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Abstract

As ruin theory evolves in recent years, there has been a variety of quantities pertaining to

an insurer’s bankruptcy at the centre of focus in the literature. Despite the fact that these

quantities are distinct from each other, it was brought to our attention that many solution

methods apply to nearly all ruin-related quantities. Such a peculiar similarity among their

solution methods inspired us to search for a general form that reconciles those seemingly

different ruin-related quantities.

The stochastic approach proposed in the thesis addresses such issues and contributes

to the current literature in three major directions.

(1) It provides a new function that unifies many existing ruin-related quantities and

that produces more new quantities of potential use in both practice and academia.

(2) It applies generally to a vast majority of risk processes and permits the consideration

of combined effects of investment strategies, policy modifications, etc, which were either

impossible or difficult tasks using traditional approaches.

(3) It gives a shortcut to the derivation of intermediate solution equations. In addition

to the efficiency, the new approach also leads to a standardized procedure to cope with

various situations.

The thesis covers a wide range of ruin-related and financial topics while developing

the unifying stochastic approach. Not only does it attempt to provide insights into the

unification of quantities in ruin theory, the thesis also seeks to extend its applications in

other related areas.
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Chapter 1

Introduction

It all starts with a simple and inspiring model proposed by the Swedish actuary Filip

Lundberg in 1903. Those who have doubts about ruin theory might be surprised to find

out that the theory actually outdated many disciplines of modern sciences and stood up to

challenges over more than a century. As every scientific theory evolves, ruin theory has grown

from a simple but thought-intriguing model to a specialized area which is nowadays equipped

with state-of-art techniques developed alongside many other areas in applied probability.

This chapter is dedicated to the overview of classical topics of interest and techniques

in the literature. The content of this chapter serves two main purposes.

In order to pave the way for the development of a unifying approach in later chapters,

we need to review many classical approaches and techniques, particularly those developed

in the past decade, for analyzing ruin-related quantities. A motivation for the construction

of a new unifying tool will be discussed in the end as an implication of comparison among

those well-studied quantities.

This chapter also intends to summarize the pros and cons of the classical approaches,

which shall be compared with those of the unifying approach throughout the thesis. To set up

the tone of future comparison, we name a few advantages and disadvantages of the classical
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approach. The classical analytical techniques are straightforward and require only basic

understanding of infinitesimal arguments to construct basis for computation and derivation

of ruin-related quantities. Although introduced under the framework of compound Poisson

model in this chapter, the classical approaches are generally applicable to a great majority

of risk models in the ruin literature. However, as they were used in general risk models and

applied to solve more ruin-related quantities, the arguments often become unduely repetitive

and tedious, particularly, in many practical models where interest rates are involved.

1.1 Mathematical Preliminaries

It is not until recent years that operator analysis has come to the attention of actuarial

scientists. Despite of the limited research on this topic, the use of operators in recent liter-

ature has enormously reduced the amount of work in the analysis of ruin-related quantities.

In the section, we introduce a few important operators that would facilitate solving

integral-differential equations in later chapters.

Definition 1.1.1. For any integrable function f(y) defined for y ≥ 0 and a real number

s ≥ 0, the Dickson-Hipp transform of f(y) is given by

Tsf(x) = esx
∫ ∞

x

e−syf(y) dy , x ≥ 0.

And Ts is called a Dickson-Hipp operator.

The Dickson-Hipp operator appeared in Li and Garrido [38] in the context of Sparre

Andersen model and was systematically exploited in Gerber and Shiu [24]. It has since

become a major tool in analyzing defective renewal equations.

The Dickson-Hipp operator possesses a number of nice properties, among which three

are of particular use to us in the next section. Hence we provide detailed proofs for these

properties.
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Lemma 1.1.1.

Ts1Ts2f(x) =
Ts2f(x) − Ts1f(x)

s1 − s2
.

Proof. By changing the order of integrations,

Ts1Ts2f(x) = es1x
∫ ∞

x

e−s1yes2y
∫ ∞

y

e−s2uf(u) du dy

= es1x
∫ ∞

x

e−s2uf(u)

∫ u

x

e−(s1−s2)y dy du

=
1

s1 − s2
es1x

∫ ∞

x

e−s2uf(u)[e−(s1−s2)x − e−(s1−s2)u] du

=
1

s1 − s2

[
es2x

∫ ∞

x

e−s2uf(u)du− es1x
∫ ∞

x

e−s1uf(u)du

]
.

A special case of the Dickson-Hipp transform that has been used frequently in theo-

retical derivation in ruin theory is the Laplace transform

Lf(s) = Tsf(0) =

∫ ∞

0

e−syf(y)dy.

Following the conventions in ruin theory, the notation f̃ (s) is also used interchangeably with

Lf(s) in the thesis for the Laplace transform of f(x).

For brevity, we also use the notation f ? g to denote the convolution of f(x) and g(x),

f ? g(x) =

∫ x

0

f(x− y)g(y)dy =

∫ x

0

g(x− y)f(y)dy. (1.1.1)

Lemma 1.1.2.

Ts{f ? g}(x) = g̃(s) · Tsf(x) + Tsg ? f(x) .

Proof. Consider the Laplace transform as a special case of the Dickson-Hipp operator as

3



shown in (1.1.1) and apply the Lemma 1.1.1.

L{Ts{f ? g}}(z) =
L{f ? g}(s) − L{f ? g}(z)

z − s

=
Lf(s) · Lg(s) − Lf(z) · Lg(z)

z − s

=
Lf(s) −Lf(z)

z − s
· Lg(s) +

Lg(s) − Lg(z)
z − s

· Lf(z)

= Lg(s) · LTsf(z) + L{Tsg ? f}(z) .

Observe that taking inverse Laplace transform with respect to z yields the desired equality.

Another very interesting discovery in Gerber and Shiu [24] is the left inverse of Dickson-

Hipp operator. In what follows, we shall use the notation I for the identity operator and D

for the differentiation operator with respect to the argument of the function on which the

operator is performed.

Lemma 1.1.3.

(sI − D)Tsf(x) = f(x) .

Proof. It can be verified that

(sI − D){esx
∫ ∞

x

e−syf(y)dy}

= sesx
∫ ∞

x

e−syf(y)dy − sesx
∫ ∞

x

e−syf(y)dy + f(x) = f(x).

Now we look at another operator that comes out of our need in solving integro-

differential equations with Gamma distributed claim sizes. Although it was not usually

treated as an operator in the past literature, we shall find it convenient to do so in order
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to facilitate our derivations in dealing with many differential equations to be seen in later

chapters.

Definition 1.1.2. For any integrable function f(y) and s ≥ 0, the exponential convolution

transform of f(y) is given by

Esf(x) = e−sx
∫ x

0

esyf(y)dy.

And Es is called an exponential convolution operator.

The name comes from the fact that the operator yields a convolution of the integrable

function and an exponential function. A property we shall use frequently with this operator

is given by the next lemma.

Lemma 1.1.4.

(sI + D)Esf(x) = f(x) .

Proof. It can be verified that

(sI + D){e−sx
∫ x

0

esyf(y)dy}

= se−sx
∫ x

0

esyf(y)dy + (−s)e−sx
∫ x

0

esyf(y)dy + f(x) = f(x).

In the analysis of integro-differential equations, it is generally the integral term that

increases the level of difficulty in searching for solutions. As we shall see in later chapters,

we often make certain assumption about the claim size distribution to find explicit solutions.

For instance, in many cases the claim sizes are assumed to be exponentially distributed with

the distribution function Q(y) = 1 − e−βy. The integral term, which will appear frequently,
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involving the claim size distribution can now be written in terms of exponential convolution

transforms, ∫ x

0

m(x− y)dQ(y) = β

∫ x

0

m(x− y)e−βydy = βEβm(x).

If the claim sizes follow Gamma distribution

Q(y) = 1 − e−βy
n−1∑

k=0

(βy)k−1

k!
,

we can easily represent the integral term as a multiple fold exponential convolution trans-

forms, ∫ x

0

m(x− y)dQ(y) = βnEnβm(x).

Note that taking (βI + D) n times on both sides, we obtain

{(βI + D)n}
∫ x

0

m(x− y)dQ(y) = βnm(x).

Similarly, if the claim sizes follow a mixture of n exponential distributions, i.e.

Q(y) = θ1(1 − e−β1y) + θ2(1 − e−β2y) + · · · + θn(1 − e−βny),

then the integral term becomes
∫ x

0

m(x− y)dQ(y) = θ1β1Eβ1m(x) + θ2β2Eβ2m(x) + · · · + θnβnEβnm(x).

It implies that

{
n∏

i=1

(βiI + D)}
∫ x

0

m(x− y)dQ(y) =

n∑

i=1

n∏

j=1,j 6=i

(βiI + D)m(x).

The beauty of exponential convolution operator lies in the fact that such integral terms

can be converted to derivative terms that are more mathematically tractable.

1.2 Classical Compound Poisson Risk Model

Typically, good mathematical models are based on relatively idealized assumptions, but

also leave room for further refinement and more realistic considerations. They are always
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rich sources of inspiration for researchers in generations to come. The compound Poisson

risk model introduced by Lundberg is beyond the shadow of a doubt one of such kind and

thereby an ideal place to start our introduction to ruin theory.

We begin with the basic setup of the model. An insurer’s asset consists of an initial

investment x and continuous premium income collected at a constant rate of c per period,

whereas its liability is to cover a sequence of insurance claims {Y1, Y2, · · · }. The arrival of

claims is modelled by a Poisson process {N(t), t ≥ 0} with intensity λ and the claim sizes are

assumed to be mutually independent and identically distributed with common distribution

Q(y). Hence the aggregate claims up to time t is given by

Z(t) =

N(t)∑

i=1

Yi.

The aggregate claim follows the compound Poisson distribution, hence the name of the

model. Since the insurer’s surplus is its assets of the initial investment and premium income

less its liability of aggregate claims, we shall base our analysis on the surplus driven by the

stochastic process {X(t), t ≥ 0} with

X(t) = x+ ct− Z(t).

In this simple model, we focus on the insurer’s ability to manage its surplus through the

control of initial investment x. It is obvious in the interest of such an insurer with how large

initial investment its surplus would remain solvent with a relatively large chance in long run.

This question gives rise to the study of probability of ruin, which is a measure to

quantify the likelihood that an insurer’s asset would eventually be insufficient to cover its

liabilities in long run. In mathematical terms, the probability of ultimate ruin is defined by

ψ(x) = Px(τ0 <∞),

where the measure Px is defined for X(t) starting off with an initial investment x and the

time of ruin is given by

τ0 = inf{X(t) < 0}

7



with the convention that inf ∅ = ∞.

The major task of ruin theory in its early stage was to search for solutions to the prob-

ability of ruin as an explicit function of the initial investment if available, or give reasonably

accurate approximations or tight bounds otherwise. The probability of ruin has always been

and still is a favorable quantity of interest in many fields of applied probability. It is often

viewed as the first step leading towards the investigation of more sophisticated quantities.

1.2.1 Gerber-Shiu Function

Another historic contribution to ruin theory was made by actuarial scientists Hans

U. Gerber and Elias S.W. Shiu in their seminal paper [22] published in 1998, where the

expected discounted penalty function comes to light. As a measurement of economic costs

resulted from an insurer’s bankruptcy, the expected discounted penalty function (or called

Gerber-Shiu function) is defined by

m(x) = Ex[e−δτ0w(Xτ0−, |Xτ0|)I(τ0 <∞)],

where δ ≥ 0 is the discounting force of interest and the bounded function w(x, y) is often

interpreted as a penalty imposed on the insurer’s bankruptcy depending on the amount of

surplus prior to ruin x and the amount of deficit at ruin y.

The purpose of studying such a quantity is multiple-fold. First of all, as m(x) reduces

to ψ(x) by letting δ = 0 and w(x, y) = 1, the expected discounted penalty function is clearly

a generalization of the probability of ruin. Secondly, the function accommodates a wide

variety of quantities pertaining to the insurer’s financial conditions at the time of ruin. To

name a few, we observe that

• when w(x, y) = e−rx−sy,m(x) as a function of (δ, r, s) is a tri-variate Laplace transform

of the time of ruin τ0, the surplus prior to ruin X(τ0−) and the deficit at ruin X(τ0).
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• when δ = 0 and w(x, y) = I(x+ y ≤ z),m(x) as a function of z gives the distribution

function of the claim causing ruin.

• when w(x, y) = (K − x)+,m(x) can be used to find the price of perpetual American

put option with exercise value K.

For a complete account of the family of Gerber-Shiu functions, readers are referred to Gerber

and Shiu [21, 22, 25, 26], etc.

The traditional approach to solve the Gerber-Shiu function m(x) is through a series

of probabilistic arguments as follows. Since the time until the first claim is exponentially

distributed with mean 1/λ, a claim occurs with probability density λe−λt at time t. The

surplus immediately prior to the first claim would have accumulated to x+ ct as a result of

continuously receiving premium income at a constant rate c. If the size of first claim y is

larger than the current surplus level x + ct, ruin occurs and the penalty is exercised in an

amount determined by the surplus prior to ruin x + ct and the surplus at ruin x + ct − y.

Otherwise, the surplus remains positive and the surplus process continues as if it starts again

at x + ct− y. One should keep in mind that the Gerber-Shiu function takes account of the

time value of money by definition, the nominal values at time t have to be discounted by the

factor e−δt. Translating into mathematical terms,

m(x) =

∫ ∞

0

e−δt
{∫ ∞

x+ct

w(x+ ct, y − x− ct)dQ(y) +

∫ x+ct

0

m(x+ ct− y)dQ(y)

}
λe−λtdt.

A change of variable z = x+ ct results in

m(x) =
λ

c
Tsσ(x), (1.2.1)

where s = (λ + δ)/c and

σ(x) =

∫ x

0

m(x− y)dQ(y) +

∫ ∞

x

w(x, y − x)dQ(y).

For notational convenience, we let

ζ(x) =

∫ ∞

x

w(x, y − x)dQ(y).
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It should be noted that the differentiability and integrability are often implicitly assumed as

situation warrants. We usually treat Q(y) as a continuous distribution function with density

function q(y). However, most results in what follows can be generalized to include claim size

distributions with a countable number of discontinuities.

Applying Lemma 1.1.3, we see that the Gerber-Shiu function satisfies the following

integro-differential equation

m′(x) =
λ + δ

c
m(x) − λ

c

{∫ x

0

m(x− y)dQ(y) +

∫ ∞

x

w(x, y − x)dQ(y)

}
. (1.2.2)

In an attempt to display as many commonly used techniques as possible, we shall

employ three different approaches to solve this equation. As depicted by the proverb “All

roads lead to Rome”, it won’t be long before one is amazed to realize the hidden mathematical

consistency, which is truly, in the author’s point of view, the beauty of ruin theory.

Operator Analysis

We shall first start with the method that relies on the operators introduced in the pre-

vious section. Inspired by the pioneering work on operator analysis in Gerber and Shiu [24],

the method was recently formulated in Cai et al. [7].

Observe from Lemma 1.1.1 that the parameter of Dickson-Hipp operator can be shifted

at the cost of having an extra term involving a second order Dickson-Hipp operator. Thus

Ts{m ? q + ζ}(x) = Tρ{m ? q + ζ}(x)− (s− ρ)TρTs{m? q + ζ}(x). (1.2.3)

Note that

Tρ{q ? m+ ζ}(x) = Tρq ? m(x) + Tρζ(x) + q̃(ρ) · Tρm(x)

with the last equality from Lemma 1.1.2. Plugging it into (1.2.3), we have

m(x) =
λ

c

{
Tρq ? m(x) + Tρζ(x) + q̃(ρ) · Tρm(x)− (s− ρ)TρTs{m ? q + ζ}(x)

}
.

(1.2.4)
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Now we suppose the parameter ρ is chosen to be the non-negative root of the funda-

mental Lundberg equation

λ

c
q̃(ρ) = s − ρ. (1.2.5)

In view of (1.2.1) and the fact that constants can move through Dickson-Hipp operators, we

obtain

Tρ{q̃(ρ) ·m}(x)− Tρ{(s− ρ)Ts{m ? q + ζ}}(x) = 0.

By canceling the last two terms, (1.2.4) reduces to

m(x) =
λ

c
Tρq ? m(x) +

λ

c
Tρζ(x),

which yields the beautiful defective renewal equation

m(x) =
λπ

c

∫ x

0

m(x− y)q1(y)dy +
λ

c
Tρζ(x) (1.2.6)

with π =
∫∞

0
Tρq(y)dy and the generalized equilibrium distribution

q1(y) =
1

π
Tρq(y).

Dickson-Hipp Transform Approach

For the lack of appropriate name to summarize the method, the name is chosen to

indicate that this procedure introduced in Gerber and Shiu [22] resembles the construction

of a Dickson-Hipp transform.

We multiply both sides of (1.2.2) by e−ρx and let mρ(x) = e−ρxm(x) for notational

brevity.

m′
ρ(x) = (s− ρ)mρ(x) −

λ

c

∫ x

0

mρ(x− y)e−ρydQ(y)− λ

c
e−ρxζ(x).

Integrating both sides from 0 to z yields

c

λ
[mρ(z) −mρ(0)] =

c

λ
(s− ρ)

∫ z

0

mρ(x)dx−
∫ z

0

∫ x

0

mρ(x− y)e−ρydQ(y)dx−
∫ z

0

e−ρxζ(x)dx.
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Recall from (1.2.5) that c/λ(s − ρ) = q̃(ρ). Thus, we can rewrite the above equation as

c

λ
[mρ(z) −mρ(0)] = q̃(ρ)

∫ z

0

mρ(x)dx−
∫ z

0

∫ x

0

mρ(y)e
−ρ(x−y)q(x− y)dydx−

∫ z

0

e−ρxζ(x)dx

(1.2.7)

Interchanging the order of integration and changing the variable x− y = t in the innermost

integral gives

∫ z

0

mρ(y)e
−ρ(x−y)q(x− y)dydx =

∫ z

0

mρ(y)

∫ z

y

e−ρ(x−y)q(x− y)dxdy

=

∫ z

0

mρ(y)

∫ z−y

0

e−ρtq(t)dtdy.

Therefore, we must have

c

λ
[mρ(z) −mρ(0)] = q̃(ρ)

∫ z

0

mρ(x)dx−
∫ z

0

mρ(x)

∫ z−x

0

e−ρtq(t)dtdx−
∫ z

0

e−ρxζ(x)dx

=

∫ z

0

mρ(x)

∫ ∞

z−x
e−ρtq(t)dtdx−

∫ z

0

e−ρxζ(x)dx. (1.2.8)

Since w(x, y) is a bounded function, then there must exists an M such that

mρ(x) = e−ρxm(x) ≤Mψ(x) → 0, as x→ ∞.

Letting z → ∞ in (1.2.7) and applying the bounded convergence theorem to the first integral

on the right gives
c

λ
mρ(0) =

∫ ∞

0

e−ρxζ(x)dx.

Substituting the expression for mρ(0) in (1.2.8) and rearranging terms

mρ(z) =
λ

c

∫ z

0

mρ(z − x)

∫ ∞

x

e−ρtq(t)dtdx+
λ

c

∫ z

0

e−ρxζ(x)dx.

Multiplying both sides by eρz,

m(z) =
λ

c
eρz
∫ z

0

e−ρ(z−x)m(z − x)

∫ ∞

x

e−ρyq(y)dy +
λ

c
eρz
∫ ∞

z

e−ρxζ(x)dx

=
λ

c

∫ z

0

m(z − x)eρx
∫ ∞

x

e−ρyq(y)dy +
λ

c
eρz
∫ ∞

z

e−ρxζ(x)dx,

which is same as (1.2.6) upon rearrangement.
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Laplace Transform Approach

The Laplace transform is another technique that is widely used in ruin theory. We

now present the third derivation of the renewal equation using Laplace transforms. For more

detailed and complete account of the derivation, readers should consult with Willmot [48].

Taking Laplace transforms on both sides of (1.2.1)

m̃(u) =
λ

c

σ̃(s) − σ̃(u)

u− s

=
λ

c

σ̃(s) − ζ̃(u) − m̃(u)q̃(u)

u− s
.

Solving for m̃(u) yields

{
u− s+

λ

c
q̃(u)

}
m̃(u) =

λ

c
σ̃(s) − λ

c
ζ̃(u).

Note that the expression embraced by the brackets on the left hand side also appears in the

Lundberg equation (1.2.5). Since m̃(u) is finite for all u ≥ 0, then by letting u = ρ we must

have σ̃(s) = ζ̃(ρ). Otherwise m̃(ρ) is not well-defined.

With Lemma 1.1.1 in mind, we divide both sides by u − ρ in order to construct the

Laplace transform of a Dickson-Hipp operator.

{
u− s+ (λ/c)q̃(u)

u− ρ

}
m̃(u) =

λ

c

ζ̃(ρ) − ζ̃(u)

u− ρ
. (1.2.9)

We anticipate that this Laplace transform equation is that of a renewal equation, which

implies that it can be written as

{1 − h̃(u)}m̃(u) =
λ

c

ζ̃(ρ) − ζ̃(u)

u− ρ
. (1.2.10)

Then it remains to figure out what h(x) is. We wish to manipulate the expression in the

brackets on the left hand side of (1.2.9) so that h̃(u) can be written as a recognizable Laplace

transform of certain function.

u− s+ (λ/s)q̃(u)

u− ρ
= 1 − s− ρ − (λ/c)q̃(u)

u− ρ
.
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Therefore, we have

h̃(u) =
s− ρ− (λ/c)q̃(u)

u− ρ

=
λ

c

q̃(ρ) − q̃(u)

u− ρ

with the last equality resulted from the Lundberg equation (1.2.5).

Inserting the expression for h̃(u) into (1.2.10) and taking the inverse Laplace transform

on both sides gives

m(x)− λ

c
Tρq ? m(x) =

λ

c
Tρζ(x),

which leads to the defective renewal equation (1.2.6) upon rearrangement.

The analysis of defective renewal equations can be found in Willmot and Lin [50]. The

general solution to the equation (1.2.6) is given by

m(x) =
λ

c− λπ

∫ x

0

Tρζ(x− y)g(y)dy +
λ

c
Tρζ(x),

where g(y) is a compound geometric density function

g(y) =

∞∑

n=1

(
1 − λπ

c

)(
λπ

c

)n
q?n1 (y).

We now wrap up this section by giving a closed-form solution to the probability of ruin

in a special case that is to be seen frequently throughout the thesis.

Example 1.2.1. Special case: exponential claim size distribution

As we see from (1.2.1), the probability of ultimate ruin satisfies

ψ(x) =
λ

c
Tλ/cσ(x), (1.2.11)

where

σ(x) =

∫ x

0

ψ(x− y)dQ(y) + 1 −Q(x).
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It follows from Lemma 1.1.4 that

(
λ

c
−D)ψ(x) =

λ

c

{∫ x

0

ψ(x− y)dQ(y) + 1 −Q(x)

}
. (1.2.12)

As alluded to in the discussion of exponential convolution transform, the simplest case is to

assume that the claim size follow an exponential distribution, i.e.

Q(y) = 1 − e−βy, y ≥ 0.

Hence, (1.2.12) can be represented as

(
λ

c
−D)ψ(x) =

λ

c
{βEβψ(x) + e−βx}.

Applying Lemma 1.1.4 gives

(β + D)(
λ

c
−D)ψ(x) =

λ

c

{
βψ(x) + (β + D)e−βx

}
,

which simplifies to

ψ′′(x) + (β − λ

c
)ψ′(x) = 0, x ≥ 0. (1.2.13)

The general solution to (1.2.13) is given by

ψ(x) = Ae−(β−λ/c)x, x ≥ 0,

where A is a constant to be determined.

Substituting the general solution of ψ(x) into (1.2.11) yields

Ae−(β−λ/c)x =
λ

c
e(λ/c)x

∫ ∞

x

[
βc

λ
Ae−βy − βc

λ
Ae−(λ/c+β)y + e−(λ/c+β)y

]
dy.

By matching the coefficients of the terms involving e−(λ/c+β)y, we obtain immediately that

A =
λ

βc
.

Therefore, the probability of ultimate ruin in the classical compound Poisson model with

exponential claim size distribution is given by

ψ(x) =
λ

βc
e−(β−λ/c)x, x ≥ 0.
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1.2.2 Total Dividends Paid up to Ruin

As ruin theory evolves in recent years, there has been revived interests in dividend

problems which dated back to 1957 by an Italian probabilist and actuary Bruno De Finetti.

Rather than the penalty occurred at the time of bankruptcy, the focus of dividend problems

is to investigate the payments of dividends paid out to an insurance company’s shareholders

throughout its life time up to the time of bankruptcy. Recent papers on the development of

dividend problems in classical models can be found in Lin et al. [41], Lin and Pavlova [39],

Gerber and Shiu [22, 23, 27, 28] etc.

A typical dividend problem in the framework of the compound Poisson model can be

described as follows. It is assumed that the insurer has the obligation to pay out a constant

rate α of dividends when its surplus exceeds a level b, commonly referred to as dividend

threshold in ruin literature. Therefore, when the surplus runs below the dividend threshold,

the dynamics of the surplus process remains the same as in the classical case where the

growth of surplus is driven by the constant rate c of premium income and the surplus drops

by insurance claims Z(t). However, as the surplus reaches the dividend threshold b, the rate

of growth in surplus reduces to c−α as a result of dividend payout. The interests of such a

model is to study the expected total amount of dividends paid all the way until the time of

ruin.

In the papers mentioned above, the stream of continuous dividend payments is often

represented as a stochastic process by itself and the expected total dividends as its expecta-

tion. However, as we shall see in the next chapter, it is much more intuitive and constructive

to have this quantity defined as follows,

V (x) , Ex

[∫ τ0

0

e−δtl(Xt)dt

]
, (1.2.14)

where

l(x) =





α, x ≥ b;

0, 0 ≤ x < b.
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Note that the total dividends V (x) is obviously not a special case of the Gerber-Shiu function

defined in previous section. Nevertheless, we can apply similar probabilistic arguments to

conduct analysis of the dividends.

We start with the relatively simple case where the initial investment x exceeds the

dividend threshold b. As the time of first claim is exponentially distributed with mean 1/λ,

the surplus would reach x+(c−α)t by the time t at which an insurance claim occurs with a

chance of λe−λt. If the size of claim y is larger than the current surplus level prior to the claim

x + (c − α)t, ruin occurs immediately and no future dividend payments will be expected.

Hence we shall only consider the possibility that the insurance claim is less than x+(c−α)t

and the surplus process regenerates itself due to the strong Markov property. The current

value of future dividends is the same as the total dividends generated by the process starting

from the new surplus level V (x + (c − α)t − y). Regardless of whether ruin occurs or not,

the shareholders would have already accumulated a stream of dividend payments by time t

which resembles a continuous annuity αst. Using the law of total probability, we write

V (x) =

∫ ∞

0

e−δt

{∫ x+(c−α)t

0

V (x+ (c− α)t− y)dQ(y) + αst

}
λe−λtdt, x ≥ b.

A change of variable z = x+ (c− α)t results in

V (x) =
λ

c− α
Ts{V ? q}(x) +

α

λ+ δ
, x ≥ b, (1.2.15)

where s = (λ + δ)/(c− α).

Multiplying both sides of (1.2.15) by the operator sI − D yields

V ′(x) =
λ+ δ

c− α
V (x) − λ

c− α

∫ x

0

V (x− y)dQ(y)− α

c− α
, x ≥ b. (1.2.16)

As before, we could find at least the three approaches to turn (1.2.15) into a renewal

equation. For brevity, we shall only use the relatively concise method of operator analysis
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to obtain the result.

V (x) =
λ

c− α
[Tρ{V ? q}(x)− (s− ρ)TρTs{V ? q}(x)] + α

λ + δ

=
λ

c− α
[Tρq ? V (x) + q̃(ρ) · TρV (x) − (s− ρ)TρTs{V ? q}(x)] + α

λ + δ

In view of (1.2.15), we can expand

q̃(ρ) · TρV (x) = q̃(ρ) · Tρ
{

λ

c− α
Ts{V ? q}(x) +

α

λ+ δ

}
(x)

= (s− ρ)TρTs{V ? q}(x) + Tρ
{
αq̃(ρ)

λ + δ

}
(x)

with the last equality derived by using the Lundberg equation

λ

c− α
q̃(ρ) = s− ρ.

Since

Tρ
{
αq̃(ρ)

λ+ δ

}
(x) =

αq̃(ρ)

ρ(λ+ δ)
,

we have

V (x) =
λ

c− α

[
Tρq ? V (x) +

αq̃(ρ)

ρ(λ + δ)

]
+

α

λ+ δ

=
λ

c− α
Tρq ? V (x) +

α(s− ρ)

ρ(λ+ δ)
+

α

λ+ δ

=
λ

c− α
Tρq ? V (x) +

α

ρ(c− α)

with the second last equality resulted from the Lundberg equation.

Therefore, the expected total dividends also satisfies a defective renewal equation

V (x) =
λ

c− α

∫ x

0

V (x− y)q1(y)dy +
α

ρ(c− α)
, x ≥ b.

When the initial investment x is lower than the dividend threshold b, we need to break

down the possible scenarios into two cases: (1) If the first claim occurs before the surplus

reaches b, i.e. t < (b−x)/c, the surplus process restarts at x+ ct− y if the size of claim y is
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smaller than the current surplus level x+ ct. There has been no dividend payments by the

time t in this case. (2) If the first claim occurs after the surplus attains b, i.e. t ≥ (b− x)/c,

the surplus process must have regenerated itself at the dividend threshold b. The current

value at time (b− x)/c of future dividends paid up to ruin is given by V (b).

Applying the law of total probability, we obtain

V (x) =

∫ (b−x)/c

0

e−δt
{∫ x+ct

0

V (x+ ct− y)dQ(y)

}
λe−λtdt+ e−δ(b−x)/cV (b)

∫ ∞

(b−x)/c
λe−λtdt,

0 ≤ x < b.

Making changes of variables results in

V (x) =
λ

c
es1x

∫ b

x

e−s1zV ? q(z)dz + e−s1(b−x)V (b), (1.2.17)

where s1 = (λ + δ)/c and s2 = (λ+ δ)/(c− α). Rearranging terms yields

V (x) =
λ

c
Ts1{V ? q}(x)− λ

c
es1x

∫ ∞

b

e−s1zV ? q(z)dz + e−s1(b−x)V (b)

=
λ

c
Ts1{V ? q}(x) + e−s1(b−x)[V (b) − λ

c
Ts1{V ? q}(b)].

Applying the operator s1I − D to both sides yields

V ′(x) =
λ+ δ

c
V (x) − λ

c

∫ x

0

V (x− y)dQ(y), 0 ≤ x < b. (1.2.18)

We now give an explicit solution for the special case where the claim size distribution

Q(y) = 1 − e−βy and δ > 0.

Example 1.2.2. Special case: exponential claim size distribution

Multiplying both sides of (1.2.16) by the operator βI + D gives

V ′′(x) + (β − λ + δ

c− α
)V ′(x) − δβ

c− α
V (x) +

αβ

c− α
= 0, x ≥ b.

The general solution to the ordinary differential equation is given by

V (x) =
α

δ
+A1e

γ1x +A2e
γ2x,
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where

γ1 =
(λ + δ)− β(c− α) −

√
[β(c− α) − (λ+ δ)]2 + 4δβ(c− α)

2(c − α)
,

γ2 =
(λ + δ)− β(c− α) +

√
[β(c− α) − (λ + δ)]2 + 4δβ(c− α)

2(c− α)
.

It follows from the definition of V (x) in (1.2.14) that V (x) ≤ α/δ. Hence the coefficient

A2 = 0 as γ2 is strictly positive. Multiplying both sides of (1.2.18) by βI + D gives

V ′′(x) + (β − λ+ δ

c
)V ′(x)− δβ

c
V (x) = 0, 0 ≤ x < b,

which admits the solution

V (x) = B1e
η1x +B2e

η2x,

where

η1 =
(λ+ δ) − βc−

√
[βc− (λ + δ)]2 + 4δβc

2c
,

η2 =
(λ+ δ) − βc+

√
[βc− (λ+ δ)]2 + 4δβc

2c
.

Substituting the solution into (1.2.18) and equating the coefficients of terms involving e−βx

to zero gives

B1

β + η1
+

B2

β + η2
= 0.

By letting x→ b in both (1.2.15) and (1.2.17), we can see that

V (b−) = V (b+),

which implies that

B1e
η1b +B2e

η2b =
α

δ
+A1e

γ1b.

Substituting the solutions into (1.2.16) and equating the coefficients of the terms involving

e−βx to zero gives
B1e

η1b

β + η1
+
B2e

η2b

β + η2
+
A1e

γ1b

β + γ1
+

α

βδ
= 0.
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Solving the system of equations and inserting the coefficients into the solution, we have

V (x) =
αγ1

δβ

(β + η1)e
η1x − (β + η2)e

η2x

(η2 − γ1)eη2b − (η1 − γ1)eη1b
, 0 ≤ x < b, (1.2.19)

V (x) =
α

δ
[1 − eγ1(x−b)] + V (b)eγ1(x−b), x ≥ b. (1.2.20)

There are two interesting phenomena that attract our attention. (1) Even though the

expected discounted penalty m(x) and expected total dividends V (x) are distinct quantities,

it is peculiar to see that they all satisfy surprisingly similar homogeneous or inhomogeneous

integro-differential equations given in (1.2.2), (1.2.16) and (1.2.18). The similarity among

these equations may suggest that these quantities belong to the same solution system. (2)

All the solution methods developed for the Gerber-Shiu function see their applications in

solving the expected total dividends. It might be an indication that we have been dealing

with different aspects of a more general form.

A question arises naturally - are they members of a larger family of functions?

1.2.3 Generalized Gerber-Shiu Function

We now give an affirmative answer to this question with a slightly heuristic argument.

The purpose of this section is to show that a general form of function can be used to reconcile

the Gerber-Shiu function and the total discounted dividends paid up to ruin. Readers will

find rigorous proofs for more general underlying risk processes in later chapters.

Such a function will be called a generalized Gerber-Shiu function throughout the thesis.

It is constructed on the basis of total discounted dividends as follows.

H(x) , Ex

[∫ τd

0

e−δtl(Xt)dt

]
, x ≥ d, (1.2.21)

where the constant δ ≥ 0 is the discounting force of interest, the stopping time τd of the real

valued stochastic process X = {X(t); t ≥ 0} is given by

τd = inf{t|X(t) < d}, d ∈ R,
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with the convention that inf ∅ = ∞ and l(·) is a B(R)-measurable function. As it shall be

clear in later chapters, we would refer to τd as the time of default to be distinguished from τ0,

the time of ruin. The measurable function l(·) will be called cost function, as it has a natural

interpretation of representing business costs. Thereby, in the context of ruin problems, the

generalized Gerber-Shiu function of the form (1.2.21) can be viewed as the expected total

discounted business costs incurred up to the time of default.

The derivation of solution to a generalized Gerber-Shiu function always involves the

infinitesimal generator of the underlying risk process X.

Definition 1.2.1. The infinitesimal generator of a stochastic process X is an operator A,

which is defined on a suitable function f by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
, x ∈ R. (1.2.22)

The set of functions f such that the limit exists for x ∈ R is denoted by D(A), called the

domain of the generator A.

We can easily obtain the infinitesimal generator of the risk process described by the

classical compound Poisson model. By the definition of compound Poisson process, the

number of claims up to time t is given by

P(Nt = n) =
(λt)xe−λt

n!
, n = 0, 1, 2, · · · .

Therefore, there is no claim by the time t with the probability of e−λt = 1 − λt + o(t), one

claim by time t with the probability of λte−λt = λt+ o(t) and more than one claim by time

t with the probability 1 − e−λt − λte−λt = o(t).

Had there been no claim, the surplus process would have been accumulated to x+ ct

by time t. Otherwise, the surplus process would be at x + ct − y by time t if the size of a
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single claim occurred before t is given by y. Combining all those infinitesimally small terms,

we can write by the total law of probability

Ex[f(Xt)] = (1 − λt)f(x+ ct) + λt

∫ ∞

0

f(x+ ct− y)dQ(y) + o(t).

We are now ready to derive the infinitesimal generator of the classical compound Pois-

son model.

Af(x) = lim
t↓0

(1 − λt)f(x+ ct) + λt
∫∞

0
f(x+ ct− y)dQ(y)− f(x) + o(t)

t

= lim
t↓0

{
f(x+ ct) − f(x)

t
+
λtf(x + ct)

t
+
λt
∫∞

0
f(x + ct− y)dQ(y)

t

}
,

which yields that

Af(x) = cf ′(x) − λf(x) + λ

∫ ∞

0

f(x− y)dQ(y). (1.2.23)

Assume that H ∈ D(A). Since the generalized Gerber-Shiu function is defined on [d,∞), we

must have

AH(x) = cH ′(x)− λH(x) + λ

∫ x−d

0

H(x− y)dQ(y), x ≥ d. (1.2.24)

On the other hand, with the specific form of the generalized Gerber-Shiu function, we

see by definition and change of variables that

Ex[H(Xt)] = Ex

[∫ τd−t

0

e−δsl(Xs+t)ds

]
= Ex

[∫ τd

t

e−δ(u−t)l(Xu−t)du

]
= Ex

[
eδt
∫ τd

t

e−δsl(Xs)ds

]
.

Assuming all necessary conditions are satisfied, we derive that

lim
t↓0

Ex[H(Xt)] −H(x)

t
= Ex

[
lim
t↓0

eδt
∫ τd
t
e−δsl(Xs)ds−

∫ τd
0
e−δsl(Xs)ds

t

]

= Ex

[
d

dt

{
eδt
∫ τd

t

e−δsl(Xs)ds

}∣∣∣∣
t=0+

]

= δEx

[∫ τd

0

e−δsl(Xs)ds

]
− l(x)

= δH(x) − l(x). (1.2.25)
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In view of (1.2.22) and (1.2.25), we now arrive at the equation that is absolutely

essential to finding the solution of the generalized Gerber-Shiu function,

AH(x)− δH(x) + l(x) = 0, x ≥ d. (1.2.26)

As we shall see in later chapters, the equation holds true consistently for a great variety of

risk processes, which is, in the author’s point of view, a further manifestation of the beauty

of ruin theory.

In the classical compound Poisson model, we set the level of default d = 0. In view of

(1.2.24) and (1.2.26), we conclude that any generalized Gerber-Shiu function would satisfy

the integro-differential equation

cH ′(x) − (λ+ δ)H(x) + λ

∫ x

0

H(x− y)dQ(y) + l(x) = 0, x ≥ 0. (1.2.27)

Comparing (1.2.2) and (1.2.27), one might think that the Gerber-Shiu function m(x)

is a special case of the generalized Gerber-Shiu function H(x) where the cost function

l(x) = λ

∫ ∞

x

w(x, y − x)dQ(y).

Such a conjecture will be proven to be valid in Section 2.3.5.

In consideration of dividend threshold strategy, we can easily show that

AH(x) =





(c− α)H ′(x) − λH(x) + λ
∫ x−d

0
H(x− y)dQ(y), x ≥ b

cH ′(x) − λH(x) + λ
∫ x−d

0
H(x− y)dQ(y), 0 ≤ x < b.

(1.2.28)

It follows immediately by comparing (1.2.14) and (1.2.21) that the dividends paid up to ruin

V (x) is obviously a special case of the generalized Gerber-Shiu function H(x) by choosing

l(x) =





α, x ≥ b;

0, 0 ≤ x < b.
(1.2.29)

Substituting (1.2.28) and (1.2.29) into (1.2.26) reproduces the system integro-differential

equations (1.2.16) and (1.2.18) satisfied by V (x).
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As we have seen so far, this new approach involving generalized Gerber-Shiu function

provides a short-cut to the solution equations once the prior knowledge of infinitesimal

generator and cost function is acquired. In fact, infinitesimal generators of the vast majority

of risk processes are very well-studied and readily available on many standard textbooks.

It only remains for us to find appropriate cost function for various specific cases of the

generalized Gerber-Shiu function.

In the next few chapters, we will be looking at more general classes of risk processes,

which are all essentially generalizations in one way or another of the classical compound

Poisson risk model. Many of these existing risk models are well-studied using conventional

approaches with the objectives of finding solutions to either the probability of ruin, Gerber-

Shiu function or total dividends paid up to ruin. In an attempt to further develop the

new tool of generalized Gerber-Shiu function, we shall prove the formula (1.2.26) for each

individual class of underlying risk processes. We would also investigate cost functions for a

wide range of traditional and new ruin-related quantities and demonstrate how the formula

provides a fast-track to the solutions.
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Chapter 2

Piecewise-deterministic Compound

Poisson Risk Models

The first generalization of the compound Poisson model to be discussed in the thesis

is introduced to meet the practical needs of incorporating in risk models interest return,

dividend payments, etc. We will start with a heuristic motivation of the generalization from

the classical compound Poisson model and then define a more general class of processes

called the piecewise-deterministic compound Poisson processes, and the generalized Gerber-

Shiu function in rigorous mathematical terms. As a special case, we shall revisit the classical

compound Poisson model using the newly developed approach as opposed to applying the

traditional approaches introduced in Chapter 1. Later on, we shall employ the new approach

in a few more examples of piecewise-deterministic compound Poisson risk models, where the

efficiency and versatility of the approach becomes more apparent.
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2.1 Piecewise-deterministic Markov Process

The class of piecewise-deterministic Markov processes (PDMP) was introduced by

Davis [14], and has ever since drawn increased interests from researchers from a great variety

of areas in applied probability and engineering. Among its early natural applications, the

PDMP risk models were first studied by Dassios and Embrechts [13] to take into account

interests and inflation in the study of insurance surplus processes. Under the PDMP frame-

work, many martingale tools were brought in to deal with ruin-related quantities in far more

general settings than the classical Poisson risk model.

Despite its potential in application, there has been relatively sparse PDMP presence in

actuarial literature. To make the thesis self-contained and our results comparable to those

well-known in the actuarial literature, we shall restrict our attention to a small class of the

PDMP model, namely the piecewise-deterministic compound Poisson process (PDCP for

short) and restate some fundamental properties for future references. For a comprehensive

introduction to PDMPs, readers are referred to Davis [14], [15] and Rolski et al. [44].

In the classical compound Poisson model, the dynamics of a surplus process {U(t), t ≥

0} is given by

dU(t) = cdt− dZ(t) ,

where the insurer’s initial surplus u and the premium income rate c are given and the

aggregate claims Z(t) =
∑N(t)

i=1 Yi is a random sum of insurance claims defined as follows.

The occurrence of insurance claims follow a Poisson process {N(t), t ≥ 0} with intensity

rate λ. All claims Y1, Y2, · · · are mutually independent and identically distributed with the

common distribution Q(y) and mean κ. As shown in Figure 2.1, the geometric feature of

this model is the linear growth in surplus in between any two consecutive claims.

To make the surplus process more adaptable to various realistic situations, we attempt

to extend the risk models as far as we can while preserving the most essential Markov prop-

erties enjoyed by the classical compound Poisson model. Instead of assuming independent
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Figure 2.1: Sample path of classical compound Poisson model

structures, we want the claim sizes to have certain dependency with the actual value of

surplus at the time of claim arrivals. There is also a need to allow for non-linear accumula-

tion of surplus in the period between any two consecutive claims as long as some regularity

conditions are imposed to ensure the Markov property. Combining these requests, we see

that one of the candidate models that rise to the challenge is the piecewise-deterministic

compound Poisson process.

We assume as given a probability space (Ω,F , P ) satisfying the usual hypothesis.

Definition 2.1.1. A (standard, one-dimensional) Piecewise-deterministic Compound Pois-

son Process is a real-valued adapted càdlàg process X = {Xt,Ft; 0 ≤ t < ∞}, defined on

probability space (Ω,F ,P) with the properties that

1. X(0) = x, a.s.;

2. Let T0 = 0 and T1, T2, T3, · · · denote the sequence of jump points. Then the counting

process defined by N(t) =
∑∞

i=1 I(Ti ≤ t) follows a homogeneous Poisson process with
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Figure 2.2: Sample path of a piecewise-deterministic compound Poisson model

intensity rate λ;

3. The jump sizes ∆X(Tk) = X(Tk) − X(Tk−) for k = 1, 2, 3, · · · are determined by a

transition measure Q
(
·;X(Tk−)

)
;

4. The continuous pieces {Xt;Tk ≤ t < Tk+1, k = 0, 1, 2, · · · } are deterministically gov-

erned by a vector field X.

The triplet (X, λ,Q) are called the local characteristics of the PDCP. It should be

noted that if X is a càdlàg process there exists a sequence of {Tn}∞n=1 of stopping times of

{Ft} which exhausts the jumps of X (c.f. Proposition 2.26 Karatzas and Shreve [31]). The

second property that enumerates the sequence of jump points is well justified.

Albeit a rather abstract concept from differential geometry, the vector field appears

naturally in many areas including ruin theory. For instance, in the compound Poisson model

with investment, apart from the reduction caused by insurance claims, the instantaneous

increase in the surplus process is attributable to the present surplus amount times the force
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of interest plus the instantaneous premium income,

dU(t) = [c+ rU(t)]dt,

which means for any continuously differentiable function f(x),

d

dt
f
(
U(t)

)
= [c+ rU(t)]

d

dx
f
(
U(t)

)
= Xf

(
U(t)

)
,

where the operator X = (c+ rx)d/dx is known as the vector field.

As one shall see in later sections, the vector field X in the majority, if not all, of the

applications in ruin theory met the following requirement. Hence we will assume throughout

the chapter that the vector field X in the definition of PDCP can always be represented as

follows.

For a given finite partition Πn = {b0 = x, b1, · · · , bn = ∞} of [x,∞), g(x) is Lipschitz

continuous on each subinterval of the partition [bi, bi+1) for any i = 0, 1, · · · , n. Then the

ordinary differential equation

d

dt
X(t) = g

(
X(t)

)
, X(0) = x ∈ R, (2.1.1)

uniquely determines a deterministic process, known as a flow or integral curve and in con-

vention denoted by φ(t, x) or φx(t) for brevity. Hence for any continuously differentiable

function f(x),

d

dt
f
(
φx(t)

)
= Xf

(
φx(t)

)
, (2.1.2)

where the corresponding vector field is given by

Xf(x) = g(x)
d

dx
f(x). (2.1.3)

In various applications, we are often given information regarding the flow φ(t, x). Then the

corresponding vector field is obtainable from (2.1.1) or (2.1.3).

There are two properties of the flow that of particular interest to us.
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1. The map x 7→ φ(t, x) is one-to-one and onto; Its inverse with respect to x, φ−1(t, x) =

φ(−t, x) for all x ∈ R.

2. The family {φ(t, x)}t∈R is a group. i.e. for any t, s ∈ R, φ(t+ s, x) = φ(t, φ(s, x)) for

all x ∈ R.

As we have seen in Chapter 1, it is absolutely essential in the analytical arguments

that a process regenerates itself at a certain point, which in mathematical terms is the strong

Markov property. We can not define a strong Markov property without properly defining a

set of measures under which the process “restarts”.

Definition 2.1.2. A Piecewise-deterministic Compound Poisson Family is a real-valued

adapted càdlàg process X = {Xt,Ft; 0 ≤ t < ∞}, defined on probability space (Ω,F),

together with a family of probability measures {Px}x∈R on (Ω,F), such that

1. for each A ⊆ R, the mapping x 7→ Q(A;x) is measurable;

2. Px[X(0) = x] = 1, for any x ∈ R;

3. under each Px, the process X is a piecewise-deterministic compound Poisson process

starting at x.

Since all quantities to be discussed are functionals of the PDCPs, our analysis heavily

relies on the strong Markov property proved in Theorem 25.5 of Davis [15].

Theorem 2.1.1. Let X be a piecewise-deterministic compound Poisson family, τ be a stop-

ping time with respect to {Ft; t ≥ 0} such that τ < ∞ a.s. and f be a bounded measurable

function. Then

Ex[f(Xτ + s)|Fτ ] = EXτ [f(Xs)], for all s ≥ 0.
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As we alluded to in Chapter 1, many quantities of interest in ruin theory and finan-

cial mathematics can be solved via differential equations involving generators. However, as

pointed out in Davis [15], it is rather difficult to characterize the domain of the infinitesi-

mal generator defined in Definition 1.2.1 for PDMPs, but there are easily checked sufficient

conditions for the domain of another type of generator, which also characterizes a stochastic

process, called extended generator.

Definition 2.1.3. Suppose there exists a measurable function h such that t 7→ h(Xt) is

integrable Px-a.s. for each x ∈ R and the process

f(Xt) − f(x) −
∫ t

0

h(Xs)ds

is a local martingale. Then we write h = Af and A is called the extended generator of the

process X = {Xt; t ≥ 0}. The set of functions f such that the above property holds, denoted

by D(A), is called the domain of extended generator A.

Remark 2.1.1. 1. It can be shown that if f ∈ D(Â) where Â is the infinitesimal generator

of X, then

f(Xt) − f(x) −
∫ t

0

Âf(Xs)ds

is a martingale, hence is a local martingale. In other words, the extended generator A

is indeed an extension of Â in that D(Â) ⊂ D(A) and Âf = Af for all f ∈ D(Â).

2. If f is continuously differentiable, then it follows from (2.1.2)

f(φx(t)) − f(x) −
∫ t

0

Xf(φx(s))ds = 0 (2.1.4)
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which is a trivial martingale. Thus X is the extended generator of the deterministic

process φx(t). In fact its domain D(X) is the set of all measurable functions f such

that t 7→ f(φx(t)) is absolutely continuous.

We apply Theorem 26.14 in Davis [15] to give the sufficient conditions for checking the

membership of D(A) and the extended generator for PDCPs.

Theorem 2.1.2. Let {Xt; 0 ≤ t < ∞} be a piecewise-deterministic compound Poisson

process. Then the domain D(A) of the extended generator A of {Xt} consists of functions

such that

1. The function t 7→ f
(
φx(t)

)
is absolutely continuous for all initial values x ∈ R;

2. Ex
[∑n

k=1 |f(X(Tk)) − f(X(Tk−))|
]
<∞, for n = 1, 2, ...

And for each f ∈ D(A), Af is given by

Af(x) = Xf(x) − λf(x) + λQf(x), (2.1.5)

where

Qf(x) =

∫ ∞

−∞
f(y)Q(dy;x).

Another process that arises frequently in ruin theory is the associated counting process

defined by

N(t, A) =
∞∑

i=1

I(Ti ≤ t)I(X(Ti) ∈ A), for A ∈ B(R) .

This process records the frequency of the underlying piecewise-deterministic compound Pois-

son process being in A as a result of each jump by the time t. An appealing fact about the

associated counting process is that its compensator can be written as

Ñ (t, A) = λ

∫ t

0

Q(A;Xs)ds.
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The following theorem elucidates the connection between the associated counting process

and its compensator process.

Theorem 2.1.3. For all nonnegative Ft-adapted predictable process Ct,

Ex

[∫ ∞

0

∫ ∞

−∞
C(s)N(ds, dy)

]
= Ex

[∫ ∞

0

∫ ∞

−∞
C(s)Ñ(ds, dy)

]
.

The proof can be found in Brémaud [4], Chapter II Section 2.

2.2 Generalized Gerber-Shiu Functions

From this point on, we start to look at piecewise-deterministic compound Poisson risk

models, where an insurer’s surplus is driven by a real valued PDCP process X = {Xt, 0 ≤

t <∞}. The sequence of jump points {Tn, n = 1, 2, · · · } represents the arrivals of insurance

claims, whereas the measureQ determines changes in surplus caused by claims or unexpected

income. The initial investment, which is represented by the initial value of the PDCP, is set

to be x.

The primary focus of the thesis is given to a generalized Gerber-Shiu function defined

as follows,

H(x) = Ex

[∫ τd

0

e−δtl(Xt)dt

]
, (2.2.1)

where δ ≥ 0, the cost function l(·) is B(R)-measurable and the time of default τd is defined

by

τd = inf{t|X(t) < d}, d ∈ R

with the convention that inf ∅ = ∞. The intuitive interpretation of the generalized Gerber-

Shiu function is the expected present value of all future business costs arising from maintain-

ing the surplus process up to the time of default. Conventionally, when d = 0, τ0 is called

the time of ruin.
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As it shall become clear shortly, the advantage of analyzing the generalized Gerber-Shiu

function is that many ruin-related functionals of the surplus process can be accommodated in

such a unified form, which can be exploited systematically from integro-differential equations

associated with the extended generators. We use the arguments similar to the ones given in

Theorem 32.2 of Davis [15] to prove the following major result.

Theorem 2.2.1. Suppose l(x) is continuous on [d,∞) except for a countable set of dis-

continuities D and that H defined in (2.2.1) is bounded, then H is continuous on [d,∞),

differentiable on [d,∞)\D ∪ {b1, b2, · · · , bn} and satisfies

AH(x) − δH(x) + l(x) = 0, x ≥ d, x 6∈ D ∪ {b1, b2, · · · , bn} . (2.2.2)

Proof. It is trivial to prove that T1 ∧ t is an Ft-stopping time. Let y = XT1∧t. Since the

function t 7→ l(φx(t)) is integrable on the interval [0, ε], for any t ∈ [0, ε], we must have

H(x) = Ex

[∫ T1∧t

0

e−δsl(Xs)ds

]
+ Ex

[∫ τd

T1∧t
e−δsl(Xs)ds

]
.

Recall from Theorem 2.1.1 that if we define Ys = XT1∧t+s, then Y = {Ys, 0 ≤ s < ∞} is a

PDCP starting at y adapted to {Hs = FT1∧t+s, 0 ≤ s < ∞}. Define τYd = inf{t|Y (t) < d}.

Since Y has the same distribution under Py as X under Px, we must have τYd = τd − T1 ∧ t.

Therefore,

Ex

[∫ τd

T1∧t
e−δsl(Xs)ds

]
= Ex

{
Ey

[∫ τd

T1∧t
e−δsl(Xs)ds|XT1∧t = y

]}

= Ex

{
e−δ(T1∧t)Ey

[∫ τd−T1∧t

0

e−δsl(Ys)ds

]}

= Ex

{
e−δ(T1∧t)Ey

[∫ τY
d

0

e−δsl(Ys)ds

]}
= Ex

[
e−δ(T1∧t)H(XT1∧t)

]
.
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Note that under Px, T1 follows the exponential distribution with parameter λ and whenever

s < T1, we have the deterministic sample path Xs = φx(s). Therefore,

Ex

[∫ T1∧t

0

e−δsl(Xs)ds

]
= Ex

[
I(t < T1)

∫ t

0

e−δsl(Xs)ds

]
+ Ex

[
I(t ≥ T1)

∫ T1

0

e−δsl(Xs)ds

]

= e−λt
∫ t

0

e−δsl
(
φx(s)

)
ds +

∫ t

0

λe−λs
∫ s

0

e−δul
(
φx(u)

)
du ds

=

∫ t

0

e−(λ+δ)sl
(
φx(s)

)
ds

with the last equality from integration by parts. On the other hand,

Ex
[
e−δ(T1∧t)H(XT1∧t)

]
= Ex

[
I(t < T1)e

−δtH(Xt)
]
+ Ex

[
I(t ≥ T1)e

−δT1H(XT1)
]

= Ex
[
I(t < T1)e

−δtH(Xt)
]
+ Ex

[
I(t ≥ T1)e

−δT1Ex
[
H(XT1)|FT1−

]]

= Ex
[
I(t < T1)e

−δtH(Xt)
]
+ Ex

[
I(t ≥ T1)e

−δT1Ex
[
H(XT1)|XT1−

]]

with the last equality from the strong Markov property. Since Q determines the jump

mechanism, for any z ≥ d,

Ex [H(XT1)|XT1− = z] =

∫ ∞

−∞
H(u)Q(du; z).

Together with the fact that z 7→ Q(A; z) is B(R)-measurable, we have

Ex
[
I(t ≥ T1)e

−δT1Ex
[
H(XT1)|XT1−

]]
= Ex

[
I(t ≥ T1)e

−δT1QH(XT1−)
]
.

Note that when t < T1, the PDCP X remains in the deterministic piece. Thus we can

simplify that

Ex
[
I(t < T1)e

−δtH(XT1∧t)
]

= e−(λ+δ)tH
(
φx(t)

)
+

∫ t

0

λe−(λ+δ)sQH
(
φx(s)

)
ds.
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Therefore, putting all the pieces together, we have

H(x) =

∫ t

0

e−(λ+δ)s
[
l
(
φx(s)

)
+ λ QH

(
φx(s)

) ]
ds + e−(λ+δ)tH

(
φx(t)

)
. (2.2.3)

Since all the elements involving φx(s), s ∈ [0, t] are deterministic with respect to the time

argument s, we shall adopt a simpler notation f?(s) = f
(
φx(s)

)
. Thus, (2.2.3) can be written

as

H?(0) =

∫ t

0

e−(λ+δ)s [l?(s) + λ QH?(s) ] ds+ e−(λ+δ)tH?(t),

i.e.

H?(t) =

∫ t

0

e(λ+δ)(t−s)g?(s)ds+ e(λ+δ)tH?(0), (2.2.4)

where for notational convenience g?(s) = −l?(s) − λ QH?(s). Note that

∫ t

0

(λ+ δ)H?(s)ds =

∫ t

0

∫ s

0

(λ+ δ)e(λ+δ)(s−u)g?(u) du ds +

∫ t

0

(λ+ δ)e(λ+δ)sH?(0) ds

=

∫ t

0

g?(u)

∫ t

u

(λ + δ)e(λ+δ)(s−u)ds du + e(λ+δ)tH?(0) −H?(0)

=

∫ t

0

g?(u)e(λ+δ)(t−u)du −
∫ t

0

g?(u) du+ e(λ+δ)tH?(0) −H?(0).

The boundedness of H(x) allows the change of order of integrations. Substituting the ex-

pression for H?(t) from (2.2.4) into above equation, we have hence shown that

H?(t) −H?(0) =

∫ t

0

(λ + δ)H?(s) ds +

∫ t

0

g?(s) ds,

i.e.

H(φx(t))−H(x) =

∫ t

0

(λ + δ)H(φx(s)) ds −
∫ t

0

[
l(φx(s)) + λ QH(φx(s))

]
ds. (2.2.5)
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Hence H?(t) is absolutely continuous for all x ≥ d, which in turn implies H(x) is absolutely

continuous for all x ≥ d as φx(t) is differentiable. Since there exists a real number M such

that H(x) < M for all x, then

Ex

[
n∑

k=1

|H(Xk) −H(Xk−)|
]
≤ 2Mn <∞ for n = 1, 2, 3, · · ·

It follows from Theorem 2.1.2 that H(x) ∈ D(X).

For any z ≥ x, there must be a t ≥ 0 such that z = φ(t, x), which by the first property

of the flow determines that x = φ(−t, z). By the second property of the flow, we must have

for any 0 ≤ s ≤ t,

φ(s, x) = φ(s, φ(−t, z)) = φ(s− t, z).

Hence we can write that

H(z) −H(φz(−t)) =

∫ t

0

(λ+ δ)H(φz(s− t))ds−
∫ t

0

[
l(φz(s− t)) + λ QH(φz(s − t))

]
ds

=

∫ 0

−t
(λ+ δ)H(φz(r))dr −

∫ 0

−t

[
l(φz(r)) + λ QH(φz(r))

]
dr.

Since x is chosen arbitrarily, we would have

H(x) −H(φx(−t)) =

∫ 0

−t
(λ + δ)H(φx(r))dr −

∫ 0

−t

[
l(φx(r)) + λ QH(φx(r))

]
dr. (2.2.6)

It follows by (2.2.5) that

lim
t→0

H(φx(t)) −H(x)

t
= lim

t→0
(λ+ δ)H(φx(t))− l(φx(t))− λ QH(φx(t)).

Similarly from (2.2.6) that

lim
t→0

H(x) −H(φx(−t))
t

= lim
t→0

(λ+ δ)H(φx(−t))− l(φx(−t))− λ QH(φx(−t)).
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Since

lim
t→0

H(φx(t)) −H(x)

t
= lim

t→0

H(φx(t))−H(x)

φx(t)− x
lim
t→0

φx(t) − x

t

= g(φx(0+)) lim
t→0

H(φx(t)) −H(x)

φx(t) − x
,

lim
t→0

H(x) −H(φx(−t))
t

= lim
t→0

H(x)−H(φx(−t))
x− φx(−t)

lim
t→0

x− φx(−t)
t

= g(φx(0−)) lim
t→0

H(x) −H(φx(−t))
x− φx(−t)

,

it is obvious that H(x) is differentiable where both l(x) and g(x) are continuous.

Recall from (2.1.4) that

H(φx(t))−H(x) =

∫ t

0

XH(φx(s))ds. (2.2.7)

In view of (2.2.5) and (2.2.7), we obtain

XH(x) = (λ+ δ)H(x) − l(x)− λQH(x), x ≥ d, x 6∈ D ∪ {b1, b2, · · · , bn},

which can be simplified as (2.2.2) according to (2.1.5).

The theorem shows that by choosing specific cost functions we can immediately ob-

tain integro-differential equations for ruin-related quantities for a great variety of processes

determined by different settings of (X, λ,Q). Then it remains to solve the specific integro-

differential equations subject to certain boundary conditions in order to obtain the quantities

of interest.

Remark 2.2.1. Note that by definition H(x) = 0 if x < d. Therefore, we can see that

QH(x) =

∫ ∞

d

H(y)Q(dy;x). (2.2.8)
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If we further assume that there would be only negative jumps due to insurance claims whose

distribution is independent of the current surplus level, then with a slight abuse of notation we

use Q as a point distribution function as opposed to the measure function originally defined.

QH(x) =

∫ x

d

H(y)dQ(x− y) =

∫ x−d

0

H(x− y)dQ(y) (2.2.9)

with the last equality resulted from a change of variable.

2.3 Classical Compound Poisson Model

The shifted compound Poisson process is obviously a simple example of PDCP. We

now revisit the classical compound Poisson risk model in the context of PDCP.

Recall that the sample path in between two consecutive claims is continuous and lin-

early determined by the insurance premium rate c, i.e.

d

dt
X(t) =

d

dt
(x+ ct) = c. (2.3.1)

From (2.1.1), we must have g(·) = c, which implies from (2.1.3) that the extended generator

of the deterministic path is given by

X = c
d

dx
.

Note that the event of ruin occurs at the first time the surplus falls below zero. Thus the

stopping time of interest to us is the time of ruin with the level of default set at d = 0.

Therefore, the extended generator of the classical compound Poisson risk model is given by

AH(x) = cH ′(x) + λ

∫ x

0

H(x− y)dQ(y)− λH(x), x ≥ 0. (2.3.2)

2.3.1 Total Dividends Paid up to Ruin by Threshold

The dividend threshold strategy requires that once the surplus reaches the threshold

level b, dividends should be paid out at the rate of α to the insurance company’s shareholders,
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which means the deterministic path remains linear but with a reduced slope c − α, where

α ∈ (0, c). Therefore, when the dividend threshold is imposed, the extended generator of the

deterministic process changes to

X =





c d/dx, if 0 ≤ x < b,

(c− α)d/dx, if x ≥ b.

Figure 2.3: Sample path of compound Poisson model with dividend threshold

We are interested in the expected present value of dividends paid up to the time of

ruin with the threshold strategy, defined by

V (x; b) = Ex

[∫ τ0

0

e−δtl
(
X(t)

)
dt

]
, x ≥ 0,

where δ > 0 and the cost function is given by

l(x) =





α, if x ≥ b.

0, if 0 ≤ x < b.
(2.3.3)

Since l(x) is a bounded function, it is easy to see that V (x; b) is also bounded. In view

of (2.2.2), (2.3.2) and (2.3.3), we can quickly obtain the integro-differential equations for

dividends paid up to ruin V (x; b) expected in the classical model

cV ′(x; b)− (λ + δ)V (x; b) + λ

∫ x

0

V (x− y; b)dQ(y) = 0, 0 < x < b,
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and

(c− α)V ′(x; b) − (λ + δ)V (x; b) + λ

∫ x

0

V (x− y; b)dQ(y) + α = 0, x > b,

which are precisely the equation (1.2.16) and (1.2.18) in Chapter 1 obtained through tradi-

tional probabilistic arguments. Hence we have so far demonstrated the consistency between

the traditional approach discussed in Chapter 1 and the newly proposed approach.

2.3.2 Total Dividends Paid up to Ruin by Barrier

With the dividend threshold strategy, an insurer has the responsibility to pay out a

certain portion of its premium income as dividends once the surplus reaches the threshold

level. Hence the dividend rate α takes value in (0, c). We now consider the extreme case

where the dividend rate α is set to be the premium rate c, which means any further premium

income would be paid out completely and the surplus would be capped at the level where

the dividend payment begins. Such a level is often referred to as dividend barrier, which

we shall denote by b0 to be distinguished from the dividend threshold. For more detailed

discussion of dividend barrier strategies, readers are referred to Lin et al. [41] and Gerber

and Shiu [27].

Hence the extended generator in this case becomes

X =





c d/dx, if 0 ≤ x < b0,

0, if x = b0.

Note that the second part of the generator uniquely determines the trivial deterministic

process

X(t) = b0,

given that X(0) = b0, which corresponds to the sample path at the barrier level prior to an

insurance claim.
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It would be interesting to find out the expected present value of dividends paid up to

the time of ruin with the barrier strategy, defined by

V (x) = Ex

[∫ τ0

0

e−δtl
(
X(t)

)
dt

]
, 0 ≤ x ≤ b0, (2.3.4)

where δ > 0 and the cost function is given by

l(x) =





c, if x = b0.

0, if 0 ≤ x < b0.

Since V (x) ≤ c/δ, it follows from Theorem 2.2.1 that

cV ′(x)− (λ + δ)V (x) + λ

∫ x

0

V (x− y)dQ(y) = 0, 0 < x < b0. (2.3.5)

To find explicit solutions to the above integro-differential equation, we often need an

extra boundary condition to determine an unknown coefficient.

Corollary 2.3.1. With the dividend barrier strategy, the function V (x) defined in (2.3.4)

satisfies the following boundary condition

AV (b0) − δV (b0) + l(b0) = 0. (2.3.6)

Proof. Letting x = b0 in the proof of Theorem 2.2.1, we can obtain (2.2.5) for the trivial

integral curve φb0(t) = b0. Hence

V (b0) − V (b0) = (λ + δ)V (b0)t− [l(b0) + λQV (b0)]t.

Since AV (b0) = −λV (b0) + λQV (b0) in the case of dividend barrier strategy, (2.3.6) is

obtained upon rearrangement.

This boundary condition (2.3.6) is intentionally written in the form which would con-

form with those for other models in later chapters. As we have seen in the proof, in the
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classical compound Poisson model, (2.3.6) reduces to

V (b0) =
c

λ+ δ
+

λ

λ+ δ

∫ b0

0

V (b0 − y)dQ(y).

Letting x→ b0 in (2.3.5) and substituting in the boundary condition, we have

V ′(b0−) =
λ + δ

c
V (b0) −

λ

c

∫ b0

0

V (b0 − y)dQ(y)

=
λ + δ

c

[
c

λ+ δ
− λ

λ+ δ

∫ b0

0

V (b0 − y)dQ(y)

]
+
λ

c

∫ b0

0

V (b0 − y)dQ(y),

from which we yield an alternative form of the boundary condition that

V ′(b0−) = 1.

The condition was derived through traditional probabilistic arguments in Bühlmann [5] and

for more general models in Gerber et al. [20].

2.3.3 Insurer’s Accumulated Utility

When a risk process is used to model and assess a line of insurance business, the

insurer might be interested in a quantitative measure of the company’s overall performance

in maintaining its surplus reserve. In the context of microeconomics, the accumulated utility

up to default provides such a tool to quantify an insurer’s satisfaction gained from surplus at

each moment throughout the life of the business. As an application, the accumulated utility

of an insurer’s surplus wealth conforms to the generalized Gerber-Shiu function,

U(x) = Ex

[∫ τd

0

u(Xt)dt

]
,

where d is a pre-determined level of default for a particular line of business and u(·) is the

utility function representing the insurer’s attitude towards current surplus.

We consider the classical compound Poisson risk model with a general claim size distri-

bution whose moment generating function is assumed to exist. In order to obtain closed-form
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solutions, we specify u(x) to be the exponential utility function −e−ax/a, which is commonly

used in actuarial science and economics owing to its constant risk aversion property. In the

classical model, d = 0. The safety loading condition c > λκ is imposed to ensure positive

drift. For future references, we introduce a new notation

W (x) = Ex

[∫ τ0

0

e−aXtdt

]
, (2.3.7)

where a > 0. Hence U(x) = −W (x)/a. We shall now focus on the properties and solutions

to the accumulated exponential utility up to ruin W (x).

Lemma 2.3.1. For x ≥ 0, W(x) is a bounded function.

Proof. Construct an auxiliary function

f(s) = cs+ λ[1 −MQ(s)],

whereMQ(s) is the moment generating function of claim size distribution Q(x). Since f(0) =

0 and λM ′
Q(s)|s=0+ = λκ < c, hence f(s) > 0 in a positive neighborhood of zero. In view of

the fact that f ′′(s) < 0 and for all s ≥ 0, there must exist a positive solution to f(s) = 0

denoted by R. Recall that

Ex
[
e−aXt

]
= Ex[e−a(x+ct−

∑N(t)
i=1 Yi)] = e−ax−acte−λt[1−MQ(a)] = e−axe−f(a)t.

For 0 < a < R, we must have f(a) > 0, then

Ex

[∫ τ0

0

e−aXtdt

]
≤ 1

f(a)
e−ax ≤ 1

f(a)
.

Therefore,

Ex

[∫ τ0

0

e−aXtdt

]
≤ Ex

[∫ ∞

0

e−aXtdt

]
=

∫ ∞

0

Ex
[
e−aXt

]
dt,
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with the last equality from Fubini’s theorem.

For a ≥ R, we have a > a0 where 0 < a0 < R. Since Xt ≥ 0 on [0, τ0], it follows that

Ex

[∫ τ0

0

e−aXtdt

]
≤ Ex

[∫ τ0

0

e−a0Xtdt

]
≤ 1

f(a0)
e−a0x ≤ 1

f(a0)
.

Hence it follows from Theorem 2.2.1 thatW (x) satisfies the following integro-differential

equation

cW ′(x) − λW (x) + λ

∫ x

0

W (x− y)dQ(y) + e−ax = 0, x > 0. (2.3.8)

Corollary 2.3.2. The solution to W (x) defined in (2.3.7) is given by

W (x) =
e−ax

a(c− λκ)

∫ x

0

eayg(y)dy +
1

ac
e−ax, x ≥ 0, (2.3.9)

where the associated compound geometric density function

g(x) =
∞∑

n=1

(1 − λκ

c
)(
λκ

c
)nq?n1 (x)

and the equilibrium density function q1(x) = (1/κ)Q(x).

Proof. We assume for simplicity the claim size distribution has the density q(y) = Q′(y),

but all of the following derivations can be extended to include discontinuous claim sizes.

In terms of operators, (2.3.8) can be written as

(
λ

c
I − D)W (x) =

λ

c
W ? q(x) +

λ

c
h(x), (2.3.10)

where D and I are the differentiation and identity operators respectively, h(x) = (1/λ)e−ax

and the convolution operator is defined by

W ? q(x) =

∫ x

0

W (x− y)q(y)dy.
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Taking the Dickson-Hipp operator Tλ/c, which is the inverse operator of (λ/c)I − D,

on both sides of (2.3.10) gives

W (x) =
λ

c
Tλ/c{W ? q + h}(x), (2.3.11)

where

Tλ/cf(x) = e(λ/c)x

∫ ∞

x

e−(λ/c)yf(y)dy.

It is easy to prove that Tλ/c{W ? q}(x) and Tλ/c{e−ax} exist as both W (x) and e−ax are

bounded functions. Hence, we have

W (x) =
λ

c

[
T0{W ? q + h}(x) − λ

c
T0Tλ/c{W ? q + h}(x)

]

=
λ

c

[
T0q ? W (x) + T0h(x) + T0W (x)− λ

c
T0Tλ/c{W ? q + h}(x)

]
.

The above two equalities can be easily proved by taking Laplace transforms.

It follows from (2.3.11) that

T0W (x) =
λ

c
T0Tλ/c{W ? q + h}(x).

Therefore, we arrive at the following defective renewal equation

W (x) =
λ

c
W ? Q(x) +

1

ac
e−ax, (2.3.12)

which admits the desired solution (2.3.9).

Remark 2.3.1. The solution (2.3.9) is in fact the convolution of a compound geometric

distribution with an exponential distribution.

W (x) =
1

a(c− λκ)

∫ x

0+

e−a(x−y)dG(y) =
1

a(c− λκ)
Eag(x),
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where in the Riemann-Stieltjes integral the compound geometric distribution is given by

G(y) = 1 − λκ

c
+

∫ y

0

g(t)dt, y ≥ 0.

For more on compound geometric convolutions, readers are referred to Willmot and Cai [49].

As with many other ruin-related quantities, closed-form solutions can be found for the

accumulated utility up to ruin in many special cases of claim size distributions. The simplest

among these examples would be the exponential claim size which leads to the following result.

Corollary 2.3.3. If the claim size distribution Q(y) is exponential with mean 1/β, W (x)

admits an explicit solution given by

W (x) =
λ

ac2(a− β + λ/c)
e−(β−λ/c)x +

a− β

ac(a− β + λ/c)
e−ax, x ≥ 0. (2.3.13)

Proof. With a few steps of substitution and differentiation, (2.3.8) simplifies to

cW ′′(x) + (cβ − λ)W ′(x) + (β − a)e−ax = 0. (2.3.14)

Therefore, the solution to W (x) can be represented as

W (x) = C1 +

∫ x

0

e−(β−λ/c)y
(
C2 −

∫ y

0

β − a

c
e−ate(β−λ/c)tdt

)
dy

= C1 + C2

∫ x

0

e−(β−λ/c)ydy −
∫ x

0

e−(β−λ/c)y
∫ y

0

β − a

c
e−ate−(β−λ/c)tdtdy

= C1 + C2
1 − e−(β−λ/c)x

β − λ/c
− β − a

c(a− β + λ/c)

∫ x

0

e−(β−λ/c)y [1 − e−(a−β+λ/c)y
]
dy

= C1 +
C2

β − λ/c
− β − a

ac(β − λ/c)
+

[
β − a

c(a− β + λ/c)(β − λ/c)
− C2

β − λ/c

]
e−(β−λ/c)x

− β − a

ac(a− β + λ/c)
e−ax (2.3.15)

where C1 and C2 are coefficients to be determined.

48



Substituting (2.3.15) for W (x) in (2.3.8), we find out that on the left hand side, all the

constant terms, terms with e−(β−λ/c)x and terms with e−ax cancel out. Then equating terms

with e−βx with zero gives us the first constraint on the coefficients,

1

β
C1 +

1

β(β − λ/c)
C2 −

β − a

acβ(β − λ/c)
+

β − a

λ(a− β + λ/c)(β − λ/c)

− c

λ(β − λ/c)
C2 −

1

ac(a− β + λ/c)
= 0 (2.3.16)

It follows from (2.3.9) that for an arbitrary ε > 0,

W (x) =
1

a(c− λκ)

{
e−ax

∫ x−ε

0

eaydG(y) + e−ax
∫ x

x−ε
eaydG(y)

}
+

1

ac
e−ax

≤ 1

a(c− λκ)

{
e−axea(x−ε) +G(x) −G(x − ε)

}
+

1

ac
e−ax.

Hence we obtain

lim
x→∞

W (x) ≤ 1

a(c− λκ)

{
e−aε + lim

x→∞
[G(x) −G(x− ε)]

}
+ lim

x→∞

1

ac
e−ax =

1

a(c− λκ)
e−aε.

Since the limit equals zero for any ε > 0, we can conclude that limx→∞W (x) = 0.

Letting x → ∞ in (2.3.15) we have the second constraint on the coefficients for the

case in which c > λ/β,

C1 +
C2

β − λ/c
− β − a

ac(β − λ/c)
= 0. (2.3.17)

Combining (2.3.16) and (2.3.17) we get

C1 =
a2 − 2aβ + aλ/c+ β2 − λ2/c2

ac(β − λ/c)(a− β + λ/c)

and

C2 =
aβc− a2c− λβ + λ2/c

ac2(a− β + λ/c)
.
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2.3.4 Total Claim Costs up to Ruin

One of the main focuses in actuarial mathematics is to quantify the future liability of

an insurance company by computing the expected amount which the company must hold

in reserve for upcoming insurance claims. Applying the same idea to risk models for a

business line of an insurance company, one would be interested in knowing the total amount

of discounted claims to be expected up to the time of possible default. Hence we shall define

such a quantity in this section and derive its connection to the generalized Gerber-Shiu

function.

In practice every single insurance claim is accompanied by a certain amount of business

cost resulted from claim appraisal, investigation, settlement negotiation, etc. The final costs

to the insurer may be quite different from the actual size of claims. Hence we assume as given

a bounded function $(x, y) that measures the cost of each claim depending on the surplus

prior to the time of claim x and the resulting new surplus y. As in the classical model, we

assume the line of business defaults when the surplus goes below zero and the safety loading

c > λκ is satisfied. Since all claims arrive at the sequence of jump points {T1, T2, T3, · · · },

then the expected present value of total claim costs up to the time of ruin can be written as

K(x) = Ex
[ N∑

i=1

e−δTi$(XTi−,XTi)
]
, (2.3.18)

where N = max{n : Tn ≤ τ0} with the convention that max{N} = ∞ and δ > 0.

Interestingly, we can express the total costs up to ruin as a special case of the gener-

alized Gerber-Shiu function as follows. In terms of the associated counting process, (2.3.18)

can also be written as

K(x) = Ex
[ ∫ τ0

0

∫ ∞

−∞
e−δt$(Xt−, y)N(dt, dy)

]
.

Note that {Xt−, 0 ≤ t < ∞} is the left-continuous modification of {Xt, 0 ≤ t < ∞} and
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hence is a predictable process. By Theorem 2.1.3, we must have

K(x) = Ex
[ ∫ τ0

0

∫ ∞

−∞
e−δt$(Xt−, y)Ñ(dt, dy)

]

= Ex
[ ∫ τ0

0

e−δtλ

∫ ∞

−∞
$(Xt−,Xt− − y)dQ(y)dt

]

= Ex
[ ∫ τ0

0

e−δtλ

∫ ∞

−∞
$(Xt,Xt − y)dQ(y)dt

]
. (2.3.19)

The last equality can be explained as follows. Since the càdlàg process can only have count-

able discontinuities, then for each ω ∈ Ω, {t : Xt−(ω) 6= Xt(ω)} is a countable set, and hence
∫ τ

0

∫∞
−∞$(Xt(ω),Xt(ω)− y)dQ(y)dt =

∫ τ
0

∫∞
−∞$(Xt−(ω),Xt−(ω)− y)dQ(y)dt. Therefore, in

view of (2.2.1) and (2.3.19), the total claim costs can be recovered from the generalized

Gerber-Shiu function with a special cost function

l(x) = λ

∫ ∞

0

$(x, x− y)dQ(y). (2.3.20)

Corollary 2.3.4. The solution to K(x) defined in (2.3.18) is given by

K(x) =
c

c− λπ

∫ x

0

ζ̂(x− y)g(y)dy + ζ̂(x), x ≥ 0, (2.3.21)

where

π =

∫ ∞

0

eγx
∫ ∞

x

e−γydQ(y)dx,

ζ̂(z) =
λ

c
eγz
∫ ∞

z

e−γx
∫ ∞

0

$(x, x− y)dQ(y)dx,

the associated compound geometric density function is given by

g(y) =
∞∑

n=1

(
1 − λπ

c

)(λπ
c

)n
q̂?n(y),

where the generalized equilibrium density function

q̂(y) =
1

π
eγy
∫ ∞

y

e−γxdQ(x).
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The constant γ is the unique positive root to the Lundberg fundamental equation

λ

c
q̃(s) =

λ+ δ

c
− s. (2.3.22)

Proof. SinceK(x) is evidently bounded, we obtain the following integro-differential equation

by inserting (2.3.20) into (2.2.2),

cK ′(x)− (λ + δ)K(x) + λ

∫ x

0

K(x− y)dQ(y) + λ

∫ ∞

0

$(x, x− y)dQ(y) = 0. (2.3.23)

We can rewrite the equation in terms of operators,

(
λ + δ

c
I − D)K(x) =

λ

c
K ? q(x) +

λ

c
ζ(x),

where

ζ(x) =

∫ ∞

0

$(x, x− y)dQ(y).

SinceK(x), q(x) and ζ(x) are all bounded functions, their corresponding Dickson-Hipp

transforms exist. Using the arguments similar to those of Corollary 2.3.2, we have

K(x) =
λ

c
T(λ+δ)/c{K ? q + ζ}(x) (2.3.24)

=
λ

c
Tγ{K ? q + ζ}(x) − (

λ+ δ

c
− γ)TγT(λ+δ)/c{K ? q + ζ}(x)

=
λ

c
{K ? Tγq(x) + Tγζ(x) + q̃(γ)TγK(x)} − (

λ + δ

c
− γ)TγT(λ+δ)/c{K ? q + ζ}(x),

where the constant γ is the solution to (2.3.22) and the safety loading condition c > λκ

ensures that it is a unique positive root.

In view of (2.3.22) and (2.3.24), we have

λ

c
q̃(γ)K(x) − (

λ + δ

c
− γ)T(λ+δ)/c{K ? q + ζ}(x).
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Hence, it follows that

K(x) =
λ

c
{K ? Tγq(x) + Tγζ(x)},

i.e.

K(x) =
λπ

c

∫ x

0

K(x− y)dQ̂(y) + ζ̂(x), (2.3.25)

which gives the desired solution.

Remark 2.3.2. The solution (2.3.21) is in fact another example of compound geometric

convolution,

K(x) =
1

c− λπ

∫ x

0

Tγ l(x− y)dG(y),

where l(x) is given in (2.3.20) and the compound geometric distribution is given by

G(y) = 1 − λπ

c
+

∫ y

0

g(t)dt. (2.3.26)

A good example of the total claim costs up to ruin is the discounted aggregate claim

with a policy limit of M , defined by

KM (x) = Ex
[ N∑

i=1

e−δTi [(XTi− −XTi) ∧M ]
]
.

Assume that claim sizes are exponentially distributed with mean 1/β. Observe from (2.3.20)

that $(x, x− y) = y ∧M and

l(x) = λ

∫ ∞

0

(y ∧M)dQ(y) = λ

∫ M

0

ydQ(y) + λMQ(M) =
λ

β
(1 − e−βM ).

If we set the premium income c = λE(Yi∧M), then the expected present value of total

premium income collected up to the time of ruin is given by

PM (x) = Ex

[∫ τ0

0

e−δtl
(
X(t)

)
dt

]
,
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where

l(x) = c =
λ

β
(1 − e−βM).

Hence it is not surprising that the total claim costs KM (x) is essentially equivalent to the

total premium income PM (x) in the sense that the insurer’s asset matches its liability.

Corollary 2.3.5. If Q(y) is exponentially distributed with mean 1/β, KM (x) admits an

explicit solution given by

KM (x) =
λ(1 − e−βM)

δβ
(1 − ρ+ β

β
eρx), x ≥ 0,

where ρ is the unique negative root to the Lundberg fundamental equation

cs2 + (βc− λ − δ)s− δβ = 0. (2.3.27)

Proof. In this case, we have in (2.3.21) that

ζ̂(x) =
λ

βcγ
(1 − e−βM).

Hence KM (x) is apparently a non-decreasing function of x. Since KM (x) is a bounded non-

decreasing function, there must exist a finite number K such that limx→∞KM (x) = K. Then

taking limits on both sides of (2.3.25) gives

K =
λ

c

∫ ∞

0

Tγq(x)dx ·K +
λ

βcγ
(1 − e−βM).

=
λ[1 − q̃(γ)]

cγ
K +

λ

βcγ
(1 − e−βM)

= (1 − δ

cγ
)K +

λ

βcγ
(1 − e−βM)

with the last equality from (2.3.22). Hence we obtain the boundary condition that

lim
x→∞

KM (x) =
λ

δβ
(1 − e−βM).
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After standard algebraic simplification, (2.3.23) turns into a second order differential

equation

cK ′′
M (x)− (cβ − λ − δ)K ′

M(x) − δβKM(x) + λ(1 − e−βM) = 0. (2.3.28)

We first recall that the fundamental solutions to the corresponding homogeneous equa-

tion

cK ′′
M (x) − (cβ − λ− δ)K ′

M (x)− δβKM(x) = 0

can be represented as

C1e
ρx + C2e

γx,

where C1 and C2 are to be determined, −β < ρ < 0 and γ > 0 are the two real roots of

the characteristic equation (2.3.27), which corresponds the Lundberg fundamental equation

(2.3.22) in the case of exponential claim size distribution. We also have a particular solution

to (2.3.28) that KM (x) = λ(1 − eβM)/(δβ). Therefore, the general solutions to KM (x) are

given by

KM (x) = C1e
ρx + C2e

γx +
λ(1 − eβM)

δβ
. (2.3.29)

Since KM (x) is bounded, we must have C2 = 0. Substituting (2.3.29) for KM (x) in

(2.3.28) yields

C1 = −λ(1 − e−βM)

δβ

ρ + β

β
.

Therefore, the desired result is obtained.
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2.3.5 Gerber-Shiu Functions

As the name suggests, the famous Gerber-Shiu function can be deduced from its gener-

alized version (2.2.1) with a special cost function. In doing so, we now amend the definition

of K(x) in previous section to construct a new quantity

m(x) = Ex
[ N∑

i=1

e−δTi$(XTi−,XTi)
]
, (2.3.30)

where δ ≥ 0, N = max{n : Tn ≤ τ0} with the convention that max{N} = ∞ and

$(x, y) =





0, for y ≥ 0,

w(x,−y), for y < 0,

with a bounded function w(x, y).

We can adopt arguments almost identical to those in the previous section to convert

m(x) into a generalized Gerber-Shiu function. Hence, we also have

m(x) = Ex

[∫ τ0

0

e−δtl(Xt)dt

]
,

where

l(x) = λ

∫ ∞

x

w(x, y − x)dQ(y). (2.3.31)

Note that with this special choice of $(x, y), the function m(x) defined in (2.3.30) can

be represented as

m(x) = Ex
[
e−δτ0w(Xτ0−, |Xτ0|)I(τ0 <∞)

]
,

where δ ≥ 0. Hence we obtain the classical definition of Gerber-Shiu function. It should be

noted that the indicator is an indispensable part of the representation. By the definition

of $(x, y), in the event that τ0 = ∞, the value of the process Xt ≥ 0 for all t ≥ 0, then

$(x, y) = 0 and hence m(x) = 0.

Since w(x, y) is bounded, there must exist B such that w(x, y) ≤ B for any x, y ∈ R.

We now see that

m(x) ≤ λBEx

[∫ τ0

0

e−δtQ(y)dy

]
≤ λBEx

[∫ ∞

0

Q(y)dy

]
= λκB.
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By Theorem 2.2.1, m(x) satisfies the corresponding integro-differential equation

Xm(x)− (λ + δ)m(x) + λ

∫ x

0

m(x− y)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0, x > 0. (2.3.32)

The Gerber-Shiu functions have been extensively studied in a variety of risk models, many

of which are essentially PDCPs or more generally PDMPs. With different choices of the ex-

tended generator of deterministic sample paths, we can obtain integro-differential equations

to the Gerber-Shiu functions for a vast amount of PDCPs.

For instance, in view of (2.3.1) and (2.3.32), the Gerber-Shiu function in the classical

compound Poisson model has to be the solution to the following equation,

cm′(x) − (λ + δ)m(x) + λ

∫ x

0

m(x− y)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0, x > 0,

(2.3.33)

which is precisely equation (2.16) in Gerber and Shiu [22].

2.3.6 Insurer’s Life Annuity

We now look at a life annuity of an insurance company, which is an annuity with

continuous payments of one dollar per time unit payable up to the company’s bankruptcy. It

can be utilized to quantify the insurance company’s continuous contribution to its employees

pension funds until its bankruptcy if it occurs.

If the insurer’s surplus is driven by a PDCP process X = {Xt, t > 0} with the safety

loading condition c > λκ satisfied and the annuity contributions are invested at a constant

rate of return δ > 0, the expected present value of such a life annuity from the perspective

of annuity-holder can be determined by

a(x) = Ex

[∫ τ0

0

e−δtdt

]
= Ex

[
1 − e−δτ0

δ

]
. (2.3.34)
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It is evident that such an annuity is bounded and a special of the generalized Gerber-

Shiu function where l(x) = 1. Hence it satisfies the following integro-differential equation

ca′(x)− (λ + δ)a(x) + λ

∫ x

0

a(x− y)dQ(y) + 1 = 0, x ≥ 0. (2.3.35)

Corollary 2.3.6. The solution to a(x) defined in (2.3.34) is given by

a(x) =
1

γ(c− λπ)
G(x), x ≥ 0,

where the compound geometric distribution G(x) is given in (2.3.26) and γ is the unique

positive root to the Lundberg fundamental equation (2.3.22).

Proof. In terms of operators, (2.3.35) can be written as

(
λ + δ

c
I − D)a(x) =

λ

c
a ? q(x) +

1

c
.

Since both a(x) and q(x) are bounded, their Dickson-Hipp transforms exist. Hence

a(x) =
λ

c
T(λ+δ)/c{a ? q}(x) + T(λ+δ)/c{

1

c
}(x).

Using the arguments similar to those in Corollary 2.3.4, we obtain

a(x) =
λπ

c

∫ x

0

a(x− y)dQ̂(y) +
1

γc
,

which yields the desired solution.

We shall now focus on the special case where claim sizes are exponentially distributed

to develop a life contingency type of formula.

Corollary 2.3.7. If Q(y) is exponentially distributed with mean 1/β, a(x) admits an explicit

solution given by

a(x) =
1

δ
− 1

δ

ρ+ β

β
eρx, x ≥ 0, (2.3.36)
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where ρ is the unique negative solution to the Lundberg fundamental equation (2.3.27).

Proof. Equation (2.3.35) reduces to

ca′′(x) + (cβ − λ − δ)a′(x) − δβa(x) + β = 0, x ≥ 0.

Apparently, a(x) = 1/δ is a particular solution to the differential equation. In view of the

fact that a(x) is bounded, the solution is in the form of

a(x) =
1

δ
+ aeρx, (2.3.37)

where a is the coefficient to be determined and ρ is the unique negative solution to the

Lundberg equation (2.3.27). Inserting (2.3.37) into (2.3.35) yields that a = −(ρ+ β)/(δβ).

We define a contingent claim of one dollar payable at the time of the insurance com-

pany’s bankruptcy or the default of a certain business line,

A(x) = Ex
[
e−δτ0

]
,

which is indeed a special case of Gerber-Shiu function and could have been obtained from

(2.3.33). However, to avoid repetitive derivations, we find the solution by using the result

(2.5.5) for a more general model in the later section. Hence,

A(x) =
ρ+ β

β
eρx, x ≥ 0. (2.3.38)

Comparing (2.3.36) and (2.3.38), we now arrive at a formula that is analogous with

the famous life contingencies formula

1 = δa(x) +A(x), for all x ≥ 0.
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It has the interpretation that an initial loan of one dollar at present should be equal to the

expected present value of a series of continuous payment of interest due δ dollar per time

unit up until the insurer’s bankruptcy and a final payment of one dollar to clear off the

balance at the time of bankruptcy.

2.4 Compound Poisson Model with Constant Interest

and Liquid Reserve

The idea of incorporating surplus investment with constant interest rate in a risk

process was introduced in Sundt and Teugels [45], Embrechts and Schmidli [18], etc. It

assumes that an insurer collects premiums at a constant rate c, and provides compensations

to claims that arrive according to the compound Poisson process Z(t). The insurer’s surplus

at any time is completely invested in a risk-free asset which earns interest at a constant

rate r. In contrast with classical model where the growth of surplus appears to be linear,

the surplus process now accumulates with compound interest in a fashion that can be easily

characterized by a PDCP. In the absence of random claims, the deterministic path of the

PDCP process is given by

d

dt
Xt =

d

dt
(xert + cst) = rXt + c, x ≥ 0,

which means the generator

X = (rx+ c)
d

dx
, x ≥ 0. (2.4.1)

Another threshold strategy that comes often with surplus investment is the so-called

liquid reserve strategy, which requires a prudent insurer to keep the limited working capital

liquid to deal with insurance claims when the surplus reserve is running relatively low. Hence

we assume that the insurer sets a benchmark, liquid reserve limit ∆, below which the surplus
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as in classical model increases at the constant premium rate c and above which the excess

of surplus would be invested in money market with the force of interest r. Accordingly we

find that

d

dt
Xt =





d/dt(∆ + (x− ∆)ert + cst) = r(Xt − ∆) + c, x ≥ ∆

d/dt(x+ ct) = c, 0 ≤ x < ∆.

Hence the generator for the deterministic piece in the model with both constant interest and

liquid reserve is given by

X =





[r(x− ∆) + c]d/dx, x ≥ ∆

cd/dx, 0 ≤ x < ∆.
(2.4.2)

As a further generalization, we amend the above model with the inclusion of a dividend

threshold and investment cap b. When x ≥ b, the excess of surplus stops being invested in

money market, instead a portion of the surplus will be paid out as dividends at a constant

rate α. A sample path of such a process is given in Figure 2.2. Hence we must have

d

dt
Xt =

d

dt
[b+ r(b− ∆)t+ (c− α)t] = r(b− ∆) + c− α, x ≥ b.

Hence the generator for the deterministic part is given by

X =





[r(b− ∆) + c− α]d/dx, x ≥ b,

[r(x−∆) + c] d/dx, ∆ ≤ x < b,

cd/dx, 0 ≤ x < ∆.

(2.4.3)

Traditional probabilistic derivations are given in Cai et al. [7].

In the compound Poisson model with constant interest (2.4.1), the corresponding

Gerber-Shiu function m(x) must satisfy

(rx+ c)m′(x)− (λ+ δ)m(x)+λ

∫ x

0

m(x−y)dQ(y)+λ

∫ ∞

x

w(x, y−x)dQ(y) = 0, x > 0.

Taking δ = 0 and w(x, y) = 1 would lead to the equation (1) in Sundt and Teugels [45],

which is satisfied by the probability of ultimate ruin .
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Following the same line of logic, by the substitution of the generator in the compound

Poisson model with both constant interest and liquid reserve (2.4.2), we obtain the system

of equations for the Gerber-Shiu function denoted by m(x;∆) in Cai et al. [8],

[r(x−∆) + c]m′(x;∆)− (λ + δ)m(x;∆) + λ

∫ x

0

m(x− y;∆)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0,

x ≥ ∆,

cm′(x;∆)− (λ + δ)m(x;∆) + λ

∫ x

0

m(x− y;∆)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0,

0 < x < ∆.

Interested readers are referred to Cai et al. [7] for the derivation of these integro-differential

equations through traditional probabilistic arguments and detailed solutions to the Gerber-

Shiu function.

In the compound Poisson model with constant interest, dividend and liquid reserve

strategies (2.4.3), the parameter vector b = (∆, b) is employed to emphasize the dependency

of ruin-related quantities on these parameters.

We can easily obtain the system of equations of the Gerber-Shiu function denoted by

m(x;b) by substitution of its corresponding generator.

[r(b−∆) + c− α]m′(x;b) − (λ+ δ)m(x;b) + λ

∫ x

0

m(x− y;b)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0,

x > b,

[r(x −∆) + c]m′(x;b) − (λ+ δ)m(x;b) + λ

∫ x

0

m(x− y;b)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0,

∆ ≤ x < b,

cm′(x;b) − (λ+ δ)m(x;b) + λ

∫ x

0

m(x− y;b)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0,

0 ≤ x < ∆.

Readers are referred to Cai et al. [7] for traditional probabilistic derivations and detailed

solutions.

As another typical example of the generalized Gerber-Shiu function, we can also find
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the expected present value of dividends paid up to the time of ruin defined by

V (x;b) = Ex

[∫ τ0

0

e−δtl
(
X(t)

)
dt

]
,

where δ > 0 and the cost function is given by

l(x) =





α, if x ≥ b,

0, if 0 ≤ x < b.

Therefore, by Theorem 2.2.1, we have the following system of integro-differential equations,

cV ′(x;b) − (λ+ δ)V (x;b) + λ

∫ x

0

V (x− y;b)dQ(y) = 0, 0 ≤ x < ∆,

[r(x− ∆) + c]V ′(x;b) − (λ+ δ)V (x;b) + λ

∫ x

0

V (x− y;b)dQ(y) = 0, ∆ ≤ x < b,

[r(∆ − b) + (c− α)]V ′(x;b) − (λ+ δ)V (x;b) + λ

∫ x

0

V (x− y;b)dQ(y) + α = 0, x > b.

These equations are obtained in Cai et al. [7] through lengthy traditional probabilistic argu-

ments. Interested readers can find solutions to V (x;b) in that paper.

Similarly, one can work out integro-differential equations satisfied by the generalized

Gerber-Shiu function for all kinds of risk models with combinations of dividend barrier and

investment strategies, such as the model with dividend barrier and constant interest in Yuen

et al. [52].

2.5 Compound Poisson Model with Two-sided Jumps

Random jumps in surplus process are often assumed to be resulted from insurance

claims. Hence it is considered to have only downward jumps in risk models by the nature

of claims. However, for more general applications, one might need to incorporate upward

jumps in surplus as well. For instance, Kennedy [32] considers the probability of ruin in a

system of program trading. The net outcome of trades is modelled by a compound Poisson

63



process with both positive and negative jumps, which represent increase or decrease of the

total capital as a result of trading in various financial markets.

Since the compound Poisson process with two-sided jumps is another example of PDCP,

it is natural to find the applications of generalized Gerber-Shiu functions in this type of risk

models. Even though we refer to Kennedy’s model merely for the purpose of giving a

motivation for double-sided jumps, the generalized Gerber-Shiu can be used to reproduce

the results given in Kennedy [32] obtained through probabilistic arguments.

Figure 2.4: Sample path of compound Poisson model with two sided jumps

Assume that random events happen to an insurer in a Poisson process fashion. Each

event turns out to be either a random insurance claim with common distribution Q−(y) or a

random investment income (cash injection) with common distributionQ+(y).The probability

of the event being an insurance claim is assumed to be π and thus the event happens to be

an investment income with the chance 1 − π. Therefore, the jump size distribution is given

by

Q(y) = πQ+(y)I(y ≥ 0) + (1 − π)[1−Q−(−y)I(y < 0)].

When both Q+(y) and Q−(y) are differentiable with density function q+(y) and q−(y) re-
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spectively, the density function of the claim size distribution can be written as

p(y) = πq+(y)I(y ≥ 0) + (1 − π)q−(−y)I(y < 0).

If we are only interested in ruin-related quantities at or up to the time of ruin, then we set

the level of default d = 0 and the operator Q in (2.2.8) can be written as

QH(x) =

∫ ∞

0

H(y)dQ(x− y) =

∫ x

−∞
H(x− y)dQ(y)

= π

∫ x

0

H(x− y)dQ+(y) +

∫ ∞

0

H(x+ y)dQ−(y). (2.5.1)

If the generalized Gerber-Shiu function H(x) defined in (2.2.1) is bounded, then the integro-

differential equation for H(x) can be obtained by inserting (2.5.1) in (2.2.2),

cH ′(x) − (λ + δ)H(x) + λπ

∫ ∞

0

H(x+ y)dQ+(y) + λ(1 − π)

∫ x

0

H(x− y)dQ−(y) + l(x) = 0.

(2.5.2)

This integro-differential equation is generally difficult to solve whenQ(y) is an arbitrary

distribution function. Instead we will look at explicit solutions for the double exponential

jump case, where the jump size is given by a mixture of two exponential distributions gov-

erning insurance claims and investment returns respectively,

Q(y) = π(1− e−β1y)I(y ≥ 0) + [(1 − π)− (1 − π)(1 − eβ2y)I(y < 0)]. (2.5.3)

Thus the integro-differential equation (2.5.2) becomes

cV ′(x)− (λ + δ)V (x) + λπβ1Tβ1V (x) + λ(1 − π)β2Eβ2V (x) + l(x) = 0. (2.5.4)

Readers may find it interesting to read the justification given in Kennedy [32] for considering

the double-sided exponential distribution for the outcome of trades.
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2.5.1 Discounted Payoff at Exercise

We are now interested in a special version of the Gerber-Shiu function in the compound

Poisson model with double sided jumps denoted by ψδ(x),

ψδ(x) = Ex[e−δτ0f(|Xτ0|)I(τ0 <∞)],

where δ ≥ 0 and the payoff function f(x) is bounded. Since ψδ(x) is bounded, we can utilize

Theorem 2.2.1 to find its solutions. Similarly, one can easily replace τ0 by a general stopping

time τd in a model where d is treated as a level of optimal exercise and the generalized

Gerber-Shiu function can be used to price a contingent claim with payoff function f(x).

Corollary 2.5.1. If Q(y) follows the distribution given in (2.5.3), ψδ admits an explicit

solution given by

ψδ(x) =

[
(β2 + ρ)

∫ ∞

0

f(z)e−β2zdz

]
eρx, x ≥ 0, (2.5.5)

where ρ is the unique negative root of the Lundberg fundamental equation

cs+ λ

[
π

β1

β1 − s
+ (1 − π)

β2

β2 + s
− 1

]
= δ. (2.5.6)

Proof. Taking derivatives with respect to x and making a substitution in (2.5.4) gives

cV ′′(x)− (λ + δ)V ′(x) − cβ1V
′(x) + β1(λ+ δ)V (x) − β1λ(1 − π)β2e

−β2x

∫ x

0

V (y)eβ2ydy

−β1l(x) − λπβ1V (x) + cβ2V
′(x)− β2(λ+ δ)V (x) + β2λπβ1e

β1x

∫ ∞

x

V (y)e−β1ydy

+β2l(x) + λ(1 − π)β2V (x) + l′(x) = 0.

Taking derivatives with respect to x again and substituting the integral terms yields

cV ′′′(x) + (cβ2 − cβ1 − λ − δ)V ′′(x) + [λ(1 − π)β2 − λπβ1 − β2(λ + δ) + β1(λ + δ)− cβ1β2]V
′(x)

+δβ1β2V (x) + l′′(x) + (β2 − β1)l
′(x) − β1β2l(x) = 0.
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Note that w(x, y − x) = f(y − x), then

l(x) = λ(1 − π)β2

∫ ∞

x

f(y − x)e−β2ydy

= λ(1 − π)β2e
−β2x

∫ ∞

0

f(z)e−β2zdz. (2.5.7)

It is easy to verify that in this case l′′(x) + (β2 − β1)l
′(x) − β1β2l(x) = 0.

Thus (2.5.2) reduces to

cψ′
δ(x)− (λ + δ)ψδ(x) + λπ

∫ ∞

0

ψδ(x+ y)dQ+(y)

+λ(1 − π)

∫ x

0

ψδ(x− y)dQ−(y) + λ(1 − π)β2e
−β2x

∫ ∞

0

f(z)e−β2zdz = 0. (2.5.8)

Apparently from previous analysis, it satisfies a homogenous integro-differential equation

cψ′′′
δ (x) + (cβ2 − cβ1 − λ− δ)ψ′′

δ (x)

+ [λ(1 − π)β2 − λπβ1 − β2(λ+ δ) + β1(λ + δ)− cβ1β2]ψ
′
δ(x) + δβ1β2ψδ(x) = 0.

We know that the fundamental solution to ψδ(x) can be written as

C1e
ρx + C2e

γ1x + C3e
γ2x

where ρ ≤ 0, γ1 ≥ 0 and γ2 > γ1 are the three real roots of the characteristic function

cs3 + (cβ2 − cβ1 − λ − δ)s2

+ [λ(1 − π)β2 − λπβ1 − β2(λ+ δ) + β1(λ+ δ) − cβ1β2] s+ δβ1β2 = 0,

which is essentially the Lundberg fundamental equation (2.5.6). We denote the left-hand side

of (2.5.6) by k(s). Note that δ > 0. It is obvious from (2.5.6) that k(0) = 0, k(−β2−) = +∞,
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hence there must be one solution ρ ∈ (−β2, 0) for k(s) = δ. We also have a solution γ1 ∈

(0, β1) as k(β1−) = +∞, and a solution γ2 ∈ (β1,+∞) as k(β1+) = −∞ and k(+∞) = +∞.

Since limu→+∞ ψδ(u) = 0, we must have C2 = C3 = 0, i.e.

ψδ(x) = C1e
ρx.

Substituting it into (2.5.8) gives

cρC1e
ρx − (λ+ δ)C1e

ρx + λπβ1e
β1x

∫ ∞

x

C1e
−(β1−ρ)ydy

+λπβ2e
−β2x

∫ x

0

C1e
(β2+ρ)ydy + λ(1 − π)e−β2x = 0.

Rearranging terms yields,

[
cρ− (λ+ δ) +

λπβ1

β1 − ρ
+
λ(1 − π)β2

β2 + ρ

]
C1e

ρx − λ(1 − π)β2C1

β2 + ρ
e−β2x

+

[
λ(1 − π)β2

∫ ∞

0

f(z)e−β2zdz

]
e−β2x = 0.

Note that the algebraic expression in the bracket of the first term is the lundberg equation

and hence the first term vanishes. Therefore,

C1 = (β2 + ρ)

∫ ∞

0

f(z)e−β2zdz.

Figure 2.5 shows the three roots of Lundberg equation (2.5.6) for the compound Poisson

risk model with double exponential jumps and positive drift in which c = 20, β1 = 0.1, β2 =

0.2, λ = 1, π = 0.5, θ = 0.125. Figure 2.6 shows the three roots of Lundberg equation (2.5.6)

for the compound Poisson risk model with double exponential jumps and negative drift in

which c = 1, β1 = 1, β2 = 0.1, λ = 1, π = 0.01, θ = −9.89. Denoting the left-hand side of
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Figure 2.5: Illustration of the roots of Lundberg equation for the compound Poisson risk

model with double exponential jumps and positive drift

(2.5.6) by k(s), we observe that the equation k(s) = 0 has a negative solution if k(s) crosses

x-axis with positive tangent, whereas the smallest root of k(s) = 0 is zero if k(s) has negative

tangent at the origin.

We now consider the case where δ = 0. Hence ψδ(x) simplifies to

ψ(x) = Ex [f(|Xτ0 |)I(τ0 <∞)] .

Corollary 2.5.2. If Q(y) follows the distribution given in (2.5.3), ψ(x) admits an explicit

solution given by

ψ(x) =





[
(β2 + ρ)

∫∞
0
f(z)e−β2zdz

]
eρx, if θ > 0;

β2

∫∞
0
f(z)e−β2zdz, if θ ≤ 0,

where the safety loading factor θ = (βc− λ)/λ and ρ is the unique negative solution to the

Lundberg fundamental equation

cs+ λ

[
π

β1

β1 − s
+ (1 − π)

β2

β2 + s
− 1

]
= 0. (2.5.9)
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Proof. We have to determine whether there exists a negative solution for the lundberg equa-

tion (2.5.9). When the lundberg equation does not have a negative solution, we must have

ψ(x) = C1 with C1 to be determined from the integro-differential equation

cψ′(x) − λψ(x) + λπ

∫ ∞

0

ψ(x+ y)dQ+(y)

+λ(1 − π)

∫ x

0

ψ(x− y)dQ−(y) +

[
λ(1 − π)β2

∫ ∞

0

f(z)e−β2zdz

]
e−β2x = 0.

By replacing ψ(x) with the constant C1, we find out that

C1 = β2

∫ ∞

0

f(z)e−β2zdz.

Since

k′(0) = c+ λπ
1

β1

− λ(1 − π)
1

β2

,

and recall that

c = (1 + θ)E(Y ) = (1 + θ)

[
λπ

1

β1
− λ(1 − π)

1

β2

]
,

whether (2.5.9) has a negative or zero solution depends solely on θ.

Note that when θ ≤ 0, the safety loading condition is violated and the surplus process

has a negative drift, hence ruin is deemed to occur ultimately. If we take f(y) = 1 in ψ(x),

then ψ(x) = Ex[τ0 <∞] = 1.

2.6 Geometric Compound Poisson Model

Since the compound Poisson process converges weakly to a Brownian motion, the

geometric compound Poisson model was also introduced by many authors to model the

dynamics of asset prices as an approximation of the Black-Scholes model. Interested readers
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Figure 2.6: Illustration of the roots of Lundberg equation for the compound Poisson risk

model with double exponential jumps and negative drift

are referred to Gerber and Shiu [25] for a detailed discussion on its implication in financial

modelling.

It would also have been appropriate to put the geometric compound Poisson model

in the context of jump diffusion processes in Chapter 4. However, because of the nature of

geometric compound Poisson process, we shall see that the quantities of interest to us in this

section can be completely solved with only references to generalized Gerber-Shiu function

in compound Poisson model. Hence we treat this section as part of our discussion in the

context of PDCP.

Assume that X is a shifted compound Poisson process with double-sided exponential

jumps and the dynamics of asset price follows a geometric compound Poisson process S =

{S(t), t ≥ 0} with

S(t) = eX(t) = exp{x+ ct−
N(t)∑

i=1

Yi}, (2.6.1)

where the expected yield rate c = r + λ[q̃(−1) − 1], the counting process {N(t), t ≤ 0} is

Poisson process with intensity λ and the sequence of random movements {Yi, i = 1, 2, · · · }
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are mutually independent and follow the common distribution

Q(y) = π(1 − e−β1y)I(y ≥ 0) + [(1 − π) − (1 − π)(1 − eβ2y)I(y < 0)],

and the mean of jumps is given by κ = π/β1 +(1−π)/β2. It can be shown that the geometric

compound Poisson process S defined in (2.6.1) is a solution to the stochastic differential

equation

dS(t) = rS(t)dt− S(t)dZ(t). (2.6.2)

Readers may easily employ the approach to be discussed in Chapter 4 to recover all the

results in this section.

2.6.1 Perpetual American Put Option

In Gerber and Shiu [21], it was successfully demonstrated that the Gerber-Shiu dis-

counted penalty function can be applied to price a perpetual American put option. Following

the same line of logic, we shall now derive the price of a perpetual American put option with a

underlying stock price driven by the geometric compound Poisson with two-sided exponential

jumps.

It has been proved in mathematical finance that the price of an American put option

is the maximum of expected discounted payoff function over all possible hitting times. For

notational convenience, we denote the price by

F (x) = sup
a

Ex
[
e−δτaΠ

(
S(τa)

)]
= sup

a
Ex
[
e−δτaΠ

(
eX(τa)

)]
, (2.6.3)

where the payoff function

Π(s) = (K − s)+ ,

with the exercise price K and

τa = inf{t|S(t) < ea} = inf{t|X(t) < a}
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with a < lnK ≤ x. Now we are able to derive a result analogous to the perpetual American

put option with negative jumps only, which is given in Gerber and Shiu [21].

Corollary 2.6.1. When δ > 0, the solution to F (x) defined in (2.6.3) is given by

F (x) =
(β2 + ρ)K

β2(1 − ρ)

[
K
ρ(β2 + 1)

β2(ρ− 1)

]−ρ
eρx,

where ρ is the unique negative solution to (2.5.6).

When δ = 0, the solution to F (x) is given by

F (x) =





(β2+ρ)K
β2(1−ρ)

[
K ρ(β2+1)

β2(ρ−1)

]−ρ
eρx, if θ > 0;

K
β2
2
, if θ ≤ 0.

Proof. If we define a new process Y = {Yt, t ≥ 0} such that Yt = Xt−a and its corresponding

time of default τYd = inf{t|Y (t) < d}, then it is easy to see that τY0 = τa. We have to keep in

mind that Y (0) = x−a. Therefore, the discounted payoff function upon which the supremum

is taken can written as a special case of ψδ(x),

Ex
[
e−δτaΠ

(
eX(τa)

)]
= Ex−a

[
e−δτ

Y
0 Π
(
eY (τY

0 )+a
)]
.

When δ > 0, it follows immediately from Corollary 2.5.1 that

Ex
[
e−δτaΠ

(
eX(τa)

)]
=

(
K − β2

β2 + 1
ea
)
β2 + ρ

β2
eρ(x−a),

which is maximized at

a = ln

[
K
ρ(β2 + 1)

β2(ρ− 1)

]
.

Since ρ ∈ (−β2, 0), we can show that a < lnK.
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When δ = 0, the similar result follows from Corollary 2.5.2. When θ ≤ 0,

Ex
[
e−δτaΠ

(
eX(τa)

)]
=
K

β2
2

− ea

β2(β2 − 1)
,

which is maximized at a = −∞.

The last part of the corollary makes sense because the investor is better off delaying

exercising the option as much as possible, as the safety loading condition θ > 0 is violated

and the stock price process will eventually drift towards zero.

2.6.2 Fixed-rate and Floating-rate Stochastic Annuities

Suppose there are two types of investment features to policyholders in a certain in-

surance product. One feature offers to credit an annuity in amount of one dollar per unit

time continuously in the policyholder’s account at a predetermined fixed force of interest as

long as a reference equity index stays above a certain level. The second feature provides an

annuity in amount of one dollar per unit time continuously in the policyholder’s account with

a floating interest rate according to the reference equity index until it goes below the certain

level. If both features can be freely traded in the market, it would give rise to transactions

where a risk-seeking party agrees to pay floating-rate annuity in return for fixed-rate annuity

given up by another risk-averse party. Now we address the interesting issue of how to price

such an annuity swap.

We assume that the dynamics of equity price quoted by an insurance company as a

reference index is driven by a geometric compound Poisson process {S(t), t ≥ 0} with

S(t) = eX(t) = exp{x+ ct−
N(t)∑

i=1

Yi},

where the expected yield rate c = r − λ[q̃(−1) − 1] and, for simplicity, the insurance claims

follow an exponential distribution with mean 1/β. We shall also denote s = S(0) = ex.
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Suppose the insurance company set up the benchmark level at b = ed > 0 and promises

continuous annuity payments until the reference index falls below the benchmark level. In

other words, the payments are made starting from the date of issue until the stopping time

τb , inf{S(t) < b} = inf{X(t) < d}.

Therefore the expected present value of the continuous annuity payable until the time of

index default with a fixed force of interest δ > 0 is given by

aδτb , Ex

[∫ τb

0

e−δtdt

]
.

If we define Y = {Y (t) = X(t) − d, 0 ≤ t < ∞} and τY0 = inf{t|Y (t) < 0}, then it is

easy to see that τd = τY0 . Hence

aδτb = Ex−d

[∫ τY
0

0

e−δtdt

]
=

1

δ
{1 − Ex−d[e−δτ

Y
0 ]}.

In view of (2.3.36), we find that

aδτb =
1

δ
− 1

δ

ρ + β

β
eρ(x−d) =

1

δ
− 1

δ

ρ+ β

β

(s
b

)ρ
.

In the limiting case where d → −∞ or b → 0, the time of default is virtually infinite

and the annuity with the fixed force of interest becomes a perpetuity. Hence, in consistent

with the result for perpetuity-certain,

aδ∞ = lim
b→0

aδτb =
1

δ
.

Now we follow the notion of “stochastic life annuity” from Dufresne [17] to construct

a floating rate annuity where the credited interest is linked with the equity index. Since the

equity price starting from ex at time zero accumulates to S(t) at any time t, it is obvious

that the amount that has to be invested initially at time zero to fund one dollar at time t is

given by the discount function

v(t) , exS(t)−1.
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Hence the expected present value of the annuity with the floating rates must be

aSτb = Ex

[∫ τb

0

v(t)dt

]
= Ex

[∫ τb

0

e−(Xt−x)dt

]

= Ex−d

[∫ τY
0

0

e−(Yt+d−x)dt

]
= e(x−d)Ex−d

[∫ τY
0

0

e−Ytdt

]

It follows immediately from (2.3.7) and (2.3.13) that

aSτb =
1

c− λ/(β − 1)
− λ/(β − 1)

c[c− λ/(β − 1)]

(s
b

)−(β−1)[c−λ/(β−1)]/c

. (2.6.4)

Similarly, when we set d → −∞ or b→ 0, the annuity with stochastic interest continues

for an infinite term. It follows from (2.6.4) that the expected present value of the stochastic

perpetuity converges if and only if c > λ/(β − 1) and β > 1,

aS∞ , lim
b→0

aSτb =
1

c− λ/(β − 1)
.

It is intuitive to interpret the condition in connection with the discount process v(t).

To see if v(t) is a supermartingale or submartingale, we need to check that for any t > s ≥ 0,

Ex[v(t)|Fs] = Ex[e−ct+
∑N(t)

i=1 Yi |Fs]

= Ex[e−ct+
∑N(t)

i=1 Yi − e−cs+
∑N(s)

i=1 Yi |Fs] + v(s)

= e−cs+
∑N(s)

i=1 YiEx[e−c(t−s)+
∑N(t)

i=N(s)
Yi − 1|Fs] + v(s)

= e−cs+
∑N(s)

i=1 Yi{e−c(t−s)+λ(t−s)/(β−1) − 1} + v(s).

Hence it is clear that

Ex[v(t)|Fs] < v(s) Px − a.s.

if and only if c > λ/(β − 1) and β > 1. Note that the convergence of moment generation

function of exponential distribution at 1 (or q̃(−1) in terms of Laplace transform) takes

place only if β > 1. When the discount process is a supermartingale, the perpetuity would

converge to a finite limit.
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In fact, we can also see from the stochastic differential equation (2.6.2) that, in order

for the equity index process to have a positive drift, we have to make sure that r = c −

λ[q̃(−1) − 1] > 0, which recovers that condition that c > λ/(β − 1) and β > 1.

Given that the expected present value of both fixed-rate and floating-rate annuity are

obtained, a swap that exchanges a fixed-rate annuity for a floating-rate annuity until the

equity index falls below b can be evaluated as

Vswap = aSτb − aδτb

=
1

c− λ/(β − 1)
− λ/(β − 1)

c[c− λ/(β − 1)]

(s
b

)−(β−1)[c−λ/(β−1)]/c

− 1

δ
+

1

δ

ρ+ β

β

(s
b

)ρ
.

2.7 Compound Poisson Model with Absolute Ruin

It has been argued in the recent literature that an insurer would not go bankrupted

immediately after the surplus in one line of business hits zero, rather the insurer stays in

business with debts borrowed from other lines of business or investors until the premium

income is no longer sufficient to cover debit interests. Gerber-Shiu functions in this model

has been studied thoroughly in Cai [6]. We shall use this example to work out the integro-

differential equations for the generalized Gerber-Shiu function for the compound Poisson

model with absolute ruin.

On the positive side, the surplus varies much the same way as the classical model. The

distinctive feature of the absolute ruin model lies in the deterministic sample path when the

surplus goes below zero and debt interest rate r starts to apply. In the absence of insurance

claims, the actual value at time t of the surplus process starting off from x, x < 0, at time 0

should be the balance of the accumulated value of premium income up to time t, c s
(r)

t
, less

the original amount of debts at time 0 accumulated to time t, |x|ert. Hence,

d

dt
Xt =

d

dt
(cs

(r)

t
− |x|ert) =

d

dt
(cs

(r)

t
+ xert) = rXt + c.
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Note that when x ≤ −c/r, dXt/dt ≤ 0, which means the premium is no longer able to even

cover the debit interest and the surplus process is therefore said to be absolutely ruined.

In summary, the extended generator of the deterministic path is given by

X =





c d/dx, if x > 0,

(rx+ c)d/dx, if −c/r < x ≤ 0.

Since we are now interested all ruin-related quantities up to the time of absolute ruin,

the time of default in the definition of generalized Gerber-Shiu function is to be chosen as

τ−c/r = inf{t|X(t) < −c/r}.

Thus, the generalized Gerber-Shiu function (2.2.1) takes the form

Vabs(x) = Ex

[∫ τ−c/r

0

e−δtl(Xt)dt

]
.

Since d = −c/r, it follows from (2.2.9) that

QVabs(x) =

∫ x+c/r

0

Vabs(x− y)dQ(y).

If Vabs(x) is bounded, it follows from Theorem 2.2.1 that

cV ′
abs(x) − (λ + δ)Vabs(x) + λ

∫ x+c/r

0

Vabs(x− y)dQ(y) + l(x) = 0, x > 0,

(rx+ c)V ′
abs(x)− (λ + δ)Vabs(x) + λ

∫ x+c/r

0

Vabs(x− y)dQ(y) + l(x) = 0, −c/r < x < 0.

Following the previous examples, we could derive all sorts of ruin-related quantities in

the absolute ruin model. For instance, we choose the penalty function at random jumps by

$(x, y) =





0, if x ≥ −c/r,

w(x,−y), if x < −c/r.

Inserting it into (2.3.31) we obtain the cost function for the Gerber-Shiu function with

absolute ruin

l(x) = λ

∫ ∞

x+c/r

w(x, y − x)dQ(y). (2.7.1)
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Thus, the Gerber-Shiu function, defined by

mabs(x) = Ex
[
exp{−δτ−c/r}w(Xτ−c/r−, |Xτ−c/r

|)I(τ−c/r <∞)
]
,

where δ ≥ 0 and w(x, y) is a bounded measurable function, is also bounded as shown in

Section 2.3.5. Hence it satisfies the following equations

cm′
abs(x) − (λ + δ)mabs(x) + λ

∫ x+c/r

0

mabs(x− y)dQ(y) + λ

∫ ∞

x+c/r

w(x, y − x)dQ(y) = 0, x > 0,

(rx+ c)m′
abs(x) − (λ+ δ)mabs(x) + λ

∫ x+c/r

0

mabs(x− y)dQ(y) + λ

∫ ∞

x+c/r

w(x, y − x)dQ(y) = 0,

−c/r < x ≤ 0,

which are precisely equation (2.16) and (2.15) of Cai [6] respectively.

As a generalization, it is suggested that when an insurance company is in debt, its

debtor would demand debit interest that commensurate with the risk of bankruptcy. The

larger the deficit, the more interest charged. We hence amend the absolute ruin model above

to incorporate a varying debit interest rate r(x), x ≤ 0. The function r(x) is an increasing

function in x. It is important to note that absolute ruin occurs at the new level d determined

by r(d)d + c = 0, which means the premium income is no longer able to cover the debit

interest. Therefore, the extended generator of the deterministic path is given by

X =





c d/dx, if x ≥ 0,

[r(x)x+ c] d/dx, if d < x < 0.

Correspondingly, the Gerber-Shiu function mabs(x) satisfies

cm′
abs(x)− (λ + δ)mabs(x) + λ

∫ x−d

0

mabs(x− y)dQ(y) + λ

∫ ∞

x−d
w(x, y − x)dQ(y) = 0,

x ≥ 0, (2.7.2)

[r(x)x+ c]m′
abs(x) − (λ+ δ)mabs(x) + λ

∫ x−d

0

mabs(x− y)dQ(y) + λ

∫ ∞

x−d
w(x, y − x)dQ(y) = 0.

d < x < 0, (2.7.3)
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For illustration, we look at an easy example of

ϕabs(x) = Ex [w(Xτd−, |Xτd|)I(τd <∞)] ,

where the claim sizes are exponentially distributed with mean 1/β.

Corollary 2.7.1. If Q(y) is exponentially distributed with mean 1/β, ϕabs(x) admits an

explicit solution given by

ϕabs(x) = C1 +

∫ x

0

e−S(y)

(
C2 +

∫ y

0

eS(t)f(t)dt

)
dy, x ≥ 0, (2.7.4)

ϕabs(x) = C3 +

∫ x

d

e−G(y)

(
C4 +

∫ y

d

eG(t)h(t)dt

)
dy, d < x < 0, (2.7.5)

where

ζ(x) = λβ

∫ ∞

x−d
e−βyw(x, y − x)dy,

f(x) = −βζ(x) + ζ ′(x)

c
,

g(x) =
r′(x)x+ r(x) + βr(x)x+ βc− λ

r(x)x+ c
,

h(x) = −βζ(x) + ζ ′(x)

r(x)x+ c
,

S(y) =

∫ y

0

(β − λ

c
)dt = (β − λ

c
)y,

G(y) =

∫ x

d

g(t)dt.
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and the coefficients are determined by

C1 = −
∫ ∞

0

e−S(y)

(
C2 +

∫ y

0

eS(t)f(t)dt

)
dy,

C2 = e−G(0)C4 + e−G(0)

∫ 0

d

eG(t)h(t)dt,

C3 = ζ(d),

C4 = −
[
ζ(d) +

∫ ∞

0

e−S(y)

∫ y

0

eS(t)f(t)dtdy +

∫ 0

d

e−G(y)

∫ y

d

eG(t)h(t)dtdy

+e−G(0)

∫ d

0

e−G(t)h(t)dt

∫ ∞

0

e−S(y)dy
]
/
[ ∫ 0

d

e−G(y)dy + e−G(0)

∫ ∞

0

e−S(y)dy
]
.

Proof. Multiplying β + D on both sides of (2.7.2) and (2.7.3) yields

ϕ′′
abs(x) + (β − λ

c
)ϕ′

abs(x) = f(x), x ≥ 0,

ϕ′′
abs(x) + g(x)ϕ′

abs(x) = h(x), d < x < 0.

The general solution to ϕabs(x) is given by (2.7.4) and (2.7.5). In order to deter-

mine those coefficients, we search for four boundary conditions, each of which gives a linear

equation involving the coefficients.

Since ϕabs(x) is a special case of Gerber-Shiu function, we always have

lim
x→∞

ϕabs(x) = 0. (2.7.6)

Letting x→ d in (2.7.3) yields

ϕabs(d+) = ζ(d). (2.7.7)

By continuity of the generalized Gerber-Shiu function,

ϕabs(0−) = ϕabs(0+). (2.7.8)
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Letting x = 0 in (2.7.2) and x→ 0 in (2.7.3) and in view of (2.7.8) we obtain

ϕ′
abs(0−) = ϕ′

abs(0+). (2.7.9)

Hence, inserting (2.7.4) and (2.7.5) into (2.7.6), (2.7.7), (2.7.8) and (2.7.9) yields the

desired solutions.

2.8 Compound Poisson Model with Multiple Thresh-

olds

As an extension to the classical compound Poisson model with a dividend threshold

described by (2.3.3), Lin and Sendova [40] analyzed the Gerber-Shiu function in a compound

Poisson model with n threshold levels b1, b2, · · · , bn, each of which specifies a different divi-

dend payout rate α1, α2, · · · , αn respectively. In this example, we shall follow the techniques

from Lin and Pavlova [39], which treats a single threshold, to find solutions to the generalized

Gerber-Shiu function.

We number the threshold levels in the order from bottom to top. Let b = (b1, b2, · · · , bn)

and V (x;b) be the generalized Gerber-Shiu function defined by

V (x;b) = Ex

[∫ τd

0

e−δtl(Xt)dt

]
, (2.8.1)

where the surplus process Xt is a PDCP with local characteristics (X, λ,Q) and the generator

of the deterministic path between ith and (i+ 1)-th threshold is given by

X = (c− αi)
d

dx
, bi ≤ x < bi+1,

with i = 0, 1, · · · , n, b0 = d, α0 = 0, bn+1 = ∞. The same technique that treats the compound

Poisson model with multiple thresholds as a piecewise-deterministic Markov process also

appears in Yin [51].
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Suppose V (x;b) considered in this section is a bounded function. Therefore, insert-

ing the specific generator into (2.2.2), we obtain the integro-differential equation for each

threshold step,

(c− αi)V
′(x;b) − (λ + δ)V (x;b) + λ

∫ x−d

0

V (x− y;b) dQ(y) + l(x) = 0,

bi ≤ x < bi+1, for i = 1, 2, · · · , n+ 1. (2.8.2)

We summarize the solution to V (x;b) in the following corollary.

Corollary 2.8.1. The solution to V (x;b) defined in (2.8.1) is given by

V (x;b) = ψi(x) + ηivi(x), bi ≤ x < bi+1, for i = 0, 1, · · · , n− 1,

V (x;b) =
1

1 − πn

∫ x−bn

0

hn(x− y)dvn(y) + hn(x), bn ≤ x <∞.

where

ηi =
λπi+1

∫ bi+1−bi
0

ψi(bi+1 − y)dQ̂i+1(y) + (c− αi+1)[fi+1(bi+1+) − ψi(bi+1)]

(c− αi+1)vi(bi+1) − λπi+1

∫ bi+1−bi
0

vi(bi+1 − y)dQ̂i+1(y)
,

(2.8.3)

vi(x) =
∞∑

n=0

(1 − πi)π
n
i Q̂

?n
i (x− bi), (2.8.4)

ψi(x) =
1

1 − πi

∫ x−bi

0

hi(x− y)dvi(y) + hi(x). (2.8.5)

hi(x) = πi

∫ x−d

x−bi
V (x− y;b)dQ̂i(y) +

1

c− αi
Tρil(x). (2.8.6)

πi =
λ

c− αi

∫ ∞

0

eρiy

∫ ∞

y

e−ρitdQ(t)dy (2.8.7)

Q̂i(x) =

∫ x
0
eρiy

∫∞
y
e−ρitdQ(t)dy

∫∞
0
eρiy

∫∞
y
e−ρitdQ(t)dy

, (2.8.8)

with ρi being the unique non-negative root of the fundamental Lundberg equation

(c− αi)s+ λq̃(s) − (λ + δ) = 0.
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Proof. As usual, (2.8.2) can be written in terms of operators,

(
λ + δ

c− αi
I − D)V (x;b) =

λ

c− αi
V ? q(x) +

1

c − αi
l(x), bi < x < bi+1.

Since (hI − D)Th = I, we hence obtain

V (x;b) =
λ

c − αi
Th{V ? q}(x) +

1

c− αi
Thl(x), bi, < x < bi+1,

where h = (λ+ δ)/(c− αi).

Repeating the usual procedure to take the Dickson-Hipp transform inside the convo-

lution and cancel terms, it is easy to obtain

V (x;b) =
λ

c − αi
V ? Tρiq(x) +

1

c− αi
Tρil(x).

To make it look clear, we can rewrite it as

V (x;b) =
λ

c− αi

∫ x−d

0

V (x− y;b)dTρiQ(y) +
1

c− αi
Tρi l(x), bi < x < bi+1. (2.8.9)

Recall that V (x) is absolutely continuous for all x ∈ R, then we must have

V (bi−;b) = V (bi+;b), for i = 1, 2, · · · , n. (2.8.10)

We search for the solution in the form of a combination of a particular solution and

fundamental solution to the corresponding homogeneous equation. For i = 0, 1, 2, · · · , n−1,

V (x;b) = ψi(x) + ηivi(x), bi ≤ x < bi+1, for i = 0, 1, · · · , n − 1, (2.8.11)

where the particular solution ψi(x) is obtained from the defective renewal equation

ψi(x) = πi

∫ x−bi

0

ψi(x− y)dQ̂i(y) + hi(x), bi ≤ x <∞,
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and the fundamental solution vi(x) to the corresponding homogeneous equation

vi(x) = πi

∫ x−bi

0

vi(x− y)dQ̂i(y), x ≥ bi.

The function Q̂i(y), hi(x) are given in (2.8.8) and (2.8.6). The constant πi is given in (2.8.7).

Note that for each step to compute V (x;b), bi ≤ x < bi+1, i = 1, 2, · · · , n − 1, the

function hi(x) is known from previous steps, depending on V (x;b), b0 ≤ x < bi. When

i = 0, h0(x) is a function of l(x).Then it is easy to prove that the solutions can be expressively

written as (2.8.4) and (2.8.6).

In light of (2.8.11), we have

V (bi+1−;b) = ψi(bi+1) + ηivi(bi+1).

And it follows from (2.8.9) and (2.8.11) that

V (bi+1+;b) =
λπi+1

c− αi+1

∫ bi+1−bi

0

V (bi+1 − y;b)dQ̂i+1(y) + fi+1(bi+1+)

=
λπi+1

c− αi+1

[ ∫ bi+1−bi

0

ψi(bi+1 − y)dQ̂i+1(y) + ηi

∫ bi+1−bi

0

vi(bi+1 − y)dQ̂i+1(y)
]

+ fi(bi+1+),

where

fi+1(bi+1+) =
λπi+1

c− αi+1

∫ bi+1−d

bi+1−bi
V (bi+1 − y;b)dQ̂i+1(y) +

1

c− αi+1
Tρi+1 l(bi+1+).

Given (2.8.10), we obtain the expressions for ηi as given in (2.8.3).

The solution to V (x;b) for x ≥ bn is rather straightforward, as it satisfies a renewal

equation without upper boundary.

V (x;b) = πn

∫ x−bn

0

V (x− y;b)dQ̂n(y) + hn(x), bn ≤ x <∞.
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Thus we obtain the last unknown part,

V (x;b) =
1

1 − πn

∫ x−bn

0

hn(x− y)dvn(y) + hn(x), bn ≤ x <∞.

Readers are referred to Lin and Sendova [40] for alternative solutions to the Gerber-

Shiu function in the same model.
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Chapter 3

Sparre Andersen Risk Models

The generalization from the classical compound Poisson model to Sparre Andersen

model is another milestone that shapes the modern landscape of ruin theory. Since first

introduced in 1957 by E. Sparre Andersen, many new techniques have been brought in from

various original backgrounds and further developed in the ruin literature.

In simple words, the Sparre Andersen model replaces the exponential inter-claim time

distribution in the compound Poisson model by more general distributions while retaining

the assumption on the independence between inter-claim times and insurance claims. How-

ever, with such a generosity of inter-claim time distribution, we are not always unable to

obtain closed-form solutions to the probability of ruin, let alone Gerber-Shiu functions. The

recent study of a particular case of Sparre Andersen model with generalized Erlang-n inter-

claim time distribution has gained enormous popularity among the research community, as

the model produces many elegant results analogous to those in compound Poisson models.

Interested readers may refer to Gerber and Shiu [24], Li and Garrido [38] etc for a detailed

account.

In this chapter, we shall begin with another case of Sparre Andersen model, which

naturally leads to the construction of generalized Gerber-Shiu function in a similar manner
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as in previous chapter. Later on, we shall demonstrate its connection with the popular

generalized Erlang-n model and reproduce some well-known results to prove the efficiency

of a generalized Gerber-Shiu function and its consistency with conventional approaches.

3.1 Jacobsen Model

The risk model proposed by Jacobsen [29] assumes continuous phase-type distributed

inter-claim arrival times and claim sizes governed by distribution with rational Laplace trans-

form. Although it can be viewed as a generalization of the Sparre Andersen model previously

existed, Jacobsen [29] was the first in the literature to identify and technically treat the

underlying renewal process as a piecewise-deterministic Markov process. The major contri-

bution of his work was to introduce the martingale approach under the PDMP framework

to derive the Laplace transform of the time of ruin. As a result of specific assumptions on

both inter-claim time distribution and claim size distribution, closed-form solutions to the

Laplace transform of the time of ruin were produced, which in turn permits the calculation

of probability of ultimate ruin through numerical means.

Our goal is to reconcile Jacobsen model with all other models in the thesis in the

framework of a generalized Gerber-Shiu function and investigate more general ruin-related

quantities.

Suppose that an insurer’s surplus is driven by an indexed stochastic process X =

{(Xt, Jt), t ≥ 0} where the level of surplus is given byXt ∈ R and the index Jt ∈ {1, 2, · · · ,m}

is governed by the inter-claim arrival time distribution.

• Jump Arrivals

The inter-claim arrival times {Tn, n = 2, 3, · · · } are independent and identically dis-

tributed with the common phase-type distribution PH(a,Λ), where a , (a1, a2, · · · , am)T

is the initial probability vector and Λ the sub-intensity matrix of the underlying Markov
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chain J moving in the transient state space E = {1, 2, · · · ,m} and an absorbing state.

The absorption probability vector is given by

η , (η1, η2, · · · , ηm)T = −Λ1m,

where vector 1m of dimensionm consists of all elements equaling 1. Hence the intensity

matrix of the underlying Markov chain can be written as

 Λ η

0 0


 .

From the knowledge of phase-type distributions, tail probability of the inter-claim

arrival time distribution is hence given by

K(t) = P{Vn > t} = aT eΛt1m, n = 2, 3, · · · ,

and the Laplace transform of the inter-claim time distribution can be written as

k̃(s) = −aT (Λ − sI)η, (3.1.1)

where I denotes the identity matrix of dimension m.

In other words, we can interpret that the insurer’s surplus process X jumps from index

i to j with transition rates defined by the following two cases,

1. Transition from (Xt, i) to (Xt, j) with J communicating from the transient state

i to j at the rate given by Λij;

2. Transition from (Xt, i) to (Xt − y, j) with J first absorbed in absorbing state

resulting in an insurance claim of size y and then regenerated in a transient state

j at the rate given by ηiaj.

• Jump Sizes

The jump sizes ∆X(Tk) = X(Tk) − X(Tk−) are determined by a transition measure

Q(·;X(Tk−), j) where j ∈ {1, 2, · · · ,m}.Note that by definition Jacobsen model allows

the dependency between claim size ∆X(Tk) and current surplus level X(Tk−).
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• Piecewise-deterministic Path

In Jacobsen [29], the insurer’s surplus process increases by a constant premium rate.

However, we may easily extend the model to include the growth of surplus process

Xt, Tk ≤ t < Tk+1, governed by a vector field X regardless of the status of Markov

chain Jt.

• Initial Value

For practical uses, we often assume X starts at a fixed point (x, i) and all the above

assumptions are made with the measure P(x,i) under which P(x,i){X(t) = x, J(t) =

i} = 1. However, if the initial index i is unknown in certain situations, we may make

various assumptions on i, which equivalently leads to different assumptions on V1. It

is obvious that if we let the process X starts randomly according to the entrance law

a, then V1 has exactly the same distribution as Vi, i = 2, 3, · · · , which is the case we

shall study in this section. Then we shall define a new measure under which V1 follows

PH(a,Λ) as well as Vi, i = 2, 3, · · · ,

Px =
m∑

i=1

aiP(x,i).

The infinitesimal generator of the stochastic process X under the measure P(x,i) is given

by,

Af(x, i) = Xf(x, i) +
∑

j∈E

Λijf(x, j) + ηi
∑

j∈E

aj

∫ ∞

−∞
f(y, j)dQ(y;x, i). (3.1.2)

Following the notion of generalized Gerber-Shiu function defined for PDCP, we can

similarly adopt a definition for the stochastic process X :

H(x, i) = E(x,i)

[∫ τd

0

e−δtl(Xt, Jt)dt

]
, (3.1.3)

where the expectation is taken under the measure P(x,i), the cost function l : R × E 7→ R is

measurable and the time of default τd is defined by

τd = inf{t|X(t) < d}, d ∈ R.
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One may also be interested in a generalized Gerber-Shiu function under the measure Px,

H(x) =
m∑

i=1

aiH(x, i),

which replies on the solution to the functions H(x, i).

It can be shown that H(x, i) satisfies the following integro-differential equation

AH(x, i)− δH(x, i) + l(x, i) = 0, x ≥ d, (3.1.4)

by which we shall analyze a great variety of ruin-related quantities for the rest of this chapter.

3.1.1 Dividends Paid up to Ruin

We assume that the insurer collects premiums continuously at a constant rate c before

the surplus reaches a dividend threshold b. When the surplus runs above b, dividends are

paid out continuously to the insurance company’s shareholders at a constant rate α and

accordingly the surplus increases at a reduced rate c−α. As shown in the previous chapter,

we take the infinitesimal generator of the deterministic path to be

X =





(c− α)d/dx, x ≥ b,

cd/dx, 0 ≤ x < b.

We are interested in the expected present value of dividends paid up to the time of

ruin defined by

V (x, i) = E(x,i)

[∫ τd

0

e−δtl(Xt, Jt)dt

]
,

where the cost function l(x, i) takes the form

l(x, i) =





α, x ≥ b,

0, 0 ≤ x < b.
(3.1.5)

The jumping mechanismQ(y;x) is assumed to be independent of the current surplus position

x and involves only negative jumps. Ruin occurs when the surplus hits zero, which is to say
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that d = 0. Hence, in view of (3.1.2) and (3.1.4), we obtain the following integro-differential

equations for V (x, i),

(c− α)V ′(x, i)− δV (x, i) +
m∑

j=1

ΛijV (x, j) + ηi

m∑

j=1

aj

∫ x

0

V (x− y, j)dQ(y) + α = 0, x ≥ b,

(3.1.6)

and

cV ′(x, i)− δV (x, i) +
m∑

j=1

ΛijV (x, j) + ηi

m∑

j=1

aj

∫ x

0

V (x− y, j)dQ(y) = 0, 0 ≤ x < b. (3.1.7)

As always, we shall first start with the simplest example where the claim sizes are exponen-

tially distributed, i.e.

Q(y) = 1 − e−βy, y ≥ 0.

Based on past experience with homogeneous equations, we try by inspection a solution

to V (x, i) of the form

V (x, i) =





kie
γx +A, x ≥ b,

∑m+1
n=1 hine

ρnx, 0 ≤ x < b,
(3.1.8)

where γ,A, ρ1, ρ2, · · · , ρm+1 are constants to be determined later.

To find these constants, we replace V (x) in (3.1.7) by the lower part of (3.1.8).

m+1∑

n=1

cρnhine
ρnx −

m+1∑

n=1

δhine
ρnx +

m+1∑

n=1

m∑

j=1

Λijhjne
ρnx +

m+1∑

n=1

ηi

m∑

j=1

aj

∫ x

0

hjne
ρn(x−y)βe−βydy = 0.

0 ≤ x < b.

Hence we obtain

m+1∑

n=1

cρnhine
ρnx −

m+1∑

n=1

δhine
ρnx +

m+1∑

n=1

m∑

j=1

Λijhjne
ρnx +

m+1∑

n=1

ηi

m∑

j=1

ajhjne
ρnx

β

β + ρn

+
m+1∑

n=1

ηi

m∑

j=1

ajhjne
−βx β

β + ρn
= 0, 0 ≤ x < b.
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Equating all terms with eρ1x, eρ2x, · · · , eρmx, eρm+1x respectively with zero yields

cρnhin − δhin +

m∑

j=1

Λijhjn +
β

β + ρn
ηi

m∑

j=1

ajhjn = 0, for n = 1, 2, · · · ,m+ 1,

which can be written in matrix form as

{Λ − (δ − cρn)I}h·n +
β

β + ρn
(aTh·n)η = 0,

where h·n = (h1n, h2n, · · · , hmn)T .

Equating the rest of terms with e−βx with zero gives

m∑

n=1

m∑

j=1

ajhjn
β

β + ρn
= 0,

which can also be represented as

m+1∑

n=1

β

β + ρn
aTh·n = 0.

Denote the constant aTh·n = Dn, then

h·n = −Dn
β

β + ρn
{Λ − (δ − cρn)I}−1η, for n = 1, 2, · · · ,m+ 1, (3.1.9)

with the constraint

m+1∑

n=1

β

β + ρn
Dn = 0. (3.1.10)

Replacing the expression (3.1.9) for h·n in aTh·n = Dn gives

− β

β + ρn
aT
{
Λ − (δ − cρn)I

}−1

η = 1. (3.1.11)

Comparing (3.1.1) and (3.1.11), one soon recognizes that ρ1, ρ2, · · · , ρm+1 satisfy the famous

generalized Lundberg fundamental equation

q̃(s)k̃(δ − cs) = 1.
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By substituting the expression (3.1.8) into (3.1.6) we have

(c− α)γkie
γx − δkie

γx +
m∑

j=1

Λijkje
γx +

β

β + γ

(
m∑

j=1

ajkj

)
ηie

γx

− β

β + γ

(
m∑

j=1

ajkj

)
ηie

(β+γ)be−βx + ηi

m+1∑

n=1

β

β + ρn

(
m∑

j=1

ajhjn

)
e(β+ρn)be−βx

−ηi
m+1∑

n=1

β

β + ρn

(
m∑

j=1

ajhjn

)
e−βx − ηi

m∑

j=1

aje
βbAe−βx − δA+

m∑

i=1

ΛijA+ ηi

m∑

j=1

ajA+ α = 0.

Recall that by definition
∑m

j=1 aj = 1 and
∑m

j=1 Λij + ηi = 0. Thus we obtain by

combining the last four constant terms that A = α/δ. Equating all terms with eγx and e−βx

yields

(c− α)γki − δki +
m∑

j=1

Λijkj +
β

β + γ

(
m∑

j=1

ajkj

)
ηi = 0

and

− β

β + γ

(
m∑

j=1

ajkj

)
= −

m+1∑

n=1

β

β + ρn

(
m∑

j=1

ajhjn

)
e(ρn−γ)b

+
m+1∑

n=1

β

β + ρn

(
m∑

j=1

ajhjn

)
e−(β+γ)b +

m∑

j=1

ajAe
−γb

which can be written in matrix forms as

{
Λ − [δ − (c− α)γ]I

}
k +

β

β + γ
(aTk)η = 0, (3.1.12)

and

− β

β + γ
(aTk) = Ae−γb + aThd1 − aThd2, (3.1.13)

where k = (k1, k2, · · · , km)T , h = (hin)m×(m+1),

d1(b) =

(
β

β + γ
e−(β+γ)b,

β

β + ρ2
e−(β+γ)b, · · · , β

β + ρm+1
e−(β+γ)b

)T

and

d2(b) =

(
β

β + γ
e(ρ1−γ)b,

β

β + ρ2

e(ρ2−γ)b, · · · , β

β + ρm+1

e(ρm+1−γ)b
)T

.
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It can be verified that Λ − [δ − (c− α)ρ]I is invertible ( c.f. Jacobsen [29] ). Note that aTk

is a constant. Hence in light of (3.1.12), (3.1.13) and the fact that A = α/δ, the solution to

k is given by

k = [
α

δ
e−γb + aThd1(b) − aThd2(b)]

{
Λ − [δ − (c− α)γ]I

}−1

η. (3.1.14)

In light of the fact that aTh·n = Dn,we must have aThd1(b) = DTd1(b) and aThd2(b) =

DTd2(b), where D = (D1,D2, · · · ,Dm+1)
T .

Inserting (3.1.14) into either (3.1.12) or (3.1.13) yields

− β

β + ρ
aT
{
Λ − [δ − (c− α)γ]I

}−1

η = 1. (3.1.15)

Apparently, γ has to satisfies (3.1.15) in order to make both (3.1.12) and (3.1.13) consistent.

Comparing (3.1.1) and (3.1.15), one soon recognize that γ satisfies the famous generalized

Lundberg fundamental equation

q̃(s)k̃[δ − (c− α)s] = 1.

Therefore, the solution to the dividends up to ruin for x ≥ b can be written in matrix

form,

V(x) =
α

δ
1 + [

α

δ
e−γb + DTd1(b) −DTd2(b)]

{
Λ − [δ − (c− α)γ]I

}−1

ηeγx, x ≥ b,

(3.1.16)

V(x) = −
m+1∑

n=1

Dn
β

β + ρn
{Λ − (δ − cρn)I}−1ηeρnx, 0 ≤ x < b. (3.1.17)

where V(x) =
(
V (x, 1), V (x, 2), · · · , V (x,m)

)T
and 1 = (1, 1, · · · , 1)T .

Since both (3.1.16) and (3.1.17) contain m+1 unknown constants, we now need m+1

linear equations. By continuity condition that V(b−) = V(b+), we have

α

δ
1 +

[
α

δ
+

m+1∑

n=1

Dn
β

β + ρn
(e−βb − eρnb)

]{
Λ − [δ − (c− α)γ]I

}−1

η

= −
m+1∑

n=1

Dn
β

β + ρn
eρnb{Λ − (δ − cρn)I}−1η. (3.1.18)

95



Now that we obtain (3.1.18) and (3.1.10), D1,D2, · · · ,Dm+1 can be determined.

We can recover the classical result of dividends up to ruin in the compound Poisson

model by letting m = 1 in our model. Thus α = (1),Λ = (−λ), η = (λ),D = (D1,D2)
T .

Together with (3.1.11) and (3.1.15), equation (3.1.18) can be simplified as

−αγ
δβ

−
(
β + γ

β + ρ1
e−βb − β + γ

β + ρ1
eρ1b
)
D1 −

(
β + γ

β + ρ2
e−βb − β + γ

β + ρ2
eρ2b
)
D2 = eρ1bD1 + eρ2bD2.

And equation (3.1.10) reduces to

β

β + ρ1
D1 +

β

β + ρ2
D2 = 0.

Solving the two linear equations yields the solution,

D1 = − αγ(β + ρ1)

δβ[(ρ1 − γ)eρ1b − (ρ2 − γ)eρ2b]
,

D2 =
αγ(β + ρ2)

δβ[(ρ1 − γ)eρ1b − (ρ2 − γ)eρ2b]
.

Inserting D1 and D2 into (3.1.16) and (3.1.17) gives

V (x) =
α

δ
− α(β + γ)

δβ
eγ(x−b) − αγ(β + γ)(eρ1b − eρ2b)

δβ[(ρ1 − γ)eρ1b − (ρ2 − γ)eρ2b]
eγ(x−b), x ≥ b,

V (x) =
−αγ
δβ

(β + ρ1)e
ρ1x − (β + ρ2)e

ρ2x

(ρ1 − γ)eρ1b − (ρ2 − γ)eρ2b
, 0 ≤ x < b,

which are exactly equation (1.2.20) and (1.2.19).

3.1.2 Total Discounted Claim Costs up to Ruin

We take as given a B(R)-measurable function $[(x, i), (y, j)] that determines the ex-

penses of each insurance claim according to the surplus position prior to the claim arrival

(x, i) and the resulting surplus position (y, j). Hence we define the expected present value
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of total claim expenses up to the time of ruin by

A(x, i) = E(x,i)

{
N∑

k=1

e−δTk$[(XTk−, JTk−), (XTk
, JTk

)]

}
,

where δ ≥ 0 and N = max{k : Tk ≤ τ0}.

Using similar arguments as in Theorem 2.2.1, we can show that

A(x, i) = E(x,i){e−δ(T1∧τ0)$[(XT1−, i), (XT1, JT1)] + e−δ(T1∧τ0)A(XT1, JT1)}.

The first term can be written in terms of Lebesgue-Stieljes integral. Thus,

A(x, i) = E(x,i)

{∑

j∈E

∫ τ0

0

∫ ∞

0

e−δt$[(Xt−, i), (Xt− − y, j)]Hj(dy, dt)

}
+E(x,i){e−δ(T1∧τ0)A(XT1, JT1)},

where {Hj, j ∈ E} are mutually independent single jump processes defined by

Hj(A, t) = ajI(t ≥ T1)Q(A).

Since T1 is governed by exponential distribution with mean 1/ηi, by Theorem 17 (Chapter

5, Protter [43]) we have the compensator of H

H̃j(A, t) = ηiajQ(A)(t ∧ T1).

Therefore,

A(x, i) = E(x,i)

{∑

j∈E

∫ τ0

0

∫ ∞

0

e−δt$[(Xt−, i), (Xt− − y, j)]H̃j(dy, dt)

}
+ E(x,i){e−δ(T1∧τ0)A(XT1, JT1)}

= E(x,i)

{∫ T1∧τ0

0

e−δt
∫ ∞

0

∑

j∈E

ηiaj$[(Xt−, i), (Xt− − y, j)]Q(dy)dt

}
+ E(x,i){e−δ(T1∧τ0)A(XT1, JT1)}.

Now we compare it with a similar equation for V (x, i) obtained by strong Markov property

V (x, i) = E(x,i)

{∫ T1∧τ0

0

e−δtl(Xt, i)dt

}
+ E(x,i){e−δ(T1∧τ0)V (XT1 , JT1)}.

It becomes obvious that A(x) can be obtained by taking the following cost function in (3.1.3),

l(x, i) =

∫ ∞

0

∑

j∈E

ηiaj$[(x, i), (x− y, j)]Q(dy). (3.1.19)
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Hence in the classical case with constant premium rate c, the integro-differential equa-

tions for A(x, i) are given by

cA′(x, i)− δA(x, i) +
m∑

j=1

ΛijA(x, j) + ηi

m∑

j=1

aj

∫ x

0

A(x− y, j)dQ(y)

+ηi

m∑

j=1

aj

∫ ∞

0

$[(x, i), (x− y, j)]dQ(y) = 0, x ≥ 0. (3.1.20)

3.1.3 Gerber-Shiu Function Depending on Deficit Only

As we shown in Cai et al. [9], the Gerber-Shiu expected discounted penalty is a special

case of the expected total discounted claim expenses. For simplicity, we choose

$[(x, i), (y, j)] = g(−y)I(y < 0).

Then the total claim expenses reduce to

m(x, i) = E(x,i)[e−δτ0g(|Xτ0 |)],

which is the Gerber-Shiu function depending on the deficit at ruin only.

We shall as well illustrate this example by taking the simplest assumption that the

claim sizes are exponentially distributed, i.e.

Q(y) = 1 − e−βy, y ≥ 0.

By inspection, we search for the solution in the form of

m(x, i) = lie
γx, x ≥ 0, (3.1.21)

where γ is a constant to be determined later.

Inserting (3.1.21) into (3.1.20) yields,

cγlie
γx − δlie

γx +

m∑

j=1

Λij lje
γx +

β

β + γ
ηi

(
m∑

j=1

ajlj

)
eγx

− β

β + γ
ηi

(
m∑

j=1

ajlj

)
e−βx + ηiβ

[∫ ∞

0

g(z)e−βzdz

]
e−βx = 0.
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By equating all terms with eγx and e−βx with zero, we obtain the following equations

in matrix form.

cγl − δl + Λl +
β

β + γ
(aT l)η = 0,

and

β

β + γ
(aT l)η = β

[∫ ∞

0

g(z)e−βzdz

]
η,

where l = (l1, l2, · · · , lm)T .

Hence we obtain the coefficient vector

l = −β
[∫ ∞

0

g(z)e−βzdz

]
{Λ − (δ − cγ)I}−1η,

where γ is the unique non-negative solution to the Lundberg equation

− β

β + γ
aT{Λ − (δ − cγ)I}−1η = 1.

3.1.4 Insurer’s Accumulated Utility

Another attraction of the generalized Gerber-Shiu function is the admission of an

insurer’s accumulated utility, which in the case of indexed compound Poisson process can be

defined as

U(x, i) , E(x,i)

[∫ τ0

0

u(Xt, Jt)dt

]
,

where u(x, i) measures an insurer’s utility of current surplus reserve. The most frequently

quoted utility function is the exponential utility function,

u(x, i) = −1

a
e−ax, for all i’s,

which implies constant absolute risk aversion. For notational brevity, we shall denote

W (x, i) , E(x,i)

[∫ τ0

0

e−aXtdt

]
.

Once the expression W (x, i) is determined, we can find U(x, i) = −W (x, i)/a.
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Thus by (3.1.4) we have the integro-differential equation for W (x, i),

cW ′(x, i) +
m∑

j=1

ΛijW (x, j) + ηi

m∑

j=1

aj

∫ x

0

A(x− y, j)dQ(y) + e−ax = 0, x ≥ 0.

(3.1.22)

Under the exponential claim size assumption, we search for the solution to the accu-

mulated utility of the form

W (x, i) = Aie
ρx +Bie

−ax +D. (3.1.23)

Substituting (3.1.23) for W (x, i) in (3.1.22) gives

cρAie
ρx − acBie

−ax +
m∑

j=1

ΛijAje
ρx +

m∑

j=1

ΛijBje
−ax +D

m∑

j=1

Λij

+ηi
β

β + ρ

(
m∑

j=1

ajAj

)
eρx − ηi

β

β + ρ

(
m∑

j=1

ajAj

)
e−βx + ηi

β

β − a

(
m∑

j=1

ajBj

)
e−ax

−ηi
β

β − a

(
m∑

j=1

ajBj

)
e−βx +Dηi

m∑

j=1

aj +Dηi

m∑

j=1

aje
−βx + e−ax = 0.

Letting A = (A1, A2, · · · , Am)T ,B = (B1, B2, · · · , Bm)T and equating all terms with

eρx, e−ax and e−βx gives,

cρA + ΛA +
β

β + ρ
ηaTA = 0,

β

β + ρ
aTA +

β

β − a
aTB = −D,

−acB + ΛB +
β

β − a
aTBη + 1 = 0.

Again we investigate how the compound Poisson model can be recovered from the

above analysis. Let m = 1,Λ = (−λ),a = (1), η = (λ). Thus the above system of equations

become

cρA− λA+
β

β + ρ
λA = 0,

β

β + ρ
A+

β

β − a
B = −D,

−acB − λB + λ
β

β − a
B + 1 = 0.

100



Hence

B =
a− β

ac(a− β + λ/c)
,

the solution the lundberg equation is ρ = 0 or λ/c − β. When the safety loading condition

is satisfied, i.e. c > λ/β, it can be proved that W (∞) = 0, which implies D = 0. Then we

arrive at the solution to the insurer’s accumulated utility when c > λ/β,

W (x) =
λ

ac2(a− β + λ/c)
e−(β−λ/c)x +

a− β

ac(a− β + λ/c)
e−ax.

On the other hand, if the safety loading condition is violated, since the accumulated utility

function is still bounded, then A has to be zero. Therefore, when c ≤ λ/β,

W (x) =
β

ac(a− β + λ/c)
+

a− β

ac(a− β + λ/c)
e−ax.

3.2 Generalized Erlang-n Inter-claim Risk Models

The model assumes that all inter-claim time random variables are identically dis-

tributed with the generalized Erlang-n distribution, which is equivalent to say that each

inter-claim time Vi is a sum of n independent exponentially distributed random variables

with parameters λ1, λ2, · · · , λn. In the context of phase-type distribution, we can treat each

exponential random variable as the time the Markov chain J stays in a transient state and

it must go through each state consecutively before it reaches the absorption state and regen-

erates thereafter. Hence, we define a = (1, 0, 0, · · · , 0)T and the corresponding sub-intensity

matrix Λ can be written as

Λ =




−λ1 λ1 0 · · · 0

0 −λ2 λ2 · · · 0

0 0 −λ3 · · · 0

· · ·

0 0 0 · · · −λn




.

101



Hence the absorption vector η is given by η = (0, 0, 0, · · · , λn)T . One can obtain from (3.1.1)

that the Laplace transform of the inter-claim time distribution is given by

k̃(s) =
n∏

i=1

λi
λi + s

.

In view of (3.1.2) and (3.1.4), we obtain the following system of integro-differential

equations for V (x, i), i = 1, 2, · · · , n.

XV (x, i)− (λi + δ)V (x, i) + λiV (x, i+ 1) + l(x, i) = 0, i = 1, 2, · · · , n− 1

XV (x, n) − (λn + δ)V (x, n) + λn

∫ ∞

−∞
V (y, 1)dQ(y;x) + l(x, n) = 0.

Rearranging the equations gives

V (x, i+ 1) =

[(
1 +

δ

λi

)
I − 1

λi
X

]
V (x, i)− 1

λi
l(x, i), for i = 1, 2, · · · , n− 1,

(3.2.1)
[(

1 +
δ

λn

)
I − 1

λn
X

]
V (x, n) =

∫ ∞

−∞
V (y, 1)dQ(y, x) +

1

λi
l(x, n). (3.2.2)

As specified by the generalized Erlang-n inter-claim time distribution, the surplus

process must start with (x, 1) and hence we are interested in particular the generalized

Gerber-Shiu function V (x, 1). Iterative substitution by (3.2.1) into (3.2.2) leads to
n∏

i=1

[(
1 +

δ

λi

)
I − 1

λi
X

]
V (x, 1)

=

∫ ∞

−∞
V (y, 1)dQ(y;x) +

n∑

i=1

{
n∏

k=i+1

[(
1 +

δ

λk

)
I − 1

λk
X

]
1

λi
l(x, i)

}
(3.2.3)

with the convention that
∏n

k=n+1 · = 1.

3.2.1 Dividends Paid up to Ruin with Two-sided Jumps

Following the same notion of dividend threshold policy in Section 3.1.1, we take the

infinitesimal generator of the deterministic path to be

X =





(c− α)d/dx = (c− α)D, x ≥ b,

cd/dx = cD, 0 ≤ x < b.
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The cost function for dividends paid up to ruin is given regardless of the index of surplus

process by (3.1.5). As always in traditional Sparre Andersen model, the jumping mechanism

Q(y;x) is assumed to be independent of the current surplus position x. The ordinary ruin

level is set to be d = 0. To make it slightly more general than the dividends paid up to ruin

covered in Wang and Dong [47] and Albrecher et al. [1], we assume that the surplus process

jumps either upwards or downwards at random according to

Q(y) = πQ+(y)I(y ≥ 0) + (1 − π)[1−Q−(−y)]I(y < 0).

Therefore, (3.2.3) reduces to the following system of integro-differential equations,

n∏

i=1

[
λi + δ

c− α
I − D

]
V (x, 1) =

∏n
i=1 λi

(c− α)n

∫ ∞

0

V (x− y, 1)dQ(y)

+
α

(c− α)n

n∑

i=1

i−1∏

k=1

λk

n∏

k=i+1

(λk + δ), x ≥ b; (3.2.4)

n∏

i=1

[
λi + δ

c
I − D

]
V (x, 1) =

∏n
i=1 λi
cn

∫ ∞

0

V (x− y, 1)dQ(y),

0 ≤ x < b. (3.2.5)

When π = 0, equation (3.2.4) and (3.2.5) are precisely (2.12) and (2.13) in Wang and

Dong [47] derived using traditional probabilistic arguments, and (3.2.5) is the same as (9)

in the case of m = 1 in Albrecher et al. [1].

Since the Sparre Andersen model with generalized Erlang-n claim sizes is a special case

of the Jacobsen model, the same technique in Section 3.1.1 would enable us to obtain general

solutions for V (x, 1). To avoid repetitive derivation, we shall illustrate the explicit solution

to V (x, 1) in an example where traditional ordinary differential equation approach applies.

Assume that the random jump is governed by a mixture of two exponential distributions

corresponding to insurance claims and unexpected investment returns respectively,

Q(y) = π(1 − e−β1y)I(y ≥ 0) + [(1 − π) − (1 − π)(1 − eβ2y)I(y < 0)].
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Hence, we can write (3.2.4) and (3.2.5) in terms of operators

n∏

i=1

[
λi + δ

c − α
I − D

]
V (x, 1) =

∏n
i=1 λi

(c− α)n

[
πβ1Tβ1V (x, 1) + (1 − π)β2Eβ2V (x, 1)

]

+
α

(c− α)n

n∑

i=1

i−1∏

k=1

λk

n∏

k=i+1

(λk + δ), x ≥ b;

n∏

i=1

[
λi + δ

c
I − D

]
V (x, 1) =

∏n
i=1 λi
cn

[
πβ1Tβ1V (x, 1) + (1 − π)β2Eβ2V (x, 1)

]
, 0 ≤ x ≤ b,

where the Dickson-Hipp operator Ts and the exponential convolution operator Es are defined

in Section 1.1. Recall that (sI + D)Ts = I and (sI − D)Es = I. Thus

(β1I − D)(β2I + D)
n∏

i=1

{
λi + [δ − (c− α)D]

λi

}
V (x, 1) = πβ1(β2I + D)V (x, 1)

+(1 − π)β2(β1I − D)V (x, 1) + β1β2α
n∑

i=1

[
1

λi

n∏

k=i+1

(
1 +

δ

λk

)]
, x ≥ b; (3.2.6)

(β1I −D)(β2I − D)
n∏

i=1

{
λi + [δ − (c− α)D]

λi

}
V (x, 1) = πβ1(β2I + D)V (x, 1)

+(1 − π)β2(β1I − D)V (x, 1), 0 ≤ x ≤ b, (3.2.7)

It is obvious that a constant C must be a particular solution to (3.2.6) if it satisfies

n∏

i=1

(
1 +

δ

λi

)
C = C + α

n∑

i=1

[
1

λi

n∏

k=i+1

(
1 +

δ

λk

)]
.

It can easily be proved by mathematical induction that

n∏

i=1

(λi + δ) −
n∏

i=1

λi = δ

n∑

i=1

{
n∏

k=i+1

(λk + δ)

i−1∏

j=1

λj

}
. (3.2.8)

Hence, we find that C = α/δ is a particular solution to (3.2.6). The fundamental solution to

the homogeneous differential equation corresponding to (3.2.6) is given by
∑n+2

i=1 e
si where

s1, s2, · · · , sn+2 are roots of the characteristic equation (i.e. Lundberg equation in ruin

context)

n∏

i=1

{
λi + [δ − (c− α)s]

λi

}
= π

β1

(β1 − s)
+ (1 − π)

β2

β2 + s
. (3.2.9)
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In light of the fact that

lim
x→∞

V (x, 1) =
α

δ
,

we must have

V (x, 1) = ke−ρx +
α

δ
, x ≥ b, (3.2.10)

where −ρ is the unique negative root to the Lundberg equation (3.2.9) and k is to be

determined. Substituting (3.2.10) for V (x, 1) in (3.2.4) yields,

n∏

i=1

[
λi + δ

c − α
+ ρ

]
ke−ρx +

α
∏n

i=1(λi + δ)

δ(c− α)n
=

∏n
i=1 λi

(c− α)n
πβ1

β1 + ρ
ke−ρx + π

α
∏n

i=1 λi
δ(c− α)n

+

∏n
i=1 λi

(c− α)n
(1 − π)β2

β2 − ρ
ke−ρx −

∏n
i=1 λi

(c− α)n
(1 − π)β2

β2 − ρ
ke(β2−ρ)be−β2x + (1 − π)

α
∏n

i=1 λi
δ(c− α)n

−(1 − π)
α
∏n

i=1 λi
δ(c− α)n

eβ2be−β2x +

∏n
i=1 λi

(c− α)n
(1 − π)

n+2∑

i=1

hi
β2

β2 + ρi
e(β2+ρi)be−β2x

−
∏n

i=1 λi
(c− α)n

(1 − π)
n+2∑

i=1

hi
β2

β2 + ρi
e−β2x +

α

(c− α)n

n∑

i=1

i−1∏

k=1

λk

n∏

k=i+1

(λk + δ).

All the terms with e−ρx cancel out thanks to (3.2.9) and all the constant terms collapse to

zero because of (3.2.8). The only two terms left and both involving e−β2x gives

k =
ρ − β2

β2
[
α

δ
eρb +

n+2∑

i=1

hi
β2

β2 + ρi
e(ρ−β2)b −

n+2∑

i=1

hi
β2

β2 + ρi
e(ρ+ρi)b].

Since (3.2.7) is a homogeneous differential equation, the solution to V (x, 1), 0 ≤ x < b

must be in the form of

V (x, 1) =
n+2∑

i=1

hie
ρix, 0 ≤ x < b, (3.2.11)

where ρi, i = 1, · · · , n+ 2 are roots of its characteristic (Lundberg) equation

n∏

i=1

{
λi + [δ − cs]

λi

}
= π

β1

(β1 − s)
+ (1 − π)

β2

β2 + s
.
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Inserting (3.2.11) back into (3.2.5) one finds that the coefficient of e−β2x must be equal to

zero, which yields that

1

β2 + ρ1
h1 +

1

β2 + ρ2
h2 + · · · + 1

β2 + ρn
hn +

1

β2 + ρn+1
hn+1 +

1

β2 + ρn+2
hn+2 = 0.

(3.2.12)

Observe from (3.2.1) that

V (x, j+1) =

j∏

i=1

[(
1 +

δ

λi

)
I − 1

λi
X

]
V (x, 1)−

j∑

i=1

{
j∏

k=i+1

[(
1 +

δ

λk

)
I − 1

λk
X

]
1

λi
l(x, i)

}
,

for j = 1, 2, · · · , n − 1. Because it is obvious by definition that V (x, j + 1) is continuous for

all x ≥ 0, j = 0, 1, 2, · · · , n− 1, we must have

j∏

i=1

[(λi + δ)I − (c− α)D] V (b+, 1) − α

j∑

i=1

{
j∏

k=i+1

(λk + δ)
i−1∏

k=1

λk

}
(3.2.13)

=

j∏

i=1

[(λi + δ)I − cD] V (b−, 1). (3.2.14)

It follows from (3.2.3) that the above identity works for j = n as well.

Inserting the expression (3.2.10) and (3.2.11) in (3.2.14) gives for j = 0, 1, · · · , n

j∏

i=1

[λi + δ + (c− α)ρ]ke−ρb +

j∏

i=1

(λi + δ)
α

δ
− α

j∑

i=1

{
j∏

k=i+1

(λk + δ)
i−1∏

k=1

λk

}

=
n+2∑

l=1

j∏

i=1

(λi + δ − cρl)hle
ρlb.

In light of (3.2.8), we obtain for j = 0, 1, · · · , n

n+2∑

l=1

j∏

i=1

(λi + δ − cρl)e
ρlbhl =

j∏

i=1

[λi + δ + (c− α)ρ]e−ρbk − α

δ

j∏

i=1

λi. (3.2.15)

Combing (3.2.12) and (3.2.15) in matrix form gives

Ah = B,
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where h = (h1, h2, · · · , hn+2)
T ,

A =




1/(β2 + ρ1) 1/(β+ρ2) · · · 1/(β+ρn+2)

eρ1b eρ2b · · · eρn+2b

(λ1 + δ − cρ1)e
ρ1b (λ1 + δ − cρ2)e

ρ2b · · · (λ1 + δ − cρn+2)e
ρn+2b

· · ·
∏n+2

i=1 (λi + δ − cρ1)e
ρ1b

∏n+2
i=1 (λi + δ − cρ2)e

ρ2b · · ·
∏n+2

i=1 (λi + δ − cρn+2)e
ρn+2b




,

B =

(
0, e−ρbk, [λ1 + δ + (c− α)ρ]e−ρb − αλ1/δ, · · · ,

n+2∏

i=1

[λi + δ + (c− α)ρ]e−ρb − α

n+2∏

i=1

λi/δ

)T

.

Hence we finally determine the unknown coefficients hi by

h = A−1B.

3.2.2 Total Claim Costs with Two-sided Jumps

Since insurance claims can only occur when J(t) = n, we suppress the indices of surplus

positions and hence $ depends only on the surplus prior to claims x and immediately after

claims y. Accordingly, the cost function for the total claim expenses can be further simplified

from (3.1.19) by substituting specific transition rates.

l(x, i) =





λn
∫∞
0
$(x, x− y)dQ(y), i = n;

0, i = 1, 2, · · · , n− 1.

We have the infinitesimal generator for the classical deterministic path

X = c
d

dx
= cD.

Hence, (3.2.3) reduces to

n∏

i=1

[(
1 +

δ

λi

)
I − c

λi
D
]
A(x, 1) =

∫ ∞

0

A(x− y, 1)dQ(y) +

∫ ∞

0

$(x, x− y)dQ(y).
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3.2.3 Gerber-Shiu Functions

If we let

$[(x, n), (y, 1)] =





0, for y ≥ 0,

w(x,−y), for y < 0,

which means

l(x, n) = λn

∫ ∞

x

w(x, y − x)dQ(y).

Thus (3.1.3) turns into the familiar Gerber-Shiu function

m(x, 1) = E(x,1)
[
e−δτ0w(Xτ0−, |Xτ0|)I(τ0 <∞)

]
,

and the corresponding integro-differential equation (3.2.3) becomes

n∏

i=1

[(
1 +

δ

λi

)
I − c

λi
D
]
m(x, 1) =

∫ x

0

m(x− y, 1)dQ(y) +

∫ ∞

x

w(x, y − x)dQ(y),

which is precisely the equation (5.11) in Gerber and Shiu [24].

3.3 Generalized Erlang-2 Inter-claim Time Model with

Absolute Ruin

3.3.1 Gerber-Shiu Functions

The Sparre Andersen model with Erlang-2 inter-claim time distribution was first stud-

ied in a seminal paper by Dickson and Hipp [16] and then later successfully extended to

consider Erlang-n inter-claim time distribution by Li and Garrido [38]. In Gerber and Shiu

[24], the model was further generalized to incorporate a broader class of inter-claim times

governed by generalized Erlang-n distribution. Many inspiring new techniques and results

introduced in Gerber and Shiu [24] such as operator arguments popularized the study of
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Sparre Andersen model and were followed by numerous research papers such as Li and Gar-

rido [37] which investigated dividend paid up to ruin under a constant barrier strategy, and

Albrecher et al. [1] which derived the distribution of dividend payments in the same model.

In the classical Sparre Andersen model with generalized Erlang-2 inter-claim times, it

is assumed that an insurer’s surplus is driven by a stochastic process X = {Xt, t ≥ 0} with

Xt = x+ ct−
Nt∑

i=1

Yi, (3.3.1)

where x is the initial surplus level, insurance premium is collected continuously at a con-

stant rate of c, the sequence of insurance claims {Yi, i = 1, 2, · · · } are i.i.d. with com-

mon distribution Q(y) with density q(y). The counting process {N(t), t ≥ 0} is defined by

N(t) = min{n|T1 + · · · + Tn ≤ t} where {Ti, i = 1, 2, · · · } representing the inter-claim times

with a common generalized Erlang-2 distribution with Laplace transform

k̃(s) =
λ1

λ1 + s

λ2

λ1 + s
.

Since Erlang-2 distribution can be represented as a phase-type distribution PH(a,Λ)

where

Λ =


 −λ1 λ1

0 −λ2


 ,

a = (1, 0)T and η = (0, λ2)
T , it is easy to see that the process {Xt, t ≤ 0} can be decomposed

as a piecewise-deterministic Markov process {(Xt, Jt), t ≥ 0, Jt = 1 or 2} with transition

rates defined by the following two cases,

1. Transition from (Xt, i) to (Xt, j) with J communicating in the transient states at the

rate given by Λij ;

2. Transition from (Xt, i) to (Xt − y, j) with J first absorbed resulting in an insurance

claim of size y and then regenerated at the rate given by ηiaj.
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And the sample path of (Xt, i) in between any two consecutive claims yields the infinitesimal

generator

X = cd/dt.

Hence, the classical Sparre Andersen model with generalized Erlang-2 inter-claim time dis-

tribution can be specified by the local characteristics (X,Λ, Q).

The absolute ruin probability was first introduced in the compound Poisson model

by Dassios and Embrechts [13] and then analyzed through piecewise-deterministic Markov

process approaches in Embrechts and Schmidli [18]. Recently, the Gerber-Shiu function

was extensively studied in the context of the compound Poisson model with absolute ruin

in Cai [6]. We follow the same idea to investigate the Gerber-Shiu function in the Sparre

Andersen model with Erlang-2 inter-claim times with absolute ruin.

Since the insurer is allowed to borrow money from a bank at a debit force of interest

r whenever in deficit, the dynamics of the surplus process is given by




dXt = cdt− dZt, x ≥ 0;

dXt = (rXt + c)dt− dZt, −c/r ≤ x < 0.
(3.3.2)

In terms of local characteristics of the piecewise deterministic Markov process, both

Λ and Q(y) remain the same. The infinitesimal generator for the deterministic path is now

given by

X =





cd/dt, x ≥ 0;

(rx+ c)d/dt, −c/r ≤ x < 0.
(3.3.3)

It is shown in Section 3.2 that the Gerber-Shiu function for such a process can be

represented as

m(x) = E(x,1)

[∫ τ

0

e−δtl(Xt, Jt)dt

]
,

where

l(x, i) =





λ2

∫∞
x+c/r

w(x, y − x)dQ(y), i = 2;

0, i = 1.
(3.3.4)
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The Gerber-Shiu function satisfies the following integro-differential equation
2∏

i=1

[(
1 +

δ

λi

)
I − 1

λi
X

]
m(x)

=

∫ ∞

−∞
m(y)dQ(y;x) +

2∑

i=1

{
2∏

k=i+1

[(
1 +

δ

λk

)
I − 1

λk
X

]
1

λi
l(x, i)

}
(3.3.5)

with the convention that
∏n

k=n+1 · = 1.

Due to two types of dynamics in deterministic paths of the surplus process, we introduce

the notation

m(x) =





m+(x), x ≥ 0;

m−(x), −c/r ≤ x < 0.
(3.3.6)

Inserting the expressions in (3.3.3), (3.3.4) and (3.3.6) into the equation (3.3.5), we

could easily obtain the integro-differential equation satisfied by the Gerber-Shiu function.

[(λ1 + δ)I − cD][(λ2 + δ)I − cD]m+(x) = λ1λ2

[ ∫ x

0

m+(x− y)dQ(y)

+

∫ x+c/r

x

m−(x− y)dQ(y) +

∫ ∞

x+c/r

w(x, y − x)dQ(y)
]
, x ≥ 0, (3.3.7)

[(λ1 + δ)I − (ru + c)D] [(λ2 + δ)I − (ru+ c)D]m−(x) = λ1λ2

[∫ x+c/r

0

m−(x− y)dQ(y)

+

∫ ∞

x+c/r

w(x, y − x)dQ(y)
]
, −c/r ≤ x < 0. (3.3.8)

Hence we summarize the integro-differential equations in the following theorem.

Theorem 3.3.1.

m′′
+(x) =

λ1 + λ2 + 2δ

c
m′

+(x) − (λ1 + δ)(λ2 + δ)

c2
m+(x) +

λ1λ2

c2

[ ∫ x

0

m+(x− y)dQ(y)

+

∫ x+c/r

x

m−(x− y)dQ(y) +

∫ ∞

x+c/r

w(x, y − x)dQ(y)
]
, x ≥ 0; (3.3.9)

m′′
−(x) =

λ1 + λ2 + 2δ − r

rx+ c
m′

−(x) − (λ1 + δ)(λ2 + δ)

(rx+ c)2
m−(x)

+
λ1λ2

(rx+ c)2

[ ∫ x+c/r

0

m−(x− y)dQ(y) +

∫ ∞

x+c/r

w(x, y − x)dQ(y)
]
,−c/r ≤ x < 0.

(3.3.10)
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Theorem 3.3.2. The Gerber-Shiu function satisfies the following equations,

m+(x) =
λ1λ2

c2

∫ x

0

m+(x− y)g(y)dy + h(x), x ≥ 0,

(3.3.11)

m−(x) = n(x) +

∫ x

−c/r
k(x, u)m−(u)du, −c/r ≤ x < 0, (3.3.12)

where

g(y) =

∫ ∞

0

∫ ∞

0

e−ρ1s−ρ2tp(t+ s+ y)dtds,

ζ(x) =

∫ ∞

x+c/r

w(x, y − x)dQ(y),

h(x) =
λ1λ2

c2

∫ x+c/r

x

m−(x− y)g(y)dy +
λ1λ2

c2

∫ ∞

0

∫ ∞

0

e−ρ1s−ρ2tζ(t+ s+ x)dtds,

n(x) =
λ1λ2

∫ x
−c/r

∫ u
−c/r ζ(z)dzdu

(rx+ c)2
,

k(x, u) =
λ1λ2

∫ x
u
Q(y − u)dy

(rx+ c)2
+

(3r + λ1 + λ2 + 2δ)(ru+ c)

(rx+ c)2

−(λ1λ2 − λ1δ − λ2δ − δ2 − r2 − λ1r − λ2r − 2δr)(x− u)

(rx+ c)2
.

Proof. Following the same arguments as in Gerber and Shiu [24], we can have the following

Li’s renewal equation

m+(x) =
λ1λ2

c2

∫ x

0

m+(x− y)g(y)dy +

∫ ∞

0

∫ ∞

0

e−ρ1s−ρ2tγ(t+ s+ x)dtds,

where

γ(x) =

∫ x+c/r

x

m−(x− y)dQ(y) +

∫ ∞

x+c/r

w(x, y − x)dQ(y).

Note that
∫ x+c/r

x

m−(x− y)dQ(y) =

∫ 0

−c/r
m−(z)q(x− z)dz.
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Hence

∫ ∞

0

∫ ∞

0

e−ρ1s−ρ2t
∫ x+s+t+c/r

x+s+t

m−(x+ s + t− y)dQ(y)dtds

=

∫ ∞

0

∫ ∞

0

e−ρ1s−ρ2t
∫ 0

−c/r
m−(z)q(x+ s+ t− z)dzdtds

=

∫ 0

−c/r
m−(z)g(x− z)dz =

∫ x+c/r

x

m−(x− y)g(y)dy.

Therefore we obtain the renewal equation (3.3.11).

We rewrite (3.3.10) as

(rx+ c)2m′′
−(x) + [(r2 − λ1r − λ2r − 2δr)x+ (r − λ1 − λ2 − 2δ)c]m′

−(x)

+(λ1λ2 + λ1δ + λ2δ + δ2)m−(x) = λ1λ2

∫ x+c/r

0

m−(x− y)dQ(y) + ζ(x).

Replacing x by t and integrating each term from −c/r to u,

∫ u

−c/r
(rt+ c)2m′′

−(t)dt = (ru+ c)2m′
−(u) − 2r

∫ u

−c/r
(rt+ c)m′

−(t)dt

= (ru+ c)2m′
−(u) − 2r(ru + c)m−(u) + 2r2

∫ u

−c/r
m−(t)dt.

Similarly,

∫ u

−c/r
[(r2 − λ1r − λ2r − 2δr)t+ (r − λ1 − λ2 − 2δ)c]m′

−(t)dt

= [(r2 − λ1r − λ2r − 2δr)u+ (r − λ1 − λ2 − 2δ)c]m−(u)

−(r2 − λ1r − λ2r − 2δr)

∫ u

−c/r
m−(t)dt.
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Conducting the same procedure,

∫ u

−c/r
λ1λ2

∫ t+c/r

0

m−(t− y)dQ(y)dt = λ1λ2

∫ u

−c/r

∫ t

−c/r
m−(x)Q′(t− z)dzdt

= λ1λ2

∫ u

−c/r

∫ u

z

m−(z)Q′(x− z)dxdz

= λ1λ2

∫ u

−c/r
m−(z)Q(u− z)dz.

Thus we must have

(ru+ c)2m′
−(u) − 2r(ru+ c)m−(u) + 2r2

∫ u

−c/r
m−(t)dt+ (r2 − λ1r − λ2r − 2δr)um−(u)

+(r − λ1 − λ2 − 2δ)cm−(u) − (r2 − λ1r − λ2r − 2δr)

∫ u

−c/r
m−(t)dt

+(λ1λ2 − λ1δ − λ2δ − δ2)

∫ u

−c/r
m−(t)dt = λ1λ2

∫ u

−c/r
m−(z)Q(u− z)dz + λ1λ2

∫ u

−c/r
ζ(t)dt.

Integrating again from −c/r to x yields,

∫ x

−c/r
(ru+ c)2m′

−(u)du = (rx+ c)2m−(x)− 2r

∫ x

−c/r
(ru+ c)m−(u)du,

∫ x

−c/r

∫ u

−c/r
m−(t)dtdu =

∫ x

−c/r
(x− u)m−(u)du,

∫ x

−c/r

∫ u

−c/r
m−(z)Q(u−z)dzdu =

∫ x

−c/r

∫ x

z

m−(z)Q(u−z)dudz =

∫ x

−c/r

(∫ x

z

Q(u− z)du

)
m−(z)dz.

Hence, in summary we have

(rx+ c)2m−(x) − (3r + λ1 + λ2 + 2δ)

∫ x

−c/r
(ru+ c)m−(u)du

+(λ1λ2 − λ1δ − λ2δ − δ2 − r2 − λ1r − λ2r − 2δr)

∫ x

−c/r
(x− u)m−(u)du

= λ1λ2

∫ x

−c/r

(∫ x

z

Q(u− z)du

)
m−(z)dz + λ1λ2

∫ x

−c/r

∫ u

−c/r
ζ(t)dtdu,

which is the Volterra equation of the second kind (3.3.12) upon rearrangement.
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As a result, the general solution to the Gerber-Shiu function is given by

m+(x) =
λ1λ2

c2

∫ x

0

h(x− y)g(y)dy + h(x), x ≥ 0,

m−(x) = n(x) +

∫ x

−c/r
K(x, u)n(u)du, −c/r ≤ x < 0,

where

K(x, u) =

∞∑

m=1

km(x, u), x > u ≥ −c/r,

km(x, u) =

∫ x

u

k(x, t)km−1(t, u)dt, m = 2, 3, · · · , x > u ≥ −c/r

with k1(x, u) = k(x, u).

For the rest of this section, we assume that all insurance claims follow the exponential

distribution with mean 1/β, i.e.

Q(y) = 1 − e−βy, y ≥ 0.

And the safety loading condition is also satisfied, i.e. c(1/λ1 + 1/λ2) > 1/β.

Theorem 3.3.3. The Gerber-Shiu function with w(x, y) = g(y) and δ = 0 in the model

(3.3.2) with exponential claim size distribution of mean 1/β is given by

m+(x) = D1e
s1x, x ≥ 0,

m−(x) = C1

∫ x

−c/r
e−β(t+c/r)(t+ c/r)λ1/r−1M

[
1 +

λ1

r
, 1 +

λ1 − λ2

r
;β(t+ c/r)

]
dt

C2

∫ x

−c/r
e−β(t+c/r)(t+ c/r)λ1/r−1U

[
1 +

λ1

r
, 1 +

λ1 − λ2

r
;β(t+ c/r)

]
dt+ C3, −c/r ≤ x < 0,
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where

s1 =
λ1 + λ2 − βc−

√
(βc− λ1 − λ2)2 + 4(λ1βc+ λ2βc− λ1λ2)

2c
,

d = [(s1 − r/c)A(0) −A′(0)][B(0)/s1 −
∫ 0

−c/r
B(t)dt]

+[B′(0) − (s1 − r/c)B(0)][A(0)/s1 −
∫ 0

−c/r
A(t)dt],

ζ(−c/r) = β

∫ ∞

0

g(y + c/r)e−βydy,

C1 = [(s1 − r/c)A(0) −A′(0)]ζ(−c/r)/d,

C2 = [B′(0) − (s1 − r/c)B(0)]ζ(−c/r)/d,

C3 = ζ(−c/r),

D1 = [A(0)B′(0) −B(0)A′(0)]ζ(−c/r)/s1/d.

Proof. In view of Lemma 1.1.4, we apply the operator βI + D to both sides of (3.3.9).

(βI + D)[(λ1 + δ)I − cD][(λ2 + δ)I − cD]m+(x) = βλ1λ2m+(x) + λ1λ2(βI + D)ζ(x),

which can be expanded as

{c2D3 + [βc2 − (λ1 + δ)c− (λ2 + δ)c]D2 + [(λ1 + δ)(λ2 + δ) − βc(λ1 + δ) − βc(λ2 + δ)]D

+β(λ1 + δ)(λ2 + δ)}m+(x) = βλ1λ2m+(x) + λ1λ2(βI + D)ζ(x).

When δ = 0 and w(x, y) = g(y),

c2m′′′
+(x) + (βc2 − λ1c− λ2c)m

′′
+(x) + (λ1λ2 − βcλ1 − βcλ2)m

′
+(x) = 0.

Hence the general solution to m+(x) is given by

m+(x) = D1e
s1x +D2e

s2 +D3,
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where

s1 =
λ1 + λ2 − βc−

√
(βc− λ1 − λ2)2 + 4(λ1βc+ λ2βc− λ1λ2)

2c
< 0,

s2 =
λ1 + λ2 − βc+

√
(βc− λ1 − λ2)2 + 4(λ1βc+ λ2βc− λ1λ2)

2c
> 0

are the roots of the characteristic equation

c2s3 + (βc2 − λ1c− λ2c)s
2 + (λ1λ2 − βcλ1 − βcλ2)s = 0.

Since limx→∞m+(x) = 0, we must have D2 = D3 = 0. Hence

m+(x) = D1e
s1x, x ≥ 0. (3.3.13)

On the other hand, applying the operator βI + D to both sides of (3.3.10) gives

(βI+D)[(λ1+δ)I−(rx+c)D][(λ2+δ)I−(rx+c)D]m−(x) = λ1λ2βm−(x)+λ1λ2(βI+D)ζ(x),

which means

{(rx+ c)2D3 + [β(rx+ c)2 + (rx+ c)(3r − λ1 − λ2 − 2δ)]D2 + [(βrx+ cβ)(r− λ1 − λ2 − 2δ)

+λ1λ2 + λ1δ + λ2δ + δ2 + r2 − rλ1 − rλ2 − 2δr]D + β(λ1 + δ)(λ2 + δ)}m−(x)

= λ1λ2βm−(x) + λ1λ2(βI + D)ζ(x).

In the case where δ = 0 and w(x, y) = g(y), it can be simplified as

(rx+ c)2m′′′
−(x) + [β(rx+ c)2 + (rx+ c)(3r − λ1 − λ2)]m

′′
−(x)

+[(rx+ c)(βr− βλ1 − βλ2) + λ1λ2 + r2 − rλ1 − rλ2]m
′
−(x) = 0. (3.3.14)
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Let z = x+ c/r and m′
−(x) = e−βzf(z), then

m′′
−(x) = e−βz[f ′(z) − βf(z)]

m′′′
−(x) = e−βz[f ′′(z) − 2βf ′(z) + β2f(z)].

Hence (3.3.14) can be written as

r2z2f ′′(z) + [−βr2z2 + 3r2z− (λ1 + λ2)rz]f
′(z) + (−2βr2z+ λ1λ2 + r2 − λ1r− λ2r)f(z) = 0.

Let f(z) = z(λ1/r)−1k(z), then

r2zk′′(z) + (−βr2z + r2 + λ1r − λ2r)k
′(z) + (−βλ1r − βr2)k(z) = 0.

Let k(z) = y(x) and x = βz, then k′(z) = βy′(x) and k′′(z) = β2y′′(x). Hence,

r2βxy′′(x) + (−r2βx+ βr2 + βλ1r − βλ2r)y
′(x) + (−βλ1r − βr2)y(x) = 0,

which means

xy′′(x) + (1 +
λ1 − λ2

r
− x)y′(x) − (1 +

λ1

r
)y(x) = 0.

The Kummer’s differential equation

xy′′(x) + (b− x)y′(x)− ay(x) = 0

has two independent solutions denoted by M(a, b;x) and U(a, b;x). The Kummer function

of the first kind can computed by

M(a, b;x) =

∞∑

n=0

(a)nx
n

(b)nn!
,
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where (a)n = a(a + 1)(a + 2) · · · (a + n − 1). The Kummer function of the second kind is

hence given by

U(a, b;x) =
π

sin(πb)

[
M(a, b;x)

Γ(1 + a− b)Γ(b)
− x1−bM(1 + a− b, 2 − b;x)

Γ(a)Γ(2 − b)

]
.

Inverting the variables to the originals, we have

m−(x) = C1

∫ x

−c/r
e−β(t+c/r)(t+ c/r)λ1/r−1M

[
1 +

λ1

r
, 1 +

λ1 − λ2

r
;β(t+ c/r)

]
dt

+C2

∫ x

−c/r
e−β(t+c/r)(t+ c/r)λ1/r−1U

[
1 +

λ1

r
, 1 +

λ1 − λ2

r
;β(t+ c/r)

]
dt+ C3,

−c/r ≤ x < 0. (3.3.15)

Now we need four linear equations to determine the unknown coefficients D1, C1, C2

and C3 in (3.3.13) and (3.3.15). First, letting x = 0 in (3.3.9) and x→ 0 in (3.3.10) gives

m+(0+) = m−(0−). (3.3.16)

Letting x = −c/r in (3.3.10) yields the second equation

m−(−c/r) = ζ(−c/r). (3.3.17)

In view of (3.2.1) and the continuity property, it follows that

[
I − 1

λ1
X

]
m+(0+) =

[
I − 1

λ1
X

]
m−(0−),

[
I − 1

λ1
X

] [
I − 1

λ2
X

]
m+(0+) =

[
I − 1

λ1
X

] [
I − 1

λ2
X

]
m−(0−),

Hence

m+(0+) − c

λ1

m′
+(0+) = m−(0−) − c

λ1

m′
−(0−)

m+(0+) − (
c

λ1
+

c

λ2
)m′

+(0+) +
c2

λ1λ2
m′′

+(0+)

= m−(0−) − (
c

λ1
+

c

λ2
)m′

−(0−) +
rc

λ1λ2
m′

−(0−) +
c2

λ1λ2
m′′

−(0−),
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which implies that

m′
+(0+) = m′

−(0−), (3.3.18)

rm′
−(0−) + cm′′

−(0−) = cm′′
+(0+). (3.3.19)

Substituting (3.3.13) and (3.3.15) into (3.3.16), (3.3.17), (3.3.18) and (3.3.19) gives

D1 =

∫ 0

−c/r
A(t)dtC1 +

∫ 0

−c/r
B(t)dtC2 + C3,

C3 = ζ(−c/r),

s1D1 = A(0)C1 +B(0)C2,

s2
1D1 = (r/c)s1D1 +A′(0)C1 +B′(0)C2,

where

A(t) = e−β(t+c/r)(t+ c/r)λ1/r−1M

[
1 +

λ1

r
, 1 +

λ1 − λ2

r
;β(t+ c/r)

]

B(t) = e−β(t+c/r)(t+ c/r)λ1/r−1U

[
1 +

λ1

r
, 1 +

λ1 − λ2

r
;β(t+ c/r)

]
.

Solving the system of equations for the unknown parameters gives the desired result.

3.3.2 Probability of Absolute Ruin and Probability of Ordinary

Ruin

Now we are interested in the probability of absolute ruin defined by

ψ(x) = Px{τ <∞},

where τ = inf{X(t) < −c/r.} Since it is a special case of the Gerber-Shiu function m(x), we

take w(x, y) = 1 and δ = 0. Hence ζ(−c/r) = 1 and we obtain explicit solutions for ψ(x) by

Theorem 3.3.3.
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Figure 3.1: Absolute ruin probabilities

Figure 3.1 exhibits the probabilities of absolute ruin as functions of initial surplus in

three scenarios with different debt interest rates. The parameters are chosen as follows.

c = 2, β = 0.5, λ1 = 2, λ2 = 1. The three functions correspond to the debt interest rate

r1 = 0.055, r2 = 0.11 and r3 = 0.22 respectively clockwise. We observe that in all cases the

probability decreases as the initial surplus increases, which indicates that the more initial

surplus the less likely the insurer’s surplus gets ruined. It agrees with our intuition that the

probability of absolute ruin gets larger as the debt interest rate increases since the insurer

has to pay more interest and it makes more difficult to break even.

For the purpose of comparison, we derive the probability of “ordinary” ruin in classical

Sparre Andersen model (3.3.1) defined by

ϕ(x) = Px{τ0 <∞},

where τ0 = inf{X(t) < 0.}
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We can easily find the integro-differential equation satisfied by ϕ(x),

ϕ′′(x) =
λ1 + λ2

c
ϕ′(x) − λ1λ2

c2
ϕ(x) +

λ1λ2

c2

[ ∫ x

0

ϕ(x− y)dQ(y) + 1 −Q(x)
]
. (3.3.20)

By similar arguments used to derive m+(x), we find that

ϕ(x) = D?
1e
s1x, x ≥ 0.

Substituting it into (3.3.20) and equating all terms involving e−βx with zero determines the

coefficient D?
1. Hence the probability of ultimate ruin is given by

ϕ(x) =
β + s1

β
es1x, x ≥ 0.

We plot both the ordinary ruin probability and the three previous cases of absolute

ruin probabilities in Figure 3.2. It is interesting to notice that ordinary ruin probability is

always bigger than absolute ruin probability. As one would expect from the definition of

absolute ruin probability, Theorem 3.3.3 shows that the absolute ruin probability approaches

the ordinary probability as the debit interest r goes to infinity.
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Figure 3.2: Comparison of absolute ruin and ordinary ruin probabilities
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Chapter 4

Jump Diffusion Risk Models

Historically, most insurance-related problems in ruin theory are natural applications of

jump processes due to the nature of discrete-time occurrences of insurance claims, whereas

most classical models in financial mathematics take root in continuous processes that are

believed to describe the volatility in the constantly changing financial market. Although

the two disciplines of applied probability has evolved independently in the past few decades,

more and more researchers came to realize the need to involve characteristics captured in

each other’s models. For instance, on the financial mathematics side, numerous examples

such as “9.11” incidence have shown that stock price may at times increase or decrease faster

than a geometric Brownian motion can. In recent years, new efforts has been made to model

market prices by diffusion processes with jump components. On the ruin theory side, in

addition to the traditional approach of modelling the arrival of insurance claims by jump

processes, diffusion components have gained increasing popularity in the literature to allow

more randomness in surplus process for the periods in between claim arrivals.

In this chapter, we aim to build up risk processes on a common ground where both

traditional jump processes and diffusion processes can be accommodated in a systematic way.

To this end, we shall first give a motivation for a general class of risk processes defined by
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a stochastic differential equation, which includes the famous Levy process, geometric Levy

process and more. To make the thesis self-contained, we give a brief introduction to the

Levy process and its connection with the general jump diffusion processes to be discussed.

4.1 Introduction

4.1.1 Motivation and Introduction to Levy Process

We assume throughout the chapter as given the complete probability space (Ω,F ,P)

satisfying the usual conditions and as given the filtration (Ft)0≤t<∞, on which all processes

to be discussed are defined and adapted to the filtration.

As one would see frequently in the ruin literature, the classical compound Poisson

surplus process X = {X(t), t ≥ 0} is usually presented in terms of

X(t) = x+ ct− Z(t). (4.1.1)

Recall from Section 1.2 that the process is interpreted as the balance of total premium income

ct and aggregate claim up to time Z(t). The initial deposit is given by x and the aggregate

claim Zt =
∑Nt

i=1 Yi with {Yi, i = 1, 2, · · · } denoting a sequence of independent insurance

claims with common distribution Q(A) = P{Yi ∈ A} and mean denoted by κ. The total

number of insurance claims up to time t, {N(t), t ≥ 0}, is a Poisson counting process with

intensity rate λ, or in other words, follows a Poisson distribution with mean λt at any time

t.

An alternative approach to define the surplus process, as shown in Section 2.3, is

through the stochastic differential equation given by

dXt = cdt− dZt,

together with X(0) = x, and {Z(t), t ≥ 0} is the compound Poisson jump process defined

above. The stochastic differential equation is usually set up by interpreting the instantaneous
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change in the surplus level at any time t as the balance of instantaneous increase due to

premium income over the infinitesimal period, cdt, and instantaneous decrease as a result of

changes in aggregate claim, dZ(t). The great advantage of the second presentation is that for

the purpose of further generalizations it is often easier to employ infinitesimal arguments or

stochastic differential equations in more complicated situations with economic factors rather

than expressing X(t) in an explicit form as in (4.1.1).

There have been proposed in the ruin literature a series of pure diffusion risk models

by stochastic differential equation approach, among which the most recent ones are Gerber

and Shiu [23], Gerber and Shiu [28], Cai et al. [10], and more. They all can be generally put

in the form of

dXt = µ(Xt)dt+ σ(Xt)dBt,

with X0 = x, provided some integrability conditions are satisfied to ensure pathwise unique-

ness of the processes. In fact, most asset pricing models in the finance literature can be put

in this category, as this type of diffusion processes naturally find their applications in a wide

range of financial topics. For an introduction to the application of pure diffusion models in

finance, readers are referred to Björk [3].

In recent development, actuarial researchers start to investigate classical jump surplus

processes perturbed by a Brownian motion. In terms of a stochastic differential equation,

dXt = cdt+ σdBt − dZt

with X0 = x. Interested readers are referred to Gerber and Landry [19], Tsai and Will-

mot [46], Li [36] for more detailed information on such models.

To find a common ground where all these models can be compared and analyzed

in a unified approach, we shall seek for more general jump diffusion processes. Generally

speaking, jump diffusion processes are particularly suitable for modelling in the context of

insurance surplus. A drift component can be chosen to reflect the dominating trend of

growth in surplus and a diffusion component demonstrates certain degree of randomness in
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total surplus, whereas a jump component would represent unexpected costs resulted from

extreme events on a large scale. To allow for more flexibility, we would like to search for

a way of measuring the actual impact of a jump caused by the jump component on the

overall process level, which for practical reasons depends on both the size of a jump and

the position of the process prior to the jump. In the context of risk models, the drop in

surplus would most likely be different from the actual size of jumps due to insurance claims,

as they are always accompanied with extra business costs. If big claims occur, its financial

impact on a high surplus level might be significantly different from that on the surplus which

is running low. With all of these in mind, one might want to consider the jump-diffusion

process governed by the following stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dBt − a(Xt−)dZt, (4.1.2)

where a(x) magnifies the actual impact incurred by the jump at the surplus level X(t−).

However, the generalization is not quite satisfactory in some sense. For instance, if the

jump size in the aggregate claim Z(t) is z, then the surplus X(t) will have a jump due to

the impact measured by a(Xt−)z. Hence we did not quite reach the ideal model where the

impact is expected to depend on both X(t−) and z, but not necessarily linear in z. It is

not hard to imagine that the financial impact of a relatively large insurance claim might be

much greater than the proportionally enlarged impact of a small claim. In order to tackle

this type of non-linear dependence, we need to introduce the Levy process and the Poison

random measure. Details of point processes can be found in Brémaud [4], Levy processes

and Poisson random measure in Bass [2], Cont and Tankov [11], Oksendal and Sulem [42],

Protter [43].

Definition 4.1.1. An adapted process X = (Xt)t≥0 with X(0) = 0 a.s. is a Levy process if

1. X has increments independent of the past; i.e. Xt − Xs is independent of Fs for all

0 ≤ s < t <∞;
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2. X has stationary increments; i.e. Xt −Xs has the same distribution as Xt−s for all

0 ≤ s < t <∞;

3. Xt is continuous in probability; i.e. P{limt→sXt = Xs} = 1 for all s ≥ 0.

Typical examples of Levy process are compound Poisson process and Brownian motion.

In fact, X always has a cadlag version and hence we shall consider it as a property of all

Levy processes to be considered.

The jump of Xt is defined by

∆Xt = Xt −Xt−.

We now define a Poisson random measure N(t, ·) : [0,∞)×R 7→ N by given any A ⊂ R that

is a Borel set whose closure does not contain 0,

N(t, A) =
∑

0<s≤t

I(∆Xs ∈ A).

Note that N(t, ·) is a generalization of the Poisson counting process N(t) in the compound

Poisson risk model. If we let

ν(A) = E[N(1, A)],

then the set function ν : Ω 7→ R+ is called the Levy measure of Xt. It is easy to show

that for any fixed A, the process N(t, A) is indeed a counting process with stationary and

independent increments and hence a Poisson process with the intensity ν(A).

One would now wonder how to represent the compound Poisson process Z(t) in terms

of the Poisson random measure N(t, ·) and its corresponding Levy measure ν(·) in terms of

the common distribution Q(y).We need the following result for the Poisson random measure.

Theorem 4.1.1. Let A be a Borel set of R such that the closure of A does not include 0

and f be measurable and finite on A, then

∫

A

f(z)N(t, dz) =
∑

0<s≤t

f(∆Xs)I(∆Xs ∈ A).
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Hence by definition of the compound Poisson process

Z(t) =

N(t)∑

i=1

Yi =
∑

0<s≤t

∆X(s) =

∫

R
zN(t, dz) (4.1.3)

with the second equality from the fact that all jumps in the surplus process are caused by

the compound Poisson component. Note that in this particular case,

N(t, A) =
∑

0<s≤t

I(∆Xs ∈ A) =

N(t)∑

i=1

I(Yi ∈ A). (4.1.4)

The Levy measure that corresponds to the compound Poisson process is given by

ν(0, y] = E{N(1, (0, y])} = E





N(1)∑

i=1

I(Yi ∈ (0, y])



 = E[N(1)]P{Yi ∈ (0, y]} = λQ(y)(4.1.5)

with the second last equality from the independence of N(t) and Yi’s. It is obvious from the

derivation that a Levy process can be represented by a compound Poisson process if and

only if its Levy measure is finite.

However, there are a great number of interesting Levy processes with infinite Levy

measures. For the notational brevity and practical reason, we shall only be looking at

integrable Levy processes which can always be represented as follows.

Theorem 4.1.2. If Xt is a Levy process such that

E[Xt] <∞ for all t ≥ 0,

then it has the decomposition

Xt = αt+ βB(t) +

∫

R
zÑ(t, dz), (4.1.6)

for some constants α, β ∈ R and

Ñ(dt, dz) = N(dt, dz) − ν(dz)dt.
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The compound Poisson process can be recovered from the representation by taking

β = 0, (4.1.4), (4.1.5) and

α =

∫

R
zν(dz) = λ

∫

R
zQ(dy) = λκ. (4.1.7)

Returning to our search for a general risk process, we can now represent the stochastic

differential equation (4.1.2) as

dXt = cdt+ dBt −
∫

R
a(Xt−)zN(dt, dz),

whose integral clearly indicates the linear dependency in the size of jump x by Theorem

4.1.1. Equipped with the powerful tool of Poisson random measure, we can now readily

fix the problem by replacing a(Xt−)z with a more general impact function F (Xt−, z). For

mathematical convenience, the compound Poisson process term is to be replaced by a com-

pensated compound Poisson process. One can always recover a compound Poisson process

by adding a drift term to the compensated compound Poisson process. Hence we shall now

investigate risk processes given by the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dBt +

∫

R
F (Xt−, z)Ñ(dt, dz), (4.1.8)

with X0 = x and the Levy measure ν. Although the process is being introduced here

with insurance flavors, the original model first appeared in one of the famous probabilist

Skorokhod’s papers on a rather theoretical background according to Bass [2].

The existence and pathwise uniqueness of the stochastic process given by (4.1.8) is

proved in the following theorem due to Skorokhod.

Theorem 4.1.3. If µ and σ are bounded and Lipschitz,

∫

R
sup
x

|F (x, z)|2ν(dz) <∞ (4.1.9)

and
∫

R
|F (x, z)− F (y, z)|2ν(dz) < c1|x− y|2,
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then there exists a solution to (4.1.8) and that solution is pathwise unique.

Remark 4.1.1. It can be shown that the pathwise unique solution still exists, if µ and σ are

bounded and piecewise Lipschitz continuous.

As we often deal with functionals of a risk process, we now state the Ito’s formula for

semimartingale, of which the process (4.1.8) is an example.

Theorem 4.1.4. Suppose X is a semimartingale and f is twice continuously differentiable.

Then f(Xt) is also semimartingale and satisfies

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXs +
1

2

∫ t

0

f ′′(Xs−)d〈Xc〉s +
∑

0<s≤t

[f(Xs) − f(Xs−) − f ′(Xs−)∆Xs].

It is easy to show by the Ito’s formula for semimartingale that the infinitesimal gener-

ator of X given in (4.1.8) is

Af(x) = µ̂(x)f ′(x) +
1

2
σ2(x)f ′′(x) +

∫

R
{f [x+ F (x, z)]− f(x)}ν(dz). (4.1.10)

where

µ̂(x) = µ(x) −
∫

R
F (x, z)ν(dz).

It would be interesting at this point to recover the infinitesimal generator of the shifted

compound Poisson process, which is also given as a special case of piecewise-deterministic

Markov process in Section 2.3. In view of (4.1.7) and (4.1.3), we let µ(x) = c+λκ, σ(x) = 0

and F (x, z) = z in (4.1.8), then the shifted compound Poisson process can be represented in

the form

dXt = (c+ λκ)dt+

∫ t

0

zÑ(dt, dz).

Plugging the relevant parameters into (4.1.10), we obtain the infinitesimal generator for the

classical compound Poisson risk process

Af(x) = cf ′(x) + λ

∫

R
{f(x+ z) − f(x)}Q(dz),

which is precisely (2.3.2) derived from the PDCP generator.
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Theorem 4.1.5. Let H is twice continuously differentiable. Suppose δ ≥ 0 and τ is the first

exit time of an open bounded set such that Ex[τ ] <∞, then

Ex[e−δτH(Xτ )] = H(x) + Ex

[∫ τ

0

e−δsAH(Xs)ds

]
− δEx

[∫ τ

0

e−δsH(Xs)ds

]
.

Proof. SinceH(x) is twice differentiable function, we apply the Ito’s formula for semimartin-

gales.

H(Xt) = H(x) +

∫ t

0

H ′(Xs−)dXs +
1

2

∫ t

0

H ′′(Xs)d〈Xc〉s

+
∑

s≤t

[H(Xs) −H(Xs−) −H ′(Xs−)4Xs]

= H(x) +

∫ t

0

σ(Xs)H
′(Xs)dWs +

∫ t

0

µ(Xs)H
′(Xs)ds

+

∫ t

0

H ′(Xs−)

∫

R
F (Xs−, z)Ñ(ds, dz) +

1

2

∫ t

0

σ2(Xs)H
′′(Xs)ds

+

∫ t

0

∫

R
{H[Xs− + F (Xs−, z)]−H(Xs−) −H ′(Xs−)F (Xs−, z)}N(dt, dz).

By product rule and then taking expectations, we obtain

Ex[e−δtH(Xt)] = H(x) + Ex

[∫ t

0

e−δsdH(Xs) − δ

∫ t

0

e−δsH(Xs)ds

]

= H(x) − Ex

[
δ

∫ t

0

e−δsH(Xs)ds

]
+ Ex

[∫ t

0

e−δsσ(Xs)H
′(Xs)dWs

]
+ Ex

[∫ t

0

e−δsµ(Xs)H
′(Xs)ds

]

+
1

2
Ex

[∫ t

0

e−δsσ2(Xs)H
′′(Xs)ds

]
+ Ex

[∫ t

0

e−δsH ′(Xs−)

∫

R
F (Xs−, z)Ñ(ds, dz)

]

+Ex

[∫ t

0

e−δs
∫

R
{H[Xs− + F (Xs−, z)]−H(Xs−) −H ′(Xs−)F (Xs−, z)}ν(dz)ds

]

with the fact that Ñ(t, A) = N(t, A)− ν(A)t is a martingale.
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Using the infinitesimal generator given in (4.1.10), we have

Ex[e−δtH(Xτ )] = H(x) + Ex

[∫ τ

0

e−δsAH(Xs)ds

]
− Ex

[
δ

∫ τ

0

e−δsH(Xs)ds

]

+Ex

[∫ τ

0

e−δsσ(Xs)H
′(Xs)dWs

]
+ Ex

[∫ τ

0

e−δsH ′(Xs−)

∫

R
F (Xs−, z)Ñ(ds, dz)

]
.

(4.1.11)

For any integer k we have

Ex

[∫ τ∧k

0

e−δsσ(Xs)H
′(Xs)dWs

]
+ Ex

[∫ τ∧k

0

e−δsH ′(Xs−)

∫

R
F (Xs−, z)Ñ(ds, dz)

]

= Ex

[∫ k

0

e−δsI(s < τ )σ(Xs)H
′(Xs)dWs

]

+Ex

[∫ k

0

e−δsI(s < τ )H ′(Xs−)

∫

R
F (Xs−, z)Ñ(ds, dz)

]
= 0. (4.1.12)

As there exists such a closed bounded set A that X(s) ∈ A for all s < τ, H ′(Xs−) must

be bounded by the continuity of the first derivative. Hence both I(s < τ )σ(Xs)H
′(Xs) and

I(s < τ )H ′(Xs−)
∫

R F (Xs−, z) are bounded. The two integral terms in (4.1.12) are both

martingales and hence their expectations are equal to zero.

Moreover,

lim
k→∞

Ex

[(∫ τ

0

e−δsσ(Xs)H
′(Xs)dWs −

∫ τ∧k

0

e−δsσ(Xs)H
′(Xs)dWs

)2
]

= lim
k→∞

Ex

[∫ τ

τ∧k

{
e−δsσ(Xs)H

′(Xs)
}2
ds

]
= 0

from the fact that Ex[τ ] < ∞ and dominated convergence theorem. Similarly, we use the
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same argument together with (4.1.9) to conclude that

lim
k→∞

Ex
[(∫ τ

0

e−δsI(s < τ )H ′(Xs−)

∫
F (Xs−, z)Ñ(ds, dz)

−
∫ τ∧k

0

e−δsI(s < τ )H ′(Xs−)

∫
F (Xs−, z)Ñ(ds, dz)

)2]

= lim
k→∞

Ex

[∫ τ

τ∧k

∫

R
{e−δsI(s < τ )H ′(Xs−)F (Xs−, z)}2ν(dz)dt

]
= 0.

Therefore, we must have

Ex

[∫ τ

0

e−δsσ(Xs)H
′(Xs)dWs

]
+ Ex

[∫ τ

0

e−δsH ′(Xs−)

∫

R
F (Xs−, z)Ñ(ds, dz)

]
= 0.

Hence the desired equality follows from (4.1.11).

4.1.2 Exponential of Levy Process and Lundberg Equation

Before proceeding to various applications of the risk process (4.1.8), we first look at

some nice properties of an interesting special case and its connection with the Lundberg

equation we have frequently encountered throughout the thesis.

Theorem 4.1.6. (Levy-Khintchine Formula) Let X be a Levy process with Levy measure ν.

Then
∫

R
min(1, z2)ν(dz) <∞

and

E[eiuX(t)] = etψ(u),

where the Levy exponent

ψ(u) = −1

2
β2u2 + iαu+

∫

|z|<R
{eiuz − 1 − iuz}ν(dz) +

∫

|z|≥R
{eiuz − 1}ν(dz).
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Remark 4.1.2. If E[Xt] <∞, for all t ≥ 0, then the Levy exponent

ψ(u) = −1

2
σ2u2 + iαu+

∫

R
{eiuz − 1 − iuz}ν(dz). (4.1.13)

The famous Levy-Khintchine formula gives an explicit expression of the characteristic

function of a Levy process. However, as the title of this section alluded to, we are particularly

interested in viewing the characteristic function as central moments of the exponential of

Levy process

E(t) , eX(t), t ≥ 0.

To provide more insight to the exponential of Levy process, we apply the Ito’s formula in

Theorem 4.1.4.

dE(t) = E(t)dX(t) +
1

2
E(t)d〈Xc〉t +

∫

R
E(t−){ez − 1 − z}Ñ(dt, dz)

= (α− 1

2
β2)E(t)dt+ βE(t)dB(t) +

∫

R
E(t−){ez − 1}Ñ (dt, dz),

which is obviously a special case of (4.1.8).

There are many ways of explaining the Lundberg equations, one of such is by a mar-

tingale approach introduced in Gerber and Shiu [22]. The major contribution of their work

to reveal that the Lundberg equation is the necessary condition on which the exponential of

a certain multiple of the compound Poisson risk process by discounting is a martingale. We

now follow their idea to generalize the Lundberg equation for Levy process.

The goal is to find the condition on which the process

e−δt+uX(t), t ≥ 0,

is a martingale under the measure Px meaning that Px{X(0) = x} = 1. Applying the

optional sampling theorem,

Ex[e−δt+uX(t)] = eux. (4.1.14)
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It follows from Levy-Khintchine formula that

Ex[e−δt+uX(t)] = exp

{[
−δ + ux+

1

2
β2u2 − αu+

∫

R
{e−uz − 1 + uz}ν(dz)

]
t

}
.

Therefore, in order for (4.1.14) to hold true for all t’s, we must have the Lundberg equation

−δ +
1

2
β2u2 − αu+

∫

R
{e−uz − 1 + uz}ν(dz) = 0. (4.1.15)

We conclude the section by recovering the Lundberg equation (1.2.5) for the classical

compound Poisson model.

Recall that the shifted compound Poisson process is a special case of Levy process

where α = c+ λκ, β = 0 and ν(y) = λQ(y). Inserting the parameters, (4.1.15) reduces to

−δ − (c+ λκ)u + λ

∫ ∞

0

e−uzQ(dz) − λ+ λκu = 0

which simplifies to (1.2.5) upon rearrangement.

4.2 Generalized Gerber-Shiu Functions

We are now ready to extend the notion of a generalized Gerber-Shiu function in the

context of the jump-diffusion model. Hence we define

H(x) = Ex

[∫ τd

0

e−δtl(Xt)dt

]
, (4.2.1)

where the cost function l(·) is B(R)-measurable and the time of default τd is given by

τd = inf{t : Xt < d},

with the convention that inf ∅ = ∞. Intuitively speaking, a generalized Gerber-Shiu function

represents the aggregation of discounted business costs up to the time at which the surplus

hits the level of default d.
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Theorem 4.2.1. Suppose that l(x) is continuous on (d,∞) except for a countable set of

discontinuities D and

Ex

[∫ τd

0

|e−δtl(Xt)|dt
]
<∞ for all x > d (4.2.2)

and H(x) defined in (4.2.1) has continuous first and second derivatives, then H(x) is the

solution to the following differential equation

AH(x) − δH(x) + l(x) = 0, x > d, x 6∈ D. (4.2.3)

Proof. For any x ∈ (d,∞) such that x 6∈ D, we let Sn = n ∧ inf{t|Xt 6∈ (x− 1/n, x+ 1/n)},

Z =

∫ τd

0

e−δsl(Xs)ds and θtZ =

∫ τd

0

e−δsl(Xt+s)ds.

Since (x − 1/n, x + 1/n) is an open set and Xt is cadlag, then Sn must be a stopping time

with respect to {Ft+}. Hence it is stopping time with respect to {Ft} as the filtration is

right-continuous by usual conditions.

Consider a partition of the positive real line {t0 = 0, t1, t2, · · · }. We can approximate

Z as follows.

Z(k) =
∞∑

i=1

e−δtil(Xti)I(τd ∈ [ti,∞))(ti − ti−1)

=
∞∑

i=1

e−δtil(Xti)I(∀r ∈ [0, ti),Xr ∈ [d,∞)&∃s ≥ ti,Xs < d)(ti − ti−1)

Then

θtZ
(k) = eδt

∞∑

i=1

e−δ(ti+t)l(Xti+t)I(∀r ∈ [0, ti),Xt+r ∈ [d,∞)&∃s ≥ ti,Xt+s < d)(ti − ti−1)

= eδt
∞∑

i=1

e−(δti+t)l(Xti+t)I(∀r ∈ [t, t+ ti),Xr ∈ [d,∞)&∃s ≥ t+ ti,Xs < d)(ti − ti−1)
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Therefore, we obtain that

θSnZ = eδSn

∫ τd

Sn

e−δsl(Xs)ds, (4.2.4)

where

θSnZ(ω) = θtZ(ω), if Sn(ω) = t.

Hence,

Ex[e−δSnH(XSn ) −H(x)] = Ex{e−δSnEXSn [Z]} − Ex[Z] (definition)

= lim
M→∞

Ex{e−δSnEXSn [Z ∧M ]} − Ex[Z] (Dom Conv Thm & 4.2.2)

= lim
M→∞

Ex{e−δSnEx[θSnZ ∧M |FSn ]} − Ex[Z] (strong Markov)

= Ex{e−δSnEx[θSnZ|FSn]} − Ex[Z] (Dom Conv Thm & 4.2.2)

Substituting (4.2.4) yields

Ex[e−δSnH(XSn ) −H(x)] = Ex[−
∫ Sn

0

e−δsl(Xs)ds]. (4.2.5)

Since H is twice continuously differentiable on the compact set [x− 1/n, x+ 1/n], we

can re-define H on the compact support in order to apply Theorem 4.1.5,

lim
n→∞

∣∣∣∣
Ex[e−δSnH(XSn) −H(x)]

Ex[Sn]
−AH(x) + δH(x)

∣∣∣∣

= lim
n→∞

∣∣∣∣∣∣

Ex
[∫ Sn

0
e−δsAH(Xs)ds

]
− δEx

[∫ Sn

0
e−δsH(Xs)ds

]

Ex[Sn]
− AH(x) + δH(x)

∣∣∣∣∣∣
≤ lim

n→∞
sup

y∈(x−1/n,x+1/n)

|AH(y) − AH(x)− δH(y) + δH(x)| = 0

since AH(x) and H(x) are continuous functions.
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On the other hand,

lim
n→∞

∣∣∣∣∣
Ex[
∫ Sn

0
l(Xs)ds]

Ex[Sn]
− l(x)

∣∣∣∣∣ ≤ lim
n→∞

sup
y∈(x−1/n,x+1/n)

|l(y)− l(x)| = 0,

as l(x) is continuous when x 6∈ D.

Dividing Ex[Sn] on both sides of (4.2.5) and taking limit n→ ∞ gives (4.2.3).

4.3 Brownian Motion Risk Model

Originally used to describe the random movement of particles suspended in a liquid,

Brownian motion is nowadays widely used in many other areas. One of the frequently

quoted examples is the stock market fluctuation. Motivated by both its representation of

randomness and mathematical convenience, Brownian motion is lately added in many ways

to risk models. We shall now demonstrate the analysis of ruin-related quantities in Brownian

motion models by means of generalized Gerber-Shiu function.

Taking µ(x) = µ, σ(x) = σ ≥ 0 and F (x, z) = 0 in (4.1.8) yields the Brownian motion

risk model driven by the stochastic differential equation

dXt = µdt+ σdBt.

We shall not allow µ = σ2 = 0, in which case the process becomes a trivial constant function

over time.

We see from (4.1.10) that its corresponding infinitesimal generator is given by

Af(x) = µf ′(x) +
1

2
σ2f ′′(x).

The graph of a sample path of shifted Brownian motion can be found in Figure 4.1

with parameters µ = 0.05 and σ = 0.3.
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Figure 4.1: Sample path of shifted Brownian motion

4.3.1 Gerber-Shiu Function and Passage Time Distribution

Since ruin occurs exactly at the moment the continuous surplus process lands on zero,

there will be no deficit below zero in contrast with the compound Poisson case. Hence it

only makes sense to look at a smaller class of the Gerber-Shiu function, the expectation of

the time value of ruin defined by

L(x) = Ex[e−δτ0I(τ0 <∞)]. (4.3.1)

where δ ≥ 0.

In order to represent it in terms of the generalized Gerber-Shiu function, we shall

introduce the famous Dirac delta function (also referred to as unit impulse function) denoted

by δ(x), which is defined with the following properties.

δ(x) = 0 for x 6= 0 and

∫ ∞

−∞
δ(x)dx = 1

For any continuous function F (x),
∫ ∞

−∞
δ(x)F (x)dx = F (0).
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With the aid of Dirac delta function, the expected value of the time of ruin can be written

as

L(x) = Ex

[∫ τ0

0

e−δtl(Xt)dt

]
,

where l(x) = δ(x). Since L(x) is bounded, by Theorem 4.2.1 we see that L(x) is a solution

to the differential equation

1

2
σ2L′′(x) + µL′(x)− δL(x) = 0, x > 0. (4.3.2)

Corollary 4.3.1. The solution to L(x) defined in (4.3.1) is given, when σ2 > 0, by

L(x) = exp{−(µ+
√
µ2 + 2σ2δ)x

σ2
}, x ≥ 0. (4.3.3)

When σ2 = 0, the solution to L(x) is given by

L(x) =





exp{ δ
µ
x}, µ < 0, x ≥ 0,

0, µ > 0.

Proof. When σ2 > 0, the general solution to (4.3.2) is given by

L(x) = C1e
γ1x + C2e

γ2x,

where

γ1 =
−µ−

√
µ2 + 2σ2δ

σ2
(4.3.4)

and

γ2 =
−µ+

√
µ2 + 2σ2δ

σ2
(4.3.5)

which are the two roots of the Lundberg equation

1

2
σ2γ2 + µγ − δ = 0.

141



In light of the fact that limx→∞ L(x) = 0 and L(0) = 1, the solution to the Gerber-Shiu

function (4.3.1) must be (4.3.3).

When σ2 = 0, the differential equation reduces to

µL′(x) − δL(x) = 0, x > 0,

which admits solution

L(x) = A+B exp{ δ
µ
x},

where A,B are constants to be determined. Since limx→∞ L(x) = 0 and L(0) = 1, we find

A = 0, B = 1 when µ < 0, and B = 0 when µ > 0.

Since the expectation of time value of ruin is the Laplace transform of the time of ruin,

inverting (4.3.3) with respect to δ gives the density function of the time of ruin,

fτ0(t) =
xt−3/2

√
2πσ2

exp{−(x+ µt)2

2σ2t
}.

Note that the density is defective, as it does not integrate to one when µ > 0. Integrating

with respect to t, we would obtain the (defective) distribution function of the time of ultimate

ruin

Fτ0(t) = Φ(−x+ µt√
σ2t

) + exp{−2µ

σ2
x}Φ(−x− µt√

σ2t
),

where Φ(x) is the standard normal distribution function. This function is given in equation

(8.29) in Klugman et al. [33] by taking the conventional approach of reflecting properties.

We are now ready to derive the probability of ultimate ruin by taking the limit of (4.3.3)

when δ → 0. But one has to do this with caution about the sign of the drift coefficient µ.

Hence we have

ψ(x) = Px{τ0 <∞} =





exp{−2µx
σ2 }, if µ > 0,

1, if µ ≤ 0.
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The first part of the solution was given by equation (8.33) in Klugman et al. [33]. Hence,

the (proper) density function of the time of ultimate ruin given that it occurs is given by

fτ0(t)

ψ(x)
=

xt−3/2

√
2πσ2

exp{−(x− |µ|t)2

2σ2t
},

which is the density of an inverse Gaussian distribution with mean x/|µ| and xσ2/|µ|3 when

µ 6= 0 and the density of an one-sided stable law with index 1/2 when µ = 0.

In the case where σ2 = 0 and µ < 0, it is apparent that L(x) is a Laplace transform of

a constant

τ0 = −x
µ
. (4.3.6)

When the surplus process does not have a diffusion component, it is nothing more than a

linear function of t. Only if µ < 0, the linear function goes from x to 0 by the time −x/µ.

4.3.2 Total Dividends Paid up to Ruin by Threshold

Under the dividend threshold strategy, the sample path is generated by the stochastic

differential equation (4.1.8) with σ(x) = σ and

µ(x) =





µ− α, x ≥ b,

µ, x < b.

The drift term representing the net influx of cash flow is the balance of premium income at

rate of µ offset by dividend payments at rate of α, when the surplus reaches the dividend

threshold b. Since we are interested in the total amount of discounted dividend payments up

to the time of ruin, we define

V (x) , Ex

[∫ τ0

0

e−δtl(Xt)dt

]
, x ≥ 0,

where the cost function is taken to be

l(x) =





α, x ≥ b,

0, x < b.
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Hence (4.2.3) turns into

1

2
σ2V ′′(x) + (µ− α)V ′(x) − δV (x) + α = 0, x ≥ b,

1

2
σ2V ′′(x) + µV ′(x)− δV (x) = 0, 0 ≤ x < b.

These two equations are precisely (2.13) and (2.7) in Gerber and Shiu [28].

Absolute ruin with dividend threshold

If the insurer is allowed to borrow money with debit force of interest r, then the sample

path of the deterministic part is changed with

µ(x) =





µ − α, x ≥ b,

µ, 0 ≤ x < b,

µ + rx, −c/r < x < 0.

Therefore, the generalized Gerber-Shiu function satisfies

1

2
σ2V ′′(x) + (µ − α)V ′(x) − δV (x) + l(x) = 0, x ≥ b,

1

2
σ2V ′′(x) + µV ′(x) − δV (x) + l(x) = 0, 0 ≤ x < b,

1

2
σ2V ′′(x) + (µ+ rx)V ′(x) − δV (x) + l(x) = 0, −c/r < x < 0.

4.3.3 Total Dividends Paid up to Ruin by Barrier

In the extreme case of threshold strategy, the dividend rate α can be chosen to be

equal to the premium rate µ. Then the surplus process bounces back as soon as it hits from

below the dividend barrier b0 due to the nature of oscillations. In terms of the infinitesimal

generator, the dynamics of surplus growth is determined by (4.1.10) with σ(x) = σ, F (x, z) =

0 and

µ(x) =





0, x ≥ b0,

µ, 0 ≤ x < b0.
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In order to calculate the total amount of dividends paid up to ruin, we choose the cost

function in (4.2.1) to be

l(x) =





µ, x ≥ b0,

0, 0 ≤ x < b0.

Therefore, when δ > 0, the expected present value of total dividends paid up to ruin is

bounded and hence satisfies the integro-differential equation

1

2
σ2V ′′(x) + µV ′(x) − δV (x) = 0, 0 ≤ x < b0,

and the boundary condition stated in the following corollary.

Corollary 4.3.2. With the dividend barrier strategy, the function V (x) defined in (4.2.1)

satisfies the following boundary condition

AV (b0) − δV (b0) + l(b0) = 0. (4.3.7)

Proof. The proof mirrors that of Theorem 4.2.1.

Choose x = b0 and Sn = n∧ inf{t|Xt 6∈ [b0, b0 + 1/n]}. Since the pure diffusion process

is continuous, it is easy to see that Sn is indeed a stopping time with respect to the adapted

filtration {Ft}. The rest of the argument follows in exactly the same manner and the result is

achieved since V (x) is assumed to be continuous and l(x) is right-continuous in [b0, b0 +1/n]

for all n’s.

The condition (4.3.7) is written in the format consistent with (2.3.6). Inserting all

specific functions, it can be simplified as

1

2
σ2V ′′(b0) − δV (b0) + µ = 0. (4.3.8)
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Since V (x) is twice differentiable, we must have

V ′(b0) = lim
x→b0

V ′(x) = lim
x→b0

δ

µ
V (x) − σ2

2µ
V ′′(x)

=
1

µ
[δV (b0) −

σ2

2
V ′′(b0)],

which, combined with (4.3.8), gives us the alternative boundary condition

V ′(b0) = 1.

Interested readers may refer to Gerber and Shiu [23] for an explicit solution for the

total dividends paid up to ruin by barrier strategy in the Brownian motion risk model as a

result of the boundary condition.

4.3.4 Insurer’s Accumulated Discounted Utility

A measurement of an insurer’s overall performance in maintaining its surplus in a

particular line of business is given by the accumulated utility on the surplus from the date

of inception to the date of default, which is a special case of the generalized Gerber-Shiu

function,

U(x) = Ex

[∫ τd

0

e−δtu(Xt)dt

]
,

where δ ≥ 0 and u(x) is the utility function of its surplus level. When δ = 0, U(x) reduces to

the insurer’s accumulated utility. We choose the exponential utility function u(x) = −e−ax/a

as it is more mathematically tractable than other utility functions.

We are now interested in the function W (x) in the Brownian Motion surplus model

defined by

W (x) = Ex

[∫ τd

0

e−δte−aXtdt

]
. (4.3.9)

The function W (x) can be used to determine

U(x) = −1

a
W (x).
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However, one should be cautious that W (x) might not converge for all a’s. As the function

shall be used to facilitate calculations of other quantities in other chapters, we allow a to be

negative and find an as wide as possible range of a where W (x) satisfies (4.2.2).

Lemma 4.3.1. Suppose that σ2 > 0 and

a2σ2/2 − aµ− δ < 0. (4.3.10)

Then the function W (x) defined in (4.3.9) satisfies condition (4.2.2) and

W (x) ≤ e−ax

δ + aµ− a2σ2/2
. (4.3.11)

In addition, if a ≥ 0, W (x) is bounded for all x > d.

Proof. Since l(x) = e−ax is non-negative,

Ex

[∫ τd

0

|e−δtl(Xt)|dt
]

= Ex

[∫ τd

0

e−δtl(Xt)dt

]
≤ Ex

[∫ ∞

0

e−δte−aXtdt

]

=

∫ ∞

0

e−δtEx[e−aXt]dt = e−ax
∫ ∞

0

e−(δ+aµ−a2σ2/2)tdt

=
1

δ + aµ− a2σ2/2
e−ax <∞, for all x > d,

with the last equality from the assumption that a2σ2/2 − aµ − δ < 0. And it follows that

W (x) is bounded when a ≥ 0.

Remark 4.3.1. 1. The condition (4.3.10) is equivalent to say, when σ2 6= 0,

µ −
√
µ2 + 2σ2δ

σ2
< a <

µ +
√
µ2 + 2σ2δ

σ2
. (4.3.12)

2. When σ2 = 0, we can similarly prove that (4.2.2) is satisfied if either of the two

conditions holds:
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(a) µ > 0 and aµ+ δ > 0,

(b) µ < 0.

Hence if the parameters satisfy any of the conditions in Remark 4.3.1, it follows from

Theorem 4.2.1 that W (x) satisfies the following differential equation

1

2
σ2W ′′(x) + µW ′(x)− δW (x) + e−ax = 0, x > d. (4.3.13)

Together with boundary conditions, we obtain an explicit solution to the accumulated ex-

ponential utility.

Corollary 4.3.3. If σ2 > 0 and (4.3.10) is satisfied, then the solution to W (x) defined in

(4.3.9) is given by

W (x) =
2

a2σ2 − 2aµ− 2δ
e−ad−(µ+

√
µ2+2σ2δ)(x−d)/σ2 − 2

a2σ2 − 2aµ − 2δ
e−ax, x > d.

(4.3.14)

If σ2 = 0, µ > 0 and aµ+ δ > 0,

W (x) =
e−ax

aµ+ δ
, x > d.

If σ2 = 0 and µ < 0,

W (x) =
1

aµ+ δ
e−ax − 1

aµ+ δ
eδx/u−(a+δ/µ)d, x > d.

Proof. We first determine a particular solution to (4.3.13) given of the form C1e
−ax. Inserting

into (4.3.13) gives

a2σ2

2
C1e

−ax − aµC1e
−ax − δC1e

−ax + e−ax = 0,
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which yields

C1 =
1

aµ+ δ − (1/2)a2σ2
.

Hence when σ2 > 0, the general solution to (4.3.13) must be in the form,

W (x) = C1e
−ax + C2e

γ1x + C3e
γ2x,

where the last two terms constitute a complimentary solution to the corresponding homoge-

neous differential equation (4.3.2).

It follows from the condition (4.3.11) that

eaxW (x) = C1 + C2e
(a+γ1)x + C3e

(a+γ2)x ≤ constant. (4.3.15)

By (4.3.12) we know that

a+ γ1 = a− µ +
√
µ2 + 2σ2δ

σ2
< 0,

a+ γ2 = a− µ −
√
µ2 + 2σ2δ

σ2
> 0.

Then we must have C3 = 0 by taking limit x→ ∞ on both sides of the inequality in (4.3.15).

Based on the condition that W (d) = 0, we obtain the last unknown

C2 =
2

a2σ2 − 2aµ − 2δ
e−ad+(µ+

√
µ2+2σ2δ)d/σ2

.

Therefore, we obtain (4.3.14) upon substitution and rearrangement.

When σ2 = 0, the general solution to (4.3.13) must be in the form,

W (x) = C1e
−ax + C2e

δx/µ.
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According to (4.3.11) we have

eaxW (x) = C1 + C2e
(a+δ/µ)x ≤ constant. (4.3.16)

If µ > 0, then the condition (4.3.10) reduces to a+ δ/µ > 0. By taking limit x → ∞

on both sides of (4.3.16), we must have C2 = 0. Hence

W (x) =
e−ax

aµ+ δ
.

If µ < 0, we can not eliminate C2 by (4.3.16). But since W (d) = 0, we would have

C2 = − 1

aµ+ δ
e−(a+δ/µ)d.

Therefore,

W (x) =
1

aµ+ δ
e−ax − 1

aµ+ δ
eδx/u−(a+δ/µ)d.

4.4 Geometric Brownian Motion Risk Model

Geometric Brownian motion is the most widely used stochastic process in financial

modelling, much owing to its computational tractability. There has also been a growing

number of papers in actuarial literature to involve geometric Brownian motion in pricing

insurance and investment combined products. Understanding its significance in financial

and actuarial modelling, we shall now investigate certain quantities of ruin theoretic interests

arising from the geometric Brownian motion model. Applications of these quantities will be

seen in credit risk modelling in the next chapter.
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Suppose the insurer’s equity index, denoted by S(t), is represented by a geometric

Brownian motion

S(t) = eXt = ex+µt+σBt, t ≥ 0, (4.4.1)

where the initial value is given by S(0) = s = ex. Note that both S(t) and X(t) are defined

one-to-one correspondent on the same probability space, hence we shall use Ps whenever S(t)

appears so as to emphasize the corresponding measure’s dependency on the initial value of

S(t).

Applying the Ito’s formula, one can easily see that S(t) is a solution to the stochastic

differential equation

dS(t) = νS(t)dt+ σS(t)dB(t), t ≥ 0,

where S(0) = s > 0, ν = µ + σ2/2. Note that the geometric Brownian motion is by itself a

special case of (4.1.8) in which µ(x) = νx, σ(x) = σx and F (x, z) = 0. Hence the infinitesimal

generator of the geometric Brownian motion is given by

Xf(s) = νsf ′(s) +
1

2
σ2s2f ′′(s).

To visualize the geometric Brownian motion, we now give a sample path of the geometric

Brownian motion with parameters µ = 0.05, σ = 0.3 and s = 15 in Figure 4.2.

We are now interested in the Laplace transform of the time of index default defined by

L(s) , Es[e−δτbI(τb <∞)],

where the first time index goes below a predetermined level of default b > 0 is given by

τb , inf{t|S(t) < b}

with the convention that inf ∅ = ∞. In the above expression, Es corresponds to the proba-

bility measure Ps. In view of (4.4.1), we must have τb = inf{t|X(t) < ln b}. Hence we could

easily obtain solutions from the relationship that

L(s) = Ex[e−δτlnbI(τln b <∞)] = Ex−ln b[e−δτ0I(τ0 <∞)].
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Figure 4.2: Sample path of geometric Brownian motion

However, since S(t) by itself is a special case of (4.1.8), we shall use Theorem 4.2.1 to obtain

solutions for the purpose of illustration. For simplicity, we skip the case where σ2 = 0.

As shown in the previous section, an alternative way to express L(s) is given by the

generalized Gerber-Shiu function

L(s) = Es

[∫ τb

0

e−δtl(St)dt

]
, s ≥ b (4.4.2)

where the cost function l(s) = δ(s− b).

It follows from Theorem 4.2.1 that L(s) is a solution to the differential equation

1

2
σ2s2L′′(s) + νsL′(s) − δL(s) = 0, s > b, (4.4.3)

which is an Euler equation.

Corollary 4.4.1. The solution to L(s) defined in (4.4.2) is given by

L(s) =
(s
b

)γ1
= exp

{
− ln

(s
b

) µ +
√
µ2 + 2σ2δ

σ2

}
, s ≥ b. (4.4.4)
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Proof. By inspection, we conjecture that the solution to L(s) would be in the form of Asγ.

Substituting into (4.4.3) yields

1

2
σ2Aγ(γ − 1)sγ + νAsγ − δAsγ = 0.

Hence we must have

1

2
σ2γ + (ν − 1

2
σ2)γ − δ = 0,

which admits two roots of each sign

γ1 =
−ν + σ2/2 −

√
(ν − σ2/2)2 + 2σ2δ

σ2
=

−µ−
√
µ2 + 2σ2δ

σ2
,

γ2 =
−ν + σ2/2 +

√
(ν − σ2/2)2 + 2σ2δ

σ2
=

−µ +
√
µ2 + 2σ2δ

σ2
.

Therefore, the general solution to L(s) must be

L(s) = A1s
γ1 +A2s

γ2 .

Recall that lims→∞ L(s) = 0, hence A2 = 0. By the definition of Dirac delta function,

L(b) = 1, which implies that A1 = 1/bγ1 .

Inverting the Laplace transform with respect to δ, we have the density function of the

time of index default

fτb(t) =
ln(s/b)t−3/2

√
2πσ2

exp

{
−(ln(s/b) + µt)2

2σ2t

}
. (4.4.5)

Hence the (defective) distribution function of the time of index default is given by

Fτb(t) = Φ(− ln(s/b) + µt√
σ2t

) +
(s
b

)−2µ/σ2

Φ(− ln(s/b) − µt√
σ2t

). (4.4.6)
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4.5 Ornstein-Uhlenbeck Risk Model

Ornstein-Uhlenbeck process, also known as the mean-reverting process, is often defined

by the stochastic differential equation

dXt = θ(µ−Xt)dt+ σdBt.

The process has a bounded variance and converges to a stationary probability distribution.

One of the most prominent examples is the Vasicek model of short rate in finance literature.

It was first proposed by Cai et al. [10] that Ornstein-Uhlenbeck process serves as a

risk process to approximate the fluctuation of insurance surplus. The version of Ornstein-

Uhlenbeck process used in Cai et al. [10] is given by

dXt = (µ+ ρXt)dt+ σdBt, (4.5.1)

which has the natural interpretation that the insurance surplus is continuously funded by

premium income at rate of µ and investment return with a constant yield rate ρ. Since

the total surplus to be invested varies from time to time, the rate of interest due at time

t is proportional to the current amount of surplus and hence given by ρXt. The source

of randomness in surplus is assumed to be accurately captured in the Brownian motion

component. A sample path of Ornstein-Uhlenbeck process with parameters µ = 0.1, ρ =

0.3, σ = 0.05 and x = 0.5 is generated in Figure 4.3.

Having µ(x) = µ + ρx, σ(x) = σ and F (x, z) = 0 gives the Ornstein-Uhlenbeck type

risk model (4.5.1). By (4.1.10) its infinitesimal generator is given by

Af(x) = (µ+ ρx)f ′(x) +
1

2
σ2f ′′(x).

Cai et al. [10] focused on the dividends paid up to ruin and the Laplace transform of

the time of ruin under the dividend barrier strategy. As an application of Theorem 4.2.1,

we now demonstrate by the new approach how to obtain the differential equation satisfied
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Figure 4.3: Sample path of Ornstein-Uhlenbeck process

by the dividends paid up to ruin under dividend threshold strategy

1

2
σ2V ′′(x; b) + (µ − α + ρx)V ′(x; b)− δV (x; b) + α = 0, x ≥ b;

1

2
σ2V ′′(x; b) + (µ+ ρx)V ′(x; b)− δV (x; b) = 0, 0 ≤ x < b.

The Gerber-Shiu function, which is simply the Laplace transform of the time of ruin, can be

obtained from

1

2
σ2m′′(x) + (µ+ ρx)m′(x) − δm(x) = 0, x > 0.

4.6 Kou Jump Diffusion Model

The Kou jump diffusion model was proposed out of the need to address two phe-

nomenons observed in empirical studies, which can not be explained by the Black-Scholes

model. Interested readers may read Kou [34] for its background and Kou and Wang [35],

Dao and Jeanblanc [12] for applications in option pricing and credit risk modelling.
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The asset price in Kou’s model is driven by the exponential of a Brownian motion and

a compound Poisson process with both positive and negative exponential jumps.

S(t) , eX(t) , exp



x+

(
r − 1

2
σ2 − λ[q̃(−1) − 1]

)
t+ σB(t) +

N(t)∑

i=1

Yi



 , (4.6.1)

where r is the risk-free rate of return, σ is the volatility coefficient, {N(t), t ≥ 0} is a Poisson

counting process with intensity λ and the sequence of jumps {Y1, Y2, · · · } follows the common

asymmetric double exponential distribution

Q(y) = πλβ1e
−β1yI(y > 0) + (1 − π)λβ2e

β2yI(y < 0) (4.6.2)

with the Laplace transform denoted by q̃(s). It can be shown using Ito’s formula for semi-

martingale that the process S = {S(t), t ≥ 0} is a solution to the stochastic differential

equation

dS(t) = S(t)

{
rdt+ σdB(t) +

∫

R
(ez − 1)Ñ (dt, dz)

}
,

where the Poisson random measure

Ñ(t, A) =

N(t)∑

i=1

I(Yi ∈ A) − λP(Yi ∈ A)t, A ⊂ R/{0}.

Note that the asset price process S in (4.6.1) is set in such a way that the discounted price

process {e−rtS(t), t ≥ 0} is a martingale under the measure Px.

We can recover Kou’s model from the general process (4.1.8) by letting µ(s) = rs, σ(s) =

σs, F (s, z) = s(ez − 1) and Q(y) as defined in (4.6.2). Hence it follows from (4.1.10) that

the infinitesimal generator for process S is given by

Af(s) =
1

2
σ2s2f ′′(s) + µ̂sf ′(s) + λ

∫

R
[f(s+ ey − 1) − f(s)]dQ(y),

where

µ̂ = r −
∫

R
(ez − 1)ν(dz) = r − λ[q̃(−1) − 1].

However, the easiest way to solve functionals of Kou’s jump diffusion process is to

find functionals of its exponent X = {X(t), t ≥ 0}, which is a much simpler jump diffusion
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process, and then write the functionals of the original process S as a function of the functional

of X.

The infinitesimal generator of X is easily found by replacing µ(x) = r− 1
2
σ2−λ[q̃(−1)−

1], σ(x) = x, F (x, z) = z in (4.1.10).

Af(x) =
1

2
σ2f ′′(x) + µ̂f ′(x) + λ

∫

R
[f(x+ z) − f(x)]dQ(y),

where

µ̂ = r − 1

2
σ2 − λ[q̃(−1) − 1] − λκ

= r − 1

2
σ2 − λ

[
π

β1

β1 + 1
+ (1 − π)

β2

β2 − 1
− 1 − (

π

β1
− 1 − π

β2
)

]
.

4.6.1 Gerber-Shiu Function

In this subsection, we shall look at ruin-related quantities of the jump diffusion process

X. Once these quantities are obtained, they could be easily used to provide solutions to ruin-

related quantities of the asset price process S.

In a jump diffusion risk model, there are two types of causes for ruin. When the

surplus is running low, it might be dropped to a level below zero by a large insurance claim,

or gradually declines to zero by oscillation. Since the Gerber-Shiu function in either case

corresponds to a different cost function, we shall treat them separately.

We define the expected discounted penalty at ruin due to jump by

mJ(x) = Ex[e−δτ0w(X(τ0−), |X(τ0)|)I(τ <∞,X(τ0) < 0)]

and the expected discounted penalty at ruin due to diffusion by

mD(x) = Ex[e−δτ0w(0, 0)I(τ <∞,X(τ0) = 0)].

By the law of total probability, the Gerber-Shiu function is a sum of the two functions

m(x) = mJ(x) +mD(x).
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Note that Brownian motion changes sign infinitely often in as small interval as one wants.

Once hits zero, the surplus ruins by oscillation in an instantaneous moment. Hence by

continuity one can prove that X(τ0) = 0, Px-a.s. On the other hand, a jump does not cause

ruin until it brings the surplus strictly below zero. Hence the two terms unambiguously

distinguish the two situations.

Once known the cause of ruin, we can represent the expected discounted penalty at ruin

in the form of the generalized Gerber-Shiu function as we did in the previous few chapters.

Since jumps are governed by the embedded compound Poisson component, we can follow

the same arguments as in Section 2.3.5 to prove that the expected discounted penalty due

to jump

mJ(x) = Ex

[∫ τ0

0

e−δtl(Xt)dt

]
,

where

l(x) = λ

∫ ∞

x

w(x, y − x)dQ(y).

Similarly, the expected discounted penalty due to oscillation can be written as

mD(x) = Ex

[∫ τ0

0

e−δtw(0, 0)δ(Xt)dt

]
,

where δ(x) is the Dirac delta function given in Section 4.3.1.

Applying Theorem 4.2.1, we obtain the following system of differential equations to

solve for the Gerber-Shiu functions.

1

2
σ2m′′

J(x) + µ̂m′
J(x) − (λ + δ)mJ(x) + λ

∫
mJ(x+ y)dQ(y) + λ

∫ ∞

x

w(x, y − x)dQ(y) = 0,

x > 0,

1

2
σ2m′′

D(x) + µ̂m′
D(x)− (λ + δ)mD(x) + λ

∫
mD(x+ y)dQ(y) = 0, x > 0.

Expected Discounted Penalty at Ruin Due to Jump

For the purpose of applications in later section, it suffices to study the expected dis-

counted penalty at ruin when the penalty function is only dependent on the surplus at ruin.
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Suppose we have a bounded penalty function f(x),

mJ(x) = Ex[e−δτ0f(|X(τ0)|)I(τ0 <∞,X(τ0) < 0)]. (4.6.3)

Hence it can be written in terms of the generalized Gerber-Shiu function

mJ (x) = Ex

[∫ τ0

0

l(Xt)dt

]
,

where

l(x) = λ

∫ ∞

x

f(y − x)dQ−(y) = λβ2e
−β2x

∫ ∞

0

f(z)e−β2zdz.

Substituting in the claim size distribution, we have

1

2
σ2m′′

J(x) + µ̂m′
J(x) − (λ+ δ)mJ(x) + λπβ1e

β1x

∫ ∞

x

e−β1ymJ(y)dy

+λ(1 − π)β2e
−β2x

∫ x

0

eβ2ymJ(y)dy + l(x) = 0, x > 0. (4.6.4)

Corollary 4.6.1. If the claim size distribution Q(y) is given by (4.6.2), the Gerber-Shiu

function defined in (4.6.3) admits an explicit solution given by

mJ(x) =

[
(β2 + s1)(β2 + s2)

s1 − s2

∫ ∞

0

e−β2zf(z)dz

]
es1x

+

[
(β2 + s1)(β2 + s2)

s2 − s1

∫ ∞

0

e−β2zf(z)dz

]
es2x.

Proof. Represent (4.6.4) in terms of operators,

1

2
σ2D2mJ(x) + µ̂DmJ (x) − (λ+ δ)m(x) + λπβ1Tβ1mJ(x) + λ(1 − π)β2Eβ2mJ(x) + l(x) = 0.

Multiplying both sides by (β1I −D)(β2I + D) we obtain

{1

2
σ2D2(β1I − D)(β2I + D) + µ̂D(β1I −D)(β2I + D) − (λ + δ)(β1I − D)(β2I + D)

+λπβ1(β2I + D) + λ(1 − π)β2(β1I − D)
}
mJ(x) + (β1I − D)(β2I + D)l(x) = 0,
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which simplifies to

1

2
σ2m

(4)
J (x) + (µ̂ − 1

2
σ2β1 +

1

2
σ2β2)m

(3)
J (x) + (µ̂β2 − µ̂β1 − λ− δ − 1

2
σ2β1β2)m

(2)
J (x)

+[(λ+ δ)β1 + λ(1 − π)β2 − λπβ1 − (λ+ δ)β2 − µ̂β1β2]m
(1)
J (x) + δβ1β2m(x) = 0.

Since mJ(x) satisfies a homogeneous fourth order differential equation with constant coeffi-

cients, it is easy to represent mJ(x) as

mJ(x) = C1e
s1x + C2e

s2x + C3e
s3x + C4e

s4x, (4.6.5)

where s1 < s2 < 0 < s3 < s4 are roots of the generalized Lundberg equation

1

2
σ2s2 + µ̂s− (λ + δ) + λπ

β1

β1 − s
+ λ(1 − π)

β2

β2 + s
= 0. (4.6.6)

As limx→∞m(x) = 0, it is obvious that C3 = C4 = 0. We need two more boundary

conditions to determine C1 and C2. Letting x → 0 in (4.6.4) we obtain the first condition

that

1

2
σ2m′′

J(0) + µ̂m′
J(0) − (λ+ δ)mJ(0) + λπβ1

∫ ∞

0

e−β1ymJ(y)dy

+λ(1 − π)β2

∫ ∞

0

e−β2zf(z)dz = 0. (4.6.7)

Inserting (4.6.5) into (4.6.7) gives

C1

β2 + s1
+

C2

β2 + s2
=

∫ ∞

0

e−β2zf(z)dz.

Multiplying both sides of (4.6.4) by β1I −D gives the second condition that

−1

2
σ2m

(3)
J (0) + (

1

2
σ2β1 − µ̂)m

(2)
J (0) + (µ̂β1 + λ+ δ)m

(1)
J (0)

+(λπβ1 − β1λ− β1δ)mJ(0) + β1l(0) − l′(0) = 0. (4.6.8)
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We insert (4.6.5) into (4.6.8) and simplify the terms together with (4.6.6)

β1 − s1

β2 + s1
C1 +

β1 − s2

β2 + s2
C2 = (β1 + β2)

∫ ∞

0

e−β2zf(z)dz.

Hence we obtain

C1 =
(β2 + s1)(β2 + s2)

s1 − s2

∫ ∞

0

e−β2zf(z)dz

C2 =
(β2 + s1)(β2 + s2)

s2 − s1

∫ ∞

0

e−β2zf(z)dz.

The solution is thus obtained upon substitution of coefficients.

Expected Discounted Penalty at Ruin Due to Diffusion

The expected discounted penalty at ruin is actually a Laplace transform of the time of

ruin due to diffusion,

mD(x) = f(0)Ex[e−δτ0I(τ <∞,X(τ0) = 0)]. (4.6.9)

Hence it satisfies the integro-differential equation

1

2
σ2m′′

D(x) + µ̂m′
D(x) − (λ+ δ)mD(x) + λπβ1e

β1x

∫ ∞

x

e−β1ymD(y)dy (4.6.10)

+λ(1 − π)β2e
−β2x

∫ x

0

eβ2ymD(y)dy = 0, x > 0. (4.6.11)

Corollary 4.6.2. If the claim size distribution Q(y) is given by (4.6.2), the Gerber-Shiu

function defined in (4.6.9) admits an explicit solution given by

mD(x) =
β2 + s1

s1 − s2
f(0)es1x +

β2 + s2

s2 − s1
f(0)es2x.

Proof. Following the same technique used previously, we would also have

mD(x) = C1e
s1x + C2e

s2x,
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where s1 and s2 are the two negative roots of the fundamental Lundberg equation (4.6.6).

By letting x→ 0 and substituting in the solution with unknown coefficients, we obtain

the first condition that

C1

β2 + s1
+

C2

β2 + s2
= 0. (4.6.12)

The second condition comes from the fact that ruins occurs immediately if the process

starts at 0. Hence,

mD(0) = f(0),

which means

C1 + C2 = f(0). (4.6.13)

Combining (4.6.12) and (4.6.13) we obtain the solution to the expected discounted

penalty at ruin due to diffusion.

4.6.2 Perpetual American Put Option

Since the American put option is priced at the expected discounted payoff at such an

exercise date so that its value is maximized, we can write it as

F (x) = sup
d

Ex[e−δτdΠ(S(τd))I(τd <∞)],

where

Π(s) = (K − s)+.
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Hence it can be expressed as

F (x) = sup
d

Ex[e−δτdΠ(eX(τd))I(τd <∞)]

= sup
d

Ex[e−δτ
Y
0 Π(eY (τY

0 )+d)I(τd <∞)]

= sup
d

Ex−d[e−δτ
Y
0 f(|Y (τY0 )|)I(τd <∞)],

where

f(y) = Π(ed−y) = (K − ed−y).

As shown in previous section, we need to find the solution in two parts,

Ex[e−δτdΠ(eX(τd))I(τd <∞,X(τd < d))]

= Ex−d[e−δτ
Y
0 f(|Y (τY0 )|)I(τd <∞, Y (τY0 < 0)]

=
(β2 + s1)(β2 + s2)

s2 − s1

(
K

β2
− ed

β2 + 1

)
es1(x−d) +

(β2 + s1)(β2 + s2)

s1 − s2

(
K

β2
− ed

β2 + 1

)
es2(x−d).

Ex[e−δτdΠ(eX(τd))I(τd <∞,X(τd = d))]

= Ex−d[e−δτ
Y
0 f(0)I(τd <∞, Y (τY0 ) = 0)]

= (K − ed)
β2 + s1

s1 − s2
es1(x−d) + (K − ed)

β2 + s2

s2 − s1
es2(x−d)

Hence,

Ex[e−δτdΠ(eX(τd))I(τd <∞)]

=

{
(β2 + s1)(β2 + s2)

s2 − s1

(
K

β2
− ed

β2 + 1

)
+ (K − ed)

β2 + s1

s1 − s2

}
es1(x−d)

+

{
(β2 + s1)(β2 + s2)

s1 − s2

(
K

β2
− ed

β2 + 1

)
+ (K − ed)

β2 + s2

s2 − s1

}
es2(x−d).

4.7 Jang Jump Diffusion Model

Taking µ(x) = b+ ax, σ(x) = σ
√
x and F (x, z) = x, we obtain a jump-diffusion model

that was proposed by Jang [30].

dXt = (b+ aXt)dt+ σ
√
XtdBt + dZt.
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As Jang [30] explains, the parameter a is considered as the expected market rate of return

and the volatility squared is proportional to the surplus level. The last term of compound

Poisson jump process is employed to keep track of unexpected substantial interest rises. We

may slightly generalize the model by including both positive and negative jumps.

Hence it follows from (4.1.10) that

Af(x) = (b+ ax)f ′(x) +
1

2
σ2xf ′′(x) + λ

∫
[f(x+ y) − f(x)]Q(dy).

Jang [30] used a martingale approach to find the mean and variance of the surplus

process Xt when the jump size is exponentially distributed. In what follows, we shall use

the approach of generalized Gerber-Shiu function to investigate the ruin-related quantities

of such a surplus model. For a simple example, we search for an explicit solution to the

probability of default caused by diffusion at the level d defined by

ψ(x) = Px(τd <∞,Xτd = d).

As we have shown before, the cost function that corresponds to the probability of default

caused by diffusion is given by

l(x) = δ(x− d),

where δ(x) is the Dirac delta function. Hence, it follows from Theorem 4.2.3 that

1

2
σ2xψ′′(x) + (b+ ax)ψ′(x) − λψ(x) + λ

∫ x−d

0

ψ(x− y)dQ(y) = 0, x > d. (4.7.1)

Corollary 4.7.1. If Q(y) follows an exponential distribution with mean 1/β, the probability

of default ψ(x) admits an explicit solution given by

ψ(x) = AZ1(x) +BZ2(x), x > d,

where the coefficients

A =
λZ2(d) − [(1/2)σ2dZ ′′

2 (d) + (b+ ad)Z ′′
2 (d)]

Z2(d)[(1/2)σ2dZ ′′
1 (d) + (b+ ad)Z ′′

1 (d)] − Z1(d)[(1/2)σ2dZ ′′
2 (d) + (b+ ad)Z ′′

2 (d)]

B =
λZ1(d) − [(1/2)σ2dZ ′′

1 (d) + (b+ ad)Z ′′
1 (d)]

Z1(d)[(1/2)σ2dZ ′′
2 (d) + (b+ ad)Z ′′

2 (d)] − Z2(d)[(1/2)σ2dZ ′′
1 (d) + (b+ ad)Z ′′

1 (d)]
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with the function Z1(x) and Z2(x) defined as

Z1(x) =

∫ ∞

x

e−βyM

[
σ2β + 2a+ 2λ

σ2β − 2a
,
2b+ σ2

σ2
;
σ2β − 2a

σ2
y

]
dy,

Z2(x) =

∫ ∞

x

e−βyU

[
σ2β + 2a+ 2λ

σ2β − 2a
,
2b+ σ2

σ2
;
σ2β − 2a

σ2
y

]
dy,

where M(a, b; y) and U(a, b; y) are the Kummer function of the first and second kind, respec-

tively.

Proof. Since it is given that

Q(y) = 1 − βeβy, y < 0,

we take the operator βI + D on both sides yields,

[
1

2
σ2xD3 +

1

2
σ2βxD2 +

1

2
σ2D2]ψ(x) + [(b+ ax)D2 + aD + (βb+ βax)D]ψ(x)

−λ(β + D)ψ(x) + λβψ(x) = 0.

Hence we find the integral differential equation satisfied by ψ(x),

1

2
σ2xψ′′′(x) + (

1

2
σ2βx+ ax+ b+

1

2
σ2)ψ′′(x) + (βax+ βb− a− λ)ψ′(x) = 0, x > d.

Letting ψ′(x) = e−βxf(x) gives

1

2
σ2x[f ′′(x)−2βf ′(x)+β2f(x)]+(

1

2
σ2βx+ax+b+

1

2
σ2)[f ′(x)−βf(x)]+(βax+βb−a−λ)f(x) = 0,

which simplifies to

1

2
σ2xf ′′(x) + (ax− 1

2
σ2βx+ b+

1

2
σ2)f ′(x) − (

1

2
σ2β + a+ λ)f(x) = 0.
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In order to further simplify the second order differential equation, we let z = (σ2β−2a)x/σ2

and g(z) = f(x). Hence we must have

g′(z)
σ2β − 2a

σ2
= f ′(x),

g′′(z)

(
σ2β − 2a

σ2

)2

= f ′′(x).

Hence,

1

2
(σ2β − 2a)zg′′(z) + (−1

2
σ2z + b+

1

2
σ2)

σ2β − 2a

σ2
g′(z) − (

1

2
σ2β + a+ λ)g(z) = 0.

We obtain upon further rearrangement,

zg′′(z) +

[
2b+ σ2

σ2
− z

]
g′(z) − σ2β + 2a+ 2λ

σ2β − 2a
g(z) = 0,

which is the Kummer’s confluent hypergeometric equation.

Hence the probability of ruin can be written as

ψ(x) = AZ1(x) +BZ2(x),

in consideration of the fact that ψ(∞) = 0.

Since ψ(d) = 1, we must have

AZ1(d) +BZ2(d) = 1. (4.7.2)

Letting x→ d in (4.7.1) gives the second boundary condition that

1

2
σ2dψ′′(d) + (b+ ad)ψ′(d) = λ,

which implies that

A[
1

2
σ2dZ ′′

1 (d) + (b+ ad)Z ′′
1 (d)] +B[

1

2
σ2dZ ′′

2 (d) + (b+ ad)Z ′′
2 (d)] = λ. (4.7.3)
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Solving the linear equation system (4.7.2) and (4.7.3) results in the desired expressions.
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Conclusion

The theme of the thesis is the development of a unifying approach to analyze ruin-

related quantities.

In Chapter 1, we use traditional approaches to analyze the Gerber-Shiu function and

dividends paid up to ruin respectively. Later on, a generalized Gerber-Shiu function is in-

troduced to reconcile the two seemingly unrelated quantities. We show through heuristic

arguments that the generalized Gerber-Shiu function can be derived through a general equa-

tion, which significantly reduces the amount of derivations required by traditional solution

methods.

As the generalized Gerber-Shiu function is formally defined in Chapter 2, we see that

not only does it recover both Gerber-Shiu function and dividends paid up to ruin which

are well-studied in ruin theory, the generalized Gerber-Shiu also gives rise to many in-

teresting new ruin-related quantities such as an insurer’s accumulated utility, total claim

costs up to ruin and more. We prove in Chapter 2 that the general equation holds for all

piecewise-deterministic compound Poisson processes, such as the compound Poisson model

with constant interest and dividend strategies.

We show in Chapter 3 that the same general equation applies to the Sparre Andersen

model where inter-claim time distribution is phase-typed. Similarly we produce solutions to

various ruin-related quantities in many cases of Sparre Andersen model.

To further demonstrate the generality of the unifying approach, we introduce in Chap-

168



ter 4 a class of jump diffusion processes under which the general equation continues to hold.

Following the same logic as in Chapter 2 and 3, we find explicit solutions to both traditional

and new ruin-related quantities in different jump diffusion models, such as Brownian motion

risk model and Kou’s model. It is interesting to point out that the Gerber-Shiu function can

also be used to find passage time distributions of all risk models.

However, the thesis by no means exhausts all quantities accommodated by the gener-

alized Gerber-Shiu function and all risk models under which the unifying approach applies.

Owing to the flexibility of cost function and infinitesimal generator associated with the func-

tion, we should be able to extend the applications in future work to even more quantities of

interest in ruin theory and potentially in other financial topics.
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