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Abstract

This thesis investigates the use of control theory as a means to study and
ultimately control the psychological dynamics of people in a crowd. Gustav
LeBon’s suggestibility theory, a well-known account of collective behaviour,
is used to develop a discrete-time nonlinear model of psychological crowd
behaviour that, consistent with suggestibility theory, is open-loop unstable.
As a first attempt to stabilize the dynamics, linear observer-based output-
feedback techniques and a collection of simple nonlinear control strategies
are pursued. The poor performance afforded by these schemes motivates an
agent-oriented control strategy in which authoritative figures, termed control
agents, are interspersed within the crowd and, similar to the technique of
feedback linearization, use knowledge of the system dynamics to issue signals
that propagate through the crowd to drive specific components of the state
to zero. It is shown that if these states are chosen judiciously then it follows
that a collection of other state signals are, themselves, zero. This realization
is used to develop a stability result for a simple crowd structure and this
result is, in turn, used as a template to develop similar results for crowds of
greater complexity. Simulations are used to verify the functionality of the
reported schemes and the advantages of using multiple control agents, instead
of a single control agent, are emphasized. While the mathematical study of
complex social phenomena, including crowds, is prefixed by an assortment of
unique challenges, the main conclusion of this thesis is that control theory is
a potentially powerful framework to study the underlying dynamics at play
in such systems.
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Chapter 1

Introduction

The complex biological underpinnings and multifaceted nature of the human
mind make quantifying a person’s behaviour, even in a restricted domain of
activity, a formidable pursuit. Not surprisingly, the study of social systems,
in which the behaviour of multiple people collectively define a social entity,
is especially challenging. That said, there are many instances where the
behaviour of groups has considerable bearing on the economic, political, or
social interests of both the comprising members and third parties alike. Con-
sequently, if engineering methods could be used to study crowd behaviour,
then it would seem natural that the results to emerge would have widespread
appeal. As an analytical tool, control theory has proven a remarkably pow-
erful construct for studying a broad array of systems. While many of these
systems are modeled using well-defined physical laws, e.g., electro-mechanical
systems, this impressive track record nevertheless begs the question, “Can
control theoretic techniques be used to study social phenomena?” It is in this
exploratory spirit that this thesis investigates the use of control theory as a
means to study and ultimately control the psychological behaviour of people
in a crowd.

Chapter 2 begins the aforementioned investigation by pursuing a dynamic
model of psychological crowd behaviour. A brief overview of crowd psychol-
ogy is presented before narrowing in on a well-known nineteenth-century
formulation of group behaviour: Gustav LeBon’s suggestibility theory. The
key elements of this formulation, most notably the idea that members of a
crowd become highly suggestible and readily assume the actions and atti-
tudes of their neighbours, is captured by a discrete-time nonlinear dynamic
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model. This model is, to the best of the author’s knowledge, the first of
its kind to focus exclusively on the psychological dynamics that drive crowd
behaviour, unlike the majority of existing crowd models, which focus instead
on the physical motion of crowds throughout a space. Moreover, while these
other formulations typically treat the crowd macroscopically as an aggre-
gate mass, the model used in this work explicitly accounts for each crowd
member’s individual psychological state and each interaction between crowd
members explicitly.

Chapter 3 develops the crowd control problem by providing a definition
for crowd stability, formalizing the control objectives, and introducing a nota-
tional system for representing a crowd. The primary objective is to stabilize
the crowd and ensure each member behaves in a calm and orderly manner,
though other aspects of performance, including the scalability and sensing
requirements of the control strategies reported, are also discussed. As a first
attempt to stabilize the dynamics, a linear observer-based output-feedback
controller and a collection of simple nonlinear control strategies are discussed.
The poor performance afforded by these schemes, in addition to the fact they
are highly impractical and affect change by overriding the dynamics rather
than working through social channels that exist within the model, motivate
an entirely new stabilization strategy based on the idea of a control agent,
that is, an authoritative figure that uses knowledge of the crowd’s state to
issue control signals with the intent of stabilizing the crowd.

Having formulated the crowd control problem, Chapter 4 considers a con-
trol strategy in which a single control agent is used to stabilize a queue, that
is a one-dimensional crowd in which each member has no more than two
neighbours. The control strategy employed is similar to feedback lineariza-
tion methods in that it relies on a priori knowledge of the crowd dynamics
and the ability to sense the entire state in order to issue signals that prop-
agate through the crowd to drive specific components of the state to zero.
This approach is then extended to develop stability results for queues con-
taining multiple control agents. It is shown that while the use of multiple
control agents increases the complexity involved in stabilizing a queue, doing
so allows for significant improvements with respect to several aspects of per-
formance. In Chapter 5, these multiple-control-agent strategies to stabilize a
queue are leveraged to develop stability results for a general crowd in which
a member may have two or more neighbours and, consequently, the social
network linking crowd members may be significantly more complex.
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Finally, Chapter 6 summarizes the prominent ideas of the thesis and
reflects on the feasibility of using control theory to study psychological crowd
behaviour. Also mentioned is an assortment of open research directions that
have arisen during the development of this thesis, but that on account of time
constraints, or their tangential nature, or both, have received only modest
deliberation.
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Chapter 2

Crowd Behaviour

2.1 A Brief History of Crowd Psychology

Psychological crowd theory deals with the thought processes, emotions, and
attitudes of crowds. The field rose to prominence in late nineteenth-century
Europe as a consequence of the masses rising against oppressive political
regimes. Seminal contributions were made by a number of intellectuals, in-
cluding Gustav LeBon, Scipio Sighele, and Gabriel Tarde. Early treatments
of the subject were characterized by their sensationalistic assertions and emo-
tionally charged rhetoric. Despite (or perhaps partly due to) the impassioned
treatment, crowd theory fell out of favour by the early 1900’s, but by the mid-
twentieth century, interest in the field was rekindled by social psychologists
eager to treat the subject with an intellectual scrutiny and scientific rigor it
had not received in the past. The field blossomed and today interest in crowd
psychology continues within both academic circles and popular culture. The
latter point is evidenced by a number of best-selling books (e.g., [4, 13]) that
examine the pervasive nature of group behaviour in various aspects of society,
and the former point is supported by a number of modern academic mono-
graphs, including [3, 5, 6, 7, 8, 9, 10, 11]. While these references present a
wide-ranging account of modern theories to explain collective behaviour, the
dynamic model that forms the basis of this work is rooted on a well-known
account put forth by Gustav LeBon [2] in the latter part of the nineteenth
century. LeBon’s ideas have been exploited by politicians (famous examples
include Hitler and Mussolini) and by the media for decades [2]. The deci-
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sion to focus exclusively on this particular formulation was made on account
of this model being relatively simple and having displayed enduring signif-
icance within the field; moreover, although the theory is imperfect, other
formulations are not without their own limitations.

2.2 Gustav LeBon’s Suggestibility Theory

LeBon founded his perspective of crowd behaviour on observations of group
activity made during the turbulent events of the French Revolution. As with
other early contributions, LeBon’s account in [2] has a sensationalistic flair
and his descriptions are entirely qualitative. He also adopted an expressive
free-flowing style that leads to his commentary having, at least at times, a
ranting and long-winded quality. These factors make the task of capturing
the key elements of LeBon’s assertions in a mathematical form a challenging
assignment, and one inevitably involving a degree of personal judgement. To
this end, the following is a list of those elements put forth by LeBon that, in
the author’s opinion, are obligatory requisites of any dynamic model striving
to capture the tenets of suggestibility theory:

(a) The Law of Mental Unity of Psychological Crowds: LeBon states that
people in a psychological crowd, who are not necessarily in close physical
proximity, form an entity with its own personality, mannerisms, and way of
thinking. LeBon stresses that these attributes are not an aggregate of the
associated traits of the comprising members, but rather those of an entirely
new entity and uses the analogy of chemical reactions producing substances
with properties entirely different from those of the initial reactants. To de-
scribe this phenomenon, LeBon uses the term the law of mental unity of
psychological crowds and relies on this idea to help explain his observation
that a person in a crowd can act in manner that is in stark contrast to their
typical conduct. LeBon makes a note that this tendency gives crowds an
infantile quality and makes them prone to exaggerated reactions with ten-
dencies similar to that of a person under hypnotic suggestion.

(b) Suggestibility: The most significant subconscious trait that drives
crowd behaviour is, according to LeBon, that of suggestibility. He states that
it is suggestibility that makes a crowd “hover in a state of expectant atten-
tion” and be “readily open to acting on any idea”[2]. LeBon argues that sug-
gestibility stems from a subconscious tendency to conform and deep-rooted
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desire to imitate. According to LeBon, people are especially suggestible to
words, phrases, and imagery that evoke strong sentiment and emotionally-
charged responses. For example, the ideas of freedom, democracy, and justice
elicit impassioned responses and tend to make a person more suggestible to
future propositions. Furthermore, LeBon mentions that these reactions can
be made all the more intense by repetition and reinforcement.

(c) Prestige: LeBon uses the term prestige to refer to a person’s ability
to influence the behaviour of neighbouring crowd members. For example,
a highly prestigious person will exert greater influence over the actions and
attitudes of neighbouring members as compared to a less prestigious person.
LeBon describes prestige as a “domination of the mind” that causes people
to be filled with a sense of “inexplicable astonishment,” and that “paralyzes
the ability to think”[2]. In this sense, LeBon argues that both prestige and
suggestibility are necessary for an idea to take root and spread among mem-
bers of a crowd. Specifically, a suggestible person will adopt an idea only if
the incentive to do so comes from a person having at least some prestige.

(d) Remote Factors: LeBon uses the term remote factors to account
for those intangible attributes of a crowd that determine how beliefs and
opinions propagate among members. Certainly, the list of remote factors is
long; however, a collection of the more pronounced factors include the race,
social customs, the historical period, past experiences, and the degree of
education of the members comprising the crowd. Remote factors reflect the
fact that while an idea may draw a particular strong reaction and spreads
rampantly among members of one crowd, the same notion may elicit a much
less pronounced response in a crowd made up of different members.

(e) Immediate Factors: According to LeBon, immediate factors are those
events that cause an idea to take shape and send an otherwise unassuming
group of people spiraling into the suggestibility-fueled mindset of a psycholog-
ical crowd. As mentioned, repeated exposure to words, phrases, and imagery
that appeal to a person’s sentiment are especially effective at evoking the
crowd mentality. LeBon is quick to point out that immediate factors may
be positive or negative, indicating crowds are capable of both positive and
negative action.
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2.3 An Example of Psychological Crowd

Behaviour

Psychological crowd behaviour can arise in a host of situations where peo-
ple are exposed to a common set of ideas, attitudes, and events and for
which there is some means of communication between members. These re-
quirements are in place, for example, whenever people convene at a common
venue, be it waiting for admission to a music concert, attending a social
demonstration, or shopping at a local market. While gatherings of this
sort are a ubiquitous occurrence of modern life, they nevertheless foster a
rich assortment of intriguing social phenomena. Specifically, crowds permit
the propagation of ideas, attitudes, and actions by using the social interac-
tions between the comprising members as a conduit for information exchange
[3, 6, 8].

LeBon provides various examples of crowd behaviour in [2]. To illustrate
how dynamic social behaviour can develop in a crowd, in this section we
consider the scenario in which avid music fans are patiently waiting out-
side a concert hall for admission to an event. United by their anticipation
for the show, individuals engage one another in conversation. In doing so,
they set up a social network in which ideas, attitudes, and the associated
actions circulate among the group. Now suppose an individual is alerted,
perhaps through a cellular phone call, that reports indicate the headline act
is nowhere to be found. Troubled by the development, this individual shares
the information with neighbouring fans, who in turn pass their views of the
subject onto their neighbours. Among the impassioned fans, conflicting view-
points, regarding whether the concert will proceed or have to be cancelled,
evolve and transmute with time. In this example, the remote factors include
the educational history, socioeconomic status, ethnic background, age, and
personal histories of the ticket holders. The immediate factor is the event
that initiates the psychological crowd mentality, in this case the unnerving
phone call made to one of the concert goers. In the case where the crowd is
composed of particularly demonstrative individuals, it is possible the original
rumor could incite aggressive and even hostile behaviour as it is disseminated.
While perhaps extreme, this scenario illustrates the notion that crowds sup-
port the propagation of ideas and attitudes and that in the right setting the
resultant behaviour can be dramatic.
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2.4 A Dynamic Model of Crowd Behaviour

The purely qualitative and open-ended nature of LeBon’s formulation make
it ill-suited to quantitative discussion and precludes mathematical analysis
entirely. To profit from any insight that control theory may be able to offer
to the study of crowd behaviour, we strive to capture the tenets of LeBon’s
suggestibility theory in a system theoretic form. To this end, the following
is one attempt to transmogrify the qualitative traits of Section 2.2 to a state
description of crowd behaviour. To begin this abstraction, the term agent
is introduced to refer to a member of the psychological crowd and the psy-
chological crowd itself is said to be composed of agents. This terminology
stresses the ability of a person to act and influence their environment through
social interactions with other crowd members. Additionally, the term is used
when discussing multi-agent systems, a field in which the author believes this
formulation of crowd behaviour fits naturally. It is worth reiterating that the
model we pursue focuses entirely on the psychological dynamics of a crowd
and we assume the position of each member, as determined by some order-
ing procedure, does not vary with time. Interpreting LeBon’s commentary,
we model the state of each agent using four signals, referred to as prestige,
action, delayed-action, and suggestibility, with each component described as
follows:

• Prestige of agent in position i: pi[k] > 0 is a measure of the ability
of the agent in position i to influence the behaviour of other agents.
Prestige is a positive quantity, as the concept of negative prestige has
no sensible connotation within LeBon’s model, and our future analysis
simplifies if we disallow the case where pi[k] = 0.

• Action of agent in position i: ai[k] is a quantification of the behaviour of
the agent in position i as it relates to acceptance of an idea (ai[k] > 0)
or its antitheses (ai[k] < 0). Action values for which |ai[k]| ≈ 0 are
indicative of mild acceptance of an idea or its opposite notion, and
are associated with a calm and orderly agent. Larger values of |ai[k]|
are indicative of more extreme degrees of acceptance, ranging from
devoted to frenetic in accordance with |ai[k]|. In the concert example
of Section 2.3, positive action may be associated with the belief the
headline act will perform, while negative action is therefore associated
with the belief the show will be cancelled.
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• Delayed action of agent in position i: bi[k] is the value of ai[k] one time
instant in the past. It is introduced so the dynamics may be expressed
in state form.

• Suggestibility of agent in position i: si[k] > 0 is a measure of the affinity
of the agent in position i to incorporate the behaviour of neighbouring
agents into their own behaviour, by mimicking the actions and conduct
of others. As with prestige, suggestibility is modeled as a positive
quantity.

We propose the following model, reported in [1, 12], to capture the psycho-
logical dynamics of the agent in position i1:

pi[k + 1] = cppi[k] + µpa,i|ai[k]| (2.1)

ai[k + 1] = caai[k] + µapa,is
2
i [k]

∑

Oj∈N (Oi)

di,jpj[k]aj [k] (2.2)

bi[k + 1] = ai[k] (2.3)

si[k + 1] = µs,iSαcsβi[k] (2.4)

βi[k] := µsa,i (ai[k] − bi[k])2 + µsap,i

∑

Oj∈N (Oi)

di,jpj[k]|aj [k]| +

µssp,i

∑

Oj∈N (Oi)

di,jpj [k] (sj [k] − si[k]) . (2.5)

In (2.1)–(2.5) the µ parameters are agent-specific positive gains used to
scale the contributions of the various social effects. In (2.4), α > 1 is a
growth constant and S > 0 is a nominal suggestibility value. The constants

1It should be noted that the dynamics reported in [1] and listed for completeness in
Appendix A are slightly different than those reported in [12], which correspond to (2.1)–
(2.5). Namely, the dynamics used in [1] represent an earlier model that we later slightly
modified to be, in our opinion, more in tune with LeBon’s ideas. More specifically, the
models differ only with respect a few terms in the respective suggestibility equations. The
majority of our results will be based on (2.1)–(2.5), but consistent with the chronology of
our work some of our early results are based on the model in [1]. We opted to include
these results in Example 2.4.1 and Sections 3.2-3.3, despite the fact they are predicated
on a different model, because they played a pivotal role in shaping the research and, once
again, the models are much more similar than they are distinct. In Chapters 4 and 5 we
deal exclusively with (2.1)–(2.5)
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cp, ca, and cs reside in the interval (0, 1) and capture the tendency of pi[k]
and ai[k] to decay towards zero and si[k] to approach µs,iS in the absence of
adequate social excitation. The quantity N (Oi) is the neighbour set of the
agent in position i and consists of the set of agents for which agent i has direct
interaction with through conversation, gesturing, or other social exchanges.
It is worth mentioning that this notation was adopted in favour of the more
natural Ni as it proves more appropriate in the context of the labeling system
that we introduce in a later section. The di,j terms are constants used to
weight the interactions between agents i and j and will typically be taken
as one for all di,j such that Oj ∈ N (Oi) and zero otherwise. In regard to
the time set used, (2.1)–(2.5) was developed as a discrete-time model since
in this application it is more natural to consider that sensors and actuators
measure and act in a periodic rather than a continuous-time manner.

We do not claim that the specific relations in (2.1)–(2.5) precisely model
the dynamics of people in a crowd. However, we believe the trends and cause-
effect relationships are consistent with LeBon’s observations. Specifically,
note that:

• The leftmost term on the right side of (2.1) is a decay term: it captures
the idea that a person’s prestige diminishes if they take no action or
have no opinion on a subject (i.e., ai[k] = 0). The second term in (2.1)
captures the idea that having greater action, be it positive or negative,
makes a person more influential and, therefore, more prestigious.

• Second, the leftmost term on the right side of (2.2) is a decay term: it
reflects the notion that if a person is not suggestible, or is in contact
only with neighbours that have either no prestige or no action, then
that person’s attitude tends toward zero, i.e., ai[k] → 0 as k → ∞. The
summation in (2.2) accounts for the trend that suggestible members ad-
just their action in accord with the prestige and action of neighbouring
agents. The suggestibility component of these terms, namely si[k], is
squared to reflect the heightened significance suggestibility has on the
evolution of action. Whether using a power of 2 is correct or not is not
of concern here; the intention is simply to account for the fact that,
according to LeBon, suggestibility plays a key role in the development
of action.

• Third, the suggestibility dynamics in (2.4) are an exponential function
of βi[k], with the relation for βi[k] specified in (2.5). The first term
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on the right side of (2.5) reflects the idea that dramatic changes in
action, from one time instant to the next, tend to make a person more
suggestible. The first summation in (2.5) captures the fact that merely
interacting with prestigious individuals also tends to make a person
more suggestible. The second summation in (2.5) captures Lebon’s idea
that the suggestibility of person i rises if they interact with members
who are more suggestible than they are and, conversely, declines if they
interact with members who are less suggestible than they are.

• Fourth, the remote factors enter (2.1)–(2.5) in the form of the various µ
parameters, the decay constants cp, ca, and cs, the nominal suggestibil-
ity value S, and the exponential growth constant α. The immediate
factors are modeled by the initial state of the crowd.

• As a last comment, observe that the interaction between suggestibility
and attitude in (2.2) and (2.4) reflects the unstable nature of crowds
so prominently asserted by LeBon.

Having proposed a dynamic model for crowd behaviour, it would be nat-
ural at this stage to validate (2.1)–(2.5) and ensure the dynamics are a faith-
ful representation of not only LeBon’s suggestibility theory, but documented
cases of crowd behaviour as well. However, given the qualitative nature of
LeBon’s teachings, a lack of existing experimental results, and the host of
ethical and logistic barriers one faces when attempting to gather new exper-
imental data, model validation is not only poorly defined, but impractical
and outside the scope of this thesis. In response, the following approach was
adopted: a range of values was determined for each parameter such that any
combination of parameter values residing in these regions provide what we
deem to be reasonable simulation results. While by no means model vali-
dation in a rigorous sense, the concessions made were deemed appropriate
given the inexplicit nature of the subject matter and the exploratory theme
of this thesis.

Example 2.4.1 To provide a sense of the dynamic behaviour contained in
the crowd dynamics reported in [1], Figure 2.1 illustrates the progression of
the prestige, action, and suggestibility states of each agent in a 100-agent
crowd arranged on a 10× 10 grid. For simplicity, the values of the µ param-
eters were chosen to be the same for all agents in the crowd and are equal to
(for all 1 ≤ i ≤ 100)
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µpa,i = 0.02295, µapa,i = 0.00553, µsa,i = 0.04346,

µssp,i = 0.04064, µsap,i = 0.04796, µs,i = 1.07062.

The decay constants and nominal suggestibility values used are equal to

cp = 0.95, ca = 0.55, cs = 0.75, S = 20.

For this simulation, it is assumed a person interacts only with those peo-
ple situated immediately adjacent to them, such that N (Oi) contains eight
agents for each person i except for those situated on either an edge or a
corner of the grid. The di,j values used are equal to the reciprocal of the
distance between person i and person j, i.e., 1 or 1/

√
2, for all di,j such that

Oj ∈ N (Oi) and zero otherwise. The initial conditions, shown in the first
row of the figure (time instant k = 0), corresponds to a crowd with almost
neutral attitude (|ai[0]| < 0.1) except for two people in the top row, for
which ai[0] ≈ −2. Consistent with the ideas emphasized by LeBon, and as
one may have expected given the interplay between (2.2) and (2.4), open-loop
simulations reveal that all components of the state quickly swell in magni-
tude as the negative attitudes of the two people spread to the whole crowd.
From a crowd control perspective, this scenario is representative of an unruly
horde and generally undesirable, since there is no assurance the crowd will
ultimately return to a calm and orderly state.

�
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PRESTIGE

k=0

10
ATTITUDE

±0.2
SUGGESTIBILITY

50

k=20

10 ±50 50

k=26

10 ±50 50

Figure 2.1: Open-loop response of the nonlinear plant dynamics in [1], show-
ing prestige, attitude, and suggestibility at various time instants. Blue in-
dicates positive numbers and red indicates negative numbers. The number
at the top right of each plot indicates the colour saturation value, e.g., the
attitude plot at k = 0 has maximum intensity for any agent with |ai[0]| ≥ 0.2.
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Chapter 3

Formulating the Crowd Control
Problem

This chapter is concerned with presenting the logistic details needed to define
the crowd control problem. We describe the general class of crowds that are
of interest and present a collection of notation and terminology to concisely
describe a crowd and pinpoint its key topological features. Given the unstable
nature of the crowd dynamics, special attention is allocated to expounding
our definition of exactly what it means to stabilize a crowd. This notion is
then used to guide the investigation of preliminary control strategies based on
both linearization methods and simple nonlinear heuristic schemes. The poor
performance and impractical nature of the associated controllers motivates
an entirely new approach to control. To this end, we introduce the concept of
a control agent as a human controller capable of effecting social change and
use this paradigm to formally define the crowd control problem investigated
in subsequent chapters.

3.1 Preliminaries

The crowds we consider are composed of n ≥ 2 agents, identified by a means
of ordering, to be presented shortly, as agent 1 through agent n. As we are
interested in dynamic crowd behaviour, it is assumed all agents have entered
the psychological crowd mindset and are, thus, subject to the dynamics in
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(2.1)–(2.5). The overall crowd state is taken as the collection of all agent
states and defined by

x[k] = [p1[k], . . . , pn[k], a1[k], . . . , an[k], b1[k], . . . , bn[k], s1[k], . . . , sn[k]]T ,
(3.1)

where pi[k], ai[k], bi[k], and si[k] are the prestige, the action, the delayed-
action, and the suggestibility of agent i at time k, respectively.

3.2 Equilibrium Points

For a general crowd, (2.1)–(2.5) can have numerous equilibrium points and,
on account of the complexity of the crowd dynamics, characterizing them
is arduous. If, instead, we assume that all systems parameters are cho-
sen uniformly, that all agents have equivalent state values in equilibrium
(i.e., pi,o = po, . . . , si,o = so, for i = 1 . . . n), that agents are positioned
at each point of an infinitely-large rectangle grid, so as to avoid fringing ef-
fects near the edges of the grid, and, finally, that each agent interacts with
only their immediate neighbours, such that each agents has precisely eight
neighbours, then the calculation of equilibrium points is greatly simplified
and reduces to finding the roots of a single third-order polynomial. Using
this approach and the parameters specified in Example 2.4.1 gives three equi-
librium points, listed in Table 3.1. The stability of each equilibrium point
may be evaluated using linearization methods as detailed in Appendix A.
Specifically, linearizing equations (2.1)–(2.5) about an equilibrium point, xo,
yields a system of the form ∆x[k + 1] = A · ∆x[k] where ∆x := x − xo and,
assuming n = 100, where A is 400× 400. For this selection of parameter val-
ues, the stability of each equilibrium point, as determined using linearization
methods, is summarized in Table 3.1; the equilibrium point corresponding
to ai[k] = 0 is asymptotically stable, while the two remaining equilibria are
unstable. Although our classification of equilibrium points relies on a num-
ber of simplifying assumptions, our approach makes it algebraically tractable
to acquire at least a degree of insight into the equilibrium characteristics of
(2.1)–(2.5) and, by determining equilibrium points about which to linearize,
allow us to, on at least some level, evaluate the feasibility of control strategies
based on a linear model of crowd behaviour.
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po ao bo so Stability
0 0 0 21.4124 stable

0.0260 0.0566 0.0566 21.4125 unstable
0.0260 -0.0566 -0.0566 21.4125 unstable

Table 3.1: The three equilibrium points of the open-loop system.

3.3 A First Attempt to Control the Crowd

It has been noted that the interplay between action and suggestibility in
(2.1)–(2.5) suggest the dynamics are inherently unstable, a suspicion sup-
ported by the explosive growth of crowd states witnessed in the simulations
of Example 2.4.1. Indeed, the equilibrium points of the system, summarized
in Table 3.1, confirm the crowd dynamics are unstable and the crowd states
swell in magnitude for the majority of initial conditions. Given this real-
ization, a natural recourse is to pursue stabilization schemes that ensures
x[k] assumes values representative of calm and orderly behaviour among
all agents. At this time, we propose an objective consistent with this vi-
sion and try to force, for any initial condition and for all i, ai[k] → 0,
pi[k] → 0, bi[k] → 0, and, si[k] → µs,iS. The system equations in (2.1)–
(2.5) imply this objective is equivalent to regulating just the action states,
a1[k], a2[k], . . . , an[k]. Hence, in terms of Figure 3.1, the objective is to force
y[k] → 0 where y[k] := [a1[k], . . . , an[k]]T . Given the social nature of the
problem, the sensors and actuators used deserve special mention:

• Sensing: The sensor is a person who observes the psychological con-
dition of the crowd. Of the state variables pi[k], ai[k], and si[k], it is
most realistic to assume that only ai[k], i.e., the action of agent i, can
be measured.

• Actuation: There are several plausible ways in which a control signal
can enter (2.1)–(2.5). Only one scheme is considered here, namely the
scenario in which the controller (also a person) directly influences an
agent’s action. In this case, equation (2.2) assumes the form:
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human actuator nonlinear plant
v

controller

y

human sensor

−

Figure 3.1: A block diagram showing the plant, with input v := [v1, . . . , vn]T

and output y := [a1, . . . , an]T , connected with a controller. Sensing and
actuation are performed by a human.

ai[k+1] = caai[k]+µapa,is
2
i [k]

∑

Oj∈N (Oi)

αi,jpj[k]aj [k]+vi[k], i = 1, . . . , n,

(3.2)
where vi[k] is the control signal affecting the action of agent i.

3.3.1 A Control Scheme for a Linearized Crowd Model

As a first attempt to stabilize the crowd dynamics, we consider an observer-
based pole-placement controller for a linearized plant model, as shown in
Figure 3.2. With the goal of driving all action states to zero, it is natural
to linearize about the first equilibrium point in Table 3.1. However, doing
so results in an overly simplified model that fails to account for many of the
nonlinear terms present in the crowd dynamics. As such, we elect, instead,
to linearize about the second equilibrium point in Table 3.1, for which the
resultant linear time-invariant plant has the form (see Appendix A):

∆x[k + 1] = A · ∆x[k] + B∆v[k] (3.3)

∆y[k] = C∆x[k]. (3.4)

The controller used in Figure 3.2 is based on a traditional Luenberger ob-
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linear plant

K observer
∆x̂

∆y
− ∆v

Figure 3.2: An observer-based state-feedback controller with ∆v := v − vo,
∆y := y − yo, and ∆x := x − xo.

server of the form:

∆x̂[k + 1] = Ax̂[k]+Bv[k]+H(∆y[k]− C∆x̂[k]) (3.5)

∆v = −K∆x̂[k]. (3.6)

To specify the controller gain matrices K and H , standard pole-placement
algorithms were used to place the 800 closed-loop poles (i.e., the eigenvalues
of A − BK and A − HC) at random locations between 0.4 and 0.6 on the
real axis. Snapshots from a typical simulation run are provided in Figure 3.3.
Although the controller succeeds in regulating action, the transient perfor-
mance is notably poor and, even more concerning, the linear controller relies
on driving the perturbed components of various prestige signals to negative
values, a mechanism which, given the small positive value of the second equi-
librium point and the condition that prestige is positive, is feasible only for a
very small region of attraction. Finally, simulations reveal the observer-based
pole-placement scheme is highly sensitive to measurement noise. The lack
of success afforded by linearization schemes suggest it may be worthwhile to
explore control schemes that can be applied directly to the nonlinear plant
dynamics.

3.3.2 Heuristic Nonlinear Control Schemes

In this subsection, we consider two nonlinear schemes inspired by their heuris-
tic sensibility. Each method takes note of the fact that the control signal in
(3.2) appears directly in the action state equation of each agent. To this end,
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PRESTIGE

k=0
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ATTITUDE

±1
SUGGESTIBILITY

10

k=22

10 ±1 10

k=60

10 ±1 10

Figure 3.3: Closed-loop response of the (linearized) crowd using the observer-
based state-feedback controller (3.5)–(3.6). The signals shown are perturba-
tion signals, i.e., ∆p, ∆a, and ∆s.

the following control law has intrinsic appeal:

vi[k] = −ai[k], i = 1, . . . , n. (3.7)

In this approach, the controller tries, at each time instant, to drive the ac-
tion state of each agent to zero by canceling the action value of each agent
with their action value from the previous time instant. The structure of
(3.7) results in (3.2) assuming the form of (2.2) with ca replaced by ca − 1.
Linearization arguments readily conclude the controller locally stabilizes the
equilibrium point corresponding to ai[k] = 0, for all i. Simulation results,
such as those in Figure 3.4, indicate that the region of attraction is greatly
increased compared to that of the open-loop system. From a practical stand-
point, the control scheme is, however, rather resource intensive: assuming a
controller is capable of issuing a single control signal at each time instant,
this scheme requires n people to act as actuators, one for each agent in the
crowd! This is an extravagant use of resources and one which can potentially
be made more resource-effective by focusing the control action solely on the
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PRESTIGE

k=0

0.05
ATTITUDE

±0.2
CONTROL SIGNAL

±0.2

k=2

0.05 ±0.2 ±0.2

k=6

0.05 ±0.2 ±0.2

Figure 3.4: Closed-loop response of the (nonlinear) system using the con-
troller (3.7). The third column shows the control signal, vi[k].

most outspoken agent, that is the agent with the largest action magnitude.
With this vision in mind, introduce

m[k] := min{arg maxi|ai[k]|},

and the second heuristic control scheme:

vi[k] =

{

0 if i 6= m[k]
−ai[k] if i = m[k].

(3.8)

Simulations of (3.8), such as those in Figure 3.5, reveal that this scheme
works, but with a smaller region of operation as compared to (3.7); proving
that the result works is difficult on account of the switching nature of the
controller.
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PRESTIGE

k=0

0.05
ATTITUDE

±0.2
CONTROL SIGNAL

±0.2

k=1

0.05 ±0.2 ±0.2

k=5

0.05 ±0.2 ±0.2

Figure 3.5: Closed-loop response of the (nonlinear) system using the con-
troller (3.8). The third column shows the control signal, vi[k].

Despite the appeal of (3.8) as a simple control scheme, it is discouraging
for two reasons: first, it relies on overriding the dynamics in (3.2), an assump-
tion that stands in obstinate defiance of LeBon’s ideas and the social nature
of group behaviour emphasized in the development of (2.1)–(2.5); second,
(3.8) requires a human controller to scamper about the crowd while target-
ing the most outspoken agent at each time instant. These attributes leave
(3.8) afflicted by a strong lack of practicality and suggest a more appropri-
ate control strategy would employ a radically different, and more practical,
paradigm in keeping with the social nature of the crowd control problem.

3.4 Introducing the Control Agent and

Problem Formulation

In response to the weaknesses of the control schemes in the previous section,
we introduce the control agent as a human capable of effecting social change
by working directly with the nonlinear crowd dynamics, a wholly more fea-
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sibly paradigm as it relates to both the social nature of crowd behaviour
and controller implementation. Below we describe in more detail the char-
acteristics of a control agent and formulate the problem addressed in this
thesis.

The problem we pursue considers a crowd of n ≥ 2 agents that have
entered the psychological mindset and are thus subject to the dynamics in
(2.1)–(2.5). As a control tool, we position m ≥ 1 control agents through-
out the crowd and task these individuals with maintaining orderly behaviour
among the agents. We view a control agent as an authoritative figure, such as
a security guard or police officer, who has a disposition towards preserving
decorum, has keen judgment, and possesses the self-composure and retro-
spective psyche needed to resist succumbing to the crowd mentality. Given
these traits, the control agent is modeled as being able to sense x[k] and
use this knowledge alongside an understanding of (2.1)–(2.5) to consciously
affect the behaviour of agents in the crowd1. In a later section, we describe
various schemes to refer to specific members of the crowd, including control
agent i. For now, we reflect the aforementioned attributes by assigning the
following dynamics to control agent i:

pi[k] = p̂i (3.9)

ai[k] = ui[k] = ui (x[k]) (3.10)

si[k] = 0. (3.11)

These three equations define the functionality of each control agent. The
prestige equalling the constant p̂i > 0 in (3.9) attests to a control agent
maintaining a constant level of influence. In (3.10), it is assumed control
agent i can set its action state, ui[k], to any desired value in order to affect
the behaviour of agents in the crowd. The functional dependence of ui[k]
on x[k] indicates the control agent can sense the entire state and that the
action of a control agent is based on the behaviour of agents in the crowd.
Finally, si[k] equalling zero in (3.11) signifies the control agent is impervious
to suggestion and acts as an individual, rather than a member of the psy-
chological crowd. From a control perspective, the control agent introduces
the familiar concept of feedback by using knowledge of the system’s state to
modify the system output. Once again, the roles of both sensor and actuator

1We recognize that, as mentioned earlier, it is not realistic to measure the entire state;
however, such an assumption is necessary at this stage.
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are performed by people, specifically the control agents themselves, a more
well-defined and practical controller compared to the preliminary renditions
of Sections 3.3.1 and 3.3.2.

Previously, we had argued that given the unstable nature of (2.1)–(2.5),
a natural objective is to stabilize the crowd dynamics and ensure each agent
acts in a calm and orderly manner. However, we placed no restrictions on
the controllers used to achieve this objective. Having introduced the notion
of a control agent, we refine our earlier notion of stability and present the
definition of stability used throughout the remainder of this thesis:

Definition 3.4.1 A crowd composed of n agents and m control agents is
defined to be C (λ)–stabilizable, for integer λ > 0, if there exist m causal
control laws, each of the form (3.9)–(3.11), capable of driving, from any
initial state x[0], the action state of all agents to zero in no more than λ
time instants and subsequently holding all action states at zero. If such a
collection of control laws is implemented, the crowd is said to be C (λ)–stable
or C (λ)–stabilized and the control laws, C (λ)–stabilizing. The integer λ is
called the stabilization time. �

Notice once again that our definition of stability addresses only the action
states of agents in the crowd. However, it follows from (2.1)–(2.5) that if the
action of all agents is zero, pi[k] will tend to zero asymptotically and si[k]
will approach µs,iS for each agent. Hence, the notion of C (λ)–stability is
consistent with state signals remaining bounded and all agents acting in a
calm and orderly manner. The control objective of this thesis may, therefore,
be stated succinctly as developing a set of C (λ)–stabilizing control laws for a
crowd comprised of n agents and m control agents. Given the discrete nature
of the psychological dynamics in (2.1)–(2.5), our control objective amounts
to seeking a dead-beat response with respect to the collection of all agent
action states.

While the definition of C–stability involves driving the action state of
all agents in the crowd to zero, the following definition is concerned with a
specific agent having zero action:

Definition 3.4.2 Agent i is said to be zeroed for k ≥ k̃ if the action state
of agent i is zero for k ≥ k̃ (i.e., ai[k] = 0, ∀k ≥ k̃). �
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The concepts of C (λ)–stability and a zeroed agent are clearly related by the
fact that a crowd is C (λ)–stabilized if and only if all agents in the crowd are
zeroed for all times greater than or equal to λ.

3.5 Notation and Terminology

This section presents a collection of notation and terminology appropriate
for describing a crowd’s key topological features. We begin by using the
symbols O and X to refer to a generic agent and a generic control agent,
respectively. As a further classification aid, the members that comprise a
crowd are categorized into two groups: the set of n agents and the set of
m control agents, denoted by O = {O1, . . . , On} and X = {X1, . . . , Xm},
respectively. The structure of the social network through which members
interact is described by the aggregate collection of neighbour sets, denoted,
henceforth, by N = {N (O1) , . . . ,N (On) , N (X1) , . . . ,N (Xm)}. Using
just these quantities, a crowd C may be completely described by the triple
C = (O,X ,N ).

As a simple illustration of how we use the newly-introduced notation
and how we graphically display a crowd, we say the crowd in Figure 3.6 is
composed of 15 members: 12 agents and 3 control agents. The social network
through which members communicate is represented by the edges connecting
the various members. That is, Oj ∈ N (Oi) if and only if there is an edge
connecting Oj and Oi in the figure. For example, the neighbour set of agent
O6 in Figure 3.6 is N (O6) = {O3, O7, O8}.

Queues, that is one-dimensional crowd structures, may be depicted in a
similar manner, as illustrated in Figure 3.7. In this case, the queue consists
of six agents, located, according to a left-to-right enumeration starting from
zero, in positions 1, 2, 3, 5, 6, and 8, and three control agents, located in posi-
tions 0, 4, and 7. Given all members of a queue have exactly two neighbours,
aside from members situated at either end of the queue which have only
a single neighbour, queues possess considerable structure and we distill the
information content of Figure 3.7 and represent the queue symbolically as

XOOOXOOXO. (3.12)
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Figure 3.6: A simple crowd composed of 12 agents and 3 control agents

Within a queue, we use the notation Oi and Xj to denote the agent located
in position i and the control agent located in position j, respectively. When
using this subscript notation, the queue in (3.12) may be rewritten as

X0O1O2O3X4O5O6X7O8. (3.13)

Subscript notation is also useful for conveniently describing the neighbour
set of agents in a queue. For example, the neighbour set of agent Oi in the
queue X0O1 . . . On is given by

N (Oi) =







{X0, O2} for i = 1
{Oi−1, Oi+1} for i = 2, . . . , n − 1

{On−1} for i = n,
(3.14)

while the neighbour set of the control agent in the queue is N (X0) = {O1}.
Occasionally, it is useful to explicitly refer to a particular agent or control
agent in the queue relative to other agents or control agents, respectively.
To this end, the notation Oi and Xj is used to refer to the ith agent and
jth control agent, based on an enumeration starting from one at the left
end of the queue of all agents and control agents, respectively. When using
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Figure 3.7: A simple queue composed of 6 agents and 3 control agents

superscript notation, the queue in (3.12) may be rewritten as

X1O1O2O3X2O4O5X3O6. (3.15)

To concisely represent groupings of n̄ adjacent agents we use the notation Ō
and, when necessary, indicate the number of members that comprise such a
grouping using the notation Ō (n̄). Using this scheme and subscript notation,
the queue in (3.12) may be written as

X0Ō (3)X4Ō (2)X7Ō (1) . (3.16)

Finally, the notational systems we have introduced may be used interchange-
ably, depending on the information that is to be conveyed. For example,
two of the many possible representations, in addition to representations pro-
vided in (3.12)–(3.16), for the queue in (3.12) include X0Ō (3)X4O5O

5XO6

and X1O1O
2O3X2Ō (2)X3O6. While there are numerous ways to describe a

queue, particularly as the number of members gets large, we make an asserted
effort to use the aforementioned notational system sparingly, employing the
most basic representation that suffices to communicate the intended infor-
mation.

In two-dimensional crowds, the social network describing the interac-
tion between crowd members may contain multiple social channels or paths
through which ideas and actions propagate. This is a perception that has
considerable bearing on stabilization strategies of Chapter 5 and one worth
formalizing in greater depth:

Definition 3.5.1 hg

(a) The path ℓj,k is a sequence of distinct crowd members consisting of a
single control agent and one or more agents, such that the sequence
begins with Xj, terminates with Ok, and adjacent members of the
sequence are neighbours of one another.
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(b) The length of path ℓj,k is denoted by |ℓj,k| and equals the number of
agents in ℓj,k, excluding the control agent.

(c) In general, there may be multiple paths, still finite in number, link-
ing Xj with Ok. In this case, we define the collection of all such
paths, arranged by path length, as Lj,k = {ℓ1

j,k, ℓ
2
j,k, ℓ

3
j,k, . . .}, where

ℓ1
j,k, ℓ

2
j,k, ℓ

3
j,k . . . are paths from Xj to Ok and |ℓ1

j,k| ≤ |ℓ2
j,k| ≤ |ℓ3

j,k|, etc.

(d) The set of path lengths corresponding to paths from Xj to Ok is
|Lj,k| = {|ℓ1

j,k|, |ℓ2
j,k|, |ℓ3

j,k|, . . .}.
(e) The set of paths from all of the m control agents to Ok is defined by

Lk := L1,k ∪L2,k ∪ · · ·∪Lm,k and the set of path lengths from all of the
m control agents to Ok by |Lk| := |L1,k| ∪ |L2,k| ∪ · · · ∪ |Lm,k|.

�

Example 3.5.2 To illustrate the ideas of Definition 3.5.1, consider the crowd
of Figure 3.6 and the set of paths from X1 to O6. In this case, there are three
paths from X1 to O6, namely

ℓ1
1,6 = {X1, O1, O2, O3, O6}, (3.17)

ℓ2
1,6 = {X1, O1, O2, O3, O5, O7, O6}, (3.18)

ℓ3
1,6 = {X1, O1, O2, O3, O5, O7, O8, O6}, (3.19)

which have lengths of 4, 6, and 7, respectively. Therefore, |L1,6| = {4, 6, 7}.
Similarly,

ℓ1
2,6 = {X2, O9, O10, O8, O6}, (3.20)

ℓ2
2,6 = {X2, O9, O10, O8, O7, O6}, (3.21)

ℓ3
2,6 = {X2, O9, O10, O8, O7, O5, O3, O6}, (3.22)

ℓ1
3,6 = {X3, O4, O5, O3, O6}, (3.23)

ℓ2
3,6 = {X3, O4, O5, O7, O6}, (3.24)

ℓ3
3,6 = {X3, O4, O5, O7, O8, O6}, (3.25)

so that L6 = {ℓ1
1,6, ℓ

2
1,6, ℓ

3
1,6, ℓ

1
2,6, ℓ

2
2,6, ℓ

3
2,6, ℓ

1
3,6, ℓ

2
3,6, ℓ

3
3,6} and |L6| = {4, 5, 6, 7}.

�
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Figure 3.8: A set of allocation pairings for the crowd in Figure 3.6. The
allocation pairings shown are (X1 → O6), (X2 → O8), and (X3 → O7).

The control strategies we employ rely on each control agent targeting a
particular agent, as described by the following definition:

Definition 3.5.3 The notation (Xj → Ok) is used to denote that Xj is
targeting Ok by attempting to drive its action state to zero. We say that
(Xj → Ok) is an allocation pairing because it describes how Xj allocates its
effort, i.e., by targeting Ok instead of another agent. �

Figure 3.8 illustrates one possible set of allocation pairings for the simple
crowd in Figure 3.6. Having introduced the concept of an allocation pairing,
the definition of a target set follows naturally:

Definition 3.5.4 The target set is the subset of agents which are targeted
by one or more control agents. �

For example, the target set associated with the set of allocation pairings
shown in Figure 3.8 is {O6, O7, O8}.
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Chapter 4

One-Dimensional Crowds:
Stabilizing a Queue

This chapter describes a control law that C–stabilizes a class of queues. We
begin by considering a control law to C–stabilize the queue X0O1 · · ·On and
build upon this result to develop stability results for a broader class of queues.
In turn, these results are extended in Chapter 5 to develop stability results for
a general class of crowds. Referring to the queue X0O1 · · ·On, we develop our
results progressively through a series of three propositions: Proposition 4.2.1
establishes that the action state ai[k + i] has rich structure with respect to
u0[k]. Proposition 4.2.2 extends this result by certifying that ai[k + i] can be
driven to zero by appropriate selection of u0[k]. Proposition 4.2.3 investigates
the implications of holding the action of the rightmost agent at zero indef-
initely on other agents in the queue. Finally, Propositions 4.2.2 and 4.2.3
are leveraged in Theorem 4.2.4 to yield the main stability result. Central to
the arguments that follow is an appreciation for the temporal structure with
which u0[k] propagates through the queue. To gain insight into this paradigm
it is useful to first consider the case where n = 2, for which enumeration of the
agent states is algebraically tractable. Finally, to limit algebraic complexity,
we assume throughout the remainder of this thesis that all nonzero di,j values
in (2.1)–(2.5) are equal to one, though the analysis is equally applicable for
any viable di,j.
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4.1 The Queue X0O1O2

Consider the simple queue X0O1O2 and the goal of driving the action state
of the last agent to zero at time k = 2, i.e., we desire a2[2] = 0. Given the
queue structure, X0 cannot affect the state of O2 directly, but only indirectly
by issuing control signals to O1 that subsequently influence O2 through the
interaction between the two agents. Due to the small size of the queue being
considered, it is possible to enumerate the relevant state signals and study
the algebraic forms that emerge. To this end, the state of O1 at time k = 1
may be calculated using (2.1)–(2.5) and is given by:

p1[1] = cpp1[0] + µpa,1 |a1[0]| (4.1)

a1[1] = caa1[0] + µapa,1s
2
1[0] (p̂0u0[0] + p2[0]a2[0]) (4.2)

s1[1] = µs,1Sαcsβ1[0] (4.3)

β1[0] = µsa,1 (a1[0] − b1[0])2 − µssp,1p̂0s1[0] + µssp,1p2[0] (s2[0] − s1[0]) +

µsap,1 (p̂ |u0[0]| + p2[0] |a2[0]|) . (4.4)

Similarly, the state of O2 at time k = 1 is given by:

p2[1] = cpp2[0] + µpa,2 |a2[0]| (4.5)

a2[1] = caa2[0] + µapa,2s
2
2[0]p1[0]a1[0] (4.6)

s2[1] = µs,2Sαcsβ2[0] (4.7)

β2[0] = µsa,2 (a2[0] − b2[0])2 + µssp,2p1[0] (s1[0] − s2[0]) +

µsap,2p1[0] |a1[0]| . (4.8)

At time k = 1, the term u0[0] has no effect on O2, as illustrated by the
absence of u0[0] in (4.5)–(4.8). Rather, the implications of u0[0] on O2 are
experienced at time k = 2, at which point

a2[2] = caa2[1] + µapa,2s
2
2[1]p1[1]a1[1]. (4.9)

Substituting (4.1), (4.2), (4.6), and (4.7) in (4.9) permits a2[2] to be written
entirely in terms of system parameters and agent states at time k = 0 through
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the expression

a2[2] = c2
aa2[0] + caµapa,2s

2
2[0]p1[0]a1[0] + µapa,2µ

2
s,2S

2α2csβ2[0]×
(cpp1[0] + µpa,1 |a1[0]|) ×

(

caa1[0] + µapa,1s
2
1[0] (p̂0u0[0] + p2[0]a2[0])

)

.

The coefficient of u0[0] in the above relation, namely the already rather
lengthy expression µapa,2µ

2
s,2S

2α2csβ2[0] (cpp1[0] + µpa,1 |a1[0]|) µapa,1s
2
1[0]p̂0, con-

sists of system parameters and positive functions of the agent states at time
k = 0. This implies a2[2] is a positively sloped linear function of u0[0] and
may be driven to any real value by appropriate selection of u0[0]. Specifically,
to force a2[2] to zero we require

u0[0] = − c2
aa2[0] + caµapa,2s

2
2[0]p1[0]a1[0]

µapa,2µ
2
s,2S

2α2csβ2[0] (cpp1[0] + µpa,1 |a1[0]|)µapa,1s
2
1[0]p̂0

−

caa1[0]

µapa,1s
2
1[0]p̂0

− p2[0]a2[0]

p̂0

.

Furthermore, by generalizing to time k, it is possible to determine the ap-
propriate value of the control signal at time k needed to ensure a2[k + 2] is
zero. In the event the action state of the rightmost agent is held at zero in-
definitely, we may use the crowd dynamics to draw an interesting conclusion
about the action of O1. Specifically, assume a2[k] = 0 for all k ≥ 2. In this
case, the action state equation of O2 assumes the form

a2[k + 1] = 0 = µapa,2s
2
2[k]p1[k]a1[k], k ≥ 2. (4.10)

Given s2[k] and p1[k] are positive at all times, equality in the above relation
necessitates a1[k] = 0 for k ≥ 2; hence, there exists a control law, (3.9)–
(3.11), capable of C (2)–stabilizing the queue X0O1O2.

In summary, by explicitly propagating u0[0] through the queue dynamics,
an equation suitable for determining the causal control law needed to drive
a2[k] to zero for k ≥ 2 may be developed and, moreover, a2[k] = 0 for k ≥ 2
also implies a1[k] = 0 for k ≥ 2, i.e., the queue is C (2)–stabilized. However,
in developing this result, for a relatively small queue, considerable algebraic
complexity has emerged.
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4.2 The Queue X0O1 · · ·On

To extend the results of Section 4.1 to larger queues of the form X0O1 · · ·On

it is necessary to make the most of the modest structure present in (2.1)–
(2.5). To this end, the following proposition exploits the fact that the terms
belonging to the summation in (2.2) are linear with respect to the action
state of neighbouring agents:

Proposition 4.2.1 Consider the queue X0O1 · · ·On. For i = 1, . . . , n and
k ≥ 0 the action state of agent Oi at time k+ i may be expressed in the form

ai[k + i] = au0

i [k + i] + au0

i [k + i]u0[k], (4.11)

where au0

i [k+i] and au0

i [k+i] are both functions of only x[k] and in particular
are independent of u0[k]. Furthermore, the term au0

i [k + i] is nonzero. �

Proof: From (2.2), the action state of agent O1 at time k + 1 is
given by caa1[k]+µapa,1s

2
1[k] (p̂0u0[k] + p2[k]a2[k]). Defining µapa,1s

2
1[k]p̂0 and

caa1[k] + µapa,1s
2
1[k]p2[k]a2[k] as au0

1 [k + 1] and au0

1 [k + 1] respectively and
noting that p̂0 and s1[k] are positive, (4.11) is immediately confirmed for
i = 1. Proceeding along inductive lines, for some ℓ ∈ [1, n − 1], assume
the proposition statement is true for i = ℓ, which was verified for the base
case ℓ = 1 above. For ℓ ∈ [1, n− 2] it follows from the action-state update
equation of agent Oℓ+1 and the induction assumption that

aℓ+1[k + ℓ + 1] = caaℓ+1[k + ℓ] + µapa,ℓ+1s
2
ℓ+1[k + ℓ] × (pℓ[k + ℓ]

(

au0

ℓ [k + ℓ]+

au0

ℓ [k + ℓ]u0[k]) + pℓ+2[k + ℓ]aℓ+2[k + ℓ]).

The above expression has the form in (4.11) for i = ℓ + 1 with:

au0

ℓ+1[k + ℓ + 1] := µapa,ℓ+1s
2
ℓ+1[k + ℓ]pℓ[k + ℓ]au0

ℓ [k + ℓ] (4.12)

au0

ℓ+1[k + ℓ + 1] := caaℓ+1[k + ℓ] + µapa,ℓ+1s
2
ℓ+1[k + ℓ]×

(

pℓ[k + ℓ]au0

ℓ [k + ℓ] + pℓ+2[k + ℓ]aℓ+2[k + ℓ]
)

.
(4.13)

Repeating this procedure for ℓ = n−1 yields an expression for au0

ℓ+1[k + ℓ+1]

identical to that in (4.12), while the expression for au0

ℓ+1[k + ℓ + 1] is equal to
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the relation in (4.13) with the term µapa,ℓ+1s
2
ℓ+1[k + ℓ]pℓ+2[k + ℓ]aℓ+2[k + ℓ]

removed.

Since u0[k] propagates through the queue, in that it influences agent
states, at a rate no faster than one agent per discrete time interval, all pres-
tige, action, and suggestibility states of agents Oℓ+1 and, for ℓ < n− 1, Oℓ+2

are independent of u0[k] at time k + ℓ. Furthermore, from (2.1), the prestige
of agent Oℓ is a function of this agent’s prestige and action at the previous
instant and therefore pℓ[k + ℓ] is also independent of control signal u0[k].
Hence, for ℓ ∈ [1, n − 1], aℓ+1, aℓ+2, sℓ+1, pℓ, and pℓ+2 in the relations for
au

ℓ+1[k + ℓ +1] and au
ℓ+1[k + ℓ + 1] are independent of u0[k]. By the induction

assumption, au0

ℓ [k + ℓ] and au0

ℓ [k + ℓ] are independent of u0[k] and it follows
that au0

ℓ+1[k + ℓ + 1] and au0

ℓ+1[k + ℓ + 1] are independent of u0[k].

Next, by the induction assumption, au0

ℓ [k + ℓ] and au0

ℓ [k + ℓ] are exclusive
functions of x[k]. Other signals appearing in the relations for au0

ℓ+1[k + ℓ + 1]

and au0

ℓ+1[k+ ℓ+1] can be expressed in terms of x[k] by propagating elements
of the state at time k through the queue dynamics and it follows that au0

ℓ+1[k+

ℓ + 1] and au0

ℓ+1[k + ℓ + 1] can be viewed as exclusive functions of x[k].

Finally, again by the induction assumption, au0

ℓ [k + ℓ] is nonzero. Since
sℓ+1[k + ℓ] and pℓ[k + ℓ] are positive it follows that au0

ℓ+1[k + ℓ + 1] in (4.12)
is also nonzero.

This series of results confirm the proposition statement is true for i = ℓ+1.
It follows from induction that for i = 1, . . . , n and k ≥ 0 the action state of
agent Oi may be expressed as au0

i [k + i] + au0

i [k + i]u0[k] where au0

i [k + i] and
au0

i [k + i] are both functions of only x[k]; moreover, au0

i [k + ℓ] is nonzero.�

Proposition 4.2.1 may be used to conclude that ai[k + i] can be driven to
zero by appropriate selection of u0[k]:

Proposition 4.2.2 Consider the queue X0O1 · · ·On. For i = 1, . . . , n and
k ≥ 0 there exists a causal, state-feedback control law, (3.9)–(3.11), capable
of driving ai[k + i] to zero. �

Proof: It follows from (4.11) in Proposition 4.2.1 that for i = 1, . . . , n
and k ≥ 0, ai[k + i] may be written in the form

ai[k + i] = au0

i [k + i] + au0

i [k + i]u0[k], (4.14)
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where au0

i [k + i] and au0

i [k + i] are both independent of u0[k] and au0

i [k + i] is
nonzero. Since (4.14) is linear in u0[k], the action state of agent Oi at time
k + i may be driven to zero by selecting

u0[k] = −au0

i [k + i]

au0

i [k + i]
. (4.15)

From Proposition 4.2.1, au0

i [k + i] and au0

i [k + i] are functions of only x[k];
hence, u0[k] in (4.15) depends only on x[k] and (3.9)–(3.11) may be regarded
as a causal, state-feedback controller.�

The following proposition investigates the implications of holding the ac-
tion state of the rightmost agent in the queue, namely agent On, at zero
indefinitely. Specifically, holding an[k] at zero for k ≥ k̃ ≥ 0 is shown to
imply an−1[k], . . . , a1[k] are also zero for k ≥ k̃:

Proposition 4.2.3 Consider the queue X0O1 · · ·On. Let k̃ ≥ 0 denote an
instant in time. If the action state of On is sustained at zero for all k ≥ k̃
then the action state of each agent in the queue is zero for all k ≥ k̃. �

Proof: As indicated in the proposition statement, consider the scenario
in which the action state of the rightmost agent in the queue is zero for k ≥ k̃.
The implications on other agents in the queue may be inferred through an
inductive argument. To this end, for some ℓ ∈ [2, n], assume ai[k] = 0 for
all i ≥ ℓ and k ≥ k̃. This condition is true for the base case in which ℓ = n.
The action-state-update equation of agent Oℓ gives

aℓ[k + 1] = caaℓ[k] + µapa,ℓs
2
ℓ [k]

∑

Oj∈N (Oℓ)

pj[k]aj [k].

From the induction assumption, aℓ[k] = 0 for k ≥ k̃, and

0 = µapa,ℓs
2
ℓ [k]

∑

Oj∈N (Oℓ)

pj[k]aj [k], k ≥ k̃. (4.16)

In the event ℓ = n, the neighbour set N (Oℓ) is simply {Oℓ−1} and (4.16)
reduces to

0 = µapa,ℓs
2
ℓ [k]pℓ−1[k]aℓ−1[k], k ≥ k̃. (4.17)
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Alternatively, if ℓ 6= n, N (Oℓ) = {Oℓ−1, Oℓ+1}; however, it follows from the
induction assumption that aℓ+1[k] = 0 for k ≥ k̃, and (4.16) once again
reduces to (4.17). Since sℓ[k] and pℓ−1[k] are positive, equality in (4.17)
necessitates aℓ−1[k] = 0 for k ≥ k̃. This result establishes that ai[k] = 0
for i ≥ ℓ − 1 and k ≥ k̃. It follows from induction that ai[k] = 0 for
i = 1, . . . , n and k ≥ k̃, implying that if an[k] can be held at zero for k ≥ k̃
then the action states an−1[k], . . . , a1[k] are also zero for k ≥ k̃.�

Propositions 4.2.2 and 4.2.3 can be used to yield a stability result for
queues under the supervision of a single control agent:

Theorem 4.2.4 There exists a control law, (3.9)–(3.11), that C (n)–stabilizes
the queue X0O1 · · ·On. �

Proof: From Proposition 4.2.2 the causal, state-feedback controller
of the form (3.9)–(3.11) with (3.10) given by (4.15) for i = n and k ≥ 0,
specifically

u0[k] = −au0

n [k + n]

au0

n [k + n]
, k ≥ 0, (4.18)

results in an[k] = 0 for k ≥ n. For this control law, Proposition 4.2.3 man-
dates ai[k] = 0 for i = 1, . . . , n and k ≥ n. Therefore, the queue X0O1 · · ·On

is C (n)–stabilized using (3.9)–(3.11) with (3.10) given by (4.18).�

4.3 Computational Issues for the Queue

X0O1 · · ·On

While Theorem 4.2.4 guarantees the existence of a C (n)–stabilizing control
law, it does not explicitly address a practical approach to calculate u0[k].
Namely, Theorem 4.2.4 establishes that the queue X0O1 · · ·On may be C (n)–
stabilized using the result in (4.18); however, evaluation of (4.18) directly
amounts to an enumerative approach that, as discussed in Section 4.1, is
unwieldy for all but the smallest of queues. Alternatively, here we consider a
recursive method to compute u0[k] that is well-suited to numeric evaluation.
Development of this approach requires no more than an added degree of
bookkeeping throughout Propositions 4.2.1 and 4.2.2 to keep track of the
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relationships that emerge in relating au0

i [k + i] and au0

i [k + i] to signals at
time k + i − 1 for i = 1, . . . , n. For example, at time k + 1 we may write,
as in Section 4.1, au0

1 [k + 1] and au0

1 [k + 1] in terms of state signals and the
control agent’s prestige p̂0. Similarly, at time k + 2 we may write aū0

2 [k + 2]
and au0

2 [k+2] in terms of state signals at time ko +1, au0

i [k+ i], and au0

i [k+ i]
and so on until au0

n [k +n] and aun
n [k +n] are written in terms of state signals

at time k+n−1, au0

n−1[k+n−1] and au0

n−1[k+n−1]. The recursive equations
that result from such an analysis are given in (4.19) and (4.20) for n ≥ 2:

au0

i [k + i] =

{

µapa,1s
2
1[k]p̂0 , i = 1

µapa,is
2
i [k + i − 1]pi−1[k + i − 1]au0

i−1[k + i − 1] , i = 2 . . . n

(4.19)

au0

i [k + i] =































caa1[k] + µapa,1s
2
1[k]p2[k]a2[k] , i = 1

caai[k + i − 1] + µapa,is
2
i [k + i − 1] (pi−1[k + i − 1]×

au0

i−1[k + i − 1] + pi+1[k + i − 1]ai+1[k + i − 1])
, 2 ≤ i ≤ n − 1

caai[k + i − 1]+
µapa,ns2

n[k + n − 1]pn−1[k + n − 1]au0

n−1[k + n − 1] , i = n.

(4.20)

Evaluation of (4.19) and (4.20) requires knowledge of specific agent states
over the time interval [k, k+n−1]. These requisite signals may be determined
using a computer routine that iteratively computes the state, using (2.1)–
(2.5), over the appropriate time interval. Having garnered all of the necessary
state values, it is straightforward to calculate u0[k] using (4.18), (4.19), and
(4.20). It is worth reinforcing that, given an understanding of the social
dynamics, all signals defined at time instants on the interval [k, k + n − 1]
may be expressed, using (2.1)–(2.5), as functions of the components of x[k].
Therefore, the control law is indeed causal as implied by the existence of a
C (n)–stabilizing control law in Theorem 4.2.4.

4.4 Simulation Results for the Queue

X0O1 · · ·On

This section substantiates the stability result in Theorem 4.2.4 through a
number of simulations. We also consider the performance of the control law
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in cases where the control agent is unable to definitively sense x[k] or issue
u0[k] with absolute precision. In all simulations, agents are assumed to have
the same set of µ parameters with each parameter value randomly selected
within a predefined range, as described in Example 2.4.1. Also, the control
agent’s prestige is set at p̂0 = 0.5.

The functionality of the C (n)–stabilizing control law in (3.9)–(3.11) with
(3.10) given by (4.18) for the cases in which n = 3 and n = 6 is illustrated
in Figures 4.1 and 4.2, respectively. Notice that the control law does indeed
drive the action states of all agents to zero. Also noteworthy, from the plots,
is that many of the elements of the control signal used to C (6)–stabilize the
queue X0O1O2O3O4O5O6 are considerably larger than their counterparts in
the control signal used to C (3)–stabilize the queue X0O1O2O3. This obser-
vation is explored in the second column of Table 4.1, which lists the first
element of the control signal needed to C (n)–stabilize the queue X0O1 · · ·On

for various values of n. These entries suggest a trend in which |u0[0]| increases
as n is increased. Intuitively, given the unstable dynamics and limited rate
at which u0[k] propagates through the queue, the value of |u0[0]| rises as n
increases since u0[0] must offset states at time n that have had more time to
swell and grow in magnitude.

The last two columns of Table 4.1 provide two measures by which to assess
the viability of the control scheme in non-ideal conditions. To investigate the
effects of a human control agent being unable to sense x[k] with complete
accuracy, column 4 of Table 4.1 provides a measure of the action of the
rightmost agent in the queue resulting from a sensed x[0] that is randomly
skewed by ±1% from its true value. To investigate this scenario in more
detail, Figure 4.3 traces the progression of the relevant state signals of agents
in the queue X0O1O2O3O4O5O6 for the case in which the sensed value of x[k]
is randomly skewed in the manner described above. Note that the limitations
in sensing prevent the control law from driving all action states to zero at time
k = 6 and that even at time k = 20 the the majority of state signals are still
nonzero. However, as a consolatory remark, the simulation does indicate the
control law succeeds in preventing state signals from experiencing dramatic
swells in magnitude. Finally, to study the ramifications of a human actuator
being unable to issue signals with absolute precision, column 5 of Table 4.1
lists the value of an[n] when u0[0] is randomly altered by ± 1 percent from
its true value.
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PRESTIGE

k=0 1

ACTION

±0.5

SUGGESTIBILITY

40

k=1 1 ±0.5 40

k=2 1 ±0.5 40

k=3 1 ±0.5 40

k=4 1 ±0.5 40

k=20 1

 ↑
 ∧
 p0

±0.5

 u0[k]
 ↑

40

 s0= 0
 ↑

Figure 4.1: Progression of prestige, action, and suggestibility states among
members of the queue X0O1O2O3 subject to the C (3)–stabilizing control law.
The components of the control agent’s state, including control signal u0[k],
are displayed in the leftmost column of each plot.

PRESTIGE
k=0 1

ACTION
±5

SUGGESTIBILITY
40

k=1 1 ±10 40

k=2 1 ±5 40

k=3 1 ±2 40

k=4 1 ±1 40

k=5 1 ±0.5 40

k=6 1 ±0.5 40

k=7 1 ±0.5 40

k=20 1

 ↑
 ∧
 p0

±0.5

 u0[k]
 ↑

40

 s0= 0
 ↑

Figure 4.2: Progression of the prestige, action, and suggestibility states
among members of the queue X0O1O2O3O4O5O6 subject to the C (6)–
stabilizing control law. The colour saturation value is varied with time to
provide greater contrast among the colours used to denote state values in
each plot.
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PRESTIGE
k=0 1

ACTION
±5

SUGGESTIBILITY
40

k=1 1 ±10 40

k=2 1 ±5 40

k=3 1 ±2 40

k=4 1 ±2 40

k=5 1 ±1 40

k=6 1 ±1 40

k=7 1 ±1 40

k=20 1 ±0.5 40

Figure 4.3: Progression of the prestige, action, and suggestibility states
among members of the queue X0O1O2O3O4O5O6 subject to the C–stabilizing
control law (3.9)–(3.11) with (3.10) given by (4.18) for a random ±1% error
in the sensed value of x[k] used to construct u0[k].

No. of
u0[0]

Ideal an[n] for ±1% an[n] for ±1%
agents value error in error in

n of an[n] sensed x[0] u[0]

2 -0.112 0.0 0.000 -0.001
3 -0.285 0.0 -0.003 0.002
4 -0.099 0.0 -0.010 0.000
5 1.046 0.0 0.012 -0.002
6 2.563 0.0 0.021 0.002
7 -9.290 0.0 0.012 0.006
8 -46.565 0.0 -0.130 0.027
9 -150.320 0.0 -0.293 -0.173
10 -256.583 0.0 -4.968 1.004
11 -302.837 0.0 -54.765 7.291

Table 4.1: Data illustrating that, as the queue length increases, u0[0] tends to
grow in magnitude and the control law becomes dramatically more sensitive
to noise.
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In summary, it is possible to use a single control agent to C (n)–stabilize
n agents, as in the queue X0O1 . . . On; however, as queue length increases
the control strategy discussed has four limitations:

1. The stabilization time increases,

2. The sensing burden of the control agent increases,

3. Components of the stabilizing control law grow in magnitude, and

4. The control law becomes dramatically more sensitive to system noise.

In the next section, we highlight the significance of the first two shortcomings
and consider the use of multiple control agents as a mechanism to reduce the
stabilization time and sensing burden of each control agent.

4.5 The Queues XŌXŌ · · ·XŌ and

XŌXŌ · · ·XŌX

In the hope of alleviating the shortcomings highlighted at the end of the
preceding section, we now consider the use of multiple control agents to C–
stabilize a queue. However, when using approaches of this nature, care must
be taken to ensure the collection of control agents operate in a coordinated
fashion to avoid one control agent inadvertently mitigating the intended ef-
fect of another. To a large extent, the stability results presented here build
directly on the results developed for the queue X0O1 · · ·On in the preceding
sections.

Using combinatorial arguments, the number of unique queue arrange-
ments consisting of n agents and m control agents is (n + m)!/ (n!m!). How-
ever, it is not necessary to come up with a separate control scheme for each of
these arrangements. Indeed, since control agents are unaffected by the state
of neighbouring members, they act as barriers to the transmission of psycho-
logical phenomena within the queue. Consequently, from a control perspec-
tive, a grouping of two or more control agents positioned at either end of the
queue offers no added functionality beyond what can be achieved using only
a single control agent. Similarly, collections of three or more control agents
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within the interior of the queue offer no added functionality beyond what
can be achieved using a grouping of just two control agents. For example,
in attempting to C–stabilize a queue of three agents, the performance that
can be achieved using five control agents in the arrangement XXOXXXOO
is no better than what is possible when using only three control agents in
the arrangement XOXXOO. Furthermore, given the shielding effect of con-
trol agents, placing two control agents next to one another within the queue
isolates the psychological behaviour of agents on either side of the grouping
from those on the other. Hence, for equivalent initial conditions and control
action, the propagation of agent states in XOXXOO is identical to that in
the two disjoint queues XOX and XOO.

Using the above observations, it follows that any arrangement involving
m > 1 control agents (with a control agent on at least one end of the queue)
can be decomposed to a collection of disjoint queues assuming either the form
XŌXŌ · · ·XŌ or the form XŌXŌ · · ·XŌX. Therefore, if C–stabilization
schemes can be developed for these two topologies, it follows that any queue
comprised n agents and m control agents (with a control agent on at least one
end of the queue) can be C–stabilized. To this end, the following subsections
examine the C–stabilizability of these two general topologies.

4.5.1 The Queue XŌ · · ·XŌ

Queues of the form XŌXŌ · · ·XŌ may be viewed as the composite of queues
of the form XŌ. To aid analysis, we apply the notation introduced at the
beginning of Section 3.5 and denote the family of queues under consideration
by X1Ō (n1) X2Ō (n2) · · ·XmŌ (nm) with n1 + · · · + nm = n. Now consider
the segment XmŌ (nm) at the right end of the queue. By sensing only the
state signals of agents in Ō (nm), it follows from Theorem 4.2.4 that there
exists a causal control law for Xm, of the form (3.9)–(3.11), such that the
action state of all agents in Ō (nm) are driven to, and subsequently held at,
zero for k ≥ nm. In using such a control law, it follows from the action-
state-update equation of the leftmost agent in Ō (nm) that um[k] = 0 for
k ≥ nm. Tracing the effect of this condition from right-to-left within the
queue, it follows that the rightmost agent in Ō (nm−1) receives no direct
excitation from Xm for k ≥ nm. Therefore, from the perspective of the
action state of this agent, it is as if the segment XmŌ (nm) is entirely absent
for k ≥ nm. Hence, by reapplying the preceding argument, the action state
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of all agents in Ō (nm−1) can be driven to, and subsequently held at, zero for
k ≥ nm + nm−1 by appropriate selection of a causal control law of the form
(3.9)–(3.11) for Xm−1. By working from right-to-left throughout the queue
and repeatedly applying these arguments it follows that the action state of
each agent in X1Ō (n1)X2Ō (n2) · · ·XmŌ (nm) may be zeroed for all times
k ≥ nm + · · · + n1 = n using causal control laws of the form (3.9)–(3.11) for
Xm through X1. Therefore, the queue X1Ō (n1) X2Ō (n2) · · ·XmŌ (nm) is
C (n)–stabilizable.

While the stabilization time of this sequential control strategy is no better
than that of the single-agent approach of Section 4.2, it is noteworthy that
this multi-control-agent approach requires that X i sense only the state of the
ni agents in Ō (ni). Therefore, by evenly positioning control agents through-
out the queue the number of state variables that need to be sensed by any
given control agent can be reduced by a factor of approximately m over the
single-control-agent approach of Section 4.2. However, given the sequential
nature of this multi-control-agent scheme, it is necessary that each control
agent X i for i = 1, . . . , m − 1 be aware of the time instant at which control
agent X i+1 has zeroed all agents in Ō (ni+1), so that X i can begin the process
of zeroing all agents in Ō (ni). This requirement for communication between
control agents is characteristic of multi-control-agent approaches to stabi-
lization. The sequential nature of this stabilization approach is illustrated
in Figure 4.4 for the case in which two control agents, positioned according
to the arrangement X0O1O2O3X4O5O6O7, are tasked with C (6)–stabilizing
a queue containing six agents.

4.5.2 The Queue XŌXŌ · · ·XŌX

The queue XŌXŌ · · ·XŌX is distinguished from the general class of queues
considered in Section 4.5.1 only by the presence of an additional control
agent at the right end of the queue. In fact, if the newly-added-right-most
control agent issues a control signal that is at all times zero, the arguments
of the preceding subsection may be applied to establish the existence of a
set of C–stabilizing control laws for the queue XŌXŌ · · ·XŌX. However,
intuition suggests there is a more advantageous set of control laws, capable of
improving at least some aspect of performance, that mandate the rightmost
control agent take a more active role in C–stabilizing the queue. To this end,
we consider a control scheme to stabilize the queue XŌX in the following
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PRESTIGE
k=0 1

ACTION
±0.5

SUGGESTIBILITY
40

k=1 1 ±1 40

k=2 1 ±0.5 40

k=3 1 ±2 40

k=4 1 ±5 40

k=5 1 ±1 40

k=6 1 ±0.5 40

k=7 1 ±0.5 40

k=20 1

 ↑
 ∧
 p0

 ↑
 ∧
 p4

±0.5

 u0[k]
 ↑

 u4[k]
 ↑

40

 s0= 0
 ↑

 s4= 0
 ↑

Figure 4.4: Progression of the prestige, action, and suggestibility states
among members of the queue X0O1O2O3X4O5O6O7 subject to the C–
stabilizing control laws discussed in Section 4.5.1. Note that X0 does not
attempt to drive the action state of agents in O1O2O3 to zero until X4 has
driven the action state of agents in O5O6O7 to zero.

subsection; once control laws have been established to C–stabilize the queue
XŌX, the existence of control laws to C–stabilize the queue XŌXŌ · · ·XŌX
follows directly from the discussion in Section 4.5.1.

4.5.3 The Queue XŌX

This subsection discusses the existence of control laws for X1 and X2 that
C–stabilize the queue X1O1 · · ·OnX

2. In developing these results we leverage
the similarities with respect to the queue X0O1 · · ·On from Section 4.2, but
reduce the stabilization time by sagaciously coordinating the attitude ad-
justments administered by X1 and X2. Moreover, by using the two control
agents in this way, the sensing burden on each control agent is approximately
half of that faced by the single control agent used in Section 4.2. The cost
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of realizing these benefits is once again the requirement that X1 and X2 be
able to readily communicate with one another.

We begin with Proposition 4.5.1 that extends Proposition 4.2.2 to the
case in which a single control agent is positioned at each end of the queue.

Proposition 4.5.1 Consider the queue X1O1 · · ·OnX
2. Let n∗ = ⌈n/2⌉.

For 1 ≤ i ≤ n∗, n∗ + 1 ≤ j ≤ n, and k ≥ 0 there exists a set of two causal,
state-feedback control laws, each of the form (3.9)–(3.11), for X1 and X2

capable of driving the action state of agents Oi and Oj to zero at times k + i
and k + (n − j + 1), respectively. �

Proof: For simplicity we consider the cases in which n is even and odd
separately. We begin with the case in which n is even. Given that control
signals u1[k] and u2[k] propagate through the queue, in that they influence
agent action states, at a rate no faster than one control agent per discrete-
time interval, it follows that the state of agents O1 · · ·On∗ are independent
of u2[k] and the prestige of X2 for all time instants on the interval [k, k+n∗].
Consequently, on this time interval, the evolution of state components be-
longing to agents O1 through On∗ in the queue X1O1 · · ·OnX2 are equivalent
to the associated progression of state components in the queue X1O1 · · ·On.
It follows from Proposition 4.2.1 that over the time interval [k, k + n∗] the
action state of agent Oi for 1 ≤ i ≤ n∗ at time k + i may be written as

ai[k + i] = au1

i [k + i] + au1

i [k + i]u1[k], (4.21)

where au1

i [k+i] and au1

i [k+i] are functions of only the state x[k] and au1

i [k+i]
is different from zero. Then for 1 < i < n∗ it follows from Proposition 4.2.1
that ai[k+ i] for 1 ≤ i ≤ n∗ may be driven to zero by a causal, state-feedback
control law of the form (3.9)–(3.11) with (3.10) given by

u1[k] = −au1

i [k + i]

au1

i [k + i]
, 1 ≤ i ≤ n∗. (4.22)

With regard to agents On∗+1 · · ·On, an entirely similar argument may be
applied to conclude that the action state of agent Oj for n∗ + 1 ≤ j ≤ n at
time k + (n − j + 1) may be driven to zero by appropriate selection of u2[k].
Therefore, for even n, it follows that there exists a pair of causal control laws,
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each of the form (3.9)–(3.11), capable of driving the action state of agents Oi

and Oj to zero at times k + i and k +(n − j + 1) respectively, for 1 ≤ i ≤ n∗

and n∗ + 1 ≤ j ≤ n.

In the event n is odd, the preceding arguments may be readily applied
to verify the proposition statement for agents O1 · · ·On∗−1 as well as agents
On∗+1 · · ·On. Therefore, it remain only to establish the result for On∗. In this
case, an∗ [k + n∗] will depend on both u1[k] and u2[k]. However, the action
state of On∗ still has rich structure with respect to u1[k]. Specifically, the

preceding arguments indicate an∗−1[k + n∗ − 1] may be written as au1

n∗−1[k +

n∗−1]+au1

n∗−1[k+n∗−1]u1[k] where each term is a function of only the state

x[k] and au1

n∗−1[k + n∗ − 1] is nonzero. Then from the action-state-update
equation of On∗, the action state an∗ [k + n∗] may be expressed in the form

au1

n∗ [k + n∗] + au1

n∗ [k + n∗]u1[k], where

au1

n∗ [k + n∗] = µapa,n∗s2
n∗ [k + n∗ − 1] × pn∗−1[k + n∗ − 1]au1

n∗−1[k + n∗ − 1]

(4.23)

au1

n∗ [k + n∗] = caan∗ [k + n∗ − 1] + µapa,n∗s2
n∗ [k + n∗ − 1]×

(pn∗−1[k + n∗ − 1]au1

n∗−1[k + n∗ − 1] + pn∗+1[k + n∗ − 1]

an∗+1[k + n∗ − 1]).

(4.24)

Using similar arguments as in Proposition 4.2.1, it follows that au1

n∗ [k + n∗]
and au1

n∗ [k+n∗] are functions of the state x[k] as well as u2[k] and the prestige
of X2; moreover, au1

n∗ [k +n∗] is nonzero and an∗ [k +n∗] may be driven to zero
by (4.22) for i = n∗. Therefore, if X1 and X2 are able to communicate, such
that X1 is conscious of the value of u2[k] and the prestige of X2, then there
exists a causal control law of the form (3.9)–(3.11) for X1 capable of driving
an∗ [k + n∗] to zero; thereby confirming the proposition statement holds in
the case of both even and odd n.�

Proposition 4.5.2 builds upon Proposition 4.2.3 by considering the im-
plications of holding the action state of two adjacent agents, in the queue
X1O1 · · ·OnX

2, at zero indefinitely. Specifically, holding aj [k] and aj+1[k] at
zero for k ≥ k̃ ≥ 0 is shown to imply a1[k], . . . , an[k] are all zero for k ≥ k̃:
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Proposition 4.5.2 Consider the queue X1O1 · · ·OnX
2. Let k̃ ≥ 0 denote

an instant in time. If the action state of two adjacent agents, Oj and Oj+1,
in the queue are sustained at zero for all k ≥ k̃ then the action state of each
agent in the queue is identically zero for all k ≥ k̃. �

Proof: As indicated in the proposition statement, consider the sce-
nario in which the action state of agents Oj and Oj+1 are both zero for
k ≥ k̃. Furthermore, consider the queue segments X1O1 · · ·OjOj+1 and
OjOj+1 · · ·OnX

2. The implications of aj[k] and aj+1[k] being zero for all
k ≥ k̃ may be inferred through an inductive approach. To this end, consider
the segment X1O1 · · ·OjOj+1 and for some ℓ ∈ [2, j], assume ai[k] = 0 for
all ℓ ≤ i ≤ j and k ≥ k̃. This condition is true for the base case ℓ = j. The
action-state-update equation of Oℓ gives

aℓ[k + 1] = caaℓ[k] + µapa,ℓs
2
ℓ [k]

∑

Oj∈N (Oℓ)

pj[k]aj [k].

From the induction assumption, aℓ[k] = aℓ+1[k] = 0 for k ≥ k̃, and with
N (Oℓ) = {Oℓ−1, Oℓ+1} the above equation simplifies to

0 = µapa,ℓs
2
ℓ [k]pℓ−1[k]aℓ−1[k], k ≥ k̃. (4.25)

Since sℓ[k] and pℓ−1[k] are both positive, equality in (4.25) necessitates that
aℓ−1[k] = 0 for k ≥ k̃. This result establishes that ai[k] = 0 for ℓ− 1 ≤ i ≤ j
and k ≥ k̃. It follows from induction that ai[k] = 0 for i = 1, . . . , j and
k ≥ k̃, implying that if aj [k] and aj+1[k] are held at zero for k ≥ k̃ then the
action states a1[k], . . . , aj−1[k] are also zero for k ≥ k̃.

A similar argument may be applied to the queue segment OjOj+1 · · ·OnX
2

to conclude that aj+2[k], . . . , an[k] are also zero for k ≥ k̃. Therefore, if the
action state of two adjacent agents in the queue are held at zero for k ≥ k̃,
it follows the action states of all agents in the queue are zero for k ≥ k̃.�

Propositions 4.5.1 and 4.5.2 are used in tandem in Theorem 4.5.3 to
develop a stability result for the queue X1O1 · · ·OnX

2:

Theorem 4.5.3 There exist two control laws, each of the form (3.9)–(3.11),
that C (n∗)–stabilizes the queue X1O1 · · ·OnX

2, with n∗ = ⌈n/2⌉. �
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Proof: To provide C (n∗)–stability, the combined effect of u1[k] and
u2[k] must ensure the action state of all agents in the queue are identically
zero at time n∗ and subsequently held at zero for all future times. From
Proposition 4.5.1 it follows that the action state of agents On∗ and On∗+1

may be driven to zero and subsequently held at zero by repeated application
of causal control laws of the form (3.9)–(3.11), where some degree of commu-
nication between X1 and X2 is necessary in the case where n is odd. That
is, an∗ [k] and an∗+1[k] may be driven to zero and held at zero for k ≥ n∗ by
selecting u1[k] and u2[k] according to

u1[k] = −au1

n∗ [k + n∗]

au1

n∗ [k + n∗]
, u2[k] = −au2

n∗+1[k + n∗]

au2

n∗+1[k + n∗]
, k ≥ 0. (4.26)

By selecting u1[k] and u2[k] to hold an∗ [k] and an∗+1[k] at zero for k ≥ n∗,
respectively, it follows from Proposition 4.5.2 that ai[k] = 0 for i = 1, . . . , n
and k ≥ n∗. Therefore, the queue X1O1 · · ·OnX

2 is C (n∗)–stabilized by two
controllers of the form (3.9)–(3.11), with u1[k] and u2[k] given by (4.26).�

Theorem 4.5.3 indicates that, by adding a second control agent to the
right end of the queue, the stabilization time for a queue of n agents may
be reduced by a factor of approximately two as compared to the single-
control-agent approach of Section 4.2. This reduction in stabilization time is
illustrated in Figure 4.5 for the queue X0O1O2O3O4O5O6X7. Note that the
sensing requirements are also reduced compared to the single-control-agent
case because each of X1 and X2 need only sense the state of half the agents
in the queue. However, it is critical that the two control agents communicate
with one another for several purposes: to coordinate how control action
will be directed (i.e., X1 and X2 must agree to focus on driving the action
states of On∗ and On∗+1 to zero, respectively), to share the components of
the state x[k] measured by each control agent with the other control agent,
and, in the case where n is odd, to allow one of the control agents to know
the control signal and prestige value of the other control agent. Ultimately,
there are both benefits (namely, improved performance) and costs (namely,
the need for communication) associated with using multiple control agents
to C–stabilize a queue.
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PRESTIGE
k=0 1

ACTION
±0.5

SUGGESTIBILITY
40

k=1 1 ±0.5 40

k=2 1 ±0.5 40

k=3 1 ±0.5 40

k=4 1 ±0.5 40

k=5 1 ±0.5 40

k=6 1 ±0.5 40

k=7 1 ±0.5 40

k=20 1

 ↑
 ∧
 p0

 ↑
 ∧
 p7

±0.5

 u0[k]
 ↑

 u7[k]
 ↑

40

 s0= 0
 ↑

 s7= 0
 ↑

Figure 4.5: Progression of the prestige, action, and suggestibility states
among members of the queue X0O1O2O3O4O5O6X7 subject to the C–
stabilizing control laws discussed in Section 4.5.3.

4.5.4 The Queues ŌXŌXŌ · · · ŌX and ŌXŌX · · ·XŌ

The control strategies of the preceding sections have required that a control
agent be positioned on at least one end of the queue. We consistently as-
sumed this end to be the left end of the queue and proceeded to consider
the queues XŌ, XŌXŌ · · ·XŌ, and XŌX · · ·XŌX. Keeping in mind the
discussion at the beginning of Section 4.5, the only queue topologies we have
yet to consider are the queues ŌXŌX · · · ŌX and ŌXŌX · · · ŌXŌ. The
queue ŌXŌX · · · ŌX is just the mirror image of the queue XŌXŌ · · ·XŌ
discussed in Section 4.5.1. Consequently, earlier stability results readily ap-
ply to the queue ŌXŌX · · · ŌX and it remains only to consider the queue
ŌXŌX · · ·XŌ.

To aid analysis, the queue ŌXŌX · · · ŌXŌ can be thought of as con-
sisting of two segments: the left segment ŌXŌ and a right segment of
the form XŌXŌ · · ·XŌ. We have discussed a technique to C–stabilize the
right segment in Section 4.5.1. Therefore, if we can C–stabilize the left seg-
ment then the existence of a set of C–stabilizing control laws for the queue
ŌXŌX · · · ŌXŌ would follow from earlier results. However, C–stabilizing
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ŌXŌ is difficult because doing so requires the control agent to simultane-
ously zero agents on both its left and right sides and it is not apparent if the
crowd dynamics are sufficiently pliable to accommodate such an approach.
Interestingly enough, for the simple queue O1XO2, it turns out the control
agent is able to provide C (2)–stability. The control agent achieves this feat
by issuing a control signal at time k = 1 that appropriately shuffles the states
of each agent so that appropriate selection of the the control signal at time
k = 2 is able to zero both agents – a somewhat surprising result. Determin-
ing if similar results apply to larger queues of the form ŌXŌ is, however,
difficult on account of the algebraic complexity that emerges in tracing the
propagation of the control signal through various agent states at successive
time instants. Since the requirement of positioning one control agent at the
end of the queue is quite reasonable, we elect to state the following conjec-
ture for the queue ŌXŌ and, in the next chapter, proceed to consider the
problem of C–stabilizing a two-dimensional crowd.

Conjecture 4.5.4 There exists a control law of the form (3.9)–(3.11) that
C–stabilizes the queue ŌXŌ. �

4.6 A Summary of Stabilization Strategies for

a Queue

In this chapter, we have established the existence of a set of C (λ)–stabilizing
control laws, each of the form (3.9)–(3.11), for queues with a control agent
positioned on at least one end. By enumerating the relevant state signals
of agents in the queue X0O1O2 at successive time instants, we were able to
determine an expression, in terms of the initial state, for the value of u0[k]
needed to drive the action of agent O2 to zero. To develop similar results
for longer queues of the form X0O1 . . . On, we introduced three propositions
that capitalize on the basic structure of both the social network present in
queues and the dynamics in (2.1)–(2.5). These results were, in turn, used to
establish a causal state-feedback C (n)–stabilizing control law for the queue
X0O1 . . . On. Simulations reveal the control strategy performs admirably in
ideal conditions, but that, in the presence of system noise, performance de-
teriorates dramatically as queue length increases. Furthermore, the sensing
requirements and the stabilization time both scale poorly as a function of
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queue length. Recognizing that the performance of the single-control-agent
scheme degrades rapidly as n increases, we extended our results to the case
in which m > 1 control agents are positioned throughout the queue (again,
with a control agent positioned on at least one end). Benefits of the use of
multiple control agents include a reduction in stabilization time (for exam-
ple, placing control agents at both ends of the queue affords a reduction in
the stabilization time from n samples to approximately n/2 samples) and
a reduction in the sensing burden placed on each control agent. A cost of
having multiple control agents is, however, the need for the control agents to
be able to communicate with one another.
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Chapter 5

Two-Dimensional Crowds:
Stability in the General Case

In this chapter, we exploit the ideas of Chapter 4 to develop stability re-
sults that apply in the case of two-dimensional crowds. In the case of two-
dimensional crowds, members are no longer restricted to having at most two
neighbours and, consequently, the social networks to emerge have the po-
tential to be much more complex than those encountered in the previous
chapter. As a result, determining how the m control agents should allocate
their control action, with the goal of C–stabilizing the whole crowd, is not
immediately obvious. Our high-level strategy is to have each control agent
target a different agent in the crowd; if these pairings are chosen wisely, then
the stability results developed for the queue X0O1 · · ·On percolate through
to the two-dimensional crowd control problem. We also exploit the ability of
control agents to communicate with each other to surmount any difficulties
the extra interactions between agents may introduce.

We present our results in the form of algorithms. Algorithm 5.1.1 may
be used to test for conditions that are sufficient to guarantee all agents in
a particular target set can be zeroed in finite time. In turn, given a set of
zeroed agents, Algorithm 5.2.2 can be used to determine if there are other
agents which, given the structure of the social network, are themselves neces-
sarily zeroed. Finally, in Algorithm 5.3.1, we describe how Algorithms 5.1.1
and 5.2.2 may be used in succession as part of a design procedure to identify
at which positions in a crowd control agents should be placed to guarantee
C–stabilizability.
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5.1 Algorithm 5.1.1: Determining if All

Agents in a Target Set Can be Zeroed

In a general two-dimensional crowd, there are no restrictions on the number
of neighbours an agent may have. As a result, there are typically multiple
paths through which ideas and attitudes may propagate. For this reason,
identifying whether or not a particular control agent can drive the action
state of a particular agent to zero is, in general, a more involved undertaking
than was the case when we considered queues. To pursue the matter further,
we assume a fixed set of allocation pairs (i.e., a predetermined allocation of
control effort) and ask the question, “Do there exist m control laws, each
of the form (3.9)–(3.11), capable of zeroing all agents in the target set?”
Algorithm 5.1.1 provides a means to test for conditions that are sufficient to
guarantee that the answer to this question is yes.

To aid in presentation, we denote the allocation pairs, without loss of gen-
erality, by {(X i → Oi), i = 1, . . . , m}, where Oi and X i belong to the set of
agents and control agents, respectively, for i = 1 . . . , m. Such an assignment
is always possible by simply reassigning the superscript indices of agents in
the crowd. Algorithm 5.1.1 constructs a finite sequence, Υ0, Υ1, . . . , Υ∞, of
allocation pairing sets. Inclusion of the allocation pairing (X i → Oi) in Υ∞

guarantees the target agent Oi can be zeroed by X i using a control law of
the form (3.9)–(3.11).

Algorithm 5.1.1 The algorithm consists of three steps:

Step 1 Initialize α to zero and initialize Υ0 to the empty set ∅.

Step 2 Determine if there exists an allocation pairing, (X i → Oi), for
which |ℓ1

i,i| is the unique minimum of |Li|. In the event no such pairing
exists, the algorithm terminates with Υ∞ = ∅. Otherwise, define
Υ1 := {(X i → Oi)} and proceed to Step 3 with α = 1.

Step 3 Determine if there exists a pair, (X i → Oi), not already in Υα,
for which:

(a) |ℓ1
i,i| is the unique minimum of |Li|, or
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(b) for each j such that |ℓ1
j,i| ≤ |ℓ1

i,i| it follows that (Xj → Oi) ∈ Υα.

In the event no such pairing exists, the algorithm terminates with Υ∞ =
Υα. Otherwise, define Υα+1 = Υα ∪ {(X i → Oi)} and repeat Step 3
for α → α + 1.

If Υ∞ contains all allocation pairings then the allocation of control effort
in question ensures that each agent in the target set can be zeroed by ap-
propriate selection of a control law of the form (3.9)–(3.11) for X1, . . . , Xm.
Algorithm 5.1.1 can also be used to determine whether or not information
exchange between a pair of control agents is needed in order to zero all agents
in the target set. Specifically, given paths ℓ1

j,i and ℓ1
i,i with |ℓ1

j,i| ≤ |ℓ1
i,i|, ze-

roing Oi using control laws of the form (3.9)–(3.11) for each control agent
requires that X i be informed in advance of the control action taken by Xj.

�

The following examples illustrate how Algorithm 5.1.1 may be applied to
determine if all agents in a predetermined target set can be zeroed.

Example 5.1.2 Consider the crowd of Figure 3.6 and assume the prede-
termined allocation pairing of interest is the same as that illustrated in
Figure 3.8. In this case, the allocation pairings are {(X1 → O6), (X2 →
O8), (X3 → O7)} and the target set is {O6, O7, O8}. Applying Algorithm 5.1.1
gives:

1. Υ0 = ∅, α = 0 (Step 1).

2. |ℓ1
2,8| is the unique minimum of |L8|.

3. Υ1 = {(X2 → O8)}, α = 1 (Step 2).

4. |ℓ1
3,7| is the unique minimum of |L7|.

5. Υ2 = {(X2 → O8), (X3 → O7)}, α = 2 (Step 3a).

6. |ℓ1
1,6| is not the unique minimum of |L6|, since there are paths equal in

length to ℓ1
1,6 from both X2 to O6 and from X3 to O6. However, the

allocation pairings (X2 → O8) and (X3 → O7) both belong to Υ2.
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7. Υ3 = {(X2 → O8), (X3 → O7), (X1 → O6)}, α = 3 (Step 3b).

8. All allocation pairings belong to Υ3 and Algorithm 5.1.1 terminates
with Υ∞ = {(X2 → O8), (X3 → O7), (X1 → O6)}.

In this example, for the control strategy to work, at each time instant X1

must be apprised of the control action taken by both X2 and X3.

�

Example 5.1.3 To illustrate how Algorithm 5.1.1 generalizes the control
ideas discussed in Chapter 4, consider applying it to the queue X0O1 . . . On.
In Chapter 4, we successfully used the allocation pairing (X0 → On) to zero
On. There is only one path from X0 to On, namely the path through all
agents, and we conclude, this time by Algorithm 5.1.1, that X0 is able to
zero On. �

It is readily appreciated from the above examples that Algorithm 5.1.1
terminates in finite time. Moreover, regarding the issue of uniqueness, we
conjecture the following:

Conjecture 5.1.4 The Υ∞ to emerge from Algorithm 5.1.1 is unique. �

5.2 Algorithm 5.2.2: Determining if Agents

Outside the Target Set Are Zeroed When

the Target Set is Zeroed

In earlier discussions pertaining to the queue X0O1 . . . On, we had argued that
if all agents to the right of Oi were zeroed for k ≥ k̃ then Oi is necessarily
zeroed for k ≥ k̃. In the following proposition, we show that this concept
has a natural analogue in the world of two-dimensional crowds.

Proposition 5.2.1 Consider a crowd C, a group of agents Ωα for which all
members are zeroed for k ≥ k̃, and agent Oi ∈ Ωα that has exactly one
neighbour, Oh, not belonging to Ωα. Then Oh is zeroed for k ≥ k̃. �
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Proof: The result follows directly from the action-state update equa-
tion of Oi. Specifically, (2) gives

ai[k + 1] = caai[k] + µapa,is
2
i [k]×



ph[k]ah[k] +
∑

Oj∈N (Oi),j 6=h

pj [k]aj [k]



 .
(5.1)

Since Oi belongs to Ωα, both ai[k + 1] and ai[k] are zero for k ≥ k̃. Further-
more, aside from Oh, all of Oi’s other neighbours belong to Ωα and, thus,
are zeroed for k ≥ k̃, from which it follows the summation in (5.1) is zero.
Given prestige and suggestibility are positive, equality in (5.1) necessitates
ah[k] = 0 for k ≥ k̃, and, hence, Oh is zeroed for k ≥ k̃.�

Given a set of agents that are zeroed for k ≥ k̃, Proposition 5.2.1 can
be used iteratively to determine a larger set of agents, denoted Ω∞, that are
also necessarily zeroed for k ≥ k̃, as described in the following algorithm:

Algorithm 5.2.2 The algorithm consists of three steps:

Step 1 Initialize α to zero and initialize Ω0 to the set of agents that
are known to be zeroed for k ≥ k̃.

Step 2 Determine if there exists an agent, say Oi, in Ωα that has
exactly one neighbour, say Oh, that does not belong to Ωα.

Case 1 In the event there is no such agent, the algorithm termi-
nates with Ω∞ := Ωα.

Case 2 Conversely, if such an agent does exist, proceed to Step 3.

Step 3 From Proposition 5.2.1, Oh is zeroed for k ≥ k̃. Define

Ωα+1 := Ωα ∪ {Oh} (5.2)

and repeat Step 2 for α → α + 1.

�

The following examples illustrate how Algorithm 5.2.2 may be applied to a
crowd with a known set of zeroed agents.
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Example 5.2.3 Consider once more the two-dimensional crowd of Figure 3.6
and assume the predetermined allocation of control effort is the same as that
illustrated in Figure 3.8. Finally, assume all agents in the target set have
been zeroed, a feat we know is possible from Example 5.1.2. Algorithm 5.2.2
can be used to identify a superset of agents which are also zeroed.

To begin, the zeroed set is Ω0 = {O6, O7, O8}. Applying Algorithm 5.2.2,
observe that O5 is the only neighbour of O7 not in Ω0. Hence, O5 is zeroed
and, as per Step 3 of Algorithm 5.2.2, we define Ω1 := {O6, O7, O8, O5}. Next,
we note that O3 is the only neighbour of O6 not in Ω1 and, as before, O3

must be zeroed, and we define Ω2 := {O6, O7, O8, O5, O3}. This procedure
of identifying an agent who has one neighbour not already in the set of
zeroed agents can be repeated until Algorithm 5.2.2 eventually terminates
with Ω∞ := {O6, O7, O8, O5, O3, O10, O4, O2, O1}. At this stage, we cannot
conclude that any other members of the crowd are necessarily zeroed. While
this example discusses a specific crowd and a specific allocation of control
effort, it is readily appreciated that Algorithm 5.2.2 always terminates in
finite time. �

Example 5.2.4 To illustrate that Algorithm 5.2.2 is also a generalization
of earlier results, consider the familiar queue X0O1 . . . On and assume On is
zeroed. Applying Algorithm 5.2.2 and noting that On has exactly on neigh-
bour, we can conclude that On−1 is zeroed. Similarly, noting that On−1’s
neighbours are On−2 and On and that On is zeroed, we conclude from Al-
gorithm 5.2.2 that On−2 is zeroed. Repeatedly applying steps 2 and 3 of
Algorithm 5.2.2 confirms all agents in the queue are zeroed, a reaffirmation
of Proposition 4.2.3. �

It is worth noting that the sequence of zeroed agents, Ω0, Ω1, . . ., to emerge
from Algorithm 5.2.2 need not be unique. For instance, in Example 5.2.3, we
could have defined Ω1 := {O6, O7, O8, O10}, as opposed to the set actually
used. However, it is not the sequence Ω0, Ω1, . . . that is of particular concern,
but rather the terminating value of the sequence, Ω∞. The following proposi-
tion states that while the feasible sequences to emerge from Algorithm 5.2.2
may not be distinct, the corresponding terminal value is unique:

Proposition 5.2.5 Consider a crowd C and a set of agents, Ω0, that are
zeroed for k ≥ k̃. The terminating value of any sequence that emerges from
application of Algorithm 5.2.2 is unique. �
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Proof (by contradiction): Consider two distinct sequences of zeroed
crowd members, say {Ω0, Ω1, . . . , Ω∞} and {Ω′

0, Ω
′
1, . . . , Ω

′
∞}, that emerge

from application of Algorithm 5.2.2. Assume Ω∞ 6= Ω′
∞. It follows that

there must be at least one agent, say Oh, that belongs to one of Ω∞ or Ω′
∞,

but not the other. Without loss of generality, assume Oh belongs to Ω∞ but
not Ω′

∞. To aid in discussion, we introduce the following quantities:

α := max{i : Ωi = Ω′
i} and β := min{i : Oh ∈ Ωi}. (5.3)

It is noted that each of these quantities is well defined: in the case of α, since
Ωo = Ω′

o and, in the case of β, since Oh belongs to Ω∞. Additionally, the
definitions of α and β necessitate α < β.

Algorithm 5.2.2 proceeds to construct Ωα+1, . . . , Ωβ by successively adding

one or more agents, say Ô1, Ô2, . . . , Ôd = Oh, one agent at a time, to Ωα.
The fact that Ô1 belongs to Ωα+1 implies there must be at least one agent
in Ωα, say O∗

α, for which Ô1 is the only neighbour not itself in Ωα. However,
since Ω′

α = Ωα, this argument is equally applicable to Ω′
α and, hence, Ô1

must belong to Ω′
∞.

To show that Ôi ∈ Ω′
∞ for all i ∈ [1, d] and, hence, that Oh ∈ Ω′

∞ we
employ an inductive approach. To this end, assume that for a particular
ℓ ∈ [1, d] that agent Ôj ∈ Ω′

∞, for all 1 ≤ j ≤ ℓ; a result that is apparent

for the base case ℓ = 1. The fact that Ôℓ+1 ∈ Ωα+ℓ+1 implies there exists
at least one agent, say O∗

α+ℓ, in Ωα+ℓ whose only neighbour not in Ωα+ℓ is

Ôℓ+1. However, given the assumption that Ôj ∈ Ω′
∞ for 1 ≤ j ≤ ℓ, this

argument is equally applicable to the set Ω′
α ∪ Ô1 ∪ · · ·∪ Ôℓ ⊆ Ω′

∞. It follows
from induction that Ôi ∈ Ω′

∞ for i ∈ [1, d], implying Oh belongs to Ω′
∞ and

thereby refuting the initial assumption that Oh does not belong to Ω′
∞ and,

hence, that Ω∞ 6= Ω′
∞. Rather, any agent in Ω∞ necessarily also belongs to

Ω′
∞ and vice versa.�

The question arises as to whether or not Algorithm 5.2.2 generates all
agents that are zeroed. We conjecture that the answer is yes:

Conjecture 5.2.6 For any crowd C and set of zeroed agents Ωo, the set Ω∞,
generated by Algorithm 5.2.2, is the largest necessarily-zeroed set. �
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5.3 Algorithm 5.3.1: A Design Procedure For

Stabilizing Any Crowd

It would be useful to have a mechanism to position control agents within
the crowd which, given the appropriate control action, provide C–stability.
The information that can be gained upon successive application of Algo-
rithms 5.1.1 and 5.2.2 suggests one possible means to this end. Given there
are only a finite number of ways to position m control agents and target m
agents in an n-agent crowd, all possible combinations may be readily enumer-
ated. Algorithms 5.1.1 and 5.2.2 may then be applied to each of the possible
combinations to determine if the associated target set can indeed be zeroed
and, in cases where this is true, if the associated Ω∞, that is a superset of
necessarily zeroed agents, is equal to O = {O1, . . . , On}. Algorithm 5.3.1
uses this approach to determine where control agents should be located to
C–stabilize a crowd, while limiting the number of control agents required.

Algorithm 5.3.1 The algorithm consists of three steps:

Step 1 Initialize m, the number of control agents that will be used
to C–stabilize the crowd, to n. Assign to each agent a control agent
and task the control agents with ensuring their respective agents are
zeroed by some finite time. That such an approach is always possible
may be confirmed by noting that the path from each control agent
to the associated agent is the unique minimum of all such paths and,
therefore, from Algorithm 5.1.1 all agents in the target set may be
zeroed. Moreover, the fact that the target set is the set of all agents
implies the crowd is C–stabilizable

Step 2 For each crowd arrangement involving m − 1 control agents
identify all allocation pairings.

Step 3 For each of the combinations identified in Step 2, use Algo-
rithms 5.1.1 and 5.2.2 to determine, first, if sufficient conditions hold
to guarantee that all agents in the target set can be zeroed and, if so,
second, if sufficient conditions hold to guarantee that all agents in the
crowd are necessarily zeroed given the target set is zeroed.

58



Case 1 If, for every arrangement from Step 2, either of the above
conditions do not hold, then we can guarantee the crowd is C–
stabilizable only if we use at least m control agents. The algorithm
terminates and the crowd may be C–stabilized using any of the C–
stabilizing m-control-agent schemes.

Case 2 Conversely, there is at least one C–stabilizing control scheme
involving m − 1 control agents. Repeat Step 2 for m → m − 1.

�

Example 5.3.2 In this example, we illustrate how Algorithm 5.3.1 may be
applied to C–stabilize a crowd. To this end, Figure 5.1 shows the crowd of
Figure 3.6 with the three control agents from the original figure removed.
Before proceeding, recall from Example 5.2.3 that because Ω∞ 6= O we can-
not guarantee the arrangement in Figure 3.6 is C–stabilizing. By applying
Algorithm 5.3.1 we seek to position control agents throughout the crowd to
guarantee C–stability, while limiting the number of control agents used.

We begin by assigning to each agent in the crowd a control agent that
is tasked with zeroing their respective agent. This scenario is illustrated in
Figure 5.2 where the crowd of Figure 5.1 has been augmented with 12 control
agents. The red arrows in the figure illustrate the allocation pairings, such
that (X1 → O1), (X4 → O2), and so on. Using 12 control agents to C–
stabilize the crowd is likely overkill and, as per Algorithm 5.3.1, we attempt
to reduce this number by removing control agents and using Algorithms 5.1.1
and 5.2.2 to verify the resulting crowd is still C–stabilizable. To expedite
the process, we remove multiple control agents at a time. For example,
upon removing control agents X4, X6, X8, and X10 and using the allocation
pairings shown in Figure 5.3, Algorithms 5.1.1 and 5.2.2 confirm the crowd
is C–stabilizable. In an attempt to further reduce the number of control
agents, we remove control agents X5 and X11 from the crowd and reallocate
the control effort as per Figure 5.4. Once again, Algorithms 5.1.1 and 5.2.2
confirm this arrangement is C–stabilizable. Likewise, upon removing control
agents X9 and X12, and reallocating the control effort as per Figure 5.5
the crowd is still C–stabilizable. In this example, we have not enumerated
every possible combination of control agent locations and allocation pairings;
however, by applying Algorithm 5.3.1 we were able to quickly C–stabilize the
crowd while limiting the number of control agent required.
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Figure 5.1: A crowd consisting of 12 agents that has no control action.
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Figure 5.2: A scheme that uses 12 control agents to C–stabilize the crowd.
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Figure 5.3: A scheme that uses 8 control agents to C–stabilize the crowd.
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Figure 5.4: A scheme that uses 6 control agents to C–stabilize the crowd.
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Figure 5.5: A scheme that uses just 4 control agents to C–stabilize the crowd.

�
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Chapter 6

Summary and Future
Directions

This thesis was motivated by the question, “Is it possible to use techniques
from control theory to study and ultimately control the psychological be-
haviour of people in a crowd?” To investigate the matter, we developed a
dynamic model of crowd behaviour based on the notion of suggestibility put
forth in the social commentary of Gustav LeBon. The discrete-time nonlin-
ear dynamic model we employed uses information about the crowd’s current
state to describe the effect of the social interactions between neighbours on
the psychological state of each member. Simulations and linearization argu-
ments revealed that the crowd dynamics are unstable.

With the goal of ensuring all agents act in a calm and orderly manner,
we presented a definition for what it means to stabilize a crowd and used
linearization techniques as well as simple nonlinear methods to provide sta-
bility. These schemes provided varying degrees of success, but even the best
methods had serious limitations and motivated an entirely new approach to
control. In response, we introduced the control agent as a means for af-
fecting psychological change among crowd members and first employed this
paradigm by using a single control agent to stabilize a queue. We showed
that given a priori knowledge of the crowd dynamics and the ability to sense
the entire state, the control agent can drive the action state of any agent in
the queue to zero. Moreover, we showed that if this target agent is chosen
judiciously and its action state is held at zero, which may be achieved by re-
peatedly applying the aforementioned control law, then it necessarily follows

63



the action state of all agents in the queue are zero and, hence, the queue can
be stabilized. Simulations confirm the functionality of the control law but
reveal that, as queue length increases, the control law becomes dramatically
more sensitive to system noise, while the stabilization time increases and the
sensing burden on the lone control agent becomes onerous.

To address some of the limitations of using a single control agent to sta-
bilize a queue we positioned multiple control agents throughout the queue
and had them operate in a cooperative manner. We showed that, in addi-
tion to providing stability, such schemes offer the benefits of decreasing the
stabilization time and reducing the sensing burden placed on any particular
control agent. By introducing the appropriate machinery, we exploited the
results developed for queues to establish similar results that apply to the
more general case of two-dimensional crowds. More specifically, our results
culminated in an algorithm that can be used to stabilize any two-dimensional
crowd and paves the way for a number of exciting and potentially fruitful
directions in which to steer the research discussed in this thesis.

From a modeling perspective, we have hedged our research efforts on
a model of crowd behaviour predicated on suggestibility theory. However,
over the past century, a number of alternative theories to explain group
behaviour have emerged and many of these formulations stand in stark con-
trast to LeBon’s assertions. For example, the ideas of conformity, cognitive
dissonance, persuasion, social facilitation, de-individualization, and group
polarization, to name a few, all capture social-psychological ideas that are
unaccounted for in our model. Also on a modeling note, we may account for
instances where an agent’s neighbours have the potential to evolve dynami-
cally (e.g., due to the physical movement of crowd members) by including an
explicit dependence on time when defining the neighbour set of each agent.
By augmenting our model to include one or more of these factors we may not
only make the model more realistic, but the new dynamics may also inspire
novel control strategies or be more receptive to experimental validation.

There are also a number of open research directions that are likely to be of
interest to the control community. Here we provide a sampling of those ideas
that, in the author’s opinion, show considerable promise or are of particular
personal interest. To begin, it would be highly desirable, given its practical
significance, to develop a control strategy whereby the control agents, col-
lectively, need only sense a subset of the entire state (for example, perhaps
only the action states). This capability would dramatically reduce the overall
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sensing burden as well as promote the idea of sensing only those signals that
are manifested in tangible forms suitable for human perception. In terms of
two-dimensional crowds, there is an onus to describe the minimum sensing
and communication requirements needed to compute stabilizing control sig-
nals, as well as to develop a systematic procedure for calculating these signals.
Understanding the structure of the crowd’s social network will inevitably be
key to realizing these ambitions. Given these networks are effectively graphs,
it may be advantageous to incorporate ideas from graph theory into the crowd
control problem and leverage results that serve to streamline or extend our
existing findings. It would also be interesting to examine the sensitivity of
control schemes involving multiple control agents in the case of both queues
and two-dimensional crowds. Our single-control-agent stabilization strategy
had poor sensitivity characteristics and using multiple control agents may
offer improvements in this regard. Another potentially fruitful direction is
to cast the problem of stabilizing a crowd as an optimal control problem.
Namely, minimizing the appropriate cost function, subject to the constraint
that the crowd is stabilized, is a natural recourse to identify control schemes
that achieve a favourable balance between the number of control agents used,
the stabilization time, and the sensing requirements of the control strategy.

There are also incentives for reexamining the control objectives and philo-
sophical approach towards stabilization at the grassroots level. For example,
in this work, we focused on driving the action state of each agent in the
crowd to zero and benefited from the implications of this condition on other
crowd states. It may, however, be more appropriate to consider contain-
ment strategies that only guarantee state components do not exceed certain
predetermined values. This alternate formulation captures the idea that a
crowd need not have zero action in order to be deemed well-behaved. An-
other research direction notes that while we have reported on a number of the
benefits afforded by coordinating the behaviour of multiple control agents,
our results pertain to a specific stabilization strategy. Pursuing new control
strategies and cooperative information-sharing protocols among the control
agents may afford greater improvements with respect to the metrics we have
discussed or prove advantageous from perspectives we have not yet consid-
ered. Finally, at select points in this thesis we have relied on conjecture to
encapsulate our suspicions about results that have yet to be formally verified.
It is natural to attempt to resolve these proclamations by either affirming or
refuting their validity.
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The open research directions we have listed address key issues with respect
to both the modeling and control of psychological crowd behaviour. More-
over, these initiatives have been formulated in a system-theoretic framework
for which control theory is both an insightful and powerful analysis tool.
Consequently, while this work has focused predominantly on stabilizing the
psychological dynamics of people in a crowd, the panoply of open research
directions suggest there are many exciting and untapped social-psychological
research initiatives that hinge critically on the control-theoretic framework.
Therefore, in regard to the question that motivated this thesis, we state the
following conclusion: while the mathematical study of complex social phe-
nomena, including crowds, is prefixed by an assortment of unique challenges,
control theory is, nevertheless, a potentially powerful framework to study the
underlying dynamics at play in such systems.
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Appendix A

Developing a Linear Dynamic
Model of Psychological Crowd
Behaviour

The linear model of crowd behaviour considered in Section 3.3.1 was obtained
by linearizing the nonlinear model of crowd behaviour reported in [1], for
which the dynamics of the agent in position i are given by:

pi[k + 1] = cppi[k] + µpa,i|ai[k]| (A.1)

ai[k + 1] = caai[k] + µapa,is
2
i [k]

∑

Oj∈N (Oi)

di,jpj[k]aj [k] + vi[k] (A.2)

bi[k + 1] = ai[k] (A.3)

si[k + 1] = cssi[k] + µsa,i (ai[k] − bi[k])2 + µsap,i

∑

Oj∈N (Oi)

di,jpj [k]|aj[k]| +

µssp,i

∑

Oj∈N (Oi)

di,jpj[k] (sj [k] − si[k]) + µs,iS (2 − cs) − si[k].

czxcxzcxzcz (A.4)

The meaning of the state signals and system parameters in (A.1)–(A.4) are
the same as in (2.1)–(2.5) and vi[k] the control signal affecting agent i. In
this appendix, we linearize the nonlinear dynamics in (A.1)–(A.4) about
the generic operating point pi = p0, ai = a0 > 0, bi = b0, and si = s0
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for i = 1, . . . , n. Taking the crowd’s state and input signal as x[k] =
[p1[k], . . . , pn[k],a1[k], . . . , an[k], b1[k], . . . , bn[k], s1[k], . . . , sn[k]]T and v[k] =
[v1[k], . . . , vn[k]]T , respectively, linearizing yields a linear time-invariant sys-
tem of the form

∆x[k + 1] = A∆x[k] + B∆v[k], (A.5)

where

A =









Ap,p Ap,a Ap,b Ap,s

Aa,p Aa,a Aa,b Aa,s

Ab,p Ab,a Ab,b Ab,s

As,p As,a As,b As,s









and B =









0n

In

0n

0n









.

The sub-matices of the A matrix can be written as

Ap,p = cpIn, Ap,b = 0n, Ap,s = 0n, Aa,b = 0n,

Ab,p = On, Ab,a = In, Ab,b = On, Ab,s = On, As,b = 0n,

Ap,a =







µpa,1

. . .

µpa,n







Aa,p =







ǫ1,1 . . . ǫ1,n

...
. . .

...
ǫn,1 . . . ǫn,n






, Aa,s =







δ1

. . .

δn






,

As,p =







π1,1 . . . π1,n

...
. . .

...
πn,1 . . . πn,n






, As,a =







τ1,1 . . . τ1,n

...
. . .

...
τn,1 . . . τn,n






,
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Aa,a =











ca η1,2 . . . η1,n

η2,1
. . .

. . .
...

...
. . .

. . . ηn−1,n

ηn,1 . . . ηn,n−1 ca











, As,s =











ζ1 ρ1,2 . . . ρ1,n

ρ2,1
. . .

. . .
...

...
. . .

. . . ρn−1,n

ρn,1 . . . ρn,n−1 ζn











,

where

δi = 2µapa,isopoao

∑

Oj∈N (Oi)

di,j, ǫi,j = µapa,is
2
oaodi,j, τi,j = µsap,ipodi,j,

ζi = cs−1−µssp,ipo

∑

Oj∈N (Oi)

di,j, ηi,j = µapa,is
2
opodi,j, ρi,j = µssp,ipodi,j, and

πi,j = µsap,i|ao|di,j.
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