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Abstract

Interval censoring arises frequently in life history data, as individuals are often

only observed at a sequence of assessment times. This leads to a situation where

we do not know when an event of interest occurs, only that it occurred somewhere

between two assessment times. Here, the focus will be on methods of estimation for

recurrent event data, current status data, and multistate data, subject to interval

censoring.

With recurrent event data, the focus is often on estimating the rate and mean

functions. Nonparametric estimates are readily available, but are not smooth.

Methods based on local likelihood and the assumption of a Poisson process are

developed to obtain smooth estimates of the rate and mean functions without speci-

fying a parametric form. Covariates and extra-Poisson variation are accommodated

by using a pseudo-profile local likelihood. The methods are assessed by simulations

and applied to a number of datasets, including data from a psoriatic arthritis clinic.

Current status data is an extreme form of interval censoring that occurs when

each individual is observed at only one assessment time. If current status data arise

in clusters, this must be taken into account in order to obtain valid conclusions.

Copulas offer a convenient framework for modelling the association separately from

the margins. Estimating equations are developed for estimating marginal param-

eters as well as association parameters. Efficiency and robustness to the choice of

copula are examined for first and second order estimating equations. The meth-

ods are applied to data from an orthopedic surgery study as well as data on joint

damage in psoriatic arthritis.

Multistate models can be used to characterize the progression of a disease as

individuals move through different states. Considerable attention is given to a

three-state model to characterize the development of a back condition known as

spondylitis in psoriatic arthritis, along with the associated risk of mortality. Ro-

bust estimates of the state occupancy probabilities are derived based on a difference

in distribution functions of the entry times. A five-state model which differentiates

between left-side and right-side spondylitis is also considered, which allows us to

characterize what effect spondylitis on one side of the body has on the development

of spondylitis on the other side. Covariate effects are considered through multiplica-

tive time homogeneous Markov models. The robust state occupancy probabilities

are also applied to data on CMV infection in patients with HIV.
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Chapter 1

Introduction

1.1 Overview

In many chronic disease processes, it is natural to model the disease course with

multistate stochastic models. An example of this is the simple case where a healthy

individual may develop a disease and subsequently die. In this case, the states can

be defined as “healthy”, “diseased” and “dead” and transitions occur between these

states as the process evolves over time. A complication in studies of this setting is

that it is often not possible to observe individuals continuously over the period of

interest. Instead, the status of individuals is known only at a sequence of assessment

times. At these times it can be determined what state an individual is in, and if a

transition is known to have occurred, an interval over which the transition occurred

may be known. The transition times are said to be interval-censored. Models for

counting processes can also be formulated based on a multistate model. Here the

state space is the set of non-negative integers representing the cumulative number

of recurrent events an individual has experienced. These models are progressive in

the sense that transitions are only possible in one direction.

The goal of this thesis is to develop statistical methods for settings where the

process of interest can be characterized through a multistate or recurrent event

model but the transition or event times are subject to interval censoring. In partic-

ular, focus will be on estimation of prevalence functions and transition intensities

for multistate models and transition rates and mean functions for recurrent event

models. We restrict attention to progressive models and give special attention to

several common multistate models.

The remainder of this chapter is organized as follows. In Sections 1.2, 1.3 and 1.4

1



we review methods for the analysis of failure time, multistate, and recurrent event

data respectively and consider both the analysis of right-censored and interval-

censored data. Methods to be used in later chapters are introduced here, but

readers familiar with this material can proceed to Section 1.5 where the topics of

particular interest are discussed briefly. Details on the specific topics are given in

Chapters 2 to 4 and plans for future research are given in Chapter 5.

1.2 Analysis of Failure Time Data

In many settings interest lies in the time until a certain event occurs. Often, this is

death and so the time under study is referred to as a lifetime or failure time. Let

T > 0 be a random variable representing the time under study, and t its realized

value. Usually, it is assumed that T has a continuous distribution with density f(t)

and cdf F (t) = P (T ≤ t). The survivor function is

S(t) = P (T > t) =

∫ ∞

t

f(u) du = 1− F (t)

and the hazard function is defined as

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
.

The hazard function expresses the instantaneous conditional probability of failing

at t given that an individual survived up to t. A related function of interest is the

cumulative hazard function,

H(t) =

∫ t

0

h(u) du

and it can be shown that S(t) = exp(−H(t)) in the continuous case and more

generally using the product integral (see Andersen et al. 1993, Chap. 2),

S(t) = R
(0,t)

(1− dH(u)).

1.2.1 Analysis of Right-Censored Failure Time Data

In many situations failure times are not known exactly, but are only known to

have fallen in a particular interval. In such cases they are said to be censored.

Suppose in a medical study a subject is followed from some time origin and does

2



not experience the event under study. In this case all that can be determined is that

the event occurred at some point after the end of the period of observation. This

is an example of right censoring, where the censoring time corresponds to the end

of the study. More generally, a failure time would be called right-censored when it

is known to occur after some given time, but the time itself is unknown.

A common way of describing right-censored data is to define random variables

Ti and δi for the ith subject, i = 1, . . . , n where δi = I(subject i’s lifetime is known)

and Ti is the lifetime if δi = 1 or the censoring time if δi = 0 for subject i. The

likelihood function can be constructed based on these random variables for simple

censoring schemes, however a much more general approach will be adopted here that

encompasses many censoring schemes. Let Ni(t) be a counting process that counts

failures for subject i, i = 1, . . . , n. In this case, a subject can only fail once, say at

time ti, so Ni(t) = 0 for t < ti and Ni(t) = 1 for t ≥ ti. Similarly, a counting process

Ci(t) can be defined that counts when individual i is censored. A third process,

Yi(t), is the at-risk process which takes the value 1 if individual i is at risk of failure

at time t and 0 otherwise. Also define dNi(t) = I(individual i failed in [t, t + dt))

and dCi(t) = I(individual i censored in [t, t + dt)). Define D(t) = {i : dNi(t) = 1}
and C(t) = {i : dCi(t) = 1}. The likelihood can be constructed as a product of

conditional probabilities of the form P (D(t), C(t)|H(t)) where H(t) = {Ni(u), 0 ≤
u < t;Yi(u), 0 ≤ u ≤ t, i = 1, . . . , n} is the history of the study to time t. Using the

product integral, the likelihood is

L = R
(0,∞)

P (D(t), C(t)|H(t))

which can be broken down to

L = R
(0,∞)

P (D(t)|H(t)) R
(0,∞)

P (C(t)|D(t),H(t)).

In order to further simplify the likelihood, assumptions must be made about the

censoring mechanism. Standard assumptions (Lawless 2003; Kalbfleisch and Pren-

tice 2002) are that for individuals at risk at time t, the failure mechanisms act

independently and that

P (dNi(t) = 1|H(t)) = Yi(t)h(t).

This leads to

P (D(t)|H(t)) =
n∏
i=1

h(t)dNi(t)(1− h(t))Yi(t)(1−dNi(t))

3



and if P (C(t)|D(t),H(t)) does not depend on the parameters of interest, these

terms can be dropped from the likelihood leaving

L =
n∏
i=1

R
(0,∞)

h(t)dNi(t)(1− h(t))Yi(t)(1−dNi(t))

which simplifies to

L =
n∏
i=1

h(ti)
δiS(ti) =

n∏
i=1

f(ti)
δiS(ti)

1−δi

The assumptions above define the class of censoring mechanisms known as in-

dependent censoring since it amounts to a conditional independence between the

failure mechanism and the censoring mechanism. This means that a subject who

has not failed and not been censored by time t has the same probability of failure at

time t had there been no censoring. Special cases of independent censoring include

both type 1 and type 2 censoring as well as independent random censoring.

When P (C(t)|D(t),H(t)) does not depend on the parameters of interest it is

termed noninformative censoring. In cases where the terms P (C(t)|D(t),H(t)) do

depend on the parameters of interest (i.e. we have informative censoring) they can

still be dropped and L can be viewed as a partial likelihood. Inferences remain

valid, although possibly at a loss of efficiency.

Parametric Models

When the survival function takes a parametric form, S(t; θ), dependent on a vector

of parameters θ, the likelihood is as above,

L(θ) =
n∏
t=1

f(ti; θ)
δiS(ti; θ)

1−δi .

Standard likelihood based inference can be used to estimate θ and parametric re-

gression models may also be considered (see Lawless 2003, Chaps. 4, 5 & 6).

Piecewise-Constant Models

A special case of parametric models are those where the hazard function is piecewise

constant. This means there is a partition 0 = a0 < a1 < a2 < . . . < am where the
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hazard in (aj−1, aj] is a constant λj, j = 1, . . . ,m. In this case,

H(t;λ) =
m∑
j=1

λjwj(t)

S(t;λ) = exp(−H(t))

f(t;λ) =
m∏
j=1

λ
I(aj−1<t≤aj)
j exp(−H(t))

where wj(t) =
∫ aj

aj−1
I(u ≤ t) du. The likelihood becomes

L(λ) =
n∏
i=1

m∏
j=1

λ
I(aj−1<ti≤aj)δi
j exp

(
−

m∑
j=1

λjwj(ti)

)
.

This likelihood is straightforward to maximize, since the log-likelihood can be writ-

ten as

`(λ) =
m∑
j=1

(dj log λj − vjλj)

where dj =
∑n

i=1 I(aj−1 < ti ≤ aj)δi and vj =
∑n

i=1wj(ti). It follows that λ̂j =

dj/vj, j = 1, . . . ,m.

Nonparametric Estimation

If a nonparametric approach is adopted, the derivation of the nonparametric MLE

of the survivor function is as follows (see Kalbfleisch and Prentice 2002, Chap. 1).

Let t1, . . . , tk be the ordered observed survival times. Let rj be the number of

individuals who have a failure time greater or equal to tj and let dj be the number

of individuals with a failure time equal to tj. Let the number of individuals with

censoring times lying in [tj, tj+1), j = 0, . . . , k be cj, where t0 = 0 and tk+1 = ∞.

Let the censoring times be denoted by tjr, r = 1, . . . , cj, j = 0, . . . , k. Then an

observed time contributes S(tj)− S(t+j ) and a censored time contributes S(t+jr) to

the likelihood, hence the likelihood becomes

L =
k∏
j=0

[(
S(tj)− S(t+j )

)dj

cj∏
r=1

S(t+jr)

]
.

From this, we can see the nonparametric MLE, Ŝ(t), must be discontinuous

at each tj. Also, since S(t) is a non-increasing function, the S(t+jr) terms are
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maximized by setting S(t+jr) = S(t+j ). In other words, Ŝ(t) has jumps at t1, . . . , tk

and is constant everywhere else. This means that we can write

Ŝ(tj) =
∏
r<j

(1− ĥr)

Ŝ(t+j ) =
∏
r≤j

(1− ĥr)

and the log-likelihood becomes

` =
k∑
j=1

[
dj log(ĥj) + dj

∑
r<j

log(1− ĥr) + cj
∑
r≤j

log(1− ĥr)

]

=
k∑
j=1

[
dj log(ĥj) + (rj − dj) log(1− ĥj)

]
This can easily be maximized and ĥj = dj/rj, which gives the Kaplan-Meier esti-

mator,

Ŝ(t) =
∏
j|tj<t

(1− dj/rj).

A nonparametric MLE of the cumulative hazard function, H(t) can be obtained

(see Lawless 2003, Chap. 3) from the likelihood function

L = R
(0,∞)

dH(t)dN·(t)(1− dH(t))Y·(t)−dN·(t)

where dN·(t) =
∑n

i=1 dNi(t) and Y·(t) =
∑n

i=1 Yi(t). Maximizing this likelihood

corresponds to setting dĤ(t) = dN·(t)/Y·(t) so that

Ĥ(t) =

∫ t

0

dN·(u)

Y·(u)
=
∑
j|tj<t

dj
rj
.

This is the Nelson-Aalen estimate of the cumulative hazard function. The Kaplan-

Meier estimate can be derived using the relationship

Ŝ(t) = R
(0,t)

(1− dĤ(u)).

Kernel Smoothing and Local Likelihood

The Kaplan-Meier and Nelson-Aalen estimates both produce step-functions. Some-

times it is desirable to have a smooth nonparametric estimates. A smooth estimate
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of the density function can be obtained by kernel smoothing the Kaplan-Meier es-

timate. Similarly, a smooth estimate of the hazard function can be obtained by

kernel smoothing the Nelson-Aalen estimate. Let Kb(u) = K(u/b)/b where K(u)

is the kernel function. Typical examples of kernel functions are the rectangular

kernel, K(u) = 1/2 for |u| < 1, the Epanechnikov kernel, K(u) = 3/4(1 − u2)

for |u| < 1 and the Gaussian kernel, K(u) = 1/
√

2π exp(−u2/2). Each of these

kernels have properties that may suggest the use of one in a particular application,

however in general the bandwidth is what will frequently have the greatest effect

on the resulting estimate.

The kernel density estimates of the density and hazard are (Ramlau-Hansen

1983)

f̂(t) =

∫ ∞

−∞
Kb(u− t) dF̂ (u)

and

ĥ(t) =

∫ ∞

0

Kb(u− t) dĤ(u)

where F̂ (u) = 1− Ŝ(u), Ŝ(u) is the Kaplan-Meier estimate and Ĥ(u) is the Nelson-

Aalen estimate. The downside to these estimates is they can be imprecise in the

tails leading to bias (see Lawless 2003, Chap. 3).

The kernel density estimate can also be motivated by local likelihood arguments.

For uncensored data, the local log-likelihood is (Loader 1996; Hjort and Jones 1996)

`(f, t) =
n∑
i=1

Kb(Ti − t) log f(Ti)− n

∫ ∞

−∞
Kb(u− t)f(u) du.

Hjort and Jones (1996) provide a number of justifications for this likelihood, the

simplest of which being that the derivative of the first term does not have expecta-

tion 0 so the second term is added as a correction. The density function around the

point t can be approximated by a parametric function. Frequently, a polynomial

log density, log f(s) ≈ α0t +α1t(s− t) + · · ·+αpt(s− t)p for s near t is used. If the

log of the density is approximated by a constant, i.e. log f(s) = α0t for s near t

then the log-likelihood can be written as

`(f, t) =
n∑
i=1

Kb(Ti − t)α0t − n exp(α0t).

Differentiating with respect to α0t and setting to zero gives

f̂(t) =
1

n

n∑
i=1

Kb(Ti − t) =

∫ ∞

−∞
Kb(u− t) dF̂ (u).
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Loader (1996) and Hjort and Jones (1996) also discuss reducing the bias of the

kernel density estimators by approximating log f(u) for u near t by a polynomial.

Local likelihood estimation of the hazard function is discussed in Betensky et al.

(1999) who deal with right-censored data. A similar approach is taken where the

local log-likelihood function is taken to be

`(h, t) =
n∑
i=1

{
δiKb(Ti − t) log h(Ti)−

∫ Ti

0

h(u)Kb(u− t) du

}
where δi is 1 (0) if subject i’s failure time is observed (censored). This local like-

lihood is constructed by weighting each individual’s contributions according to its

distance from the point t where the weight is assigned according to the chosen

kernel. This leads to a local likelihood of the form

L(h, t) =
n∏
i=1

R
(0,∞)

(h(u) du)dNi(u)Kb(u−t)(1− h(u) du)Yi(u)Kb(u−t)(1−dNi(u))

which reduces to

L(h, t) =
n∏
i=1

h(Ti)
δiKb(Ti−t) exp

{
−
∫ ∞

0

Yi(u)Kb(u− t)h(u) du

}
=

n∏
i=1

h(Ti)
δiKb(Ti−t) exp

{
−
∫ Ti

0

Kb(u− t)h(u) du

}
.

If the kernel function is taken to be the rectangular kernel then the local log-

likelihood at t is a restriction of the ordinary log-likelihood to the region [t− b, t+

b]. For kernel functions of other forms, it amounts to assigning more weight to

information closer to the time t.

The hazard function around the point t can be approximated by a parametric

function, typically, log(h(s)) ≈ α0t+α1t(s− t)+ · · ·+αpt(s− t)p for s near t leading

to

`(h, t) =
n∑
i=1

{δiKb(Ti − t) {α0t + · · ·+ αpt(s− t)p}

−
∫ Ti

0

exp {α0t + · · ·+ αpt(s− t)p}Kb(u− t) du

}
The estimate of h(t) is then ebα0t where α̂0t, . . . , α̂pt are the solutions to the local
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score equations

n∑
i=1

{
δiKb(Ti − t)(Ti − t)d

−
∫ Ti

0

(u− t)d exp {α0t + · · ·+ αpt(u− t)p}Kb(u− t) du

}
= 0

for d = 0, 1, . . . , p.

If the log of the hazard function around the point t is approximated by a con-

stant, the resulting score equation has a closed form solution and

ĥ(t) =

n∑
i=1

δiKb(Ti − t)

n∑
i=1

∫ Ti

0

Kb(u− t) du

.

For the local likelihood methods, the bandwidth, kernel and degree of the poly-

nomial must be specified. Betensky et al. (1999) suggest using a nearest-neighbour

bandwidth which ensures a percentage of the data are always within the fitting win-

dow. Hjort and Jones (1996) and Loader (1999) discuss cross-validation techniques.

For example, a least squares cross-validation for estimating the density chooses the

bandwidth b such that it minimizes∫ ∞

−∞
f̂ 2(u; b) du− 2

n

n∑
i=1

f̂−i(Ti; b)

where f̂−i(t; b) is the estimate of f obtained by deleting the ith observation. An

alternative criterion is the likelihood cross validation given by

n∑
i=1

log f̂−i(Ti; b)− n

(∫ ∞

−∞
f̂(u; b) du− 1

)
. (1.1)

The second term is included as a kind of penalty for density estimates that do

not integrate to 1. The likelihood cross validation criterion may be used without

the penalty term. For example, the implementation in Loader (1999) does not

include this term by default. Loader (1999) also notes that fixed bandwidths may

perform poorly in the tails of the distribution, hence the motivation for nearest-

neighbours bandwidths. Using polynomials of order 1 or 2 can help reduce bias at

the boundaries.
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1.2.2 Analysis of Interval-Censored Failure Time Data

Another form of incomplete data arises when subjects are periodically observed. In

this situation we can only determine that the event of interest occurred between

two time points. The event time is then only known to fall in an interval of time

and this type of data is known as interval-censored data, (Sun 2006). If each subject

is only observed once, then we can only observe whether or not the individual has

experienced the event. Such data are referred to as case I interval-censored data,

or current status data. The general situation of many assessments per individual

are sometimes called case II interval-censored data.

It should also be noted that as described by Lindsey (1998), all observations on

continuous time variables are interval censored. An event time is recorded to the

nearest day, month and so on. One question is when does this censoring have an

impact? If events occur on average once every year but we can only record to the

nearest day, then the censoring intervals are quite small with respect to the time

unit, and we are not losing too much by ignoring the interval censoring. Lindsey

(1998) suggests that if less than an average of 0.2 events occur per unit of time per

individual then interval censoring does not greatly affect the conclusions.

Suppose n individuals are interval-censored with censoring interval (li, ri] for

individual i, i = 1, 2, . . . , n. The likelihood under an independent censoring mech-

anism (Sun 2006) in this case is

L =
n∏
i=1

[S(li)− S(ri)]

Parametric Models

If a parametric form, S(t; θ), is assumed then the likelihood becomes

L(θ) =
n∏
i=1

[S(li; θ)− S(ri; θ)]

and standard likelihood inference can be applied (e.g., see Lawless 2003, Chapter

4). Kalbfleisch and Prentice (2002, Chapter 3) describes inference procedures for

fitting accelerated failure time regression models to interval-censored data. Sun

(2006, Chaps. 2 & 6) also discusses parametric models under interval censoring.
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An EM Algorithm for Piecewise-Constant Models

Consider now the special case of the piecewise-constant model with interval cen-

soring (Lindsey and Ryan 1998). In order to construct the likelihood function,

individuals can be grouped into three classes. Let O be individuals with known

failure times, CR be individuals with right-censored failure times, and CI be individ-

uals with interval-censored failure times. Also, let ti denote the survival (censoring)

time for individuals with known (right-censored) failure times, and let (li, ri) be the

censoring interval for individuals with interval-censored failure times. It follows that

the likelihood is given by

L(λ) =
∏
i∈O

[
m∏
j=1

λ
I(aj−1<ti≤aj)
j exp

(
−

m∑
j=1

λjwj(ti)

)]

×
∏
i∈CR

[
exp

(
−

m∑
j=1

λjwj(ti)

)]

×
∏
i∈CI

[
exp

(
−

m∑
j=1

λjwj(li)

)
− exp

(
−

m∑
j=1

λjwj(ri)

)]
.

Numerical methods can be used to maximize this likelihood, however the likeli-

hood function is messy. This suggests the use of an EM algorithm since it involves

rewriting the likelihood as something mathematically simpler.

Let the complete data likelihood be the likelihood for known and right-censored

observations only,

LC(λ) =
n∏
i=1

m∏
j=1

λ
I(aj−1<ti≤aj)δi
j exp

(
−

m∑
j=1

λjwj(ti)

)

where δi = 1 if individual i has a known failure time and δi = 0 if individual i

has a right-censored failure time. Note that for the purposes of the EM algorithm,

exact and right-censored failure times are considered “complete” while interval-

censored observations are considered “incomplete” exact observations which will

be estimated at each E-step.

The complete data log-likelihood has a particularly simple form,

`C(λ) =
m∑
j=1

(dj log λj − vjλj)

where dj =
∑n

i=1 I(aj−1 < ti ≤ aj)δi and vj =
∑n

i=1wj(ti). Note that a right-

censored observation does not contribute anything to dj.
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The E-Step

At the rth iteration of the EM algorithm, we require E(`C(λ)|data, λ̂(r−1)) for the

E-step, hence the required expectations are,

E(dj|data, λ̂(r−1)) =
∑
i∈O

I(aj−1 < ti ≤ aj)

+
∑
i∈CI

P (aj−1 < ti ≤ aj|li < ti < ri, λ̂
(r−1))

E(vj|data, λ̂(r−1)) =
∑
i∈O

wj(ti) +
∑
i∈CR

wj(ti)

+
∑
i∈CI

E(wj(ti)|li < ti < ri, λ̂
(r−1))

so for each interval-censored observation, the probability of failing in (aj−1, aj] and

the expected time at risk in (aj−1, aj] must be computed. Note that for each

interval-censored observation and given interval (aj−1, aj], there are six possibilities

as shown in Figure 1.1. For each case, the probability of failing and expected time

at risk can be estimated.

Expressions for the probabilities are as follows where we suppress the depen-

dence on λ

Case (A) or (B)

P (aj−1 < ti ≤ aj|li < ti ≤ ri) = 0

Case (C)

P (aj−1 < ti ≤ aj|li < ti ≤ ri) = 1

Case (D)

P (aj−1 < ti ≤ aj|li < ti ≤ ri) =
S(aj−1)− S(ri)

S(li)− S(ri)

Case (E)

P (aj−1 < ti ≤ aj|li < ti ≤ ri) =
S(li)− S(aj)

S(li)− S(ri)

Case (F)

P (aj−1 < ti ≤ aj|li < ti ≤ ri) =
S(aj−1)− S(aj)

S(li)− S(ri)

12



aj−1 aj

��
ri

(A) ri ≤ aj−1

aj−1 aj

��
li

(B) li ≥ aj

aj−1 aj

��
li

��
ri

(C) li ≥ aj−1, ri ≤ aj

aj−1 aj

��
li

��
ri

(D) li < aj−1, aj−1 < ri ≤ aj

aj−1 aj

��
li

��
ri

(E) aj−1 ≤ li < aj, ri > aj

aj−1 aj

��
li

��
ri

(F) li < aj−1, ri > aj

Figure 1.1: Six possibilities for the censoring interval relative to the cut-points in

a piecewise model.
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while expressions for the expected times at risk are

Case (A)

E(wj(ti)|li < ti ≤ ri) = 0

Case (B)

E(wj(ti)|li < ti ≤ ri) = aj − aj−1

Case (C)

E(wj(ti)|li < ti ≤ ri) = li +
1

λj
+

ri − li
1− eλj(ri−li)

− aj−1

Case (D)

E(wj(ti)|li < ti ≤ ri) =
S(aj−1)− S(ri)

S(li)− S(ri)

(
1

λj
+

Ri − aj−1

1− eλj(ri−aj−1)

)
Case (E)

E(wj(ti)|li < ti ≤ ri) =
S(li)− S(aj)

S(li)− S(ri)

(
li +

1

λj
+

aj − li
1− eλj(aj−li)

− aj−1

)
+ (aj − aj−1)

m∑
k=j+1

P (ak−1 < ti ≤ ak|li < ti ≤ ri)

Case (F)

E(wj(ti)|li < ti ≤ ri) =
S(aj−1)− S(aj)

S(li)− S(ri)

(
1

λj
+

aj − aj−1

1− eλj(aj−aj−1)

)
+ (aj − aj−1)

m∑
k=j+1

P (ak−1 < ti ≤ ak|li < ti ≤ ri).

It should be noted that if some λj’s are zero and this results in S(li) = S(ri) then

P (aj−1 < ti ≤ aj|li < ti ≤ ri) = 0 and E(wj(ti)|li < ti ≤ ri) = 0 since in this case

{li < ti ≤ ri} is an impossible event.

The M-Step

The M-step is easy, due to the simple form of the complete data log-likelihood. For

each j,

λ̂
(r)
j =

E(dj|data, λ̂(r−1))

E(vj|data, λ̂(r−1))
.
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p2q2p1q1

L3 R2 R3L2R1L1

Figure 1.2: Example of how the intervals of support for the NPMLE are determined

in the case of interval-censored failure time data.

The iterations are terminated when convergence is achieved, typically based on

the requirement that the difference in estimates on successive iterations drops be-

low a specified threshold (e.g. 10−6). Alternatively, convergence can be declared

by calculating the log-likelihood at each iteration and stopping when an iteration

produces a change in the log-likelihood less than a specified tolerance.

Nonparametric Estimation

For a nonparametric approach to interval censoring, the most common method is

due to Turnbull (1976). He developed an algorithm for obtaining the nonparametric

MLE of the cumulative distribution function.

The observed data are (li, ri], i = 1, . . . , n. Peto (1973) constructed a set that

is crucial to determining the NPLME. Let [q1, p1], . . . , [qm, pm], q1 ≤ p1 < . . . <

qm ≤ pm such that the qj’s are chosen from the li’s, the pj’s are chosen from the

ri’s and no [qj, pj] contains any other li’s or ri’s. This can be done by arranging

the endpoints of the observed intervals on a timeline as in Figure 1.2. An interval

[qj, pj] occurs when a left endpoint is immediately followed by a right endpoint. Let

C =
⋃m
j=1[qj, pj]. The set C is sometimes referred to as “innermost intervals”.

The likelihood is

L(S) =
n∏
i=1

[S(li)− S(ri)]

Peto (1973) noted that for Ŝ(t) to be the NPMLE it must satisfy two conditions

1. Ŝ(t) cannot decrease outside the set C.

2. The likelihood does not depend on the behaviour of Ŝ(t) within the set C.

Hence, Ŝ(t) can be parameterized as a distribution such that it is flat outside C,

undefined within C and has jumps of size sj = Ŝ(qj) − Ŝ(pj) over the intervals
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[qj, pj]. Note that
∑m

j=1 sj = 1. The likelihood can now be reduced to

L(s) =
n∏
i=1

m∑
j=1

αijsj

where αij = I([qj, pj] ⊆ (li, ri)). This likelihood is simple to maximize if there

are very few sj’s, however in general it would be difficult using standard calculus

techniques. Peto (1973) developed a Newton-Raphson-type algorithm with many

boundary and step-size considerations, while Turnbull (1976) developed an easier

to implement self-consistency algorithm to obtain the MLE’s. Turnbull (1976) also

noted at the end of his paper that this algorithm can be viewed as an EM algo-

rithm. The latter approach will be adopted here. Other algorithms are described

in Section 3.4 of Sun (2006).

For the purposes of the EM algorithm, the data are “complete” when it is known

which interval [qj, pj] contains ti. Let j(i) be the index of the interval containing ti.

The complete data likelihood is

LC(s) =
n∏
i=1

P (ti ∈ [qj(i) , pj(i) ]; s)

=
n∏
i=1

m∏
j=1

s
I(ti∈[qj ,pj ])
j

with log-likelihood

`C(s) =
n∑
i=1

m∑
j=1

I(ti ∈ [qj, pj]) log sj

At the E-step of the rth iteration, P (ti ∈ [qj, pj]|ti ∈ (li, ri), s
(r−1)) is required.

This is easy to compute as

P (ti ∈ [qj, pj]|ti ∈ (li, ri), s
(r−1)) =

αijs
(r−1)
j

m∑
k=1

αiks
(r−1)
k

= µij(s
(r−1))

For the M-step, the constraint
∑m

j=1 sj = 1 must be imposed. Let

g(s(r), λ) =
n∑
i=1

m∑
j=1

µij(s
(r−1)) log s

(r)
j + λ

(
1−

m∑
j=1

s
(r)
j

)
Then,

∂g

∂s
(r)
j

=
n∑
i=1

µij(s
(r−1))

s
(r)
j

− λ
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which implies

s
(r)
j =

1

λ

n∑
i=1

µij(s
(r−1))

Keeping in mind that
∑m

j=1 s
(r)
j = 1 we get λ =

∑n
i=1

∑m
j=1 µij(s

(r−1)) = n, so an

iteration of the EM algorithm (or Turnbull’s self-consistency algorithm) is given by

s
(r)
j =

1

n

n∑
i=1

αijs
(r−1)
j∑m

k=1 αiks
(r−1)
k

, j = 1, . . . ,m

The algorithm is continued until changes in L are negligible. The NPMLE of S

then becomes

Ŝ(t) =


1 if t < q1

1− s1 − · · · − sj if pj < t < qj+1

0 if t > pm

undefined if t ∈ C

It should also be noted that this algorithm was also obtained by Betensky (2000) as

a generalization of the redistribution of mass algorithm (Dinse 1985; Efron 1967).

In addition, Gentleman and Geyer (1994) provide conditions for verifying that the

algorithm converges to the maximum and that this maximum is unique. Finkelstein

(1986) generalizes the method to allow covariates using a proportional hazards

model. A full likelihood approach is taken, requiring estimation of the baseline

survivor function. Alternatives which do not require estimation of the baseline

survivor function are considered in Satten (1996) and Goggins et al. (1998). These

approaches require considerable computational effort as they rely on Gibbs sampling

and Monte Carlo EM respectively. Finkelstein et al. (2002) consider the situation

where the censoring mechanism is not independent.

The resulting NPMLE of the survivor function can be kernel smoothed according

to

f̂(t) = EbS(t){Kb(T − t)}

and then integrated to get a smooth estimate of the distribution function, however

this expectation depends on how the probability masses are distributed within the

set C. Braun et al. (2005) show how assigning mass in different ways lead to

different estimates, hence there is no unique kernel smoothed estimate. Li et al.

(1997) propose an iterative algorithm which can be viewed as iteratively taking

the conditional expectation of the empirical distribution function, where at the jth
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iteration,

F̃j(t) = E eFj−1(t)

[
1

n

n∑
i=1

I(Ti ≤ t)

∣∣∣∣∣ I1, . . . , In
]
.

This leads to an estimator that coincides with Turnbull’s algorithm outside the

set C, and interpolates within C, however, the interpolation within C is different

depending on the initial distribution, F̃0(t). Braun et al. (2005) propose a density

estimate which smooths at each iteration,

f̃j(t) =
1

n

n∑
i=1

E efj−1(t){Kb(Ti − t)|Ii}.

The same estimate is obtained regardless of initial value. This estimator can also

be derived based on local likelihood arguments, however in the context of failure

time data it is more natural to work with the hazard function as opposed to the

density.

Betensky et al. (1999) describe local likelihood methodology for estimating the

hazard function in the presence of interval censoring. The complete data local

log-likelihood is

`(h, t) =
n∑
i=1

{
Kb(Ti − t) log h(Ti)−

∫ Ti

0

Kb(u− t)h(u) du

}
.

The log-hazard can be approximated near t by a polynomial or simply by letting

log h(u) = α0t for u near t. If α̂0t is an estimate of this, then the estimate of the

hazard at t is then ĥ(t) = exp(α̂0t).

An EM type algorithm can be developed to obtain such an estimate. Upon plug-

ging in the locally constant approximation of the log-hazard and taking conditional

expectations of `(h, t) above we get

E [`(h, t)|Ii] =
n∑
i=1

{
α0tE [Kb(Ti − t)|Ii]− eα0tE

[∫ Ti

0

Kb(u− t) du

∣∣∣∣ Ii]} .
Differentiating with respect to α0t and setting to zero yields the fixed point equation

ĥ(t) =

n∑
i=1

E [Kb(Ti − t)|Ii]

n∑
i=1

E

[∫ Ti

0

Kb(u− t) du

∣∣∣∣ Ii]
where the conditional expectations depend on the unknown hazard function.
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In order to solve the fixed point equation, the conditional expectations are

evaluated using the trapezoid rule for numerical integration. If we let t1, t2, . . . , tM

be a sequence of equally spaced points with tk − tk−1 = ∆ and fk = f(tk) =

h(tk) exp(−
∫ tk

0
h(u) du) ≈ h(tk) exp(−∆

∑k
i=1 h(ti)) then for any function g

E [g(T )] =

∑
l:tl∈Ii

g(tl)fl∆∑
l:tl∈Ii

fl∆
=

∑
l:tl∈Ii

g(tl)fl∑
l:tl∈Ii

fl

and an EM algorithm can be constructed. Betensky et al. (1999) discusses further

issues such as the use of linear and quadratic approximations to the log-hazard

and standard error calculations. The choice of the smoothing parameter is also

addressed. Betensky et al. (1999) also propose 400 to be a safe choice for the num-

ber of grid points. Extensions to incorporate covariates in a proportional hazards

regression model are explored in Betensky et al. (2002).

Automatic bandwidth selection becomes more difficult in the interval censored

case. Methods for right-censored data may carry over to the interval censored case

(Betensky et al. 1999). Such methods may be computationally intensive, hence

Bebchuck and Betensky (2001) chose a bandwidth by visual inspection. They also

note that nearest-neighbours bandwidths perform better in hazard estimation than

for density estimation. If the density function is of interest, local likelihood can

be used as described in Braun et al. (2005). They also propose a cross-validation

procedure based on the intervals of support for the NPMLE (innermost intervals).

Sun (2006) describes other ways of smoothing the NPMLE as well as a penalized

likelihood approach incorporating splines.

Bivariate Failure Time Data

Consider a study where individuals have two failure times, Ti1 and Ti2, i = 1, . . . , n.

We would like to estimate the bivariate joint distribution function is given by

F (t1, t2) = P (Ti1 ≤ t1, Ti2 ≤ t2). When individuals are only seen at periodic assess-

ment times, we observe Ui = (Li1, Ri1]×(Li2, Ri2], i = 1, . . . , n, where (Li1, Ri1] and

(Li2, Ri2] are the univariate censoring intervals for Ti1 and Ti2 respectively. Hence,

for each individual we have a rectangle within which their failure times may have

occurred.

In order to obtain the NPMLE of F (t1, t2), we use the likelihood (Sun 2006,
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Chapter 7)

L(F ) =
n∏
i=1

{F (Ri1, Ri2)− F (Ri1, Li2)− F (Li1, Ri2) + F (Li1, Li2)} .

In the univariate case, the probability masses were concentrated on the innermost

intervals given by the set C. Betensky and Finkelstein (1999) and Gentleman and

Vandal (2002) show that a similar situation occurs in the bivariate setting with the

masses being concentrated on a region made up of intersections of the observation

rectangles. Let this region be denoted by H = {Hj, j = 1 . . . ,m}, where a rectangle

Hj is the bivariate analogue of the univariate innermost interval. Algorithms for

determiningH are given in Betensky and Finkelstein (1999), Gentleman and Vandal

(2002) as well as Bogaerts and Lesaffre (2004). Sun (2006, Chapter 7) discusses the

differences between the three approaches.

Defining sj to be the probability mass on Hj and αij = I(Hj ⊆ Ui), the likeli-

hood becomes

L(s) =
n∏
i=1

m∑
j=1

αijsj

where s = (s1, . . . , sm)′. Maximization of this likelihood subject to
∑m

j=1 sj = 1

can be carried out using one of the algorithms for univariate failure time data,

such as the method described previously (Turnbull 1976) or one of the methods in

Section 3.4 of Sun (2006).

1.2.3 Analysis of Truncated Failure Time Data

In some situations an individual is only included in a study if their survival time

lies within a certain interval. In this case we say the individual’s failure time is

truncated, and the respective interval is called the truncation interval.

A special case of truncation is when the interval is of the form (u,∞). This is

referred to as left truncation. This situation can arise in a prospective study when

an individual is selected for inclusion if they are event-free at some time u after the

beginning of a process of interest. In this case, the individual’s failure time must

therefore lie in the interval (u,∞), and they are said to have a left truncation time

u.

Klein and Moeschberger (1997) provides an example where the ages of death

for individuals living in a retirement centre are of interest. Since the individuals
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must reach a certain age before they can be admitted, the ages of death are left-

truncated. Individuals who die before they are eligible to enter the centre are not

included in the data set.

Another special case is when the interval is of the form (0, v). This is known

as right truncation. This can arise in a retrospective study where an individual is

selected such that their failure time must be less than some time v.

Lawless (2003) describes a study where the time of interest was the time between

HIV infection and AIDS diagnosis. The subjects were selected in 1987 and consisted

of individuals who had been diagnosed with AIDS prior to July 1, 1986. The time

of HIV infection was retrospectively determined, so that the time of interest was

right-truncated, with the right-truncation time given by the time between HIV

infection and July 1, 1986.

Data can be subject to both censoring and truncation at the same time. The

most general case is when each individual is interval-censored and truncated with

censoring interval Ai = (li, ri) and truncating set Bi = (ui, vi). Turnbull’s algorithm

can be used in this case in very much the same manner as before.

The likelihood for this case becomes

L =
n∏
i=1

P (ti ∈ Ai|ti ∈ Bi)

=
n∏
i=1

S(li)− S(ri)

S(ui)− S(vi)

Frydman (1994) and Alioum and Commenges (1996) both describe how to con-

struct a set Q in the presence of both censoring and truncation, which is analogous

to the set C in the case of interval-censored data only. Let

L = {li; i = 1, . . . , n} ∪ {vi; i = 1, . . . , n} ∪ {0}
R = {ri; i = 1, . . . , n} ∪ {ui; i = 1, . . . , n} ∪ {∞}

Let [q1, p1], . . . , [qm, pm], q1 ≤ p1 < . . . < qm ≤ pm such that the qj’s are chosen

from L, the pj’s are chosen from R and no [qj, pj] contains any other elements of L
or R. Let Q =

⋃m
j=1[qj, pj]. This set can be decomposed into three parts. Let C be

the union of intervals [qj, pj] covered by at least one censoring interval, W be the

union of intervals [qj, pj] covered by at least one truncating set but not covered by

any censoring interval, and D be the union of intervals [qj, pj] not covered by any

truncating set. Note that D =
⋂n
i=1B

{
i . Then Q = C ∪W ∪D.

21



Alioum and Commenges (1996) provided results similar to those of Peto (1973)

for characterizing the NPMLE. Ŝ(t) cannot decrease outside the set C ∪ D. Fur-

thermore, the likelihood does not depend on P (T ∈ D) since the data provides

no information about the region D. This means all that can be estimated is

P (T > t|T /∈ D). If D = ∅ (i.e. if at least one observation is not truncated)

then S(t) can be estimated.

Based on these results, the problem becomes that of estimating S(t) (P (T ∈ D)

is known) or P (T > t|T /∈ D) (P (T ∈ D) is unknown). In either case, the set C

is the only part of Q that affects the remainder of the estimation procedure. For

simplicity, assume that P (T ∈ D) = 0, so we are considering estimating S(t). The

last fact required to parameterize the problem is to note that the likelihood does

not depend on the behaviour of Ŝ(t) within the set C.

Letting sj = Ŝ(qj)− Ŝ(pj), the likelihood becomes

L(s) =
n∏
i=1

∑m
j=1 αijsj∑m
j=1 βijsj

where αij = I([qj, pj] ⊆ Ai) and βij = I([qj, pj] ⊆ Bi).

Again, this likelihood is difficult to maximize directly, so an EM approach will

be used. In order to construct the complete data likelihood, the effects of the

truncation must be taken into account. Each subject observed under this truncation

scheme can be viewed as the only subject observed among a group in which the

remaining members were not observed due to truncation, i.e. their times lie in

B{
i . Let the (unknown) number of subjects in the group corresponding to subject

i be Gi. Turnbull referred to these Gi subjects not observed due to truncation as

subject i’s “ghosts”. The complete data likelihood is given by

LC =
n∏
i=1

P (ti ∈ [qj(i) , pj(i) ])

Gi∏
g=1

P (tig ∈ [qj(ig)
, pj(ig)

])

=
n∏
i=1

m∏
j=1

s
I(ti∈[qj ,pj ])+GiI(tig∈[qj ,pj ])
j

with log-likelihood

`C =
n∑
i=1

m∑
j=1

[I(ti ∈ [qj, pj]) +GiI(tig ∈ [qj, pj])] log sj
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The required expectations are

P (ti ∈ [qj, pj]|ti ∈ Ai, s(r−1)) =
αijs

(r−1)
j

m∑
k=1

αiks
(r−1)
k

= µij(s
(r−1))

and

E(GiI(tig ∈ [qj, pj])|ti ∈ Bi, s
(r−1))

which we can write as

E(GiP (tig ∈ [qj, pj]|Gi, tig ∈ B{
i , s

(r−1))|ti ∈ Bi, s
(r−1))

or

E

Gi

(1− βij)s
(r−1)
j

m∑
k=1

(1− βik)s
(r−1)
k

∣∣∣∣∣∣∣∣∣∣
ti ∈ Bi, s

(r−1)

 =
P (ti ∈ B{

i |s(r−1))

P (ti ∈ Bi|s(r−1))

(1− βij)s
(r−1)
j

m∑
k=1

(1− βik)s
(r−1)
k

=

m∑
k=1

(1− βik)s
(r−1)
k

m∑
k=1

βiks
(r−1)
k

(1− βij)s
(r−1)
j

m∑
k=1

(1− βik)s
(r−1)
k

=
(1− βij)s

(r−1)
j

m∑
k=1

βiks
(r−1)
k

= νij(s
(r−1))

The M-step is very similar to the interval-censored case, leading to an iteration

having the form

s
(r)
j =

n∑
i=1

(µij(s
(r−1)) + νij(s

(r−1)))

n∑
i=1

m∑
j=1

(µij(s
(r−1)) + νij(s

(r−1)))

.

1.3 Analyses Based on Multistate Models

1.3.1 Intensity Functions for Multistate Models

If the different conditions an individual can experience can be expressed in terms

of several well-defined states, then multistate models are useful for modelling the

23



course of a disease. Individuals begin initially in a given state and make transitions

to other states as time progresses.

Multistate data is often expressed using counting process notation. Suppose

there are J states. Let Nijk(t) count the number of j → k transitions subject i

experienced over (0, t], j 6= k, j, k = 1, . . . , J . Let ∆Nijk(t) = Nijk((t + ∆t)−) −
Nijk(t

−). Define the state occupancy variable Zi(t) = j which means subject i is in

state j at time t and let Yij(t) = I(Zi(t
−) = j). The history of this process can be

defined as Hi(t) = {Ni(u), 0 ≤ u < t;Xi(u), 0 ≤ u ≤ t} where Ni(t) is the vector of

counting processes and Xi(t) is a vector of covariates.

We can now define the intensity function,

λijk(t|Hi(t)) = lim
∆t→0

P (Nijk((t+ ∆t)−)−Nijk(t
−) = 1|Hi(t), Zi(t

−) = j)

∆t

which is the instantaneous probability of individual i making a j → k transition at

time t given the history over [0, t) and that individual i is in state j just before t.

If the observed process is subject to right censoring, then we define Yi(t) =

I(t ≤ Ci), which is an indicator that subject i is under observation at time t and

let N c
ijk(t) =

∫ t
0
Yi(u) dNijk(u) denote the observed counts process. The history

can now be expanded to be Hi(t) = {Ni(u), Yi(u), 0 ≤ u < t;Xi(u), 0 ≤ u ≤ t}.
The intensity function for the observed process in the presence of right censoring

becomes

λcijk(t|Hi(t)) = lim
∆t→0

P (N c
ijk((t+ ∆t)−)−N c

ijk(t
−) = 1|Hi(t), Zi(t

−) = j)

∆t

and under independent censoring we have λcijk(t|Hi(t)) = Yi(t)λijk(t|Hi(t)).

The intensity functions can be readily used to construct the likelihood function

when no interval censoring or truncation is present. Consider individual i observed

over (0, τ ]. Let ti1, . . . , timi
be the times when transitions occurred and let ti0 = 0

and timi+1
= τ . Let jik denote the state occupied at tik, k = 0, . . . ,mi. Then,

individual i’s contribution to the likelihood is

Li =

mi∏
k=1

λiji,k−1jik(tik|H(tik))

×
mi+1∏
k=1

exp

[
−

J∑
j=1

I(j 6= ji,k−1)

∫ tik

ti,k−1

λiji,k−1j(u|H(u)) du

]

and L =
∏n

i=1 Li, (Lawless 2003).
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Figure 1.3: 2-State survival model.

Survival data can be thought of as the simplest example of a multistate model.

In this case there are 2 states, the first representing no event, the second indicating

the individual has experienced the event. This model is illustrated in Figure 1.3.

This model is easily extended to the progressive three state model, where there

are three states (say 0, 1 and 2) and individuals in state 0 can only make transitions

to state 1 and likewise individuals in state 1 can only make transitions to state 2,

as in Figure 1.4. For example, an individual may be in state 0 if they are healthy,

move to state 1 when they develop a disease and move to state 2 when they develop

a complication caused by the disease. In this example it would be assumed that

individuals can only develop the complication if they have the disease.

- -0 1 2

Figure 1.4: Progressive 3-State model.

Another 3-state model is the illness-death model, where individuals in state 0

can make transitions to either state 1 or 2, while individuals in state 1 can only

make transitions to state 2, see Figure 1.5. The name of this model is derived from

the fact that often state 0 represents healthy, state 1 represents illness and state

2 represents death. Individuals do not necessarily have the illness when they die,

hence transitions from state 0 to state 2 are permitted.

-
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Figure 1.5: Illness-Death model.

Multistate models can also be used in the problem of competing risks. In this

situation individuals begin in state 0 and can experience one and only one of k
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different events. Figure 1.6 shows the state transition diagram for the problem of

k = 3 competing risks. An example for this kind of model would be to have state

0 represent alive, state 1 represent death by heart attack, state 2 represent death

by cancer and state 3 represent death by car accident.
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Figure 1.6: Competing Risks model.

These are just a few of the models that can be examined in a multistate frame-

work. Many other models for all kinds of problems can be easily defined (see, for

example, Hougaard 1999).

A frequent assumption is that the process does not depend on what has hap-

pened previously and all that matters is the current state and time. This is the

Markov assumption, which means that given the process is in state j at time t−,

the intensity of a j → k transition is independent of H(t). In this case we can write

λijk(t|Hi(t)) = ρijk(t). Markov models are useful in situations where the time since

the beginning of the process is of importance. Such situations include cases when

aging effects may be present.

If it is further assumed that ρijk(t) = ρijk for all j and k, then the model is a

time homogeneous Markov model. This assumption basically reduces the process

to a parametric model with a single parameter describing the rate for each type of

transition.

An alternative assumption to the Markov assumption is to assume the process

only depends on the current state and the amount of time spent in that state. This

is the case with semi-Markov models in which, given the process is in state j and

has been in state j for a length of time s, the intensity of a j → k transition is

independent ofH(t). In this case we can write λijk(t|Hi(t)) = hijk(s). Semi-Markov

models are useful in situations where a change of state leads to a fundamental

change in the process, since this essentially causes a change in the time origin. This

includes situations where the duration of a condition is of primary interest.
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If hijk(s) = ρijk for all j and k then we have a time homogeneous Semi-Markov

model which is identical to the time homogeneous Markov model.

Frequently, one wishes to know about the probability of being in a certain state

at a given time. This information can be summarized by the prevalence functions,

defined by p0j(t) = P (Z(t) = j|Z(0) = 0) for j = 1, . . . , J .

1.3.2 Analysis of Right-Censored Multistate Data

When data are right-censored, a common approach to modelling is based on a

Markov assumption. We wish to estimate the transition probability matrix P (s, t)

which has (j, k) entry given by P (Z(t) = k|Z(s) = j). Under a Markov assumption,

there is a simple relationship between P (s, t) and the intensity functions, ρjk(t).

Let Q(t) be the matrix with (j, k) entry given by ρjk(t), j 6= k and ρjj(t) =

−
∑

k 6=j ρjk(t). Then P (s, t) can be expressed as the product integral,

R
(s,t]

{I +Q(u) du}

hence estimates of P (s, t) can be constructed from estimates of Q(t) using this

relationship. If the transition intensities are estimated using the Nelson-Aalen

estimates,

ρ̂jk(t) =

n∑
i=1

Yij(t)dNijk(t)

n∑
i=1

Yij(t)

then this gives the Aalen-Johansen estimate (Andersen et al. 1993, Chap. 4) of

P (s, t). Estimates of the prevalence functions can be obtained from the first row of

P (s, t). Even though this estimator was derived under a Markov assumption, Datta

and Satten (2001) show that the estimated prevalence functions are consistent even

when the underlying process is not Markov under independent censoring.

1.3.3 Analysis of Interval-Censored Multistate Data

Interval censoring in multistate models often occurs when subjects are examined at

inspection times. The state a subject occupies is only known at the inspection times.

As in the case for right censoring, the inspection process must satisfy conditions in

order to construct the likelihood function (Lawless and Zhan 1998; Grüger et al.

1991).
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Define the inspection times for a subject to be b1, . . . , bm and define the histo-

ries Hj = {b1, . . . , bj, Z(b1), . . . , Z(bj)} and Hj− = {b1, . . . , bj, Z(b1), . . . , Z(bj−1)}.
Then the likelihood is

L = P (Hm) = P (H0)
m∏
j=1

P (Z(bj)|bj,Hj−1)
m∏
j=1

P (bj|Hj−1)

The independent inspection process condition can now be defined as

P (Z(bj)|bj,Hj−1) = P (Z(bj)|Z(b1), . . . , Z(bj−1))

i.e. the state occupied at bj cannot depend on the inspection process. The non-

informative condition is simply P (bj|Hj−1) does not depend on the parameters of

interest. When both these conditions are satisfied, the likelihood (conditional on

H0) simplifies to

L = P (Z(b1), . . . , Z(bm)).

Examples of particular inspection processes are given in Grüger et al. (1991).

If an inspection scheme is given by pre-specified (non-random) visit times then it

is an independent inspection process. The same can be said if the inspection times

are from a random process independent of the multistate process. If a subject is

being treated by a doctor and the doctor schedules the next inspection time based

on the current state the subject is in, this type of inspection process still satisfies

the independence condition. However, if a subject schedules an inspection based on

how they feel, an inspection process of this type violates the independence condition

since the inspection time may be dependent on the (possibly updated) state the

subject is observed to be in.

When the data are interval-censored, Markov models are most often used.

Kalbfleisch and Lawless (1985) describe the time-homogeneous Markov model. In

this case, ρjk(t) = ρjk and P (t) = P (s, s + t) = P (0, t). It is assumed that

ρjk = ρjk(θ) depends on a vector of parameters.

Assume that individuals are observed at times t1, . . . , tm. Define njkl to be the

number of individuals in state j at tl−1 and in state k at tl. Then the likelihood

becomes

L(θ) =
m∏
l=1

J∏
j=1

J∏
k=1

pjk(tl−1, tl)
njkl

=
m∏
l=1

J∏
j=1

J∏
k=1

pjk(wl)
njkl
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where wl = tl − tl−1. The log-likelihood function is

`(θ) =
m∑
l=1

J∑
j=1

J∑
k=1

njkl log pjk(wl)

Kalbfleisch and Lawless (1985) describe a quasi-Newton procedure for maxi-

mizing the log-likelihood. They show that the expected information matrix can be

computed using only first derivatives of the pjk’s. The uth entry of the score vector

is

Uu(θ) =
m∑
l=1

J∑
j=1

J∑
k=1

njkl
∂pjk(wl)/∂θu
pjk(wl)

(1.2)

The (u, v)th entry of the observed information is given by

m∑
l=1

J∑
j=1

J∑
k=1

njkl

{
∂pjk(wl)/∂θu∂pjk(wl)/∂θv

p2
jk(wl)

− ∂2pjk(wl)/∂θu∂θv
pjk(wl)

}
.

The expectation of these terms can be taken by first conditioning on Nj(tl−1) =∑J
k=1 njkl. Then since

E{njkl|Nj(tl−1)} = pjk(wl)Nj(tl−1)

and

J∑
k=1

∂2pjk(wl)/∂θu∂θv = 0

the (u, v)th entry of the expected information is given by

Muv(θ) =
m∑
l=1

J∑
j=1

J∑
k=1

E{Nj(tl−1)}
pjk(wl)

∂pjk(wl)

∂θu

∂pjk(wl)

∂θv
(1.3)

which can be estimated by replacing E{Nj(tl−1)} by the observed Nj(tl−1). Let

U(θ) be the score vector obtained by summing terms (1.2) over all m subjects in

the sample, and M(θ) the corresponding estimated expected information matrix

from (1.3). One step of the Fisher-scoring algorithm is performed by computing

θ(r) = θ(r−1) +M−1(θ(r−1))U(θ(r−1)). Details on the computation of the derivatives

of the pjk can be found in Kalbfleisch and Lawless (1985).

The estimate of P (t) is found by noting that if Q = ADA−1 is the eigenvalue-

eigenvector decomposition of Q then

P (t) = AeD(t)A−1

29



where eD(t) = diag(ed1t, . . . , edJ t).

Numerous extensions to this method are provided in Kalbfleisch and Lawless

(1985, 1989). If a non-homogeneous Markov model is assumed such that Q(t) =

Q0g(t;λ), then the method applies with a slight modification. Here, Q0 is a fixed

intensity matrix with unknown entries, and g(t;λ) is a function of time that depends

on an unknown parameter λ. If we let s =
∫ t

0
g(u;λ) du and Z0(s) = Z(t), then

Z0(s) is a time-homogeneous Markov process with intensity matrix Q0. Hence, for

a given λ the parameters of Q0 can be estimated, and λ can be varied to find the

value which maximizes the log-likelihood.

Another way of dealing with non-homogeneity is to assume Q(t) changes at

specified time points, but remains constant between time points. In this case the

method is applied separately to each interval where Q(t) is constant.

Kalbfleisch and Lawless (1989) also provide a test of time homogeneity. The

basic idea is to assume Q(t) = Q + Hγt, where H is a matrix specifying which

entries of Q(t) may be non-homogeneous. A score test of γ = 0 can be used to

determine if time homogeneity appears reasonable or not. Gentleman et al. (1994)

generalizes these methods by allowing piecewise-constant transition intensities.

When a non-homogeneous Markov model is of interest, nonparametric proce-

dures similar to Turnbull’s method can be used. Frydman (1992) considers a pro-

gressive three state model where 0 → 1 transitions can be interval-censored and

1 → 2 transitions can be right-censored. The functions of interest are F1, the

distribution function of the time until a 0 → 1 transition and Λ2, the cumulative

intensity of 1 → 2 transitions.

As in Turnbull’s algorithm, a set C can be constructed which characterizes the

NPLME. In this case, F1 is flat outside C and undefined within C while Λ2 increases

only at failure times. Again, this basically reduces the problem to a parametric one

where the jumps in F1 and Λ2 are the parameters to be estimated. Frydman (1992)

provides a self-consistent algorithm to obtain the NPMLE. Using a similar idea,

Frydman (1995) shows how to obtain NPMLE’s of the cumulative intensities of an

illness-death model. An extension to allow left-truncated data is also provided. An

overview of issues and methods for the analysis of interval-censored multistate data

can be found in Commenges (2002).

The competing risks model with both interval censoring and truncation has been

examined by Hudgens et al. (2001). If T is the failure time and there are J possible

failure types, then define Ij(t) = P (T ≤ t, failure of type j), j = 1 . . . , J . Note

that
∑J

j=1 Ij(t) = 1 − S(t). Straightforward modification of Turnbull’s algorithm
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leads to the NPMLE’s of each Ij(t). A complication in this case is that each Îj(t)

is undefined on a set Cj, so that Ŝ(t) = 1 −
∑J

j=1 Ij(t) is undefined on ∪Jj=1Cj. If

S̃(t) is the estimator of S(t) ignoring failure type then it is undefined on a set C.

It is possible that C ⊂ ∪Jj=1Cj meaning that Ŝ(t) is undefined on a larger region

than S̃(t).

Hudgens et al. (2001) work around this problem by defining what they call a

pseudolikelihood method. The pseudolikelihood estimates (PLE’s) are obtained by

maximizing the likelihood subject to
∑J

j=1 Ĩj(t) = 1 − S̃(t). The resulting Ĩj(t)’s

are all undefined within the same set C and constant outside C. The maximization

procedure is again a simple extension of Turnbull’s algorithm.

1.4 Analysis of Recurrent Events

A special case of multistate model which has received considerable attention is

the recurrent events setting. In this case, events of interest occur repeatedly in

individual subjects. This can be modeled in a multistate framework by defining

states according to the number of events a subject has experienced, as in Figure 1.7.

- - -0 1 2 · · ·

Figure 1.7: Recurrent events model.

In such a model, there is a different intensity function λk(t|H(t)) for transi-

tions out of each state k = 0, 1, . . .. A common assumption is to use Poisson

processes, where the intensity functions are Markovian and identical for each k, i.e.

λk(t|H(t)) = ρ(t), k = 0, 1, . . ..

With Poisson processes, the notation can be simplified by only defining counting

processes Ni(t) which count the number of events individual i has experienced at

time t. The mean number of events, E{Ni(t)}, can be expressed simply as

µ(t) = E{Ni(t)} =

∫ t

0

ρ(u) du.

1.4.1 Analysis of Right-Censored Recurrent Events

Suppose individuals are each followed for a period of time τi. Let ni be the number

of events individual i experienced, which occurred at times ti1, ti2, . . . , tini
. Then
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the likelihood contribution for individual i becomes

Li =

{
ni∏
j=1

ρ(tij)

}
e−µ(τi).

If a parametric model is assumed, then the usual likelihood methods can be used

to obtain estimates and standard errors of the model parameters.

If a nonparametric approach is adopted, the mean function can be estimated by

the Nelson-Aalen estimate,

µ̂(t) =
∑
h:th≤t

dN·(th)

Y·(th)

where t1, . . . , tH are the distinct event times from all individuals, dN·(t) gives the

number of events that occurred at time t and Y·(t) gives the number of individuals

at risk of events at time t.

If the intensity functions are not identical for all transitions but still Markov,

i.e. λk(t|H(t)) = ρk(t), then another nonparametric estimate of the mean function

can be constructed. If the transition probability matrix is estimated using the

Aalen-Johansen estimator, then an estimate of the mean function is

µ̂(t) =
∞∑
k=0

kp̂0k(t)

where p̂0k(t) is the Aalen-Johansen estimate of the prevalence function for having

experienced k events.

1.4.2 Analysis of Interval-Censored Recurrent Events

Suppose individual i is only seen at times bi1, bi2, . . . , biJi
and the data consists of

counts, nij, of the number of events in each interval (bi,j−1, bij], j = 1, . . . , Ji. Under

a Poisson model with parametric mean function µ(t; θ) then the likelihood function

is (Sun 2006)

L(θ) =
n∏
i=1

Ji∏
j=1

exp {−(µ(bij; θ)− µ(bi,j−1; θ))} (µ(bij; θ)− µ(bi,j−1; θ))
nij .

Maximum likelihood estimates are readily available.

A nonparametric approach was introduced in Sun and Kalbfleisch (1993) and

further described in Sun and Kalbfleisch (1995). If we let s1, s2, . . . , sm denote the
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distinct observation times, then a nonparametric estimate of µ(t) is identifiable

only at these points. Define µj = µ(sj) for j = 1, . . . ,m. Note that the µj must

be nondecreasing. Also define wj to be the number of individuals observed at sj

and n̄j to be the average number of events observed at sj. Consider the simplest

case of current status data, where each subject is observed once, and a count of the

number of events that have occurred is recorded. A Poisson assumption then leads

to the log-likelihood

` =
m∑
j=1

wj {n̄j log µj − µj} .

Maximizing this likelihood subject to µ1 ≤ · · · ≤ µm is equivalent to minimizing

m∑
j=1

wj {n̄j − µj}2

subject to this constraint. This is the same as carrying out isotonic regression of

n̄1, . . . , n̄m with weights w1, . . . , wm (see Barlow et al. 1972).

Sun and Kalbfleisch (1995) recommend using this method in the general case as

well, although it is not the MLE. Wellner and Zhang (2000) show how this estimator

can be derived using a “pseudo-likelihood” function which ignores the dependency

between Ni(sj) and Ni(sk) for j 6= k. Wellner and Zhang (2000) also show how to

construct the nonparametric MLE of the mean function under a Poisson process,

as well as establish the consistency of both the MLE and pseudo MLE even if the

underlying process is not Poisson.

Thall and Lachin (1988) propose a simpler estimate of the rate function λ(t) =

µ′(t). Their idea is to estimate the rate function for each individual as

λ̂i(t) =

Ji∑
j=1

nij
bij − bi,j−1

I(t ∈ (bi,j−1, bij])

and estimate the rate function by the mean of these rate functions,

λ̂(t) =

n∑
i=1

λ̂i(t)

n∑
i=1

Ji∑
j=1

I(t ∈ (bi,j−1, bij])

.

Lawless and Zhan (1998) consider a piecewise-constant rate function under a

mixed Poisson assumption. They consider models where conditional on a random

effect ui, the rate function is

λi(t|Hi(t), ui) = uiρ0(t)e
x′iβ
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where ρ0(t) is the baseline piecewise-constant rate function, xi is a covariate vector

and β is a parameter vector. The random effect distribution is taken to be gamma

with mean 1 and variance φ.

The parameters may be estimated by an EM algorithm. The complete data

log-likelihood can be written as the sum of two terms, `C = `1(φ) + `2(ρ, β) where

`1 = −n
{
log Γ(φ−1) + φ−1 log φ

}
+

n∑
i=1

φ−1(log ui − ui)

`2 =
n∑
i=1

ki∑
j=1

r∑
k=1

nijk log µijk −
m∑
i=1

uiµi

where nijk is the unobserved number of events individual i experienced in the in-

terval Ak ∩ Bij and Ak = ak − ak−1 (where the a’s denote breakpoints for the

piecewise-constant rate function) and Bij = bij − bi,j−1 (where the b’s denote as-

sessment times). Also, µijk = ρkwk(i, j)e
x′iβ where ρk is the constant rate over Ak

and wk(i, j) gives the time individual i spent in Ak ∩Bij.

For the E-step, expectations of nijk, ui and log ui are required. For details, see

Lawless and Zhan (1998). The M-step is straightforward, as after obtaining the

expectations, the expected log-likelihood is straightforward to maximize. Lawless

and Zhan (1998) also discuss variance estimation for both the mixed Poisson case

as well as robust methods which do not require a Poisson assumption.

Thall (1988) considers likelihood based analyses of interval count data with

parametric rate functions approximations of the mean function. Empirical Bayes

methods are suggested for inference about the random effects. The need to make

parametric assumptions about the baseline rate was relaxed in Staniswalis et al.

(1997) who described profile likelihood methods (Severini and Wong 1992) based on

smoothing techniques for profiling out the baseline mean to permit estimation of the

regression coefficients. For inferences about the baseline mean, further smoothing

with the imposition of monotonicity is required. Interest here lies in the estimation

of the mean function in one sample problems and the baseline mean in multiplicative

rate function regression models.

An estimating equations approach is taken in Sun and Wei (2000), while other

regression models are considered in Chapter 9 of Sun (2006). Chen et al. (2005)

considers multiple types of events.
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1.5 Outline of Thesis

1.5.1 Chapter 2: Local Likelihood methods for Interval-

Censored Recurrent Event Data

When we have interval-censored recurrent event data, all that is known is counts of

the occurrences of events within specified intervals. Data of this type often occurs in

studies where subjects are observed only at inspection times, so the exact timing of

events is usually unknown, but the number of events since the last inspection time

can be determined. Data of this type are sometimes referred to as interval-grouped

recurrent events or panel count data (Lawless and Zhan 1998).

Lawless and Zhan (1998) looked at a study where patients develop superficial

bladder tumours which are observed only at clinic visits. Thall (1988) and Thall and

Lachin (1988) look at a clinical trial where the recurrent event is an occurrence of

nausea in patients with gall stones. Another example is given in Sun and Kalbfleisch

(1995) where loss of feedwater flow at a nuclear plant is the recurrent event of

interest. These data are based on current status observations.

An estimate of the mean function can already be obtained based on the methods

of estimating prevalence functions by

µ̂(t) =
J∑
j=1

jp̂j(t).

where p̂j(t) is an estimate of the prevalence function for state j, j = 1, . . . , J .

Alternative estimates can also be derived by applying the local likelihood methods

under a working Poisson or mixed Poisson model.

OBJECTIVE: Local Likelihood Mean Function Estimation

A primary objective for many analyses of interval-censored recurrent event data is

estimation of the mean function. The mean function represents a relatively easy

quantity to interpret and a natural basis for the evaluation of proposed methods.

Local likelihood methods (Betensky et al. 1999, 2002) will be developed for estima-

tion of the rate function, which in turn leads to an estimate of the mean function.

The methods will be developed first under a Poisson assumption, then generalized

to allow extra-Poisson variation. Covariates will also be considered using multi-

plicative rate functions of the form ρi(t) = ρ0(t)e
x′iβ.
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The performance of established methods for estimating mean functions (Lawless

and Zhan 1998) as well as new methods will be investigated in terms of robustness

and efficiency. Non-Markov processes will be considered by using renewal processes

for the gap time distributions. The comparisons will be on the basis of bias and

efficiency for estimation of mean functions over time.

The methods will be applied to data from the University of Toronto Psoriatic

Arthritis Clinic, where we will consider a damaged joint as an event in a recurrent

event process.

1.5.2 Chapter 3: Estimating Equations for Clustered Cur-

rent Status Data

An extreme form of interval censoring occurs when individuals are observed at only

one time point. At such an assessment, all that can be ascertained is whether or not

the event of interest has occurred, hence the name current status data. If subjects

are grouped into clusters, say according to centres in a clinical trial or by family for

example, then subjects within a cluster may not have independent responses. It is

of interest to estimate the survival distribution as well as the effects of covariates

in multiplicative models.

OBJECTIVE: Estimate survival function parameters, covariate effects

and association parameters with clustered current status data

Current status data can be viewed as being similar to binary data since at an indi-

vidual’s assessment we have a binary response of whether the event has occurred or

not. In fact, current status data under a Weibull model can be viewed as a binary

GLM with complementary log-log link. This similarity to binary data allows for the

use of generalized estimating equations (Liang and Zeger 1986) techniques. Typ-

ically with binary GEE’s the association structure is modelled by parameterizing

the association between the binary responses. However with current status data,

the association can be imposed on the failure times themselves. This approach will

be adopted with the dependence between failure times induced by a copula. The

methods will be developed under a working independence model, which corrects

naive variance estimates to account for the dependence, and for first and second

order GEE’s which make use of the copula based dependence structure.

Performance will be assessed using both Weibull and piecewise constant hazard

functions. In addition, the asymptotic efficiency of the first order GEE will be
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compared with that of the second order GEE, since for large cluster sizes, GEE2

can be computationally intensive.

The methods will be applied to a series of studies of patients undergoing ortho-

pedic surgery. Individuals were tested for the presence of antibodies that indicate a

reaction to a drug administered for recovery after surgery. Clusters are defined ac-

cording to the centre an individual is seen. The methods will also be applied to the

University of Toronto Psoriatic Arthritis Clinic Data, where we restrict attention

to the joints of the hands. Each individual represents a cluster of hand joints.

1.5.3 Chapter 4: Multistate Models With Interval Censor-

ing

With interval-censored multistate data, the intervals in which transitions occurred

and the states occupied at the assessment times are all that is known. This is

usually as a result of studies where subjects are only observed at inspection times,

such as the Toronto Psoriatic Arthritis Clinic. Other examples of such data can be

found in Frydman (1992) which looked at a study where individuals received blood

transfusions and could fall into one of three states (non-infected, HIV positive,

AIDS) in a progressive three state model. In another setting, Frydman (1995)

uses an illness-death model to look at a study of Danish diabetics who are either

alive without complications, alive with complications or dead. A different kind of

multistate model was considered in Kalbfleisch and Lawless (1985), which looked

at children and smoking. The states were defined as “never smoked” (state 0),

“currently smokes” (state 1) and “quit smoking” (state 2). In this model, once a

subject leaves state 0 they will never return, but it is possible for subjects to go

back and forth between states 1 and 2. Another example involving an AIDS study

is Gentleman et al. (1994) where subjects can be in a number of intermediary states

before entering a state representing AIDS.

OBJECTIVE 1: “Pepe” Estimation of Prevalence Functions

A primary objective here is to develop estimators of the prevalence function, or state

occupancy probability, P (Z(t) = k|Z(0) = 0) for multistate models that are robust

(i.e. applicable for a variety of underlying models). The approach will be to develop

estimates based on the fact that P (Z(t) = k|Z(0) = 0) = P (Tk+1 > t)− P (Tk > t)

where Tk is the time of entry to state k, following Pepe et al. (1991) who considered

this approach for right-censored data. Estimation of the survivor functions can
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be accomplished using a variety of methods including i) standard nonparametric

estimation (Turnbull 1976), ii) piecewise-constant models (Lindsey and Ryan 1998)

or, iii) Local EM estimation (Betensky et al. 1999). The advantages of the second

and third approaches include the fact that the resulting estimates are defined on

the positive real line.

OBJECTIVE 2: Estimate Covariate Effects in Markov Models

Patients with psoriatic arthritis are also at risk of a back condition known as

spondylitis. A multistate model can be formulated where individuals move among

states defined according to whether or not they have spondylitis, and whether or

not they are still alive. A number of covariates may affect transitions between these

states, so it is of interest to determine which covariates affect spondylitis and which

affect mortality.

Applications

The Psoriatic Arthritis Clinic data will be used to illustrate the methods. The

state occupancy probabilities will be estimated in a 3-state model with states alive

with PsA, alive with spondylitis, and dead. A 5-state model will also be considered

which separates the spondylitis state according to whether the left, right, or both

sides of the body are affected. Markov models with multiplicative covariate effects

will be fit to assess the effects of covariates on the transition intensities.

Methods for estimation of state occupancy probabilities will also be applied to

the bivariate interval-censored data on viral shedding in HIV patients with CMV

infection, described in Betensky and Finkelstein (1999) and Goggins and Finkelstein

(2000).
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Chapter 2

Local Likelihood for

Interval-Censored Recurrent

Event Data

2.1 Introduction and Overview

- - -0 1 2 · · ·

Figure 2.1: Recurrent events model.

We now focus on the simple class of multistate models often used to represent

the state space for recurrent event data; see Figure 2.1. We focus on the problem

of estimating the mean function, µ(t), of a point process, but also consider use of

multiplicative models, in which interest lies in both the baseline mean function and

covariate effects.

As noted in Section 1.4, Sun and Kalbfleisch (1995) discuss nonparametric es-

timation of the mean function with interval-censored counts. In particular, they

note that a nonparametric estimate of the mean function is defined only at the

observation times. They propose an estimator defined such that the mean function

at the jth distinct inspection time, µ̂j is the mean number of events observed at

that inspection time, and if the µ̂j’s are not nondecreasing then the estimates are

made so using ideas of isotonic regression. For Poisson current status data this

gives the NPMLE, but Wellner and Zhang (2000) show how the estimator can be

39



viewed as a “pseudo-likelihood” estimator more generally and prove its consistency

in the general case of interval-censored data and without the Poisson assumption.

Lawless and Zhan (1998) describe an EM algorithm for estimating covariate effects

in a mixed-Poisson recurrent event process.

The state occupancy probability, or prevalence function gives the probability

being in a given state at time t, so in the context of recurrent event data the

prevalence function for state k gives the probability of having experienced exactly

k events by time t. This leads to a natural estimate of the mean function given by

µ̂(t) =
J∑
j=1

jp̂j(t)

where p̂j(t) is the prevalence function estimate for state j, j = 1, . . . , J .

2.2 Estimation of the Mean Function for Right-

Censored Count Data

2.2.1 The One Sample Problem

Suppose events are generated according to a Poisson process with rate function

λi(t|Hi(t)) = ρ(t).

Let Ti1, . . . , Tini
denote the times of the ni events experienced by individual i over

the period of observation from 0 to τi. The likelihood contribution from individual

i is

Li =

{
ni∏
j=1

ρ(Tij)

}
exp

(
−
∫ τi

0

ρ(u) du

)
. (2.1)

Let the rate function around t be approximated by a function dependent on

a parameter vector αt = (α0t, . . . , αpt)
′. For example, one could adopt log ρ(u) =

α0t + α1t(u− t) + · · ·+ αpt(u− t)p, and then the local log-likelihood at t becomes

`(αt; t) =
n∑
i=1

{
ni∑
j=1

[Kb(Tij − t) log ρ(Tij;αt)]−
∫ τi

0

Kb(u− t)ρ(u;αt) du

}
(2.2)

where Kb(u) = K(u/b)/b and K(u) is a kernel function. The kernel function is used

to weight the contributions to the local log-likelihood function at t. Observations
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closer to t will be given more weight according to the kernel function while those

further away will be given less weight, or even no weight at all. The kernel causes

the local log-likelihood to be affected only by observations within b units of t.

Estimates of αt are obtained by solving the p+1 estimating equations, Utp(αt) =

0, where Utp is obtained by differentiating `(αt; t) with respect to the pth component

of αt.

Variance estimates can be obtained in a similar manner as in Betensky et al.

(1999) using the theory of estimating functions. If the rate function is being es-

timated at M equally spaced grid points, t1, . . . , tM , then let Ui be the vector of

contributions from individual i to the set of M(p+ 1) estimating functions and let

α be an M(p+ 1)× 1 vector consisting of all the elements of αg, g = 1, . . . ,M . Let

U =
∑n

i=1 Ui. The covariance matrix of α̂ is estimated by{(
∂U

∂α′

)−1
}′( n∑

i=1

UiU
′
i

)(
∂U

∂α′

)−1

evaluated at α̂. For example, under a locally constant approximation,

Uig =

ni∑
j=1

Kb(Tij − tg)− eαg

∫ τi

0

Kb(u− tg) du

and the g estimating functions are orthogonal, meaning −∂U/∂α′ is a diagonal

matrix with entries

eαg

n∑
i=1

∫ τi

0

Kb(u− tg) du, g = 1, . . . ,M.

2.2.2 Regression Models

With covariates, multiplicative models of the form ρi(t) = ρ0(t) exp(x′iβ) are useful.

Estimation of β using local likelihood can be carried out using profile likelihood.

The idea is to use local likelihood to estimate ρ0 for a fixed value of β and plug this

estimate into the log-likelihood

`(ρ0(·), β) =
n∑
i=1

{
ni∑
j=1

[log ρ̂0(Tij; β) + x′iβ]− ex
′
iβµ̂i(τi; β)

}
.

Estimates of ρ0 and µ0 are obtained by maximizing the local log-likelihood

`(αt; t) =
m∑
i=1

{
ni∑
j=1

Kb(Tij − t) [log ρ(Tij;αt) + x′iβ]

−ex′iβ
∫ τi

0

Kb(u− t)ρ(u;αt) du

}
(2.3)
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for αt. The profile log-likelihood, `(ρ̂0(·; β), β0) is then maximized to obtain β̂. In

the one-parameter case, confidence intervals for β can be constructed by finding

the β that satisfy 2[`(ρ̂0(·; β̂), β̂) − `(ρ̂0(·; β), β)] ≤ χ2
1,α. In principle this can be

extended to the multiparameter case.

In order to justify the use of the χ2 distribution, consider the following heuristic

argument. We will restrict attention to the case of a locally constant approximation

to the log of the rate function. Higher order polynomials may be handled similarly.

The estimate ρ̂0(t; β) is given by ebα0t . The derivative of (2.3) with respect to α0t is

given by

∂`

∂α0t

=
n∑
i=1

ni∑
j=1

Kb(Tij − t)− eα0t

n∑
i=1

∫ τi

0

Kb(u− t)ex
′
iβ du

=
n∑
i=1

∫ τi

0

Kb(u− t) dNi(u)− eα0t

n∑
i=1

∫ τi

0

Kb(u− t)ex
′
iβ du.

Let α̃0t denote the solution to E{∂`/∂α0t} = 0. We will take the expectation of

individual i’s terms first given τi. We have

E

{∫ τi

0

Kb(u− t) dNi(u)

∣∣∣∣ τi} =

∫ τi

0

Kb(u− t)ρ0(u)e
x′iβ du. (2.4)

For τi > t, and b sufficiently small, we can write this as∫ 1

−1

K(u)ρ0(t+ bu)ex
′
iβ du→ ρ0(t)e

x′iβ as b→ 0.

Similarly, for τi < t, (2.4) goes to 0 as b→ 0 and for τi = t, (2.4) goes to 0.5ρ0(t)e
x′iβ

as b→ 0. It also follows that ∫ τi

0

Kb(u− t)ex
′
iβ du

converges to ex
′
iβ, 0, and 0.5ex

′
iβ for τi > t, τi < t and τi = t respectively, as b→ 0.

Hence as b→ 0,

eeα0t =

n∑
i=1

Wiρ0(t)

n∑
i=1

Wi

= ρ0(t)

where Wi = ex
′
iβ{P (τi > t) + 0.5P (τi = t)}. In the language of Severini and Wong

(1992), the profile local likelihood estimate of ρ0(t) given β consistently estimates

the same “least favourable curve” as the standard semiparametric approach (Cook
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and Lawless 2007, Chapter 3), hence the profile likelihood has the usual asymptotic

properties.

The Poisson model is restrictive in the sense that var(Ni(t)) = µi(t). If this is

not reasonable, a simple alternative is to consider a variance function of the form

var(Ni(t)) = νµi(t). Such a model is often used when there is over-dispersion in

a Poisson GLM (McCullagh and Nelder 1989). In the Poisson GLM case, the log-

likelihood is multiplied by ν−1 so the resulting estimate of β is unchanged but the

variability of β is inflated by ν. The parameter ν can be estimated by the method

of moments,

ν̂ =
1

n

n∑
i=1

(ni − µ̂i(τi))
2

µ̂i(τi)
. (2.5)

The profile likelihood interval then becomes the set of β which satisfy

2[`(ρ̂0(·; β̂), β̂)− `(ρ̂0(·; β), β)] ≤ ν̂χ2
1,α.

Another form of variance function which is frequently used arises from a mixed-

Poisson process formulation and is given by var(Ni(t)) = µi(t) + φµ2
i (t). In this

situation we suggest an estimate of ρ0(t) for given β using the Poisson model and

an estimate of φ is then obtained by solving

n∑
i=1

{
(ni − µ̂i)

2 − µ̂i(1 + φµ̂i)

(1 + φµ̂i)2

}
= 0

where µ̂i = µ̂(τi; β) (Dean 1991). Under the assumption that the random effect

follows a gamma distribution, an estimate of β is obtained by maximizing the

profile likelihood

`(β, ρ̂0(·; β), φ̂(β)) =
n∑
i=1

{
ni∑
j=1

log ρ̂0(Tij) + ni(log φ̂+ x′iβ)

−(ni + φ̂−1) log(1 + φ̂µ̂i(τi)) + log Γ(ni + φ̂−1)− log Γ(φ̂−1)
}
. (2.6)

Confidence intervals are obtained by finding the β that satisfy 2[`(β̂, ρ̂0(·; β̂), φ̂(β̂))−
`(β, ρ̂0(·; β), φ̂(β))] ≤ χ2

1,α.
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2.3 Estimation of the Mean Function for Interval-

Censored Recurrent Event Data

2.3.1 The One Sample Problem

Suppose individual i is only seen at inspection times bi1, . . . , bimi
. Here we assume

the inspection process satisfies the conditions in Grüger et al. (1991).

We consider the problem of developing a local likelihood EM algorithm to esti-

mate the rate under a Poisson model in a one-sample problem. This would be in a

similar spirit to the EM approach of Lawless and Zhan (1998), but one would get

a smooth estimate of the rate ρ(t), in the spirit of Betensky et al. (1999).

Let Ti1, . . . , Tini
denote the times of the ni events experienced by individual i

over the period of observation from 0 to τi. Let (Lij, Rij] be the censoring interval

for Tij. These censoring intervals are created as a result of a continuous time

recurrent event process only being observed at periodic assessment times.

Under a Poisson process the complete data likelihood contribution from indi-

vidual i is given by (2.1). Let the baseline rate function around t be approximated

by a function dependent on a parameter vector αt = (α0t, . . . , αpt)
′ so the local

log-likelihood at t is given by (2.2).

The parameters can now be estimated by an EM algorithm which incorporates

smoothing. A grid of equally spaced points at which the baseline hazard will be

estimated, t1, . . . , tM , must be defined. Let ρ̂ denote the estimate of ρ at each of

the grid points, so the gth element of ρ̂ depends on α̂tg . Define

Q(t)(αt; ρ̂
(r−1)) =

n∑
i=1

{
ni∑
j=1

[
E[Kb(Tij − t)|ρ̂(r−1), Lij, Rij] log ρ(Tij;αt)

]
−
∫ τi

0

Kb(u− t)ρ(u;αt) du

}
where parameters with a superscript (r−1) indicate the parameter estimate at the

(r − 1)th iteration.

The expectations involving the Tij must be evaluated numerically, for example

using the trapezoid rule. To obtain the conditional density of the Tij given the data,

it is useful to transform the times by defining Sij = µ(Tij). The Sij then follow

a homogeneous Poisson process with rate 1. Due to the independent increments

property of Poisson processes, the conditional density of Sij, given it occurred in the
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interval (µ(bi,k−1), µ(bik)], does not depend on any times outside that interval. The

times within that interval are uniformly distributed over (µ(bi,k−1), µ(bik)], hence the

density of Tij given it occurred in (bi,k−1, bik] has the form ρ(tij)/(µ(bik)−µ(bi,k−1)),

bi,k−1 < tij ≤ bik. The resulting expectation is then given by

E[Kb(Tij − t)|ρ̂(r−1), Lij, Rij] =
∑

g:Lij≤tg≤Rij

Kb(tg − t)
ρ̂(r−1)(tg)

µ̂(r−1)(Rij)− µ̂(r−1)(Lij)

=

∑
g:Lij≤tg≤Rij

Kb(tg − t)ρ̂(r−1)(tg)∑
g:Lij≤tg≤Rij

ρ̂(r−1)(tg)
.

The M-step involves maximizing Q(t)(αt; ρ̂
(r−1)) to obtain α

(r)
t at each grid point

using, for example, Newton-Raphson. The EM algorithm is continued until the

difference between parameter estimates obtained in successive steps becomes neg-

ligible.

Variance estimates for α̂ can be obtained as described in the previous section.

If we let ρ̂ and µ̂ denote the vector of estimates of ρ(t) and µ(t) respectively at

each of the grid points then µ̂ = ∆Wρ̂, where the jth row of W is comprised of

the weights used in the numerical integration to obtain µ̂(tj) and ∆ is the grid size.

Variance estimates for µ̂ can be obtained by the delta method, giving

var(µ̂) = ∆2 (W diag ρ̂) var(α̂) (W diag ρ̂)′ .

Alternatively, resampling techniques such as the bootstrap may also be considered.

Extensions to deal with mixed-Poisson processes are straightforward.

2.3.2 Regression Models

When there are covariates of interest, multiplicative models can be used. Estimation

of ρ0(·) and β can be done using an approach analogous to the profile likelihood as

described for the right-censored case of Section 2.2.2. With interval censoring, the

profile log-likelihood is

`(ρ0(·), β) =
n∑
i=1

mi∑
j=1

{
nij(log µij + x′iβ)− ex

′
iβµij

}
,

where nij is the number of events in (bi,j−1, bij] and µij =
∫ bij
bi,j−1

ρ0(u) du.
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In order to obtain ρ̂(·; β) an EM algorithm must be used. Here we employ an

EM algorithm to estimate ρ(·) for fixed β as follows.

The complete data likelihood contribution from individual i is

Li =

{
ni∏
j=1

ρ0(Tij) exp(x′iβ)

}
exp

(
−
∫ τi

0

ρ0(u) exp(x′iβ) du

)
and the log-likelihood is,

`C(ρ0, β) =
n∑
i=1

[
ni∑
j=1

[log ρ0(Tij) + x′iβ]− ex
′
iβ

∫ τi

0

ρ0(u) du

]
.

Again, we let the baseline rate function around t be approximated by a function

dependent on a parameter vector αt (e.g. log ρ0(u) = α0t+α1t(u− t)+ · · ·+αpt(u−
t)p), then the local log likelihood at t becomes

`C(αt, β) =
n∑
i=1

{
ni∑
j=1

Kb(Tij − t)[log ρ0(Tij;αt) + x′iβ]

−ex′iβ
∫ τi

0

Kb(u− t)ρ0(u;αt) du

}
We let ρ̂0 denote the estimate of ρ0 at each of the grid points, so the gth element

of ρ̂0 depends on α̂tg . Furthermore we let

Q(t)(αt, β; ρ̂
(r−1)
0 , β̂(r−1)) =

n∑
i=1

{
ni∑
j=1

E[Kb(Tij − t)|ρ̂(r−1)
0 , β̂(r−1), Lij, Rij][log ρ0(Tij;αt) + x′iβ]

−ex′iβ
∫ τi

0

Kb(u− t)ρ0(u;αt) du

}
where parameters with a superscript (r − 1) indicate the parameter estimates at

the (r−1)th iteration. Again, the expectations involving the Tij must be evaluated

numerically.

The M-step is to maximize Q(t)(αt, β; ρ̂
(r−1)
0 ) to obtain α

(r)
t at each grid point.

The EM algorithm is continued until the difference between successive parameter

estimates becomes negligible.

The “profile” log-likelihood, `(ρ̂0(·; β), β) is then maximized to obtain β̂. In

the one-parameter case, confidence intervals for β can be constructed by finding

the β that satisfy 2[`(ρ̂0(·; β̂), β̂) − `(ρ̂0(·; β), β)] ≤ χ2
1,α. A justification of the
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distribution of the profile likelihood ratio statistic is much more difficult in the

interval-censored case, and its validity is examined via simulations in Section 2.4.

The difficulty arises since there is no explicit expression for the least favourable

curve (Staniswalis et al. 1997). Resampling techniques such as the bootstrap may

also be considered. Variance functions of the form var(Ni(t)) = νµi(t) can be

handled in a similar manner as for right-censored data. Estimates are computed as

for the Poisson case and the estimate of ν then is

ν̂ =
1

n

n∑
i=1

(ni − µ̂i(τi))
2

µ̂i(τi)
. (2.7)

For variances of the mixed-Poisson form var(Ni(t)) = µi(t) + φµ2
i (t) the “profile”

likelihood is calculated as follows. First, a Poisson model is fitted using the EM

algorithm to estimate ρ0(t) for fixed β, ρ̂0(·; β). Secondly, a moment estimate of φ,

is calculated by solving

n∑
i=1

{
(ni − µ̂i)

2 − µ̂i(1 + φµ̂i)

(1 + φµ̂i)2

}
= 0

where µ̂i =
∫ τi

0
ρ̂0(u; β) du. These estimates are then used to compute the profile

negative binomial likelihood,

`(β, ρ̂0(·; β), φ̂(β)) =
n∑
i=1

{
mi∑
i=1

nij(log µij + x′iβ) + ni log φ+ log Γ(ni + φ−1)

− log Γ(φ−1)− (ni + φ−1) log(1 + φex
′
iβµij)

}
.

The profile likelihood is then maximized to obtain β̂ and confidence intervals are

obtained by finding the β that satisfy 2[`(β̂, ρ̂0(·; β̂), φ̂(β̂)) − `(β, ρ̂0(·; β), φ̂(β))] ≤
χ2

1,α.

2.4 Simulation Studies

Simulation studies were conducted to assess the performance of the Poisson local

likelihood estimator. One thousand samples of 500 subjects were generated over the

interval (0, 1] such that the mean number of events experienced by an individual was

4. The underlying processes were Poisson, mixed-Poisson and renewal processes.

For the Poisson processes, the mean function took the form (θt)γ. The values of γ

were taken to be 1, 0.75 and 1.2 in order to examine the effects of a trend in the

intensity. The same form was used as the baseline mean function conditional on
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the random effect in the mixed-Poisson case, while the random effect was taken to

be gamma distributed with mean 1 and variance 0.25. The interarrival distribution

for the renewal process was taken to be gamma with shape parameter 2. The scale

parameters in all cases were chosen such that µ(1) = 4. The assessment times were

generated according to a homogeneous Poisson process with mean number of visits

equal to 5 or 10.

For comparison, the Poisson local likelihood estimator was compared with es-

timates obtained using a piecewise constant rate function with 3 or 6 pieces. In

the case of mean function estimation, comparisons can also be made with a simple

estimator of the mean function based on state occupancy probabilities in a multi-

state model. If we consider a recurrent event process as a multistate model with

states defined by the number of events an individual has experienced, as in Fig-

ure 2.1, then estimates of the state occupancy probabilities can be obtained as in

Pepe et al. (1991). If Z(t) indicates the state an individual is in at time t then

P (Z(t) = k) = P (Tk+1 > t)−P (Tk > t) where Tk denotes the time of the kth event

and T0 = 0. The marginal survivor functions can be estimated separately using

local likelihood as in Betensky et al. (1999) and an estimate of the state occupancy

probabilities can be obtained by taking the appropriate difference. An estimate of

the mean function is obtained by µ̂(t) =
∑J

j=1 jp̂j(t) where p̂j(t) is the prevalence

function estimate for state j, j = 1, . . . , J .

The estimators were examined in terms of bias and MSE. A locally constant

polynomial, Epanechnikov kernel and 20% “nearest neighbours” bandwidth (Loader

1999) were used in all cases. The results of the simulations are displayed in Ta-

bles 2.1 and 2.2. Figures 2.2 and 2.3 graphically display the performance of the

estimators.

Examination of Tables 2.1 and 2.2 shows that the Poisson-based local likelihood

estimator outperforms the robust Pepe estimator in all situations. It can also be

seen that the MSE and bias of the local likelihood estimator are close to that of

the piecewise constant estimators. The local likelihood estimator tends to perform

slightly better than the 3-piece model, while the 6-piece model tends to perform

slightly better than the local likelihood estimator. Figure 2.2 displays the bias

of the estimators. In all cases, the bias of the Pepe estimator is largest. All

methods suffer early bias when the model is not time homogeneous. The piecewise

constant methods have large bias early on, which gets smaller with time, while

the local likelihood estimator has smaller initial bias, but there is a slight amount

of bias that persists over time. Figure 2.3 displays the performance of the local

likelihood estimator versus the piecewise constant estimators of the rate function.
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Figure 2.2: Empirical bias of the Poisson local likelihood and Pepe local likelihood

estimates as well as piecewise constant estimates (3 piece–PW3, 6 piece–PW6) of

the mean function for interval-censored recurrent event data; visits were Poisson

distributed with a mean of 5 visits.
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Figure 2.3: Empirical bias of the Poisson local likelihood estimate as well as piece-

wise constant estimates (3 piece–PW3, 6 piece–PW6) of the rate function for

interval-censored recurrent event data based on 1000 simulated datasets of 500

subjects; visits were Poisson distributed with a mean of 5 visits.
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The local likelihood estimate tracks the true rate function very closely except very

early on near the boundary at zero. It is clear from this figure that the local

likelihood method provides a smooth estimate as compared with the piecewise

constant estimates.

Simulations were also conducted to assess the performance of the estimators of

a regression coefficient. This was done for the right-censored case. The true value

of the regression coefficient was set to β = log 0.75 = −0.28768 with covariate

values taking the values 1 and 0 with equal probabilities. Baseline rate functions

considered were the same as for the previous case. Poisson and mixed-Poisson

models were used to generate the data with an average of two or four events over

the interval (0, 1]. For the local likelihood methods, the extra-Poisson procedure

involving estimation of ν was used when the data were generated according to a

mixed-Poisson process. The results are displayed in Table 2.3. For comparison,

results obtained using a piecewise constant rate function (with four or ten pieces)

and robust variance estimates are also displayed. The biases are all small relative

to their standard errors. The coverage probabilities are all close to the nominal

level of 0.95.

The validity of the chi-square approximation to the distribution of the profile

likelihood ratio statistic was investigated for the interval-censored case. One thou-

sand datasets composed of 500 subjects were simulated as before. Poisson local

likelihood methods with nearest-neighbours bandwidths of 0.2 and 0.6 were used

when the data follow a Poisson process, and the method based on (2.7) was used

when the data follow a mixed-Poisson process. The mean function at the end of

follow-up was taken to be 4 and the random effect was taken to be gamma with

mean 1 and variance φ = 0.25. This corresponds to a doubling of the variance

relative to a Poisson process by the end of follow-up. Figures 2.4 and 2.5 show

QQ-plots of the simulated quantiles of the profile likelihood ratio statistic versus

the theoretical quantiles of the χ2
1 distribution along with 95% pointwise confidence

intervals. The QQ-plots were obtained using the qq.plot function in the R library

car (Fox 2007). There appears to be good agreement between the empirical and

chi-square (1 df) quantiles for most configurations since the empirical quantiles are

within the “confidence envelope” (Fox 1997) in all cases except the Poisson case

with γ = 1.2, b = 0.2 and the mixed-Poisson case with γ = 1.2, b = 0.6. An

omnibus Kolmogorov-Smirnov test of the null hypothesis that the profile likelihood

ratio statistic

2[`(ρ̂0(·; β̂), β̂)− `(ρ̂0(·; β), β)]
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Table 2.4: Kolmogorov-Smirnov test statistics (KS) and p-values for assessing the

validity of the χ2
1 approximation to the profile likelihood ratio statistic based on

1000 simulated datasets of 500 subjects with mean function (θt)γ.

Poisson Mixed-Poisson

γ b KS p-value KS p-value

0.75 0.2 0.029 0.390 0.034 0.187

0.6 0.019 0.872 0.028 0.410

1.00 0.2 0.020 0.818 0.015 0.972

0.6 0.014 0.991 0.032 0.263

1.20 0.2 0.038 0.106 0.034 0.207

0.6 0.016 0.952 0.033 0.217

for the Poisson case and

2[`(ρ̂0(·; β̂), β̂)− `(ρ̂0(·; β), β)]/ν̂

for the mixed-Poisson case follows a χ2
1 distribution is given in Table 2.4. There is

insufficient evidence to reject this null hypothesis for any of the parameter config-

urations considered here. The validity of this distributional assumption is further

substantiated empirically by the good empirical coverage probability of the 95%

profile likelihood ratio confidence intervals. In practical applications it may be

worthwhile to use bootstrap methods to corroborate profile likelihood intervals;

further analytic work will be required to ascertain whether conditions like those of

Staniswalis et al. (1997) can be specified to provide rigorous broader justification

for this distributional approximation.

2.5 Applications

2.5.1 Data on Incidence of Superficial Bladder Tumors

Byar (1980) describes a randomized clinical trial of patients who experienced su-

perficial bladder tumors. This dataset has also been studied in Lawless and Zhan

(1998), Wellner and Zhang (2000) and Kalbfleisch and Prentice (2002). Patients

were randomly assigned either pyridoxine pills, thiotepa (a chemotherapeutic agent)

or a placebo. Each time a patient was seen, any tumors present were counted and
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Figure 2.4: QQ-plots comparing the simulated quantiles of the profile likelihood

ratio statistic with the theoretical quantiles of the χ2
1 distribution based on 1000

simulated datasets of 500 subjects with Poisson mean function (θt)γ.
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Figure 2.5: QQ-plots comparing the simulated quantiles of the profile likelihood

ratio statistic with the theoretical quantiles of the χ2
1 distribution based on 1000

simulated datasets of 500 subjects with mixed-Poisson mean function (θt)γ and

φ = 0.25.
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Table 2.5: Local likelihood and Cox estimates and 95% confidence intervals for the

effect of treatment in the bladder cancer study.

Local Likelihood Andersen-Gill

Poisson −0.392 (−0.760, −0.037) −0.381 (−0.743, −0.019)
Extra-Poisson / Robust −0.392 (−0.939, 0.126) −0.381 (−0.954, 0.192)

Mixed-Poisson −0.367 (−0.927, 0.290) −0.302 (−0.900, 0.296)

removed. Figure 2.6 shows the number of tumors counted at inspection times for

a sample of 24 patients.

As in Lawless and Zhan (1998) and Kalbfleisch and Prentice (2002) only the

placebo and thiotepa groups will be considered in the analysis. A plot like that in

in Lawless and Zhan (1998) of the total number of tumors against the total time

on study is given in Figure 2.7.

Here, we will consider estimation of the mean functions separately for the treat-

ment and placebo groups using the methods of Section 2.3. Hence, 85 patients were

included in the study, of which 38 were assigned the treatment, thiotepa. Informa-

tion on the initial number of tumors as well as the size of the largest initial tumor

was also recorded for each patient.

The results of using local likelihood with the Epanechnikov kernel K(u) =

3/4(1− u2), |u| ≤ 1, locally constant polynomial and 0.2 nearest-neighbours band-

width lead to the results displayed in Table 2.5 for the effect of treatment. We

consider the event times as being exact by assuming events occur at the inspection

time they are observed. Other nearest-neighbours bandwidths were tried, rang-

ing from 0.1 to 0.6, however the estimates did not vary greatly. For example, the

Poisson local likelihood estimate of the treatment effect ranged between −0.406 and

−0.377. Results based on a tricube kernel K(u) = 70/81(1−|u|3)3, |u| ≤ 1 with the

same bandwidth ranged between −0.405 and −0.375. Hence, the bandwidth had

a small effect on the results but not enough to drastically change the conclusions.

The choice of kernel had an even smaller impact, as expected.

For the sake of comparison, the results of fitting a semiparametric Andersen-Gill

regression model including the effect of treatment are also displayed, along with

95% confidence intervals based on a Poisson variance (Andersen and Gill 1982),

robust variance (Lawless and Nadeau 1995) and mixed-Poisson variance (Lawless

1987). The local likelihood estimates and confidence intervals are close to those
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Figure 2.6: Timelines of 24 thiotepa patients from the bladder tumor study of Byar

(1980). For a given patient, the horizontal line indicates the time under study

while the vertical lines represent assessment times. The numbers between visit

marks indicate the number of tumors that developed during that time interval (if

greater than 0).
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the bladder tumor data of Byar (1980).

60



obtained by a semiparametric PH model except for the mixed-Poisson case where

the estimates differ, but the confidence intervals are quite similar.

2.5.2 Rat Tumorgenicity Data

Gail et al. (1980) discusses a randomized experiment involving 48 female rats.

Rats were exposed to a carcinogen and further conditioned for 60 days prior to

randomization to receive either a treatment or control. A followup period of 122

days began after randomization, during which they were examined every few days

for the development of new tumours. The data are given in Gail et al. (1980) and

in Cook and Lawless (2007) where the data are reported with the times from the

beginning of the period of examination instead of from the time of exposure to the

carcinogen.

Local likelihood with a locally constant polynomial, Epanechnikov kernel and 0.2

nearest-neighbours bandwidth lead to the results displayed in the first two columns

of Table 2.6 for the effect of treatment with the event times right-censored. Varying

the bandwidth produced the same estimates to three decimal places. The first row

of Table 2.6 contains estimates obtained via local likelihood with a Poisson model,

the second row reports the same point estimates with an adjusted variance estimate

obtained by multiplying the Poisson variance estimate by ν̂ given by (2.5), and the

third row reports estimates obtained by maximizing (2.6) under the negative bino-

mial model. Also provided are the estimates from fitting an Andersen-Gill model

with Poisson variance estimates in the top row (Andersen and Gill 1982), robust

variance estimates in the second row (Lawless and Nadeau 1995), and a negative

binomial model in the third row (Lawless 1987). The local likelihood estimates

and confidence intervals are generally close to those obtained by a semiparametric

analysis except for the mixed-Poisson case where the point estimates differ slightly;

the confidence intervals are quite similar however. All analyses suggest a strong

and highly significant reduction in the rate of tumours among treated rats with

over a 50% reduction in the event rate.

2.5.3 Nuclear Plant Reliability Study

Sun and Kalbfleisch (1995) consider an example where 30 nuclear plants are ob-

served for loss of feedwater flow. Each plant was observed once and the number

of losses of feedwater flow were recorded. The inspection times ranged from 1 to

15 years (with quantiles of 2.0, 3.5 and 5.0 years). Figure 2.8 contains the same
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Table 2.6: Local likelihood and Cox estimates and 95% confidence intervals for the

effect of treatment in the rat tumorgenicity study of Gail et al. (1980).

Local Likelihood Andersen-Gill

Poisson −0.823 (−1.127, −0.531) −0.848 (−1.146, −0.550)
Extra-Poisson / Robust −0.823 (−1.255, −0.416) −0.848 (−1.262, −0.434)

Mixed-Poisson −0.820 (−1.233, −0.397) −0.861 (−1.300, −0.424)

nonparametric estimate of the mean function as Figure 1 in Sun and Kalbfleisch

(1995) with local likelihood estimates of the mean function superimposed. The non-

parametric estimate of the mean function suggested by Sun and Kalbfleisch (1995)

is given by the filled circles while the clear circles indicate the average number of

losses of feedwater flow per nuclear plant at each time point. Both local likelihood

estimates are based on the Epanechnikov kernel with 100 grid points and a locally

constant polynomial. The dashed line corresponds to a bandwidth of 1.0 while

the solid line corresponds to a bandwidth of 0.33 chosen by cross validation. This

bandwidth was obtained by finding the b which maximizes the likelihood criterion

given by (1.1) without the penalty term which in this case is given by

n∑
i=1

{ni log µ̂−i(Ci; b)− µ̂−i(Ci; b)}

where µ̂−i(t; b) is the local likelihood estimate with bandwidth b and Ci is the time

the ith plant was observed. Other kernels were tried, but the resulting estimates

provided little visual difference.

The local likelihood estimates tracks the nonparametric one quite closely while

offering smooth estimates of the mean function. The plot suggests that the rate

of occurrence of loss of feedwater flow begins to decrease at about 4 years and

increases after about 7 years.

2.5.4 Counts of Damaged Joints in Psoriatic Arthritis

The event of interest here is the development of damage in joints and interest lies in

both rate of occurrence of damage and the expected cumulative number of damaged

joints over time. Moreover, identification of important covariate effects is also of

interest to help characterize risk among patients present in the clinic.
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Figure 2.8: Estimates of the mean number of losses of feedwater flow obtained non-

parametrically (filled circles) and using local likelihood with bandwidth 1.0 (dashed)

and 0.33 (solid); clear circles indicate the mean number of losses of feedwater flow

across plants observed at that time point.
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Figure 2.9: Timeline diagram of joint damage for a sample of seven patients from

the University of Toronto psoriatic arthritis clinic; tick marks indicate assessments

and numbers indicate the number of newly damaged joints.

While assessments are scheduled annually, in reality there is considerable vari-

ability in the frequency and timing of clinic visits. Figure 2.9 shows the times

of assessments for a sample of patients along with counts of the number of dam-

aged joints occurring between assessments. As can be seen, some patients adhere

to a regular schedule of clinic visits and others attend less frequently and more

irregularly.

Estimates of the expected cumulative number of damaged joints over time are

given in Figure 2.10 based on Poisson models via the local likelihood approach as

well as based on piecewise constant models of Lawless and Zhan (1998) with 3

and 6 pieces. The local likelihood estimate, based on an Epanechnikov kernel, a

bandwidth of 3 and a locally constant function agrees very well with the piecewise

estimates over the majority of the followup. There is a slight divergence in these

estimates towards the end of followup due to boundary problems commonly ob-

served in local likelihood methods (Loader 1999). Other kernels and bandwidths

may be applied, however due to the apparent linear nature of the mean function,

there is little difference in the estimates.

Table 2.7 contains the results of fitting the mixed Poisson model for estimation
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Table 2.7: Local likelihood estimates of the regression parameters in the psoriatic

arthritis study.

Covariate Estimate Jackknife SE Jackknife 95% CI

Duration of Arthritis (years) 0.026 0.005 (−0.015, −0.037)
Sex (male vs female) −0.034 0.133 (−0.295, 0.227)

Family History of PsA (yes vs no) −0.346 0.252 (−0.839, 0.148)

and profile likelihood intervals for a multivariate model with covariates duration of

disease (years), sex (1=male, 0=female) and family history of disease(1=yes,0=no).

Varying the bandwidth from 0.5 to 10 years produced little change in the estimates.

The estimate of the effect due to the duration of arthritis did not change at all,

and the largest difference was for the effect due to sex, which ranged from −0.034

(b = 10) to −0.031 (b = 0.5). The findings show that the rate of damaged joints

increases with each additional year of disease (RR=1.026; 95% CI (1.016, 1.037));

there is no significant effect of sex or family history of disease.

2.6 Summary

In this chapter, interval-censored recurrent event data was considered. Main ob-

jectives were smooth estimation of the mean function, as existing methods lack

smoothness and may not be everywhere defined. Local likelihood methods were

used to obtain smooth estimates of both the mean and rate function. Bandwidth

selection was mainly done by visual inspection, although leave-one-out cross valida-

tion was considered for the nuclear reliability example. The choice of the bandwidth

is always a difficult issue when working with smoothing techniques. The simula-

tions and examples considered the use of the Epanechnikov kernel with a constant

local approximation to the log of the rate function. Other kernels may be used,

although changing kernels appears to have little impact on the results. The use

of higher order polynomials in the local approximation may also be considered,

although the computations become much more complicated. In the case of survival

data, Hjort and Jones (1996) note that using a Gaussian kernel simplifies the calcu-

lations required with a higher-order local polynomial and Braun et al. (2005) show

that closed form expressions for the iterations of the local EM algorithm can be

obtained with polynomials of order 1 or 2. Boundary bias was also observed in the

simulations. Hjort and Jones (1996) examined reducing the bias at the boundary
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for survival data by increasing the order of the local polynomial, and Loader (1999)

notes that doing so comes at the cost of an increase in variability. Methods for

covariates were also considered along with relaxing the at times restrictive form of

the variance function of a Poisson process. Simulation studies demonstrated the

good performance of the local likelihood methods. The results of this work can also

be found in Tolusso and Cook (2008a).

The methods of this chapter are robust in the sense that the simulations demon-

strated the consistency of the Poisson based local likelihood estimates even when the

underlying process was not Poisson. In addition, the Pepe estimate is constructed

without ever making reference to form of the underlying event process.
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Chapter 3

Estimating Equations for

Clustered Current Status Data

3.1 Introduction and Overview

Suppose we have a study where each subject can experience a particular event,

and it is the time to the event that is of interest. Suppose that the time of the

event is not observed exactly, rather each subject has a specified follow-up time

at which it is determined whether or not the event has occurred. Such data are

termed type I interval censored or current status data and is an extreme form of

interval censoring.

With current status data, the likelihood is straightforward to construct and

a parametric estimate of the cumulative distribution function is readily available.

Nonparametric estimates may be obtained using isotonic regression methods such

as the min-max formula of Barlow et al. (1972) or the pooled-adjacent violators

algorithm of Ayer et al. (1955). Regression models may also be considered (Sun

2006, Chapter 5), and in some instances (for example proportional hazards with

Weibull baseline hazard) may be fit using existing software for generalized linear

models. A weakly parametric approach may also be taken where the baseline hazard

is assumed to be piecewise constant (Zhan 1999). A semiparametric approach is

taken by Shiboski (1998) using generalized additive models methodology.

Current status data may be extended to the case where for each subject there

are two event times of interest, which may be dependent. Wang and Ding (2000)

consider this case with the focus being on estimating the association between the

two failure times. They propose the use of a copula to model the association. Two-
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stage semiparametric estimation of the association follows along the lines of Shih

and Louis (1995) for right-censored data. Jewell et al. (2005) consider nonparamet-

ric estimation of the joint distribution of bivariate current status. They use an EM

algorithm to estimate the identifiable parts of the joint distribution under univari-

ate monitoring times. They also provide a test of independence and goodness-of-fit

of a copula. Chapter 7 of Sun and Kalbfleisch (1995) also discusses the analysis of

bivariate interval-censored data using Copula models.

Another generalization of univariate current status data is the case where sub-

jects may be grouped into clusters. Individuals within a cluster have potentially

dependent event times. This situation will be considered. For fully parametric

models, the data is similar to binary data. Hence methods of generalized esti-

mating equations (Liang and Zeger 1986) may be used to obtain estimates of the

model parameters when faced with possible dependence within clusters. Here, a

copula may be used to model the association between event times within a cluster,

which in turn induces an association structure which may be used to define working

covariance matrices.

The organization of the remainder is as follows. Section 3.2 describes the nota-

tion and the general approach to be taken. Section 3.3 develops the methodology.

Simulation studies are discussed in Section 3.4. Simulations were carried out to

evaluate the performance of piecewise constant models for estimation of regres-

sion coefficients as well as quantiles and survival probabilities of the failure time

distribution. The methods are illustrated by example in Section 3.5.

3.2 Notation

Suppose there are m clusters of individuals with ni observations per cluster, j =

1, . . . , ni, i = 1, . . . ,m. Let Sij denote the event time for the jth individual in

cluster i, and xij = (xij1, . . . , xijp)
′ denote a p × 1 covariate vector. We assume

a proportional hazards formulation to examine covariate effects and hence assume

Sij has a marginal survivor function F(s|xij; θ) = [F0(s;α)]exp(x′ijβ) where F0(s;α)

is a baseline survivor function indexed by α, β is a p × 1 vector of regression

coefficients, and θ = (α′, β′)′. Let Cij denote the inspection time for individual j

in cluster i. For each individual, in addition to the covariate xij we observe the

indicator Yij = I(Sij ≤ Cij) which indicates if the event has occurred before the

inspection time. The data are therefore binary where pij = P (Yij = 1|Cij, xij; θ) =

1− F(Cij|xij; θ). If Λ0(s;α) is the cumulative baseline hazard function, a Weibull
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model is given by Λ(s;α) = (λs)γ where α = (λ, γ)′, and a piecewise constant

hazard model is given by Λ(s;α) =
∑K

k=1 λkwk(s), where αk = log λk, k = 1, . . . , K,

and α = (α1, . . . , αK)′.

It is often desirable to formulate covariate effects on marginal features of a mul-

tivariate distribution, which is one of the reasons that generalized estimating equa-

tions have seen such widespread use in the analysis of clustered data with marginal

distributions in the exponential family (Liang and Zeger 1986), marginal methods

based on rate and mean functions are popular for recurrent event analysis (Lawless

and Nadeau 1995), and marginal methods are popular for multivariate failure time

data (Wei et al. 1989). These, however, are all examples of methods of analysis.

Copula functions (Joe 1997) provide a convenient framework for constructing joint

distributions with specified margins, and we consider their use here.

A copula function in n dimensions is a multivariate distribution on the unit hy-

percube [0, 1]n, with uniform margins. Consider the general family of Archimedean

copulas (Genest and MacKay 1986),

Hn(u) = Φ−1(Φ(u1) + · · ·+ Φ(un))

where Φ(v) is a function known as the generator. Omitting the subscript i for

convenience if we have a cluster of size n, the multivariate failure time distribution

of all times in this cluster are generated by treating F(sij;xij; θ) as a uniform

random variable, and obtaining

P (Si1 > si1, . . . , Sin > sin|xi; θ) = Hn(F(si1|xi1; θ), . . . ,F(sin|xin; θ))

The Clayton copula is obtained by using the generator Φ(v) = v−φ− 1 which gives

Φ−1(v) = (v + 1)−1/φ and

Hn(u;φ) = (u−φ1 + · · ·+ u−φn − n+ 1)−1/φ. (3.1)

The resulting joint survivor function P (Si1 > si1, . . . , Sin > sin|xi; θ, φ) is

(F(si1|xi1; θ)−φ + · · ·+ F(sin|xin; θ)−φ − n+ 1)−1/φ. (3.2)

Note that we can marginalize over sk and obtain

P (S1 > s1, . . . , Sk−1 > sk−1, Sk+1 > sk+1, . . . , Sn > sn|xi; θ, φ)

simply by inserting sk = 0 into (3.2). We can then obtain

P (S1 > s1, . . . , Sk−1 > sk−1, Sk < sk, Sk+1 > sk+1, . . . , Sn > sn|xi; θ, φ)

= P (S1 > s1, . . . , Sk−1 > sk−1, Sk+1 > sk+1, . . . , Sn > sn|xi; θ, φ)

− P (S1 > s1, . . . , Sn > sn|xi; θ, φ).
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General expression for the current status data from such a cluster are similarly

obtained and likelihood functions may be constructed based on these expressions.

Maximization of the resulting likelihood is challenging, however, and we consider

instead the use of generalized estimating functions for estimation and inference.

Estimation can then proceed under the working independence assumption with

an appropriate sandwich variance estimate, or methods of generalized estimating

equations (Liang and Zeger 1986) may be used. One significant difference between

previous GEE methods for binary data and the current setup is that previous binary

data methods parameterize the association between Yij and Yik using, for example

odds ratios (Liang et al. 1992) or correlations (Prentice 1988). In the current setting,

the association between Sij and Sik is parameterized via the copula function, which

induces an association structure between the elements of Yi = (Yi1, . . . , Yin)
′ unlike

any of those considered before for clustered binary data. Figure 3.1 shows the

Pearson correlation of Y1 and Y2 as a function of the corresponding assessment

times C1 and C2 under a Weibull model with shape parameter γ and Clayton

copula with association parameter φ.

3.3 Methods of Estimation and Inference

3.3.1 Generalized Estimating Equations

Let pij(θ) = P (Yij = 1|Cij, Xij; θ) = 1− F(Cij|Xij; θ) denote the probability indi-

vidual j in cluster i tests positive given Cij and Xij. In standard use of generalized

estimating equations for binary data one would choose among the standard link

functions for binary data to specify a generalized linear model. In the context of a

proportional hazards model for the underlying failure time distribution, the com-

plementary log-log link will give a linear model with a common linear predictor, but

additional parameters will need to be estimated for the baseline hazard function.

Moreover, we would typically let Ri(ρ) denote a working correlation structure for

the observations in cluster i, and obtain Vi(θ, ρ) = A
1/2
i Ri(ρ)A

1/2
i as the working

covariance structure where Ai = diag{∂pi1/∂θ1, . . . , ∂pini
/∂θr}. It is well known

that consistent estimates for θ are obtained even if the working correlation struc-

ture is incorrect (Liang and Zeger 1986), and that maximum efficiency is obtained

the closer this correlation structure is to the true structure. While the responses

are binary in the present setting, it is inappropriate to use any of the standard

correlation structures for binary data because of the underlying joint distribution
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Figure 3.1: Correlation between Y1 and Y2 as a function of C1 and C2.
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of the failure times. We therefore consider covariance matrices obtained under the

copula formulation of the previous section.

Recall θ = (α′, β′)′, let κ = log φ and let ψ = (θ′, κ)′. Consider the first order

estimating equations for θ,

Uθ(ψ) =
m∑
i=1

D′
i(θ)V

−1
i (ψ)(Yi − pi(θ)) (3.3)

where Yi = (Yi1, . . . , Yini
)′, pi(θ) = (pi1(θ), . . . , pini

(θ))′, Di(θ) = ∂pi(θ)/∂θ
′ and

Vi(ψ) is an ni × ni covariance matrix with Vijj(ψ) = pij(1 − pij) in the diagonals

and off diagonals given by

Vijk(ψ) = cov(Yij, Yik|Xi;ψ) = P (Tij ≤ Cij, Tik ≤ Cik|Xi;ψ)− pij(θ)pik(θ)

for j 6= k with P (Tij ≤ Cij, Tik ≤ Cik|X)i;ψ) determined by the copula.

A second set of estimating equations is required to estimate κ for given θ.

This can be constructed using the pairwise combinations of the elements of Yi as in

Prentice (1988) and Zhao and Prentice (1990). Here, and in most of what follows, we

suppress the dependence on Cij in the notation. Let Zi = (Yi1Yi2, . . . , Yi,ni−1Yini
)′

be a column vector of all ri = ni(ni− 1)/2 pairwise products and ηi(ψ) = E[Zi|Xi]

the ri × 1 vector of conditional expectations of the elements of Zi, which are again

determined by the copula through

E[Zij|Xi] = P (Sij < Cij, Sik < Cik|Xi;ψ)

= 1−F(Cij|Xij; θ)−F(Cik|Xik; θ) + P (Sij ≥ Cij, Sik ≥ Cik;ψ) .

The estimating equation for κ is then

Uκ(ψ) =
m∑
i=1

G′
i(ψ)W−1

i (ψ)(Zi − ηi(ψ)) = 0 , (3.4)

where Gi(ψ) = ∂ηi/∂κ and W (ψ) = diag{ηi`(1 − ηi`), ` = 1, . . . , ri} and zeros

elsewhere. Let U(ψ) = (U ′
θ(ψ), Uκ(θ))

′, and let Ui(ψ) denote the contribution to

U(ψ) from cluster i, i = 1, . . . ,m. Let ψ̂ denote the solution to U(ψ) = 0. Then

the asymptotic variance of
√
m(ψ̂ − ψ) has the sandwich form,

A−1(ψ)B(ψ){A−1(ψ)}′

where A(ψ) = E(∂Ui(ψ)/∂ψ) and B(ψ) = E(Ui(ψ)U ′
i(ψ)) are the functions to

which

A(ψ) =
1

m

m∑
i=1

(
D′
iV

−1
i Di 0

G′
iW

−1
i Qi G′

iW
−1
i Gi

)
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and

B(ψ) =
1
m

m∑
i=1

(
D′
iV

−1
i (Yi − pi)(Yi − pi)′V −1

i Di D′
iV

−1
i (Yi − pi)(Zi − ηi)′W−1

i Gi

GiW
−1
i (Zi − ηi)(Yi − pi)′V −1

i Di G′
iW

−1
i (Zi − ηi)(Zi − ηi)′W−1

i Gi

)

converge in probability, where Qi(ψ) = ∂ηi(ψ)/∂θ is a ri× p matrix of derivatives,

and we suppress the dependence on θ or κ on the right hand sides. A consistent

estimate of the variance of
√
m(ψ̂ − ψ) is then given by A(ψ̂)−1B(ψ̂)[A(ψ̂)−1]′.

The solution to the estimating equations (3.3) and (3.4) can be obtained using

Fisher scoring. If ψ̂(t−1) denotes the estimate of ψ at the (t − 1)st iteration, then

the iterations take the form

ψ̂(t) = ψ̂(t−1) +
(
mA(ψ̂(t−1))

)−1

U(ψ̂(t−1))

and iterations proceed until the difference between successive estimates decreases

to a level below a specified tolerance.

The described procedure is robust to misspecification of the dependence struc-

ture in the sense that only F(s|Xij; θ) need be correct to obtain consistent estima-

tors for θ since the estimating equations for θ and ψ are constructed separately.

Also note that since the top-right block of A is 0, the variance of θ is not affected

by the choice of Wi, hence the rationale for using a simple diagonal matrix for Wi,

instead of the optimal choice, cov(Zi|Xi) (McCullagh and Nelder 1989).

As an alternative approach, a joint estimating equation (GEE2) can be con-

structed as suggested by Prentice (1988), Zhao and Prentice (1990) and Liang

et al. (1992). This can improve efficiency by exploiting information about the pa-

rameters of the marginal distribution in the second moments, but requires correct

specification of the association structure in order to obtain consistent estimates of

ψ. The GEE2 equations are obtained by setting the estimating functions

Ū(ψ) =
m∑
i=1

(
∂(p′i, η

′
i)
′

∂ψ′

)′(
Vi Hi

H ′
i Wi

)−1(
Yi − pi(θ)

Zi − ηi(ψ)

)
(3.5)

=
m∑
i=1

(
∂pi/∂θ

′ ∂pi/∂κ

∂ηi/∂θ
′ ∂ηi/∂κ

)′(
Vi Hi

H ′
i Wi

)−1(
Yi − pi(θ)

Zi − ηi(ψ)

)

equal to zero, where ∂pi/∂κ = 0 and Hi = cov(Yi, Z
′
i|Xi). Obtaining the solutions

to the GEE2 equations (3.5) is computationally more intensive than solving (3.3)

and (3.4) since the (ni + ri) × (ni + ri) covariance matrix (the second matrix in

(3.5)) must be inverted.
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If Ūi(ψ) =
∑m

i=1 Ūi(ψ), then let ψ̄ denote the solution. Then
√
m(ψ̄ − ψ) has

asymptotic variance Ā−1(ψ)B̄(ψ)[Ā−1(ψ)]−1, where Ā(ψ) = E(∂Ūi(ψ)/∂ψ) and

B̄(ψ) = E(Ūi(ψ)Ū ′
i(ψ)) which are the limiting functions (in probability) of

Ā(ψ) =
1

m

m∑
i=1

(
∂pi

∂θ′
∂pi

∂κ
∂ηi

∂θ′
∂ηi

∂κ

)′(
Vi Hi

H ′
i Wi

)−1(
∂pi

∂θ′
∂pi

∂κ
∂ηi

∂θ′
∂ηi

∂κ

)

and

B̄(ψ) =
1

m

m∑
i=1

Ūi(ψ)Ū ′
i(ψ)

Estimates of Ā(ψ) and B̄(ψ) are given by inserting ψ̄ into these expressions, and

an estimate of var(
√
m(ψ̄ − ψ)) is Ā−1(ψ̄)B̄(ψ̄){Ā−1(ψ̄)}′.

3.3.2 Relative Efficiency of GEE1 vs. GEE2

It is known that the working independence and GEE1 methods are not fully effi-

cient. Liang and Zeger (1986), Liang et al. (1992) and Carey et al. (1993) have

shown that for estimation of parameters other than the association parameters,

GEE1 methods are nearly as efficient as GEE2 methods, and GEE2 methods are

nearly fully efficient. A study of whether or not this holds for the case of clustered

current status data with a Weibull baseline hazard is considered. In the GEE1 case,

var(
√
m(ψ̂ − ψ)) = A−1(ψ)B(ψ){A−1(ψ)}′, where

A(ψ) = E

{(
D′
iV

−1
i Di 0

G′
iW

−1
i Qi G′

iW
−1
i Gi

)}

and

B(ψ) = E

{(
D′
iV

−1
i Di D′

iV
−1
i HiW

−1
i Gi

G′
iW

−1
i H ′

i V
−1
i Di G′

iW
−1
i Gi

)}
where, unlike the usual case of clustered binary data, here the expectation is taken

with respect to both the covariate distribution and the inspection time distribution.

We letG(Cij|Xij) = G(Cij) denote the distribution function for the inspection times

and suppose it has mean µ and variance σ2.

In the case of GEE2, var(
√
m(ψ̄ − ψ)) = Ā−1(ψ)B̄(ψ̄){Ā−1(ψ)}′ where

Ā(ψ) = E


(

∂pi

∂θ′
∂pi

∂κ
∂ηi

∂θ′
∂ηi

∂κ

)′(
Vi Hi

H ′
i Wi

)−1(
∂pi

∂θ′
∂pi

∂κ
∂ηi

∂θ′
∂ηi

∂κ

)
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and

B̄(ψ̄) = E


(

∂pi

∂θ′
∂pi

∂κ
∂ηi

∂θ′
∂ηi

∂κ

)′(
Vi Hi

H ′
i Wi

)−1(
∂pi

∂θ′
∂pi

∂κ
∂ηi

∂θ′
∂ηi

∂κ

) .

For the asymptotic variance of GEE2 methods we require the entries of Wi and

Hi. Let pi(j, k, h, l) denote the elements of pi with subscripts among the unique

elements of (j, k, h, l). Then entries of Wi are of the form H(pi(j, k, h, l);φ) −
H(pi(j, k);φ)H(pi(h, l);φ) for j 6= k and h 6= l, and entries of Hi = cov(Yi, Zi|Xi)

are given by H(pi(j, h, l);φ)− pijH(pi(h, l);φ) for h 6= l.

The asymptotic relative efficiencies can be evaluated for given inspection time

and covariate distributions by evaluating the matrices A(ψ), B(ψ), Ā(ψ) and B̄(ψ).

To evaluate the requisite expectations and study this further, we make the following

distributional assumptions. Suppose subjects have their assessments in the interval

(0, τ ]. Let the underlying marginal distribution of the time be Weibull with shape

parameter γ and rate parameter λ. For a given γ, λ is chosen such that P (S >

τ) = p. We assume a Clayton copula (3.1) with association parameter φ giving

a joint distribution as in (3.2). If we let C∗ be gamma distributed with mean µ

and variance σ2, we take the inspection time to be C = min(C∗, τ). For given

σ2, γ and p, µ is chosen such that the probability an individual tests positive is

P (T < C) = ρ. In the two-sample case, the covariate Xij is generated as a binary

random variable with P (Xij = 1) = 0.5. The parameters p and ρ are chosen such

that P (T > τ |x = 0) = p and P (T < C|x = 0) = ρ.

The asymptotic relative efficiencies are obtained by evaluating the expectations

using Monte Carlo methods based on 100,000 Monte Carlo samples. The relative

efficiencies of working independence and GEE1 estimators versus GEE2 estimators

are presented in Table 3.1 for a variety of parameter configurations. Specifically,

we set ρ = 0.4, 0.6, β = log 0.8, 0, γ = 1, 1.2, σ2 = 0.75, 1, p = 0.05 and τ = 1.

The association parameter was chosen to give Kendall’s τ of 0.2 and 0.6, leading

to values of φ of 0.5 and 3 respectively.

The results suggest that the estimates of the parameters of the marginal distri-

bution are quite efficiently estimated under working independence assumptions or

GEE1 when the association is weak, but there can be substantial losses in efficiency

when the association within clusters is stronger (e.g. φ = 3.0); in practise such large

values are unlikely to be realized but we explore them here to assess the rate of loss

of information. For any degree of within cluster association, the larger the cluster

sizes the greater the efficiency loss with WI or GEE1 analyses. The greatest loss in
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efficiency with GEE1 analysis is seen for the association parameter κ, where even

for relatively low degrees of association the loss of efficiency can be as great as 74%.

3.3.3 Robustness of GEE1 and GEE2 to Copula Misspeci-

fication

While there can be efficiency gains, GEE2 methods may not provide consistent

estimates of the parameters if the association structure is misspecified. This bias

can be investigated by examining the expectation of equation (3.5) given the un-

derlying correct model following White (1982); this approach has been used to

investigate misspecified semiparametric models in Rotnitzky and Wypij (1994) and

Cook et al. (2004). For this analysis, we assume the true association structure is

governed by a Gumbel copula (Joe 1997), an Archimedean copula with generator

Φ(v) = (− log v)φ, but adopt the Clayton copula for the specification of the mo-

ments in the estimating equations. When taking the expectation of (3.5), note that

E[Yi|Xi] = pi(θ) even under this misspecification since the mean structure is un-

changed. However, E[Zi|Xi] is affected, and this can be obtained from the Gumbel

copula by evaluating

E[Zij|Xi, Ci] = P (Tij1 ≤ Cij1 , Tij2 ≤ Cij2|Xi)

= exp
[
−
{
(− log pij1(θ))

φ + (− log pij2(θ))
φ
}1/φ

]
Again, Monte Carlo methods can be used to evaluate the expected estimating

equations, and find the limit to which ψ̂ converges. Table 3.2 contains the results

of these calculations where we find zero bias for the parameters of the marginal

distributions for GEE1 and negligible biases for those from GEE2. The influence of

the misspecification of the higher moments is seen to be greatest for larger cluster

sizes and again stronger associations. The biases in the estimates of Kendall’s tau

are considerable under both GEE1 and GEE2.
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Table 3.1: Asymptotic relative efficiencies of estimators under working indepen-

dence and GEE1 relative to GEE2.

Working Independence GEE1

α σ2 φ n λ̂ α̂ β̂ λ̂ α̂ β̂ κ̂

1.0 0.75 0.5 2 0.990 0.982 0.984 0.999 0.996 0.998 0.418

1.0 0.75 0.5 5 0.972 0.948 0.952 0.996 0.991 0.993 0.348

1.0 0.75 0.5 10 0.958 0.913 0.922 0.994 0.990 0.987 0.274

1.0 0.75 3.0 2 0.934 0.930 0.884 0.997 0.994 0.992 0.108

1.0 0.75 3.0 5 0.870 0.848 0.722 0.991 0.988 0.977 0.083

1.0 0.75 3.0 10 0.863 0.807 0.622 0.985 0.989 0.962 0.076

1.0 1.00 0.5 2 0.990 0.983 0.985 0.999 0.996 0.998 0.410

1.0 1.00 0.5 5 0.973 0.948 0.955 0.997 0.991 0.993 0.336

1.0 1.00 0.5 10 0.958 0.910 0.927 0.995 0.990 0.988 0.262

1.0 1.00 3.0 2 0.937 0.933 0.893 0.997 0.995 0.993 0.105

1.0 1.00 3.0 5 0.874 0.848 0.736 0.991 0.989 0.978 0.081

1.0 1.00 3.0 10 0.864 0.803 0.635 0.986 0.989 0.964 0.074

1.2 0.75 0.5 2 0.990 0.983 0.985 0.999 0.996 0.998 0.414

1.2 0.75 0.5 5 0.972 0.950 0.954 0.997 0.991 0.993 0.342

1.2 0.75 0.5 10 0.959 0.919 0.926 0.994 0.991 0.988 0.276

1.2 0.75 3.0 2 0.936 0.933 0.891 0.997 0.995 0.993 0.105

1.2 0.75 3.0 5 0.872 0.853 0.732 0.991 0.989 0.978 0.081

1.2 0.75 3.0 10 0.864 0.816 0.633 0.986 0.989 0.963 0.074

1.2 1.00 0.5 2 0.991 0.984 0.986 0.999 0.997 0.998 0.401

1.2 1.00 0.5 5 0.973 0.951 0.957 0.997 0.992 0.994 0.332

1.2 1.00 0.5 10 0.959 0.917 0.930 0.995 0.991 0.989 0.266

1.2 1.00 3.0 2 0.940 0.935 0.899 0.997 0.995 0.993 0.103

1.2 1.00 3.0 5 0.875 0.853 0.745 0.992 0.989 0.979 0.080

1.2 1.00 3.0 10 0.865 0.813 0.647 0.987 0.989 0.965 0.072
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3.3.4 Computational Notes for the Clayton Copula

Use of the GEE methods require derivatives of the copula function in order to obtain

the matrices Gi and Qi. For the Clayton copula, elements of Gi are obtained from

∂H(pij, pik;φ)

∂ψ
=
∂H(pij, pik;φ)

∂φ

∂φ

∂ψ

= ηil

{
1

φ2
log(p−φij + p−φik − 1)

+
1

φ

1

(p−φij + p−φik − 1)

(
p−φij log pij + p−φik log pik

)}
φ

= ηil

{
− log ηil + ηφil

(
p−φij log pij + p−φik log pik

)}
where ηil = H(pij, pik;φ). Elements of Qi can be obtained by noting that

∂H(pij, pik;φ)

∂θh
= −1

φ
(p−φij + p−φik − 1)−1/φ−1

{
−φp−φ−1

ij

∂pij
∂θh

− φp−φ−1
ik

∂pik
∂θh

}
= η1+φ

il

{
p−φ−1
ij

∂pij
∂θh

+ p−φ−1
ik

∂pik
∂θh

}
.

Some computational difficulties can arise when φ becomes either too small or

too large. Computation of ηi, Gi and Qi become problematic. A way around this

is to replace those computations with the corresponding limit as φ goes to zero or

infinity as required.

Consider first when φ goes to zero. For ηil, it is convenient to work with log ηil,

since we obtain a 0/0 which can be evaluated using l’Hôpital’s rule.

lim
φ→0

log ηil = lim
φ→0

−1

φ
log(p−φij + p−φik − 1)

= lim
φ→0

p−φij log pij + p−φik log pik

p−φij + p−φik − 1

= log pij + log pik

hence limφ→0 ηil = pijpik. We also have that

lim
φ→0

∂ηil
∂ψ

= lim
φ→0

ηil

{
− log ηil + ηφil

(
p−φij log pij + p−φik log pik

)}
= 0

As for the elements of Qi,

lim
φ→0

∂ηil
∂θh

=
∂pij
∂θh

pik + pij
∂pik
∂θh
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When φ tends to infinity, the limit of ηil can be obtained by noting that p−φij +

p−φik − 1 is dominated by min(pij, pik)
−φ and hence limφ→∞ ηil = min(pij, pik). Simi-

larly for Gi, p
−φ
ij log pij+p

−φ
ik log pik is dominated by min(pij, pik)

−φ log(min(pij, pik))

leading to limφ→∞Gi = 0. The elements of Qi are obtained from limφ→∞ ∂ηil/∂θh =

∂pij/∂θhI(pij ≤ pik) + ∂pik/∂θhI(pij > pik).

3.4 Simulation Studies

3.4.1 Simulating Clustered Current Status Data via Copu-

las

Consider the general family of Archimedean copulas,

Hn(u) = Φ−1(Φ(u1) + · · ·+ Φ(un))

where Φ(v) is known as the generator. The Clayton copula is obtained by using

the generator Φ(v) = v−φ − 1. Hence, Φ−1(v) = (v + 1)−1/φ and

Hn(u;φ) = (u−φ1 + · · ·+ u−φn − n+ 1)−1/φ.

With a two-dimensional Clayton copula, H2(u;φ) = (u−φ1 + u−φ2 − 1)−1/φ. Since

U1 has a uniform marginal distribution, the distribution of U2 given U1 = u1 is

∂H/∂u1, i.e.

P (U2 ≤ u2|U1 = u1) = (u−φ1 + u−φ2 − 1)−1/φ−1u−φ−1
1 .

The pair (u1, u2) can be generated as follows. Generate variables u1 and z as

independent uniform random variables over (0, 1]. The variable u2 can be obtained

by solving P (U2 ≤ u2|U1 = u1) = z for u2, i.e.

u2 =
[(
z−φ/(φ+1) − 1

)
u−φ1 + 1

]−1/φ

.

In higher dimensions, to obtain the distribution of Un given the values of

U1, . . . , Un−1, Hn must be differentiated with respect to u1, . . . , un−1. The joint den-

sity of u1, . . . , un−1 can be found by noting that Hn−1(u1, . . . , un−1;φ) gives the joint

distribution of U1, . . . , Un−1, so differentiating Hn−1 with respect to u1, . . . , un−1

gives the required joint density. The distribution of Un given the previous values

U1, . . . , Un−1 is obtained as

P (Un ≤ un|U1 = u1, . . . , Un−1 = un−1) =
∂n−1Hn

∂u1 · · · ∂un−1

/
∂n−1Hn−1

∂u1 · · · ∂un−1
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and with the Clayton copula,

P (Un ≤ un|U1 = u1, . . . , Un−1 = un−1)

=

(
u−φ1 + · · ·+ u−φn − n+ 1

u−φ1 + · · ·+ u−φn−1 − (n− 1) + 1

)−1/φ−(n−1)

.

The required random variables can be generated recursively as follows. Generate

u1 as a uniform (0, 1] random variable. The kth variable can be obtained by solving(
u−φ1 + · · ·+ u−φk − k + 1

u−φ1 + · · ·+ u−φk−1 − (k − 1) + 1

)−1/φ−(k−1)

= z

for uk where z is another independent uniform (0, 1] random variable. This gives

uk =
[(
z−θ/(1+(k−1)θ) − 1

)
(u−φ1 + · · ·+ u−φk−1 − (k − 1) + 1) + 1

]−1/θ

3.4.2 Assessing the Empirical Performance of Estimators

Here we evaluate the empirical performance of the estimators obtained from the

working independence assumption, and methods based on GEE1. We consider the

same parameter configurations as given in Section 3.3.2 and suppose there are 1000

clusters of size 5. We assume a Clayton copula with association parameter φ to

generate the joint distribution of the event times. The parameter values considered

were ρ = 0.4, 0.6, β = log 0.8, 0, γ = 1, 1.2, φ = 0.5, 3.0, σ2 = 0.75, 1, p = 0.05,

and τ = 1. For a given γ, λ is chosen such that P (T > 1) = p. Analyses were

carried out under the assumption of an exponential and Weibull (correct) marginal

event time distributions, as well as under piecewise constant models with 3 and 5

pieces defined by equally spaced cut-points over (0, 1]. The empirical bias (×102),

empirical standard errors and average estimated standard errors are displayed in

Tables 3.3 and 3.4 for ρ = 0.4 and β = log 0.80. Full simulation results can be

found in the appendix.

The empirical bias of β in Table 3.3 is generally quite small but is largest for

the exponential model when there is a trend (γ = 1.2) in the hazard function; The

piecewise constant specification yields estimators with smaller bias in these settings.

There is close agreement between the empirical (ESE) and average estimated stan-

dard errors (SE) throughout the table, and in settings where the association within

clusters is large, the efficiency gains from the GEE1 analysis are apparent. In Ta-

ble 3.4 we report on estimators of the probabilty Sij > 0.50 for individuals on the
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control treatment, as well as the associated median. The biases here can be more

substantial; typically the bias under the exponential model is greater than that of

the piecewise constant estimates if γ = 1.2, although this is not true for estimation

of the medians. Again, however, the biases under the Weibull model are negligible

and the efficiency gains from GEE1 versus a working independence assumption are

clear, but more modest.

3.5 Applications

3.5.1 Analysis of Seroconversion in Orthopedic Surgery

Patients undergoing orthopedic surgery for hip or knee replacement are at risk

of developing thrombosis and experiencing the associated complications, including

death. As a result, orthopedic patients are routinely administered anticoagulants

such as low molecular weight heparin (LMWH). In a small fraction of patients

LMWH can induce a serological response and the resulting platelet-activating an-

tibodies put patients at risk of thrombocytopenia (Warkentin et al. 2005). We

consider data from recent international orthopedic studies providing data on the

serological response to LMWH (Bauer et al. 2001; Turpie et al. 2002; Lassen et al.

2002; Eriksson et al. 2001), and consider the objective of identifying which factors

are associated with seroconversion.

Patients are antibody negative at the time of surgery, and receive the injection of

LMWH within 4-12 hours of surgery. Following surgery patients recover in hospital

for 3-10 days and provide a blood sample at the time of discharge. These blood

samples are then tested for the presence of antibodies. The time of seroconversion

is therefore subject to type I interval censoring and the resulting data are current

status data. Due to regional variations in race, socioeconomic status, surgical

technique, etc., it we consider centers as defining clusters of individuals and take this

into account in our analyses. There were 340 centers altogether and the numbers

of subjects per center ranged from 1 to 63 (first, second and third quartiles were 3,

7, and 12); the total number of subjects included in this analysis was 3150.

The marginal methods of Section 3.3 were fit to this data based on a working

independence assumption as well as GEE1 and GEE2 under a Clayton copula.

Models were fit with a piecewise exponential baseline hazard function, with break

points at 3.333 and 6.667 days, and with a Weibull baseline hazard. The estimated

cumulative distribution functions giving the probability of seroconversion are given
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Table 3.3: Empirical bias (×102) and empirical (ESE) and average standard errors

(SE) for β̂ (ρ = 0.4 and β = log 0.80).

Working Indep. GEE1

α σ2 φ Model BIAS ESE SE BIAS ESE SE

1.0 0.75 0.5 Exp −0.065 0.052 0.053 −0.138 0.051 0.052
1.0 0.75 0.5 3 Piece −0.105 0.053 0.053 −0.156 0.052 0.052
1.0 0.75 0.5 5 Piece −0.112 0.053 0.053 −0.157 0.052 0.052
1.0 0.75 0.5 Weibull −0.099 0.052 0.053 −0.153 0.052 0.052
1.0 0.75 3.0 Exp −0.018 0.054 0.053 −0.061 0.047 0.045
1.0 0.75 3.0 3 Piece −0.065 0.054 0.053 −0.083 0.047 0.046
1.0 0.75 3.0 5 Piece −0.088 0.054 0.053 −0.123 0.047 0.046
1.0 0.75 3.0 Weibull −0.050 0.054 0.053 −0.090 0.047 0.046
1.0 1.00 0.5 Exp −0.294 0.052 0.053 −0.262 0.051 0.052
1.0 1.00 0.5 3 Piece −0.326 0.052 0.053 −0.295 0.052 0.052
1.0 1.00 0.5 5 Piece −0.353 0.053 0.053 −0.331 0.052 0.052
1.0 1.00 0.5 Weibull −0.323 0.052 0.053 −0.295 0.052 0.052
1.0 1.00 3.0 Exp 0.107 0.055 0.053 0.153 0.048 0.046
1.0 1.00 3.0 3 Piece 0.054 0.055 0.053 0.046 0.048 0.046
1.0 1.00 3.0 5 Piece 0.045 0.055 0.053 0.028 0.048 0.047
1.0 1.00 3.0 Weibull 0.065 0.055 0.053 0.063 0.048 0.047
1.2 0.75 0.5 Exp 2.168 0.047 0.046 2.222 0.047 0.046
1.2 0.75 0.5 3 Piece 0.032 0.052 0.053 0.058 0.051 0.052
1.2 0.75 0.5 5 Piece −0.006 0.052 0.053 −0.010 0.051 0.052
1.2 0.75 0.5 Weibull −0.008 0.052 0.053 −0.012 0.051 0.052
1.2 0.75 3.0 Exp 2.118 0.050 0.047 2.370 0.045 0.043
1.2 0.75 3.0 3 Piece −0.034 0.055 0.053 0.035 0.048 0.046
1.2 0.75 3.0 5 Piece −0.069 0.055 0.053 −0.092 0.048 0.046
1.2 0.75 3.0 Weibull −0.053 0.055 0.053 −0.109 0.048 0.046
1.2 1.00 0.5 Exp 2.172 0.048 0.047 2.210 0.047 0.047
1.2 1.00 0.5 3 Piece 0.012 0.052 0.053 0.044 0.052 0.053
1.2 1.00 0.5 5 Piece −0.020 0.052 0.054 −0.022 0.052 0.053
1.2 1.00 0.5 Weibull −0.015 0.053 0.054 −0.020 0.052 0.053
1.2 1.00 3.0 Exp 1.944 0.048 0.047 2.218 0.044 0.043
1.2 1.00 3.0 3 Piece −0.285 0.053 0.054 −0.085 0.046 0.047
1.2 1.00 3.0 5 Piece −0.311 0.053 0.054 −0.238 0.047 0.047
1.2 1.00 3.0 Weibull −0.315 0.053 0.054 −0.253 0.047 0.047
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Table 3.4: Empirical bias (×102) and empirical standard errors for P (Sij >

0.5|xij = 0) and the median of the baseline distribution.

P (Sij > 0.5|xij = 0) Median

WI GEE1 WI GEE1

α σ2 φ model BIAS ESE BIAS ESE BIAS ESE BIAS ESE

1.0 0.75 0.5 Exp −0.017 0.013 −0.006 0.013 −0.002 0.009 0.005 0.009
1.0 0.75 0.5 3 Piece −0.044 0.013 −0.046 0.013 0.047 0.012 0.047 0.012
1.0 0.75 0.5 5 Piece −0.090 0.018 −0.084 0.018 0.015 0.014 0.011 0.013
1.0 0.75 0.5 Weibull −0.031 0.013 −0.034 0.013 −0.016 0.009 −0.018 0.009
1.0 0.75 3.0 Exp −0.007 0.015 −0.005 0.014 0.007 0.010 0.007 0.010
1.0 0.75 3.0 3 Piece −0.027 0.015 −0.005 0.014 0.113 0.014 0.105 0.013
1.0 0.75 3.0 5 Piece 0.033 0.019 0.053 0.018 0.001 0.016 0.015 0.014
1.0 0.75 3.0 Weibull −0.025 0.015 −0.011 0.014 −0.012 0.010 −0.004 0.010
1.0 1.00 0.5 Exp −0.044 0.013 −0.018 0.013 −0.021 0.009 −0.004 0.009
1.0 1.00 0.5 3 Piece −0.064 0.013 −0.059 0.013 0.011 0.012 0.018 0.012
1.0 1.00 0.5 5 Piece −0.120 0.017 −0.112 0.017 −0.055 0.015 −0.047 0.014
1.0 1.00 0.5 Weibull −0.050 0.013 −0.044 0.013 −0.030 0.009 −0.025 0.009
1.0 1.00 3.0 Exp 0.104 0.015 0.117 0.014 0.084 0.011 0.091 0.010
1.0 1.00 3.0 3 Piece 0.080 0.016 0.099 0.014 0.173 0.015 0.162 0.013
1.0 1.00 3.0 5 Piece 0.069 0.019 0.082 0.018 0.094 0.017 0.110 0.015
1.0 1.00 3.0 Weibull 0.087 0.015 0.108 0.014 0.063 0.010 0.077 0.010
1.2 0.75 0.5 Exp 1.063 0.013 0.728 0.013 1.581 0.010 1.325 0.010
1.2 0.75 0.5 3 Piece 0.381 0.014 0.374 0.014 3.958 0.015 3.948 0.014
1.2 0.75 0.5 5 Piece −0.446 0.016 −0.451 0.016 3.963 0.014 3.967 0.014
1.2 0.75 0.5 Weibull −0.007 0.014 −0.003 0.014 −0.016 0.008 −0.016 0.008
1.2 0.75 3.0 Exp 1.078 0.014 −0.012 0.013 1.595 0.011 0.766 0.010
1.2 0.75 3.0 3 Piece 0.454 0.017 0.458 0.015 4.079 0.017 4.022 0.015
1.2 0.75 3.0 5 Piece −0.441 0.018 −0.384 0.017 4.064 0.017 4.072 0.014
1.2 0.75 3.0 Weibull 0.010 0.015 0.032 0.014 −0.005 0.009 0.009 0.009
1.2 1.00 0.5 Exp 0.837 0.013 0.553 0.013 1.409 0.010 1.192 0.010
1.2 1.00 0.5 3 Piece 0.777 0.016 0.766 0.016 4.051 0.016 4.035 0.016
1.2 1.00 0.5 5 Piece −0.452 0.017 −0.451 0.017 4.141 0.015 4.150 0.015
1.2 1.00 0.5 Weibull 0.006 0.014 0.016 0.014 0.000 0.009 0.002 0.009
1.2 1.00 3.0 Exp 0.779 0.015 −0.210 0.014 1.368 0.011 0.618 0.011
1.2 1.00 3.0 3 Piece 0.686 0.017 0.689 0.016 3.984 0.017 3.918 0.016
1.2 1.00 3.0 5 Piece −0.550 0.019 −0.471 0.018 4.076 0.016 4.081 0.015
1.2 1.00 3.0 Weibull −0.059 0.016 −0.018 0.015 −0.048 0.010 −0.018 0.009
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Table 3.5: Estimates and 95% confidence intervals for proportion testing positive

10 days after surgery in the orthopedic surgery study.

Model Estimate 95% CI

Working Independence 3 Piece 0.043 (0.024, 0.061)

Weibull 0.052 (0.037, 0.074)

GEE 3 Piece 0.043 (0.024, 0.062)

Weibull 0.053 (0.038, 0.074)

GEE2 3 Piece 0.045 (0.026, 0.064)

Weibull 0.055 (0.039, 0.076)

in Figure 3.2 for the three piece and Weibull models under GEE1 and GEE2, along

with the nonparametric estimate of the cumulative distribution function using the

pooled-adjacent violators algorithm (Sun 2006). The estimate based on the working

independence assumption is almost indistinguishable from the GEE1 estimate and

hence is not plotted. Estimates and 95% confidence intervals for the proportion

of patients testing positive 10 days after surgery are shown in Table 3.5. The

parametric estimates agree quite closely with the nonparametric estimates and the

fits from a particular parametric model are quite similar under the two estimation

schemes.

Regression models were considered with covariates sex (male versus female), an

indicator of whether the surgery was for hip or knee replacement, and an indicator

of whether there was an injection prior to surgery (yes versus no). The estimated

regression coefficients are displayed in Table 3.6. Also provided are the estimates

of κ under GEE1 and GEE2 analyses which give corresponding small estimates

of φ (0.01 for both GEE1 analyses and 0.05 for both GEE2 analyses) suggesting

a weak association within centers in the seroconversion times. The confidence

intervals for Kendall’s tau are (0.010,0.053) and (0.010,0.055) for the GEE2 analyses

under piecewise constant and Weibull hazard functions respectively. Despite this

weak association, there is some evidence of increased efficiency from the GEE2

analysis compared to the working independence or GEE1 analyses with slightly

smaller standard errors observed for GEE2 analyses for the sex and type of surgery

covariates.
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Figure 3.2: Proportion of subjects testing positive under a three piece piecewise

constant and Weibull model using GEE and GEE2 in the orthopedic surgery study;

the nonparametric estimate is also plotted.
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3.5.2 Joint Damage at Clinic Entry in Psoriatic Arthritis

Upon first entry to the clinic patients undergo a detailed clinical and radiological

assessment with each of 44 joints of the 64 joint examined and graded according

to the severity of damage using the modified Steinbrocker scale (Rahman et al.

1998). Here we consider joints to be damaged if they have a score of 1 or higher,

corresponding to the presence of soft tissue swelling, surface erosions, joint space

narrowing, disorganization or need for surgery. Due to genetic and environmental

factors, progression rates in joint within the same patient tend to more similar than

progression rates in joints from different patients, and so there is a need to account

for clustering within patients. Interest lies in features of and covariate effects on

the marginal distribution of the time to joint damage in this patient population,

suggesting the use of the methods of Section 3.3. Here we restrict attention to the

joints of the hands to ensure they are a comparable group.

Figure 3.3 displays estimates of the cumulative distribution of the time to dam-

age based on the nonparametric MLE (Sun 2006), and five piece exponential and

Weibull hazards estimated using GEE1 and GEE2; again the five estimates appear

quite compatible. The cut points for the 5 piece model were chosen according to

the quintiles of the time from diagnosis to first clinic visit, and were 1.1, 3.0, 6.5

and 12.1 years. Under the 5 piece model the estimates of Kendall’s tau were 0.236

(95% CI: 0.195, 0.282) and 0.247 (95% CI: 0.204, 0.297) for the GEE1 and GEE2

analyses respectively.

Table 3.8 displays estimates of the parameters in the proportional hazards mod-

els with covariates of interest being sex (male versus female), race (caucasian versus

other), family history of psoriasis (yes versus no), family history of psoriatic arthri-

tis (yes versus no), and age at diagnosis. GEE2 results are at times quite different.

This is a consequence of the dependence of GEE2 estimates on the correlation struc-

ture and as a result the reliability of the GEE2 estimates is questionable. In this

example, it may be best to rely on the working independence and GEE1 estimates

pending further investigation into the validity of the chosen copula.

3.6 Summary

Here we have considered current status data where the failure times arise in clusters.

This can be viewed as dependent binary data, where the dependence arises due to

the clustering. The association was modelled using a copula which allowed for
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Figure 3.3: Proportion of damaged joints under a 5 piece and Weibull model; the

nonparametric estimate is also plotted.
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Table 3.7: Estimates and 95% confidence intervals for proportion of damaged joints

5 years after diagnosis based on the University of Toronto Psoriatic Arthritis Clinic

data.

Model Est 95% CI

Working Independence 5 Piece 0.034 (0.021,0.047)

Weibull 0.040 (0.033,0.049)

GEE 5 Piece 0.034 (0.021,0.047)

Weibull 0.040 (0.033,0.049)

GEE2 5 Piece 0.048 (0.033,0.062)

Weibull 0.045 (0.037,0.054)

parameterizing the association between the event times themselves. Covariates

effects were included using a proportional hazards form, although this work carries

over to the accelerated failure time model as well by assuming

F(s, |xij; θ) = F0

(
s− α− x′ijβ

σ

)
where F0(s) is a specified survivor function, and θ = (α, σ, β′)′. The derivatives of

pij may be obtained and the methods applied in the same manner as described for

the proportional hazards setting. In much of the work, the Clayton copula was used,

however this copula need not be used in every setting. Depending on the nature

of the association, it may be preferable to choose one copula over another. Both

GEE1 and GEE2 approaches were considered. A study of the asymptotic relative

efficiency suggested the GEE1 approach has high efficiency relative to the GEE2

approach for estimating marginal parameters, but may be inefficient for estimating

the association parameter. The GEE2 approach may lead to biased estimates as a

result of mis-specifying the dependence structure. This is illustrated in the psoriatic

arthritis example. These results may be found in Tolusso and Cook (2008c).

First order GEE’s can often be used to obtain robust estimators. In this particu-

lar case, the GEE1 approach leads to robust estimation of the marginal parameters

regardless of the association structure. Consistent estimates are obtained as a re-

sult of the separate construction of the estimating equations. Variance estimates

that remain valid regardless of the underlying association can be obtained using

the usual sandwich forms.

91



T
ab

le
3.

8:
E

st
im

at
es

of
re

gr
es

si
on

co
effi

ci
en

ts
ob

ta
in

ed
fr

om
fi
tt

in
g

th
e

fi
ve

p
ie

ce
p
ie

ce
w

is
e

co
n
st

an
t

an
d

W
ei

b
u
ll

re
gr

es
si

on

m
o
d
el

s
to

d
at

a
fr

om
th

e
U

n
iv

er
si

ty
of

T
or

on
to

P
so

ri
at

ic
A

rt
h
ri
ti

s
C

li
n
ic

.

5
P

ie
ce

W
ei

b
u
ll

E
st

S
E

p
E

st
S
E

p

M
al

e
v
s

F
em

al
e

W
I

0.
28

4
0.

19
1

0.
13

6
0.

30
4

0.
19

3
0.

11
6

G
E

E
0.

27
5

0.
19

1
0.

15
1

0.
29

2
0.

19
4

0.
13

2

G
E

E
2

0.
08

9
0.

15
6

0.
56

8
0.

09
6

0.
15

8
0.

54
2

C
au

ca
si

an
v
s

O
th

er
W

I
0.

38
0

0.
37

4
0.

31
0

0.
35

6
0.

36
3

0.
32

7

G
E

E
0.

38
5

0.
37

4
0.

30
5

0.
35

9
0.

36
4

0.
32

3

G
E

E
2

−
0.

00
1

0.
37

2
0.

99
8

−
0.

00
3

0.
37

1
0.

99
3

F
am

il
y

H
is

to
ry

of
P

so
ri

as
is

W
I

−
0.

10
9

0.
23

4
0.

64
2

−
0.

11
7

0.
23

4
0.

61
8

G
E

E
−

0.
10

8
0.

23
5

0.
64

6
−

0.
11

6
0.

23
5

0.
62

0

G
E

E
2

−
0.

33
8

0.
18

3
0.

06
6

−
0.

33
6

0.
18

3
0.

06
6

F
am

il
y

H
is

to
ry

of
P

sA
W

I
0.

14
8

0.
33

8
0.

66
1

0.
16

4
0.

33
6

0.
62

4

G
E

E
0.

14
8

0.
33

9
0.

66
2

0.
16

7
0.

33
6

0.
61

9

G
E

E
2

0.
29

0
0.

25
2

0.
24

8
0.

29
2

0.
25

1
0.

24
4

30
<

A
ge
≤

40
v
s

A
ge
≤

30
W

I
0.

20
2

0.
26

7
0.

45
0

0.
25

6
0.

25
6

0.
31

7

G
E

E
0.

20
4

0.
26

8
0.

44
7

0.
26

1
0.

25
6

0.
30

8

G
E

E
2

0.
32

5
0.

21
3

0.
12

6
0.

33
4

0.
20

7
0.

10
6

A
ge
>

40
v
s

A
ge
≤

30
W

I
0.

67
2

0.
24

6
0.

00
6

0.
73

0
0.

23
1

0.
00

2

G
E

E
0.

66
0

0.
24

7
0.

00
8

0.
72

1
0.

23
2

0.
00

2

G
E

E
2

0.
82

6
0.

20
6

<
0.

00
1

0.
84

5
0.

19
9

<
0.

00
1

92



Chapter 4

Multistate Models With Interval

Censored Data: Applications

4.1 Introduction and Overview

When using multistate models to characterize the course of a disease process, it is

often of interest to know the probability of being in a particular state. This may

be obtained from state occupancy probability or prevalence functions. We consider

here robust estimation of the state occupancy probability functions from multistate

models based on interval-censored failure time data.

There are two approaches that will be considered. The first is to follow the idea

of Pepe et al. (1991) where it is noted that in the context of a progressive model

such as the one in Figure 2.1, P (Z(t) = k) = P (Tk+1 > t)−P (Tk > t), where Tk is

the time to entry of state k. An estimate of the prevalence function can therefore

be obtained by taking the difference of two estimates of survival functions, and

the problem is reduced to estimating a survivor function under interval censoring.

The survivor function estimators under consideration could be i) nonparametric

MLE due to Turnbull (1976), ii) piecewise constant hazard due to Lindsey and

Ryan (1998) and iii) local likelihood as described in Betensky et al. (1999). Since

the NPMLE of a survivor function under interval censoring can be undefined (see

Section 1.2.2), it is of primary interest to see how models with piecewise constant

hazards and the local likelihood methods perform. Care must also be taken to

ensure that the resulting prevalence function estimate is non-negative.

The second approach considered is to assume a Markov model holds. Estimation

then proceeds by assuming time homogeneous, or piecewise constant transition
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intensities. Again this is because the nonparametric estimates resulting from a

Markov assumption are not always defined everywhere (Frydman 1992, 1995).

This work is partially motivated by a desire to obtain robust estimates of state

occupancy probabilities to characterize the proportion of patients diagnosed with

psoriatic arthritis in a particular disease state. Specifically we wish to examine the

proportion of patients who develop back disease following entry to the University of

Toronto Psoriatic Arthritis Clinic. Given the clinical motivation for these analyses,

we also consider fitting multiplicative intensity based Markov models to identify

and characterize the effect of important risk factors.

4.2 “Pepe” Estimation of Prevalence Functions

With right-censored data, Pepe et al. (1991) estimated state occupancy probabilities

based on estimates of the marginal distributions of the entry times. For example,

in the progressive three-state model of Figure 1.4, if we define T1 and T2 to be the

time of entry to states 1 and 2 respectively, then P (Z(t) = 0) = P (T1 > t) and

P (Z(t) = 2) = P (T2 ≤ t), hence P (Z(t) = 1) = 1 − P (T1 > t) − P (T2 ≤ t), or

P (Z(t) = 1) = P (T1 ≤ t) − P (T2 ≤ t). This also could be obtained intuitively by

thinking of the probability of being in state 1 as being the probability of having left

state 0 (P (T1 ≤ t)) minus the probability of having entered state 2 (P (T2 ≤ t)).

This suggests estimates of the prevalence functions can be obtained by plugging in

the appropriate estimates of the distribution functions for T1 and T2. This approach

may be extended to progressive models with an arbitrary number of states.

For other models, such as the illness-death model of Figure 1.5, this approach

can still be applied by carefully choosing which marginal distribution functions are

estimated. In the illness-death model, define S0 to be the time spent in state 0,

and T2 to be the time of entry to state 2. Then P (Z(t) = 0) = P (S0 > t) and

P (Z(t) = 2) = P (T2 ≤ t), hence P (Z(t) = 1) = P (S0 ≤ t) − P (T2 ≤ t), or

intuitively, the probability of having left state 0 minus the probability of having

entered state 2. This is very similar to the progressive three-state model, with the

difference being that in the progressive three-state model the time spent in state 0

is the same as the time of entry to state 1, while in the illness-death model they

are not. Other models may be handled in a similar manner.

The marginal distribution functions may be estimated in a variety of ways. We

will consider the use of the methods of Section 1.2.2, namely the nonparametric

estimate of Turnbull (1976), piecewise constant hazards (Lindsey and Ryan 1998),
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and local likelihood (Betensky et al. 1999; Braun et al. 2005), and refer to the

resulting methods as “Pepe-Turnbull”, “Pepe-PW”, and “Pepe-Local-Likelihood”,

respectively. The marginal distribution functions must be estimated taking care to

ensure the order restrictions are satisfied and hence avoiding negative prevalence

function estimates, however this situation has rarely been found to occur, and did

not occur in the applications to follow. Nevertheless, Section 4.2.1 considers this

problem for the piecewise constant model.

4.2.1 Estimation under Piecewise Constant Models with

Order Restrictions

Nonparametric estimation of a single survival curve under interval censoring pro-

duces an estimator that is not defined everywhere, so here estimation is considered

using marginal piecewise constant hazard models. Consider now estimation of two

ordered survival curves in the presence of interval censoring. Let S1(t) and S2(t)

be survival functions satisfying S1(t) ≤ S2(t) for all t. Suppose we have interval-

censored observations from each distribution. The two survival functions can be

estimated using a piecewise constant model via the EM algorithm.

Let `C = `C1 + `C2 where `Ch is the complete data log-likelihood as in Sec-

tion 1.2.2 for estimation of Sh(t) under piecewise constant hazards, h = 1, 2. This

amounts to assuming the two distributions are independent. In reality this assump-

tion may not be correct, but it is used for the purposes of robustness. Let a1, . . . , am

be the common cut-points for both survival functions. Let λh = (λh1, . . . , λhm) be

the vector of rates where λhj denotes the rate over (aj−1, aj] for Sh(t), h = 1, 2,

j = 1, . . . ,m.

At the E-step of the rth iteration, we require

E(`C |data, λ̂(r−1)) = E(`C1|data, λ̂
(r−1)
1 ) + E(`C2|data, λ̂

(r−1)
2 ).

At the M-step, the maximization must ensure the constraints are satisfied. The

nonparametric version of this problem has been discussed in the right-censored case

by Dykstra (1982) and Præstgaard and Huang (1996). If we let dhj and rhj be,

respectively, the expected number of deaths and expected total time spent in the

jth interval for distribution h, then the expected log-likelihood for distribution h

can be written as,

E(`Ch|data, λ̂(r−1)) =
m∑
j=1

(dhj log λhj − rhjλhj)
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where all expectations are conditional on the observed data and parameter estimates

at the previous iteration, obtained as in Section 1.2.2.

The problem is now reduced to maximizing E(`C |data, λ̂(r−1)) subject to S1(t) ≤
S2(t). In fact, the restriction can be simplified since under a piecewise constant

model it is equivalent to

m∑
j=1

λ2jwj(al) ≤
m∑
j=1

λ1jwj(al) for all l = 1, . . . ,m

where again, wj(t) =
∫ aj

aj−1
I(u ≤ t) du. This is now a nonlinear optimization

problem with linear inequality constraints. In order to solve such a problem, the

solution must satisfy the Kuhn-Tucker (KT) conditions (Chiang 1984, Chap. 21).

The KT conditions essentially are a set of equations and inequalities relating to the

derivatives of the Lagrangian of the objective function.

In this case, the objective function is

` = `1 + `2 +
m∑
l=1

αl

[
m∑
j=1

λ1jwj(al)−
m∑
j=1

λ2jwj(al)

]

where for ease of notation, `h = E(`Ch|data, λ̂(r−1)), h = 1, 2, and α1, . . . , αm are

Lagrange multipliers. The derivatives of ` are

∂`

∂λ1j

=
d1j

λ1j

− r1j + (aj − aj−1)
m∑
l=j

αl

∂`

∂λ2j

=
d2j

λ2j

− r2j − (aj − aj−1)
m∑
l=j

αl

∂`

∂αl
=

l∑
j=1

λ1j(aj − aj−1)−
l∑

j=1

λ2j(aj − aj−1)

so the resulting KT conditions are

∂`

∂λ1j

≤ 0 λ1j ≥ 0 λ1j
∂`

∂λ1j

= 0

∂`

∂λ2j

≤ 0 λ2j ≥ 0 λ2j
∂`

∂λ2j

= 0

∂`

∂αl
≥ 0 αl ≥ 0 αl

∂`

∂αl
= 0

From the KT conditions, it is clear that when d1j > 0,

λ̂1j =
d1j

r1j − (aj − aj−1)
∑m

l=j αl
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and if d1j = 0 then λ̂1j must be 0 so the above form for λ̂1j holds for d1j ≥ 0.

Similarly, it can be shown that

λ̂2j =
d2j

r2j + (aj − aj−1)
∑m

l=j αl

To solve the problem, the values of the Lagrange multipliers must be determined.

The algorithm used by Dykstra (1982) for the nonparametric case can be modi-

fied for use in this case. It is useful to reparameterize the Lagrange multipliers and

solve for γj =
∑m

l=j αl. The modified algorithm is as follows.

1. Find the index j′ such that γj′ is the largest solution to

m∑
j=1

d1j[wj(aj′)− wj(0)]

r1j − (aj − aj−1)γj′
=

m∑
j=1

d2j[wj(aj′)− wj(0)]

r2j + (aj − aj−1)γj′

If there is more than one index satisfying the above condition then select j′

so that aj′ is largest.

2. Set γ1 = γ2 = · · · = γj′

3. Find the index j′′ such that γj′′ is the largest solution to

m∑
j=1

d1j[wj(aj′′)− wj(aj′)]

r1j − (aj − aj−1)γj′′
=

m∑
j=1

d2j[wj(aj′′)− wj(aj′)]

r2j + (aj − aj−1)γj′′

If there is more than one index satisfying the above condition then select j′′

so that aj′′ is largest.

4. Set γj′+1 = γj′+2 = · · · = γj′′

5. Continue in a similar manner. If at some point no positive γ exists, then the

remaining γ terms are set to 0.

It suffices to show that the third row of the KT conditions are satisfied. When

j′ is found, it implies that ∂`/∂αj′ = 0, αj′ 6= 0 and α1 = α2 = · · · = αj′−1 = 0.

Similar conclusions can be reached regarding the remaining indices.

The only piece of the KT conditions not yet satisfied is ∂`/∂αl ≥ 0. Define

gj(γ) to be ∂`/∂αj evaluated at γ1 = γ2 = · · · = γj = γ. Suppose there exists a j∗

such that aj∗ < aj′ and gj∗(γj′) < 0. Then since gj(γ) increases with γ it implies

there exists γj∗ > γj′ such that gj∗(γj∗) = 0. But if γj′ is found using the algorithm,
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PSORIATIC  ARTHRITIS

DEATH

PSORIATIC  ARTHRITIS

AND  SPONDYLITIS

Figure 4.1: Three state diagram for onset of spondylitis in patients with psoriatic

arthritis.

then no such γj∗ can exist and we arrive at a contradiction, hence the last part of

the KT conditions is satisfied.

Note that if the survival functions are estimated without imposing the con-

straints and the resulting survival curves satisfy the constraints, this is equivalent

to αl = 0 for all l. Hence, the above algorithm need only be used if the estimates

of S1(t) and S2(t) assuming independence do not satisfy the KT conditions.

4.3 Applications

4.3.1 Prevalence and Regression Analysis for Spondylitis

in PsA

Figure 4.1 is the three state diagram we fit to characterize the onset of back in-

volvement in patients with psoriatic arthritis. We label the psoriatic arthritis state

(with no spondylitis) as state 0, psoriatic arthritis with spondylitis state as state 1

and the death state as state 2. Figure 4.2 contains timeline diagrams which indi-

cate the state occupied by a selection of individuals over time. The length of the

line represents the time from clinic entry to last contact or death. The solid lines

correspond to periods in which patients were in state 0 and the dashed lines cor-

respond to them being in state 1. The solid circles at the end of the lines indicate

the times of deaths and the open circles indicate that the patient’s survival time

is right-censored. The breaks in the lines correspond to periods in which the state
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occupied is unknown. The left endpoint of such intervals is the last assessment at

which there was no back involvement and the right endpoint is the time of the first

assessment that spondylitis was detected.

The sacroiliac joints are graded on a scale from 0 to 4 with 0 being normal, 1

being equivocal, 2 being abnormal with erosions or sclerosis, 3 being the presence

of more than one of erosions, sclerosis, widening, narrowing or partial ankylosis,

and 4 being total ankylosis. Patients are said to have limitation of movement if

they have a reduced range of chest expansion, back movement, or neck mobility.

There are six definitions of spondylitis based on various combinations of radio-

logical and clinical assessments, which were defined by researchers at the University

of Toronto Psoriatic Arthritis Clinic.

Defintion 1

• Both left and right sacroiliac joints graded 2 or higher, or one sacroiliac joint

graded 3 or higher

Definition 2

• One sacroiliac joint graded 2 or higher

• Pain and stiffness in the neck or back

Definition 3

• Radiologic evidence as in Definition 1

• Pain and stiffness in the neck or back

Definition 4

• Radiologic evidence as in Definition 1

• Pain and stiffness in the neck or back

• Limitation of movement

Definition 5

• Radiologic evidence as in Definition 1

99



0 5 10 15 20 25 30 35

YEARS SINCE CLINIC ENTRY

P
A

T
IE

N
T

 ID

PSORIATIC ARTHRITIS
PSA AND SPONDYLITIS

Figure 4.2: Timeline diagrams for sample of patients indicating the states occupied

and censoring intervals for onset of spondylitis.
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• Pain and stiffness in the neck or back, or limitation of movement

Definition 6

• One sacroiliac joint graded 1 or higher

• Pain and stiffness in the neck or back, or limitation of movement

The definitions provide varying amounts of inclusivity, with Definition 4 being

the least inclusive, meaning that patients who meet Definition 4 will meet all other

definitions as well. Here we consider the results from analyses using two of the six

definitions for illustration.

We aim to examine the proportion of patients that develop spondylitis over

time, the effect of spondylitis on mortality, and risk factors for spondylitis based

on the definitions above. The data are comprised of the interval and right-censored

transition times as in Figure 4.2, and baseline characteristics.

Spondylitis Definition 3: Prevalence and Risk Factors

Two hundred and fifty subjects had complete covariate information and 32 patients

had spondylitis at clinic entry. Eleven patients died (2 with path 0 → 1 → 2, 8 with

path 0 → 2, and 1 with path 1 → 2). The followup in the clinic ranged from 0.50

years to 31.0 years, and the mean followup was 8.3 years (S.D. 6.9) with quartiles

2.7, 6.0, and 11.5 years. The covariates used to predict spondylitis and mortality

are displayed in Tables 4.1 and 4.2 along with summaries of their distributions.

Figure 4.3 shows three prevalence estimates for state 1, representing the propor-

tion of psoriatic arthritis patients alive with spondylitis, using the Pepe-Turnbull,

Pepe-Local-Likelihood and Pepe-Piecewise methods, along with the state occu-

pancy probabilities obtained from fitting a time-homogeneous Markov model. The

local likelihood methods were employed with a nearest neighbours bandwidth of

0.1, Epanechnikov kernel K(u) = 0.75(1−u2), |u| < 1, locally constant approxima-

tion, and 400 grid points. The piecewise constant methods were fit with six equally

spaced pieces with cut-points at 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 years. Bootstrap

standard errors were obtained by generating 500 resampled datasets, and the 95%

confidence intervals are given by the 0.025 and 0.975 quantiles. The prevalence for

state 1 need not be a monotonic function since subjects must develop spondylitis to

enter state 1, but leave state 1 when they die. The four estimators track each other

quite well however, and we conclude that after 10 years of followup we can expect
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Table 4.2: Summaries of the binary covariates used to predict spondylitis in psori-

atic arthritis.

Covariate # Yes %

Male 144 57.6

Caucasian 242 96.8

Family history of psoriasis 98 39.2

Family history of psoriatic arthritis 23 9.2

Dactylitis 97 38.8

Nail involvement 195 78.0

Periostitis 48 19.2

Enthesitis 60 24.0

Spurs 103 41.2

Prior NSAID use 123 49.2

Prior DMARD use 88 35.2

B27 38 15.2

Smoker 54 21.6

Hypertension 30 12.0
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close to 20% of PsA patients to develop spondylitis (LL - EST=0.172, bootstrap

SE=0.037, 95% bootstrap CI 0.119:0.265; PW - EST=0.180, bootstrap SE=0.039,

95% bootstrap CI 0.093:0.247).

For the regression analyses, the R package msm (Jackson 2007) was used to esti-

mate the baseline transition rates and covariate effects. The intensity for the onset

of spondylitis was taken to be λ01(t)e
x′01β01 where λ01(t) is the baseline intensity

while x01 and β01 are the covariate vector and regression coefficient vector respec-

tively. It was assumed that the covariates and regression coefficients for transitions

into state 2 were the same, and the effect of spondylitis on mortality was assumed

to be multiplicative. This leads to the intensity for death without spondylitis as

being λ02(t)e
x′02β02 and the intensity for death with spondylitis as λ02(t)e

x′02β02+γ

where λ02(t) is the baseline intensity for mortality and x02 and β02 are the covariate

and regression coefficient vectors, respectively, for mortality. The γ term is the

multiplicative effect on mortality due to having spondylitis. Table 4.3 displays the

estimates of the regression coefficients for the 0 → 1 transition as well as the coeffi-

cient for transitions to state 2 from univariate analyses. Also listed are the p-values

from a likelihood ratio test of the null hypothesis H0 : β02 = β12. The effects on

mortality of race, periostitis, and enthesitis had large standard errors due to the

fact that only caucasians were observed to die, and no one with periostitis or en-

thesitis was observed to die. Also, only two non-caucasians developed spondylitis,

causing the large standard error for the effect of race on spondylitis.

Data were somewhat sparse and it was difficult obtaining convergence in a full

multivariate model with all prognostic variables. We therefore used a somewhat

ad hoc approach to fitting a multivariate model: the univariate effects which were

significant at the 0.25 level were included in a multivariate model. The model was

then reduced by backwards elimination until the remaining effects were significant

at the 0.05 level. At that point, all other effects were tested for re-entry to the

model (no effects were added at this stage). Estimates of the final model regression

coefficients are shown in Table 4.4.

Only the number of radiologically damaged joints and ESR were associated

with an increased risk of spondylitis in the multivariate analysis. Each additional

radiologically damaged joint increases the risk of spondylitis by 5% (RR=1.05,

95% CI 1.01:1.09) while an increase of 1 mm/h in ESR increases spondylitis risk

by 2% (RR=1.02, 95% CI 1.00:1.03), controlling for other factors. In the mortality

regression models, age and smoking status were associated with increased risk of

death. Specifically, for each additional year of age at presentation there was a

10% increased risk of death (RR=1.10, 95% CI 1.04: 1.17) and smokers had a
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neous Markov estimates of remaining alive and having spondylitis over 15 years

from clinic entry, based on Definition 3; Pepe-Local-Likelihood 95% bootstrap con-

fidence intervals are also plotted.
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roughly five-fold increased risk of death (RR=4.77, 95% CI 1.36: 16.69). The tests

of homogeneity both fail to suggest that the effects of these risk factors differ for

subjects with and without spondylitis. Finally, the effect of spondylitis on the

mortality rate was not significant with γ̂ = 1.126 (RR=3.08, 95% CI 0.66:14.32,

p = 0.15), so there is little evidence that spondylitis affects mortality.

Spondylitis Definition 5: Prevalence and Risk Factors

The same analyses were performed for each definition of spondylitis, but here we

report the results for Definition 5. Based on this definition, 206 subjects had com-

plete covariate information and 43 patients had spondylitis at clinic entry. Eleven

patients died (2 with path 0 → 1 → 2, 6 with path 0 → 2, and 3 with path 1 → 2).

Figure 4.4 shows the Pepe-Turnbull, Pepe-Local-Likelihood, Pepe-Piecewise,

and Markov estimates of the prevalence function for state 1. Again, we conclude

that after 10 years of followup we can expect up to 15% of PsA patients to develop

spondylitis (LL - EST=0.146, bootstrap SE=0.041, 95% bootstrap CI 0.089:0.244;

PW - EST=0.151, bootstrap SE=0.043, 95% bootstrap CI 0.058:0.222).

The regression model was built in the same manner as for the previous defini-

tion of spondylitis. Table 4.5 gives the univariate estimates while the final model

estimates are given in Table 4.6. Again, the effects on mortality of race, periosti-

tis, and enthesitis had large standard errors due to the fact that only caucasians

were observed to die, and no one with periostitis or enthesitis was observed to die.

Based, on definition 5, no non-caucasians developed spondylitis, causing the large

standard error for the effect of race on spondylitis.

Nail involvement, periostitis, number of effused joints, number of radiologically

damaged joints and ESR were associated with increased risk of spondylitis. Those

with nail involvement have 7 times the risk of developing spondylitis (RR=7.07,

95% CI 1.56:32.04) and periostitis leads to almost 6 times the risk (RR=5.67, 95%

CI 2.11:15.27), controlling for other factors. Each effused joint reduces risk by 17%

(RR=0.83, 95% CI 0.73:0.95) while each radiologically damaged joint increases risk

by 11% (RR=1.11, 95% CI 1.05:1.17). An increase of 1 mm/h in ESR leads to a

3% increase in risk (RR=1.03, 95% CI 1.01:1.05).

Factors affecting mortality include age and smoking status. For each additional

year in age at presentation there was a 10% increase in risk of death (RR=1.10,

95% CI 1.03:1.16) while smokers had almost four times the risk of death (RR=3.73,

95% CI 1.07:12.92) compared with non-smokers. Again, the tests of homogeneity
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Figure 4.4: Pepe-Turnbull, Pepe-PW, Pepe-Local-Likelihood, and time homoge-

neous Markov estimates of remaining alive and having spondylitis over 15 years

from clinic entry, based on Definition 5; Pepe-Local-Likelihood 95% bootstrap con-

fidence intervals are also plotted.
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Figure 4.5: Five state diagram for onset of left and right side spondylitis in patients

with psoriatic arthritis.

fail to suggest these effects are different for subjects with and without spondylitis.

The effect of spondylitis on the mortality rate was not significant with γ̂ = 0.772

(RR=2.16, 95% CI 0.57:8.24, p = 0.26). The mortality analysis results in the same

findings regardless of the choice of definition of spondylitis.

4.3.2 Spondylitis Defined by Unilateral Involvement

If interest lies in the onset of spondylitis on a specific side of the body then the

5-state model of Figure 4.5 may be used. Here we define spondylitis as being

present on a given side of the body if the corresponding sacroiliac joint is grade 3

or higher. A time-homogeneous Markov model may be fit where λ0L and λ0R are the

intensities of left-back and right-back involvement respectively among individuals

with no prior back involvement. Let λLR (λRL) denote the transition intensity for

the onset of back involvement on the right (left) side given involvement on the left

(right). Finally, λ0D, λLD, λRD, and λLRD are the transition rates for death among

individuals with no back involvement, left, right, or bilateral back involvement.

The effect of already having left-back involvement on the intensity of right-back

involvement is given by γL under the model λLR = λ0Re
γL , and similarly γR is
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the effect of already having right-back involvement on the intensity of left-back

involvement through λRL = λ0Le
γR . The baseline mortality rate is λ0D, which is

modulated by δ1 when an individual has spondylitis on one side of the body (i.e.

λLD = λRD = λ0De
δ1) and δ2 when both sides are affected (i.e. λLRD = λ0De

δ2).

Robust estimates of the prevalence functions may be obtained as in Section 4.2.

Here, the focus is on the prevalences of unilateral or bilateral spondylitis, so robust

prevalence estimates may be based on the estimates of the distribution functions

of the time spent in the initial state, S0, the time to death, TD, and the time of

bilateral involvement or death, min(TD, TB). Defining state 0 to be the initial state,

state 1 to be left side affected, state 2 to be right side affected, state 3 to be both

sides affected, and state 4 to be death, we have,

P (Z(t) = 0) = P (S0 > t),

P (Z(t) = 1 or Z(t) = 2) = P (S0 ≤ t)− P (min(TD, TB) ≤ t),

P (Z(t) = 3) = P (min(TD, TB) ≤ t)− P (TD ≤ t),

P (Z(t) = 4) = P (TD ≤ t).

Plots of the prevalences of unilateral (either left or right side affected) and

bilateral (both sides affected) spondylitis are given in Figure 4.6. These suggest

that after 10 years, roughly 5% of PsA patients develop unilateral spondylitis (LL -

EST=0.053, bootstrap SE=0.026, 95% bootstrap CI 0.003:0.108; PW - EST=0.050,

bootstrap SE=0.028, 95% bootstrap CI 0.000:0.108). As for bilateral spondylitis,

the lower panel of Figure 4.6 suggests about 10% of PsA patients develop bilateral

spondylitis after 10 years (LL - EST=0.097, bootstrap SE=0.036, 95% bootstrap CI

0.044:0.181; PW - EST=0.109, bootstrap SE=0.040, 95% bootstrap CI 0.015:0.168).

It is interesting to compare this with the results of Section 4.3.1, where it was

suggested that after 10 years, roughly 15% of individuals developed spondylitis,

based on Definition 5. Hence, there appears to be roughly twice as many bilateral

cases of spondylitis as there are univariate cases, after 10 years.

Regression models may also be fit using msm (Jackson 2007). Here, we take the

effect of covariates to be the same on transitions leading to further development of

spondylitis (0 → 1, 0 → 2, 1 → 3 and 2 → 3), and the effect on the transitions

leading to death (0 → 4, 1 → 4, 2 → 4 and 3 → 4) to be the same. The model

can be built as before, with the univariate estimates in Table 4.7. With this model,

continuous covariates were difficult to fit, so the continuous variables were divided

into categorical variables, using the median a guideline in choosing the cut-point.
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Figure 4.6: Pepe-Turnbull, Pepe-PW, Pepe-Local-Likelihood, and Markov esti-

mates of state occupancy probabilities for being alive with spondylitis on one side

of the body (top) and alive with spondylitis on both sides of the body (bottom);

Pepe-Local-Likelihood 95% bootstrap confidence intervals are also plotted.
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The final model is given in Table 4.8. We see that gender, family history of

psoriasis, and age affect spondylitis development. Males have more than twice the

risk (RR=2.36, 95% CI 1.27:4.37) of developing spondylitis compared with females,

holding other factors constant. Having a family history of psoriasis reduces the risk

of spondylitis by about 50% (RR=0.45, 95% CI 0.24:0.86) while those over 40 years

old have about half the risk (RR=0.50, 95% CI 0.27:0.91) compared with those 40

years old or younger. Only age and smoking status affect mortality, with those over

40 years old having 13 times the risk of dying (RR=13.19, 95% CI 1.64:106.12).

The large standard error may be attributed to the fact that only one individual

died in the age group 40 years or less. Smoking leads to almost 4 times the risk of

death (RR=3.77, 95% CI 1.11:12.74).

The results of fitting a Markov model are shown in Table 4.9. The estimates of

γL and γR both suggest that having spondylitis on one side of the body increases

the risk of spondylitis on the other side. The estimates of parameters relating

to mortality are not significant, suggesting that the onset of spondylitis does not

affect mortality. Looking at the final model estimates in Table 4.9, we see that

developing spondylitis on the left side of the body leads to a very elevated risk

of bilateral involvement. If spondylitis occurs first on the right side of the body,

then there is no significant effect on the intensity of bilateral involvement. It also

appears that neither unilateral nor bilateral spondylitis has a significant effect on

mortality.

4.3.3 A 4-State Model for Bivariate Interval-Censored Data

Cook et al. (2008) consider the use of a four-state model to fit the joint distribution

of bivariate interval-censored failure time data. They described an EM algorithm

for fitting a piecewise constant multiplicative intensity Markov model, and obtained

estimates of state occupancy probabilities based on piecewise constant models. Here

we consider the same problem, but discuss Pepe estimation of the state occupancy

probabilities.

Let Tj denote the time of the event of type j. For the model of Figure 4.7
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Table 4.9: Estimates of model parameters from fitting the Markov model in Fig-

ure 4.5 to the psoriatic arthritis data.

No Covariates Final Model

EST SE p-value EST SE p-value

λ0L 0.018 0.004 — 0.021 0.007 —

λ0R 0.008 0.003 — 0.009 0.004 —

γL 4.181 0.457 < 0.001 4.453 0.494 < 0.001

γR 1.084 0.650 0.095 0.558 0.633 0.379

λ0D 0.005 0.002 — 0.001 0.001 —

δ1 1.041 1.262 0.409 1.811 1.219 0.137

δ2 0.571 0.851 0.503 0.107 0.863 0.901

Both Events

STATE 3

Type 1 Event

STATE 1

Type 2 Event

STATE 2

Neither Event

STATE 0

Figure 4.7: Four state diagram for bivariate interval-censored failure time data.
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expressions for the state occupancy probabilities are

P (Z(t) = 0|Z(0) = 0) = P (min(T1, T2) > t)

P (Z(t) = 1|Z(0) = 0) = P (T2 > t)− P (Z(t) = 0|Z(0) = 0) (4.1)

P (Z(t) = 2|Z(0) = 0) = P (T1 > t)− P (Z(t) = 0|Z(0) = 0)

P (Z(t) = 3|Z(0) = 0) = P (T2 ≤ t)− P (Z(t) = 2|Z(0) = 0)

= P (T1 ≤ t)− P (Z(t) = 1|Z(0) = 0).

The intuition behind these equations is again quite simple. Consider equation (4.1).

The event {T2 > t} indicates that the subject has not experienced the event of type

2, and hence is in either state 0 or 1. The occupancy probability for state 1 is

obtained by subtracting the occupancy probability of state 0 from the probability

of {T2 > t}. All other expressions are obtained similarly.

The expressions given were constructed by beginning with P (Z(t) = 0|Z(0) = 0)

and working forward, but we could just as easily started with P (Z(t) = 3|Z(0) = 0)

and worked backwards. In this case, P (Z(t) = 3|Z(0) = 0) = P (max(T1, T2) ≤ t)

and similar expressions can be derived. It seems preferable to begin at state 0 since

in practice, max(T1, T2) will be subject to a larger degree of right censoring than

min(T1, T2).

The marginal distributions of T1, T2 and min(T1, T2) can be estimated in a

number of ways. Possibilities include nonparametric (Turnbull 1976), piecewise-

constant hazards (Lindsey and Ryan 1998) or local likelihood (Betensky et al.

1999).

State Occupancy Probabilities for CMV Shedding

We now consider the bivariate interval-censored data discussed in Betensky and

Finkelstein (1999) and Goggins and Finkelstein (2000). HIV-infected individuals

are susceptible to the opportunistic infection CMV. Once infected, the virus may

be shed in the blood and urine. We consider data from 232 patients who were

followed at a clinic and tested for the presence of the CMV virus. Urine tests were

scheduled roughly every 4 weeks, while blood tests were administered every 12

weeks. Figure 4.8 shows a plot of the censoring intervals for a sample of patients in

the study. Each patient has a corresponding rectangle within which the time point

where shedding in the blood and urine may be. This data was analyzed by Cook

et al. (2008) in the context of a multistate Markov model, and covariate effects were

considered based on multiplicative models. Here, we focus on estimation of the state
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Figure 4.8: Censoring intervals for the times to shedding in blood and urine for a

sample of patients in the CMV study.

occupancy probabilities using the Pepe methods. For the Pepe-Local-Likelihood

method, a fixed bandwidth of 0.5 months was used, along with a locally constant

approximation and Epanechnikov kernel. A 6-piece Pepe-Piecewise method was

used with cut-points at 3, 6, 9, 12, 15 and 18 months. The resulting estimates

were compared with the state occupancy probabilities obtained from the 3-piece

multistate Markov model considered in Cook et al. (2008)

Figure 4.9 displays the state occupancy probability of having only blood shed-

ding. About 2% of patients have only blood shedding 12 months after study en-

try (LL - EST=0.025, bootstrap SE=0.008, 95% bootstrap CI 0.011:0.042; PW

- EST=0.034, bootstrap SE=0.008, 95% bootstrap CI 0.018:0.052). Figure 4.10

shows the state occupancy probability of having urine shedding only. Almost half

the patients have only urine shedding 12 months after study entry (LL - EST=0.443,

bootstrap SE=0.041, 95% bootstrap CI 0.367:0.529; PW - EST=0.516, bootstrap

SE=0.043, 95% bootstrap CI 0.429:0.604). The state occupancy probability of hav-
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ing both blood and urine shedding is shown in Figure 4.11. Roughly 10% of patients

have both blood and urine shedding 12 months after study entry (LL - EST=0.108,

bootstrap SE=0.026, 95% bootstrap CI 0.062:0.160; PW - EST=0.114, bootstrap

SE=0.029, 95% bootstrap CI 0.064:0.174). It appears that the presence of CMV

in the urine is fairly common, while having CMV in the blood alone is much less

likely to be observed.

The estimates of the distribution functions for time to shedding in the blood

or shedding in the urine may be plotted along with the estimates obtained from

the bivariate nonparametric estimate described in Section 1.2.2. Figure 4.12 shows

the bivariate nonparametric estimates along with univariate local likelihood and

piecewise constant estimates. Also plotted is the 3-piece multistate Markov estimate

from Cook et al. (2008). The bivariate estimate was obtained using the R package

Icens (Gentleman and Vandal 2008). We see that for shedding in the blood, the

estimates are all very similar. For shedding in the urine the estimates are more

spread out, with the largest gap being between the two univariate estimates.

4.4 Summary

This chapter looked at several applications of multistate methods involving interval-

censored observations. Estimates of the state occupancy probabilities were obtained

from marginal distributions of the state entry times. This was done for 3, 4 and

5-state models relating to both spondylitis in psoriatic arthritis patients and CMV

in HIV patients. The issue of bandwidth selection arises again when using the local

likelihood based Pepe estimator. It would be of interest to develop a method of

choosing a an overall bandwidth that can be used for each CDF required to ob-

tain the estimated state occupancy probabilities, and compare this with choosing

an individual bandwidth for each CDF. Regression models were also considered

to identify factors which affect spondylitis development and mortality in psoriatic

arthritis patients. The regression models were considered with time-homogeneous

transition intensities. Piecewise constant intensities could be applied in this setting

as well. It would also be of interest to see if using piecewise constant intensities

alters the conclusions, although this would be at the expense of greater compu-

tational burden. These results are also discussed in Tolusso and Cook (2008b),

Chandran et al. (2008a) and Chandran et al. (2008b).

The Pepe methods are robust in the sense that they do not require the Markov

assumption. Regardless of the underlying multistate process, we can obtain esti-
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Figure 4.9: Pepe-Turnbull, Pepe-PW, Pepe-Local-Likelihood, and Markov esti-

mates of having shedding in the blood only over 18 months from study entry in

the CMV data; Pepe-Local-Likelihood 95% bootstrap confidence intervals are also

plotted.
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Figure 4.10: Pepe-Turnbull, Pepe-PW, Pepe-Local-Likelihood, and Markov esti-

mates of having shedding in the urine only over 18 months from study entry in

the CMV data; Pepe-Local-Likelihood 95% bootstrap confidence intervals are also

plotted.
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Figure 4.11: Pepe-Turnbull, Pepe-PW, Pepe-Local-Likelihood, and Markov esti-

mates of having both blood and urine shedding over 18 months from study entry in

the CMV data; Pepe-Local-Likelihood 95% bootstrap confidence intervals are also

plotted.

124



0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

MONTHS SINCE STUDY ENTRY

P
R

O
P

O
R

T
IO

N
 W

IT
H

 B
LO

O
D

 S
H

E
D

D
IN

G

Bivariate NP
Univariate PW
Univariate Local−Likelihood
Multistate Markov (PW3)

0 6 12 18

0.
0

0.
2

0.
4

0.
6

0.
8

MONTHS SINCE STUDY ENTRY

P
R

O
P

O
R

T
IO

N
 W

IT
H

 U
R

IN
E

 S
H

E
D

D
IN

G

Bivariate NP
Univariate PW
Univariate Local−Likelihood
Multistate Markov (PW3)

Figure 4.12: Bivariate nonparametric, univariate piecewise constant, univariate

local likelihood and multistate Markov estimates of the distributions of time to

shedding in the blood and shedding in the urine.
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mates of the state occupancy probabilities using the Pepe approach as long as we

use consistent methods to estimate the cumulative distribution functions.
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Chapter 5

Future Work

5.1 Summary

Chapter 2 considered recurrent event data subject to interval censoring. Draw-

backs of existing methods were the undefined regions and lack of smoothness of

nonparametric estimates of the mean function (Sun and Kalbfleisch 1995; Well-

ner and Zhang 2000). Other techniques required selection of pieces and cut-points

(Lawless and Zhan 1998) or the imposition of monotonicity and smoothing on a pre-

viously smoothed estimate (Staniswalis et al. 1997). Smooth estimates of the mean

and rate function were developed based on local likelihood methods (Loader 1999;

Betensky et al. 1999). Regression models were also considered using a profile likeli-

hood (Severini and Wong 1992; Staniswalis et al. 1997). Simulation studies showed

the local likelihood estimate performed as well as the piecewise-constant methods

in terms of bias and mean squared error. These findings have been summarized in

Tolusso and Cook (2008a).

Current status data was considered in Chapter 3 where it was assumed the

failure times were possibly dependent. Current status data can be viewed as binary

data, however existing methods for dependent binary data (Prentice 1988; Zhao

and Prentice 1990; Liang et al. 1992) do not model the association in a manner

appropriate for failure time data. A copula approach was taken to model the

dependence structure with parameter estimates obtained by GEE methods (Liang

and Zeger 1986). Both first and second order GEE’s were considered. The bias

and asymptotic relative efficiencies of the methods were evaluated as well as the

performance of piecewise constant baseline hazards. Tolusso and Cook (2008c)

discusses these results.
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Chapter 4 detailed the application of multistate methods to a number of prob-

lems. In particular, robust estimates of state occupancy probabilities were obtained

from marginal distributions using the approach of Pepe et al. (1991). The marginal

distributions were estimated nonparametrically (Turnbull 1976), using piecewise

constant hazards (Lindsey and Ryan 1998) and local likelihood (Betensky et al.

1999). Much of the focus was on the development of spondylitis in patients with

psoriatic arthritis. Three-state models were considered as well as a five-state model

which distinguished between unilateral and bilateral spondylitis. Regression mod-

els were considered to identify which factors affect development of spondylitis as

well as mortality. These findings were summarized in Tolusso and Cook (2008b) as

well as Chandran et al. (2008a) and Chandran et al. (2008b).

There still remains open problems related to this work. The remainder of this

chapter will be devoted to topics to be explored in future research.

5.2 Methods for Recurrent Events and Death

In many women with advanced breast cancer, bone metastases often occur. The

bone destruction that occurs in these lesions leads to increased pain, immobility,

and deterioration in quality of life. Hortobagyi et al. (1996, 1998) describes a study

of women with breast cancer that has metastasized to bone. The study examines the

effect of a treatment known as pamidronate disodium. There were 380 patients in

the study, of which 185 were randomly assigned the treatment, while the remaining

patients received a placebo. Patients were followed for 24 months, or until they died

or were lost to follow-up. Figure 5.1 shows plots of the Kaplan-Meier estimates of

the survival functions for both the treatment and placebo groups. Figure 5.2 shows

Kaplan-Meier estimates of the survival functions for the time until the first lesion or

death, whichever occurs first. As this plot is being used to get initial impressions

of the data, the interval censoring was not taken into account, and the time of

the first lesion was taken to be the assessment time at which it was discovered.

Figure 5.3 shows sample data patterns for some of the individuals in the study.

Visits are indicated by vertical bars and the numbers indicated how many lesions

were detected between visits. Solid lines represent when the individual was being

examined for bone lesions, while the dashed line represents the time after their last

assessment, but before their time of death. The time after the last assessment but

before death must be treated carefully, since it is unknown how many lesions occur

in this time period.
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Figure 5.1: Kaplan-Meier estimates of survival for data from the study of breast

cancer patients with bone metastases (Hortobagyi et al. 1996).

One aim is to estimate the marginal mean function, E[N(t)].

5.2.1 Methods Based on Markov Models

Here we consider the problem of estimation and inference about rate functions for

recurrent events in the presence of a terminal event. Figure 5.4 contains a general

multi-state diagram for a Markov process which can characterize the occurrence

of events in the presence of risk for death. The prevalence function represents the

probability being in a given state at time t, so for recurrent events the prevalence

function for state k gives the probability of having experienced exactly k events by

time t. This leads to a natural estimate of the mean function given by

µ̂(t) =
J∑
j=1

jp̂j(t) (5.1)

where p̂j(t) is the prevalence function for state j, j = 1, . . . , J , and J is chosen to

be large enough to capture all events in a particular dataset.

Special models one could consider include ρk(t) = ρ(t), in which case there is a

common rate of event occurrence, and µk(t) = µ(t) exp(βN(t−)), in which case there
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Figure 5.2: Kaplan-Meier estimates of time to first detected lesion or death for data

from the study of breast cancer patients with bone metastases (Hortobagyi et al.

1996).

130



0 90 180 270 360 450 540 630 720

TIME  SINCE  STUDY  ENTRY

P
A

T
IE

N
T

1 2

2

4

1

2

1 1

2

1 2 1

1

1 2 1

1

1 1

1

1 2

1 4

First 30 Aredia Patients
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Figure 5.4: Multistate model for recurrent events with a terminating event.

is a common baseline mortality rate modulated by the cumulative number of events.

A local likelihood EM algorithm will be used to estimate these parameters and the

associated mean functions in both the one sample problem and in multiplicative

models. This will involve adapting the methods of Section 2.3 to deal with the

terminating event.

A complication that arises is that individuals may die or be lost to followup

between observation times. The number of events that occur between the last

assessment time, bim, and the time of death/loss of followup, τi, is most likely un-

known, however it is known the individual was alive between those times. Possible

ways of dealing with this include disregarding the information that the individual

survived from bim to τi, or preferably, treating the number of events individual i

experienced during that time as unknown, and estimating it in the E-step of the

EM algorithm. The latter is preferred since the former may violate the assumptions

on the inspection process discussed in Section 1.3.3.

5.2.2 Pepe Estimation

In addition, for the one sample case, estimates of the mean function can also be

based on the Pepe approach. In this case, prevalence function estimates are based

on a difference in cumulative incidence functions (CIF’s),

P (N(t) = k) = P (Z(t) = Ek or Dk) = CIFEk
(t)− CIFEk+1

(t) (5.2)

where Ek represents alive with k events and Dk represents died with k events, as

in Figure 5.5.

132



- - -E0 E1 E2 · · ·

?? ?

D0 D1 D2

Figure 5.5: Alternative model for recurrent events with a terminating event appro-
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Figure 5.6: Competing risks model.

With the Pepe approach, the problem has essentially been reduced to obtaining

an estimate of the CIF’s in the competing risks problem. Consider Figure 5.6

which illustrates a competing risks problem where individuals initially begin in

state 0 and can move either to state E (representing the event of interest) or state

D (representing death). The CIF for transitions to state E is of interest, where

transitions to state E may be interval censored and transitions to state D may be

right censored.

A local likelihood EM algorithm will be used to estimate the CIF. Let the

intensity of transitions to states E and D be denoted λE(t) and λD(t) respectively.

For individual i, let

δEi = I(the observed transition is to state E)

δDi = I(the observed transition is to state D)
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and let Ti be the time of the transition (if either δEi = 1 or δDi = 1) or the right

censoring time (if δEi = δDi = 0). The complete data log-likelihood is

`C =
n∑
i=1

[
δEi log λE(Ti) + δDi log λD(Ti)−

∫ Ti

0

λE(u) du−
∫ Ti

0

λD(u) du

]
with corresponding local likelihood

`C(λE, λD, t) =
n∑
i=1

[
δEiKb(Ti − t) log λE(Ti) + δDiKb(Ti − t) log λD(Ti)

−
∫ Ti

0

Kb(u− t)λE(u) du−
∫ Ti

0

Kb(u− t)λD(u) du

]
.

The log of the intensities can be approximated by polynomials as in previous local

likelihood methods. If a transition to state E is interval censored, the expectation

of terms involving Ti must be taken with respect to the density of Ti given that

Ti ∈ (Li, Ri] and the transition was to state E. This density can be obtained from

the density of Ti given the transition was to state E, given by (see Kalbfleisch and

Prentice 2002, Chap. 8)

fE(t) =
λE(t) exp {−ΛE(t)− ΛD(t)}

P (E)

where

ΛE(t) =

∫ t

0

λE(u) du

ΛD(t) =

∫ t

0

λD(u) du

P (E) =

∫ ∞

0

λE(u) exp {−ΛE(u)− ΛD(u)} du.

The EM algorithm then proceeds as other local EM algorithms (see Sections 1.2.2

and 2.3). The resulting estimates of the intensities are denoted λ̂E(t) and λ̂D(t),

and the local likelihood estimate of the CIF for transitions to E is

ĈIFE(t) =

∫ t

0

λ̂E(t) exp(−Λ̂E(t)− Λ̂D(t)).

The mean function may then be estimated by applying (5.2) and (5.1).
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5.3 Clustered Current Status Data

5.3.1 Second Order GEE for Regression on Association Pa-

rameter

As mentioned in Chapter 3, second order estimating functions have received a con-

siderable amount of attention in the analysis of clustered data. It represents an

appealing way to increase efficiency in estimates of regression parameters in the

marginal means, and an approach to understanding how covariates might influ-

ence the nature of the dependence within clusters. Prentice (1988) and Zhao and

Prentice (1990) discuss this in the context of correlated binary data.

Interestingly, there has been little work in extending this regression approach to

the analysis of clustered failure time data. The concluding remarks of Wang (2003)

comment on this approach, and mention how statistical inference under such a

model is challenging in the case of right-censored failure time data. However, the

current status setting has close connections to the binary analyses of Prentice (1988)

and Zhao and Prentice (1990), so fitting such a regression model on the association

is feasible.

Kendall’s τ is a parameter that has an appealing interpretation regardless of

the chosen copula, which arises in the joint distribution specified by the copula

function. It would be of interest to formulate models of the form

log

(
1 + τ

1− τ

)
= z′ψ

and fit these using GEE2 to learn about factors that influence the strength of

association within clusters.

Such methods could also be used in the context of multivariate current status

data. This problem would be somewhat different than the clustered data problem,

in that the dimension J would be fixed and typically quite small, and the marginal

distributions would differ depending on the endpoint of particular interest. One

could, however, still model association parameters to learn which covariates most

heavily influenced the dependence between processes.

5.3.2 Copula Goodness-of-Fit

One issue regarding the second order GEE approach is that the dependence struc-

ture must be correct in order to obtain consistent estimates of not only the associ-
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ation parameter, but the marginal parameters as well. It would then be of interest

to develop methods for assessing the goodness-of-fit of a chosen copula.

Genest and Rivest (1993) consider the problem of selecting a copula from the

class of Archimedean copulas for bivariate data. Their approach is based on the

function K(v) = P (H(U1, U2) ≤ v) where U1 and U2 have uniform marginal distri-

butions and H is a bivariate copula. They construct an estimate of K which can

be used to aid in the selection of a copula.

Wang and Wells (2000) extend this approach by providing an estimate of K

which may be used with right-censored data. They also provide a goodness-of-fit

statistic to assist with the choice of copula. Genest et al. (2006) further extend

this work by defining Cramér-von Mises and Kolmogorov-Smirnov goodness-of-

fit statistics, however only for complete data. They also extend the approach to

copulas of arbitrary dimension.

It would be of interest to further extend this work to the current status setting.

It may be possible to obtain an estimate of K using methods for current status

data, although dealing with the potential undefined regions may be a challenge.

Such goodness-of-fit statistics would be useful to determine if a copula adequately

models the association structure and provides little bias in the marginal parameters.

5.3.3 Random Effects Approach

An alternative to the marginal approach of Chapter 3 is to assume that subjects

within a cluster share a common random effect. The random effect serves to capture

homogeneity within a cluster and induce heterogeneity between clusters. With

failure time data, we can use the model

F(s|ui, xij; θ) = exp(−uiΛ0(s;α)ex
′
ijβ)

where the random effect ui is distributed over the positive real line.

Direct Maximization

Consider the situation where we have a treatment indicator xij. The likelihood

can be constructed in a similar fashion as in Cook (1999). Let P (Yij|Cij, xij, ui) ={
1− exp(−uiΛ(Cij)e

xijβ)
}Yij

{
exp(−uiΛ(Cij)e

xijβ)
}1−Yij , where ui is a gamma ran-

dom variable with mean 1 and variance φ. Let Ci(k) denote the kth unique inspec-
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tion time for cluster i. Define

Y 1
i(k) =

∑
j:Cij=Ci(k)

Yijxij, Y 0
i(k) =

∑
j:Cij=Ci(k)

Yij(1− xij),

r1
i(k) =

∑
j:Cij=Ci(k)

xij, r0
i(k) =

∑
j:Cij=Ci(k)

(1− xij).

Then, the conditional joint probability distribution of Y 0
i(k) and Y 1

i(k) given Ci(k),

{xij : Cij = Ci(k)}, r1
i(k), r

0
i(k) and ui is given by

(1−e−uiΛ(Ci(k)))Y
0
i(k)(e−uiΛ(Ci(k)))r

0
i(k)

−Y 0
i(k)(1−e−uiΛ(Ci(k))e

β

)Y
1
i(k)(e−uiΛ(Ci(k))e

β

)r
1
i(k)

−Y 1
i(k) .

Binomial expansion of the first and third terms leads to
Y 0

i(k)∑
l0=0

(
Y 0
i(k)

l0

)
(−1)l0(e−uiΛ(Ci(k)))r

0
i(k)

−Y 0
i(k)

+l0


×


Y 1

i(k)∑
l1=0

(
Y 1
i(k)

l1

)
(−1)l1(e−uiΛ(Ci(k))e

β

)r
1
i(k)

−Y 1
i(k)

+l1


which can be rewritten as

Y 0
i(k)∑
l0=0

Y 1
i(k)∑
l1=0

(
Y 0
i(k)

l0

)(
Y 1
i(k)

l1

)
(−1)l0+l1(e−uiΛ(Ci(k)))r

0
i(k)

−Y 0
i(k)

+l0(e−uiΛ(Ci(k))e
β

)r
1
i(k)

−Y 1
i(k)

+l1

If we define

aik(lk) =

(
Y 0
i(k)

l0

)(
Y 1
i(k)

l1

)
(−1)l0+l1

bik(lk) = r0
i(k) − Y 0

i(k) + lk0

dik(lk) = r1
i(k) − Y 1

i(k) + lk1

then the likelihood contribution from cluster i,∫ ∞

0

Ki∏
k=1

P (Y 0
i(k), Y

1
i(k)|Ci(k), {xij : Cij = Ci(k)}, r1

i(k), r
0
i(k), ui)g(ui) dui

becomes

Li(λ, β, φ) =
∑
l1∈Di1

· · ·
∑

lki
∈Diki

∏ki

i=1 aik(lk)[
1 + φ

{∑Ki

k=1 Λ(Cik)(bik(lk) + eβdik(lk))
}]φ−1

137



where Dik =
{
lk : 0 ≤ lk0 ≤ Y 0

i(k), 0 ≤ lk1 ≤ Y 1
i(k)

}
. This follows from the fact that

Ki∏
k=1

P (Y 0
i(k), Y

1
i(k)|Ci(k), {xij : Cij = Ci(k)}, r1

i(k), r
0
i(k), ui)

can be rewritten as

∑
l1∈Di1

· · ·
∑

lki
∈Diki

[
ki∏
i=1

aik(lk) exp
{
−(bik(lk)uiΛ(Ci(k)) + dik(lk)uiΛ(Ci(k))e

β)
}]

.

EM Algorithm

Direct maximization of the observed data likelihood can be cumbersome. An al-

ternative is to use the EM algorithm. However, as can be seen from the direct

approach, the distribution of the ui’s given the observed data is quite difficult to

obtain. In this situation it is more reasonable to define the complete data as being

the unobserved times of the events in addition to the latent random effects. The

complete data likelihood is

Lc =
m∏
i=1

{
ni∏
j=1

uiλ(tij)e
x′ijβ exp

(
−uiΛ(tij)e

x′ijβ
)} uφ

−1−1
i exp(−φ−1ui)

Γ(φ−1)φφ−1

=
m∏
i=1

{
ni∏
j=1

λ(tij)e
x′ijβ

}
uφ

−1+ni−1
i

Γ(φ−1)φφ−1 exp

{
−ui

(
φ−1 +

ni∑
j=1

Λ(tij)e
x′ijβ

)}
.

From this, it can be seen that ui given ti1, . . . , tini
follows a gamma distribution with

rate φ−1 +
∑ni

j=1 Λ(tij)e
x′ijβ and shape φ−1 + ni. Taking the logarithm of Lc and

disregarding terms involving data only, we obtain the complete-data log-likelihood,

`c(λ, β, φ) = `c1(λ, β) + `c2(φ) where

`c1(λ, β) =
m∑
i=1

ni∑
j=1

{
log λ(tij) + x′ijβ − uiΛ(tij)e

x′ijβ
}

`c2(φ) = −m
{
log Γ(φ−1) + φ−1 log(φ)

}
+

m∑
i=1

φ−1 (log ui − ui) .

If we assume a piecewise constant hazard function, then substituting the corre-

sponding piecewise-constant forms for λ(t) and Λ(t) we get

`c1(λ, β) =
m∑
i=1

ni∑
j=1

{
K∑
k=1

[
dijk log λk − uiλkwk(tij)e

x′ijβ
]

+ x′ijβ

}
.
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In the E-step, we take the expectation of the complete-data log-likelihood given

the observed data and parameter estimates from the previous iteration. The ex-

pectations can be taken in two stages. First, we take the expectation given the tij’s

and observed data. In this stage we require the expectations of ui and log ui which

are given by

E [ui|{tij}, {Cij}, {Yij}, θ] =
φ−1 + ni

φ−1 +
∑ni

j=1 Λ(tij)e
x′ijβ

E [log ui|{tij}, {Cij}, {Yij}, θ] = Ψ(φ−1 + ni)− log

{
φ−1 +

ni∑
j=1

Λ(tij)e
x′ijβ

}

where Ψ(u) = d log Γ(u)/du.

The second stage of the E-step involves computing expectations given the ob-

served data alone. We now require the expectations of dijk = I(ak−1 < tij ≤ ak),

uiwk(tij), ui and log ui. The distribution of the tij’s given the observed data is

difficult to work out, so a Monte Carlo approach can be taken. Given estimates

from the previous iteration λ̂
(r)
k , k = 1, . . . , K, β̂(r), φ̂(r) we generate B replications

of tij as follows. Generate u∗i to be gamma with mean 1 and variance φ̂(r). If Yij = 1

then tij solves

exp(−u∗i ex
′
ij

bβ(r)

Λ̂(t))

1− exp(−u∗i ex
′
ij

bβ(r)
Λ̂(Cij))

= z

where z is a uniform (0, 1] random variable. This implies that

tij = Λ̂−1
{
− log

[
z(1− exp(−u∗i ex

′
ij

bβ(r)

Λ̂(Cij)))
]
/u∗i e

x′ij
bβ(r)
}
.

Similarly, if Yij = 0 then

tij = Λ̂−1
{
− log

[
z exp(−u∗i ex

′
ij

bβ(r)

Λ̂(Cij))
]
/u∗i e

x′ij
bβ(r)
}
.

The M-step in this case does not have a closed form, so numerical methods

such as Newton-Raphson must be used to maximize the expected log-likelihood.

Iteration continues until differences in successive parameter estimates fall below a

specified tolerance.

Clearly, both the direct maximization and EM approaches require difficult com-

putations. The direct approach results in a likelihood that is not easy to evaluate

while the EM approach requires Monte Carlo in the E-step and a numerical solution

in the M-step.
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Appendix A

Full Simulation Results From

Chapter 3

Presented here are the full results of the simulation studies from Chapter 3. The

complete results of the relative efficiency study are in Tables A.1 through A.3. The

asymptotic relative efficiencies are obtained by evaluating the expectations in Sec-

tion 3.3.2 using Monte Carlo methods based on 100,000 Monte Carlo samples. The

full results of the robustness to the choice of copula are given in Tables A.4 through

A.6. Here, the true association was taken to be Gumbel, with estimation accord-

ing to the Clayton copula. Tables A.7 through A.14 contain the full simulation

results corresponding to Section 3.4. In all cases, the parameters considered were

ρ = 0.4, 0.6, β = log 0.8, 0, γ = 1, 1.2, σ2 = 0.75, 1, p = 0.05 and τ = 1.
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Table A.1: Asymptotic relative efficiencies compared to GEE2 (n = 2)

bλ bα bβ bψ
n α σ2 ρ φ β WI GEE1 WI GEE1 WI GEE1 GEE1

2 1.0 0.75 0.4 0.5 log 0.8 0.990 0.999 0.982 0.996 0.984 0.998 0.418

2 1.0 0.75 0.4 0.5 0 0.990 0.999 0.984 0.996 0.985 0.998 0.414

2 1.0 0.75 0.4 3.0 log 0.8 0.934 0.997 0.930 0.994 0.884 0.992 0.107

2 1.0 0.75 0.4 3.0 0 0.937 0.997 0.936 0.995 0.890 0.993 0.105

2 1.0 0.75 0.6 0.5 log 0.8 0.991 0.999 0.983 0.997 0.985 0.998 0.432

2 1.0 0.75 0.6 0.5 0 0.991 0.999 0.984 0.997 0.987 0.998 0.409

2 1.0 0.75 0.6 3.0 log 0.8 0.932 0.996 0.915 0.992 0.875 0.991 0.141

2 1.0 0.75 0.6 3.0 0 0.938 0.996 0.924 0.994 0.885 0.991 0.135

2 1.0 1.00 0.4 0.5 log 0.8 0.990 0.999 0.983 0.996 0.985 0.998 0.410

2 1.0 1.00 0.4 0.5 0 0.991 0.999 0.984 0.996 0.986 0.998 0.403

2 1.0 1.00 0.4 3.0 log 0.8 0.937 0.997 0.933 0.995 0.893 0.993 0.104

2 1.0 1.00 0.4 3.0 0 0.940 0.997 0.938 0.995 0.898 0.993 0.102

2 1.0 1.00 0.6 0.5 log 0.8 0.991 0.999 0.983 0.997 0.986 0.998 0.415

2 1.0 1.00 0.6 0.5 0 0.992 0.999 0.985 0.997 0.988 0.998 0.394

2 1.0 1.00 0.6 3.0 log 0.8 0.935 0.996 0.919 0.993 0.884 0.991 0.136

2 1.0 1.00 0.6 3.0 0 0.941 0.997 0.927 0.994 0.893 0.992 0.129

2 1.2 0.75 0.4 0.5 log 0.8 0.990 0.999 0.983 0.996 0.985 0.998 0.414

2 1.2 0.75 0.4 0.5 0 0.991 0.999 0.984 0.997 0.986 0.998 0.403

2 1.2 0.75 0.4 3.0 log 0.8 0.936 0.997 0.933 0.995 0.891 0.993 0.104

2 1.2 0.75 0.4 3.0 0 0.938 0.997 0.938 0.995 0.895 0.993 0.103

2 1.2 0.75 0.6 0.5 log 0.8 0.991 0.999 0.983 0.997 0.986 0.998 0.422

2 1.2 0.75 0.6 0.5 0 0.991 0.999 0.985 0.997 0.987 0.998 0.401

2 1.2 0.75 0.6 3.0 log 0.8 0.935 0.996 0.918 0.993 0.882 0.991 0.136

2 1.2 0.75 0.6 3.0 0 0.940 0.997 0.927 0.994 0.891 0.992 0.129

2 1.2 1.00 0.4 0.5 log 0.8 0.991 0.999 0.984 0.997 0.986 0.998 0.400

2 1.2 1.00 0.4 0.5 0 0.991 0.999 0.985 0.997 0.987 0.998 0.390

2 1.2 1.00 0.4 3.0 log 0.8 0.940 0.997 0.935 0.995 0.899 0.993 0.103

2 1.2 1.00 0.4 3.0 0 0.943 0.997 0.940 0.996 0.904 0.994 0.099

2 1.2 1.00 0.6 0.5 log 0.8 0.991 0.999 0.983 0.997 0.987 0.998 0.404

2 1.2 1.00 0.6 0.5 0 0.992 0.999 0.985 0.997 0.988 0.998 0.387

2 1.2 1.00 0.6 3.0 log 0.8 0.937 0.996 0.921 0.993 0.890 0.992 0.131

2 1.2 1.00 0.6 3.0 0 0.942 0.997 0.930 0.994 0.898 0.992 0.125
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Table A.2: Asymptotic relative efficiencies compared to GEE2 (n = 5)

bλ bα bβ bψ
n α σ2 ρ φ β WI GEE1 WI GEE1 WI GEE1 GEE1

5 1.0 0.75 0.4 0.5 log 0.8 0.972 0.996 0.948 0.991 0.952 0.993 0.347

5 1.0 0.75 0.4 0.5 0 0.973 0.997 0.951 0.991 0.954 0.993 0.339

5 1.0 0.75 0.4 3.0 log 0.8 0.870 0.991 0.848 0.988 0.722 0.977 0.083

5 1.0 0.75 0.4 3.0 0 0.874 0.991 0.856 0.990 0.729 0.978 0.080

5 1.0 0.75 0.6 0.5 log 0.8 0.975 0.997 0.952 0.992 0.956 0.994 0.375

5 1.0 0.75 0.6 0.5 0 0.976 0.997 0.957 0.993 0.959 0.994 0.351

5 1.0 0.75 0.6 3.0 log 0.8 0.883 0.990 0.842 0.987 0.719 0.973 0.111

5 1.0 0.75 0.6 3.0 0 0.889 0.991 0.853 0.989 0.730 0.974 0.103

5 1.0 1.00 0.4 0.5 log 0.8 0.973 0.997 0.948 0.991 0.955 0.993 0.336

5 1.0 1.00 0.4 0.5 0 0.973 0.997 0.951 0.992 0.956 0.994 0.329

5 1.0 1.00 0.4 3.0 log 0.8 0.874 0.991 0.848 0.989 0.736 0.978 0.081

5 1.0 1.00 0.4 3.0 0 0.877 0.992 0.856 0.990 0.741 0.979 0.079

5 1.0 1.00 0.6 0.5 log 0.8 0.975 0.997 0.953 0.992 0.958 0.994 0.360

5 1.0 1.00 0.6 0.5 0 0.977 0.997 0.957 0.993 0.961 0.995 0.339

5 1.0 1.00 0.6 3.0 log 0.8 0.885 0.990 0.843 0.987 0.732 0.974 0.106

5 1.0 1.00 0.6 3.0 0 0.891 0.991 0.855 0.990 0.743 0.975 0.099

5 1.2 0.75 0.4 0.5 log 0.8 0.972 0.997 0.950 0.991 0.954 0.993 0.342

5 1.2 0.75 0.4 0.5 0 0.973 0.997 0.953 0.992 0.956 0.993 0.333

5 1.2 0.75 0.4 3.0 log 0.8 0.872 0.991 0.853 0.989 0.732 0.978 0.080

5 1.2 0.75 0.4 3.0 0 0.875 0.991 0.861 0.991 0.737 0.978 0.078

5 1.2 0.75 0.6 0.5 log 0.8 0.975 0.997 0.953 0.992 0.958 0.994 0.363

5 1.2 0.75 0.6 0.5 0 0.977 0.997 0.957 0.993 0.960 0.995 0.343

5 1.2 0.75 0.6 3.0 log 0.8 0.884 0.990 0.844 0.988 0.729 0.974 0.107

5 1.2 0.75 0.6 3.0 0 0.890 0.991 0.855 0.990 0.739 0.975 0.099

5 1.2 1.00 0.4 0.5 log 0.8 0.973 0.997 0.951 0.992 0.957 0.994 0.331

5 1.2 1.00 0.4 0.5 0 0.974 0.997 0.954 0.992 0.959 0.994 0.324

5 1.2 1.00 0.4 3.0 log 0.8 0.875 0.992 0.853 0.989 0.745 0.979 0.079

5 1.2 1.00 0.4 3.0 0 0.879 0.992 0.862 0.991 0.753 0.980 0.077

5 1.2 1.00 0.6 0.5 log 0.8 0.975 0.997 0.954 0.993 0.960 0.994 0.349

5 1.2 1.00 0.6 0.5 0 0.977 0.997 0.958 0.994 0.963 0.995 0.331

5 1.2 1.00 0.6 3.0 log 0.8 0.886 0.991 0.845 0.988 0.743 0.976 0.102

5 1.2 1.00 0.6 3.0 0 0.893 0.992 0.857 0.990 0.754 0.977 0.094
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Table A.3: Asymptotic relative efficiencies compared to GEE2 (n = 10)

bλ bα bβ bψ
n α σ2 ρ φ β WI GEE1 WI GEE1 WI GEE1 GEE1

10 1.0 0.75 0.4 0.5 log 0.8 0.958 0.994 0.913 0.990 0.922 0.987 0.274

10 1.0 0.75 0.4 0.5 0 0.959 0.995 0.916 0.991 0.925 0.988 0.264

10 1.0 0.75 0.4 3.0 log 0.8 0.863 0.985 0.807 0.989 0.622 0.962 0.076

10 1.0 0.75 0.4 3.0 0 0.865 0.985 0.814 0.991 0.624 0.962 0.074

10 1.0 0.75 0.6 0.5 log 0.8 0.965 0.995 0.933 0.992 0.930 0.989 0.331

10 1.0 0.75 0.6 0.5 0 0.967 0.996 0.937 0.993 0.934 0.990 0.309

10 1.0 0.75 0.6 3.0 log 0.8 0.886 0.984 0.831 0.989 0.633 0.957 0.106

10 1.0 0.75 0.6 3.0 0 0.891 0.985 0.840 0.991 0.641 0.958 0.098

10 1.0 1.00 0.4 0.5 log 0.8 0.958 0.995 0.910 0.990 0.927 0.988 0.262

10 1.0 1.00 0.4 0.5 0 0.959 0.995 0.914 0.991 0.929 0.988 0.254

10 1.0 1.00 0.4 3.0 log 0.8 0.864 0.986 0.803 0.989 0.635 0.964 0.074

10 1.0 1.00 0.4 3.0 0 0.867 0.986 0.810 0.991 0.639 0.964 0.071

10 1.0 1.00 0.6 0.5 log 0.8 0.965 0.996 0.932 0.992 0.933 0.990 0.317

10 1.0 1.00 0.6 0.5 0 0.967 0.996 0.937 0.993 0.937 0.990 0.295

10 1.0 1.00 0.6 3.0 log 0.8 0.886 0.985 0.830 0.989 0.645 0.959 0.100

10 1.0 1.00 0.6 3.0 0 0.891 0.986 0.839 0.991 0.653 0.960 0.092

10 1.2 0.75 0.4 0.5 log 0.8 0.959 0.994 0.919 0.991 0.926 0.988 0.276

10 1.2 0.75 0.4 0.5 0 0.960 0.995 0.922 0.992 0.928 0.988 0.267

10 1.2 0.75 0.4 3.0 log 0.8 0.864 0.986 0.816 0.989 0.633 0.963 0.074

10 1.2 0.75 0.4 3.0 0 0.866 0.986 0.823 0.991 0.635 0.963 0.071

10 1.2 0.75 0.6 0.5 log 0.8 0.965 0.996 0.933 0.992 0.932 0.990 0.321

10 1.2 0.75 0.6 0.5 0 0.967 0.996 0.938 0.993 0.936 0.990 0.299

10 1.2 0.75 0.6 3.0 log 0.8 0.886 0.985 0.831 0.989 0.643 0.959 0.101

10 1.2 0.75 0.6 3.0 0 0.891 0.986 0.840 0.991 0.650 0.959 0.093

10 1.2 1.00 0.4 0.5 log 0.8 0.959 0.995 0.917 0.991 0.930 0.989 0.266

10 1.2 1.00 0.4 0.5 0 0.960 0.995 0.921 0.992 0.932 0.989 0.257

10 1.2 1.00 0.4 3.0 log 0.8 0.865 0.987 0.813 0.989 0.647 0.965 0.072

10 1.2 1.00 0.4 3.0 0 0.868 0.987 0.821 0.991 0.650 0.965 0.068

10 1.2 1.00 0.6 0.5 log 0.8 0.965 0.996 0.933 0.992 0.936 0.990 0.306

10 1.2 1.00 0.6 0.5 0 0.967 0.996 0.937 0.993 0.939 0.991 0.287

10 1.2 1.00 0.6 3.0 log 0.8 0.886 0.986 0.829 0.989 0.656 0.961 0.096

10 1.2 1.00 0.6 3.0 0 0.891 0.987 0.838 0.991 0.664 0.962 0.088
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Table A.4: Bias due to misspecification of the copula (n = 2).

GEE1 GEE2

n α σ2 ρ τ† β bλ− λ bα− α bβ − β bτ‡ bλ− λ bα− α bβ − β bτ‡
2 1.0 0.75 0.4 0.2 -0.223 0 0 0 0.103 0.001 -0.003 0.001 0.139

2 1.0 0.75 0.4 0.2 0.000 0 0 0 0.105 0.001 -0.003 0.000 0.143

2 1.0 0.75 0.4 0.6 -0.223 0 0 0 0.541 0.000 -0.012 0.001 0.503

2 1.0 0.75 0.4 0.6 0.000 0 0 0 0.553 0.001 -0.011 -0.001 0.517

2 1.0 0.75 0.6 0.2 -0.223 0 0 0 0.145 0.007 -0.006 0.001 0.198

2 1.0 0.75 0.6 0.2 0.000 0 0 0 0.142 0.006 -0.005 0.000 0.198

2 1.0 0.75 0.6 0.6 -0.223 0 0 0 0.751 0.013 -0.020 0.002 0.633

2 1.0 0.75 0.6 0.6 0.000 0 0 0 0.784 0.010 -0.017 -0.001 0.634

2 1.0 1.00 0.4 0.2 -0.223 0 0 0 0.104 0.002 -0.004 0.000 0.145

2 1.0 1.00 0.4 0.2 0.000 0 0 0 0.102 0.002 -0.003 0.000 0.143

2 1.0 1.00 0.4 0.6 -0.223 0 0 0 0.541 0.001 -0.013 0.002 0.501

2 1.0 1.00 0.4 0.6 0.000 0 0 0 0.612 0.000 -0.011 0.000 0.511

2 1.0 1.00 0.6 0.2 -0.223 0 0 0 0.146 0.007 -0.006 0.001 0.205

2 1.0 1.00 0.6 0.2 0.000 0 0 0 0.141 0.008 -0.005 0.000 0.206

2 1.0 1.00 0.6 0.6 -0.223 0 0 0 0.773 0.008 -0.019 0.004 0.638

2 1.0 1.00 0.6 0.6 0.000 0 0 0 0.904 0.010 -0.019 0.001 0.643

2 1.2 0.75 0.4 0.2 -0.223 0 0 0 0.101 0.001 -0.004 0.001 0.141

2 1.2 0.75 0.4 0.2 0.000 0 0 0 0.101 0.002 -0.004 0.000 0.144

2 1.2 0.75 0.4 0.6 -0.223 0 0 0 0.563 0.001 -0.016 0.001 0.517

2 1.2 0.75 0.4 0.6 0.000 0 0 0 0.532 -0.002 -0.015 0.001 0.511

2 1.2 0.75 0.6 0.2 -0.223 0 0 0 0.143 0.004 -0.006 0.001 0.195

2 1.2 0.75 0.6 0.2 0.000 0 0 0 0.139 0.005 -0.006 0.000 0.200

2 1.2 0.75 0.6 0.6 -0.223 0 0 0 0.794 0.011 -0.024 0.000 0.629

2 1.2 0.75 0.6 0.6 0.000 0 0 0 0.909 0.007 -0.021 -0.001 0.651

2 1.2 1.00 0.4 0.2 -0.223 0 0 0 0.103 0.003 -0.004 0.000 0.147

2 1.2 1.00 0.4 0.2 0.000 0 0 0 0.101 0.001 -0.003 0.000 0.144

2 1.2 1.00 0.4 0.6 -0.223 0 0 0 0.530 0.005 -0.016 -0.001 0.510

2 1.2 1.00 0.4 0.6 0.000 0 0 0 0.511 0.001 -0.014 0.001 0.502

2 1.2 1.00 0.6 0.2 -0.223 0 0 0 0.146 0.006 -0.007 0.000 0.205

2 1.2 1.00 0.6 0.2 0.000 0 0 0 0.142 0.006 -0.006 0.000 0.208

2 1.2 1.00 0.6 0.6 -0.223 0 0 0 0.886 0.008 -0.023 0.004 0.635

2 1.2 1.00 0.6 0.6 0.000 0 0 0 0.916 0.009 -0.022 0.000 0.629

† Kendall’s τ under the Gumbel copula

‡ Estimate of Kendall’s τ under the Clayton copula
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Table A.5: Bias due to misspecification of the copula (n = 5).

GEE1 GEE2

n α σ2 ρ τ† β bλ− λ bα− α bβ − β bτ‡ bλ− λ bα− α bβ − β bτ‡
5 1.0 0.75 0.4 0.2 -0.223 0 0 0 0.102 0.003 -0.010 0.001 0.143

5 1.0 0.75 0.4 0.2 0.000 0 0 0 0.103 0.004 -0.010 0.000 0.145

5 1.0 0.75 0.4 0.6 -0.223 0 0 0 0.585 -0.040 -0.032 0.006 0.508

5 1.0 0.75 0.4 0.6 0.000 0 0 0 0.572 -0.038 -0.028 -0.001 0.517

5 1.0 0.75 0.6 0.2 -0.223 0 0 0 0.148 0.013 -0.015 0.002 0.197

5 1.0 0.75 0.6 0.2 0.000 0 0 0 0.151 0.014 -0.014 0.000 0.206

5 1.0 0.75 0.6 0.6 -0.223 0 0 0 0.772 -0.050 -0.045 0.002 0.606

5 1.0 0.75 0.6 0.6 0.000 0 0 0 0.764 -0.047 -0.032 0.000 0.609

5 1.0 1.00 0.4 0.2 -0.223 0 0 0 0.099 0.006 -0.011 0.002 0.147

5 1.0 1.00 0.4 0.2 0.000 0 0 0 0.098 0.005 -0.010 0.000 0.144

5 1.0 1.00 0.4 0.6 -0.223 0 0 0 0.582 -0.028 -0.031 0.001 0.511

5 1.0 1.00 0.4 0.6 0.000 0 0 0 0.556 -0.032 -0.027 0.001 0.507

5 1.0 1.00 0.6 0.2 -0.223 0 0 0 0.142 0.016 -0.016 0.002 0.199

5 1.0 1.00 0.6 0.2 0.000 0 0 0 0.142 0.014 -0.014 0.000 0.200

5 1.0 1.00 0.6 0.6 -0.223 0 0 0 0.811 -0.045 -0.036 0.002 0.607

5 1.0 1.00 0.6 0.6 0.000 0 0 0 0.915 -0.044 -0.033 0.003 0.615

5 1.2 0.75 0.4 0.2 -0.223 0 0 0 0.105 0.003 -0.012 0.001 0.147

5 1.2 0.75 0.4 0.2 0.000 0 0 0 0.102 0.004 -0.011 0.000 0.146

5 1.2 0.75 0.4 0.6 -0.223 0 0 0 0.540 -0.024 -0.033 0.002 0.502

5 1.2 0.75 0.4 0.6 0.000 0 0 0 0.542 -0.019 -0.031 -0.002 0.505

5 1.2 0.75 0.6 0.2 -0.223 0 0 0 0.143 0.011 -0.019 0.002 0.200

5 1.2 0.75 0.6 0.2 0.000 0 0 0 0.142 0.010 -0.017 0.001 0.200

5 1.2 0.75 0.6 0.6 -0.223 0 0 0 0.830 -0.034 -0.043 0.004 0.610

5 1.2 0.75 0.6 0.6 0.000 0 0 0 0.861 -0.032 -0.038 0.002 0.615

5 1.2 1.00 0.4 0.2 -0.223 0 0 0 0.100 0.005 -0.012 0.001 0.147

5 1.2 1.00 0.4 0.2 0.000 0 0 0 0.100 0.004 -0.011 0.000 0.147

5 1.2 1.00 0.4 0.6 -0.223 0 0 0 0.587 -0.018 -0.036 0.003 0.514

5 1.2 1.00 0.4 0.6 0.000 0 0 0 0.568 -0.016 -0.033 0.000 0.518

5 1.2 1.00 0.6 0.2 -0.223 0 0 0 0.140 0.013 -0.019 0.001 0.200

5 1.2 1.00 0.6 0.2 0.000 0 0 0 0.140 0.011 -0.016 0.000 0.201

5 1.2 1.00 0.6 0.6 -0.223 0 0 0 0.865 -0.022 -0.046 -0.001 0.614

5 1.2 1.00 0.6 0.6 0.000 0 0 0 0.921 -0.022 -0.040 -0.001 0.616

† Kendall’s τ under the Gumbel copula

‡ Estimate of Kendall’s τ under the Clayton copula
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Table A.6: Bias due to misspecification of the copula (n = 10).

GEE1 GEE2

n α σ2 ρ τ† β bλ− λ bα− α bβ − β bτ‡ bλ− λ bα− α bβ − β bτ‡
10 1.0 0.75 0.4 0.2 -0.223 0 0 0 0.102 0.000 -0.017 0.002 0.149

10 1.0 0.75 0.4 0.2 0.000 0 0 0 0.102 0.001 -0.016 0.000 0.152

10 1.0 0.75 0.4 0.6 -0.223 0 0 0 0.563 -0.122 -0.028 0.002 0.493

10 1.0 0.75 0.4 0.6 0.000 0 0 0 0.549 -0.120 -0.023 0.001 0.494

10 1.0 0.75 0.6 0.2 -0.223 0 0 0 0.145 0.009 -0.021 0.002 0.197

10 1.0 0.75 0.6 0.2 0.000 0 0 0 0.150 0.010 -0.019 -0.001 0.205

10 1.0 0.75 0.6 0.6 -0.223 0 0 0 0.764 -0.178 -0.022 0.001 0.576

10 1.0 0.75 0.6 0.6 0.000 0 0 0 0.827 -0.168 -0.017 0.000 0.583

10 1.0 1.00 0.4 0.2 -0.223 0 0 0 0.100 0.004 -0.017 0.001 0.151

10 1.0 1.00 0.4 0.2 0.000 0 0 0 0.098 0.004 -0.016 -0.000 0.151

10 1.0 1.00 0.4 0.6 -0.223 0 0 0 0.562 -0.117 -0.028 0.002 0.498

10 1.0 1.00 0.4 0.6 0.000 0 0 0 0.552 -0.112 -0.024 -0.001 0.496

10 1.0 1.00 0.6 0.2 -0.223 0 0 0 0.143 0.013 -0.021 0.002 0.199

10 1.0 1.00 0.6 0.2 0.000 0 0 0 0.144 0.011 -0.019 -0.000 0.203

10 1.0 1.00 0.6 0.6 -0.223 0 0 0 0.816 -0.164 -0.024 -0.002 0.578

10 1.0 1.00 0.6 0.6 0.000 0 0 0 0.898 -0.154 -0.018 -0.003 0.584

10 1.2 0.75 0.4 0.2 -0.223 0 0 0 0.103 0.002 -0.020 0.002 0.152

10 1.2 0.75 0.4 0.2 0.000 0 0 0 0.102 0.001 -0.018 0.001 0.151

10 1.2 0.75 0.4 0.6 -0.223 0 0 0 0.565 -0.076 -0.034 0.001 0.499

10 1.2 0.75 0.4 0.6 0.000 0 0 0 0.558 -0.078 -0.027 0.000 0.501

10 1.2 0.75 0.6 0.2 -0.223 0 0 0 0.145 0.008 -0.025 0.002 0.200

10 1.2 0.75 0.6 0.2 0.000 0 0 0 0.141 0.007 -0.022 0.001 0.199

10 1.2 0.75 0.6 0.6 -0.223 0 0 0 0.819 -0.120 -0.028 0.002 0.578

10 1.2 0.75 0.6 0.6 0.000 0 0 0 0.892 -0.113 -0.020 0.000 0.585

10 1.2 1.00 0.4 0.2 -0.223 0 0 0 0.101 0.004 -0.020 0.002 0.152

10 1.2 1.00 0.4 0.2 0.000 0 0 0 0.100 0.003 -0.018 0.000 0.151

10 1.2 1.00 0.4 0.6 -0.223 0 0 0 0.581 -0.072 -0.035 -0.001 0.504

10 1.2 1.00 0.4 0.6 0.000 0 0 0 0.542 -0.070 -0.028 -0.002 0.497

10 1.2 1.00 0.6 0.2 -0.223 0 0 0 0.139 0.010 -0.026 0.002 0.199

10 1.2 1.00 0.6 0.2 0.000 0 0 0 0.139 0.009 -0.023 -0.000 0.202

10 1.2 1.00 0.6 0.6 -0.223 0 0 0 0.862 -0.113 -0.029 -0.001 0.583

10 1.2 1.00 0.6 0.6 0.000 0 0 0 0.921 -0.104 -0.023 -0.002 0.583

† Kendall’s τ under the Gumbel copula

‡ Estimate of Kendall’s τ under the Clayton copula
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Table A.7: Empirical bias (×102) and standard errors for WI and GEE estimators

of treatment coefficient.

Working Independence GEE

α σ2 ρ β φ model bias ese se bias ese se

1.0 0.75 0.4 0.5 -0.223 Exponential -0.065 0.052 0.053 -0.138 0.051 0.052

1.0 0.75 0.4 0.5 -0.223 3 Piece -0.105 0.053 0.053 -0.156 0.052 0.052

1.0 0.75 0.4 0.5 -0.223 5 Piece -0.112 0.053 0.053 -0.157 0.052 0.052

1.0 0.75 0.4 0.5 -0.223 Weibull -0.099 0.052 0.053 -0.153 0.052 0.052

1.0 0.75 0.4 0.5 0.000 Exponential 0.404 0.053 0.053 0.318 0.052 0.052

1.0 0.75 0.4 0.5 0.000 3 Piece 0.402 0.053 0.053 0.323 0.052 0.052

1.0 0.75 0.4 0.5 0.000 5 Piece 0.410 0.053 0.053 0.332 0.052 0.052

1.0 0.75 0.4 0.5 0.000 Weibull 0.405 0.053 0.053 0.326 0.052 0.052

1.0 0.75 0.4 3.0 -0.223 Exponential -0.018 0.054 0.053 -0.061 0.047 0.045

1.0 0.75 0.4 3.0 -0.223 3 Piece -0.065 0.054 0.053 -0.083 0.047 0.046

1.0 0.75 0.4 3.0 -0.223 5 Piece -0.088 0.054 0.053 -0.123 0.047 0.046

1.0 0.75 0.4 3.0 -0.223 Weibull -0.050 0.054 0.053 -0.090 0.047 0.046

1.0 0.75 0.4 3.0 0.000 Exponential -0.172 0.052 0.053 -0.017 0.046 0.046

1.0 0.75 0.4 3.0 0.000 3 Piece -0.174 0.052 0.053 0.016 0.046 0.046

1.0 0.75 0.4 3.0 0.000 5 Piece -0.162 0.052 0.053 0.025 0.046 0.046

1.0 0.75 0.4 3.0 0.000 Weibull -0.173 0.052 0.053 0.033 0.046 0.046

1.0 0.75 0.6 0.5 -0.223 Exponential -0.064 0.044 0.043 -0.087 0.043 0.043

1.0 0.75 0.6 0.5 -0.223 3 Piece -0.110 0.045 0.044 -0.137 0.043 0.043

1.0 0.75 0.6 0.5 -0.223 5 Piece -0.117 0.045 0.044 -0.140 0.043 0.043

1.0 0.75 0.6 0.5 -0.223 Weibull -0.096 0.045 0.044 -0.121 0.043 0.043

1.0 0.75 0.6 0.5 0.000 Exponential -0.043 0.042 0.044 -0.049 0.041 0.043

1.0 0.75 0.6 0.5 0.000 3 Piece -0.042 0.042 0.044 -0.037 0.041 0.043

1.0 0.75 0.6 0.5 0.000 5 Piece -0.039 0.042 0.044 -0.035 0.041 0.043

1.0 0.75 0.6 0.5 0.000 Weibull -0.043 0.042 0.044 -0.039 0.041 0.043

1.0 0.75 0.6 3.0 -0.223 Exponential 0.129 0.045 0.043 0.001 0.038 0.037

1.0 0.75 0.6 3.0 -0.223 3 Piece 0.114 0.045 0.044 0.025 0.039 0.038

1.0 0.75 0.6 3.0 -0.223 5 Piece 0.102 0.046 0.044 0.011 0.039 0.038

1.0 0.75 0.6 3.0 -0.223 Weibull 0.119 0.045 0.044 0.024 0.039 0.038

1.0 0.75 0.6 3.0 0.000 Exponential 0.082 0.043 0.044 0.082 0.038 0.038

1.0 0.75 0.6 3.0 0.000 3 Piece 0.084 0.043 0.044 0.076 0.038 0.038

1.0 0.75 0.6 3.0 0.000 5 Piece 0.088 0.043 0.044 0.077 0.038 0.038

1.0 0.75 0.6 3.0 0.000 Weibull 0.083 0.043 0.044 0.078 0.038 0.038
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Table A.8: Empirical bias (×102) and standard errors for WI and GEE estimators

of treatment coefficient (continued).

Working Independence GEE

α σ2 ρ β φ model bias ese se bias ese se

1.0 1.00 0.4 0.5 -0.223 Exponential -0.294 0.052 0.053 -0.262 0.051 0.052

1.0 1.00 0.4 0.5 -0.223 3 Piece -0.326 0.052 0.053 -0.295 0.052 0.052

1.0 1.00 0.4 0.5 -0.223 5 Piece -0.353 0.053 0.053 -0.331 0.052 0.052

1.0 1.00 0.4 0.5 -0.223 Weibull -0.323 0.052 0.053 -0.295 0.052 0.052

1.0 1.00 0.4 0.5 0.000 Exponential 0.012 0.050 0.053 0.025 0.049 0.052

1.0 1.00 0.4 0.5 0.000 3 Piece 0.017 0.050 0.053 0.021 0.049 0.052

1.0 1.00 0.4 0.5 0.000 5 Piece 0.019 0.050 0.053 0.024 0.049 0.052

1.0 1.00 0.4 0.5 0.000 Weibull 0.013 0.050 0.053 0.014 0.049 0.052

1.0 1.00 0.4 3.0 -0.223 Exponential 0.107 0.055 0.053 0.153 0.048 0.046

1.0 1.00 0.4 3.0 -0.223 3 Piece 0.054 0.055 0.053 0.046 0.048 0.047

1.0 1.00 0.4 3.0 -0.223 5 Piece 0.045 0.055 0.053 0.028 0.048 0.047

1.0 1.00 0.4 3.0 -0.223 Weibull 0.065 0.055 0.053 0.063 0.048 0.047

1.0 1.00 0.4 3.0 0.000 Exponential 0.170 0.053 0.053 0.053 0.047 0.046

1.0 1.00 0.4 3.0 0.000 3 Piece 0.164 0.053 0.053 0.024 0.047 0.046

1.0 1.00 0.4 3.0 0.000 5 Piece 0.153 0.053 0.053 0.031 0.047 0.046

1.0 1.00 0.4 3.0 0.000 Weibull 0.170 0.053 0.053 0.029 0.046 0.046

1.0 1.00 0.6 0.5 -0.223 Exponential -0.042 0.045 0.044 -0.088 0.045 0.043

1.0 1.00 0.6 0.5 -0.223 3 Piece -0.070 0.045 0.044 -0.116 0.045 0.043

1.0 1.00 0.6 0.5 -0.223 5 Piece -0.072 0.045 0.044 -0.111 0.045 0.043

1.0 1.00 0.6 0.5 -0.223 Weibull -0.056 0.045 0.044 -0.097 0.045 0.043

1.0 1.00 0.6 0.5 0.000 Exponential -0.065 0.044 0.044 -0.040 0.044 0.043

1.0 1.00 0.6 0.5 0.000 3 Piece -0.071 0.045 0.044 -0.039 0.044 0.043

1.0 1.00 0.6 0.5 0.000 5 Piece -0.071 0.045 0.044 -0.040 0.044 0.043

1.0 1.00 0.6 0.5 0.000 Weibull -0.065 0.045 0.044 -0.034 0.044 0.043

1.0 1.00 0.6 3.0 -0.223 Exponential 0.159 0.043 0.044 0.042 0.038 0.038

1.0 1.00 0.6 3.0 -0.223 3 Piece 0.139 0.044 0.044 0.015 0.039 0.038

1.0 1.00 0.6 3.0 -0.223 5 Piece 0.134 0.044 0.044 0.016 0.039 0.038

1.0 1.00 0.6 3.0 -0.223 Weibull 0.153 0.043 0.044 0.033 0.038 0.038

1.0 1.00 0.6 3.0 0.000 Exponential -0.059 0.047 0.044 -0.068 0.040 0.039

1.0 1.00 0.6 3.0 0.000 3 Piece -0.061 0.047 0.044 -0.075 0.040 0.039

1.0 1.00 0.6 3.0 0.000 5 Piece -0.058 0.047 0.044 -0.076 0.040 0.039

1.0 1.00 0.6 3.0 0.000 Weibull -0.061 0.047 0.044 -0.075 0.040 0.039
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Table A.9: Empirical bias (×102) and standard errors for WI and GEE estimators

of treatment coefficient (continued).

Working Independence GEE

α σ2 ρ β φ model bias ese se bias ese se

1.2 0.75 0.4 0.5 -0.223 Exponential 2.168 0.047 0.046 2.222 0.047 0.046

1.2 0.75 0.4 0.5 -0.223 3 Piece 0.032 0.052 0.053 0.058 0.051 0.052

1.2 0.75 0.4 0.5 -0.223 5 Piece -0.006 0.052 0.053 -0.010 0.051 0.052

1.2 0.75 0.4 0.5 -0.223 Weibull -0.008 0.052 0.053 -0.012 0.051 0.052

1.2 0.75 0.4 0.5 0.000 Exponential 0.074 0.048 0.046 0.089 0.048 0.046

1.2 0.75 0.4 0.5 0.000 3 Piece 0.079 0.054 0.053 0.086 0.053 0.052

1.2 0.75 0.4 0.5 0.000 5 Piece 0.078 0.054 0.053 0.089 0.053 0.052

1.2 0.75 0.4 0.5 0.000 Weibull 0.079 0.054 0.053 0.086 0.053 0.052

1.2 0.75 0.4 3.0 -0.223 Exponential 2.118 0.050 0.047 2.370 0.045 0.043

1.2 0.75 0.4 3.0 -0.223 3 Piece -0.034 0.055 0.053 0.035 0.048 0.046

1.2 0.75 0.4 3.0 -0.223 5 Piece -0.069 0.055 0.053 -0.092 0.048 0.046

1.2 0.75 0.4 3.0 -0.223 Weibull -0.053 0.055 0.053 -0.109 0.048 0.046

1.2 0.75 0.4 3.0 0.000 Exponential 0.242 0.051 0.046 0.203 0.046 0.043

1.2 0.75 0.4 3.0 0.000 3 Piece 0.288 0.056 0.053 0.163 0.048 0.046

1.2 0.75 0.4 3.0 0.000 5 Piece 0.276 0.056 0.053 0.198 0.049 0.046

1.2 0.75 0.4 3.0 0.000 Weibull 0.288 0.056 0.053 0.167 0.048 0.046

1.2 0.75 0.6 0.5 -0.223 Exponential 1.880 0.041 0.039 2.037 0.039 0.039

1.2 0.75 0.6 0.5 -0.223 3 Piece 0.120 0.045 0.044 0.168 0.044 0.043

1.2 0.75 0.6 0.5 -0.223 5 Piece 0.096 0.045 0.044 0.089 0.044 0.043

1.2 0.75 0.6 0.5 -0.223 Weibull 0.099 0.045 0.044 0.085 0.044 0.043

1.2 0.75 0.6 0.5 0.000 Exponential 0.018 0.040 0.039 0.042 0.041 0.039

1.2 0.75 0.6 0.5 0.000 3 Piece 0.051 0.044 0.044 0.030 0.043 0.043

1.2 0.75 0.6 0.5 0.000 5 Piece 0.046 0.044 0.044 0.023 0.043 0.043

1.2 0.75 0.6 0.5 0.000 Weibull 0.046 0.044 0.044 0.025 0.043 0.043

1.2 0.75 0.6 3.0 -0.223 Exponential 1.629 0.042 0.039 1.979 0.037 0.036

1.2 0.75 0.6 3.0 -0.223 3 Piece -0.134 0.045 0.044 0.112 0.038 0.038

1.2 0.75 0.6 3.0 -0.223 5 Piece -0.160 0.045 0.044 -0.147 0.039 0.038

1.2 0.75 0.6 3.0 -0.223 Weibull -0.145 0.045 0.044 -0.144 0.039 0.038

1.2 0.75 0.6 3.0 0.000 Exponential -0.087 0.039 0.039 -0.055 0.036 0.036

1.2 0.75 0.6 3.0 0.000 3 Piece -0.113 0.043 0.044 -0.029 0.037 0.038

1.2 0.75 0.6 3.0 0.000 5 Piece -0.114 0.043 0.044 -0.028 0.037 0.039

1.2 0.75 0.6 3.0 0.000 Weibull -0.116 0.043 0.044 -0.038 0.037 0.039
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Table A.10: Empirical bias (×102) and standard errors for WI and GEE estimators

of treatment coefficient (continued).

Working Independence GEE

α σ2 ρ β φ model bias ese se bias ese se

1.2 1.00 0.4 0.5 -0.223 Exponential 2.172 0.048 0.047 2.210 0.047 0.047

1.2 1.00 0.4 0.5 -0.223 3 Piece 0.012 0.052 0.053 0.044 0.052 0.053

1.2 1.00 0.4 0.5 -0.223 5 Piece -0.020 0.052 0.054 -0.022 0.052 0.053

1.2 1.00 0.4 0.5 -0.223 Weibull -0.015 0.053 0.054 -0.020 0.052 0.053

1.2 1.00 0.4 0.5 0.000 Exponential 0.013 0.047 0.046 -0.020 0.047 0.046

1.2 1.00 0.4 0.5 0.000 3 Piece -0.024 0.052 0.053 -0.011 0.051 0.053

1.2 1.00 0.4 0.5 0.000 5 Piece -0.064 0.052 0.054 -0.055 0.051 0.053

1.2 1.00 0.4 0.5 0.000 Weibull -0.019 0.052 0.054 -0.005 0.051 0.053

1.2 1.00 0.4 3.0 -0.223 Exponential 1.944 0.048 0.047 2.218 0.044 0.043

1.2 1.00 0.4 3.0 -0.223 3 Piece -0.285 0.053 0.054 -0.085 0.046 0.047

1.2 1.00 0.4 3.0 -0.223 5 Piece -0.311 0.053 0.054 -0.238 0.047 0.047

1.2 1.00 0.4 3.0 -0.223 Weibull -0.315 0.053 0.054 -0.253 0.047 0.047

1.2 1.00 0.4 3.0 0.000 Exponential -0.258 0.048 0.046 -0.256 0.044 0.043

1.2 1.00 0.4 3.0 0.000 3 Piece -0.294 0.053 0.053 -0.167 0.048 0.047

1.2 1.00 0.4 3.0 0.000 5 Piece -0.277 0.053 0.054 -0.192 0.048 0.047

1.2 1.00 0.4 3.0 0.000 Weibull -0.291 0.053 0.054 -0.179 0.048 0.047

1.2 1.00 0.6 0.5 -0.223 Exponential 1.482 0.040 0.040 1.528 0.039 0.040

1.2 1.00 0.6 0.5 -0.223 3 Piece -0.339 0.044 0.044 -0.275 0.043 0.043

1.2 1.00 0.6 0.5 -0.223 5 Piece -0.363 0.044 0.044 -0.357 0.043 0.044

1.2 1.00 0.6 0.5 -0.223 Weibull -0.363 0.044 0.044 -0.362 0.043 0.044

1.2 1.00 0.6 0.5 0.000 Exponential 0.003 0.041 0.039 -0.123 0.040 0.039

1.2 1.00 0.6 0.5 0.000 3 Piece -0.002 0.045 0.044 -0.015 0.045 0.044

1.2 1.00 0.6 0.5 0.000 5 Piece -0.004 0.045 0.045 -0.014 0.045 0.044

1.2 1.00 0.6 0.5 0.000 Weibull -0.003 0.045 0.045 -0.015 0.045 0.044

1.2 1.00 0.6 3.0 -0.223 Exponential 1.840 0.040 0.040 2.160 0.036 0.037

1.2 1.00 0.6 3.0 -0.223 3 Piece 0.036 0.044 0.044 0.300 0.038 0.038

1.2 1.00 0.6 3.0 -0.223 5 Piece 0.003 0.044 0.044 0.066 0.038 0.039

1.2 1.00 0.6 3.0 -0.223 Weibull 0.023 0.044 0.044 0.076 0.038 0.039

1.2 1.00 0.6 3.0 0.000 Exponential 0.063 0.041 0.039 0.044 0.037 0.037

1.2 1.00 0.6 3.0 0.000 3 Piece 0.078 0.045 0.044 0.075 0.039 0.039

1.2 1.00 0.6 3.0 0.000 5 Piece 0.081 0.045 0.044 0.075 0.040 0.039

1.2 1.00 0.6 3.0 0.000 Weibull 0.082 0.045 0.044 0.085 0.040 0.039
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