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Abstract

Given a set of unit disks in the plane with union area A, what fraction of A can be

covered by selecting a pairwise disjoint subset of the disks? Richard Rado conjectured

1/4 and proved 1/4.41. In this thesis, we consider a variant of this problem where the

disjointness constraint is relaxed: selected disks must be k-colourable with disks of the

same colour pairwise-disjoint. Rado’s problem is then the case where k = 1, and we focus

our investigations on what can be proven for k > 1.

Motivated by the problem of channel-assignment for Wi-Fi wireless access points, in

which the use of 3 or fewer channels is a standard practice, we show that for k = 3 we can

cover at least 1/2.09 and for k = 2 we can cover at least 1/2.82. We present a randomized

algorithm to select and colour a subset of n disks to achieve these bounds in O(n) expected

time. To achieve the weaker bounds of 1/2.77 for k = 3 and 1/3.37 for k = 2 we present a

deterministic O(n2) time algorithm.

We also look at what bounds can be proven for arbitrary k, presenting two different

methods of deriving bounds for any given k and comparing their performance. One of our

methods is an extension of the method used to prove bounds for k = 2 and k = 3 above,

while the other method takes a novel approach.

Rado’s proof is constructive, and uses a regular lattice positioned over the given set of

disks to guide disk selection. Our proofs are also constructive and extend this idea: we

use a k-coloured regular lattice to guide both disk selection and colouring. The complexity

of implementing many of the constructions used in our proofs is dominated by a lattice

positioning step. As such, we discuss the algorithmic issues involved in positioning lattices

as required by each of our proofs. In particular, we show that a required lattice positioning

step used in the deterministic O(n2) algorithm mentioned above is 3SUM-hard, providing

evidence that this algorithm is optimal among algorithms employing such a lattice posi-

tioning approach. We also present evidence that a similar lattice positioning step used in

the constructions for our better bounds for k = 2 and k = 3 may not have an efficient

exact implementation.
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Chapter 1

Introduction

1.1 The Basic Problem

Richard Rado [30] studied the following problem: Given any arrangement of open unit

disks D in the plane, what is the largest c such that we can select a pairwise disjoint subset

of disks that cover at least a fraction c of the area of the union of D? Clearly c ≤ 1
4
,

corresponding to the case shown in Figure 1.1 where a large number of unit disks share

a very small intersection—the common intersection prevents us from selecting more than

a single disk, which has area π, while the union area of all disks approaches 4π. Rado

conjectured that this upper bound is tight—i.e., c = 1
4
—and proved a lower bound of

c ≥ π
8
√

3
≈ 1

4.41
[30].

Figure 1.1: Given a set of unit disks arranged in a circle with a very small mutual inter-

section, the largest fraction of the area we can cover by selecting disjoint disks is π
4π

= 1
4
.

If we imagine that the unit disks in D each represent the coverage area of a wireless

access point placed at that disk’s center, then Rado’s problem models the following wireless

deployment problem: How to choose a subset of access points to cover the largest area while

avoiding regions of interference. Interference occurs at points that are overlapped by the

coverage of two access points; this causes a dead spot where devices can communicate with

neither.

1



In reality, wireless devices are more sophisticated than described above and use multiple

channels to prevent interference. Each access point is assigned a specific channel and

interference only occurs in regions that are covered by two access points operating on the

same channel. With this as motivation, we consider a k-coloured variant of Rado’s problem

which relaxes the disjointness constraint to allow multiple “channels”. Selected disks are

each assigned one of k available colours and only disks which have been assigned the same

colour are required to be pairwise disjoint. The goal remains to cover as much area as

possible under these constraints. In the next section, we state this problem more formally

and present a detailed outline of our results.

1.2 The k-Colour Variant

Rado’s problem can be viewed as the 1-colour case of a more general unit disk packing

problem: Given an arrangement of open unit disks D in the plane and a fixed number

of colours k, we want to find the largest ck such that we can always select and k-colour

a subset of disks C such that same-coloured disks are pairwise disjoint and the union

area of C covers at least a fraction ck of the union area of D. It should be noted that

the term “disk packing” is more commonly used for the geometric problem of positioning

congruent copies of a disk such that they cover a given region as densely as possible without

overlapping [36]. Instead, here the goal is to select a subset of the set D of candidate unit

disks (whose positions are fixed) in order to cover as much of the union area of D as

possible.

Motivated by the problem of channel-assignment for IEEE 802.11 wireless networks, in

which the use of 3 or fewer channels is a standard practice, we begin by proving bounds

for k = 2 and k = 3. We show that, for any given arrangement of unit disks, c2 ' 1
2.82

and

c3 ' 1
2.09

. We also present a randomized algorithm to select and colour a subset of n disks

to achieve these bounds in O(n) expected time. To achieve weaker bounds of c3 ' 1
2.77

and

c2 ' 1
3.37

we present a deterministic O(n2) time algorithm.

In the spirit of Rado’s conjecture that c1 = 1/4, we make conjectures for c2 and c3.

Specifically, we conjecture that the arrangement of disks shown in Figure 1.1 also allows

the smallest fraction of area to be covered for k = 2 and k = 3, and thus c2 = 1/2 and

c3 ≈ 1/1.41 (see Figure 1.2).

We also look at what bounds can be proven for arbitrary k, presenting two different

methods for deriving bounds for any given k and comparing their performance. One method

is a generalization of the method used to prove our bounds on c2 and c3 while the other

takes a novel approach.

Rado’s proof for k = 1 is constructive, and uses a regular lattice positioned over the

given set of disks to guide disk selection. Our proofs are also constructive and extend this

idea: we use a k-coloured regular lattice to guide both disk selection and colouring. The

2



Figure 1.2: Given a set of disks arranged in a circle with a very small mutual intersection,

the largest fraction of area we can cover is 2π
4π

= 1
2

with two colours (left) and approximately
1

1.41
with three colours (right).

complexity of implementing many of the constructions used in our proofs are dominated

by a lattice positioning step. As such, we investigate the algorithmic issues involved in

positioning lattices as required by each of our proofs. In particular, we show that a re-

quired lattice positioning step used in our O(n2) deterministic algorithm mentioned above

is 3SUM-hard, providing evidence that our algorithm is optimal among algorithms using

such a lattice positioning approach. We also present evidence that a similar lattice po-

sitioning step used in the constructions for our better bounds on c2 and c3 is a difficult

problem.

1.3 Outline

The rest of the thesis is organized as follows. In Chapter 2 we review the background and

motivation for our variant of Rado’s problem. In particular, we detail the wireless network

motivation for our variant, examine literature on related problems, and review the details

of Rado’s proof.

In Chapter 3 we prove bounds of c2 ' 1
3.37

and c3 ' 1
2.77

and present an O(n2) time

deterministic algorithm and an O(n) expected time randomized algorithm for selecting and

colouring disks to satisfy these bounds. We also show that a lattice positioning step used

in our deterministic algorithm is 3SUM-hard.

In Chapter 4 we build on the approach used in Chapter 3 and prove bounds of c2 ' 1
2.82

and c3 ' 1
2.09

. We also discuss the algorithmic issues involved in implementing the con-

structions used in these proofs, and present an O(n) expected time randomized algorithm

for selecting and colouring disks to achieve these bounds.

In Chapter 5 we look at what can be proven for k > 3, presenting two methods for

deriving bounds for arbitrary k. One method is a generalization of the approach used to

prove bounds in Chapter 4, while the other follows a novel approach. We compare these

two methods, identifying for which k each method derives better bounds. We also discuss

3



algorithmic issues for these methods. In particular, we present an efficient algorithm for

selecting and colouring disks to achieve the bounds derived using our novel method.

Finally, Chapter 6 concludes the thesis with a discussion of interesting open problems

and directions in which the work presented here could be extended.
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Chapter 2

Background

In this chapter we present the motivation for our variant of Rado’s problem, examine

literature on related problems, and review the details of Rado’s proof. Section 2.1 moti-

vates our k-colour variant of Rado’s problem, describing in detail the wireless networking

deployment problem that it models. This section is not strictly essential to understand

the following chapters. Section 2.2 reviews literature on Rado’s problem and a number of

other problems related to our own. Finally, in Section 2.3 we present Rado’s proof and, in

particular, review the proof of an important lemma proven by Rado [30]. We will refer to

this material frequently in the chapters that follow.

2.1 Wireless Network Deployment

Wi-Fi (IEEE 802.11) wireless networks are becoming a ubiquitous feature in modern busi-

nesses, universities, and cities. In a typical Wi-Fi deployment scenario, a set of candidate

locations are determined for wireless access points (APs) [5]. A subset of the candidate

locations must be chosen along with a channel assignment for each installed AP in order to

maximize the area covered by the wireless network while minimizing interference. Interfer-

ence occurs when two APs using the same channel are within range of one another. This

has the effect that users within range of both APs are prevented from communicating with

either. This type of interference, caused by clients and APs within the wireless network,

is called internal interference. This is to contrast with external interference, caused by

devices outside of the wireless network (e.g., microwaves, cordless phones, or APs from

other wireless networks). Apart from interference, AP coverage areas may be irregular

(i.e., not uniquely determined by the Euclidean distance between a client and the AP)

and may change over time due to change in the environment in which the AP is deployed.

For a more detailed discussion of these and other complications faced by wireless network

deployments, see the introduction to [5].

To avoid interference in a deployment, the number and location of APs can be varied, as

5



can the channel and the power level of each deployed AP. While these could all be considered

as free variables, the realities of wireless network deployment present constraints of varying

severity on each. For example, the set of potential locations for APs is strongly constrained

by where it is physically possible and aesthetically acceptable to place AP hardware. In

contrast, the number of APs is typically only bounded by the ever-lowering cost of wireless

networking hardware. Finally, available power levels and channel assignments are tightly

restricted by the wireless networking protocol being used, government regulations on radio

spectrum, and the capabilities of the specific AP hardware. As it is relevant to our results,

we will discuss in greater detail the constraints placed on channel selection.

The IEEE 802.11 standard establishes a number of requirements on the radio frequency

characteristics of 802.11 hardware. The 2.4-GHz band used by 802.11 devices is broken

into 11 channels for the North American domain and 13 channels for the European domain.

Unfortunately, the number of effective channels is much lower due to interference between

channels with center frequencies close to one another. A study by wireless hardware maker

Cisco Systems recommends that wireless network deployments only use three channels (1,

6, and 11 for the North American domain). They find that even a four-channel scheme can

cause unacceptable degradation of service in systems with a high volume of users [15].

Motivated by the discussion above, we consider the set of candidate locations for APs to

be fixed and place no restriction on the number of APs to be installed. Each installed AP

is assigned one of three available channels and to simplify matters we consider all installed

APs as having the same power level. This simplification is not entirely unjustified, as the

problem of power control for IEEE 802.11 network devices is a complex research area in

its own right [4]. Under these restrictions, the wireless network deployment problem is

analogous to the 3-colour version of Rado’s problem discussed in Chapter 1. Each disk

corresponds to the coverage area of a potential AP placed at the disk’s center, and a

3-coloured disk packing represents a deployment of APs with channel assignments.

2.2 Related Work

General Problem Context

Rado’s problem and our generalization to k-colours are related to a number of well-known

problems in mathematics and computer science. From set theory, Rado’s problem is similar

to the set packing problem. A set packing is a set of subsets of a given set that are pairwise

disjoint. In the set packing problem, we are given a set of subsets of a finite set S as well

as a number k and asked to determine if a set packing of the given subsets exists with

cardinality k [34]. The associated optimization problem, maximum set packing, asks for a

set packing of largest cardinality and has been shown to be NP-hard [22]. Rado’s problem

can be viewed as set packing though with an infinite set S, namely the whole plane. Each

subset is a unit disk in the plane. The other difference is that Rado wasn’t interested in

6



finding an optimum set cover, but rather in proving worst case bounds on the cardinality

of an optimum cover as a fraction of 1/π times the area of the union of all disks. This

makes the problem a geometric one.

From graph theory, Rado’s problem is closely related to the maximum independent set

(MIS) problem on unit-disk graphs. An independent set in a graph is a subset of vertices

that are pairwise non-adjacent. A unit-disk graph is an intersection graph for a set of

congruent disks in the plane—vertices represent disks and edges connect pairs of vertices

whose associated disks have a non-empty intersection. The MIS problem is to find the

largest cardinality independent set in a graph, and is known to be NP-complete for general

graphs [22] as well as for unit-disk graphs [16]. Rado’s problem is then to prove worst case

bounds on the cardinality of an optimal independent set of a unit-disk graph as a fraction

of 1/π times the area of the union of all disks.

The unit-disk k-colourability problem (UD k-CP) can be viewed as a generalization of

the MIS problem to multiple colours, and shares some similarities with our problem. A

graph is called k-colourable if we can find a partitioning of its vertices into k independent

sets, or equivalently to colour the vertices of the graph using at most k colours such that

no two same-coloured vertices are adjacent. The unit-disk k-colourability problem is to

determine if a given unit-disk graph is k-colourable. This problem has been shown to be

NP-complete for any fixed k ≥ 3 [23]. Our problem is similar to the UD k-CP problem,

but we are looking for a k-colourable subset of disks in the unit-disk graph instead of

determining if the entire graph is k-colourable. That is, our goal is to prove quantitative

bounds on the maximum union area of a k-colourable subset of disks in a unit-disk graph,

relative to the union area of all disks in the graph.

The History of Richard Rado’s Problem

Richard Rado’s problem was preceded by a similar problem for arbitrary (i.e., not neces-

sarily congruent) axis-parallel squares. Tibor Radó investigated the problem of proving

bounds on the fraction c of the union area of a set of such squares coverable by a pair-

wise disjoint subset. He conjectured that c = 1/4 and proved c ≥ 1/9 using a greedy

algorithm [33]. Interestingly, 45 years later Ajtai demonstrated a construction involv-

ing several hundred squares that disproved T. Radó’s conjecture [2]. R. Rado improved

T. Radó’s bound for arbitrary axis-parallel squares to 1/8.75 [30], a bound later improved

by Zalgaller to 1/8.60 [37], and Bereg et al. to 1/8.4797 [10].

As well as improving T. Radó’s bound for arbitrary axis-parallel squares, R. Rado

considered a number of variants of this problem, including the variant for congruent disks

(equivalently unit disks) discussed in Chapter 1. In a series of publications titled “On

Covering Theorems” [30, 31, 32] he investigated these types of problems for classes of

convex geometric objects including disks, centrally symmetric convex geometric objects,

and arbitrary convex geometric objects. He also considered the problem in more general

7



settings such as higher dimensions. R. Rado proved that c ≥ π
8
√

3
≈ 1/4.41 for sets of

congruent disks [30]. Though his bound for congruent disks has so far stood the test of

time, recent work by Bereg et al. has improved a number of R. Rado’s other bounds,

including those for arbitrary radii disks, centrally symmetric convex sets, and arbitrary

convex sets [10].

Related Problems

We believe this is the first work to study the k-colour generalization of Rado’s problem.

However, there are a number of similar and related problems that have received attention

in the literature.

In the 1-covered variant of Rado’s problem, selected disks are allowed to overlap but we

only count area where there is no “interference”—i.e., the area of the set of points covered

by only one selected disk. This variant can also be generalized to k-colours, leading to a

k-colour 1-covered variant where the problem is colour a subset of the given disks using

at most k colours to maximize the area of {p ∈ R2 | for some colour, point p is in exactly

one disk of that colour}, called the 1-covered area. Note that, unlike usual colouring, disks

assigned the same colour are allowed to overlap here.

Asano et al. [7] proved that it is always possible to achieve at least approximately 1/4.37

1-covered area relative to the union area of all disks using only one colour. This problem

has also been considered with respect to two other optimization problems. For the problem

of selecting disks to maximize the 1-covered area using one colour, work has focused on

approximation algorithms (though no proof yet exists, it is suspected that this problem

is NP-hard). Asano et al. [7] present a 5.83-approximation algorithm with polynomial

runtime. Chen et al. [14] show that the problem admits a polynomial time approximation

scheme when the ratio of the radius of the largest disk over the radius of the smallest disk

is a constant.

The other related and well-explored optimization problem is conflict-free colouring ; here

the goal is to minimize the number of colours needed to 1-cover the whole area, i.e. the

union of the given disks. Even et al. [19] proved that O(log n) colours are always sufficient

and sometimes necessary for any given disks of general radii. They also proved that, when

the ratio between the radius of the largest and smallest disk in the input set is a constant,

the necessary number of colours is bounded by the log of the maximum number of disks

residing in a square with unit diagonal length [19]. Alon et al. [3] have shown that, if

each disk intersects at most k others, then O(log3 k) colours are sufficient for a conflict-free

colouring, which improves on the above O(log n) bound when k is much smaller than n.

There is also work on online algorithms for conflict-free colouring [20], and on conflict-free

colouring of regions other than disks [26].

Recent research has also looked at the problem of efficiently selecting subsets of con-

gruent disks (equivalently unit disks) to cover a fraction of their union area. In [9], Bereg

8



et al. present an O(n log n) algorithm for selecting a subset of a set of congruent disks

to satisfy a c ≥ 1/(5 + 4/π) > 1/6.2733 bound, and a linear-time approximation scheme

that approximately achieves Rado’s 1/4.41 bound, running in O(n/ε2) and selecting a set

of disks to satisfy a c ≥ 1/(8
√

3/π + ε) bound for any ε > 0. For the equivalent problem

on sets of arbitrary radii disks, they present an O(n2) algorithm to satisfy a c > 1/8.4898

bound.

We will also look at the algorithmic issues involved in selecting subsets of unit disks

to cover a fraction of their union area, but in the context of our k-colour generalization

of Rado’s problem. That is, the research above looks at the problem for k = 1, while our

work looks at the problem for k > 1.

2.3 Rado’s Proof

As was mentioned in Chapter 1, Rado proved that c1 ≥ π
8
√

3
≈ 1

4.41
and conjectured the

lower bound c1 ≥ 1
4

[30]. According to Rado this result was first discovered by Besicovitch

but never published, and was later rediscovered and published by himself. In this section

we will review Rado’s proof in detail. The purpose of this is to give a background on the

problem, and also because we build on ideas used in Rado’s proof in the chapters that

follow.

We start by defining some notation. Let D be a set of unit disks with union area A,

and let ∪D denote the union of all disks in D.

Rado’s proof uses a regular triangular lattice with side length 4 to guide disk selection.

By positioning such a lattice over D and selecting one arbitrary disk containing each lattice

point that intersects ∪D, the set of selected disks must be pairwise disjoint (see Figure 2.1).

If we commit to using such a lattice to guide disk selection, we can prove a lower bound

on c1 by proving a lower bound on how many points of ∪D we can position our lattice to

intersect. That is, supposing that we prove that it is always possible to position our lattice

to intersect ∪D in at least m points, then we can always select a subset of disks with area

πm (m pairwise disjoint disks each with area π) and c1 ≥ πm
A

.

To get a value for m we apply Lemma 2.1, proven below, which gives a lower bound

on the number of points in a region of the plane that we can intersect with a given regular

lattice. Lemma 2.1 uses the concept of the fundamental cell of a lattice. For a regular

triangular lattice the fundamental cell F consists of a pair of adjacent triangles (see Fig-

ure 2.2). Lemma 2.1 states that we can position the lattice to contain at least A
α

points in

∪D, where α is the area of the fundamental cell. Since α = 2
(
4
√

3
)

= 8
√

3 for our lattice,

by Lemma 2.1 we can position the lattice to contain at least m = A
8
√

3
points in ∪D and

therefore c1 ≥ π
8
√

3
.

9



Figure 2.1: A triangular lattice ensures that selected disks are pairwise disjoint.

Figure 2.2: The respective fundamental cells of a regular triangular lattice (left) and a

regular square lattice (right).

Lemma 2.1 [30]. Given a region of the plane G with area A, and a regular lattice with

a fundamental cell of area α, the lattice can always be positioned such that it contains A
α

points in G.

Proof. Given an arbitrary placement of the lattice, each translate of the fundamental cell

F of the lattice can be translated to F along with whatever parts of G they contain (see

Figure 2.3). The translated parts of G may “overlap” in F—there may be points on the

fundamental cell intersecting multiple translated portions of G.

Supposing a point p in F intersects k translated portions of G, then repositioning the

lattice such that p is a lattice point ensures that k lattice points intersect G. In this case,

we refer to k as the depth of point p in the fundamental cell. Since the area of G is A,

the total area of all portions of G translated to F is clearly also A. Therefore, we have

portions of G with total area A translated to a region of area α and a point of depth at

least A
α

must exist.

In the next chapter we will use Lemma 2.1 and a method very similar to that used

above to prove preliminary bounds on c2 and c3.

10



Figure 2.3: Translating portions of ∪D to the fundamental cell (highlighted in blue).
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Chapter 3

Basic Bounds

In this chapter we prove bounds of c2 ' 1/3.37 and c3 ' 1/2.77 and present algorithms to

select and colour subsets of disks to achieve these bounds. The proofs in this chapter also

serve as a stepping stone to the improved bounds that we will prove in Chapter 4.

The proofs presented in this chapter build on ideas from Rado’s proof that c1 '
1/4.41 [30]. In particular, our approach is similar in that we will use a regular lattice

to guide disk selection, and we will make use of Lemma 2.1. Because of this, we will

assume familiarity with Section 2.3.

The rest of this chapter is organized as follows. We begin by proving that c3 ' 1/2.77

in Section 3.1, since this proof shares the most similarity with Rado’s proof. Section 3.2

proves a lemma required by our proof from Section 3.1. In Section 3.3 we prove that

c2 ' 1/3.37. Finally, in Section 3.4 we present an O(n2) time deterministic algorithm and

an O(n) expected time algorithm to achieve the bounds on c2 and c3 presented in this

chapter. We also prove that a lattice positioning step used in our deterministic algorithm

is 3SUM-hard, providing evidence that this algorithm is optimal among algorithms that

use such a lattice positioning approach.

3.1 A Bound of c3 ' 1/2.77

As mentioned above, our overall method of deriving bounds is similar to that of Rado. We

position a regular lattice over the set of disks and, for each lattice point that falls in ∪D,

we select a single disk containing that point. The side length of the lattice guarantees that

our selection meets the required disjointness constraints, and we can bound the number

of disks selected using Lemma 2.1. The key observation that allows us to derive a better

bound for k = 3 than k = 1 is that the relaxed disjointness constraint allows us to use

a finer lattice, in turn allowing us to select more disks. We will also use the lattice as a

convenient way to assign colours to selected disks.

12



Theorem 3.1. Let D be a collection of unit disks in the plane with union area A. For C a

3-coloured subset of D with same-coloured disks pairwise disjoint, let AC denote C’s union

area. There exists a C such that AC

A
' 1

2.77
.

Proof. We use a triangular lattice with side length 4
√

3
3

. The points of the lattice are 3-

coloured such that no two lattice points of the same colour are adjacent. Now, for any

placement of the lattice, we select a subset C of D as follows: for each lattice point p in

the union of D, select a disk containing p and assign the disk the colour of p. The side

length of the lattice ensures that no disk contains two lattice points so the selection and

colouring are well-defined. It also ensures that disks assigned the same colour are pairwise

disjoint (see Figure 3.1).

2

4· 3
3

2

1 1

4· 3
3

Figure 3.1: A finer 3-coloured lattice ensures that same-coloured selected disks are pairwise

disjoint.

Also observe that, by Lemma 2.1, we can position the lattice to intersect the union area

of D in at least A
√

3
8

points, so |C| ≥ A
√

3
8

. While same-coloured disks in C are pairwise

disjoint, differently coloured disks may not be, so |C|π is only an upper bound on AC .

To derive a lower bound we will partition the union of C using the triangular lattice’s
Voronoi tessellation, which has regular hexagonal cells of side length 4

3
and vertices at the

barycenters of the triangular lattice (see Figure 3.2). Suppose disk d ∈ C contains lattice
point p which lies in hexagonal cell h. If we count only the area of d∩ h, and sum over all
d, this gives a lower bound on AC . Thus if we establish a lower bound ∆ on the minimum
possible area of d∩ h then AC ≥ |C|∆ ≥ A

√
3

8
∆. In Lemma 3.2, which we will prove in the

next section, we show that ∆ ≈ 1.6645. From the lower bound on AC we reach our desired
lower bound on c3 of

c3 ≥
AC

A
=
√

3
8

∆ ≈ 1/2.77
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Figure 3.2: The Voronoi tessellation of a regular triangular lattice forms a grid of regular

hexagonal cells.

3.2 Minimum Disk-Hexagon Intersection

Lemma 3.2. Given a regular hexagon h with center point X and side length 4
3
, and any

unit disk d containing point X, the minimum area of intersection ∆ between h and d is

approximately 1.6645, or more precisely

∆ =

√
3

36
+

√
11

12
+

π

2
− 1

2
arctan

(
5
√

3−
√

11

5 +
√

11
√

3

)

Proof. Our first claim is that the minimum area of intersection is achieved by a disk d

positioned such that X, the center point of hexagon h, lies on its boundary. Suppose

this is not the case. By symmetry, it suffices to consider possible placements of Y , the

center point of d, within the intersection of wedge BXK and the unit disk centered at X

in Figure 3.3. For any position of Y , moving Y to the right along a line parallel to AB

decreases the area of intersection, since the portion of d−h lying above the supporting line

of AB stays the same and the portion of d − h below the supporting line of AB strictly

increases (by containment). Thus we can move Y to the right until it lies either on XK

or the boundary of the disk centered at X. For Y on XK, moving Y toward K decreases

d∩h because when the diameter of d parallel to BC lies strictly inside h, the area of d−h

increases (by containment), and when the diameter is not strictly contained in h, the area

of d ∩ h decreases (by containment).

Thus we can restrict our attention to the minimum area of intersection with h among

disks whose boundary contains point X. To find this minimum, we assume that X = (0, 0)

and express the area of intersection f(θ) in terms of angle θ between the center point B

of a disk d, the center X of h, and the x-axis. There are two general cases to consider,

illustrated in Figure 3.4. Case 1 occurs when d contains two vertices of h. Case 2 occurs

when d only contains a single vertex of h. Note that in either case we can express the area

of intersection as the sum of the area of a polygon and a circle sector. For instance, in

14
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Figure 3.3: Sliding disk d outward from the center of h results in a smaller intersection

between d and h.

Figure 3.4 (left) the area of intersection is the sum of the area of polygon ABCED and

the area of the sector of d interior to angle ABC.
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Figure 3.4: Calculating the intersection area as a function of angle θ. Case 1 (left) and

Case 2 (right).

By symmetry, we need only consider the area of intersection for 0 ≤ θ ≤ π
6
. As a result,

we can use the two cases shown in Figure 3.4 to derive a formula for f(θ). Specifically, we

use the symbolic geometry package Geometry Expressions to derive formulas relating θ and

the intersection points between the boundaries of d and h (points A and C in Figure 3.4).

See Appendix A for the derived formulas for these points, along with formulas for the other

points in the two cases shown in Figure 3.4.

From these formulas we express the area of intersection in terms of θ using standard

formulas for the area of polygons and circle sectors. This gives us a formula f1(θ) for the

area of intersection for 0 ≤ θ ≤ arccos(2
3
) − π

6
(that is, the region covered by Case 1)
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0.3

1.68

1.66

theta

1.00.90.80.70.60.5

1.71

0.4

1.70

1.69

1.67

0.20.10.0

Figure 3.5: Plot showing the area of intersection for 0 ≤ θ ≤ π
3
.

and a formula f2(θ) for the area of intersection for arccos(2
3
) − π

6
≤ θ ≤ π

6
(Case 2), see

Appendix A Sections A.1 and A.2. By symmetry, we can use f1(θ) and f2(θ) to build a

formula f(θ) for the area of intersection on the interval 0 ≤ θ ≤ π
3
:

f(θ) =


f1(θ) if 0 ≤ θ < arccos(2

3
)− π

6

f2(θ) if arccos(2
3
)− π

6
≤ θ < π

6

f2(
π
3
− θ) if π

6
≤ θ < arccos(2

3
)

f1(
π
3
− θ) if arccos(2

3
) ≤ θ ≤ π

3

A plot showing f(θ) for the interval 0 ≤ θ ≤ π
3

is given in Figure 3.5. Using Maple

we find that f ′(θ) (the first derivative of f(θ)) is 0 for θ = π
6
. Thus, by symmetry, the

minimum intersection occurs when X, the center point of d and a vertex of of h are collinear.

Computing the value of f(θ) at any one of these points gives our value for ∆, specifically

∆ =

√
3

36
+

√
11

12
+

π

2
− 1

2
arctan

(
5
√

3−
√

11

5 +
√

11
√

3

)
≈ 1.6645

Our proof of Lemma 3.2 also shows that the lower bound AC ≥ |C|∆ from the proof of

Theorem 3.1 is tight, as can be seen in the example in Figure 3.6 where the union of C is
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exactly partitioned by the hexagons and each disk intersects its hexagon in the minimum

area ∆. Note, however, that this does not mean that our bound on c3 is tight. Indeed, for

the example shown in Figure 3.6 we could capture the whole area by 3-colouring the disks,

and in Chapter 4 we prove a better bound on c3.

Figure 3.6: In this arrangement of selected disks, the lower bound on the contribution of

each disk is realized.

3.3 A Bound of c2 ' 1/3.37

A straightforward corollary of Theorem 3.1 gives us a bound on c2. Specifically, we can

follow the construction used to prove Theorem 3.1, but then discard all disks of one colour.

By discarding the colour with the least number of selected disks, we can guarantee that at

least 2/3 of the selected disks remain, leading to a bound of c2 ' 2
3
· 1

2.77
' 1/4.16. In this

section we prove a better bound directly, but we will revisit this idea of proving a bound

for a larger number of colours and then discarding some in Chapter 5, when we present

methods to derive bounds for arbitrary k.

The proof of Theorem 3.3 is essentially the same as that of Theorem 3.1, but instead

of using a 3-coloured regular triangular lattice, we use a 2-coloured square lattice.

Theorem 3.3. Let D be a collection of unit disks in the plane with union area A. For C a

2-coloured subset of D with same-coloured disks pairwise disjoint, let AC denote C’s union

area. There exists a C such that AC

A
' 1

3.37
.

Proof. We use a regular square lattice with side length 2
√

2. The points of the lattice are

2-coloured such that no two same-coloured lattice points are adjacent. For any placement

of the lattice, we select and colour a subset C of D as in the proof of Theorem 3.1. The size

of the lattice ensures that the selection and colouring are well-defined and disks assigned

the same colour are pairwise disjoint (see Figure 3.7).

The fundamental cell of this regular square lattice is simply a 2
√

2 × 2
√

2 square in the

lattice, so by Lemma 2.1 we can position the lattice to intersect the union area of D in at
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2· 2

1

1

Figure 3.7: A 2-coloured lattice with side length 2
√

2 ensures that same-coloured selected

disks are pairwise disjoint.

least A
8

points and |C| ≥ A
8
. As in the proof of Theorem 3.1, differently coloured selected

disks may not be pairwise disjoint and so we derive a lower bound on AC by counting, for

each selected disk, the minimum intersection ∆ between a selected disk and the Voronoi

cell of its selecting lattice point. By Lemma 3.4, proven below, ∆ ≈ 2.3749 and we reach

our desired lower bound on c2 of

c2 ≥
AC

A
=

1
8
∆ ≈ 1/3.37

Lemma 3.4. Given a square S with side length 2
√

2 and center point X, and any unit disk

d containing point X, the minimum area of intersection ∆ between S and d is approximately

2.3749, or more precisely

∆ = π −
(

arccos
(√

2− 1
)
−
(√

2− 1
)√

4− 2
√

2−
(
2−

√
2
)2)

Proof. Starting with the top left corner and proceeding in clockwise order, let the corner

points of S be points A, B, D, and C. Let K be the midpoint of segment BD and let Y

denote the center point of d (see Figure 3.8).

Our first claim is that the minimum area of intersection is achieved by a disk d positioned

such that X, the center point of square S, lies on d’s boundary. Suppose this is not the

case. By symmetry, it suffices to consider possible placements of Y within the intersection

of wedge BXK and a unit disk centered at X (see Figure 3.8). For any position of Y

in this region, moving Y to the right along a line parallel to AB decreases the area of

intersection, since the portion of d − S lying above the supporting line of AB stays the
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same, and the portion of d− S to the right of the supporting line of AB strictly increases

(by containment). Thus we can move Y to the right until it lies on the boundary of the

disk centered at X.

2· 2

D

Y

C

B

X K

A

θ

Figure 3.8: Sliding the disk d (centered at Y ) to the right results in a smaller intersection

between d and S.

Therefore we can restrict our attention to the minimum area of intersection with S

among disks whose boundary contains point X. To find this minimum, we consider the

area of intersection in terms of the interior angle θ between line segments Y X and XK.

Our claim is that the minimum intersection occurs when θ = 0. Increasing θ on the interval

[0, arcsin(
√

2 − 1)] increases the intersection between d and S by decreasing the height of

the circle segment to the right of the supporting line of BD. At θ = arcsin(
√

2 − 1) the

circle segment above the supporting line of AB appears and as θ increases on the interval

[arcsin(
√

2−1), π/4] the height of this circle segment increases while the height of the circle

segment to the right of the supporting line of BD continues to decrease. Since the distance

between X and B is 2, the circle segment above the supporting line of AB will always be

disjoint with the circle segment to the right of the supporting line of BD and the area of

intersection in terms of θ on this interval is given by

f(θ) = π − s(1−
√

2 + cos x)− s(1−
√

2 + sin x)

where s(h) is the function for the area of a circle segment with height h on a unit disk

stated in Fact 3.5 below.

Fact 3.5. The area s(h) of a circle segment with height h on a unit-radius disk is given by

s(h) = arccos(1− h)− (1− h)
√

2h− h2
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Figure 3.9 shows a plot of f(θ) for arcsin(
√

2 − 1) ≤ θ ≤ π/4. Using Maple we find

that f ′(θ)—the first derivative of f(θ)—is negative on this interval except at π/4 where it

is zero, demonstrating that the area of intersection continues to increase as θ increases on

this interval. Therefore, the minimum area of intersection occurs when θ = 0 and we get

the desired value for ∆ of

∆ = π − s(2−
√

2)

= π −

(
arccos

(√
2− 1

)
−
(√

2− 1
)√

4− 2
√

2−
(
2−

√
2
)2
)

Figure 3.9: Plot showing the area of intersection between d and S for arcsin(
√

2 − 1) ≤
θ ≤ π/4.

3.4 Algorithms

In this section we discuss algorithms to select and colour subsets of a set of unit disks

D to realize the bounds on c2 and c3 proven earlier in the chapter. Recall that both of

our bound proofs were constructive and essentially the same, except for the type of lattice

used to select disks. Our algorithms follow the constructive method used by these proofs.

The constructions are straightforward to implement efficiently, with the exception of the

step where we position the lattice such that the number of lattice points lying in ∪D

satisfies the bound prescribed by Lemma 2.1 (i.e., at least A
α

points where α is the area

of the fundamental cell for the lattice). We present several algorithms for solving this

lattice positioning problem. We first give an O(n2) time exact algorithm which finds a
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translation of a given lattice which intersects ∪D in the maximum number of points. Next,

we prove that it is 3SUM-hard to determine whether a lattice positioning exists which

intersects ∪D in a given number of points, providing evidence that our exact algorithm

is optimal. Finally, we present a randomized O(n) expected time algorithm which finds a

lattice positioning which intersects ∪D in at least A
α

points.

Theorem 3.6. Given a regular lattice with a fundamental cell of area α, we can find a

lattice positioning that intersects ∪D in at least A
α

points in O(n2) time.

Proof. The proof of Lemma 2.1 is also constructive, and we follow its approach to design

our lattice positioning algorithm. In the proof of Lemma 2.1 we initially position the

lattice arbitrarily and then translate all cells in the lattice along with portions of ∪D to

a fundamental cell F , in order to find a point of maximum depth among the translated

portions of ∪D. Thus the problem is reduced to capturing the translated portions of ∪D

so that we can compute a point of maximum depth. Our basic idea involves translating all

of the disks and then computing and traversing their arrangement. For the lattices used

to prove bounds in Theorems 3.1 and 3.3, no disk d intersects more than 4 translates of F .

Thus we make up to 4 translated copies of d, and record which translate of F they came

from. Note that the lattices used to prove Theorems 3.1 and 3.3 do not allow copies of the

same disk to overlap in F . Computing this set of translated disks, call it D′, takes O(n)

time. Computing A(D′), the arrangement of D′, takes O(n2) time using the incremental

insertion algorithm of Chazelle and Lee [13].

It is now easy to traverse A(D′) to compute maximum depth in D′—the depth increases

when we enter a disk and decreases when we exit. However, this is not quite what we want;

we want depth with respect to portions of ∪D translated to F . This is different from depth

in D′ because of disks that originally overlapped in D. Our solution is to traverse A(D′)

while maintaining the current depth ci in each translate i of F . Note that there are O(n)

translates of F that intersect ∪D so the number of variables used to maintain depth will

be linear in n. We also maintain a count c of the number of non-zero cis. The face in the

arrangement that attains the maximum value of c over all faces of A(D′) is the desired cell,

and translating the lattice such that a lattice point lies in this face gives us the desired

lattice positioning. Since A(D′) will have O(n2) cells and the extra overhead to keep track

of depth with regard to each translate of F is negligible, the runtime of this algorithm is

dominated by the time taken to traverse A(D′) and is therefore in O(n2).

We now prove that the lattice positioning problem discussed above is 3SUM-hard. A

problem is 3SUM-hard if it is harder than the problem of determining whether a set S of

n integers contains three elements a, b, c ∈ S such that a + b + c = 0. The best known

algorithms for this problem take O(n2) and it is an open problem to do better [21].
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Theorem 3.7. The following problem is 3SUM-hard: Given an integer k and a set D of

n unit disks in the plane, determine whether a given regular lattice can be positioned such

that it intersects the union area of D in at least k points.

Proof. We show that our problem is harder than the known 3SUM-hard problem of de-

termining whether there is a point of depth k in a set of unit radius disks in the plane.

The more general problem for variable radius disks was proven 3SUM-hard in [6] and the

reduction is easily modified to produce unit radius disks.

Our reduction is as follows. Given a set D of unit radius disks in the plane, place a

figure T whose shape matches that of the fundamental cell of the lattice large enough to

contain all of D. Expand T to a lattice, and translate each disk of D to a different cell in

the lattice that has the same orientation. Let the translated set of disks be D′. Then there

is a point of depth k in D if and only if the lattice can be translated to intersect D′ in k

points. The reduction takes linear time.

Theorem 3.7 provides evidence that the algorithm used to prove Theorem 3.6 is optimal

among exact deterministic algorithms. However, if we are willing to sacrifice determinism

or accept an approximate solution, we can devise faster algorithms. In Theorem 3.8 below

we present a randomized algorithm with O(n) expected runtime.

Theorem 3.8. Given a regular lattice with a fundamental cell of area α, we can find a

lattice positioning that intersects ∪D in at least A
α

points in O(n) expected time.

Proof. As in Theorem 3.6, we start by positioning our lattice arbitrarily over the set of

disks and translating all portions of ∪D to the fundamental cell. We then randomly select

points on the fundamental cell and test their depth until we find a point which satisfies

the bound prescribed by Lemma 2.1 (i.e., A
α

points where α is the area of the fundamental

cell for the lattice).

From the proof of Lemma 2.1 it is clear that the average depth of a point on the

fundamental cell will be A
α
. Therefore, with high probability we will only need to test a

constant number of points before finding one equal or greater to this depth. It takes O(n)

time to translate all disks to the fundamental cell, and O(n) time to test the depth of a

given point by iterating over all disks. Therefore, the expected runtime is in O(n).

Another option is to find a point of approximately maximum depth on the fundamental

cell. For this problem, Afshani et al. [1] give a (1 + ε)-factor approximation algorithm for

finding a point of maximum depth in an arrangement of n disks with runtime O(n log n)

in n and polynomial in 1/ε.

In the next chapter, we use a weighted version of the proof method used in this chapter

to demonstrate improved bounds for c2 and c3. We also discuss the algorithmic issues

involved in implementing this weighted approach.

22



Chapter 4

Weighted Bounds

In this chapter we build on the approach used in Chapter 3 and demonstrate improved

bounds of c2 ' 1
2.82

and c3 ' 1
2.09

. We also discuss the algorithmic issues involved in

implementing the constructions used in these proofs, and present an O(n) expected time

randomized algorithm for selecting and colouring disks to achieve these bounds.

In proving bounds on c2 and c3 in Chapter 3 we only counted the intersection of a

disk with its selecting Voronoi cell, and we took the minimum possible value for that

intersection. If we commit to the first idea but try and improve on the second, then we

should try to maximize the intersection of a disk with its selecting Voronoi cell. Clearly

the maximum intersection occurs when the selecting lattice point is at the center of the

selected disk. This suggests that we can use a weighting function that prefers placing a

lattice point in the center of a disk to do a more intricate analysis of the contribution of

each disk.

Looking at this from another direction, in our proofs from Chapter 3 we optimized the

number of disks selected rather than the area of the intersection between selected disks and

their selecting Voronoi cells. This approach can be improved because, among all subsets

of disks that can be selected using a lattice, the largest subset of disks does not necessarily

cover the largest area. For example, in Figure 4.1 selecting the three intersecting disks

using the lattice positioning shown gives a subset with a union area of approximately 4.99

(specifically 3∆ where ∆ ≈ 1.6645 as proven in Lemma 3.2), while an alternate lattice

positioning selecting two disjoint disks gives a subset with union area 2π ≈ 6.28.

The above points suggest that we can improve our bounds from Chapter 3 by using

a more sophisticated criterion for lattice positioning based on the area contributed by

selected disks rather than the number of disks selected. In the following sections, we will

use this approach to prove better bounds for c2 and c3, and in Chapter 5 we extend this

approach to give bounds on ck for any given k. We begin by proving our improved bound

on c3 in the next section.
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Figure 4.1: The lattice positioning shown selects the maximum number of disks, however

an alternate lattice positioning selects fewer disks while covering more area.

4.1 A Bound of c3 ' 1/2.09

As mentioned above, we will stick with the idea of using a lattice to select subsets of disks

that satisfy the required disjointness constraints. We also keep the accounting scheme of

counting the intersection of a disk with its selecting Voronoi cell. The major difference

from our approach in Chapter 3 is that we will derive a bound on the lattice positioning

based on how much area is selected in this accounting scheme, instead of the number of

selected disks. To implement this more sophisticated criterion for lattice positioning, we

define a weight function w : R2 → R≥0 defined over all points on the plane and use the

following, weighted version of Lemma 2.1 to give a lower bound on the maximum value of

the weight of a lattice placement W (L).

Lemma 4.1. Given a weight function w : R2 → R≥0, let G be a bounded region of the

plane with a total weight B =
∫

x∈G
w(x). A regular lattice with a fundamental cell of area

α can always be positioned such that the sum of the weights at intersection points between

the lattice and G is at least B
α
.

Proof. As in the proof of Lemma 2.1 we consider translating portions of G onto a funda-

mental cell. After translation, each point p in the fundamental cell is assigned the sum of

the weights of p’s intersection with each translated portion of G. Supposing that a point

p in the fundamental cell has weight m, then positioning L such that p is a lattice point

ensures that W (L) = m. Thus, if we can prove that the total weight of the portions of G

translated to the fundamental cell is B, then a point in the fundamental cell (and therefore

a lattice positioning) with weight at least B
α

must exist.

We are now ready to present our improved bound on c3.

24



Theorem 4.2. Let D be a collection of unit disks in the plane with union area A. For C a

3-coloured subset of D with same-coloured disks pairwise disjoint, let AC denote C’s union

area. There exists a C such that AC

A
' 1

2.09
and thus c3 ' 1

2.09
.

Proof. We’ll start by defining our weight function. For point p, let H(p) be a regular

hexagon of side length 4
3

centered at p such that p and a vertex of H(p) lie on a line parallel

to the y-axis. Thus H(p) is the Voronoi cell of p if our triangular lattice is translated to

include point p. For p ∈ ∪D, let d(p) be the disk in D containing p whose intersection

with H(p) has maximum area. Now let w(p) = area(H(p) ∩ d(p)) for p ∈ ∪D, w(p) = 0

otherwise. Then w(p) measures the area contributed by including p in the lattice (given

our method of choosing disks using the lattice, and our accounting scheme of counting only

the area of the disk in the Voronoi cell).

We want to choose a lattice L to maximize W (L) =
∑

p∈L w(p). Establishing a lower

bound on the maximum value of W (L) for lattices of the type used in our proof of The-

orem 3.1 will give us a lower bound on c3. We can apply Lemma 4.1 to get such a lower

bound, provided we can find B, the total weight of ∪D.

p

Figure 4.2: Considering the intersection between a selected disk and the largest disk that

can be contained in the disk’s Voronoi cell provides a simple lower bound for w(p) in terms

of distance from p to the nearest disk center.

The value of B will be the integral of w(p) over p ∈ ∪D. For our chosen w(p) this is

difficult to compute exactly, but we can obtain a lower bound. Our first step is to replace

the true weight function w(p) with a lower bound wl(p) in which we replace the hexagon

by its inscribed circle (see Figure 4.2). Specifically, wl(p) is the area of the intersection

of two disks: a disk of radius 2/
√

3 centered at p, and the unit disk in D whose center is

closest to p. Note that wl(p) depends only on the distance, r, from p to the nearest disk

center in D. We will overload the notation and define wl(r), for r ∈ [0, 1], to be the area

of the intersection of a unit disk and a disk of radius 2/
√

3 whose centers are distance r

apart. We can then write the following explicit formula for wl(r).
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wl(r) =

{
π if 0 ≤ r ≤ 2√

3
− 1

β(r) if 2√
3
− 1 < r ≤ 1

where β(r) is given by

β(r) = arccos

(
1

2

r2 − 1
3

r

)
+

4

3
arccos

(
1

4

(
r2 + 1

3

)√
3

r

)
−

1

2

√(
−r + 1 +

2√
3

)(
r + 1− 2√

3

)(
r − 1 +

2√
3

)(
r + 1 +

2√
3

)
We will express B as an integral in terms of variable r. Note that the points on the

boundary of ∪D are precisely the points at distance 1 from the closest disk center. More

generally, we can capture the points that are distance r from the closest disk center as

follows. For each unit disk d ∈ D, let dr be a disk of radius r at the same center. Let

Dr be {dr : d ∈ D}. Then the points that are distance r from the closest disk center are

precisely the points on the boundary of ∪Dr. Let p(r) be the length of the boundary of

∪Dr. As w(r) ≥ wl(r) ≥ 0, we obtain:

B =

1∫
0

p(r)w(r) dr ≥
1∫

0

p(r)wl(r) dr

We prove a lower bound on the latter integral that eliminates p(r).

Lemma 4.3. For γ(r) a continuous non-increasing function with a piecewise continuous

differential γ′(r),

1∫
0

p(r)γ(r) dr ≥ 2A

1∫
0

rγ(r) dr

Since wl(r) is clearly a continuous non-increasing function with a piecewise continuous

derivative, we can plug wl(r) into Lemma 4.3 to get B ≥
∫ 1

0
p(r)wl(r) dr ≥ 2A

∫ 1

0
rwl(r) dr.

Substituting the expression for wl(r) and evaluating the integral using Maple we obtain a

lower bound on B of 2.207A. Therefore, by Lemma 4.1 a lattice positioning with weight

at least
√

3
8

B ' A
2.09

must exist, and we arrive at our desired lower bound of c3 ' 1
2.09

.

It remains to prove Lemma 4.3.
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Proof of Lemma 4.3. We want to prove
∫ 1

0
p(r)γ(r) dr ≥ 2A

∫ 1

0
rγ(r) dr. Equivalently, we

want to prove that

1∫
0

[p(r)− 2rA]γ(r) dr ≥ 0

Let A(r) be a function for the area of ∪Dr, which is related to the perimeter by the

fact that p(r) = A′(r). Define f(r) = A(r)− r2A. Recall that A = A(1) is the area of ∪D.

Note that f(0) = f(1) = 0. Now f ′(r) = A′(r)− 2rA = p(r)− 2rA, and the inequality we

want to prove is transformed into
∫ 1

0
f ′(r)γ(r) dr ≥ 0.

We apply integration by parts, noting that f ′ is continuous, and that γ′ is piecewise

continuous.

1∫
0

f ′(r)γ(r) dr = f(r)γ(r)

∣∣∣∣1
0

−
1∫

0

f(r)γ′(r) dr = −
1∫

0

f(r)γ′(r) dr

We will prove below that A(r) ≥ r2A. Thus f(r) ≥ 0 for all r ∈ [0, 1]. Recall that

γ(r) is a non-increasing function, so γ′(r) ≤ 0 for all r ∈ [0, 1]. The integral of a negative

function is negative, and this completes the proof.

Figure 4.3: The union of a set of disks before (left) and after a radius scaling has been

applied (right).

Claim 4.1. Given a collection of unit disks with union area A, if we scale the radius of

each disk by r ∈ [0, 1] then the union area of the scaled disks will be at least r2A.

Proof. We want to scale the radius of each disk by r. We accomplish this in two steps.

First we scale the whole plane by a factor of r. This reduces the area to r2A. It also

decreases the distance between the centers of any two disks by a factor of r. The second
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step is to translate each scaled disk back to its original position. During the translation

the distance between the centers of any two disks increases continuously. By a result of

Bollobás [11], the union area of a set of congruent disks moving apart from one another

continuously cannot decrease, and therefore the area of the final arrangement of scaled

disks is at least r2A.

4.2 A Bound of c2 ' 1/2.82

As Theorem 4.2 was a weighted version of Theorem 3.1, Theorem 4.4 presented in this

section is a weighted version of Theorem 3.3. As in Theorem 3.3 we use a 2-coloured

regular square lattice with side length 2
√

2, and derive a bound on the union area of

selected disks based on a weight function defined on ∪D.

Theorem 4.4. Let D be a collection of unit disks in the plane with union area A. For C a

2-coloured subset of D with same-coloured disks pairwise disjoint, let AC denote C’s union

area. There exists a C such that AC

A
' 1

2.82
.

Proof. As in the proof of Theorem 4.2, we start by defining our weight function. For point

p, let S(p) be the 2
√

2 × 2
√

2 square centered at p. Thus S(p) is the Voronoi cell of p if our

square lattice is translated to include point p. For p ∈ ∪D, let d(p) be the disk containing

p whose intersection with S(p) has maximum area. Let w(p) = area(S(p) ∩ d(p)) for

p ∈ ∪D, w(p) = 0 otherwise. Then w(p) measures the area contributed by including p

in the lattice (given our method of choosing disks using the lattice, and our accounting

scheme of counting only the area of a disk contained in its selecting Voronoi cell).

We want to compute a lower bound on B—the integral of w(p) over p ∈ ∪D—and

then apply Lemma 4.1. Recall that our approach in Theorem 4.2 was to lower bound w(p)

with the function wl(p) where we replaced the Voronoi cell with its largest inscribed circle.

Since the value of wl(p) depended only on the distance from p to the nearest disk center

in D, we overloaded the notation to wl(r) for r ∈ [0, 1]. Then wl(r) gave a lower bound on

the weight of any point p ∈ ∪D with distance r to the nearest disk center and we applied

Lemma 4.1 with wl(r) to compute a lower bound on B. Following the same approach with

a 2-coloured square lattice leads to a bound of c2 ' 1/2.95. We derive a better bound here

by following a similar approach but using a different method to lower bound w(p).

As mentioned above, w(p) measures the intersection area of a 2
√

2 × 2
√

2 square

centered at p with some unit disk d(p) containing p. Since point p is specified by (a) the

distance r between p and the center point of d(p) and (b) the interior angle θ between the

x-axis and the segment joining these two points, we can replace w(p) with w(r, θ). We

then lower bound w(r, θ) with a new function ws(r) by minimizing over θ (i.e., ws(r) =

minθ w(r, θ)). Thus ws(r) gives a lower bound on the weight of any point p ∈ ∪D with

distance r to the nearest disk center.
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Figure 4.4: Exploring the intersection between a unit disk centered at x, and a 2
√

2 × 2
√

2

square centered at p.

Lemma 4.5. Using the above notation, for any r ∈ [0, 1], the minimum value of w(r, θ)

occurs at θ = 0.

Proof. Let S be a 2
√

2 × 2
√

2 square with center point p. Starting with the top left corner

and proceeding in clockwise order, let the corner points of S be denoted A, B, D, and C.

Let d be a unit disk whose center point x is distance r from p. Let K be the midpoint of

segment BD. Then θ as discussed above will be the interior angle between segments xp

and pK (see Figure 4.4).

By symmetry we need only consider 0 ≤ θ ≤ π/4. We will refer to the circle segment

of the disk lying above the supporting line of AB as the top circle segment and the circle

segment of the disk lying to the right of the supporting line of BD as the right circle

segment. Line segment pB has length 2, so for all r ∈ [0, 1] and θ ∈ [0, π/4] the top and

right circle segments will always be disjoint and will be the only portions of d lying outside

of S. Let stop(r, θ) and sright(r, θ) respectively denote the area of the top and right circle

segments for a given r ∈ [0, 1] and θ ∈ [0, π/4]. Using the function s(h) for the area of

a circle segment with height h on a unit disk as stated in Fact 3.5, we can write out the

formulas for stop and sright as follows

stop(r, θ) =

{
s(1 + r sin θ −

√
2) if 1 + r sin θ −

√
2 ≥ 0

0 if 1 + r sin θ −
√

2 < 0

sright(r, θ) =

{
s(1 + r cos θ −

√
2) if 1 + r cos θ −

√
2 ≥ 0

0 if 1 + r cos θ −
√

2 < 0

Using stop(r, θ) and sright(r, θ) we can write the formula for w(r, θ), giving the area of

intersection between d and S for a given r ∈ [0, 1] and θ ∈ [0, π/4].
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w(r, θ) = π − stop(r, θ)− sright(r, θ)

We will prove that, for all r ∈ [0, 1], w(r, 0) ≤ w(r, θ) for all θ ∈ [0, π/4]. We do so by

considering a number of cases corresponding to possible values of r.

• r ∈ [0,
√

2− 1): In this case d will be completely contained within S for all θ so it is

trivially true that w(r, θ) attains a minimum at θ = 0.

• r ∈ [
√

2− 1, 2−
√

2): In this range stop(r, θ) will always be 0, since 1 + r sin θ −
√

2

(the height of the top circle segment) is less than 0 for r < 2−
√

2 and all θ ∈ [0, π/4].

Moreover, as θ increases on the interval 0 ≤ θ ≤ π/4 the height (and thus area) of

the right circle segment will decrease, increasing the area of intersection between d

and S. Thus w(r, θ) attains a minimum at θ = 0 for this case as well.

• r ∈ [2−
√

2, 1]: For 0 ≤ θ < arcsin
(√

2−1
r

)
we have a similar situation to the previous

case, where there is no top circle segment and sright(r, θ) decreases as θ increases. At

θ = arcsin
(√

2−1
r

)
the top circle segment appears and its height increases with θ on

the interval arcsin
(√

2−1
r

)
≤ θ ≤ π/4. We will show that sright(r, θ) decreases faster

than stop(r, θ) increases on this interval and thus the area of intersection between d

and S will continue to increase with θ on this interval.

Let λtop(r, θ) and λright(r, θ) be the respective partial derivatives of stop(r, θ) and

sright(r, θ) with respect to θ. Then λtop(r, θ) and λtop(r, θ) are given by the equations

below

λtop(r, θ) =
∂stop(r, θ)

∂θ
= 2r cos θ

√
2r
√

2 sin θ − r2 sin2 θ − 1

λright(r, θ) =
∂sright(r, θ)

∂θ
= −2r sin θ

√
2r
√

2 cos θ − r2 cos2 θ − 1

We want to prove that λtop(r, θ) ≤ −λright(r, θ), for all r ∈ [2 −
√

2, 1] and θ ∈
[arcsin(

√
2−1
r

), π/4]. Simplifying, we get the following inequality:

2r
√

2
(
sin θ cos2 θ − cos θ sin2 θ

)
+ sin2 θ − cos2 θ ≤ 0

Since sin2 θ − cos2 θ ≤ 0 for 0 ≤ θ ≤ π/4, this will be true for all r ∈ [2−
√

2, 1] if it

is true when r = 1. Substituting in r = 1 and simplifying to remove all occurrences

of sin θ yields the following inequality:
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16 cos6 θ − 8
√

2 cos5 θ − 20 cos4 θ + 12
√

2 cos3 θ + 4 cos2 θ − 4
√

2 cos θ + 1 ≥ 0

Using Maple to find zeros for the left hand side of the above inequality, we find that

there is a zero at θ = π/4 and no other zeroes on the interval 0 ≤ θ ≤ π/4. Further,

the left hand side is greater than or equal to zero for any θ ∈ [0, π/4) and thus the

inequality holds on this region. Therefore, the area of intersection between d and S

continues to increase on the interval arcsin
(√

2−1
r

)
≤ θ ≤ π/4 and w(r, θ) attains a

minimum at θ = 0 in this case as well.

The cases above show that, for all r ∈ [0, 1], a minimum area intersection between d

and S occurs at θ = 0 and this completes our proof.

By Lemma 4.5, for all r ∈ [0, 1], w(r, 0) ≤ w(r, θ) and we can let ws(r) = w(r, 0). We

observe that ws(r) is a continuous non-increasing function of r with a piecewise continuous

derivative, and that we can write the following explicit formula for it

ws(r) =


π if 0 ≤ r ≤

√
2− 1

π − s(r + 1−
√

2) if
√

2− 1 < r ≤ 1

where s(h) is the function for the area of a circle segment with height h on a unit disk as

stated in Fact 3.5.

Applying Lemma 4.3 with ws(r) and evaluating the integral using Maple, we obtain

a lower bound on B of approximately 2.834A. Then by Lemma 4.1 a lattice positioning

must exist with weight at least 1
8
B ' A/2.82 and c2 ' 1

2.82
.

4.3 Algorithmic Issues

The proofs of Theorems 4.2 and 4.4 are constructive, so an obvious question is whether they

can be implemented efficiently, as with the constructions of Theorems 3.1 and 3.3 discussed

in Section 3.4. As with the constructions of Theorems 3.1 and 3.3, the main algorithmic

issue is the lattice positioning step. For the problem of finding a lattice positioning of

maximum weight, we present evidence that a deterministic exact algorithm is unlikely to

exist. However, we also present a simple randomized algorithm with O(n) expected runtime

that finds a lattice positioning with weight at least that prescribed by Lemma 4.1.
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Finding a maximum weight lattice positioning appears to be

difficult

The weighted lattice positioning problem can be broken into two parts: finding the weight

of each point in ∪D and finding a lattice positioning that maximizes the sum of weights at

all lattice points. For the first part, recall that ideally we want the weight of a candidate

lattice point to reflect exactly how much area the best disk d selectable by that point

will contribute to the union area of all selected disks. This is difficult to determine since

differently coloured selected disks may intersect, and so we settled on a scheme of counting

the intersection area of d with the lattice Voronoi cell of its selecting point. We further

simplified this in the proofs of Theorems 4.2 and 4.4 to a lower bound function γ(·) on

the intersection area of d with the lattice Voronoi cell of the candidate point. In both

Theorems 4.2 and 4.4 γ(·) depends only on the distance between the candidate lattice

point and the center point of a selected disk and is a monotone non-increasing function.

This makes it easy to decide which disk to select for a given candidate lattice point: we

always select the disk whose center point is closest among disks containing the candidate

lattice point. In this way, for our lower bound on the weight function, it is easy to compute

the weight of any single candidate lattice point p in ∪D: the weight is simply γ(r) where

r is the distance between p and the center of the nearest disk containing p.

The second part of the lattice positioning problem is more difficult. Here we need

to find a lattice positioning that maximizes the total weight of all lattice points in ∪D.

Equivalently, we need to find a point of maximum weight in the fundamental cell after

translating all portions of ∪D there. This appears to be a very challenging problem.

Consider a situation where all disks in D are disjoint but all overlap when translated to

the fundamental cell. In this case, we need to find a point x in the fundamental cell to solve

a problem of the form: maximize
∑

p∈P γ(dist(x, p)) where P is the set of center points of

disks in D and γ(·) is a monotone non-increasing function. This is similar in many ways

to the Weber point problem in two dimensions, which is not encouraging.

In the Weber point problem, given a set of points P we are asked to find a point M(P )

(sometimes called a Weber point) such that
∑

p∈P −dist(M(P ), p) is maximized. This

problem has been studied extensively, and has proven to be quite challenging (for back-

ground on the problem see [17]). In general, no polynomial algorithm has been discovered,

nor has the problem been shown to be NP-hard [25]. Moreover, for the Weber point prob-

lem in two or more dimensions, it has been proven that there is no exact algorithm for

finding the location of M(P ) under models of computation where the root of an algebraic

equation is obtained using arithmetic operations and the extraction of kth roots [8].

In some ways the Weber point problem in two dimensions is simpler than our problem

of finding a point of maximum weight on the fundamental cell. In both cases we are

seeking a point of maximum weight where the weight of any point p in the plane is a

function of the distance between p and each of a set of points in P (respectively, the
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center points of the disks in D). Whereas the Weber point problem uses the simplest

such weight function—simply the sum of distances to the input points themselves—our

weight function is more complicated, involving the intersecting area of disks. It might be

argued that our weight function falls to 0 fairly quickly, simplifying our problem. However,

translating disks to the respective fundamental cells of the regular lattices used in our proofs

of Theorems 3.1 and 3.3 forces center points of translated disks to be at most distance 4

apart, mitigating the advantage this might give us.

We feel that the above arguments provide strong evidence that finding a maximum-

weight lattice positioning is difficult, and efficient exact algorithms are unlikely to exist

for all but simple arrangements of disks. On a more encouraging note, approximation

algorithms have been successful for solving the Weber point problem. Recent work by Bose

et al. [12] has given a deterministic ε-approximation algorithm with runtime O(n log n) in

terms of n and polynomial in 1/ε. As well, Bose et al. [12] and Indyk [29] have presented

randomized ε-approximation algorithms with running times linear in n and polynomial in

1/ε.

In the next section, we give a simple randomized algorithm with O(n) expected runtime

that finds a lattice positioning with weight at least that prescribed by Lemma 4.1.

Finding a lattice positioning to satisfy Lemma 4.1 in O(n) expected

time

If we are not concerned with finding a lattice positioning of maximum weight, we can find

a lattice positioning of at least the weight prescribed by Lemma 4.1 quickly using a simple

randomized approach.

Theorem 4.6. Given a regular lattice with a fundamental cell of area α, and a set of unit

disks D with total weight B =
∫

p∈∪D
w(p), we can find a lattice positioning in O(n) expected

time such that the sum of weights at intersection points between the lattice and ∪D is at

least B/α.

Proof. The proof is essentially the same as that of Theorem 3.8. We first position our

lattice arbitrarily over the set of disks and translate portions of ∪D to the fundamental

cell. We then test the weight of randomly selected points on the fundamental cell until we

find a point with weight at least B
α
.

From the proof of Lemma 4.1 it is clear that the average weight of a point on the

fundamental cell will be B
α
. Therefore, with high probability we will only need to test

a constant number of points before finding one equal or greater than this weight. We

can compute the weight of any given point in O(n) time by iterating over all disks, and

therefore the expected runtime is in O(n).
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Chapter 5

Extension to k Colours

In this chapter we build on the concepts introduced for k ≤ 3 and present two methods

of demonstrating general bounds for any fixed k. Up to this point we have focused on

cases where k ≤ 3 colours are available. As mentioned in Section 2.1, this is relevant

for channel assignment in Wi-Fi networks where the use of three or fewer channels is a

standard practice. However, other wireless communication systems such as GSM (Global

System for Mobile communication) operate on a larger frequency range than Wi-Fi and

have more available channels [27]. As well, disregarding the wireless networking motivation,

the question of what bounds can be proven for arbitrary k is interesting in its own right.

5.1 k-Colour Bounds

The first method that we will present is a generalization of the proof method used for k = 3

in Chapter 4. The second method follows a different approach from what we have seen so

far.

Both methods presented in this section use a coloured regular triangular lattice to

guide disk selection and colouring, though the lattice is used differently in each. As in

the proofs presented in previous chapters, a key requirement is a regular lattice whose

points are coloured to guarantee some minimum distance between those assigned the same

colour. We start by identifying a subset of values for k for which lattices with this desirable

property exist.

Lemma 5.1. For all k ∈ {i2+ij+j2 | i, j ∈ N}, and any given distance m we can k-colour

a regular triangular lattice of side length m√
k

such that same-coloured lattice points are at

least distance m apart.

Proof. Consider the unit triangular lattice Lunit and suppose we designate one point in the

lattice as the origin O. Standing at the origin and walking i units along the lattice in one

direction, we will arrive at another lattice point Y . If we then turn π/3 radians and walk
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j units along the lattice in this new direction we will arrive at another lattice point X.

Clearly the distance from X back to the origin will be
√

i2 + ij + j2 (see Figure 5.1) and

the supporting line of segment OX will intersect lattice points at regular
√

i2 + ij + j2

intervals. Therefore for all k ∈ {i2 + ij + j2 | i, j ∈ N}, distance
√

k occurs in the unit

triangular lattice and by π
3

rotational symmetry, an entire sublattice with side length
√

k

exists. Each triangle in the sublattice will have area k
√

3
4

and each triangle in the unit

lattice will have area
√

3
4

so we can partition Lunit into k triangular sublattices of side

length
√

k and assign each a unique colour. Finally, scaling Lunit by a factor of m√
k

gives

us the desired lattice.

X

O

i2+i·j+j2

2·π
3

j

i

Y

Figure 5.1: Distance
√

i2 + ij + j2 occurs in the unit triangular lattice.

Given a distance m and a number of colours k, Lemma 5.1 tells us that a k-coloured

regular triangular lattice exists containing k sublattices of side length m so long as k ∈
{i2 + ij + j2 | i, j ∈ N}. Using this, Theorem 5.2 generalizes the proof method used in

Theorem 4.2 to demonstrate a bound for any k such that k ∈ {i2 + ij + j2 | i, j ∈ N}.

Theorem 5.2. Given k colours, where k ∈ {i2 + ij +j2 | i, j ∈ N} there exists a k-coloured

subset C of disks such that same-coloured disks are disjoint. Let AC denote C’s union area,

then

ck ≥
AC

A
≥ k

4
√

3

1∫
0

rg

(
r, 1,

2√
k

)
dr

where g(d0, r1, r2) is a function for the area of intersection between two disks of respective

radii r1 and r2 and distance d0 between their center points (stated in Fact 5.3 below).

Proof. As mentioned above, our proof is a straightforward generalization of the proof of

Theorem 4.2 from Section 4.1. By Lemma 5.1, we know that a k-coloured regular triangular

lattice exists with distance m between same-coloured lattice points and side length m√
k
.
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By choosing m = 4 (twice the diameter of a unit disk) we ensure that disks selected

and coloured using this lattice will satisfy the required disjointness constraints. Using this

lattice, we proceed as in the proof of Theorem 4.2 and define a weight function. For point p,

let H(p) be the regular hexagon of side length 4√
3k

centered at p. H(p) is the Voronoi cell of p

if our lattice was translated to include point p. For p ∈ ∪D let d(p) be the disk containing

p whose intersection with H(p) has maximum area. Let w(p) = area(H(p) ∩ d(p)) for

p ∈ ∪D, w(p) = 0 otherwise. Then w(p) measures the area contributed by including p in

the lattice (given our method of choosing disks based on the lattice, and our accounting

scheme of counting only the area of the disk in the Voronoi cell).

We want to compute a lower bound on B—the integral of w(p) over p ∈ ∪D—and

then apply Lemma 4.1. As in the proof of Theorem 4.2 we will lower bound w(p) with a

function wl(p) which replaces the hexagonal Voronoi cell H(p) with its largest inscribed

circle. Since the value of wl(p) only depends on the distance from p to the nearest disk

center in D, we overload the notation to wl(r) for r ∈ [0, 1]. The inscribed circle within

H(p) will have radius 2√
k
, and so wl(r) = g

(
r, 1, 2√

k

)
where g(d0, r1, r2) is a function for

the area of intersection between two disks of respective radii r1 and r2 and distance d0

between their center points as stated in Fact 5.3 below.

Fact 5.3. The area of intersection g(d0, r1, r2) between two disks with respective radii r1

and r2 and distance d0 between their center points is given by the formula below. We

use a standard formula β(d0, r1, r2) for the area of intersection between two disks whose

boundaries intersect, and then take into account the cases where one disk is completely

contained in the other, or the two disks are disjoint.

g(d0, r1, r2) =


min{πr1

2, πr2
2} if 0 ≤ d < max{r1, r2} −min{r1, r2}

β(d0, r1, r2) if max{r1, r2} −min{r1, r2} ≤ d < r1 + r2

0 if d ≥ r1 + r2

where β(d0, r1, r2) is given by the standard formula

β(d0, r1, r2) = r1
2 arccos

(
d2 + r1

2 − r2
2

2dr1

)
+ r2

2 arccos

(
d2 + r2

2 − r1
2

2dr2

)
− 1

2

√
(−d + r1 + r2)(d + r1 − r2)(d− r1 + r2)(d + r1 + r2)

Since wl(r) gives the intersection area of two disks with center points distance r apart,

it is clearly a continuous non-increasing function of r and its derivative will be piecewise

continuous. Therefore, we can apply Lemma 4.3 with wl(r) to get the following lower

bound on B:
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B ≥
1∫

0

p(r)wl(r) dr ≥ 2A

1∫
0

rg

(
r, 1,

2√
k

)
dr

Finally, since the fundamental cell of the lattice has area 8
√

3
k

, by Lemma 4.1 a lattice

positioning must exist with weight at least

(
k

8
√

3

)
B = A

k

4
√

3

1∫
0

rg

(
r, 1,

2√
k

)
dr

and we arrive at our desired bound of

ck ≥
k

4
√

3

1∫
0

rg

(
r, 1,

2√
k

)
dr

Using Maple to evaluate the resulting function from Theorem 5.2 for the values of

k ≤ 16 which satisfy k ∈ {i2 + ij + j2 | i, j ∈ N} produces the bounds shown in Table 5.1.

k 1 3 4 7 9 12 13 16

ck ' 1
4.41

1
2.09

1
1.88

1
1.61

1
1.53

1
1.46

1
1.44

1
1.40

Table 5.1: Bounds on ck derived using Theorem 5.2

Our second method of deriving bounds demonstrates weaker bounds than those of

Theorem 5.2 for small k, but surpasses Theorem 5.2 as k grows large (greater than 1483

colours). The proof is also simpler and more self-contained than that of Theorem 5.2, using

only Lemma 4.3, and Claim 4.1 from Section 4.1.

Theorem 5.4 below states the result of our second method. The proof of Theorem 5.4

also uses a k-coloured triangular lattice to select and colour sets of disks, but in a different

manner than the proofs we’ve presented so far. We start with a k-coloured regular trian-

gular lattice and colour each lattice Voronoi cell to match its associated lattice point (see

Figure 5.2). Then, for each Voronoi cell containing the center point of one or more disks,

we select one such disk and colour it to match the Voronoi cell. Observe that we can ensure

that disks selected and coloured in this manner are pairwise disjoint by scaling the lattice

such that the enclosing circle around same-coloured Voronoi cells are distance 2 apart (see

Figure 5.3).
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Figure 5.2: Each Voronoi cell is coloured to match its associated lattice point.

Figure 5.3: Scaling such that distance 2 separates the enclosing circles of same-coloured

Voronoi cells guarantees that same-coloured selected disks will be pairwise disjoint.

Theorem 5.4. Given k colours, where k ∈ {i2 + ij +j2 | i, j ∈ N} there exists a k-coloured

subset C of disks such that same-coloured disks are disjoint. Let AC denote C’s union area,

then ck ≥ AC

A
≥ 1

(1+δk)2
where δk = 2√

3

(
2√

k− 2√
3

)
.

Proof. By Lemma 5.1 a k-coloured regular triangular lattice L exists with side length 1

and distance at least
√

k between same-coloured lattice points. We can scale L such that

distance 2 separates the smallest enclosing disks of Voronoi cells of same-coloured lattice

points by applying a scaling factor of αk = 2√
k− 2√

3

.

Now, let each disk in D be associated with the lattice Voronoi cell containing that disk’s

center. For each Voronoi cell with one or more associated disks we select one associated

disk arbitrarily and colour it to match the Voronoi cell’s lattice point. Note that by our

choice of lattice size, same-coloured selected disks cannot intersect.

If a point p is in ∪D but is not in any selected disk, then the disk covering p intersects

another disk with center in the same Voronoi cell, and the distance between their center

points is less than the diameter of the Voronoi cell δk = 2√
3
αk. Therefore, if all selected

disks were blown up by a factor of 1 + δk, p would be covered by some blown-up selected
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disk. That is, the union area of all blown-up selected disks would be at least A and thus

the union area of all selected disks must be at least A 1
(1+δk)2

by Claim 4.1 from Section 4.1,

and we have shown that ck ≥ 1
(1+δk)2

.

k 1 3 4 7 9 12 13 16

ck ' — 1
25.00

1
13.93

1
6.50

1
5.07

1
4.00

1
3.77

1
3.28

Table 5.2: Bounds on ck derived using Theorem 5.4

Table 5.2 shows bounds derived using Theorem 5.4 for k ≤ 16. There is no bound for

k = 1 since the lattice scaling step would need to scale the lattice by a negative scalar.

Figure 5.4 shows a plot of bounds derived using Theorems 5.2 and 5.4 up to k = 2000,

from which it appears that the bounds proven by Theorem 5.4 eventually surpass those of

Theorem 5.2. Table 5.3 shows in detail the the bounds produced by Theorems 5.4 and 5.2

around k = 1483, where we can observe the bounds produced by Theorem 5.4 overcome

those of Theorem 5.2.

0.0

0.56

k

2,0001,500

0.4

0.72

0

0.64

0.8

0.48

0.08

1,000

0.88

0.24

0.32

500

0.16

Figure 5.4: Plot comparing the bounds derived using Theorem 5.2 (blue) and Theo-

rem 5.4 (red) for 1 ≤ k ≤ 2000

Strictly speaking, Theorems 5.2 and 5.4 don’t let us derive bounds for any exact number

of colours k, only k ∈ {i2 + ij + j2 | i, j ∈ N}. Moreover, the number of such k less than

a given x ∈ N is given by Θ( x√
log x

), so the set of such k is thin (density 0). However, for

values of k which are not in this set, we can still derive a bound by letting kl be the largest

element of the set {i2 + ij + j2 | i, j ∈ N} less than k and let kh be the smallest element
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k 1468 1471 1477 1483 1488 1489

Theorem 5.2 ck ' 1
1.12764

1
1.12761

1
1.12756

1
1.12751

1
1.12747

1
1.12746

Theorem 5.4 ck ' 1
1.12816

1
1.12802

1
1.12774

1
1.12747

1
1.12724

1
1.12720

Table 5.3: Bounds on ck derived using Theorems 5.2 and 5.4 around k = 1477

of {i2 + ij + j2 | i, j ∈ N} greater than k. Then ck ≥ max
(
ckl

, k
kh

ckh

)
. That is, we can

either choose not to use k− kl colours and use the bound ckl
, or we can derive a bound ckh

using kh colours and then throw away disks of the kh − k colours whose disks contribute

the least to the area of selected disks.

5.2 What about a square lattice?

In this section we consider equivalent theorems to Theorems 5.2 and 5.4 using a square

lattice. While different numbers of colours can be used to colour a square lattice, it appears

that this doesn’t allow us to derive any improved bounds.

In both Chapters 3 and 4 we presented a bound for k = 3 proven using a triangular

lattice and a bound for k = 2 proven using a square lattice. Our proofs for k = 2 used

a square lattice because it can be easily 2-coloured and scaled to guarantee distance 4

between same-coloured lattice points. Generalizing this to arbitrary k, we can prove the

following square-lattice counterpart of Lemma 5.1, defining a set of values for k for which

we can k-colour a square lattice while guaranteeing some distance between same-coloured

points.

Lemma 5.5. For all k ∈ {i2 + j2 | i, j ∈ N}, and any given distance m we can k-colour

a regular square lattice of side length m√
k

such that same-coloured lattice points are at least

distance m apart.

Proof. The proof is the same as that of Lemma 5.1 but modified for a square lattice

(distance
√

k occurs in the unit square lattice for k ∈ {i2 + j2 | i, j ∈ N} and the lattice

has π
4

rotational symmetry).

Using Lemma 5.5 we can easily modify the proofs of Theorems 5.2 and 5.4 to yield the

following square-lattice equivalents.

Theorem 5.6. Given k colours, where k ∈ {i2 + j2 | i, j ∈ N} we can select and colour

a k-coloured subset C of disks such that same-coloured disks are disjoint, and letting AC

denote C’s union area,

ck ≥
AC

A
≥ k

8

1∫
0

rg

(
r, 1,

2√
k

)
dr
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where g(d0, r1, r2) is a function for the area of intersection between two disks of respective

radii r1 and r2 and distance d0 between their center points (stated in Fact 5.3).

Theorem 5.7. Given k colours, where k ∈ {i2 + j2 | i, j ∈ N} we can select and colour

a k-coloured subset C of disks such that same-coloured disks are disjoint, and letting AC

denote C’s union area, ck ≥ AC

A
≥ 1

(1+δk)2
where δk = 2

√
2√

k−
√

2
.

Unfortunately, this doesn’t appear to allow us to derive any better bounds for arbitrary

k. Observe that for values of k which fall in both {i2 + j2 | i, j ∈ N} and {i2 + ij + j2 |
i, j ∈ N}, Theorem 5.2 will always give a better bound than Theorem 5.6 since the integral

is the same and the scalar outside the integral is smaller for Theorem 5.6. This doesn’t

say anything about values of k for which Theorem 5.6 is valid but Theorem 5.2 is not,

or vice versa. Likewise, it doesn’t say anything about bounds derived for values of k for

which neither Theorem 5.2 or 5.6 hold, using the technique discussed at the end of the

last section. However, exploring the data up to k = 2000 indicates that the bounds from

Theorem 5.6 are still weaker in these cases than those of Theorem 5.2. This can be seen in

Figure 5.5 showing bounds derived using Theorem 5.2 and Theorem 5.6 for k ≤ 200, and

Figure 5.6 for k ≤ 2000.

0.8

0.5

0.4

k

0.7

0.6

150

0.3

50 200100

0.9

0

Figure 5.5: Plot comparing the bounds derived using Theorem 5.2 (blue) and Theo-

rem 5.6 (red) for k ≤ 200

Similarly, for values of k in both {i2 + j2 | i, j ∈ N} and {i2 + ij + j2 | i, j ∈ N},
Theorem 5.4 will clearly give a better bound than Theorem 5.7, and Figures 5.7 and 5.8

show that Theorem 5.4 derives better bounds than Theorem 5.7 up to at least k = 50, 000.
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1,000

0.3

0.7

2,000

0.6

0

0.4

0.9

1,500

0.8

Figure 5.6: Plot comparing the bounds derived using Theorem 5.2 (blue) and Theo-

rem 5.6 (red) for k ≤ 2000

500

0.8

1,500 2,000

0.2

0.6

1,000

k

0.4

0.0
0

Figure 5.7: Plot comparing the bounds derived using Theorem 5.4 (blue) and Theo-

rem 5.7 (red) for k ≤ 2000

5.3 Algorithms

In this section we look at the algorithmic issues involved in selecting and colouring sets of

disks to satisfy the bounds proven in this chapter. Since the method used in Theorem 5.2

is a generalization of the construction used to prove Theorems 4.2 and 4.4, the algorithmic

results discussed in Section 4.3 apply to it as well. As such, we focus on the construction

used to prove Theorem 5.4.

The construction used by Theorem 5.4 is the simplest construction we have seen so far,

not requiring a complex lattice positioning step. Recall that the construction involves first

arbitrarily positioning a k-coloured lattice over the set of points. Then, for each lattice

point whose Voronoi cell contains the center point of at least one disk, we select one of

these associated disks arbitrarily and colour it to match the selecting point.

This can be implemented in O(n) time, where n is the size of the set of input disks D.

We simply iterate through each disk d ∈ D, checking if d’s associated lattice point p has

been used to select and colour a disk yet. If it has not, we select d and colour it to match
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k
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0.9

0.8

0.75

0.85

5

1.0

10
4

1 43

Figure 5.8: Plot comparing the bounds derived using Theorem 5.4 (blue) and Theo-

rem 5.7 (red) for 2000 ≤ k ≤ 50, 000

p, and record that p has been used to select and colour a disk. There will be at most n

lattice points with associated disks, since each disk has exactly one associated lattice point

(assuming a convention for resolving disks with centers equidistant to two or more lattice

points). We can use a hash table to record lattice points that have already selected disks

and so the runtime of the algorithm is dominated by the time to iterate over the n input

disks, and is in O(n).
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Chapter 6

Conclusion

In this thesis, we have introduced a k-coloured generalization of a problem studied by Rado

in which the goal is to select a subset of a set of unit disks to cover as large a fraction of

their union area as possible. We have demonstrated a number of bounds for k = 2, 3 as well

as two methods of deriving bounds for arbitrary k. All of our bound proofs are constructive

and in some way use a coloured lattice as a guide for disk selection and colouring. We have

examined the algorithmic complexity of implementing each of these constructions and have

presented efficient algorithms for selecting and colouring sets of disks to satisfy a number

of our bounds.

There are a number of directions in which our work can be extended. Foremost, the

bounds on ck proven here leave room for improvement. For instance, for k = 2 the ar-

rangement of disks in Figure 1.2 show that c2 ≤ 1/2 while the best known lower bound is

c2 ' 1/2.82 (Theorem 4.4). Similarly, for k = 3, Figure 1.2 shows that c3 / 1/1.41 while

the best known lower bound is c3 ' 1/2.09 (Theorem 4.2). Even for k = 1, a problem posed

more than 60 years ago, there exists a gap between the best known upper bound of c1 ≤ 1/4

by the arrangement of disks shown in Figure 1.1 and Rado’s result of c1 ≥ 1/4.41 [30].

Moreover, the arrangements shown in Figures 1.1 and 1.2 are only conjectured to be the

worst possible arrangements, suggesting that it may be possible to close the gap from above

as well.

Here we have assumed that k is a small constant in relation to the number of input

disks n, but there are open questions if this is not the case. To start, what bounds can be

proven on ck when k is related to n? Clearly ck = 1 for any k ≥ n since we can simply

select all disks and assign each a unique colour. For k < n, the arrangement of disks shown

in Figure 1.1 demonstrates that ck < 1. It would be interesting to see what bounds could

be proven when we have, for instance, O(log n) available colours, or n/m available colours

for some fixed constant m > 1.

Other open problems include generalizing the algorithms and bounds presented here to

higher dimensions, arbitrary radii disks, or classes of geometric objects other than disks.
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Appendix A

Lemma 3.2 Formulas

A.1 Derived Formula for 0 ≤ θ ≤ arccos(2
3) −

π
6 (see

Fig. 3.4 (left))

Ax(θ) =
1
3

√
3− 1

2

√
1−

(
−2

3

√
3 +

1
2

sin (θ)
√

3 +
1
2

cos (θ)
)2√

3− 1
4

sin (θ)
√

3 +
3
4

cos (θ)

Ay(θ) = 1 +
1
2

√
1−

(
−2

3

√
3 +

1
2

sin (θ)
√

3 +
1
2

cos (θ)
)2

+
1
4

sin (θ)− 1
4

cos (θ)
√

3

Bx(θ) = cos(θ)

By(θ) = sin(θ)

Cx(θ) =
1
3

√
3− 1

2

√
1−

(
2
3

√
3 +

1
2

sin (θ)
√

3− 1
2

cos (θ)
)2√

3 +
1
4

sin (θ)
√

3 +
3
4

cos (θ)

Cy(θ) = −1− 1
2

√
1−

(
2
3

√
3 +

1
2

sin (θ)
√

3− 1
2

cos (θ)
)2

+
1
4

sin (θ) +
1
4

cos (θ)
√

3

Dx(θ) =
2
3

√
3

Dy(θ) =
2
3

Ex(θ) =
2
3

√
3

Ey(θ) = −2
3

f1(θ) =
1

2

(∣∣∣∣ Ax(θ) Bx(θ)

Ay(θ) By(θ)

∣∣∣∣+ ∣∣∣∣ Bx(θ) Cx(θ)

By(θ) Cy(θ)

∣∣∣∣+ ∣∣∣∣ Cx(θ) Ex(θ)

Cy(θ) Ey(θ)

∣∣∣∣+ ∣∣∣∣ Ex(θ) Dx(θ)

Ey(θ) Dy(θ)

∣∣∣∣+ ∣∣∣∣ Dx(θ) Ax(θ)

Dy(θ) Ay(θ)

∣∣∣∣
)

+
1

2

(
π + arctan

(
− (−Bx(θ) + Cx(θ)) (−Ay(θ) + By(θ)) + (By(θ)− Cy(θ)) (Ax(θ)−Bx(θ))

(−Bx(θ) + Cx(θ)) (Ax(θ)−Bx(θ)) + (By(θ)− Cy(θ)) (−Ay(θ) + By(θ))

))
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A.2 Derived Formula for arccos(2
3) −

π
6 ≤ θ ≤ π

6 (see

Fig. 3.4 (right))

Ax(θ) =
1
3

√
3− 1

2

√
1−

(
−2

3

√
3 +

1
2

sin (θ)
√

3 +
1
2

cos (θ)
)2√

3− 1
4

sin (θ)
√

3 +
3
4

cos (θ)

Ay(θ) = 1 +
1
2

√
1−

(
−2

3

√
3 +

1
2

sin (θ)
√

3 +
1
2

cos (θ)
)2

+
1
4

sin (θ)− 1
4

cos (θ)
√

3

Bx(θ) = cos(θ)

By(θ) = sin(θ)

Cx(θ) =
2
3

√
3

Cy(θ) = −1
3

√
−3 + 12 cos (θ)

√
3− 9 (cos (θ))2 + sin (θ)

Dx(θ) =
2
3

√
3

Dy(θ) =
2
3

f2(θ) =
1

2

(∣∣∣∣ Ax(θ) Bx(θ)

Ay(θ) By(θ)

∣∣∣∣+ ∣∣∣∣ Bx(θ) Cx(θ)

By(θ) Cy(θ)

∣∣∣∣+ ∣∣∣∣ Cx(θ) Dx(θ)

Cy(θ) Dy(θ)

∣∣∣∣+ ∣∣∣∣ Dx(θ) Ax(θ)

Dy(θ) Ay(θ)

∣∣∣∣
)

+
1

2

(
π + arctan

(
− (−Bx(θ) + Cx(θ)) (−Ay(θ) + By(θ)) + (By(θ)− Cy(θ)) (Ax(θ)−Bx(θ))

(−Bx(θ) + Cx(θ)) (Ax(θ)−Bx(θ)) + (By(θ)− Cy(θ)) (−Ay(θ) + By(θ))

))
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