
The Theory and Applications of
Homomorphic Cryptography

by

Kevin Henry

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Kevin Henry 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144142917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Homomorphic cryptography provides a third party with the ability to perform
simple computations on encrypted data without revealing any information about
the data itself. Typically, a third party can calculate one of the encrypted sum or
the encrypted product of two encrypted messages. This is possible due to the fact
that the encryption function is a group homomorphism, and thus preserves group
operations. This makes homomorphic cryptosystems useful in a wide variety of
privacy preserving protocols.

A comprehensive survey of known homomorphic cryptosystems is provided, in-
cluding formal definitions, security assumptions, and outlines of security proofs for
each cryptosystem presented. Threshold variants of several homomorphic cryp-
tosystems are also considered, with the first construction of a threshold Boneh-
Goh-Nissim cryptosystem given, along with a complete proof of security under the
threshold semantic security game of Fouque, Poupard, and Stern. This approach
is based on Shoup’s approach to threshold RSA signatures, which has been pre-
viously applied to the Paillier and Damg̊ard-Jurik cryptosystems. The question
of whether or not this approach is suitable for other homomorphic cryptosystems
is investigated, with results suggesting that a different approach is required when
decryption requires a reduction modulo a secret value.

The wide variety of protocols utilizing homomorphic cryptography makes it dif-
ficult to provide a comprehensive survey, and while an overview of applications is
given, it is limited in scope and intended to provide an introduction to the vari-
ous ways in which homomorphic cryptography is used beyond simple addition or
multiplication of encrypted messages. In the case of strong conditional oblivious
transfer, a new protocol implementing the greater than predicate is presented, uti-
lizing some special properties of the Boneh-Goh-Nissim cryptosystem to achieve
security against a malicious receiver.

iii

Acknowledgements

I would like to thank my supervisor, Doug Stinson, and the other members of
the CrySP lab for their help and support during my studies. I would also like to
thank my readers, Alfred Menezes and David Jao, for their helpful comments and
suggestions.

iv

Contents

List of Tables viii

1 Introduction 1

1.1 Contributions . 2

1.2 Organization . 2

1.3 Introduction to Cryptography . 3

2 Overview of Homomorphic Cryptography 10

2.1 Privacy Homomorphisms . 10

2.2 Homomorphic Cryptosystems in an Abstract Setting 12

2.3 Security of Homomorphic Cryptosystems 13

2.3.1 Theoretical Limits of Homomorphic Cryptosystems 13

2.3.2 Known Attacks Against Homomorphic Cryptosystems 15

2.3.3 Alternate Security Notions for Homomorphic Cryptosystems 18

3 A Survey of Homomorphic Cryptosystems 23

3.1 Building Blocks for Homomorphic Cryptosystems 23

3.1.1 The Factoring Problem . 24

3.1.2 RSA / e’th Root Problem 25

3.1.3 Quadratic Residuosity Problem 26

3.1.4 Higher Order Residues and Residue Classes 27

3.1.5 The p-Subgroup Problem . 29

3.1.6 Discrete Logarithms and the Diffie-Hellman Problem 30

3.1.7 Bilinear Groups and Elliptic Curves 31

3.2 A Survey of Homomorphic Cryptosystems 32

3.2.1 The RSA Cryptosystem . 32

v

3.2.2 The Goldwasser-Micali Cryptosystem 33

3.2.3 The ElGamal Cryptosystem 35

3.2.4 The Benaloh Cryptosystem 37

3.2.5 The Naccache-Stern Cryptosystem 40

3.2.6 The Sander-Young-Yung Cryptosystem 44

3.2.7 The Okamoto-Uchiyama Cryptosystem 46

3.2.8 The Paillier Cryptosystem 51

3.2.9 Paillier/Schmidt-Samoa-Takagi Cryptosystem 57

3.2.10 Elliptic Curve Paillier . 59

3.2.11 The Paillier/Damg̊ard-Jurik Cryptosystem 60

3.2.12 The Boneh-Goh-Nissim Cryptosystem 65

3.2.13 Insecure Homomorphic Cryptosystems 68

3.3 A Summary of Homomorphic Cryptosystems 68

4 Threshold Homomorphic Cryptography 71

4.1 Threshold RSA Signatures . 73

4.2 Proving the Semantic Security of a Threshold Cryptosystem 77

4.3 A Threshold Paillier Cryptosystem 78

4.4 Threshold Paillier/Damg̊ard-Jurik Cryptosystems 80

4.5 A Threshold ElGamal Cryptosystem 83

4.6 A New Threshold Boneh-Goh-Nissim Cryptosystem 84

4.7 On the (Im)possibility of Other Homomorphic Threshold Cryptosys-
tems . 91

5 Applications of Homomorphic Cryptography 94

5.1 Manipulating Encrypted Polynomials 96

5.1.1 Multivariate Polynomials and 2-DNF Formulas 97

5.1.2 Modeling Sets as Encrypted Polynomials 100

5.2 A Limited Algebraically Homomorphic Cryptosystem 102

5.3 Strong Conditional Oblivious Transfer 104

5.4 Cryptographic Voting and Mix Nets 106

6 Concluding Remarks 109

6.1 Future Work . 110

vi

References 112

Appendix 121

A Sample Implementations 121

A.1 A Sample Implementation of the Paillier / Damg̊ard-Jurik Cryp-
tosystem . 121

A.2 Private Matching . 125

A.2.1 Step 1 . 126

A.2.2 Step 2 . 127

A.2.3 Step 3 . 128

A.3 Privacy Preserving Set Union . 128

A.3.1 Step 1 and 2 . 128

A.3.2 Step 3 and 4 . 129

A.3.3 Step 5 . 130

vii

List of Tables

3.1 A summary of homomorphic cryptosystems. 70

viii

Chapter 1

Introduction

Homomorphic cryptosystems are cryptosystems whose encryption function is a ho-
momorphism, and thus preserves group operations performed on ciphertexts. De-
pending on the properties of the cryptosystem, this usually allows a third party
to take two ciphertexts eK(m1) and eK(m2), and, without knowledge of any secret
information, calculate one of eK(m1 + m2) or eK(m1m2). The ability to perform
simple computations on ciphertexts allows for a variety of simple privacy preserv-
ing protocols to be built upon homomorphic cryptosystems. Unfortunately, the
additional structure provided by a homomorphic cryptosystem also places limits
on their security.

Homomorphic cryptosystems are a special instance of general privacy homomor-
phisms, a concept introduced by Rivest, Adleman, and Dertouzous in 1978 [86],
originally envisioned as a method to allow expensive computations to be performed
by a potentially untrusted third party. If a user could take a problem defined in
one algebraic system and encode it into a problem in a different algebraic system
such that decoding back to the original algebraic system is hard, then the user
could encode expensive computations and send them to the untrusted party. This
untrusted party then performs the corresponding computation in the second alge-
braic system, returning the result to the user. Upon receiving the result, the user
can decode it into a solution in the original algebraic system, while the untrusted
party learns nothing of what computation was actually performed.

In many applications, such as cryptographic voting protocols, it is desirable
to distribute trust among the participants involved such that some pre-defined
threshold, potentially all participants, must agree to cooperate in order to decrypt
a message. In the context of a voting protocol, the threshold might be chosen
to ensure that at least one official from each political party involved must agree to
cooperate in decryption. Many homomorphic cryptosystems have efficient threshold
variants, further bolstering their use in privacy preserving protocols.

This thesis provides a survey of security notions for homomorphic cryptosystems
in an abstract setting, as well as a comprehensive survey of known homomorphic

1

cryptosystems, including outlines of proofs of security, known variants, and a sum-
mary of the computational problems relied on by each cryptosystem. The survey
is extended to threshold variants of these cryptosystems, and the open problem
of creating threshold variants for several homomorphic cryptosystems is investi-
gated with both positive and negative results. To conclude, a brief overview of
how homomorphic cryptography is applied within privacy preserving protocols is
provided.

1.1 Contributions

The survey of homomorphic cryptography given in Chapter 3 contains a summary
of all known homomorphic cryptosystems, as well as the many variants of these
cryptosystems. To remain self-contained, outlines of security proofs are provided
for each cryptosystem and a description of the computational problem each cryp-
tosystem relies on is also given. This survey contains several variants and a major
cryptosystem, The Boneh-Goh-Nissim cryptosystem, not included in previous sur-
veys, such as [72].

In regards to threshold homomorphic cryptosystems, the first secure construc-
tion of a threshold variant of the Boneh-Goh-Nissim cryptosystem is demonstrated,
including a full security proof. This threshold variant is based on an approach by
Shoup [95], which has previously been used to construct other threshold homo-
morphic cryptosystems, and is shown to be secure with respect to the threshold
semantic security game given by Fouque, Poupard, and Stern [48]. An open prob-
lem posed by Fouque, Poupard, and Stern, the creation of threshold variants for
many other homomorphic cryptosystems, is investigated with respect to Shoup’s
approach, and it is shown that secure threshold variants utilizing Shoup’s approach
in conjunction with a secondary (required) protocol do not exist. The general
problem of creating secure threshold variants of these cryptosystems remains open.

When presenting some applications of homomorphic cryptography, a new strong
conditional oblivious transfer protocol for the greater than predicate is provided
that is secure against a malicious receiver. This new protocol replaces the Paillier
cryptosystem with the Boneh-Goh-Nissim cryptosystem, and exploits the fact that
a single homomorphic multiplication on BGN ciphertexts is possible. This allows
the sender to “sanitize” any maliciously crafted messages sent by the receiver, using
the same approach Boneh, Goh, and Nissim used when evaluating 2-DNF formulas
[14].

1.2 Organization

The remainder of the introduction presents a basic overview of cryptography, for-
mally defining a cryptosystem and the various notions of security. An overview of

2

homomorphic cryptography in an abstract setting is then given, beginning with an
introduction to privacy homomorphisms. Once the basic definitions are established,
the theoretical limitations of security of homomorphic cryptosystems is presented,
followed by known attacks against homomorphic cryptosystems in a general setting,
and new alternate definitions of security for homomorphic cryptosystems.

Chapter 3 presents an overview of the many computational problems that the
security of homomorphic cryptosystems rely on, citing the best known approaches
to solving each problem. This is followed by a comprehensive survey of known
homomorphic cryptosystems, in order of discovery, with each major cryptosystem
formally stated alongside an outline of the security proof, a discussion of any vari-
ants of the cryptosystem, and a summary of the homomorphic properties of the
cryptosystem.

Known threshold variants of homomorphic cryptosystems are omitted from the
survey in Chapter 3 and are instead summarized in Chapter 4. Shoup’s threshold
RSA signature scheme is presented, followed by the threshold homomorphic cryp-
tosystems that have built off his approach. A new construction of a threshold BGN
cryptosystem is presented, followed by a discussion on the impossibility of directly
applying Shoup’s approach to homomorphic cryptosystems that currently have no
known threshold variant.

Before concluding, a brief overview of some protocols utilizing homomorphic
cryptosystems is given in Chapter 5. This includes a new construction of a strong
conditional oblivious transfer protocol implementing the greater than predicate that
is secure against a malicious receiver. A sample implementation of two privacy
preserving protocols is also provided in Appendix A.

1.3 Introduction to Cryptography

In general, a cryptosystem provides a method for transforming one message, called
a plaintext, into another message, called a ciphertext, using some secret key. If the
cryptosystem is secure, then the ciphertext can safely be made public, and no party
without knowledge of the secret key can recover the plaintext.

Definition 1.3.1. ([98], Definition 1.1) A cryptosystem is a five-tuple (P, C, K,
E, D), where to the following conditions are satisfied:

1. P is a finite set of possible plaintexts;

2. C is a finite set of ciphertexts;

3. K is a finite set of possible keys;

4. For each K ∈ K, there is an encryption rule eK ∈ E and a corresponding
decryption rule dK ∈ D. Each eK : P → C and dK : C → P are functions
such that dK(eK(x)) = x for every plaintext x ∈ P.

3

If the decryption rule dK , is the same as the encryption rule eK , or can be easily
derived from eK , then such a cryptosystem is called a symmetric-key cryptosystem,
as both encryption and decryption can be performed using only knowledge of eK .
In the symmetric-key setting, the value of eK must be kept secret, otherwise an
adversary could decrypt messages. If it is computationally infeasible to determine
dK from eK , then such a cryptosystem is called a public-key cryptosystem, as eK

can be safely made public without allowing an adversary to decrypt messages. By
computationally infeasible, it is meant that a computationally-bounded adversary
has only a negligible chance of succeeding in calculating dK given eK , with respect
to some pre-defined security parameter ε. In many settings, ε is taken to be the
bit-length of the public parameters of the cryptosystem.

Definition 1.3.2. A function ν : N → R is said to be negligible if for any non-zero
polynomial p ∈ R[x] there exists m ∈ N such that for all n > m,

|ν(n)| < 1

|p(n)|
.

In the public-key setting, all the information necessary to apply the encryption
rule will be called the public key, and the information necessary to apply the de-
cryption rule will be called the private key or secret key. In the symmetric-key
setting, the necessary information to apply eK (and hence dK) is the secret key.

Public-key cryptography was first proposed by Diffie and Hellman [43], eventu-
ally leading to the discovery of the RSA cryptosystem [88] by Rivest, Shamir, and
Adleman, which remains as one of the most important public-key cryptosystems
discovered.

Cryptosystem 1.3.3. The RSA Cryptosystem [88]

Let p and q be two primes, and define n = pq. Also, let P = C = Zn, and define

K = {(n, p, q, d, e) | de ≡ 1 mod φ(n)}

where φ is the Euler totient function. For K = (n, p, q, d, e), define

eK(x) = xe mod n

and
dK(y) = yd mod n

for x ∈M and y ∈ C. The tuple (e, n) is made public, and the tuple (p, q, d) is kept
private.

The RSA cryptosystem works because the values e and d are inverses modulo
φ(n). It is easy to see that Property 4 of Definition 1.3.1 is satisfied:

dK(eK(x)) = (xe)d mod n

= xed mod n

= xed mod φ(n) mod n (by Fermat’s little theorem)

= x1

= x.

4

It remains to be seen that knowledge of eK does not allow an adversary to determine
dK .

Consider an adversary with knowledge of (e, n). In order to apply the decryption
rule dK , the adversary apparently must discover the value of d, the unique integer
such that ed ≡ 1 mod φ(n). This is easy to compute using the Extended Euclidean
Algorithm, assuming the value φ(n) = (p − 1)(q − 1) is known; however, because
p and q are kept private, the adversary must first factor n to determine p and
q. It is on this fact that the security of dK relies: For sufficiently large n, a
computationally-bounded adversary has only a negligible chance of factoring n.
Formally, the security of the RSA cryptosystem is parameterized by the bit-length
of n. This is not a rigorous proof that an adversary cannot derive the secret key
from the public key, but it outlines the basis for security of the private key in RSA.

It is possible that an adversary would be satisfied with something less than
learning the private key, and thus gaining the ability to decrypt all messages. Note
that in the basic RSA cryptosystem, if two messages m1 = m2 are encrypted, then
the resulting ciphertexts c1 and c2 are identical; i.e., encryption is a deterministic
process. If the adversary observes an encrypted message c, it can easily be checked
if c is an encryption of m by checking if eK(m) = c. An adversary could construct a
database containing encryptions of all English words and common phrases, poten-
tially allowing for many observed messages to be revealed. To protect against this
sort of attack, it is often required that ciphertexts produced by a cryptosystem be
indistinguishable. By this, it is meant that an adversary, given a single encryption
of a known message chosen from the set {m0, m1}, should not be able to determine
which message the ciphertext represents with probability significantly greater than
1
2
. This is formalized in Definition 1.3.4.

Definition 1.3.4. A cryptosystem is said to be indistinguishable under chosen
plaintext attack, or IND-CPA, if a probabilistic polynomially bounded adversary
cannot win the following game with probability greater than 1

2
+ ν(ε), where ε is a

pre-defined security parameter and ν is a negligible function:

1. The challenger creates an instance of the cryptosystem using security param-
eter ε, and sends the public key to the adversary.

2. The adversary may perform a polynomially-bounded number of encryptions
or other calculations.

3. The adversary chooses two different messages m0, m1 ∈ P and sends them to
the challenger.

4. The challenger randomly chooses a bit b ∈ {0, 1} and sends eK(mb) to the
adversary.

5. The adversary may perform a polynomially-bounded number of encryptions
or other calculations, then responds with either 0 or 1.

5

The adversary wins the game if the bit-value chosen by the adversary is the same
value chosen by the challenger.

The term polynomially secure is sometimes used instead of IND-CPA. Note that
the RSA scheme can be made IND-CPA secure through the use of random padding
techniques, such as optimal asymmetric encryption padding (OAEP) [7].

Some cryptosystems, called probabilistic cryptosystems are designed to incorpo-
rate randomness directly into the encryption rule. In probabilistic cryptosystems,
the encryption rule is a function of both the public key and some randomly chosen
parameter. When RSA is used in conjunction with OAEP, it becomes a probabilis-
tic cryptosystem.

Definition 1.3.5. ([98], Definition 8.1) A probabilistic public-key cryptosystem is
defined to be a six-tuple (P, C,K, E,D,R) where P, C, and K, are defined as in
Definition 1.3.1, and R is a set of randomizers. In addition to the basic properties
of a cryptosystem, the following properties should be satisfied:

1. Each encryption rule eK : P × R → C and corresponding decryption rule
dK : C → P are functions such that

dK(eK(b, r)) = b

for every plaintext b ∈ P and every r ∈ R.

2. Let ε be a specified security parameter. For any fixed K ∈ K and for any
x ∈ P, define a probability distribution pK,x on C where pK,x(y) denotes the
probability that y is the ciphertext given that K is the key over all choices
of r ∈ R. Suppose x, x′ ∈ P, x 6= x′, and K ∈ K. Then all probability
distributions pK,x and pK,x′ are ε-indistinguishable in polynomial time.

The notion of a probabilistic cryptosystem was first put forward by Goldwasser
and Micali [61], who also introduced the concept of semantic security. Property 2
of Definition 1.3.5 states the formal requirements for semantic security. Informally,
a cryptosystem is semantically secure if, given a ciphertext, the information an
adversary can determine about the plaintext is the same as the information that
can be determined without the ciphertext. Goldwasser and Micali later showed that
semantic security was equivalent to IND-CPA security, and gave the first example
of a probabilistic cryptosystem [62], referred to as the Goldwasser-Micali, or GM
cryptosystem. The GM cryptosystem is presented in Section 3.2.2.

Indistinguishability under chosen plaintext attack is usually the weakest form of
security expected from a cryptosystem. Indeed, the nature of public-key cryptosys-
tems allows the adversary to encrypt a polynomially-bounded number of arbitrary
messages without access to any special hardware or non-public information. In
many situations it is assumed that the adversary has the ability to perform more
complicated actions than choosing a plaintext and calculating the corresponding

6

ciphertext, such as the ability to choose a ciphertext and see the corresponding
plaintext. This type of attack is called a chosen ciphertext attack. In order to
formalize this idea, the idea of a decryption oracle is necessary, which acts as a
black box that accepts as input a ciphertext, and responds with the corresponding
ciphertext in constant time.

Definition 1.3.6. A cryptosystem is said to be indistinguishable under non-adaptive
chosen ciphertext attack, or IND-CCA1 secure, if a probabilistic polynomially bounded
adversary cannot win the following game with probability greater than 1

2
+ν(ε) where

ε is a pre-defined security parameter and ν is a negligible function:

1. The challenger creates an instance of the cryptosystem using security param-
eter ε, and sends the public key to the adversary.

2. The adversary is given access to a decryption oracle and may perform a
polynomially-bounded number of encryptions, decryptions, or other calcula-
tions.

3. The adversary chooses two different messages m0, m1 ∈ P and sends them to
the challenger.

4. The challenger randomly chooses a bit b ∈ {0, 1} and sends eK(mb) to the
adversary.

5. Access to the decryption oracle is suspended. The adversary may perform a
polynomially-bounded number of encryptions or other calculations, then re-
sponds with either 0 or 1.

The adversary wins the game if the bit-value chosen by the adversary is the same
value chosen by the challenger.

A non-adaptive chosen ciphertext attack is also called indifferent chosen cipher-
text attack, or a lunchtime attack, so named because an adversary could sneak onto
a protected system while its owner was out for lunch (step 2 in Definition 1.3.6),
but cannot rely on access at a later date. The strongest form of indistinguishability
assumes that the adversary retains access to the decryption oracle after the chal-
lenge ciphertext is received, but that the decryption oracle will not respond if the
adversary queries the challenge ciphertext.

Definition 1.3.7. A cryptosystem is said to be indistinguishable under adaptive
chosen ciphertext attack, or IND-CCA2, if a probabilistic polynomially bounded
adversary cannot win the following game with probability greater than 1

2
+ ν(ε)

where ε is a pre-defined security parameter and ν is a negligible function:

1. The challenger creates an instance of the cryptosystem using security param-
eter ε, and sends the public key to the adversary.

7

2. The adversary is given access to a decryption oracle and may perform a poly-
nomially bounded number of encryptions, decryptions, or other calculations.

3. The adversary chooses two different messages m0, m1 ∈ P and sends them to
the challenger.

4. The challenger randomly chooses a bit b ∈ {0, 1} and sends c = eK(mb) to
the adversary.

5. The decryption oracle is altered such that it will not respond to a query for c,
but will respond for any other valid ciphertext. The adversary may perform
a polynomially bounded number of encryptions, decryptions or other calcula-
tions, then responds with either 0 or 1.

The adversary wins the game if the bit-value chosen by the adversary is the same
value chosen by the challenger.

It should be clear from the definitions that IND-CCA2 implies IND-CCA1,
which in turn implies IND-CPA.

In the chosen plaintext and chosen ciphertext attacks considered so far, a cryp-
tosystem has been considered secure if an adversary cannot distinguish between
encryptions of two known messages; however, there may exist situations in which
an adversary can modify a ciphertext such that it affects the plaintext in a deter-
ministic way. Cryptosystems which allow this behavior are said to be malleable,
while cryptosystems that resist this behavior are said to be non-malleable.

Definition 1.3.8. A cryptosystem is said to be malleable if, given a ciphertext c
representing plaintext m, it is feasible to compute functions f and g, where f is
not the identity function, such that f(c) decrypts to g(m). If it is not feasible to
calculate any such f and g, the cryptosystem is said to be non-malleable.

Clearly, any malleable cryptosystem is not IND-CCA2, as the adversary, given
challenge eK(mb), can simply send f(mb) to the decryption oracle to receive g(mb).
The adversary can then calculate g−1(g(mb)) = mb to determine which value b ∈
{0, 1} the challenger chose.

Recall the RSA cryptosystem (Cryptosystem 1.3.3). Given the public key K =
(e, n) the encryption of two messages m1 and m2 can be calculated by eK(m1) = m1

e

mod n and eK(m2) = m2
e mod n. Taking the product of these two ciphertexts

results in

eK(m1)eK(m2) mod n = m1
em2

e mod n

= (m1m2)
e mod n

= eK(m1m2).

Thus, the basic RSA cryptosystem is malleable, as the encrypted product of two
ciphertexts can be calculated from public information, and hence, the RSA cryp-
tosystem is not IND-CCA2.

8

Although malleability limits the theoretical security of a cryptosystem, it is not
necessarily an undesired property. A special class of cryptosystems, called homo-
morphic cryptosystems, are designed specifically to allow simple calculations on
ciphertexts. In most cases, homomorphic cryptosystems allow someone to take two
encrypted messages eK(m1) and eK(m2) and calculate eK(m1 + m2) or eK(m1m2)
without knowledge of the private key. A detailed discussion of homomorphic cryp-
tosystems is given in the next Chapter.

9

Chapter 2

Overview of Homomorphic
Cryptography

As was shown in the previous section, the basic RSA cryptosystem is malleable; that
is, it is possible to alter the plaintext that a ciphertext represents in a deterministic
way. By taking the product of two messages encrypted under the same public key,
the result is a ciphertext that will decrypt to the product of the two messages.
While it is possible to envision a scenario where an adversary could take advantage
of malleability in a cryptosystem, such as altering an encrypted bank deposit, it is
also possible to use malleability in a beneficial manner. For example, suppose Bob
has knowledge of some secret function f , and Alice possesses a value secret x for
which she wishes to learn f(x). By using an appropriate malleable cryptosystem it
may be possible for Alice to send eK(x) to Bob, who then calculates the encrypted
result eK(f(x)) and returns it to Alice, who now learns the value f(x) without
learning f .

2.1 Privacy Homomorphisms

The idea of performing simple computations on encrypted messages was first put
forward by Rivest, Adleman, and Dertouzous [86], who referred to such computa-
tions as privacy homomorphisms. The original motivation for privacy homomor-
phisms was to allow for an encrypted database to be stored by an untrusted third
party, while still allowing to owner to perform simple updates and queries such that
nothing about the database contents is revealed to the third party.

Definition 2.1.1. A privacy homomorphism is a homomorphism φ from an alge-
braic system U consisting of a set S, some operations f1, f2, . . ., some predicates
p1, p2, . . ., and some distinguished constants s1, s2, . . ., to an algebraic system C
consisting of a set S ′, some operations f ′

1, f
′
2, . . ., some predicates p′1, p

′
2, . . ., and

some distinguished constants s′1, s
′
2, . . . such that:

10

1. (∀i)(a, b, c, . . .) ∈ S ′ [f ′
i(a, b, . . .) = c ⇒ fi(φ(a), φ(b), . . .) = φ(c)]

2. (∀i)(a, b, c, . . .) ∈ S ′ p′(a, b, . . .) ≡ p(φ(a), φ(b), . . .)

3. (∀i) φ(s′i) = si.

The function φ is called the decoding function, and the function φ−1 is called the
encoding function.

In this setting, φ serves as an decryption key, while the algebraic system U is
kept private, and the algebraic system C is made public. As an example, assume
a user wishes to calculate f1(d1, d2) from a set of values stored by a third party,
without revealing f1. The user submits a request for f ′

1(φ
−1(d1), φ

−1(d2)), and,
upon receiving the response, calculates

φ(f ′
1(φ

−1(d1), φ
−1(d2))) = f1(φ(φ−1(d1)), φ(φ−1(d2))) (By Property 1)

= f1(d1, d2).

In addition to the mathematical properties of φ, Rivest et al. also propose that
a privacy homomorphism must satisfy the following properties:

1. φ and φ−1 should be easy to compute.

2. The operations f ′
i and predicates p′i in C should be easy to compute.

3. φ−1(di) should not require much more space than di.

4. Knowledge of φ−1(di) for many values of di should not be sufficient to reveal
φ.

5. Knowledge of di and φ−1(di) for several values of di should not reveal φ.

6. The operations and predicates in C should not be sufficient to yield an efficient
computation of φ.

Conditions 4 and 5 are equivalent to chosen ciphertext and chosen plaintext attacks,
respectively. Condition 6 is important when dealing with comparison predicates
such as the ≤ predicate. It has been observed that if an adversary can calculate
the encoding of arbitrary constants and a predicate for total order, such as ≤, is
available, then there is no secure privacy homomorphism from U to C; that is, an
adversary can determine φ(a) from a. This follows from the adversary’s ability to
calculate ≤ on 21, 22, 23, . . . until an upper bound is located, and then perform a
binary search for the encoded value.

Rivest et al. proposed several examples of privacy homomorphisms, with multi-
plication under RSA being one of the examples. These examples were intended as
“proof of concepts” rather than robust systems, and it was later shown by Brickell
and Yacobi that each of the proposed systems, except the RSA based system, were
vulnerable to chosen plaintext or chosen ciphertext attacks [17].

11

2.2 Homomorphic Cryptosystems in an Abstract

Setting

Most cryptosystems are defined over algebraic groups or rings, such as Zn or Z∗
n,

which can be considered algebraic systems as in Definition 2.1.1. Cryptosystems
defined over a group naturally support a single operation, usually denoted by mul-
tiplication or addition for cryptographic purposes, and cryptosystems defined over
a ring naturally support two operations, usually denoted by addition and multipli-
cation. Thus, if the encryption rule for a cryptosystem, where both the plaintext
space and the message space are groups (or rings), is a homomorphism, then such
a cryptosystem is a privacy homomorphism. Such systems are referred to as ho-
momorphic cryptosystems, as they are usually general-purpose cryptosystems that
also provide limited privacy homomorphism capabilities.

Definition 2.2.1. A homomorphic cryptosystem is a cryptosystem where the set of
possible plaintexts P and the set of possible ciphertexts C are both groups such that
for any K ∈ K and any two ciphertexts c1 = eK(m1), c2 = eK(m2), the following
condition holds:

dK(c1 · c2) = m1 ·m2

where · represents the respective group operations in C and M.

This definition extends naturally to a cryptosystem defined over a ring.

Definition 2.2.2. An algebraically homomorphic cryptosystem, or ring homomor-
phic cryptosystem, is a cryptosystem where the set of possible plaintexts P and the
set of possible ciphertexts C are both rings such that for any K ∈ K and any two
ciphertexts c1 = eK(m1), c2 = eK(m2), the following conditions hold:

1. dK(c1 + c2) = m1 + m2

2. dK(c1 · c2) = m1 ·m2

where + and · represent the respective ring operations in C and M.

A survey of known homomorphic cryptosystems is given in Section 3.2.

For now, a homomorphic cryptosystem can be thought of as an oracle, or black
box, that, when given two ciphertexts and an operation, returns an encryption of the
result of that operation on the two corresponding plaintexts. Because addition and
multiplication are common operations provided by a homomorphic cryptosystem,
the symbol � will be used with ciphertexts to denote the operation which results
in an encryption of the sum of the two plaintext messages, and the symbol � will
be used to denote the operation on ciphertexts needed to produce an encryption of
the product of two plaintext messages:

dK(eK(m1) � eK(m2)) = m1 + m2

dK(eK(m1) � eK(m2)) = m1m2.

12

In general, � and � may be any probabilistic polynomial time algorithms which
achieve the desired result.

2.3 Security of Homomorphic Cryptosystems

Homomorphic cryptosystems have the useful property of allowing anybody to per-
form simple computations on encrypted messages. These cryptosystems can be used
for many different privacy-preserving protocols, with several examples described in
Chapter 5; however, before using them in protocols their theoretical limits must
be considered. The notions of security defined in Section 1.3 assumed the adver-
sary had the ability to encrypt and decrypt messages in various settings, but did
not account for the ability of the adversary to perform homomorphic operations
on ciphertexts. The security of cryptosystems when homomorphic operations are
possible, and what sort of attacks are introduced by homomorphic operations are
considered in this section.

2.3.1 Theoretical Limits of Homomorphic Cryptosystems

It should be immediately obvious that no homomorphic cryptosystem can be IND-
CCA2 secure. This follows from the fact that any homomorphic cryptosystem is
malleable.

Theorem 2.3.1. If a cryptosystem C is homomorphic (or algebraically homomor-
phic), then it is not IND-CCA2 secure.

Proof. Consider the game defined in Definition 1.3.7. In step 5, the adversary
has chosen two messages m0 and m1, and has received a challenge eK(mb) from
which it must be determined if b = 0 or b = 1. The adversary may request an
encryption of some known constant c, and then use the homomorphic properties of
the cryptosystem to calculate eK(mb) � eK(c) = eK(mb + c). The adversary then
sends a decryption query to the oracle to learn mb + c, and can easily determine
which of m0 or m1 is the challenge.

In light of this negative result, Yu, Leiwo, and Premkumar [104] investigated the
theoretical limits of ciphertext indistinguishability for homomorphic cryptosystems.
Their analysis was done in the black box model, which, as mentioned in Section
2.2, assumes that the operations � and � are implemented by a black box that,
given two ciphertexts and an operation, returns an encryption of the result of that
operation on the two corresponding plaintexts. Although this assumption might
seem unrealistic, it can be easily modeled in a real world setting through the use of
tamper-proof hardware that can decrypt messages, perform simple arithmetic, and
then encrypt the result.

13

Knowing that IND-CCA2 security is impossible to achieve, Yu et al. considered
the next strongest form of indistinguishability, IND-CCA1. For a cryptosystem
to be IND-CCA1 secure, an adversary must gain only a negligible advantage in
distinguishing messages after being given polynomially-many queries to a decryp-
tion oracle. Yu et al. have shown that if a (non-homomorphic) cryptosystem is
IND-CCA1, then its black box implementation as an algebraically homomorphic
cryptosystem is also IND-CCA1 secure.

Recall the game from Definition 1.3.6. Let Oe,d be an oracle that answers
both encryption and decryption queries, and let Od be an oracle that only answers
decryption queries. In step 2 of the game, the adversary is given access to Oe,d,
and in step 5 it is given access to Oe. In order to show that the algebraically
homomorphic black box implementation of an IND-CCA1 cryptosystem C is also
IND-CCA1 secure, the oracles in step 2 and step 5 are replaced with Oe,d,�,� and
Oe,�,� respectively. These oracles are identical to the non-black box oracles, but
will also answer queries requesting a homomorphic operation on two ciphertexts.

Theorem 2.3.2. ([104], Theorem 1) Let C be an IND-CCA1 secure cryptosystem
(with respect to security parameter ε) such that the homomorphic operations � and
� are computable on ciphertexts in C. Then the algebraically homomorphic black
box implementation of C is also IND-CCA1 secure.

Proof. The theorem holds if replacing the oracles Oe,d and Oe in Definition 1.3.6
with the Oe,d,�,� and Oe,�,� does not give the adversary a sufficient advantage to
win the game with more than 1

2
+ ν(ε) probability, where ν is a negligible function.

In step 2, consider a request for � or � made to Oe,d,�,�. The same request could
be simulated with access to Oe,d by decrypting both messages, manually performing
the desired operation, and then submitting the result as an encryption query. Thus,
the adversary does not gain any additional information in step 2. Next, consider
step 5 of the game. Access toOe is not sufficient to simulateOe,d,�,�. Instead, it can
be shown that the information returned by Oe is computationally indistinguishable
from the output of Oe,�,�. Assume that the adversary replaces Oe,d,�,� with the
oracle Oe,+,×, which, given a query on (eK(m1), eK(m2), {+,×}) returns eK(0).
This oracle is clearly simulatable with access only toOe. Because C is an IND-CCA1
secure cryptosystem, the adversary cannot distinguish between eK(0), eK(m1+m2),
and eK(m1m2). Hence, the adversary’s advantage in distinguishing between queries
made to Oe,�,� and Oe,+,× is negligible, which implies the advantage gained by
the adversary with access to Oe,d,�,� is negligible. Since the adversary gains no
non-negligible information in both step 2 and step 5, the adversary cannot win
the game with access to Oe,d,�,� and Oe,�,� with more than 1

2
+ ν(ε) probability,

and the algebraically homomorphic black box implementation of C is IND-CCA1
secure.

It should be obvious that Theorem 2.3.2 would also hold if C were a non-
algebraically homomorphic cryptosystem. Thus, in light of Theorems 2.3.1 and
2.3.2, the following theorem can be stated.

14

Theorem 2.3.3. IND-CCA1 is a tight upper bound for the security of a homomor-
phic (or algebraically homomorphic) cryptosystem.

Proof. The theorem follows directly from Theorems 2.3.1 and 2.3.2.

Although Theorem 2.3.2 shows that IND-CCA1 security is achievable, its proof
relies on the fact that the homomorphic operations are implemented in an ideal
black box model. In practice, � and � are probabilistic polynomial time algo-
rithms, not black box oracles. The question of whether or not IND-CCA1 security
is achievable in an algorithmic setting is still an open problem. The impossibil-
ity of IND-CCA2 security for a homomorphic cryptosystem does not rely on the
black box model, so it can still be stated that IND-CCA1 is an upper bound for an
algorithm-based homomorphic cryptosystem, but possibly not a tight upper bound.

2.3.2 Known Attacks Against Homomorphic Cryptosystems

In some cases, homomorphic operations allow an adversary to break a homomorphic
cryptosystem by allowing an encrypted message to be recovered without knowledge
of the secret key. Some examples of such attacks are presented in this section.

Ahituv, Lapid, and Neumann [4] have demonstrated a chosen-ciphertext at-
tack against a homomorphic cryptosystem where the ciphertext operation for � is
straightforward addition. Let eK be an encryption function which maps an n-bit
message to an m-bit message such that dK(eK(m1) + eK(m2)) = m1 + m2, and
consider the following messages:

eK(a1) = [1, 0, 0, . . . , 0]

eK(a2) = [0, 1, 0, . . . , 0]
...

eK(am) = [0, 0, . . . , 0, 1].

If an adversary is able to learn the plaintext message ai for the ciphertext consisting
of a 1-bit at position i and 0-bits elsewhere, then the adversary can efficiently
decrypt any ciphertext. Let c = eK(m) for some message m, and let ci be the
bit-value of c at position i. The adversary can retrieve m by calculating

m =
m∑

i=1

ciai.

This attack works because the chosen ciphertexts form a basis for which it is trivial
to compute the representation of any other ciphertext. Because the correspond-
ing plaintexts are known for each basis element, and the same addition operation
works in each domain, the plaintext message is easily recovered. Yu, Leiwo, and
Premkumar [104] have observed that this attack works for any system in which �

15

is a linear operation, such as addition. Additionally, they have observed that this
attack has been incorrectly interpreted by some as stating that no additive homo-
morphic cryptosystem can be secure, a statement which is incorrect, as the attack
fails when � is a non-linear operation, such as multiplication. This attack is also
sometimes incorrectly referred to as a chosen-plaintext attack [46, 104], despite the
fact that the attack adversary is required to choose m specific ciphertexts.

Boneh and Lipton [15] have shown that any algebraically homomorphic cryp-
tosystem can be broken in sub-exponential time. Their proof is based on the black
box field problem (BBFP) and the fact that it can be solved in sub-exponential
time.

Definition 2.3.4. ([15], Definition 1) A black box field is a six-tuple: (p, n, h,
F , G, T) where p is a prime and n is a positive integer representing the encoding
length. The functions h, F, G, T are defined as follows:

1. The function h : {0, 1}n → Fp associates a field element with every n-bit
binary string. The function h is surjective.

2. The functions F, G : {0, 1}n × {0, 1}n → {0, 1}n perform addition and multi-
plication. They satisfy the following relations: h(F (x, y)) = h(x) + h(y) and
h(G(x, y)) = h(x)h(y).

3. The function T : {0, 1}n × {true, false} tests equality of two black-box ele-
ments: T (x, y) = true if and only if h(x) = h(y).

Note that the function h, which maps binary strings to field elements, is sur-
jective, but not injective. Because many different binary strings can be mapped to
the same field element the notation [x] is used to refer to some binary string such
that h([x]) = x.

Definition 2.3.4 appears very similar to Definition 2.2.2. The function h acts
like a decryption function which takes a binary message and maps it to a unique
element of Fp, and the functions F and G act like the operations � and �. Because
there is a potentially many-to-one mapping of binary strings to field elements, the
definition also seems to fit that of a probabilistic cryptosystem (Definition 1.3.5),
although the function T acts like an oracle that can distinguish “ciphertexts” in a
black box field setting.

Although black box fields appear very similar to algebraically homomorphic
cryptosystems, Definition 2.3.4 does not state anything about the difficulty of de-
termining x from [x] without knowledge of h, a task which should be difficult if black
box fields are used to model algebraically homomorphic cryptosystems. Boneh and
Lipton address this by proposing the black box field problem.

Definition 2.3.5. ([15], Definition 2) Let (p, n, h, F,G, T) be a black box field for
some prime p. Denote the map sending x to some [x] by []. The black box field
problem (BBFP)is the following: Find an algorithm A that, given p and oracles for

16

F, G, T, [] and an element [α] ∈ Fp, finds α explicitly. Formally, AF,G,T,[]([α]) = a
where a ≡ α mod p. The algorithm is said to run in polynomial time if it runs in
time logO(1) p. The algorithm is sub-exponential if it runs in sub-exponential time
in log p.

Boneh and Lipton then show that a sub-exponential solution to BBFP implies
a sub-exponential algorithm to break an algebraically homomorphic cryptosystem;
i.e., given eK(m) there exists a sub-exponential algorithm to determine m.

Theorem 2.3.6. ([15], Theorem 5) Suppose that BBFP in a finite field of size p
can be solved in time TBBF (p). Then any algebraically homomorphic cryptosystem
(dK , eK) over a plaintext ring of size n can be broken in expected time

O

(
TBBF (n) + exp

(
(1 + o(1))

3

√
log n log2 log n

))

The proof of this theorem is based on factoring n =
∏

pi into prime factors
and solving BBFP over Fpi

for each pi. Given x = eK(m), a black box field
(pi, n, h, F, G, T) is created for each pi, with h(x) = dK(m) mod pi, F = �, and
G = �. A solution to BBFP for each of these fields yields m mod pi for each pi,
allowing m to be recovered through Chinese remaindering.

Boneh and Lipton then go on to show that BBFP does indeed have a sub-
exponential solution, thus proving that any algebraically homomorphic cryptosys-
tem defined over a ring of size n can be broken in sub-exponential time. Their
result depends on the smoothness assumption, which is stated in [15] as follows:
Let Lα(p) = exp

(
logα p log log1−α p

)
and let d(x) be the largest prime divisor of x.

The smoothness assumption is the assumption that integers chosen uniformly in
the range [p + 1− 2

√
p, p + 1 + 2

√
p] satisfy

Prx[d(x) < Lα(p)] >
1

L1−α(p)1−α+o(1)
,

which is known to be true when x is in the range [1, p].

Theorem 2.3.7. ([15], Theorem 8) Let K be a finite field of size p given as a black
box field. Under the smoothness assumption, BBFP can be solved using O(log p)
space and expected time

L 1
2
(p)2+o(1) = exp

(
(2 + o(1))

√
log p log log p

)
.

Although this result does limit the theoretical security of algebraically homo-
morphic cryptosystems, it should not be interpreted as stating that a secure alge-
braically homomorphic cryptosystem cannot exist. Many cryptosystems, such as
RSA, rely on the difficulty of factoring n = pq where p and q are large primes;
however, sub-exponential algorithms for factoring n exist, such as the elliptic curve

17

method [70]. Despite this fact, the RSA cryptosystem remains as one of the most
widely used public-key cryptosystems. Additionally, because BBFP requires func-
tions for both addition and multiplication, this result does not hold for a non-
algebraically homomorphic cryptosystem.

In addition to the attacks presented thus far, there exist quantum algorithms
that can break algebraically homomorphic cryptosystems more efficiently. Shor’s
algorithm [93] can be used to efficiently factor integers, thus breaking any scheme
which relies on the difficulty of factoring large integers for security. The period
finding sub-routine of Shor’s algorithm can also be used for attacks specifically
on algebraically homomorphic cryptosystems. Additionally, a different quantum
attack against algebraically homomorphic cryptosystems has been given by van
Dam, Hallgren, and Ip [101].

2.3.3 Alternate Security Notions for Homomorphic Cryp-
tosystems

IND-CCA2 is often considered to be an unreasonably strong security assumption.
Consider an IND-CCA2 cryptosystem C and define C ′ such that eK

′(m) = eK(m)||b
where b is a random bit, and eK is the encryption method from C. The decryption
of messages in C ′ can be calculated by throwing away the least significant bit
and using dK from C. Despite the fact that C ′ clearly provides just as much
message security as C, it is not IND-CCA2 secure. An adversary can simply flip
the least significant bit of a challenge ciphertext and submit the new ciphertext
to the decryption oracle to win the game defined in Definition 1.3.7. The “loss
of security” provided by C ′ stems from the fact that C has been changed into
a malleable cryptosystem, even though this malleability provides no additional
information to an adversary. In this section, two weakenings of IND-CCA2 are
presented (neither of which are suitable for homomorphic cryptosystems), followed
by a generalization of these two weakenings that also provides a notion of adaptive
chosen ciphertext indistinguishability for homomorphic cryptosystems.

Shoup [96] has proposed that adaptive chosen ciphertext security be altered
to allow for benign malleability. If a cryptosystem allows for malleable operations
that are easy to detect and do not otherwise grant an adaptive adversary any non-
negligible advantage in distinguishing ciphertexts, i.e., the malleable operation is
benign, then it should be possible to formally state that such a system provides more
than just IND-CCA1 security. An, Dodis, and Rabin have called this generalized
CCA2 (gCCA2) security [5].

Definition 2.3.8. Let R be an equivalence relation such that given two ciphertexts
c1 and c2:

• R(c1, c2) = true impliesdK(c1) = dK(c2)

• R can be calculated efficiently, i.e., there exists a polynomial time algorithm
to determine R(c1, c2).

18

A cryptosystem is said to be benignly malleable, or indistinguishable under gener-
alized adaptive chosen ciphertext attack (IND-gCCA2), if a polynomially bounded
adversary cannot win the following game with probability greater than 1

2
+ν(ε) where

ε is a pre-defined security parameter and ν is a negligible function:

1. The challenger creates an instance of the cryptosystem using security param-
eter ε, and sends the public key to the adversary.

2. The adversary is given access to a decryption oracle and may perform any
number of encryptions, decryptions, or other calculations.

3. The adversary chooses two different messages m0, m1 ∈ P and sends them to
the challenger.

4. The challenger randomly chooses a bit b ∈ {0, 1} and sends c = eK(mb) to
the adversary.

5. The decryption oracle is altered such that it will not respond to a query q if
R(q, c) = true, but will respond for any other valid ciphertext. The adversary
may perform any number of encryptions, decryptions or other calculations,
then responds with either 0 or 1.

The adversary wins the game if the bit-value chosen by the adversary is the same
value chosen by the challenger.

Consider the modified cryptosystem C ′ defined earlier. The equivalence relation
R can be defined to return true if both ciphertexts are identical, except for the least
significant bit. Because the original cryptosystem C is IND-CCA2 secure, there
does not exists a polynomial time algorithm to distinguish between ciphertexts
when two ciphertexts are not related through R, and C ′ can be declared be IND-
gCCA2 secure.

Although Definition 2.3.8 is weaker than Definition 1.3.7, a homomorphic cryp-
tosystem still cannot achieve IND-gCCA2 security. The equivalence relation R only
returns true if two ciphertexts decrypt to the same plaintext message; thus, the ad-
versary can still use the oracle to decrypt eK(mb + k), for example, to solve for mb.
The malleability provided by homomorphic cryptosystems is not “benign” enough
to satisfy IND-gCCA2.

A further weakening of IND-CCA2, called replayable-CCA2 (rCCA2) has been
proposed by Canetti, Krawczyk, and Nielson [20]. The rCCA2 game is identical to
the gCCA2 game in Definition 2.3.8, except the oracle in step 5 is altered so that it
will not respond to a decryption request for a ciphertext c if dK(c) ∈ {m0, m1}. This
weakening is motivated by the fact that from a protocol point of view, the ability
to generate a new ciphertext from c that decrypts to the same message does not
give an adversary any more advantage than simply replaying the same ciphertext
c, which is possible in any IND-CCA2 cryptosystem. Thus, as stated by Krawczyk
et al., “RCCA security would have ‘essentially the same effect’ as CCA security.”

19

Unfortunately, rCCA2 is still too strong for a homomorphic cryptosystem to
achieve, for the same reasons that IND-CCA2 and IND-gCCA2 are also too strong.
While both gCCA2 and rCCA2 security attempt to allow some form of malleability,
both definitions are restricted to transformations that allow an adversary to cal-
culate a new ciphertext c′ from an existing ciphertext c such that dK(c′) = dK(c).
Prabhakaran and Rosulek [84, 83] have attempted to address this problem by al-
tering IND-CCA2 such that a cryptosystem may be malleable with respect to some
function (or set of functions) T , but non-malleable under all other operations. Un-
der their model, gCCA2 and rCCA2 can be modeled as homomorphic cryptosystems
where the only allowable transformation is the identity function. They refer to this
as homomorphic chosen ciphertext (hCCA2) security with respect to some set of
allowable transformations T .

The hCCA2 game requires some additional oracles not found in the original
IND-CCA2 game, that allow the adversary to determine if one ciphertext was
generated from another through an allowable transformation. Prabhakaran and
Rosulek call these as “rigged oracles.” Let RigEncpk be an oracle that, for a public
key pk, outputs (ζ, S), where ζ is indistinguishable from a ciphertext encrypted
under pk, and S is some auxiliary information used to track transformations. Let
RigExtsk(ζ

′, S) be an oracle that determines if ζ ′ was derived from ζ through
allowable transformations in T , and, if so, returns the transformation. The value
S is used by the oracle to link ζ and ζ ′ together if they are related. In the hCCA2
game, S is not available to the adversary, so Prabhakaran and Rosulek introduce
“guarded” versions of RigEnc and RigExt for the adversary to use. Let gRigEncpk

return ζi, where the i’th call to RigEncpk returns (ζi, Si), and let gRigExtsk(ζ, i) =
RigExtsk(ζ, Si).

Definition 2.3.9. A public-key cryptosystem said to be indistinguishable under
adaptive homomorphic chosen ciphertext attack (IND-hCCA2) if a polynomiall
bounded adversary cannot win the following game with probability greater than
1
2

+ ν(ε) where ε is a pre-defined security parameter and ν is a negligible function:

1. The challenger creates an instance of the cryptosystem using security param-
eter ε, and sends the public key to the adversary.

2. The adversary is given access to a decryption oracle Decsk and the guarded
oracles gRigEncps and gRigExtsk, and may perform any number of oracle
queries or other calculations.

3. The adversary chooses a message m∗ and sends it to the challenger.

4. The challenger chooses a random bit b ∈ {0, 1}. If b = 0, set ζ∗ = eK(m∗)
and RigDecsk = Decsk, otherwise, set ζ∗ = RigEncpk and set

RigDecsk(ζ) =

{
T (m∗) if RigExt(ζ∗, S∗) returns T

Decsk(ζ) otherwise.

The challenger sends ζ∗ to the adversary.

20

5. Decsk is replaced with RigDecsk and the adversary may perform any number
of oracle queries or other calculations. The adversary then responds with
either 0 or 1.

The adversary wins the game if the bit-value chosen by the adversary is the same
value chosen by the challenger.

The hCCA2 game follows the same basic structure as the previously defined
CCA2 games; however, it has been altered such that the adversary is no longer dis-
tinguishing between encryptions of two known messages m0 and m1, but between
encryptions of a known message m∗ and a random message. In step 4, the decryp-
tion oracle is altered to respond with T (m∗) if the query ciphertext is related to
the challenge ciphertext, and acts as a regular decryption oracle otherwise.

Consider a regular CCA2 secure cryptosystem C under the hCCA2 game and
assume that the adversary chooses the challenge m1, but m0 is fixed and publicly
known. In the regular CCA2 setting, the only allowable operation on ciphertexts
is the identity function ID. Define RigEnc to return (eK(m0), eK(m0)) (both
identical encryptions) when queried, and RigExt(c, S) returns ID if c = S (and
some pre-defined error message otherwise), then the hCCA2 game appears very
similar to the CCA2 game. If b = 0 and the adversary submits ζ∗ to RigDecsk,
then the adversary receives m1 in response. Similarly, if b = 1 and the adversary
submits ζ∗ to RigDecsk, then the adversary learns ID(m1) = m1. If the adversary
submits a different message to RigDecsk, then the adversary simply learns the
decryption of that message. Although this is slightly different than the game in
Definition 1.3.7, it retains the same level of security. Prabhakaran and Rosulek
have also shown that RigEnc and RigExt can be defined to capture gCCA2 and
rCCA2 security.

Theorem 2.3.10. ([84], Theorem 1) CCA2, gCCA2, and rCCA2 can be obtained
as special cases of hCCA2 by appropriately defining RigEnc and RigExt.

The proof of this theorem can be found in [84].

It is worth noting that the hCCA2 game is only defined in terms of unary oper-
ations, such as multiplication by a constant, or the identity function. Prabhakaran
and Rosulek also note that in addition to achieving hCCA2 security, it should not
be possible for an adversary to determine whether a message was generated through
a series of homomorphic operations, or simply by encrypting a single plaintext mes-
sage, i.e., a ciphertext generated by another through an allowable transformation
should be unlinkable to the original. In the hCCA2 game, the rigged oracles provide
linkability, but only on messages generated by RigEncpk, which are indistinguish-
able from ciphertexts generated by encrypting a message under the public key pk.
Without these oracles, linkability should require knowledge of the secret key, which
is sufficient to win the game. A formal definition for unlinkability with respect to
hCCA2 is given in [84].

21

Although extending the hCCA2 game to allow binary transformations is desir-
able, Prabhakaran and Rosulek demonstrate that hCCA2 security is impossible to
achieve if any of the allowable (binary) transformations are quasigroup operations,
i.e., the equation a ∗ b = c is uniquely determined by only two of the three values.

22

Chapter 3

A Survey of Homomorphic
Cryptosystems

This chapter is divided into two main sections. First, a broad overview of the
computational problems utilized by homomorphic cryptosystems to achieve security
is provided. These descriptions are meant to provide enough information to clearly
define what the problem is, and what the best known approaches to solving them
are. The second half of the chapter consists of a survey of known homomorphic
cryptosystems, generally in the order they were discovered. Many variants of the
main homomorphic cryptosystems exist, which are presented alongside the original
cryptosystem when the modifications are small, or presented in a new section when
the changes are substantial.

Recently, a survey titled “A survey of homomorphic cryptography for non-
specialists” has been given by Fontaine and Galand [47], providing an excellent
overview of the current state of research on homomorphic cryptography. The sur-
vey given here is more comprehensive, with a proper statement of each cryptosystem
given alongside the assumptions required for security. Several variants of popular
cryptosystems are also discussed, including the necessary modifications to security
assumptions. An attempt is also made to provide an outline of a proof of security
for each of the major cryptosystems.

3.1 Building Blocks for Homomorphic Cryptosys-

tems

The usual method of demonstrating that a cryptosystem is secure is showing that if
an adversary can invert the encryption function, or break semantic security, then the
same adversary can break some instance of a problem believed to be intractable.
Thus, if the problem is intractable, the cryptosystem should be secure. In this
section, several problems are presented upon which homomorphic cryptosystems
are built. For each problem presented, for example, the Factoring Problem, the

23

associated assumption, the Factoring Assumption, will be the assumption that the
problem is intractable for appropriately chosen parameters.

Definition 3.1.1. ([72], Definition 3.1, 3.2) Let A and B be two computational
problems. A is said to polytime reduce, or, be polynomially reducible to B, if there
exists an algorithm that solves A, which uses, as a subroutine, a hypothetical algo-
rithm for solving B, and which runs in polynomial time if the algorithm for solving
B does.

If A is polytime reducible to B, and B is polytime reducible to A, then A and
B are said to be computationally equivalent.

The hypothetical algorithm used for solving a computational problem is often
referred to as an oracle, and works like a black box that, given an instance of the
computational problem, returns a solution in polynomial time with non-negligible
probability.

3.1.1 The Factoring Problem

The fundamental theorem of arithmetic states that every integer n ≥ 2 can be
expressed uniquely as a product of prime factors, i.e.,

n = p1
e1p2

e2 · · · pk
ek

where the pi’s are distinct primes. The problem of determining the prime factor-
ization of n, particularly when n is large and has few prime factors (typically two
or three), forms the basis of security for many cryptosystems.

Definition 3.1.2. Given an integer n, the factoring problem is the problem of
calculating the pi’s such that

n = p1
e1p2

e2 · · · pk
ek

where each pi is a prime and pi 6= pj when i 6= j.

Currently, the best known methods for factoring are the number field sieve [69] and
the elliptic curve method [70]. In general, the number field sieve is the most efficient
algorithm for factoring n, assuming n has no small prime factors. The running time
of the number field sieve depends on the bit-length of n, while the elliptic curve
method depends on the bit-length of the smallest factor of n. In cryptographic
applications, n is usually selected such that each of its prime factors are approxi-
mately the same bit-length. While n = pq for primes p and q is commonly used,
some cryptosystem use n = p2q. The number field sieve remains the most efficient
method of factoring numbers of this form; however, some elliptic curve factoring
approaches specific to n = p2q have been studied, such as the approach given by
Peralta and Okamoto [82].

The difficulty of factoring n can be parameterized by ε, the bit-length of n, with
the assumption that each prime factor of n is approximately the same size. To
remain secure against modern attacks, it is generally regarded that ε should be at
least 1024, if not 2048.

24

3.1.2 RSA / e’th Root Problem

The RSA cryptosystem was presented earlier as Cryptosystem 1.3.3. The RSA
encryption function is c = me mod n where m ∈ Zn and n = pq for distinct odd
primes such that the factoring problem is hard on n. Decrypting the ciphertext c
is equivalent to taking the e’th root of c mod n. When the factorization of n, the
private key, is unknown, this task should be intractable.

Definition 3.1.3. Let n = pq for distinct odd primes p and q. Given integers
c, e ∈ Zn, with e > 2, the RSA Problem is the problem of finding m such that
c = me mod n, without knowledge of p and q.

For efficiency reasons, it is often desirable to choose e to be a small integer, such
as e = 3, or any other special form that makes encryption more efficient. Thus, the
RSA assumption is often stated in a stronger form.

Definition 3.1.4. Let n = pq for distinct odd primes p and q. Given c ∈ Zn, the
Strong RSA Problem is the problem of finding m, e > 1 such that c = me mod n,
without knowledge of p and q.

An overview of the RSA and Strong RSA problems has been given by Rivest and
Kaliski [87].

A slightly different form of the Strong RSA Problem is also used in some cryp-
tosystems. Let λ be the Carmichael Function, such that λ(n) = m, the smallest
positive integer such that am ≡ 1 mod n for all a relatively prime to n. The
Carmichael function represents the exponent of the group Z∗

n, and can be calcu-
lated by

λ(n) =

φ(n) for n = pα, with p = 2 and α ≤ 2, or p ≥ 3
1
2
φ(n) for n = 2α and α ≥ 3

lcm(λ(pi
αi)) for n =

∏
i pi

αi

The problem of computing e’th roots when gcd(e, λ(n2)) = 1 and n = pq is called
the Computational Small e’th Roots Problem, and was posed by Catalano, Gennaro,
Howgrave-Graham, and Nguyen [25].

Definition 3.1.5. Let n = pq for distinct odd primes p and q. Given e ∈ Z∗
n2

such that gcd(e, λ(n2)) = 1, and an integer y, the Computational Small e’th Roots
Problem is the problem of computing x such that xe = y mod n2. The Decisional
Small e’th Roots Problem is the problem of deciding whether or not a given x is an
e’th root modulo n2.

Each of the e’th root problems can be parameterized by ε, the bit-length of n.

25

3.1.3 Quadratic Residuosity Problem

The problem of deciding whether or not an integer is a quadratic residue modulo
n forms the basis of security for the Goldwasser-Micali cryptosystem, presented in
Section 3.2.2. Further variations of residue problems also form the basis for most
modern homomorphic cryptosystems.

Definition 3.1.6. An integer a is said to be a quadratic residue modulo n if there
exists 0 < x < n such that

x2 ≡ a mod n.

Otherwise, a is said to be a non-quadratic residue modulo n.

If n is an odd prime, then determining whether or not an integer a is a quadratic
residue modulo p is equivalent to calculating the Legendre symbol

(
a

p

)
=

0 if a ≡ 0 mod p

1 if a 6≡ 0 and there exists x ∈ Z such that a ≡ x2 mod p

−1 if no such x exists

which can be efficiently calculated by the formula(
a

p

)
= a

p−1
2 mod p.

For an odd composite number n, the Jacobi symbol can also be calculated(a

n

)
=

(
a

p1

)e1
(

a

p2

)e2

· · ·
(

a

pk

)ek

where n = p1
e1p2

e2 · · · pk
ek is the prime factorization of n. Unlike the Legendre

symbol,
(

a
n

)
= 1 does not imply a is a quadratic residue modulo n.

Definition 3.1.7. Let the set QRn denote the set of quadratic residues modulo n.
Given an odd composite integer n > 3 and an integer a such that

(
a
n

)
= 1, the

problem of determining if a ∈ QRn is called the Quadratic Residue Problem.

If n = pq for distinct odd primes p and q, then a ∈ QRn if and only if
(

a
p

)
= 1

and
(

a
q

)
= 1. Thus, knowledge of the factorization of n is sufficient to solve the

quadratic residuosity problem. It is currently believed, although unproved, that
solving the quadratic residuosity problem is equivalent to factoring. Assuming
the truth of this conjecture, the security parameter ε for the quadratic residuosity
problem is the same as the security parameter for the factoring problem.

26

3.1.4 Higher Order Residues and Residue Classes

The difficulty of deciding whether or not an element is a quadratic residue, i.e.,
z = x2 mod N for some x, remains difficult for higher powers as well.

Definition 3.1.8. An integer z is said to be an r’th residue modulo N if there
exists y ∈ Z∗

N such that
z ≡ yr mod N

and y is said to be an r’th root of z.

The set of r’th residues forms a subgroup of Z∗
N , and each r’th residue has the same

number of r’th roots. Cohen and Fischer [35] have called the problem of deciding
r’th residues the Weak r’th Residue Problem.

Definition 3.1.9. Given a random z ∈ ZN , the problem of determining whether
or not z is an r’th residue modulo N is called the Weak r’th Residue Problem.

This problem is a natural generalization of the quadratic residuosity problem for
higher order residues, and is assumed to be difficult when the factoring problem is
hard with respect to N . Paillier [79] has considered the Weak r’th Residue Problem
in the special case when r = n and N = n2 for n = pq where p and q are distinct
odd primes.

Definition 3.1.10. Given a random z ∈ Z∗
n2, the problem of determining whether

or not z is an n’th residue modulo n2 is called the Composite Residuosity Problem,
or CR[n].

For fixed values of r and N = n2, given an r’th residue z = yr ∈ Z∗
N , the set of

integers of the form gxyn are of particular interest.

Definition 3.1.11. For fixed values of r and N = n2, if w ≡ gxz mod N for some
r’th residue z ≡ yr mod N , then w is said to belong to the r’th residue class x
with respect to g. The set of all w ∈ Z∗

N belonging to the r’th residue class x with
respect to g is denoted [w]g. That is,

[w]g = {x |w ≡ gxyn mod N, y ∈ Z∗
n} .

It can be shown that the different r’th residue classes form a partition of Z∗
N ;

that is, every w ∈ Z∗
N belongs to at least one r’th residue class, and, [w1]g ∩ [w2]g 6=

∅ ⇒ [w1]g = [w2]g for w1, w2 ∈ Z∗
N . The problem of determining which r’th residue

class w belongs is to conjectured to be a difficult problem.

For the remainder of this section, set n = pq for distinct odd primes p and q, fix
r = n and N = n2, and let λ = lcm(p − 1, q − 1) (see the Carmichael Function in
Section 3.1.2). Paillier [79] has shown that if the order of g is a non-zero multiple
of n, then Eg : Zn × Z∗

n 7→ Z∗
N defined by Eg(x, y) = gxyn mod N is bijective.

Additionally, if the order of g is αn for α ∈ {1, . . . , λ}, then g uniquely determines
the residue class x = [w]g for a given w ∈ Z∗

N . Thus, given w and g, there exists
unique x, y such that Eg(x, y) = w. The function w 7→ [w]g, for a specified g, is
called the class function.

27

Definition 3.1.12. Given n = pq for distinct odd primes p and q, and g, w ∈ Z∗
n2,

the problem of computing the class function w 7→ [w]g is called the n’th Residuosity
Class Problem in base g, or Class[n, g].

It turns out that Class[n, g] is random self-reducible; that is, an instance of the
problem for w can be transformed into an instance for some uniformly random
w′ ∈ Z∗

n2 in base g′, such that the solution for w′ also yields the solution for w.
This implies that solving a specific instance of the problem is just as hard as solving
a random instance of the problem. Thus, the difficulty of Class[n, g] depends only on
n, allowing the problem to be restated as the Composite Residuosity Class Problem,
or Class[n], as the computational problem of computing [w]g from w and g.

A solution to Class[n] implies a solution to CR[n], demonstrating that Class[n]
is at least hard as CR[n], if not harder. This follows from the fact that w is an
n’th residue if and only if [w]g = 0 for a valid base g, i.e., w = g0yn = yn. The
problem of deciding if [w]g = x for any valid x is called the Decisional Composite
Residuosity Class Problem, or D-Class[n].

Definition 3.1.13. Given n = pq for distinct odd primes p and q, as well as
g, w ∈ Z∗

n2 and x ∈ Zn, the problem of deciding if [w]g = x is called the Decisional
Composite Residuosity Class Problem, or D-Class[n].

A variant of Class[n] has also been proposed by Paillier, which limits the choice
of w and y when computing the class function. This is motivated by forcing y to
belong to 〈g〉, the subgroup generated by g. In this setting, a random y ∈ 〈g〉
can be represented by gr for some random r < |〈g〉|, and the computation of
Eg(x, y) = gxyn becomes gx+nr.

Definition 3.1.14. Given w ∈ 〈g〉, the problem of computing [w]g from g and w is
called the Partial Discrete Logarithm Problem (PDL[n, g]).

The decisional version of PDL[n, g] is of interest as well.

Definition 3.1.15. Given w ∈ 〈g〉 and x ∈ Zn, the problem of deciding whether
or not [w]g = x is called the Decisional Partial Discrete Logarithm Problem (D-
PDL[n, g]).

As the names imply, these problems are related to the discrete logarithm problem,
to be defined in Section 3.1.6.

Like Class[n], PDL[n, g] is also random self-reducible, although in a slightly
different manner than Class[n].

Theorem 3.1.16. Let n = pq for distinct odd primes p and q, let λ = lcm(p −
1, q − 1), and let H be the cyclic subgroup of Z∗

n2 of order λn. Then PDL[n, g] is
random self-reducible over the cyclic subgroups of H.

28

Proof. Given g such that 〈g〉 ≤ H and w ∈ 〈g〉, it must be shown that a solution
for PDL[n, g] for a uniformly random w′ ∈ 〈g〉 can be used to solve PDL[n, g] for
any given w. Choose α and β uniformly at random from Zn, then set y = gβ

and w′ = wgαyn = wgα+βn mod n2. Then w′ is a uniformly random element of
〈g〉. If w = gx+rn mod n2, then w′ = gx+rngα+βn = g(x+α)+(r+β)n mod n2 and
[w′]g = x + α mod n. If the solution to [w′]g is known, then

[w]g = [w′]g − α = x

is easy to compute. Hence, PDL[n, g] is random self-reducible over 〈g〉.

Because PDL[n, g] is only random self-reducible over 〈g〉, the computational
problem is parameterized by both n and g, unlike Class[n], which relies only on n.

Each of the residuosity problems presented thus far are easy to solve if the fac-
torization of n is known. It is currently unknown if the problems are polynomially
equivalent, although it is generally not believed to be the case [79]. Because factor-
ing n is still the best known approach to solving residuosity problems, the difficulty
of the problem is usually parameterized by the bit-length of n.

3.1.5 The p-Subgroup Problem

Let p, q be distinct primes such that p 6 |q − 1, and consider the group Z∗
p2q. The

order of Z∗
p2q is φ(p2q) = p(p− 1)(q − 1). By Sylow’s First Theorem [54], Z∗

p2q has
exactly one subgroup of order p, which is the Sylow p-subgroup. Deciding if an
element a 6= 1 ∈ Z∗

p2q belongs to the unique subgroup of order p can be verified by

checking if ap ≡ 1 mod p2q; i.e., the order of a in Z∗
p2q is a divisor of p. Because

p is prime, this can only occur if |a| = 1, which, by assumption, cannot occur, or
|a| = p.

Verifying if an element belongs to the subgroup of order p is similar to the
residue problems presented in the previous section, and it is conjectured to be
difficult when then factorization of p2q is unknown.

Definition 3.1.17. Let n = p2q for distinct odd primes p and q such that p 6 |q−1.
Then the problem of deciding whether or not a random element a 6= 1 ∈ Z∗

n is in
the unique Sylow p-subgroup when the factorization of n is unknown is called the
p-subgroup Problem.

As with the residuosity problems, the best known approach to solving the p-
subgroup problem is through factoring n = p2q. Thus, the p-subgroup problem can
be parameterized by ε, the bit-length of n.

29

3.1.6 Discrete Logarithms and the Diffie-Hellman Problem

The discrete logarithm is the group equivalent of the logarithm function for real
numbers.

Definition 3.1.18. Given a generator α ∈ G of a cyclic group of order n, and
given some β = αx ∈ G, the discrete logarithm of β in base α is the unique value x
mod n. Given β, the problem of finding x is called the Discrete Logarithm Problem
(DLP).

The difficulty of solving DLP depends on the representation of the group consid-
ered. The most general setting is the generic group model, in which no assumptions
are made about the underlying structure of the group. Shoup has shown that the
time needed to solve DLP in the generic group model is at least Ω(

√
n), where n

is the size of the group [94]. Solutions to DLP that have expected running time
O(
√

n), exist, showing this bound as tight. Such approaches include Pollard’s rho
algorithm, Pollard’s lambda algorithm, and the baby-step giant-step algorithm. A
survey of such algorithms can be found in [100].

A different approach, called the index-calculus method, does utilize the under-
lying group representation. If group elements can be efficiently represented using
a factor base of small factors, such as integers whose prime factorizations contain
only small prime powers, then the properties of the logarithm function can be used
to reconstruct the logarithm of g from the logarithm of each of g’s factors. A com-
prehensive survey of discrete logarithms and their uses in cryptography, including
the index calculus method, is given in [76]. In general, the index-calculus method is
more efficient than the generic square-root methods, so for cryptographic purposes
groups are usually chosen such that the index calculus method does not work.

As seen earlier, many definitions of security for cryptographic systems rely on the
adversary’s inability to distinguish between ciphertexts. When building cryptosys-
tems that rely the difficulty of solving DLP, this often translates to the adversary
being unable to distinguish between the discrete logarithms of two group elements.
The Computational Diffie-Hellman Problem (CDH) and Decisional Diffie-Hellman
Problem (DDH) attempt to capture the difficulty of problems related to DLP as
they naturally arise in cryptography.

Definition 3.1.19. Given a generator α ∈ G, a cyclic group of order q, and two
group elements αa and αb, the Computational Diffie-Hellman Problem (CDH) is
the problem of calculating αab from αa and αb without knowledge of a and b.

Clearly, a solution to DLP can be polynomially reduced to a solution to CDH,
although it is currently unknown if a reduction in the other direction exists.

The decisional version of CDH requires the adversary to distinguish between
αab and αc for some random integer c, a situation that arises naturally from the
IND-CPA game.

30

Definition 3.1.20. Given a generator α ∈ G, a cyclic group of order q, and two
group elements αa and αb, the Decisional Diffie-Hellman Problem (DDH) is the
problem of distinguishing between tuples of the form (αa, αb, αab) and (αa, αb, αc)
for some random integer c, without knowledge of a and b.

As with CDH, a solution to DLP can be polynomially reduced to a solution to
DDH; however, unlike CDH, there exist groups for which DDH is tractable, but
DLP is not. One such example is an elliptic curve group that supports a bilinear
pairing (described in the next section). Given a pairing e and elements αa, αb, and
αc, then one can compute e(αa, αb) = e(α, α)ab and e(α, αc) = e(α, α)c. If the two
values are equal then ab = c, otherwise ab 6= c.

Assuming that groups are chosen for which the index-calculus method does not
work, each of the discrete logarithm problems can be parameterized by ε, the bit-
length of the size of the group. Thus, recalling the running time of DLP algorithms,
ε must be chosen so that solving a problem of order O(

√
2ε) is intractable.

3.1.7 Bilinear Groups and Elliptic Curves

Elliptic curves play a very important role in modern cryptography. The presentation
of elliptic curves given here is extremely limited, and is intended only to establish
enough background information to present the Boneh-Goh-Nissim cryptosystem in
Section 3.2.12 and the Elliptic Curve Paillier cryptosystem in Section 3.2.10. A
more detailed treatment of the subject can be found in [10].

Many mathematical functions are linear, that is, the relation f(ax) = af(x)
holds for any x in the domain of f , and for any constant a. The concept of a
linear function can be extended to higher dimensions, with the two-dimensional, or
bilinear case, being of particular interest.

Definition 3.1.21. Let G and G1 be two cyclic groups of order n with g a generator
of G. A map e : G×G → G1 is said to be bilinear if e(g, g) is a generator of G1,
and

e(ua, vb) = e(u, v)ab

for all u, v ∈ G and all a, b ∈ Z.

In cryptography, bilinear functions, are usually generated from elliptic curve
groups.

Definition 3.1.22. An elliptic curve over the a field of characteristic not 2 or 3
is a plane algebraic curve defined by an equation of the form

y2 = x3 + ax + b.

The set of points on an elliptic curve over a field whose characteristic is not 2 or
3, together with a special “point an infinity”, forms an abelian group. Boneh, Goh,
and Nissim [14] describe the following method for constructing a bilinear pairing
over such a group of order n, where n is square free and not divisible by 3:

31

1. Find the smallest integer l such that p = ln− 1 is prime and p = 2 mod 3.

2. The curve y2 = x3 + 1 defined over Fp has p + 1 = ln points in Fp, and thus
has a subgroup of order n, denoted by G.

3. If G1 is the subgroup of order n of Fp2 , then the modified Weil pairing [73]
on the curve gives a bilinear map from G×G to G1.

The Weil pairing is a method of constructing a bilinear pairing on a special subgroup
of an elliptic curve group over a field. Additional details can be found in [73].

When presenting an elliptic curve Paillier cryptosystem, Galbraith [53] uses a
more general representation of elliptic curves, as the set of points (x : y : z) such
that x, y, z ∈ R, a commutative ring with unity, and

y2z = x3axz2 + bz3

where 6(4a3 +27b2) ∈ R is invertible. Setting z = 1, this is the same as the formula
in Definition 3.1.22.

3.2 A Survey of Homomorphic Cryptosystems

In this section a survey of known homomorphic cryptosystems is given, along with
problems they rely on for security. When a proof of security for the cryptosystem
has been provided by the authors, an outline of their proof is given. In most
situations where proofs have been omitted or simplified by the authors, a proof is
supplied.

The presentation of each cryptosystem differs slightly from the notation in Def-
inition 1.3.1. For each cryptosystem presented, the plaintext space, ciphertext
space, key space, and set of randomizers will be defined, and the cryptosystem
will be presented with respect to three algorithms: Gen, Enc, and Dec. Given
a security parameter, Gen creates an instance of the cryptosystem such that the
difficulty of the underlying computational problem the cryptosystem relies on is
based on a specified security parameter. Enc and Dec are algorithms that per-
form the encryption and decryption of messages given the public and private keys
respectively.

3.2.1 The RSA Cryptosystem

The RSA cryptosystem, presented earlier as Cryptosystem 1.3.3, relies on the dif-
ficulty of calculating e’th roots modulo n, where n = pq for distinct odd primes p
and q, when the factorization of n is unknown. Although factoring n is sufficient to
break RSA, it is unknown if breaking RSA is equivalent to factoring n. Boneh and
Venkatesan [16] have given evidence suggesting that the problems are not equivalent

32

in general. More specifically, they show that it cannot be proved that solving the
RSA problem is as hard as factoring using a straight line program when the public
exponent is small, unless factoring is easy. Later, Brown [18] demonstrated a result
in the opposite direction; namely, it was shown that there is no efficient algorithm
that takes a small public RSA exponent and outputs a straight line program that
solves the RSA Problem, unless factoring is easy.

The RSA and Strong RSA problems presented in Section 3.1.2, have been de-
fined to capture the precise problem of inverting the encryption function without
knowledge of p and q.

Homomorphic Properties

The RSA cryptosystem provides the basic homomorphic operation of multiplication
modulo n. Given two ciphertexts c1 = m1

e mod n and c2 = m2
e mod n, then

c1c2 mod n = m1
em2

e mod n

= (m1m2)
e mod n

is an encryption of m1m2.

Unfortunately, the RSA cryptosystem is not IND-CPA secure unless messages
are randomly padded. If m1 and m2 are randomly padded as m1

′ and m2
′, then

recovering m1m2 from m1
′m2

′ is impossible. For this reason, the RSA cryptosystem
is not often used for its homomorphic properties.

3.2.2 The Goldwasser-Micali Cryptosystem

The Goldwasser-Micali (GM) cryptosystem [62] was the first probabilistic cryp-
tosystem proposed, with its security relying on the difficulty of the quadratic resid-
uosity problem. The GM cryptosystem encrypts only a single bit of information at
a time, and does so by mapping a value of 0 to a random quadratic residue, and a
value of 1 to a random non-quadratic residue with Jacobi symbol −1. Operations
are performed modulo n = pq, where p and q are two distinct primes, with the fac-
torization of n kept secret. Decrypting a ciphertext is equivalent to determining if
a random integer is a quadratic residue modulo n, which, for an appropriate choice
of n, is intractable without knowledge of p or q, as discussed in Section 3.1.3.

Cryptosystem 3.2.1. The Goldwasser-Micali (GM) Cryptosystem

Let n = pq, where p and q are distinct odd primes, and let m /∈ QRn with(
m
n

)
= −1. Let P = {0, 1}, C = R = Z∗

n, and define K = {(n, p, q, m)} where
n, p, q, m are as described above.

• Gen: Given security parameter ε, Gen(ε) returns two distinct ε
2
-bit primes p

and q, the value n = pq, as well as m /∈ QRn. The tuple (n, m) is the public
key, and the value p is the private key.

33

• Enc: Given a public key pk = (n,m) and a message x ∈ P, Enc(pk, m)
chooses a random value r ∈ R and returns the ciphertext

c = mxr2 mod n.

• Dec: Given a private key sk = p and a ciphertext c ∈ C, Dec(sk, c) returns
the following message

x =

{
0 if y ∈ QRn

1 if y /∈ QRn.

A simplification of the system is possible by choosing p and q to be Blum
integers. An integer n = pq is a Blum integer if p and q are distinct primes with
p ≡ 3 mod 4 and q ≡ 3 mod 4. When this is the case, −1 will always be a non-

quadratic residue modulo n, and (frac−1p) =
(
−1
q

)
= −1, allowing the fixed the

value of m = −1 to be used. This simplifies both the public key and the encryption
process.

Theorem 3.2.2. If the quadratic residuosity problem is hard with respect to n, then
the GM cryptosystem is IND-CPA secure.

The proof of this theorem follows from the fact that decrypting a ciphertext c ∈ Z∗
n

is equivalent to determining if c is a quadratic residue modulo n. A complete proof
can be found in [64].

A major downfall of the GM cryptosystem is the large size of ciphertexts relative
to the single bit plaintexts. To remain secure, n must be at least 1024-bit, if not
larger. Thus, messages encrypted under the GM cryptosystem grow by a factor of
over 1000. Depending on the application, this may rule out the GM cryptosystem
as a viable choice.

Homomorphic Properties

In addition to being a probabilistic cryptosystem, the GM cryptosystem also pro-
vides the homomorphic operation of XOR, or addition modulo 2. Consider two
ciphertexts encrypted under the simplified GM cryptosystem, c1 = −1x1r1

2 and
c2 = −1x2r2

2. Then

c1c2 = (−1x1r1
2)(−1x2r2

2)

= −1(x1+x2)(r1r2)
2

= −1(x1+x2 mod 2)(r1r2)
2

is an encryption of x1 + x2 mod 2.

The GM cryptosystem also allows for a ciphertext to be re-randomized without
knowledge of the plaintext. Given c = −1xr1

2, choose a random integer r2 ∈ Z∗
n

34

uniformly. Then the integer r3 = r1r2 mod n is a uniform random integer in Z∗
n

and

cr2
2 = −1xr1

2r2
2

= −1xr3
2

is a random encryption of x.

3.2.3 The ElGamal Cryptosystem

The ElGamal cryptosystem [55] is a public-key cryptosystem based on the problem
of solving discrete logarithms, making use of difficulty of solving both the CDH and
DDH problems, as presented in Section 3.1.6.

Cryptosystem 3.2.3. The ElGamal Cryptosystem

Let g ∈ G be a generator of a cyclic group of order q such that the CDH and
DDH problems are hard in G. Let P = G, C = G × G, R = Zq, and K =
{(q, g, x, h) : h ≡ gx mod q}, where q, g are as above.

• Gen: Given security parameter ε, Gen(ε) returns a generator g of a cyclic
group G of order q, where q has bit-length ε, as well as h = gx where x is a
random integer in Zq. The tuple (G, q, g, h) is the public key, and the tuple
(G, q, g, x) is the private key.

• Enc: Given a public key pk = (G, q, g, h) and a message m ∈ P, Enc(pk, m)
chooses a random y ∈ R and returns the ciphertext (c1, c2) where

c1 = gy mod q

and
c2 = m · hy mod q.

• Dec: Given a private key sk = (G, q, g, h) and a ciphertext c = (c1, c2),
Dec(sk, c) returns the message

c2

c1
x

mod q =
m · hy

gxy
mod q

=
m · gxy

gxy
mod q

= m.

The security of the ElGamal cryptosystem follows directly from the hardness of
CDH and DDH when G is chosen appropriately.

Theorem 3.2.4. If the CDH problem is hard in G, then ElGamal encryption is
not invertible by an adversary.

35

Proof. If the CDH problem is hard in G, then adversary cannot calculate gxy from
gx and gy. Assume the adversary can decrypt a ciphertext (c1, c2) = (gy, m · gxy).
Then, with knowledge of h = gx from the public key, and c1 = gy, the adversary
can calculate c2m

−1 = gxy, contradicting the fact that CDH is hard. Thus, if CDH
is hard, then encryption is a one-way function.

Theorem 3.2.5. If the DDH problem is hard in G, then ElGamal ciphertexts are
semantically secure.

Proof. Let G be a group where the DDH problem is hard, and assume that the
adversary has access to an oracle that can distinguish ElGamal ciphertexts in
G. Given an instance of the DDH problem, i.e., to distinguish (gx, gy, gxy) and
(gx, gy, gr) for random r ∈ G, the adversary can use the ElGamal oracle to solve
DDH. Upon receiving the challenge (gx, gy, gk) the adversary can construct the ci-
phertext c = (gy, gk). If gk = gxy, then c is a valid encryption of 1. Otherwise, c is
encryption of some random element of G. The ElGamal oracle provides messages
m0 and m1, allowing the adversary to compute c0 = (gy, m0g

k) as an encryption of
m0 if gk = gxy, and some random element of G otherwise. The adversary sends c0

to the oracle, who then responds with b = 0 if gk = gxy, or an error otherwise. If the
oracle returns b = 0, then adversary concludes that the challenge is (gx, gy, gxy).
Otherwise, the adversary concludes that the challenge is (gx, gy, gr). Hence, an
oracle that breaks the semantic security of the ElGamal cryptosystem is polytime
reducible to an algorithm that breaks DDH. Thus, if the DDH problem is hard,
then the ElGamal cryptosystem is semantically secure.

Homomorphic Properties

The ElGamal cryptosystem provides the homomorphic operation of multiplication
of two encrypted messages, as well as multiplication by a known constant and
exponentiation by a known constant. Given ciphertexts (c1, c2) and (d1, d2) that
are encryptions of m1 and m2, using random values y1 and y2, respectively, then

(c1d1, c2d2) = (gy1gy2 , (m1 · hy1)(m2 · hy2))

= (gy1+y2 , m1m2 · hy1+y2)

is a valid encryption of m1m2. Furthermore, given a constant k, then

(c1, kc2) = (gy1 , km1 · hy1)

is a valid encryption of km1, and

(c1
k, c2

k) = (gy1k, m1
k · hy1k)

is a valid encryption of m1
k.

ElGamal ciphertexts can also be re-randomized without knowledge of the plain-
text. Given a ciphertext (c1, c2), as before, choose a random integer r ∈ Zq and
calculate

(c1g
r, c2h

r) = (gy1+r, m · hy1+r),

which is a randomized valid encryption of m.

36

Variants

The ElGamal cryptosystem has been extended to provide IND-CCA2 security, as
the Cramer-Shoup cryptosystem [38]; however, this comes at the cost of sacrificing
malleability through homomorphic operations. Fujisaki and Okamoto [51] have
shown a method for converting an IND-CPA secure cryptosystem into an IND-
CCA2 cryptosystem, with ElGamal being one of the examples provided. Chevallier-
Mames, Paillier, and Pointcheval [29] have investigated the problem of efficiently
encoding messages as group elements in groups where the ElGamal cryptosystem
is secure. They propose a variant which allows messages to be chosen directly
from Zq, but at the cost of sacrificing some of the homomorphic properties of the
system. In the modified cryptosystem, homomorphic operations are limited to
multiplication or addition by a constant, and ciphertext re-randomization is not
possible. Castagnos and Chevallier-Mames [22] have further studied the problem
of encoding messages and have proposed a variant which borrows ideas from the
Naccache-Stern cryptosystem, presented later in Section 3.2.5, which retains the
homomorphic properties of the original cryptosystem as long as a simple assumption
is satisfied.

Cramer, Gennaro and, and Schoenmakers [37] have given a threshold construc-
tion of the ElGamal cryptosystem, which is presented in Section 4.5. They have
also presented a new variant of ElGamal which is additively homomorphic instead
of multiplicatively homomorphic. They choose q such that q|p − 1 for a prime p
and replace the encryption function so that

(c1, c2) = (gr mod p, hr+m mod p)

for a random r ∈ Zq. Decryption then becomes

logh

c2

cx
1

= logh

hr+m

gr

= logh

grx+xm

grx

= logh hm.

Thus, decryption requires the solution of a discrete logarithm, making the vari-
ant only suitable for situations when m is from a known small set. The Benaloh
cryptosystem, presented in the next section, requires a similar computation, and
techniques of recovering m are discussed within.

3.2.4 The Benaloh Cryptosystem

One of the negative aspects of the GM cryptosystem is the large message expansion.
The plaintext space is a single bit, while the ciphertext operations are performed
modulo n, where n is larger than 1024 bits. The fact that ciphertexts grow by a

37

factor of log2 n limits the practical use of the GM cryptosystem. This has motivated
research into similar systems that retain probabilistic and homomorphic properties,
but which have a more reasonable message expansion. Benaloh [9] has presented
such a system, of which the GM cryptosystem is a special case.

The Benaloh cryptosystem allows a user to select a block length r, such that
messages are chosen from Zr. The decreased message expansion comes at the cost
of an increase in decryption complexity, which is increased to O(

√
r). In the case

of the GM cryptosystem, r = 2 and decryption requires a single computation. The
security of the Benaloh cryptosystem is based on the difficulty of deciding r’th
residues, much like the GM cryptosystem is based on the difficulty of deciding
quadratic residues.

Cryptosystem 3.2.6. The Benaloh Cryptosystem

Let r be an integer representing the desired block length of the cryptosystem, i.e.,
P = Zr. Let n = pq where p is a prime such that r | p − 1, and q is a prime such
that gcd(q − 1, r) = 1, and choose y ∈ Z∗

n such that y(p−1)(q−1)/r 6≡ 1 mod n. The
ciphertext space is C = Z∗

n and the keyspace is K = {(r, n, p, q, y)} where r, n, p, q, y
are defined as above. Elements of R = Z∗

n are used to randomize ciphertexts.

• Gen: Given a security parameter ε and a block length r, Gen(ε, r) chooses an
ε-bit integer n = pq such that p is a prime with r | p − 1, and q is a prime
with gcd(q − 1, r) = 1, as well as y ∈ Z∗

n such that y(p−1)(q−1)/r 6≡ 1 mod n.
The public key is (y, n, r) and the private key is (p, q).

• Enc: Given a message m ∈ P and a public key pk = (y, n), Enc(pk, m)
chooses a random value u ∈ R and returns the ciphertext

c = ymur mod n.

• Dec: Given a private key sk = (p, q) and a ciphertext c, Dec(sk, m) calculates

mi = (y−ic)(p−1)(q−1)/r mod n

for each i ∈ Zr until mi = 1, at which point it returns m = i.

The most complicated portion of the Benaloh cryptosystem is the decryption algo-
rithm. Given c = ymur, note that

c(p−1)(q−1)/r = (ymur)(p−1)(q−1)/r

= ym(p−1)(q−1)/r.

Recalling that y was chosen so that y(p−1)(q−1)/r 6≡ 1 mod n, then, since m < r, if
c(p−1)(q−1)/r = ym(p−1)(q−1)/r ≡ 1 mod n, it must be the case that m = 0. Similarly,
for any i ∈ Zr,

mi = (y−ic)(p−1)(q−1)/r mod n

= y−i(p−1)(q−1)/rym(p−1)(q−1)/r mod n

= y(m−i)(p−1)(q−1)/r mod n

38

is equivalent to 1 modulo n if and only if m− i = 0; i.e., m = i.

The decryption process can be sped up by pre-computing the values

Tm = ym(p−1)(q−1)/r

for each m ∈ Zr. Then, the value T = c(p−1)(q−1)/r be looked up in the table of
pre-computed values. If T = Ti, then m = i. An alternative to a complete lookup
table is to use the baby-step giant-step approach for solving discrete logarithms
[100]. One can store a table of O(

√
r) pre-computed values to determine a good

starting point, and then linearly search for the correct value to find the decryption
of c using time and space O(

√
r).

The security of the Benaloh cryptosystem depends on the weak r’th residue
problem, as presented in Definition 3.1.9. A formal proof of security for the cryp-
tosystem is not given in [9], but, in the same manner that distinguishing quadratic
residues forms the basis of security for the Goldwasser-Micali cryptosystem, as
decrypting a GM ciphertext is exactly solving the quadratic residuosity problem,
distinguishing messages in the Benaloh cryptosystem is the same as determining
which value of mi is an r’th residue.

Theorem 3.2.7. The Benaloh cryptosystem is semantically secure if and only if
the weak r’th residue problem is hard.

Proof. (Outline) Assume the adversary selects m0 = 0 and m1 = 1 in step 3 of the
semantic security game, and receives the challenge ciphertext c = mb. Determining
if b = 0 is exactly determining if c is an r’th residue. If the adversary selects
m0 = k0 and m1 = k1, then determining if b = 0 is exactly determining if c−k0 is
an r’th residue.

Although the Benaloh cryptosystem is much more space efficient than the GM
cryptosystem, the increased cost of decryption limits its uses. It is ideal for ap-
plications such as cryptographic voting, where many encryptions of ballots and
many homomorphic operations for tallying are required (both of which are rela-
tively efficient in the Benaloh cryptosystem), but only one decryption is required
to determine the final tally. This is not a coincidence, as almost a decade before
its general presentation in [9], the Benaloh cryptosystem was presented by Cohen
(Benaloh) and Fischer [35], as well as in Benaloh’s PhD thesis [8], in the context of
verifiable secret-ballot elections, where the block size is a prime p selected to be a
bound on the number of candidates on the ballot. The homomorphic properties of
the cryptosystem were used to efficiently compute an encrypted tally of the votes.

Many homomorphic cryptosystems discovered after the Benaloh cryptosystem
make use of special groups for which it is possible to efficiently solve certain dis-
crete logarithms, so long as the private key is known. Such cryptosystems support
decryption algorithms that are much more efficient than the Benaloh cryptosystem,
allowing them to be used in a wider range of applications.

39

Homomorphic Properties

The Benaloh cryptosystem supports the homomorphic addition and subtraction of
ciphertexts. Given two ciphertexts c1 = ym1u1

r and c2 = ym1u1
r,

c1c2 mod n = (ym1u1
r)(ym2u2

r) mod n

= ym1+m2(u1u2)
r mod n

is a valid decryption of m1 + m2, and

c1c2
−1 mod n = (ym1u1

r)(ym2u2
r)−1 mod n

= (ym1u1
r)(y−m2(u−1

2)
r
) mod n

= ym1−m2(u1u2
−1)r mod n

is a valid encryption of m1 −m2. Additionally, multiplication and exponentiation
by a known constant k is also possible:

c1y
k mod n = ym+kur mod n

and
c1

k mod n = ymk(uk)r mod n.

Like the Goldwasser-Micali cryptosystem, the Benaloh system also supports
the re-randomization of messages without knowledge of the plaintext. Given a
ciphertext c = ymur, choose a random value u′ ∈ Zn and calculate

cu′
r

mod n = ym(uu′)r mod n

as a random valid encryption of m.

3.2.5 The Naccache-Stern Cryptosystem

The Naccache-Stern cryptosystem [74] can be viewed as a generalization of the Be-
naloh cryptosystem. In the Benaloh cryptosystem, messages are bounded by a small
prime p, whereas in the Naccache-Stern cryptosystem messages are bounded by the
product of many small primes. An encrypted message is recovered by decrypting
it modulo each of the small primes, and then reconstructing the message using
Chinese remaindering. This allows the Naccache-Stern cryptosystem to achieve a
smaller message expansion that the Benaloh cryptosystem.

Theorem 3.2.8. The Chinese Remainder Theorem

If p1, . . . , pk are pairwise coprime integers, then given any integers m1, . . . ,mk,
the set of linear congruences m ≡ mi mod pi for i = 1, . . . , k has a unique solution
modulo n = p1 · · · pk. Furthermore, the solution can be calculated by

m =
k∑

i=1

miNiMi mod n

where Ni = n
pi

and Mi = Ni
−1 mod pi for i = 1, . . . , k.

40

The basic Naccache-Stern cryptosystem is defined as follows:

Cryptosystem 3.2.9. The Naccache-Stern Cryptosystem (Basic)

Let {p1, . . . , pk} be a family of small distinct odd primes where k is even and

set u =
∏k/2

i=1 pi, v =
∏k

i=k/2+1 pi, and σ = uv. Let a and b be primes such that
p = 2au + 1 and q = 2bv + 1 are prime, and set n = pq. Let g ∈ Z∗

n such that the
order of g is a large multiple of σ. Then P = Zσ, C = Z∗

n, and K = {(n, g, p, q)}
where n, g, p, q are defined as above.

• Gen: Given a security parameter ε, Gen(ε) chooses an even k and generates

distinct odd primes p1, . . . , pk, sets u =
∏k/2

i=1 pi, v =
∏k

i=k/2+1 pi, and finds
primes a, b such that p = 2au + 1 and q = 2bv + 1 are ε

2
-bit primes. Then

n = pq, and g is selected at random such that the order of g is φ(n)
4

. The
public key is (n, g) and the private key is (p, q).

• Enc: Given a public key pk and a message m, Enc(pk, m) calculates the
ciphertext

c = gm mod n.

• Dec: Given a private key sk and a ciphertext c, Dec(sk, c) first calculates

ci = c
φ(n)
pi mod n

and mi = j, for the unique 0 ≤ j < pi such that

g
jφ(n)

pi ≡ j mod n

for i ∈ {1, . . . , k}. The message is then recovered through Chinese remain-
dering on each message mi mod pi

m =
k∑

i=1

miNiMi mod n

where Ni = n
pi

and Mi = Ni
−1 mod pi.

During decryption, the ci’s are calculated as

ci = g
mφ(n)

pi mod n

= g
(m+mi−mi)φ(n)

pi mod n

= g
m1φ(n)

pi g
m−mi

pi
φ(n)

mod n

= g
m1φ(n)

pi mod n

where the term g
m−mi

pi
φ(n)

disappears due to the fact that the order of g divides
m−mi

pi
φ(n). The value of mi is solved by a brute force search over 0 ≤ j < pi,

41

yielding the equation m ≡ mi mod pi. Once each mi is calculated, the message is
recovered via Chinese remaindering.

It is possible to make the basic Naccache-Stern cryptosystem probabilistic with
very few modifications.

Cryptosystem 3.2.10. The Naccache-Stern Cryptosystem (Probabilistic)

Let n, p, q, σ,P , C be as in Cryptosystem 3.2.9. Then R = Zn and K = {(n, g,
p, q ,σ)} where n, g, p, q, σ are defined as in Cryptosystem 3.2.9.

• Gen: See Cryptosystem 3.2.9, and let σ = uv. The public key is (n, g, σ) and
the private key is (p, q).

• Enc: Given a public key pk and a message m ∈ P, Enc(pk, m) chooses a
random x ∈ R and calculates the ciphertext

c = gmxσ mod n.

• Dec: See Cryptosystem 3.2.9.

Even though the random factor x is introduced during encryption, the decryp-
tion algorithm remains unchanged. Each ci is calculated as

ci = g
mφ(n)

pi x
σφ(n)

pi mod n

= g
mφ(n)

pi x
σ
pi

φ(n)
mod n

= g
mφ(n)

pi

where the x vanishes due to the fact that σ
pi

φ(n) is a multiple of the order of Z∗
n.

The security of the basic Naccache-Stern cryptosystem relies on both the diffi-
culty of factoring n, and the difficulty of solving discrete logarithms. If an adversary
is able to take the discrete logarithm in base g, then the message is trivially recov-
ered. Similarly, if the factorization of n is known, then the adversary can perform
the decryption algorithm to recover the message. Naccache and Stern note that al-
though inverting the encryption function is not known to be equivalent to factoring,
there are no other known attacks against the cryptosystem. Thus, the security of
the Naccache-Stern cryptosystem is simply conjectured to hold, but has no formal
proof.

The semantic security of the probabilistic version relies on the difficulty of de-
ciding pi’th residues for each of the pi’s, although σ must be chosen such that it
reveals no information about the factorization of n. Recall that the value σ is part
of the public key, and that φ(n) = (p−1)(q−1) = (2au)(2bv) = 4ab

∏k
i=1 pi = 4abσ.

Thus, 4ab = φ(n)
σ

, and φ(n) = n−p−q+1. Given that p and q should have the same
bit-length, an adversary can approximate the bit-length of ab with high accuracy
by approximating the bit-length of n − p − q + 1. Naccache and Stern provide a
rather technical proof that parameters can be chosen appropriately such that the
adversary cannot guess the value of ab, which relies on the fact that n >> σ4.
Thus, to remain secure, the ratio of the bit-lengths of σ and n must satisfy |σ|

|n| < 1
4
.

42

Theorem 3.2.11. ([74], Theorem 1) The Naccache-Stern cryptosystem is seman-
tically secure if and only if the problem of deciding pi’th residues for each pi is
hard.

An outline of the proof of this theorem is provided as an appendix in [74], which
relies on the hybrid technique as described in [60].

Recall that messages are chosen from Zσ, and are encrypted as elements of Z∗
n.

Thus, the message expansion is |n|
|σ| , where |σ| and |n| are the bit-lengths of σ and

n. To remain secure, |n|
|σ| > 4 must be satisfied, providing a lower bound of 4 on

the message expansion. The Okamoto-Uchiyama cryptosystem, presented Section
3.2.7, was discovered at the same time as the Naccache-Stern cryptosystem, and
attracted more attention due to the fact that it easier to implement, has security
that provably relies on the difficulty of the factoring problem, and also has a fixed
message expansion rate of 3. For these reasons, the Naccache-Stern cryptosystem
has not received as much attention as the Okamoto-Uchiyama cryptosystem and
its successors.

Homomorphic Properties

The Naccache-Stern cryptosystem allows for the homomorphic addition and sub-
traction of ciphertexts, as well as multiplication of a ciphertext by a constant.
Examples for the probabilistic variant are provided, but work equivalently for the
basic cryptosystem.

Given two ciphertexts c1 = gm1x1
σ mod n and c2 = gm2x2

σ mod n as valid
encryptions of m1 and m2 respectively, then

c1c2 mod n = gm1x1
σgm2x2

σ mod n

= gm1+m2(x1x2)
σ mod n

is a valid encryption of m1 + m2 and

c1
k mod n = gkm1(x1

k)σ mod n

is a valid encryption of km1. Subtraction is possible by taking c1c2
−1.

Implementation Details

Decryption of a ciphertext requires the computation of ci = c
φ(n)
pi . In practice, it

is more efficient to compute c′ = c4ab mod n and then calculate ci = c
′ σ
pi mod n

for each pre-computed value σpi
−1 mod φ(n). If modular exponentiation is per-

formed through repeated squaring, then the intermediate values can also be stored
in a look-up table after their first computation. Additionally, decryption can be
performed twice modulo p and q, significantly reducing the complexity of each mod-
ular operation, and the message can be reconstructed modulo n through Chinese
remaindering.

43

3.2.6 The Sander-Young-Yung Cryptosystem

Sander, Young, and Yung [90] have investigated methods for evaluating certain
circuits involving OR and NOT gates in a two party setting, where one party has
knowledge of a circuit computing some secret function f , and the other has a secret
input x for which it would like to learn f(x). This protocol is presented later in
Chapter 5. Although their protocol could be used to calculate AND by DeMorgan’s
theorem, they also present a separate AND-homomorphic cryptosystem based on
the Goldwasser-Micali cryptosystem, as described in Section 3.2.2.

The Goldwasser-Micali cryptosystem takes a message m ∈ {0, 1}, and encrypts
it as a random quadratic residue if m = 0, and a random non-quadratic residue if
m = 1. By taking the product of two ciphertexts, one can compute an encryption
of the XOR of the two plaintext messages. The AND-homomorphic cryptosystem
given by Sander, Young, and Yung works by adding an additional level of encoding
on top of the Goldwasser-Micali cryptosystem. Given a positive non-zero integer l,
consider a function Encode that maps an element of Z2 to a vector in (Z2)

l such
that Encode(0) is a random non-zero vector, and Encode(1) is the zero vector.
The function Decode inverts Encode by mapping all non-zero vectors to 0, and the
zero-vector to 1. Given two vectors, the AND operation is performed by computing
the component-wise XOR of the two vectors. If both vectors are the zero vector,
i.e., represent a value of 1, then the resulting vector v is also the zero vector, and
Decode(v) = 1. If one or both of the vectors are not the zero vector, i.e., encode a
value of 0, then the resulting vector v is a non-zero vector, except with the two vec-
tors are equal (occurring with probability 1

2l), and Decode(v) = 0 with probability
1− 1

2l . Thus, given two bits b0 and b1, Decode(Encode(b0)⊕Encode(b1)) = b0⊕ b1

with probability 1− 1
2l .

Cryptosystem 3.2.12. Sander-Young-Yung AND-Homomorphic Cryptosystem

Let n = pq for distinct odd primes p and q, and let l be a positive non-zero
integer. Let Encode : Z2 → (Z2)

l be a function that maps 0 to a random non-zero
vector, and 1 to the zero vector, and let Decode be its inverse. Then P = Z2,
C = (Zn)l, R = (QRn)l, where QRn is the set of quadratic residues modulo n, and
K = {(n, p, q, m, l) : m ∈ QRn} where n, p, q and l are defined as above.

• Gen: Given security parameter ε and a positive non-zero integer l, Gen(ε, l)
creates an instance of the Goldwasser-Micali cryptosystem using security pa-
rameter ε, which returns (n, p, q, m). The public key is (n, m, l) and the private
key is p.

• Enc: Given a message m ∈ P and a public key pk, Enc(pk, m) uses the
method Encode(m) to generate a vector v ∈ (Z2)

l, and returns the cipher-
text vector c, where each component of the vector is encrypted under the
Goldwasser-Micali cryptosystem. That is,

c = E(pk, v) = (E(pk, v1), E(pk, v2), . . . , E(k, vl))

where E is the encryption function from the Goldwasser-Micali cryptosystem.

44

• Dec: Given a ciphertext c and a private key sk, Dec(sk, c) calculates

v = D(sk, c) = (D(sk, c1), D(sk, c2), . . . , D(sk, cl))

where D is the decryption function from the Goldwasser-Micali cryptosystem.
The message is recovered by

m = Decode(v).

The non-inveritbility of the Sander-Young-Yung cryptosystem follows directly
from the Goldwasser-Micali cryptosystem.

Theorem 3.2.13. The Sander-Young-Yung encryption function is not invertible
by the adversary if and only if the Goldwasser-Micali encryption function is not
invertible by an adversary.

Proof. (Outline) If an adversary can invert the GM encryption function, the ad-
versary can invert each component of the ciphertext c to find the vector v, and
calculate Decode(v) to learn the message. Conversely, if an adversary can invert
the SYY cryptosystem with for some value of l, then given a GM ciphertext c, the
adversary can construct the encrypted vector c′ = (c, Enc(pk, 0), . . . , Enc(pk, 0)).
The adversary then decrypts c′ to learn m′, thus learning the decryption of c as the
compliment of m′. Hence, the SYY cryptosystem is not invertible by an adversary
if and only if the GM cryptosystem is not invertible by an adversary.

The semantic security of the Sander-Young-Yung cryptosystem also follows di-
rectly from the Goldwasser-Micali cryptosystem.

Theorem 3.2.14. The Sander-Young-Yung cryptosystem is semantically secure if
and only the Goldwasser-Micali cryptosystem is semantically secure.

Proof. (Outline) If an adversary can break the semantic security of the GM cryp-
tosystem, then the adversary can determine whether or not the vector c encrypted
under the SYY cryptosystem contains an encryption of 1. If so, the adversary
concludes that the vector represents an encryption of 0. Otherwise, the adversary
concludes that the vector is a encryption of 1. Conversely, if an adversary can break
the semantic security of the SYY cryptosystem, then given a GM ciphertext c, the
adversary can construct the encrypted vector c′ = (c, Enc(pk, 0), . . . , Enc(pk, 0)).
If the adversary determines that c′ is an encryption of 0, then the adversary can
conclude that c is an encryption of 1. Otherwise, the adversary concludes that c
is an encryption of 0. Hence, the SYY cryptosystem is semantically secure if and
only if the GM cryptosystem is semantically secure.

Although of theoretical interest as the first AND homomorphic cryptosystem,
the Sander-Young-Yung cryptosystem amplifies the already serious problem of
ciphertext expansion in the Goldwasser-Micali cryptosystem. To remain secure
against modern factoring techniques, n must be at least 1024 bits in length. Thus,
a ciphertext representing a single plaintext bit is of size 1024l, where l is likely to
be 32 or larger.

45

Homomorphic Properties

Recall that the homomorphic operation of the Goldwasser-Micali cryptosystem,
performed by taking the product of two ciphertexts, is a binary XOR. GM cipher-
texts can also be efficiently re-randomized by multiplying a ciphertext by a random
encryption of 0. In a similar manner, ciphertexts in the Sander-Young-Yung cryp-
tosystem can be efficiently re-randomized by taking the component-wise product
with an encryption of 0 under the SYY cryptosystem.

Given two ciphertexts x and y as encryptions of m1 and m2 respectively, an
encryption of m1 ·m2 can be calculated by first choosing two random non-singular
matrices A, B ∈ (Z2)

l×l, and then calculating c = Ax + By by

ci =

 ∏
j

ai,j=1

xj

 ∏

j
bi,j=1

bi,j

 .

The resulting ciphertext c is then re-randomized using the method described earlier.

The homomorphic AND operation works by using the homomorphic XOR prop-
erties of the Goldwasser-Micali cryptosystem to do a component-wise homomorphic
XOR on the two encrypted vectors. If both m1 = m2 = 1, then both c1 and c2 are
encryptions of the zero vector, and a component-wise XOR yields the zero vector.
Otherwise, a random non-zero vector is calculated, except in the case c1 = c2. In
order to ensure this occurs with probability 1

2l , the two matrices A and B are used to
randomize the encryptions of x and y. Finally, the new ciphertext is re-randomized
so that it represents a random encryption of the result.

3.2.7 The Okamoto-Uchiyama Cryptosystem

The Okamoto-Uchiyama cryptosystem [77] is is a public-key cryptosystem based on
the difficulty of the factoring problem. Unlike RSA, and most other cryptosystems
based on factoring, the Okamoto-Uchiyama cryptosystem relies on the difficulty
of factoring numbers of the form n = p2q, rather than n = pq. Although the
factorization of numbers of the form p2q is less studied than numbers of the form
pq, the time complexity of most factoring algorithms depends on the size of n, or
the size of the factors of n, which imply that p and q can be selected such that
n = p2q is large enough to resist known factoring techniques.

The Okamoto-Uchiyama cryptosystem improves on previous cryptosystems by
working over groups of a special form, for which it is possible to calculate discrete
logarithms in certain subgroups of Z∗

n when the factorization of n is known. For
a prime p, consider the function L(x) = x−1

p
defined over the unique subgroup H

of order p of Z∗
p2 , which exists due to Sylow’s First Theorem [54] and the fact that

|Z∗
p2| = p(p− 1).

46

Lemma 3.2.15. ([77], Lemma 2) For a, b ∈ H,

L(ab mod p2) = L(a) + L(b) mod p,

and L is an isomorphism.

Proof. L is clearly bijective, and

L(ab) =
ab− 1

p
mod p

=
(a− 1)(b− 1) + (a− 1) + (b− 1)

p
mod p

= L(a)(b− 1) + L(a) + L(b) mod p

= L(a) + L(b) mod p (note: b ≡ 1 mod p).

Hence, L is an isomorphism.

The map L can be treated as a logarithm function with base p from the multi-
plicative group H to the additive group Zp. Thus, it is possible to use L to convert
a logarithm in base p to a logarithm in base g, for some other group element g.
This forms the basis for the Okamoto-Uchiyama cryptosystem.

Cryptosystem 3.2.16. The Okamoto-Uchiyama Cryptosystem

Let n = p2q, where p and q are distinct k-bit primes, let g be a random element
of Z∗

n such that gp−1 has order p in Z∗
p2, and set h = gn mod n. Then P = Zp,

C = Z∗
n, R = Zn, and K = {(n, p, q, g, h, k)} where (n, p, q, g, h, k) are defined as

above.

• Gen: Given a security parameter ε, Gen(ε) sets k = ε
3

and chooses n = p2q,
where p and q are distinct k-bit primes, then chooses a random element g ∈ Z∗

n

such that gp(p−1) ≡ 1 mod p2 and gp−1 6= 1 mod p2. Setting h = gn mod n,
the public key is (n, g, h, k) and the private key is (p, q).

• Enc: Given a message m ∈ P and a public key pk = (n, g, h, k), Enc(pk, m)
chooses a random r ∈ R and returns the ciphertext

c = gmhr mod n.

• Dec: Given a ciphertext c and a private key sk, Dec(sk, c) returns the message

m =
L(cp−1 mod p2)

L(gp−1 mod p2)
mod p

where

L(x) =
x− 1

p
.

47

During decryption, the numerator simplifies to

L(cp−1 mod p2) = L((gmhr)p−1 mod p2)

= L((gmgnr)p−1 mod p2)

= L((gp−1)
m

gp(p−1)(rpq) mod p2)

= L((gp−1)
m

mod p2)

making the decryption calculation

L((gp−1)m mod p2)

L(gp−1 mod p2)
mod p.

Because the function L acts as a logarithm function, the decryption formula actually
converts the logarithm of (gp−1)m in base g, to the same logarithm in base gp−1,
thus yielding the message m. This follows from Lemma 3.2.15.

It can be shown that an adversary that can decrypt a ciphertext c representing
an encryption of m, can also factor n, demonstrating that the ability to decrypt a
message is identical to factoring n = p2q.

Theorem 3.2.17. ([77], Theorem 6) Inverting the Okamoto-Uchiyama encryption
function without knowledge of (p, q) is intractable if and only if the factoring problem
for n = p2q is intractable.

Proof. (Outline) Clearly knowledge of (p, q) is sufficient to decrypt a ciphertext c.
It remains to be seen that decrypting c allows the factorization of n. Let z be a
random element of Zn, and set c′ = gz. With overwhelming probability, z /∈ Zp.
If the adversary can successfully decrypt c′, yielding some correct message m, then
m ∈ Zp and z ≡ m mod p. Because z /∈ Zp with overwhelming probability, z 6≡ m
mod n holds with overwhelming probability. Thus, the adversary can calculate
gcd(z − m, n), yielding a non-trivial factor of n, which then allows n to be fully
factored. Hence, decryption of a ciphertext is equivalent to factoring n.

The fact that inverting the encryption function reduces to factoring n = p2q
implies a weakness of the cryptosystem with respect to an active adversary. The
homomorphic properties of the Okamoto-Uchiyama cryptosystem prevent it from
attaining security against adaptive adversaries; however, it is not the security of
a single message, but the security of the entire system that is affected. Because
inverting the encryption function is equivalent to factoring n, an adversary with
access to a decryption oracle can factor n with non-negligible probability. As in
the proof of Theorem 3.2.17, the adversary chooses a random c′ ∈ Zn submits a
ciphertext c′ = gz to the decryption oracle, which responds with m such that there
exists h, r with m = gmhr mod n. Because z /∈ Zp with high probability, it must be
the case that z 6≡ m mod n and gcd(z−m, n) will yield a proper factor of n. Thus,
an active adversary can learn the private key and compromise the security of the
entire cryptosystem. This type of attack is often referred to as a Rabin-style attack,

48

due to the fact that it was first observed against the Rabin cryptosystem [85], the
first cryptosystem discovered whose security is provably equivalent to factoring.

The semantic security of the system relies on the difficulty of the p-subgroup
problem, as described in Section 3.1.5.

Theorem 3.2.18. The Okamoto-Uchiyama cryptosystem is semantically secure if
and only if the p-subgroup problem is intractable.

Proof. (Outline) In the Okamoto-Uchiyama cryptosystem, the p-subgroup problem
is equivalent to distinguishing between valid encryptions of 0 and 1. Let c0 = hr0

mod n be a valid encryption of 0, and c1 = ghr1 mod n be a valid encryption of
1, and recall that h = gn mod n. It can be determined if c0 or c1 have order p by
calculating

c0
p−1 mod p2 = (gnr0)p−1 mod p2

= g(p−1)p2qr0 mod p2

= (gp(p−1))pqr0 mod p2

= 1

and

cp−1
1 mod p2 = (g · gnr1)p−1 mod p2

= gp−1 · gp2qr1+1 mod p2

= gp−1 · (g(p−1)p)pqr1 mod p2

= gp−1 mod p2.

Thus, |c0| = n and |c1| = p. Utilizing the fact that the p-subgroup problem is
equivalent to distinguishing c0 and c1, it is possible to show that the ability to
distinguish between c0 and c1 (i.e., break the p-subgroup assumption), allows an
adversary to distinguish between encryptions of two arbitrary messages m0 and
m1. Conversely, the ability to distinguish between encryptions of m0 and m1,
allows an adversary to distinguish between c0 and c1, thus breaking the p-subgroup
assumption. A complete proof is found in [77].

One of the drawbacks of the Okamoto-Uchiyama cryptosystem is the fact that
messages are bounded by p, but arithmetic is performed modulo n = p2q. Thus, a
ciphertext is approximately three times larger than the corresponding plaintext. It
should be noted that this is still a drastic improvement over earlier systems, such as
the GM cryptosystem. The bound on message space can pose a problem when the
cryptosystem is used specifically for its homomorphic properties. Because p is part
of the private key, a user cannot disclose precisely what the bound on messages
is, which may be problematic if many encrypted messages are to be summed or
multiplied.

49

Homomorphic Properties

The Okamoto-Uchiyama cryptosystem supports the homomorphic addition and
subtraction of two ciphertexts, addition and multiplication by a known constant,
and efficient re-randomization of ciphertexts. Given c0 = gm0hr0 and c1 = gm1hr1

as valid encryptions of m0 and m1 respectively,

c0c1 = gm0+m1hr0+r1 mod n

is a valid encryption of m0 + m1 with randomness r1 + r2. Multiplication by a
constant k can be achieved by calculating

c0
k = gkm0hkr0 mod n

as a valid encryption of km0 with randomness kr0, and c0 can be re-randomized by
calculating

c0h
r = gm0hrr0 mod n

for a random r ∈ R. Subtraction can be achieved by multiplying c0c1
−1 and

addition and subtraction by constants can be achieved by encrypting the constant
under the public key and using one of the previously defined operations.

Variants

Coron, Naccache, and Paillier [36] have proposed a more efficient variant of the
Okamoto-Uchiyama cryptosystem, reducing the complexity of decryption while re-
taining the same level of security. They note that if p− 1 has a large prime factor
t (i.e., about 160 bits in length), then h can be redefined by letting p − 1 = tu,
choosing a random generator g′ ∈ Z∗

n, and setting H = g′nu mod n. The new value
H replaces h in Gen and Enc, and decryption becomes

m =
L(ct mod p2)

L(gp−1 mod p2)
mod p.

Thus, c is raised to the power t instead of p−1, where t is much smaller than p−1.

A different variant of the Okamoto-Uchiyama cryptosystem, referred to as Im-
proved Okamoto-Uchiyama, has been proposed by Choi, Choi, and Won [31], which,
like the variant proposed by Coron et al, decreases the complexity of decryption.
This accomplished by choosing g such that L(gp−1 mod p) ≡ 1 mod p, simpli-
fying decryption to m = L(cp−1 mod p2). Let b ∈ Zp and c ∈ Zp2 such that

b ≡
(

cp−1−1
p

− 1
)

c mod p, then set g = bp + c mod p2. Then g satisfies L(gp−1

mod p2) mod ≡ 1 mod p. Sakurai and Takagi [89] call this system Modified
Okamoto-Uchiyama, and point out that it is still an open problem to demonstrate
that encryption is not invertible when the choice of g is limited to the special form
required in this variant. Semantic security of the Modified Okamoto-Uchiyama
cryptosystem follows from the semantic security of the original cryptosystem.

50

Okamoto and Uchiyama attempted to define their cryptosystem over an elliptic
curve with p points, where discrete logs are efficient to compute [78]; however, they
find that a secure construction using their approach is not possible. Paillier later
attempted to construct a similar cryptosystem based on the Okamoto-Uchiyama
cryptosystem [80], but Galbraith has demonstrated a flaw in the approach [53] for
which no workaround is currently known.

3.2.8 The Paillier Cryptosystem

The Okamoto-Uchiyama cryptosystem sparked further research into cryptosystems
utilizing trapdoor discrete logarithms, leading to the discovery of the Paillier Cryp-
tosystem [79]. Decrypting a ciphertext in the Paillier cryptosystem requires the
use of a logarithm function L, similar to the Okamoto-Uchiyama cryptosystem,
although it used slightly differently. Additionally, similar to the way the Benaloh
cryptosystem extended the Goldwasser-Micali cryptosystem by utilizing the dif-
ficulty of calculating certain higher order residues instead of quadratic residues
modulo a prime p, the Paillier cryptosystem extends the Benaloh cryptosystem by
utilizing the difficulty of deciding higher order residues modulo a composite n2,
where n = pq.

Recall from Section 3.1.4 that the set of n’th residues of Z∗
n2 forms a subgroup of

order φ(n), and each n’th residue has exactly n roots. The n’th residue classes of Z∗
n2

partition Z∗
n2 into φ(n) different classes, each of size n, and the class function w 7→

[w]g maps an element of Z∗
n2 to one of these classes; that is, given w = gmyn ∈ Zn2 ,

the class function maps w to m. Because the computational problem of computing
the class function, Class[n], is thought to be hard, it is a natural building block
for a cryptosystem. Additionally, the class function is homomorphic, meaning that
any cryptosystem utilizing the class function as a decryption function will also be
homomorphic.

Lemma 3.2.19. The class function is a homomorphism from Z∗
n2 to Zn.

Proof. Let w1, w2, g ∈ Z∗
n2 . Then [w1]g = x1 and [w2]g = x2 and there exists y1 and

y2 with w1 = gx1y1
n and w2 = gx2y2

n. Set y = y1y2, then [w1w2]g = [w1]g + [w2]g =
x1 + x2 follows from the fact that (gx1y1

n)(gx2y2
n) = gx1+x2yn.

The function Eg(x, y) = gxyn defined in Section 3.1.4 is a bijection from Zn×Z∗
n

to Z∗
n2 when the order of g is a multiple of n, and, when the order of g is αn for

α ∈ {1, . . . , λ = lcm(p − 1, q − 1)}, g uniquely determines x for a given w = gxyn.
Thus, Eg can take a message x and calculate w such that [w]g = x, with y acting
as a randomizer. The Paillier cryptosystem uses Eg as its encryption function, and
the class function as its decryption function.

Cryptosystem 3.2.20. The Paillier Cryptosystem

51

Let n = pq for primes p and q, set λ = lcm(p−1, q−1), and choose g ∈ Z∗
n2 such

that gcd(L(gλ mod n2), n) = 1, where L(x) = x−1
n

. Then P = R = Zn, C = Z∗
n2,

and K = {(n, g, p, q, λ)} where n, q, p, q, λ are defined as above.

• Gen: Given security parameter ε, Gen(ε) chooses two distinct ε
2
-bit primes p

and q, sets n = pq and λ = lcm(p− 1, q − 1), and chooses g ∈ Z∗
n2 such that

gcd(L(gλ mod n2), n) = 1. The tuple (n, g) is the public key, and the tuple
(p, q, λ) is the private key.

• Enc: Given a message m ∈ P and a public key pk = (n, g), Enc(pk, m)
chooses a random r ∈ R and returns the ciphertext

c = gmrn mod n2.

• Dec: Given a ciphertext c ∈ C and a private key sk = (p, q, λ), Dec(sk, c)
returns the message

m =
L(cλ mod n2)

L(gλ mod n2)
mod n

where

L(x) =
x− 1

n
.

The security of the Paillier system relies on the hardness of the Class[n] and D-
Class[n] problems, as defined in Section 3.1.4. Class[n] is the problem of determining
which residue class in Zn2 a ciphertext belongs to, while D-Class[n] is the problem
of deciding if [w]g = m for a given m. Knowledge of the private key, in particular,
λ = lcm(p−1, q−1), allows one to solve Class[n]. Consider the value L(wλ mod n2)
for w ∈ Z∗

n2 , and let g = 1+n. Then there exists x, y such that w = gxyn mod n2,
and, wλ = gxλynλ mod n2. Noting that gx = (1 + n)x = 1 + nx mod n2 and λ is
a multiple of the order of Z∗

n, then wλ = gxλynλ = 1 + xλn mod n2. Thus,

L(wλ mod n2) =
1 + xλn− 1

n
= xλ = λ[w]1+n.

To prove the correctness of decryption, the following lemma is required.

Lemma 3.2.21. For w, g1, g2 ∈ Z∗
n2 where |g1|, |g2| ∈ {n, 2n, . . . , λn}. Then

[w]g1 = [w]g2 [g2]g1 .

Proof. Let [w]g1 = x, [w]g2 = x1, and [g2]g1 = x2, Then there exists y with w = gxyn,
as well as y1 with w = g2

x1y1
n, and y2 with g2 = g1

x2y2
n. The lemma holds if

x = x1x2 and there exists y such that w = gxyn. Observe that

w = g2
x1y1

n

= (g1
x2y2

n)x1y1
n

= g1
x1x2(y2

x1y1)
n.

The result follows from setting y = y2
x1y1.

52

The decryption step of the Paillier cryptosystem simplifies to

L(cλ mod n2)

L(gλ mod n2)
mod n =

λ[c]1+n

λ[g]1+n

mod n

=
[c]g[g]1+n

[g]1+n

mod n (by Lemma 3.2.21)

= [c]g,

yielding the message m. The security of the Paillier system is summarized in the
following two theorems.

Theorem 3.2.22. ([79], Theorem 4) If Class[n] is hard in Z∗
n2 then the Paillier

encryption function is not invertible by an adversary.

Proof. Decrypting a ciphertext is, by definition, solving the computational com-
posite residuosity problem.

Theorem 3.2.23. ([79], Theorem 5) The Paillier cryptosystem is semantically
secure if and only if D-Class[n] is hard.

Proof. (Outline) Let m0 and m1 be two known messages and c a random encryption
of either m0 or m1. If c is an encryption of m0, then c′ = cg−m0 = rn is an
n’th residue. Otherwise, if c is an encryption of m1, c′ is not an n′th residue
with overwhelming probability. If an adversary can decide n’th residues, then the
adversary can check if c′ is an n’th residue, thus distinguishing between encryptions
of m0 and m1. Conversely, if an adversary can distinguish between encryptions of
m0 and m1, then, given (w, x), the adversary must determine if there exists y such
that gxyn = w, or, yn = g−xw, i.e., g−xw is an n’th residue. The adversary can
choose a valid value of g and calculate c = gm0g−xw, which is a valid ciphertext if
g−xw is an n’th residue. The adversary’s ability to distinguish between encryptions
of m0 and m1 can be used to determine if c is a valid encryption of m0, thus solving
D-Class[n]. Hence, the semantic security of the Paillier cryptosystem is equivalent
to solving D-Class[n].

Further investigation into the security of the Paillier cryptosystem has been
made by Catalano, Gennaro, and Howgrave-Graham [23, 24], who have shown that
the least significant bit of a message encrypted under the Paillier cryptosystem is
a hard-core bit. Given a one-way function f and a predicate π, π is said to be a
hard-core predicate on f if an adversary can guess the output of π with advantage
only negligibly better than a random guess. In the case of a hard-core bit, the
adversary cannot guess the value of the specified bit with non-negligible advantage
over a random guess. The notion of a hard-core bit was introduced by Blum and
Micali [13], and it was later shown by Goldreich and Levin [59] that any one-way
function has a hard-core bit, although their proof does not disclose which bit is
hard-core. Catalano et al further generalize their result to state that if computing
the class c of w remains hard if the adversary is told c < 2b, then the Paillier
encryption function hides at least n− b bits.

53

Homomorphic Properties

The Paillier cryptosystem supports homomorphic addition and subtraction of en-
crypted messages, as well as addition and subtraction of constants, and multiplica-
tion by a constant. Let c1 = gm1y1

n mod n2 and c2 = gm2y2
n mod n2. Then

c1c2 mod n2 = gm1y1
ngm2y2

n = gm1+m2y1y2
n mod n2

is a valid encryption of m1 + m2,

c1g
k mod n2 = gm1y1

ngk = gm1+ky1
n mod n2

is a valid encryption of m1 + k, and

c1
k mod n2 = (gm1y1

n)k = gkm1(y1
k)n mod n2

is a valid encryption of km1. Subtraction of encrypted messages and constants can
be accomplished by computing c1c2

−1 mod n2 and c1g
−k mod n2 respectively.

The Paillier cryptosystem also supports the re-randomization of messages such
that if y′ is a uniformly random element of R, then

c1y
′n mod n2 = gm1y1

ny′
n

= gm1(y1y
′)n mod n2

is a uniformly random valid encryption of m1.

Variants

Along with the basic cryptosystem, Paillier also proposed a more efficient variant
and a trapdoor permutation based on similar ideas.

Cryptosystem 3.2.24. Paillier Trapdoor Permutation

The setup of the Paillier trapdoor permutation is the same as Cryptosystem
3.2.20, with P = Zn2.

• Gen: See Cryptosystem 3.2.20.

• Enc: Given m and a public key pk = (n, g), Enc(pk, m) first splits m into
m1 and m2 such that m = m1 + nm2, then returns the ciphertext

c = gm1m2
n mod n2.

• Dec: Given a ciphertext c and a private key sk, Dec(sk, c) calculates

m1 =
L(cλ mod n2)

L(gλ mod n2)
mod n

c′ = cg−m1 mod n

m2 = c′
n−1

mod n

and returns m = m1 + nm2.

54

The first step of decryption recovers m1, just as in the original Paillier cryptosys-
tem. Recovering m2 involves taking an n’th root of c′ = m2

n. This is essentially the
same as decrypting an RSA ciphertext, and is believed to be intractable as long as
the factoring problem is hard. This places a restriction on the permutation; namely,
that m2 must be an element of Z∗

n. Paillier’s trapdoor permutation is malleable,
although the possible operations do not appear to be useful. This is due to the fact
that part of the message lies in an exponent, while the other portion is represented
as an n’th root. Let m = m1 + nm2 and m′ = m1

′ + nm2
′ with encryptions c1 and

c2 respectively. The product of c1 and c2 decrypts to

m1 + m′
1 + n(m2m

′
2) mod n

and c1
k for some constant k decrypts to

m1 + k + n(m2
k) mod n.

Paillier has also proposed a more efficient variant of his cryptosystem. The
modular exponentiation required during decryption can be made more efficient by
altering the form of ciphertexts, although this also requires a different security
assumption. Encryption also becomes more efficient by requiring only one modular
exponentiation. Unlike the trapdoor permutation, the fast variant also preserves
the same homomorphic operations as the basic Paillier cryptosystem.

Cryptosystem 3.2.25. The Paillier Cryptosystem (Fast Decryption Variant)

Let P , C,R, n, p, q, λ be as in Cryptosystem 3.2.20, and let g ∈ Z∗
n2 such that

the order of g is αn for α ∈ {1, . . . , λ}. Then K = {(n, g, p, q, α)}.

• Gen: Given security parameter ε, Gen(ε) chooses two distinct ε-bit primes p
and q, sets n = pq and λ = lcm(p− 1, q − 1), and chooses g ∈ Z∗

n2 such that
the order of g is αn for α ∈ {1, . . . , λ}. The tuple (n, g) is the public key, and
the tuple (p, q, α) is the private key.

• Enc: Given a message m and a public key pk = (n, g), Enc(pk, m) chooses a
random r ∈ R and returns the ciphertext

c = gm+nr mod n2.

• Dec: Dec: Given a ciphertext c and a private key sk = (p, q, λ), Dec(sk, c)
returns the message

m =
L(cα mod n2)

L(gα mod n2)
mod n

Paillier did not include a proof of security for the fast decryption variant in
[79]. Proving that the system is semantically secure and that encryption is one-
way is similar to the basic Paillier cryptosystem, but relies on the PDL[n, g] and
D-PDL[n, g] problems defined in Section 3.1.4.

55

Theorem 3.2.26. If PDL[n, g] is hard, then the encryption function of the Paillier
fast decryption variant is not invertible by an adversary.

Proof. Inverting the encryption function is, by definition, solving PDL[n, g].

Theorem 3.2.27. The fast decryption variant of the Paillier cryptosystem is se-
mantically secure if and only if D-PDL[n, g] is hard.

Proof. Let m0, m1 ∈ Zn and let c be a random encryption of one of m0 and m1.
Assume an adversary can determine if c is an encryption of m0 or m1. Then, given
an instance of D-PDL[n, g], the adversary must decide whether or not [w]g = x.
The adversary can construct the ciphertext gm0g−xw, and, if w = gx+rn, then
gm0g−xw = gm0+rn and the adversary concludes that [w]g = x if the ciphertext
is an encryption of m0. Hence, if breaking semantic security is tractable, then
solving D-PDL[n, g] is tractable. Conversely, assume that the adversary can solve
D-PDL[n, g]. If c is an encryption of m0 then the adversary can solve D-PDL[n, g] to
determine if [c]g = m0. If it is not, then [c]g = m1. Thus, if the adversary can solve
D-PDL[g, n], then the adversary can break semantic security. Hence, the semantic
security of the fast decryption variant is equivalent to solving D-PDL[n, g].

An approach to increasing the efficiency of encryption was considered by Cata-
lano, Gennaro, Howgrave-Graham, and Nguyen [25]. Recall Cryptosystem 1.3.3,
the RSA cryptosystem, and that RSA encryption requires a single modular expo-
nentiation modulo n. In order to make RSA encryption more efficient the public
key is often selected to be a small value, such as e = 3. Catalano et al. argue that
the same approach can be applied to the Paillier cryptosystem, by replacing yn

with ye for some appropriate choice of e << n, with the security of the modified
cryptosystem conjectured to hold for any e > 2. Additionally, encryption can be
further simplified by choosing g = 1+n, so that gm = (1+mn) mod n2. Thus, the
encryption function becomes c = gmye = (ye(1 + mn)). The security assumptions
for this variant are different than in the original cryptosystem, and are more re-
lated to RSA security assumptions. Proof that the encryption is one-way relies on
the difficulty of the Computational Small e’th Root Problem (Section 3.1.2), and
the proof of semantic security relies on the decisional version of the same problem.
Castagnos [21] has recently modified the cryptosystem given by Catalano et al. in
order to make it more efficient. The resulting cryptosystem achieves its goal, but
does not retain any homomorphic properties. Castagnos does, however, outline
an approach to making his cryptosystem homomorphic, although the details are
omitted.

Paillier has proposed additional variants of his cryptosystem in subsequent pub-
lications. In [81] Paillier and Pointcheval extend the Paillier cryptosystem to pro-
vide IND-CCA2 security, necessarily eliminating its homomorphic properties. Pail-
lier also proposed an elliptic curve version of his cryptosystem [80], attempting to
take advantage of the fact that in certain settings computing discrete logs on el-
liptic curves is easy. Galbraith has since demonstrated that Paillier’s elliptic curve

56

cryptosystem is not secure [53], as the private key is revealed from public infor-
mation. Galbraith also provided an approach to building an elliptic curve Paillier
cryptosystem that does not suffer from the same problem as Paillier’s approach.
This cryptosystem is presented in Section 3.2.10.

As with the Okamoto-Uchiyama cryptosystem, Choi, Choi, and Won [31] have
proposed a modified version of the Paillier cryptosystem, referred to as Modified
Paillier, or the M-Paillier cryptosystem, by Sakurai and Takagi [89], who provided
a security analysis of the proposed cryptosystem. Like the modified Okamoto-
Uchiyama cryptosystem, M-Paillier is based on the idea of choosing g such that L(gλ

mod n2) ≡ 1 mod n, so that decryption can simplified to m = L(cλ mod n2)
mod n. This is accomplished by selecting g such that gλ = 1 + n mod n2. The
modification can be applied to both the basic and fast decryption variants of the
Paillier cryptosystem.

Choi et al. did not provide any proofs of security for their modified cryptosys-
tems, prompting an investigation by Sakurai and Takagi [89]. Because the possible
values for g are limited the Class[n] and D-Class[n, g] problems must be restated
to allow only certain values of g. When this is the case, Choi et al. show that
solving Class[n] is as hard as factoring. As a consequence, inverting the encryption
function is as hard as factoring n, assuming that g can be generated from n alone
without knowledge of p and q. If g = 1+n, then the appropriate assumption holds,
however other choices of g are valid in the M-Paillier cryptosystem. In the case
when g 6= 1 + n, then an oracle that generates public parameters can also factor n,
i.e., the public parameters cannot be generated without knowledge of the factoriza-
tion of n. The semantic security of M-Paillier holds as long as D-Class[n, g] is hard
on the restricted choices of g. Choi et al. also demonstrate a chosen-ciphertext
attack, specific to M-Paillier, that recovers p and q using only a single decryption
query.

3.2.9 Paillier/Schmidt-Samoa-Takagi Cryptosystem

Although the Paillier and Okamoto-Uchiyama cryptosystems are similar, the secu-
rity of the Okamoto-Uchiyama cryptosystem can be reduced to factoring n = p2q,
while the Paillier cryptosystem relies on Class[n]. Because the factoring problem has
been studied in more detail, Schmidt-Samoa and Takagi [91] have altered the Pail-
lier cryptosystem such that it’s security can be based on the difficulty of factoring
n = p2q. Unfortunately, this comes at the cost of introducing a chosen ciphertext
attack, similar to the one that affects the Okamoto-Uchiyama cryptosystem. The
basic Paillier cryptosystem is defined over Zn2 , which is isomorphic to Z∗

n×Zn when
n = pq, whereas the proposed variant is defined over Z∗

n × Zpq when n = p2q.

Cryptosystem 3.2.28. Paillier Cryptosystem (Schmidt-Samoa-Takagi Variant)

Let p, q be distinct primes such that both p − 1 and q − 1 have a large prime
factor, p 6 |q−1, and q 6 |p−1. Choose l such that 2l < pq < 2l+1. Then P = {0, 1}l,
C = Z∗

n2, R = Z∗
n, and K = {(n, l, d, p, q) | d = n−1 mod (p− 1)(q − 1)}.

57

• Gen: Given a security parameter ε, Gen(ε) chooses two distinct ε
3
-bit primes

p and q and sets n = p2q, then chooses l such that 2l < pq < 2l+1 and d such
that d = n−1 mod (p−1)(q−1). The public key is (n, l), and the private key
is (d, p, q).

• Enc: Given a public key pk and a message m ∈ P, Enc(pk, m) chooses r ∈ R
and calculates the ciphertext

rn(1 + mn) mod n2.

• Dec: Given a private key sk and a ciphertext c ∈ C, Dec(sk, c) calculates
r = cd mod pq, and then the message

m = L(r−nc mod n2) mod pq

where

L(x) =
x− 1

n
.

Like other Paillier variants, the Schmidt-Samoa-Takagi cryptosystem chooses
g = 1 + n such that gm mod n2 = (1 + nm) mod n2, thus making encryption
more efficient. During decryption the random factor r is recovered by taking

cd mod n = (rn(1 + mn))d mod pq

= (rn)d mod pq

= (rn)n−1 mod (p−1)(q−1) mod pq

= (rn)n−1 mod φ(pq) mod pq

= r

allowing the random factor to be removed from the ciphertext. Recovering r is
essentially an RSA decryption, and requires knowledge of the factorization of pq.
With the randomness removed from the ciphertext, recovering the message is easy
using the L function.

Given access to a decryption oracle, a method for factoring n with non-negligible
probability is possible.

Theorem 3.2.29. ([89], Theorem 3) Inverting the Schmidt-Samoa-Takagi encryp-
tion function is equivalent to factoring n = p2q.

Proof. (Outline.) Factoring n trivially allows the decryption of a ciphertext. As-
sume that an oracle exists that can decrypt ciphertexts with non-negligible proba-
bility. Then, with non-negligible probability, a random ciphertext c′ = r′n(1+m′n)
will be valid for r′ ∈ Z∗

n and m ∈ Zn, and the decryption oracle will return a mes-
sage m such that there exists r ∈ Z∗

n with c′ = rn(1 + mn), and m ≡ m′ mod pq.
By taking gcd(m′−m, n), the factor pq is recovered, allowing n to be factored with
non-negligible probability. Hence, inverting the decryption function is equivalent
to factoring.

58

As with the Okamoto-Uchiyama cryptosystem, the fact that inverting the en-
cryption function is equivalent to factoring n can be exploited by an adaptive
adversary to recover the private key. Given access to a decryption oracle, the
adversary chooses random r′ ∈ Z∗

n and m′ ∈ Zn and constructs the ciphertext
c′ = r′n(1 + m′n), which is submitted to the decryption oracle. The adversary
then learns m such that m ≡ m′ mod pq, and, with non-negligible probability,
gcd(m′−m, n) = pq. Thus, the adversary can factor n and recover the private key.

The Schmidt-Samoa-Takagi variant inherits semantic security from the Paillier
cryptosystem.

Theorem 3.2.30. ([89], Theorem 4) The Schmidt-Samoa-Takagi variant is seman-
tically secure if and only if D-Class[n] is hard when n = p2q.

Proof. The proof is the same as Theorem 3.2.23 with n = p2q and g = (1 + n).

The Schmidt-Samoa-Takagi variant also inherits the homomorphic properties of
the Paillier cryptosystem, as detailed in Section 3.2.8.

3.2.10 Elliptic Curve Paillier

Galbraith [53] demonstrated that Paillier’s elliptic curve cryptosystem, defined in
[80], is not secure, as it suffers from the same problem Okamoto and Uchiyama
encountered attempting to create an elliptic curve variant of their cryptosystem
[78]; namely, that the use of elliptic curves where discrete logs are easy, so-called
anomalous curves, allows the private key to be recovered from the necessary public
information. In response, Galbraith has provided some ideas on how to build a
Paillier-like cryptosystem over an elliptic curve, with a concrete example given.

Cryptosystem 3.2.31. Elliptic Curve Paillier

Let n = pq for distinct odd primes p and q, and let E = x3 + axz2 + bz3 be
a random elliptic curve over Zn such that gcd(6(4a3 + 27b2), n) = 1. Set M =
lcm(|E(Fp)|, |E(Fq)|) and Q = nQ′ where Q′ is a random point on the curve over
Zn2. Let Pm = (mn : 1 : 0) be the point on the curve E(Zn2 corresponding to m ∈
Zn, then P = {Pm |m ∈ Zn}, C = E(Zn2), R = Zn−{0}, and K = {(n, a, b, Q, M)}
such that n, a, b, Q, M satisfy the above conditions.

• Gen: Given a security parameter ε, Gen(ε) chooses two distinct ε
2
-bit primes

p and q, and sets n = pq. A random elliptic curve E = x3 + axz2 + bz3

over Zn is chosen such that gcd(6(4a3 + 27b2), n) = 1 and M is set to
lcm(|E(Fp)|, |E(Fq)|). Gen(ε) then chooses a random point Q′ on the curve
and sets Q = nQ′. The public key is (a, b, n, Q) and the private key is M .

• Enc: Given a public key pk and a message m, Enc(pk, m) chooses a random
r ∈ R and calculates the ciphertext

c = rQ + Pm.

59

• Dec: Given a private key sk and a ciphertext c, Dec(sk, c) calculates

Mc = MrQ + MPm = PmM = (mM : 1 : 0)

and returns the message
m = mMM−1.

The components of Galbraith’s elliptic curve variant match those of the basic
Paillier cryptosystem. The message and ciphertext spaces are replaced with the
analogous elliptic curve groups, λ is replaced by M , the least common multiple of
the number of points of the elliptic curve in Fp and Fq, and g is replaced with Q,
a random point whose order divides M . The encryption function takes a message
as a point on the curve, and “blinds” it with a random multiple of Q, similar to
the way a message is randomized using yn in the basic cryptosystem. Multiplying
a ciphertext by the private key M eliminates the random factor and allows the
message to be recovered.

Galbraith does not prove the security of his variant, but notes that the semantic
security of the system relies on the problem of deciding whether or not a random
point S lies in the subgroup of E(Zn2) generated by Q. This is reminiscent of the
p-subgroup problem, upon which the security of the Okamoto-Uchiyama cryptosys-
tem relies. Without knowledge of the factorization of n, there is no known approach
to solving the problem in general.

3.2.11 The Paillier/Damg̊ard-Jurik Cryptosystem

The Paillier cryptosystem is generally regarded as the most practical homomorphic
cryptosystem. The encryption function is of the same form as earlier additively ho-
momorphic cryptosystems, and decryption is essentially a modular exponentiation.
One of the biggest benefits of the Paillier cryptosystem is the fact that it achieves
a 2-to-1 ciphertext expansion ratio, while retaining straightforward encryption and
decryption methods. The Damg̊ard-Jurik cryptosystem [40] extends the Paillier
cryptosystem by taking messages from Zns and mapping them to elements Z∗

ns+1 ,
thus achieving a ciphertext expansion rate of s+1

s
, which can be made arbitrarily

close to 1 for large enough s. This comes with the negative aspect of increasing the
size of the modulus, thereby slowing down modular arithmetic and increasing the
minimum message size.

The Paillier cryptosystem utilized the fact that Z∗
n2 is isomorphic Zn × Z∗

n.
The Damg̊ard-Jurik cryptosystem naturally extends this by noting that Z∗

ns+1 is

isomorphic to G×H where G = Zns and H = Z∗
n. Thus, the factor group

Zns+1

H
is

isomorphic to Zns .

Many other variants of the Paillier cryptosystem choose g of the form g = (1+n)k

due to the fact that (1 + n) has order n and (1 + n)k mod n2 = (1 + kn) mod n2

is easy to compute. In the Damg̊ard-Jurik cryptosystem, the same choice of g can
be used.

60

Lemma 3.2.32. ([40], Lemma 1) For s < p, q, the element (1 + n) has order ns

in ∈ Zns+1.

The order of H, |H| = φ(n) is relatively prime to ns, and so (1+n)H is a generator

of
Zns+1

H
, and elements of the factor group can be represented by

H, (1 + n)H, (1 + n)2H, . . . , (1 + n)ns−1H.

These cosets form the plaintext space of the Damg̊ard-Jurik cryptosystem, where
(1 + n)mH is the coset element representing the message m ∈ Zns . Recalling the
decryption function from the Paillier cryptosystem (Cryptosystem 3.2.20), in order
to recover a message the value L(cλ mod n2) is required. Because messages are
encoded as cosets, a method for recovering i from L((1 + n)i mod ns+1) will be
required to recover messages during decryption. Damg̊ard and Jurik provide the
following algorithm for recovering i.

. i := 0

. for j := 1 to s do begin

. t1 := L(a mod nj+1)

. t2 := i

. for k := 2 to j do begin

. i := i− 1

. t2 := t2 ∗ i mod nj

. t1 := t1 − t2nk−1

k!
mod nj

. end

. i := t1

. end

The algorithm works by calculating i mod nj from

L((1 + n)i mod ns+1) =
ns∏

k=1

((
i

1

)
nk−1

)
mod ns

for successive values of j until i mod ns is recovered.

Cryptosystem 3.2.33. The Damg̊ard-Jurik Cryptosystem

Let n = pq for distinct odd primes p and q, and let G × H = Z∗
ns+1 where

H is isomorphic to Z∗
n. Set λ = lcm(p − 1, q − 1) and choose g = (1 + n)jx

mod ns+1 such that gcd(j, n) = 1 and x ∈ H. Then P = Zns, C = R = Z∗
ns+1, and

K = {(n, s, g, j, λ)} where n, s, g, j, λ are defined as above.

• Gen: Given a security parameter ε, Gen(ε) chooses two ε
2
-bit primes p and

q, then sets n = pq, λ = lcm(p− 1, q− 1), and g = (1 + n)jx mod ns+1 such
that gcd(n, j) = 1 and x is a random element of H. The public key is (n, s, g)
and the private key is (j, λ).

61

• Enc: Given a public key pk and a message m ∈ P, Enc(pk, m) chooses a
random r ∈ R and calculates the ciphertext

c = gmrns

mod ns+1.

• Dec: Given a private key sk and a ciphertext c ∈ C, Dec(sk, c) calculates

cλ mod ns+1 = (1 + n)mjλ mod ns

and
gλ mod ns+1 = (1 + n)jλ mod ns

and uses the algorithm for recovering k from L((1 + n)k mod ns+1) to calcu-
late mjλ and jλ. The message is calculated by

m =
mjλ

jλ
mod ns.

Although presented slightly differently, the decryption algorithm calculates

L(cλ mod ns+1)

L(gλ mod ns+1)
mod ns

as in the original Paillier cryptosystem. Note that

cλ mod ns+1 = (gmrns

)λ mod ns+1

= (gm)λ(rns

)λ mod ns+1

= (1 + n)mjλ(xrns

)λ mod ns+1

= (1 + n)mjλ mod ns+1,

due to the fact that (xrns
)λ ≡ 1 mod ns+1.

The security of the Damg̊ard-Jurik Cryptosystem follows from the security of
the Paillier cryptosystem.

Theorem 3.2.34. If Class[n] is hard for higher powers of n, then the Damg̊ard-
Jurik encryption function is not invertible by an adversary.

Proof. Recall Definition 3.1.12, the definition of Class[n, g]. If the problem is re-
defined over Z∗

ns+1 , then inverting the Damg̊ard-Jurik encryption function is, by
definition, solving the computational problem Class[n] over Z∗

ns+1 .

Similarly, the semantic security relies on the same assumption as the Paillier
cryptosystem.

Theorem 3.2.35. The Damg̊ard-Jurik cryptosystem is semantically secure if and
only if D-Class[n] is hard.

62

Proof. (Outline) Let cs be a ciphertext modulo ns+1. If s = 1 then the semantic
security of the Damg̊ard-Jurik cryptosystem follows from the security of the Paillier
cryptosystem. If an adversary can solve D-Class[n] with non-negligible probabil-
ity, then for s > 1 the adversary can reduce a ciphertext modulo n2 to obtain a
ciphertext from the basic Paillier cryptosystem. Thus, with non-negligible proba-
bility an adversary that can solve D-Class[n] can break the semantic security of the
Damg̊ard-Jurik cryptosystem. The other direction can be proved inductively using
the security of the Paillier cryptosystem when s = 1 as a starting point.

Damg̊ard and Jurik also provided a variant of their cryptosystem that allows
the block length to be decided at the time of encryption rather than as a fixed
parameter, a property referred to as length-flexible. The public key can also be
simplified by fixing g = 1 + n, with no impact on the security of the cryptosystem.

Cryptosystem 3.2.36. The Damg̊ard-Jurik Cryptosystem (Length-Flexible Vari-
ant)

Let n = pq for distinct odd primes p and q, and set λ = lcm(p− 1, q− 1). Then
P, C, and R are as in Cryptosystem 3.2.33, and K = {(n, λ)}.

• Gen: Given a security parameter ε, Gen(ε) chooses two ε
2
-bit primes p and

q, then sets n = pq and λ = lcm(p − 1, q − 1). The public key is n and the
private key is λ.

• Enc: Given a public key pk and a message m ∈ P, Enc(pk, m) chooses a block
size s such that m ∈ Zns and chooses a random r ∈ Z∗

ns+1, then calculates the
ciphertext

c = (1 + n)mrns

mod ns+1.

• Dec: Given a private key sk and a ciphertext c ∈ C, Dec(sk, c) chooses s such
that c ∈ Zns+1 and calculates

cλ mod ns+1 = (1 + n)m mod ns

and uses the algorithm for recovering k from L((1+n)k mod ns+1) to recover
m.

The security of the adjustable block length variant follows from the security of
the basic cryptosystem, although a complete proof of a similar variant, using a
different approach, has also been given by Damg̊ard and Jurik [41, 42]. This variant
modifies the cryptosystem in such a way that multiple users may use the same
public modulus, while retaining the homomorphic properties of the original Paillier
cryptosystem. This is accomplished by using a private key that does not rely on
the factorization of the modulus.

63

Cryptosystem 3.2.37. The Modified Length-Flexible Damg̊ard-Jurik Cryptosys-
tem

Let n = pq for distinct off primes p and q, where p = 2p′ +1 and q = 2q′ +1 for
distinct odd primes p′ and q′, and set m = p′q′. Let g be an element of the subgroup
of squares of Z∗

n and α be a random element of Zm. Then P = Z+, C = Z+ × Z+,
R = Zn, and K = {n, g, α, h = gα mod n} where n, g, and α are as defined.

• Gen: Given a security parameter ε, Gen(ε) chooses two distinct ε
4
-bit primes

p′ and q′ such that p = 2p′ + 1 and 2q′ + 1 are also prime, and sets m = pq.
Gen(ε) then chooses g ∈ Z∗

n and α ∈ Zm at random such that g is a square
in Z∗

n. The public key is (n, g, h) and the private key is α.

• Enc: Given a public key pk and a message M , Enc(pk, M) chooses s such
that M ∈ Zns and a random r ∈ R and calculates the ciphertext

c = (G, H) = (gr mod n, (hr mod n)ns

(1 + n)m mod ns+1).

• Dec: Given a private key sk and a ciphertext c = (G, H), Dec(sk, c) selects
s such that G, H ∈ Zns, then calculates

M ′ = (H(Gα mod n)−ns

)

= (hr mod n)ns

(1 + n)m mod ns+1(gαr mod n)−ns

= (1 + n)m mod ns+1.

and applies the algorithm presented earlier on M ′ to recover M .

Once an instance of the modified length-flexible variant is created, additional
instances can be generated using the same modulus by selecting α ∈ Zn and set-
ting h = gα. Although α should be selected uniformly from Zm, which requires
knowledge of m, and hence the factorization of the modulus, Damg̊ard and Jurik
note that the values of h produced by choosing α ∈ Zn will be computationally
indistinguishable from those produced by choosing α ∈ Zm.

The security of the modified length-flexible variant is summarized in the follow-
ing theorem.

Theorem 3.2.38. ([42], Theorem 1) Assuming the decisional composite residuos-
ity problem (Section 3.1.4)and decisional Diffie-Hellman problem (Section 3.1.6)
are hard, the modified length-flexible Damg̊ard-Jurik cryptosystem is semantically
secure.

Damg̊ard and Jurik also note that careful choice of parameters allows the security
of the cryptosystem to rely only on the decisional composite residuosity problem;
however, the proof relying on both assumptions is provided in [41].

The message expansion in the Damg̊ard-Jurik cryptosystems is s+1
s

, with mod-
ular arithmetic becoming slower as s grows. In the adjustable block length variant,

64

the person encrypting the message can choose a smaller value of s if the mes-
sage is small, thus making modular arithmetic more efficient when possible. The
Damg̊ard-Jurik cryptosystem is of additional interest, as it supports an efficient
threshold variant, such that a dealer can distribute the private key to a group of l
players such that at least t of them must cooperate in order to decrypt a message.
The threshold variant is presented in Chapter 4.

Homomorphic Properties

The Damg̊ard-Jurik cryptosystems inherit all the homomorphic properties of the
Paillier cryptosystem. Let c1 = gm1r1

n mod ns+1 and c2 = gm2r2
n mod ns+1.

Then
c1c2 mod ns+1 = gm1r1

ngm2r2
n = gm1+m2r1r2

n mod ns+1

is a valid encryption of m1 + m2,

c1g
k mod ns+1 = gm1r1

ngk = gm1+kr1
n mod ns+1

is a valid encryption of m1 + k, and

c1
k mod ns+1 = (gm1r1

n)k = gkm1(r1
k)n mod ns+1

is a valid encryption of km1. Subtraction of encrypted messages and constants can
be accomplished by computing c1c2

−1 mod ns+1 and c1g
−k mod ns+1 respectively.

Re-randomization of messages is possible such that if r′ is a uniformly random
element of R, then

c1y
′n mod ns+1 = gm1r1

nr′
n

= gm1(r1r
′)n mod ns+1

is a uniformly random valid encryption of m1.

3.2.12 The Boneh-Goh-Nissim Cryptosystem

All of the additively homomorphic cryptosystems considered this far gain their
homomorphic properties by encrypting messages “in the exponent”, such that the
product of two ciphertexts has the result of summing the two plaintext messages in
the exponent. This has the side effect of limiting homomorphic multiplication to
known constants. The Boneh-Goh-Nissim cryptosystem utilizes a bilinear pairing
to allow the computation of a single homomorphic multiplication of two ciphertexts,
while still retaining the additive homomorphic properties of earlier cryptosystems.

Recall the definition of a bilinear pairing from Section 3.1.7. If e is a bilinear
pairing, then, for a group element α,

e(αa, αb) = e(α, α)ab

65

by the bilinear property. If an additively homomorphic cryptosystem is defined over
a group that supports a bilinear pairing, then the bilinear property of the pairing
can be used to take the product of the exponent of the ciphertext, i.e., multiply
two messages together.

Boneh, Goh, and Nissim [14] observed this fact, and defined a Paillier-like cryp-
tosystem over an elliptic curve group G supporting a bilinear pairing to an isomor-
phic group G1, that computes the homomorphic multiplication of two encrypted
messages while preserving the additive homomorphic properties of the cryptosys-
tem. Thus, an unlimited number of homomorphic additions may be performed,
followed by a single multiplication, followed by an unlimited number of additions.

The method used by Boneh et al. to generate G and G1 is described in Section
3.1.7, and is based on the modified Weil pairing [73].

Cryptosystem 3.2.39. Boneh-Goh-Nissim (BGN) Cryptosystem

Let n = pq for distinct odd primes p and q, let G, G1 be two multiplicative
groups of order n with a bilinear pairing e : (G × G) → G1, let g be a random
generator of G, and let h be a random generator of the subgroup of G of order p.
Let T < q, then P = ZT , C = G, R = Zn, and K = {(n, p, q, T, G, G1, e, g, h)}
where (n, p, q, T, G, G1, e, g, h) are defined as above.

• Gen: Given a security parameter ε, Gen(ε) chooses two distinct ε
2
-bit primes

p, q, sets n = pq and selects a positive integer T < q. Using the method de-
scribed in Section 3.1.7, Gen(ε) then chooses two multiplicative groups G, G1

of order n, that support a bilinear pairing e : (G×G) → G1, as well as ran-
dom generators g, u ∈ G, and sets h = uq such that h is a generator of the
subgroup of order p. The public key is (n, g, h, G, G1, e), and the private key
is p.

• Enc: Given a message m ∈ P and a public key pk, Enc(pk, m) chooses a
random r ∈ R and calculates the ciphertext

c = gmhr mod n.

• Dec: Given a ciphertext c ∈ C and a private key sk, Dec(sk, c) calculates

c′ = cp = (gp)m mod n

and uses Pollard’s lambda method to take the discrete logarithm of c′ in base
gp.

During decryption, c′ is calculated as

c′ = cp mod n

= (gmhr)p mod n

= (gm)p mod n

= (gp)m mod n

66

due to the fact that hp ≡ 1 mod n. The message m is bounded by T , allowing it
to be recovered in time O(

√
T) using one of the “square-root” discrete algorithms

from Section 3.1.6, such as Pollard’s lambda method.

The security of the BGN cryptosystem is summarized in the following theorem.

Theorem 3.2.40. ([14], Theorem 3.1) Let n = pq for distinct odd primes p and q.
The BGN cryptosystem is semantically secure if deciding whether or not a random
element of G has order p is hard when p and q are unknown.

Boneh, Goh, and Nissim call the problem of deciding whether or not a random
element is a member of the subgroup of order p the subgroup decision problem, and
show that an attacker that can break the semantic security of the BGN cryptosys-
tem can solve a random instance of the subgroup decision problem.

Homomorphic Properties

Ciphertexts in the BGN cryptosystem are similar to the Paillier and Okamoto-
Uchiyama cryptosystems, and inherit the same homomorphic properties. Let c1 =
gm1hr1 mod n and c2 = gm2hr2 mod n. Then

c1c2 mod n = gm1hr1gm2hr2 = gm1+m2hr1+r2 mod n

is a valid encryption of m1 + m2,

c1g
k mod n = gm1hr1gk = gm1+khr1 mod n

is a valid encryption of m1 + k, and

c1
k mod n = (gm1hr1)k = gkm1hr1k mod n

is a valid encryption of km1. Subtraction of encrypted messages and constants can
be accomplished by computing c1c2

−1 mod n and c1g
−k mod n respectively.

Re-randomization of messages is possible such that if r′ is a uniformly random
element of R, then

c1h
r′ mod n = gm1hr1hr′ = gm1hr1+r′ mod n

is a uniformly random valid encryption of m1.

In addition to the usual additive homomorphic operations, the BGN cryptosys-
tem also allows a single homomorphic multiplication of plaintexts. Using the bi-
linear pairing e, set g1 = e(g, g) and h1 = e(g, h). The bilinear pairing is used to
map two ciphertexts in G to the ciphertext representing the product of the two
messages, in the isomorphic group G1, where g and h are replaced by g1 and h1

respectively. Recall that, because g generates G, it holds that h = gα for some α.

67

Given c1, c2, and a random r ∈ R, a ciphertext representing the product m1m2 can
be calculated by

e(c1, c2)h1
r = e(gm1hr1 , gm2hr2)h1

r

= e(gm1gαr1 , gm2gαr2)h1
r

= e(gm1+αr1 , gm2+αr2

)h1
r

= e(g, g)(m1+αr1)(m2+αr2)h1
r

= g1
m1m2+m1αr2+m2αr1+α2r1r2h1

r

= g1
m1m2h1

m1r2+m2r1+αr1r2+r

= g1
m1m2h1

r̄

where r̄ is a uniformly random element of R. By replacing g and h with g1 and h1

respectively, the other homomorphic operations are still possible on the resulting
ciphertext. Further multiplications are not possible as there is no pairing defined
from G1 to another isomorphic group.

3.2.13 Insecure Homomorphic Cryptosystems

For completeness, some proposed homomorphic cryptosystems that have been sub-
sequently been shown to be insecure are described.

Domingo-Ferrer has proposed two different privacy homomorphisms. The first
[44] is based on using a secret sharing scheme to split an encrypted message into
a vector of shares, which are then multiplied by secret values. To recover the mes-
sage, each component is multiplied by the inverse of the secret values and Chinese
remaindering is used to reconstruct the message. The corresponding cryptanalysis
is given by Cheon, Kim, and Nam [28]. Domingo-Ferrer’s second privacy homo-
morphism [45] is similar in structure to the first, and was subsequently broken by
Wagner [102], and Bao [6].

Grigoriev and Ponomarenko [63] have proposed a homomorphic cryptosystem
that maps an arbitrary finite group, given in terms of generators and relations,
to a subset of the special linear group on 2 × 2 matrices. Choi [32], and Choi,
Blackburn, and Wild [33] have demonstrated that the private key in this system
can be recovered from the public key, thus rendering it insecure.

3.3 A Summary of Homomorphic Cryptosystems

Although the cryptosystems presented in this chapter have been defined over a
variety of different groups, for comparison purposes the following notation will be
adopted:

68

• n - The size of the ciphertext space; such that log2 n ≥ 1024 and the factoring
problem on n is hard.

• m - The size of the message space.

• k - Soundness parameter; chosen such that 2−k is an acceptable error proba-
bility.

• s - Exponent used in Damg̊ard-Jurik and variants.

• r - A bound on message size to allow for efficient discrete logarithm compu-
tation on exponents bounded by r.

• �, � - Homomorphic multiplication and addition on ciphertexts. �c and �c

will be used to denote multiplication and addition by a known constant. �
will be used to denote homomorphic subtraction.

69

Cryptosystem
Security

Assumption
Homomorphic
Operations

Message
Expansion

RSA RSA Problem � 1

Goldwasser-Micali
Quadratic
Residuosity

Problem
XOR n

ElGamal CDH / DDH � 2

Benaloh
Weak r’th Root

Problem
�, �, �c

n
r

Naccache-Stern
Factoring / DLP /
Weak r’th Residue

Problem

�, �, �c ≥ 4

Sander-Young-Yung
Quadratic
Residuosity

Problem
AND kn

Okamoto-Uchiyama
Factoring /

p-subgroup Problem
�, �, �c 3

Modified
Okamoto-Uchiyama

Factoring /
p-subgroup Problem

�, �, �c 3

Improved
Okamoto-Uchiyama

Factoring /
p-subgroup Problem

�, �, �c 3

Paillier
Class[n] /
D-Class[n]

�, �, �c 2

Fast Decryption
Paillier

PDL[n] / D-PDL[n] �, �, �c 2

Small Exponent
Paillier

Small e’th Root
Problem

�, �, �c 2

Modified Paillier

Class[n] /
D-Class[n] on

restricted generators
�, �, �c 2

Schmidt-Samoa-
Takagi

Factoring Problem �, �, �c 3

Elliptic Curve
Paillier

Subgroup Decision
Problem

�, �, �c 2

Damg̊ard-Jurik
Class[ns] /
D-Class[ns]

�, �, �c
s+1

s

Length Flexible
Damg̊ard-Jurik

Class[ns] /
D-Class[ns]

�, �, �c
s+1

s

Modified Length
Damg̊ard-Jurik

Class[ns] /
D-Class[ns]

�, �, �c
s+1

s

Boneh-Goh-Nissim
Subgroup Decision

Problem

�, �, �c

� (once)
n
r

Table 3.1: A summary of homomorphic cryptosystems.

70

Chapter 4

Threshold Homomorphic
Cryptography

In many situations it is desirable to distribute the decryption process amongst a
number of parties such that a message can only be decrypted if a certain qual-
ified subset of these parties participate in the decryption process. For example,
consider a cryptographic election protocol where the homomorphic properties of a
cryptosystem are used to anonymously calculate the encrypted tally for each can-
didate. Granting knowledge of the decryption key to any single election official
would allow that official to decrypt any ballot in the system, thus learning how an
individual voter cast their vote. In order to combat this problem, the decryption
key could distributed amongst several election officials, allowing a message to be
decrypted if and only if some large enough subset of election officials agree to do
so. A cryptosystem that supports such a process is called a threshold cryptosystem.

Definition 4.0.1. A public-key cryptosystem is said to be a (t, l)-threshold cryp-
tosystem if a dealer can create an instance of the cryptosystem and distribute l
secret shares amongst l parties such that any subset of t or more parties can co-
operate to decrypt a message, while any subset of fewer than t players can learn
nothing about an encrypted message in polynomial time.

A more general problem than distributing the decryption process is the problem
of distributing a single secret value amongst a set of participants such that only
a qualified subset of participants can reconstruct the secret. Shamir [92] proposed
one of the first threshold secret sharing schemes, based on polynomial interpolation
over finite fields, where, as in Definition 4.0.1, a qualified subset of participants is
any subset of size t or larger. Shamir’s approach forms the basis for many threshold
cryptosystems. At the same time, Blakley [12] independently proposed a different
secret sharing scheme based on the intersection of l-dimensional hyperplanes; how-
ever, in general Shamir’s system is more efficient. Shamir’s scheme is based on the
fact that given t distinct points in a field, there is a unique polynomial of degree
t − 1 that passes through those points, but given k < t points, there are many

71

polynomials of degree t that pass through those points. Blakley’s scheme is based
off the similar idea that t distinct t-dimensional hyperplanes intersect at a unique
point, but k < t hyperplanes intersect at many points.

Cryptosystem 4.0.2. The Shamir Secret Sharing Scheme

Let D denote the dealer, let P = {P1, P2, . . . , Pl} be the set of participants, and
let t < l be the number of players required to reconstruct the secret.

• Initialization: Let p > l+1 be a prime. Then D chooses distinct labels xi ∈ Z∗
p

for each participant Pi and makes each xi public.

• Share Distribution: Given a secret s ∈ Zp, the dealer uniformly chooses t− 1
random values from Zp, denoted a1, . . . , at−1, and constructs the polynomial
a(x) = s+

∑t−1
i=1 aix

i. The value a(xi) is sent to Pi as that participant’s share
of the secret.

• Share Reconstruction: Let Pi1 , . . . , Pit be a subset of t participants wishing to
reconstruct the secret. The participants collectively use Lagrange interpolation
to compute

a(x) =
t∑

j=1

yj

t∏
k=1
k 6=j

x− xik

xij − xik

 mod p

and recover s = a(0).

If an adversary manages to learn up to t−1 shares, then the adversary gains no
information about the secret s, as for any possible value of the missing shares, there
is a polynomial that passes through these points that also passes through s. Due
to the fact that a(x) is a random polynomial, each of these polynomials is possible
with equal probability.

Although Shamir secret sharing could be used to distribute the private key
of a public key cryptosystem, such a straightforward application is not an ideal
method of building a threshold cryptosystem. Once the private key has been re-
constructed, any participant has knowledge of the private key and can decrypt any
future messages without relying on others. A trivial workaround is to require that
each participant submit their secret share to a trusted third party, who then re-
constructs the private key, decrypts the message, and sends the result back to the
participants. Instead of relying on a trusted party for decryption, it is possible to
use Shamir secret sharing as a part of a more complicated protocol that allows the
participants to cooperate to decrypt a message, without revealing the private key.

An additional tool is also useful when constructing threshold cryptosystems.
If an active adversary has corrupted one or more of the participants, then the
adversary is free to send maliciously crafted messages to other participants when
combining shares. Thus, during the share combination phase, each player can be

72

required to post not only their share of the secret, but also a proof that shows
that their share is the same one received by the dealer. This proof is done in zero-
knowledge, such that no other participant can deduce any knowledge of the secret
share, except that it is valid.

Definition 4.0.3. A zero-knowledge proof is a protocol that allows one party (the
Prover) to convince another party (the Verifier) that a statement is true, such that
the following properties are satisfied:

• Completeness: If the statement is true, then an honest verifier will accept the
statement as true.

• Soundness: If the statement is false, then an honest verifier will not accept
the statement as true, except with negligible probability.

• Zero-Knowledge: Even if the Verifier cheats, the Verifier can only conclude
that the Prover’s statement is true or false, and he does not learn any addi-
tional information.

If the protocol requires multiple messages to be exchanged by the Prover and Verifier,
then the proof is said to be interactive. If the protocol requires only a single message
from the Prover, then the protocol is said to be non-interactive.

If each participant proves in zero-knowledge that their posted share is the same
share received by the dealer, then the participants can conclude that the recon-
structed secret is, in fact, the original secret. A similar notion is the idea of veri-
fiable secret sharing, introduced by Chor, Goldwasser, Micali, and Awerbuch [34],
where the dealer potentially acts maliciously. In the verifiable setting, even if the
dealer is malicious, if the protocol completes then there exists a well-defined secret
that the players are able to reconstruct.

4.1 Threshold RSA Signatures

Although not the first threshold RSA variant, Shoup [95] has proposed a threshold
version of the RSA signature scheme with several desirable properties:

• Robust and unforgeable (defined later in this section);

• non-interactive share generation and verification;

• the size of individual shares does not grow with the number of participants;

• has a full security proof.

73

Shoup’s threshold variant is also of interest because it essentially computes a mod-
ular exponentiation, where the exponent is shared using Shamir secret sharing,
without revealing the value of the exponent. This allows Shoup’s variant to be
used as a general tool for performing “secret modular exponentiations” among a
set of participants.

Recall Cryptosystem 1.3.3, the RSA cryptosystem. If n = pq is the product of
two distinct primes, then the public encryption key e and the private decryption
key d are selected such that ed ≡ 1 mod φ(n). Encrypting a message m ∈ Zn is
accomplished by calculating c = me mod n, and recovering the message is accom-
plished by calculating m = cd mod n. Because e and d are modular inverses of
each other, a message that has been “encrypted” with the private key d, can be
“decrypted” with the public key e. Thus, if Bob wishes to prove he is the author
of some message, he can use his private key to encrypt the message, obtaining a
signature, and posts this signature alongside the message when he sends it to Alice.
To verify that Bob wrote the message, Alice uses Bob’s public key to decrypt the
signature, and verifies that two messages are equal. In practice, Bob would not
sign the entire message m, but rather H(m), where H is a publicly known hash
function.

In general, a signature scheme should be unforgeable, meaning that an adversary
should not be able to create a valid signature for a message, either random or
chosen, without knowledge of the private key. Note that simple RSA signature
scheme without hashing, presented earlier, is not unforgeable. An adversary can
choose an arbitrary signature σ and calculate a message for which σ is a valid
signature by m = σe mod n. Additionally, if the generation or verification of a
signature is distributed amongst a group, then the protocol should be robust as
well, meaning that participants under control of the adversary should not hinder
uncorrupted participants from completing the protocol.

Cryptosystem 4.1.1. Shoup’s (t, l)-Threshold RSA Signature Scheme

Let D denote the dealer, let P = {P1, P2, . . . , Pl} be the set of participants, and
let t < l be the number of players required to reconstruct the secret.

• Initialization: D chooses distinct primes p′ and q′ such that p = 2p′ + 1 and
q = 2q′ + 1 are both primes, and sets n = pq and m = p′q′. D then chooses
the public exponent e > l and calculates d such that de ≡ 1 mod m. The
public label for participant Pi is i. Next, D sets a0 = d, sets ai to a uniformly
random value in {0, . . . ,m − 1} for 1 ≤ i < t, and f(x) =

∑t−1
i=0 aix

i. The
value si = f(i) mod m is sent to Pi as that participant’s share of the secret.
In addition to secret shares, the dealer chooses a random square v ∈ Z∗

n and
makes v along with vi = vsi public for 1 ≤ i ≤ n.

• Signature Share Generation: Let M be the message, let x = H(M) ∈ Z∗
n

for a hash function H, and let ∆ = l!. Participant Pi posts the value xi =
x2∆si mod n as their share of the signature, along with a non-interactive
zero-knowledge proof that logx4∆ x2

i = logv vi.

74

• Signature Construction: Let S = {i1, . . . , it} be a subset of participants of size
k wishing to generate the signature. Set

λi,j = ∆
∏

j′ /∈S−{j}

i− j′

j − j′
,

then, if each participant in S posts xij = x2∆sij , along with the appropriate
zero-knowledge proof, then each participant can verify the proofs and, if all
are correct, calculate

w = x
2λ0,i1
i1

· · ·x2λ0,it
it

.

Thus, each participant can compute wd = x4∆2d, and, using the extended
Euclidean algorithm to calculate integers a and b such that da + 4∆2b = 1,
can compute wbxa = xd mod n as a signature on x.

Note that Shoup defines e, d modulo m, rather than φ(n) = 4m. This does not
affect the correctness of the scheme, as Z∗

n
∼= Zφ(n)

∼= Z2 ×Z2 ×Zm, and Qn
∼= Zm,

where Qn is the subgroup of squares of Z∗
n. Thus, choosing e, d modulo m simply

restricts e, d to be elements of Qn, which is a proper subgroup of Z∗
n.

Shoup’s threshold signature scheme uses Shamir secret sharing as a building
block, but has extended it such that the participants are able to collectively com-
pute xe mod n instead of e itself. During the initialization phase, shares are
created as points on a polynomial, and during reconstruction, they are interpo-
lated in the exponent using Lagrange interpolation. Additionally, during the ini-
tialization phase, each participant is issued a verification key vi = vsi , which is
made public. This verification key allows for the construction of a non-interactive
zero-knowledge proof that a posted signature share is valid. During the signa-
ture construction phase, each participant in S posts xij = x2∆sij . Note that

logx4∆ x2
ij

= logx4∆ x4∆sij = sij , and similarly, logv vij = logv vsij . Thus, if a partic-

ipant can show that logx4∆ x2
i = logv vi, then the other participants can conclude

that the posted value of xij is correct.

Let L(n) be the bit-length of n, let H ′ be a hash function that outputs an
L1-bit integer, and let Qn ⊆ Z∗

n be the subset of squares of Z∗
n. A non-interactive

protocol can be built using H ′ that lets the Prover (i.e. a given participant Pij)
demonstrate to a Verifier (i.e. any other participant) that the posted signature
share xij has been constructed correctly. The Prover first chooses a random integer

r ∈ {0, 1, . . . , 2L(n)+L1 − 1} and computes the following values:

v′ = vr

x′ = x4∆r

c = H ′(v, x4∆, x2
ij
, v′, x′)

z = sijc + r.

The non-interactive proof is the tuple (z, c), from which the Verifier can check that

c = H ′(v, x4∆, x2
ij
, vzv−c

ij
, x4∆zx−2c

ij
).

75

If the two values are equal, the Verifier accepts the proof. Note that

vzv−c
ij

= vsij
c+rv−csij

= vr

= v′

and

x4∆zx−2c
ij

= x4c∆sij
+4∆rx−4c∆sij

= x4∆r

= x′.

Thus, a Verifier can verify the proof using only publicly available information and
the random value z. If H ′ is a cryptographically secure hash function, then an
adversary cannot fake a proof. This zero-knowledge proof is based on a proof
given by Chaum and Pedersen [27]; however it has been modified from its original
interactive version by using the hash function H ′ instead of random challenges.

The correctness of signature construction follows from the fact that

∆f(i) ≡
∑
j∈S

λi,jf(j) mod m.

During reconstruction, w is calculated as

w = x
2λ0,i1
i1

· · ·x2λ0,it
ik

= x4∆si1
λ0,i1 · · ·x4∆2sit

= x4∆(λ0,i1
si1

+...+λ0,itsit)

= x4∆2f(0)

= x4∆2d.

Shoup provides a complete proof of security in [96], which is summarized in the
following theorem.

Theorem 4.1.2. ([96], Theorem 1) In the random oracle model, for H ′, the Shamir
(t, l)-threshold signature scheme is secure (robust and unforgeable), assuming the
standard RSA signature scheme is secure.

The proof is not presented here; however, a proof for a similar scheme, based
on Shoup’s proof, is provided in Section 4.6.

Many of the operations in Shoup’s scheme are performed in Qn, the subgroup
of squares. Because a participant cannot be sure that a received message has not
been maliciously constructed, received messages are squared for a second time to be
certain the resulting value is an element of Qn. The factor ∆ is introduced to avoid
the computation of inverses during interpolation. When calculating λi,j, (j − j′) is
always a factor of ∆ = l!.

76

4.2 Proving the Semantic Security of a Threshold

Cryptosystem

Fouque, Poupard, and Stern [48] propose the following game to prove the semantic
security of a threshold cryptosystem:

1. The adversary selects t − 1 participants to corrupt. The adversary controls
the actions of these participants during the decryption steps.

2. The dealer runs the share initialization step and sends each participant their
secret share, then makes the public parameters of the cryptosystem public.

3. The adversary chooses a plaintext message M and queries a partial decryption
oracle who generates a random encryption of M , and then response with l
valid decryption shares (one for each participant), along with the correspond-
ing proofs of correctness. The adversary may repeat this step a polynomially-
bounded number of times.

4. The adversary chooses two messages M0 and M1 and sends them to an en-
cryption oracle, who randomly chooses a bit b and replies with an encryption
of MB.

5. The adversary may repeat Step 3 a polynomially-bounded number of times.

6. The adversary responds with a bit b′, and wins the game if b′ = b.

A threshold cryptosystem is said to be semantically secure if an adversary can only
win the game with probability negligibly greater than 1

2
.

Let C be a semantically secure cryptosystem, let Ct be the threshold version of
C, and assume, for the sake of contradiction, that there exists a polynomial time
adversary A that can break the semantic security of Ct. By construction, there
does not exists a polynomial time adversary that can break the semantic security
of C (i.e., win the IND-CCA1 game with non-negligible advantage); therefore, if
an attacker is able to utilize access to A to break the semantic security of C,
the assumption that C is semantically secure has been contradicted. Thus, the
assumption that A exists must be false.

Recall the IND-CCA1 game (Definition 1.3.6). After being given access to a
decryption oracle, the attacker chooses two messages, M0 and M1, and receives
an encryption of Mb, from which the value of b must be determined. In order to
utilizeA to win the IND-CCA1 game, the attacker must provideA with appropriate
inputs (public parameters and a subset of compromised keys) during step 2. During
steps 3 and 5, the attacker acts as the partial decryption oracle, replying to any
requests issued by A. During step 4, A outputs two messages, M0 and M1, which
the attacker submits in the IND-CCA1 game, thus learning c as an encryption of

77

Mb. The attacker forwards c to A, who then responds with b, which the attacker
submits as his response in the IND-CCA1 game.

In order to prove that the semantic security of Ct is implied by the semantic
security of C, it is sufficient to show that, given the public parameters of C, the
attacker can simulate all the data expected by A in steps 2, 3, and 5 such that
the simulated data is indistinguishable from real data. If the two distributions are
indistinguishable, then A can be used to break the semantic security of C, thus
contradicting the fact that C is semantically secure. Therefore, if all data in steps
2, 3, and 5 are simulatable with indistinguishable distributions, then an adversary
that breaks the semantic security of A does not exist.

4.3 A Threshold Paillier Cryptosystem

Shoup’s threshold signature scheme allows a group of participants to generate a
signature by collectively raising a message x to a secret exponent d without re-
vealing the value of d. Recall that decryption in the Paillier cryptosystem can be
modified through the appropriate choice of parameters to essentially be a modular
exponentiation. Fouque, Poupard, and Stern [48] have extended Shoup’s threshold
signature scheme to create a threshold variant of the Paillier cryptosystem.

Cryptosystem 4.3.1. The (t,l)-Threshold Paillier Cryptosystem Let p′ and q′ be
two integers such that p = 2p′ + 1 and q = 2q′ + 1 are also prime, and such
that m = p′q′, n = pq, and gcd(n, φ(n)) = 1. Let a, b, β be random elements
of Z∗

n and set g = (1 + n)abn mod n2. Then P = Zn, C = Z∗
n2, R = Z∗

n, and
K = {(p, q, m, n, a, b, β, g)} where p, q, m, n, a, b, β, g are as defined. Let D denote
the dealer, and P = {P1, . . . , Pl} be the set of participants.

• Gen: Given a security parameter ε, Gen(ε) chooses two distinct odd integers
p′ and q′, setting m = p′q′, such that p = 2p′+1 and q = 2q′+1 are also prime,
and gcd(n, φ(n)) = 1 where n = pq. Gen then chooses a, b, β at random from
Z∗

n and sets g = (1 + n)abn. The public key is (n, g, amβ mod n), and the
private key is βm.

• Share Initialization: D creates an instance of the cryptosystem using Gen,
and uses Shamir secret sharing to distribute the secret key, βm, to the mem-
bers of P by setting a0 = βm and choosing ai at random from {0, . . . , nm−1}
for i = 1, . . . t− 1 such that f(x) =

∑t−1
i=1 aix

i. The share si = f(i) mod nm
is sent to Pi. D then chooses a random v from the subgroup of squares of
Zn2

∗ and makes v∆si public for i = 1, . . . , n, where ∆ = l!.

• Enc: Given a message M and a public key pk, Enc(pk, M) chooses a random
r ∈ R and computes the ciphertext

c = gMrn mod n2.

78

• Decryption Share Generation: Each participant Pi participating in decryption
calculates and makes public the partial decryption share ci = c2∆si mod n2,
along with a zero-knowledge proof demonstrating that logc4∆ ci = logv∆ vi.

• Decryption Share Reconstruction: Let S = {i1, . . . , it} be the labels of a set
of t participants who have posted decryption shares with valid proofs. The
message can be recovered by computing

M = L

(∏
j∈S

c
2λ0,j

ij
mod n2

)
1

4∆2amβ
mod n

where L(u) = u−1
n

, and

λi,j = ∆
∏

j′∈S−{j}

i− j′

j − j′
.

In the original Paillier cryptosystem, the generator g is selected such that the
function f(M, y) = gMyn mod n2 is a bijection from Zn × Z∗

n to Z∗
n2 , which holds

when gcd(L(gλ mod n2), n) = 1. In the threshold variant, g is selected of the form
(1 + n)a × bn, which satisfies gcd(L(gλ mod n2), n) = 1 due to the fact that

gλ mod n2 = ((1 + n)a × bn)λ mod n2

= (1 + n)λabλn mod n2

= (1 + n)λa mod n2

= (1 + λan) mod n2.

As in Shoup’s threshold RSA scheme, the shares are recombined in the exponent,
where ∏

j∈S

c
2λ0,j

ij
mod n2 = c4∆2mβ mod n2

= (gMrn)4∆2mβ mod n2

= g4∆2mβMr4∆2mβn mod n2

= g4∆2mβM mod n2

= (1 + n)4∆2zmβMb4∆2mβMn mod n2

= 1 + 4∆2amβMn

where the y and b terms vanish due to the fact that φ(n2) = nφ(n) = 4nm. Because
amβ is part of the public key, the message can be recovered by applying the function
L(u) = u−1

n
and multiplying by (4∆2amβ)−1.

Fouque, Poupard, and Stern provide a proof of security for their threshold vari-
ant of the Paillier cryptosystem, based on Shoup’s proof of security for threshold
RSA, which is summarized in the following theorem.

79

Theorem 4.3.2. ([48], Theorem 1) If the decisional composite residuosity problem
is hard (see Section 3.1.4), then the threshold version of the Paillier cryptosystem
is secure against active non-adaptive adversaries in the random oracle model.

The proof is not presented here; however, a full proof for a similar threshold
cryptosystem, also based on Shoup’s threshold RSA scheme, is given in Section 4.6.

4.4 Threshold Paillier/Damg̊ard-Jurik Cryptosys-

tems

In addition to generalizing Paillier’s cryptosystem to higher powers of n (see Section
3.2.11), Damg̊ard and Jurik [40] provided a threshold variant of their cryptosystem
using the same approach as Shoup, also presented later with Nielson [39]. Their
approach is similar to Fouque, Poupard, and Stern’s threshold variant of the Pail-
lier cryptosystem, although there are a few key differences; namely, Damg̊ard and
Jurik’s approach works for any modulus ns, rather than just n2, and does not rely
on additional random values during key generation..

Cryptosystem 4.4.1. The (t, l)-threshold Damg̊ard-Jurik Cryptosystem

Assume t < l
2
. Let p′ and q′ be two integers such that p = 2p′+1 and q = 2q′+1

are also prime, and set m = p′q′ and n = pq. Let s > 0 such that the plaintext space
is P = Zns, the ciphertext space is Zns+1, and R = Zns+1. Let d be an integer such
that d ≡ 0 mod m and d ≡ 1 mod ns, and set g = 1 + n. Then K = {n, s, d, g}
where n, s, d, and g are as defined. Let D denote the dealer, and P = {P1, . . . , Pl}
be the set of participants.

• Gen: Given a security parameter ε, and additional parameter s > 0, Gen(ε, s)
chooses two distinct odd integers p′ and q′ such that p = 2p′+1 and q = 2q′+1
are also prime, and sets m = p′q′ and n = pq. Gen(ε, s) then chooses d such
that d ≡ 0 mod m and d ≡ 1 mod ns, and sets g = 1 + n. The public key is
(n, g, s) and the private key is d.

• Share Initialization: D creates an instance of the cryptosystem using Gen,
and uses Shamir secret sharing to distribute the secret key d by setting a0 = d,
choosing at random ai ∈ {0, . . . , nsm − 1} for i = 1, . . . t − 1, and setting
f(x) =

∑t−1
i=0 aix

i mod nsm. The share si = f(i) mod nsm is sent to Pi as
that player’s share. D then chooses a random v from the subgroup of squares
of Zns+1

∗ and makes v public along with v∆si for i = 1, . . . , l, where ∆ = l!.

• Enc: Given a message M and a public key pk, Enc(pk, M) chooses a random
r ∈ R and calculates the ciphertext as

c = gMrns

mod ns+1.

80

• Decryption Share Generation: Each participant Pi participating in decryption
calculates and makes public the partial decryption share ci = c2∆si mod ns+1,
along with a zero-knowledge proof demonstrating that logc4∆ ci = logv∆ vi.

• Decryption Share Reconstruction: Let S = {i1, . . . , it} be the labels of a set
of t participants who have posted decryption shares with valid proofs. The
message can be recovered by computing

c′ =
∏
j∈S

c
2λ0,j

ij
mod ns+1

where

λi,j = ∆
∏

j′∈S−{j}

i− j′

j − j′

such that c′ = c4∆2d. Each participant then applies the algorithm in Section
3.2.11, to learn the message M ′ = 4∆2M , and calculates the message by
computing

M = M ′(4∆2)−1 mod ns.

As in the threshold Paillier cryptosystem, during share reconstruction the par-
ticipants jointly compute c4∆2d, where d is the secret value shared among the par-
ticipants. Because g = 1 + n, each participant learns c4∆2d = (1 + n)4∆2dM , and
can apply the decryption algorithm of the original Damg̊ard-Jurik cryptosystem to
retrieve the message M ′ = 4∆2M . Finally, because 4∆2 is a public value, each par-
ticipant can recover the original message by calculating M = M ′(4∆2)−1 mod ns.

The security of the threshold Damg̊ard-Jurik cryptosystem is summarized in
the following theorem.

Theorem 4.4.2. ([40], Theorem 2) Assume the random oracle model and a static
adversary that corrupts up to t − 1 players from the beginning. Then, given any
ciphertext, the decryption protocol outputs the correct plaintext, except with negli-
gible probability. Given an oracle that given a ciphertext returns the corresponding
plaintext, the adversary’s view of the decryption protocol can be efficiently simulated
with a statistically indistinguishable distribution.

The random oracle model is required to simulate the hash function required
during the zero-knowledge proof that a posted share is correct. As with the pre-
sentation of Shoup’s threshold RSA signature scheme and the threshold Paillier
cryptosystem, a formal proof of security is not provided here; however, a full proof
for a similar system, also based on Shoup’s work, is provided in the next section.
A full proof for the system was not given in [40], although an overview of a proof
is given in [39].

Recall that s is included as part of the public key, although messages encrypted
using a smaller value 0 < s′ < s will still decrypt correctly, as d will still satisfy

81

d ≡ 0 mod m and d ≡ 1 mod ns′ . Damg̊ard and Jurik note that there exists a
method for computing a new temporary d′ that will work for s′ > s; however, it
is an interactive process and must be performed once for every value of s used.
In order to eliminate this additional protocol, Damg̊ard and Jurik have proposed
a threshold variant of their modified length-flexible cryptosystem [42], which was
presented as Cryptosystem 3.2.37.

Cryptosystem 4.4.3. The (t, l)-threshold Modified Length-Flexible Damg̊ard-Jurik
Cryptosystem

Let p′, q′, p, q, n, m, g, h,P , C,R,K be as in Cryptosystem 3.2.37, let D denote
the dealer, P = {P1, . . . , Pl} be the set of participants, and assume that t ≥ l

2
.

• Gen: Given security parameter ε, D creates an instance of Cryptosystem
3.2.37 with public key (n, g, h), and private key α.

• Share Initialization: D uses Shamir secret sharing to distribute the secret key
α by setting a0 = α, choosing at random ai ∈ Zm for i = 1, . . . t − 1, and
setting f(x) =

∑t−1
i=0 aix

i mod nsm. The share αi = f(i) mod m is sent to
Pi as that player’s share. D then makes verification keys hi = h∆αi public for
i = 1, . . . , l, where ∆ = l!.

• Enc: Given a public key pk and a message M , Enc(pk, M) chooses s such
that M ∈ Zns, a random r ∈ R, and calculates the ciphertext

c = (G, H) = (gr mod n, (h4∆2r mod n)ns

(1 + n)M mod ns+1).

• Decryption Share Generation: Given a ciphertext c = (G, H), each participant
Pi participating in decryption calculates and makes public the partial decryp-
tion share Gi = G2∆αi mod n, along with a zero-knowledge proof demonstrat-
ing that logg hi = logG4∆ Gi

2.

• Decryption Share Reconstruction: Let S = {i1, . . . , it} be the labels of a set
of t participants who have posted decryption shares with valid proofs. The
message can be recovered by computing

G′ =
∏
j∈S

G
2λ0,j

ij
mod n = h4∆2α mod n

where

λi,j = ∆
∏

j′∈S−{j}

i− j′

j − j′
.

Each participant can choose s such that G, H ∈ Zns and then calculate

H ′ = HG′−ns

= (1 + n)M mod ns+1.

The message is then recovered using the algorithm in Section 3.2.11.

82

Damg̊ard and Jurik also provide a different variant of their modified threshold
system that supports some useful zero-knowledge proofs. The modifications center
around ensuring that all computation takes place in the subgroup of squares of Zn.
The encryption function is changed such that

c = (G, H) = ((−1)b0gr mod n, (−1)b1(h4∆2r mod n)ns

(1 + n)M mod ns+1)

where b0, b1 are random bits. Decryption becomes

H ′ = H2G′−2ns

= (1 + n)2M mod ns+1

and the message can be recovered by applying the algorithm in Section 3.2.11 and
dividing by 2.

4.5 A Threshold ElGamal Cryptosystem

Cramer, Gennaro, and Schoenmakers [37] have given a construction of a thresh-
old ElGamal cryptosystem based on similar approach to Shoup’s threshold RSA
signature scheme. The private key is distributed using Shamir secret sharing, and
the interactive version of Chaum and Pederson’s proof of knowledge of a discrete
logarithm [27].

Cryptosystem 4.5.1. The (t,l)-threshold ElGamal Cryptosystem

Let g ∈ G be a generator of a cyclic group of order q such that the CDH and
DDH problems are hard in G. Let P = G, C = G×G, and K = {(q, g, x, h) : h ≡ gx

mod q}, where q, g are as above. Let D denote the dealer, P = {P1, . . . , Pl} be the
set of participants.

• Gen: Give security parameter ε, D creates an instance of Cryptosystem 3.2.3
with public key (G, q, g, h), and private key x.

• Share Initialization: D uses Shamir secret sharing to distribute the secret key
x by setting a0 = x, choosing at random ai ∈ Zq for i = 1, . . . t − 1, and
setting f(y) =

∑t−1
i=0 aiy

i mod q. The share xi = f(i) mod q is sent to Pi

as that player’s share. D then calculates and makes public the value hj = gxj

for each participant.

• Enc: Given a public key pk = (G, q, g, h) and a message m ∈ P, Enc(pk, m)
chooses a random y ∈ Zq and returns the ciphertext (c1, c2) where

c1 = gy mod q

and
c2 = m · hy mod q.

83

• Decryption Share Generation: Given a ciphertext c = (c1, c2), each participant
Pi participant in decryption posts

cj = ci
xi

and participates in the protocol of Chaum and Pederson [27] with each other
participant to verify that each share is constructed correctly; that is, proves in
zero-knowledge that logg hj = logx wj.

• Decryption Share Reconstruction: Let S = {i1, . . . , it} be the labels of a set
of t participants who have posted decryption shares with valid proofs. The
message is recovered by computing

m =
c2∏

i∈S w
λS,j

j

where

λS,j =
∏

i∈S−{j}

i

i− j
.

The (t, l)-threshold ElGamal cryptosystem is slightly simpler than threshold
cryptosystems based on Shoup’s approach. The underlying idea of distributing
shares using Shamir secret sharing, providing zero-knowledge proofs of that shares
are constructed correctly, and performing interpolation in the exponent without
revealing the secret are common to both systems, but Shoup’s approach is suited
to groups whose order is the product of two distinct prime powers p, q of the form
p = 2p′ + 1 and q = 2q′ + 1 for primes p′ and q′. Shoup’s approach allows for the
construction of simple simulation-based proofs of security, as described in Section
4.2 and demonstrated in Section 4.6. This is due to the fact that Shoup restricts
most parameters to the subgroup of squares, allowing for all received values to
be squared, thus ensuring that arithmetic is confined to the subgroup of squares.
Uniformly random elements of the subgroup of squares can also be simulated by
an adversary using only public knowledge. The proof of security given in the next
section demonstrates these concepts.

4.6 A New Threshold Boneh-Goh-Nissim Cryp-

tosystem

In the conclusion of [48], Fouque, Poupard, and Stern leave the open problem
of creating threshold variants of other Paillier-like cryptosystems. At the time
the problem was posed, the Boneh-Goh-Nissim cryptosystem had not yet been
discovered. In this section, the first construction of a threshold variant of the
BGN cryptosystem is given, with a complete proof of security that builds off the
approach of Shoup’s original threshold RSA signature scheme, using the security
model defined by Fouque, Poupard, and Stern.

84

The Boneh-Goh-Nissim (BGN) cryptosystem (see Section 3.2.12) is very sim-
ilar to the Paillier cryptosystem; however, it sacrifices efficient decryption for the
ability to perform a single homomorphic multiplication, in addition to the usual
homomorphic addition. Because the structure of the BGN cryptosystem is very
similar to the Paillier cryptosystem, it is possible to use Shoup’s approach to define
a threshold variant of BGN in the same way that Shoup’s method was used to
create threshold variants of the Paillier and Damg̊ard-Jurik cryptosystems.

The threshold version of BGN will follow the same structure as the previously
presented threshold systems. Each participant will receive a share of the secret
key si, and a verification key vi = v∆si is made public for each participant. In the
previous systems, a non-interactive zero-knowledge proof of knowledge is posted
along with each decryption share to demonstrate that the decryption share is
constructed appropriately. The additional group structure available in the BGN
cryptosystem allows this proof to be greatly simplified. Recall that the BGN cryp-
tosystem is defined over a group with a bilinear pairing e, with the property that
e(xa, yb) = e(x, y)ab for any two group elements x and y. When a participant
posts the decryption share ci = c2∆si , no additional information is required to
prove that ci is constructed appropriately. Any other participant can verify that
e(v, ci) = e(vi

2, c), accepting the decryption share as valid if the two values are
equal. This works due to the fact that

e(v, ci) = e(v, c2∆si)

= e(v, c)2∆si

= e(v2∆si , c)

= e(vi
2, c).

Thus, verifying shares in the threshold BGN cryptosystem requires less work than
verifying shares in the threshold Paillier variants.

Cryptosystem 4.6.1. The (t, l)-threshold Boneh-Goh-Nissim Cryptosystem

Let p′ and q′ be two integers such that p = 2p′+1 and q = 2q′+1 are also prime,
and set m = p′q′ and n = pq. Let G, G1 be two multiplicative groups of order n with
a bilinear pairing e : G×G → G1, and let g be a random generator of G and h be a
random generator of the subgroup of G of order p. Let T < q, then P = ZT , C = G,
R = Zn, and K = {(n, p, q, T, G, G1, e, g, h, gp)} where (n, p, q, T, G, G1, e, g, h) are
defined as above. Let D denote the dealer, and let P = {P1, . . . , Pl} be the set of
participants.

• Gen: Given security parameter ε, Gen(ε) chooses two distinct odd ε
4
-bit primes

p′ and q′ such that p = 2p′ + 1 and q = 2q′ + 1 are also prime, and sets
m = p′q′ and n = pq. Gen(ε) then selects a positive integer T < q such that
solving discrete logs where the exponent is small than T is tractible. Using
the method described in Section 3.1.7, Gen(ε) then chooses two multiplicative
groups G, G1 of order n that support a bilinear pairing e : G × G → G1,

85

as well as a random generators g, u ∈ G, and sets h = uq such that h is a
generator of the subgroup of order p. The public key is (n, g, h, gp, G, G1, e),
and the private key is p.

• Share Initialization: D creates an instance of the cryptosystem using Gen,
and uses Shamir secret sharing to distribute the private key p by setting a0 = p,
choosing at random ai ∈ {0, . . . ,m − 1} for i = 1, . . . t − 1, and setting
f(x) =

∑t−1
i=0 aix

i mod m. The share si = f(i) mod m is sent to Pi as that
participant’s share. D then chooses a random v from the subgroup of squares
of Zn

∗ and makes v∆si public for i = 1, . . . , l, where ∆ = l!.

• Enc: Given a message m ∈ P and a public key pk, Enc(pk, m) chooses a
random r ∈ R and calculates the ciphertext

c = gmhr ∈ G.

• Decryption Share Generation: Each participant Pi participating in decryption
calculates and makes public the partial decryption share ci = c2∆si.

• Decryption Share Reconstruction: Assume, without loss of generality, that
participants P1, . . . , Pt have submitted decryption shares. Each participant
verifies that e(v, ci) = e(vi

2, c), aborting the protocol if any share is not valid.
The message is recovered by calculating

c′ =
t∏

j=1

c
2λ0,j

j ∈ G

where

λi,j = ∆
t∏

j′=1
j′ 6=j

i− j′

j − j′
.

such that c′ = c4∆2p. The message is recovered by taking the discrete logarithm
of c′ to the base g4∆p.

As described in Section 4.2, proving the semantic security of the threshold BGN
cryptosystem will be accomplished by demonstrating that an adversary that can
break the semantic security of the threshold BGN cryptosystem can also break the
semantic security of the BGN cryptosystem. Thus, the security of the basic BGN
cryptosystem implies the security of the threshold variant. The proof itself consists
of demonstrating how an attacker can take an instance of the BGN cryptosystem
and simulate an instance of the threshold variant in a manner that is indistin-
guishable from a real instance of the threshold variant. Although the basic and
threshold cryptosystems are similar, a problem arises when attempting to simulate
the value gp, required in the threshold version to perform the discrete logarithm
when recovering a message.

86

Given an instance of the BGN cryptosystem, let the modified BGN cryptosystem
be the same instance of the cryptosystem with the value gp made public. Given
gp, an attacker that cannot solve discrete logarithms is unable to recover p through
a discrete logarithm computation. Recall that during the semantic security game,
the attacker is given access to a decryption oracle, to which the ciphertext c = gphr

can be queried, thus revealing the value of p. Altering the oracle to not respond
to a request that decrypts to p is insufficient to protect against this attack, as
the attacker could exploit the malleability of the BGN cryptosystem to query an
encryption of ap + b for know values of a and b. In order prevent the oracle from
revealing the secret key, the assumption must be made that T , the upper bound
on message size, is much smaller than p. Thus, any message returned by the oracle
is reduced modulo T , and the attacker may only learn p mod T . This assumption
is reasonable in practice, as T will always be chosen to be much smaller than p,
due to the fact that decryption requires O(

√
T) time when calculating the discrete

logarithm to recover M .

Because the value gp is necessary for the threshold BGN cryptosystem, its se-
curity will be demonstrated with respect to the security of the modified BGN
cryptosystem under the threshold semantic security game defined in Section 4.2.
With practical parameter selection (i.e. T << p), the modified BGN cryptosystem
does not appear to grant an adversary any non-negligible advantage in breaking
the cryptosystem.

For the duration of this section, let C denote the modified BGN cryptosystem,
let Ct denote the threshold version, and let A be a polynomial time adversary that,
with access to t−1 of l secret shares, can win the threshold semantic security game
with non-negligible advantage. Fix n = pq = (2p′ + 1)(2q′ + 1) and m = p′q′ where
p′, q′, p, q are distinct odd primes, and let Qn denote the subgroup of squares of Z∗

n.

Lemma 4.6.2. Any subset of t − 1 shares are independently random elements of
Zm.

Proof. The result follows from the fact that each si = f(i) where f is a random
polynomial of degree t− 1 with coefficients from Zm.

Lemma 4.6.3. The statistical distance between the uniform distribution on X =
{0, . . . ,

⌊
n
4

⌋
} and the uniform distribution on Y = {0, . . . ,m} is O(n− 1

2); i.e., the
advantage an adversary has in distinguishing between a polynomially sized sample
from each distribution is negligible in ε, the bit-length of n.

Proof. Given that Pr[X = a] = 1

bn
4 c

for a ∈ {0, . . . ,
⌊

n
4

⌋
} and 0 elsewhere, and

given that Pr[Y = b] = 1
m

for b ∈ {0, . . . ,m} and 0 elsewhere, the statistical

87

distance between X and Y is given by

∆(X, Y) =
1

2

∑
i∈N

|Pr[X = i]− Pr[Y = i]|

=
1

2

(
m

∣∣∣∣∣ 1⌊
n
4

⌋ − 1

m

∣∣∣∣∣+ (
⌊n

4

⌋
−m)

∣∣∣∣∣ 1⌊
n
4

⌋∣∣∣∣∣
)

=
1

2

(∣∣∣∣∣ m⌊
n
4

⌋ − 1

∣∣∣∣∣+
∣∣∣∣∣1− m⌊

n
4

⌋∣∣∣∣∣
)

= 1− m⌊
n
4

⌋
=

⌊
n
4

⌋
−m⌊
n
4

⌋
=

O(n
1
2)

O(n)

= O(n− 1
2).

Thus, an adversary cannot distinguish between uniform distributions on X and Y
with more than negligible advantage in the bit-size of n.

Lemma 4.6.4. (Shoup [95]) Qn is a cyclic group of order m.

Proof. Recall that φ(n) = (p−1)(q−1) = 4m. Then Z∗
n is isomorphic to Z2×Z2×

Zm. Let Jn denote the set of elements of Z∗
n having Jacobi symbol 1 (see Section

3.1.3), then Qn ⊂ Jn ⊂ Z∗
n. Exactly half the elements of Z∗

n are in Jn, and exactly
half the elements of Jn are in Qn. Thus Qn has order m and is isomorphic to Zm,
i.e., it is cyclic.

The following two equations relating to Lagrange interpolation will also be re-
quired:

λS
i,j = ∆

∏
j′ /∈S−{j}

i− j′

j − j′
, (4.1)

and
∆f(i) ≡

∑
j∈S

λi,jf(j) mod m. (4.2)

Note that by including the value ∆ when calculating λS
i,j, it is unnecessary to

compute any inverses, as (j − j′) divides ∆ = l! for each value of j′.

Given these preliminary results, it is now possible to show that each of the
steps of the threshold semantic security game can be simulated in a manner that is
indistinguishable from a real run of Ct, allowing an attacker against C to break the
semantic security of the cryptosystem by utilizing A’s ability to break the semantic
security of Ct.

88

Lemma 4.6.5. (Indistinguishability of step 2) Given the public key for C, the at-
tacker can provide A with a simulated tuple (n, G, G1, e, g, h, gp, v, {v1, . . . , vl},
{s1, . . . , st}) such that this tuple is indistinguishable from A’s view of a real instance
of Ct.

Proof. The attacker has knowledge of the public key (n, g, h, G, G1, e) of C, and
may forward these values to A unmodified. In the modified BGN cryptosystem,
the attacker also has knowledge of gp.

Without loss of generality, assume that participants P1, . . . , Pt−1 are to be cor-
rupted by A. By Lemma 4.6.2, any subset of t − 1 shares are independently ran-
dom elements of Zm. Thus, the attacker randomly chooses s1, . . . , st−1 from the set
{0, . . . ,

⌊
n
4

⌋
}. By Lemma 4.6.3, A cannot distinguish between the uniform distribu-

tion on {0, . . . ,
⌊

n
4

⌋
} and the uniform distribution on {0, . . . ,m}. Thus, the values

s1, . . . , st−1 may be forwarded to A and are indistinguishable from secret shares
generated by an actual instance of Ct.

To simulate v, the attacker chooses v to be a valid ciphertext encrypting a
known message 2m0. Let m0 be a random message, and calculate v = (gm0hr)2

as a random valid encryption of 2m0. Because m0 and gp are known values, the
attacker now has

(gp)2m0 = (gp)2m0(h2r)p

= (g2m0h2r)p

= vp

= vf(0).

as a known value. Furthermore, v is a generator of the subgroup of squares, except
with negligible probability. The verification keys v1, . . . , vt−1 are calculated as vi =
v∆si mod n for i ∈ {1, . . . , t − 1}. For i ∈ {t, . . . , l}, Lagrange interpolation can
be used to calculate vi for i ∈ {t, . . . , l} without knowledge of si using vp = vf(0).

vi = (gp)2m0λS
i,0

t−1∏
j=1

v2sjλS
i,j

=
∏
j∈S

v2sjλS
i,j

≡ v∆f(i) mod m

≡ v∆si mod m

by Equations 4.1 and 4.2, where S is the set of known values of sj along with
the point at vf(0). Because m0 was chosen uniformly at random, v is a uniformly
random generator of the subgroup of squares, except with negligible probability,
and hence, the simulated verification keys vi are indistinguishable from a real run
of Ct.

89

The attacker constructs the tuple (n, G, G1, e, h, gp, v, {v1, . . . , vl}, {s1, . . . , st}),
using the values calculated above, and sends it to A, who cannot distinguish it from
a real instance of Ct.

Lemma 4.6.6. (Indistinguishability of step 3) During the step 3 of the thresh-
old semantic security game, given a message M , the attacker can provide A with
simulated decryption shares of a random encryption of M , {c1, . . . , cl}, along with
zero-knowledge proofs that each ci is correct such that A cannot distinguish between
the values provided by the attacker and values provided from a real instance of Ct.

Proof. During step 3, A provides the attacker with a message M , who must then
respond with partial decryption shares for an encryption of M for each participant.
The attacker first calculates the ciphertext c = gMhr ∈ G for a random integer
r ∈ Zn. The attacker has knowledge of {s1, . . . , st−1}, and can thus correctly
calculate ci = c2∆si for i ∈ {1, . . . , t−1}. The attacker can use the public parameter
gp and the message m to compute c0 = c2∆f(0) by calculating

(gp)2∆M = (gM)2∆p(h2∆r)p

= (gMhr)2∆p

= (gMhr)2∆f(0)

= c0.

The attacker then uses Lagrange interpolation to calculate the remaining values of
ci for i ∈ {t, . . . , l}

ci = c
λS

i,0

0

t−1∏
j=1

c2sjλS
i,j

=
∏
j∈S

c2sjλS
i,j

≡ c2∆f(i) mod m

≡ c2∆si mod m

where S is the set of known values of sj, along with the point at c0. Thus, the
attacker can provide A with valid decryption shares c0, . . . , cl that are indistin-
guishable from an actual instance of Ct.

Providing proofs of validity for each decryption share is unnecessary, as the
pairing e provides the ability to verify decryption shares automatically. This is due
to the fact that

e(v, ci) = e(v2, c) = e(v, c)2∆si

for properly constructed shares. Thus, each share is valid if and only if e(v, ci) =
e(v2, c).

The attacker returns the tuple (c1, . . . , cl) to A, who is unable to distinguish it
from an actual instance of Ct.

90

Lemma 4.6.7. (Indistinguishability of step 5) During the step 5 of the thresh-
old semantic security game, given a message M , the attacker can provide A with
simulated decryption shares {c1, . . . , cl} and zero-knowledge proofs that each ci is
correct such that A cannot distinguish between the values provided by the attacker
and values provided from a real instance of Ct.

Proof. Step 5 is identical to step 3.

Utilizing these lemmas, the security of the threshold BGN cryptosystem can
now be summarized.

Theorem 4.6.8. The (t, l)-threshold BGN cryptosystem is semantically secure if
the modified BGN cryptosystem is semantically secure.

Proof. As established in Section 4.2, the threshold BGN cryptosystem is semanti-
cally secure if given an instance of the modified BGN cryptosystem, an attacker
can simulate steps 2, 3, and 5 such that the simulated values are indistinguishable
from an actual instance of the threshold BGN cryptosystem. Lemmas 4.6.5, 4.6.6,
and 4.6.7 establish the indistinguishability of each step, and thus the (t, l)-threshold
BGN cryptosystem is semantically secure.

The problem of creating a threshold variant of the BGN cryptosystem that does
not require the public parameter gp is still an open problem. Such an approach
would have to include a distributed method of calculating a discrete logarithm
where the base is shared among the participants, or would require the modification
of the cryptosystem to allow the discrete logarithm to rely only on information that
is public in the basic BGN cryptosystem.

4.7 On the (Im)possibility of Other Homomor-

phic Threshold Cryptosystems

As mentioned in Section 4.6, in the conclusion of [48], Fouque, Poupard, and Stern
leave the open problem of creating threshold variants of other Paillier-like cryp-
tosystems, such as the Goldwasser-Micali cryptosystem (Section 3.2.2), the Benaloh
cryptosystem (Section 3.2.4), the Naccache-Stern cryptosystem (Section 3.2.5), and
the Okamoto-Uchiyama cryptosystem (Section 3.2.7). This section addresses the
existence of threshold variants of these systems using Shoup’s approach, concluding
that Shoup’s method cannot be utilized to create new threshold variants.

Shoup’s technique of distributing shares of a secret key and performing inter-
polation of the shares in the exponent is very flexible, and has allowed for simple
threshold variants of the Paillier and Damg̊ard-Jurik cryptosystems. In order to use
Shoup’s technique for the BGN cryptosystem, the basic cryptosystem was modified
to make gp a public parameter, where p is the secret shared among the participants.

91

The BGN cryptosystem differs from the Paillier cryptosystem in that the private
key is required not only for exponentiation, but also in the calculation of a discrete
logarithm. Thus, gp was necessarily made a public parameter.

Recall that decryption in the Goldwasser-Micali cryptosystem requires deter-
mining if the ciphertext c is a quadratic residue modulo n = pq, which is tested by
computing

c
p−1
2 mod p.

Decryption in the Okamoto-Uchiyama cryptosystem requires the computation of

L(cp−1 mod p2)

L(gp−1 mod p2)
mod p

where p is the private key, and decryption in the Naccache-Stern cryptosystem
requires Chinese remaindering modulo secret values pi. Each of these cryptosystems
differs from the Paillier, Damg̊ard-Jurik, and BGN cryptosystems in that decryption
requires a reduction modulo a secret value; i.e., the private key is used for more
than just exponentiation.

Theorem 4.7.1. Let n = pq and assume there exists a protocol P that allows a
set of participants to collectively compute a mod p for a known value a and secret
value p. Then P may reveal the value of p.

Proof. Let ap = a mod p be the result returned by P . Then p divides a− ap (i.e.,
a− ap = kp for some k), and gcd(a− ap, n) is either n or p. Thus, if P implements
reduction modulo p, then P may leak information about the secret value p.

This result demonstrates that Shoup’s approach cannot be utilized in conjunc-
tion with a secondary protocol P that reduces a known value modulo a secret
value. Because such a reduction is necessary in the Goldwasser-Micali, Naccache-
Stern, and Okamoto-Uchiyama cryptosystems, Shoup’s method of interpolation in
the exponent cannot be utilized in conjunction with a secondary protocol to re-
duce modulo p. Thus, if secure threshold variants of these cryptosystems exist,
an entirely new approach that combines exponentiation and reduction modulo a
secret value must be devised, or the cryptosystems must be altered to eliminate
the need to perform reductions modulo a secret value. For example, decryption
in the Goldwasser-Micali cryptosystem requires the computation of c

p−1
2 mod p.

Although computing this value using Shoup’s approach is not possible, there may
exists a protocol which can determine if c

p−1
2 ≡ 1 mod p without revealing the

value of p. Such a protocol could be used to build a threshold variant of the
Goldwasser-Micali cryptosystem.

The creation of a threshold variant of the Benaloh cryptosystem remains an
open problem. Cramer, Gennaro, and Schoenmakers [37] have outlined a Benaloh-

like cryptosystem and noted that decryption requires computing c
(p−1)(q−1)

q mod n

for several values of q until c
(p−1)(q−1)

q ≡ 1 mod n. They note that this is essentially

92

the same as RSA decryption, and thus, any approach to distributed RSA decryp-
tion, such as the approaches by Gennaro, Jarecki, Krawczyk, and Rabin [56, 58],
could be utilized to decrypt Benaloh ciphertexts. This approach does not address
the fact that group decryption must be performed several times to decrypt a ci-
phertext, which makes similar threshold cryptosystems, such as the Paillier and
BGN cryptosystem, much more appealing in practice. An approach that requires
only a single joint decryption is still an interesting open problem.

93

Chapter 5

Applications of Homomorphic
Cryptography

The ability to perform simple deterministic computations on encrypted data make
homomorphic cryptosystems ideal for creating privacy preserving protocols. In this
section a brief overview is provided to demonstrate how homomorphic cryptography
is utilized in some of these protocols. In general, the protocols presented are meant
to be general building blocks for further applications. For example, utilizing homo-
morphic cryptography to perform simple set operations provides tools that can be
used to construct even more complicated protocols, such as complicated database
queries. In the case of strong conditional oblivious transfer, presented in Section
5.3, a new construction of the protocol using the BGN cryptosystem is provided,
making the protocol secure against a malicious receiver.

As a more specific example of how these basic protocols may be extended,
Zhong [105], and Zhong, Goldberg and Hengartner [106], have applied a variety of
the protocols given in this section to build new location privacy protocols. These
approaches include using the homomorphic properties of a cryptosystem to allow
two parties to calculate the distance between them without revealing their actual lo-
cations, and the greater than strong condition oblivious transfer protocol presented
in Section 5.3 is used to obliviously transfer location based information depending
on whether or not this distance is less than some specified threshold. The set oper-
ations presented in Section 5.1.2 allow two parties to submit a set of locations and
to determine whether or not the sets are disjoint. Based on the result, they can
choose which location specific information they with to share.

In general, privacy preserving protocols model a situation in which Bob has a
secret function f , and Alice has a set of inputs, x1, . . . , xk, for which she wishes to
learn f(x1, . . . , xk), without revealing her inputs. If Bob’s function can be modeled
solely using the operations provided by a homomorphic cryptosystem, then Alice
can submit encrypted inputs to Bob, who then performs the necessary homomorphic
operations, randomizes the resulting ciphertext, and sends the encrypted result
back to Alice. Upon decryption, Alice learns y = f(x1, . . . , xk), but she can deduce

94

no information about f that is not revealed by y itself. Similarly, a group of
participants may wish to collectively compute the result of some public function,
but without individually revealing their inputs. This situation models a voting
system, where each participant has a vote, and wishes to learn the final tally without
revealing who they voted for.

Privacy preserving protocols utilizing homomorphic cryptography are usually
considered secure in one of two models: The honest-but-curious model, or the
malicious model. The security of these two models is defined with respect to an
ideal implementation of a protocol where all participants securely transmit their
inputs to a trusted third party, who then performs the required computation and
returns the result. The information an adversary can gain under the honest-but-
curious or malicious models should be identical to what the adversary can gain with
respect to the ideal implementation.

In the honest-but-curious (HBC) model, all participants honestly provide proper
inputs at each step of the protocol, and properly perform any calculations expected
of them. The model is named “honest-but-curious” because each participant is
honest in the sense that they do not provide false input, but curious in the sense
that they will attempt to gain extra information if the protocol makes it possible,
including colluding with other participants. Thus, the assumption that fewer than
t of n participants collude, for some pre-specified value of t, is often required. A
protocol is secure in the HBC model if the amount of information gained by each
participant is identical to the information gained when utilizing a trusted third
party.

Unlike HBC participants, malicious participants may attempt to deviate from
the protocol or provide invalid inputs. Thus, a malicious participant has the ability
to completely disrupt the protocol and prevent a correct result from ever being
computed. Because controlling the behaviour of a malicious participant is impos-
sible, security in the malicious setting is limited to preventing the malicious party
from learning anything about another participant’s input, aside from what the re-
sult of the protocol implies. As stated earlier, this is formalized by requiring that
the amount of information a malicious participant may gain in a run of the protocol
is identical to the amount of information gained in an ideal implementation using
a trusted third party, where each participant securely transmits each input to the
trusted party, who then computes and returns the result. A malicious participant
learns only what is implied by the result of the computation, and nothing else.

It is important to note that a protocol being secure in the malicious model does
not necessarily mean that a malicious participant cannot compromise privacy. For
example, in calculating a set union for two participants, a malicious participant
could submit the empty set, thus learning the other participant’s complete set from
the result. Because the same strategy is possible using a trusted third party, this
is not considered a failure of the protocol.

95

5.1 Manipulating Encrypted Polynomials

Most additively homomorphic cryptosystems, such as the Paillier cryptosystem,
lend themselves naturally to computations on encrypted polynomials. Let f , g be
two polynomials of degree less than or equal to k, where f = a0 + a1x + . . . + akx

k

and g = b0 + b1x + . . . + bkx
k. Adopting the shorthand notation E(x) to rep-

resent an encryption of x, let E(f) = {E(a0), E(a1), . . . , E(ak)} and E(g) =
{E(b0), E(b1), . . . , E(bk)}. If E represents the encryption function from an ad-
ditively homomorphic cryptosystem that allows for two encrypted messages to be
summed (denoted �), along with addition and multiplication by a constant (de-
noted �), the following operations are possible on f and g:

• Encrypted sum of encrypted polynomials: Given E(f) and E(g), let f + g =
c0 + c1x + . . . + ckx

k. Then

E(f + g) = {E(c0), E(c1), . . . , E(ck)},

where
E(ci) = E(ai) � E(bi).

• Encrypted product of an encrypted polynomial and a known polynomial:
Given E(f) and g, let fg = c0 + c1x + . . . + c2kx

2k. Then

E(fg) = {E(c0), E(c1), . . . , E(c2k)},

where
E(cl) =

∑
i+j=l
0≤i≤k
0≤j≤k

E(ai) � bj

and the summation is performed using �.

• Multiplication by a constant: Given E(f), let cf = c0 + c1x + . . . ckx
k for a

constant c. Then

E(cf) = {E(c0), E(c1), . . . , E(ck)},

where
E(ci) = E(ai) � ci.

• Encrypted evaluation of an encrypted polynomial at a known point: Given
E(f) and a point x

E(f(x)) =
k∑

i=0

E(a0) � xi

where the summation is performed using �.

96

• Encrypted formal derivative: Given E(f), let f ′ = c0 + c1x + . . . , ck−1x
k−1.

Then
E(f ′) = {E(c0), E(c1), . . . , E(ck−1)},

where
E(ci) = E(ai+1) � (i + 1).

• Encrypted integral: Given E(f), let
∫

f = c1x + . . . + ck+1x
k+1. Then

E(

∫
f) = {E(0), E(c1), E(c2), . . . , E(ck+1)},

where
E(ci) = E(ai−1 � i−1).

After performing any of these operations it is important to re-randomize the
resulting ciphertext(s) to ensure that the sequence of operations performed cannot
be recovered by an adversary with knowledge of the random values used during the
initial encryption of each message.

5.1.1 Multivariate Polynomials and 2-DNF Formulas

Additively homomorphic cryptosystems, such as the Paillier cryptosystem, natu-
rally support several common operations on encrypted polynomials. The fact that
operations on ciphertexts are limited to addition restricts additively homomorphic
cryptosystems to single-variable polynomials. The BGN cryptosystem, however,
has the additional property that a single multiplication can be performed on en-
crypted messages, allowing it to naturally extend to operations on polynomials
whose individual terms have total degree of 2.

Decrypting a BGN ciphertext requires the solution of a discrete logarithm.
Thus, in practice, messages must be bounded by some small value T . This intro-
duces practical limitations on the use of the BGN cryptosystem, but makes it ideal
for operations performed on binary messages. If the plaintext space is P = {0, 1},
then the discrete logarithm computation is greatly simplified. Let c = gmhr be an
encryption of 0 or 1. Then m can be recovered by first computing

c′ = cp = (gp)m,

which allows m to be recovered by

m =

{
0 if c′ = 1

1 if c′ = gp.

As noted by Boneh, Goh, and Nissim [14], in this setting the BGN cryptosystem
naturally models and allows for the encrypted evaluation of 2-DNF formulas.

97

Definition 5.1.1. A statement in boolean logic is said to be in disjunctive normal
form (DNF) if it is expressed as a disjunction of one or more conjunctions. A
statement is in second disjunctive normal form (2-DNF) if each conjunction consists
of only two variables, i.e.

(xi1 ∧ xi2) ∨ (xi3 ∧ xi4) ∨ (xi5 ∧ xi6) ∨

In order to model a 2-DNF formula as a multivariate polynomial, it must be
“arithmetized” by replacing each instance of ∧ with ·, and each instance of ∨ with
+. Thus, the ∧ operation is replaced by multiplication, such that x1x2 = 1 if and
only if x1 = x2 = 1. The ∨ operation is replaced by addition such that x1+x2 = 0 if
and only if x1 = x2 = 0. Evaluating the resulting polynomial over inputs x1, . . . , xk

results in the message 0 if the boolean formula is 0, and a non-zero result otherwise.
Utilizing this fact, a simple two party protocol for computing 2-DNF formulas on
secret inputs, secure in the honest-but-curious model, is trivial to construct.

Protocol: Honest-But-Curious 2-DNF [14]
Setup: Alice possesses a 2-DNF formula φ(x1, . . . , xk), Bob possesses a set of inputs
(a1, . . . , ak), and both parties have agreed upon a security parameter ε.

1. Bob performs the following:

(a) Create an instance of the BGN cryptosystem using security parameter
ε, and sends the public key to Alice.

(b) Compute xi = e(pk, ai) for each input ai, and sends each xi to Alice.

2. Alice performs the following:

(a) Compute the arithmetization Φ of φ by replacing ∧ with ·, replacing ∨
with +, and replacing x̄i with (1− xi).

(b) Using the homomorphic properties of the BGN cryptosystem, compute
an encryption of rΦ(a1, . . . , ak), sending the result to Bob.

3. If Bob receives an encryption of 0, he outputs “0”; otherwise, he outputs “1”.

Alice is unable to learn anything about Bob’s inputs without breaking the se-
mantic security of the BGN cryptosystem. Bob is unable to learn anything about
φ, aside from its evaluation on his inputs. This follows from the fact that Alice
multiplies the result by a random value, which leaves Bob with either an encryption
of 0, or an encryption of a random value.

The 2-DNF protocol can be modified to be secure against a malicious Bob. This
is accomplished by requiring Bob to provide proof that he selected the parameters
of the cryptosystem correctly, that he can decrypt messages encrypted under the
public key he provides, as well forcing Bob’s messages to be encryptions of only 0
or 1.

98

Protocol: Malicious 2-DNF [14]
Setup: Alice possesses a 2-DNF formula φ(x1, . . . , xk), Bob possesses a set of inputs
(a1, . . . , ak), and both parties have agreed upon a security parameter ε.

1. Bob creates an instance of the BGN cryptosystem using security parameter ε,
and sends the public key to Alice. Bob also includes a zero-knowledge proof
that n is the product of two primes.

2. Alice verifies that Bob has created a proper instance of the cryptosystem:

(a) Alice verifies Bob’s zero-knowledge proof, aborting if the proof is invalid.

(b) Alice verifies that gn = hn = 1 and that g, h 6= 1, aborting if either test
fails.

3. Bob proves that he can decrypt messages encrypted under the public key
provided:

(a) Alice selects random bits b0, . . . , bε and sends e(pk, bi) for each bit to
Bob.

(b) Bob replies with the decrypted values b0
′, . . . , bε

′.

(c) Alice verifies that bi = bi
′ for each i, aborting if any fail.

4. Bob computes xi = e(pk, ai) for each input ai, and sends each xi to Alice.

5. Alice performs the following:

(a) Compute the arithmetization Φ of φ.

(b) Utilizing the homomorphic properties of the BGN cryptosystem, com-
putes an encryption of

rΦ(x1, . . . , xk) +
k∑

i=1

rixi(xi − 1)

where r and each ri are random values, and returns the result to Bob.

6. If Bob receives an encryption of 0, he outputs “0”; otherwise, he outputs “1”.

As noted earlier, the three main changes from the honest-but-curious protocol
are:

1. Forcing Bob to prove that the cryptosystem parameters have been chosen
appropriately;

2. forcing Bob to prove he can decrypt messages encrypted under the provided
public key; and

99

3. randomly blinding the result if Bob submits an input that is not an encryption
of 0 or 1.

The proof of decryption in Step 3 is straightforward, and the resulting encrypted
message in Step 5 will be a random value if xi(xi − 1) is not 0 for all i; i.e., if xi 6∈
{0, 1}. The zero-knowledge proof required in Step 2 can be accomplished through
the protocol of Camenisch and Michels [19], or by that of Genarro, Micciancio, and
Rabin [57]. With these restrictions placed on Bob, his behaviour is forced to be the
same as in the honest-but-curious protocol, otherwise Alice aborts immediately.

5.1.2 Modeling Sets as Encrypted Polynomials

Polynomials lend themselves naturally to representing sets of integers. Given the
set S = {s1, s2, . . . , sk}, the polynomial f = (x − s1)(x − s2) · · · (x − sk) has zeros
at x = si for each si ∈ S. Given two sets S1 and S2 represented by polynomials
f1 and f2, the polynomial f1f2 has zeros at x = a for all a ∈ S1 ∪ S2. Similarly, if
a ∈ S1 ∩ S2, then (x − a)2 | f1f2 and (x − a) | (f1f2)

′; i.e., a ∈ S1 ∩ S2 implies that
a is a zero of (f1f2)

′.

Several protocols have been built on the idea of using encrypted polynomials
to calculate simple set operations. Freedman, Nissim, and Pinkas [49] investigated
the problem of two-party privacy preserving set intersection, referred to as private
matching. In their protocol, a client C having set C = {c1, . . . , ck} wishes to deter-
mine which values it has in common with a server S having set S = {s1, . . . , sj}.

Protocol: Honest-But-Curious Private Matching [49]
Setup: C and S possess sets C and S respectively, whose elements are drawn from
a domain of size N .

1. C performs the following:

(a) Create an instance of an additively homomorphic public-key cryptosys-
tem, providing the homomorphic operations of � and �c, whose plain-
text space is exponentially larger than N . The public key, pk, is made
public.

(b) Calculate the polynomial f =
∏k

i=1(x− ci) = f0 + f1x + . . . + fkx
k.

(c) Send {E(pk, f0), E(pk, f1), . . . , E(pk, fk)} to S.

2. For each si ∈ S, S performs the following:

(a) Using the homomorphic properties of the cryptosystem, compute the
value E(pk, f(si)).

(b) Choose a random value r and compute mi = E(pk, r · f(si) + si).

(c) Randomly permute the mi’s and sends the result to C.

100

3. C decrypts each mi. If the result is si ∈ C, then si ∈ S ∩ C; otherwise mi

decrypts to a random value and C learns nothing.

The protocol works by randomly blinding any elements of the server’s set when-
ever f(si) 6= 0. Thus, the client learns only those values which lie in the intersection.
Because the client is assumed to be honest, the client does not attempt to learn
additional information about the server’s set by sending false input. A sample
implementation of this protocol is provided in Appendix A.

Freedman, Nissim, and Pinkas also provide two variants of their set intersection,
one secure against a malicious client, and one secure against a malicious server.
Ideas for combining the two protocols together into a protocol secure against both a
malicious client and server are also included. They also propose the problem of fuzzy
matching, where set elements are tuples (a1, . . . , am), and two parties are interested
in determining which tuples agree on at least k-of-m entries. A naive approach to
solving the problem is proposed, but the construction of a more efficient protocol
is left as an open problem. Chmielewski and Hoepman [30] have since provided a
more efficient approach.

Using an approach similar to Freedman, Nissim, and Pinkas, Frikken [50] has
given a simple protocol for two party set union.

Protocol: Honest-But-Curious Set Union [50]
Setup: Participants P1 and P2 possess sets S1 and S2 respectively represented by
the polynomials fS1 and fS2 .

1. P1 creates an instance of an additively homomorphic cryptosystem.

2. P1 encrypts each coefficient of the polynomial representation of S1 and sends
the resulting encrypted polynomial to P2 along with the public key of the
cryptosystem.

3. For each s ∈ S2, P2 chooses a random value r and computes the following
tuple using the homomorphic properties of the cryptosystem

(E(pk, fS1(s)sr), E(pk, fS1(s)r)) .

4. P2 randomly permutes the tuples and sends them to P1.

5. P1 sets S = S1 and decrypts all received tuples. For each tuple (x, y), if
x = y = 0, P1 moves on to the next tuple; otherwise, P1 adds the value xy−1

to S. Upon completion, S = S1 ∪ S2.

This protocol is a very simple modification of the two party set intersection
protocol. Instead of randomly blinding those values which are not in the intersec-
tion, a tuple is returned that allows P1 to recover any set element not contained

101

in the intersection. Thus, P1 learns nothing about which elements are in the inter-
section, aside from the number of 0-tuples returned. P2 could easily include extra
“dummy tuples” encoding (0, 0) to prevent P1 from learning the cardinality of the
intersection. A sample implementation of this protocol is provided in Appendix A.

Kissner and Song [67, 66] have used polynomials to represent multi-sets, or sets
which may contain repeated elements. This is accomplished by using the factor
(x − a)k to represent an element that occurs k times. Their protocols work for
any number of participants, rather than just a single client and server, and provide
protocols for computing multi-party set intersection, union, over-threshold union,
intersection cardinality, and testing subsets. Their protocols are secure in the HBC
model, with a variant of the set intersection protocol secure in the malicious model,
although Frikken [50] has extended their set union protocol to be secure against
malicious adversaries. Li and Wu [71] have also given a protocol for set intersection,
and Ye, Wang, Pieprzyk, and Zhang [103] have presented a set disjointness test
based on calculating the determinant of the Sylvester matrix.

5.2 A Limited Algebraically Homomorphic Cryp-

tosystem

Sander, Young, and Yung’s AND-homomorphic cryptosystem was presented in Sec-
tion 3.2.6. Their approach utilized the Goldwasser-Micali cryptosystem, but added
additional structure by representing messages as a vector of ciphertexts. The struc-
ture of the vector could be manipulated by a third party to compute the AND
function on a ciphertext, with the semantic security GM cryptosystem keeping the
message hidden. Sander, Young and Yung have used similar ideas to build a method
of computing any NC1 circuit on a set of encrypted inputs [90]. An NC1 circuit is
a log depth circuit that can be visualized as a binary tree. Each node of the tree
functions as either an OR gate or a NOT gate, with inputs being provided to each
gate at the bottom of the tree. The output of the circuit is the value output by the
gate at the root of the tree.

Let x and y be binary values and consider the tuple [x, y, x ⊕ y, 1]. If x OR
y = 1, then this tuple contains three 1s, otherwise it contains a single 1. If a tuple
with three 1s is considered an encoding of 1, and a tuple with three 0s is considered
an encoding of 0, then the mapping (x, y) → [x, y, x⊕ y, 1] represents an encoding
of x + y. If the tuple is randomly permuted after performing this operation, and
contains an encoding of 1, then the tuple itself does not reveal the values of x and
y. If x = y = 0, then the values are revealed by the result. If a tuple [a, b, c, d] is of
this form, then [a⊕ 1, b⊕ 1, c⊕ 1, d⊕ 1] transforms a tuple with three 1s into three
0s, and a tuple with three 0s into a tuple with three 1s, effectively performing the
NOT operation. Alternatively, if the bit is represented by the tuple (x, x̄), then the
NOT operation can be accomplished by replacing the tuple with (x̄, x), eliminating
the need to perform four arithmetic operations.

102

Using the structure of these tuples, if each component is encrypted under a
semantically secure cryptosystem implementing addition modulo 2 as a homomor-
phic operation, such as the Goldwasser-Micali cryptosystem, then Alice could send
encrypted inputs to Bob, who could create tuples representing the NOT and OR
operations on her inputs. Bob could also include inputs of his own. In order to
build more complicated circuits the same idea is applied inductively, such that a
tuple one level deeper in the circuit contains four tuples from the previous level.
This process would be straightforward, if not for the fact that addition needs to be
defined for tuples deeper in the circuit.

Let Enck
b represent an encoding of bit value b at level k of the circuit, and let

Enck = Enck
0 ∪Enck

1. Enc0 represents inputs to the circuit provided by Alice and
Bob. The set Addk will represent the sum of two elements of Enck−1, stored as a
tuple (a, b) to represent a + b. Then (a, 0) where a ∈ Enck maps a into Addk+1.
Given a starting point, each of these sets can be defined inductively:

Addk+1
0 = {(a, b) ∈ (Enck)2 : both or none of a, b ∈ Enck

0}
Addk+1

1 = {(a, b) ∈ (Enck)2 : exactly one of a, b ∈ Enck
0}

Addk+1 = Addk+1
0 ∪ Addk+1

1

Enck+1
0 = {[a, b, c, d](Addk)4 : exactly one of a, b, c, d ∈ Enck

1}
Enck+1

1 = {[a, b, c, d](Addk)4 : exactly three of a, b, c, d ∈ Enck
1}

Enck+1 = Enck+1
0 ∪ Enck+1

1 .

Given these tuples, simple algorithms to encode and decode elements at each level
can be defined, along with algorithms to perform NOT, OR, and to random-
ize a tuple to hide the values that created it. Given x, y ∈ Enck, OR(x, y) =
[(x, 0), (y, 0), (x, y), 1] where 1 is a random element of Addk+1

1 . Given x = [(a1, a2),
(b1, b2), (c1, c2), (d1, d2)], NOT (x) = [(NOT (a1), a2), . . . , (NOT (d1), d2)]. Thus, the
NOT operation recursively calls itself until it reaches the original encodings of Alice
and Bob’s inputs, allowing the homomorphic properties of the GM cryptosystem to
be used to implement the final step. The decode method works in a similar man-
ner. Given (x, y) ∈ Addk+1, DECODE((x, y)) = DECODE(x) + DECODE(Y).
Randomizing a tuple is accomplished by computing a list of the possible tuples that
decode to the same value, and randomly selecting one.

Given these sets and algorithms, Bob can take his and Alice’s encrypted inputs
and build an element of Enck that represents the evaluation of any NC1 circuit
on the inputs, without learning the value of the evaluation. Bob then sends the
result to Alice, who can use the DECODE method to recover the element of Enck

without learning any more about the circuit than the result itself implies.

Although this approach allows for the joint computation of a wide variety of
functions, its uses are limited by severe message expansion. Each bit of the in-
put is encrypted under the Goldwasser-Micali cryptosystem, requiring a ciphertext
expansion of 1024 times or larger. This is compounded by the fact that at each
level of the circuit, a bit is represented by a four-tuple from the previous level.

103

Thus, there is an exponential growth in the size of representation as the circuit is
evaluated. In most cases a protocol built specifically to solve a given problem will
be much more efficient. Such a protocol is given in the next section for computing
the greater than predicate, and subsequently improved to be more secure.

5.3 Strong Conditional Oblivious Transfer

Calculating the greater than predicate on two values arises naturally in many proto-
cols, such as determining the winner of a private auction, or determining distances
in location privacy protocols. Its use is often in the form of a conditional oblivious
transfer (COT) protocol, where two parties, the sender and receiver, have inputs x
and y, as well as a public predicate P , and the sender wishes to send a message m to
the receiver if and only if P (x, y) = 1, while revealing no information if P (x, y) = 0.
The sender does not learn the value of the predicate on the inputs; i.e., the sender
is oblivious to which message the receiver receives. Under this definition, S always
ends up learning the outcome of the predicate. In some applications it is desirable
to for the sender to choose two messages m1 and m2, such that the receiver learns
m1 if P (x, y) = 1 and learns m2 if P (x, y) = 0, and both parties remain oblivious to
the actual evaluation of the predicate. A protocol implementing such functionality
is said to be a strong conditional oblivious transfer (SCOT) protocol.

Blake and Kolesnikov [11] have constructed a SCOT protocol implementing the
greater than predicate, constructed using the Paillier cryptosystem, and secure in
the honest-but-curious model. Because their protocol relies only on the fact that
the underlying cryptosystem is semantically secure and additively homomorphic,
a different cryptosystem, such as the BGN cryptosystem, may be used in place of
the Paillier cryptosystem. Utilizing this fact, a new protocol that uses the special
properties of the BGN cryptosystem can be derived from the protocol of Blake and
Kolesnikov, which adds security against a malicious receiver.

Let R be the receiver with input x, and S the sender with input y, where x and
y are elements of some public input domain DI whose elements have bit-length n.
Let s0 and s1 be two messages chosen from a public domain DS possessed by S. The
sets DI and DS will be subsets of the plaintext space of the Paillier cryptosystem.
Let ν and λ be public security parameters agreed upon by S and R such that |DS|
is negligible with respect to λ, and let xi (respectively yi) denote the i’th most
significant bit of x (respectively y).

Protocol: GT-SCOT [11]

1. R creates an instance of the Paillier cryptosystem using security parameter
ε = max{ν, λ + log2 |DS|} with public key (N, g) and creates the encrypted
(component-wise) vector (x1, x2, . . . , xn), sending it to S.

2. Using the homomorphic properties of the cryptosystem, for each i ∈ {1, . . . , n}
S calculates:

104

(a) An encrypted element of the difference vector d such that di = xi − yi.

(b) An encrypted element of the flag vector f such that fi = xi ⊕ yi =
xi − 2xiyi + yi.

(c) An encrypted element of the vector γ where γ0 = 0 and γi = 2γi−1 + fi.

(d) An encrypted element of the vector δ where δi = di + ri(γi− 1) where ri

is a random element of ZN .

(e) A random encryption of vector µ such that µi = s1−s0

2
δi + s1−s0

2
.

3. S randomly permutes µ and sends the result to R.

4. R decrypts each component of µ and checks if µi ∈ DS for exactly one value
of i. If so, R outputs µi, otherwise R aborts.

The protocol works by linearly searching from the most significant bit to the
least significant bit for the first bit position that x and y differ. The flag vector
has the value 1 at any position in which x and y differ, and di stores which of the
two inputs contained the 1. The vector γ begins with initial value 0, and γi = 0
for each value of i until fi = 1, at which point γi = 1. For j > i, it always holds
that γj > 1. The vector δ contains a random value except when γi = 1; i.e., except
in the position where x and y first differ, where the value di is stored. Finally,
the vector µ contains a random value in each position, except where δi = di. If
di = xi − yi = 1, then µi = s1−s0

2
+ s1+s0

2
= s1, and if di = −1, then µi = s0. S

randomly permutes µ thus obscuring the position where x and y first differed, and
sends the result to R. Because there is only a negligible probability for a random
element of ZN to be an element of DS, with overwhelming probability exactly one
elements of µ is also an element of DS.

The GT-SCOT protocol only functions correctly if x 6= y and R submits valid
encryptions of either 0 or 1 in each position of the vector. If R is malicious, then
R could attempt to construct each xi in a manner that would reveal information
about S’s input when the protocol finishes. If the protocol is reimplemented using
the BGN cryptosystem, then the additional multiplicative homomorphic property
can be utilized by S to protect against a malicious R. These same ideas were used
by Boneh, Goh, and Nissim, in the Malicious 2-DNF protocol described in Section
5.1.1.

Assuming the same setup as the GT-SCOT protocol, with the Paillier cryptosys-
tem replaced by the BGN cryptosystem, the new Malicious Receiver GT-SCOT
protocol can now be described.

Protocol: Malicious Receiver GT-SCOT

1. R creates an instance of the BGN cryptosystem using security parameter
ε, and sends the public key (N, g, h, G, G1, e) to S. R also includes a zero-
knowledge proof that N is the product of two primes.

105

2. S verifies that R has created a proper instance of the cryptosystem:

(a) S verifies R’s zero-knowledge proof, aborting if the proof is invalid.

(b) S verifies that gn = hn = 1 and that g, h 6= 1, aborting if either test
fails.

3. R proves that he can decrypt messages encrypted under the public key pro-
vided:

(a) S selects random bits b0, . . . , bε and sends e(pk, bi) for each bit to R.

(b) R replies with the decrypted values b0
′, . . . , bε

′.

(c) S verifies that bi = bi
′ for each i, aborting if any fail.

4. R sends the encrypted (component-wise) vector x′ = (x1
′, x2

′, . . . , xn
′) to S.

5. S calculates, using the multiplicative homomorphic properties of the BGN
cryptosystem, the encrypted vector x such that xi = xi

′ + rixi
′(xi

′− 1) where
ri is a random value in ZN .

6. S continues from step 2 of the GT-SCOT protocol taking x to be R’s input.

In this new variant of the GT-SCOT protocol, R and S perform the same
verification steps as Alice and Bob performed in the Malicious 2-DNF protocol.
Once S is convinced that R has created the cryptosystem correctly, S receives a
component-wise encrypted vector from R. In order to ensure that R has selected
xi ∈ {0, 1}, S adds the value rixi

′(xi
′−1), randomizing R’s input if it is not a valid

bit. Thus, R cannot submit a malicious message without S transforming it into a
completely random message.

It should be noted that the GT-SCOT protocol does not function correctly if
x = y. In order to prevent this from happening, R’s input x can be mapped to 2x,
and S’s input y can be mapped to 2y + 1, thus ensuring that x 6= y. In a setting
where R is untrusted, S can perform the mapping by “bit shifting” R’s input by a
single bit and appending a random encryption of 0 to the end.

5.4 Cryptographic Voting and Mix Nets

The Benaloh cryptosystem was originally presented by Cohen (Benaloh) and Fis-
cher [35] in the context of a cryptographic election scheme where a government G
and a set of voters v1, . . . , vj wish to conduct an election where the ballot contains
a single yes/no question. The Benaloh ciphertext c = y0ur represents an encrypted
vote for “no”, and the ciphertext c = y1ur represents an encrypted vote for “yes”.
A blank ballot from voter i consists of a pair Bi = (c0, c1) where one of c0 and c1

is a “yes” vote, and the other is a “no” vote. To conduct the election, G posts a
set of public parameters along with proofs that the parameters are correct. Each

106

voter constructs a blank ballot using these public parameters and proves in zero-
knowledge that it contains both a “yes” vote and a “no” vote, without revealing
which vote is which. Each voter then chooses a single value from the blank ballot
as their choice and sends it to G, who verifies the proof and uses the homomorphic
properties of the cryptosystem to calculate a tally of the yes votes, along with a
proof that the tally is correct. Details of the necessary proofs can be found in [35].

Adida and Rivest use the homomorphic properties of the Paillier cryptosystem
to perform a homomorphic tally in the Scratch & Vote system [1]. Given M < 2m

voters and j candidates numbered 0, . . . , j−1, an instance of the Paillier cryptosys-
tem is created such that n > 2jm. Thus, the plaintext space can be thought of as j
different m-bit numbers concatenated together, with the i’th least significant block
of m-bits representing the tally for candidate i. On each ballot, candidate i is listed
along with a random ciphertext encrypting the value 2im, corresponding to a value
of 1 in that candidates tally. The candidate ordering on each ballot is randomized,
and the list of candidates is detachable. In order to cast a vote, the voter simply
marks the ciphertext beside their choice, and tears off the list of candidates, thus
removing any public information on which candidate was marked. The homomor-
phic properties of the Paillier cryptosystem are used to sum all ballots, and the
final result is jointly decrypted by election officials.

When conducting elections with electronic votes, a digital analog to “shaking
the ballot box” is necessary to remove any link between a ballot and the voter
who submitted it. Mix nets, introduced by Chaum [26], provide this functionality.
Adida and Wikström [2, 3] have demonstrated two different approaches of shuffling
encrypted ballots based on the Paillier and BGN cryptosystems. Let π be a random
permutation, and let M be a matrix that applies π to a vector v. Given a public
vector of encrypted ballots, the goal is to allow any party to apply and verify
the permutation, resulting in a new vector of re-randomized ciphertexts, without
revealing the permutation.

Recall that the BGN allows a single homomorphic multiplication on ciphertexts,
and thus, a single encrypted matrix multiplication is possible. Election officials
may produce a permutation matrix and encrypt each element of the matrix as a
randomized BGN encryption of either 0 or 1, along with zero knowledge proofs
that the matrix is constructed correctly. By the semantic security of the BGN
cryptosystem, the matrix does not reveal the permutation. Anybody may utilize
the homomorphic properties of the BGN cryptosystem to apply the permutation
to the encrypted vector of ballots, which are re-randomized automatically, but
deterministically, as the permutation is applied. This is due to the fact that the
randomizers used to encrypt the matrix entries are not public.

The Paillier cryptosystem lacks the single homomorphic multiplication of the
BGN cryptosystem, but has another interesting property that can be utilized to
perform a public shuffle. Recall that the Paillier cryptosystem maps a plaintext
in Zn to a ciphertext in Z∗

n2 and the Damg̊ard-Jurik variant maps a plaintext
in Zns to a ciphertext in Z∗

ns+1 . Thus, Paillier ciphertexts are valid plaintexts

107

in the Damg̊ard-Jurik cryptosystem, and both cryptosystems support the same
homomorphic operations. If E performs a random encryption in an instance of the
Paillier cryptosystem, and E ′ performs a random encryption in the Damg̊ard-Jurik
cryptosystem for the same choice of n and s = 2, then the following hold:

E ′(1)E(m) = E ′(E(m))

E ′(0)E(m) = E ′(0)

E ′(0)E ′(E(m)) = E ′(E(m)).

Election officials can construct a permutation matrix, and then replace each 0 in
the matrix with E ′(0), and each 1 with E ′(E(0)) before making it public. The
encrypted ballots are encrypted using E. The equations above can then be used to
apply the permutation matrix to the encrypted vector, resulting in a vector π(v)
containing deterministically randomized ballots of the form E ′(E(vπ(i))) for each
vπ(i) ∈ v.

Additional details on zero-knowledge proofs that the election officials have con-
structed each ciphertext and the matrix appropriately may be found in [2, 3].

108

Chapter 6

Concluding Remarks

Semantically secure homomorphic cryptography began with the Goldwasser-Micali
cryptosystem, allowing the XOR operation on ciphertexts, with each bit of a mes-
sage encrypted as its own ciphertext. From this starting point, a variety of addi-
tively homomorphic cryptosystems have been based on the approach of Goldwasser
and Micali, exploiting the difficulty of deciding residues in various settings. Mod-
ern additively homomorphic cryptosystems have decreased the unrealistic message
expansion of the Goldwasser-Micali cryptosystem to a constant factor of 2, while
still remaining relatively efficient.

In this thesis, a comprehensive survey of homomorphic cryptosystems has been
presented, describing each additively homomorphic cryptosystem building on Gold-
wasser and Micali’s approach, as well as other homomorphic cryptosystems, such as
the multiplicatively homomorphic ElGamal cryptosystem. In each case, the under-
lying computational problems have been presented, alongside outlines of security
proofs.

Because homomorphic cryptography is ideal for use in privacy preserving pro-
tocols, it is often desirable to devise threshold variants of homomorphic cryptosys-
tems. This allows for the private key to be distributed among a group of participants
such that at least t of n participants must agree to decrypt a message. A survey
of threshold homomorphic cryptosystems has been provided, and the approaches
used to build these threshold variants have been applied to the recently discov-
ered Boneh-Goh-Nissim cryptosystem to define the first secure threshold variant.
This threshold variant builds off the well studied approach of Shoup for distributed
RSA signature generation, and is shown to be secure under the threshold semantic
security game of Fouque, Poupard, and Stern.

Due to the fact that it allows a single homomorphic multiplication, in addition
to the usual properties of an additively homomorphic cryptosystem, the BGN cryp-
tosystem is of particular interest. In particular, the multiplicative homomorphism
may be used to check whether or not an encrypted input is one of two known values,
randomizing it if this is not the case. This provides a very simple mechanism for
creating protocols that automatically randomize maliciously crafted messages. This

109

fact was exploited to create a variant of Blake and Kolesnikov’s greater than strong
conditional oblivious transfer protocol that is secure against a malicious receiver.

The wide variety of applications of homomorphic cryptography make it diffi-
cult to provide a comprehensive survey, so the examples presented were limited to
provide a basic idea of how homomorphic cryptography can be used as a building
block in privacy preserving protocols. In order to demonstrate the correctness of
these protocols, a sample implementation of Freedman, Nissim, and Pinkas’ private
matching protocol, and Frikken’s HBC set union protocol have been provided in
Appendix A.

6.1 Future Work

Although homomorphic cryptosystems have advanced considerably since the Gold-
wasser-Micali cryptosystem, most of the advancements have been with respect
to message expansion and efficiency. Only recently, with the discovery of the
Boneh-Goh-Nissim cryptosystem, has any significant advance towards a secure al-
gebraically homomorphic cryptosystem been made. Although the approach used by
Boneh, Goh, and Nissim is unlikely to lead to a cryptosystem allowing an unlimited
number of homomorphic multiplications, the ability to construct n-linear maps for
cryptographic purposes would allow their approach to be used to perform n ho-
momorphic multiplications. This would allow for the evaluation of n-dnf formulas
on ciphertexts, as well as the solution to other problems that can be modeled as
multivariate polynomials with terms of degree n or less. This would also allow for a
user to randomize an encrypted message if it is not an element of a specified set of
n messages, an application that could be useful in cryptographic voting protocols.

The creation of a secure algebraically homomorphic cryptosystem is the most
prominent open problem in homomorphic cryptography. Although some theoretical
attacks against such a cryptosystem have been proposed, the question of whether or
not a secure algebraically homomorphic cryptosystem exists has yet to be answered.
One promising approach is the investigation of homomorphic cryptosystems defined
over non-abelian groups, as no such cryptosystem is currently known to exist. This
question was asked directly by Sander, Young, and Yung [90].

The creation of threshold variants of the Goldwasser-Micali, Naccache-Stern,
and Okamoto-Uchiyama cryptosystems is still an open problem, and a solution
may have intresting applications in other protocols. In the case of the Naccache-
Stern cryptosystem, a protocol that distributes Chinese remaindering modulo a set
of secret values is required, while the GM and OU cryptosystem simply require a
single reduction modulo a secret value.

Although homomorphic cryptosystems have already found several applications
in privacy preserving protocols, there are likely many more applications to be found,
and many older protocols can be made more efficient or secure by utilizing more
recent cryptosystems with additional homomorphic properties, such as the BGN

110

cryptosystem. In general, single purpose protocols designed using homomorphic
cryptography are more efficient than general approaches. As homomorphic cryp-
tosystems with new properties are discovered, many protocols will need to be re-
evaluated to determine whether or not they can benefit from these new properties.

111

References

[1] Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained paper-based
cryptographic voting. In Ari Juels and Marianne Winslett, editors, WPES
2006, pages 29–40. ACM, 2006. 107

[2] Ben Adida and Douglas Wikström. How to shuffle in public. Cryptology
ePrint Archive, Report 2005/394, 2005. http://eprint.iacr.org/. 107,
108

[3] Ben Adida and Douglas Wikström. How to shuffle in public. In Salil P. Vad-
han, editor, TCC 2007, volume 4392 of Lecture Notes in Computer Science,
pages 555–574. Springer, 2007. 107, 108

[4] Niv Ahituv, Yeheskel Lapid, and Seev Neumann. Processing encrypted data.
Commun. ACM, 30(9):777–780, 1987. 15

[5] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature
and encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 83–107. Springer, 2002. 18

[6] Feng Bao. Cryptanalysis of a provable secure additive and multiplicative
privacy homomorphism. In International Workshop on Coding and Cryptog-
raphy, March 24-28, 2003, Versailles (France), pages 43–50, 2003. 68

[7] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
Alfredo De Santis, editor, EUROCRYPT 1994, volume 950 of Lecture Notes
in Computer Science, pages 92–111. Springer, 1994. 6

[8] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University,
1988. 39

[9] Josh Benaloh. Dense probabilistic encryption. In Selected Areas of Cryptog-
raphy (SAC 1994), pages 120–128, 1994. 38, 39

[10] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography.
Cambridge University Press, July 1999. 31

[11] Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer
and computing on intervals. In Pil Joong Lee, editor, ASIACRYPT, volume

112

http://eprint.iacr.org/

3329 of Lecture Notes in Computer Science, pages 515–529. Springer, 2004.
104

[12] G.R. Blakley. Safeguarding cryptographic keys. In AFIPS 1979 Conference
Proceedings, volume 48, pages 313–317, 1979. 71

[13] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984. 53

[14] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. In Joe Kilian, editor, TCC 2005, volume 3378 of Lecture Notes
in Computer Science, pages 325–341. Springer, 2005. 2, 31, 66, 67, 97, 98, 99

[15] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their
application to cryptography (extended abstract). In Koblitz [68], pages 283–
297. 16, 17

[16] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equiv-
alent to factoring. In Nyberg [75], pages 59–71. 32

[17] Ernest F. Brickell and Yacov Yacobi. On privacy homomorphisms (extended
abstract). In David Chaum and Wyn L. Price, editors, EUROCRYPT 1987,
volume 304 of Lecture Notes in Computer Science, pages 117–125. Springer,
1987. 11

[18] Dan Brown. Breaking RSA may be as difficult as factoring. Technical Re-
port CACR 2005-37, Center for Applied Cryptographic Research (CACR):
University of Waterloo, 2005. 33

[19] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a num-
ber is the product of two safe primes. In Stern [97], pages 107–122. 100

[20] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-
ciphertext security. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 565–582. Springer, 2003. 19

[21] Guilhem Castagnos. An efficient probabilistic public-key cryptosystem over
quadratic fields quotients. Finite Fields Appl., 13(3):563–576, 2007. 56

[22] Guilhem Castagnos and Benôıt Chevallier-Mames. Towards a dl-based addi-
tively homomorphic encryption scheme. In Juan A. Garay, Arjen K. Lenstra,
Masahiro Mambo, and René Peralta, editors, ISC 2007, volume 4779 of Lec-
ture Notes in Computer Science, pages 362–375. Springer, 2007. 37

[23] Dario Catalano, Rosario Gennaro, and Nick Howgrave-Graham. The bit secu-
rity of paillier’s encryption scheme and its applications. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Sci-
ence, pages 229–243. Springer, 2001. 53

113

[24] Dario Catalano, Rosario Gennaro, and Nick Howgrave-Graham. Paillier’s
trapdoor function hides up to O(n) bits. J. Cryptology, 15(4):251–269, 2002.
53

[25] Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, and Phong Q.
Nguyen. Paillier’s cryptosystem revisited. In ACM Conference on Computer
and Communications Security, pages 206–214, 2001. 25, 56

[26] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981. 107

[27] David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO 1992, volume 740 of Lecture Notes in
Computer Science, pages 89–105. Springer, 1992. 76, 83, 84

[28] Jung Hee Cheon, Woo-Hwan Kim, and Hyun Soo Nam. Known-plain-
text cryptanalysis of the Domingo-Ferrer algebraic privacy homomorphism
scheme. Inf. Process. Lett., 97(3):118–123, 2006. 68

[29] Benôıt Chevallier-Mames, Pascal Paillier, and David Pointcheval. Encoding-
free ElGamal encryption without random oracles. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography
(PKC 2006), volume 3958 of Lecture Notes in Computer Science, pages 91–
104. Springer, 2006. 37

[30] Lukasz Chmielewski and Jaap-Henk Hoepman. Fuzzy private matching (ex-
tended abstract). In ARES 2008, pages 327–334. IEEE Computer Society,
2008. 101

[31] Dug-Hwan Choi, Seungbok Choi, and Dongho Won. Improvement of proba-
bilistic public key cryptosystems using discrete logarithm. In Kwangjo Kim,
editor, ICISC 2001, volume 2288 of Lecture Notes in Computer Science, pages
72–80. Springer, 2001. 50, 57

[32] Su-Jeong Choi. Cryptanalysis of a Homomorphic Public-Key Cryptosystem.
PhD thesis, Royal Holloway University of London, 2006. 68

[33] Su-Jeong Choi, Simon R. Blackburn, and Peter R. Wild. Cryptanalysis of a
homomorphic public-key cryptosystem over a finite group. Journal of Math-
ematical Cryptography, 1:351–358, 2007. 68

[34] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Ver-
ifiable secret sharing and achieving simultaneity in the presence of faults
(extended abstract). In Tarjan [99], pages 383–395. 73

[35] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptograph-
ically secure election scheme (extended abstract). In Tarjan [99], pages 372–
382. 27, 39, 106, 107

114

[36] Jean-Sébastien Coron, David Naccache, and Pascal Paillier. Acceler-
ating Okamoto-Uchiyama’s public-key cryptosystem. Electronics Letters,
35(4):291–292, 1999. 50

[37] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and
optimally efficient multi-authority election scheme. In Fumy [52], pages 103–
118. 37, 83, 92

[38] Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk,
editor, CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science,
pages 13–25. Springer, 1998. 37

[39] Ivan Damg̊ard, Mads Jurik, , and Jesper Nielsen. A generalization of Paillier’s
public-key system with applications to electronic voting, 2003. 80, 81

[40] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Kwangjo Kim,
editor, Public Key Cryptography (PKC 2001), volume 1992 of Lecture Notes
in Computer Science, pages 119–136. Springer, 2001. 60, 61, 80, 81

[41] Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with
applications. Technical Report RS/03/16, BRICS - University of Aarhus,
2003. 63, 64

[42] Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with
applications. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, ACISP
2003, volume 2727 of Lecture Notes in Computer Science, pages 350–364.
Springer, 2003. 63, 64, 82

[43] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22:644–654, 1976. 4

[44] Josep Domingo-Ferrer. A new privacy homomorphism and applications. Inf.
Process. Lett., 60(5):277–282, 1996. 68

[45] Josep Domingo-Ferrer. A provably secure additive and multiplicative privacy
homomorphism. In Agnes Hui Chan and Virgil D. Gligor, editors, ISC 2002,
volume 2433 of Lecture Notes in Computer Science, pages 471–483. Springer,
2002. 68

[46] Josep Domingo-Ferrer and Jordi Herrera-Joancomart. A privacy homomor-
phism allowing field operations on encrypted data. 16

[47] Caroline Fontaine and Fabien Galand. A survey of homomorphic encryption
for nonspecialists. Eur. J. Inf. Syst., 2007(1):1–15, 2007. 23

115

[48] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryp-
tion in the context of voting or lotteries. In Yair Frankel, editor, Financial
Cryptography (FC 2000), volume 1962 of Lecture Notes in Computer Science,
pages 90–104. Springer, 2000. 2, 77, 78, 80, 84, 91

[49] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan Camenisch, edi-
tors, EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2004. 100

[50] Keith B. Frikken. Privacy-preserving set union. In Katz and Yung [65], pages
237–252. 101, 102

[51] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of
public-key encryption at minimum cost. In Hideki Imai and Yuliang Zheng,
editors, Public Key Cryptography (PKC 1999), volume 1560 of Lecture Notes
in Computer Science, pages 53–68. Springer, 1999. 37

[52] Walter Fumy, editor. Advances in Cryptology - EUROCRYPT 1997, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of
Lecture Notes in Computer Science. Springer, 1997. 115, 119

[53] Steven D. Galbraith. Elliptic curve Paillier schemes. J. Cryptology, 15(2):129–
138, 2002. 32, 51, 57, 59

[54] Joseph A. Gallian. Contemporary Abstract Algebra. Houghton Mifflin, Boston,
fifth edition, 2002. 29, 46

[55] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO
1984, volume 196 of Lecture Notes in Computer Science, pages 10–18.
Springer, 1984. 35

[56] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
and efficient sharing of RSA functions. In Koblitz [68], pages 157–172. 93

[57] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-
interactive statistical zero-knowledge proof system for quasi-safe prime prod-
ucts. In ACM Conference on Computer and Communications Security, pages
67–72, 1998. 100

[58] Rosario Gennaro, Tal Rabin, Stanislaw Jarecki, and Hugo Krawczyk. Robust
and efficient sharing of RSA functions. J. Cryptology, 13(2):273–300, 2000.
93

[59] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions.
In STOC 1989: Proceedings of the twenty-first annual ACM symposium on
Theory of computing, pages 25–32, New York, NY, USA, 1989. ACM. 53

116

[60] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, New York, NY, USA, 2000. 43

[61] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In STOC 1982, pages
365–377. ACM, 1982. 6

[62] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984. 6, 33

[63] Dima Grigoriev and Ilia V. Ponomarenko. Homomorphic public-key cryp-
tosystems over groups and rings. CoRR, cs.CR/0309010, 2003. 68

[64] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman
& Hall/CRC, 2007. 34

[65] Jonathan Katz and Moti Yung, editors. Applied Cryptography and Network
Security, 5th International Conference, ACNS 2007, Zhuhai, China, June
5-8, 2007, Proceedings, volume 4521 of Lecture Notes in Computer Science.
Springer, 2007. 116, 117

[66] Lea Kissner and Dawn Song. Private and threshold set-intersection. Technical
Report CMU-CS-05-113, Carnegie Mellon University, February 2005. 102

[67] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 241–257. Springer, 2005. 102

[68] Neal Koblitz, editor. Advances in Cryptology - CRYPTO 1996, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science. Springer, 1996. 113, 116

[69] Arjen K. Lenstra and Hendrik W. Lenstra, editors. The development of the
number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 1993. 24

[70] Hendrik W. Lenstra. Factoring integers with elliptic curves. Annals of Math-
ematics, 126:649–673, 1987. 18, 24

[71] Ronghua Li and Chuankun Wu. An unconditionally secure protocol for multi-
party set intersection. In Katz and Yung [65], pages 226–236. 102

[72] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 2001. 2, 24

[73] Victor S. Miller. The weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004. 32, 66

117

[74] David Naccache and Jacques Stern. A new public key cryptosystem based
on higher residues. In ACM Conference on Computer and Communications
Security, pages 59–66, 1998. 40, 43

[75] Kaisa Nyberg, editor. Advances in Cryptology - EUROCRYPT 1998, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of
Lecture Notes in Computer Science. Springer, 1998. 113, 118

[76] Andrew M. Odlyzko. Discrete logarithms in finite fields and their crypto-
graphic significance. In Thomas Beth, Norbert Cot, and Ingemar Ingemars-
son, editors, EUROCRYPT 1984, volume 209 of Lecture Notes in Computer
Science, pages 224–314. Springer, 1984. 30

[77] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem
as secure as factoring. In Nyberg [75], pages 308–318. 46, 47, 48, 49

[78] Tatsuaki Okamoto and Shigenori Uchiyama. Security of an identity-based
cryptosystem and the related reductions. In Nyberg [75], pages 546–560. 51,
59

[79] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Stern [97], pages 223–238. 27, 29, 51, 53, 55

[80] Pascal Paillier. Trapdooring discrete logarithms on elliptic curves over rings.
In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of Lecture
Notes in Computer Science, pages 573–584. Springer, 2000. 51, 56, 59

[81] Pascal Paillier and David Pointcheval. Efficient public-key cryptosystems
provably secure against active adversaries. In Kwok-Yan Lam, Eiji Okamoto,
and Chaoping Xing, editors, ASIACRYPT 1999, volume 1716 of Lecture
Notes in Computer Science, pages 165–179. Springer, 1999. 56

[82] Renè Peralta and Eiji Okamoto. Faster factoring of integers of a special
form. IEICE Transactions on Communications/Electronics/Information and
Systems, E79-A(4):489–493, 1996. 24

[83] Manoj Prabhakaran and Mike Rosulek. Homomorphic encryption with CCA
security. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2),
volume 5126 of Lecture Notes in Computer Science, pages 667–678. Springer,
2008. 20

[84] Manoj Prabhakaran and Mike Rosulek. Homomorphic encryption with
chosen-ciphertext security. Cryptology ePrint Archive, Report 2008/079,
2008. http://eprint.iacr.org/. 20, 21

118

http://eprint.iacr.org/

[85] Michael Rabin. Digitalized signatures and public-key functions as intractable
as factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for
Computer Science, 1979. 49

[86] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzous. On data banks
and privacy homomorphisms. In Richard. A. Demillo, David P. Dobkin,
Anita K. Jones, and Richard J. Lipton, editors, Foundations of Secure Com-
putations, pages 169–177. Academic Press, New York, 1978. 1, 10

[87] Ronald L. Rivest and Burton S. Kaliski Jr. RSA problem. In Henk C. A. van
Tilborg, editor, Encyclopedia of Cryptography and Security. Springer, 2005.
25

[88] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978. 4

[89] Kouichi Sakurai and Tsuyoshi Takagi. On the security of a modified paillier
public-key primitive. In Lynn Margaret Batten and Jennifer Seberry, editors,
ACISP 2002, volume 2384 of Lecture Notes in Computer Science, pages 436–
448. Springer, 2002. 50, 57, 58, 59

[90] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocom-

puting for NC1. In FOCS 1999, pages 554–567. IEEE, 1999. 44, 102, 110

[91] Katja Schmidt-Samoa and Tsuyoshi Takagi. Paillier’s cryptosystem modulo

p2q and its applications to trapdoor commitment schemes. In Ed Dawson
and Serge Vaudenay, editors, Mycrypt 2005, volume 3715 of Lecture Notes in
Computer Science, pages 296–313. Springer, 2005. 57

[92] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
71

[93] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–
1509, 1997. 18

[94] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Fumy [52], pages 256–266. 30

[95] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EU-
ROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
207–220. Springer, 2000. 2, 73, 88

[96] Victor Shoup. A proposal for an ISO standard for public key encryption.
Cryptology ePrint Archive, Report 2001/112, 2001. http://eprint.iacr.

org/. 18, 76

119

http://eprint.iacr.org/
http://eprint.iacr.org/

[97] Jacques Stern, editor. Advances in Cryptology - EUROCRYPT 1999, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of
Lecture Notes in Computer Science. Springer, 1999. 113, 118

[98] Douglas R. Stinson. Cryptography: Theory and Practice. Chapman &
Hall/CRC, 2005. 3, 6

[99] Robert E. Tarjan, editor. 26th Annual Symposium on Foundations of Com-
puter Science, 21-23 October 1985, Portland, Oregon, USA. IEEE, 1985. 114

[100] E. Teske. Square-root algorithms for the discrete logarithm problem. In Public
Key Cryptography and Computational Number Theory, pages 283–301. Walter
de Gruyter, 2001. 30, 39

[101] Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for
some hidden shift problems. SIAM J. Comput., 36(3):763–778, 2006. 18

[102] David Wagner. Cryptanalysis of an algebraic privacy homomorphism. In
Colin Boyd and Wenbo Mao, editors, ISC 2003, volume 2851 of Lecture Notes
in Computer Science, pages 234–239. Springer, 2003. 68

[103] Qingsong Ye, Huaxiong Wang, Josef Pieprzyk, and Xian-Mo Zhang. Efficient
disjointness tests for private datasets. In Yi Mu, Willy Susilo, and Jennifer
Seberry, editors, ACISP 2008, volume 5107 of Lecture Notes in Computer
Science, pages 155–169. Springer, 2008. 102

[104] Yu Yu, Jussipekka Leiwo, and Benjamin Premkumar. A study on the secu-
rity of privacy homomorphism. International Journal of Network Security,
6(1):33–39, 2008. 13, 14, 15, 16

[105] Ge Zhong. Distributed approaches for location privacy. Master’s thesis, Uni-
versity of Waterloo, 2008. 94

[106] Ge Zhong, Ian Goldberg, and Urs Hengartner. Louis, Lester and Pierre:
Three protocols for location privacy. In Nikita Borisov and Philippe Golle,
editors, Privacy Enhancing Technologies (PET 2007), volume 4776 of Lecture
Notes in Computer Science, pages 62–76. Springer, 2007. 94

120

Appendix A

Sample Implementations

In this section some sample implementations of the privacy preserving set union
and private matching protocols from Section 5.1.2 are given, using Damg̊ard and
Jurik’s generalization of the Paillier cryptosystem. The implementation is done
in Maple 10, and the algorithms are implemented in a straightforward and easy
to follow manner. For ease of reading, a very small security parameter is used,
although the implementation provided can accommodate any security parameter.

A.1 A Sample Implementation of the Paillier /

Damg̊ard-Jurik Cryptosystem

Recall the Damg̊ard-Jurik Cryptosystem from Section 3.2.11, which extends the
Paillier cryptosystem to encrypt messages from the group Zns to ciphertexts in
Z∗

ns+1 for any s ≥ 1. The log function L(u) = u−1
n

is replaced by an algorithm that
recovers the value i from L((1 + n)i mod ns+1). The following code defines the
function L and the procedure cosetLog that recovers i.

> L := (u,n,s) -> (u-1)/n:

>

> cosetLog := proc(u, sk)

> local i, j, k, t1, t2, n, s:

>

> n := pk[1]:

> s := pk[3]:

>

> i := 0;

> for j from 1 to s by 1 do

> t1 := L(u mod n^(j+1), n, s):

> t2 := i;

> for k from 2 to j by 1 do

121

> i := i-1:

> t2 := t2 * i mod n^j:

> t1 := t1 - (t2 * n^(k-1))/(k!) mod n^j;

> od:

> i := t1;

> od:

>

> return i;

>

> end:

The public key pk is stored as the tuple pk = (n, g, s), and the private key
sk is stored as the tuple sk = (λ, pk, p, q), where n, p, q, g, s, λ are as defined in
the Damg̊ard-Jurik cryptosystem. Given a security parameter and the value s, the
procedure Gen creates an instance of the Damg̊ard-Jurik cryptosystem and returns
the public and private keys.

> gen := proc(epsilon, s)

> local n, p, q, lambda, g, pk, sk, x, j;

>

> p := nextprime(2^epsilon +

RandomTools[Generate](integer(range=0..2^epsilon))):

> q := nextprime(2^epsilon +

RandomTools[Generate](integer(range=0..2^epsilon))):

> n := p*q:

> lambda := lcm(p-1, q-1):

>

> x := rand() mod n:

> j := rand() mod n:

> g := (1+n)&^j * x mod n^(s+1):

>

> pk := [n, g, s]:

> sk := [lambda, pk, p, q]:

>

> return [pk, sk]:

>

> end:

The procedure Enc takes a public key pk, and a message m, and returns a
randomized encryption of m.

> enc := proc(pk, m)

> local r, c, g, n, s:

>

122

> n := pk[1]:

> g := pk[2]:

> s := pk[3]:

>

> r := modp(rand(), n^s):

>

> c := modp(g&^m * r&^(n^s), n^(s+1));

>

> return c:

>

> end:

The procedure Dec takes a private key sk, and a ciphertext c and returns the
decrypted message.

> dec := proc(sk, c)

>

> local m, lambda, n, s, g, i, j, k, t1, t2:

>

> lambda := sk[1]:

> n := (sk[2])[1]:

> s := (sk[2])[3]:

> g := (sk[2])[2]:

>

> m := cosetLog(c&^lambda mod n^(s+1))

/ cosetLog(g&^lambda mod n^(s+1)) mod n^s:

>

> return m:

>

> end:

With the procedures Gen, Enc, and Dec defined, an instance of the cryptosys-
tem can be created, and the proper decryption of messages can be tested. First, an
instance of the cryptosystem using ε = 32 and s = 2 is created:

> k := gen(32, 2):

> pk := k[1]:

> sk := k[2]:

> printf("\n\tn = %d \n\tp = %d \n\tq = %d \n

\tlambda = %d \n\tg = %d \n\ts = %d\n\n",

pk[1],sk[3],sk[4],sk[1],pk[2], pk[3]);

n = 38435821667422746529

p = 4876836619

123

q = 7881301891

lambda = 6405970275777434670

g = 1482205154450878409516275481912474757577699\

144879486424051

s = 2

To demonstrate that encryption and decryption work, the same message is en-
crypted three times, resulting in three different ciphertexts. All three ciphertexts
decrypt to the same original message.

> m := RandomTools[Generate](integer(range=0..pk[1]^(pk[3])));

> c1 := enc(pk, m);

> c2 := enc(pk, m);

> c3 := enc(pk, m);

> m1 := dec(sk, c1);

> m2 := dec(sk, c2);

> m3 := dec(sk, c3);

m := 785428547153071673492364480495024318660

c1 := 3633368313374378653990508384906491247014\

4431932610902378615

c2 := 4241022925979226859212233388882057998592\

5359469096550718325

c3 := 1008383705742527764693669736714639570150\

7905959427821292317

m1 := 785428547153071673492364480495024318660

m2 := 785428547153071673492364480495024318660

m3 := 785428547153071673492364480495024318660

To demonstrate the homomorphic properties of the cryptosystem, the messages
m1 = 100 and m2 = 25 are encrypted as c1 and c2. The product c1 ∗ c2 correctly
decrypts to the sum m1 + m2, and (c1 ∗ c2)5 correctly decrypts to 5(m1 + m2).

> m1 := 100;

> m2 := 25;

> c1 := enc(pk, m1);

> c2 := enc(pk, m2);

m1 := 100

m2 := 25

c1 := 5708135225555232216299419403706442583834\

059880755561689895

c2 := 2442211797371755904111254871307554957029\

4512906778555547172

124

> dec(sk, c1 * c2);

125

> dec(sk, (c1 * c2)^5);

625

Thus, the given implementation of the Damg̊ard-Jurik cryptosystem appears
correct, and can now be used to implement the private matching and set union
protocols.

A.2 Private Matching

The two party HBC private matching protocol by Freedman, Nissim, and Pinkas
was presented in Section 5.1.2. In this section, a sample run of the protocol is
provided to demonstrate that it works in practice.

Assume the client C possesses the set S1 = {1, 2, 3, 4, 5, 6} and the Server S
possesses the set S2 = {4, 5, 6, 7, 8, 9}. The domain of possible set elements is
assumed to be D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Before running the protocol, two
helper methods are required. The procedure encPoly takes a public key pk and a
polynomial h and returns a vector with encryptions of each coefficient of h. The
procedure encEval takes an encrypted polynomial, a public key, and a set element
s, and returns the encrypted evaluation of the polynomial at s.

> encPoly := proc(pk, h)

> local H, i:

>

> H := Array(0..degree(h, x)):

>

> for i from 0 to degree(h,x) by 1 do

> H[i] := enc(pk, coeff(h,x,i) mod pk[1]^(pk[3]));

> od:

>

> return H:

>

> end:

> encEval := proc(pk, F, s)

> local c, i:

>

> c := 1:

>

> for i from 0 to ArrayNumElems(F) - 1 by 1 do

125

> c := c * F[i]&^(s^i):

> od:

>

> return c:

>

> end:

A.2.1 Step 1

During step 1 of the protocol, C performs the following:

Creates an instance of the cryptosystem:

> k := gen(16, 2):

> pk := k[1]:

> sk := k[2]:

Calculates the polynomial representation of S1:

> S1 := [1,2,3,4,5,6]:

> f := 1:

> for i from 1 to 6 by 1 do

> f := f * (x - S1[i]);

> od:

> f := sort(collect(f,x));

> f := f mod pk[1]^(pk[3]):

resulting in the polynomial

f = x6 − 21x5 + 175x4 − 735x3 + 1624x2 − 1764x + 720.

C then encrypts each coefficient of f and sends the result to S:

> F := encPoly(pk, f):

> for i from 0 to ArrayNumElems(F) - 1 by 1 do

> printf("\t F[%d] = %d\n", i, F[i]);

> od:

F[0] = 79784742535666748455725491019

F[1] = 205483925844442872149872396344

F[2] = 20758809590907471195066201753

F[3] = 336967061963213296775929596270

F[4] = 144788316426894907426468516314

F[5] = 358537103547234329395169107496

F[6] = 48658219063554320500156480832

126

A.2.2 Step 2

During step 2 of the protocol, S performs the following for each si ∈ S2:

Calculates an encryption of f(si)

> S2 := [4,5,6,7,8,9]:

> m := [0,0,0,0,0,0]:

> for i from 1 to 6 by 1 do

> m[i] := encEval(pk, F, S2[i]) mod pk[1]^(pk[3] + 1):

> printf("\tEnc(pk, f(%d)) = %d\n", S2[i], m[i]);

> od:

Enc(pk, f(4)) = 390293989761110743213423828375

Enc(pk, f(5)) = 177112131816332494500982198292

Enc(pk, f(6)) = 302868852682525188991041682915

Enc(pk, f(7)) = 436123105498581796228432884843

Enc(pk, f(8)) = 455225100074763047240491268647

Enc(pk, f(9)) = 116180799576401424702455543044

S then chooses a random value r and computes an encryption of (r · f(si) + si)

> for i from 1 to 6 by 1 do

> r := RandomTools[Generate](integer(range=0..pk[1])):

> m[i] := m[i]&^r * enc(pk, S2[i]) mod pk[1]^(pk[3] + 1):

> printf("\tEnc(pk, r * f(%d) + %d) = %d\n",

S2[i], S2[i], m[i]);

> od:

Enc(pk, r * f(4) + 4) = 478355773033542494059416337920

Enc(pk, r * f(5) + 5) = 54423609613207795791742498284

Enc(pk, r * f(6) + 6) = 284343525423413532338299278695

Enc(pk, r * f(7) + 7) = 145197479142440469519970087896

Enc(pk, r * f(8) + 8) = 46817530870050439866409604957

Enc(pk, r * f(9) + 9) = 385373772527198658778423947649

The messages are randomly permuted and sent back to C:

> perm := combinat[permute](m):

> m := perm[rand() mod 6!]:

> for i from 1 to 6 by 1 do

> printf("\tm[%d] = %d\n", i, m[i]);

> od:

127

m[1] = 54423609613207795791742498284

m[2] = 478355773033542494059416337920

m[3] = 284343525423413532338299278695

m[4] = 385373772527198658778423947649

m[5] = 46817530870050439866409604957

m[6] = 145197479142440469519970087896

A.2.3 Step 3

Upon receiving the messages from S, C decrypts each of them:

> for i from 1 to 6 by 1 do

> print(dec(sk, m[i]));

> od:

5

4

6

157752301150089

18885148380008

5557866089047

and, because D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, C concludes that S1∩S2 = {4, 5, 6}.

A.3 Privacy Preserving Set Union

Frikken’s two party HBC set union protocol was presented in Section 5.1.2. A
sample implementation of this protocol using the Damg̊ard-jurik cryptosystem is
presented in this section.

Assume that P1 possesses the set S1 = {1, 2, 3, 4} and P2 possesses the set
S2 = {3, 4, 5, 6}, with both sets containing elements from the domain D = {0, 1, 2,
3, 4, 5, 6, 7, 8, 9}. The encPoly and encEval methods from the previous section
will also be used.

A.3.1 Step 1 and 2

P1 creates an instance of the cryptosystem:

> k := gen(16, 2):

> pk := k[1]:

> sk := k[2]:

128

and computes the polynomial representation of S1:

> S1 := [1,2,3,4]:

> f := 1:

> for i from 1 to 4 by 1 do

> f := f * (x - S1[i]);

> od:

> f := sort(collect(f,x));

> f := f mod pk[1]^(pk[3]):

resulting in the polynomial

f := x4 − 10x3 + 35x2 − 50x + 24.

P1 then sends an encryption of f to P2

> F := encPoly(pk, f):

> for i from 0 to ArrayNumElems(F) - 1 by 1 do

> printf("\t F[%d] = %d\n", i, F[i]);

> od:

F[0] = 427213075988288307240944964714

F[1] = 141150826148801473275823404462

F[2] = 134861126169660970983037958768

F[3] = 416324043912280048286289428729

F[4] = 58075863898780880626933575706

A.3.2 Step 3 and 4

For each si ∈ S2, P2 chooses a random r and computes the tuple [(E(pk, f(s) ∗ s ∗
r), E(pk, f(s) ∗ r)]:

> S2 := [3, 4, 5, 6]:

> m1 := [0,0,0,0]:

> m2 := [0,0,0,0]:

> m := [0,0,0,0]:

> for i from 1 to 4 by 1 do

> r := RandomTools[Generate](integer(range=0..pk[1])):

> m1[i] := encEval(pk, F, S2[i])&^(r*S2[i])

mod pk[1]^(pk[3] + 1):

> m2[i] := encEval(pk, F, S2[i])&^r mod pk[1]^(pk[3] + 1):

> m[i] := [m1[i], m2[i]]:

> printf("\t(m1[%d], m2[%d]) = (%d, %d)\n",

i, i, m1[i], m2[i]);

129

> od:

(m1[1], m2[1]) = (118803941814919847773155023447,

285384286748733378780702498661)

(m1[2], m2[2]) = (284898925435807388167298086289,

257266985055935850972077024478)

(m1[3], m2[3]) = (997114220788566421504830120,

113487459739533068126415066208)

(m1[4], m2[4]) = (149847555967236497758747293549,

252757767817564764672766417940)

P2 then randomly permutes each tuple and sends the result to P1:

perm := combinat[permute](m):

> m := perm[rand() mod 4!]:

> for i from 1 to 4 by 1 do

> m1[i] := m[i][1];

> m2[i] := m[i][2];

> printf("\t(m1[%d], m2[%d]) = (%d, %d)\n",

i, i, m1[i], m2[i]);

> od:

(m1[1], m2[1]) = (284898925435807388167298086289,

257266985055935850972077024478)

(m1[2], m2[2]) = (997114220788566421504830120,

113487459739533068126415066208)

(m1[3], m2[3]) = (149847555967236497758747293549,

252757767817564764672766417940)

(m1[4], m2[4]) = (118803941814919847773155023447,

285384286748733378780702498661)

A.3.3 Step 5

P1 decrypts each message to learn

> for i from 1 to 4 by 1 do

> m1[i] := dec(sk, m1[i]):

> m2[i] := dec(sk, m2[i]):

> if m2[i] <> 0 then

> printf("\tm1[%d] / m2[%d] = %d\n",

i, i, m1[i]/m2[i] mod pk[1]^(pk[3]));

> else

> printf("\tm1[%d] = m2[%d] = %d\n", i, i, m1[i]);

> fi:

130

> od:

m1[1] = m2[1] = 0

m1[2] / m2[2] = 5

m1[3] / m2[3] = 6

m1[4] = m2[4] = 0

and concludes that S1 ∪ S2 = S1 ∪ {5, 6}. Thus, P1 learns that {5, 6} ∈ S1 ∪ S2,
but does not learn that {3, 4} ∈ S2 as well.

131

	List of Tables
	Introduction
	Contributions
	Organization
	Introduction to Cryptography

	Overview of Homomorphic Cryptography
	Privacy Homomorphisms
	Homomorphic Cryptosystems in an Abstract Setting
	Security of Homomorphic Cryptosystems
	Theoretical Limits of Homomorphic Cryptosystems
	Known Attacks Against Homomorphic Cryptosystems
	Alternate Security Notions for Homomorphic Cryptosystems

	A Survey of Homomorphic Cryptosystems
	Building Blocks for Homomorphic Cryptosystems
	The Factoring Problem
	RSA / e'th Root Problem
	Quadratic Residuosity Problem
	Higher Order Residues and Residue Classes
	The p-Subgroup Problem
	Discrete Logarithms and the Diffie-Hellman Problem
	Bilinear Groups and Elliptic Curves

	A Survey of Homomorphic Cryptosystems
	The RSA Cryptosystem
	The Goldwasser-Micali Cryptosystem
	The ElGamal Cryptosystem
	The Benaloh Cryptosystem
	The Naccache-Stern Cryptosystem
	The Sander-Young-Yung Cryptosystem
	The Okamoto-Uchiyama Cryptosystem
	The Paillier Cryptosystem
	Paillier/Schmidt-Samoa-Takagi Cryptosystem
	Elliptic Curve Paillier
	The Paillier/Damgård-Jurik Cryptosystem
	The Boneh-Goh-Nissim Cryptosystem
	Insecure Homomorphic Cryptosystems

	A Summary of Homomorphic Cryptosystems

	Threshold Homomorphic Cryptography
	Threshold RSA Signatures
	Proving the Semantic Security of a Threshold Cryptosystem
	A Threshold Paillier Cryptosystem
	Threshold Paillier/Damgård-Jurik Cryptosystems
	A Threshold ElGamal Cryptosystem
	A New Threshold Boneh-Goh-Nissim Cryptosystem
	On the (Im)possibility of Other Homomorphic Threshold Cryptosystems

	Applications of Homomorphic Cryptography
	Manipulating Encrypted Polynomials
	Multivariate Polynomials and 2-DNF Formulas
	Modeling Sets as Encrypted Polynomials

	A Limited Algebraically Homomorphic Cryptosystem
	Strong Conditional Oblivious Transfer
	Cryptographic Voting and Mix Nets

	Concluding Remarks
	Future Work

	References
	Appendix
	Sample Implementations
	A Sample Implementation of the Paillier / Damgård-Jurik Cryptosystem
	Private Matching
	Step 1
	Step 2
	Step 3

	Privacy Preserving Set Union
	Step 1 and 2
	Step 3 and 4
	Step 5

