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Abstract

We develop a framework that uses visual attention analysis combined with temporal co-
herence to detect the attended region from a H.264 video bitstream, and display it on a
small screen. A visual attention module based upon Walther and Koch’s model gives us
the attended region in I-frames. We propose a temporal coherence matching framework
that uses the motion information in P-frames to extend the attended region over the H.264
video sequence. Evaluations show encouraging results with over 80% successful detection

rate for objects of interest, and 85% respondents claiming satisfactory output.
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Chapter 1
Introduction

The world is making rapid strides in communication, and this is changing the way we inter-
act with one another. Digital media is at the forefront of this ongoing change. Multimedia
has become a part of our daily lives in more ways than we can imagine. People commu-
nicate not only through text-based emails but also through audio and video messages and
clips. With videos becoming increasingly popular with every passing day, there is a need to

make this media more robust and accessible to a variety of users across different platforms.

Multimedia applications are becoming more diverse and are shared over communication
infrastructure comprising of different underlying networks and protocols. Hence we need
to inter-network multimedia communications over heterogeneous networks. In a network
where end users connect to a video source through links of different capacities, the source
usually adjusts the bandwidth for the compressed video to meet the available capacity on
the most stringent link. In addition to this, end users often use different devices such as
desktops, cellular phones, handheld computers etc. for video communication. Since most
handheld devices have limited computing and display capabilities, the high quality video
encoded earlier may have to be converted into one of lower quality for display on such
devices. Furthermore, as the number of coding standards such as MPEG-2, MPEG-4, VC-
1, H.261, H.264 etc. increases, there is a growing need to convert between videos coded
through different standards. Video transcoding provides techniques to solve these problems
[1, 41]. The present work has been developed to process videos encoded with the H.264

video standard. We take a closer look at this in the next section.
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1.1 Encoding Video and the H.264 standard

Broadly speaking there are two approaches to video coding, viz. block-based and object-
based. In the block-based approach, each frame is divided into a number of blocks, and
motion estimation and compensation performed at the block level. These blocks are usually
of a fixed size, though variable size blocks might also be used, as they can give an improved
match for the currently selected region of the frame. In actual practice, a frame is divided
into macro-blocks (MBs) and these are subdivided into blocks. In case the encoder uses dif-
ferent block sizes, there is a restriction on the permissible sizes - this reduces computational
complexity, but at the expense of video quality. All major coding standards like MPEG-1,
MPEG-2 and H.264 use the block-based coding approach. The MPEG-4 standard goes
beyond the block-based coding approach by introducing the concept of a video object layer
(VOL), to allow object-based video encoding [32]. In object-based video encoding, the
objects of interest in the video are marked at the video source prior to encoding. Since
the encoder knows the region that comprises of the object, it ensures that this region is
encoded for the best possible quality. To the best of our knowledge, this scheme is unique
to MPEG-4 and, as such, is incompatible with other video coding standards. Object-based
coding makes intuitive sense, since in everyday life humans don’t see scenes as blocks but
rather in terms of the objects that make up the scene. In every scene there are objects in
the foreground that are in focus while the remaining objects constitute the background.
Some of these objects can be identified in images through algorithms that find regions of
interest (Rol). Such algorithms typically use the brightness, colour and texture information
of the scene along with the connectivity of the region to select the Rol. However, marking
objects on the video frames requires selecting key frames or index frames in the video and
marking the object or feature on each of them. This is most accurate when done by a
person, but that is an extremely time-consuming process. Even otherwise, this process is

computationally intensive.

Video and image processing based on objects of interest and Rol are nearly always done in
the spatial (or pixel) domain. Spatial domain video processing is computationally intensive
as it deals with a large amount of data. A more efficient approach is to design a system
to work with compressed (transform domain) video. Since videos extensively deal with
moving objects, motion is a useful criterion to identify relevant objects. Object tracking
or segmentation in video finds applications in video surveillance, video indexing etc. The
algorithms that operate in the transform domain utilize two features of a MB, viz. motion
vector (MV) and transform coefficients. MVs are obtained through motion compensation

between current frame and its reference frame(s) on a block-by-block (or MB-by-MB)



60

65

70

75

80

85

basis. An MV gives the offset of the current block to the matching block in the reference
frame. It gives information about the temporal correlation between the two frames. On
the other hand, the transform coefficients contain the image information. The content of
the transform coefficients differ depending on the type of block that is encoded. A block
may be inter-coded or intra-coded. An inter-coded block is one that is predicted from a
reference frame. The transform coefficients of these blocks contain residues of the motion
compensation. On the other hand, intra-coded blocks are predicted either from other
blocks in the current frame or else encoded as-is. The transform coefficients of intra-coded
blocks carry the transformed signal of the original image. Therefore, these block transform

coefficients can be used to reconstruct the DC image.

However, the H.264 coding standard (alternately called AVC: Advanced Video Coding,
or H.264/AVC) employs several new coding tools and provides a different video format,
which makes working on the compressed video a challenging task |32, 35]. While the earlier
MPEG standards employed a discrete cosine transform (DCT), H.264 uses a transform that
is similar but uses only integer operations. For convenience, we refer to this transform as
DCT in the rest of this document. Furthermore, very little literature is available about work
done on H.264 compressed video analysis. In H.264, the intra-coded block is spatially intra-
predicted from its neighbouring pixels. So, the DCT coefficients carry spatial prediction
residue information. H.264 also supports variable block-size motion compensation. A MB
may be partitioned into several blocks and have several MVs with varying block size. This
is in contrast to the MPEG standard, which has a regular block size. H.264 has been
steadily gaining popularity and coming into widespread use. It is now the codec of choice
for applications ranging from television broadcast to mobile videos. Now that we have seen
what video encoding is about and got an idea of the H.264 video standard, let’s take a look

at why we need to adapt videos and how it can be done.

1.2 Need for Video Adaptation

As we noted at the beginning of this chapter, contemporary viewers watch videos on
different kinds of devices, some of which have lower processing and display capabilities.
Today’s handheld devices provide the option to watch video, but some details might be lost
due to the smaller screen size. Let’s take a soccer game for instance. The soccer ball that is
clearly visible on a regular size television screen may be rendered so small in the display of
the handheld device that it is invisible to the human eye. This happens because the video

stream available to the handheld is of lower resolution than the one on television. Owing
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to their limited computing capability, the handheld devices usually have a downsampled
version of the original video stream. Downsampling is also required when video has to be
streamed over a network with constrained bandwidth. Since, downsampling is not selective
about particular regions of the video, the output stream is uniformly degraded. However,
from the viewer’s perspective, if the relatively small soccer ball - the object of interest - is

downsampled, there is a great loss in video quality.

In order to overcome this drawback, a video clip needs to be adapted for display on such
handheld devices. A simple method for adaptation would be to show only the most relevant
part of the original video on the screen. In other words, a video clip can be cropped around
the Rol so that it fits the handheld device’s smaller screen. Unfortunately, cropping algo-
rithms do not account for object motion. Hence, the cropped region needs to be adjusted
in such a manner that it always includes the object. [3, 31, 47| propose techniques for
automatic Rol determination in videos. However, cropping and tracking algorithms work

wholly in the spatial domain and thus require large processing power for computations.

Thus, there is a need to develop a framework by which videos can be intelligently adapted
for viewing on small form factor devices. With H.264 being slated as the future standard
for all video and the rising popularity of portable devices, such a scheme will enable users
to watch videos on their devices without severe quality degradation. A key requirement
for such visual content adaptation is that the output fits human perception. This requires
that we identify regions that receive maximum ‘visual attention’. The concept of visual

attention is covered in the next section.

1.3 Role of Visual Attention

The objects which form the focus of attention of a viewer are referred to as Attention
Objects (AOs). If a video clip is adapted to a smaller screen in the manner suggested
at the end of the previous section, we would want to retain the AOs from the original
video sequence. One of the ways to crop a video intelligently is to do it manually, on a
frame-by-frame basis. Unfortunately, this method is not feasible owing to the sheer volume
of work. For instance, a 5-minute video clip running at a regular 30 frames per second
will have 9000 frames! Even if the person skips some frames, finding the object of interest
in a soccer game or in a short movie is a daunting task. If we can find a way to identify
AOs in a scene, without user intrusion, it will save a lot of time. This is where visual
attention-based processing comes in. The human vision system responds more to certain

image features and less to others |7, 17]. Humans are known to be sensitive to contrasts
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and edges in a scene; they are more sensitive to luminance (brightness) than to colour
and they focus more on the centre of the scene than on the surroundings. By modelling a
system closely to the human vision system, we can get a good idea of what features in a
scene are likely be of most interest to a viewer. In [16], Itti and Koch developed a model
closely based on the human vision system to identify AOs in images. They use low-level
image features, viz. intensity, colour and orientation to process into feature maps, which
are further processed and combined into a saliency map. Regions of the saliency map with
high values correspond to attended regions of the image. It has proved to be successful in

identifying AOs even in noisy images, and is a promising candidate for such an application.

One limitation of the Itti and Koch model is that it applies to static images but not to
videos. In order to apply it to videos, we combine this model with the motion information
already present in the encoded video bitstream. Consider a video sequence consisting of
[-frames and P-frames. The intra-coded I-frames have no motion information, but they
can be decoded without having to resort to prediction from other frames. Consequently, I-
frames are good candidate frames in which to search for AOs. The P-frames in the video are
inter-coded, which means that they are predicted from I-frames or other P-frames. These
frames are predicted through an extensive process of motion estimation and compensation.
The motion information present in the P-frames can be used to determine the region where
the AO is located in those frames. Once the region containing the AO is identified across

the entire video sequence, it is extracted for display on the smaller screen.

To demonstrate the behaviour of this system, let’s revisit the example of the soccer game
from the previous section. Figure 1.1 below shows the results of resizing and cropping a
frame from a soccer game. The original frame has a resolution of 320x240 pixels. This
frame (figure 1.1(a)) shows a number of players on the field, but the AOs in the frame
are the soccer ball (including the really close players) and the score. We have bounded
these with a white rectangle in the figure. When the frame is resized to a quarter of the
initial size (160x120 pixels), neither the ball nor the score is legible (figure 1.1(c)). They
have been rendered too small to be seen. However, when the region around these AOs
is cropped out (160x120 pixels), both the score and the ball can be seen clearly. This is
shown in figure 1.1(b).
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Figure 1.1: Demonstration of ideal system behaviour: (a) Original frame at 320x240 reso-
lution (b) Cropped out Rol of size 160x120 (c) Resized frame at 160x120 resolution

Figure 1.1 demonstrates one example where video adaptation can be successfully applied.
Such adapted video can also be re-encoded into smaller video clips that can be transferred
over bandwidth constrained networks. We will discuss the design and implementation of

this system in the chapters that follow.

1.4 Document Organization

This document details the thesis work and consists of five chapters. The next chapter,
Chapter 2, is a survey of existing literature related to the present work. Chapter 3 de-
scribes the design of the framework we developed for small screen adaptation using a visual
attention model; and in Chapter 4, we present some examples that illustrate the capabilities
and limitations of the present work. Finally, we round up the document with conclusions

and a discussion on the future directions of this work in Chapter 5.
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Chapter 2

Related Literature

The previous chapter gave an overview of H.264 video coding, and established the need for
video adaptation in a world of increasingly varied client devices. We also discussed how
visual attention analysis is crucial for effective video adaptation. The present chapter dis-
cusses existing literature on compressed domain video processing, visual content adaptation

and visual attention analysis. We start with work on human vision and perception.

The human vision system (HVS) is a complex network of neurons and light sensitive re-
ceptors. Over the years, a lot of research has gone into determining how humans see and
what attracts their attention to a scene. Human perception first picks the regions of the
scene that stimulate the HVS and then interprets the remaining scene. These regions usu-
ally correspond to prominent objects in images or action in video sequences. Psychology
studies suggest that the HVS perceives external features separately [37| and is sensitive
to the difference between the attended region and its neighborhood [10]. The collective
results of such research provide us with a set of features |7, 17| that are widely accepted to,
so to speak, grab human attention. These include colour, orientation, size, motion, lustre
and shape to name a few. This has led to work based on the detection of feature contrasts
to trigger the HVS [16, 44]. All these literature use visual attention models to determine

the attended region(s) in images.

Itti et al proposed one of the earliest works in visual attention detection by utilizing con-
trasts in color, intensity and orientation of images [16]. They used these low-level features
from digital images to create feature contrast maps and further process them into a saliency
map. Walther and Koch extended this idea 44| to detect attended regions of any size
around the salient points in the saliency map. Milanese demonstrated a similar bottom-up
approach for a salient region detection framework [27]. Chen et al [2]| used the saliency

map generation methods proposed in |16] to determine perceptually important regions in

7
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an image that hold Attention Objects (AOs). After identifying the AOs and the associated
region(s) in the image, their branch-and-bound algorithm determines the optimal set of
AOs to be included in the final image. The method is shown to be efficient and has provi-
sion to identify faces and text and give them priority over other features. The output image
size can be altered to fit space constraints such as on a web site or for a thumbnail image.
Cheng et al used intensity, color and motion features to determine the region-of-interest
(Rol) in a video sequence, based on aesthetic principles |3]. They employed a shot detection
algorithm on the source video to form clusters of frames, and then applied saliency-based
attention processing to each cluster. Their subjective tests show consistently good results
across different kinds of videos. Zhai and Shah utilized a temporal attention model based
on point correspondence and a spatial attention model based on color contrasts, and com-
bined them into a spatiotemporal saliency map to detect the attended region [47]. Ma et
al also developed a user attention model |23, 24| for video summarization. In [45], Wang et
al propose the wavelet-based foveation scalable video coding (FSVC) algorithm that uses
a foveation-based HVS model to determine visually important components in the video
sequence. They proposed an adaptive frame prediction scheme for encoding and decoding
videos that allows good quality in rate scalable video coding systems. Moreover, this flexi-
ble scheme can be adapted to different video applications including telemedicine and video

communication over heterogeneous networks.

Video object segmentation is an extension of image segmentation to videos, and deals
with extraction of Rol’s from video. Since our framework pertains to identification and
extraction of objects of interest, relevant literature is found in this area as well. In 1997,
Yining Deng and B.S. Manjunath proposed a segmentation method called JSEG [9] in
which they quantized the colours present in an image into classes and use the class labels to
generate a class map for the image. The class map contains colour and texture information
which is used to calculate a local parameter, J and this is further saved as a J-image. This
J-image is then used for spatial segmentation. A similar approach is applied to videos
sequences. Videos are partitioned into shots - sequences of continuous action - and then
objects are segmented and tracked across frames. The region tracking feature is embedded
in the segmentation algorithm and gives robust results. One of the major limitations of
this scheme is over-segmentation due to varying illumination. In [8], they used the colour,
texture and motion information from MPEG compressed videos to create an indexing
scheme to enable fast retrieval. The fairly simple approach requires partitioning the video
into shots as in [9] and then using the colour histogram to get colour information and
generate labels. They also use Gabor texture features and developed a novel approach

to tracking motion using the motion histogram. These three features are used to classify
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videos and for content-based search and retrieval. The system performs well but is limited
by the use of global low-level visual features. Localized object feature representation is

expected to yield better results.

The foregoing work use source video sequences and images for pixel domain processing.
However, visual content is always transmitted in an encoded bitstream. While it is possible
to decode and process in the pixel domain, the latter is complex and time-consuming. It
is desirable to use the bitstream information to adapt content efficiently. Zeng et al 46|
employ a block-based Markov Random Field (MRF) to segment moving objects from the
MV field obtained from the compressed bitstream. The method segments moving objects
against a stationary background, at real-time processing speeds with over 80% recall and
40% precision. Liu et al [22| proposed a scheme to use watershed filling on a normalized
MYV field to segment a frame into homogeneous motion regions. This is followed by a binary
partition tree (BPT) scheme for the merging process. The system demonstrates over 85%
recall and 60% precision for the tested sequences with real-time processing. Both of these
systems, however, are susceptible to errors in the presence of shadows or objects moving

at nearly the same speed.

Saliency detection is an important attentional mechanism and is largely determined by
what our senses perceive. This was used for motion detection and tracking in [36], where
Tian and Hampapur detect salient motion for video surveillance in three steps: first, the
two-dimensional optical flow of the image is computed using the Lucas-Kanade method.
Second, a temporal filter is applied to the difference images to filter out noise - which
includes regions not moving in the same direction over a group of eleven frames. Lastly
these are combined and a region growing algorithm gives the region of interest. This
system is able to detect motion against a complex moving background and can be used for
real-time surveillance operations. In [29], Sonia Mota et al presented a perception-based
moving object segmentation scheme that uses Reichardt motion detectors to characterize
the motion in the scene. This results in a noisy saliency map, which is further processed by
a neural structure to select independent moving objects in the scene by picking a cluster
of pixels moving coherently, with approximately the same velocity. In case of more than
one moving object, the system only works when the relative speed(s) between the moving

objects is large.

In the present work, we use the attended region detection proposed by Walther and Koch
[44] and combine it with a homogeneous motion region detection algorithm to identify the
salient moving feature(s) in H.264 videos. This framework is built into the H.264 decoder
JM (joint model) version 13.2. The decoder finds the best attended region that matches the



specified output frame size from the input H.264 video sequence and extracts it for display.

The next section covers the problem formulation and describes the proposed algorithm.

10
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Chapter 3

The Display Adaptation Algorithm

So far, we have established the necessity of a video adaptation system that operates on
compressed domain video bitstreams. We also saw some related literature on adaptation
and visual attention based processing. The HVS can not identify objects below some
critical resolution. However, there seems to be no fixed point for this critical resolution:
it varies with the type of object we view. For instance, humans can distinguish a face
from other features relatively easily, and can also identify the person from his/her facial
features at quite a low resolution. At the same time, they can not identify the letters of

the alphabet with equal ease - humans need a relatively larger resolution to read text.

Let’s revisit the example from Section 1.2. Consider a person watching a soccer game on a
big screen television. The soccer ball and the player(s) around it are usually in focus and
located near the centre of the screen. Along with this, a substantial part of the field is in
view and there are other players at different parts of the field. In addition to the scene
on the field, the current score and play time is displayed in a text box at the top of the
screen. If this video is resized to fit a small screen, the soccer ball may be represented by
a small dot and the text may be rendered illegible at low resolution. Figure 1.1 shows a

frame from such a soccer video.

The original frame is 320x240 pixels in size (fig 1.1 (a)). When this is scaled down to
160x120 pixels, the soccer ball is no longer clearly visible. The scoreline at the top is not
readable either (fig 1.1 (c)).

One can think of a few methods to avoid this issue. One option could be to decide a
minimum permissible resolution beforehand. If calculations indicate that the resized video
will to be smaller than the minimum permissible size, it can be cropped around the edges.

The drawback in this method is that it assumes a priori knowledge of the video content,

11
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that allows us to select such a resolution. In a practical scenario such information is
unavailable, and an alternative would be to crop the video to retain the most relevant
section. As we see in Figure 1.1 (b), when the original frame is cropped to 160x120 pixels,
their original resolution is preserved, and both the soccer ball and the scoreline are seen as
clearly as in the original frame. However, it is not straightforward to crop a video clip in
such a manner that only the relevant sections are preserved. To the best of our knowledge,
cropping algorithms take the crop offsets for the left, right, top and bottom of the video
and apply it uniformly to all the frames in the video clip. The drawback to using fixed crop
offsets is that the soccer ball may not be within the cropped window in every frame. In
such a case, the result is a video clip in which the soccer ball goes in and out of the scene
in successive frames. People will experience discomfort when viewing such poor quality
video. At this point, it is evident that variable crop offsets will yield better results - the

problem is to determine these crop offsets.

3.1 Background

The preceding account is a problem of video adaptation. The video clip must be cropped
in such a manner that the visually interesting features are retained in the output. The
question of visually interesting features has intrigued humans for a long time. [7, 17|
describe a number of studies on vision and visual attention done over the years that try
to answer this question. The results identified certain features that stimulate vision and
capture visual attention, some of which include lustre, colour, shape and size, texture and

orientation and motion.

As we discussed in Section 2, visual attention analysis helps us determine the attended
regions in visual content. These often correspond to high contrast objects and/or action
sequences in videos. The adapted output video sequence should retain these attended

regions. Thus our problem can be framed as follows:

Problem statement: How do we determine the attended region in a given compressed
and encoded H.264 video sequence, and adapt it to a given display with low com-

plexity?

We developed the display adaptation algorithm to address this problem. The rest of this
chapter describes the various steps in the the algorithm. The first step toward solving this
problem is to find attended objects in the input video. The following section describes the

visual attention model which help us locate attended objects in the video.

12
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3.1.1 Visual Attention Model

The display adaptation algorithm is built around a saliency-based computational model for
visual attention. We know that visual perception is an inherently active and selective pro-
cess by which people attend to a subset of the available information for further processing.
Visual saliency is a broad term that refers to the idea that certain parts of a scene are more
discriminating or distinctive than others and may create some form of significant visual
arousal within the early stages of the HVS. Cognitive psychology and computer vision pro-
vide numerous approaches for building visual saliency models [27], and research on visual
saliency typically follows one of two approaches: the bottom-up or stimulus-driven ap-
proach, and the top-down or task-dependent approach. In our case, for visualizing a scene
without a specific task in mind, we focused on the bottom-up, stimulus-driven approach
in this work. The Walther [44] and Itti implementation [16] of the biologically inspired
saliency-based model of bottom-up attention proposed in [20| provide a framework for

extracting features and forming saliency maps.

Shown in Figure 3.1 is the general architecture of the visual attention model. In this
procedure, first a multi-scale representation of the original input image is obtained by
using dyadic Gaussian pyramids. Feature extraction is accomplished through a set of
linear center-surround operations that simulate visual receptive fields as the difference
between fine and coarse scales. The across-scale difference between two maps is obtained
by interpolation to the finer scale followed by point-by-point subtraction. The extracted
feature maps are first normalized, and then across-scale combined into conspicuity maps
for the corresponding feature. Finally, the conspicuity maps are merged into a saliency

map, S, by linear combination.

13
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Figure 3.1: General architecture of the saliency-based visual attention model (adapted
from [16])

The first step is to extract the the luminance channel Y, of the decoded I-frame. This
constitutes the input image to the visual attention model I (0). Next we obtain a multi-
scale representation of/(0). We use eight spatial scales, ¢ € [0...7] which result in eight
filtered images, with image reduction from 1:1 at scale ¢ = 0 down to 1:128 at scale 0 = 7.
These filtered images are stored as a Gaussian luminance pyramid /(o). We perform linear
center-surround operations on /(o) to compute feature maps, which is implemented as the
difference between fine and coarse scales. The centre is a pixel at scale ¢ € {2, 3} while the
surround is the corresponding pixel at scale s = ¢+ §, with 6 € {3,4}. The across-scale
difference between two maps is obtained by interpolation to the finer scale followed by

point-by-point subtraction. This operation is denoted “&” below.

Luminance (intensity) contrast is detected by neurons in the HVS that are sensitive either
to bright centers on dark surrounds or to dark centers on bright surrounds [10]. The
responses computed through center-surround differences are stored as a set of four feature
maps, L;(c,s), with ¢ € {2,3} and s =c+ 4,6 € {3,4}:

Li(e,s) = |1(c) © I(s)| (3.1)
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Studies |7] have shown that Gabor filters closely approximate the impulse response of
orientation-sensitive neurons in the HVS. Local orientation maps, O (o; 0) at different scales
o, and orientations 6, are obtained by convolution the corresponding level of the intensity
pyramid, [ (o) with Gabor filters. Similar to Eq. 3.1, the orientation contrast maps
are obtained by computing the across-scale difference of the local orientation maps with
ce{2,3}and s =c+6, 6 € {3,4} and 0 € {0°,45°,90°,135°}. These are stored as a set

of sixteen maps Ly (¢, s):

Ly (c,s) =10 (c;0) 20O (s;0) | (3.2)

Thus we obtain four feature maps for intensity and sixteen feature maps for orientation.
Our total of twenty maps is about half of the forty-two feature maps generated in [44].
This reduction is achieved by neglecting the colour features and using fewer scales in the

multiscale pyramid.

The feature maps obtained in Eqs. 3.1 and 3.2 have different global maxima. Hence they
are normalized before further processing. The normalization operator, N () is a non-linear
iterative function that simulates local competition between neighbouring salient locations
[15]. This is implemented through a convolution with a difference of Gaussian filter followed
by rectification. For our simulations, we used two iterations of the operator. Increasing

the number of iterations did not produce any perceptibly different results.

The feature maps, Egs. 3.1 and 3.2 are first summed over the centre-surround combination

using across-scale addition @, and these sums are normalized thereafter:

c+4

L=N (@ P Li(e s)) L le{l,0} (3.3)

c=2 s=c+3

The conspicuity map for intensity is the same as L; obtained in Eq. 3.3 above. For the
orientation feature, we have obtained four normalized orientation maps corresponding to
the four orientations #. These maps are once again summed and normalized to yield the

orientation conspicuity map:

Cr=1L;

_ 3.4
Cop=N (ZLQ) , 6 € {0°,45° 90°, 135°} (38:4)
0

All conspicuity maps are now combined into one saliency map:
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S= % (C1+ Co) (3.5)

In our framework, we have used the Walther-Koch visual attention model to determine the

attended region in decoded I-frames, with a few differences:

e We consider only luminance and orientation contrasts for the saliency map, and
supplement it with the motion information to determine the attended region. Since
color contributes less to the overall visual saliency, whereas motion contributes highly

[7], we assume that this offsets any loss incurred through neglecting color contrasts.

e We use less scales for feature contrast computation. In our implementation, the
center is at scale ¢ € {2,3} and the surround is at scale s = ¢+ 9, § € {3,4}. There
is no perceptible difference in the resulting output, and this reduces the computation

time.

e We determine the attended region following a morphological closing operation as
opposed to using a neural network [44, 15]. This reduces system complexity with no

perceptible difference in the output.

3.2 The Dynamic Small-Screen Adaptation (DSSA) Al-
gorithm

The Dynamic Small-Screen Adaptation (DSSA) algorithm follows two separate approaches
to determine the attended region in I-frames and P-frames. It uses the visual attention
model (Section 3.1.1) to locate the attended region in the I-frame. We augment this
attended region with motion information from the bitstream, to detect a coherent attended
region in a P-frame. The region centroids are then passed through a smoothing filter to
obtain the best trajectory for the attended regions, which are subsequently used to crop

the frames. These processes are outlined in the Algorithm steps listed below:

3.2.1 Assumptions made in the Algorithm

We made the following assumptions in our algorithm:
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. Motion saliency s significantly greater than colour saliency: The visual attention

model described above determines attended regions from static scenes. Extending
this model to video brings the temporal dimension into play. This induces us to
account for another attention feature, viz. motion. The study of attention features
indicates that the HVS is most responsive to motion and least responsive to colour.
Since we are working with videos, we expect the attended object to be part of an
action sequence, and as a consequence, motion will contribute significantly to the
overall saliency. We assume that in such a case the contribution of colour saliency

can be neglected.

. 15 frames for each Group of Pictures (GoPs): We assumed that the attended object

moves consistently in a particular direction for 15 frames. This translates to half a
second of uniform motion in a video encoded with 30 frames per second (fps), and is
thus, a reasonable assumption. Regions of the video that do not obey this restriction
are likely to be noise. All the input videos considered in the implementation have a
IPPP GoP length of fifteen frames, which consists of a reference I-frame followed by

fourteen P-frames.

. Attended object present in I-frame: An implicit assumption in our algorithm is that

the attended object is present in the I-frame. As we describe in later sections, mo-
tion information from the P-frame supplements the knowledge of the attended region
in the I-frame while determining the attended region in the current P-frame. One
might think that this simplifying assumption may adversely affect performance. For
instance, if the attended object does not appear in the first I-frame, the entire GoP
might be focussed on the wrong attended region. However, the following I-frame
should have the attended object. This information is then used to update the at-
tended region selected in future frames. Thereafter the smoothing filter ensures that

the early attended regions are updated accordingly.

The following section describes how we determine the attended region in an I-frame using

the saliency map.

3.2.2 Determining Attended Region in I-frames

The I-frames in compressed video contain all spatial domain information of the frame.

Hence, we can use them to determine the spatial visual saliency in the video clip. In our
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implementation, we have used each I-frame as the reference frame for the following P-
frames in the GoP. Every time an [-frame is read from the video sequence, a visual saliency

map is generated for it.

In our implementation, the saliency map is at a scale 4. In other words, it has one-quarter
the height and one-quarter the width of the original image. The reason we chose this is
that the motion vector resolution for H.264 is at the most 4x4, so the motion vector map
also has one-quarter the height and width of the original frame size. This allows us to
translate the centroids for temporal coherence (Section 3.2.3) without the need for scaling.

Furthermore, smaller maps save computation time and memory.

The saliency map obtained from the visual attention model contains a number of competing
attended regions. To locate the fixation region, we partition the saliency map S into
coherent regions. First, all pixels in S smaller than 97% of the global maximum, are set to

Zero.

. S(i,7), if S(i,7) = 0.97 max {S}
S (i, j) = (3.6)
0, otherwise

Then we perform a morphological closing operation. This removes isolated noise regions
that are not candidates for the attended region, and leaves fewer pixels to process. We
define the Spatial Attention Value (SAV) of each region as the sum of the constituent pixels.
Accordingly, the region R* that maximizes the SAV is chosen as the attended region:

SAV (R") = argmax Z S (i, 7) (3.7)

" (i.d)eR

The attended region R* is saved for checking temporal coherence in future P-frames, while

its centroid Cy« is stored for cropping. The centroid is calculated as

g*p -5 (p)

Co =g (3.8)

peR*

where p denotes any pixel location (i, 7), and S (p) is the value of the saliency map S at
p.

This gives us the attended region in the I-frame and its corresponding centroid. The next

frame in the video clip is a P-frame. As we know, a P-frame contains motion information
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and prediction residues. We use the motion information together with the knowledge of
the attended region R*, to determine the attended region in the P-frame. This is covered

in the following section.

3.2.3 Determining Attended Region in P-frames: Temporal Co-

herence

When the processing a P-frame, the algorithm uses the motion vectors in the bitstream to
create a motion map, which is then processed further to yield the attended region for the
current P-frame. The blocks in a P-frame are predicted from other reference blocks. For
each such block or macroblock, the bitstream stores the difference of the actual value from
the prediction in the residue, and the vector offset of the prediction block from the current

block is stored in the motion vector.

The H.264 standard has provision for multiple reference frames and variable block sizes.
This presents a challenge since a frame can be divided into an arbitrary number of mac-
roblocks and blocks with corresponding motion vectors. Hence one motion vector may be
represent a 16x16 macroblock, a 16x8 block, an 8x16 block and so on, all the way down
to a 4x4 block. Two 16x16 macroblocks within a frame may be subdivided differently and
have different number of motion vectors. Furthermore, neighbouring blocks may even be
predicted from different reference frames in the sequence. While these features make H.264
a powerful coding standard, they also increase complexity for processing. To overcome any
issues that may arise from these variations, we consider a motion vector for each 4x4 block

in the current frame and normalize it to account for different reference frames.

As we mentioned above, we consider a motion vector for each 4x4 block in the frame. In case
there is a single motion vector for, say a 16x16 block, it is split into sixteen 4x4 blocks, each
having the same motion vector. These motion vectors are then normalized by dividing it by
the distance between the current P-frame (or B-frame) block and its associated reference
frame block. This accounts for the difference in motion vector magnitudes due to the use
of multiple reference frames. If the original frame is assumed to be of size 4w x4h, the
normalized motion vector field can be visualized as a two-channel map of size wxh. The
two channels correspond to the horizontal and vertical components of the motion vector,

respectively.

|t =]

MVE (w, plt) = mv(w, plt)-—7—

(3.9)

19



495

500

505

510

515

520

Here MV F is the motion vector field, mv is the motion vector read from the H.264
bitstream, ¢ is the index of the current frame, ¢,.; is the index of the reference frame for
the current block p = (i, ), t* is the index of the previous I-frame, and w € {z,y} denotes

the motion vector component.

The pixels in the motion vector field MV F' can take any value, both positive and negative,
within the search range used by the H.264 encoder. Moreover, since the motion vectors are
usually interpolated to quarter pixel accuracy, the number of possible values increases four-
fold. This gives quite a large range of values in the motion map. The normalized motion
vector field MV F consists of a multitude of values, indicating the background and moving
objects in the foreground. Such moving objects usually constitute action sequences, that
are of user interest. A group of blocks with identical motion is likely to be an object. To
find regions with homogeneous motion, we separate the range of available values into classes
and give each class a unique label. In our implementation, we use seven classes - three
each for positive and negative components and one for the zero component. The zero-
valued component denotes a stationary background, which is conveniently ignored from
consideration for the attended region. The motion vector field MV F is thus transformed

into a M-map of class-labels.

M (w, plt) = Q (MVF (w, p[t)) = m;;, (3.10)

where the range of motion vector values [mv;, mv; 1] fall in class m,.

Here @ (-) is a classifying operator: it acts on each element of MV F' to determine which
class the element falls in, and assigns a class label to the corresponding location in the
M-map. Thereafter, a morphological closing operations removes noise from the M-map.
The M-map is now partitioned into homogeneous motion regions, Ry, k = 1,2,3,...K.
Although there are only six labels for motion, there may be any number of homogeneous
motion regions in a frame. The regions Ry are created in a way that they are mutually ex-

M (wlt) = URk . In case there is an overlap between two regions, the contentious

k
portion goes to the region that exhibits faster motion.

clusive,

As a convention, we chose Ry, the region with £ = 0 to be the stationary background.
Thus, we obtain a set of regions Ry, k= 1,2, 3,...K which are contenders for the attended
region in the P-frame. The attended region must be coherent across frames in the video
clip. Hence, the attended region must closely match the region R* we obtained from the
[-frame in the preceding section. The attended region R; is the one whose centroid is the

closest to Cy+ after accounting for motion.
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D (R;) = argmin || C + mv(Cy) — Ci
Ry,

k=1,2,3,..K (3.11)

Here Cj is the centroid of the region R, mv(C}) is the motion vector at location C} and
C= is the centroid of R*(Eq. 3.8).

The computation for the centroid, C} is similar to that shown in Eq. 3.8 for C*. If we let

the pixel, p € Ry denote the location (7, j) in mvy, the centroid is:

> p-mv(p)
pPER)

> mv¢ (p)

PERy

Cp = (3.12)

The region R; is the best temporally coherent match to the visually attended region, R*,
as per the DSSA algorithm. The centroid of the region, C; is stored for cropping, and the
process of attended region detection continues until all the frames in the video clip are

exhausted. Thereafter, the frames are cropped and sent to the display.

3.2.4 Post-processing and Display

The sequence of centroids {C; zg’”‘” obtained through the above process is jittery, since

they are computed based only on the reference frame, and ignore other inter-frame cor-
relation. The jitter in frame transitions results in a poor viewing experience. It can be
minimized by smoothing the centroid sequence. For our implementation, we assume that

the centroids follow a second order polynomial trajectory over time. This is given by

Yt = a1t2 + CLQt + as

(3.13)
Ty = blyt + bgt + bg

where C; = (x4, y,) is the centroid for frame F;.

This smoothed centroid sequence is used to crop the frames before they are sent for display.
The H.264 decoder buffers the decoded frames before writing them out. This allows us
to smooth the entire centroid sequence before writing out the frames. If the buffer size is
limited, a viable alternative would be to use a different smoothing filter, such as a moving
average filter. Only a few frames may be in the buffer at a time for processing. In our
implementation, we obtained both types of outputs. For both the cases, we used equation

3.13 on the centroid sequence. For the moving average filter, we used a sequence of 30
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centroids at a time, and updated the set with new values for every iteration. The output
subjective results are comparable for this filter. A better choice for such a scheme might be
to use an adaptive filter such as a recursive least squares (RLS) filter [14]. The advantage
of this is that using a forgetting function and an the initial set of inputs, the computational

complexity can be reduced to first order. This would provide for better performance.

The output display size is fixed to wgisp X haisp- Knowing this and the centroid, C; =

(x¢, ;) we can easily determine the crop offsets for the frame F; to be given by: left-top

i h is 1 iS h s
=z — o p,yt - de) and right-bottom = (g;t + wé P d2p 1

2

The frames are now cropped so that the output frames retain only the cropped rectangle.

_17yt+

These cropped frames are then displayed on the screen.
Summary Before we end this chapter, here’s a summary of the DSSA algorithm:

1. Read input frame from bitsream

2. If the current frame is an I_frame:

(a) Decode the bitsream to get frame, F;.
(b) Compute visual saliency map, S = SaliencyMap (F;)

(c) The attended region R* is the one with highest Spatial Attention Value,
SAV (eq. 3.7):

SAV (R") = arg max Z S(i,7)

& (ij)eR
(d) Store Cy = centroid (R*).
3. If the current frame is a P_frame:

(a) Generate M-map from the motion vectors mv,; (eqs. 3.9 and 3.10):

M (p) = Q (v () L),

[t —tres (P

where w € {r,y} and @ (-) is a classification operator.

(b) Partition M (w|t) into non-overlapping homogeneous motion regions, Ry.
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¢) Find the attended region R € ([ ’ whose centroid best matches
g k=1
the region R* (eq. 3.11):

D (R;) = arngin | Cr + mv(Cy) — Cp ||, k=1,2,3,..K
k
(d) Store C; = centroid (R;).
570 4. Repeat steps 1 through 3 until all the frames in the video sequence are
processed.
5. Smooth the centroid sequence, {C} zg’”‘”
6. Crop frames {F; ZOT"““” to a rectangle of size wWgisyX Naisp, centred at {C; EZOT"”’”.

Output cropped frames.

szs  In the next chapter, we describe the experiment to evaluate system performance and discuss
the observed results.
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Chapter 4

Experimental Results and Illustrative

Examples

In the earlier chapters, we discussed the need for video adaptation, and described our
Dynamic Small-Screen Adaptation (DSSA) algorithm. This display adaptation algorithm
is based upon the saliency-based visual attention model proposed by Walther and Koch in
[44]. Whereas Walther and Koch built upon the earlier Itti and Koch [16] model to find
attended regions in images, the DSSA algorithm extends this to videos, but focuses on it’s
application to video adaptation. As a result, we are concerned with detecting one coherent

attended region in the video sequence.

This chapter covers our experimental setup, the benchmark tests and the results we ob-
served. We also include some illustrative examples which highlight the capabilities and
limitations of the display adaptation algorithm. The following section covers the experi-

mental setup.

4.1 Experimental Setup

All the experiments were run on a notebook computer, with an AMD Turion64 1.6 GHz
processor and 768 MB of RAM. We used a 32-bit Windows XP operating system and Visual
C++ for programming. We implemented our algorithm on this system and integrated it
into the H.264 codec JM version 13.2. The DSSA algorithm is part of the H.264 decoder.
We executed it to generate a set of test video sequences. The input video sequences were
either CIF (352x288) videos or SIF (352x240) videos. All input sequences were in the YUV

4:2:0 colour format.
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Since assessing the effectiveness of a visual detection scheme is a subjective task, manual
evaluation is inevitable. To evaluate the performance of our scheme, we invited 14 respon-
dents and showed them three video clips for each sequence: the original (input), benchmark
and DSSA output video sequences. The respondents were asked to rate each of these test
sequences on a scale of 1 (Poor) to 5 (Good). We normalized the benchmark and DSSA
ratings with respect to the average input video ratings. The column Satisfied Respondents
in the Tables 4.1 and 4.2 below lists the proportion of users who rated the corresponding
video 3 or higher. As part of the evaluation, we also asked the volunteers to identify the
object-of-interest in the video sequence, and counted its occurrence in the input and output
sequences. The ratio of the object’s occurrence in the output sequence to that in the input
sequence is listed under the heading Detection Rate. Further, we measured the time taken
to adapt the input video sequence, and listed the Adaptation Time as the time taken per

frame.

4.1.1 Simplifications adopted for ease of implementation

1. No B-frames in encoded video: We assume that the input H.264 video sequence has a
[PPP frame structure. This makes the implementation easier, and allows us to check
the performance of the algorithm. B-frames are bi-predictive frames, and can use
reference frames both from the past and the future in terms of display order. Thus
in the algorithm we presented in the previous chapter, B-frames can have a negative
value of ¢ — t,.; whereas P-frames will always have a positive value for this term,
since for P-frames ¢ > ¢,.; always. However, we used the absolute value |t —¢,./| in

our algorithm, so it can work with B-frames as well.

2. QCIF wvideo output: We fixed the default output display size in our algorithm to
the QCIF format, 176x144. This was done simply to reduce the number of variable

parameters. The system can be easily modified to take this parameter as input.

3. Some encoder parameters: All videos are encoded in FRExt High Profile, Level
2. Other parameters worth noting include IntraIDRPeriod=15, IDRPeriod=15,
QPISlice=28, (PPSlice=28, SearchRange=32.

We discuss the simulation results in the next section.
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4.2 Simulation Results

This section tabulates the results of subjective assessment on the benchmark output and
630 the DSSA output videos. The output video ratings were normalized with respect to the
corresponding input video ratings in order to offset any difference in video quality, perceived

by the respondents.

4.2.1 Benchmark test

Our benchmark was the visual attention model applied independently to each decoded
35 frame. This is a logical choice for our benchmark since the DSSA algorithm extends the
attended region detection from images to videos, and in doing so, it makes use of the
additional motion information present in the video bitstream. The benchmark is created
by running the visual attention module separately on each decoded frame of the H.264
bitstream. This gives us the attended region in each frame. The region centroids are then
s20 passed through the smoothing filter, after which the frames are cropped and displayed. No

motion information is used. Table 4.1 lists the performance of the benchmark.

Table 4.1: Estimating attended region: Benchmark

Sequence Attended Object Object Detection Satisfied Adaptation
objects detected in present in Rate (%) Respon- Time
#Frames #Frames dents (s/frame)
(%)
Coastguard Small private boat 90 91 98.90 75 5.035
Large coastguard 50 59 84.75
boat
Dravid Ball and bat 10 17 58.82 85.71 4.923
Football Player#82 (blue 115 115 100 87.5 4.687
jersey)
Scuffle 87 120 72.50
Irene Hands 433 539 80.33 100 4.736
Mobile Ball and engine 103 138 74.64 62.5 4.641
Pingpong Racquet and ball 31 67 46.27 62.5 4.632
Tempete Yellow flower 122 259 47.10 85.71 4.764
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4.2.2 DSSA Algorithm results

Table 4.2: Estimating attended region: DSSA

Sequence Attended Object Object Detection Satisfied Adaptation
objects detected in present in Rate (%) Respon- Time
#Frames #Frames dents (s/frame)
(%)
Coastguard Small private boat 91 91 100 75 0.556
Large coastguard 59 59 100
boat
Dravid Ball and Bat 17 17 100 85.71 0.700
Football Player#82 (blue 115 115 100 75 0.484
jersey)
Scuffle 100 120 83.33
Irene Hands 496 539 92.02 100 0.452
Mobile Ball and engine 121 138 87.68 71.4 0.521
Pingpong Racquet and ball 34 67 50.47 75 0.492
Tempete Yellow flower 225 259 86.87 100 0.499

As shown in Table 4.2, the framework determines the appropriate attended object from a
video sequence in over 80% of the frames. The system performs better for sequences in
which the attended object is larger and is moving uniformly. The dynamic nature of the
system is demonstrated in the Coastguard sequence, where the camera pans first from left
to right following the private boat, and then pans from right to left tracking the coastguard
boat. The system is able to follow both the boats appropriately and handles the change in

direction with ease. Figure 4.1 demonstrates this feature.

When competing objects are available, the system may occasionally choose distractors over
the attended object. This occurs in the Pingpong sequence where the bright red racquet,
the player’s arm and the smaller but fast moving ball are all competing for salience. The
system is not always able to fit all of them in the output frame. As a result, the Pingpong

sequence only has a 50% detection rate.

In the Mobile sequence (Fig. 4.2), the system follows the train engine and the ball initially
but is later distracted by the scrolling background and has to decide between competing
salient objects. As a result of this, it misses the engine in some frames. However, the

overall result is still fairly satisfactory.

In [3] Cheng et al obtained intensity, color and motion feature maps from source video

sequences. They also processed the video for camera motion. To evaluate their scheme,
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they showed 15 video clips marked with the estimated Rol to 10 observers, who rated the
clips as Good, Acceptable or Failed. The results indicate over 95% of the respondents
feel comfortable (Good or Acceptable) with the determined Rol. Zhai and Shah used color
histograms and motion contrast based on planar motion between frames to generate a
spatiotemporal saliency map [47]. They processed source video sequences to determine the
attended region. In a test similar to above, they showed their video clips with marked
attended regions to 5 assessors, who once again rated the clips as Good, Acceptable or
Failed. Their results show that over 90% of the respondents were satisfied with the detected

region. Neither literature has any other measure for evaluation.

Unlike [3] and [47], our framework uses the encoded compressed video bitstream as input,
and the motion vectors form our source of motion information. We also produce a cropped
output which is likely to introduce some distortion, leading to reduced video quality. It is to
be noted that even with 100% accurate attended region detection, the cropped output video
sequence may not be pleasant to view. Our results show that over 85% of the respondents
were satisfied with the output video sequence. Also the attended region was satisfactorily
identified with a detection rate of over 80%. Another point of contrast is that the DSSA is
a causal scheme. While |3] utilizes a continuous video shot for Rol determination, [47] uses
successive frames to generate the temporal and spatial saliency maps. DSSA processes and
determines the attended region in I-frames followed by that in the successive P-frames,
until the next I-frame is encountered. This causal nature of DSSA makes it suitable for

application in a transcoder.

One limitation of the system is that the P-frame attended region detection depends on the
success of the I-frame region detection. In case there is a detection failure in the I-frame,
the following 14 P-frames in the GoP will also have an erroneous attended region selected.
However, the system should recover and produce satisfactory detection for the next I-
frame. Since the centroids of all the frames are processed together in the smoothing filter,
the error in one GoP is rectified to some extent. Despite the rectification, the Detection

Rate is expected to drop in such a case.

Overall, the DSSA framework shows promising results, and is a good candidate for real-
world video adaptation applications. We present our concluding remarks and a few prob-

lems for future research in the following chapter.
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Coastguard: Frame 42 Coastguard: Frame 80

Saliency Map: Frame 80
¥

Cropped Frame 42 Cropped Frame 80

Figure 4.1: Frame 42 and Frame 80 of the Coastguard sequence shows the DSSA switching
from following the small boat to the large coastguard boat. Cropped frames are scaled to
twice their height and width.
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Saliency Map: Frame 72 Saliency Map: Frame 132

Cropped frame 132
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Figure 4.2: Frame 72 and Frame 132 of the Mobile sequence shows the DSSA following the
engine and red ball initially, but distracted by the background later. Cropped frames are
scaled to twice their height and width.
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Chapter 5
Conclusion

We developed a framework to determine the attended region in a H.264 video sequence
using a bottom-up saliency approach. The attended region is chosen based on the lumi-
nance, orientation (texture) and motion features coded in the bitstream. The luminance
and orientation information are obtained from the decoded I-frame, and are used to create
the saliency map S. We use the motion vectors in P-frames to generate a homogeneous
motion region through motion classification in M-maps, and then select the coherent region
as the attended region in the P-frame. When the output sequences were shown to a set of
respondents, they gave an encouraging response. Such a system has real-world application

and great potential for emerging technologies.

5.1 Applications

1. This framework can be directly applied to small form factor devices, such as handheld
computers and media players for watching video. Most users aren’t happy to see
videos on their devices due to the poor resolution of the video on-screen. With a

display adaptation algorithm, the viewing experience can improve significantly.

2. DSSA can be applied not only in the devices, but can also be used by content delivery
operators at the source to transcode video before transmission. For instance, a single
source video sequence may be transcoded into a video compatible for digital TV
broadcast and another compatible for mobile video players. The DSSA algorithm
can adapt each output video according to the desired resolution before they are re-

encoded for transmission.
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5.2 Limitations

715 As with every system, the DSSA scheme also has its limitations. Some of these are listed

iy

here.

1. We assumed that the attended object is visible in the first I-frame. Attended region
detection in P-frames depends on successful detection of the attended region in the
previous I-frame. Thus, the DSSA is a causal system. In case the system detects fails

720 to detect the correct region in the I-frame, the remaining P-frames in the GoP will
also choose the wrong region. But the system is expected to recover and detect the
correct region for the next I-frame. Since the smoothing filter is applied to the entire
set of centroids, small errors in the attended region centroids are likely to be rectified.
However, larger errors might not be fully compensated. Therefore, we expect a drop

725 in the detection rate.

2. At this time, our scheme lacks any fuzziness in the attended region selection. In other
words, we consider only one Rol at a given time for any past or present frame. This
limits the coherence tests for the attended region built into the DSSA. It is possible
that the most salient Rol for a frame may not be the best choice for the attended

730 region when the entire video sequence is considered. The scheme may be improved
by building in some fuzziness, wherein multiple Rols could be marked on each frame

and a selection algorithm later determines the optimal set of Rols for final output.

3. If the DSSA were to consider fuzziness, we would also have the option of selecting a
weighted centroid based on region sizes as well as saliency values. This might account
735 for the occasions when different viewers want to view different objects in the video,

by including multiple contending objects in the adapted video sequence.

4. The P-frame attended regions in the DSSA scheme are determined based on the
attended region detected in the I-frame. This limits the robustness of the system.
Considering the correlations among P-frames would give us more information about

740 the Rol. Furthermore, since motion is a very important attention feature, such a step

is likely to provide an improved estimate for the attended region selection.

5.3 Future Work

The current application uses motion information in conjunction with saliency-based at-

tended region location to determine a meaningful video region to display. This work pro-
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vides opportunity for further research in a number of areas. These include the following:

1. So far, the P-frame region determination is related only to the reference [-frame.

In that sense, it is a memoryless system. The system performance can improve by
considering the inter-frame correlation among P-frames. If the knowledge of past
attended regions is available, the system can also utilize it to restrict its search for

the attended region to a smaller part of the current frame.

. The benchmark test using the Walther-Koch model [44] is limited in scope since

it was designed to evaluate images (rapid static scenes). Since image analysis is
different from video analysis, a different benchmark may be considered to account
for motion sequences. A possible subjective benchmark test could be to use eye-
trackers on human participants, and record their fixations through gaze tracking.
Such an evaluation can directly provide us with the selected Rol, which can then be

used as a benchmark.

. The output videos are sometimes jittery since the centroids do not fall on a smooth

trajectory. At the time of writing, the authors are not aware of any smoothing filter
that can account for such dynamic systems. A filter that can preserve the continuity

of the video sequence will greatly improve the viewer satisfaction.

. The present system takes about 0.5 seconds to process each frame. This is rather slow

for real-time applications. The slowest step in the whole system is the Gabor filter
stage to determine orientation contrast. Research is needed to study the efficacy of
other filters or processes which can be successfully substituted for the Gabor filter.
A possible direction for work is to use the existing DCT coefficients for texture
filtering. We know that the DCT coefficients contain spatial frequency components
of the image. Instead of using a Gabor filter to obtain texture information from
the pixel domain, we can use the existing DCT coefficients in the bitstream, such as
in [11]. Since the DCT coefficients can be read directly from the bitstream, such a

scheme should be fast and would save processing time significantly.

. Lastly, DSSA provides a smaller output video to an input video. This can be es-

pecially helpful for transmission over bandwidth-constrained networks. This system
can be further developed to behave as a transcoder, wherein, the existing motion
information can be reused, thus saving resources in the costly motion estimation and
compensation steps. As we mentioned in Chapter 4, the DSSA is a causal system,
which makes it suitable for application in a transcoder. 3G service providers and

users will derive immense benefit from such a transcoder.
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