple components.

Structure of the chapter. The remainder of this chapter is organized as follows.

Section 6.1 shows the importance of evolutionary analysis. Section 6.2, Section 6.3, and

93

94 A Hybrid Model for Object-Oriented Software Maintenance

Section 6.4 elaborate our approach of evolution analysis. Section 6.5 presents the visualiza-

tion support for the evolutionary analysis. In Section 6.6, we apply the evolution analysis

on an exploratory case study. Section 6.7 discusses current researches related to our work,

and Section 6.8 summarizes what we have done.

6.1 Introduction

Change is a measure of success in the world of software. As users grow familiar with a sys-

tem, they often conceive of new features that can be added and new kinds of problems that

can be attacked. Successful systems will respond positively to these pressures to change,

with the addition of new features and support for using the system in new environments to

solve new problems. However, change processes themselves tend to be incremental rather

than revolutionary; over time, as changes accrue, the de facto architecture tends to drift

away from the original design goals and architectural plans. In the absence of careful

re-architecting, the design of the evolving system becomes brittle and resistent to further

change [45, 52, 76]. Maintenance activities become more difficult, time consuming, and

risky.

Explicitly modelling the changes that have occurred to a software system — at different

granularities and from different points of view — provides valuable information to the

system maintainer who needs to understand exactly why a system’s design is the way it

is and what strategies may work best to effect future change. In the last decade, more

and more attention has been focused on uncovering evolution change from source code or

historical data [16, 18, 29, 108]. The goal of our work is to study evolutionary information

of object-oriented software systems as they also suffer from high maintenance costs, and

may benefit from this kind of historical modelling and analysis.

Most current research on object-oriented software evolution is targeted at the class level

of abstraction, which is natural as classes are the basic building blocks of object-oriented

programs. However, such an approach does not scale well to the system level due to the

large volume of information involved. A complex object-oriented system typically consists

of hundreds of classes, which in turn may exhibit a high degree of interdependence among

them. Furthermore, while considering one large system is hard enough, comparing multiple

Architectural Change Analysis 95

versions of a system exacerbates the scaling problems by an order of magnitude.

One way of managing complexity is to model and analyze evolution at a coarse-grained

level, such as the package level. However, in languages such as Java and C++, a package

or namespace construct is simply a container of classes and has little or no semantics; a

package does not exhibit the important semantic properties of its containing classes as types

of objects, and a package diagram is unable to capture inheritance and usage dependency

between classes at a coarse-grained level.

Hybrid Models capture the important properties of classes, including inheritance and

usage dependencies, at a coarse-grained level of abstraction. They not only present overviews

of object-oriented systems, but can also provide a basis for evolution analysis at a selected

level of granularity. In this chapter, we apply Hybrid Models to uncover and analyze evo-

lutionary change at the system level. The evolution analysis is achieved by comparing the

Hybrid Models of adjacent versions. With Hybrid Models, we were able not only to gain an

overall picture of software evolution, but also to investigate the detailed structural change

in a selected scope at a preferred level of granularity. We have applied our approach in

an exploratory case study, and have identified a collection of change patterns that help

interpret how a system changes at the architecture level.

In the next three sections, we identify and analyze the changes in individual compo-

nents, as well as the changes that involves multiple components.

6.2 Change in Aggregate Components

Our objective of investigating change in an individual component is to capture the exter-

nally visible change of its corresponding package. In a Hybrid Model, the properties of

a package are summarized into the defined, ghost and exiled classes, and the inport and

outport of its corresponding component. Therefore, to gain an overview of package-level

evolution, we consider the additions and removals in those five parts of the component:

• ∆Defined : The number of defined classes that have been added or removed serve as a

measure of the growth of the containing package.

• ∆Ghost : If the set of ghost classes of a component has changed, then cross-package

96 A Hybrid Model for Object-Oriented Software Maintenance

inheritance relations have also changed.

• ∆Exiled : Exiled classes are effectively the set of abstract concepts declared in a com-

ponent, but implemented elsewhere; consequently, a change in this set means that

the high-level design of the system has changed.

• ∆inport : A component provides services to others through its inport; As a result, a

change in the inport likely entails a change in the component’s responsibilities, pos-

sibly through a refactoring of the high-level design. In Dig and Johnson’s study on

frameworks, most incidents of “breaking” an API were found to result from refactor-

ing activities [18].

• ∆outport : An aggregate component requires services from others through its outport.

Adding a resource to or removing a resource from the outport indicates that the com-

ponent requires different services, i.e., that the implementation details have changed.

A usage dependency, such as calls, between two classes indicates the possible relations

between the objects they represent. Since an object of a class is also polymorphically an

object of the ancestors of the class, usage dependencies must be interpreted in the context

of a class hierarchy. In Hybrid Models, such interpretation is reflected in terms of the

composition of ports. Thus, we also study how the port composition changes.

• Change of inport composition.

An aggregate component may receive direct and indirect requests. A direct request

is sent to an object of a defined class, while an indirect request is sent to an object

of an ghost class. Increasing the services provided by its defined classes indicates

more defined classes are directly known to other packages. Increasing the services

provided by the ghost classes shows that more defined classes of the component is

hidden, and known to others as the implementation of some abstract concepts.

• Change of outport composition.

A component may send requests to an object of its exiled class. This reveals that

the component is “open for extension” [60], and the requests are the contract that

Architectural Change Analysis 97

��������	 ��������

��	
��	�

���
����

�

��	
��	�

���
����

���
����

�

���
����

�

���
����

�

��	
��	�

���
����

�

��	
��	�

���
����

���
����

�

��	
��	�

�

���
����

�

Figure 6.1: Change in Assembly Connectors.

specify the obligations of its server components. Change, especially the removal, of an

open-for-extension request implies that the interactions between the component

and its service providers are changed.

A component may also send requests to an object of a ghost or defined class of the

component. The required service has a number of possible behaviors. Some are

defined in the component, while others are implemented externally. The addition of

open-for-variation requests indicates the increasing coupling between variations of

implementations for the same abstract concept.

6.3 Change in Assembly Connectors

The previous section describes the approach to identify the externally visible change of

individual components. To understand how change in one component affects or is affected

by another, we must investigate the change of the assembly connectors between them.

98 A Hybrid Model for Object-Oriented Software Maintenance

An assembly connector specifies a client-server relationship between the components

at the same level of granularity. The assembly connector between the client component µ

and the server component ν is associated with the resources shared by the outport of µ,

and the inport of ν.

ac(µ, ν) = outport(µ) ∩ inport(ν) (6.1)

An assembly connector is changed if there is any addition or removal of the associ-

ated resources. Change in the assembly connector between client α and server µ can be

characterized by the following equation:

∆ac (α, µ) = ∆outport (α) ∩∆inport (µ) (6.2)

∪ ∆outport (α) ∩ Ξinport (µ) (6.3)

∪ Ξoutport (α) ∩∆inport (µ) (6.4)

6.3.1 Co-change between the client and server component

As Equation 6.2 depicts, an assembly connector changes if a resource is added to or removed

from both the outport of the client component and the inport of the server component.

This indicates either the change in the server component leads to the change in the client

component, or the server component changes in order to meet new requirements of the

client component. For example, in Figure 6.1, component α requires a new resource,

(C, M), and component µ provides such a new resource. Thus, ∆ac(α, µ) = {(C, M)}.

To further investigate how the client and server component affect each other, we nor-

malize the number of co-changed resources with the change size of the client outport and

the server inport, respectively.

rafferent(α, µ) =
| ∆outport(α) ∩∆inport(µ) |

| ∆inport(µ) |
(6.5)

rafferent(α, µ) represents how much change in the inport of the server component µ

is demanded by the client component α. Comparing rafferent of all incoming assembly

connectors of a server component, we are able to assess why its responsibility has changed.

Architectural Change Analysis 99

In Figure 6.1, rafferent(α, µ) = 1 and rafferent(β, µ) = 0, thus new responsibility is added

to component µ solely for the needs of component α.

refferent(α, µ) =
| ∆outport(α) ∩∆inport(µ) |

| ∆outport(α) |
(6.6)

refferent(α, µ) indicates how much change in the outport of the client component α is

caused by the change from the server component µ. Comparing refferent of all outgoing

assembly connectors of a client component, we can evaluate how its change depends on the

change in other components. In Figure 6.1, refferent(β, µ) = 0 and refferent(β, ν) = 1, thus

only component ν contributes to the change of component β.

6.3.2 Reuse Resources

Equation 6.3 indicates that an assembly connector changes if a resource is added to or

removed from the outport of the client component, but remains unchanged in the inport

of the server component.

The client component requires a resource that the server component provided in the

previous version, or the client component no longer requires the resources, while the server

component still provides such a resource to other components. For example, ∆ac(γ, ν) =

{(C, M)}, since component γ in version 2 reuses an existing resource, (C, M), provided

by component ν.

6.3.3 Re-implement Resources

Equation 6.4 indicates that an assembly connector changes if a resource is added to or

removed from the inport of the server component, but remains unchanged in the outport

of the client component.

The server component provides an implementation for the resource that was required

in the previous version, or the server component no longer provide the resource, but other

components still provide the same resources. For example, component ν provides the

resource, (C, M) to component β, which already used the resource in version 1.

100 A Hybrid Model for Object-Oriented Software Maintenance

6.3.4 Summary

When an assembly connector changes due to the co-change between components, it is likely

that the involved resources become or are no longer significant at the package level. When

an assembly connector changes for the purpose of reuse or re-implementation, the involved

resource are significant in both versions of the software system.

6.4 Change in Delegation Connectors

A delegation connector promotes the ports of the sub-components to their container compo-

nent. Thus, the delegation connector between component α and its containing component

β is associated with the resources shared by their corresponding ports.

dcinport(α, β) = inport(α) ∩ inport(β)

dcoutport(α, β) = outport(α) ∩ outport(β)

Additions and removals of resources from delegate connectors reveal how fine-grained

change contributes to the change at a coarse level of granularity. The analysis on the del-

egation connectors promoting inports is same as the analysis on the delegation connectors

promoting outports. Therefore, we discuss only the analysis on the delegation connectors

that connect the inports of components.

Suppose component α contains component µ, the change of the delegation connector

between the two can be divided into three parts.

∆dc−inpot (α, µ) = ∆inport (α) ∩∆inport (µ) (6.7)

∪ ∆inport (α) ∩ Ξinport (µ) (6.8)

∪ Ξinport (α) ∩∆inport (µ) (6.9)

6.4.1 Internal change leads to external change

As Equation 6.7 shows, a delegation connector changes if the involved resources are added

to or removed from both the ports of the container component and the ports of the containee

Architectural Change Analysis 101

component. For example, in Figure 6.2, component µ provides a new resource (C, M),

which is promoted by its container component α.

To further investigate how the fine-grained components contribute to the externally

visible change of their container component, we normalize the number of exposed internal

changes with the change size of the container inport and the containee inport, respectively.

rcoarse−in(α, µ) =
| ∆inport(α) ∩∆inport(µ) |

| ∆inport(α) |
(6.10)

rcoarse−in(α, µ) represents how much of the externally visible change of component α at

the coarse-grained level is contributed by the component µ at the more fine-grained level.

Comparing rcoarse−in of the delegation connectors from all containee components, we are

able to answer questions, such as: Which component contributes the most to the externally

visible change of its container component? Do the sub-components equally contribute to

the change of their container, or is there a dominant contributor?

rfine−in(α, µ) =
| ∆inport(α) ∩∆inport(µ) |

| ∆inport(µ) |
(6.11)

rfine−in(α, µ) represents how much the change in component µ at the fine-grained level

contributes to the externally visible change of component α. Examining rfine−in for all

containee components, we are able to learn whether the majority of change at the fine-

grained level is externally visible at the coarse-grained level.

6.4.2 Exposing or hiding internal resources

Equation 6.8 indicates that a delegation connector changes if the container component

exports or hides the resource that is significant at the finer-grained level. For example, in

Figure 6.2, resource (C, M), which was significant at the fine-grained level in version 1,

becomes visible at the coarse-grained level in version 2.

6.4.3 Reusing or re-implementing external resources

Equation 6.9 indicates that a delegation connector changes if the port of the containee

component changes but the port of container component remains same. In this case,

102 A Hybrid Model for Object-Oriented Software Maintenance

��������	 ��������

��	
��	�

�

��	
��	�

���
����

���
����

�

��	
��	�

�

��	
��	�

���
����

�

���
����

�

���
����

�

��	
��	�

�

Figure 6.2: Change in Delegation Connectors.

resources are added to or removed from the ports of the containee component, while those

resources are significant at the coarse-grained level in both versions. This happens when

at least one of the siblings of the containee components provides or requires the same

resources. For example, in Figure 6.2, new component ω in version 2 provides resource

(C, M), which was already exported by component α in version 1.

6.5 Visualization Support

In previous sections, we list some of the possible change patterns involving individual

components, assembly and delegation connectors. The analysis on an aggregate component

captures the externally visible change of the selected scope; the analysis on assembly

connectors show how the components at the same level of granularity affect each other;

the analysis on delegation connectors describes how the internal change of a scope affects

its external properties at a coarser-grained level.

A system may experience various combinations of the change mentioned above. As

modification to a system accumulates to a certain degree, the implementation may drift

away from the original design. For example, the component, which was intended to respond

only to indirect requests, may over time receive more and more direct requests. Or the

Architectural Change Analysis 103

inport of a component may grow much quickly than the component so that more and

more its defined classes become externally visible. Or two unrelated components start to

collaborate with each other.

We could have defined a set of heuristics and thresholds to detect and report significant

changes at the architecture level. However, we believe that it is subjective to determine

whether a change leads to architecture drift or decay, and many other factors should also be

taken into consideration, such as the current architecture, the history of the target system,

and the prediction of future change.

Therefore, we choose to use visualization techniques to help maintainers more quickly

apprehend the change at coarse-grained levels, and let them decide whether the design

intention has changed and what maintenance actions might be appropriate.

Our toolkit can produce three automated evolutionary views of a target system:

1. A snapshot view presents the Hybrid Model that is reverse engineered from an object-

oriented system at a particular point in its history. The aggregate components in the

Hybrid Model are organized in a tree structure, which is consistent with the package

containment hierarchy. For example, Figure 5.3 is the snapshot of Ant version 1.6.5.

2. A comparison view presents the difference between two selected Hybrid Models. For

example, Figure 6.5 shows the partial difference between Ant version 1.4 and 1.5.

3. An evolution matrix organizes snapshots of the selected aggregate components in a

matrix. It provides an overview of how a collection of aggregate components change

over time. For example, Figure 6.4 shows the history of the packages contained in

package ant.

The properties of a Hybrid Model that are key to our evolution analysis are also visu-

alized in the three views. As shown in Figure 6.3, the height of a component is determined

by the change size of its ghost classes, defined classes, and exiled classes, while the width

of a component is determined by the change size of its ports. The color of each part of an

aggregate component indicates whether the change is mainly addition or removal.

104 A Hybrid Model for Object-Oriented Software Maintenance

Figure 6.3: Visualization Support for Evolutionary Analysis

6.6 Case Study: The Evolution of Apache Ant

To evaluate the change analysis approach explained in the previous sections, we conducted

an exploratory case study on a Java-based build tool, called Apache Ant [22]. It was

selected for the case study because it is a medium-sized object-oriented system, which

has more than 7 years of history and is still under development, and also because we are

familiar with it through our study on its architecture (Chapter 5).

Apache Ant, originally a part of the Apache Tomcat [95] project, became an indepen-

Version Release Date # package # classes

1.1 19 Jul 2000 6 116

1.2 24 Oct 2000 17 224

1.3 3 Mar 2001 25 323

1.4 3 Sep 2001 35 507

1.5 10 Jul 2002 56 731

1.6 18 Dec 2003 67 943

1.7 19 Dec 2006 71 1158

Table 6.1: The size and release date of the studied versions.

Architectural Change Analysis 105

dent project in July 2000. It has been used as a general-purpose build tool in many projects

since then. In the first release of Ant as a stand-alone project, there were 6 packages and

116 classes, while in the latest release, there were 71 packages and more than a thousand

classes. In this case study, we analyzed 7 major releases, whose release dates, and the

number of packages and classes are listed in Table 6.1.

The focus of this case study was on studying how Apache Ant evolved over time.

We apply Hybrid Models to visualize the changes, and to seek answers to the following

questions:

• How did the externally visible properties of a package evolve?

• How did the internal structure of a complex package evolve?

• What was the relationship between the external and internal change of a package?

• What was the evolutionary influence among sibling packages?

6.6.1 How has the package tools.ant evolved?

We were particularly interested in the evolution of package tools.ant as it contains over 95%

classes of the whole system, and has a complex structure. We extracted Hybrid Models

for all studied releases, and created an evolution matrix. As Figure 6.4 shows, package

tools.ant has changed a lot since version 1.1. New packages were introduced in each major

release. All of the original packages still exist in version 1.7, but in different sizes, shapes,

and colors. Compared to their first appearance in the system, small packages, especially

those introduced in the later versions of the system, are relative stable, while the four

packages with the longest history have changed most.

In the remainder of this section, we discuss our detailed observations about the history

of Apache Ant. We pay particular attention to possible indicators of architectural drift.

Increasing number of ghost classes

The number of ghost classes at this level of granularity has steadily increased, as shown in

Figure 6.4. There are only two ghost classes in version 1.1, and both belonged to package

106 A Hybrid Model for Object-Oriented Software Maintenance

v 1.1

v 1.2

ant.*

ant.*

taskdefs

taskdefs

v 1.3
ant.*

taskdefs

types

types

v 1.4
ant.*

taskdefs

types

util

util

v 1.5
ant.*

listener

listener

taskdefs

types util

v 1.6
ant.*

filters

filters

helper

helper

input

inputlistener

taskdefs

types util

v 1.7
ant.* filters helper input

launch

launchlistener

loader

loader

taskdefs

types
util

dispatch

Figure 6.4: The history of pkg. tools.ant is displayed in an Evolution Matrix.

Architectural Change Analysis 107

taskdefs. In version 1.7, 63 classes have become ghost classes of one or more of the 7

packages at this level.

Several packages acquired ghost classes when they were first introduced to the system.

For example, package filters implemented an abstract class that was new to the system,

while the other three packages implemented the classes that already existed in the pre-

vious versions: package listener inherited class BuildListener, package helper inherited

class ProjectHelper, and package loader inherited class AntClassLoader. The class and

package names suggest that each one of the three package was used to group some classes

that implement a common abstract concept. The dark colored inports of the three com-

ponents, as shown in Figure 6.4, further confirmed that they were mostly used indirectly

through their ghost classes, and known to their clients as the implementation for those

ghost classes, while their internal classes were hidden from others. It is not surprising

that these packages, which were initially designed to be at a low data abstraction level,

continuously have ghost classes over their lifetime. However, when a package with no ghost

classes starts to inherit from other packages, it may be an indicator of architectural drift.

In the versions of Ant that we studied, we found three such cases, two of which are related.

Ghost classes first appeared in package types in version 1.3, when the package reused

an existing class, DirectoryScanner, from package ant.*. In version 1.5, package ant.*

acquired a ghost class, SelectorScanner, which was declared in package type, and is the

superclass of class DirectoryScanner. We consider it likely that developers intended

to introduce a more general concept without causing much change to the existing high-

level design. As a result, a class in the middle of a class hierarchy tree was separated

from the other family members. Furthermore, in version 1.6, package ant.* was involved

in another cross-package inheritance relationship, which was also due to the presence of

class DirectoryScanner. History shows that the number of ghost classes in package types

continually increased since version 1.3, while package ant.* had only a few in the more

recent version. Thus, we consider that it would be reasonable for maintainers to apply

“Move Class” refactoring technique [25], and move class DirectoryScanner from package

ant.* to package type.

The third case took place in version 1.5, when package util acquired a ghost class named

Argument, which is an inner class from package types. The same class also appeared as

108 A Hybrid Model for Object-Oriented Software Maintenance

a new ghost class in package taskdefs. After examining the internal structure of package

util, we found that one of its subcomponents contains a subclass of Argument, which is in

turn inherited by some classes defined in package taskdefs. This subcomponent is not used

by any other subcomponents within package util. It is likely that programmers intend to

reuse the code from class Argument without changing the existing code. At the same time,

it is also likely that the developers wanted to maximize the code reuse by putting common

code in package util. As a result, the possible behaviors of Argument are described in three

different packages.

The three cases described above not only indicate the design change in three individual

packages, but also reveal the trends that there were increasing number of the classes that

were implemented in multiple components. Using package util as an example, by the time

of version 1.7, it had 7 ghost classes, 5 of which were implemented in more than two

components.

Removal of Exiled Classes

Since version 1.5, a number of exiled classes have been introduced to serve as contracts

between components. For example, class TimeoutObserver was introduced to package util

in version 1.5 as an update interface to receive the signal from the class WatchDog. The

two classes are a part of an instance of the observer design pattern [26].

However, it is unusual to remove an abstract concept that was significant at package

levels; we noted only one such case in the studied period, and it resulted from package

splitting. In version 1.1, package ant.* had an exiled class, EnumeratedAttribute, which

was extended by package taskdefs. The exiled class disappeared in the next version. At

the same time, the new package types had a class with the same class name. It is possible

that class EnumeratedAttribute was moved. After examining the other removed classes

in package ant.*, we found that class Path were also moved from package ant.* to types.

This confirmed that some classes were split from package ant.* to form a new package.

Expansion of Ports

One noticeable architectural change in Figure 6.4 is that the ports of most packages became

wider and wider, and the color of some ports changed too.

Architectural Change Analysis 109

The width of package ant.* grew much faster than its height. Compared to package

ant.* in version 1.1, the package in version 1.7 responded to 4 times more message types,

while the number of its defined classes increased by only 50%. This indicates that one

or more classes of the package have accumulated a number of responsibilities that are

significant at the package level. Thus, applying change to those classes become more likely

to affect other packages.

The growth of package taskdefs can be divided into two stages. Before version 1.5, it

grew much faster than any other packages, while its inport had little change. This is not

surprising since package taskdefs was originally designed to extend the abstract concepts

from package ant.*. However, since version 1.5, not only did its inport expand rapidly, the

color of its inport also became lighter. This indicates that it started to receive more and

more direct requests from other packages. It is likely that package taskdefs increasingly

exported its own responsibilities besides the abstract concepts it implements.

When the packages types and util were first introduced to the system, both were small.

Later both grew into complex packages with wider ports. The color of their ports shows that

they received both indirect and direct requests, and were continuously open for variation.

This indicates as the system has grown, there have been an increasing number of concepts

implemented in multiple packages, and the coupling between the implementations increased

as well.

Change of Assembly Connectors

We also created comparison views to study the difference between the Hybrid Models of

adjacent versions of Ant. There are at least 3 similarities shared by those views.

First, we observe that package taskdefs appears to be the driving force of the evolution

of Ant: it is the biggest subpackage of the top-level package tools.ant, it grew much faster

than any of its siblings, and it continually demanded changed resources from its siblings.

In Figure 6.5, package taskdefs has dark outgoing arrows to five siblings , which indicates

that package taskdefs depended on the change in its siblings. As the arrows are weighted

by rafferent of assembly connectors, the dark color indicates most of the inport change of

the five packages were contributed to the changes in package taskdefs. It is likely that

package taskdefs demanded new services as it grew, and its sibling packages changed in

110 A Hybrid Model for Object-Oriented Software Maintenance

ant.*

helper

inputlistener

taskdefs

types

util

filters

Figure 6.5: Assembly connector change in pkg. tools.ant caused by co-change

between components. The color shades of connectors are determined by their rafferent

values.

Architectural Change Analysis 111

order to meet its new requirements.

Second, package ant.* provides some services that are used and reused by its siblings.

Figure 6.6 shows that some resources package ant.* provided in version 1.4 were reused by

its sibling in version 1.5. Change to those services may affect a number of other packages.

Third, there are increasing number of classes that were implemented in multiple pack-

ages. Figure 6.7 shows that in version 1.5, both package util and listener provided new

implementation for the classes that were important in version 1.4 at the package level.

6.6.2 Evolution at the Finer-grained Level

As Ant system has evolved, its packages util, taskdefs, and types have all become signifi-

cantly more complex and have acquired several subpackages. However, their evolutionary

histories are quite different.

Most internal changes in package util are externally visible. Figure 6.8 depicts the

comparsion view of package util. The dark color of the delegation connectors indicates that

the change at the sub-package level is also visible at the package level. Package util, as its

package name suggested, was initially designed to be a utility package, providing services

shared by other packages. It is composed of several sub-packages with few dependencies

among them. Those sub-packages evolves independently.

Package taskdefs continuously provided implementations for the existing abstract con-

cepts. As Figure 6.9 depicts, all sub-packages of taskdefs in version 1.5 implemented some

existing classes that were significant at the coarse-grained level. Package taskdefs was

designed as an implementation package, which contains many ghost classes, such as class

Task, EnumeratedAttribute, etc. Many of them were implemented in more than one sub-

package of taskdefs. Therefore, when a new class or a new package is added, the resources

it provides or requires may have already been important at the coarse-grained level.

Many internal changes in package type are limited within the package. As Figure 6.10

demonstrates, all three sub-packages of type have added ghost classes, and two of them have

added exiled classes, but none of them are visible at the coarse-grained level. In addition,

the delegator connector between package types and types.* are darker than others, which

indicates that most externally visible changes of package types are contributed by package

types.*.

112 A Hybrid Model for Object-Oriented Software Maintenance

ant.*

helper

inputlistener

taskdefs

types

util

filters

Figure 6.6: Assembly connector change in pkg. tools.ant for reuse purpose.

Architectural Change Analysis 113

ant.*

helper

inputlistener

taskdefs

types

util

filters

Figure 6.7: Assembly connector change in pkg. tools.ant for reimplementation purpose.

114 A Hybrid Model for Object-Oriented Software Maintenance

util

util.* depend facade optional regexp

Figure 6.8: Delegation connector change in pkg. util

caused by the co-change between components. The color shades are determined by

rfine−in and rfine−out values.

taskdefs

taskdefs.*
compilers condition cvslib email

optional

rmic

Figure 6.9: Delegation connector change in pkg. taskdefs

for the reuse and reimplementation purpose.

Architectural Change Analysis 115

types

types.* depend selectors

Figure 6.10: Delegation connector change in pkg. types

caused by the co-change between components. The color shades are determined by

rcoarse−in and rcoarse−out values.

6.6.3 Discussion

In the proposed evolution analysis, we take snapshots of a target system along its life time,

and then analyze the difference between successive snapshots. With Hybrid Models, we

can not only gain an overview of how a software system evolves over time, but also analyze

the difference between two versions of a software system at the selected level of granularity.

However, this approach is sensitive to the choice of interval between snapshots. If the

two snapshots are too close in time, the difference between them may not be significant at

the selected level of granularity. A lot of effort is required to recover and analyze Hybrid

Models, while little evolutionary information is revealed. If two snapshots are too far apart

in time, then a lot of important design may be missed. Therefore, it is important to find

a balance between accuracy and efficiency.

From our experience, the proposed approach is most effective when 50% to 80% of

classes in the previous snapshot exists in the next one. In this case study, we created

a Hybrid Model for each major release of Ant system, as we found that there is little

package-level change in minor releases. Other systems may not share the same properties.

116 A Hybrid Model for Object-Oriented Software Maintenance

6.7 Related Work

Our work on architecture evolution analysis builds on prior work in two primary areas:

change pattern detection and evolutionary visualization.

6.7.1 Change Pattern Detection

Godfrey and Zou employ origin analysis to detect structural change in procedural code [28].

They emphasize the analysis on call relationships, and classify the detected change into

renaming, moving, splitting, and merging.

Xing and Stroulia presented a technique to recover co-evolution patterns among classes

of an evolving software system [108]. They first detect and classify structural change

of individual classes, and then apply association rules to distinguish three co-evolution

patterns among classes.

Change of object-oriented systems is often interpreted in terms of refactorings. A

number of refactoring detection approaches have been presented in past research. Gőrg and

Weißgerber identify refactorings from the structural change that took place in the same

CVS transaction [29]. Demeyer et al. detect possible refactoring activities by studying

metrics change over successive versions of a software system [16]. Dig et al. apply a

hashing technique to identify similar pairs of entities, and then perform an expensive

semantic analysis to refine the initial candidates for refactorings [18]. Although they use

different approaches and heuristics for refactorings, all of them can only recover the change

patterns that they intend to identify.

6.7.2 Evolutionary Visualization

Current techniques for visualizing software evolution rely heavily on software metrics to

produce condensed views.

The work most closely associated with our research is Lanza et al.’s use of polymetrics

to visualize the history of classes [51]. Their method produces an evolution matrix, in which

each cell represents a snapshot of a class, and the dimensions of the cell are determined by

the metrics values of the class. They focus on the change of individual classes, while we

Architectural Change Analysis 117

emphasize on the change of packages and their interrelationships.

Wu et al. also use matrices, called Evolution Spectrographs, to visualize the evolution-

ary measurements computed on subsequent versions [107]. They develop special coloring

techniques to represent one particular property, e.g., fanin and fanout, of a target system

at a selected level of granularity.

Pinzger et al. uses a Kiviat Diagram to graphically represent multiple metrics values

of a source code entity (module, class, etc.), and their changes across several releases [79].

The coupling dependencies between source code entities are visualized as the edges between

Kiviat Diagrams.

Rysselberghe et al. reconstruct evolution processes of existing software systems by

exploiting clone detection techniques [83]. They identify adding, deleting and moving

method in the program with aid of dotplots visualization.

Current research on object-oriented software evolution either relies on quantitative

analysis, or is focused on semantic analysis at the class level of abstraction. In contrast

to this state of art, our approach identifies change patterns at coarse-grained levels of

abstraction.

6.8 Summary

In this chapter, we have presented an approach for studying the evolution of large, object-

oriented software systems at a coarse level of granularity. We take snapshots of an object-

oriented systems, represent each version of the system as a Hybrid Model, and detect

software change at coarse-grained level by comparing two Hybrid Models. In our case

study of the Apache Ant system, we show how Hybrid Models can help us to gain an

overview of how the system evolved over time, identify possible architectural drift, and

interpret detailed structural change in a selected scope at a preferred level of granularity.

Chapter 7

Conclusion

In this chapter, we summarize the contributions made in this thesis, discuss the benefits

of our approach, and suggest future research directions.

7.1 Contributions

The system responsibilities of object-oriented software are achieved by a collection of collab-

orating objects. Classes provide a means to describe how objects behave during run-time.

A reverse engineering tool, to support the comprehension and maintenance of object-

oriented software systems, must capture both the collaboration between objects, and the

dependencies between classes. However, the conventional coarse-grained representations,

such as package diagrams, fail to treat both classes and objects as independent units due

to the gap between objects and their classes.

The main contribution of this thesis is the creation of the Hybrid Model, which explicitly

captures cross-package inheritance relations, as well as all possible dependencies between

objects at a coarse-grained level of abstraction. Not only does a Hybrid Model provide

an abstract and meaningful representation of an object-oriented system, it also provides a

foundation for various kinds of analyses at the architectural level.

To investigate the efficacy of using Hybrid Models to reduce the complexity of a reverse

engineering process, we applied the Hybrid Model in three different reverse engineering

contexts: program comprehension, architectural dependency analysis, and architectural

119

120 A Hybrid Model for Object-Oriented Software Maintenance

change analysis.

1. Program comprehension.

We applied the Hybrid Models to support both top-down and bottom-up compre-

hension strategies.

To meet the comprehension needs of a bottom-up strategy, we use the Hybrid Model

to assist maintainers in building abstractions by grouping classes into aggregate com-

ponents. The boundary of an aggregate component summarizes the key properties

of a group of classes as not only namespaces, but also types of objects. Thus, main-

tainers may form a coherent mental model of the group of classes.

To meet the comprehension needs of a top-down strategy, we use the Hybrid Model

to assist maintainers in creating a hierarchy of abstractions, and exploring the hier-

archy in a divide-and-conquer manner. At a high level of abstraction, maintainers

can focus on the external properties of aggregate components and the connectors

between them without worrying about their internal implementation. At a low level

of abstraction, the boundary of an aggregate component provide necessary context

for the understanding of more detailed information.

We conducted a case study to demonstrate that the Hybrid Models can be used in a

real-world comprehension scenario.

2. Architectural dependency analysis.

We presented and discussed a dependency analysis approach to help maintainers

capture external properties of packages, and better understand the nature of their

interdependencies. In this approach, we use the Hybrid Model to explicitly capture

the cross-package inheritance relations, as well as all possible usage dependencies

between objects at the package level.

Based on the Hybrid Model, we presented a collection of architectural patterns involv-

ing aggregate components and connectors. Those patterns help analyze the design

properties of key object-oriented concepts, such as data abstraction, encapsulation,

and inheritance, which are vital to the quality of an object-oriented design.

Conclusion 121

3. Architectural change analysis.

We presented and discussed an evolutionary analysis approach to uncover and ana-

lyze structural change of object-oriented systems at the architectural level. In this

approach, we applied the Hybrid Model to explicitly modelling object-oriented soft-

ware changes at coarse-grained levels. With the Hybrid Model, we were able not only

to gain an overall picture of software evolution, but also to investigate the detailed

structural change in a selected scope at a preferred level of granularity. We presented

a collection of change patterns involving individual components and multiple com-

ponents, and designed visualization techniques to support the identification of those

patterns.

7.2 Future Work

This sections proposes future research directions based on the results of this thesis.

7.2.1 Improving the Accuracy of Hybrid Model

The Hybrid Model is extracted from source code based on static analysis, and so suffers

from the usual conservatism about relation information. Low-level data and control de-

pendency analysis may help narrow the set of potential targets of polymorphic calls, and

reduce the impossible relations.

Dynamic execution traces have been proven to be useful in aiding object-oriented pro-

gram comprehension. Currently, information of a program’s behavior contained in a Hybrid

Model is independent of inputs and the runtime environment. However, it is possible to

slicing Hybrid Models using dynamic information. Since a assembly connector in a Hybrid

Model represents a possible communication path between groups of objects, we believe

that the Hybrid Model can be used to show execution trace at a high level of abstraction.

Thus, it provides a platform to combine and compare static and dynamic information.

122 A Hybrid Model for Object-Oriented Software Maintenance

7.2.2 Visualization Support

The Hybrid Model is a graphic representation of object-oriented software systems. Thus,

it is important to provide efficient tools to visualizing and exploring the Hybrid Models.

Currently, we use Graphviz to perform the layout and rending [31]. However, it does not

meet all of our needs for the navigation and exploration of Hybrid Models. For example,

it is difficult to manipulate multiple Graphviz windows to support the navigation among

views at different levels of abstraction. In addition, we integrate Graphviz with our toolkits

by creating input and output files. There is little realtime collaboration between tools.

The future work includes developing a special visualizer for the exploration of the Hybrid

Models.

7.2.3 Architecture of A Product Family

Both architectural dependency analysis and change analysis presented in this thesis aim

to understand the nature of a single target system. Future work includes performing case

studies on the applications that belong to one product family or from the same problem

domain, e.g., UML modelling tools. We hope to find similar architectural patterns and

general trends in evolution.

Appendix A

Toolkit

In this chapter, we present a toolkit, Hybrid Model Toolkit, that we developed to extract,

analyze, and present Hybrid Models. Figure A.1 depicts the overall architecture of the

Hybrid Model Toolkit. Our toolkit is composed of the following parts:

Repository stores the information extracted from the code history. There are two level

repository: Class-level Repository and Hybrid Model Repository.

• Class-level Repository stores the information at the class-level of abstraction. Its

data structure is shown in Figure A.2. Currently, we store several primitive class

interrelations, including calls, instantiates, localVariable, fieldType, paramType,

returnType, etc.

• Hybrid Model Repository stores the extract Hybrid Models and the results of

various analysis performed on Hybrid Models. Figure A.3 depicts the data

structure of the Hybrid Model repository.

Extractor extracts the class-level information from the code history, and store the facts

in the class-level repository. Currently, we support the extraction of facts from Java

class files.

Hybrid Model Extractor provides an interactive environment, in which users can mod-

ify containment hierarchy of an object-oriented system. It can automatically generate

123

124 A Hybrid Model for Object-Oriented Software Maintenance

�������

���	
�����
�

�	��

�	�����

���
����

��������	

�
�����

�	�����

��	
�

�����	��	
�	�

���
��
���	�
�	������
�

�����
�	 	�
�	������
�

���
��
���	�

���
����

� ��������
�

!�����	

!
����	���
��

!�����	

"	#����

�������$	��

��	
�
���

%�	
&�	#��	�

�������$	��

��	
�
���

Figure A.1: The Architecture of Hybrid Model Toolkit

Toolkit 125

the Hybrid Model of an object-oriented software systems using a given containment

hierarchy.

Analyzers performs analysis on Hybrid Models.

The repository of Hybrid Models provides a foundation for further analysis at the

architectural level. The current design include two analyzers:

• Architectural Analyzer performs the architectural dependency analysis presented

in Chapter 5. The analysis results are stored in the Hybrid Model repository in

terms of the properties of model elements, as shown in Figure A.4. Most anal-

ysis results are numeric, and can be visualized using polymetrics visualization

technique [51].

• Evolutionary Analyzer implements the architectural change analysis presented

in Chapter 6. It automates the extraction and comparison of Hybrid Models,

and store the difference between in terms of new Hybrid Models.

Query Engine provides an interactive environment, in which users can ask questions

about the properties of Hybrid Models, and choose preferred the scope and granu-

larity of subsequent visualization.

Visualizer produces various views of the Hybrid Model, which is presented using Graphviz [31].

The goal of the visualizer is to help maintainers to intuitively grasp the architecture

or architectural change at coarse grained level. We apply polymetrics visualization

technique to highlight the key properties of Hybrid Models. For example, the height

of a component is determined by the size or the change size of its ghost classes,

defined classes, and exiled classes, while the width of a component is determined by

the size or the change size of its ports.

126 A Hybrid Model for Object-Oriented Software Maintenance

��������

	�
��������
����

����� 	����������� �������������

������

�������

����� ������

����������������

�
�

�
�

���

Figure A.2: Data Structure of Class Level Repository

�����

������	�

������	�

����	����	

��

�	�	��
������	����

���

��
���
�����

�	����
	

�	����	���	

����
��
	�

���	��
��
	

����	

��

����	��
	�

������	�

�	���	���

����
��

	���	� ���

!

"

!

"

"

"

!

!

#

!

!
! !

!
#

!

!

!

Figure A.3: Data Structure of Hybrid Model Repository

��������� ��������	
�	� ����
	��

���������
	���	��

����

���
�

Figure A.4: Analysis results are stored in the Hybrid Model Repository

Bibliography

[1] Robert Allen and David Garlan. A formal basis for architectural connection. ACM

Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[2] Giuliano Antoniol, Roberto Fiutem, and Luca Cristoforetti. Design pattern recovery

in object-oriented software. In Proceedings of the 6th International Workshop on

Program Comprehension, pages 153–160, 1998.

[3] Kent Beck and Ward Cunningham. A laboratory for teaching object oriented think-

ing. In OOPSLA ’89: Conference Proceedings on Object-oriented Programming Sys-

tems, Languages and Applications, pages 1–6, New York, NY, USA, 1989. ACM

Press.

[4] Pam Binns, Matt Englehart, Mike Jackson, and Steve Vestal. Domain-specific soft-

ware architectures for guidance, navigation and control. International Journal of

Software Engineering and Knowledge Engineering, 6(2):201–227, June 1996.

[5] Cornrad Bock. UML 2 composition model. Journal of Object Technology, 3(10):47–

73, November-December 2004.

[6] Grady Booch. Object-oriented analysis and design with applications (2nd ed.).

Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

[7] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A unified framework for

coupling measurement in object-oriented systems. IEEE Transactions on Software

Engineering, 25(1):91–121, January/February 1999.

127

128 A Hybrid Model for Object-Oriented Software Maintenance

[8] Ruven Brooks. Towards a theory of the comprehension of computer programs. In-

ternational Journal of Man-Machine Studies, 18(6):543–554, 1983.

[9] Steve Burbeck. Applications programming in Smalltalk-80: How to use

Model-View-Controller (MVC). URL: http://st-www.cs.uiuc.edu/users/smarch/st-

docs/mvc.html, 1987.

[10] Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing and

implementing choices: an object-oriented system in C++. Communications ACM,

36(9):117–126, 1993.

[11] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:

A taxonomy. IEEE Software, 7(1):13–17, 1990.

[12] Linore Cleveland. A program understanding support environment. IBM System

Journal, 28(2):324–344, 1989.

[13] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Yourdon Press, Upper

Saddle River, NJ, USA, 1991.

[14] CPPX. Open source C++ fact extractor. URL: http://swag.uwaterloo.ca/ cppx,

2002.

[15] Dennis de Champeaux. Object-oriented analysis and top-down software develop-

ment. In ECOOP ’91: Proceedings of the European Conference on Object-Oriented

Programming, pages 360–376, London, UK, 1991. Springer-Verlag.

[16] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via

change metrics. In Proceedings of the 15th ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications (OOPSLA-00), pages

166–177, Minneapolis, MN, USA, Oct. 2000. ACM.

[17] Frank DeRemer and Hans Kron. Programming-in-the large versus programming-in-

the-small. In Proceedings of the International Conference on Reliable Software, pages

114–121, New York, NY, USA, 1975. ACM Press.

Bibliography 129

[18] Danny Dig and Ralph Johnson. The role of refactorings in API evolution. In Proceed-

ings of the 21st IEEE International Conference on Software Maintenance (ICSM-05),

pages 389–398, Budapest, Hungary, Sept. 2005. IEEE.

[19] Johann Eder, Gerti Kappel, and Michael Schrefl. Coupling and cohesion in object-

oriented systems. Technical report, University of Klagenfurt, 1992.

[20] Alexander Egyed and Phillipe B. Kruchten. Rose/Architect: a tool to visualize

architecture. In Proceedings of 32nd Annual Hawaii Conference on Systems Sciences,

1999.

[21] R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study - reports

to our respondents. In Girish Parikh and Nicholas Zvegintzov, editors, Tutorial of

Software Maintenance, pages 13–27. IEEE Computer Society Press, 1983.

[22] The Apache Software Foundation. The Apache Ant project. URL:

http://ant.apache.org/.

[23] Martin Fowler. URL: http://www.refactoring.com/catalog/index.html.

[24] Martin Fowler. Reducing coupling. IEEE Software, 18(4):102–104, 2001.

[25] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactor-

ing: Improving the Design of Existing Code. Addison-Wesley Professional, 1 edition,

1999.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison Wesley Professional,

1995.

[27] David Garlan. Software architecture: a roadmap. In ICSE ’00: Proceedings of the

Conference on The Future of Software Engineering, pages 91–101, New York, NY,

USA, 2000. ACM.

[28] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and split-

ting of source code entities. IEEE Transactions on Software Engineering, 31(2):166–

181, 2005.

130 A Hybrid Model for Object-Oriented Software Maintenance

[29] Carsten Görg and Peter Weißgerber. Detecting and visualizing refactorings from

software archives. In Proceedings of the 13th International Workshop on Program

Comprehension (IWPC-05), pages 205–214, St. Louis, MO, USA, May 2005. IEEE.

[30] Michael M. Gorlick and Rami R. Razouk. Using weaves for software construction and

analysis. In ICSE ’91: Proceedings of the 13th International Conference on Software

Engineering, pages 23–34, Los Alamitos, CA, USA, 1991. IEEE Computer Society

Press.

[31] Graphviz. URL: http://www.graphviz.org/.

[32] John Grundy. Software architecture modelling, analysis and implementation with

softarch. In HICSS ’01: Proceedings of the 34th Annual Hawaii International Con-

ference on System Sciences (HICSS-34)-Volume 9, page 9051, Washington, DC,

USA, 2001. IEEE Computer Society.

[33] Yann-Gaël Guéhéneuc, Rémi Douence, and Narendra Jussien. No java without caf-

feine: A tool for dynamic analysis of java programs. In ASE ’02: Proceedings of

the 17th IEEE International Conference on Automated Software Engineering, pages

117–126, Washington, DC, USA, 2002. IEEE Computer Society.

[34] Yann-Gaël Guéhéneuc and Narendra Jussien. Using explanations for design patterns

identification. In Proceedings of the 1st IJCAI Workshop on Modelling and Solving

Problems with Constrains, pages 57–64, 2001.

[35] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualization and nav-

igation in information visualization: A survey. IEEE Transactions on Visualization

and Computer Graphics, 6(1):24–43, 2000.

[36] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and Welf Löwe. Automatic de-

sign pattern detection. In Proceedings of the 11th IEEE International Workshop on

Program Comprehension (IWPC’03), pages 94–104, 2003.

[37] Charles Antony Richard Hoare. Communicating sequential processes. Communica-

tions ACM, 21(8):666–677, 1978.

Bibliography 131

[38] Richard C. Holt. An introduction to TA: The tuple-attribute language. URL:

http://www.swag.uwaterloo.ca/pbs/papers/ta.html, 1997.

[39] Geir Magne Høydalsvik and Guttorm Sindre. On the purpose of object-oriented

analysis. SIGPLAN Notices, 28(10):240–255, 1993.

[40] JDepend. URL: http://clarkware.com/software/JDepend.html.

[41] JEdit. URL: http://www.jedit.org/.

[42] JHotDraw. URL: http://www.jhotdraw.org/.

[43] Ralph E. Johnson and Brian Foote. Designing reusable classes. Object-Oriented

Programming, 1(2), 1988.

[44] Hermann Kaindl. Difficulties in the transition from oo analysis to design. IEEE

Software, 16(5):94–102, 1999.

[45] Steven Klusener, Ralf Lämmel, and Chris Verhoef. Architectural modifications to

deployed software. Science of Computer Programming, 54:143–211, 2005.

[46] Jürgen Koenemann and Scott P. Robertson. Expert problem solving strategies for

program comprehension. In Proceedings of the SIGCHI COnference on Human fac-

tors in Computing Systems: Reaching through Technology, pages 125–130, 1991.

[47] Ralf Kollmann and Martin Gogolla. Capturing dynamic program behavior with UML

collaboration diagrams. In CSMR ’01: Proceedings of the Fifth European Conference

on Software Maintenance and Reengineering, pages 58–67, Washington, DC, USA,

2001. IEEE Computer Society.

[48] Christian Krämer and Lutz Prechelt. Design recovery by automated search for struc-

tural design patterns in object-oriented software. In Proceedings of the 3rd Working

Conference on Reverse Engineering, pages 208–215, 1996.

[49] Bruno Laguë and Michel Dagenais. An analysis framework for understanding layered

software architectures. In IWPC ’98: Proceedings of the 6th International Workshop

132 A Hybrid Model for Object-Oriented Software Maintenance

on Program Comprehension, page 37, Washington, DC, USA, 1998. IEEE Computer

Society.

[50] Danny B. Lange and Yuichi Nakamura. Object-oriented program tracing and visu-

alization. Computer, 30(5):63–70, 1997.

[51] Michele Lanza. Object-oriented Reverse Engineering: Coarse-grained, Fine-grained

and Evolutionary Software Visualization. PhD thesis, University of Bern, May 2003.

[52] Meir M. Lehman, Juan F. Ramil, Paul D. Wernick, Dewayne E. Perry, and Wla-

dyslaw M. Turski. Metrics and laws of software evolution - the nineties view. In

METRICS’97: Proceedings of the 4th International Symposium on Software Metrics,

page 20, Washington, DC, USA, 1997. IEEE Computer Society.

[53] Bennet P. Lientz, E. Burton Swanson, and Gerry E. Tompkins. Characteristics

of application software maintenance. Communications of the ACM, 21(6):466–471,

1978.

[54] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan,

and Walter Mann. Specification and analysis of system architecture using Rapide.

IEEE Transactions on Software Engineering, 21(4):336–355, 1995.

[55] David C. Luckham, James Vera, Doug Bryan, Larry Augustin, and Frank Belz.

Partial orderings of event sets and their application to prototyping concurrent, timed

systems. Journal of Systems and Software, 21(3):253–265, 1993.

[56] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In SIG-

SOFT ’96: Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of

Software Engineering, pages 3–14, New York, NY, USA, 1996. ACM Press.

[57] Robert C. Martin. OO design quality metrics: An analysis of dependencies. URL:

http://www.objectmentor.com/publications/oodmetrc.pdf, 1994.

[58] Robert C. Martin. The dependency inversion principle. The C++ Report, 8(6):61–66,

1996.

Bibliography 133

[59] Robert C. Martin. Granularity. C++ Report, 1996.

[60] Robert C. Martin. The open-closed principle. In More C++ gems, pages 97–112.

Cambridge University Press, New York, NY, USA, 2000.

[61] Nenad Medvidovic and David S. Rosenblum. Assessing the suitability of a stan-

dard design method for modelling software architectures. In Proceedings of the First

Working IFIP 52 Conference on Software Architecture (WICSA1), pages 161–182,

San Antonio, TX, USA, 1999.

[62] Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. A language and

environment for architecture-based software development and evolution. In ICSE ’99:

Proceedings of the 21st International Conference on Software Engineering, pages 44–

53, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[63] Nenad Medvidovic and Richard N. Taylor. A classification and comparison frame-

work for software architecture description languages. IEEE Transactions on Software

Engineering, 26(1):70–93, 2000.

[64] George A. Miller. The magical number seven, plus or minus two: Some limits on our

capacity for processing information. The Psychological Review, 63:81–97, 1956.

[65] Joaquin Miller and Rebecca Wirfs-Brock. How can a subsystem be both a package

and a classifier? In UML’99: Proceedings of the Second International Conference

on the Unified Modelling Language, pages 584–597. IEEE Computer Society Press,

1999.

[66] Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A reverse en-

gineering approach to subsystem structure identification. Journal of Software Main-

tenance: Research and Practice, 5(4):181–204, December 1993.

[67] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: bridg-

ing the gap between source and high-level models. In SIGSOFT ’95: Proceedings of

the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering, pages

18–28, New York, NY, USA, 1995. ACM Press.

134 A Hybrid Model for Object-Oriented Software Maintenance

[68] NDepend. URL: http://www.ndepend.com/.

[69] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In

International Conference on Software Engineering, pages 742–745, 2000.

[70] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh.

Towards pattern-based design recovery. In Proceedings of the 24th International

Conference on Software Engineering, pages 338–348, 2002.

[71] John T. Nosek and Prashant Palvia. Software maintenance management: changes

in the last decade. Journal of Software Maintenance, 2(3):157–174, 1990.

[72] OMG. Unified Modelling Language: Superstructure (Version 2.0).

http://www.omg.org, 7 2005.

[73] OMG. Architecture-driven modernization. URL: http://adm.omg.org/, 7 2008.

[74] Omondo EclipseUML. URL: http://www.omondo.com/.

[75] David L. Parnas. On the criteria to be used in decomposing systems into modules.

Commun. ACM, 15(12):1053–1058, 1972.

[76] David Lorge Parnas. Software aging. In ICSE ’94: Proceedings of the 16th Interna-

tional Conference on Software Engineering, pages 279–287, Los Alamitos, CA, USA,

1994. IEEE Computer Society Press.

[77] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John M. Vlissides, and

Jeaha Yang. Visualizing the execution of java programs. In Revised Lectures on

Software Visualization, International Seminar, pages 151–162, London, UK, 2002.

Springer-Verlag.

[78] Nancy Pennington. Comprehension strategies in programming. In Empirical Studies

of Programmers: Second Workshop, pages 100–112. Ablex Publishing Corporation,

1987.

Bibliography 135

[79] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing mul-

tiple evolution metrics. In SoftVis ’05: Proceedings of the 2005 ACM symposium on

Software Visualization, pages 67–75, New York, NY, USA, 2005. ACM.

[80] Claudio Riva and Jordi Vidal Rodriguez. Combining static and dynamic views for

architecture reconstruction. In CSMR ’02: Proceedings of the 6th European Con-

ference on Software Maintenance and Reengineering, pages 47–56, Washington, DC,

USA, 2002. IEEE Computer Society.

[81] IBM Rational Rose. URL: http://www.ibm.com/software/rationa.

[82] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modelling Language

Reference Manual. Addison-Wesley Professional, December 1998.

[83] Filip Van Rysselberghe and Serge Demeyer. Reconstruction of successful software

evolution using clone detection. In IWPSE ’03: Proceedings of the 6th International

Workshop on Principles of Software Evolution, page 126, Washington, DC, USA,

2003. IEEE Computer Society.

[84] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency

models to manage complex software architecture. In OOPSLA ’05: Proceedings

of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and applications, pages 167–176, New York, NY, USA, 2005.

ACM Press.

[85] Hans Albrecht Schmid. Creating the architecture of a manufacturing framework by

design patterns. SIGPLAN Notices, 30(10):370–384, 1995.

[86] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,

and Gregory Zelesnik. Abstractions for software architecture and tools to support

them. IEEE Transactions on Software Engineering, 21(4):314–335, 1995.

[87] Susan Elliott Sim, Charles L. A. Clarke, Richard C. Holt, and Anthony M. Cox.

Browsing and searching software architectures. In Proceedings of the IEEE Interna-

tional Conference on Software Maintenance, pages 381–390, Washington, DC, USA,

1999. IEEE Computer Society.

136 A Hybrid Model for Object-Oriented Software Maintenance

[88] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An ex-

amination of software engineering work practices. In Proceedings of the Conference

of the Centre for Advanced Studies on Collaborative Research, pages 21–35, 1997.

[89] Elliot Soloway, Beth Adelson, and Kate Ehrlich. Knowledge and processes in the

comprehension of computer programs. In R. Glaser M. Chi and M. Farr, editors,

The Nature of Expertise, pages 129–152. 1988.

[90] J. Mike Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1989.

[91] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive design

elements to support the construction of a mental model during software visualization.

In IWPC ’97: Proceedings of the 5th International Workshop on Program Compre-

hension (IWPC ’97), page 17, Washington, DC, USA, 1997. IEEE Computer Society.

[92] Andrew Sutton and Jonathan I. Maletic. Mappings for accurately reverse engineering

UML class models from C++. In WCRE ’05: Proceedings of the 12th Working

Conference on Reverse Engineering, pages 175–184, Washington, DC, USA, 2005.

IEEE Computer Society.

[93] SwagKit. URL: http://www.swag.uwaterloo.ca/.

[94] Clemens Szyperski. Component software: beyond object-oriented programming. ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[95] Apache Tomcat. URL: http://tomcat.apache.org/.

[96] Borland Together. URL: http://www.borland.com/together/.

[97] Paolo Tonella. Concept analysis for module restructuring. IEEE Transactions on

Software Engineering, 27(4):351–363, 2001.

[98] Paolo Tonella and Alessandra Potrich. Reverse engineering of the UML class diagram

from C++ code in presence of weakly typed containers. In Proceedings of the IEEE

International Conference on Software Maintenance, pages 376–385, 2001.

Bibliography 137

[99] Paolo Tonella and Alessandra Potrich. Reverse Engineering of Object Oriented Code.

Springer, 2005.

[100] Vassilios Tzerpos and Richard C. Holt. ACDC: An algorithm for comprehension-

driven clustering. In WCRE ’00: Proceedings of the Seventh Working Conference

on Reverse Engineering (WCRE’00), pages 258–267, Washington, DC, USA, 2000.

IEEE Computer Society.

[101] Anneliese von Mayrhauser and A. Marie Vans. Program understanding: Models and

experiments. In Marvin V. Zelkowitz, editor, Advances in Computers, pages 1–38.

Academic Press, 1995.

[102] Robert J. Walker, Gail C. Murphy, Bjørn Freeman-Benson, Darin Wright, Darin

Swanson, and Jeremy Isaak. Visualizing dynamic software system information

through high-level models. In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications,

pages 271–283, New York, NY, USA, 1998. ACM Press.

[103] Jos B. Warmer and Kleppe Anneke G. The Object Constraint Language: Precise

Modelling With UML. Addison-Wesley Professional, October 1998.

[104] Theo A. Wiggerts. Using clustering algorithms in legacy systems remodularization. In

WCRE’97: Proceedings of the Fourth Working Conference on Reverse Engineering,

pages 33–43, Washington, DC, USA, 1997. IEEE Computer Society.

[105] Norman Wilde, Paul Matthews, and Ross Huitt. Maintaining object-oriented soft-

ware. IEEE Software, 10(1):75–80, 1993.

[106] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-

oriented Software. Prentice Hall, Englewood Cliffs, N.J., USA, 1990.

[107] Jingwei Wu, Richard C. Holt, and Ahmed E. Hassan. Exploring software evolution

using spectrographs. In Proceedings of the 11th Working Conference on Reverse

Engineering (WCRE-04), pages 80–89, Delft, Netherlands, Nov. 2004. IEEE.

138 A Hybrid Model for Object-Oriented Software Maintenance

[108] Zhenchang Xing and Eleni Stroulia. Understanding the evolution and co-evolution

of classes in object-oriented systems. International Journal of Software Engineering

and Knowledge Engineering, 16(1):23–52, 2006.

	List of Tables
	List of Figures
	Introduction
	The Importance of High-level Modelling
	Aiding High-level Understanding
	Coping with the Scalability Challenge
	Facilitating Architectural Analysis

	High-level Representations in OO Reverse Engineering
	Design- or Specification-level Class Diagrams
	Coarse-grained Representations

	Thesis Statement
	Contributions
	Organization of the thesis

	Background and Related Research
	Key Object-Oriented Concepts
	Coarse-grained Entities
	Containers
	Conceptual Entities

	Representations in Architectural Design
	Module Interconnection Languages
	Architecture Description Languages
	UML Component Diagrams

	Model Creation in OO Reverse Engineering
	Code-Level Representations
	Class- or Object-Level Representations
	Coarse-grained Representations

	Discussion

	A Hybrid Model
	Overview
	Objectives
	Units of Composition and Decomposition
	Essential Properties

	Notation
	Resource
	Component
	Ports
	Connectors

	Constructing Hybrid Models
	Customizing Hybrid Models
	Frameworks
	External Behavior

	Why Not UML Diagrams?
	Summary

	Applications in Program Comprehension
	Introduction
	A Motivational Example
	Program Comprehension using Hybrid Models
	Supporting Bottom-up Comprehension
	Supporting Top-down Comprehension

	Tool Support
	Case Studies
	Chunking
	Constructing Hypotheses
	Confirm/Reject Hypotheses
	Derive Design Rationale
	Case Study Summary

	Summary

	High-level Dependency Analysis
	Introduction
	Component Analysis
	Internal Structure and Cross-Package Inheritance
	Inports and Data Abstraction
	Inports and Modularity
	Outports and Reuse

	Assembly Connector Analysis
	Types of Assembly Connectors
	Strength of Assembly Connectors
	Connectors and Package Dependencies

	Delegation Connector Analysis
	Visualization Support
	Case Study
	A Big Picture of Apache Ant
	Refactoring Opportunities
	Summary of Case Study

	Summary

	Architectural Change Analysis
	Introduction
	Change in Aggregate Components
	Change in Assembly Connectors
	Co-change between the client and server component
	Reuse Resources
	Re-implement Resources
	Summary

	Change in Delegation Connectors
	Internal change leads to external change
	Exposing or hiding internal resources
	Reusing or re-implementing external resources

	Visualization Support
	Case Study: The Evolution of Apache Ant
	How has the package tools.ant evolved?
	Evolution at the Finer-grained Level
	Discussion

	Related Work
	Change Pattern Detection
	Evolutionary Visualization

	Summary

	Conclusion
	Contributions
	Future Work
	Improving the Accuracy of Hybrid Model
	Visualization Support
	Architecture of A Product Family

	Appendix
	Toolkit
	Bibliography

