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Abstra
tWe develop a framework that uses visual attention analysis 
ombined with temporal 
o-heren
e to dete
t the attended region from a H.264 video bitstream, and display it on asmall s
reen. A visual attention module based upon Walther and Ko
h's model gives usthe attended region in I-frames. We propose a temporal 
oheren
e mat
hing frameworkthat uses the motion information in P-frames to extend the attended region over the H.264video sequen
e. Evaluations show en
ouraging results with over 80% su

essful dete
tionrate for obje
ts of interest, and 85% respondents 
laiming satisfa
tory output.
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Chapter 1
Introdu
tion
The world is making rapid strides in 
ommuni
ation, and this is 
hanging the way we inter-a
t with one another. Digital media is at the forefront of this ongoing 
hange. Multimediahas be
ome a part of our daily lives in more ways than we 
an imagine. People 
ommu-ni
ate not only through text-based emails but also through audio and video messages and
lips. With videos be
oming in
reasingly popular with every passing day, there is a need to5 make this media more robust and a

essible to a variety of users a
ross di�erent platforms.Multimedia appli
ations are be
oming more diverse and are shared over 
ommuni
ationinfrastru
ture 
omprising of di�erent underlying networks and proto
ols. Hen
e we needto inter-network multimedia 
ommuni
ations over heterogeneous networks. In a networkwhere end users 
onne
t to a video sour
e through links of di�erent 
apa
ities, the sour
e10 usually adjusts the bandwidth for the 
ompressed video to meet the available 
apa
ity onthe most stringent link. In addition to this, end users often use di�erent devi
es su
h asdesktops, 
ellular phones, handheld 
omputers et
. for video 
ommuni
ation. Sin
e mosthandheld devi
es have limited 
omputing and display 
apabilities, the high quality videoen
oded earlier may have to be 
onverted into one of lower quality for display on su
h15 devi
es. Furthermore, as the number of 
oding standards su
h as MPEG-2, MPEG-4, VC-1, H.261, H.264 et
. in
reases, there is a growing need to 
onvert between videos 
odedthrough di�erent standards. Video trans
oding provides te
hniques to solve these problems[1, 41℄. The present work has been developed to pro
ess videos en
oded with the H.264video standard. We take a 
loser look at this in the next se
tion.20
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1.1 En
oding Video and the H.264 standardBroadly speaking there are two approa
hes to video 
oding, viz. blo
k-based and obje
t-based. In the blo
k-based approa
h, ea
h frame is divided into a number of blo
ks, andmotion estimation and 
ompensation performed at the blo
k level. These blo
ks are usuallyof a �xed size, though variable size blo
ks might also be used, as they 
an give an improved25 mat
h for the 
urrently sele
ted region of the frame. In a
tual pra
ti
e, a frame is dividedinto ma
ro-blo
ks (MBs) and these are subdivided into blo
ks. In 
ase the en
oder uses dif-ferent blo
k sizes, there is a restri
tion on the permissible sizes - this redu
es 
omputational
omplexity, but at the expense of video quality. All major 
oding standards like MPEG-1,MPEG-2 and H.264 use the blo
k-based 
oding approa
h. The MPEG-4 standard goes30 beyond the blo
k-based 
oding approa
h by introdu
ing the 
on
ept of a video obje
t layer(VOL), to allow obje
t-based video en
oding [32℄. In obje
t-based video en
oding, theobje
ts of interest in the video are marked at the video sour
e prior to en
oding. Sin
ethe en
oder knows the region that 
omprises of the obje
t, it ensures that this region isen
oded for the best possible quality. To the best of our knowledge, this s
heme is unique35 to MPEG-4 and, as su
h, is in
ompatible with other video 
oding standards. Obje
t-based
oding makes intuitive sense, sin
e in everyday life humans don't see s
enes as blo
ks butrather in terms of the obje
ts that make up the s
ene. In every s
ene there are obje
ts inthe foreground that are in fo
us while the remaining obje
ts 
onstitute the ba
kground.Some of these obje
ts 
an be identi�ed in images through algorithms that �nd regions of40 interest (RoI). Su
h algorithms typi
ally use the brightness, 
olour and texture informationof the s
ene along with the 
onne
tivity of the region to sele
t the RoI. However, markingobje
ts on the video frames requires sele
ting key frames or index frames in the video andmarking the obje
t or feature on ea
h of them. This is most a

urate when done by aperson, but that is an extremely time-
onsuming pro
ess. Even otherwise, this pro
ess is45 
omputationally intensive.Video and image pro
essing based on obje
ts of interest and RoI are nearly always done inthe spatial (or pixel) domain. Spatial domain video pro
essing is 
omputationally intensiveas it deals with a large amount of data. A more e�
ient approa
h is to design a systemto work with 
ompressed (transform domain) video. Sin
e videos extensively deal with50 moving obje
ts, motion is a useful 
riterion to identify relevant obje
ts. Obje
t tra
kingor segmentation in video �nds appli
ations in video surveillan
e, video indexing et
. Thealgorithms that operate in the transform domain utilize two features of a MB, viz. motionve
tor (MV) and transform 
oe�
ients. MVs are obtained through motion 
ompensationbetween 
urrent frame and its referen
e frame(s) on a blo
k-by-blo
k (or MB-by-MB)55 2



basis. An MV gives the o�set of the 
urrent blo
k to the mat
hing blo
k in the referen
eframe. It gives information about the temporal 
orrelation between the two frames. Onthe other hand, the transform 
oe�
ients 
ontain the image information. The 
ontent ofthe transform 
oe�
ients di�er depending on the type of blo
k that is en
oded. A blo
kmay be inter-
oded or intra-
oded. An inter-
oded blo
k is one that is predi
ted from a60 referen
e frame. The transform 
oe�
ients of these blo
ks 
ontain residues of the motion
ompensation. On the other hand, intra-
oded blo
ks are predi
ted either from otherblo
ks in the 
urrent frame or else en
oded as-is. The transform 
oe�
ients of intra-
odedblo
ks 
arry the transformed signal of the original image. Therefore, these blo
k transform
oe�
ients 
an be used to re
onstru
t the DC image.65 However, the H.264 
oding standard (alternately 
alled AVC: Advan
ed Video Coding,or H.264/AVC) employs several new 
oding tools and provides a di�erent video format,whi
h makes working on the 
ompressed video a 
hallenging task [32, 35℄. While the earlierMPEG standards employed a dis
rete 
osine transform (DCT), H.264 uses a transform thatis similar but uses only integer operations. For 
onvenien
e, we refer to this transform as70 DCT in the rest of this do
ument. Furthermore, very little literature is available about workdone on H.264 
ompressed video analysis. In H.264, the intra-
oded blo
k is spatially intra-predi
ted from its neighbouring pixels. So, the DCT 
oe�
ients 
arry spatial predi
tionresidue information. H.264 also supports variable blo
k-size motion 
ompensation. A MBmay be partitioned into several blo
ks and have several MVs with varying blo
k size. This75 is in 
ontrast to the MPEG standard, whi
h has a regular blo
k size. H.264 has beensteadily gaining popularity and 
oming into widespread use. It is now the 
ode
 of 
hoi
efor appli
ations ranging from television broad
ast to mobile videos. Now that we have seenwhat video en
oding is about and got an idea of the H.264 video standard, let's take a lookat why we need to adapt videos and how it 
an be done.80 1.2 Need for Video AdaptationAs we noted at the beginning of this 
hapter, 
ontemporary viewers wat
h videos ondi�erent kinds of devi
es, some of whi
h have lower pro
essing and display 
apabilities.Today's handheld devi
es provide the option to wat
h video, but some details might be lostdue to the smaller s
reen size. Let's take a so

er game for instan
e. The so

er ball that is85 
learly visible on a regular size television s
reen may be rendered so small in the display ofthe handheld devi
e that it is invisible to the human eye. This happens be
ause the videostream available to the handheld is of lower resolution than the one on television. Owing3



to their limited 
omputing 
apability, the handheld devi
es usually have a downsampledversion of the original video stream. Downsampling is also required when video has to be90 streamed over a network with 
onstrained bandwidth. Sin
e, downsampling is not sele
tiveabout parti
ular regions of the video, the output stream is uniformly degraded. However,from the viewer's perspe
tive, if the relatively small so

er ball - the obje
t of interest - isdownsampled, there is a great loss in video quality.In order to over
ome this drawba
k, a video 
lip needs to be adapted for display on su
h95 handheld devi
es. A simple method for adaptation would be to show only the most relevantpart of the original video on the s
reen. In other words, a video 
lip 
an be 
ropped aroundthe RoI so that it �ts the handheld devi
e's smaller s
reen. Unfortunately, 
ropping algo-rithms do not a

ount for obje
t motion. Hen
e, the 
ropped region needs to be adjustedin su
h a manner that it always in
ludes the obje
t. [3, 31, 47℄ propose te
hniques for100 automati
 RoI determination in videos. However, 
ropping and tra
king algorithms workwholly in the spatial domain and thus require large pro
essing power for 
omputations.Thus, there is a need to develop a framework by whi
h videos 
an be intelligently adaptedfor viewing on small form fa
tor devi
es. With H.264 being slated as the future standardfor all video and the rising popularity of portable devi
es, su
h a s
heme will enable users105 to wat
h videos on their devi
es without severe quality degradation. A key requirementfor su
h visual 
ontent adaptation is that the output �ts human per
eption. This requiresthat we identify regions that re
eive maximum `visual attention'. The 
on
ept of visualattention is 
overed in the next se
tion.1.3 Role of Visual Attention110 The obje
ts whi
h form the fo
us of attention of a viewer are referred to as AttentionObje
ts (AOs). If a video 
lip is adapted to a smaller s
reen in the manner suggestedat the end of the previous se
tion, we would want to retain the AOs from the originalvideo sequen
e. One of the ways to 
rop a video intelligently is to do it manually, on aframe-by-frame basis. Unfortunately, this method is not feasible owing to the sheer volume115 of work. For instan
e, a 5-minute video 
lip running at a regular 30 frames per se
ondwill have 9000 frames! Even if the person skips some frames, �nding the obje
t of interestin a so

er game or in a short movie is a daunting task. If we 
an �nd a way to identifyAOs in a s
ene, without user intrusion, it will save a lot of time. This is where visualattention-based pro
essing 
omes in. The human vision system responds more to 
ertain120 image features and less to others [7, 17℄. Humans are known to be sensitive to 
ontrasts4



and edges in a s
ene; they are more sensitive to luminan
e (brightness) than to 
olourand they fo
us more on the 
entre of the s
ene than on the surroundings. By modelling asystem 
losely to the human vision system, we 
an get a good idea of what features in as
ene are likely be of most interest to a viewer. In [16℄, Itti and Ko
h developed a model125 
losely based on the human vision system to identify AOs in images. They use low-levelimage features, viz. intensity, 
olour and orientation to pro
ess into feature maps, whi
hare further pro
essed and 
ombined into a salien
y map. Regions of the salien
y map withhigh values 
orrespond to attended regions of the image. It has proved to be su

essful inidentifying AOs even in noisy images, and is a promising 
andidate for su
h an appli
ation.130 One limitation of the Itti and Ko
h model is that it applies to stati
 images but not tovideos. In order to apply it to videos, we 
ombine this model with the motion informationalready present in the en
oded video bitstream. Consider a video sequen
e 
onsisting ofI-frames and P-frames. The intra-
oded I-frames have no motion information, but they
an be de
oded without having to resort to predi
tion from other frames. Consequently, I-135 frames are good 
andidate frames in whi
h to sear
h for AOs. The P-frames in the video areinter-
oded, whi
h means that they are predi
ted from I-frames or other P-frames. Theseframes are predi
ted through an extensive pro
ess of motion estimation and 
ompensation.The motion information present in the P-frames 
an be used to determine the region wherethe AO is lo
ated in those frames. On
e the region 
ontaining the AO is identi�ed a
ross140 the entire video sequen
e, it is extra
ted for display on the smaller s
reen.To demonstrate the behaviour of this system, let's revisit the example of the so

er gamefrom the previous se
tion. Figure 1.1 below shows the results of resizing and 
ropping aframe from a so

er game. The original frame has a resolution of 320x240 pixels. Thisframe (�gure 1.1(a)) shows a number of players on the �eld, but the AOs in the frame145 are the so

er ball (in
luding the really 
lose players) and the s
ore. We have boundedthese with a white re
tangle in the �gure. When the frame is resized to a quarter of theinitial size (160x120 pixels), neither the ball nor the s
ore is legible (�gure 1.1(
)). Theyhave been rendered too small to be seen. However, when the region around these AOsis 
ropped out (160x120 pixels), both the s
ore and the ball 
an be seen 
learly. This is150 shown in �gure 1.1(b).
5



Figure 1.1: Demonstration of ideal system behaviour: (a) Original frame at 320x240 reso-lution (b) Cropped out RoI of size 160x120 (
) Resized frame at 160x120 resolution
Figure 1.1 demonstrates one example where video adaptation 
an be su

essfully applied.Su
h adapted video 
an also be re-en
oded into smaller video 
lips that 
an be transferredover bandwidth 
onstrained networks. We will dis
uss the design and implementation of155 this system in the 
hapters that follow.1.4 Do
ument OrganizationThis do
ument details the thesis work and 
onsists of �ve 
hapters. The next 
hapter,Chapter 2, is a survey of existing literature related to the present work. Chapter 3 de-s
ribes the design of the framework we developed for small s
reen adaptation using a visual160 attention model; and in Chapter 4, we present some examples that illustrate the 
apabilitiesand limitations of the present work. Finally, we round up the do
ument with 
on
lusionsand a dis
ussion on the future dire
tions of this work in Chapter 5.
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Chapter 2
Related Literature165
The previous 
hapter gave an overview of H.264 video 
oding, and established the need forvideo adaptation in a world of in
reasingly varied 
lient devi
es. We also dis
ussed howvisual attention analysis is 
ru
ial for e�e
tive video adaptation. The present 
hapter dis-
usses existing literature on 
ompressed domain video pro
essing, visual 
ontent adaptationand visual attention analysis. We start with work on human vision and per
eption.170 The human vision system (HVS) is a 
omplex network of neurons and light sensitive re-
eptors. Over the years, a lot of resear
h has gone into determining how humans see andwhat attra
ts their attention to a s
ene. Human per
eption �rst pi
ks the regions of thes
ene that stimulate the HVS and then interprets the remaining s
ene. These regions usu-ally 
orrespond to prominent obje
ts in images or a
tion in video sequen
es. Psy
hology175 studies suggest that the HVS per
eives external features separately [37℄ and is sensitiveto the di�eren
e between the attended region and its neighborhood [10℄. The 
olle
tiveresults of su
h resear
h provide us with a set of features [7, 17℄ that are widely a

epted to,so to speak, grab human attention. These in
lude 
olour, orientation, size, motion, lustreand shape to name a few. This has led to work based on the dete
tion of feature 
ontrasts180 to trigger the HVS [16, 44℄. All these literature use visual attention models to determinethe attended region(s) in images.Itti et al proposed one of the earliest works in visual attention dete
tion by utilizing 
on-trasts in 
olor, intensity and orientation of images [16℄. They used these low-level featuresfrom digital images to 
reate feature 
ontrast maps and further pro
ess them into a salien
y185 map. Walther and Ko
h extended this idea [44℄ to dete
t attended regions of any sizearound the salient points in the salien
y map. Milanese demonstrated a similar bottom-upapproa
h for a salient region dete
tion framework [27℄. Chen et al [2℄ used the salien
ymap generation methods proposed in [16℄ to determine per
eptually important regions in7



an image that hold Attention Obje
ts (AOs). After identifying the AOs and the asso
iated190 region(s) in the image, their bran
h-and-bound algorithm determines the optimal set ofAOs to be in
luded in the �nal image. The method is shown to be e�
ient and has provi-sion to identify fa
es and text and give them priority over other features. The output imagesize 
an be altered to �t spa
e 
onstraints su
h as on a web site or for a thumbnail image.Cheng et al used intensity, 
olor and motion features to determine the region-of-interest195 (RoI) in a video sequen
e, based on aestheti
 prin
iples [3℄. They employed a shot dete
tionalgorithm on the sour
e video to form 
lusters of frames, and then applied salien
y-basedattention pro
essing to ea
h 
luster. Their subje
tive tests show 
onsistently good resultsa
ross di�erent kinds of videos. Zhai and Shah utilized a temporal attention model basedon point 
orresponden
e and a spatial attention model based on 
olor 
ontrasts, and 
om-200 bined them into a spatiotemporal salien
y map to dete
t the attended region [47℄. Ma etal also developed a user attention model [23, 24℄ for video summarization. In [45℄, Wang etal propose the wavelet-based foveation s
alable video 
oding (FSVC) algorithm that usesa foveation-based HVS model to determine visually important 
omponents in the videosequen
e. They proposed an adaptive frame predi
tion s
heme for en
oding and de
oding205 videos that allows good quality in rate s
alable video 
oding systems. Moreover, this �exi-ble s
heme 
an be adapted to di�erent video appli
ations in
luding telemedi
ine and video
ommuni
ation over heterogeneous networks.Video obje
t segmentation is an extension of image segmentation to videos, and dealswith extra
tion of RoI's from video. Sin
e our framework pertains to identi�
ation and210 extra
tion of obje
ts of interest, relevant literature is found in this area as well. In 1997,Yining Deng and B.S. Manjunath proposed a segmentation method 
alled JSEG [9℄ inwhi
h they quantized the 
olours present in an image into 
lasses and use the 
lass labels togenerate a 
lass map for the image. The 
lass map 
ontains 
olour and texture informationwhi
h is used to 
al
ulate a lo
al parameter, J and this is further saved as a J -image. This215 J -image is then used for spatial segmentation. A similar approa
h is applied to videossequen
es. Videos are partitioned into shots - sequen
es of 
ontinuous a
tion - and thenobje
ts are segmented and tra
ked a
ross frames. The region tra
king feature is embeddedin the segmentation algorithm and gives robust results. One of the major limitations ofthis s
heme is over-segmentation due to varying illumination. In [8℄, they used the 
olour,220 texture and motion information from MPEG 
ompressed videos to 
reate an indexings
heme to enable fast retrieval. The fairly simple approa
h requires partitioning the videointo shots as in [9℄ and then using the 
olour histogram to get 
olour information andgenerate labels. They also use Gabor texture features and developed a novel approa
hto tra
king motion using the motion histogram. These three features are used to 
lassify225 8



videos and for 
ontent-based sear
h and retrieval. The system performs well but is limitedby the use of global low-level visual features. Lo
alized obje
t feature representation isexpe
ted to yield better results.The foregoing work use sour
e video sequen
es and images for pixel domain pro
essing.However, visual 
ontent is always transmitted in an en
oded bitstream. While it is possible230 to de
ode and pro
ess in the pixel domain, the latter is 
omplex and time-
onsuming. Itis desirable to use the bitstream information to adapt 
ontent e�
iently. Zeng et al [46℄employ a blo
k-based Markov Random Field (MRF) to segment moving obje
ts from theMV �eld obtained from the 
ompressed bitstream. The method segments moving obje
tsagainst a stationary ba
kground, at real-time pro
essing speeds with over 80% re
all and235 40% pre
ision. Liu et al [22℄ proposed a s
heme to use watershed �lling on a normalizedMV �eld to segment a frame into homogeneous motion regions. This is followed by a binarypartition tree (BPT) s
heme for the merging pro
ess. The system demonstrates over 85%re
all and 60% pre
ision for the tested sequen
es with real-time pro
essing. Both of thesesystems, however, are sus
eptible to errors in the presen
e of shadows or obje
ts moving240 at nearly the same speed.Salien
y dete
tion is an important attentional me
hanism and is largely determined bywhat our senses per
eive. This was used for motion dete
tion and tra
king in [36℄, whereTian and Hampapur dete
t salient motion for video surveillan
e in three steps: �rst, thetwo-dimensional opti
al �ow of the image is 
omputed using the Lu
as-Kanade method.245 Se
ond, a temporal �lter is applied to the di�eren
e images to �lter out noise - whi
hin
ludes regions not moving in the same dire
tion over a group of eleven frames. Lastlythese are 
ombined and a region growing algorithm gives the region of interest. Thissystem is able to dete
t motion against a 
omplex moving ba
kground and 
an be used forreal-time surveillan
e operations. In [29℄, Sonia Mota et al presented a per
eption-based250 moving obje
t segmentation s
heme that uses Rei
hardt motion dete
tors to 
hara
terizethe motion in the s
ene. This results in a noisy salien
y map, whi
h is further pro
essed bya neural stru
ture to sele
t independent moving obje
ts in the s
ene by pi
king a 
lusterof pixels moving 
oherently, with approximately the same velo
ity. In 
ase of more thanone moving obje
t, the system only works when the relative speed(s) between the moving255 obje
ts is large.In the present work, we use the attended region dete
tion proposed by Walther and Ko
h[44℄ and 
ombine it with a homogeneous motion region dete
tion algorithm to identify thesalient moving feature(s) in H.264 videos. This framework is built into the H.264 de
oderJM (joint model) version 13.2. The de
oder �nds the best attended region that mat
hes the260 9



spe
i�ed output frame size from the input H.264 video sequen
e and extra
ts it for display.The next se
tion 
overs the problem formulation and des
ribes the proposed algorithm.
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Chapter 3
The Display Adaptation Algorithm
So far, we have established the ne
essity of a video adaptation system that operates on265 
ompressed domain video bitstreams. We also saw some related literature on adaptationand visual attention based pro
essing. The HVS 
an not identify obje
ts below some
riti
al resolution. However, there seems to be no �xed point for this 
riti
al resolution:it varies with the type of obje
t we view. For instan
e, humans 
an distinguish a fa
efrom other features relatively easily, and 
an also identify the person from his/her fa
ial270 features at quite a low resolution. At the same time, they 
an not identify the letters ofthe alphabet with equal ease - humans need a relatively larger resolution to read text.Let's revisit the example from Se
tion 1.2. Consider a person wat
hing a so

er game on abig s
reen television. The so

er ball and the player(s) around it are usually in fo
us andlo
ated near the 
entre of the s
reen. Along with this, a substantial part of the �eld is in275 view and there are other players at di�erent parts of the �eld. In addition to the s
eneon the �eld, the 
urrent s
ore and play time is displayed in a text box at the top of thes
reen. If this video is resized to �t a small s
reen, the so

er ball may be represented bya small dot and the text may be rendered illegible at low resolution. Figure 1.1 shows aframe from su
h a so

er video.280 The original frame is 320x240 pixels in size (�g 1.1 (a)). When this is s
aled down to160x120 pixels, the so

er ball is no longer 
learly visible. The s
oreline at the top is notreadable either (�g 1.1 (
)).One 
an think of a few methods to avoid this issue. One option 
ould be to de
ide aminimum permissible resolution beforehand. If 
al
ulations indi
ate that the resized video285 will to be smaller than the minimum permissible size, it 
an be 
ropped around the edges.The drawba
k in this method is that it assumes a priori knowledge of the video 
ontent,11



that allows us to sele
t su
h a resolution. In a pra
ti
al s
enario su
h information isunavailable, and an alternative would be to 
rop the video to retain the most relevantse
tion. As we see in Figure 1.1 (b), when the original frame is 
ropped to 160x120 pixels,290 their original resolution is preserved, and both the so

er ball and the s
oreline are seen as
learly as in the original frame. However, it is not straightforward to 
rop a video 
lip insu
h a manner that only the relevant se
tions are preserved. To the best of our knowledge,
ropping algorithms take the 
rop o�sets for the left, right, top and bottom of the videoand apply it uniformly to all the frames in the video 
lip. The drawba
k to using �xed 
rop295 o�sets is that the so

er ball may not be within the 
ropped window in every frame. Insu
h a 
ase, the result is a video 
lip in whi
h the so

er ball goes in and out of the s
enein su

essive frames. People will experien
e dis
omfort when viewing su
h poor qualityvideo. At this point, it is evident that variable 
rop o�sets will yield better results - theproblem is to determine these 
rop o�sets.300 3.1 Ba
kgroundThe pre
eding a

ount is a problem of video adaptation. The video 
lip must be 
roppedin su
h a manner that the visually interesting features are retained in the output. Thequestion of visually interesting features has intrigued humans for a long time. [7, 17℄des
ribe a number of studies on vision and visual attention done over the years that try305 to answer this question. The results identi�ed 
ertain features that stimulate vision and
apture visual attention, some of whi
h in
lude lustre, 
olour, shape and size, texture andorientation and motion.As we dis
ussed in Se
tion 2, visual attention analysis helps us determine the attendedregions in visual 
ontent. These often 
orrespond to high 
ontrast obje
ts and/or a
tion310 sequen
es in videos. The adapted output video sequen
e should retain these attendedregions. Thus our problem 
an be framed as follows:Problem-statement: How do we determine the attended region in a given 
ompressedand en
oded H.264 video sequen
e, and adapt it to a given display with low 
om-plexity?315 We developed the display adaptation algorithm to address this problem. The rest of this
hapter des
ribes the various steps in the the algorithm. The �rst step toward solving thisproblem is to �nd attended obje
ts in the input video. The following se
tion des
ribes thevisual attention model whi
h help us lo
ate attended obje
ts in the video.12



3.1.1 Visual Attention Model320 The display adaptation algorithm is built around a salien
y-based 
omputational model forvisual attention. We know that visual per
eption is an inherently a
tive and sele
tive pro-
ess by whi
h people attend to a subset of the available information for further pro
essing.Visual salien
y is a broad term that refers to the idea that 
ertain parts of a s
ene are moredis
riminating or distin
tive than others and may 
reate some form of signi�
ant visual325 arousal within the early stages of the HVS. Cognitive psy
hology and 
omputer vision pro-vide numerous approa
hes for building visual salien
y models [27℄, and resear
h on visualsalien
y typi
ally follows one of two approa
hes: the bottom-up or stimulus-driven ap-proa
h, and the top-down or task-dependent approa
h. In our 
ase, for visualizing a s
enewithout a spe
i�
 task in mind, we fo
used on the bottom-up, stimulus-driven approa
h330 in this work. The Walther [44℄ and Itti implementation [16℄ of the biologi
ally inspiredsalien
y-based model of bottom-up attention proposed in [20℄ provide a framework forextra
ting features and forming salien
y maps.Shown in Figure 3.1 is the general ar
hite
ture of the visual attention model. In thispro
edure, �rst a multi-s
ale representation of the original input image is obtained by335 using dyadi
 Gaussian pyramids. Feature extra
tion is a

omplished through a set oflinear 
enter-surround operations that simulate visual re
eptive �elds as the di�eren
ebetween �ne and 
oarse s
ales. The a
ross-s
ale di�eren
e between two maps is obtainedby interpolation to the �ner s
ale followed by point-by-point subtra
tion. The extra
tedfeature maps are �rst normalized, and then a
ross-s
ale 
ombined into 
onspi
uity maps340 for the 
orresponding feature. Finally, the 
onspi
uity maps are merged into a salien
ymap, S, by linear 
ombination.
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Figure 3.1: General ar
hite
ture of the salien
y-based visual attention model (adaptedfrom [16℄)
The �rst step is to extra
t the the luminan
e 
hannel Y , of the de
oded I-frame. This
onstitutes the input image to the visual attention model I (0). Next we obtain a multi-345 s
ale representation ofI(0). We use eight spatial s
ales, σ ∈ [0...7] whi
h result in eight�ltered images, with image redu
tion from 1:1 at s
ale σ = 0 down to 1:128 at s
ale σ = 7.These �ltered images are stored as a Gaussian luminan
e pyramid I(σ). We perform linear
enter-surround operations on I(σ) to 
ompute feature maps, whi
h is implemented as thedi�eren
e between �ne and 
oarse s
ales. The 
entre is a pixel at s
ale c ∈ {2, 3} while the350 surround is the 
orresponding pixel at s
ale s = c + δ, with δ ∈ {3, 4} . The a
ross-s
aledi�eren
e between two maps is obtained by interpolation to the �ner s
ale followed bypoint-by-point subtra
tion. This operation is denoted �⊖� below.Luminan
e (intensity) 
ontrast is dete
ted by neurons in the HVS that are sensitive eitherto bright 
enters on dark surrounds or to dark 
enters on bright surrounds [10℄. The355 responses 
omputed through 
enter-surround di�eren
es are stored as a set of four featuremaps, LI(c, s), with c ∈ {2, 3} and s = c + δ, δ ∈ {3, 4}:

LI(c, s) = |I(c) ⊖ I(s)| (3.1)14



Studies [7℄ have shown that Gabor �lters 
losely approximate the impulse response oforientation-sensitive neurons in the HVS. Lo
al orientation maps, O (σ; θ) at di�erent s
ales
σ, and orientations θ, are obtained by 
onvolution the 
orresponding level of the intensity360 pyramid, I (σ) with Gabor �lters. Similar to Eq. 3.1, the orientation 
ontrast mapsare obtained by 
omputing the a
ross-s
ale di�eren
e of the lo
al orientation maps with
c ∈ {2, 3} and s = c + δ, δ ∈ {3, 4} and θ ∈ {0◦, 45◦, 90◦, 135◦}. These are stored as a setof sixteen maps Lθ (c, s):

Lθ (c, s) = |O (c; θ) ⊖ O (s; θ) | (3.2)Thus we obtain four feature maps for intensity and sixteen feature maps for orientation.365 Our total of twenty maps is about half of the forty-two feature maps generated in [44℄.This redu
tion is a
hieved by negle
ting the 
olour features and using fewer s
ales in themultis
ale pyramid.The feature maps obtained in Eqs. 3.1 and 3.2 have di�erent global maxima. Hen
e theyare normalized before further pro
essing. The normalization operator, N (·) is a non-linear370 iterative fun
tion that simulates lo
al 
ompetition between neighbouring salient lo
ations[15℄. This is implemented through a 
onvolution with a di�eren
e of Gaussian �lter followedby re
ti�
ation. For our simulations, we used two iterations of the operator. In
reasingthe number of iterations did not produ
e any per
eptibly di�erent results.The feature maps, Eqs. 3.1 and 3.2 are �rst summed over the 
entre-surround 
ombination375 using a
ross-s
ale addition ⊕, and these sums are normalized thereafter:
L̄l = N

(

3
⊕

c=2

c+4
⊕

s=c+3

Ll (c, s)

)

, l ∈ {I, θ} (3.3)The 
onspi
uity map for intensity is the same as L̄I obtained in Eq. 3.3 above. For theorientation feature, we have obtained four normalized orientation maps 
orresponding tothe four orientations θ. These maps are on
e again summed and normalized to yield theorientation 
onspi
uity map:380
CI = L̄I

CO = N

(

∑

θ

L̄θ

)

, θ ∈ {0◦, 45◦, 90◦, 135◦}
(3.4)All 
onspi
uity maps are now 
ombined into one salien
y map:15



S =
1

2
(CI + CO) (3.5)In our framework, we have used the Walther-Ko
h visual attention model to determine theattended region in de
oded I-frames, with a few di�eren
es:

• We 
onsider only luminan
e and orientation 
ontrasts for the salien
y map, andsupplement it with the motion information to determine the attended region. Sin
e385 
olor 
ontributes less to the overall visual salien
y, whereas motion 
ontributes highly[7℄, we assume that this o�sets any loss in
urred through negle
ting 
olor 
ontrasts.
• We use less s
ales for feature 
ontrast 
omputation. In our implementation, the
enter is at s
ale c ∈ {2, 3} and the surround is at s
ale s = c + δ, δ ∈ {3, 4} . Thereis no per
eptible di�eren
e in the resulting output, and this redu
es the 
omputation390 time.
• We determine the attended region following a morphologi
al 
losing operation asopposed to using a neural network [44, 15℄. This redu
es system 
omplexity with noper
eptible di�eren
e in the output.3.2 The Dynami
 Small-S
reen Adaptation (DSSA) Al-395 gorithmThe Dynami
 Small-S
reen Adaptation (DSSA) algorithm follows two separate approa
hesto determine the attended region in I-frames and P-frames. It uses the visual attentionmodel (Se
tion 3.1.1) to lo
ate the attended region in the I-frame. We augment thisattended region with motion information from the bitstream, to dete
t a 
oherent attended400 region in a P-frame. The region 
entroids are then passed through a smoothing �lter toobtain the best traje
tory for the attended regions, whi
h are subsequently used to 
ropthe frames. These pro
esses are outlined in the Algorithm steps listed below:3.2.1 Assumptions made in the AlgorithmWe made the following assumptions in our algorithm:405

16



1. Motion salien
y is signi�
antly greater than 
olour salien
y: The visual attentionmodel des
ribed above determines attended regions from stati
 s
enes. Extendingthis model to video brings the temporal dimension into play. This indu
es us toa

ount for another attention feature, viz. motion. The study of attention featuresindi
ates that the HVS is most responsive to motion and least responsive to 
olour.410 Sin
e we are working with videos, we expe
t the attended obje
t to be part of ana
tion sequen
e, and as a 
onsequen
e, motion will 
ontribute signi�
antly to theoverall salien
y. We assume that in su
h a 
ase the 
ontribution of 
olour salien
y
an be negle
ted.2. 15 frames for ea
h Group of Pi
tures (GoPs): We assumed that the attended obje
t415 moves 
onsistently in a parti
ular dire
tion for 15 frames. This translates to half ase
ond of uniform motion in a video en
oded with 30 frames per se
ond (fps), and isthus, a reasonable assumption. Regions of the video that do not obey this restri
tionare likely to be noise. All the input videos 
onsidered in the implementation have aIPPP GoP length of �fteen frames, whi
h 
onsists of a referen
e I-frame followed by420 fourteen P-frames.3. Attended obje
t present in I-frame: An impli
it assumption in our algorithm is thatthe attended obje
t is present in the I-frame. As we des
ribe in later se
tions, mo-tion information from the P-frame supplements the knowledge of the attended regionin the I-frame while determining the attended region in the 
urrent P-frame. One425 might think that this simplifying assumption may adversely a�e
t performan
e. Forinstan
e, if the attended obje
t does not appear in the �rst I-frame, the entire GoPmight be fo
ussed on the wrong attended region. However, the following I-frameshould have the attended obje
t. This information is then used to update the at-tended region sele
ted in future frames. Thereafter the smoothing �lter ensures that430 the early attended regions are updated a

ordingly.The following se
tion des
ribes how we determine the attended region in an I-frame usingthe salien
y map.3.2.2 Determining Attended Region in I-framesThe I-frames in 
ompressed video 
ontain all spatial domain information of the frame.435 Hen
e, we 
an use them to determine the spatial visual salien
y in the video 
lip. In our17



implementation, we have used ea
h I-frame as the referen
e frame for the following P-frames in the GoP. Every time an I-frame is read from the video sequen
e, a visual salien
ymap is generated for it.In our implementation, the salien
y map is at a s
ale 4. In other words, it has one-quarter440 the height and one-quarter the width of the original image. The reason we 
hose this isthat the motion ve
tor resolution for H.264 is at the most 4x4, so the motion ve
tor mapalso has one-quarter the height and width of the original frame size. This allows us totranslate the 
entroids for temporal 
oheren
e (Se
tion 3.2.3) without the need for s
aling.Furthermore, smaller maps save 
omputation time and memory.445 The salien
y map obtained from the visual attention model 
ontains a number of 
ompetingattended regions. To lo
ate the �xation region, we partition the salien
y map S into
oherent regions. First, all pixels in S smaller than 97% of the global maximum, are set tozero.
S (i, j) =







S (i, j) , if S (i, j) ≥ 0.97 max {S}

0, otherwise
(3.6)Then we perform a morphologi
al 
losing operation. This removes isolated noise regions450 that are not 
andidates for the attended region, and leaves fewer pixels to pro
ess. Wede�ne the Spatial Attention Value (SAV) of ea
h region as the sum of the 
onstituent pixels.A

ordingly, the region R∗ that maximizes the SAV is 
hosen as the attended region:

SAV (R∗) = arg max
R







∑

(i,j)ǫR

S (i, j)







(3.7)The attended region R∗ is saved for 
he
king temporal 
oheren
e in future P-frames, whileits 
entroid Ct∗ is stored for 
ropping. The 
entroid is 
al
ulated as455
Ct∗ =

∑

p∈R∗

p · S (p)

∑

p∈R∗

S (p)
(3.8)where p denotes any pixel lo
ation (i, j) , and S (p) is the value of the salien
y map S at

p.This gives us the attended region in the I-frame and its 
orresponding 
entroid. The nextframe in the video 
lip is a P-frame. As we know, a P-frame 
ontains motion information18



and predi
tion residues. We use the motion information together with the knowledge of460 the attended region R∗, to determine the attended region in the P-frame. This is 
overedin the following se
tion.3.2.3 Determining Attended Region in P-frames: Temporal Co-heren
eWhen the pro
essing a P-frame, the algorithm uses the motion ve
tors in the bitstream to465 
reate a motion map, whi
h is then pro
essed further to yield the attended region for the
urrent P-frame. The blo
ks in a P-frame are predi
ted from other referen
e blo
ks. Forea
h su
h blo
k or ma
roblo
k, the bitstream stores the di�eren
e of the a
tual value fromthe predi
tion in the residue, and the ve
tor o�set of the predi
tion blo
k from the 
urrentblo
k is stored in the motion ve
tor.470 The H.264 standard has provision for multiple referen
e frames and variable blo
k sizes.This presents a 
hallenge sin
e a frame 
an be divided into an arbitrary number of ma
-roblo
ks and blo
ks with 
orresponding motion ve
tors. Hen
e one motion ve
tor may berepresent a 16x16 ma
roblo
k, a 16x8 blo
k, an 8x16 blo
k and so on, all the way downto a 4x4 blo
k. Two 16x16 ma
roblo
ks within a frame may be subdivided di�erently and475 have di�erent number of motion ve
tors. Furthermore, neighbouring blo
ks may even bepredi
ted from di�erent referen
e frames in the sequen
e. While these features make H.264a powerful 
oding standard, they also in
rease 
omplexity for pro
essing. To over
ome anyissues that may arise from these variations, we 
onsider a motion ve
tor for ea
h 4x4 blo
kin the 
urrent frame and normalize it to a

ount for di�erent referen
e frames.480 As we mentioned above, we 
onsider a motion ve
tor for ea
h 4x4 blo
k in the frame. In 
asethere is a single motion ve
tor for, say a 16x16 blo
k, it is split into sixteen 4x4 blo
ks, ea
hhaving the same motion ve
tor. These motion ve
tors are then normalized by dividing it bythe distan
e between the 
urrent P-frame (or B-frame) blo
k and its asso
iated referen
eframe blo
k. This a

ounts for the di�eren
e in motion ve
tor magnitudes due to the use485 of multiple referen
e frames. If the original frame is assumed to be of size 4w x 4h, thenormalized motion ve
tor �eld 
an be visualized as a two-
hannel map of size w x h. Thetwo 
hannels 
orrespond to the horizontal and verti
al 
omponents of the motion ve
tor,respe
tively.
MVF(w,p|t) = mv(w,p|t).

|t − t∗|

|t− tref(p)|
(3.9)19



Here MV F is the motion ve
tor �eld, mv is the motion ve
tor read from the H.264490 bitstream, t is the index of the 
urrent frame, tref is the index of the referen
e frame forthe 
urrent blo
k p ≡ (i, j), t∗ is the index of the previous I-frame, and w ∈ {x, y} denotesthe motion ve
tor 
omponent.The pixels in the motion ve
tor �eld MV F 
an take any value, both positive and negative,within the sear
h range used by the H.264 en
oder. Moreover, sin
e the motion ve
tors are495 usually interpolated to quarter pixel a

ura
y, the number of possible values in
reases four-fold. This gives quite a large range of values in the motion map. The normalized motionve
tor �eld MV F 
onsists of a multitude of values, indi
ating the ba
kground and movingobje
ts in the foreground. Su
h moving obje
ts usually 
onstitute a
tion sequen
es, thatare of user interest. A group of blo
ks with identi
al motion is likely to be an obje
t. To500 �nd regions with homogeneous motion, we separate the range of available values into 
lassesand give ea
h 
lass a unique label. In our implementation, we use seven 
lasses - threeea
h for positive and negative 
omponents and one for the zero 
omponent. The zero-valued 
omponent denotes a stationary ba
kground, whi
h is 
onveniently ignored from
onsideration for the attended region. The motion ve
tor �eld MV F is thus transformed505 into a M-map of 
lass-labels.
M (w,p|t) = Q (MVF (w,p|t)) = mi, (3.10)where the range of motion ve
tor values [mvi, mvi+1] fall in 
lass mi.Here Q (·) is a 
lassifying operator: it a
ts on ea
h element of MV F to determine whi
h
lass the element falls in, and assigns a 
lass label to the 
orresponding lo
ation in the

M-map. Thereafter, a morphologi
al 
losing operations removes noise from the M-map.510 The M-map is now partitioned into homogeneous motion regions, Rk, k = 1, 2, 3, ...K.Although there are only six labels for motion, there may be any number of homogeneousmotion regions in a frame. The regions Rk are 
reated in a way that they are mutually ex-
lusive, M (w|t) =
⋃

k

Rk . In 
ase there is an overlap between two regions, the 
ontentiousportion goes to the region that exhibits faster motion.515 As a 
onvention, we 
hose R0, the region with k = 0 to be the stationary ba
kground.Thus, we obtain a set of regions Rk, k = 1, 2, 3, ...K whi
h are 
ontenders for the attendedregion in the P-frame. The attended region must be 
oherent a
ross frames in the video
lip. Hen
e, the attended region must 
losely mat
h the region R∗ we obtained from theI-frame in the pre
eding se
tion. The attended region Rt is the one whose 
entroid is the520 
losest to Ct∗ after a

ounting for motion. 20



D (Rt) = arg min
Rk

‖ Ck + mv(Ck) − Ct∗ ‖, k = 1, 2, 3, ...K (3.11)Here Ck is the 
entroid of the region R, mv(Ck) is the motion ve
tor at lo
ation Ck and
Ct∗ is the 
entroid of R∗(Eq. 3.8).The 
omputation for the 
entroid, Ck is similar to that shown in Eq. 3.8 for C∗. If we letthe pixel, p ∈ Rk denote the lo
ation (i, j) in mvt, the 
entroid is:525

Ck =

∑

p∈Rk

p · mvt (p)

∑

p∈Rk

mvt (p)
(3.12)The region Rt is the best temporally 
oherent mat
h to the visually attended region, R∗,as per the DSSA algorithm. The 
entroid of the region, Ct is stored for 
ropping, and thepro
ess of attended region dete
tion 
ontinues until all the frames in the video 
lip areexhausted. Thereafter, the frames are 
ropped and sent to the display.3.2.4 Post-pro
essing and Display530 The sequen
e of 
entroids {Ct}

t=Tmax

t=0 obtained through the above pro
ess is jittery, sin
ethey are 
omputed based only on the referen
e frame, and ignore other inter-frame 
or-relation. The jitter in frame transitions results in a poor viewing experien
e. It 
an beminimized by smoothing the 
entroid sequen
e. For our implementation, we assume thatthe 
entroids follow a se
ond order polynomial traje
tory over time. This is given by535
yt = a1t

2 + a2t + a3

xt = b1yt + b2t + b3

(3.13)where Ct ≡ (xt, yt) is the 
entroid for frame Ft.This smoothed 
entroid sequen
e is used to 
rop the frames before they are sent for display.The H.264 de
oder bu�ers the de
oded frames before writing them out. This allows usto smooth the entire 
entroid sequen
e before writing out the frames. If the bu�er size islimited, a viable alternative would be to use a di�erent smoothing �lter, su
h as a moving540 average �lter. Only a few frames may be in the bu�er at a time for pro
essing. In ourimplementation, we obtained both types of outputs. For both the 
ases, we used equation3.13 on the 
entroid sequen
e. For the moving average �lter, we used a sequen
e of 3021




entroids at a time, and updated the set with new values for every iteration. The outputsubje
tive results are 
omparable for this �lter. A better 
hoi
e for su
h a s
heme might be545 to use an adaptive �lter su
h as a re
ursive least squares (RLS) �lter [14℄. The advantageof this is that using a forgetting fun
tion and an the initial set of inputs, the 
omputational
omplexity 
an be redu
ed to �rst order. This would provide for better performan
e.The output display size is �xed to wdisp x hdisp. Knowing this and the 
entroid, Ct ≡

(xt, yt) we 
an easily determine the 
rop o�sets for the frame Ft to be given by: left-top550
≡

(

xt −
wdisp

2
, yt −

hdisp

2

) and right-bottom ≡

(

xt +
wdisp

2
− 1, yt +

hdisp

2
− 1

)

.The frames are now 
ropped so that the output frames retain only the 
ropped re
tangle.These 
ropped frames are then displayed on the s
reen.Summary Before we end this 
hapter, here's a summary of the DSSA algorithm:1. Read input frame from bitsream555 2. If the 
urrent frame is an I_frame:(a) De
ode the bitsream to get frame, Ft.(b) Compute visual salien
y map, S = SaliencyMap (Ft)(
) The attended region R∗ is the one with highest Spatial Attention Value,SAV (eq. 3.7):560
SAV (R∗) = arg max

R







∑

(i,j)ǫR

S (i, j)





(d) Store Ct∗ = centroid (R∗).3. If the 
urrent frame is a P_frame:(a) Generate M-map from the motion ve
tors mvt (eqs. 3.9 and 3.10):
M (p) = Q

(

mv (w,p) ·
|t − t∗|

|t − tref (p) |

)

,where w ∈ {x, y} and Q (·) is a 
lassifi
ation operator.(b) Partition M (w|t) into non-overlapping homogeneous motion regions, Rk.565 22



(
) Find the attended region Rt ∈ {Rk}
k=K

k=1 whose 
entroid best mat
hesthe region R∗ (eq. 3.11):
D (Rt) = arg min

Rk

‖ Ck + mv(Ck) − Ct∗ ‖, k = 1, 2, 3, ...K(d) Store Ct = centroid (Rt).4. Repeat steps 1 through 3 until all the frames in the video sequen
e are570 pro
essed.5. Smooth the 
entroid sequen
e, {Ct}
t=Tmax

t=06. Crop frames {Ft}
t=Tmax

t=0 to a re
tangle of size wdisp x hdisp, 
entred at {Ct}
t=Tmax

t=0 .Output 
ropped frames.In the next 
hapter, we des
ribe the experiment to evaluate system performan
e and dis
uss575 the observed results.
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Chapter 4
Experimental Results and IllustrativeExamples
In the earlier 
hapters, we dis
ussed the need for video adaptation, and des
ribed our580 Dynami
 Small-S
reen Adaptation (DSSA) algorithm. This display adaptation algorithmis based upon the salien
y-based visual attention model proposed by Walther and Ko
h in[44℄. Whereas Walther and Ko
h built upon the earlier Itti and Ko
h [16℄ model to �ndattended regions in images, the DSSA algorithm extends this to videos, but fo
uses on it'sappli
ation to video adaptation. As a result, we are 
on
erned with dete
ting one 
oherent585 attended region in the video sequen
e.This 
hapter 
overs our experimental setup, the ben
hmark tests and the results we ob-served. We also in
lude some illustrative examples whi
h highlight the 
apabilities andlimitations of the display adaptation algorithm. The following se
tion 
overs the experi-mental setup.590 4.1 Experimental SetupAll the experiments were run on a notebook 
omputer, with an AMD Turion64 1.6 GHzpro
essor and 768 MB of RAM. We used a 32-bit Windows XP operating system and VisualC++ for programming. We implemented our algorithm on this system and integrated itinto the H.264 
ode
 JM version 13.2. The DSSA algorithm is part of the H.264 de
oder.595 We exe
uted it to generate a set of test video sequen
es. The input video sequen
es wereeither CIF (352x288) videos or SIF (352x240) videos. All input sequen
es were in the YUV4:2:0 
olour format. 24



Sin
e assessing the e�e
tiveness of a visual dete
tion s
heme is a subje
tive task, manualevaluation is inevitable. To evaluate the performan
e of our s
heme, we invited 14 respon-600 dents and showed them three video 
lips for ea
h sequen
e: the original (input), ben
hmarkand DSSA output video sequen
es. The respondents were asked to rate ea
h of these testsequen
es on a s
ale of 1 (Poor) to 5 (Good). We normalized the ben
hmark and DSSAratings with respe
t to the average input video ratings. The 
olumn Satis�ed Respondentsin the Tables 4.1 and 4.2 below lists the proportion of users who rated the 
orresponding605 video 3 or higher. As part of the evaluation, we also asked the volunteers to identify theobje
t-of-interest in the video sequen
e, and 
ounted its o

urren
e in the input and outputsequen
es. The ratio of the obje
t's o

urren
e in the output sequen
e to that in the inputsequen
e is listed under the heading Dete
tion Rate. Further, we measured the time takento adapt the input video sequen
e, and listed the Adaptation Time as the time taken per610 frame.4.1.1 Simpli�
ations adopted for ease of implementation1. No B-frames in en
oded video: We assume that the input H.264 video sequen
e has aIPPP frame stru
ture. This makes the implementation easier, and allows us to 
he
kthe performan
e of the algorithm. B-frames are bi-predi
tive frames, and 
an use615 referen
e frames both from the past and the future in terms of display order. Thusin the algorithm we presented in the previous 
hapter, B-frames 
an have a negativevalue of t − tref whereas P-frames will always have a positive value for this term,sin
e for P-frames t > tref always. However, we used the absolute value |t − tref | inour algorithm, so it 
an work with B-frames as well.620 2. QCIF video output : We �xed the default output display size in our algorithm tothe QCIF format, 176x144. This was done simply to redu
e the number of variableparameters. The system 
an be easily modi�ed to take this parameter as input.3. Some en
oder parameters: All videos are en
oded in FRExt High Profile, Level2. Other parameters worth noting in
lude IntraIDRPeriod=15, IDRPeriod=15,625 QPISli
e=28, QPPSli
e=28, Sear
hRange=32.We dis
uss the simulation results in the next se
tion.
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4.2 Simulation ResultsThis se
tion tabulates the results of subje
tive assessment on the ben
hmark output andthe DSSA output videos. The output video ratings were normalized with respe
t to the630 
orresponding input video ratings in order to o�set any di�eren
e in video quality, per
eivedby the respondents.4.2.1 Ben
hmark testOur ben
hmark was the visual attention model applied independently to ea
h de
odedframe. This is a logi
al 
hoi
e for our ben
hmark sin
e the DSSA algorithm extends the635 attended region dete
tion from images to videos, and in doing so, it makes use of theadditional motion information present in the video bitstream. The ben
hmark is 
reatedby running the visual attention module separately on ea
h de
oded frame of the H.264bitstream. This gives us the attended region in ea
h frame. The region 
entroids are thenpassed through the smoothing �lter, after whi
h the frames are 
ropped and displayed. No640 motion information is used. Table 4.1 lists the performan
e of the ben
hmark.Table 4.1: Estimating attended region: Ben
hmarkSequen
e Attendedobje
ts Obje
tdete
ted in#Frames Obje
tpresent in#Frames Dete
tionRate (%) Satis�edRespon-dents(%) AdaptationTime(s/frame)Coastguard Small private boat 90 91 98.90 75 5.035Large 
oastguardboat 50 59 84.75Dravid Ball and bat 10 17 58.82 85.71 4.923Football Player#82 (bluejersey) 115 115 100 87.5 4.687S
u�e 87 120 72.50Irene Hands 433 539 80.33 100 4.736Mobile Ball and engine 103 138 74.64 62.5 4.641Pingpong Ra
quet and ball 31 67 46.27 62.5 4.632Tempete Yellow �ower 122 259 47.10 85.71 4.764
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4.2.2 DSSA Algorithm resultsTable 4.2: Estimating attended region: DSSASequen
e Attendedobje
ts Obje
tdete
ted in#Frames Obje
tpresent in#Frames Dete
tionRate (%) Satis�edRespon-dents(%) AdaptationTime(s/frame)Coastguard Small private boat 91 91 100 75 0.556Large 
oastguardboat 59 59 100Dravid Ball and Bat 17 17 100 85.71 0.700Football Player#82 (bluejersey) 115 115 100 75 0.484S
u�e 100 120 83.33Irene Hands 496 539 92.02 100 0.452Mobile Ball and engine 121 138 87.68 71.4 0.521Pingpong Ra
quet and ball 34 67 50.47 75 0.492Tempete Yellow �ower 225 259 86.87 100 0.499As shown in Table 4.2, the framework determines the appropriate attended obje
t from avideo sequen
e in over 80% of the frames. The system performs better for sequen
es inwhi
h the attended obje
t is larger and is moving uniformly. The dynami
 nature of the645 system is demonstrated in the Coastguard sequen
e, where the 
amera pans �rst from leftto right following the private boat, and then pans from right to left tra
king the 
oastguardboat. The system is able to follow both the boats appropriately and handles the 
hange indire
tion with ease. Figure 4.1 demonstrates this feature.When 
ompeting obje
ts are available, the system may o

asionally 
hoose distra
tors over650 the attended obje
t. This o

urs in the Pingpong sequen
e where the bright red ra
quet,the player's arm and the smaller but fast moving ball are all 
ompeting for salien
e. Thesystem is not always able to �t all of them in the output frame. As a result, the Pingpongsequen
e only has a 50% dete
tion rate.In the Mobile sequen
e (Fig. 4.2), the system follows the train engine and the ball initially655 but is later distra
ted by the s
rolling ba
kground and has to de
ide between 
ompetingsalient obje
ts. As a result of this, it misses the engine in some frames. However, theoverall result is still fairly satisfa
tory.In [3℄ Cheng et al obtained intensity, 
olor and motion feature maps from sour
e videosequen
es. They also pro
essed the video for 
amera motion. To evaluate their s
heme,660 27



they showed 15 video 
lips marked with the estimated RoI to 10 observers, who rated the
lips as Good, A

eptable or Failed. The results indi
ate over 95% of the respondentsfeel 
omfortable (Good or A

eptable) with the determined RoI. Zhai and Shah used 
olorhistograms and motion 
ontrast based on planar motion between frames to generate aspatiotemporal salien
y map [47℄. They pro
essed sour
e video sequen
es to determine the665 attended region. In a test similar to above, they showed their video 
lips with markedattended regions to 5 assessors, who on
e again rated the 
lips as Good, A

eptable orFailed. Their results show that over 90% of the respondents were satis�ed with the dete
tedregion. Neither literature has any other measure for evaluation.Unlike [3℄ and [47℄, our framework uses the en
oded 
ompressed video bitstream as input,670 and the motion ve
tors form our sour
e of motion information. We also produ
e a 
roppedoutput whi
h is likely to introdu
e some distortion, leading to redu
ed video quality. It is tobe noted that even with 100% a

urate attended region dete
tion, the 
ropped output videosequen
e may not be pleasant to view. Our results show that over 85% of the respondentswere satis�ed with the output video sequen
e. Also the attended region was satisfa
torily675 identi�ed with a dete
tion rate of over 80%. Another point of 
ontrast is that the DSSA isa 
ausal s
heme. While [3℄ utilizes a 
ontinuous video shot for RoI determination, [47℄ usessu

essive frames to generate the temporal and spatial salien
y maps. DSSA pro
esses anddetermines the attended region in I-frames followed by that in the su

essive P-frames,until the next I-frame is en
ountered. This 
ausal nature of DSSA makes it suitable for680 appli
ation in a trans
oder.One limitation of the system is that the P-frame attended region dete
tion depends on thesu

ess of the I-frame region dete
tion. In 
ase there is a dete
tion failure in the I-frame,the following 14 P-frames in the GoP will also have an erroneous attended region sele
ted.However, the system should re
over and produ
e satisfa
tory dete
tion for the next I-685 frame. Sin
e the 
entroids of all the frames are pro
essed together in the smoothing �lter,the error in one GoP is re
ti�ed to some extent. Despite the re
ti�
ation, the Dete
tionRate is expe
ted to drop in su
h a 
ase.Overall, the DSSA framework shows promising results, and is a good 
andidate for real-world video adaptation appli
ations. We present our 
on
luding remarks and a few prob-690 lems for future resear
h in the following 
hapter.
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Coastguard: Frame 42

Saliency Map: Frame 42

Coastguard: Frame 80

Saliency Map: Frame 80

Cropped Frame 42 Cropped Frame 80

Figure 4.1: Frame 42 and Frame 80 of the Coastguard sequen
e shows the DSSA swit
hingfrom following the small boat to the large 
oastguard boat. Cropped frames are s
aled totwi
e their height and width. 29



Mobile: Frame 72

Saliency Map: Frame 72

Mobile: Frame 132

Saliency Map: Frame 132

Cropped frame 72 Cropped frame 132

Figure 4.2: Frame 72 and Frame 132 of the Mobile sequen
e shows the DSSA following theengine and red ball initially, but distra
ted by the ba
kground later. Cropped frames ares
aled to twi
e their height and width.
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Chapter 5
Con
lusion
We developed a framework to determine the attended region in a H.264 video sequen
eusing a bottom-up salien
y approa
h. The attended region is 
hosen based on the lumi-695 nan
e, orientation (texture) and motion features 
oded in the bitstream. The luminan
eand orientation information are obtained from the de
oded I-frame, and are used to 
reatethe salien
y map S. We use the motion ve
tors in P-frames to generate a homogeneousmotion region through motion 
lassi�
ation in M-maps, and then sele
t the 
oherent regionas the attended region in the P-frame. When the output sequen
es were shown to a set of700 respondents, they gave an en
ouraging response. Su
h a system has real-world appli
ationand great potential for emerging te
hnologies.5.1 Appli
ations1. This framework 
an be dire
tly applied to small form fa
tor devi
es, su
h as handheld
omputers and media players for wat
hing video. Most users aren't happy to see705 videos on their devi
es due to the poor resolution of the video on-s
reen. With adisplay adaptation algorithm, the viewing experien
e 
an improve signi�
antly.2. DSSA 
an be applied not only in the devi
es, but 
an also be used by 
ontent deliveryoperators at the sour
e to trans
ode video before transmission. For instan
e, a singlesour
e video sequen
e may be trans
oded into a video 
ompatible for digital TV710 broad
ast and another 
ompatible for mobile video players. The DSSA algorithm
an adapt ea
h output video a

ording to the desired resolution before they are re-en
oded for transmission. 31



5.2 LimitationsAs with every system, the DSSA s
heme also has its limitations. Some of these are listed715 here.1. We assumed that the attended obje
t is visible in the �rst I-frame. Attended regiondete
tion in P-frames depends on su

essful dete
tion of the attended region in theprevious I-frame. Thus, the DSSA is a 
ausal system. In 
ase the system dete
ts failsto dete
t the 
orre
t region in the I-frame, the remaining P-frames in the GoP will720 also 
hoose the wrong region. But the system is expe
ted to re
over and dete
t the
orre
t region for the next I-frame. Sin
e the smoothing �lter is applied to the entireset of 
entroids, small errors in the attended region 
entroids are likely to be re
ti�ed.However, larger errors might not be fully 
ompensated. Therefore, we expe
t a dropin the dete
tion rate.725 2. At this time, our s
heme la
ks any fuzziness in the attended region sele
tion. In otherwords, we 
onsider only one RoI at a given time for any past or present frame. Thislimits the 
oheren
e tests for the attended region built into the DSSA. It is possiblethat the most salient RoI for a frame may not be the best 
hoi
e for the attendedregion when the entire video sequen
e is 
onsidered. The s
heme may be improved730 by building in some fuzziness, wherein multiple RoIs 
ould be marked on ea
h frameand a sele
tion algorithm later determines the optimal set of RoIs for �nal output.3. If the DSSA were to 
onsider fuzziness, we would also have the option of sele
ting aweighted 
entroid based on region sizes as well as salien
y values. This might a

ountfor the o

asions when di�erent viewers want to view di�erent obje
ts in the video,735 by in
luding multiple 
ontending obje
ts in the adapted video sequen
e.4. The P-frame attended regions in the DSSA s
heme are determined based on theattended region dete
ted in the I-frame. This limits the robustness of the system.Considering the 
orrelations among P-frames would give us more information aboutthe RoI. Furthermore, sin
e motion is a very important attention feature, su
h a step740 is likely to provide an improved estimate for the attended region sele
tion.5.3 Future WorkThe 
urrent appli
ation uses motion information in 
onjun
tion with salien
y-based at-tended region lo
ation to determine a meaningful video region to display. This work pro-32



vides opportunity for further resear
h in a number of areas. These in
lude the following:745 1. So far, the P-frame region determination is related only to the referen
e I-frame.In that sense, it is a memoryless system. The system performan
e 
an improve by
onsidering the inter-frame 
orrelation among P-frames. If the knowledge of pastattended regions is available, the system 
an also utilize it to restri
t its sear
h forthe attended region to a smaller part of the 
urrent frame.750 2. The ben
hmark test using the Walther-Ko
h model [44℄ is limited in s
ope sin
eit was designed to evaluate images (rapid stati
 s
enes). Sin
e image analysis isdi�erent from video analysis, a di�erent ben
hmark may be 
onsidered to a

ountfor motion sequen
es. A possible subje
tive ben
hmark test 
ould be to use eye-tra
kers on human parti
ipants, and re
ord their �xations through gaze tra
king.755 Su
h an evaluation 
an dire
tly provide us with the sele
ted RoI, whi
h 
an then beused as a ben
hmark.3. The output videos are sometimes jittery sin
e the 
entroids do not fall on a smoothtraje
tory. At the time of writing, the authors are not aware of any smoothing �lterthat 
an a

ount for su
h dynami
 systems. A �lter that 
an preserve the 
ontinuity760 of the video sequen
e will greatly improve the viewer satisfa
tion.4. The present system takes about 0.5 se
onds to pro
ess ea
h frame. This is rather slowfor real-time appli
ations. The slowest step in the whole system is the Gabor �lterstage to determine orientation 
ontrast. Resear
h is needed to study the e�
a
y ofother �lters or pro
esses whi
h 
an be su

essfully substituted for the Gabor �lter.765 A possible dire
tion for work is to use the existing DCT 
oe�
ients for texture�ltering. We know that the DCT 
oe�
ients 
ontain spatial frequen
y 
omponentsof the image. Instead of using a Gabor �lter to obtain texture information fromthe pixel domain, we 
an use the existing DCT 
oe�
ients in the bitstream, su
h asin [11℄. Sin
e the DCT 
oe�
ients 
an be read dire
tly from the bitstream, su
h a770 s
heme should be fast and would save pro
essing time signi�
antly.5. Lastly, DSSA provides a smaller output video to an input video. This 
an be es-pe
ially helpful for transmission over bandwidth-
onstrained networks. This system
an be further developed to behave as a trans
oder, wherein, the existing motioninformation 
an be reused, thus saving resour
es in the 
ostly motion estimation and775 
ompensation steps. As we mentioned in Chapter 4, the DSSA is a 
ausal system,whi
h makes it suitable for appli
ation in a trans
oder. 3G servi
e providers andusers will derive immense bene�t from su
h a trans
oder.33
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