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AbstratWe develop a framework that uses visual attention analysis ombined with temporal o-herene to detet the attended region from a H.264 video bitstream, and display it on asmall sreen. A visual attention module based upon Walther and Koh's model gives usthe attended region in I-frames. We propose a temporal oherene mathing frameworkthat uses the motion information in P-frames to extend the attended region over the H.264video sequene. Evaluations show enouraging results with over 80% suessful detetionrate for objets of interest, and 85% respondents laiming satisfatory output.
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Chapter 1
Introdution
The world is making rapid strides in ommuniation, and this is hanging the way we inter-at with one another. Digital media is at the forefront of this ongoing hange. Multimediahas beome a part of our daily lives in more ways than we an imagine. People ommu-niate not only through text-based emails but also through audio and video messages andlips. With videos beoming inreasingly popular with every passing day, there is a need to5 make this media more robust and aessible to a variety of users aross di�erent platforms.Multimedia appliations are beoming more diverse and are shared over ommuniationinfrastruture omprising of di�erent underlying networks and protools. Hene we needto inter-network multimedia ommuniations over heterogeneous networks. In a networkwhere end users onnet to a video soure through links of di�erent apaities, the soure10 usually adjusts the bandwidth for the ompressed video to meet the available apaity onthe most stringent link. In addition to this, end users often use di�erent devies suh asdesktops, ellular phones, handheld omputers et. for video ommuniation. Sine mosthandheld devies have limited omputing and display apabilities, the high quality videoenoded earlier may have to be onverted into one of lower quality for display on suh15 devies. Furthermore, as the number of oding standards suh as MPEG-2, MPEG-4, VC-1, H.261, H.264 et. inreases, there is a growing need to onvert between videos odedthrough di�erent standards. Video transoding provides tehniques to solve these problems[1, 41℄. The present work has been developed to proess videos enoded with the H.264video standard. We take a loser look at this in the next setion.20
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1.1 Enoding Video and the H.264 standardBroadly speaking there are two approahes to video oding, viz. blok-based and objet-based. In the blok-based approah, eah frame is divided into a number of bloks, andmotion estimation and ompensation performed at the blok level. These bloks are usuallyof a �xed size, though variable size bloks might also be used, as they an give an improved25 math for the urrently seleted region of the frame. In atual pratie, a frame is dividedinto maro-bloks (MBs) and these are subdivided into bloks. In ase the enoder uses dif-ferent blok sizes, there is a restrition on the permissible sizes - this redues omputationalomplexity, but at the expense of video quality. All major oding standards like MPEG-1,MPEG-2 and H.264 use the blok-based oding approah. The MPEG-4 standard goes30 beyond the blok-based oding approah by introduing the onept of a video objet layer(VOL), to allow objet-based video enoding [32℄. In objet-based video enoding, theobjets of interest in the video are marked at the video soure prior to enoding. Sinethe enoder knows the region that omprises of the objet, it ensures that this region isenoded for the best possible quality. To the best of our knowledge, this sheme is unique35 to MPEG-4 and, as suh, is inompatible with other video oding standards. Objet-basedoding makes intuitive sense, sine in everyday life humans don't see senes as bloks butrather in terms of the objets that make up the sene. In every sene there are objets inthe foreground that are in fous while the remaining objets onstitute the bakground.Some of these objets an be identi�ed in images through algorithms that �nd regions of40 interest (RoI). Suh algorithms typially use the brightness, olour and texture informationof the sene along with the onnetivity of the region to selet the RoI. However, markingobjets on the video frames requires seleting key frames or index frames in the video andmarking the objet or feature on eah of them. This is most aurate when done by aperson, but that is an extremely time-onsuming proess. Even otherwise, this proess is45 omputationally intensive.Video and image proessing based on objets of interest and RoI are nearly always done inthe spatial (or pixel) domain. Spatial domain video proessing is omputationally intensiveas it deals with a large amount of data. A more e�ient approah is to design a systemto work with ompressed (transform domain) video. Sine videos extensively deal with50 moving objets, motion is a useful riterion to identify relevant objets. Objet trakingor segmentation in video �nds appliations in video surveillane, video indexing et. Thealgorithms that operate in the transform domain utilize two features of a MB, viz. motionvetor (MV) and transform oe�ients. MVs are obtained through motion ompensationbetween urrent frame and its referene frame(s) on a blok-by-blok (or MB-by-MB)55 2



basis. An MV gives the o�set of the urrent blok to the mathing blok in the refereneframe. It gives information about the temporal orrelation between the two frames. Onthe other hand, the transform oe�ients ontain the image information. The ontent ofthe transform oe�ients di�er depending on the type of blok that is enoded. A blokmay be inter-oded or intra-oded. An inter-oded blok is one that is predited from a60 referene frame. The transform oe�ients of these bloks ontain residues of the motionompensation. On the other hand, intra-oded bloks are predited either from otherbloks in the urrent frame or else enoded as-is. The transform oe�ients of intra-odedbloks arry the transformed signal of the original image. Therefore, these blok transformoe�ients an be used to reonstrut the DC image.65 However, the H.264 oding standard (alternately alled AVC: Advaned Video Coding,or H.264/AVC) employs several new oding tools and provides a di�erent video format,whih makes working on the ompressed video a hallenging task [32, 35℄. While the earlierMPEG standards employed a disrete osine transform (DCT), H.264 uses a transform thatis similar but uses only integer operations. For onveniene, we refer to this transform as70 DCT in the rest of this doument. Furthermore, very little literature is available about workdone on H.264 ompressed video analysis. In H.264, the intra-oded blok is spatially intra-predited from its neighbouring pixels. So, the DCT oe�ients arry spatial preditionresidue information. H.264 also supports variable blok-size motion ompensation. A MBmay be partitioned into several bloks and have several MVs with varying blok size. This75 is in ontrast to the MPEG standard, whih has a regular blok size. H.264 has beensteadily gaining popularity and oming into widespread use. It is now the ode of hoiefor appliations ranging from television broadast to mobile videos. Now that we have seenwhat video enoding is about and got an idea of the H.264 video standard, let's take a lookat why we need to adapt videos and how it an be done.80 1.2 Need for Video AdaptationAs we noted at the beginning of this hapter, ontemporary viewers wath videos ondi�erent kinds of devies, some of whih have lower proessing and display apabilities.Today's handheld devies provide the option to wath video, but some details might be lostdue to the smaller sreen size. Let's take a soer game for instane. The soer ball that is85 learly visible on a regular size television sreen may be rendered so small in the display ofthe handheld devie that it is invisible to the human eye. This happens beause the videostream available to the handheld is of lower resolution than the one on television. Owing3



to their limited omputing apability, the handheld devies usually have a downsampledversion of the original video stream. Downsampling is also required when video has to be90 streamed over a network with onstrained bandwidth. Sine, downsampling is not seletiveabout partiular regions of the video, the output stream is uniformly degraded. However,from the viewer's perspetive, if the relatively small soer ball - the objet of interest - isdownsampled, there is a great loss in video quality.In order to overome this drawbak, a video lip needs to be adapted for display on suh95 handheld devies. A simple method for adaptation would be to show only the most relevantpart of the original video on the sreen. In other words, a video lip an be ropped aroundthe RoI so that it �ts the handheld devie's smaller sreen. Unfortunately, ropping algo-rithms do not aount for objet motion. Hene, the ropped region needs to be adjustedin suh a manner that it always inludes the objet. [3, 31, 47℄ propose tehniques for100 automati RoI determination in videos. However, ropping and traking algorithms workwholly in the spatial domain and thus require large proessing power for omputations.Thus, there is a need to develop a framework by whih videos an be intelligently adaptedfor viewing on small form fator devies. With H.264 being slated as the future standardfor all video and the rising popularity of portable devies, suh a sheme will enable users105 to wath videos on their devies without severe quality degradation. A key requirementfor suh visual ontent adaptation is that the output �ts human pereption. This requiresthat we identify regions that reeive maximum `visual attention'. The onept of visualattention is overed in the next setion.1.3 Role of Visual Attention110 The objets whih form the fous of attention of a viewer are referred to as AttentionObjets (AOs). If a video lip is adapted to a smaller sreen in the manner suggestedat the end of the previous setion, we would want to retain the AOs from the originalvideo sequene. One of the ways to rop a video intelligently is to do it manually, on aframe-by-frame basis. Unfortunately, this method is not feasible owing to the sheer volume115 of work. For instane, a 5-minute video lip running at a regular 30 frames per seondwill have 9000 frames! Even if the person skips some frames, �nding the objet of interestin a soer game or in a short movie is a daunting task. If we an �nd a way to identifyAOs in a sene, without user intrusion, it will save a lot of time. This is where visualattention-based proessing omes in. The human vision system responds more to ertain120 image features and less to others [7, 17℄. Humans are known to be sensitive to ontrasts4



and edges in a sene; they are more sensitive to luminane (brightness) than to olourand they fous more on the entre of the sene than on the surroundings. By modelling asystem losely to the human vision system, we an get a good idea of what features in asene are likely be of most interest to a viewer. In [16℄, Itti and Koh developed a model125 losely based on the human vision system to identify AOs in images. They use low-levelimage features, viz. intensity, olour and orientation to proess into feature maps, whihare further proessed and ombined into a salieny map. Regions of the salieny map withhigh values orrespond to attended regions of the image. It has proved to be suessful inidentifying AOs even in noisy images, and is a promising andidate for suh an appliation.130 One limitation of the Itti and Koh model is that it applies to stati images but not tovideos. In order to apply it to videos, we ombine this model with the motion informationalready present in the enoded video bitstream. Consider a video sequene onsisting ofI-frames and P-frames. The intra-oded I-frames have no motion information, but theyan be deoded without having to resort to predition from other frames. Consequently, I-135 frames are good andidate frames in whih to searh for AOs. The P-frames in the video areinter-oded, whih means that they are predited from I-frames or other P-frames. Theseframes are predited through an extensive proess of motion estimation and ompensation.The motion information present in the P-frames an be used to determine the region wherethe AO is loated in those frames. One the region ontaining the AO is identi�ed aross140 the entire video sequene, it is extrated for display on the smaller sreen.To demonstrate the behaviour of this system, let's revisit the example of the soer gamefrom the previous setion. Figure 1.1 below shows the results of resizing and ropping aframe from a soer game. The original frame has a resolution of 320x240 pixels. Thisframe (�gure 1.1(a)) shows a number of players on the �eld, but the AOs in the frame145 are the soer ball (inluding the really lose players) and the sore. We have boundedthese with a white retangle in the �gure. When the frame is resized to a quarter of theinitial size (160x120 pixels), neither the ball nor the sore is legible (�gure 1.1()). Theyhave been rendered too small to be seen. However, when the region around these AOsis ropped out (160x120 pixels), both the sore and the ball an be seen learly. This is150 shown in �gure 1.1(b).
5



Figure 1.1: Demonstration of ideal system behaviour: (a) Original frame at 320x240 reso-lution (b) Cropped out RoI of size 160x120 () Resized frame at 160x120 resolution
Figure 1.1 demonstrates one example where video adaptation an be suessfully applied.Suh adapted video an also be re-enoded into smaller video lips that an be transferredover bandwidth onstrained networks. We will disuss the design and implementation of155 this system in the hapters that follow.1.4 Doument OrganizationThis doument details the thesis work and onsists of �ve hapters. The next hapter,Chapter 2, is a survey of existing literature related to the present work. Chapter 3 de-sribes the design of the framework we developed for small sreen adaptation using a visual160 attention model; and in Chapter 4, we present some examples that illustrate the apabilitiesand limitations of the present work. Finally, we round up the doument with onlusionsand a disussion on the future diretions of this work in Chapter 5.
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Chapter 2
Related Literature165
The previous hapter gave an overview of H.264 video oding, and established the need forvideo adaptation in a world of inreasingly varied lient devies. We also disussed howvisual attention analysis is ruial for e�etive video adaptation. The present hapter dis-usses existing literature on ompressed domain video proessing, visual ontent adaptationand visual attention analysis. We start with work on human vision and pereption.170 The human vision system (HVS) is a omplex network of neurons and light sensitive re-eptors. Over the years, a lot of researh has gone into determining how humans see andwhat attrats their attention to a sene. Human pereption �rst piks the regions of thesene that stimulate the HVS and then interprets the remaining sene. These regions usu-ally orrespond to prominent objets in images or ation in video sequenes. Psyhology175 studies suggest that the HVS pereives external features separately [37℄ and is sensitiveto the di�erene between the attended region and its neighborhood [10℄. The olletiveresults of suh researh provide us with a set of features [7, 17℄ that are widely aepted to,so to speak, grab human attention. These inlude olour, orientation, size, motion, lustreand shape to name a few. This has led to work based on the detetion of feature ontrasts180 to trigger the HVS [16, 44℄. All these literature use visual attention models to determinethe attended region(s) in images.Itti et al proposed one of the earliest works in visual attention detetion by utilizing on-trasts in olor, intensity and orientation of images [16℄. They used these low-level featuresfrom digital images to reate feature ontrast maps and further proess them into a salieny185 map. Walther and Koh extended this idea [44℄ to detet attended regions of any sizearound the salient points in the salieny map. Milanese demonstrated a similar bottom-upapproah for a salient region detetion framework [27℄. Chen et al [2℄ used the salienymap generation methods proposed in [16℄ to determine pereptually important regions in7



an image that hold Attention Objets (AOs). After identifying the AOs and the assoiated190 region(s) in the image, their branh-and-bound algorithm determines the optimal set ofAOs to be inluded in the �nal image. The method is shown to be e�ient and has provi-sion to identify faes and text and give them priority over other features. The output imagesize an be altered to �t spae onstraints suh as on a web site or for a thumbnail image.Cheng et al used intensity, olor and motion features to determine the region-of-interest195 (RoI) in a video sequene, based on aestheti priniples [3℄. They employed a shot detetionalgorithm on the soure video to form lusters of frames, and then applied salieny-basedattention proessing to eah luster. Their subjetive tests show onsistently good resultsaross di�erent kinds of videos. Zhai and Shah utilized a temporal attention model basedon point orrespondene and a spatial attention model based on olor ontrasts, and om-200 bined them into a spatiotemporal salieny map to detet the attended region [47℄. Ma etal also developed a user attention model [23, 24℄ for video summarization. In [45℄, Wang etal propose the wavelet-based foveation salable video oding (FSVC) algorithm that usesa foveation-based HVS model to determine visually important omponents in the videosequene. They proposed an adaptive frame predition sheme for enoding and deoding205 videos that allows good quality in rate salable video oding systems. Moreover, this �exi-ble sheme an be adapted to di�erent video appliations inluding telemediine and videoommuniation over heterogeneous networks.Video objet segmentation is an extension of image segmentation to videos, and dealswith extration of RoI's from video. Sine our framework pertains to identi�ation and210 extration of objets of interest, relevant literature is found in this area as well. In 1997,Yining Deng and B.S. Manjunath proposed a segmentation method alled JSEG [9℄ inwhih they quantized the olours present in an image into lasses and use the lass labels togenerate a lass map for the image. The lass map ontains olour and texture informationwhih is used to alulate a loal parameter, J and this is further saved as a J -image. This215 J -image is then used for spatial segmentation. A similar approah is applied to videossequenes. Videos are partitioned into shots - sequenes of ontinuous ation - and thenobjets are segmented and traked aross frames. The region traking feature is embeddedin the segmentation algorithm and gives robust results. One of the major limitations ofthis sheme is over-segmentation due to varying illumination. In [8℄, they used the olour,220 texture and motion information from MPEG ompressed videos to reate an indexingsheme to enable fast retrieval. The fairly simple approah requires partitioning the videointo shots as in [9℄ and then using the olour histogram to get olour information andgenerate labels. They also use Gabor texture features and developed a novel approahto traking motion using the motion histogram. These three features are used to lassify225 8



videos and for ontent-based searh and retrieval. The system performs well but is limitedby the use of global low-level visual features. Loalized objet feature representation isexpeted to yield better results.The foregoing work use soure video sequenes and images for pixel domain proessing.However, visual ontent is always transmitted in an enoded bitstream. While it is possible230 to deode and proess in the pixel domain, the latter is omplex and time-onsuming. Itis desirable to use the bitstream information to adapt ontent e�iently. Zeng et al [46℄employ a blok-based Markov Random Field (MRF) to segment moving objets from theMV �eld obtained from the ompressed bitstream. The method segments moving objetsagainst a stationary bakground, at real-time proessing speeds with over 80% reall and235 40% preision. Liu et al [22℄ proposed a sheme to use watershed �lling on a normalizedMV �eld to segment a frame into homogeneous motion regions. This is followed by a binarypartition tree (BPT) sheme for the merging proess. The system demonstrates over 85%reall and 60% preision for the tested sequenes with real-time proessing. Both of thesesystems, however, are suseptible to errors in the presene of shadows or objets moving240 at nearly the same speed.Salieny detetion is an important attentional mehanism and is largely determined bywhat our senses pereive. This was used for motion detetion and traking in [36℄, whereTian and Hampapur detet salient motion for video surveillane in three steps: �rst, thetwo-dimensional optial �ow of the image is omputed using the Luas-Kanade method.245 Seond, a temporal �lter is applied to the di�erene images to �lter out noise - whihinludes regions not moving in the same diretion over a group of eleven frames. Lastlythese are ombined and a region growing algorithm gives the region of interest. Thissystem is able to detet motion against a omplex moving bakground and an be used forreal-time surveillane operations. In [29℄, Sonia Mota et al presented a pereption-based250 moving objet segmentation sheme that uses Reihardt motion detetors to haraterizethe motion in the sene. This results in a noisy salieny map, whih is further proessed bya neural struture to selet independent moving objets in the sene by piking a lusterof pixels moving oherently, with approximately the same veloity. In ase of more thanone moving objet, the system only works when the relative speed(s) between the moving255 objets is large.In the present work, we use the attended region detetion proposed by Walther and Koh[44℄ and ombine it with a homogeneous motion region detetion algorithm to identify thesalient moving feature(s) in H.264 videos. This framework is built into the H.264 deoderJM (joint model) version 13.2. The deoder �nds the best attended region that mathes the260 9



spei�ed output frame size from the input H.264 video sequene and extrats it for display.The next setion overs the problem formulation and desribes the proposed algorithm.
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Chapter 3
The Display Adaptation Algorithm
So far, we have established the neessity of a video adaptation system that operates on265 ompressed domain video bitstreams. We also saw some related literature on adaptationand visual attention based proessing. The HVS an not identify objets below someritial resolution. However, there seems to be no �xed point for this ritial resolution:it varies with the type of objet we view. For instane, humans an distinguish a faefrom other features relatively easily, and an also identify the person from his/her faial270 features at quite a low resolution. At the same time, they an not identify the letters ofthe alphabet with equal ease - humans need a relatively larger resolution to read text.Let's revisit the example from Setion 1.2. Consider a person wathing a soer game on abig sreen television. The soer ball and the player(s) around it are usually in fous andloated near the entre of the sreen. Along with this, a substantial part of the �eld is in275 view and there are other players at di�erent parts of the �eld. In addition to the seneon the �eld, the urrent sore and play time is displayed in a text box at the top of thesreen. If this video is resized to �t a small sreen, the soer ball may be represented bya small dot and the text may be rendered illegible at low resolution. Figure 1.1 shows aframe from suh a soer video.280 The original frame is 320x240 pixels in size (�g 1.1 (a)). When this is saled down to160x120 pixels, the soer ball is no longer learly visible. The soreline at the top is notreadable either (�g 1.1 ()).One an think of a few methods to avoid this issue. One option ould be to deide aminimum permissible resolution beforehand. If alulations indiate that the resized video285 will to be smaller than the minimum permissible size, it an be ropped around the edges.The drawbak in this method is that it assumes a priori knowledge of the video ontent,11



that allows us to selet suh a resolution. In a pratial senario suh information isunavailable, and an alternative would be to rop the video to retain the most relevantsetion. As we see in Figure 1.1 (b), when the original frame is ropped to 160x120 pixels,290 their original resolution is preserved, and both the soer ball and the soreline are seen aslearly as in the original frame. However, it is not straightforward to rop a video lip insuh a manner that only the relevant setions are preserved. To the best of our knowledge,ropping algorithms take the rop o�sets for the left, right, top and bottom of the videoand apply it uniformly to all the frames in the video lip. The drawbak to using �xed rop295 o�sets is that the soer ball may not be within the ropped window in every frame. Insuh a ase, the result is a video lip in whih the soer ball goes in and out of the senein suessive frames. People will experiene disomfort when viewing suh poor qualityvideo. At this point, it is evident that variable rop o�sets will yield better results - theproblem is to determine these rop o�sets.300 3.1 BakgroundThe preeding aount is a problem of video adaptation. The video lip must be roppedin suh a manner that the visually interesting features are retained in the output. Thequestion of visually interesting features has intrigued humans for a long time. [7, 17℄desribe a number of studies on vision and visual attention done over the years that try305 to answer this question. The results identi�ed ertain features that stimulate vision andapture visual attention, some of whih inlude lustre, olour, shape and size, texture andorientation and motion.As we disussed in Setion 2, visual attention analysis helps us determine the attendedregions in visual ontent. These often orrespond to high ontrast objets and/or ation310 sequenes in videos. The adapted output video sequene should retain these attendedregions. Thus our problem an be framed as follows:Problem-statement: How do we determine the attended region in a given ompressedand enoded H.264 video sequene, and adapt it to a given display with low om-plexity?315 We developed the display adaptation algorithm to address this problem. The rest of thishapter desribes the various steps in the the algorithm. The �rst step toward solving thisproblem is to �nd attended objets in the input video. The following setion desribes thevisual attention model whih help us loate attended objets in the video.12



3.1.1 Visual Attention Model320 The display adaptation algorithm is built around a salieny-based omputational model forvisual attention. We know that visual pereption is an inherently ative and seletive pro-ess by whih people attend to a subset of the available information for further proessing.Visual salieny is a broad term that refers to the idea that ertain parts of a sene are moredisriminating or distintive than others and may reate some form of signi�ant visual325 arousal within the early stages of the HVS. Cognitive psyhology and omputer vision pro-vide numerous approahes for building visual salieny models [27℄, and researh on visualsalieny typially follows one of two approahes: the bottom-up or stimulus-driven ap-proah, and the top-down or task-dependent approah. In our ase, for visualizing a senewithout a spei� task in mind, we foused on the bottom-up, stimulus-driven approah330 in this work. The Walther [44℄ and Itti implementation [16℄ of the biologially inspiredsalieny-based model of bottom-up attention proposed in [20℄ provide a framework forextrating features and forming salieny maps.Shown in Figure 3.1 is the general arhiteture of the visual attention model. In thisproedure, �rst a multi-sale representation of the original input image is obtained by335 using dyadi Gaussian pyramids. Feature extration is aomplished through a set oflinear enter-surround operations that simulate visual reeptive �elds as the di�erenebetween �ne and oarse sales. The aross-sale di�erene between two maps is obtainedby interpolation to the �ner sale followed by point-by-point subtration. The extratedfeature maps are �rst normalized, and then aross-sale ombined into onspiuity maps340 for the orresponding feature. Finally, the onspiuity maps are merged into a salienymap, S, by linear ombination.
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Figure 3.1: General arhiteture of the salieny-based visual attention model (adaptedfrom [16℄)
The �rst step is to extrat the the luminane hannel Y , of the deoded I-frame. Thisonstitutes the input image to the visual attention model I (0). Next we obtain a multi-345 sale representation ofI(0). We use eight spatial sales, σ ∈ [0...7] whih result in eight�ltered images, with image redution from 1:1 at sale σ = 0 down to 1:128 at sale σ = 7.These �ltered images are stored as a Gaussian luminane pyramid I(σ). We perform linearenter-surround operations on I(σ) to ompute feature maps, whih is implemented as thedi�erene between �ne and oarse sales. The entre is a pixel at sale c ∈ {2, 3} while the350 surround is the orresponding pixel at sale s = c + δ, with δ ∈ {3, 4} . The aross-saledi�erene between two maps is obtained by interpolation to the �ner sale followed bypoint-by-point subtration. This operation is denoted �⊖� below.Luminane (intensity) ontrast is deteted by neurons in the HVS that are sensitive eitherto bright enters on dark surrounds or to dark enters on bright surrounds [10℄. The355 responses omputed through enter-surround di�erenes are stored as a set of four featuremaps, LI(c, s), with c ∈ {2, 3} and s = c + δ, δ ∈ {3, 4}:

LI(c, s) = |I(c) ⊖ I(s)| (3.1)14



Studies [7℄ have shown that Gabor �lters losely approximate the impulse response oforientation-sensitive neurons in the HVS. Loal orientation maps, O (σ; θ) at di�erent sales
σ, and orientations θ, are obtained by onvolution the orresponding level of the intensity360 pyramid, I (σ) with Gabor �lters. Similar to Eq. 3.1, the orientation ontrast mapsare obtained by omputing the aross-sale di�erene of the loal orientation maps with
c ∈ {2, 3} and s = c + δ, δ ∈ {3, 4} and θ ∈ {0◦, 45◦, 90◦, 135◦}. These are stored as a setof sixteen maps Lθ (c, s):

Lθ (c, s) = |O (c; θ) ⊖ O (s; θ) | (3.2)Thus we obtain four feature maps for intensity and sixteen feature maps for orientation.365 Our total of twenty maps is about half of the forty-two feature maps generated in [44℄.This redution is ahieved by negleting the olour features and using fewer sales in themultisale pyramid.The feature maps obtained in Eqs. 3.1 and 3.2 have di�erent global maxima. Hene theyare normalized before further proessing. The normalization operator, N (·) is a non-linear370 iterative funtion that simulates loal ompetition between neighbouring salient loations[15℄. This is implemented through a onvolution with a di�erene of Gaussian �lter followedby reti�ation. For our simulations, we used two iterations of the operator. Inreasingthe number of iterations did not produe any pereptibly di�erent results.The feature maps, Eqs. 3.1 and 3.2 are �rst summed over the entre-surround ombination375 using aross-sale addition ⊕, and these sums are normalized thereafter:
L̄l = N

(

3
⊕

c=2

c+4
⊕

s=c+3

Ll (c, s)

)

, l ∈ {I, θ} (3.3)The onspiuity map for intensity is the same as L̄I obtained in Eq. 3.3 above. For theorientation feature, we have obtained four normalized orientation maps orresponding tothe four orientations θ. These maps are one again summed and normalized to yield theorientation onspiuity map:380
CI = L̄I

CO = N

(

∑

θ

L̄θ

)

, θ ∈ {0◦, 45◦, 90◦, 135◦}
(3.4)All onspiuity maps are now ombined into one salieny map:15



S =
1

2
(CI + CO) (3.5)In our framework, we have used the Walther-Koh visual attention model to determine theattended region in deoded I-frames, with a few di�erenes:

• We onsider only luminane and orientation ontrasts for the salieny map, andsupplement it with the motion information to determine the attended region. Sine385 olor ontributes less to the overall visual salieny, whereas motion ontributes highly[7℄, we assume that this o�sets any loss inurred through negleting olor ontrasts.
• We use less sales for feature ontrast omputation. In our implementation, theenter is at sale c ∈ {2, 3} and the surround is at sale s = c + δ, δ ∈ {3, 4} . Thereis no pereptible di�erene in the resulting output, and this redues the omputation390 time.
• We determine the attended region following a morphologial losing operation asopposed to using a neural network [44, 15℄. This redues system omplexity with nopereptible di�erene in the output.3.2 The Dynami Small-Sreen Adaptation (DSSA) Al-395 gorithmThe Dynami Small-Sreen Adaptation (DSSA) algorithm follows two separate approahesto determine the attended region in I-frames and P-frames. It uses the visual attentionmodel (Setion 3.1.1) to loate the attended region in the I-frame. We augment thisattended region with motion information from the bitstream, to detet a oherent attended400 region in a P-frame. The region entroids are then passed through a smoothing �lter toobtain the best trajetory for the attended regions, whih are subsequently used to ropthe frames. These proesses are outlined in the Algorithm steps listed below:3.2.1 Assumptions made in the AlgorithmWe made the following assumptions in our algorithm:405
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1. Motion salieny is signi�antly greater than olour salieny: The visual attentionmodel desribed above determines attended regions from stati senes. Extendingthis model to video brings the temporal dimension into play. This indues us toaount for another attention feature, viz. motion. The study of attention featuresindiates that the HVS is most responsive to motion and least responsive to olour.410 Sine we are working with videos, we expet the attended objet to be part of anation sequene, and as a onsequene, motion will ontribute signi�antly to theoverall salieny. We assume that in suh a ase the ontribution of olour salienyan be negleted.2. 15 frames for eah Group of Pitures (GoPs): We assumed that the attended objet415 moves onsistently in a partiular diretion for 15 frames. This translates to half aseond of uniform motion in a video enoded with 30 frames per seond (fps), and isthus, a reasonable assumption. Regions of the video that do not obey this restritionare likely to be noise. All the input videos onsidered in the implementation have aIPPP GoP length of �fteen frames, whih onsists of a referene I-frame followed by420 fourteen P-frames.3. Attended objet present in I-frame: An impliit assumption in our algorithm is thatthe attended objet is present in the I-frame. As we desribe in later setions, mo-tion information from the P-frame supplements the knowledge of the attended regionin the I-frame while determining the attended region in the urrent P-frame. One425 might think that this simplifying assumption may adversely a�et performane. Forinstane, if the attended objet does not appear in the �rst I-frame, the entire GoPmight be foussed on the wrong attended region. However, the following I-frameshould have the attended objet. This information is then used to update the at-tended region seleted in future frames. Thereafter the smoothing �lter ensures that430 the early attended regions are updated aordingly.The following setion desribes how we determine the attended region in an I-frame usingthe salieny map.3.2.2 Determining Attended Region in I-framesThe I-frames in ompressed video ontain all spatial domain information of the frame.435 Hene, we an use them to determine the spatial visual salieny in the video lip. In our17



implementation, we have used eah I-frame as the referene frame for the following P-frames in the GoP. Every time an I-frame is read from the video sequene, a visual salienymap is generated for it.In our implementation, the salieny map is at a sale 4. In other words, it has one-quarter440 the height and one-quarter the width of the original image. The reason we hose this isthat the motion vetor resolution for H.264 is at the most 4x4, so the motion vetor mapalso has one-quarter the height and width of the original frame size. This allows us totranslate the entroids for temporal oherene (Setion 3.2.3) without the need for saling.Furthermore, smaller maps save omputation time and memory.445 The salieny map obtained from the visual attention model ontains a number of ompetingattended regions. To loate the �xation region, we partition the salieny map S intooherent regions. First, all pixels in S smaller than 97% of the global maximum, are set tozero.
S (i, j) =







S (i, j) , if S (i, j) ≥ 0.97 max {S}

0, otherwise
(3.6)Then we perform a morphologial losing operation. This removes isolated noise regions450 that are not andidates for the attended region, and leaves fewer pixels to proess. Wede�ne the Spatial Attention Value (SAV) of eah region as the sum of the onstituent pixels.Aordingly, the region R∗ that maximizes the SAV is hosen as the attended region:

SAV (R∗) = arg max
R







∑

(i,j)ǫR

S (i, j)







(3.7)The attended region R∗ is saved for heking temporal oherene in future P-frames, whileits entroid Ct∗ is stored for ropping. The entroid is alulated as455
Ct∗ =

∑

p∈R∗

p · S (p)

∑

p∈R∗

S (p)
(3.8)where p denotes any pixel loation (i, j) , and S (p) is the value of the salieny map S at

p.This gives us the attended region in the I-frame and its orresponding entroid. The nextframe in the video lip is a P-frame. As we know, a P-frame ontains motion information18



and predition residues. We use the motion information together with the knowledge of460 the attended region R∗, to determine the attended region in the P-frame. This is overedin the following setion.3.2.3 Determining Attended Region in P-frames: Temporal Co-hereneWhen the proessing a P-frame, the algorithm uses the motion vetors in the bitstream to465 reate a motion map, whih is then proessed further to yield the attended region for theurrent P-frame. The bloks in a P-frame are predited from other referene bloks. Foreah suh blok or maroblok, the bitstream stores the di�erene of the atual value fromthe predition in the residue, and the vetor o�set of the predition blok from the urrentblok is stored in the motion vetor.470 The H.264 standard has provision for multiple referene frames and variable blok sizes.This presents a hallenge sine a frame an be divided into an arbitrary number of ma-robloks and bloks with orresponding motion vetors. Hene one motion vetor may berepresent a 16x16 maroblok, a 16x8 blok, an 8x16 blok and so on, all the way downto a 4x4 blok. Two 16x16 marobloks within a frame may be subdivided di�erently and475 have di�erent number of motion vetors. Furthermore, neighbouring bloks may even bepredited from di�erent referene frames in the sequene. While these features make H.264a powerful oding standard, they also inrease omplexity for proessing. To overome anyissues that may arise from these variations, we onsider a motion vetor for eah 4x4 blokin the urrent frame and normalize it to aount for di�erent referene frames.480 As we mentioned above, we onsider a motion vetor for eah 4x4 blok in the frame. In asethere is a single motion vetor for, say a 16x16 blok, it is split into sixteen 4x4 bloks, eahhaving the same motion vetor. These motion vetors are then normalized by dividing it bythe distane between the urrent P-frame (or B-frame) blok and its assoiated refereneframe blok. This aounts for the di�erene in motion vetor magnitudes due to the use485 of multiple referene frames. If the original frame is assumed to be of size 4w x 4h, thenormalized motion vetor �eld an be visualized as a two-hannel map of size w x h. Thetwo hannels orrespond to the horizontal and vertial omponents of the motion vetor,respetively.
MVF(w,p|t) = mv(w,p|t).

|t − t∗|

|t− tref(p)|
(3.9)19



Here MV F is the motion vetor �eld, mv is the motion vetor read from the H.264490 bitstream, t is the index of the urrent frame, tref is the index of the referene frame forthe urrent blok p ≡ (i, j), t∗ is the index of the previous I-frame, and w ∈ {x, y} denotesthe motion vetor omponent.The pixels in the motion vetor �eld MV F an take any value, both positive and negative,within the searh range used by the H.264 enoder. Moreover, sine the motion vetors are495 usually interpolated to quarter pixel auray, the number of possible values inreases four-fold. This gives quite a large range of values in the motion map. The normalized motionvetor �eld MV F onsists of a multitude of values, indiating the bakground and movingobjets in the foreground. Suh moving objets usually onstitute ation sequenes, thatare of user interest. A group of bloks with idential motion is likely to be an objet. To500 �nd regions with homogeneous motion, we separate the range of available values into lassesand give eah lass a unique label. In our implementation, we use seven lasses - threeeah for positive and negative omponents and one for the zero omponent. The zero-valued omponent denotes a stationary bakground, whih is onveniently ignored fromonsideration for the attended region. The motion vetor �eld MV F is thus transformed505 into a M-map of lass-labels.
M (w,p|t) = Q (MVF (w,p|t)) = mi, (3.10)where the range of motion vetor values [mvi, mvi+1] fall in lass mi.Here Q (·) is a lassifying operator: it ats on eah element of MV F to determine whihlass the element falls in, and assigns a lass label to the orresponding loation in the

M-map. Thereafter, a morphologial losing operations removes noise from the M-map.510 The M-map is now partitioned into homogeneous motion regions, Rk, k = 1, 2, 3, ...K.Although there are only six labels for motion, there may be any number of homogeneousmotion regions in a frame. The regions Rk are reated in a way that they are mutually ex-lusive, M (w|t) =
⋃

k

Rk . In ase there is an overlap between two regions, the ontentiousportion goes to the region that exhibits faster motion.515 As a onvention, we hose R0, the region with k = 0 to be the stationary bakground.Thus, we obtain a set of regions Rk, k = 1, 2, 3, ...K whih are ontenders for the attendedregion in the P-frame. The attended region must be oherent aross frames in the videolip. Hene, the attended region must losely math the region R∗ we obtained from theI-frame in the preeding setion. The attended region Rt is the one whose entroid is the520 losest to Ct∗ after aounting for motion. 20



D (Rt) = arg min
Rk

‖ Ck + mv(Ck) − Ct∗ ‖, k = 1, 2, 3, ...K (3.11)Here Ck is the entroid of the region R, mv(Ck) is the motion vetor at loation Ck and
Ct∗ is the entroid of R∗(Eq. 3.8).The omputation for the entroid, Ck is similar to that shown in Eq. 3.8 for C∗. If we letthe pixel, p ∈ Rk denote the loation (i, j) in mvt, the entroid is:525

Ck =

∑

p∈Rk

p · mvt (p)

∑

p∈Rk

mvt (p)
(3.12)The region Rt is the best temporally oherent math to the visually attended region, R∗,as per the DSSA algorithm. The entroid of the region, Ct is stored for ropping, and theproess of attended region detetion ontinues until all the frames in the video lip areexhausted. Thereafter, the frames are ropped and sent to the display.3.2.4 Post-proessing and Display530 The sequene of entroids {Ct}

t=Tmax

t=0 obtained through the above proess is jittery, sinethey are omputed based only on the referene frame, and ignore other inter-frame or-relation. The jitter in frame transitions results in a poor viewing experiene. It an beminimized by smoothing the entroid sequene. For our implementation, we assume thatthe entroids follow a seond order polynomial trajetory over time. This is given by535
yt = a1t

2 + a2t + a3

xt = b1yt + b2t + b3

(3.13)where Ct ≡ (xt, yt) is the entroid for frame Ft.This smoothed entroid sequene is used to rop the frames before they are sent for display.The H.264 deoder bu�ers the deoded frames before writing them out. This allows usto smooth the entire entroid sequene before writing out the frames. If the bu�er size islimited, a viable alternative would be to use a di�erent smoothing �lter, suh as a moving540 average �lter. Only a few frames may be in the bu�er at a time for proessing. In ourimplementation, we obtained both types of outputs. For both the ases, we used equation3.13 on the entroid sequene. For the moving average �lter, we used a sequene of 3021



entroids at a time, and updated the set with new values for every iteration. The outputsubjetive results are omparable for this �lter. A better hoie for suh a sheme might be545 to use an adaptive �lter suh as a reursive least squares (RLS) �lter [14℄. The advantageof this is that using a forgetting funtion and an the initial set of inputs, the omputationalomplexity an be redued to �rst order. This would provide for better performane.The output display size is �xed to wdisp x hdisp. Knowing this and the entroid, Ct ≡

(xt, yt) we an easily determine the rop o�sets for the frame Ft to be given by: left-top550
≡

(

xt −
wdisp

2
, yt −

hdisp

2

) and right-bottom ≡

(

xt +
wdisp

2
− 1, yt +

hdisp

2
− 1

)

.The frames are now ropped so that the output frames retain only the ropped retangle.These ropped frames are then displayed on the sreen.Summary Before we end this hapter, here's a summary of the DSSA algorithm:1. Read input frame from bitsream555 2. If the urrent frame is an I_frame:(a) Deode the bitsream to get frame, Ft.(b) Compute visual salieny map, S = SaliencyMap (Ft)() The attended region R∗ is the one with highest Spatial Attention Value,SAV (eq. 3.7):560
SAV (R∗) = arg max

R
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(i,j)ǫR

S (i, j)





(d) Store Ct∗ = centroid (R∗).3. If the urrent frame is a P_frame:(a) Generate M-map from the motion vetors mvt (eqs. 3.9 and 3.10):
M (p) = Q

(

mv (w,p) ·
|t − t∗|

|t − tref (p) |

)

,where w ∈ {x, y} and Q (·) is a lassifiation operator.(b) Partition M (w|t) into non-overlapping homogeneous motion regions, Rk.565 22



() Find the attended region Rt ∈ {Rk}
k=K

k=1 whose entroid best mathesthe region R∗ (eq. 3.11):
D (Rt) = arg min

Rk

‖ Ck + mv(Ck) − Ct∗ ‖, k = 1, 2, 3, ...K(d) Store Ct = centroid (Rt).4. Repeat steps 1 through 3 until all the frames in the video sequene are570 proessed.5. Smooth the entroid sequene, {Ct}
t=Tmax

t=06. Crop frames {Ft}
t=Tmax

t=0 to a retangle of size wdisp x hdisp, entred at {Ct}
t=Tmax

t=0 .Output ropped frames.In the next hapter, we desribe the experiment to evaluate system performane and disuss575 the observed results.
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Chapter 4
Experimental Results and IllustrativeExamples
In the earlier hapters, we disussed the need for video adaptation, and desribed our580 Dynami Small-Sreen Adaptation (DSSA) algorithm. This display adaptation algorithmis based upon the salieny-based visual attention model proposed by Walther and Koh in[44℄. Whereas Walther and Koh built upon the earlier Itti and Koh [16℄ model to �ndattended regions in images, the DSSA algorithm extends this to videos, but fouses on it'sappliation to video adaptation. As a result, we are onerned with deteting one oherent585 attended region in the video sequene.This hapter overs our experimental setup, the benhmark tests and the results we ob-served. We also inlude some illustrative examples whih highlight the apabilities andlimitations of the display adaptation algorithm. The following setion overs the experi-mental setup.590 4.1 Experimental SetupAll the experiments were run on a notebook omputer, with an AMD Turion64 1.6 GHzproessor and 768 MB of RAM. We used a 32-bit Windows XP operating system and VisualC++ for programming. We implemented our algorithm on this system and integrated itinto the H.264 ode JM version 13.2. The DSSA algorithm is part of the H.264 deoder.595 We exeuted it to generate a set of test video sequenes. The input video sequenes wereeither CIF (352x288) videos or SIF (352x240) videos. All input sequenes were in the YUV4:2:0 olour format. 24



Sine assessing the e�etiveness of a visual detetion sheme is a subjetive task, manualevaluation is inevitable. To evaluate the performane of our sheme, we invited 14 respon-600 dents and showed them three video lips for eah sequene: the original (input), benhmarkand DSSA output video sequenes. The respondents were asked to rate eah of these testsequenes on a sale of 1 (Poor) to 5 (Good). We normalized the benhmark and DSSAratings with respet to the average input video ratings. The olumn Satis�ed Respondentsin the Tables 4.1 and 4.2 below lists the proportion of users who rated the orresponding605 video 3 or higher. As part of the evaluation, we also asked the volunteers to identify theobjet-of-interest in the video sequene, and ounted its ourrene in the input and outputsequenes. The ratio of the objet's ourrene in the output sequene to that in the inputsequene is listed under the heading Detetion Rate. Further, we measured the time takento adapt the input video sequene, and listed the Adaptation Time as the time taken per610 frame.4.1.1 Simpli�ations adopted for ease of implementation1. No B-frames in enoded video: We assume that the input H.264 video sequene has aIPPP frame struture. This makes the implementation easier, and allows us to hekthe performane of the algorithm. B-frames are bi-preditive frames, and an use615 referene frames both from the past and the future in terms of display order. Thusin the algorithm we presented in the previous hapter, B-frames an have a negativevalue of t − tref whereas P-frames will always have a positive value for this term,sine for P-frames t > tref always. However, we used the absolute value |t − tref | inour algorithm, so it an work with B-frames as well.620 2. QCIF video output : We �xed the default output display size in our algorithm tothe QCIF format, 176x144. This was done simply to redue the number of variableparameters. The system an be easily modi�ed to take this parameter as input.3. Some enoder parameters: All videos are enoded in FRExt High Profile, Level2. Other parameters worth noting inlude IntraIDRPeriod=15, IDRPeriod=15,625 QPISlie=28, QPPSlie=28, SearhRange=32.We disuss the simulation results in the next setion.
25



4.2 Simulation ResultsThis setion tabulates the results of subjetive assessment on the benhmark output andthe DSSA output videos. The output video ratings were normalized with respet to the630 orresponding input video ratings in order to o�set any di�erene in video quality, pereivedby the respondents.4.2.1 Benhmark testOur benhmark was the visual attention model applied independently to eah deodedframe. This is a logial hoie for our benhmark sine the DSSA algorithm extends the635 attended region detetion from images to videos, and in doing so, it makes use of theadditional motion information present in the video bitstream. The benhmark is reatedby running the visual attention module separately on eah deoded frame of the H.264bitstream. This gives us the attended region in eah frame. The region entroids are thenpassed through the smoothing �lter, after whih the frames are ropped and displayed. No640 motion information is used. Table 4.1 lists the performane of the benhmark.Table 4.1: Estimating attended region: BenhmarkSequene Attendedobjets Objetdeteted in#Frames Objetpresent in#Frames DetetionRate (%) Satis�edRespon-dents(%) AdaptationTime(s/frame)Coastguard Small private boat 90 91 98.90 75 5.035Large oastguardboat 50 59 84.75Dravid Ball and bat 10 17 58.82 85.71 4.923Football Player#82 (bluejersey) 115 115 100 87.5 4.687Su�e 87 120 72.50Irene Hands 433 539 80.33 100 4.736Mobile Ball and engine 103 138 74.64 62.5 4.641Pingpong Raquet and ball 31 67 46.27 62.5 4.632Tempete Yellow �ower 122 259 47.10 85.71 4.764
26



4.2.2 DSSA Algorithm resultsTable 4.2: Estimating attended region: DSSASequene Attendedobjets Objetdeteted in#Frames Objetpresent in#Frames DetetionRate (%) Satis�edRespon-dents(%) AdaptationTime(s/frame)Coastguard Small private boat 91 91 100 75 0.556Large oastguardboat 59 59 100Dravid Ball and Bat 17 17 100 85.71 0.700Football Player#82 (bluejersey) 115 115 100 75 0.484Su�e 100 120 83.33Irene Hands 496 539 92.02 100 0.452Mobile Ball and engine 121 138 87.68 71.4 0.521Pingpong Raquet and ball 34 67 50.47 75 0.492Tempete Yellow �ower 225 259 86.87 100 0.499As shown in Table 4.2, the framework determines the appropriate attended objet from avideo sequene in over 80% of the frames. The system performs better for sequenes inwhih the attended objet is larger and is moving uniformly. The dynami nature of the645 system is demonstrated in the Coastguard sequene, where the amera pans �rst from leftto right following the private boat, and then pans from right to left traking the oastguardboat. The system is able to follow both the boats appropriately and handles the hange indiretion with ease. Figure 4.1 demonstrates this feature.When ompeting objets are available, the system may oasionally hoose distrators over650 the attended objet. This ours in the Pingpong sequene where the bright red raquet,the player's arm and the smaller but fast moving ball are all ompeting for saliene. Thesystem is not always able to �t all of them in the output frame. As a result, the Pingpongsequene only has a 50% detetion rate.In the Mobile sequene (Fig. 4.2), the system follows the train engine and the ball initially655 but is later distrated by the srolling bakground and has to deide between ompetingsalient objets. As a result of this, it misses the engine in some frames. However, theoverall result is still fairly satisfatory.In [3℄ Cheng et al obtained intensity, olor and motion feature maps from soure videosequenes. They also proessed the video for amera motion. To evaluate their sheme,660 27



they showed 15 video lips marked with the estimated RoI to 10 observers, who rated thelips as Good, Aeptable or Failed. The results indiate over 95% of the respondentsfeel omfortable (Good or Aeptable) with the determined RoI. Zhai and Shah used olorhistograms and motion ontrast based on planar motion between frames to generate aspatiotemporal salieny map [47℄. They proessed soure video sequenes to determine the665 attended region. In a test similar to above, they showed their video lips with markedattended regions to 5 assessors, who one again rated the lips as Good, Aeptable orFailed. Their results show that over 90% of the respondents were satis�ed with the detetedregion. Neither literature has any other measure for evaluation.Unlike [3℄ and [47℄, our framework uses the enoded ompressed video bitstream as input,670 and the motion vetors form our soure of motion information. We also produe a roppedoutput whih is likely to introdue some distortion, leading to redued video quality. It is tobe noted that even with 100% aurate attended region detetion, the ropped output videosequene may not be pleasant to view. Our results show that over 85% of the respondentswere satis�ed with the output video sequene. Also the attended region was satisfatorily675 identi�ed with a detetion rate of over 80%. Another point of ontrast is that the DSSA isa ausal sheme. While [3℄ utilizes a ontinuous video shot for RoI determination, [47℄ usessuessive frames to generate the temporal and spatial salieny maps. DSSA proesses anddetermines the attended region in I-frames followed by that in the suessive P-frames,until the next I-frame is enountered. This ausal nature of DSSA makes it suitable for680 appliation in a transoder.One limitation of the system is that the P-frame attended region detetion depends on thesuess of the I-frame region detetion. In ase there is a detetion failure in the I-frame,the following 14 P-frames in the GoP will also have an erroneous attended region seleted.However, the system should reover and produe satisfatory detetion for the next I-685 frame. Sine the entroids of all the frames are proessed together in the smoothing �lter,the error in one GoP is reti�ed to some extent. Despite the reti�ation, the DetetionRate is expeted to drop in suh a ase.Overall, the DSSA framework shows promising results, and is a good andidate for real-world video adaptation appliations. We present our onluding remarks and a few prob-690 lems for future researh in the following hapter.
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Coastguard: Frame 42

Saliency Map: Frame 42

Coastguard: Frame 80

Saliency Map: Frame 80

Cropped Frame 42 Cropped Frame 80

Figure 4.1: Frame 42 and Frame 80 of the Coastguard sequene shows the DSSA swithingfrom following the small boat to the large oastguard boat. Cropped frames are saled totwie their height and width. 29



Mobile: Frame 72

Saliency Map: Frame 72

Mobile: Frame 132

Saliency Map: Frame 132

Cropped frame 72 Cropped frame 132

Figure 4.2: Frame 72 and Frame 132 of the Mobile sequene shows the DSSA following theengine and red ball initially, but distrated by the bakground later. Cropped frames aresaled to twie their height and width.
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Chapter 5
Conlusion
We developed a framework to determine the attended region in a H.264 video sequeneusing a bottom-up salieny approah. The attended region is hosen based on the lumi-695 nane, orientation (texture) and motion features oded in the bitstream. The luminaneand orientation information are obtained from the deoded I-frame, and are used to reatethe salieny map S. We use the motion vetors in P-frames to generate a homogeneousmotion region through motion lassi�ation in M-maps, and then selet the oherent regionas the attended region in the P-frame. When the output sequenes were shown to a set of700 respondents, they gave an enouraging response. Suh a system has real-world appliationand great potential for emerging tehnologies.5.1 Appliations1. This framework an be diretly applied to small form fator devies, suh as handheldomputers and media players for wathing video. Most users aren't happy to see705 videos on their devies due to the poor resolution of the video on-sreen. With adisplay adaptation algorithm, the viewing experiene an improve signi�antly.2. DSSA an be applied not only in the devies, but an also be used by ontent deliveryoperators at the soure to transode video before transmission. For instane, a singlesoure video sequene may be transoded into a video ompatible for digital TV710 broadast and another ompatible for mobile video players. The DSSA algorithman adapt eah output video aording to the desired resolution before they are re-enoded for transmission. 31



5.2 LimitationsAs with every system, the DSSA sheme also has its limitations. Some of these are listed715 here.1. We assumed that the attended objet is visible in the �rst I-frame. Attended regiondetetion in P-frames depends on suessful detetion of the attended region in theprevious I-frame. Thus, the DSSA is a ausal system. In ase the system detets failsto detet the orret region in the I-frame, the remaining P-frames in the GoP will720 also hoose the wrong region. But the system is expeted to reover and detet theorret region for the next I-frame. Sine the smoothing �lter is applied to the entireset of entroids, small errors in the attended region entroids are likely to be reti�ed.However, larger errors might not be fully ompensated. Therefore, we expet a dropin the detetion rate.725 2. At this time, our sheme laks any fuzziness in the attended region seletion. In otherwords, we onsider only one RoI at a given time for any past or present frame. Thislimits the oherene tests for the attended region built into the DSSA. It is possiblethat the most salient RoI for a frame may not be the best hoie for the attendedregion when the entire video sequene is onsidered. The sheme may be improved730 by building in some fuzziness, wherein multiple RoIs ould be marked on eah frameand a seletion algorithm later determines the optimal set of RoIs for �nal output.3. If the DSSA were to onsider fuzziness, we would also have the option of seleting aweighted entroid based on region sizes as well as salieny values. This might aountfor the oasions when di�erent viewers want to view di�erent objets in the video,735 by inluding multiple ontending objets in the adapted video sequene.4. The P-frame attended regions in the DSSA sheme are determined based on theattended region deteted in the I-frame. This limits the robustness of the system.Considering the orrelations among P-frames would give us more information aboutthe RoI. Furthermore, sine motion is a very important attention feature, suh a step740 is likely to provide an improved estimate for the attended region seletion.5.3 Future WorkThe urrent appliation uses motion information in onjuntion with salieny-based at-tended region loation to determine a meaningful video region to display. This work pro-32



vides opportunity for further researh in a number of areas. These inlude the following:745 1. So far, the P-frame region determination is related only to the referene I-frame.In that sense, it is a memoryless system. The system performane an improve byonsidering the inter-frame orrelation among P-frames. If the knowledge of pastattended regions is available, the system an also utilize it to restrit its searh forthe attended region to a smaller part of the urrent frame.750 2. The benhmark test using the Walther-Koh model [44℄ is limited in sope sineit was designed to evaluate images (rapid stati senes). Sine image analysis isdi�erent from video analysis, a di�erent benhmark may be onsidered to aountfor motion sequenes. A possible subjetive benhmark test ould be to use eye-trakers on human partiipants, and reord their �xations through gaze traking.755 Suh an evaluation an diretly provide us with the seleted RoI, whih an then beused as a benhmark.3. The output videos are sometimes jittery sine the entroids do not fall on a smoothtrajetory. At the time of writing, the authors are not aware of any smoothing �lterthat an aount for suh dynami systems. A �lter that an preserve the ontinuity760 of the video sequene will greatly improve the viewer satisfation.4. The present system takes about 0.5 seonds to proess eah frame. This is rather slowfor real-time appliations. The slowest step in the whole system is the Gabor �lterstage to determine orientation ontrast. Researh is needed to study the e�ay ofother �lters or proesses whih an be suessfully substituted for the Gabor �lter.765 A possible diretion for work is to use the existing DCT oe�ients for texture�ltering. We know that the DCT oe�ients ontain spatial frequeny omponentsof the image. Instead of using a Gabor �lter to obtain texture information fromthe pixel domain, we an use the existing DCT oe�ients in the bitstream, suh asin [11℄. Sine the DCT oe�ients an be read diretly from the bitstream, suh a770 sheme should be fast and would save proessing time signi�antly.5. Lastly, DSSA provides a smaller output video to an input video. This an be es-peially helpful for transmission over bandwidth-onstrained networks. This systeman be further developed to behave as a transoder, wherein, the existing motioninformation an be reused, thus saving resoures in the ostly motion estimation and775 ompensation steps. As we mentioned in Chapter 4, the DSSA is a ausal system,whih makes it suitable for appliation in a transoder. 3G servie providers andusers will derive immense bene�t from suh a transoder.33
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