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ABSTRACT 

The introduction of the use of Tire Pressure Control Systems (TPCS) to improve the productivity of the 

Canadian trucking industry is gaining momentum. The imposition of seasonal load restrictions (SLR) on 

the thaw-weakened secondary roads interrupts the transportation of raw materials to processing facilities 

For the forestry industry in particular, this has very significant impacts on productivity and costs. 

FPInnovations-Feric Division (Feric) has investigated the potential for TPCS-equipped trucks to travel 

with full, legal loading during the SLR period without accelerating road wear and tear. The TPCS 

monitors and adjusts the inflation pressure of the trucks’ tires while driving and allows the operator to 

optimize the inflations for changes in loading, travel speed, or road quality encountered in the trip.  

 

This thesis describes an investigation to determine whether TPCS can be used to mitigate traffic 

generated damage to secondary roads and also reduce the need to implement load restrictions. The project 

involves a partnership with the Ontario Ministry of Transportation Ontario (MTO), Forest Engineering 

Research Institute of Canada (FERIC), Ontario Ministry of Natural Resources (MNR) and the Centre for 

Pavement and Transportation Technology (CPATT) located at the University of Waterloo.  

 

The thesis will describe the methodology, design, and instrumentation of the two test sites which are 

located in Dryden, Ontario and Chapleau, Ontario. In addition, repeated Portable Falling Weight 

Deflectometer (PFWD) testing is being carried out at these sites and the initial results of this examination 

and associated impacts of the environment and traffic on the road will be presented. This study also 

involves looking into the reliability of using the portable FWD, offering a lower cost alternative instead of 

the trailer mounted FWD to monitor pavement strength for the identification the SLR period. The use of 

innovative sensors and data collection techniques are proving to be very informative and are advancing 

pavement engineering knowledge. Moreover, the thesis is aimed at exploring the possibilities of 

achieving the current objectives of the government DOTs such as TPCS potential for addressing the 

timber industry in crisis, reduced road maintenance budgets, and global warming increasing road damage.   
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Chapter One 

INTRODUCTION 

1.1 RESEARCH OBJECTIVE 

 

Roads represent the largest in-place asset value of a transport infrastructure in most countries. Keeping 

this asset from depreciating below some specified level while at the same time providing a desired level 

of service to the road users, presents a major challenge. The study is aimed at exploring a quantifiable 

solution to this challenge. Traffic loading, environmental conditions, subgrade soil, construction, and 

maintenance quality are among the various factors which influence pavement performance. 

Environmental conditions can have a particularly significant impact on how well pavements will perform. 

Pavement designers need to pay special attention to various environmental design considerations such as 

freeze thaw cycles, spring thaw weakening, and frost susceptible soils. 

 

The primary goal in implementing Seasonal Load Restriction (SLR) and Winter Weight Premium (WWP) 

is to strike the right balance between minimizing maintenance costs associated with road damage and 

minimizing economic loss due to restricting weights for trucks. Start and end dates must be properly 

administered. Inaccurately determining either SLR or WWP may lead to premature damage and result in 

higher maintenance costs or reduced economic activity. 

 

In addition to the SLR and WWP policies, there are potential technologies which can be utilized that 

potentially mitigate damage. The proposed approach by FERIC to minimize pavement damage during the 

load restricted period involves the use of the TPCS technology. TPCS is a technology that adjusts truck 

tire pressures to minimize the impact of axle loads on weight restricted, thin pavement roadways during 

the spring thaw season. 

 

Highway 630, in Mattawa-North Bay Ontario is the preliminary test site to examine the spring thaw 

pavement weakening. Theoretically, reduced tire pressure should lower the potential for fatigue cracking 

on thin asphalt pavement structure. However, the potential to reduce the anticipated structural damage due 

to poor subgrade conditions, particularly for surface treated pavements, are being evaluated in this study. 

Past studies have shown that varying the tire inflation pressure only affects stresses at the asphalt 

pavement base layer. The only way to reduce the phenomenon of secondary rutting, which results from 

weak sub-grade, would be to reduce loads. 
 1 
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However, there is some consensus among pavement experts that the reduction of surface contact stresses 

may be beneficial in terms reducing fatigue cracking as well as the surface distress associated with the 

tire-pavement contact stress. There is no standard model (similar to the Asphalt Institute fatigue model) 

available for evaluating the ELSYM-5 computer software program in combination with the Asphalt 

Institute (AI) structural failure criteria which is only suitable for asphalt pavements [Tighe 2007]. 

Extending this analysis to surface treated pavements may not be appropriate. Secondly, this analysis relies 

on measured FWD deflection measurements which may not be economical for use on a routine basis 

either by public sector agencies or by private industry.  Table 1.1 summarizes the comparison between a 

portable Falling weight Deflectometer (PFWD) and a trailer mounted Falling Weight Deflectometer.  

Table 1.1: PFWD versus FWD 

Device Advantages Disadvantages 

 

     
PFWD 

• Easy to use 

• Portable 

• Data easily interpreted 

• Follows seasonal stiffness changes 
in pavements 

• Inexpensive 

• Need to establish values and accuracy 
testing 

• Not very durable 

• Records deflection and modulus at a 
maximum of three sensor offsets 

 

      

FWD 

• Simulates vehicular loads with 
various weights 

• Multi-purpose pavement 
applications, ranging from unpaved 
roads to airfields.  

• Accurate and fast (up to 60 test 
points/hr). 

• Records deflection/modulus at 
maximum of nine sensor offsets. 

• Expensive 

• Requires a vehicle in addition to the 
instrument 

• Requires complex soft wares to 
interpret data 

 

 

The use of a Portable Falling Weight Deflectometer (PFWD) is recommended to monitor the            

pavement strength in the spring thaw period. This validation follows through carrying out extensive 

PFWD testing on three test site locations. All three test roads fall under the category of Low-Volume 

Surface Treated Roads namely Highway 630 in Mattawa-Ontario which is also the preliminary test site, 

Highways 601 and 651 located in Dryden and Chapleau Ontario respectively are the two other sites that 

are tested and evaluated during the study. The location map for the three test sites is provided in 

Appendix A. The research objectives are summarized below. 

• Evaluating pavement’s in-situ strength through NDT techniques and correlating Falling Weight 

Deflectometer (FWD) to the Benkelman Beam (BB) 
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• Introducing a portable and cost effective portable FWD instead of the FWD and BB 

• Exploring the confidence in using the PFWD to monitor pavement strength in terms deflection 

and stiffness values due to seasonal variations on surface treated roads 

•  To help MTO in identifying true SLR period based on the results of the repeated deflection 

monitoring of the test sites and real time data from the use of innovative sensors 

• Evaluate the effect of reduced tire pressure on pavement aiming at looking for a window to allow 

TPCS equipped trucks to haul with full loads during the last two to three weeks of the SLR 

period. 

 

1.2 OVERVIEW 

 

Thousands of kilometres of roads are either closed or severely restricted to heavy traffic due to structural 

weakness of pavement during spring thaw every year. The spring thaw period varies in length depending 

on the severity of the winter. As soon as thaw occurs, pavements become weak due to the high moisture 

content in the underlying base course and subgrade. The base course and subgrade can become 

completely saturated in extreme cases and even result in weakening of the pavement to such an extent that 

even less than one hundred passes of an 8170 Kg (18,000 lbs) axle will cause the pavement to fail. Most 

of the pavement structures with high traffic volumes in areas where roads are subject to freezing are 

designed to resist the effects of spring thaw. To achieve this, some agencies construct pavements where 

the depth of the pavement structure built of non-frost susceptible materials such as crushed stone bases is 

at least half the expected depth of freeze. This type of construction is expensive when it is seen that the 

depth of freeze especially in northern Ontario can be more than 1.5 metres (5 feet). Similarly other 

techniques used to resist the weakening caused by spring thaw usually increase construction cost. 

 

To reduce damage during spring thaw, some road departments place load restrictions on vehicles. These 

load restrictions are often as much as a 50 percent reduction of normal loads [Highway Traffic Act 1990]. 

Even with these load restrictions, a large amount of money is spent each year repairing the damage caused 

by spring-thaw cycle. 

Although the load restrictions do reduce pavement damage and reduce repair costs, these restrictions 

cause considerable economic impacts. Load restrictions are placed mostly on low volume roads which 

have not been designed nor constructed to resist the effect of spring thaw. These load restrictions can 

prevent transportation of goods by heavy vehicles, typically tractor semi-trailers. In many cases, 
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companies may have to stop some or all of their operations during this period. This results in economic 

losses to employees, companies, industries, provincial and local governments. Essentially any type of 

business that relies on the use of heavy trucks in its operations can be adversely affected when load 

restrictions are placed on roads due to weakened pavement.  

 

1.3 STUDY OUTLINE 

 

Chapter one reviews the research objective and the different tools used to assess the in-situ pavement 

strength.  

 

Chapter Two reviews the effects of tire pressure, axle loads, and tire type on pavement structures. Lower 

tire pressures provide benefits on thin flexible pavements (less than 100 mm of asphalt concrete) or 

aggregate surfaced gravel roads which are typical for low volume roads. Axle loads also played the 

largest role in reducing stress and strains in flexible pavements. This chapter also reviews the results of 

three “AASHO type” closed loop roads tests and a field test conducted by the Department of Agriculture, 

U.S. Forest Service on CTI applications. 

 

In Chapter Three, the methodology used to monitor in-situ pavement strength through using Non-

Destructive Testing (NDT) is discussed. Conventionally the Ministry of Transportation in British 

Columbia and Ontario has been using the Benkelman Beam and the trailer mounted Falling Weight 

Deflectometer (FWD) respectively for these surveys which are considered costly. Therefore, the study 

aims at introducing the use of the Portable Falling Weight Deflectometer (PFWD). The PFWD can 

provide seasonal variations in pavement stiffness. Correlations between the Benkelman Beam (BB), the 

FWD and then to the PFWD are developed. Threshold values for imposing and lifting the Seasonal Load 

Restrictions (SLR) are derived and fixed. The use of a PFWD is recommended to monitor pavement 

strength in terms of deflection and stiffness for surface treated low volume roads. 

 

In Chapter Four, the details and significance of using sensors on two of the test sites is described. It is 

aimed at looking for a possibility to reduce the SLR period by monitoring the exact freeze thaw cycle 

closely through instrumentation such as thermistor strings, soil moisture content probes, relative humidity 

and air temperature probes. Highways 651 and 601 in Chapleau and Dryden, Ontario are instrumented for 
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this purpose. Real time data is recorded at an interval of one hour. The freeze-thaw cycle is monitored on 

both the test highways and the results are interpreted in this chapter. 

 

Chapter Five summarizes the analysis for reduced tire pressure and full axle loads. The results of a 

theoretical investigation of the effects of lower tire pressure on roads in a severely weakened condition, 

such as is found during spring thaw. With the recent technology development of Central Tire Inflation 

(CTI) in the trucking industry, trucks may be able to operate on roads subject to load restrictions. CTI 

would allow trucks to operate at lower tire pressures on load restricted roads and then easily increase tire 

pressure from inside the truck cabin when the truck transfers to a road not subject to load restrictions. 

Three different models, with different axle configuration, and tire pressures are simulated using 

mechanistic pavement design software to look in to the scenarios. The results are interpreted in this 

chapter 

  

1.4 SCOPE OF STUDY 
 
Figure 1.1 outlines the methodology of assessment of the study. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 1.1: Methodology of Assessment of the Study. 

Literature review of the state-of-the–art of CTI usage in Canada and elsewhere. 
Development of linkages to SLR & WWP; review of technical reports from industry 

PFWD and FWD data collection on Hwy 630 (April-May 2007),  two additional PFWD tests in June-August 2007, two more in 
September-October 2007, and UW Research Team & MTO perform a manual distress survey. 

Comparative analysis between FWD, PFWD, and Benkelman Beam

Placement of instrumentation during fall 2007 on Hwy 651 and Hwy 601 to monitor the pavement    freezing and thawing indices. 
(Thermistor strings, humidity, air temperature, and water content gauges. 

Carryout PFWD Testing at Hwy 651 and 601 (Fall/Spring 2008); crack Surveys performed by UW and MTO teams. 
Compare PFWD data with FWD, and establish benchmark prior to, during and post implementation of TPCS technologies 

Analyse the results and correlate between variable tire pressure methods, and SLR/current methods, using statistical procedures. 
Develop a model that provides an engineering basis for determining opening of the TPCS Window.

Develop preliminary guide lines/recommendation, based on the results of above task 

Use of TPCS to Improve the Productivity of Trucking Industry inOntario and Mitigation of Pavement Damage 

Prepare technical report on the foregoing tasks
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To fulfill the proposed approach, to realize the objectives, and to be able to achieve continuity with the 

research team, a two year frame was necessary. Most importantly, the two year period allowed the team to 

compare behaviors; with both time and climatic conditions at a given set of loading patterns.  

 

Phase 1, which was completed jointly by the Forest Engineering Research Institute of Canada (FERIC) 

and the Ministry of Transportation Ontario (MTO) on the project, successfully demonstrated the use of 

TCPS technology. It will be necessary to review on a commercial basis. Moreover, Highway 630 was 

surveyed for visible distresses only in the absence of any in-ground sensors, Road Weather Information 

System (RWIS) and weather related data. 

 

In order to validate and develop an adoptable strategy towards allowing CTI/TPCS use commercially in 

Northern Ontario, with more insight and knowledge of pavement conditions; this study has accounted for 

all relevant parameters like the behavior of different pavement layers with changing weather conditions. 

This has enabled the research team to establish benchmarks using the Portable Falling Weight 

Deflectometer which has compatible results with the Falling Weight Deflectometer (FWD). 

 

The PFWD has shown good reliability for seasonal stiffness variations and can be compared well with 

FWD on asphalt surfaces [Steinert 2005]. The basic approach in this study is to identify and quantify the 

potential effectiveness of the use of PFWD for surface treated roads with specific application to 

monitoring CTI/TPCS on Northern Ontario’s roads. 

 

Literature review on the state-of-art of Central Tire Inflation (CTI) usage and current activities in Canada 

has provided an independent overview of the usage of the technology [Bulley 2001]. The application of 

CTI usage and literature available has been analysed and updated, and linkage to Seasonal Load 

Restrictions (SLR) has been developed. The study is aimed at quantifying the strength of the existing 

pavement using PFWD and FWD data. Following this validation, the effect of various tire pressures on 

surface treated roads is being evaluated and thresholds for performance being established, which wherein 

after will be set as guidelines for adoption by users and agencies. 
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1.5 FIELD TESTING 

 

The Portable Falling Weight Deflectometer (PFWD) is used to monitor the behavior of the spring thaw 

weakened pavement. The PFWD has shown promise as a tool for seasonal stiffness measurements and 

can be compared well with FWD on asphalt surfaces [Steinert 2005]. The approach is to identify and 

quantify the potential effectiveness of the use of PFWD for surface treated roads in Canada.  

 

The Falling Weight Deflectometer (FWD) is a device capable of applying dynamic loads to the pavement 

surface, similar in magnitude and duration to that of a single heavy moving wheel load. The response of 

the pavement is measured in terms of vertical deformation, or deflection, over a given area using 

seismometers. Thus, the use of FWD enables for the determination of a deflection basin caused by a 

controlled load. FWD generated data combined with layer thickness, can be confidently used to obtain the 

‘in-situ” resilient elastic modulus of a pavement structure. The two common types of FWDs used in data 

collection are the Portable Falling Weight Deflectometer (PFWD) and the trailer mounted Falling Weight 

Deflectometer (FWD). The FWD although efficient is expensive and time consuming thus the PFWD 

offers same benefits. 

 

1.6 PORTABLE FALLING WEIGHT DEFLECTOMETER (PFWD) 

 

The PFWDs used in this study are owned and operated by the Centre for Pavement and Transportation 

Technology (CPATT) at the University of Waterloo are the Dynatest KPI 100 and LWD 3031, which 

were used extensively for deflection data collection. FERIC has also used a similar instrument for the 

same purpose. The portable Falling Weight Deflectometer PRIMA100 - FWD is a handy instrument for 

on-site measurement of bearing capacity to minimize risks and optimize quality. The Portable Falling 

Weight Deflectometer (PFWD) was investigated as a tool to aid in determining when to impose weight 

restrictions on low-volume roads during the spring thaw [Kestler, 2005].  

 

The Dynatest KPI 100 or LWD 3031 PFWD equipment enabling high quality data collection is very low 

in cost and means of tremendous cost reduction as on-site analysis of collected data allows immediate 

information. Site locations can be captured by means of GPS (Geographic Positioning System), which 

enable presentation of data in maps or general plans of the site. The data transfer system of the new 

generation of PFWD is very flexible and allows for wireless transfer of data. The Dynatest’s portable 
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FWD is powered by four 1.5 volt standard AA batteries and no extra power supply is needed. The 

Dynatest standard model has one centre geophone. Moreover, PFWDs directly measure the stiffness of 

pavement systems and compacted layers which is needed for mechanistic pavement design. The results of 

the first drop should always be neglected since the first weight drop helps in ensuring proper seating of 

the base plate. It is recommended that the results from drops two through six be averaged to obtain results 

that are representative of a test location [Kestler 2005]. 

 

1.7 PFWD TESTING PROCEDURE 

The PFWD equipment is assembled and it is connected to the com pilot-palm device, through Bluetooth. 

The connectivity is checked through the blinking green light. Each point in a selected test section is tested 

six times. The first reading is discarded and average of the remaining five readings is taken into 

consideration [Kestler 2005]. Figure 1.2, 1.3, 1.4, and 1.5 illustrates the display screen of the handheld 

com pilot. The PFWD Operation Procedures developed by CPATT at the University of Waterloo are 

annexed in Appendix B. 

 

                                      

       Figure 1.2: Com pilot, hand device connected to PFWD                         Figure 1.3: Blue tooth connectivity to the PFWD  
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          Figure 1.4: The hand PC being connection                                        Figure 1.5: Deflection and Force curves           

                                         

1.8 FALLING WEIGHT DEFLECTOMETER (FWD) 

 

The FWD is a Nondestructive Deflection Testing (NDT) device for use in pavement structural evaluation. 

The Falling Weight Deflectometer (FWD) is a readily available, industry-accepted testing instrument that 

measures the pavement response (i.e., deflection) to a load that simulates the in-service truck loads 

applied to the pavement. The FWD is a multifunctional tool that can be used in various facets of a 

pavement project. In addition to its conventional, well-established use for evaluating pavement condition, 

FWD testing (and the associated analysis) can also be used to identify the factors that affect pavement 

condition and to monitor the effectiveness of pavement rehabilitation efforts [Frabizzio 2002]. 

 

The FWD applies a dynamic load through a circular plate that is lowered to the pavement surface. Sensors 

in contact with the surface measure the downward deflection of the pavement surface. This deflection 

bowl is then used to assess the structural condition and to identify weaknesses in any of the pavement 

layers. The primary function of the FWD is to provide deflection data for evaluating the in-situ structural 

condition of pavement structures. A complement of FWD testing and other test methods provides the 

necessary information for evaluating pavement condition in a reliable, mechanistic manner. When testing 

is conducted away from cracks and joints, FWD data can be used to determine the elastic modulus of the 

various pavement layers. The NDT technique through using the FWD has gained popularity because it 

can assess structural integrity and estimate the elastic modulus of in-place pavement systems [Wu 2006].  
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       Chapter Two 

                     LITERATURE REVIEW 
 

2.1 EFFECT OF TIRE PRESSURE ON PAVEMENT STRUCTURE 

 

The thickness of a pavement primarily depends upon the design wheel load. Higher wheel loads require 

thicker pavement structures as compared to lower wheel loads, provided other design factors such as 

subgrade soil, climatic factors, pavement component materials, and environmental factors are the same. 

While considering the design wheel load, the effect of static wheel loads, multiple wheel load assembly 

(if any, like the dual or the dual-tandem wheel loads), contact pressure, load repetition and the dynamic 

effects of transient loads are to be taken into account. As the speed increases the rate of application of the 

stress is also increased resulting in a reduction in pavement deformation under the load; but on uneven 

pavements, the impact increases with speed. 

 

The various wheel load factors to be considered in pavement design and maintenance are explained in the 

following sections. 

 

2.2           MAXIMUM WHEEL LOAD 

 

The wheel load configurations are important in order to know the way in which the loads of a given 

vehicle are applied on the pavement surface. Typical wheel load configurations of a tractor trailer unit are 

shown in Figure 2.1 [Oliver 2004]. 

 

For highways the maximum legal axle load as specified by AASHTO is 8170 Kg (18000 lbs) with a 

maximum equivalent wheel load of 4085 Kg (9000 lbs). Total load influences the thickness requirements 

of the pavements.  

 

Previous studies show that axle configuration play a minor role in pavement performance. Only one study 

by Sebaaly addressed this factor [Sebaaly 1992]. The study found that multiple axles produce lower 

tensile strains but higher compressive stresses than single axles under the same per axle load. 
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Figure 2.1: Wheel Configuration of Tractor Trailer Unit 

 

 

2.3 WHEEL LOAD AND TIRE PRESSURE 

 

Tires influence the quality of the surface (wearing) coarse. In fact, the magnitude of the vertical pressure 

at any depth of soil subgrade or pavement section depends upon the surface pressure as well as on the 

total wheel load. 

 



 

  12

The equation for vertical stress computations under a uniformly distributed circular load based on 

Boussinesq’s theory is given by [Khanna 1999]: 

 

σZ = q [1 – z3 / (a2 +z2)3/2]                       (2.1) 

Here    σZ = Vertical stress at depth z, 

   q = Surface pressure or contact pressure, and 

   a = Radius of loaded area. 

Using the above equation, the variation of vertical stress σZ with depth is plotted as given in Figure 2.2. 

            
                         Figure 2.2: Vertical Load Stress Distribution [Khanna 1999] 

 

As seen from Figure 2.2, the influence of tire pressure is predominating in the upper layers. At a greater 

depth, the effect of tire pressure diminishes and the total load exhibits a considerable influence on the 

vertical stress magnitudes. Tire pressure of higher magnitudes therefore demand high quality materials in 

the upper layers in pavements. The total depth of pavement is, however, not influenced by tire pressure. 

With constant tire pressure, the total load governs the stress on the top of the subgrade within allowable 

limits. 

 

Figure 2.2 also implies that a narrow concentrated rolling load such as that of a horse driven cart will 

produce very high stresses at the pavement surface. This demands the use of very strong and hard 
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aggregates for the wearing surface to resist damage. However, the stresses at a lower level of the cart 

wheel are negligibly small as the gross load is very small. 

 

Generally, the wheel load is to be distributed over a circular area. But through many measurements of the 

tire imprints with different load and inflation pressure, it is seen that the contact areas in many cases are 

elliptical in shape in many cases. Three important terms related to tire pressure are tire pressure, inflation 

pressure, and contact pressure. 

 

Theoretically, all these terms are equivalent. Tire pressure and inflation pressure mean exactly the same 

thing. The contact pressure is found to be more than tire pressure when the tire pressure is less than 7 

Kg/cm2 (100 psi) and is vice versa when the tire pressure exceeds this value. The general variation 

between the tire pressures and the measured contact pressure is shown in Figure 2.3. 

 

 

                                       

                                                                                                                 

 

 

 

 

 

 

 

                                         

                                                                                                                                                                            

Figure 2.3: Relation between Tire and Contact Pressure 

 

Contact pressure can be measured by the relationship given below. 

 

Contact Pressure = _____Load on the wheel_____                                     (2.2) 
         Contact Area or area of imprint 
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Where Contact Pressure is measured in units of pressure Kg/cm2 or lb/in2, load on the wheel is expressed 

in Kilograms or pounds, and contact area is denoted in in2 or cm2.  

 
The ratio of contact pressure to tire pressure is defined as Rigidity Factor (RF). An RF value of 1.0 would 

be the typical average tire pressure of 7 Kg/cm2. This value is higher than unity for lower tire pressure and 

less than unity for tire pressure higher than of 7 Kg/cm2. The Rigidity Factor (RF) depends upon the 

degree of tension developed in the walls of the tires. 

 

Tire contact pressure is the actual pressure measured where the tire contacts the pavement surface. Three 

assumptions are usually made regarding tire contact pressure in most pavement response studies. These 

include tire pressure is uniform; it acts on the circular area, and it is equal to the tire inflation pressure. 

This simplified theoretical analysis is believed to be of sufficient accuracy for design work. However, 

premature failure of some pavements designed according to these assumptions can cause an 

underestimation of the strains and stresses due to truck tire loading in those studies [Roberts 1986].  

 

The correlation between inflation pressure and actual contact pressure is one area of tire performance that 

is not well understood. Due to the many different types of tires and their construction, a reliable model 

has not been developed to predict actual tire contact pressure. Analytical studies of truck tires show that 

the contact pressure can be two times the inflation pressure where the tire contacts the road surface. Tire 

inflation pressures of 75 psi (517 kPa) and 125 psi (862 kPa) resulted in peak contact pressures of 150 psi 

(1034 kPa) and 220 psi (1517 kPa) respectively [Roberts 1986]. The scope of the Roberts study was 

expanded when it was found that the basic assumption that tire/pavement contact pressure is equal to the 

tire inflation pressure was in error. Roberts did find that at a constant tire load, the tire contact pressure 

becomes more uniform at lower tire pressures.   

 

2.4          EQUIVALENT SINGLE WHEEL LOAD (ESWL) 

 

To carry a greater load while keeping the maximum wheel load within the specified limit, and to carry 

greater loads, it is necessary to provide wheel assembly to the rear axles of the load vehicles. In doing so 

the effect on the pavement through a dual wheel assembly is obviously not equal to two times the load on 

any one wheel. In other words, the pressure at a certain depth below the pavement surface cannot be 
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obtained by numerically adding the pressure caused by each wheel load. The effect is in between the 

single load and two times the load carried by any one wheel. 

 

The clear distance between the inner edges of the tires, divided by two (d/2), as shown in Figure 2.4, each 

wheel load acts independently and after this point the stress induced due to each load begins to overlap. 

At depth 2S, where S is the distance from tire centre to tire centre, shows the stresses induced are due to 

the effect of both wheels as the area of overlap is considerable. So the total stresses due to the dual wheel 

at any depth greater than 2S is considered to be equivalent to a single wheel load of magnitude 2P, where 

P is the load on the single wheel, though this stress is likely to be slightly greater than the stress due to the 

wheels.  

 

 

                       

s

   d
  CL

d/2
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   :
   

                          Figure 2.4: Stress Overlap due to Dual Wheels 
 

Suppose a dual wheel load assembly causes a certain value of maximum deflection Do at a particular 

depth Z (say, depth equal to the thickness of the pavement). As per deflection criterion, the Equivalent 

Single Wheel Load (ESWL) is that single wheel load having the same value of maximum deflection at the 

depth Z. Similarly, by stress criterion, the ESWL is the single wheel load producing the maximum stress 

at the desired depth Z as the dual.  

 

2.5 TIRE PRESSURES AND PAVEMENT PERFORMANCE 

 

The effects of tire pressure on pavement performance with regards to fatigue and rutting failure depends 

generally on two pavement properties: pavement thickness and stiffness of the base and subgrade layers. 
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2.5.1    PAVEMENT THICKNESS 

 

In the studies reviewed, asphalt pavement thickness ranged from 25 mm to 250 mm. With regards to 

fatigue failure, when asphalt concrete pavement thickness is in excess of 100 mm, the effects of tire 

pressure on tensile strains were found to be relatively minor. Roberts found that for asphalt concrete 

pavement thicknesses of 100 mm or greater, the effect of tire inflation pressure on tensile strains was less 

than ten percent, while Sebaaly reached the same conclusion noting that the effect of inflation pressure 

was as low as one percent for asphalt layers with thicknesses of 100 mm, 150 mm, and 300 mm [Sebaaly 

1992]. 

 

2.5.2 STIFFNESS OF BASE AND SUBGRADE  

 

The stiffness of the base course has been found to have an effect on the amount of influence tire inflation 

pressure had on strains. Roberts showed that increasing tire inflation pressure from 75 to 125 psi 

produced a range of 20 to 30 percent increase in the tensile strain for a 25 mm (one inch) surface. This 

was supported by results from an analytical study which found an approximate 35 percent increase in 

tensile strain by increasing the inflation pressure from 517 kPa (75 psi) and 862 kPa (125 psi) for the 

same thickness [Marshek 1985]. The reason for the range of a 20 to 30 percent increase in the tensile 

strains in the Roberts study was determined to be a function of the base course stiffness. The stiffest base 

course (Elastic modulus equal to 414 MPa or 60,000 psi) caused a 30 percent increase in tensile strain at 

the bottom of asphalt while the least stiff (elastic modulus equal to 138 MPa or 20,000 psi) caused a 

lower increase of 20 percent. However, the range of base course stiffness used in the study (elastic 

modulus equal to 138 MPa or 20,000 psi to 414 MPa or 60,000 psi) was relatively stiff compared to 

values found during spring thaw [Lary 1984, Sebaaly 1992]. No studies analyzing the effects of weak 

bases and tire inflation pressure on pavement strains were found.  

 

The effect of tire pressure on rutting failure, which is a function of compressive strain, is minimal in the 

cases studied. Marshek reported that increasing tire inflation pressure from 517 kPa (75 psi) and 862 kPa 

(125 psi) in asphalt pavements 50 to 100 mm thick produced only a small increase in the compressive 

strains at the top of subgrade for the cases modeled. Therefore, they concluded that tire inflation pressure 

was an insignificant factor in causing subgrade rutting [Marshek 1985]. However, this study only 

examined the effects of a single tire load, thereby omitting the effects of multiple tire loads. 
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2.5.3  AXLE LOADS  

In the studies reviewed, axle load was found to be directly related to both fatigue and rutting failure. 

Marshek found that increasing loads resulted in increases in both horizontal tensile strain and horizontal 

shear strain in the asphalt course. Therefore, he has concluded that of all the factors studied related to 

fatigue failure, axle load was the primary factor causing fatigue failure [Marshek 1985].  

Axle load was found in several studies to be related to vertical compressive strain. Sebaaly observed that 

the effect of the axle load on the compressive strains in the subgrade was relatively uniform for all asphalt 

concrete surface thicknesses. Any increase in the axle load increased the maximum compressive strain by 

a proportional amount, regardless of asphalt thickness. Sebaaly noted that a twenty percent increase in 

axle load produced a twenty percent increase in the critical subgrade compressive strain for the 50 to 250 

mm thickness of asphalt concrete in the study [Sebaaly 1992] 

 

2.5.4 AXLE CONFIGURATION 

 

Axle configuration was found to play a minor role in pavement performance [Sebaaly 1992]. The study 

found that tandem axles produce lower tensile strains but higher compressive stresses (vertical 

compressive strains were not reported) than single axles under the same per axle load. For example a load 

of 7985 Kg (17600 lbs) on a single axle (total load 7985 Kg or 17600 lbs) produced a horizontal tensile 

strain of 145 micro strains at the bottom of the asphalt layer, while a load of 7800 Kg (17,200 lbs) per 

axle on a tandem axle (total load 15610 Kg or 34,400 lbs) produced only 133 micro strains. Compressive 

stress for the same loading conditions was found to be 39 kPa (4.2 psi) for the single axle and 46 kPa (6.9 

psi) for the tandem axle. The reason for this is explained by the pavement tensile strain response. When 

the pavement structure is subject to a tandem-axle load, the axle on top of the point of interest produces 

horizontal tensile strains while the axle 50 inches away produces horizontal compressive strain. 

Therefore, a portion of the tensile strain is cancelled by the compressive strain. In the case of the of the 

single-axle configuration, the point of interest is only subjected to tensile strain, and no cancelling effect 

occurs. Therefore, the tandem-axles compared with single-axles on the basis of similar pre-axle load 

levels, the passage of one tandem axle produces less fatigue than the passage of two single axles. Because 

tandem axles do not have any cancelling effects under compression, they produce higher compressive 

strains than single axles on an equal per axle load [Sebaaly 1992]. 
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2.6 CENTRAL TIRE INFLATION STUDIES 

 

The following sections describe a few studies reviewed that were conducted by various agencies on the 

Central Tire Inflation (CTI) phenomenon. 

 

2.6.1 United States Federal Highway Administration Study 
 
The United States Federal Highway Administration (FHWA) conducted a study using the Accelerated 

Loading Facility test machine and investigated the effects of tire pressure on flexible pavements. The first 

part of the two part study measured actual surface deflections and strains for different combinations of 

loads and tire pressure using in-place monitoring equipment. The second part of the study evaluated the 

extent of rutting and fatigue cracking on two pavement test sections using the same load but different tire 

pressures after 100,000, 200,000, 300,000, 400,000, 500,000, and 600,000 passes of a simulated load. 

 

From the data in part one, it was concluded that the effects of tire pressure on the tensile strain was very 

small. The range of increased tensile strain measurements for a constant tire load and increased tire 

pressures was from two to ten percent.  

 

The second conclusion reached from the first part of the study was that axle load played a significant role 

in the magnitude of the tensile strains. In this study, increasing the load from 4265 Kg (9,400 lb) to 8620 

Kg (19,000 lb) resulted in an increase of 200 to 400 percent in the measured tensile strain at the bottom of 

the asphalt concrete. 

 

The second part of the study was designed to measure the effects of tire pressure on fatigue cracking and 

rutting. The results indicated that lower tire pressure does increase pavement life when considering both 

fatigue and rutting criteria. 

 

2.6.2      Tire Type 

 

Although there is limited information available information available on this, the type of tire does play a 

small role in pavement response and performance. One study by Sebaaly compared the effects of four 

different types of tires on pavement response [Sebaaly 1992]. The in-situ horizontal tensile strains were 

measured for each tire type. The pavement was subjected to identical axle loads of 8,000 kg (17,600 lbs) 
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on single axle, 9,800 kg (21,600 lbs) on a single axle, 7900 kg (17,400 lb) per axle on a tandem axle, and 

6670 kg (14,700 lb) per axle on a tandem axle. The tensile strain was measured for each tire type which 

included dual tires, 11R22.5 inflated to 724 kPa (105 psi) and 827 kPa (120 psi), 385/65R22.5 single tire 

at 827 kPa (120 psi), and 425/65R22.5 single tire at 827 kPa (120 psi). Passes were made at a speed of 67 

km/h (40 mph). Sebaaly converted the strain measurements made to Load Equivalency Factors (LEF). 

Comparing the changes in the LEF, Sebaaly concluded that: 

 

• Tire type has a significant effect on the LEF of an axle load and configuration 

• Single wide-base tires have LEFs 1.5 to 1.7 times higher than dual tires for any given pavement 

thickness for both fatigue and rutting 

• The effect of tire type on the LEF was uniform throughout the range of asphalt thickness used in 

the study. 

 

2.6.3 Tests Conducted by Department of Agriculture, US Forest Service 

 

The U.S. Army found that lowering tire pressures on low speed, unpaved roads had several potential 

benefits such as reduced road maintenance, reduced road surfacing requirements, reduced drive over 

fatigue and injury, reduced vehicle operation costs, and increased vehicle mobility [Taylor 1987]. 

 

SUMMARY 

 

In summary, tire pressure plays a significant role in pavement fatigue performance if the asphalt concrete 

thicknesses were less than 100 mm (4 in) Thus, tire pressures also have a considerable effect on surface 

treated roads where the thickness is below 100 mm. The effect of axle configuration on tensile strain is 

minor, but is evident regardless of asphalt thickness. Changes in tire pressure were found to have little or 

no effect on pavement compressive strains regardless of the pavement thickness. The predominant factor 

found affecting pavement performance with regard to both fatigue and rutting failure was axle load. 
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     Chapter Three 
 

IN-SITU PAVEMENT STRENGTH MONITORING AND CORRELATIONS 

 

3.1       CALIBRATION TEST SITE 

 
The primary initial test site in this study is located on Highway 630 near Mattawa which is 

approximately 45 kilometres east of North Bay. This site was selected as it was tested previously 

in Phase 1 of the study carried out by FERIC and MTO during 2005/2006. During the time 

period, in May and November 2005, FWD tests were carried out in addition to the CTI testing. 

Figure 11 in Appendix A shows a map indicating the general location. 

 

3.2          TEST SECTIONS 
 
 
At the highway 630 site, six sections are selected in a length of about nine kilometers. Sections are 

selected and laid out jointly with FERIC. Sixty points were marked at an interval of three meters in each 

section as shown in Figure 3.1; with a total of 30 points each in the north and south bound lanes. 

 

                               
                                 Figure 3.1: Highway 630-Section 1 north bound, 30 test points 

3.3         PFWD TESTING PROCEDURES 
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The PFWD equipment was assembled and connected to the com pilot palm device, through Bluetooth. 

The PFWD procedure that has been developed for the Centre for Pavement and Transportation 

Technology is provided in Appendix B. The connectivity is checked through the blinking green light. 

Each point in a selected test section is tested six times. The first reading is discarded and average of the 

remaining five readings is taken into consideration [Kestler 2005]. 

 
3.4          Testing Period 
 
To monitor the behaviour of the pavement during the spring thaw weakening conditions, Highway 630 

was tested on the following days. 

 

Day 1, April 19, 2007 

Day 2, April 23, 2007 

Day 3, April 30, 2007 

Day 4, May 7, 2007 

Day 5, May 14, 2007 

 

The variation in strength was then related to the weather conditions. 

 

3.5           Testing Pattern 
 

At this location, the north bound lane is tested on every section each testing day, while the south bound 

lane is tested periodically and not necessarily at every visit. This testing pattern has been adopted to be 

representative of the pavement loading and structural behaviour. The loaded trucks haul on the north 

bound lane of the highway. 

 

3.6             Data Collection 
 

During the PFWD data collection both, pavement deflection and the modulus of elasticity (E) have been 

recorded for the April 2007 and May 2007 testing period. Testing was coordinated with FERIC so that 

both PFWD devices tested on the initial day of April 19, 2007. This has enabled the research team to look 

at the validation of PFWD data in conjunction with FERIC’s data. Subsequent testing was carried out 

only with the PFWD. 



 

  22

 

Applied Research Associates (ARA) was commissioned under this study to carry out Falling Weight 

Deflectometer (FWD) testing on two occasions and the CPATT PFWD also took readings on those days. 

ARA’s testing occurred on April 23 and May 7, 2007. Hence, a significant amount of deflection data has 

been collected on Hwy 630 during the spring thaw weakening period. This allowed the research team to 

examine differences in various PFWD devices also difference between PFWD and FWD. The data 

collection pattern has been summarized in the following Table 3.1.  
 

Table 3.1: Summary of Field Testing on Highway 630 

Date Section Direction UW PFWD FERIC’s 
PFWD 

ARA’s 
FWD 

April 19, 2007 

1 NB*,SB** √ √  
2 NB,SB √ √  
3 NB √ √  
4 NB √ √  
5 NB √ √  
6 NB √ √  

April 23, 2007 

1 NB √  √ 
2 NB √  √ 
3 NB √  √ 
4 NB √  √ 
5 NB √  √ 
6 NB √  √ 

April 30, 2007 

1 NB √   
2 NB √   
3 NB √   
4 NB,SB √   
5 NB,SB √   
6 NB,SB √   

May 7, 2007 

1 NB,SB √  √ 
2 NB,SB √  √ 
3 NB,SB √   
4 NB √  √ 
5 NB √  √ 
6 NB √  √ 

May 14, 2007 

1 NB √   
2 NB √   
3 NB √   
4 NB √   
5 NB √   
6 NB,SB √   

* North Bound Lane, ** South Bound Lane 

 

 

 

 

3.7 CORRELATION BETWEEN PORTABLE FALLING WEIGHT DEFLCTOMETER (PFWD), 
FALLING WEIGHT DEFLCTOMETER (FWD), AND BENKELMAN BEAM (BB) 
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If the PFWD was to be adopted in this work, it was necessary to validate how reliable it is and how it 

compared to the sturdier, robust FWD, and the Benkelman Beam which has been used for several years. 

The PFWD is portable and can be easily transported to reach locations. Thus, it was necessary to correlate 

PFWD and FWD with respect to both deflection and moduli values. The Department of Transportation 

(DOT) in British Columbia, Canada is evaluating the pavement structure through the wide use of the 

Benkelman Beam with readings of 1.5 mm to 1.25 mm in order to impose and lift the SLR during the 

spring-thaw period. The Benkelman Beam records deflection due to the application of static loads and 

does not simulate vehicular rolling load. In addition, the use of Benkelman Beam is very costly whereas 

the FWD is cost effective and its advantage of simulating vehicular rolling load supersedes the use of the 

Benkelman Beam. Besides using the FWD, CPATT has proposed the use of PFWD instead of the FWD 

due to the following advantages. 

• Easy to use 
• Portable 
• Data easily interpreted 
• Follows seasonal stiffness changes in pavements 
 
• Cost effective 

 

Hence, an attempt has been made to correlate the PFWD to the Benkelman Beam and to the FWD device 

to monitor and evaluate the pavement stiffness similar to B.C’s threshold deflection values for imposition 

and lifting of the SLR in Northern Ontario. A correlation has already been established by Washington 

State DOT Materials Laboratory in 1982 between the BB and FWD. However, the relationship between 

PFWD to BB and PFWD to FWD has not been carried out. Highway 630 in Mattawa North Bay was 

initially tested on two different days using the FWD and PFWD. The road consists of six test sections 

where each section has 30 points at intervals of 3 metres. Linear correlations are developed between the 

two devices for both deflection and elastic/composite modulus by taking the average of the two days. 

Table 3.2 summarizes the pavement structure details. 

 

 

 
Table 3.2: Highway 630 Pavement Structure 

Section Surface Upper Granular Lower Granular (mm) Total 



 

  24

 Treatment 
(mm) 

Binder 
Layer 
(mm) 

Base 
(mm) 

Binder 
Layer 
(mm) 

Granular 

A ‘Base’ 

(mm) 

Granular 

‘B’ 

Subbase 

(mm) 

Total 

(mm) 

Pavement 
Thickness 
(mm) 

1 30   110 270  270 410 

2 60  300 80 390 170 560 1000 

2 20 80 250 60 210  210 620 

3 20 110 150 140 100  100 520 

4 40  210 70 430 250 680 1000 

5 70    170 370 540 610 

6 20  180 100 310  310 610 

 

 

3.7.1 FALLING WEIGHT DEFLECTOMETER (FWD) VERSUS                          
PORTABLE FALLING WEIGHT DEFLECTOMETER (PFWD) 

 

The following equations based have been derived based on regression analysis and collected deflection 

tests conducted on Highway 630 near Mattawa-Ontario. The tests were conducted on April 23, 2007 and 

May 7, 2007. The results are averaged for both deflection and modulus values. Equation 3.1 represents 

deflection while equation 3.2 represents the modulus of elasticity. The respective R2 values for equation 

3.1 and 3.2 are 0.73 and 0.60 respectively.  

 

 [FWD]Do = 3.002 [PFWD] Do – 315.55  (3.1) 

 
[FWD] Eo = 1.7991[PFWD] Eo – 33.6955  (3.2) 

 

3.7.2 BENKELMAN BEAM TO FWD 
 

According to the Washington State DOT Materials Laboratory study [WDOT 1982], the following 

relations are being used for correlating the Benkelman Beam with the Falling Weight Deflectometer. 

 

BB = 1.33269 + 0.93748 [FWD] Do     (3.3) 

 

Where BB = Benkelman Beam Deflection (inches x 10-3) 

FWD = FWD centre-of-load deflection (inches x 10-3) 
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Based on the restrictions of a BB of 1.5 mm during spring thaw, the corresponding deflection values for 

FWD are calculated as follows. 

 

BB = 1.5 mm = 1.5/ (10 x 2.54) = 0.059 inches = 59 inches x 10-3 

 

Inserting this value of BB in Equation 3,  

59 x 10-3 = 1.33269 + 0.93748 [FWD] Do 

Or [FWD] Do = 61.5131 inches x 10-3 

Converting (inches x 10-3) into (mm x 10-3), 

[FWD] Do = 1562.4327 x 10-3 = 1562.43 (um) 

 

 3.7.3 BENKELMAN BEAM TO PFWD 

 

In terms of BB deflection (Do) of 1.5 mm, which appears to be a good starting point for evaluation, the 

corresponding deflection for the PFWD is calculated as follows. 

 

According to Equation 3.1,  

[FWD]Do = 3.002 [PFWD] Do – 315.55 

Inserting the value of [FWD] Do = 1562.4 (um) = 1.56 mm 

[PFWD] Do = 625.57 (um) =0.62 mm 

Similarly the corresponding PFWD value with the BB value of 1.25 mm for lifting the SLR is calculated 

to be 500 um or 0.50 mm.  

 

Resultantly, the above correlations indicate that for a BB value of 1.5 mm deflection, the corresponding 

value of FWD deflection should be 1.56 mm, and that of the PFWD should be 0.62 mm. Therefore, 1.5 

mm of BB deflection =1.5 mm of FWD deflection = 0.6 mm of PFWD deflection. The PFWD threshold 

value for imposition of SLR has been adjusted to a lower value in a later section in order to accommodate 

the structural adequacy of Low Volume Surface Treated roads in Ontario  

 

 

3.8 LINEAR REGRESSION MODEL BETWEEN FWD AND PFWD 
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This section outlines the correlation between FWD and PFWD for three parameters – subgrade resilient 

modulus, layer composite modulus, and deflection. Table 3.3 summarizes values of the pavement 

composite layer modulus (Eo), and Resilient Modulus (MR) of subgrade for Highway 630 on April 23, 

2007 and May 7, 2007. The composite layer modulus (Eo) is recorded directly from the FWD or PFWD 

data while the values for resilient modulus of the subgrade are derived through back calculation as 

described in AASHTO Guide for Design of Pavement Structures [AASHTO 1993] 

 

Figures 3.2 and 3.3 demonstrate the correlation between the FWD and PFWD’s resilient modulus MR. The 

R-squared value for MR between the two devices on April 23, 2007 is 0.62 and it is 0.38 on May 7, 2007. 

Although this seems low, particularly for the May 7, 2007 data, these values are comparable with other 

studies for thin asphalt surface treated roads [Kestler 2005]. The reason behind this is the fact that the 

FWD which has the capacity of simulating heavier vehicular loads (40-80 KN) indicates a representative 

value of the subgrade modulus. On the other hand the PFWD which is sometimes also called the Light 

Weight Deflectometer (LWD) can simulate loads from 15 -20 KN. Thus, variation can be attributed to the 

difference in loading response and particularly when the pavement structure is coming out of the thaw 

period and is very moist. 

 

Figures 3.4 and 3.5 demonstrate a similar linear correlation for layer composite modulus with R-squared 

values of 0.47 and 0.62 for the data recorded on April 23, 2007 and May 7, 2007.  Equation 1 is derived 

by averaging the two linear models shown in Figures 3.2, 3.3, 3.4, and 3.5. 

 

Table 3.3: Averaged Pavement Layer Modulus and Resilient Modulus 

SECTION 
April 23,2007 May 7, 2007 

PFWD MR 
(MPa) 

FWD MR  
(MPa) 

PFWD Ep 
(MPa) 

FWD Ep 
(MPa) 

PFWD MR  
(MPa) 

FWD MR  
(MPa) 

PFWD Ep 
(MPa) 

FWD Ep 
(MPa) 

1 24 28 151 302 27 23 151 320 
2 25 24 151 228 26 17 157 268 
3 21 15 127 141 24 15 143 234 
4 18 14 110 125 18 11 112 177 
5 20 14 120 134 21 13 113 215 
6 21 16 171 195 29 20 180 283 
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Six sections of road are selected in a length of about nine kilometres. Sections are selected and laid out 

jointly with FERIC. Sixty points are marked at intervals of 3 meters in each section as shown in Figure 

3.1; a total 30 points each in north and south bound. The two devices used were CPATT’s Dynatest KPI 

100 PFWD and Applied Research Associate’s trailer mounted FWD.   
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                                       Figure 3.2: PFWD versus FWD, Subgrade Resilient Modulus-Highway 630 
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                                           Figure 3.3: PFWD versus FWD, Subgrade Resilient Modulus-Highway 630 
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                                       Figure 3.4: PFWD versus FWD, Layer Composite Modulus-Highway 630 
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R2 = 0.62

150

170

190

210

230

250

270

290

310

330

100 120 140 160 180 200

PFWD Ep (MPa)

FW
D

 E
p 

(M
Pa

)

            Figure 3.5: PFWD versus FWD, Layer Composite Modulus-Highway 630 
 
 

Table 3.4 summarizes the deflection recorded by the PFWD and FWD on Highway 630 on the two dates. 

Figure 3.6 and Figure 3.7 shows the correlation trend and R-squared values when using deflection as the 

basis for comparison. The correlation gives a R-squared value of 0.62 and 0.81 on April 23, 2007 and 

May 7, 2007 respectively. The relation is linear and the regression model developed is averaged to derive 

Equation 1. 
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         Table 3.4: Averaged PFWD and FWD Deflections on Highway 630 

SECTION 
4/23/2007 5/7/2007 

PFWD D0 (um) FWD D0 (um) PFWD D0 (um) FWD D0 (um) 
1 369 522 330 550 
2 369 714 330 680 
3 446 1131 372 773 
4 495 1256 454 1018 
5 442 1159 386 821 
6 313 843 290 658 
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             Figure 3.6: FWD versus PFWD for Deflection Do-Hwy 630 
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                                        Figure 3.7: FWD versus PFWD for Deflection Do-Hwy 630 
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3.9     STRUCTURAL EVALUATION OF ONTARIO’S LOW VOLUME ROADS (LVR) IN                          
COMPARISON WITH BRITISH COLUMBIA’S ROADS FOR SLR 
 

At this stage of the study, after correlating the PFWD to the Benkelman Beam, it is inappropriate to adopt 

BC’s CTI threshold deflection values for Ontario’s LVRs. The reason for this is that candidate roads in 

BC for SLR have a different pavement structure. This difference requires evaluating the structural 

compositions and transforming adequacies in comparable terms.  The most basic method of evaluating the 

structural adequacy of a pavement is the Granular Base Equivalency (GBE) approach [TAC 1997]. Table 

3.5 summarizes the structural layer details of roads in BC. 

 

Table 3.5: Pavement Structure of British Columbia’s MOT LVRs based on Unified Soil Classification [TAC 1997} 

Type Pavement Layer Thickness 
(mm) Subgrade 

1 HMA 50 Well Graded Gravel/Sand (GW/SW) Aggregate Base Course 150 

2 HMA 50 Grained Soil (GW) Aggregate Base Course 300 

3 CMA 25 Grained Soil (GW) or Original surfacing was failed and then was 
overlain Aggregate Base Course 150 

4 CMA 25 Fine Grained inorganic silt and very fine sand (ML) Aggregate Base Course 300 
 
 

The test sites, which are considered to be representatives of any secondary highway in Ontario typically, 

have the following structural composition [Table 3.2]. 

 

Surface Treatment = 30 mm-70 mm (some surface is overlain during routine maintenance) 

Granular Base         = 150 mm-300 mm 

Subgrade conditions vary from clay, silt and grained soils 

 

In order to compare structural adequacy, it is suggested that the GBE approach be used. A report 

published by the State of Minnesota Asphalt Pavement Association [Wolters 2003] suggests that 25 mm 

(1 inch) of Hot Mix Asphalt (HMA) should be considered equal to about 65 mm (2.5 inches) thickness of 

aggregate base course. Secondly, this report also explains the structural adequacy of the pavement in 

terms of the tensile strength provided by the asphalt binder present in the HMA mix. Therefore, the roads 

for SLR in BC differ from the roads in Ontario by two parameters. Firstly BC roads are constructed with 
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HMA versus Ontario roads are primarily Surface Treated with different thickness The difference in 

material result in different tensile strength.  

 

Overall, the HMA pavement structure deflects less under a given load in spring time and has more 

resistance to vehicular loads even during spring-thaw period. Moreover, this hypothesis can be further 

extended that higher value of spring deflections will deform the road structure. This justifies the 

adjustment of threshold PFWD deflection values only for imposition of the ban on full legal axle loads in 

northern Ontario’s Low Volume Roads. The deflection value for lifting the SLR should be kept as is 

derived in the correlation since these roads recover at a slower pace which is already observed in 

deflections monitoring during the first round of testing in spring 2008. The strength and the structural 

adequacy of the roads in BC and northern Ontario differ by approximately 11 % when considering the 

GBE approach. Thus, the correlated threshold deflection value is reduced to adequately reflect the weaker 

pavement structure. Thus, 560 um (0.56 mm) has been used for the imposition of SLR. On the other hand, 

the threshold for lifting the ban remains at 500 um (0.5 mm). 

 

3.10         SEASONAL LOAD RESTRICTIONS (SLR) PRACTICE AND DURATION 

 

A flexible road normally transfers traffic loading vertically from one structural layer down to another in 

such a way that the whole pavement structure deflects bends without rutting or cracking. It can also be 

interpreted as the loads are uniformly distributed over the structural layers of the flexible pavement. 

During winter, the pavement structure, mainly in Northern Ontario freezes from the surface to the 

subgrade layer. Typically frost depth varies from 1.0 metres to as high as 2.0 metres in northern Ontario. 

The available moisture in the pavement structure upon freezing behaves anomalously and the pavement 

structure experiences a volumetric expansion called frost heave. Provided this condition remains stable, 

the road exhibits increased strength that can even justify the allowance of overloaded commercial 

vehicles. On the other hand, warmer winters and/or the arrival of spring cause temperatures in the soil to 

oscillate around the freezing point with more or less amplitude and frequency. As a result, the pavement 

reaches a critical state where the upper layers are thawed while the lower layers remain frozen. This 

phenomenon is called the freeze-thaw cycle.  

 

Water trapped between the underlying pavement layers saturates the structure and renders it unable to 

transfer traffic loading properly, and pavement deformation occurs. The deterioration is most dramatic 
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when the freezing front penetrates into a fine graded, frost susceptible soil, as frost heave is amplified, 

and the damaging effects of pumping due to partial thawing and saturation are aggravated (Bullock 2005). 

Hence, the most effective and easy action to prevent the pavement from any damage during this freeze –

thaw cycle is to impose loads on the axles and is known as the Seasonal Load Restriction (SLR) 

regulation. 

 

3.10.1          SLR in Ontario 

 

Seasonal load restrictions are imposed each year on low volume routes designated as “Schedule 2 

Highways”, usually throughout March, April and May [MTO 1990]. Although the SLR periods are 

commonly called “half load periods”, section 122 of the Highway Traffic Act [Highway Traffic Act 1990) 

specifies the load restriction limit to be 5,000 kg per single axle. Vehicles exceeding this limit have to 

take alternative routes or be subject to the penalties described in the Act. Also, oversized load permits, 

often called Winter Weight Premiums (WWPs), that are usually allowed as long as the pavement structure 

is frozen and thus assumed to withstand these higher loads, are restricted during an SLR period.  SLRs 

have been typically imposed on or around March 15, usually in response to a three-day warning trend (i.e. 

a forecast of at least three consecutive days with an average daily temperature above 00 C). The ban is 

then lifted in response to recommendations by MTO maintenance coordinators who conduct field 

inspections of the roads to look for signs of strength recovery [FERIC 2006]. Indicators include dry road 

surface cracks, ditches clear of snow and flowing well, and, no residual wetness on the road shoulders 

after they have been graded. Thus, this makes it an SLR period spanning from eight to ten weeks. 

 

3.10.2  SLR in Canada 

 

A market scan for Transport Canada in 2005 summarized the various methods used in Canada for 

determining start and stop dates for load restrictions (Bullock 2005). The imposition of WWP is most 

typically done by using fixed dates across Canada, except in Alberta where frost depth and the number of 

days with temperatures less than 00 Deg C are used. Pavement structures that should receive an SLR 

schedule are normally identified using design and strength criteria, such as whether or not the frost 

penetrates down to a frost susceptible subgrade soil. Quantitative methods have progressively been 

introduced to complement and address limitations of the traditional expert judgment and historical records 

used in the decision-making process. Calendar-based imposition systems use fixed start dates derived 
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through analysis of historical thaw data and do not take into consideration annual fluctuations. Used 

alone, visual observations and engineering judgment often fail to prevent the pavement damage that has 

been initiated in the lower layers to propagate up to the surface. In an effort to address these concerns, 

Manitoba, British Columbia, Québec and Alberta have recently adopted more quantitative approaches 

based on the monitoring of deflection and the use of threshold values (suspected to be associated to 

strength shifts) to trigger and lift SLR. Other analytical approaches include the use of measured and 

predicted temperatures as inputs for empirical-mechanistic indicators of the road’s strength, such as the 

thaw index used in Minnesota and in Manitoba. More recently, British Columbia’s truckers have 

shortened SLR periods through the use of Central Tire Inflation (CTI) system to abide by “reduced tire-

pressure” periods. The ban period once again falls between eight to ten weeks. 

 

In 2004, the British Columbia (BC) Ministry of Transportation initiated a program to exempt trucks with 

TPCS from seasonal weight restrictions on approved routes. Forest companies participating in the new 

BC program have been able to resume hauling with full pay loads two to four weeks sooner at the end of 

the SLR period. Hence, the new approach in this study, where the repeated use of the PFWD is being 

introduced as a cost effective tool to monitor the in-situ pavement strength in terms of deflections will 

enable the agency to announce the real time pavement thaw for SLR imposition and lifting the ban when 

the pavement starts strength recovery. In addition to this, it will also enable the agency to permit truck 

equipped with the TPCS technology to carry full pay loads towards the end of the ban period which can 

potentially result in competitive advantages such as improved harvesting efficiencies, reduced 

inventories, extended operating seasons and above all, mitigate the anticipated pavement damage. 

 

Figure 3.8 summarizes a schematic flowchart for SLR imposition/lifting and allowing TPCS equipped 

trucks with full legal loads during the spring-thaw period. 
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“Spring-Thaw Starts” Impose SLR at 
PFWD Deflection 0.56 mm 

Allow TPCS equipped trucks to 
haul with full legal loads 2-4 weeks 

before lift of the ban 

Pavement shows deterioration/failure like cracking 
Or rutting 

Lift SLR at PFWD 
Deflection 0.5 mm 

No or Negligible Distress Observed  

Stop Central Tire Inflation  

(CTI) Trucks’ Haul 
Continue CTI Trial with a Combination of 

Reduced Tire Pressure and Loads 

Added Seasonal Load Restrictions

 
Figure 3.8: Schematic Flow Chart Exhibiting Proposed Methodology for SLR and TPCS Equipped Truck Hauling during CTI 

Trial Conducted on Highways 601 and 651 During Spring 2008. 
 
 

3.11         TEST SITES 

 

As mentioned in earlier sections, the preliminary test site was Highway 630 which is a surface treated 

road located east of North Bay that runs from Highway 17 to the town of Kiosk and was selected by the 

ministry for the Central Tire Inflation (CTI) pilot project. This road was monitored during the spring of 

2007 and the data was used in the preliminary correlations of FWD and PFWD. Later on, by the end of 

May 2007, two more test routes were identified for the study. These roads are Highway 601 in Dryden-

Ontario, starting 1.6 km north of Highway 17, and Highway 651 in Chapleau, Ontario starting at the 

Highway 101 junction for about 29 km heading north. Location map for test site is provided in Appendix 

A. Details of test sections and PFWD testing pattern is elaborated in the following sections. The aim is to 

identify and monitor the freeze-thaw cycles through the repeated use of the PFWD and examine the 

pavement strength in light of the threshold deflection values. In addition to this, Highway 601 and 651 are 

instrumented with sensors like a thermistor string to monitor pavement temperature, soil moisture content, 

relative humidity and air temperature. 

  

3.11.1          Highway 601 

Highway 601 is a typical Schedule Two Low Volume surface treated road and is used as an access road to 
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forestry resources. Table 6 summarizes the repeated PFWD deflection values collected on the highway 

from September 2007 to June 2008. Here too the deflections are calculated on 95% confidence level, 

hence are expressed as (Mean+2×Standard Deviation). The length of Highway 601 is 9 kilometers and 

four test sections are selected with Section 4 fixed as the control section since it was not falling in the haul 

route of the loaded trucks. Later on, it was found that section four exhibited an extremely weak saturated 

sub grade therefore it lost its integrity as a control for future deflection monitoring although it was tested 

and its behavior was monitored regularly. All the test sections were selected as the weakest reaches 

through visual inspection for pavement distresses like cracks and ruts. It is assumed that the weakest test 

sections respond promptly to any weather or traffic related changes. These changes can be visibly seen or 

recorded through changes in the NDT. The ultimate aim is to look for a window where trucks equipped 

with TPCS can haul full legal loads without increasing pavement damage on these roads during SLR. 

 

Each test section is further divided into twenty test points or locations; each point is 5 meters apart 

making a 100 meters long test strip. These points are permanently marked on each test section so that 

testing is performed on the same location on each testing day. All the sections are located on the south 

bound lane of Highway 601 since the loaded trucks haul from the north.  North bound lane of Section 2 is 

selected as a control for testing after the original control section was relieved from its responsibility as a 

control. Figure 3.9 shows a typical test section of Highway 601 being tested by the PFWD. Table 3.5 

summarizes the deflections surveys done to monitor Highway 601’s in-situ strength through repeated 

PFWD testing. 
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                                           Figure 3.9: Test Section on Hwy 601, PFWD Testing in Progress 
 
 

     
      Table 3.6: Highway 601 in-situ strength monitoring through repeated PFWD Testing 

Date 
Highway 601 - Deflections (um) [Mean + 2×StDev] 

Sections 
1 2 3 4 [CS] (1-3) (1-4) 

25-Sep-07 394 403 370 580 393 484 

12-Nov-07 419 341 367 681 385 351 
18-Mar-08 218 170 200 262 217 242 
24-Mar-08 88 31 98 199 93 142 
27-Mar-08 42 13 45 78 56 64 
1-Apr-08 190 123 300 270 300 302 
4-Apr-08 466 436 484 632 481 554 
8-Apr-08 434 397 492 590 467 539 
11-Apr-08 492 403 511 697 495 615 
15-Apr-08 468 454 557 797 524 699 
17-Apr-08 444 479 541 699 517 646 
22-Apr-08 469 471 506 833 498 749 
29-Apr-08 495 551 575 778 575 677 
30-Apr-08 484 550 555 879 550 729 
2-May-08 513 528 538 928 540 801 
6-May-08 497 482 506 906 506 788 
14-May-08 567 466 538 1031 538 861 
20-May-08 496 427 500 988 490 811 
27-May-08 525 437 519 1074 518 907 
3-Jun-08 502 485 503 1014 503 875 
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Figures 3.10, 3.11, 3.12, and 3.13 show the deflection curves for Section 1, 2, 3, and 4 on Highway 601 

respectively. It is observed that the variation in the in-situ pavement strength due to seasonal changes is 

noted by the PFWD. This validates the use of the PFWD. Moreover, each section has also shown to reach 

its maximum threshold deflection (Mean + 2×StDev) as the spring-thaw commences in mid April. This 

confirms the validity of threshold values fixed for imposition of SLR. At the end of the thaw progression, 

the pavement recovery is seen to be slow and varied; the reason for this is best explained by the fact that 

the underlying pavement layers are experiencing slow or inefficient drainage. 
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                Figure 3.10: Hwy 601, Section 1  
 
 

                          

Highway 601 PFWD Deflections, Section 2
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              Figure 3.11: Hwy 601, Section 2 
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Highway 601 PFWD Deflections, Section 3
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               Figure 3.12: Hwy 601, Section 3 
 

                                       

Highway 601 PFWD Deflections, Section 4
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               Figure 3.13: Hwy 601, Section 4 
 
 

Figure 3.14 illustrates the trend of the in-situ pavement strength through taking into account all the test 

sections i.e. the deflections are considered together from Section 1 to Section 3. The curve shows a 

decrease in PFWD deflection since the time the survey was first carried out in the fall of 2007. Though no 

deflection survey is carried out during winter time but it is assumed that winter deflections are similar to 

the readings taken at the end of February or at the beginning of April when the pavement was completely 

frozen. The freezing temperatures also are verified from the environmental data. Figure 3.14 also shows 

that the spring-thaw commences in mid April and reaches the threshold value in the third week of April. 

The deflections after reaching the threshold value give an indication for SLR imposition. The deflection 

are monitored repeatedly during the thaw progression and slight undulations are observed which are 

attributed to the subgrade and pavement layers’ fluctuating moisture content and on-site drainage 
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conditions. A true strength recovery is observed in May end when the PFWD records a deflection value of 

about 500 um which is outlined in the correlation between the BB, FWD, and PFWD. The total SLR 

period for this test site, in terms of deflections and thermistor readings, is about six weeks as compared to 

ten weeks determined by the Ministry of Transportation, based on routine SLR practices.      

 

                         

Highway 601 PFWD Deflections, Section 1-3
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              Figure 3.14: Hwy 601, Section 1-3combined 
 

Figure 3.15 shows the behavior of Highway 601 pavement structure when deflection values from Section 

4 are incorporated into the analysis. As mentioned earlier, Section 4 was initially selected as a control but 

it lost its importance due to its weak pavement structure and poor drainage. This is observed from the 

magnitude of the deflection values as shown in Figure 3.15. The effect of the weakened nature of Section 

4 has affected the overall strength condition of Highway 601 during the analysis of the deflection data.      

 

                          

Highway 601 PFWD Deflections, Section 1-4
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               Figure 3.15: Hwy 601, Section 1-4 combined 
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Figure 3.16 shows a glimpse of the trend of deflections analyzed all together. It is observed that 

deflections are following a similar trend for all the sections. 

 

                          

Highway 651 PFWD Deflection 
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                Figure 3.16: Hwy 601, all sections shown. 
 

 
3.11.2 Highway 651 
 
 
Highway 651 is also a typical Schedule Two Low Volume surface treated road and is mainly used as an 

access road to forestry resources only. Table 7 summarizes the repeated PFWD deflection values 

collected on the highway from September 2007 to June 2008. Here too, the deflections are calculated 

based on a 95 % confidence level and are expressed as a (Mean+2×Standard Deviation). Highway 651 is 

located midway between Wawa and Chapleau-Ontario starting at Highway 101 junction for about 29 km 

north. The length of Highway 651 is about 29 kilometres and seven test sections are selected with Section 

6 fixed as the control section since it is not falling in the haul route of the loaded trucks. Like Highway 

601, each test section is further divided into twenty test points or locations; each point is 5 meters apart 

making a 100 meters long test strip at each section. These points are permanently marked on each test 

section so that testing is performed on the same location on each testing day. Once again, all the sections 

are located on the south bound lane of the highway since the loaded trucks haul from the north.  The north 

bound lane of Section 2A is selected as an alternate control section for testing to have a ready comparison 

between the loaded and unloaded lane at a glance. It is observed that both the lanes behave the same.  

 



 

  41

Table 3.6 summarizes the deflections surveys done to monitor Highway 651’s in-situ strength through 

repeated PFWD testing. It should be noted that Section 1, 3, and 4 are not tested every testing day the 

reason is explained in the sections ahead. Figure 3.17 shows a typical section of Highway 651 being 

tested by the PFWD. 

            
 
           Table 3.7: Highway 651 in-situ strength monitoring through repeated PFWD Testing 

Date 

Highway 651 - Deflections (um) [Mean + 2×StDev] 
Sections

1 2 2A 3 4 5 
6 

[CS] 
Combined 
Sections 

12-Sep-07 365 422 441 377 323 300 420 409 
11-Mar-08 x 28 16 45 x 12 20 29 
27-Mar-08 x 26 30 x x 14 25 23 
2-Apr-08 x 24 50 x x 17 25 34 
4-Apr-08 x 206 186 x x 121 157 186 
8-Apr-08 x 712 502 x x 364 474 558 
14-Apr-08 x 449 335 x x 309 402 400 
17-Apr-08 x 733 497 x x 363 526 585 
24-Apr-08 x 678 556 x x 333 467 568 
1-May-08 x 632 474 x x 322 464 632 
6-May-08 748 648 543 x x 336 469 660 
7-May-08 933 592 507 451 387 320 522 505 
14-May-08 x 493 454 x x 317 403 455 
22-May-08 516 492 427 x x 325 414 489 
28-May-08 x 481 402 x x 334 441 479 
4-Jun-08 485 541 439 x x 362 444 492 

 

 

          
           Figure 3.17: Highway 651, Section 6-Control Section 
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Figure 3.18 shows a tremendous increase in deflection numbers from the survey date till mid April. As 

indicated in Table 7, Section 1 is tested only on five occasions i.e. with a lesser frequency than the other 

sections since it had shown extreme weak spots like total top-to-bottom cracks most probably due to 

insufficient lateral shoulder support and poor drainage. Hence, this section was abandoned and was not 

tested or analyzed as a representative test section. 
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                               Figure 3.18: Hwy 651, Section 1 
 
 

Figures 3.19, 3.20, 3.21, and 3.22 shown below indicate the trend of pavement deflections for Sections 2, 

2A, 5, and 6 respectively. The deflections follow the same general trend as it did for Highway 601. All 

these sections experienced thaw in mid April and their strength recovery commences in early or mid May. 

Highway 651 is known to be stronger structurally and this was further determined through CPATT tests. 

The geotechnical reports further stated this. The magnitude of the deflection numbers validates the 

findings of the geotechnical report since Highway 651 has shown considerable resistance to deformation 

during the freeze-thaw cycle.    
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Highway 651 PFWD Deflection 
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                     Figure 3.19: Hwy 651, Section 2 
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                        Figure 3.20: Hwy 651, Section 2A 
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                     Figure 3.21: Hwy 651, Section 5 
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Highway 651 PFWD Deflection 
Monitoring, Section 6
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                      Figure 3.22: Hwy 651, Section 6-Control Section   
 
  

In Figure 3.23, the deflection values of all the sections are gathered for analysis and their trend is shown. 

The analysis demonstrates a true representation of the entire highway in terms of PFWD deflections. As 

already indicated, the Highway has been monitored for deflections since the last fall of 2007 and it is seen 

that the pavement attains a maximum strength in winter 2008 when the pavement structure is frozen. The 

deflection data as well as the environmental data indicates that Highway 651 encounters spring-thaw in 

the second week of April and the pavement starts recovering in the first week of May. Hence, Highway 

651 has shown that the SLR period could even be limited to four weeks in case for stronger pavements. 

But this needs further investigation and monitoring the pavement strength over another period of spring-

thaw cycle. 

                       

Highway 651 PFWD Deflection Monitoring, 
Combined Sections (1-6)

0

100

200

300

400

500

600

700

6-Aug-
07

25-
Sep-07

14-
Nov-07

3-Jan-
08

22-
Feb-08

12-
Apr-08

1-Jun-
08

21-Jul-
08

Dates

De
fle

ct
io

n 
(m

m
), 

M
ea

n+
2x

St
De

v

                       Figure 3.23: Hwy 651, Section 1-6 
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Figure 3.24 summarizes the general deflection trend of all the sections where each section can readily be 

compared with the next one. It is observed here that all the sections follow the same trend except for 

Section 1 which, as already mentioned, is extraordinarily weak. 

 

                             

Highway 651 PFWD Deflection 
Monitoring, All Sections
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               Figure 3.24: Hwy 651, all sections shown 
 

 
 
SUMMARY 
 
 
The PFWD can be used to determine in-situ strength and provides benefits due to its portable nature and 

also being a less expensive NDT technique. Based on the PFWD rebound values, SLR can be imposed 

confidently at a spring deflection value of 0.56 mm and lifted when the pavement recovers to a deflection 

of 0.50 mm. 
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Chapter 4 
 

USE OF INNOVATIVE SENSORS, DATA COLLECTION, AND 
INTERPRETATION 

 
4.1  INSTRUMENTATION 

 
As noted in the research methodology, the study also involved the design and placement of 

instrumentation during the fall of 2007 on Hwy 651 and Hwy 601 to monitor the freezing and 

thawing progression in the pavement structure. This was proposed and executed to further validate the 

usage of PFWD by conforming the in-situ conditions. To achieve this, the thermistor strings, relative 

humidity (RH) sensors, air temperature sensors, and water content gauges were installed at the two 

locations. These monitor in-service pavement real time conditions compared to the surrounding 

environmental conditions. The use of innovative sensors and data collection techniques are proving to 

be very informative and are advancing pavement engineering knowledge. The following sections 

provide installation details including the types of sensors; as well as describe the working principles 

of the sensors installed at the two locations. It has been observed that the identification of SLR 

through the use of a PFWD device to monitor in-situ pavement strength has followed the pavement 

freeze-thaw as expected and was validated by the in-service sensor readings.  

 

4.2 THERMISTOR STRINGS (W0E 404) 

 

The CPATT team worked with Campbell Scientific Inc.’s to purchase the thermistor strings and 

install them within the pavement structure at various depths as follows: 15 cm, 30 cm, 40 cm, 50 cm, 

75 cm, 100 cm, and 150 cm. These heights were selected to best represent in-situ performance. 

 
Figure 4.1 shows one of the thermistor string placed in this research. It has been tied to a wooden 

stick to enable easier installation and provide support in-service. Figure 4.2, 4.3, and 4.4 show 

installations on Hwy 601. The thermistor string used in both the sites is a customized single 

arrangement for temperature sensors meant for recording pavement temperature at the specified 

depths. The thermistor readings are very important for tracking thaw depth and freezing depth.                                       
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  Figure 4.1: View of Thermistor String at Test Site  

 
 
 
 
 
            

               
                                         Figure 4.2: Coring for Thermistor Installation. 
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                           Figure 4.3: Thermistor String Installation Backfilled with the same material, 

      rammed, and sealed with cold mix. (Hwy 651, Nov. 6, 2007) 
 
                            
  

                                       
                                          Figure 4.4: The saw cut trench is ready for the string to go in, Hwy 601 
 

             
 
4.3  RELATIVE HUMIDITY AND AIR TEMPERATURE PROBE  
 

 
The HC-S3 XT Temperature and Relative Humidity Probe was selected as it is a rugged, accurate 

probe, and are ideal for long-term, unattended applications. The probe uses Hygro Clip technology to 

measure RH and a Pt100RTD to measure temperature and is suitable for a temperature range of -50 

°C to +50 °C. The probe connects directly to Campbell Scientific dataloggers. The CR1000 was 

selected for this research. Each Hygro Clip probe is 100% interchangeable and can be swapped in 
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seconds without any loss of accuracy, eliminating the downtime typically required for the 

recalibration process. A radiation shield (Model 41003-X) is being used since the HC-S3 is exposed 

to sunlight. When exposed to sunlight, the HC-S3 must be housed in a 41003-X 10-plate radiation 

shield. The Relative Humidity and Air Temperature probe HC-S3-XT have the following 

specifications respectively: 

Relative Humidity                                                              

Operating range: 0 to 100% RH 

Accuracy @23°C: ±1.5% RH 

Output: 0 - 1 VDC 

Typical Long-Term Stability: Better than ±1% RH per year 

Temperature 

Measurement Range: -40 °C to +60 °C 

-50 °C to +50°C (model HC-S3-XT) 

Temperature Accuracy: -30°C - +60°C: ±0.2°C 

-50°C - +60°C: ±0.6°C (worst case) 

Output: 0 - 1 VDC 

General 

Supply Voltage: 3.5 to 50 VDC (typically powered by data logger’s 12 VDC supply) 

Current Consumption: < 4 mA 

Diameter: 15.25 mm (0.6”) 

Length: 168 mm (6.6”), and Housing Material: Polycarbonate 

 

4.4  WATER CONTENT REFLECTOMETER 
 
The CS616 Water Content Reflectometer was selected in this research measuring the volumetric 

water content of porous media, the CS616 uses time domain measurement methods that are sensitive 

to dielectric permittivity. The probe consists of two 30 cm long stainless steel rods connected to a 

printed circuit board. The circuit board is encapsulated in epoxy, and is shielded by a four-conductor 

cable which is connected to the circuit board to supply power, enable probe, and monitor the output. 

The probe rods can be inserted from the surface or it can be buried at any orientation to the surface. 

The CS-616 has the following features and is installed on both the sites at subgrade level to monitor 

the long term water content. It measures the volumetric water content using time-domain 

reflectometry methods. It is designed for long-term unattended water content monitoring and has an 
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accuracy ±2.5% VWC (Volumetric Water Content) using standard calibration with a resolution better 

than 0.1% VWC and measurement time is <500 microseconds. 

  

Figure 4.5 and 4.6 show the installed Water Content Reflectometer on Highway 651 and 601 

respectively. 

                                                        
Figure 4.5: Installation of CS-616, the probe is inserted into the 

 subgrade, Hwy 651  

 

 

                                        
                         Figure 4.6: The CS-616 probe is inserted horizontally at the  

      subgrade level, Hwy 601 
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4.5 DATA LOGGER CR-1000 
 
Both the sites are using CR-1000 data loggers which have the following features: 
 
• 4 MB memory 

• Program execution rate of up to 100 Hz 

• CS I/O and RS-232 serial ports 

• 13-bit analog to digital conversions 

• 16-bit H8S Renesas Microcontroller with 32-bit internal CPU architecture 

• Temperature compensated real-time clock 

• Background system calibration for accurate measurements over time and temperature changes 

• Single DAC used for excitation and measurements to give ratio metric measurements 

• Gas Discharge Tube (GDT) protected inputs 

• Data values stored in tables with a time stamp and record number 

• Battery-backed SRAM memory and clock ensuring data, programs, and accurate time are                

maintained while the CR1000 is disconnected from its main power source 

• Measures intelligent serial sensors without using an SDM-SIO4 

Figure 4.7 shows a typical CR-1000 data logger installed on both the sites. 

 

                             
                                  Figure 4.7: CR-1000 Datalogger 
 

4.5.1 STORAGE CAPACITY 

 

The CR1000 has 2 MB of FLASH memories for the Operating System, and 4 MB of battery-backed 

SRAM for CPU usage, program storage, and data storage. Data is stored in a table format. The storage 

capacity of the CR1000 is increased by using a Compact Flash card. 
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4.5.2 WIRING PANEL 

 

The CR1000WP is a black, anodized aluminum wiring panel that is compatible with all CR1000 modules. 

The wiring panel includes switchable 12 V redistributed analog grounds (dispersed among analog 

channels rather than grouped), a detachable terminal block for 12 V connections, gas-tube spark gaps, and 

a 12 V supply on pin 8 to power our COM-series modems and other peripherals. The control module 

easily disconnects from the wiring panel allowing field replacement without rewiring the sensors. A 

description of the wiring panel's input/output channels follows. Eight differential (16 single-ended) 

channels measure voltage levels. Resolution on the most sensitive range is 0.67 μV. The Removable 

Power Terminal simplifies connection to external power supply. 

 

4.5.3 POWER SUPPLIES 

 

Any 12 V DC source can power the CR1000; a PS100 or BPALK. The PS100 provides a 7 Ahr 

rechargeable battery that should be connected to a charging source (either a wall charger or solar panel). 

Solar panels have been provided at both the sites and are used as primary back up of the set up. The 

BPALK consists of eight non-rechargeable D-cell alkaline batteries with a 7.5 Ahr rating at 20°C. An 

external AA-cell battery pack supplies power while the D-cells are replaced. Also available are the BP12 

and BP24 battery packs, which provide nominal ratings of 12 and 24 Ahrs, respectively. These batteries 

should be connected to a regulated charging source (e.g., a CH100 connected to an unregulated solar 

panel or wall charger). The low-power design allows the CR1000 to operate for up to one year on the 

PS100 power supply, depending on the scan rate, number of sensors, data retrieval method, and external 

temperature. 

 

The main power source for the data logger on Highway 651 is the PS 100 12 V DC battery backed up by 

a solar panel. Highway 601 was initially powered by a solar panel, but later on the data logger was 

provided a live connection from the adjacent hydro source. It is observed that the data loggers on both the 

sites are working efficiently irrespective of the type of their power sources. 

 

Figure 4.8 and 4.9 illustrates the tripod setting instrument station on Highway 651. Figure 4.10 and 4.11 

shows a similar arrangement where the tripod is eliminated and a cabinet is erected for datalogger 

placement.  
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                                      Figure 4.8: Tower mounted with Data logger Cabinet and Solar Panel,  

Hwy 651  
 
 
 

                                    
                                  Figure 4.9: Sensors installed, Tower Erected, Data logger Programmed 

 and the set up is  being tested on Hwy 651 
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                               Figure 4.10: Erection of Campbell’s Tower arrangement eliminated and 

             the mast  is being fixed to the Cabinet provided by MTO, Hwy 601 
 
 
 

                                         
                                            Figure 4.11: Sensors installed, connected to data logger and   

       check-run in progress, Hwy 601  
 
 
 
4.6     DATA LOGGER PROGRAM AND DATA ACQUISITION 
 
 
The data logger CR 1000 is programmed to scan sensor readings after every 5 seconds while the data is 

stored after an interval of one hour. The data is collected data manually from each data logger on 

biweekly basis by deputed personnel and sent to the CPATT, University of Waterloo. The data is then 
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uploaded to the Ministry of Transportation’s data portal. The code used to facilitate data downloading is 

found in Appendix D. 

 

4.7       DATA ACQUISITION 

 

The CR-1000 data logger has a module that measures sensors, drives direct communications and 

telecommunications, reduces data, controls external devices, and stores data and programs in an on-board, 

non-volatile storage. The module can simultaneously provide measurement and communication functions. 

The on-board, BASIC-like programming language supports data processing and analysis routines 

[Campbell Scientific 2007]. 

 

The CR1000 can communicate with a PC using landlines, cellular CDMA, or cellular GPRS/EDGE 

transceivers. A voice synthesized modem enables anyone to call the CR1000 via phone and receive a 

verbal report of real-time site conditions. Although this data logger is designed to provide an easy means 

of data acquisition. Although modem based data download could be achieved, the manual method was 

agreed upon given there are field staff at both locations and remote nature of the site made it more 

desirable to have regular checking of the equipment during manual downloads. A CF100 module attached 

to the CR1000 that can store data on a Compact Flash (CFM 100) card is used to retrieve record data. In 

addition to this, a PC or a laptop can also be connected to the datalogger via DV3 cable and is able to read 

the CF card. The data file, after retrieval, can be sent electronically for further analysis or stored in a 

database. Figure 4.12 shows the VIEW screen where data can be seen and also transported to other 

destinations. 
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Figure 4.12: PC 400 screen demonstrating highway 601 Pavement and Air Data 
 
 
4.8          FREEZE THAW PHENOMENON AND REAL TIME DATA 
 
It is necessary when considering SLR to identify and understand the freeze thaw cycles. The freeze-thaw 

areas have been observed to be a function of the precipitation, temperature, soil, and pavement type. In 

areas where the frost depth penetrates and remains in the subgrade until the spring thaw with relatively 

few freeze-thaw cycles, is termed as a high freeze area. On the other hand, an area where the frost depth 

does not penetrate deep into the subgrade and has high number of freeze-thaw cycles is termed as a low 

freeze area [Huen 2006]. 

 

The cyclic freezing and thawing introduces fatigue damage to the pavement structure and can weaken it 

over prolonged exposure. Capillary forces and lack of drainage through the pavement structure due to top 

down thawing are factors that contribute to freeze-thaw damage [Tighe 2004, Tighe 2000]. During thaw 

progression in the pavement structure the vehicle loading is not distributed and transferred as designed. 

This results in the deformation of the pavement structure. Moreover, in the event of thaw penetrating into 
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the subgrade, pavement strength conditions become worse, resulting in a need for spring load restrictions 

in order to mitigate damage. In addition to this, the situation is even worse when the accrued moisture in 

the pavement structure is not allowed to drain. Lower temperatures during melting ice lenses within the 

pavement structure make the pavement structure very weak and incapable of carrying full legal loads. 

Hence, one of the ways to mitigate damage to the pavement structure is to reduce the axle load which is a 

common practice in the study area. Another possibility to mitigate pavement damage during this 

pavement unfriendly spring thaw period is to allow full axle loads with reduced tire pressures [Bradley 

1997]. The hypothesis behind this possibility is that a greater tire contact area to the pavement results in 

the distribution of the load over a larger area, reducing the active damage caused by heavy vehicles. 

 

 4.9    MITIGATION OF ROAD DAMAGE THROUGH USING TPCS EQUIPPED TRUCKS 

 

TPCS equipped trucks were hauled during the CTI-Trial on Highway 601 and 651 in Spring 2008. The 

trial was performed towards the end of the SLR period and the pavement was monitored for distresses. 

The pavement condition survey was evaluated through both visual and Non Destructive Testing PFWD 

surveys. They demonstrated that the TPCS were road friendly and no damage was observed during and 

after the trial was over. Detailed analyses are presented in the next chapter. 

Threshold PFWD deflection values, already set forth during the preliminary correlations, were the main 

inputs in the model. The trial was completed with success since the pavement did not exhibit any damage 

with reduced tire pressures and full axle loads.  

 

The following sections demonstrate the scenarios generated from sensor data in comparison to the 

instrumented sites and correlating the performance outputs with the in-situ pavement strength as well as 

SLR. 

 

 

4.10 FREEZING/THAWING INDICES, FROST DEPTH, AND THAW DURATION 

 

To validate the true SLR duration, the real time pavement and weather data from the data logger is 

compared with the analytical thaw duration measurement from Equation 4 used in a study conducted by 

Benjamin in 1999 for the Minnesota Department of Transportation-Cold Weather Road Research facility. 
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D = 0.018(FI) + 25        (4.1) 

 

Where FI = Freezing Index, Degree-Days 

D = Thaw Duration, Days 

 

The effects from winter temperatures can be estimated by knowing the local Freezing Index (FI) and the 

Thawing Index (TI). The FI is calculated from the product of the mean daily air temperature below 

freezing multiplied by the number of days at that temperature. The sum of all these "degree C-days" is the 

Freezing Index. 

 

The Freezing Index (FI) can also be calculated from Equation 4.2 (Huenl 2005) given below: 

 

  FI = Σ (00 C - TMEANi)                    (4.2) 

 

The results from the above equations, datalogger record, and the pavement’s in-situ strength during the 

thaw-weakened period are very similar and conforms the use of either the individual method, combination 

of two, or all for identification of the SLR. 

 

Table 4.1 and Table 4.2 summarize the FI and TI values calculated from the on-site measured sensor 

readings. Although both the test sites are located in different areas, both sites have similar cumulative 

freezing/thawing indices, predicted frost depth and thaw durations. As shown in Table 4.1 and 4.2, the 

calculated frost depth for Highway 651 differs by 30 mm from the predicted frost depth, and the predicted 

thaw duration differs by one day only. This calculation indicates that both the highways are behaving in a 

similar manner despite the fact they are located in different areas of Northern Ontario. 

 

The use of innovative sensors on these access roads to resources has insight into in-service weather 

impacts. The data will provide the opportunity to relate PFWD measurements to in-situ performance. In 

addition it will quantify how the freeze thaw cycle impacts strength and performance during SLR. 
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Table 4.1: Freezing and Thawing Indices on Hwy 601 as worked out from on-site sensor readings.  

Month 

Freezing Thawing 

Mean Air 
Temperature 

Tmean , 0o C 

Number of 
Days 

Temperature 
Falling Below 

0o C 

Freezing Index 
(FI) 

[Tmean x No. of 
Days below 0o C], 

Deg C-days

Mean Air 
Temperature 

Tmean, 0o C 

Number of 
Days 

Temperature 
Falling Above 

0o C 

Thawing Index 
(TI) 

[Tmean x No. of 
Days Above 0o C], 

Deg C-days
November -10.20 15 153.70 - - - 

December -14.30 31 443.90 - - - 

January -12.90 30 387.10 1.00 1 1.00 

February -13.50 29 392.50 - - - 

March -8.50 29 248.10 1.00 2 1.80 

April -2.10 14 29.30 4.20 16 67.60 

May - - - 5.40 31 167.20 

June - - - 15 30 450 

July - - - 20 31 620 

August - - - 25 31 775 

September -2 10 20 10 20 200 

October -4 15 60 8 15 220 

ΣFI 1735 ΣTI 2333. 

Frost Depth FD, √FI - 42 inches, 106 cm Thaw Duration D, 0.018 x FI + 25; 56 Days, 08 weeks 

 
 
 
Table 4.2: Freezing and Thawing Indices on Hwy 651 as worked out from on-site sensor readings.  

Month 

Freezing Thawing 

Mean Air 
Temperature 

Tmean, 0o C 

Number of 
Days 

Temperature 
Falling Below 

0o C 

Freezing Index 
(FI) 

[Tmean x No. of 
Days below 0o C], 

Deg C-days 

Mean Air 
Temperature 

Tmean, 0o C 

Number of 
Days 

Temperature 
Falling Above 

0o C 

Thawing Index 
(TI) 

[Tmean x No. of 
Days Above 0o C], 

Deg C-days 
November -7.30 19 138.70 5.40 5 27.00 

December -11.70 30 350.60 0.70 1 0.70 

January -13.60 27 368.90 1.00 1 1.00 

February -13.80 29 401.80 - - - 

March -9.30 30 279.10 2.60 1 2.60 

April -3.30 14 47.00 5.40 16 86.00 

May - - - 6.30 31 195.60 

June - - - 15 30 450 

July - - - 20 31 620 

August - - - 25 31 775 

September -2 10 20 10 20 200 

October -4 15 60 8 15 220 

ΣFI 1656 ΣTI 2578 

Frost Depth FD, √FI - 41 inches, 103 cm Thaw Duration D= 0.018 x FI + 25; 55 Days ~08 weeks 
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4.11 HISTORICAL DATES FOR SLR IN NORTHERN ONTARIO 

 

As discussed in Section 3.7.4.1, SLRs have been traditionally imposed on or around March 15, usually in 

response to a three-day warning trend (i.e. a forecast of at least three consecutive days with an average 

daily temperature above 00 C). The ban is then lifted based on visual field inspections by MTO 

maintenance coordinators. Table 4.3 summarizes ten years of historical date for impositions and lifting of 

SLR in Ontario’s north western region. The test sites located on Highway 601 and 651 lie within the 

locations presented in the table. The historical record indicates that the past SLR period is from eight to 

ten weeks. Further to this, the thaw-durations for both the regions, as calculated from the sensor readings, 

equal eight weeks. This is an indication of the critical thaw period. In addition, as described in Sections 

3.8.1 and 3.8.2, the pavement starts thawing and loses its strength in the first or the second week of April 

and starts recovering in mid May. Overall, it would appear that SLR should be delayed from mid March 

to early April. In any case, it further emphasis the need to evaluate and monitor in-service predictions. 

 

 Table 4.3: Implementation and Termination Dates for Reduced Loading-Northwestern Region [MTO’s Regional Office Record] 

Year 
Thunder Bay (Dryden-Hwy 601 location) Saulte Ste. Marie (Chapleau-Highway 651 location) 

Start  End Duration (weeks) Start  End  Duration (weeks) 

1993 Mar 22 May 20 8 Mar 5 May 17 10 

1994 Mar 15  May 24 9 Mar 18 May 24 9 

1995 Mar 15  May 23 9 Mar 14 May 12 8 

1996 Mar 18 May 27 9 April 1 May 21 & 27 8 

1997 Mar 14 May 20 9 Mar 21 & 27 May 26 & June 2 9 

1998 Mar 2 May 5 9 Mar 2 May 4 8 

1999 Mar 15 May 14 9 Mar 17 May 18 8 

2000 Mar 1 May 8 & 13 9-10 Mar 1 May 1 & 8  9 

2001 Mar 18-20 May 18-22 9 Mar 18 May18 8 

2002 Mar 19-28 May 21-31 10 Mar 18 May 27 9 

2003 Mar 18-20 May 20-23 9 Mar 20 May 20 8 

 

SUMMARY 

 

The Freezing and Thawing Indices calculated from the sensor readings can assist in determining the thaw 

duration and start and end dates. This analysis, in combination with the deflection data, has shown a 

possibility delaying or pushing the routine SLR start by two weeks, from March to the second week of 

April.  
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        Chapter Five 
 ANALYSING THE EFFECTS OF LOWERED TIRE PRESSURES ON PAVEMENT  

 

5.1 OBJECTIVE 

 

The objective of this study is to determine the effects of operating heavy vehicles at lower tire pressures 

on roads in severely weakened condition. In order to analyze the effects of lower tire pressures on 

pavement performance, comparison of the number of load repetitions until failure for each tire load and 

tire pressure is determined. The failure criteria used in this research was developed by the Asphalt 

Institute for fatigue cracking and rutting. The formula for fatigue failure defines failure as fatigue 

cracking in over ten percent of the wheel path area, while rutting failure is defined as 10 mm (0.5 inch) 

depressions in wheel paths [Grau 1999]. These formulae require determination of two specific strain 

criteria. For fatigue, horizontal tensile strain at the bottom of the asphalt layer (surface treatment) is 

determined and the vertical compressive strain at the top of the subgrade is determined for rutting failure. 

The formulae used are shown below. 

 

 Fatigue Failure: 

 log Nf = 15.947 – 3.291 log (εt/10-6) – 0.854 log (E/103)     (5.1) 

Where Nf = Load repetitions to Failure 

 εt = Horizontal Tensile Strain at Bottom of Asphalt Concrete 

 E = Elastic Modulus of the Asphalt Concrete, (MPa) 

 

Rutting Failure: 

 Nf = 1.077 x 1018 (10-6/εv) 4.4843        (5.2) 

 

Where N = Load repetitions to Failure, expressed in numbers 

 εv = Vertical Compressive Strain at Top of Subgrade 
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5.2 CENTRAL TIRE INFLATION (CTI) TRIALS ON HIGHWAY 601 AND 651 

 

After conducting a trial on the initial preliminary test site, Highway 630 in 2006, a second trial was 

arranged on the other two instrumented sites – Highway 601 and 651. Test loadings were up to legal 

Gross Commercial Vehicular Weight (GCVW) with no tolerance allowed. The trafficking details are 

summarized in Table 5.1. 

 

Table 5.1: Summary of CTI-Trial on Hwy 601 and 651 

Highway Number of Loads 
Avg. 

GCVW 
(tones) 

Avg. Loads/day Duration of 
Trial (weeks) Hauling Dates 

601 383 60.7 16.3 4 April 28-May 24, 2008 

651 188 60.5 14.9 3 May 6-May 23, 2008 

   

 

Truck configurations were all eight axle units. However, they did vary slightly in tire size and 

configuration, axle loading, and inflation pressure. The TPCS equipped trucks at Highway 601 were all 8-

axle trucks with two trailers and had the following configurations: 

 

• Five trucks had a three-axle lead trailer with dual- tires with a single lift axle ahead of a tandem 

axle group. These trucks all had a rear trailer with a tandem axle group. Their ‘trailer TPCS 

channel’ controlled all axles as shown in Figure 5.1 and 5.2. Legal weights were 18 t, 23.4 t, and 

17.9 t for the drives, lead, and rear trailers, respectively. All tires were 11R22.5 (standard for chip 

truck) except for two trucks that had 12R22.5 tires on their steering axles. 

• One truck was a proper 8-axle Super B-train with a tridem axle group on the lead trailer and a 

tandem axle group on the rear trailer. Legal weights were 18 t, 22 t, and 17.9 t for the drives, lead, 

and rear trailers, respectively. All tires were 11R22.5 (standard for a chip truck) 

 

Figure 5.1 and 5.2 shows the Super B-train equipped with the TPCS and hauling over one of the test 

sections during the trial on Highway 601. 
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         Figure 5.1: Highway 601, Section 3, CTI-Trial with a TPCS equipped 

             chip truck, May 2008 
   

 

         
         Figure 5.2: Highway 601, Section 3, CTI-Trial with a TPCS equipped  

chip truck, May 2008 
 

The TPCS- equipped chip trucks that were used on Highway 651 trial were all 8-axle single logging semi-

trailers and had the following configurations: 

 

• Five trucks had 5-axle semi-trailers (two lift axles in front of a tridem axle set). The tridem set 

and rearmost lift axle had dual tire assemblies, which were plumbed together on the same TPCS 

channel, and thus shared the same TPCS inflation pressures. It was jointly agreed by all the 
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project participants upon the front lift axle did not need TPCS control if it was equipped with dual 

tires and was deflated to a constant reduced pressure of 415 kPa (61 psi), and loaded at no more 

than 6147 kg (13550 lbs, legal single tire loading). This inflation was set in accordance with to 

Tire and Rim Association recommendations. Tires were 11R24.5 (standard logging truck size) 

except for the steering axle, tires which were 425/65R22.5 (oversized for better soft ground 

mobility). 

• One truck had a 4-axle semi-trailer (all dual tire assemblies and controlled by a single TPCS 

channel). This truck also had a pusher axle that could be lifted on the tractor (forward of the 

drives). Legal load was 4500 kg. The pusher was equipped with non TPCS single tires only but 

not TPCS. It was deflated to a constant reduced pressure of 50 psi for the trial. This inflation was 

set according to Tire and Rim Association recommendations. Tires were 11R24.5 (standard 

logging truck size) except for the steering axle tires which were 425/65R22.5 (oversized for better 

ground mobility). 

 

Figure 5.3 shows the typical logging truck equipped with the TPCS used in the trial on Highway 651. 

Figure 5.4 shows a loaded logging truck during the trial on the same highway. 

 

             
              Figure 5.3: A typical TPCS equipped logging truck on Highway 651 
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             Figure 5.4: A loaded TPCS equipped logging truck on Highway 651,  

Trial May 2008 
 

 
5.3 DEVELOPMENT OF DATA AND METHOD OF ANALYSIS 
 
Preliminary input data for the WESLEA model is explained in the earlier section. WESLEA is a pavement 

analysis program that can calculate pavement response to applied tire loads.  Pavement response is 

defined in terms of stress, strain, and displacement. The pavement response may then be used to predict 

the pavement life with respect to fatigue or rutting.  The following outline describes the general procedure 

for using the program. 

 

5.3.1 Fatigue Criteria of Model 

 

Fatigue cracks form as a result of repeated tensile stresses and strains at the bottom of the first pavement 

layer.  The fatigue life may be used in Miner’s Hypothesis to estimate fatigue damage.  An equation 

developed at the University of Illinois was modified using Mn/ROAD fatigue crack data to predict 

number of repeated loads until fatigue failure [Mn/Road 1999].  The equation is: 

Nf = 2.83 x 10-6 (106/εt) 3.148        (5.3) 

Where:  

Nf = number of repeated loads under current structural conditions before a fatigue          

crack will form.  
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εt = maximum horizontal tensile strain at bottom of first layer caused by one pass of          

current wheel configuration, microstrains. 

 

5.3.2 Rutting Criteria of Model 

 

In WESLEA, rutting is attributed to stresses applied to the subgrade.  The rutting life may 

be used in Miner’s Hypothesis to estimate rutting damage. An equation was developed using 

Mn/ROAD pavement performance data that predicts rutting of 20 mm (0.5 inch) [Mn/Road 1999]  

 

Nf = 1.0 x 1016 (1/εv) 3.87       (5.4)    

Where:   

Nf = number of repeated loads under current structural conditions before rutting failure will 

occur 

εv = maximum vertical compressive strain at the top of the subgrade caused by one pass of 

current wheel configuration, microstrain 

 

5.3.3 Miner’s Hypothesis to Estimate Pavement Damage 

 

Miner’s Hypothesis is used to estimate accumulated pavement damage.  As shown below, it is simply the 

summation of the applied number of loads over the allowable number of loads. 

 

D = Σ [ni / Nfi] 
Where: 

D = accumulated damage, ratio 

 ni = number of repeated load applications in condition i 

Nfi = number of allowable repetitions in condition i calculated from fatigue or rutting 

performance equations. 



 

  67

D is calculated in terms of fatigue and rutting for each set of structural and tire load configuration 

condition. Failure in a particular mode occurs when D = 1.  In other words, failure is defined as the 

number of applied loads exceeding the number of allowable loads. 

 

5.4 INPUTS AND RESULTS FROM WELSEA MODEL SIMULATIONS 

 

As the Welsea model is based on the mechanistic pavement design technique, the input parameters are all 

set as per site conditions. The available pavement structure thicknesses were available from the borehole 

data whereas the stiffness values were taken from the PFWD testing done during the trial period. The 

maximum or the base line tire pressure is 690 kPa (100 psi). The model is developed through considering 

the pavement as a multilayer structure comprising of surface treatment, granular base, granular subbase, 

and the existing subgrade soil. Actual material stiffness properties, in terms of layer modulus, are the 

main inputs in the model with actual layer moduli for site conditions are based on PFWD testing during 

spring when the pavement is in the weakest condition. 

 

Three set of axles, a single-axle, a tandem-axle, and a tridem-axle, are analyzed and the simulation results 

are interpreted based on fatigue and rutting criteria as explained in the following sections.  

 

5.4.1 Single-Axle Simulation Model 

 

Table 5.2 summarizes the results from the simulations completed for single-axle truck tire. A total of 80 

kN (18 kip) load is applied to the axle and it is observed that for a single-axle arrangement reduction in 

tire pressure and it has very little effect on the failure criteria. Reduction in tire inflation pressure can only 

be beneficial with respect to fatigue at tire pressures of 550 kPa (80 psi), 410 kPa (60 psi), and 345 kPa 

(50 psi) where it has no effect on the rutting of the pavement. The accumulated damage for rutting, at the 

point where the pavement is extremely weak during the spring-thaw, decreases very gradually by 

reducing the inflation pressure. The actual simulations are provided in Appendix B. 
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   Table 5.2: Summary of Pavement Failure Results from Single-Axle Simulations  
Tire Pressure 690 kPa (100 psi) 550 kPa (80 psi) 410 kPa (60 psi) 345 kPa (50 psi)

Load Repetitions Fatigue Rutting Fatigue Rutting Fatigue Rutting Fatigue Rutting 

Applied Truck  
Passes 

100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 

Passes Allowed 
by Failure Criteria 

78,107 27,538 348,064 28,322 2,209,767 29,746 25,360,598 30,889 

Accumulated 
Damage 1.28 3.68 0.29 3.53 0.02 3.36 0 3.24 

 

 

5.4.2 Tandem-Axle Simulation Model 

 

The effects of variable tire pressure are simulated and summarized in Table 5.3 for a tandem-axle 

configuration. It is observed that reduction in tire pressure on a tandem-axle has very little effect on 

rutting. The fatigue criterion is satisfied when the inflation pressure is reduced to 410 kPa (60 psi). 

 

   Table 5.3: Summary of Pavement Failure Results from Tandem-Axle Simulations  
Tire Pressure 690 kPa (100 psi) 550 kPa (80 psi) 410 kPa (60 psi) 345 kPa (50 psi)

Load Repetitions Fatigue Rutting Fatigue Rutting Fatigue Rutting Fatigue Rutting 
Applied Truck  

Passes 
100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 

Passes Allowed 
by Failure Criteria 

22,018 427,735 60,338 445,307 268,428 475,898 735,028 492,669 

Accumulated 
Damage 4.54 0.23 1.66 0.22 0.37 0.21 0.14 0.2 

 

5.4.3 Tridem-Axle Simulation Model 

 

Table 5.4 summarizes the results from the simulations completed for tridem-axle truck tires. A total 18 

kip (80 kN) load is applied to the tridem-axle and it is observed for this axle arrangement. Reduction in 

tire pressure has a considerable effect on the failure criteria. It is indeed very interesting that the rutting 

failure criteria at variable tire pressures remains within a safe range. This is related to the nature of 

uniform distribution due to the axle configuration. Hence, it can be concluded and would make sense that 

an increased number of axles will always be friendly to a pavement with regards to rutting. The fatigue 

failure criteria enter into a safe range when the inflation pressure is dropped to 410 kPa (60 psi).  Thus, 

the simulations concluded that the CTI-Trial be conducted with a tire inflation pressure of 410 kPa (60 

psi). 
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   Table 5.4: Summary of Pavement Failure Results from Tridem-Axle Simulations  
Tire Pressure 690 kPa (100 psi) 550 kPa (80 psi) 410 kPa (60 psi) 345 kPa (50 psi) 

Load Repetitions Fatigue Rutting Fatigue Rutting Fatigue Rutting Fatigue Rutting 
Applied Truck 

Passes 
100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 

Passes Allowed 
by Failure Criteria 

16933 1628264 40018 1675772 139810 1757694 318501 1819995 

Accumulated 
Damage 

5.91 0.06 2.50 0.06 0.72 0.06 0.31 0.05 

 

The simulation results are annexed in Appendix C. 

 

SUMMARY 

 

Reduced tire pressure has very little effect on rutting or the compressive strains on top of the subgrade 

soil but plays a very important role in the fatigue cracking due to its effect on the tensile strains at the 

bottom of the asphalt surface. 
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Chapter Six 

 
CONCLUSIONS AND RECOMMENDATIONS  

 

6.1        STUDY EXPECTATIONS  

 

This study named by the MTO as CTI Phase II, has a number of tasks oriented in many directions. The 

following major tasks were achieved: 

 

• Evaluating pavement’s in-situ strength through NDT testing techniques 

•  Correlating Falling Weight Deflectometer (FWD) to the Benkelman Beam (BB) 

• Introducing a portable and cost effective portable FWD instead of the FWD and BB 

• Development of correlations among these NDT instruments  

• Exploring the confidence in using the PFWD to monitor pavement strength in terms deflection 

and stiffness values due to seasonal variations on surface treated roads 

•  To help agency in identifying true SLR period based on the results of the repeated deflection 

monitoring of the test sites and real time data from the use of innovative sensors 

• Developing threshold PFWD spring deflection values for imposing and lifting SLR 

•  Evaluate the effect of reduced tire pressure on pavement aiming at looking for a window to 

allow TPCS equipped trucks to haul with full loads during the last two to three weeks of the SLR 

period. 

 

6.2       CONCLUSIONS 

 

 The conclusions and recommendations reached so far are summarized as follows. 

 

• The PFWD has shown to be a reliable and efficient tool to monitor in-situ pavement strength of 

surface treated LVR in northern Ontario. The portable nature, inexpensive cost relation to other 

devices and easy to use make it a good device.  

 

• The use of innovative sensors has provided real time knowledge about weather related parameters 
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• The in-situ strength monitoring, on both the test sites, indicates that the SLR start date based on 

the environmental and PFWD data could be delayed by two weeks from March to mid April. 

Hence, pushing the SLR dates by two weeks will allow the industry to haul with full loads 

towards the end of the winter and will help the agency to minimize maintenance costs and 

potential damage, if any,  at the end of the thaw period. In short, the SLR will be applied on a 

more appropriate time. 

 

• The analysis involved using a model whereby the effect of tire pressure is based on actual 

stiffness values of the different layers of the pavement structure. Failure criteria for fatigue and 

rutting are taken into account. The number of passes that would actually start damaging the road 

in fatigue and or rutting is predicted. The axle load is kept constant while the tire pressures are 

changed from high to low. It is observed from the simulation results that the axle load is the 

primary factor governing the magnitudes of the horizontal tensile and vertical compressive strains 

under the surface treatment and above the subgrade respectively. In the event of analyzing the 

scenario for variable tire pressures, the accumulated damage based on Miner’s Failure Criteria, it 

is observed that reducing the tire pressure on a single-axle configuration is not road friendly at all.   

 

• The tandem and tridem-axle configuration both simulate similar results at a point and it is 

observed that the accumulated damage due to fatigue and rutting failure enters a safe range when 

the tire pressure is 410 kPa (60 psi). This condition satisfies Miner’s Failure Criteria. Hence, it is 

concluded that tire pressure plays a significant role in pavement fatigue performance and its effect 

on compressive strains on top of the subgrade are minimal. The excessive compressive strains 

that results in rutting of the pavement structure are dominantly controlled by axle loads.  
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6.2       RECOMMENDATIONS 

 

• The use of the PFWD is therefore recommended to identify proper time for the imposition of SLR 

on any Schedule 2, LVR in northern Ontario. 

 

• The SLR period can be conservatively shortened to eight weeks based on the results of the two 

test sites. Further investigation may be required, however, this study showed eight weeks was 

sufficient. 

 

 

• The study shows that the SLR start date be delayed by two weeks from March to mid April. This 

will ensure the roads to have the weight restrictions on the appropriate time and a right balance 

will be maintained between the pavement strength and the anticipated damage during the spring 

thaw period.  

 

• The study suggests, based on the simulation results from Miner’s Failure Criteria that the use of 

TPCS is not recommended to be used by trucks with single axle configuration hauling with full 

axle loads and reduced tire pressures. 

 

• Thus, the study recommends the use of TPCS technology to maintain a maximum reduced tire 

pressure of 410 kPa (60 psi) for tandem, tridem, and higher number of axle configurations trucks 

to haul with full axle loads during SLR when the pavement starts recovering from thaw. This 

period generally falls during the last three to four weeks of the SLR period.  
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APPENDIX A 
LOCATION MAPS OF TEST  

           

 
 
 

 
           

 

Hwy 651-Chapleau, Ontario 

Hwy 601- Dryden, Ontario 

Hwy 630, Mattawa-North Bay, 

Ontario-Preliminary Test Site 
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APPENDIX B 

OPERATING PROCEDURES FOR DYNATEST KP100 PORTABLE FWD 
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APPENDIX C 
CR-1000 PROGRAM CODE 

 

The CR-1000 data logger supports its code written in PC 400 software’s CR Basic Editor listed below: 

'CR1000 

'Declare Variables and Units 

Public Batt_Volt 

Public Temp_1 

Public Temp_2 

Public Temp_3 

Public Temp_4 

Public Temp_5 

Public Temp_6 

Public Temp_7 

Public AirTC 

Public RH 

Public VW 

Public PA_uS 

 

Units Batt_Volt=Volts 

Units Temp_1=Deg C 

Units Temp_2=Deg C 

Units Temp_3=Deg C 

Units Temp_4=Deg C 

Units Temp_5=Deg C 

Units Temp_6=Deg C 

Units Temp_7=Deg C 

Units AirTC=Deg C 

Units RH=% 

Units PA_uS=uSec 
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'Define Data Tables 

DataTable(Table1,True,-1) 

 DataInterval (0, 60, Min, 10) 

 CardOut(0,-1) 

 Average (1, Batt_Volt, FP2, False) 

 Sample (1, Temp_1, FP2) 

 Sample (1, Temp_2, FP2) 

 Sample (1, Temp_3, FP2) 

 Sample (1, Temp_4, FP2) 

 Sample (1, Temp_5, FP2) 

 Sample (1, Temp_6, FP2) 

 Sample (1, Temp_7, FP2) 

 Sample (1, AirTC, FP2) 

 Sample (1, RH, FP2) 

 Sample (1, VW, FP2) 

 Sample (1, PA_uS, FP2) 

End Table 

DataTable (Table2, True,-1) 

 DataInterval (0, 60, Min, 10) 

 Minimum (1, Batt_Volt, FP2, False, False) 

EndTable 

'Main Program 

BeginProg 

 Scan (1, Min, 1, 0) 

  'Default Datalogger Battery Voltage measurement Batt_Volt: 

  Battery (Batt_Volt) 

  '107 Temperature Probe measurement Temp_1: 

  Therm107 (Temp_1, 1, 1, 1, 0, _60Hz, 1.0, 0.0) 

  '107 Temperature Probe measurement Temp_2: 

  Therm107 (Temp_2, 1, 2, 1, 0, _60Hz, 1.0, 0.0) 

  '107 Temperature Probe measurement Temp_3: 

  Therm107 (Temp_3, 1, 3, 1, 0, _60Hz, 1.0, 0.0) 
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  '107 Temperature Probe measurement Temp_4: 

  Therm107 (Temp_4, 1, 4, 1, 0, _60Hz, 1.0, 0.0) 

  '107 Temperature Probe measurement Temp_5: 

  Therm107 (Temp_5, 1, 5, 2, 0, _60Hz, 1.0, 0.0) 

  '107 Temperature Probe measurement Temp_6: 

  Therm107 (Temp_6, 1, 6, 2, 0, _60Hz, 1.0, 0.0) 

  '107 Temperature Probe measurement Temp_7: 

  Therm107 (Temp_7, 1, 7, 2, 0, _60Hz, 1.0, 0.0) 

  'HC-3-xt Temperature and Relative Humidity 

  VoltDiff (AirTC, 1, mV2500, 5, True, 0, _60Hz, 0.1,-50) 

  VoltDiff (RH, 1, mV2500, 6, True, 0, _60Hz, 0.1, 0) 

   

  'CS616 Water Content Reflectometer measurements VW and PA_uS: 

  If If Time (0, 1, Hr) Then 

   CS616 (PA_uS, 1, 8, 2, 1, 1, 0) 

   VW=-0.0663+ (-0.0063*PA_uS) + (0.0007*PA_uS^2) 

  EndIf 

  'Call Data Tables and Store Data 

  CallTable (Table1) 

  CallTable (Table2) 

 NextScan 
EndProg 
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APPENDIX D 
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