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Abstract

This thesis examines the concept of image self-similarity and provides solutions to various
associated inverse problems such as resolution enhancement and missing fractal codes.

In general, many real-world inverse problems are ill-posed, mainly because of the lack of
existence of a unique solution. The procedure of providing acceptable unique solutions to such
problems is known as regularization. The concept of image prior, which has been of crucial
importance in image modelling and processing, has also been important in solving inverse problems
since it algebraically translates to the regularization procedure.

Indeed, much recent progress in imaging has been due to advances in the formulation and
practice of regularization. This, coupled with progress in optimization and numerical analysis,
has yielded much improvement in computational methods of solving inverse imaging problems.

Historically, the idea of self-similarity was important in the development of fractal image
coding. Here we show that the self-similarity properties of natural images may be used to construct
image priors for the purpose of addressing certain inverse problems. Indeed, new trends in the area
of non-local image processing have provided a rejuvenated appreciation of image self-similarity
and opportunities to explore novel self-similarity-based priors.

We first revisit the concept of fractal-based methods and address some open theoretical prob-
lems in the area. This includes formulating a necessary and sufficient condition for the con-
tractivity of the block fractal transform operator. We shall also provide some more generalized
formulations of fractal-based self-similarity constraints of an image. These formulations can be
developed algebraically and also in terms of the set-based method of Projection Onto Convex Sets
(POCS).

We then revisit the traditional inverse problems of single frame image zooming and multi-
frame resolution enhancement, also known as “super-resolution”. Some ideas will be borrowed
from newly developed non-local denoising algorithms in order to formulate self-similarity priors.
Understanding the role of scale and choice of examples/samples is also important in these proposed
models. For this purpose, we perform an extensive series of numerical experiments and analyze
the results. These ideas naturally lead to the method of “self-examples,” which relies on the
regularity properties of natural images at different scales, as a means of solving the single-frame
image zooming problem.

Furthermore, we propose and investigate a multi-frame super-resolution counterpart which
does not require explicit motion estimation among video sequences.
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1.1 Imaging and Inverse Problems

1.1.1 General Model of an Inverse Problem

In very many practical problems in the field of applied sciences, the features of most interest cannot
be observed directly, but have to be inferred from other, observable quantities. In the simplest
approximation, which works quite well in a wide range of cases, there is a linear relationship
between the features of interest and the derived quantities. If we model the object by a function
x, and the observed quantities or image by another function h, we can pose the problem of
inferring x from h as an inverse problem, the task of which is to solve the equation

H(x) = h. (1.1)

This equation and the task of solving it is sensible only when placed in some appropriate
framework. In this thesis, we shall assume that x and h belong to appropriate function spaces,
typically Banach or Hilbert spaces, x ∈ BOBJECT , h ∈ BIMAGE , and that H is a (typically linear)
operator from the space BOBJECT to BIMAGE . The choice of the spaces must be appropriate for
describing real-life situations.

The observations or data, which we model by yet another function, u, are not exactly equal
to the image h = H(x), but rather to a distortion of h, in a realistic framework. This distortion
is often modelled by an additive noise or error term n, i.e.

u = h + n = H(x) + n. (1.2)

Moreover, one typically assumes that the “size” of the noise can be measured by its norm,
‖n‖ in its appropriate Banach or Hilbert space. Our only handle is thus via the observed u, and
we typically have little information on n = u − h beyond an upper bound on its norm ‖n‖ in
the so-called deterministic setting. In the stochastic setting, further assumptions are taken into
account instead, e.g., the variance of the components of n may be assumed known.

Figure 1.1: Inverse problem.

Finally, the inverse problem can be summarized as in the following statement: Given the
observations u find an approximation of the object x denoted by x̃ (see Figure 1.1).



1.2. A Word on Self-similarity 3

1.1.2 Imaging Tasks as Inverse Problems

Many image processing tasks can be modelled as inverse problems. The classical problem of
image denoising can be described as an inverse problem in which the operator H is the identity
operator. Image zooming, which we consider in this thesis, is another inverse problem in which
the operator H can be modelled as a composition of several linear operators, e.g., geometric
warp, blur, and down-sampling. Many other important classical problems in imaging, including
image reconstruction from samples, compression, deblurring, segmentation, and registration, can
be modelled as inverse problems.

1.2 A Word on Self-similarity

Self-similarity has been an important and progressive concept in the imaging community in the
past few decades. When speaking of self-similarity, we are not just referring to the traditional frac-
tal coding context [BD85, Bar88, Fis95, Lu97], in which subblocks of an image are approximated
using other subblocks of the same image in general. Indeed our discussions and results contain
a rather wide and general class of techniques that involve self-similarity properties of images.
This includes the recently developed emerging “non-local” methods that employ the concept of
self-similarity as a key tool in solving the associated inverse problems, e.g., the classical inverse
problems of image and video denoising [BCM05b, BCM05c, BCM05a].

In this thesis, we shall deal with various existing problems related to image self-similarity
that can be modelled and addressed using inverse problems [EV06a, EV06b]. Furthermore, we
will present various extensions of the current non-local methods [BCM05b, BCM05c, BCM05a] to
address the inverse problems of image and video zooming [EV08b, EV08a, EV07a] by employing
self-similarity properties of images or image sequences.

1.3 Thesis Organization

Throughout this thesis, we will be dealing with approximation of an object (image) x. In general,
such approximation will be represented as

x̃Method,Parameters

in which the Method and Parameters of the corresponding approximation process are denoted in
the subscript.

In the next section, we will introduce the notations used throughout. Various sources are used
in preparation of these materials including [NS82, AH77, Bra86, Jai01, LR99, Mal98, Vog02].
In Chapters 2 and 3, the background material on inverse theory techniques and self-similarity in
imaging inverse problems will be covered. Chapters 4 to 10 will include the author’s contribution to
the research area. Finally, a summary of these contributions and the author’s future perspectives
will follow in Chapter 11.
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1.4 Notations and Preparation

1.4.1 Familiar Concepts

It is assumed that the reader is familiar with elementary linear algebra, calculus, and the following
concepts.

• Metric space, Field, Vector space, Normed linear space, Banach space, Hilbert space

• Measure space, Invariant measure, Borel probability measure, Uniform and Gaussian prob-
ability distributions

1.4.2 Consistent Font and Style

• Sets
Sets are denoted by upper-case greek letters, upper-case fraktur or upper-case script fonts
e.g., Ω,Φ,∆,Ψ, Ξ, C, P, R, S, X ,A . Number of elements of a finite set C is denoted by |C|.

• Matrices
Matrices are represented by bold upper-case normal or upper-case greek letters, e.g., M, A,
I, H, Ψ, Φ, Σ.

• Images
Images are represented by bold lower-case letters, e.g., u, v, n. In this thesis, images are
typically assumed as elements of `2(Ξ) for some finite set Ξ.

• Images represented in the (column) vector order
Underlined bold lower-case letters will be used for images represented in the vector format,
e.g., u, v, n. The notation ←−. . . is used to represent the conversion from the vector order to
the normal representation defined above, i.e., u = ←−u .

• Operators acting on images
Upper-case (normal or calligraphic) fonts will be used to represent operators acting on
images, e.g., T , G, H, D, U , P.

• Operators acting on images represented in the vector format
Underlined upper-case fonts will be used for operators acting on images represented in the
vector format, e.g., T , G.

• Variables, functions, etc.
Variables, functions, and other quantities will be denoted in terms of normal (not bold, nor
underlined) english or greek characters, e.g, x, y, M , N , w(x, y), φ, δ, λ. To avoid any
possible overlap with some operators precise definitions of these expressions are presented.
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1.4.3 Standard Notations

Various General Notations

• Set of numbers
Positive integer numbers: N, Integer numbers: Z, Real numbers: R

• `p spaces
The `p space over a set Ξ is denoted by `p(Ξ), for 1 ≤ p ≤ ∞. This is a Banach space in
general and ‖f‖p denotes the p-norm of f ∈ `p(Ξ). The space `2(Ξ) is a Hilbert space as
well, equipped with an inner product. The inner product of u and v in `2(Ξ) is denoted by
< u,v >.

• Ceiling and floor functions
The ceiling function, denoted by dre for any r ∈ R, returns the smallest integer not less than
r, e.g., d1.4e = d2e = 2. The floor function, denoted by brc, returns the highest integer less
than or equal to r, e.g., b1.4c = b1c = 1.

• Characteristic function
The characteristic (or indicator) function on a set Ψ is denoted by 1ψ.

• Gradient of a function
The vector derivative of a function x : RN → R, if it exists, is called the gradient of x and
is denoted by ∇x.

• Divergence of a vector field
Divergence of a vector field v : RN → RN , v(x1, x2, . . . , xN ) = (v1, v2, . . . , vN ) is denoted
by ∇ · v and is defined as in the following expression if it exists

∇ · v =
N∑

i=1

∂vi

∂xi
. (1.3)

Notations Involving Random Vectors

• Probability
Probability density function of a random vector x is represented by P (x).

• Expected value function
Expected value of a random vector x is denoted by E(x).

• Variance
Variance of a random vector x is denoted by V ar(x) and is defined as
V ar(x) = E(x2)−E(x)2. The square root of V ar(x) is called the standard deviation of x.

• Covariance
The covariance between two random vectors x and y is denoted by Cov(x,y) and is defined
as Cov(x,y) = E(x · y)− E(x)E(y).
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Notations Involving Matrices

• Transpose of a matrix
Transpose of a matrix M is denoted by MT . All of the matrices in this thesis are assumed
to be real-valued. Hence, the conjugate transpose of any matrix equals its transpose.

• Identity matrix
The M ×M identity matrix will be denoted by IM×M .

• Inverse of a matrix
Inverse of a square matrix M, if exists, is denoted by M−1.

• Diagonal matrix
The notation M = diag(di) means that M is a diagonal matrix with diagonal elements di

placed on the row and column i.

• Rank of a matrix
The rank of a matrix M denoted by Rank(M) is defined as the maximal number of its
linearly independent rows (or columns).

• Null-space and range of a matrix
The null-space and range of a matrix M are respectively denoted by Null(M) and Range(M).

• Frobenius norm
The Frobenius norm of a matrix M is defined as

‖M‖ =
{ ∑

i,j

Mi,j
2
} 1

2
. (1.4)

All of the norms in this thesis are assumed to be the Frobenius norm unless otherwise stated.

• 2-norm
The 2-norm of a matrix M is defined as

‖M‖2−norm = sup
x 6=0

‖Mx‖
‖x‖ . (1.5)

• Infinity-norm
The infinity-norm of a matrix M is defined as

‖M‖∞−norm = max
i

∑

j

|Mi,j |. (1.6)

• Spectral radius
The spectral radius a matrix M denoted by ρ(M) is defined as

ρ(M) = max{|λ| : λ belongs to the set of eigenvalues of M}. (1.7)
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Important Definitions and Propositions Involving Matrices

• Normalized vector
A vector x is called normalized if ‖x‖ = 1.

• Rank and invertibility
Rank of any matrix M and its corresponding Gram matrix are equal, i.e.

rank(M) = rank(MT M) = rank(MMT ). (1.8)

Any N×N matrix M is invertible if and only if it is full rank, i.e., if and only if rank(M) =
N .

• Positive definite and positive semidefinite matrix
A real matrix M is called positive definite if for any nonzero real vector x, xT Mx > 0. Also,
M is called positive semidefinite if for any nonzero real vector x, xT Mx ≥ 0.

The eigenvalues of a symmetric matrix are all non-negative if and only if the matrix is
positive semidefinite. Furthermore, the eigenvalues of a symmetric matrix are all positive if
and only if the matrix is positive definite. This yields that a symmetric matrix is invertible
if and only if the matrix is positive definite.

• Matrix norm properties
Frobenius norm and 2-norm of any vector are the same. Also, for any M × N matrix M
the folowing inequalities hold.

1√
N
‖M‖∞−norm ≤ ‖M‖2−norm ≤ ‖M‖ ≤

√
N‖M‖2−norm ≤

√
MN‖M‖∞−norm. (1.9)

• Spectral radius properties
For any matrix M and any norm ‖.‖, e.g., either Frobenius, 2-norm, or infinity-norm defined
earlier, and any positive integer k

ρ(M) = lim
k→∞

‖Mk‖ 1
k ≤ ‖Mk‖ 1

k . (1.10)

• Stochastic matrix
A real square matrix M with nonnegative elements is called a right(left) stochastic matrix
if the sum of the elements of every row(column) is one. The matrix M is called doubly
stochastic matrix if M is both right and left stochastic.

• Perron-Frobenius theorem
For any right stochastic matrix M there exists a probability vector p, i.e., a vector with
non-negative elements of sum one, such that

pM = p. (1.11)

The j-th element of p may be computed, independent of i, by taking the limit

lim
k→∞

(Mk)(i,j) = p
j
. (1.12)
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Definitions Involving Fourier Theory

• Discrete Fourier transform
For any image u ∈ `2(Ω), where Ω = [1, . . . , M ]× [1, . . . , N ], the discrete Fourier transform
of u denoted by DFT (u) is defined in the following manner.

DFT (u)(u, v) =
M−1∑
x=0

N−1∑
y=0

u(x, y) exp [−i2π(
ux

M
+

vy

N
)], (1.13)

where i =
√−1, and periodic boundary conditions are assumed on u, i.e., u(x, 0) = u(x,N),

for any 1 ≤ x ≤ M − 1, u(0, y) = u(M, y), for any 1 ≤ y ≤ N − 1, and u(0, 0) = u(M, N).
It follows that,

u(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

DFT (u)(u, v) exp [i2π(
ux

M
+

vy

N
)]. (1.14)

• Fourier spectrum
The magnitude Fourier spectrum of u is defined as |DFT (u)(u, v)|, in which |.| denotes
magnitude of a complex number.

• Bandlimited image
Image u ∈ `2(Ω) is called bandlimited of bandwidth b if there exists some real number b

such that for any integers u, v that satisfy all three conditions of |u| ≤ M
2 , |v| ≤ N

2 , and√
( u

M )2 + ( v
N )2 ≥ b,

|DFT (u)(u, v)| = 0.

It is assumed that both M and N are even integers. Different conditions are required in the
odd case which are not discussed in this thesis.
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Important Definitions and Propositions Involving Contraction Maps

• Contraction map
A mapping T : `2(Ξ) → `2(Ξ) is called a contraction (or contractive) if there exists some
real number 0 ≤ c < 1, such that for any u,v ∈ `2(Ξ),

‖T (u)− T (v)‖ ≤ c‖u− v‖.

In this case, c is called a contractivity factor of T . The smallest contractivity factor of T

(which can be shown to exist if T is a contraction) is called the contractivity factor of T .

• Banach’s contraction mapping principle (fixed point theorem)
If T : `2(Ξ) → `2(Ξ) is a contraction, then there exists a unique u? ∈ `2(Ξ) (referred to as the
fixed point of T ) such that T (u?) = u?. Furthermore, the iteration sequence un+1 = T (un)
converges to u?, for any u0 ∈ `2(Ξ).

• Collage theorem
If T : `2(Ξ) → `2(Ξ) is a contraction with a contractivity factor con(T ), and the fixed point
u?, then for any u ∈ `2(Ξ)

‖u− u?‖ ≤ 1
1− con(T )

‖u− T (u)‖.

A note regarding the above definitions and propositions:
General counterparts of the above exist in more abstract spaces, e.g., in metric spaces. However,
in this thesis, `2 spaces will be mainly used.
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1.4.4 Various Sets and Operators used Throughout

Common Sets used Throughout

Υ = [1, . . . , N ]× [1, . . . , N ], typically used for observed images of square size.
Ω = [1, . . . ,M ]× [1, . . . , N ], typically used for observed images.
Φ = [1, . . . ,K]× [1, . . . , L], typically used for the so-called example images.
Ψ = [1, . . . , P ]× [1, . . . , Q], typically used for ideal images (objects) to be recovered.
In Chapters 9 and 10, P = Mz and Q = Nz, i.e., Ψ = [1, . . . ,Mz]× [1, . . . , Nz].
Ξ could be any of these defined sets, i.e., either Υ, Ω, Φ, or Ψ.

Common Operators used Throughout

• Local averaging operator
The local averaging operator of length z, Az : `2(Ξ) → `2(Ξ) for any (i, j) ∈ Ξ is defined as

(Azx)(i, j) =
1
z2

∑

0≤i′<z,0≤j′<z

x(i + i′, j + j′). (1.15)

Boundary conditions on x may be required for Az to be well-defined.

• Down-sampling operator
The down-sampling operator Sz : `2(Ξ) → `2(Ξ) by a factor of z ∈ N is defined for any
image x ∈ `2(Ξ) such that for any (i, j) ∈ Ξ,

(Szx)(i, j) = x
(
(i− 1)z + 1, (j − 1)z + 1

)
. (1.16)

• Coarser-scale projection (decimation) operator
The projection operator to a coarser-scale is denoted by Dz : `2(Ξ) → `2(Ξ), where Dz =
Sz ◦ Az.

• Up-sampling (pixel replication) operator
The up-sampling operator by a factor of z, acting on an image x ∈ `2(Ξ), is denoted by
Uz : `2(Ξ) → `2(Ξ), where

(Uzx)(i, j) = x(d i

z
e, d j

z
e), (1.17)

for any (i, j) ∈ Ξ. It is typically assumed that the support of the image x is well contained
in Ξ, unless part of the up-sampled image may be lost under this operation.

An important note regarding the above operators:
In the chapters of this thesis where the factor z is precisely defined, Az, Sz, Dz, and Uz will
be denoted respectively by A, S, D, and U for simplicity. This happens in Chapters 3 to 6. In
Chapter 3 and 4 we will assume z = s. In Chapters 5 and 6, z = 2.
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1.4.5 Image Quality Measures

We will mostly rely on the `2 distance of images when required in this thesis. There will be a
few places that the peak signal-to-noise ratio (PSNR) will be employed instead. Here we give the
corresponding definitions.

• Mean Squared Error (MSE)
The MSE of an M ×N image u ∈ `2(Ω) having the ideal image x ∈ `2(Ω) is defined as

MSE(u,x) =
‖u− x‖2

MN
. (1.18)

• Root Mean Squared Error (RMSE)
The RMSE of u having x is defined as

RMSE(u,x) =
√

MSE(u,x). (1.19)

• Peak Signal-to-Noise Ratio (PSNR)
The PSNR of u having x is defined in decibels (dB) as

PSNR(u,x) = 20 log10

(
maxi,j {xi,j}
RMSE(u,x)

)
dB. (1.20)
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1.4.6 Singular Value Decomposition (SVD) Expansion

Given any M ×N real matrix H, it can be shown that the eigenvalues of HT H are all real and
non-negative. Assume that among all these eigenvalues, r of them denoted by σm, 1 ≤ m ≤ r,
are positive and to each corresponds an N × 1 normalized eigenvector Φm. Hence,

HT HΦm = σmΦm, 1 ≤ m ≤ r. (1.21)

Furthermore, without loss of generality, assume that the eigenvalues σm are arranged in decreasing
order,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (1.22)

Multiplying Equation 1.21 by H from the left gives

HHT (HΦm) = σm(HΦm), 1 ≤ m ≤ r. (1.23)

If for any m, 1 ≤ m ≤ r, we define the properly normalized M × 1 vectors

Ψm =
HΦm√

σm
, (1.24)

then Equation 1.23 can be written as

HHT (Ψm) = σm(Ψm), 1 ≤ m ≤ r. (1.25)

Hence, by this definition, the vectors Ψm, 1 ≤ m ≤ r, become the normalized eigenvectors of
HHT . It can be shown that each set of vectors {Φm}1≤m≤r and {Ψm}1≤m≤r is (or can be chosen
to be, in the case of some repeated eigenvalues σm) orthonormal and complete in, respectively,
the space of N ×N and M ×M matrices, i.e., the following equalities hold,

Φm
T Φn = 1{m}(n) (1.26)

r∑
m=1

ΦmΦm
T = IN×N (1.27)

Ψm
T Ψn = 1{m}(n) (1.28)

r∑
m=1

ΨmΨm
T = IM×M . (1.29)

Now consider any N × 1 matrix (vector) x. By orthonormality and completeness of Φm, or
equivalently by multiplying Equation 1.27 with x from the right side,

x =
r∑

m=1

Φm < x,Φm >=
r∑

m=1

ΦmΦm
T x. (1.30)

Multiplying the sides of this equality by H from the left yields

Hx =
r∑

m=1

HΦmΦm
T x =

r∑
m=1

√
σmΨmΦm

T x. (1.31)
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Hence, H can be represented as

H =
r∑

m=1

√
σmΨmΦm

T . (1.32)

Now, define Σ to be an r × r diagonal matrix whose diagonal entries are the positive elements√
σm, 1 ≤ m ≤ r, i.e.,

Σ = diag(
√

σm), 1 ≤ m ≤ r. (1.33)

Furthermore, take the matrices Ψ and Φ to be respectively of size M × r and N × r such that
their m-th columns are, respectively, the vectors Ψm and Φm, for 1 ≤ m ≤ r. This leads to

H = ΨΣΦT , (1.34)

which is known as the SVD expansion of H. As a result of the orthonormality and completeness
of {Φm} and {Ψm}, 1 ≤ m ≤ r, in the corresponding spaces and the definitions of Ψ and Φ, the
following equalities can be indicated.

ΦΦT = ΦIr×rΦT = IN×N (1.35)

ΦT Φ = ΦT IN×NΦ = Ir×r (1.36)

ΨΨT = ΨIr×rΨT = IM×M (1.37)

ΨT Ψ = ΨT IM×MΨ = Ir×r (1.38)

It can be shown that the SVD expansion of a matrix H is unique if the positive eigenvalues
σm are all distinct for 1 ≤ m ≤ r. If there are some repeated positive eigenvalues σm, 1 ≤ m ≤ r,
then the SVD expansion is no longer unique. For example if H = I2,2, then H = ΨΛΦT where
Λ = I2,2, and

Ψ = Φ =

[
u

√
1− u2

√
1− u2 −u

]
(1.39)

forms an SVD expansion of H for any −1 ≤ u ≤ 1 .
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2.1 Introduction

2.1.1 Space of Images

Recall the linear degradation model previously introduced in Chapter 1,

u = H(x) + n. (2.1)

For convenience throughout this thesis, we make the assumption that the observed image u lies
in the Hilbert space `2(Ω), i.e., u ∈ BIMAGE = `2(Ω) where

Ω = [1, . . . ,M ]× [1, . . . , N ]. (2.2)

Also, we assume that the object x (typically an image itself again) lies in the Hilbert space `2(Ω),
i.e., x ∈ BOBJECT = `2(Ψ) where

Ψ = [1, . . . , P ]× [1, . . . , Q]. (2.3)

These assumptions are equivalent to restricting ourselves to both a discrete image and object
(an image as well) space. Hence, x ∈ `2(Ψ) is the unknown object(image) of size P × Q to be
recovered from the measurements u ∈ `2(Ω) of size M ×N . Also, n ∈ `2(Ω) is additive noise of
the same size as the measurements, i.e., M ×N .

2.1.2 Linearity of the Operator

We assume that H is a bounded linear operator from `2(Ψ) to `2(Ω). In many imaging appli-
cations, H is an integral operator with a kernel representing the response of the imaging device;
in the special case where this linear device is translation-invariant, H reduces to a convolution
operator. Everywhere in this thesis, we assume that H is precisely known or can be estimated.

As pointed out in the notation of Section 1.4, u refers to the vector representation of an image
u. Hence, we may equivalently write the linear algebraic equation corresponding to Equation 2.1

u = Hx + n, (2.4)

in which, H is the linear degradation matrix of size MN × PQ corresponding to H. In addition,
x is the unknown vector of size PQ × 1 to be recovered from the observation vector u of size,
MN × 1. Similarly, n stands for the additive noise vector of size MN × 1.

Depending on the assumptions over n, i.e., deterministic or stochastic setting, different ap-
proaches may be pursued to address the corresponding inverse problem. Interestingly these two
frameworks are highly related and both yield to the same results as will be reviewed later in this
chapter.
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2.2 Inverse Estimation and Ill-posedness

2.2.1 Pseudo-solutions

To find an estimate of x from the observed image u, one can consider minimizing the discrepancy
function ∆(x) defined as,

∆(x) = ‖Hx− u‖2. (2.5)

The minimizers of ∆(x) are called pseudo-solutions of the inverse problem. If the matrix H has
a trivial null-space, i.e., if

Null(H) = {x ∈ `2(Ψ);Hx = 0} = {0}, (2.6)

the discrepancy function has a unique minimizer, given by the so-called Least Squares (LS) solution

x̃LS = (HT H)−1HT u, (2.7)

where HT is the transpose of H (or equivalently the adjoint of the operator H). In this case,
(HT H)−1HT is called the pseudoinverse of H. The condition Null(H) = {0} guarantees that
the so-called Gram matrix (HT H) is invertible.

2.2.2 Generalized Inverse

When the Gram matrix (HT H) is not invertible, there exist infinitely many minimizers of the
discrepancy function caused by the non-trivial null-space of the matrix H. In this case, one can
choose among the set of pseudo-solutions the unique element x† of minimal norm, i.e.

x† = x̃MNLS = arg min
x
{‖x‖;x minimizes ∆(x)}. (2.8)

This unique element is called the generalized solution or the Minimum Norm Least Square (MNLS)
solution of the inverse problem. In this case, the map H† : u → x† is called the generalized inverse
of H.

Even when HT H is not invertible, H†u is well-defined for all u such that HT u ∈ Range(HT H).
It can be shown that the transformation between u and x† is linear and unique, and hence for all
u such that HT u ∈ Range(HT H),

x† = H†u. (2.9)

Using the singular value decomposition (SVD) expansion of H, covered in Section 1.4.6, one
can precisely compute H†. If H is of size MN × PQ and has the SVD expansion

H =
r∑

m=1

√
σmΨmΦm

T = ΨΣΦT (2.10)

then H† is a PQ×MN matrix with the SVD expansion

H† =
r∑

m=1

1√
σm

ΦmΨm
T = ΦΣ′ΨT , (2.11)
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where Φm and Ψm are, respectively, the normalized eigenvectors of HT H and HHT corresponding
to positive singular values {σm, 1 ≤ m ≤ r}. Also, Φ and Ψ are the matrices whose columns are
respectively the vectors Φm and Ψm, 1 ≤ m ≤ r. As well,

Σ = diag(
√

σm), 1 ≤ m ≤ r, (2.12)

is the diagonal matrix constructed using σm’s and

Σ′ = diag(
1√
σm

), 1 ≤ m ≤ r, (2.13)

is constructed using Σ with every nonzero entry replaced by its reciprocal.

Furthermore, using Equations 2.10 and 2.11, it can be shown that the following relations
involving H† hold in general.

• HH† = (HH†)T

• H†H = (H†H)T

• HH†H = H

• H†HHT = HT

In addition, if the Gram matrix (HT H) is invertible then generalized inverse of H simply equals
its pseudoinverse, i.e.,

H† = (HT H)−1HT . (2.14)

2.2.3 Illposedness and Regularization

We mentioned that H†u uniquely exists, even if the Gram matrix (HT H) is not invertible. How-
ever, the generalized inverse operator H† may be unbounded (for the so-called ill-posed problems)
or have a very large norm (for the so-called ill-conditioned problems). This situation happens
when the Gram matrix has very small positive eigenvalues σm > 0, for some 1 ≤ m ≤ r.

In such instances, the generalized inverse operator has to be replaced by bounded approximants
or approximants with smaller norm, so that numerically stable solutions can be defined and used
as meaningful approximations of the true solution corresponding to the exact data. This is the
issue of regularization that we will be using a great deal of in this thesis.

The concept of regularization may be viewed and addressed in both deterministic and stochas-
tic settings that will be discussed in the following sections.

2.3 Deterministic View

2.3.1 Tikhonov Regularization

From an algebraic point of view, regularization can be performed by adding a convex penalty
function to the discrepancy function, thus enforcing the existence of a unique solution. More
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technically, consider the following minimization problem

x̃G,λ = arg min
x
‖Hx− u‖2 + λG(x). (2.15)

In this minimization problem, G(x) is a convex function and therefore x̃G,λ exists for any λ > 0.
The positive value λ in this case is called the regularization parameter.

A simple way of achieving a unique global minimizer is the Tikhonov approach [TA77]. One
considers the convex function

G(x) = GTikh(x) = ‖x‖2, (2.16)

which leads to
x̃Tikh,λ = (HT H + λIPQ×PQ)−1HT u. (2.17)

This is called the Tikhonov approximation of x with the regularization parameter λ. It can easily
be shown that the expression HT H+λIPQ×PQ is positive definite for λ > 0 and hence invertible.
To verify that as λ → 0, the regularized solution x̃Tikh,λ converges to the generalized solution x†,
consider

x̃Tikh,λ = (HT H + λIPQ×PQ)−1HT u (2.18)

= [(ΨΣΦT )T (ΨΣΦT ) + λIPQ×PQ]−1(ΨΣΦT )T u (2.19)

= [(ΦΣT ΨT )(ΨΣΦT ) + λΦIr×rΦT ]−1(ΦΣT ΨT )u (2.20)

= [(ΦΣT ΣΦT ) + λΦIr×rΦT ]−1(ΦΣT ΨT )u (2.21)

=
[
[(ΦΣT ΣΦT ) + λΦIr×rΦT ]−1Φ

]
(ΣT ΨT u) (2.22)

= Φ(ΣT Σ + λIr×r)−1(ΣT ΨT u) (2.23)

= Φ
[
(ΣT Σ + λIr×r)−1ΣT

]
ΨT u (2.24)

= Φ diag[
1

σm + λ
×√σm]ΨT u. (2.25)

Taking the limit,

lim
λ→0

x̃Tikh,λ = lim
λ→0

Φ diag[
σm

σm + λ
× 1√

σm
]ΨT u (2.26)

= Φ diag[
1√
σm

]ΨT u (2.27)

= ΦΣ′ΨT u (2.28)

= H†u (2.29)

= x†. (2.30)

This result [TA77] is of fundamental importance. Although the generalized inverse H† may be
ill-posed or ill-conditioned if there are some eigenvlaues σm near zero, it is approximated by a
nearby set of well-posed operators {(HT H + λIPQ×PQ)−1HT }λ as λ → 0.
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2.3.2 Generalized Tikhonov Regularization

One can generalize the Tikhonov approach by assuming

G(x) = GGen(x) = λ‖ Cx−D ‖2, (2.31)

such that CT C is positive semidefinite. In this case, the approximation becomes

x̃Gen,λ = (HT H + λCT C)−1(HT u + λCT D). (2.32)

The positive semidefiniteness of CT C guarantees that HT H + λCT C is a non-singular matrix if
λ > 0.

2.3.3 Regularization, only for Ill-posed Problems ?

Although the term GTikh(x) added in the Tikhonov approach removed the ill-posedness of the
original problem as an algebraic stabilizer, it is not clear at all whether it helps in getting a proper
result. Furthermore, the above discussion might lead to the wrong impression that regularization
is necessary only if the problem is ill-posed. Considering the image denoising problem, where the
matrix H = IPQ×PQ, i.e., equals the identity operator, the matrix HT H = IPQ×PQ is invertible
and thus, the problem is well-posed. However, the generalized solution or the MNLS solution
equals the observed image itself, i.e.,

x† = x̃MNLS = (IT
PQ×PQIPQ×PQ)−1IT

PQ×PQu = u. (2.33)

This means that although the denoising problem is well-posed, the MNLS solution equals the
noisy input image, and no denoising is performed on the image by approximating the MNLS
solution. Hence, we have to point out that regularization not only acts as an algebraic stabilizer
in estimating the solutions of ill-posed inverse problems (i.e., if HT H is singular), but it may be
required to improve the solutions of well-posed problems in many situations.

2.4 Stochastic View

Again remember the problem of recovery of the unknown x of size PQ× 1, given the observation

u = Hx + n, (2.34)

of size MN × 1, and recall that H was a linear degradation matrix of size MN × PQ. In the
stochastic setting, we make the assumption that the noise vector n is a random vector of size
MN × 1. Similarly, we assume that the vectors x and u are random vectors as well.

It is customary to believe that the value at each entry of the noise random vector n is realized
from a random variable with Gaussian distribution, zero mean and some known standard deviation
σ. We also assume that this the random noise vector is independent of x and is white, i.e., it is
a zero mean vector and its autocorrelation matrix is a multiple of the identity matrix. By these
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assumptions the Probability Density Function (PDF) of the random noise vector n can be written
as [AH77, Jai01]

P (n) =
1

(2π)
MN

2 σMN
exp {−nnT

2σ2
}. (2.35)

2.4.1 The Maximum-Likelihood Estimator (MLE)

The Maximum-Likelihood Estimator (MLE) suggests choosing x that maximizes the conditional
probability P (u | x), known as the likelihood. This is equivalent to choosing the unknown image
x that makes the measurements most likely to occur.

Considering the Gaussianity of the noise in Equation 2.35 and the fact that x is assumed to
be known, the measurement vector u = Hx + n is also a Gaussian random vector with a mean
that is shifted by the constant value Hx. Thus, the likelihood function becomes

P (u | x) =
1

(2π)
MN

2 σMN
exp {−‖u−Hx‖2

2σ2
}. (2.36)

Therefore, the MLE approximation is given by

x̃ML = arg max
x

P (u | x) = arg min
x
‖u−Hx‖2. (2.37)

This is, however, the discrepancy functional that we minimized to find the pseudosolutions in the
deterministic framework! Hence again if the Gram matrix HT H is invertible, there is a unique
solution given by

x̃ML = (HT H)−1HT u, (2.38)

which equals the LS solution x̃LS we found in the deterministic setting, i.e., x̃ML = x̃LS . Again
in this case, if the Gram matrix is singular there are infinitely many possible solutions. Therefore,
more information is required to tune the reconstruction toward a unique solution. This again
leads naturally to the notion of regularization.

2.4.2 The Bayesian Approach and Regularization

The Bayesian approach [Bay64] starts with the replacement of the likelihood function with the
posterior probability P (x | u). This minor change significantly changes the view of the approach.
The Bayes rule [Bay64] relates the above two conditional probabilities, the posterior and likelihood,
by

P (x | u) =
P (u | x)× P (x)

P (u)
, (2.39)

or equivalently in the same order

Posterior =
Likelihood×Prior

P (u)
. (2.40)

Generally speaking, there are two ways to practise the Bayesian approach using the posterior in
estimating x. These methods are known as (1) Maximum A posteriori Probability (MAP), and
(2) Minimum Mean-Squared Error (MMSE).
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Maximum A-Posteriori Probability (MAP) Estimation

The simpler method is the MAP method, choosing the x that maximizes the posterior P (x | u).
Using Equation 2.39, this reads

x̃MAP = arg max
x

P (x | u) (2.41)

= arg max
x

P (u | x)P (x)
P (u)

(2.42)

= arg max
x

P (u | x)P (x). (2.43)

Observe that the denominator P (u) has been removed from consideration, since it is considered
as a constant with respect to the optimization objective. A convenient way to describe the PDF
of x, known as the prior, is the Gibbs distribution, which represents P (x) in an exponential form
[ZM97]

P (x) = Const · exp{−αG(x)}. (2.44)

Such a description loses no generality, as every non-negative function can be written in such a
format. The constant in front of the exponential is a normalization factor, guaranteeing that the
integral of prior over all x is 1, and α is a positive parameter. The term G(x) is a non-negative
energy function, supposed to be low for highly probable signals and high otherwise. Using the
Gibbs distribution expression in hand, and the expression derived for the likelihood function in
Equation 2.36, we obtain

x̃MAP = arg min
x
‖u−Hx‖2 − log{P (x)} (2.45)

= arg min
x
‖u−Hx‖2 + 2σ2αG(x). (2.46)

The expression we just obtained is the same as what had earlier in Equation 2.15 by assuming that
the parameter α = λ

2σ2 is a multiple of the regularization parameter λ in the deterministic setting.
We see that the MAP method leads naturally to the concept of regularization explained in the
deterministic setting, this time only giving a probabilistic meaning to the additional expression
G(x) rather than settling with the gained algebraic stability.

Minimum Mean Squared Error (MMSE) Estimation

A second way to exploit the posterior in a Bayesian approach is the MMSE estimation. This
option chooses the expected value of x based on its conditional density P (x | u), i.e.

x̃MMSE = E(x | u) =
∫

x1

∫

x2

. . .

∫

xP Q

xP (x | u)dx (2.47)

Since the integral is PQ-dimensional (as the dimension of x), such an approach is typically
prohibitive for non-scalar cases. Whichever method chosen, MMSE or MAP, the estimation of x
using the Bayesian approach requires a clear definition of the energy function G(x). When dealing
with images, this energy function is essentially describing how natural images behave.

In the next section, we describe the main choices made for G(x) in the past few decades,
showing the evolution of ideas on this matter [ED07].
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2.5 Evolution of Image Priors

2.5.1 Priors from the “Good Old Days”

Assuming the Gibbs distribution for images, what should G(x) be so as to reflect the distribution of
natural images? This question poses one of the most fundamental problems in image processing.
This enigma has drawn a considerable research attention in the past few decades, and is still
considered an open question [ZM97, ED07, DE06]. In this section, we briefly describe the main
milestones in this arena, showing how priors are getting “smarter” and more complex, all in the
attempt to better describe image content. The Tikhonov regularization [TA77] presented earlier
was among the first to be practised. Choosing G(x) = ‖Lx‖2 in which L is the matrix associated to
the Laplacian operator, promotes uniform spatial smoothness across the image. The uniformity is
a key feature of this choice, as it leads to numerical convenience in the classic deblurring problem,
where H is a linear space-invariant blurring operation. This becomes the well-known Wiener filter
algorithm, which for many years was the leading approach in image deblurring [AH77].

By the late 1980s and early 1990s, it became clear that the Wiener filter does not produce
sufficiently good results, and that better are within reach when the enforced spatial uniformity
is avoided. This basic idea of forcing smoothness adaptively across the image found many man-
ifestations in various proposed image priors [ED07]. One of the simplest ways was the weighted
least-squares expression G(x) = (Lx)T W(Lx) in which W is a diagonal matrix with positive
entries along the main diagonal being close to 1 for smooth regions, and close to 0 for edge or
texture zones.

2.5.2 Total Variation Regularization and PDE-based Techniques

A vast amount of activity in image processing, which seems to be independent of the above discus-
sion, is the introduction of PDE-based filtering techniques into image processing. Contributions
such as the total variation (TV) by Rudin et al. [ROF92] and its variants to date, are considered
among the best regularization techniques available and are often used in image processing. The
edge-preserving regularization terms formed using various partial differential equations (PDE)
methods [Wei98] are also among other techniques that lie in the same category.

Very briefly and in the simplest case of the TV-based regularization [ROF92], the functional
G(x) for any image x(x, y) is defined as

G(x) = TV (x) =
∫

x,y

|∇x|dxdy. (2.48)

It can be shown that
∇TV (x) = −∇ · ( ∇x

|∇x|
)
, (2.49)

which will be required in minimizing the corresponding functional.
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2.5.3 Sparsity of Transform Domain Coefficients

In parallel to the impressive progress made on the use of PDEs in image processing in defining
regularization expressions, the field of approximation theory contributed its own techniques for
this purpose, in particular the use of the wavelet transform. Empirical observations suggested
that wavelet transform coefficients of signals tend to be sparse, i.e., many of them are zero or near
zero [DJ94]. This led to a proposed regularization expression of the form G(x) = ‖DWT(x)‖p

p,
where DWT is the discrete wavelet transform operator in matrix form, and the p-norm (with
p ≥ 1) sums over these coefficients in a way that promotes sparsity [Mal98].

More recent signal recovery techniques, e.g., basis pursuit [CDS98] and some of the methods
in the newly developed area of compressed sensing, e.g. [CR07], consider priors in terms of the `1

norm, e.g., G(x) = ‖x‖1. Although this gives non-smooth objective functions in the corresponding
minimization schemes, interior point methods or convex programming techniques are typically
employed for a computationally stable and efficient recovery of the image.

2.5.4 Example-based Regularization

The quest for better regularization expressions for images is very much active today, with many
new contributions that extend the options and improve on them. Using the above rationale in
forming regularization, one must question the fundamental ability of a simple analytical expression
G(x) to grasp the complexity and wealth of general image content [ED07, DE06].

An emerging powerful regularization methodology that has been drawing research attention
in recent years is regularization based on image examples. Rather than guessing the image PDF
and forcing a simple expression to be used to describe it, we let example images guide us in the
construction of the prior. Examples can be used in a variety of ways, and the various proposed
methods can be roughly divided into three categories extensively described in [ED07, DE06]: (1)
Learning prior parameters: If we are generally pleased with the above-described analytical priors,
those can be further improved by learning their parameters [CPT04, EL99, FPC00, FJP02, NK03,
WL00]. (2) Learning the posterior directly: Rather than learn the image prior and then plug it in a
MAP/MMSE reconstruction penalty term, one can use the examples to directly learn the posterior
PDF, and then use it for the reconstruction [HT03, RB05, ZM97, BCM05b, BCM05c]. (3) Building
a regularization expression with examples: This is a fusion of the above two techniques, where
examples are found as part of the reconstruction process, and then inserted directly into an explicit
regularization expression [BK02, DE06, ED07, FPC00, FJP02].

Considering the vast progress made on the formation of regularization expressions, we will be
exploiting some of these methods in this thesis.

2.6 Iterative Methods in Inverse Problems

In the previous sections, we introduced various abstract methods for solving ill-posed problems.
The practical implementation of these requires the minimization of some functionals or perhaps
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inverting a large matrix.

If the functional is non-quadratic, nonlinear iterative methods such as the steepest descent
method or variants of Newton’s method can be used to compute the regularized solution. If
the functional is quadratic, its minimizer satisfies a system of linear equations. If this system
is large, iterative methods, e.g., the conjugate gradient method, may be required to efficiently
compute the minimizer [Vog02]. In this section, we briefly review the methods of steepest descent
and conjugate gradient. However, before we continue, we introduce the traditional Method of
Projection onto Convex Sets (POCS), and Projected Landweber Iterations which are important
set-based approaches in inverse problems. POCS and Projected Landweber methods implicitly
find an approximate solution of inverse problems based on the notion of sets and projections.

We will be using some of these methods in the computational results presented in the following
chapters of this thesis.

2.6.1 Method of Projection onto Convex Sets (POCS)

In this section, we consider the image restoration problem by defining a set of constraints which
must be satisfied by candidate solutions [YW82]. In the POCS formulation, constraint sets are
used to define the feasible solution space for the restoration. These constraints are defined as con-
vex and closed sets that represent desirable characteristics of the solution. These sets encapsulate
properties such as similarity to the observed data, positivity, bounded energy, smoothness and so
on. The solution space of the restoration problem is, by design, the intersection of the convex
constraint sets. POCS is an iterative procedure which, given any element in the corresponding
space, locates an element which simultaneously satisfies all the constraint sets.

Assume that x ∈ `2(Υ) is known to lie in m given sets Ψi, i = 1, 2, . . . , m where each of
the sets represents a constraint on the image. If the sets Ψi are closed and convex, we associate
projection operators Pi, i = 1, 2, . . . , m, to each Ψi. The projection of h onto Ψi is defined as
p = Pih, with p ∈ Ψi and

‖p− h‖ = inf
y∈Ψi

‖y − h‖. (2.50)

The closedness and convexity of the Ψi’s guarantee that this projection is well-defined and uniquely
exists. Youla et al.[YW82] proved that if the sets Ψi, i = 1, 2, . . . , m are closed and convex and⋂

i Ψi 6= ∅, then the sequence {xn} defined recursively as

xn+1 = Pm . . .P2P1xn, (2.51)

converges to a fixed point in the intersection of all Ψis. In other words, xn converges to a point
x̃POCS , where x̃POCS ∈

⋂
i Ψi (see Figure 2.1).

In [YW82], a detailed theoretical discussion of the POCS method can be found. It is imperative
to note that the limit point x̃POCS is non-unique, in general. It is only known that the recovered
image lies in the intersection of the constraint sets. Furthermore, the limiting point x̃POCS is also
dependent on the initial guess in general.
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Figure 2.1: A schematic example of POCS.

POCS attracted very much attention in a multitude of image restoration and reconstruction
applications over the years. The main reasons for the attention were the simplicity, flexibility, and
power in the inclusion of a priori information. It is generally simple to define new convex con-
straint sets which incorporate desired solution characteristics. These sets may impose restrictions
such as positivity or bounded energy which are difficult to represent in terms of cost functions.
The only potential source of difficulty in applying POCS is to determine the projection operators.
If the convex and closed sets are constructed and the projection operators are found, the iterations
can be easily implemented. We will be using this idea later with regard to fractal image coding.

2.6.2 Projected Landweber Iterations

Assume that Ψc is a closed, convex subset of `2(Υ) and consider the minimization problem

x̃Land,Ψc
= arg min

x∈Ψc

‖Hx− u‖2. (2.52)

Furthermore, assume that this minimization problem has a non-empty set of solutions. Therefore,
some (not necessarily unique minimizer) x̃Land,Ψc exists. Also, assume that PΨc denotes the
projection operator on Ψc. The Projected Landweber Algorithm, described in the following
iterative scheme, evaluates some unique minimizer x̃Land,Ψc . This situation is sometimes called
as hard constrained case, because the solution is assumed to lie strictly in the set Ψc. This case
along with the POCS scheme covered in the previous section can be thought in the category of “set-
based regularization” frameworks. A very interesting unified formulation of such regularization
schemes has recently been given in [CW05].
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Algorithm 2.6.1. Projected Landweber Iterations

To find a minimizer x̃Land,Ψc ,

Choose some fixed step-size µ > 0 and a threshold ε > 0;
n := 0;
x0 :=initial guess;
begin projected Landweber iterations

xn+1 := PΨc

(
xn − µHT (Hxn − u)

)
; % update approximate solution

n := n + 1;

end projected Landweber iterations if ‖xn − xn−1‖ < ε.

Note that choosing a step-size, 0 < µ < 1
‖H‖22−norm

, where ‖H‖2−norm is the matrix 2-norm of
H, guarantees the convergence of this algorithm.

2.6.3 Steepest Descent

Steepest descent or gradient descent is a simple minimization algorithm for a real-valued differ-
entiable objective function F . The algorithm is based on the observation that if the real-valued
function F is defined and differentiable in a neighbourhood of a point a, then it decreases most
rapidly in the direction of the negative gradient p = −∇F (a). Here we summarize the algorithm
as an outcome of this observation.

Algorithm 2.6.2. Steepest Descent with Variable Step-Size

To minimize a given smooth function F (x),

Choose some threshold ε > 0;
n := 0;
x0 :=initial guess;
begin steepest descent iterations

pn := −∇F (xn) % update search direction

µn := arg min
µ>0

F (xn + µpn); % line search step-size

xn+1 := xn + µnpn; % update approximate solution

n := n + 1;

end steepest descent iterations if ‖xn − xn−1‖ < ε.

The above algorithm relies on finding a line search step-size which may be more complicated
to solve than the original minimization algorithm [Vog02]. An alternative strategy is to modify
the algorithm by choosing an appropriate fixed step-size and hope that it will converge to an
appropriate solution.
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Algorithm 2.6.3. Steepest Descent with Fixed Step-Size

To minimize a given smooth function F (x),

Choose some fixed step-size µ > 0 and a threshold ε > 0;
n := 0;
x0 :=initial guess;
begin steepest descent iterations

xn+1 := xn − µ∇F (xn); % update approximate solution

n := n + 1;

end steepest descent iterations if ‖xn − xn−1‖ < ε.

Note that choosing a very large step-size µ will affect the convergence of the algorithm to the
appropriate solution. On the other hand, if µ is very small the rate of convergence is very slow.

2.6.4 Conjugate Gradient (CG)

For the extremely large linear systems direct solution methods are not practical. On the other
hand, the slow convergence rate of the steepest descent iteration limits its usefulness [Vog02].
In this case, an iterative technique known as Conjugate Gradient (CG) method provides a very
efficient framework for solving symmetric positive definite linear systems which are of large di-
mension

Algorithm 2.6.4. The Conjugate Gradient Method

To solve the linear equation Ax = b, in which A is symmetric positive definite,
Choose some threshold ε > 0;
n := 0;
x0 :=initial guess;
r0 := Ax0 − b; % initial gradient
p0 := −r0; % initial search direction
ε0 := ‖r0‖2;
begin conjugate gradient iterations

hn := Apn;

µn :=
( εn

pn
T hn

)
; % line search step-size

xn+1 := xn + µnpn; % update approximate solution

rn+1 := rn + µnhn; % update gradient

εn+1 := ‖rn+1‖2;
pn+1 := −rn+1 +

(εn+1

εn

)
pn; % update search direction

n := n + 1;

end conjugate gradient iterations if εn < ε.



Chapter 3

Self-similarity in Imaging Inverse

Problems

28



3.1. Introduction 29

3.1 Introduction

Since the appearance of B. Mandelbrot’s classic work, The Fractal Geometry of Nature [Man83],
the idea of self-similarity has played a very important role in mathematics and physics. In the late-
1980’s, M. Barnsley of Georgia Tech, with coworkers and students, showed that sets of contractive
maps with associated probabilities, called Iterated Function Systems (IFS), could be used not
only to generate fractal sets and measures but also to approximate natural objects and images
[Bar88]. This gave birth to fractal image compression, which would become a hotbed of research
activity over the next decade. Indeed, twenty years have passed since Fractals Everywhere [Bar88],
Barnsley’s beautiful exposition of IFS theory and its applications, was first published.

Historically, most fractal image coding research focussed on its compression capabilities, i.e.,
obtaining the best possible accuracy with the smallest possible domain pool. As a result, these
investigations would rarely venture beyond observing what “optimal” domain blocks could pro-
vide. By taking a step back, however, and examining the statistics of how well image subblocks
are approximated by other subblocks, at either the same scale or different scales, one sees that
natural images are generally quite self-similar. This actually explains why fractal image coding
– a nonlocal image processing method – “works” (with the acknowledgment that it no longer
furnishes a competitive method of image compression).

In this chapter, we outline the evolution of the idea of self-similarity from Mandelbrot’s “gen-
erators” to Iterated Function Systems and fractal image coding. Furthermore, a detailed explana-
tion of the fractal image coding concept will be given along with a review of its applications other
than image compression, e.g., denoising and zooming. Finally, we introduce some newly developed
nonlocal image denoising filters [BCM05b, BCM05c] inspired by the self-similarity properties of
images.

3.2 History: From Self-similarity to Fractal Image Coding

In The Fractal Geometry of Nature [Man83], B. Mandelbrot showed how “fractal” sets could be
viewed as limits of iterative schemes involving generators. In the simplest case, a generator G
acts on a set U (for example, a line segment) to produce N affinely-contracted copies of U and
then arranges these copies in space according to a prescribed rule. Starting with an appropriate
“initiator set” U0, the iteration procedure Un+1 = G(Un) converges, in the limit n → ∞, to a
fractal set U ?.

Last, but certainly not least, the set U ? is “self-similar,” meaning that arbitrarily small pieces
of U ? are scaled-down copies of U ?. Consequently, U ? can be expressed as a union of contracted
copies of itself.

Some of Mandelbrot’s examples were certainly not new. For example, in the classical construc-
tion of the ternary Cantor set, the usual “middle-thirds” dissection procedure is represented by a
generator G that, acting on a line segment of length l, produces two contracted copies of length
l/3 which are separated by a distance l/3. From this, the Cantor set is viewed as a union of two
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contracted copies of itself. (And, in turn, we may obtain its fractal dimension to be ln 2/ ln 3.)
These simple examples, however, led to more general constructions, including random fractals.
The result was a rather unified treatment of fractal geometry.

The next leap in fractal analysis and construction came with the work of J. Hutchinson [Hut81].
One of the main ingredients was a set of N contractive maps wi : X → X, 1 ≤ i ≤ N on a complete
metric space (X, d). Associated with these maps was a set-valued mappingW, defined as the union
of the set-valued actions of the wi. (As such, W performed the shrink-and-placement procedure of
Mandelbrot’s generator G.) Hutchinson showed that W is contractive in (H (X), h), the complete
metric space of non-empty compact subsets of X with Hausdorff metric h. From Banach’s fixed
point theorem (also known as the contraction mapping theorem or contraction mapping principle),
there exists a unique set U ? ∈ H (X), the attractor of the IFS W, which satisfies the fixed point
relation

U ? = W(U ?) =
N⋃

i=1

wi(U ?). (3.1)

U ? is self-similar since it can be expressed as a union of copies of itself.

Hutchinson also considered a set of probabilities pi associated with the spatial maps wi, 1 ≤
i ≤ N . These are used to define an operator M on the space M(X) of Borel probability measures
on X: Very briefly, the action of M on a measure µ is to produce N spatially-contracted copies of
µ (via the wi) which are then weighted according to the respective probabilities pi. The operator
M is contractive in (M(X), dM ), where dM denotes the Monge-Kantorovich metric. Therefore
there exists a unique measure µ? ∈ M(X) satisfying the fixed point relation

µ?(X ) = Mµ?(X ) =
N∑

i=1

piµ
?(w−1

i (X )), ∀X ∈ H (X). (3.2)

Moreover, the support of µ? is the IFS attractor U ?. The invariant measure µ satisfies a more
generalized self-similarity or self-tiling property.

M. Barnsley and S. Demko [BD85] independently discovered the use of such systems of map-
pings and associated probabilities for the construction of fractal sets and measures, coining the
term Iterated Function Systems (IFS). Their analysis was framed in a more probabilistic setting
and gave rise to the well-known chaos game algorithm for generating pictures of attractors and
invariant measures.

In the Barnsley/Demko paper was the first suggestion that IFS might be useful for the ap-
proximation of natural objects. This was the seed for the inverse problem of fractal-based approx-
imation: Given a “target” set U , for example, a leaf, can one find an IFS with attractor U ? that
approximates U to some desired degree of accuracy?

Subsequently, Barnsley and students [BEHL85] showed how the inverse problem could be refor-
mulated/simplified in terms of the following Collage Theorem, a simple consequence of Banach’s
fixed point theorem: Given a contraction map T : X → X with contraction factor c ∈ [0, 1) and
fixed point U ?, then

d(U , U ?) ≤ 1
1− c

d(U , T U ), ∀U ∈ X. (3.3)
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If U ∈ X is a “target” (set or measure) that we wish to approximate with the fixed point U ? of a
contraction map T , then instead of searching for a T (i.e., an IFS) that makes the approximation
error d(U , U ?) small, one looks for a T such that the collage distance d(U , T U ) is small –
in other words a transform T that maps U as close as possible to itself. For IFS on sets, cf.
Equation 3.1, this amounts to looking for ways in which a set U can be approximated by a union
of contracted and distorted copies of itself. This procedure was illustrated very nicely for a generic
leaf-shape in [BEHL85].

In [BEHL85] was also presented the infamous “Barnsley fern” – the attractor of a four-map
IFS with probabilities (IFSP) shown in Figure 3.1. But this “fern” was more than an IFS attractor
set U ? – it was an invariant measure µ which could be represented on a computer screen as a
shaded image. In other words, the construction of sets by IFS now becomes the construction of
images by IFSP.

Figure 3.1: The infamous “Barnsley fern” IFS.

Naturally, the next question was: “Can IFS(P) be used to approximate other natural objects?”
But an even more ambitious question was: “Can IFS(P) be used to approximate images?” There
were various attempts, and Barnsley himself announced success to the world in the January 1988
issue of BYTE magazine [BS88], claiming that astronomical rates of data compression could be
achieved with IFS image coding. However, the details of the IFS compression method were not
revealed at that time for proprietary reasons. (Barnsley had been granted a software patent and
subsequently founded Iterated Systems Incorporated.)

The thesis of A. Jacquin [Jac89], one of Barnsley’s Ph.D. students, however, removed much
of the mystery behind IFS image coding. Indeed, Jacquin’s seminal paper [Jac92] described in
sufficient detail the method of block-based fractal image coding which is still the basis of most, if not
all, fractal-based image coding methods. It is, of course, overly ambitious to expect that an image
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can be well approximated with smaller parts of itself. Therefore, in the spirit of standard block-
based image coding methods (e.g., Discrete Cosine Transform (DCT), Vector Quantization (VQ)),
range or child subblocks of an image were approximated by affine greyscale transformations of
decimated versions of larger domain or parent subblocks. Although Jacquin’s original formulation
was in terms of measures, the method is easily interpreted in terms of image functions. Such
interpretations will be reviewed in the following section.

3.3 Block-based Fractal Image Coding

More details on fractal image coding can be found in many places [Bar88, BH93, Fis95, Lu97,
Fis98, GFV03]. In this section, we outline the most important features of fractal image cod-
ing. Fractal image coding seeks to approximate an image by a union of spatially-contracted and
greyscale-modified copies of subblocks of itself.

3.3.1 Fractal Image Encoding

Let an image of interest be represented by an image function u(x, y), denoted by u ∈ `2(Υ), where

Υ = [1, . . . , N ]× [1, . . . , N ]. (3.4)

Briefly, the result of the coding procedure is a contractive mapping T , the so-called fractal trans-
form operator. The fixed point u? of T provides an approximation to u. In other words,

u ∼= u? = T (u?). (3.5)

We need to take a few steps to define the operator T and study its properties.

Partitioning

First, consider a partition of Υ into nonoverlapping subblocks {Ci}, i ∈ C, referred to as range
(or child) subblocks, such that

Υ =
⋃

i∈C

Ci. (3.6)

Also, consider a new partition of Υ by typically larger subblocks {Pj}, j ∈ P, referred to as
domain (or parent) subblocks, such that

Υ =
⋃

j∈P

Pj . (3.7)

In this thesis, we assume that the elements {Pj} do not mutually overlap, however this is not
always a requirement in many texts. For example, we may assume that the square blocks Ci and
PJ(i) are, respectively of size K × K and sK × sK, where each of these blocks belongs to the
corresponding square grid partitions of Υ, for positive integers K and s. In this specific case, we
need to assume sK divides N to guarantee the existence of these grids (see Figure 3.2).
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(a) (b)

Figure 3.2: Partitioning of the an image into range and domain blocks, respectively in (a) and
(b).

Block and Parameter Search

For each i ∈ C, associated with each range (or child) subblock Ci one searches for the index
J(i) ∈ P of a corresponding domain (or parent) subblock PJ(i) in a manner that u(Ci) = u

∣∣∣
Ci

is well approximated by a spatially-contracted and greyscale-modified copy of u(PJ(i)) = u
∣∣∣
PJ(i)

,

i.e.,
u
∣∣∣
Ci

∼= φi

(
D

(
u
∣∣∣
PJ(i)

))
. (3.8)

Here, φi : R→ R are greyscale maps that operate on pixel intensities and are usually assumed to
be affine, i.e., φi(t) = αit + βi. Also, D is the decimation operator by a factor of s introduced in
Chapter 1.

Therefore, for each i ∈ C one finds J(i), αi, and βi that minimize the following expression

(J(i), αi, βi) = arg min
j∈P,(α,β)∈Π

∥∥∥∥∥u
∣∣∣
Ci

−
{

αD
(
u
∣∣∣
Pj

)
+ β

}∥∥∥∥∥. (3.9)

In this expression, Π ⊂ R2 denotes the feasible (α, β) parameter space, which will be suitably
restricted. Note that such a minimization problem may have non-unique solutions. The solution
of the above minimization problem is performed by exhaustive searching over all j ∈ P for each
i ∈ C. For a domain-range block pair Pj/Ci, the optimal value of the α and β parameters may
depend on the parameter space Π. Typically this may be accomplished by means of least-squares
or constrained least squares method. If Π = R2, i.e., when no constraint is assumed on the
parameters α and β and the pair of blocks u

∣∣∣
Ci

, D
(
u
∣∣∣
Pj

)
are respectively represented by vectors

uci
and upj

of the same size, it is easy to show that (e.g. see [Gha04]) the minimizing parameters
of the above expression for some fixed i ∈ C and j ∈ P is given by

αi =
Cov(upj

,uci
)

V ar(upj
)

(3.10)

βi = E(uci
)− αiE(upj

), (3.11)
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in the case that V ar(upj
) 6= 0. Furthermore, in the case that V ar(upj

) = 0 and the elements of
upj are all non-negative,

αi = 0 (3.12)

βi = E(uci
) (3.13)

are some non-unique minimizing parameters.

Fractal Transform Operator

We can summarize that the fractal code of the image u approximated in the outlined fashion
consists of

{J(i), αi, βi}, (3.14)

for all i ∈ C.

To introduce the fractal transform operator using the obtained fractal code, it is required to
define one more ingredient, the so-called block mapping. For each i ∈ C, define a block mapping
wi, from PJ(i) to Ci such that

Ci = wi(PJ(i)). (3.15)

In our discrete case, if Ci is a block of size K ×K, and PJ(i) is of size sK × sK then wi relates
every s× s block of PJ(i) to the corresponding 1× 1 pixel in Ci. More precisely, for any i ∈ C and
1 ≤ px, py ≤ sK,

wi(PJ(i)(px, py)) = Ci(dpx

s
e, dpy

s
e). (3.16)

This is equivalent to state that for any i ∈ C, (x, y) ∈ Υ, and 1 ≤ cx, cy ≤ s,

wi(PJ(i)(s(x− 1) + cx, s(y − 1) + cy)) = Ci(x, y). (3.17)

Such a wi is not 1-1 and by notations w−1
i (Ci) and w−1

i (x, y) for some (x, y) ∈ Ci, we respectively
mean the inverse images of Ci and (x, y) under w. The former would simply be PJ(i) and the
latter is an s× s block in the corresponding PJ(i). Hence, using the newly defined block mapping
notion we can write,

u
∣∣∣
Ci

∼= φi

(
D

(
u
∣∣∣
PJ(i)

))
= φi

(
D

(
u
∣∣∣
w−1

i (Ci)

))
(3.18)

(see Figure 3.3).

Let us now assume that we have computed the fractal code of an image function u according
to Equation 3.9. Because of the nonoverlapping nature of the partition by the range subblocks
Ci’s, we may define T ,

u(x, y) ∼= (T (u))(x, y) =
∑

i∈C

φi

(
D(

u(w−1
i (x, y))

))
, (3.19)

for every (x, y) ∈ Υ. The image function u is thus approximated as a sum of spatially-contracted
and greyscale-distorted (φi) copies of its blocks. This T will be referred to as the fractal transform
operator of u.

Under suitable conditions outlined (and further extended by the author) in the next chapter,
the operator T is contractive in `2(Υ) [BEHL85]. As such, using Banach’s contraction mapping
principle, there will exist a unique fixed point u? ∈ `2(Υ) such that T (u?) = u?.
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u
∣∣∣
Ci

∼= φi

(
D

(
u
∣∣∣
PJ(i)

))
= φi

(
D

(
u
∣∣∣
w−1

i (Ci)

))

Figure 3.3: Fractal coding, mapping of a domain block to a range block.

Collage Theorem

If the above approximation is a “good one”, then the so-called collage distance ‖ u − T (u) ‖ is
small. From the so-called “Collage Theorem” [BEHL85],

‖ u− u? ‖ ≤ 1
1− con(T )

‖ u− T (u) ‖, (3.20)

it then follows that if u is “close” to T (u), then u is also close to u?, the fixed point of T . Here,
con(T ) ∈ [0, 1) denotes the contraction factor of T . The quantity ‖ u − u? ‖ is the error of
approximation of u by u?.

3.3.2 Fractal Image Decoding

Once we have a fractal transform T , we may generate its fixed point u? by a simple iteration. Start-
ing with an arbitrary image u0, one forms the iteration sequence un+1 = T (un). In this decoding
procedure, the image subblocks un(Ci) of un are replaced by modified copies φi

(
D(

un(PJ(i))
))

according to Equation 3.18 (see Figure 3.4). This yields,

un+1

∣∣∣
Ci

=
(
T (un)

)∣∣∣
Ci

= αiD
(
un

∣∣∣
PJ(i)

)
+ βi. (3.21)

starting with an arbitrary image u0.

Banach’s contraction mapping theorem guarantees that the sequence of images un converges
to u?, if T is a contraction.
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un+1

∣∣∣
Ci

=
(
T (un)

)∣∣∣
Ci

= αiD
(
un

∣∣∣
PJ(i)

)
+ βi.

Figure 3.4: One iteration of fractal decoding.

3.3.3 Example: Fractal Coding Applied to an Image

In Figure 3.5 is presented the fixed point approximation u? to the standard 512× 512 pixel Lena
image (8 bits/pixel) using a partition of 8× 8 nonoverlapping pixel blocks (642 = 4096 in total).
The domain pool was the set of 322 = 1024, 16× 16 non-overlapping pixel blocks. (This is clearly
not optimal.) This image was obtained by starting with the seed image u0(x) = 255 (plain white
image) and iterating un+1 = T (un) to n = 15. Iterates u1, u2 and u3 are also shown in this
figure.

3.3.4 Matrix Notation of the Fractal Transform Operator

Given T , we can define a corresponding T acting on x such that T (x) represents T (x) in the
vector format. We take advantage of writing x in the vector format, so that operator T can be
written as

T (x) = Mx + B. (3.22)

A similar type of matrix representation of the fractal transform operator was introduced in
[Ham98]. Here, M is an N2×N2 matrix and both x and B are vectors of dimension N2×1. Ma-
trix M carries the αi information, where B contains the information of βi, all in the appropriate
locations. Remember that αi and βi were the parameters of the greyscale maps. A nominal row
of the matrix M corresponding to a pixel in the range block Ci has the following form.




. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

0 . . . . . . 0 αi

4
αi

4 0 . . . 0 αi

4
αi

4 0 . . . . . . 0
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(a) (b)

(c) (d)

Figure 3.5: The iterates u1, u2 and u3, are respectively plotted in (a), (b), and (c). The fixed
point u? of the fractal transform operator T designed to approximate the standard 512× 512 (8
bpp) “Lena” image is shown in (d). The “seed” image was u0(x, y) = 255 (plain white). The
fractal transform T was obtained by “fratcal coding” using 4096 nonoverlapping 8× 8 pixel range
blocks. The domain pool consisted of the set of 1024 nonoverlapping 16× 16 pixel blocks.
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Figure 3.6: Typical sparsity of matrix M, for an 8 × 8 image, i.e., N = 8. M is of dimension
64× 64, i.e., N2 = 64. Range and domain blocks are respectively of size 2× 2 and 4× 4. Number
of nonzeros of M are 4N = 256 out of the total of (N2)2 = 4096 elements.

Typically, M is very large and sparse with the ratio of non-zeros to total of 4/N2, for an N ×N

image. Figure 3.6 shows the sparsity structure of the matrix M corresponding to some small
image.

By this notation , u? is the solution of a linear equation of the form

Mx + B = x, (3.23)

or equivalently
Ax = B, (3.24)

where A = IN2×N2 −M, and IN2×N2 is the identity matrix of size N2 × N2. In the case that
the fractal transform is fully known, this linear system has a unique solution u?, indeed by the
structure of A. This unique solution is in fact the attractor of the fractal transform T in the
vector order, i.e., u? . It is also true that for any x

Ax−B = x− T (x). (3.25)

We will be using this matrix representation of the fractal transform operator in the some of
the following chapters.

3.4 Variations and Applications of Fractal Image Coding

As was mentioned earlier, the original motivation of fractal coding was image compression [Jac92,
Bar88, Lu97]. Jacquin’s original paper [Jac92] launched an intensive activity in fractal image
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compression. One of the main drawbacks of fractal coding was the time required to search for
optimal domain blocks. As such, there was much investigation on how to achieve the best quality
with as little searching as possible. A discussion of some of these methods can be found in
[Fis95, Fis98, Lu97].

Furthermore, some of the most important variations and improvements of fractal coding in-
clude: variable partitioning schemes [Fis98], redundant representation and multiple-domain meth-
ods [Bon97, AVT08, XF], lapped approximations [HC97], and fractal coding on wavelet coefficient
trees (IFSW) [Vrs98].

More recently, the ability of fractal coding to solve inverse problems other than compression
has been investigated which will be described in the following sections.

3.4.1 Fractal Image Denoising

In [GFV03, GFV06, Gha04], it was first observed that fractal-based methods have denoising
capabilities. There are two principal reasons: (i) the affine greyscale fitting between domain and
range blocks causes some variance reduction in the noise and (ii) the spatial contraction/pixel
decimation involved in mapping domain blocks to range blocks provides further variance reduction.
Additional denoising can be achieved by using estimates of the noise variance to estimate the
fractal code of the noiseless image [GFV03]. Furthermore, the fact that each range block may be
well approximated by a number of domain blocks can be exploited to perform denoising by using
multiple parents [Ale05].

3.4.2 Fractal Zoom

Re-sizing of an image does not translate into an increase in resolution. In fact, re-sizing should be
accompanied by approximations for frequencies higher than those representable at original size,
and at a higher signal-to-noise ratio. This process of re-sizing, called single-frame image zooming,
will be precisely defined and addressed in Chapter 9.

In the traditional method of single-frame image zooming, interpolation functions are used.
The original data are estimated by a function, usually continuous, and then resampled at a finer
grid. The simplest interpolation algorithm is the so-called nearest neighbour algorithm where
each unknown pixel is assigned the greyvalue of the sample closest to it. This method provides
blocky results. More pleasant results can be obtained using bilinear interpolation, and bicubic
interpolation schemes [Cha01]. Most of these algorithms provide overly smoothed results. Most
of the difficulties arise in the areas around edges and sharp changes. Around edges, many inter-
polation methods tend to smooth and blur image details. Also, performing sharpening operators
e.g., un-sharp masking, on these over-smoothed results does not usually recover the lost details of
the image [Cha01].

It is believed that most image information is often found around edges and areas of high
variation. This property can be used to predict the missing details from a sampled image. Several
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(a)

(b) (c)

Figure 3.7: Fractal zoom example: (a) Original, (b) Pixel replication, (c) Fractal zoom.

methods have been used to address this problem. Prediction of the image details using evolution
of wavelet coefficients across scales, and regularity-preserving image interpolation are examples of
these approaches [CCH99, Mal98, MZ92].

Fractal-based zooming is another approach to achieve “superior” image details compared to
conventional image enlargement techniques, e.g., bilinear interpolation. Due to the resolution-
independent nature of the derived fractal transform operator, interpolation algorithms known as
“fractal zoom” have been developed in the literature [Fis95, Fis98, GAaYTH97, Lu97, PD97] (see
Figure 3.7). Very recently, it has been shown that such superresolution can be accomplished in
the frequency domain using IFS-type methods [MV07].

In general, conventional fractal coding/decoding is a lossy operation, i.e., image details are
partially lost in the coding/decoding process. More recent approaches such as fractal coding
on wavelet coefficient trees (IFSW) [Vrs98] may preserve the image details and produce sharper
results by employing the similarity of the wavelet coefficients as a prior model.

Figure 3.8 compares the result of pixel replication, bilinear interpolation, and the IFSW in the
Haar basis as described in [Vrs98]. The bilinearly interpolated image is overly smoothed, while
IFSW produces sharper yet noisy image.

The quality of the single-frame image zooming techniques is limited by the reliability and the
amount of data available in the image. Single image zooming can not produce high frequency
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Figure 3.8: Top left to right: Pixel replication, Bilinear, IFSW, closer view of each image in the
bottom.

components lost during the low-resolution sampling process unless a suitable model for zooming
can be established. The prediction of details in an image requires a priori knowledge or assumption
on the unknown image.

3.5 Newer Trends in Self-similarity

3.5.1 Statistical Studies on Image Self-similarity

Some recent investigations [Ale05, AVT08] have shown that images generally possess a great deal
of local (affine) self-similarity: Given a subimage u|Ci there are often a good number of domain
blocks Pj whose subimages u|Pj approximate it as well as the “best” domain block. This feature,
which never seems to have been quantified previously, accounts for the rather small degradations
that are experienced when the size of the domain pools – the domain blocks Pj to be examined –
is decreased.

In [AVT08] was presented numerical evidence that the distributions of domain-range approx-
imation errors can be used to characterize the relative degree of self-similarity of images. For
many natural images, the distributions of errors demonstrate significant peaking near zero error.
For others, the distributions are broader and peak farther away from zero. The latter images
are judged to be less self-similar than the former. As noise of increasing variance is added to an
image, the distributions broaden and move outward as well. In [EV08a], we have also examined
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the distribution of neighbourhood distances at various scales for various natural images. It is ob-
served that for each test image, the similarity between the same-scale and cross-scale histograms is
striking. The details in producing the histograms and some of the results of [EV08a] will discussed
in Chapter 8.

3.5.2 Non-local Methods

A new and important denoising method which involves self-similarity is nonlocal-means (NL-
means) image denoising [BCM05b, BCM05c]. The authors have demonstrated that this algorithm
has the ability to outperform classical denoising methods, including Gaussian smoothing, Wiener
filter, TV filter, wavelet thresholding, and anisotropic diffusion. Furthermore, an extension of
the algorithm has been developed [BCM05a] to address the problem of image denoising of image
sequences. Due to the importance of the NL-means filter and the fact that we will be using it
again in some of the following chapters we dedicate the next section to describe the method.

3.6 NL-means Image Denoising Filter

3.6.1 NL-means Image Denoising Filter

Consider the following image denoising problem [BCM05b, BCM05c],

u = x + n,

where u ∈ `2(Ω) is a given observation, n ∈ `2(Ω) is additive white independent Gaussian noise
with zero-mean and variance σ2, and x ∈ `2(Ω) is the image to be recovered where

Ω = [1, . . . ,M ]× [1, . . . , N ].

For any x ∈ Ω, define the approximation of x denoted by x̃NL as

x̃NL(x) =
1

C(x)

∑

y∈Ω

w(x, y)u(y), such that (3.26)

w(x, y) = exp
(
− ‖ u(N d{x})− u(N d{y}) ‖22,a

h2

)
, and

C(x) =
∑

y∈Ω

w(x, y), (3.27)

where the expressions N d{. . . } and ‖ . ‖22,a are defined in the following way.

Neighbourhoods: For any point in the domain of observation (i, j) ∈ Ω, define

N d
{
(i, j)

}
=

{
(i + i′, j + j′) | (i′, j′) ∈ Z2,max{|i′|, |j′|} ≤ d

}
. (3.28)
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Gaussian-weighted-semi-norm: For any image patch

y ∈ `2
(
[1, . . . , 2d + 1]× [1, . . . , 2d + 1]

)
,

define ‖ . ‖22,a as

‖ y ‖22,a =
∑

−d≤i≤d,−d≤j≤d

Ga(i, j)|y(i + d + 1, j + d + 1)|2

in which Ga is a two-dimensional Gaussian kernel of standard deviation a, centred at (0, 0), and
of the same dimension as y.

Figure 3.9: NL-means denoising, The intensity of each pixel in the noisy image is replaced with
the weighted average of all of the pixel intensities in the same image. The weights are determined
based on neighbourhood similarity of the pixels. Neighbourhoods are typically assumed as square
patches of odd length.

The idea of the NL-means algorithm is that given a discrete noisy image u, the estimated
noiseless value x̃NL(x) is computed as a weighted average of all pixel intensities in the observed
image, u(y), where the weights w(x, y) depend on the similarity of neighbourhoods of the pixels x

and y, and w is a decreasing function of the weighted Euclidean distance of the neighbourhoods.
The NL-means denoising algorithm can be thought as an example-based technique in which ex-
amples are taken from the image itself. The examples, i.e., the patches, will be directly used to
construct the posterior, which is used directly in the reconstruction process targeting the MMSE
estimator, as was explained in Chapter 2.

The parameter h in the algorithm acts as a degree of filtering and controls decay of the expo-
nential function and therefore the decay of the weights as a function of the Euclidean distances.
Such an h plays the role of the regularization parameter of the inverse problem as was described
earlier in Chapter 2. The NL-means algorithm not only compares the grey level in a single point
but the geometrical configuration in a whole neighbourhood [BCM05b, BCM05c].
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Restricting the Search-Window in the NL-means Filter

It turns out that the denoising algorithm above is computationally intensive. A possibility to
overcome the computational complexity introduced in [BCM05b, BCM05c] is to restrict y ∈
Ω ∩ N r{x}, i.e., in a neighbourhood of x rather than the whole field of Ω in the corresponding
equations. In [OEW08, OEW07], we have also examined other approaches to overcome the high
computational cost of the NL-means algorithm.

NL-means Filter in the Matrix Notation

When u is represented in the vector format as u, the output of the NL-means denoising can
be written as Wu, where W is a right stochastic matrix containing the associated non-negative
weights. This form of notation will be used in Chapter 7.

3.6.2 NL-means vs. Fractal Image Denoising

As mentioned ealier, the denoising properties of the fractal transform operator have been analyzed
in [GFV03, GFV06, Ale05]. Here we briefly mention some of the main differences between fractal
denoising and NL-means denoising:

• The blocks in fractal-based methods are typically taken at two different scales (coarse and
fine), while the NL-means algorithm introduced in [BCM05b, BCM05c] considers only same-
scale similarity.

• In the NL-means algorithm, blocks are compared solely in terms of the `2 distance between
them. In fractal coding, an additional affine greyscale transformation is used.

• The NL-means is not an iterative scheme. One application of the operator completes the
denoising task. However, the fractal denoising scheme [GFV03] is iterative. In [EV07a] it
is shown how one may construct a contractive operator along with an iterative scheme for
NL-means denoising. However, the iteration procedure is not computationally feasible since
the matrix representation of the NL-means operator is not sparse, unlike the case for fractal
transforms. This contribution will be presented in Chapter 7.

• The NL-means scheme involves the replacement of one pixel at a time. This produces a kind
of continuity across pixels, in contrast to standard fractal decoding, which generally suffers
from blockiness across range block boundaries, since entire range blocks are being replaced.

• In the NL-means scheme, each pixel is replaced by a weighted average of all pixel intensities
in the image, where blocks of greater similarity have larger weights. Such a counterpart
exists in fractal image coding in the form of multiparent transforms [Ale05], but has not
been extensively employed.
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4.1 Introduction

In the previous chapter, we defined the fractal transform operator T and stated that under suitable
conditions the operator T is contractive. Hence, using Banach’s contraction mapping principle,
T has a unique fixed point u? such that T (u?) = u?.

There are a few existing sufficient contractivity conditions for the fractal transform operator
in the literature [BEHL85, FV98, Fis95, Fis98]. These conditions are only sufficient and not
necessary. Furthermore in the existing results, images are typically assumed to be continuous
and not discrete in nature. Therefore, it is not precisely clear how the theory would relate to
practice, using these results.

In [Ale05], it is stated that such contractivity conditions are never checked in practice. In
[Fis95, Fis98] the author suggests that based on “computational experiments” the operator T is
converging if the coefficients αi are in the interval [−√2,

√
2]. Furthermore, in [Gha99, Gha04] it

is stated that “In fact, for block-based fractal schemes, it is indeed very difficult to derive a tight
necessary contractivity requirement on the IFS coefficients.” In this chapter, we will discuss that
the existing sufficient contractivity conditions almost never hold and are probably useless to be
applied in practice. These sufficient conditions, as we will show, are far from being necessary.

The first step would be to check that we can at least obtain the same sufficient contractivity
conditions for the fractal transform operator, reported in [FV98] for the continuous case, now for
our discrete setting. Note that all computations of fractal coding experiments are performed in
the discrete setting. Therefore, in this chapter, as before we assume the space of images as `2(Υ),
for

Υ = [1, . . . , N ]× [1, . . . , N ] (4.1)

i.e., we remain in a space of discrete images. Our advantage here would be the fact that we remain
consistent in both theory and practice, i.e., both our propositions and experiments would be in
the same discrete space. This first step will be accomplished in Section 4.2.

In Section 4.3, we further improve this existing sufficient condition and yield a necessary
and sufficient condition for the contractivity of the fractal transform operator. This will be an
improvement of the existing condition by a factor of 100 or so for many typical experiments.

In Section 4.4, we ask the question whether contractivity of T is necessary at all for the
convergence of the fractal decoding scheme. The answer is negative and we state analytical
conditions under which the fractal decoding iteration converges. Furthermore, we derive a theorem
in this non-contracting yet converging case, corresponding to the Collage Theorem (Equation
3.20). We will explain how this result generalizes the Collage Theorem and will refer to the result
as “The generalized Collage Theorem”.

In Section 4.5, we consider a very special case of the fractal transform operator which has the
same domain and range block size.

Finally, some concluding remarks will be given in Section 4.6.
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4.2 Existing Contractivity Conditions for the Fractal Trans-

form Operator

In this section, we verify the sufficient contractivity conditions of the fractal transform opera-
tor, reported in [FV98] for the continuous case. Here we remain in a discrete space `2(Υ). As
mentioned earlier, implementations of fractal coding are typically performed in the discrete space
while the existing theory is developed to address the continuous case. The definitions of the
down-sampling operator and the block mappings are of crucial importance in this context. We
follow a mathematically rigorous setting to ensure the clarity of the statements.

Again recall that we defined the fractal transform operator T as

(T (u))(x, y) =
∑

i∈C

φi

(
D(

u(w−1
i (x, y))

))
, (4.2)

for every (x, y) ∈ Υ, and also assumed that the greyscale map φi = αit+βi. Given u ∈ `2(Υ), we
briefly outlined how to compute its associated fractal transform operator T . We explained that
u is approximated by the fixed point u? of T .

Proposition 4.2.1. For any y ∈ `2(Υ) and i ∈ C,
∥∥∥D

(
y
∣∣
PJ(i)

)∥∥∥ ≤ 1
s

∥∥∥y
∣∣
PJ(i)

∥∥∥. (4.3)

Proof. Assume that PJ(i) is an sK × sK block and y
∣∣
PJ(i)

is represented by K2 blocks each of

size s× s by y
(m)
p,q for 1 ≤ p, q ≤ s, and 1 ≤ m ≤ K2. By this representation,

∥∥∥D
(
y
∣∣
PJ(i)

)∥∥∥
2

=
K2∑

m=1

[ 1
s2

∑

1≤p,q≤s

y(m)
p,q

]2 (4.4)

For every 1 ≤ m ≤ K2, taking ap,q = y
(m)
p,q and bp,q = 1

s2 in the Cauchy-Schwarz inequality
( ∑

1≤p,q≤s2

ap,qbp,q

)2

≤
( ∑

1≤p,q≤s2

a2
p,q

)( ∑

1≤p,q≤s2

b2
p,q

)
, (4.5)

leads to
[ 1
s2

∑

1≤p,q≤s

y(m)
p,q

]2 ≤
( ∑

1≤p,q≤s2

y(m)
p,q

2
)( ∑

1≤p,q≤s2

1
s4

)
(4.6)

=
( ∑

1≤p,q≤s2

y(m)
p,q

2
)( 1

s2

)
. (4.7)

Hence, taking the sum over m yields

K2∑
m=1

[ 1
s2

∑

1≤p,q≤s

y(m)
p,q

]2 ≤ 1
s2

K2∑
m=1

( ∑

1≤p,q≤s2

y(m)
p,q

2
)
. (4.8)

Substituting the equivalent values for the left and right sides gives,
∥∥∥D

(
y
∣∣
PJ(i)

)∥∥∥
2

≤ 1
s2

∥∥∥y
∣∣
PJ(i)

∥∥∥
2

. (4.9)

Finally taking the square root of both sides of this expression completes the proof.
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Proposition 4.2.2. T is a contraction on `2(Υ) if
√∑

i∈C

(
αi

s
)2 < 1 (4.10)

where, the size of range and domain subblocks are respectively K ×K and sK × sK.

Proof. For any u,v in `2(Υ),

‖T (u) − T (v)‖2 (4.11)

=
∑

i∈C

∑

x,y∈Ci

∣∣∣φi

(
D(

u(w−1
i (x, y))

))− φi

(
D(

v(w−1
i (x, y))

))∣∣∣
2

(4.12)

=
∑

i∈C

∥∥∥φi

(
D(

u(w−1
i (Ci))

))− φi

(
D(

v(w−1
i (Ci))

))∥∥∥
2

. (4.13)

Assuming φi(t) = αi(t) + βi as before yields

‖T (u)− T (v)‖2 =
∑

i∈C

αi
2
∥∥∥D

(
u(w−1

i (Ci))
)−D(

v(w−1
i (Ci))

)∥∥∥
2

(4.14)

=
∑

i∈C

αi
2
∥∥∥D

(
u
∣∣∣
PJ(i)

)−D(
v
∣∣∣
PJ(i)

)∥∥∥
2

(4.15)

=
∑

i∈C

αi
2
∥∥∥D

(
(u− v)

∣∣∣
PJ(i)

)∥∥∥
2

. (4.16)

Hence, by the previous proposition taking y = u− v,

‖T (u)− T (v)‖2 ≤
∑

i∈C

α2
i

s2

∥∥∥(u− v)
∣∣
PJ(i)

∥∥∥
2

(4.17)

≤
∑

i∈C

(
αi

s
)2

∥∥∥(u− v)
∥∥∥

2

(4.18)

= [
∑

i∈C

(
αi

s
)2]

∥∥∥(u− v)
∥∥∥

2

. (4.19)

Hence,

‖T (u)− T (v)‖ ≤
√∑

i∈C

(
αi

s
)2

∥∥∥(u− v)
∥∥∥, (4.20)

and the condition √∑

i∈C

(
αi

s
)2 < 1 (4.21)

is sufficient for T to be a contraction.

The sufficient condition √∑

i∈C

(
αi

s
)2 < 1 (4.22)
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has the same form as the sufficient condition given in [FV98]. As explained earlier our advantage
here is the fact that we here remain consistent in both theory and practice. We deduced this
result for the discrete case, which is exactly consistent with what is being done computationally.

The following is just a simple result of the above proposition.

Proposition 4.2.3. As a result of the previous proposition, a sufficient condition for contractivity
of T on `2(Υ), where as before Υ = [1, . . . , N ]× [1, . . . , N ], is

max
i∈C

{|αi|} <
s√
|C| =

sK

N
. (4.23)

Proof. First assuming that there are (N
K )2 range blocks in C,

√
|C| =

√(N

K

)2

=
N

K
, (4.24)

which proves the equality part. To prove the sufficiency, assuming that the inequality holds, for
any i ∈ C,

|αi| ≤ max
i∈C

{|αi|} <
s√
|C| , (4.25)

hence,
|αi|
s

<
1√
|C| . (4.26)

Therefore, ∑

i∈C

(
αi

s
)2 <

∑

i∈C

1
|C| =

|C|
|C| = 1, (4.27)

which is the same sufficient condition as in the previous proposition.

4.3 Extending the Contractivity Conditions for the Fractal

Transform Operator

In this section, we improve the existing sufficient condition stated in the previous section to
produce a both necessary and sufficient condition for the contractivity of the fractal transform
operator.

The proposition below is a stronger statement, i.e., a more relaxed sufficient condition for the
contractivity of T .

Proposition 4.3.1. A sufficient condition for the contractivity of T on `2(Υ) is

max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
< 1, (4.28)

where the sets Cj = {i ∈ C|J(i) = j} for any j ∈ P.
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Proof. Back in the middle of the proof of the first contractivity Proposition 4.2.2, we had for any
u,v in `2(Υ),

‖T (u)− T (v)‖2 ≤
∑

i∈C

(
αi

s
)2

∥∥∥(u− v)
∣∣
PJ(i)

∥∥∥
2

. (4.29)

Note that {Cj}j∈P forms a partition for C, i.e., Cj1 ∩ Cj2 = ∅ for distinct j1, j2 ∈ P and

C =
⋃

j∈P

Cj (4.30)

(see Figure 4.1).

Figure 4.1: Partitioning of C. Two elements of the partition are shown on the right.

Hence,

‖T (u)− T (v)‖2 ≤
∑

j∈P

∑

i∈C|J(i)=j

(
αi

s
)2

∥∥∥(u− v)
∣∣
Pj

∥∥∥
2

(4.31)

=
∑

j∈P

∑

i∈Cj

(
αi

s
)2

∥∥∥(u− v)
∣∣
Pj

∥∥∥
2

(4.32)

=
∑

j∈P

[∥∥∥(u− v)
∣∣
Pj

∥∥∥
2 ∑

i∈Cj

(
αi

s
)2

]
(4.33)

≤
∑

j∈P

[∥∥∥(u− v)
∣∣
Pj

∥∥∥
2
]

max
j∈P

{ ∑

i∈Cj

(
αi

s
)2

}
(4.34)

≤
∥∥∥(u− v)

∥∥∥
2

max
j∈P

{ ∑

i∈Cj

(
αi

s
)2

}
. (4.35)
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Taking the square root yields,

‖T (u)− T (v)‖ ≤
∥∥∥(u− v)

∥∥∥max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
. (4.36)

Therefore the condition
max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
< 1 (4.37)

satisfies the convergence of T .

What we just proved shows that a much weaker condition results in the convergence of the
fractal transform operator. This is because the summation of contractivity condition is now
restricted to i ∈ Cj , which seems a much smaller portion of values in Cj ⊂ C compared to the
unconditional case of i ∈ C. This is an improvement of the condition by a factor of 100 or so in
many typical experiments.

Again, the following is just a simple result of the above proposition .

Proposition 4.3.2. A sufficient condition for contractivity of T on `2(Υ) is

max
i∈C

{|αi|} <
s√

Cmax

, (4.38)

where Cmax is the maximum number of times any single domain block is mapped to some range
block, i.e., Cmax = maxj∈P |Cj |.

Proof. Define αmax = maxi∈C{|αi|}, and assume αmax < s√
Cmax

. This gives,
√∑

i∈Cj

(αi

s

)2 ≤
√∑

i∈Cj

(αmax

s

)2 (4.39)

=
(αmax

s

)√|Cj | (4.40)

<
( s√

Cmax

1
s

)√|Cj | (4.41)

<

√|Cj |√
|Cmax|

(4.42)

≤ 1. (4.43)

Therefore, the sufficient contractivity condition of the previous proposition is satisfied.

In the worst case that all of the range blocks are mapped from a single domain block, Cmax

would be equal to the number of all range blocks, or |C|. This leads to

max
i∈C

{|αi|} <
s√

Cmax

=
s√
|C| , (4.44)

which is equivalent to the Proposition 4.2.3. However, in a typical situation where each domain
block is related to only a few range blocks Cmax is small and αis can be relaxed and take larger
values in magnitude up to s√

Cmax
.

Now we would like to prove that the sufficient condition in Proposition 4.3.1 is also necessary.
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Proposition 4.3.3. A necessary and sufficient condition for contractivity of T on `2(Υ) is

max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
< 1, (4.45)

where the sets Cj = {i ∈ C|J(i) = j} for any j ∈ P.

Proof. We previously proved the sufficiency. To prove the necessity, assume that T is a contraction.
Hence, there exists for c < 1 such that for any u,v in `2(Υ),

‖T (u)− T (v)‖ ≤ c
∥∥∥u− v

∥∥∥. (4.46)

For any j ∈ P take the pair of images u = u(j) and v = v(j) defined in the following manner.
u(j)(x, y) = 1Pj

(x, y) for any (x, y) ∈ Υ, where 1Pj
represents the characteristic or indicator

function on Pj . Also, take v(j)(x, y) = 0 for any (x, y) ∈ Υ. Hence,

‖T (u(j))− T (v(j))‖2 (4.47)

=
∑

i∈C

∑

x,y∈Ci

∣∣∣φi

(
D(

u(j)(w−1
i (x, y))

))− φi

(
D(

v(j)(w−1
i (x, y))

))∣∣∣
2

(4.48)

=
∑

i∈C

∥∥∥φi

(
D(

u(j)(w−1
i (Ci))

))− φi

(
D(

v(j)(w−1
i (Ci))

))∥∥∥
2

. (4.49)

Assuming φi(t) = αi(t) + βi as before yields

‖T (u(j)) − T (v(j))‖2 (4.50)

=
∑

i∈C

αi
2
∥∥∥D

(
u(j)(w−1

i (Ci))
)−D(

v(j)(w−1
i (Ci))

)∥∥∥
2

(4.51)

=
∑

i∈C

αi
2
∥∥∥D

(
u(j)

∣∣∣
PJ(i)

)−D(
v(j)

∣∣∣
PJ(i)

)∥∥∥
2

(4.52)

=
∑

i∈C

αi
2
∥∥∥D

(
(u(j) − v(j))

∣∣∣
PJ(i)

)∥∥∥
2

(4.53)

=
∑

i∈C

αi
2
∥∥∥D

(
(1Pj − 0)

∣∣∣
PJ(i)

)∥∥∥
2

(4.54)

=
∑

i∈C

αi
2
∥∥∥D

(
(1Pj )

∣∣∣
PJ(i)

)∥∥∥
2

. (4.55)
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Breaking the sum i ∈ C over two disjoint cases of i ∈ C, J(i) = j and i ∈ C, J(i) 6= j yields

‖T (u(j))− T (v(j))‖2 (4.56)

=
∑

i∈C,J(i)=j

αi
2
∥∥∥D

(
(1Pj

)
∣∣∣
PJ(i)

)∥∥∥
2

+
∑

i∈C,J(i)6=j

αi
2
∥∥∥D

(
(1Pj )

∣∣∣
PJ(i)

)∥∥∥
2

(4.57)

=
∑

i∈C,J(i)=j

αi
2
∥∥∥D

(
1Pj

)∥∥∥
2

(4.58)

=
∑

i∈C,J(i)=j

αi
2 1
s2

∥∥∥1Pj

∥∥∥
2

(4.59)

=
∥∥∥1Pj

∥∥∥
2 ∑

i∈C,J(i)=j

(αi

s

)2 (4.60)

=
∥∥∥1Pj

∥∥∥
2 ∑

i∈Cj

(αi

s

)2
. (4.61)

Also,

‖u(j) − v(j)‖2 =
∥∥∥1Pj − 0

∥∥∥
2

=
∥∥∥1Pj

∥∥∥
2

. (4.62)

Hence for any j ∈ P, replacing u = u(j) and v = v(j) in

‖T (u)− T (v)‖ ≤ c
∥∥∥u− v

∥∥∥, (4.63)

gives
‖T (u(j))− T (v(j))‖ ≤ c

∥∥∥u(j) − v(j)
∥∥∥, (4.64)

and replacing the equivalent values we just found yields that for any j ∈ P

∥∥∥1Pj

∥∥∥
√∑

i∈Cj

(αi

s

)2 ≤ c
∥∥∥1Pj

∥∥∥, (4.65)

for some c < 1. Finally cancelling the positive value
∥∥∥1Pj

∥∥∥ from both sides of the inequality gives
that for any j ∈ P √∑

i∈Cj

(αi

s

)2 ≤ c < 1. (4.66)

Hence for any j ∈ P, √∑

i∈Cj

(αi

s

)2
< 1, (4.67)

or equivalently

max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
< 1. (4.68)

The following proposition states that the smallest contractivity factor of T can be obtained
using the developed necessary and sufficient condition.
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Proposition 4.3.4. If T is a contraction on `2(Υ) and con(T ) is defined as the infimum taken
over all of the possible contractivity factors of T then

con(T ) = max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
< 1, (4.69)

where the sets Cj = {i ∈ C|J(i) = j} for any j ∈ P.

Proof. If T is a contraction, the necessity condition we just proved satisfies that

max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
< 1. (4.70)

Now, we know that this inequality holds and observe the Equation 4.36 in the last paragraph of
the proof of sufficiency Proposition 4.3.1, in which we had

‖T (u)− T (v)‖ ≤
∥∥∥(u− v)

∥∥∥max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
. (4.71)

This shows that the expression

max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
(4.72)

is a contractivity factor of T , and hence con(T ) which is the infimum over all possible contractivity
factor of T satisfies

con(T ) ≤ max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
. (4.73)

It is very easy to prove and generally known that the infimum of all contractivity factors of T ,
denoted by con(T ), is itself a contractivity factor of T . Hence, using the statement we had in the
last paragraph of the necessity condition taking c = con(T ) gives

max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
≤ con(T ). (4.74)

Hence,

con(T ) = max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
< 1. (4.75)

This shows that the smallest possible contractivity factor of T is

con(T ) = max
j∈P

{√∑

i∈Cj

(
αi

s
)2

}
, (4.76)

which will be referred to as the contractivity factor of T .

In the fractal coding literature, the fractal transform operator T is sometimes only defined in
terms of downsampling S as opposed to the operator D, i.e., averaging followed by downsampling.
We have given the precise definitions of these operators in Section 1.4. The following proposition
addresses the difference between these two cases, in terms of contractivity conditions.
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Proposition 4.3.5. Assume that sampling without averaging is used in the definition of T , i.e.,
S instead of D [see the notations in Section 1.4 for precise definition] resulting in the operator
TS , given as follows

u(x, y) ∼= (TS(u))(x, y) =
∑

i∈C

φi

(
S(

u(w−1
i (x, y))

))
. (4.77)

Then TS is a contraction on `2(Υ) and a necessary and sufficient contractivity condition is

max
j∈P

{√∑

i∈Cj

αi
2
}

< 1. (4.78)

In addition, the contractivity factor of TS is

conTS = max
j∈P

{√∑

i∈Cj

αi
2
}

. (4.79)

Proof. The proof is very similar to the previous proofs. This is especially because we can show
for any y ∈ `2(Υ), ∥∥∥S

(
y
∣∣
PJ(i)

)∥∥∥ ≤
∥∥∥y

∣∣
PJ(i)

∥∥∥, (4.80)

as opposed to ∥∥∥D
(
y
∣∣
PJ(i)

)∥∥∥ ≤ 1
s

∥∥∥y
∣∣
PJ(i)

∥∥∥. (4.81)

Hence, the factor s is eliminated from the expressions in the corresponding propositions. Further-
more, similar arguments lead to the fact that TS is a contraction in this case if

max{|αi|}i∈C <
1√

Cmax

. (4.82)

Apparently this suggests that it would be safer to use D than S in terms of convergence results.

4.4 Convergence Results for the Fractal Transform Opera-

tor

The propositions proved in the previous sections of this chapter may give the incorrect impression
that the contractivity of T is necessary for the convergence of the fractal decoding scheme. In
this section, we derive analytical results on the convergence of the fractal decoding. It turns out
that the fractal decoding scheme may be convergent to a unique limit regardless of the starting
point, under certain conditions even when T is not necessarily a contraction.

Given T , we can define a corresponding T acting on x such that T (x) is T (x) represented in
the vector format, as done earlier in Section 3.3.4. We also take advantage of writing x in the
vector format, so that operator T can be written as

T (x) = Mx + B. (4.83)
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As mentioned earlier in Section 3.3.4, a similar type of matrix representation of the fractal trans-
form operator was introduced in [Ham98]. Here, M is an N2 ×N2 matrix and both x and B are
vectors of dimension N2×1. Matrix M carries the αi information, and B contains the information
of βi, all in the appropriate locations. Recall that αi and βi were the parameters of the greyscale
maps.

We would like to find conditions under which the iterations un+1 = T (un) converge regardless
of the initial arbitrary image u0. In the vector-matrix notation, the iterative scheme reads

un+1 = Mun + B. (4.84)

The following proposition is a known general result for linear iterative schemes.

Proposition 4.4.1. [You71, Ham98] The linear iterative scheme in Equation 4.84 converges to
a limit independent of u0 if and only if ρ(M) < 1, where ρ(M) represents the spectral radius of
M.

The following proposition proved in [Ham98] gives a very useful sufficient condition for the
convergence of the fractal decoding scheme.

Proposition 4.4.2. [Ham98] A sufficient condition for the convergence of the fractal decoding
scheme un+1 = T (un) regardless of the starting initial arbitrary image is that |αi| < 1 for all
i ∈ C.

Proof. Consider the decoding scheme in the vector-matrix notation. The necessary and sufficient
condition for the convergence of the fractal decoding scheme was ρ(M) < 1. Also, ρ(M) ≤ ‖M‖,
where ‖.‖ is any matrix norm [You71]. Therefore, a sufficient condition for the convergence of
the fractal decoding scheme would be ‖M‖∞−norm < 1. Noting that each row of M contains
exactly s2 nonzero elements of value αi

s2 for some i ∈ C, this shows that the infinity norm of M
is maxi∈C{|αi|}. Hence, if |αi| < 1 for all i ∈ C, the fractal decoding scheme converges to a limit
regardless of the starting initial arbitrary image.

Although this sufficient condition is very useful, it is not necessary at all for the convergence
of the fractal decoding scheme. It can also be shown that the sufficient condition and the neces-
sary and sufficient condition we found for the contractivity of T in the previous section do not
necessarily contradict each other.

Therefore, the concluding point is that the convergence of the fractal decoding scheme to a
limit regardless of the starting image is given by the condition ρ(M) < 1, which is not nec-
essarily in alignment with the contractivity of T . The fact that the fractal decoding process
converges to a limit for many cases, even if none of the conditions maxi∈C{|αi|} < 1 and
maxj∈P

{√∑
i∈Cj

(αi

s )2
}

< 1 is satisfied, lies in the fact that ρ(M) < 1 for the associated
fractal code.

It would be interesting to verify the fact that we can generalize the Collage Theorem (Equation
3.20) to include cases for which the fractal decoding scheme is converging to a limit although T

is not a contraction in those cases.
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Proposition 4.4.3. The Generalized Collage Theorem
Assume that the sequence un+1 = T (un) converges to u? regardless of u0, i.e., ρ(M) < 1. Then

‖u− u?‖ ≤ ‖u− T (u)‖ · ‖(IN2×N2 −M)−1‖2−norm, (4.85)

where ‖.‖2−norm represents the matrix 2-norm.

Proof. Considering the fractal transform operator in matrix notation, and using induction for any
k ∈ N, yields

T k(u) = Mku + (
k−1∑
m=0

Mm)B. (4.86)

Hence for any k ∈ N

‖u− T k(u)‖ = ‖u−Mku− (
k−1∑
m=0

Mm)B‖ (4.87)

= ‖
k−1∑
m=0

(Mm −Mm+1)u− (
k−1∑
m=0

Mm)B‖ (4.88)

= ‖
k−1∑
m=0

Mm
[
(IN2×N2 −M)u−B

]‖ (4.89)

≤ ‖(IN2×N2 −M)u−B‖ · ‖
k−1∑
m=0

Mm‖2−norm. (4.90)

If ρ(M) < 1, then the limit of
∑k−1

m=0 Mm as k → ∞ exists and equals (IN2×N2 −M)−1 [NS82].
Hence, taking the limit k →∞ and converting back to the non-vector notation yields

‖u− u?‖ ≤ ‖u− T (u)‖ · ‖(IN2×N2 −M)−1‖2−norm. (4.91)

Proposition 4.4.4. The Generalized Collage Theorem in Proposition 4.4.3, generalizes the Col-
lage Theorem in Equation 3.20.

Proof. First we show that if T is a contraction with contractivity factor con(T ), 0 ≤ con(T ) < 1,
then ‖M‖2−norm ≤ con(T ). Note that for any x 6= 0

‖Mx‖ = ‖Mx−M0‖ = ‖Mx + B− (M0 + B)‖ = ‖T (x)− T (0)‖ ≤ con(T )‖x‖. (4.92)

Therefore, for any x 6= 0
‖Mx‖
‖x‖ ≤ con(T ). (4.93)

and
‖M‖2−norm = sup

x 6=0

‖Mx‖
‖x‖ ≤ con(T ). (4.94)
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Hence,

‖(IN2×N2 −M)−1‖2−norm = ‖
∞∑

m=0

Mm‖2−norm (4.95)

≤
∞∑

m=0

‖M‖m
2−norm (4.96)

≤
∞∑

m=0

conm
(T ) (4.97)

=
1

1− con(T )
. (4.98)

Using this inequality in the Generalized Collage Theorem in Proposition 4.4.3 yields the collage
Theorem

‖u− u?‖ ≤ 1
1− con(T )

· ‖u− T (u)‖. (4.99)

In the case that T is a contraction a smaller upper-bound on ‖u− u?‖ is given by the above
proposition.

4.5 Fractal Code with the Equal Range and Domain Block

Size

Recall from Chapter 3, that the fractal transform operator T was defined in terms of domain and
range partitions, and domain-to-range mappings. We also mentioned that the domain blocks of
size sK × sK are typically larger than the range blocks of size K × K. Here, we would like to
emphasize that it is also possible to construct a fractal transform for the case that s = 1. Because
we are not interested in compression capabilities of the fractal transform, this seems to be a rather
interesting case to consider.

Note that if s = 1, for each i ∈ C and (x, y) ∈ Υ, the block mapping wi in Equation 3.17
simply becomes

wi(PJ(i)(x, y) = Ci(x, y). (4.100)

In our setting, we did not necessarily choose mappings wi to be contractive. It may be a wrong
convention among fractal imaging experts who think wi should necessarily be contractive to yield
a contractive T .

If, during the coding stage, i.e., the search for the “best” domain block, we allow each range
block be approximated by any domain block, we arrive at a trivial case: the case that each domain
block approximates itself. An interesting situation arises if we do not allow this situation. Hence,
we exclude the range block being approximated from the search pool. Interestingly, all of the
contractivity and convergence results we considered in this chapter are still valid in our setting
for this case where s = 1.
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4.6 Concluding Remarks

In this chapter, new contractivity and convergence conditions for the fractal transform operator
were developed. We addressed a number of open questions in the area.



Chapter 5

Generalized Fractal Image Coding

as Projections onto Convex Sets

60
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5.1 Introduction

In this chapter, we show how fractal image coding can be viewed and generalized in terms of the
method of projections onto convex sets (POCS). In our approach, the fractal code is considered
as defining a set of spatial domain similarity constraints. In this framework, we also show how
POCS can provide the opportunity to apply the fractal code of an image along with additional
constraints at the decoding stage. The mathematical foundation of this approach along with some
interesting applications are presented.

As mentioned earlier, in traditional fractal-based methods, images are thought of as elements
of a complete metric space, e.g., `2(Υ), for Υ = [1, . . . , N ]× [1, . . . , N ]. A contractive operator T is
estimated at the coding stage, such that its fixed point is an approximation of the original image.
At the decoding stage, this contractive operator or fractal transform is applied iteratively to an
initial “seed” image. Banach’s contraction mapping theorem guarantees the convergence of the
iterative scheme to the fixed point of T . This decoding process is too restrictive, however, since
additional knowledge about the original image (e.g., bounding constraints on the pixel values or
smoothness along block boundaries) cannot be applied simultaneously with the fractal transform.
As a result, post-processing algorithms have traditionally been applied to the fixed point of the
contraction map T in order to incorporate additional constraints. This post-processing stage
usually translates to applying some projections on the fixed point. For example, thresholding the
data in order to enforce certain bounds is simply a projection of the data onto the space of images
that lie within those bounds.

In our approach, a fractal code is considered as a set of spatial domain similarity constraints.
Fortunately these constraints are convex and closed in `2(Υ) and therefore satisfy the requirement
of setting up a POCS model.

In this framework, we indicate how POCS can provide the opportunity to apply the fractal
code of an image along with additional constraints at the decoding stage. These constraints
may include other spatial, statistical, spectral and pattern properties of the unknown image, e.g.,
bounds on pixel values, bounded energy, smoothness, similarity to the observed data, etc.

A feature of this interpretation is that we can move away from the traditional view of fractal
coding as simply a mapping of domain image subblocks onto range image subblocks. Instead, we
consider the application of the projections on a closed and convex set that is constructed using the
similarity constraint between the domain and range subblocks. This type of projection translates
to a simultaneous alteration of domain-range block pairs. In this chapter, we shall introduce such
projections explicitly and study some of their interesting implications.

Let us qualify that we are not interested in the compression capabilities of fractal image coding
here. Our study picks up on the thesis of T. Puh on set-theoretic coding [Puh96]. In that work,
there were no explicit details on how the self-similarity properties of an image can be translated
into POCS-type inequality constraints.

The layout of the remainder of this chapter is as follows. The formulation of the fractal-based
self-similarity constraints is presented in Sections 5.2 and 5.3. In Section 5.4, an application of
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this formulation will be presented as the solution to the problem of image reconstruction given a
missing fractal code. In Section 5.5, the potential application of the prescribed method in image
denoising is discussed. Finally, some concluding remarks will be given in Section 5.6.

5.2 Self-Similarity Constraints Using Collage Distances

In this section, we consider a number of self-similarity constraints on image blocks which relate
fractal image coding to the POCS concept. Collage distance is an important measure of self-
similarity in this context. Below we consider three different types of collage distances, using
which similarity constraints can be built. These are (a) total collage distance, (b) collage distance
for fixed domain-range blocks, and (c) point-wise collage distance.

Definition 5.2.1. For a given image u ∈ `2(Υ), we introduce the following collage distance
definitions.
a) The total collage distance is defined as

∆(u) =
∥∥∥T (u)− u

∥∥∥ (5.1)

b) Given any i ∈ C, the collage distance for a fixed pair, range block Ci and domain block PJ(i), is

∆(i)(u) =
∥∥∥φi

(
D

(
u
(
w−1

i (Ci)
)))

− u(Ci)
∥∥∥ (5.2)

=
∥∥∥φi

(
D

(
u
(
PJ(i)

)))
− u(Ci)

∥∥∥, (5.3)

where, as before, w−1
i is the inverse mapping from PJ(i) to Ci.

c) Given any i ∈ C and a pixel (m, n) ∈ Ci, the pointwise collage distance is defined as

∆(i)
(m,n)(u) =

∣∣∣φi

(
D

(
u
(
w−1

i (m,n)
)))

− u(m,n)
∣∣∣. (5.4)

Although fractal image coding relies on perfect self-similarity between elements in the range
and domain pool, in natural images the assumption of perfect self-similarity does not hold. There-
fore, to design a model that is more consistent with the physical world we enforce a criterion that
the collage distances as measures of similarity must lie within some threshold. This threshold can
be determined based on the application. This framework allows more flexibility to incorporate
additional knowledge about the image and to relax the condition of perfect self-similarity in order
to get a better approximation of an image in the reconstruction process. That being said, our
model can be made consistent with the perfect self-similarity assumption case, by setting the
threshold to be zero. This translates to the fact that our model is in complete consistency with
traditional fractal image coding.

We may use each of the three collage distances described above to define the following associ-
ated self-similarity constraints in `2(Υ).

a) Based on the total collage distance define

Ψ =
{
u ∈ `2(Υ) : ∆(u) ≤ δ

}
. (5.5)
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b) Based on range based collage distance define

Ψ(i) =
{
u ∈ `2(Υ) : ∆(i)(u) ≤ δ(i)

}
. (5.6)

c) Finally, define the set Ψ(i)
(m,n) based on the pointwise collage distance as

Ψ(i)
(m,n) =

{
u ∈ `2(Υ) : ∆(i)

(m,n)(u) ≤ δ
(i)
(m,n)

}
. (5.7)

5.3 Discrete Pointwise Collage Constraints and Associated

Projections

Note that we defined Ψ(i)
(m,n), where (m,n) is a pixel with integer coordinates over a fixed Ci. We

base our model on the sets Ψ(i)
(m,n) constructed by the pointwise collage distances.

Ψ(i)
(m,n) =

{
u ∈ `2(Υ) : ∆(i)

(m,n)(u) ≤ δ
(i)
(m,n)

}

=
{
u ∈ `2(Υ) :

∣∣∣φi

(
D

(
u
(
w−1

i (m,n)
)))

− u(m, n)
∣∣∣ ≤ δ

(i)
(m,n)

}
.

Assuming that the domain blocks are twice as large as the range blocks in each direction then, in
our discrete setting, (m,n) corresponds to four pixels (p, q), (p, q +1), (p+1, q), and (p+1, q +1)
under the inverse mapping w−1

i (m,n), i.e.,

w−1
i (m,n) = {(p, q), (p, q + 1), (p + 1, q), (p + 1, q + 1)}. (5.8)

Furthermore, in this case D
(
u
(
w−1

i (m, n)
))

can be written as

D
(
u
(
w−1

i (m,n)
))

=
1
4

{
u(p, q) + u(p, q + 1) + u(p + 1, q) + u(p + 1, q + 1)

}
.

Hence, replacing φi(t) = αit + βi yields

Ψ(i)
(m,n) =

{
u ∈ `2(Υ) :

∣∣∣αi

4
{
u(p, q) + u(p, q + 1) + u(p + 1, q) (5.9)

+ u(p + 1, q + 1)
}

+ βi − u(m,n)
∣∣∣ ≤ δ(i,j)(m,n)

}
.

Proposition 5.3.1. Ψ(i)
(m,n) is a closed and convex set in `2(Υ) provided that φi(t) = αit + βi.

Proof. To prove the convexity it is enough to show that for any real number 0 ≤ λ ≤ 1, the
convex combination (λu + (1 − λ)v) ∈ Ψ(i)

(m,n), provided that u ∈ Ψ(i)
(m,n) and v ∈ Ψ(i)

(m,n). Note
that both D and φi are linear, hence∣∣∣∣∣φi

(
D

(
(λu + (1− λ)v)

(
w−1

i (m, n)
)))

− (λu + (1− λ)v)(m,n)

∣∣∣∣∣

=

∣∣∣∣∣λ
[
φi

(
D

(
u
(
w−1

i (m,n)
)))

− u(m,n)
]

+ (1− λ)
[
φi

(
D

(
v
(
w−1

i (m,n)
)))

− v(m,n)
]∣∣∣∣∣

≤ λ
∣∣∣φi

(
D

(
u
(
w−1

i (m,n)
)))

− u(m, n)
∣∣∣ + (1− λ)

∣∣∣φi

(
D

(
v
(
w−1

i (m,n)
)))

− v(m,n)
∣∣∣

≤ λδ
(i)
(m,n) + (1− λ)δ(i)

(m,n) = δ
(i)
(m,n). (5.10)
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Hence, (λu + (1− λ)v) ∈ Ψ(i)
(m,n) which shows the convexity of Ψ(i)

(m,n).

To prove the closedness of Ψ(i)
(m,n) in `2(Υ), assume that the sequence of images u(k) ∈ Ψ(i)

(m,n)

converges to u in `2(Υ) as k →∞. The condition u(k) ∈ Ψ(i)
(m,n) implies that for any k ∈ N,

∣∣∣φi

(
D

(
u(k)

(
w−1

i (m,n)
)))

− u(k)(m,n)
∣∣∣ ≤ δ

(i)
(m,n). (5.11)

The operators D and φ are both linear and continuous, the absolute value is also a continuous
function. Hence, taking the limit of the left-hand side for k → ∞ is meaningful. Furthermore,
the limit of the left-hand side can not be larger than δ

(i)
(m,n). Therefore, taking the limit k → ∞

yields ∣∣∣φi

(
D

(
u
(
w−1

i (m,n)
)))

− u(m, n)
∣∣∣ ≤ δ

(i)
(m,n), (5.12)

i.e., u ∈ Ψ(i)
(m,n). Therefore, Ψ(i)

(m,n) is closed in `2(Υ).

Now that the convex and closed pointwise similarity constraints are constructed, so the pro-
jection operators on these sets are meaningful. If we find the projection operators on these sets
we will be able to set-up our POCS-based framework.

The following proposition provides the explicit form of the projection operator on Ψ(i)
(m,n) given

an arbitrary u ∈ `2(Υ).

Proposition 5.3.2. Assume an image u ∈ `2(Υ) is given. Let v be the projection of u on Ψ(i)
(m,n).

This projection can be computed in the following manner.

Assume that the four pixels in the set

Λ =
{

(p, q), (p, q + 1), (p + 1, q), (p + 1, q + 1)
}

(5.13)

are the ones mapped from (m, n) under the inverse mapping w−1
i . Take δ = δ

(i)
(m,n) ≥ 0, β = βi,

α = αi, and

r =
α

4

[
u(p, q) + u(p, q + 1) + u(p + 1, q) + u(p + 1, q + 1)

]
+ β − u(m,n). (5.14)
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In the case that (m,n) /∈ Λ, the values v(x, y) for (x, y) ∈ Υ can be computed as

u(x, y) +





Case (x, y) ∈ Λ
−α/4

1+4(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
−α/4

1+4(α/4)2 (r + δ), r < −δ

Case (x, y) = (m,n)
1

1+4(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
1

1+4(α/4)2 (r + δ), r < −δ

Case (x, y) /∈ Λ ∪ {(m,n)}
0.

(5.15)

In the case that (m,n) ∈ Λ, the values v(x, y) for (x, y) ∈ Υ can be computed as

u(x, y) +





Case (x, y) ∈ Λ \ {(m,n)}
−α/4

(1−α/4)2+3(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
−α/4

(1−α/4)2+3(α/4)2 (r + δ), r < −δ

Case (x, y) = (m,n)
1−α/4

(1−α/4)2+3(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
1−α/4

(1−α/4)2+3(α/4)2 (r + δ), r < −δ

Case (x, y) /∈ Λ
0.

(5.16)

Proof. One strategy is to prove the proposition directly by setting a constrained optimization
problem and solving using the Karush-Kuhn-Tucker (KKT) conditions [Kar39, KT51] for solving
the optimization problems with inequality constraints. Another indirect approach is to make use
of a result of a paper [OTS94] on deblurring of a signal in presence of space varying blur. We
ignore the difference between the two contexts and simply state and employ the result in the
paper. Below we have slightly modified the notations in the result of [OTS94], to match with
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ours. In [OTS94], it is stated that given

r = g(m,n)−
∑

x

∑
y

u(m, n)h(m, n; x, y), (5.17)

and the set Ψm,n = {u(x, y) : |r| ≤ δ}, the projection of a given u(x, y) on Ψm,n is computed by

u(x, y) +





h(m,n;x,y)P
k

P
l h2(m,n;k,l) (r − δ), r > δ

0, |r| ≤ δ
h(m,n;x,y)P

k

P
l h2(m,n;k,l) (r + δ), r < −δ

(5.18)

Back to our proposition, if we assume g(m,n) = β, and h(m,n; k, l) is constructed appropriately
based on the α’s then, we may readily obtain the projection based on this result.

In the first case that (m, n) /∈ Λ, we need to define h in the following fashion, which would
produce the expression r in our problem.

h(m,n; k, l) =





1 Case (k, l) = (m,n)
(−α/4) Case (k, l) ∈ Λ
0 Case (k, l) /∈ Λ ∪ {(m,n)}

(5.19)

Now, we consider three cases of (i) (x, y) ∈ Λ, (ii) (x, y) = (m,n), and (iii) (x, y) /∈ Λ ∪ {(m,n)}.
Substituting the expressions of Equation 5.19 in Equation 5.18 yields our formula in Equation
5.15.

Similarly, in the second case that (m,n) ∈ Λ, we define h in the following fashion

h(m,n; k, l) =





(1− α/4) Case (k, l) = (m,n)
(−α/4) Case (k, l) ∈ Λ \ {(m,n)}
0 Case (k, l) /∈ Λ

(5.20)

This time, considering three possible cases of (i) (x, y) ∈ Λ\{(m, n)}, (ii) (x, y) = (m,n), and (iii)
(x, y) /∈ Λ, and substituting the expressions of Equation 5.20 in Equation 5.18 yields our formula
in Equation 5.16. This simple observation completes the proof of the proposition.

In Figure 5.1, each of the top and bottom images shows a mapping of a domain to a range
block. In each image, as an example, we have indicated four pixels in Λ which are mapped to
a pixel (m,n). The only difference is that in the image on top the range block and domain
block are disjoint while in the bottom image the range block is included in the domain block. In
Figure 5.2 , the mapping from the four pixels in Λ to the pixel (m,n) is indicated for two cases
where (m,n) /∈ Λ in the top image and (m,n) ∈ Λ in the bottom image. Figures 5.3 and 5.4
demonstrate an example of the projection defined in Proposition 5.3.2 for the two cases (m,n) /∈ Λ
and (m,n) ∈ Λ respectively.

Now that the constraints Ψ(i)
(m,n) and their associated projections are in hand we may apply

these constraints in the POCS iterations along with other consistent constraints at the decoding
stage.
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Figure 5.1: Top: Mapping from a domain block to a range block, when these blocks are non-
overlapping. Bottom: The chosen domain and range blocks are overlapping. The four by four
square and a black square indicates a pointwise correspondence.

Figure 5.2: Top: Pointwise mapping corresponding to the (m,n) /∈ Λ case. Bottom: Pointwise
mapping corresponding to the (m,n) ∈ Λ case.
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Figure 5.3: Sample projection for a pointwise collage constraint from u to v for the case where
(m,n) /∈ Λ case. In this figure, greyscales represent the intensity values of each pixel. The
intensity of the rest of the pixels under this projection remains unchanged. As indicated only five
pixels are involved.

Figure 5.4: Sample projection for a pointwise collage constraint from u to v for the case where
(m,n) ∈ Λ case. In this figure, greyscales represent the intensity values of each pixel. The
intensity of the rest of the pixels under this projection remains unchanged. As indicated only four
pixels are involved.
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5.4 An Application to Partially Known Fractal Code Prob-

lem

In this section, we present a problem of image recovery given a partially known fractal code as a
motivating example for the theory described above.

Assume that from a given fractal code of an image, part of the range-domain block assignments
along with their corresponding coefficients are missing. In this case, the usual fractal decoding
scheme employing an arbitrary “seed” image will collapse since the range blocks of the image for
which the fractal code is missing cannot be modified. These blocks will simply remain stationary,
identical to the corresponding subblocks of the seed image. To illustrate, assume that the fractal
codes corresponding to all range blocks in the bottom half of an image are missing. Figures 5.5(b),
5.6(b), and 5.7(b) show the results of this situation. In the usual fractal decoding scheme, the
mapping of domain onto range blocks is performed only for the top-half range blocks. The
difference between the results is due to the difference in seed images: purely black images for
Figures 5.5(b) and 5.7(b), and random for Figure 5.6(b).

The problem of missing code is, in fact, a problem which is underdetermined, i.e., there are
many possible solutions. This gives the opportunity of using POCS over the constraints Ψ(i)

(m,n),
for δ = 0, along with an additional prior, for example, extra smoothness, that will yield an
approximation of the original image.

Figure 5.5(c) shows the result of POCS using the constraints Ψ(i)
(m,n) for all available range

indices i and all image pixels (m,n), along with one extra smoothness constraint. Here, we assume
such constraint defined using the set Ψb, the set of all images u ∈ `2(Υ) that are bandlimited to
a certain bandwidth b, i.e.,

Ψb = {u ∈ `2(Υ) : |DFT (u)(u, v)| = 0, for any u, v ∈ Z, that |u| ≤ N

2
, |v| ≤ N

2
,

√
u2 + v2 ≥ bN}.

(5.21)

It is well known that the set Ψb is closed and convex and the projection onto Ψb is the operation
of ideal frequency low-pass filtering. This corresponds to some smoothness prior along with the
partially known self-similarity constraints. We have used this type of constraint along with the
partially known self-similarity constraints to generate Figure 5.5(c).

It turns out that applying other types of smoothing operators, e.g., Gaussian smoothing, also
works with the method numerically to produce more desirable results although such smoothing
operators are not projection operators in general.

Assuming the same missing fractal code as for Figures 5.6(b) and 5.7(b), Figures 5.6(c)
and 5.7(c) are the approximations obtained when the POCS model along with Gaussian smoothing
with, respectively, random and black seed images.

The images in Figures 5.6(c) and 5.7(c), obtained by the POCS model along with the extra
smoothness constraints are seen to represent a great improvement over Figures 5.6(b) and 5.7(b).
More interestingly, the usual fractal decoding scheme of mapping domain to range blocks does not
change the missing range blocks at all in the iteration process, i.e., the bottom part of random
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(a)

(b)

(c)

Figure 5.5: (a) Lena original. (b) Decoded as bottom half of the fractal code is missing, black
seed. (c) Proposed method using POCS with frequency ideal low-pass filtering.
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(a)

(b)

(c)

Figure 5.6: (a) Lena original. (b) Decoded as bottom half of the fractal code is missing, random
seed. (c) Proposed method using POCS with Gaussian smoothing.
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(a)

(b)

(c)

Figure 5.7: (a) Lena attractor 4 × 4 range block size. (b)Decoded as bottom half of the fractal
code is missing, black seed. (c) Proposed method using POCS with Gaussian smoothing.
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(a)

(b)

(c)

Figure 5.8: (a) Lena original. (b) Decoded image starting from random seed, a quarter of the
fractal code is randomly missing. (c) Proposed method using POCS with Gaussian smoothing.
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(a)

(b)

(c)

Figure 5.9: (a) A quarter of the code related to the range blocks in black is missing. (b) Decoded
image starting from black seed, a quarter of the fractal code is randomly missing. (c) Proposed
method using POCS with Gaussian smoothing.
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and black seed images remains unchanged as in Figures 5.6(b) and 5.7(b). But based on the fact
that the projections in the POCS model do change the domain and range blocks simultaneously,
we get a somewhat reasonably meaningful reconstruction at the domain scale for the bottom-half
of these two images. This is possible because of the cross-similarities between the domain blocks
in the bottom-half of the image and some range blocks. The more domain blocks that are in the
regions of missing range blocks, the better we may approximate the image based on the partial
fractal code.

In another experiment we have assumed that part of the fractal code corresponding to a uni-
formly random distribution of range blocks are missing. These blocks are shown in Figure 5.9(a).
Figures 5.8(b) and 5.9(b) show the results of of applying simple fractal decoding with this miss-
ing code for the two cases, respectively, (i) random seed image and (ii) black seed image. In
Figures 5.8(c) and 5.9(c) we show the results obtained by using the POCS method along with
a smoothness prior. Again here, we have used Gaussian smoothing. The improvement in the
resulting images is evident.

5.5 Potential Application to Image Denoising

It is well known that subjecting a noisy image to a lossy compression scheme, e.g., JPEG, can
produce some denoising of the image. This is also observed in the case of fractal image coding.
If a noisy image is fractally coded, with little or no regard for compression, then the attractor
produced by the fractal code often represents a significantly denoised version of the original image.
(In fact, one can go some steps further and improve this procedure – see [GFV03].)

In such fractal image denoising algorithms, however, one performs the usual iteration procedure
after the fractal code is obtained. Once again, regardless of the starting seed image, the procedure
converges to the attractor of the fractal transform defined by the code. However, the POCS-based
reconstruction algorithm explained earlier in this chapter can provide added flexibility in this
procedure. For example, if we choose the input noisy image as the starting point of the iteration,
it is possible that the procedure converges to a noise-free image that is closer to the original noisy
image.

As discussed earlier, the solution of the POCS-based reconstruction method can also depend
on the starting point of the iteration if the solution space is non-unique. A larger solution space
for the POCS-based fractal coding method can be produced if the strict similarity constraints
are relaxed to inequality constraints. Furthermore, if the original noisy image is chosen to be the
starting point of the POCS-based iteration, we are actually using the information in this image in
the reconstruction process, even after it has been used in determining the fractal code which, in
turn, determines the similarity/inequality constraints. Based on experiments, we believe that by
choosing appropriate δ tolerance values in the constraints, one may obtain denoised images that
are visually more pleasing because they are “closer” to the original image.

Figure 5.10 presents the result of an experiment that supports this claim. The original and a
noisy version of a 256 × 256 image of Lena are shown in Figures 5.10(a) and 5.10(b). The noisy
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(a) (b)

(c) (d)

Figure 5.10: (a) Lena original. (b) The noisy Image, σ = 15, PSNR=20.03 dB. (c) The IFS
attractor of the noisy image, using 8 × 8 range blocks, PSNR=24.35 dB. (d) Proposed method
using POCS, the starting point is the noisy image, and the same fractal transform with 8 × 8
range blocks is used, with δ = |r|/3, PSNR=25.28 dB.
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image is generated using additive Gaussian white noise with zero mean and standard deviation
σ = 15.

The fractal transform of the noisy image in Figure 5.10(b) corresponding to 8× 8 pixel range
blocks and 16×16 pixel domain blocks was then computed. Traditional fractal decoding produces
the attractor shown in Figure 5.10(c). In spite of its blockiness, this image looks less noisy than
the one in Figure 5.10(b).

Using the same fractal code as above, we then applied the following POCS-based reconstruction
method. In order to enlarge the solution space we used δ = |r|/3 at every pixel of the image in
this experiment, where r is defined in Equation 5.14. Finally, the starting point of the POCS
iterations was the original noisy image shown in Figure 5.10(b). The result of this POCS-based
procedure is shown in Figure 5.10(d). Although no postprocessing has been employed here, the
blockiness plaguing Figure 5.10(c) is not visible as in Figure 5.10(d). As well, it seems that more
denoising has been achieved with Figure 5.10(d) than with Figure 5.10(c).

5.6 Concluding Remarks

In this chapter, we have described a reformulation of traditional fractal image decoding in terms
of the framework of projections onto convex subsets (POCS). In the case that all the constraints
defined by the fractal code are applied to the problem then the solution, defined by the intersection
of all constraints, is unique and corresponds to the fixed point of the contractive fractal transform.
There is a difference, however, between the POCS method and the fractal coding method regarding
the nature of the respective iteration procedures and the convergence toward the solution. In the
POCS method, the convergence is accomplished in a set-theoretic framework. The projections
associated with the POCS method involve simultaneous alteration of domain-range block pairs,
unlike the case of fractal coding in which domain blocks are mapped onto range blocks, which
may be viewed as a “greedy process.”

The principal advantage of the POCS framework is that it provides the flexibility to incorporate
constraints and possibly additional knowledge about the reconstructed image. In this framework,
it is also possible to replace the strict equality constraints associated with traditional fractal
coding with inequalities that allow similarities to within some designated threshold. The latter
represent more feasible and realistic conditions encountered in the real world. And, in this way,
the set of feasible solutions is extended.

A POCS-based approach also provides the opportunity of solving underdetermined inverse
problems in fractal coding as we have shown for the case of the incomplete fractal code problem.

Finally, recall that if all similarity constraints defined by the fractal code are applied strictly,
then the solution is unique, namely, the fixed point of the associated fractal transform operator. If
additional constraints are applied in a POCS-based framework, then the entire set of constraints
may be inconsistent, i.e., there is no “solution” that satisfies all constraints. In this interesting
situation, one may need to employ the more recent POCS formulations for inconsistent feasibility
problems as studied by P. Combettes [Com94].
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6.1 Introduction

The goal of this chapter is to present a new recipe for the fractal image decoding process. In this
chapter, we explain how fractal-based methods can be combined with regularization schemes, e.g.,
Tikhonov, Total Variation (TV), in an algebraic fashion. Although the regularization procedure
is very common in the context of algebraic image restoration, it has not yet been of directly in
the context of fractal-based methods. This implication can improve the quality of the decoded
image depending on the regularization function. We develop the theory and apply the standard
iterative methods in inverse problems, e.g., steepest descent, to estimate the solutions.

In the previous chapter, we asked the question whether fractal image encoding/decoding can
be combined with other extra knowledge about the image, i.e., can we regularize the estimated
image? In the framework introduced in this chapter, the problem of fractal image decoding will
be modelled as the solution of a linear equation with a sparse coefficient matrix. Due to the
structure of the coefficient matrix, the solution of this linear system is unique and coincides with
the attractor of the contractive fractal transform T . Traditional fractal decoding finds a solution
of this linear system in a greedy fashion. In the proposed technique, we construct a minimization
problem for the fractal linear equation along with some regularization function. We present the
results of some of experiments that employ regularized fractal decoding to solve the problem of
missing fractal codes introduced in the previous chapter.

6.2 Regularization Model of Fractal-Transform Operator

In this section, assume that T is the fractal transform of an observed image u of size N ×N , i.e.,
u is approximated by the fixed point u? of T . Also for convenience, assume that the blocks in
both domain and range pools are nonoverlapping.

Given T , we can define a corresponding T acting on x such that T (x) equals T (x) represented
in the vector format, as we did in Section 3.3.4. By these notations, the result of the traditional
fractal image decoding in the vector format is

u? = arg min
x
‖ x− T (x) ‖2. (6.1)

We also take advantage of writing x in the vector format, so that operator T can be written as

T (x) = Mx + B. (6.2)

As mentioned earlier in Section 3.3.4, a similar type of matrix representation of the fractal trans-
form operator was introduced in [Ham98]. Here, M is an N2 ×N2 matrix and both x and B are
vectors of dimension N2×1. Matrix M carries the αi information, and B contains the information
of the βi, all in the appropriate locations. Remember that αi and βi are the parameters of the
greyscale maps.

By this notation, u? is the solution of a linear equation of the form

Mx + B = x, (6.3)
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or equivalently
Ax = B, (6.4)

where A = IN2×N2 −M, and IN2×N2 is the identity matrix of size N2 × N2. In the case that
the fractal transform is fully known, this linear system has a unique solution u?, determined by
the structure of A. This unique solution is in fact the attractor of the fractal transform T in the
vector order, i.e., u? . It is also true that

Ax−B = x− T (x), (6.5)

and hence finding the fixed point of the fractal transform operator is equivalent to finding the
unique minimizer of the collage error. Therefore, the image can be approximated as the solution
of the least squares problem

u? = arg min
x
‖ Ax−B ‖2. (6.6)

Now we consider the new objective function

FG,λ(x) = ‖ Ax−B ‖2 + λG(x), (6.7)

in which G(x) is some convex and smooth regularization function and λ is the regularization
parameter. The idea is to improve the traditional fractal attractor u? by minimizing this new
objective function.

This is especially very attractive when the expression ‖ Ax−B ‖2 does not have a unique
minimizer – for example, the missing fractal code problem. However, even when ‖ Ax−B ‖2 has
a unique minimizer one can improve the solution by choosing the appropriate values of λ and the
regularizer G(x). Hence, we define

u?
G,λ = arg min

x
FG,λ(x). (6.8)

The value u?
G,λ can be solved for analytically depending on the regularization function, but the

goal is to numerically estimate u?
G,λ in general.

In the next section, we present a numerical algorithm, the so-called regularized fractal decoding
algorithm (RFDA), to estimate u?

G,λ.

6.3 Regularized Fractal Decoding Algorithm (RFDA)

Constructing the large sparse matrix A = IN2×N2−M, is computationally inefficient. Matrices A
and M are not only sparse, but also redundant in the nonzero values. Vector B is also redundant.
The redundancy is based on the fact that the values of αi and βi are the same for all of the pixels
in some range block. A fixed αi and βi can appear many times respectively in A and B depending
on the size of the range and domain blocks.

In this section, we present an algorithm based on the steepest descent (SD) method, Algorithm
2.6.3, (Chapter 2) to minimize FG,λ(x). Our method is efficient in the sense that it does not
explicitly construct the large matrices A and B.
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Because the objective function in Equation 6.7 is smooth and convex, we may use the SD
iterations to estimate u?

G,λ. It turns out that SD is not necessarily the most efficient numerical
scheme for this purpose, but it is a simple one.

Using the SD with fixed step-size, Algorithm 2.6.3, the sequence {xn} defined by

xn+1 = xn − µ∇FG,λ(x), (6.9)

converges to an approximation of u?
G,λ if µ, the scalar step-size is sufficiently small. The con-

vergence trend could be improved by taking advantage of a variable step-size, i.e., by taking a
sequence µn, but in this chapter we use only a fixed step-size µ.

Differentiating FG,λ(x), and substituting into 6.9 yields

xn+1 = xn + 2µAT (B−Axn)− µλ∇G(xn) (6.10)

= xn + 2µ(IN2×N2 −MT )(B−Axn)− µλ∇G(xn)

= xn + 2µ(IN2×N2 −MT )(T (xn)− xn)− µλ∇G(xn)

= xn + 2µ(T (xn)− xn)− 2µMT (T (xn)− xn)− µλ∇G(xn).

Now defining y
n

= T (xn)−xn and taking “over-left-arrow”←−. . ., i.e, converting the image expressed
in column-stacked vector order to matrix representation gives

xn+1 = xn + 2µ(yn −
←−−−−
MT y

n
)− µλ∇G(xn). (6.11)

Finally, substituting zn =
←−−−−
MT y

n
gives

xn+1 = xn + 2µ(yn − zn)− µλ∇G(xn). (6.12)

Note that yn can be easily computed as T (xn) − xn. The only difficulty of computation is now

zn =
←−−−−
MT y

n
. The following proposition shows that we can compute

←−−−
MT x, for any given x based

on x = ←−x without dealing with large matrices.

6.3.1 Computing the Action of the Adjoint of the Fractal Transform

Operator

Matrix M is not necessarily symmetric. Hence, in the above iterative methods, it is necessary to
compute its adjoint, or the action of its adjoint, as derived in the following proposition.

Proposition 6.3.1. Assume T is the fractal image transform of some image with fractal code
{J(i), αi, βi}, for i ∈ C i.e., (

T (x)
)∣∣∣

Ci

= αiD
(
x
∣∣∣
PJ(i)

)
+ βi, (6.13)

for the case of square domain and range blocks, with domain blocks twice the size (in each
direction) of the range block size. Also, let M be defined as in Equation 6.2, and operators U and
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D be respectively, the upsampling and downsampling operators defined in Section 1.4. Then, for
any x = ←−x , (←−−

Mx
)∣∣∣

Ci

= αiD
(
x
∣∣∣
PJ(i)

)
(6.14)

and
(←−−−
MT x

)∣∣∣
Pj

=
∑

i∈Cj

αi

4
U

(
x
∣∣∣
Ci

)
(6.15)

where Cj = {i ∈ C | J(i) = j}, for any j ∈ P.

Proof. Recall that
T (x) = Mx + B. (6.16)

Now decompose matrix M into the weighted sum of |C| matrices

M =
∑

i∈C

αiMi, (6.17)

where each matrix Mi is a product (composition) of 3 matrices (operations) as follows

Mix = Rc
iDSp

J(i)x. (6.18)

In this Equation, Sp
J(i) is the matrix operation that corresponds to selecting the range block J(i)

of x. D is the matrix operation corresponding to the local averaging followed by down-sampling.
Finally, Rc

i is the matrix operation that replaces the content passed to it at the range location i

of the matrix to be returned, and returns zero at all of the other locations. Due to the fact that
range blocks are not overlapping, this decomposition is well-defined. To prove the first part of
the proposition note that,

Mx = (
∑

i∈C

αiMi)x. (6.19)

Therefore,

(←−−
Mx

)∣∣∣
Ci

=
(←−−−−−−−−−−
(
∑

i′∈C

αi′Mi′)x
)∣∣∣

Ci

= αi

(←−−
Mix

)∣∣∣
Ci

(6.20)

= αi

(←−−−−−−−
Rc

iDSp
J(i)x

)∣∣∣
Ci

= αi

(←−−−−−
DSp

J(i)x
)

(6.21)

= αiD
(
x
∣∣∣
PJ(i)

)
. (6.22)

To prove the second part, remember that we can partition C with the sets Cj′ ,

C =
⋃

j′∈P

Cj′ . (6.23)
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Hence,
(←−−−
MT x

)∣∣∣
Pj

=
(←−−−−−−−−∑

i∈C

αiMT
i x

)∣∣∣
Pj

=
(←−−−−−−−−−−−−∑

j′∈P

∑

i∈Cj′

αiMT
i x

)∣∣∣
Pj

(6.24)

=
(←−−−−−−−−∑

i∈Cj

αiMT
i x

)∣∣∣
Pj

=
∑

i∈Cj

αi

(←−−−
MT

i x
)∣∣∣

Pj

(6.25)

=
∑

i∈Cj

αi

(←−−−−−−−−−−
(Rc

iDSp
J(i))

T x
)∣∣∣

Pj

=
∑

i∈Cj

αi

(←−−−−−−−−
(Rc

iDSp
j )

T x
)∣∣∣

Pj

(6.26)

=
∑

i∈Cj

αi

(←−−−−−−−−−−−−−
(Sp

j )
T (D)T (Rc

i )
T x

)∣∣∣
Pj

=
∑

i∈Cj

αi

(←−−−−−−−−−−
(Rp

j )(
U
4

)(Sc
i )x

)∣∣∣
Pj

. (6.27)

In the last line of the equation we used the fact that the transpose of a range i replacement matrix,
i.e., (Rc

i )
T equals the range i selection matrix Sc

i . The upsampling matrix U
4 equals DT , where the

division by 4 is to compensate the local averaging operator applied prior to downsampling in D.
Also, the transpose of the domain j selection matrix, i.e., (Sp

j )
T equals the domain j replacement

matrix Rp
j . Therefore,

(←−−−
MT x

)∣∣∣
Pj

=
∑

i∈Cj

αi

4

(←−−−−−−−−−−
(Rp

j )(U)(Sc
i )x

)∣∣∣
Pj

=
∑

i∈Cj

αi

4

(←−−−
USc

ix
)

(6.28)

=
∑

i∈Cj

αi

4
U

(
x
∣∣∣
Ci

)
. (6.29)

Equation 6.15 states that to compute
←−−−
MT x on each domain block piece Pj , we consider all

range blocks Ci corresponding to this fixed domain block, up-sample each of these range blocks,
multiply it by its corresponding αi value divided by 4, and finally sum over all of these up-sampled
and appropriately scaled pieces. This sum yields the required domain block portion Pj of

←−−−
MT x,

i.e.,
(←−−−
MT x

)∣∣∣
Pj

. Note that the non-overlapping constraint on domain blocks is required for
←−−−
MT x

to be uniquely determined for this method to be well-defined.

Now we are prepared to summarize our minimization algorithm. Recall from Equation 6.12,
that we have to compute zn =

←−−−−
MT y

n
. We do so by using Equation 6.15 of Proposition 6.3.1 to

yield the following.

6.3.2 Regularized Fractal Decoding Algorithm (RFDA)

The sequence {xn}, defined iteratively as follows converges to an approximation of u?
G,λ =

←−−−
u?

G,λ

for any x0 (typically a constant zero image) and sufficiently small µ

yn = T (xn)− xn (6.30)

zn

∣∣∣
Pj

=
∑

i∈Cj

αi

4
U

(
yn

∣∣∣
Ci

)
, ∀j ∈ P,

where Cj = {i | J(i) = j},
xn+1 = xn + 2µ(yn − zn)− µλ∇G(xn).
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6.4 Various Regularization Functions

The choice of regularization function G may depend on the application. In this section, we briefly
state three different popular regularization functions and explicitly form their RFDA counterparts.

• Tikhonov Regularization
The special case, G(x) = ‖ x ‖2 is called Tikhonov regularization, as explained in Chapter
2. It can be shown that the analytic solution in this case is

u?
G,λ = (AT A + λIN2×N2)−1AT B. (6.31)

The RFDA counterpart below can be used to estimate u?
G,λ.

yn = T (xn)− xn (6.32)

zn

∣∣∣
Pj

=
∑

i∈Cj

αi

4
U

(
yn

∣∣∣
Ci

)
, ∀j ∈ P

xn+1 = (1− 2µλ)xn + 2µ(yn − zn).

• Total Variation (TV)
A possibility is to choose Total Variation(TV) for the regularization function. In this case,
(cf. Equation 2.49)

G(x) = TV (x) =
∫
|∇x|dxdy (6.33)

and ∇TV (x) = −∇ · ( ∇x
|∇x|

)
. (6.34)

Hence, the RFDA corresponding to this regularization becomes

yn = T (xn)− xn (6.35)

zn

∣∣∣
Pj

=
∑

i∈Cj

αi

4
U

(
yn

∣∣∣
Ci

)
, ∀j ∈ P

xn+1 = xn + 2µ(yn − zn) + µλ∇ · ( ∇xn

|∇xn|
)
.

• Hard Constrained
In some certain cases, we may have the prior knowledge that the encoded image belongs to
some closed and convex set Ψc (typically a subset of the Hilbert space in which the image
is defined). For example, Ψc can be constructed based on certain smoothness or energy
boundedness constraints on the image. Assume that Ψc is given and its projection operator
PΨc is easy to compute. In this case, it can be assumed that

G(x) = 1Ψc(x)×∞, (6.36)

where 1Ψc is the characteristic function on Ψc, and 0 × ∞ = 0. Similar to use of SD
now applying the projected Landweber algorithm 2.6.1 in the RFDA, yields the following
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algorithm in the so-called hard constrained case.

yn = T (xn)− xn (6.37)

zn

∣∣∣
Pj

=
∑

i∈Cj

αi

4
U

(
yn

∣∣∣
Ci

)
, ∀j ∈ P

xn+1 = PΨc

(
xn + 2µ(yn − zn)

)
.

6.5 Conjugate Gradient RFDA

In the previous sections, we proposed the RFDA algorithm based on the steepest descent itera-
tions. It is also possible to use the conjugate gradient iterations explained in Section 2.6.4, again
using Proposition 6.3.1 to avoid dealing with large matrices.

In general, conjugate gradient has superior convergence rates compared to the steepest descent
iterations. In the next section, we present results based on both RFDA and Conjugate Gradient
RFDA.

6.6 Application to Restoration of an Image with an Incom-

plete Fractal Code

In the previous chapter, we introduced the problem of restoring an image with an incomplete
fractal code, and used the method of projection onto convex sets (POCS) to address this problem.
Here, we use the regularization approach introduced above.

6.6.1 Applying the RFDA Algorithm

Assume that we are given an incomplete fractal code of an image, i.e., some of the domain-
range block assignments and corresponding greyscale map coefficients are missing. Recall that, in
such a case, the usual fractal decoding scheme, in which an arbitrary “seed” image is employed,
will collapse since the range blocks of the image for which the fractal code is missing cannot be
modified. These blocks will simply remain identical to the corresponding subblocks of the seed
image.

To illustrate, let us consider the fractal code associated with the Lena image (256×256 pixels,
8 bits per pixel) of respectively, 8× 8 and 4× 4, domain and range block size.

Suppose that the fractal code corresponding to all range blocks in the bottom quarter of the
image are missing. Using a black image as the seed, the limiting image produced by the fractal
decoding procedure is shown in Figure 6.1(a). Only the domain blocks in the top-three-quarters
of the image have been modified – those in the bottom quarter are identical to their counterparts
in the seed black image.
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(a)

(b)

(c)

Figure 6.1: (a) Decoded as bottom quarter of the fractal code is missing, black seed. (b) Proposed
Minimum norm least square solution using RFDA with λ = 0, µ = 0.005. (c) Proposed Hard-
constrained RFDA with smoothness constraint, µ = 0.005.
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(a)

(b)

(c)

Figure 6.2: (a) Proposed RFDA using using TV regularization with λ = 0.2, µ = 0.005. (b)
Proposed RFDA using using TV regularization with λ = 1, µ = 0.005. (c) Proposed RFDA using
using TV regularization with λ = 2, µ = 0.005.
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We now show how this situation can be improved using the theory presented in this chapter.
We consider different types of regularization functions discussed in this chapter, and apply the
RFDA with a fixed small step size µ = 0.005 in all cases after mapping the image values to [0, 1].
Now we use the RFDA to estimate the solution to this under-determined problem.

First we set λ = 0 and use RFDA iterating from x0 = 0. This scheme will find the minimum
norm least squares solution to the problem. The result is given in Figure 6.1(b).

It can be seen that the bottom quarter of the image which was not changed at all by the
traditional fractal decoding in Figure 6.1(a) has been improved. The RFDA updates zn by

zn

∣∣∣
Pj

=
∑

i∈Cj

αi

4
U

(
yn

∣∣∣
Ci

)
, ∀j ∈ P. (6.38)

This actually causes an alteration of domain blocks Pj that are included in the missing range
part, i.e., the bottom quarter of the image. Since some domain blocks used in the fractal coding
procedure come from that region, it is possible that portions of the lower part of the image are
modified.

In Figure 6.1(c), we show the result obtained using the RFDA in the hard-constrained case,
as explained in Equation 6.37. The initial image was black, i.e., x0 = 0. Ψc can be thought of
as the set of images with certain smoothness, e.g, low-pass filtered in the frequency domain, or
Gaussian smoothed. In this case, PΨc(x) the projection operator on Ψc smoothes the input image
x. Clearly, Figure 6.1(c) is an improvement over the usual fractal coding method of Figure 6.1(a),
although some edges are smeared out as a result of the projection PΨc .

In Figures 6.2(a,b,c) are shown the results obtained by applying RFDA with total variation
regularization as in 6.35, with λ = 0.2, 1 and 2, respectively. It can be seen that the important
edges are preserved using the TV model. It is a noteworthy improvement over Figure 6.1(a) to
preserve the edges as well as to recover some missing information from the bottom quarter of the
image.

6.6.2 Applying the Conjugate Gradient RFDA

It can be observed that the RFDA algorithm does not yield superior results compared to the
POCS method in the previous chapter, even though we have a fractal code with more information
(three quarters of the code was known as opposed to one half in case of the POCS examples
given). We associate this mostly with the fact that we used a fixed step size in the associated
gradient descent iterations. Figures 6.3 and 6.4 show improved results based on the proposed
conjugate gradient RDFA.
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(a)

(b)

(c)

Figure 6.3: (a) Lena original. (b) Lena attractor 4× 4 range block size. (c) Decoded as bottom
half of the fractal code is missing, black seed.
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(a)

(b)

(c)

Figure 6.4: (a) Proposed Minimum norm least square solution using conjugate gradient RFDA
with λ = 0. (b) Proposed conjugate gradient RFDA solution using Laplacian regularization with
λ = 1. (c) Proposed conjugate gradient RFDA solution using TV regularization with λ = 1.
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6.7 Concluding Remarks

In this chapter, we have described a reformulation of traditional fractal image decoding along
with regularization. The solution of the traditional fractal-based methods are too restrictive in
the sense that no additional knowledge about the image can be combined with self-similarity
constraints to improve the decoded image. The principal advantage of our framework is that it
provides the flexibility to incorporate constraints and possibly additional knowledge about the
reconstructed image.

We have improved this situation by viewing the fractal transform operator as a linear operator,
and modelling the decoding procedure as a least-squares problem. In addition, we have applied
the steepest descent, projected Landweber, and conjugate gradient algorithms to numerically
estimate the regularized solutions. This procedure produced the regularized fractal decoding
algorithm (RFDA).

We also introduced an explicit formulation to combine fractal image decoding with a variety of
regularization procedures, e.g., Tikhonov, total variation (TV), or hard-constrained. A regularized
decoding approach also provides the opportunity of solving under-determined inverse problems in
fractal coding, as we have shown for the case of the incomplete fractal code problem.
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7.1 Introduction

In this chapter, we introduce and analyze a set of regularization expressions based on self-similarity
properties of images in order to address the classical inverse problem of image denoising and the
ill-posed inverse problem of single-frame image zooming.

The regularization expressions introduced are constructed using either the fractal image trans-
form or the newly developed “Nonlocal-means (NL-means) image denoising filter” of Buades et
al. [BCM05b, BCM05c].

We exploit these regularization terms in a global MAP-based formulation and produce analyt-
ical and computational solutions. Analytical comparisons are made with results based on classical
methods (e.g., fractal-based denoising and zooming, and NL-means image denoising).

In the sections addressing the denoising problem, images and observations are assumed as
elements of `2(Υ) for Υ = [1, . . . , N ]× [1, . . . , N ]. In the sections addressing the zooming problem,
the ideal images (objects) are assumed to be in `2(Ψ) for Ψ = [1, . . . , Nz]× [1, . . . , Nz], and the
integer z > 1.

7.2 Regularization via the Fractal-Transform Operator

7.2.1 Denoising

In this subsection, we consider the following problem of image denoising: Given

u = x + n, (7.1)

find an approximation of x. As mentioned earlier, it was observed [GFV03, GFV06, Ale05] that
fractal-based methods have denoising capabilities. If we assume that T is a contractive fractal
transform of an image u, then its unique fixed point u? is an approximation of x.

We seek to improve this approximation by emphasizing the influence of the observed data u
on the reconstruction process. First of all, note that we can write u?, the unique fixed point of
the contractive fractal transform T as

u? = arg min
x
‖ x− T (x) ‖2. (7.2)

Now T can be represented as follows,

T (x) = Mx + B, (7.3)

where the matrices M and B contain the “greyscale map” parameters, αi and βi, respectively, as
well as the domain-range assignments of the transform T .

We consider two constructions of the regularization expression:
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1. Squared collage error,
Gc(x) = ‖ x− T (x) ‖2. (7.4)

2. Squared fixed-point approximation error,

Gf (x) = ‖ x− u? ‖2. (7.5)

In the first case, where Gc is the collage error, we define A = IN2×N2 −M, in which IN2×N2

is the identity matrix, so that

Gc(x) = ‖ x− T (x) ‖2 = ‖ Ax−B ‖2. (7.6)

Then

x̃Gc,λ = arg min
x

[
‖x− u‖2 + λ‖ x− Tx ‖2

]

= arg min
x

[
‖x− u‖2 + λ‖ Ax−B ‖2

]

= arg min
x

[
‖x− u‖2 + λ‖ A(x− u?) ‖2

]
. (7.7)

It follows that
x̃Gc,λ = (IN2×N2 + λAT A)−1(u + λAT B). (7.8)

The matrix IN2×N2 + λAT A is positive definite for any λ ≥ 0 and hence invertible.

In the second case, where Gf is the fixed point error, we define

x̃Gf ,λ = arg min
x

[
‖x− u‖2 + λ‖ x− u? ‖2

]
, (7.9)

and it easily follows that

x̃Gf ,λ =
1

1 + λ
u +

λ

1 + λ
u?. (7.10)

This is simply a weighted average of the measurement u and the attractor u? of the fractal
transform T . The following is an asymptotic result on the difference of the minimizers of the
above two cases.

Proposition 7.2.1.

x̃Gf ,λ − x̃Gc,λ = λ(IN2×N2 −AT A)(u? − u) + O(λ2) as λ → 0. (7.11)

Proof. Note that, as λ → 0,

x̃Gc,λ = (IN2×N2 + λAT A)−1(u + λAT B) = [IN2×N2 − λAT A + O(λ2)](u + λAT B). (7.12)
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Therefore,

x̃Gf ,λ − x̃Gc,λ =
1

1 + λ
u +

λ

1 + λ
u? − x̃Gc,λ

= (1− λ)u + λu? + O(λ2)− x̃Gc,λ

= (1− λ)u + λu? + O(λ2)− [IN2×N2 − λAT A + O(λ2)](u + λAT B)

= u− λu + λu? − u + λAT Au− λAT B + O(λ2)

= λ(u? − u + AT (Au−B)) + O(λ2)

= λ(u? − u + AT (Au−B− (Au? −B))) + O(λ2)

= λ(u? − u−AT A(u? − u)) + O(λ2)

= λ(IN2×N2 −AT A)(u? − u) + O(λ2). (7.13)

7.2.2 Zooming

In this subsection, we consider the following problem of image zooming: Given the observed image
data y, where

y = Dz(x) + n, (7.14)

in which Dz is the downsampling by a factor of z, find an approximation of x.

The precise definition of the operator Dz is given in Section 1.4. Assuming the corresponding
vector notation of the equation, we can write

y = Dzx + n. (7.15)

In the fractal coding literature, the normal procedure of zooming an image by a factor of z is
to find a fractal transform T for y, once again by minimizing ‖ T (y) − y ‖. One then “zooms”
this attractor by applying the fractal transform T (actually the operator T z induced by T ) to an
image that is z-times larger in each direction to produce the attractor y?

z .

Here, we shall use the zoomed fixed-point error to define the regularization expression, i.e.,
Gz(x) = ‖x− y?

z‖2 so that the minimization problem becomes

x̃Gz,λ = arg min
x

[
‖Dzx− y‖2 + λ‖x− y?

z‖2.
]

(7.16)

Notice that the above functional balances the consistency with original data, via the term ‖Dzx−
y‖2, along with the self-similarity constraints encoded in y?

z . It follows that the solution of this
minimization problem is

x̃Gz,λ = (DT
z Dz + λIz2N2×z2N2)−1(DT

z y + λy?
z). (7.17)

Computational results on this will be presented in the following section.
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7.3 Computational Considerations and Results

In this section, we present some computational results for the fractal-based regularizations intro-
duced in the previous section, as applied to the denoising and zooming problems.

In Figure 7.1, are shown some results obtained by the image denoising method (2) of Subsection
7.2.1 in which the regularization function Gf is the squared fixed-point approximation error,
‖ x− u? ‖2, cf. Equation 7.9.

The “input” or observed noisy image was the 256 × 256-pixel (8bpp) image u, at the upper
left, with zero-mean Gaussian white noise with standard deviation σ = 15. This noisy image was
fractally coded using domain and range blocks of size 16× 16 and 8× 8 pixels, respectively. The
attractor u? of the fractal transform is shown at the bottom right. Recall from Equation 7.10
that the solution x̃Gf ,λ to the minimization problem is given by a weighted average of u and u?.
Various weighted averages are shown in the figure, from λ = 0, corresponding to the original noisy
image u, to the limit λ →∞, corresponding to the fractal attractor u?. The plot of PSNR is also
given in the figure.

We have observed that, for various test images employed in our study, the denoising method
(1) using squared collage-error regularization function, results x̃Gc,λ (cf. Equation 7.8) do not
differ visually from x̃Gf ,λ. However, computing x̃Gc,λ is much more computationally intensive.

In Figure 7.2 are presented some results obtained by the image zooming method of Subsection
7.2.2.

The goal was to zoom an original 128 × 128-pixel input image y by a factor of 2. The first
column of this Figure shows the result obtained by simple pixel-replication of y, for which there
is a great deal of visible blockiness. The input image y was then fractally coded using 8× 8-pixel
domain blocks and 4 × 4-pixel range blocks. The resulting fractal transform T was then applied
to an initial seed image of size 256× 256 to obtain the 256× 256-pixel attractor y?

z in the middle
column. In the third column, x̃Gz,λ is shown for the fixed value of λ = 1. We have used the
conjugate gradient iterations , explained in Subsection 2.6.4, to approximate x̃Gz,λ in this image.
Note that the expression (DT

z Dz + λIz2N2×z2N2) is symmetric positive definite for λ > 0 and
hence the conditions to use the conjugate gradient iterations are satisfied.
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u = x + n, λ = 0, PSNR=20.03 dB x̃Gf ,λ, λ = 0.25, PSNR=21.72 dB x̃Gf ,λ, λ = 0.5, PSNR=22.89 dB

x̃Gf ,λ, λ = 1, PSNR=24.25 dB x̃Gf ,λ, λ = 2, PSNR=25.30 dB u?, λ →∞, PSNR=24.35 dB

Figure 7.1: Image denoising with fractal-based regularization.
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Pixel replication of y y?
z x̃Gz,λ, λ = 1

Pixel replication of y y?
z x̃Gz,λ, λ = 1

Pixel replication of y y?
z x̃Gz,λ, λ = 1

Figure 7.2: Image zooming with fractal-based regularization.
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7.4 A Regularization Scheme Based on NL-means Denois-

ing

In this section, we return to the denoising problem

u = x + n, (7.18)

In Section 3.6.1, the NL-means algorithm was briefly described, including the determination of a
weight matrix W, for some smoothness parameter h, so that Wu is the denoised copy of u. In
what follows, we analyze and make use of this matrix to improve the results.

Once again, we consider two forms for the regularization term,

1. The collage distance error
Gd(x) = ‖ x−Wx ‖2. (7.19)

2. The explicit approximation error

Ge(x) = ‖ x−Wu ‖2. (7.20)

In the first case, define

x̃Gd,λ = arg min
x

[
‖ x− u ‖2 + λ‖ x−Wx ‖2

]
, (7.21)

which yields the solution

x̃Gd,λ = [IN2×N2 + λ(W − IN2×N2)T (W − IN2×N2)]−1(u). (7.22)

Note that the expression [I + λ(W − IN2×N2)T (W − IN2×N2)] is positive definite and invertible
if λ ≥ 0.

In the second case, define

x̃Ge,λ = arg min
x

[
‖ x− u ‖2 + λ‖ x−Wu ‖2

]
. (7.23)

The solution is simply given by

x̃Ge,λ =
1

1 + λ
u +

λ

1 + λ
Wu. (7.24)

The minimizer x̃Ge,λ obtained in the second case is exactly the one proposed in [BCM05b,
BCM05c] as a way of achieving superior results by taking a weighted average of the output of the
NL-means denoising and the original image. Below is an asymptotic result on the difference of
the solutions of the above two cases.

Proposition 7.4.1.

x̃Ge,λ − x̃Gd,λ = λWT (W − IN2×N2)u + O(λ2) as λ → 0. (7.25)
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Proof. Note that as λ → 0, x̃Ge,λ = λWu + (1− λ)u + O(λ2). Also,

x̃Gd,λ = [IN2×N2 + λ(W − IN2×N2)T (W − IN2×N2)]−1u

= [IN2×N2 − λ(W − IN2×N2)T (W − IN2×N2)]u + O(λ2). (7.26)

Hence,

x̃Ge,λ − x̃Gd,λ = λWu + (1− λ)u− [IN2×N2 − λ(W − IN2×N2)T (W − IN2×N2)]u + O(λ2)

= λWu + u− λu− u + λWT Wu− λWu− λWT u + λu + O(λ2)

= λWT Wu− λWT u + O(λ2)

= λWT (W − IN2×N2)u + O(λ2). (7.27)

7.5 A Contractive Operator Associated with NL-means De-

noising

It is interesting to investigate the consequence of iterating the NL-means denoising operator Wx
on images. In what follows, we show that W is not a projection operator, i.e, W2x is not
necessarily equal to Wx in general.

Proposition 7.5.1. In general, W is not a projection operator, in which case limk→∞Wkx is
a constant-valued image.

Proof. Note that W is a square matrix whose rows consists of nonnegative real numbers, with
each row summing to 1, i.e., W is a right stochastic matrix. The Perron-Frobenius theorem for
the right stochastic matrix W ensures that there exists a stationary probability vector p such
that

pW = p. (7.28)

The j-th element of the vector p may be computed by taking the limit

lim
k→∞

(Wk)(i,j) = p
j
. (7.29)

Hence, independent of i,

∀i ( lim
k→∞

Wkx)i = lim
k→∞

∑

j

(Wk)(i,j)xj

=
∑

j

lim
k→∞

(Wk)(i,j)xj

=
∑

j

p
j
xj

= px = c. (7.30)
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Therefore,
lim

k→∞
Wkx = (c, c, . . . , c)T (7.31)

is a constant-valued image. If W is a projection operator then

Wx = Wnx = lim
k→∞

Wkx = (c, c, . . . , c)T , for any n ≥ 1, (7.32)

which does not hold in general. Hence, W is not a projection operator.

We now define a contractive denoising operator, S, which acts on x by producing a linear
combination of the original image, u, and Wx, which is a denoised copy of x under W:

S(x) = (1− η)u + ηWx. (7.33)

The following proposition suggests that under certain conditions S is a contraction, implying the
existence of a unique fixed point u?

S = S(u?
S).

Proposition 7.5.2. S is a contraction on `2(Ψ) if |η|‖W‖2−norm < 1, in which case its unique
fixed point is given by

u?
S = (1− η)(IN2×N2 − ηW)−1u. (7.34)

Proof.
‖S(x)− S(y)‖ = |η|‖W(x− y)‖ ≤ |η|‖W‖2−norm · ‖(x− y)‖. (7.35)

It follows that S is a contraction if |η|‖W‖2−norm < 1. Its fixed point u?
S = S(u?

S) must satisfy
the equation

(1− η)u + ηWx?
s = x?

s. (7.36)

Solving for u?
S yields the result

u?
S = (1− η)(IN2×N2 − ηW)−1u. (7.37)

It is now interesting to consider the difference between u?
S and

S(u) = ηWu + (1− η)u. (7.38)

Note that S(u) is the same as x̃Ge,λ defined previously in Equation 7.24 if η = λ
1+λ .

Proposition 7.5.3.

S(u)− u?
S = η

( ∞∑
n=1

ηnWn
)
(IN2×N2 −W)u. (7.39)
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Proof.

S(u)− u?
S =

(
ηWu + (1− η)u

)
− (1− η)(IN2×N2 − ηW)−1u

= ηWu + (1− η)u− (1− η)u− (1− η)
( ∞∑

n=1

ηnWn
)
u

= ηWu− ηWu−
∞∑

n=2

ηnWnu +
∞∑

n=1

ηn+1Wnu

= −
∞∑

n=2

ηnWnu +
∞∑

n=1

ηn+1Wnu

=
( ∞∑

n=1

ηn+1(−Wn+1 + Wn)
)
u

= η
( ∞∑

n=1

ηnWn
)
(IN2×N2 −W)u. (7.40)

Due to the fact that matrix W in the NL-means regularization schemes outlined in Sections
7.4 and 7.5 are non-sparse and very large, computation of x̃Gd,λ and u?

S seems infeasible.

7.6 Concluding Remarks

In this chapter, we have introduced a set of regularization functions based on the self-similarity of
images for the purpose of image denoising and image zooming. These regularization functions are
based on existing schemes that exploit the self-similarity of images, namely fractal image coding
and nonlocal-means image denoising. Some analytic asymptotic results have also been presented.
Furthermore, some computational results of image zooming and denoising using the fractal-based
regularization schemes have also been presented.

By no means do we believe that the schemes introduced in this chapter will replace existing
efficient methods of denoising and zooming. Our method, however, introduces the possibility
of using self-similarity-based priors in some imaging problems that may well be combined with
other existing prior information about the image, possibly producing improved results. We also
believe that the ideas introduced here could be further investigated for the case of more general
degradation operators.
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8.1 Introduction

Natural images exhibit various regularity properties such as the degree of smoothness, total vari-
ation, decay as well as sparsity of the transform domain coefficients, which have been exploited in
various image processing tasks, including compression [Mal98, MZ92]. Many of these regularity
properties are local, in the sense that the greyscale value at a pixel is correlated with values in its
neighbourhood.

Self-similarity is an example of a nonlocal regularity property, in the sense that local neigh-
bourhoods of an image can be highly correlated (i.e., affinely similar) to other neighbourhoods
throughout the image. Self-similarity is the basis of fractal image coding [Bar88, Lu97, Fis95]
which, historically, concentrated on image compression. Fractal coding has also been shown
to be effective in other image processing tasks, such as denoising [GFV03, Ale05]. More re-
cently, the translational self-similarity of images has been exploited for the purpose of denoising
[BCM05b, BCM05c].

The essence of the fractal transform is to approximate smaller range subblocks of an image
with modified copies of larger domain subblocks [Bar88, Lu97, Fis95]. The underlying basis for
the success of these methods is that of approximability : “How well can an image be approximated
using self-similarity constraints?” Equivalently, this may be viewed in terms of regularity : “How
regular or invariant is an image under the imposition of self-similarity constraints?” As mentioned
earlier, some recent investigations [Ale05, AVT08] have shown that images generally possess a
great deal of local (affine) self-similarity.

The non-local-means (NL-means) filter [BCM05b, BCM05c] performs denoising using the
same-scale translational redundancy of information in an image. This is done by a weighted
averaging process, where the weights are determined by the similarities of neighbourhoods, or
“patches.” The efficacy of the NL-means as a denoising method is again an issue of approximabil-
ity and regularity.

In this chapter, we examine the self-similarity properties of an image by formulating a simple
cross-scale variant of the NL-means and comparing its effectiveness to that of the standard same-
scale NL-means method. The former will use neighbourhoods/patches that are taken from the
same image, or even from another image, at a different scale. Such a role of scale for the NL-means
filter, has not yet been investigated.

In Section 8.2, we introduce the background material required for this chapter. We also
introduce the cross-scale variant of the NL-means which will be used in our experiments. A
rather simple statistical examination of patch-similarity at two-scales for various images is given
in Section 8.3. In Sections 8.4 and 8.5, we examine the role of scale for a couple of images in the
context of the NL-means filter. In Section 8.4, the patches are taken from the observed image,
i.e., “self-examples”, whereas in Section 8.5, they are taken from another image. Some concluding
remarks are presented in Section 8.6.
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8.2 Some New Variants of the NL-means Filter

8.2.1 An Example-based Variant of the NL-means Filter

In this section, we introduce an extension of the NL-means method which employs neighbour-
hoods taken from an example image, v.

Example image: The notion of example image is denoted by v ∈ `2(Φ), where Φ is the K × L

pixel lattice defined by
Φ = [1, . . . , K]× [1, . . . , L].

Algorithm 8.2.1. An Example-based Variant of the NL-means Filter

Consider the denoising problem u = x + n. The approximation of x, denoted by x̃, given the
observation u, using example image v, is computed in the following way. For any x ∈ Ω,

x̃(u,v,h,d,a)(x) =
1

C(x)

∑

y∈Φ

w(x, y)v(y), (8.1)

where

w(x, y) = exp
(
− ‖ u(N d{x})− v(N d{y}) ‖22,a

h2

)

and
C(x) =

∑

y∈Φ

w(x, y). (8.2)

It is clear that NL-means image denoising, introduced in Section 3.6.1, is equivalent to Algo-
rithm 8.2.1 in the case that v = u, so that the approximation is x̃(u,u,h,d,a)(x).

In a manner similar to the restricted search-window algorithm, introduced in Subsection 3.6.1,
we may speed up this algorithm by restricting y. Due to the fact that the size of the example
image v is K×L and not necessarily identical to the size of u, M×N , we consider a corresponding
pixel to x in v called xmap defined as xmap = (bKi/Mc, bLj/Nc]), in which x = (i, j), and b. . . c
denotes the floor function. Therefore, we define y ∈ Φ ∩ N r{xmap}, i.e., in a neighbourhood of
xmap rather than the whole field of Φ in the corresponding equations above.

8.2.2 Projection Operator to a Coarser Scale Image

We now consider the approximation of images yielded by the NL-means filter at varying scales.
To do so, we first need to remember the precise definition of a projection to a coarser scale defined
in Section 1.4. Such projection, will be denoted as Dz. Let us define Dz : `2(Ω) → `2(Ω) to be
Dz = Sz ◦ Az, where Az : `2(Ω) → `2(Ω) is the local averaging operator of length z: For any
(i, j) ∈ Ω,

(Azx)(i, j) =
1
z2

∑

0≤i′<z,0≤j′<z

x(i + i′, j + j′). (8.3)
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(Note that boundary conditions on x may be required so that Az is well-defined.) Also, the
down-sampling operator Sz : `2(Ω) → `2(Ω) is defined for any image x ∈ `2(Ω) such that for any
(i, j) ∈ Ω,

(Szx)(i, j) = x
(
(i− 1)z + 1, (j − 1)z + 1

)
. (8.4)

In the experiments presented throughout the rest of the chapter, we shall be using D2, i.e., the
case that z = 2.

8.3 Distribution of Neighbourhood Distances at Various

Scales
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Figure 8.1: (a) and (d) are the 256× 256 test images. (b) and (e) are plots of the distributions of
‖ u(N 6{x})− u(N 6{y}) ‖ corresponding to the images in (a) and (d), respectively. The plots in
(c) and (f) are the distributions of ‖ u(N 6{x})− (D2u)(N 6{y}) ‖ for the images in (a) and (d),
respectively.

As mentioned earlier, some recent investigations [Ale05, AVT08] in the context of fractal-
image coding have shown that images generally possess a great deal of local (affine) self-similarity:
Given a subimage u|Ci there are often a good number of domain blocks Pj whose subimages u|Pj

approximate it roughly as well as the “best” domain block. This feature, which never seems to
have been quantified previously, accounts for the rather small degradations that are experienced
when the size of the domain pools – the domain blocks Pj to be examined – is decreased.

In a parallel fashion, the NL-means algorithm relies not only on the intensity values of pixels
but also on the neighbourhood (or patch) similarities existing in an image. Below, we present
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Figure 8.2: (a) and (d) are the 128× 128 test images. (b) and (e) are plots of the distributions of
‖ u(N 3{x})− u(N 3{y}) ‖ corresponding to the images in (a) and (d), respectively. The plots in
(c) and (f) are the distributions of ‖ u(N 3{x})− (D2u)(N 3{y}) ‖ for the images in (a) and (d),
respectively.
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experiments to evaluate same-scale and cross-scale similarities of an image simply under the `2

distance.

In Figures 8.1(a) and 8.1(d) are shown the test images used here: 256× 256 pixel, 8 bits per
pixel, Lena and Mandrill images for which the intensity values are rescaled to the interval [0, 1].
We have chosen 10, 000 randomly selected pairs of 13× 13 pixel-blocks from each image and have
plotted the distribution of the `2 distances of these blocks on the left hand-side. More precisely,
Figures 8.1(b) and 8.1(e) show plots of the distributions of ‖ u(N 6{x})− u(N 6{y}) ‖ for the
images in Figures 8.1(a) and 8.1(d), respectively. Here, we have performed the experiment for
10, 000 uniformly-randomly selected pairs of (x, y). The plots in Figures 8.1(c) and 8.1(f) are the
distributions of ‖ u(N 6{x})− (D2u)(N 6{y}) ‖ for the images in Figures 8.1(a) and 8.1(d), re-
spectively. As a result, the histograms of Figures 8.1(b) and 8.1(e) correspond to same-scale patch
comparisons, while those in Figures 8.1(c) and 8.1(f) correspond to cross-scale patch comparisons.

Similarly, Figures 8.2(a) and 8.2(d) show 8 bit-per-pixel 128× 128 pixel test images, Lena and
Cameraman for which the intensity values are rescaled to the interval [0, 1]. From these images, we
have chosen 10, 000 randomly-selected pairs of 7× 7 pixel-blocks. Figures 8.2(b) and 8.2(e) show
plots of the distributions of ‖ u(N 3{x})− u(N 3{y}) ‖ corresponding to the images in 8.2(a)
and 8.2(d), respectively. Similarly, the plots in Figures 8.2(c) and 8.2(f) are the distributions
of the values ‖ u(N 3{x})− (D2u)(N 3{y}) ‖ corresponding to the images in 8.2(a) and 8.2(d),
respectively.

For each test image, the similarity between the histograms yielded by the two experiments,
i.e., same-scale and cross-scale, is striking. This indicates that the self-similarity properties of
these images at both same-scale and cross-scale are remarkably similar. This is a hint that an
appropriately defined cross-scale version of the NL-means filter should behave in a similar fashion
to the traditional same-scale NL-means filter. In the next section we compare these two methods.

8.4 Same-scale vs. Cross-scale Approximations

In this section, we compare the results of two approximations: the traditional, same-scale NL-
means method which yields the approximation x̃(u,u,h,d,a)(x) and its cross-scale NL-means coun-
terpart, with approximation x̃(u,D2(u),h,d,a)(x). Given an observed image u and using Algorithm
8.2.1, we choose the example image v = u to obtain results of the NL-means filter. Choosing the
example image v = D2(u), translates to cross-scale neighbourhood-comparison and averaging.
Furthermore, we examine how these two schemes differ from each other as the smoothness para-
meter h is varied. In the experiments presented below, we have used Algorithm 8.2.1 with d = 3
and a search-window of size 21× 21, i.e., r = 10. Furthermore, we also have chosen Ga = 1{(0,0)},
i.e., simply ignoring the effect of Gaussian weighting.

Figures 8.3(a) and 8.5(a) display the two test images x used, while the observations u are shown
in Figures 8.3(b) and 8.5(b). Here, the standard deviation of noise was σ = 25. Two experiments
using NL-means are shown, first by taking the example image v1 = u, i.e., the observed image
itself, shown in 8.3(c) and 8.5(c), and second by taking the example image v2 = D2(u), i.e., the
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Figure 8.3: (a) shows the original image x, (b) the observation u, (c) v1 = u, (d) v2 = D2u. In (e):
For each value of h are shown: x̃(u,v1,h,d,a)(x) (left), x̃(u,v2,h,d,a)(x) (middle) and |x̃(u,v1,h,d,a)(x)-
x̃(u,v2,h,d,a)(x)| (right).
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Figure 8.4: PSNR vs ln(h) for images plotted on left and in middle of Figure 8.3(e).
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Figure 8.5: (a) shows the original image x, (b) the observation u, (c) v1 = u, (d) v2 = D2u. In (e):
For each value of h are shown: x̃(u,v1,h,d,a)(x) (left), x̃(u,v2,h,d,a)(x) (middle) and |x̃(u,v1,h,d,a)(x)-
x̃(u,v2,h,d,a)(x)| (right).
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Figure 8.6: PSNR vs ln(h) for images plotted on left and in middle of Figure 8.5(e).
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coarser scale approximation of the observed image, with factor 2, shown in 8.3(d) and 8.5(d).
In 8.3(e) and 8.5(e), we have chosen various values of the smoothness parameter h. For each
value of h, we have plotted x̃(u,u,h,d,a)(x) on the left and x̃(u,D2(u),h,d,a)(x) in the middle. On
the right, for each h-value, is plotted the absolute value of the difference of these two images,
|x̃(u,u,h,d,a)(x)- x̃(u,D2(u),h,d,a)(x)|. Finally in Figures 8.4 and 8.6 plots of PSNR vs. ln(h) for the
images plotted on the left and middle of 8.3(e) and 8.5(e) are presented. It can be observed that
as the smoothness parameter h is increased from zero, the PSNR first increases for both same-scale
and cross-scale experiments, and eventually decreases as h approaches infinity. We have used a
logarithmic scale for h so that the decay of PSNR becomes more visible for high-values of h on
the graph.

These experiments suggests that good denoising is accomplished with the use of either u and
D2(u) as examples, i.e, same-scale or cross-scale neighbourhoods, in the NL-means filter.

8.5 Filters Based on Irrelevant Examples and Results

We now examine the performance of Algorithm 8.2.1 in the case of irrelevant examples, i.e.,
examples taken from another image, both in the same-scale and cross-scale case. In what follows,
we use the Cameraman and Lena images. Once again, we have used Algorithm 8.2.1 with d = 3
and a search-window of size 21× 21, i.e., r = 10. Furthermore, we also have chosen Ga = 1{(0,0)},
i.e., simply ignoring the effect of Gaussian weighting.

Figures 8.7(a) and 8.9(a), show the images x while the respective observations u are shown
in 8.7(b) and 8.9(b). Here, once again, the standard deviation of the added noise was σ = 25.
The results of two experiments using NL-means are shown. In the first experiment, we used the
example image v1 shown in (c). In the second experiment, we used a factor-2 coarser scale version
of the example image, v2 = D2(v1), shown in (d). In (e), we present results for various values of
h the smoothness parameter. On the left are presented the results x̃(u,v1,h,d,a)(x). In the middle
are shown x̃(u,D2(v1),h,d,a)(x). And on the right are shown the absolute differences of these two
images |x̃(u,v1,h,d,a)(x)- x̃(u,D2(v1),h,d,a)(x)|. Finally in Figures 8.8 and 8.10, plots of PSNR vs.
ln(h) are shown.

It can be observed that in both cases, PSNR decreases with h, due to the use of the irrelevant
examples in the approximation step.
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Figure 8.7: (a) contains the image x, (b) the observation u, (c) v1, (d) v2 = D2(v1), (e)
For each value of h, Left hand-side: x̃(u,v1,h,d,a)(x), middle: x̃(u,v2,h,d,a)(x), right hand-side:
|x̃(u,v1,h,d,a)(x)- x̃(u,v2,h,d,a)(x)|,
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Figure 8.8: PSNR vs ln(h) for images plotted on left and in middle of Figure 8.7(e).
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Figure 8.9: (a) shows the original image x, (b) the observation u, (c) v1, (d) v2 = D2(v1),
(e) For each value of h, Left hand-side: x̃(u,v1,h,d,a)(x), middle: x̃(u,v2,h,d,a)(x), right hand-side:
|x̃(u,v1,h,d,a)(x)- x̃(u,v2,h,d,a)(x)|.
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Figure 8.10: PSNR vs ln(h) for images plotted on left and in middle of Figure 8.9(e).
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8.6 Concluding Remarks

In this chapter, we have examined the role of scale in the context of the NL-means filter by
experimenting over various images and various values of smoothness parameter h. A new example-
based variant of the NL-means is introduced and we have also examined the issue of relevant
examples. It turns out that cross-scale patches are also “relevant” in approximating the image,
as opposed to some “irrelevant” image, as intuitively expected. This work in some way provides
a deeper insight to the question, that will be examined in Chapter 9, of why examples from cross-
scales of an image can be used as a regularizer to solve the problem of single-frame image zooming
using self-examples.
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9.1 Introduction

In this chapter, we present a novel single-frame image zooming technique based on so-called “self-
examples”. Our method combines the ideas of fractal-based image zooming, example-based zoom-
ing, and nonlocal-means image denoising in a consistent and improved framework. In Bayesian
terms, this example-based zooming technique targets the MMSE estimate by learning the posterior
directly from examples taken from the image itself at a different scale, similarly to fractal-based
techniques. The examples are weighted similarly to the NL-means image denoising algorithm.

Our algorithm compares the neighbourhood information of each pixel to the neighbourhoods
of the same size in the coarser scale over the entire image. Due to the reconstruction scheme,
our results do not suffer from the blockiness generally inherent in fractal zooming. Moreover, the
geometry of objects is well preserved for the test images presented.

In Section 9.2, we introduce the problem of image zooming, and present a brief introduction
to various techniques used. In Section 9.3, we review the role of self-similarity priors in various
inverse problems, namely fractal-based methods and example-based approaches. We explain how
our example-based approach takes advantage of self-similarity across scales similar to fractal-
based methods. In Section 9.4, we introduce our method, and discuss some computational issues
in Section 9.5. Finally, some concluding remarks are presented in Section 9.6.

9.2 Some Background on the Inverse Problem of Image

Zooming

9.2.1 A Word on Resolution

In the characterization of an image, the term “resolution” can be confusing since it involves a
rather large number of competing terms and definitions. In its simplest form image resolution is
defined as the smallest measurable detail in a visual presentation [Cha01].

Researchers in digital image processing and computer vision use the term resolution in three
different ways, as introduced in [Cha01].

• Spatial resolution refers to the spacing of pixels in an image and is measured in pixels per
inch (ppi). The higher the spatial resolution, the greater the number of pixels in the image.

Many imaging devices today, such as charged-coupled device (CCD) cameras, consist of
arrays of light detectors. A detector determines pixel intensity values depending upon the
amount of light detected from its assigned area in the scene [Hol96] (see Figure 9.1). The
spatial resolution of images produced by these types of devices is proportional to the density
of the detector array.

• Brightness resolution refers to the number of brightness levels that can be recorded at any
given pixel. For example, the brightness resolution for monochrome images is usually 256
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Object Lens CCD detector array

Figure 9.1: A simple CCD model.

implying that the greyscale value at a pixel is represented by 8 bits. A more appropriate
term for the brightness resolution is the number of quantization levels (see Figure 9.2).

• Temporal resolution refers to the number of frames captured per second in video applications
and is also commonly known as the frame rate. It is related to the amount of perceptible
motion between the frames. Higher frame rates result in less smearing due to movements in
the scene. The typical frame rate suitable for a pleasing view is about 25 frames per second
or above.

(a) (b) (c)

Figure 9.2: (a) Original, Grey-levels: 8 bits, Size: 512 by 512, (b) Low brightness resolution,
Grey-levels: 3 bits, Size: 512 by 512, (c) Low spatial resolution, Grey-levels: 8 bits, Size: 64 by
64 (replicated for larger view).

In this thesis, we only refer to the spatial resolution of images.

9.2.2 The Inverse Problem of Image Zooming

In many applications, the imaging sensors have poor resolution output. The process of producing
a high-resolution image from a single lower-resolution and distorted (e.g., blurred, noisy) image
is called (single-frame) image zooming.

More formally, we consider the following degradation model [Cha01, ED07, EF97]

u = Hx + n, (9.1)
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Forward Model

Inverse Problem

Figure 9.3: The inverse problem of image zooming.

in which u ∈ `2(Ω) is the low-resolution M ×N -pixel observation, i.e.,

Ω = [1, . . . ,M ]× [1, . . . , N ],

and n ∈ `2(Ω) is additive white, independent Gaussian noise with zero-mean and variance σ2.
x ∈ `2(Ψ) is the high-resolution image to be recovered such that

Ψ = [1, . . . , Mz]× [1, . . . , Nz],

where z is a positive integer. The operator H = SzAz is the composition of a blurring operator
Az followed by a downsampling operator Sz of factor z in each direction. More technically, we
remind readers that earlier, in Section 1.4, we defined the blurring operator Az : `2(Ψ) → `2(Ψ)
as a local averaging operator of length z, i.e., for any (i, j) ∈ Ψ,

(Azx)(i, j) =
1
z2

∑

0≤i′<z,0≤j′<z

x(i + i′, j + j′). (9.2)

Note that boundary conditions on x may be required so that Az is well-defined. Also, the
downsampling operator Sz : `2(Ψ) → `2(Ω) is defined for any image x ∈ `2(Ψ) such that for any
(i, j) ∈ Ω,

(Szx)(i, j) = x
(
(i− 1)z + 1, (j − 1)z + 1

)
. (9.3)

The problem of image zooming can be viewed as the recovery of an estimate of x, denoted by
x̃, given the observation u and scaling factor z (see Figure 9.3).



9.2. Some Background on the Inverse Problem of Image Zooming 123

9.2.3 A Brief Introduction to Various Techniques

Image Interpolation:

The easiest and not necessarily most appealing approach to estimate x is to ignore the effect of
the noise n and the blurring operator Az, thereby assuming that u is provided by downsampling
of x, i.e., u = Dzx. In this case, one could simply apply traditional interpolation algorithms
on u to estimate x, including nearest neighbour or pixel replication, bilinear, bicubic, spline, or
sinc interpolation. In general, the resizing of an image does not translate into an increase in its
resolution. Resizing should be accompanied by approximations to frequencies higher than those
present in the observation u as well as at a higher signal-to-noise ratio. However some of these
algorithms provide overly smoothed results around edges and fine details. The application of
sharpening operators on these oversmoothed results does not usually recover the image details
[Cha01].

Frequency Extrapolation Techniques:

It is well known that interpolation in the spatial domain is equivalent to extrapolation in the
frequency domain. The original work on frequency extrapolation for a bandlimited image is due
to Papoulis [Pap75] and Gerchberg [Ger74]. While Gerchberg proposed a method to perform
signal reconstruction given the diffraction limit of the signal and a part of the spectrum, the
motivation for Papoulis work was extrapolation of a bandlimited signal from the information
of only a part of the original signal. The signal extrapolation is carried out by the method of
alternate projections [Jai01], iterating alternately between spatial and spectral domains, which is
essentially a POC-based algorithm. Any zooming technique may also be evaluated by considering
the effect of the method on the Fourier coefficients.

Regularization and Classical Inverse Theory Techniques:

Single image zooming cannot recover high-frequency components that are lost during the low-
resolution sampling process unless we include additional a priori information about the image.
This can normally be done by using regularization as explained earlier in Chapter 2. According
to [ED07]: “Much of the progress made in the past two decades on inverse problems in image
processing can be attributed to the advances in forming or choosing the way to practise the
regularization. The effectiveness of single-image zooming techniques is always limited to the prior
used in the reconstruction process.”

Example-based Methods:

A very attractive approach in solving inverse imaging problems is to exploit examples in defining
the PDF of the image instead of intuitively defining a regularization term. There are various ways
to apply examples in inverse problems as comprehensively described in Chapter 2. The method
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described in this chapter corresponds to making use of examples directly in the reconstruction
procedure.

9.3 The Role of Self-similarity in Various Inverse Problems

9.3.1 Self-similarity in Various Example-based Approaches

In the work of [CPT04, EL99, WL00] on texture synthesis, and inpainting (filling in holes),
examples are taken from the image itself.

As mentioned earlier, another important example-based approach, nonlocal-means (NL-means)
image denoising [BCM05b, BCM05c] addresses the denoising problem using examples from the
noisy image itself at the same scale with a Gaussian-type weighting scheme. We shall generalize
this algorithm to address the zooming problem.

9.3.2 From Same-scale Toward Across-scale Self-examples

The NL-means algorithm mentioned above [BCM05b, BCM05c] along with the work reported in
[EL99] use self-examples, i.e., they take examples from the image itself. However, in all cases, the
examples are taken at the same scale. This clearly represents a major difference between these
example-based methods and fractal-based methods.

In the zooming algorithms proposed below, we take advantage of the richness of the NL-means
algorithm (and thereby overcome the issue of blockiness) yet remain consistent with fractal-based
methods by comparing patches across scales.

9.4 Image Zooming Algorithm using Self-examples

In this section, we introduce our notation, and then formulate a natural extension of the NL-means
denoising method, to be denoted as Algorithm 9.4.1 below. Algorithm 9.4.2 (image zooming algo-
rithm using self-examples) will be a special case of Algorithm 9.4.1, in which the example image
is precisely the input image. This formulation will detect across-scale similarities.

Example image: The notion of example image is denoted by v ∈ `2(Φ), where Φ is the K × L

pixel lattice defined by
Φ = [1, . . . , K]× [1, . . . , L].

Lattice covers: Recall that
Ψ = [1, . . . ,Mz]× [1, . . . , Nz]

is the lattice on which the high-resolution image x was defined. Let R be the partition of the
lattice Ψ comprised of non-overlapping square blocks of size z× z. Also, define S to be the set of
all z × z square blocks on the lattice Φ. We allow the elements of S to overlap, implying that S
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does not necessarily form a partition of Φ.

Lattice mapping: Let the mapping M : R → Ω be defined in the following way. For any z × z

block x ∈ R where

x =
{

(x1, x2) ∈ N2 | dx1

z
e = i, dx2

z
e = j, for some fixed (i, j) ∈ Ω

}
,

define Sx = (i, j).

Extended z-neighbourhoods: For any block y in example-image-cover y ∈ S define

N d
z

{
y
}

=
{

(y1 + i1, y2 + i2) | (y1, y2) ∈ y, (i1, i2) ∈ Z2, max{|i1|, |i2|} ≤ dz
}

. (9.4)

The following is a natural extension of the NL-means algorithm. In Bayesian terms the algo-
rithm is an MMSE estimation by learning the posterior directly from the examples taken from an
example-image v.

Algorithm 9.4.1. An Example-based Zooming Algorithm (see Figure 9.4)
The approximation of x, denoted by x̃, given the observation u, using example image v, is com-
puted in the following way. For any x ∈ R,

x̃(u,v,z,h,d,a)(x) =
1

C(x)

∑

y∈S

w(x, y)v(y), (9.5)

where

w(x, y) = exp
(
−
‖ u(N d{Mx})−H(

v(N d
z {y})

) ‖2
2,a

h2

)

and
C(x) =

∑

y∈S

w(x, y). (9.6)

Proposition 9.4.1. NL-means image denoising defined in 3.6.1 is equivalent to Algorithm 9.4.1
for the case that z = 1 and v = u, i.e.,

x̃NL(x) = x̃(u,u,1,h,d,a)(x). (9.7)

Proof. If z = 1 and v = u then Ω = Ψ = Φ = R = S, Mx = x, and H becomes the identity
operator. Furthermore, in this case N d

1

{
y
}

= N d
{
y
}
. Substituting the corresponding expressions

in Algorithm 9.4.1 leads to the equivalent expression of the NL-means algorithm.

The benefit of our notation and the introduction of Algorithm 9.4.1 above is that a simple
substitution, namely, v = u, will lead to our proposed technique of “Image zooming using self-
examples”.

Algorithm 9.4.2. Image Zooming using Self-examples (see Figure 9.5)
For a given observation u and a zooming factor z apply Algorithm 9.4.1, using the observation in
place of the example image as well, i.e., v = u, and estimate x̃(u,u,z,h,d,a).
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Figure 9.4: The example-based zooming Algorithm 9.4.1. First, the weights are determined based
on the similarity of the patches, second, weighted averages of the z× z central blocks are replaced
in the corresponding location.

Figure 9.5: Image zooming using self-examples Algorithm 9.4.2. For a given observation, apply
Algorithm 9.4.1, using the observation in place of the example image, i.e., take v = u. This
translates to making use of patches taken from the observation at a different scale.
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Again, it can be observed that Algorithm 9.4.2 is a special case of Algorithm 9.4.1, naturally
by the constraint v = u, yet still an extension of the NL-means denoising if z = 1. Similarly to
NL-means denoising, Algorithm 9.4.2, from a Bayesian viewpoint, targets the MMSE estimate by
learning the posterior directly from the examples taken from the image itself at a different scale.
As mentioned above, this is in accordance with fractal-based approaches.

9.5 Numerical Considerations and Results

9.5.1 Various Numerical Considerations

Several aspects should be carefully considered in the implementation of our algorithm. It may
be necessary to apply appropriate boundary conditions, for example, when encountering neigh-
bourhoods that fall out of the image domain or applying the operator H on patches. In all of
our experiments we have applied symmetric boundary conditions. Furthermore, the adjustment
of the parameter h varies the degree of filtering in a manner quite similar to that of NL-means
denoising. A large h-value will blur the output result; a very small h-value will amplify any image
noise in the output.

It should also be noticed that if finite precision is employed in our computations, then for
sufficiently small h, all weighting terms in Equation 9.6 will be computed as zero. In other words,
it is possible that for some x ∈ R and for some small pre-chosen parameter h > 0 the weights are
computed as w(x, y) = 0 for all values of y ∈ S. Computationally, this is not an issue in the NL-
means image denoising because there is at least one patch – the neighbourhood of x itself – that
makes the exponent equal to 1 regardless of the value of h > 0. We can bypass this problem by
defining w(x, y) = 1Sm(y) at the problematic points x ∈ R, where 1Sm(y) denotes the indicator
function of y over the set Sm defined as follows,

Sm =

{
ys ∈ S | ys = arg min

y

(
‖ u(N d{Mx})−H(

v(N d
z {y})

) ‖
2,a

)}
.

This is equivalent to averaging over all v(y) for which y is a minimizer of the similarity distance.

9.5.2 Computational Results

We now present some results of our computational experiments. In all cases we have chosen a
zoom factor z = 2, and 3×3 neighbourhoods as well as 6×6 extended-neighbourhoods, i.e., d = 1.
We also have chosen Ga = 1{(0,0)}, i.e., simply ignoring the effect of Gaussian weighting. As well,
we have varied the parameter h with respect to each image individually.

Figure 9.6 indicates the result of an experiment using Algorithm 9.4.1 to show that using
irrelevant examples (middle column) may lead to “poor” outputs (right column). In Figure 9.7,
we present the outputs of Algorithm 9.4.2 for a noiseless (top left) and noisy (bottom left) image.
It can be seen that the algorithm performs denoising in parallel with zooming. For purposes of
comparison, the results of pixel replication and bilinear interpolation are also presented.
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Figure 9.6: Respectively, (a,d,g) Original image. (b,e,h) Example image. (c,f,i) The image
reconstructed using Algorithm 9.4.1, h = 25 in all three cases.
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Figure 9.7: Respectively, (a,e) Original image. (b,f) Pixel replication. (c,g) Bilinear interpolation.
(d,h) Self-examples. For both rows h = 37.5 is applied. In the second row the standard deviation
of noise is σ = 25.
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Figure 9.8: A comparison of the image zooming using self-examples, Algorithm 9.4.2, with other
methods of zooming. Two input images are considered: Circular region (row 1), noisy circular
region (row 3) with the noise of standard deviation σ = 25. The Fourier spectra of all images are
also shown (rows 2 and 4). Starting at left: input image, zooming with pixel replication, zooming
with bilinear interpolation, zooming with Algorithm 9.4.2. In rows 1 and 3 the value of h in the
experiment are, respectively 2.5, and 125.
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Figure 9.9: A comparison of the image zooming using self-examples, Algorithm 9.4.2, with other
methods of zooming with pure Gaussian noise input image with σ = 25. The Fourier spectra of
all images are also shown. Starting at left: input image, zooming with pixel replication, zooming
with bilinear interpolation, zooming with Algorithm 9.4.2. The value of h in the experiment is
15.
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Figure 9.10: The data used in Figure 9.11.
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Figure 9.11: A comparison of the results obtained by image zooming using self-examples for
different values of the filter parameter h. A noisy input image is considered for which the standard
deviation of noise is σ = 12.5.
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In rows 1 and 3 of Figure 9.8, we present the result of Algorithm 9.4.2 when applied to a simple
circular shape in both noiseless and noisy situations, respectively. Below each of these rows are
displayed the Fourier spectra of each image. In Figure 9.9, we show the effect of Algorithm
9.4.2 on a Gaussian white noise sample, along with corresponding Fourier spectra. The value of
parameter h was set in a way that the variance of the noise was three-quarters of the variance of
the input noise. However, the output is still noise-like, as opposed to the results of bilinear and
pixel replication. It can be seen that the Fourier spectrum of the output is also distributed rather
uniformly over the frequency domain, as opposed to the pixel replication and bilinear interpolation
cases.

In Figure 9.11, we present the output of Algorithm 9.4.2 on a noisy input image (shown in
Figure 9.10) choosing different values of the filter parameter h. The original image in this figure
is given only for comparison. The input image in the second row is the algorithm’s input. It can
be observed that choosing small values of h will produce noisy outputs and as h grows the output
will be smoothed out converging to a constant value image.

9.6 Concluding Remarks

In this chapter, we have presented a novel single-frame image zooming method of self-examples,
explaining how it combines the ideas of fractal-based image zooming, example-based zooming and
nonlocal-means image denoising. Our framework implicitly defines a regularization scheme which
exploits the examples taken from the image itself at a different scale in order to achieve image
zooming. The method essentially extends the NL-means image denoising technique to the image
zooming problem. Various computational issues and results were also presented, showing that
frequency domain extrapolation is in fact possible with this method.
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10.1 Introduction

Naturally, there is always a demand for higher quality and higher resolution images. The level of
image detail is crucial for the performance of many computer vision algorithms.

Current imaging devices typically consist of arrays of light detectors. A detector determines
pixel intensity values depending upon the amount of light detected from its assigned area in the
scene. The spatial resolution of images produced is proportional to the density of the detector
array: the greater the number of pixels in the image, the higher the spatial resolution [Ngu00]. In
many applications, however, the imaging sensors have poor resolution output. When resolution
can not be improved by replacing sensors, either because of cost or hardware physical limits, one
can resort to resolution enhancement algorithms. Even when superior equipment is available, such
algorithms provide an inexpensive alternative.

The process of producing a high-resolution (HR) image given a single low-resolution (LR)
image, known as single-frame image zooming, was addressed in the previous chapter. Another
possibility is to take advantage of information from several observations rather than from a single
image. The problem of recovering a high quality HR image from a set of distorted (e.g., warped,
blurred, noisy) and LR images is known as super-resolution [EF97, HBA97, IP93, SS96, FREM04a,
Bor04, Ngu00]. Fusion of the information from the observations is a fundamental challenge in the
recovery process.

Super-resolution can not perform miracles. Extracting sub-pixel information from a single-
frame or a sequence of identical frames is possible only if we have additional information about
the scene. Hence, in order to obtain super-resolution, there must be available nonredundant
information among the frames. Each LR frame should provide a different look at the same
scene. With just one imaging device and under the same lighting conditions, we require some
relative motions from frame to frame. Motion and nonredundant information are what make
super-resolution possible [Ngu00].

Figure 10.1: Super-resolution example: Fusion of measurements into a high-resolution image [Ela].
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10.2 The Inverse Problem of Multi-frame Super-resolution

Formally, we review a general model for super-resolution widely used in the literature [Ngu00,
FREM04a, FREM04b, Cha01, EF97]. Assume that the LR grid is

Ω = [1, . . . ,M ]× [1, . . . , N ], (10.1)

and given the positive integer z the HR grid is defined as

Ψ = [1, . . . , Mz]× [1, . . . , Nz]. (10.2)

Forward Model. We consider a forward degradation model that converts an ideal HR image x
to degraded LR frames ui,

ui = Hix + ni, 1 ≤ i ≤ k. (10.3)

Here, the operator Hi = SzBWi is the composition of a warping operator Wi : `2(Ψ) → `2(Ψ)
which maps the HR grid coordinate to the LR grid, a blurring operator B : `2(Ψ) → `2(Ψ), and a
downsampling operator Sz : `2(Ψ) → `2(Ω) of factor z in each direction. Also, ni ∈ `2(Ω) denotes
additive white independent Gaussian noise with zero-mean and variance σ2. The inverse problem
of multi-frame super-resolution can be stated as follows,

Inverse Problem: Given a set of k LR observed frames {ui}i=1,...,k ∈ `2(Ω) of size M × N ,
reconstruct the HR image x ∈ `2(Ψ) of size Mz ×Nz. Figure 10.2 illustrates the problem setup.

Figure 10.2: Forward Model of super-resolution.

Ignoring the blur, Figure 10.3 illustrates an example of the warping followed by down-sampling.
The figure shows three 4× 4 pixel LR frames on an 8× 8 HR grid. Each set of symbols (square,
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circle, triangle) indicates the sampling points of a frame with respect to the HR grid. We pick
an arbitrary frame as a reference frame; in this case, the frame marked by the circular symbols.
The sampling grid for the triangular frame is just a simple translation of the reference frame grid.
The motion between the sampling grid for the square frame and the reference frame grid include
translational, rotational, and magnification (zoom) components. The goal of super-resolution is
to restore values at the HR grid points [Ngu00].

Figure 10.3: Illustration of warping and down-sampling. Low-resolution data on a high-resolution
grid, taken from [Ngu00].

10.3 Short Survey of Some Super-resolution Techniques

A rather recent and comprehensive survey of super-resolution techniques is given in [FREM04a].

Irani and Peleg [IP93] proposed an iterative back-projection method to address the super-
resolution problem. A large class of iterative multi-frame super-resolution methods have this
simple simulate-and-correct approach to restoration.

Sauer and Allebach [SA87] modelled super-resolution as an interpolation problem with nonuni-
formly sampled data and used a projection onto convex sets (POCS) algorithm to reconstruct
the image. Tekalp, Ozkan and Sezan [TOS92] also proposed a POCS-based approach to super-
resolution. These approaches rely on the previous POCS restoration models of Stark and Oskoui
[SO89]. In the context of super-resolution, given a low-resolution frame ui, a set-based constraint
can be constructed using

Ψi = {x : ‖ui −Hix‖ ≤ δi}. (10.4)

In forming this constraint, the parameter δi may be characterized by the statistics of the noise
ni, which is present in the measured frame ui.

Ur and Gross [UG92] considered Papoulis’ generalized multichannel sampling theorem [Pap97]
for interpolating values on a higher resolution grid. Shekarforoush and Chellappa [SC99] extended



10.4. Super-resolution with no Explicit Motion Estimation 139

Papoulis’ theorem for merging the nonuniform samples of multiple channels into HR data. Aizawa
et al. [AKS91] also modelled super-resolution as an interpolation problem with nonuniform sam-
pling and used a formula related to Shannon’s sampling theorem [Sha49, Sha98, Whi29] to estimate
values on a HR grid.

Tsai and Huang [TH84] were one of the first to superresolve a single HR image from several
sampled LR frames (without blur). They considered interpolation from k LR frames {ui}i=1,...,k,
each shifted from a reference frame by some shift δi. Frame ui can be considered as samples from
a continuous signal x(x+ δi), where x(x) is the ideal continuous image. In the frequency domain,
by combining the Fourier shift theorem for the continuous Fourier transforms and the relationship
between the continuous and discrete Fourier transform, they were able to calculate higher values
of the frequency spectrum resulting in an improvement of resolution.

Other super-resolution models have been presented in the literature. A wavelet-based inter-
polation restoration method for super-resolution was proposed by Nguyen and Milanfar [Ngu00].
Hardie et al. [HBA97] proposed a joint MAP registration and restoration algorithm using a Gibbs
image prior. Schultz and Stevenson [SS96] used a Markov random field model with Gibbs prior
to better represent image discontinuities, such as transitions across sharp edges.

More recently Farsiu et al. [FREM04b] proposed an alternative data fidelity, or regularization
term based on the `1 norm, which has been shown to be very robust to data outliers. They
proposed a novel regularization term called Bilateral-TV, which provides robust performance
while preserving the edge content common to real image sequences.

10.4 Super-resolution with no Explicit Motion Estimation

10.4.1 A Word on Motion Estimation

Accurate motion estimation has been a very important aspect of super-resolution schemes. In
the forward process, described in Equation 10.3, the motion parameters are represented by the
warping operators Wi. In many existing super-resolution approaches, the motion is computed
directly from the LR frames, while many other super-resolution algorithms unrealistically assume
that motion parameters are precisely known. In general, however, accurate motion estimation of
subpixel accuracy remains a fundamental challenge in super-resolution reconstruction algorithms.

In our opinion, however, it seems reasonable to assume that the motion can be relaxed from
a strict grid mapping to a multi-pixel-pair intensity relation. In this view, pixel-pairs in different
frames may be relevant to each other with some measured probability of confidence. In the method
we propose below, instead of estimating the motion vectors explicitly, a framework is provided in
which such confidence measures are evaluated and employed in the HR image reconstruction.
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10.4.2 Changing the Order of Blur and Warp to Isolate Blur

It is well known that the order of B and Wi may be changed in the case that blur is linear spatially
invariant. Hence, the equations may be written as

ui = SzWiBx + ni, 1 ≤ i ≤ k. (10.5)

If we define y = Bx, then the measurements become

ui = SzWiy + ni, 1 ≤ i ≤ k. (10.6)

In our algorithm, we simply focus on solving y, noting that any existing deblurring algorithm
can be applied to reconstruct x after we obtain a solution for y. In order to reduce notation, we
define yi = Wiy, so that the above equations become

ui = Szyi + ni, 1 ≤ i ≤ k. (10.7)

Furthermore, in many multi-frame super-resolution algorithms it is customary to employ one of
the LR frames as a reference frame. The algorithm proposed in the next section provides an
estimation of yi denoted by SR(yi) for any 1 ≤ i ≤ k.

10.4.3 HR Reconstruction of the i-th Frame Given the j-th Frame

In what follows, we let
︷︸︸︷
ui denote the interpolation ui from Ω to Ψ yielded by some standard

technique, e.g., bilinear interpolation. Therefore, ︷︸︸︷. . . is a mapping from `2(Ω) to `2(Ψ). Note
that, the interpolation

︷︸︸︷
ui provides an approximation of yi, i.e., yi ≈

︷︸︸︷
ui for 1 ≤ i ≤ k. Here,

however, we seek a superior approximation to yi, which will be denoted as SR(yi).

The following scheme is inspired by the work on image and image-sequence denoising in
[BCM05b, BCM05c, BCM05a]. For any x ∈ Ψ, we evaluate the conditional expectation of
SR(yi)(x) given the observed LR image uj by

E[SR(yi)(x) | uj ] =
1

W (x, i, j)

∑

y∈Ψ

w(x, y, i, j)
︷︸︸︷
uj (y), such that (10.8)

w(x, y, i, j) =

[
exp

(
− ‖ ︷︸︸︷

ui (N d{x})− ︷︸︸︷
uj (N d{y}) ‖

2

h2

)]
, and

W (x, i, j) =
∑

y∈Ψ

w(x, y, i, j), (10.9)

where N d{x} denotes a square neighbourhood of length (2d + 1) × (2d + 1) centred at x. The
confidence measures mentioned earlier are expressed in terms of the w(x, y, i, j)’s, where W is a
normalization factor. Note that in evaluation of w(x, y, i, j) we have used the interpolated copies
of ui and uj , respectively denoted by

︷︸︸︷
ui and

︷︸︸︷
uj . Employing such a notion automatically takes

into account translations of ui and uj by sub-pixel accuracy. Also, h is a regularization parameter
that can be adjusted to control the smoothness of the output.
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10.4.4 HR Reconstruction of the i-th Frame Given the Whole Image

Sequence

Eventually, we evaluate the conditional expectation of SR(yi)(x) for any x ∈ Ψ, given the infor-
mation of all of the frames {uj} for 1 ≤ j ≤ k:

E[SR(yi)(x) | {uj}1≤j≤k] =
1

C(i)

∑

1≤j≤k

c(|i− j|)× E[SR(yi)(x) | uj ], (10.10)

C(i) =
∑

1≤j≤k

c(|i− j|), (10.11)

where c is a decaying function of |i− j|, and C is a normalization factor. The expression c(|i− j|)
in this equation represents the temporal confidence on the expectations computed for each of the
various frames, j, which has been taken into account in reconstructing the HR image SR(yi). In
the experiments reported below, we have assumed that each of the frames in hand is equally likely
useful in producing the HR details of the i-th frame. Hence, we have taken c to be a box-function
of large enough support which yields c(|i− j|) = 1. As a result,

E[SR(yi)(x) | {uj}1≤j≤k] =
1
k

∑

1≤j≤k

E[SR(yi)(x) | uj ]. (10.12)

10.5 Computational Experiments

As in the case of the NL-means denoising algorithm, the algorithm described above is com-
putationally intensive. The major computational burden exists in the complexity of comput-
ing the weights w(x, y, i, j). A primary scheme to overcome this complexity, introduced in
[BCM05b, BCM05c, BCM05a], is to restrict the search window by restricting y ∈ Ψ ∩ N r{x}
i.e., y lies in a square neighbourhood of x with size (2r + 1)× (2r + 1), as opposed to the entire
field of Ω.

Figures 10.4, 10.5, and 10.6 show the result of evaluating E[SR(yi)(x) | {uj}1≤j≤k], on an
image sequence taken from the data-set library of MDSP at U. California Santa Cruz
(http://www.soe.ucsc.edu/ milanfar/software/sr-datasets.html),
originally obtained from the Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. We have taken
the first 20 frames, i.e., k = 20, of size 32 × 32 from this sequence, i.e., M = N = 32, and
have added independent additive white Gaussian noise of standard deviation σ = 12.5 to the
data set. Figure 10.4 shows the result of applying nearest neighbourhood interpolation on the
second frame of this sequence, i.e., when i = 2 for a zooming factor of z = 3. In Figure 10.5,
the result of bilinear interpolation on the same frame is shown. We have plotted the result of
E[SR(y2)(x) | {uj}1≤j≤20] in Figure 10.6. In this experiment, we have taken d = 4 (corresponding
to a neighbourhood of size 9× 9), a restricted search window of radius r = 13, a zooming factor
of z = 3, and a smoothness parameter h = 20. We have used bilinear interpolation of u wherever
the interpolated image notation

︷︸︸︷
u has appeared in the computations.
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Figure 10.4: Nearest neighbour interpolation.
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Figure 10.5: Bilinear interpolation.
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Figure 10.6: Proposed multi-frame super-resolution with the following parameters: The original
image sequence is of size 32 × 32, i.e., M = N = 32, of a k = 20 frames sequence. The HR
counterpart of second frame, i.e., i = 2 is desired. Additive white Gaussian noise of σ = 12.5 is
added. Neighbourhood of radius d = 4, search window radius r = 13, zooming parameter z = 3,
and smoothness parameter h = 20.
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10.6 Concluding Remarks

In this section, we have introduced a novel multi-frame super-resolution technique which does not
require explicit motion estimation. Our algorithm was inspired by the non-local-means denoising
algorithms introduced in [BCM05b, BCM05c, BCM05a]. The computational burden of the scheme
is a formidable challenge, which precludes any iteration scheme to improve the results. Since there
are many parameters in our algorithms, it seems that a fair comparison with other super-resolution
algorithms cannot be made. As a result, no comparisons were presented here. That being said,
experiments with a number of sets of parameters suggest that our algorithm yields results which
are quite comparable if not superior to some of the algorithms in [FREM04a, FREM04b] especially
when the image sequence is of very low signal-to-noise ratio.
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11.1 Conclusions

In this thesis, we have examined the concept of image self-similarity and provided solutions to
various associated inverse problems such as resolution enhancement and missing fractal code.

11.1.1 Introduction and Background Material

In the first chapter, we started with introductory material, notation, preparation, and organization
of concepts. (Chapter 1)

It was first necessary to review some basic principles of inverse problems and their solutions,
including the important concept of regularization. (Chapter 2)

We then investigated the concept of self-similarity of images. (Chapter 3)

11.1.2 Extending the Contractivity and Convergence Results of the

Fractal Transform Operator

We revisited the concept of fractal-based methods and addressed various open theoretical problems
in the area. This includes formulating a necessary and sufficient condition for the contractivity
of the block fractal transform operator. Furthermore, novel analytical results on the convergence
of the fractal decoding were derived. (Chapter 4)

11.1.3 Including A priori Information in the Fractal Code

Fractal imaging methods have relied almost exclusively on Banach’s contraction mapping theorem
at the decoding stage. This can be viewed as a major drawback for the traditional fractal-based
methods in that the output is quite restricted – no prior knowledge or additional regularization
can be combined with these methods. One may ask whether it is absolutely necessary to employ
Banach’s contraction mapping principle, i.e., to iterate the fractal transform T to reach its fixed
point.

Generalized Fractal Image Coding as Projections onto Convex Sets

In this thesis, we examined various possibilities of including a priori information with the fractal
code. It was shown that fractal image coding can be viewed and generalized in terms of the
method of projections onto convex sets (POCS). In the approach, the fractal code is considered as
a set of spatial domain similarity constraints. As a result, POCS provides an opportunity to apply
the fractal code of an image along with additional constraints at the decoding stage. (Chapter 5)
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Regularized Fractal Image Decoding

Furthermore, we presented an algebraic formulation, in which prior information may be incorpo-
rated in terms of penalty functions. To illustrate some of these ideas, we considered the problem
of incomplete fractal code and showed how the theory presented can be applied. (Chapter 6)

11.1.4 Regularization Expressions Involving Self-similarity

We introduced and analyzed a set of regularization expressions based on self-similarity properties
of images in order to address the classical inverse problem of image denoising and the ill-posed
inverse problem of single-frame image zooming. (Chapter 7)

11.1.5 Same-scale vs. Cross-scale Approximations

We discussed that a fundamental difference between NL-means and fractal coding is same-scale
vs. cross-scale similarity exploitation. The computational experiments performed in this thesis
hint that an appropriately defined cross-scale version of the NL-means filter should behave in a
similar fashion to the traditional same-scale NL-means filter. (Chapter 8)

11.1.6 Non-local Approaches to Image and Video Resolution Enhance-

ment

We considered the process of producing a high-resolution (HR) image given a single low-resolution
(LR) image known as single-frame image zooming. Furthermore, we considered the problem of
recovering a high-resolution image from a set of distorted (e.g., warped, blurred, noisy) and lower
resolution images is known as super-resolution.

Single-frame Image Zooming

We presented a single-frame image zooming technique based on so-called “self-examples”. The
method combined the ideas of fractal-based image zooming and nonlocal-means image denoising
in a consistent framework. (Chapter 9)

Multi-frame Super-resolution

A novel super-resolution approach was introduced which was closely associated with the NL-means
denoising. In the proposed technique, no explicit motion estimation was performed, unlike the
case in many other methods. (Chapter 10)
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11.1.7 Implementation of the Algorithms

The algorithms in this thesis were written in MATLAB Version 7.1.246 (R14) Service Pack 3, and
were executed on an Intel Pentium 4 machine of 3 GHz CPU and 504 MB RAM under Microsoft
Windows XP operating system. Table 11.1 indicates approximate execution times of the main
algorithms proposed in this thesis corresponding to each resulting figure.

Figure(s) Execution Time
(Minutes)

5.5(c)-5.9(c) 10-15
6.1(b,c), 6.2(a,b,c) 2-5
6.4(a,b,c) Less than 1
9.7(d,h), 9.8(d,h) 5-10
9.9(d), 9.11(a-f) 5-10
10.6 30-45

Table 11.1: Execution times of the algorithms

11.2 Contributions

In the preparation process of this thesis, the following manuscripts have been published or are
in press. For each contribution, the chapters of this thesis that share the same material are also
mentioned.

• [EV06a] M. Ebrahimi and E. R. Vrscay, Fractal Image coding as Projections onto Convex
Sets. In Image Analysis and Recognition, volume 4141, pages 493-506, Berlin/Heidelberg,
Springer, 2006. (Chapter 5)

• [EV06b] M. Ebrahimi and E. R. Vrscay, Regularized Fractal Image Decoding. In Proceedings
of CCECE 06, pages 1933-1938, Ottawa, Canada, May 2006. (Chapter 6)

• [EV07a] M. Ebrahimi and E. R. Vrscay, Regularization Schemes Involving Self-similarity
in Imaging Inverse Problems. In Proceedings of Applied Inverse Problems (AIP) 2007,
University of British Columbia, Vancouver, Canada, June 2007. (Chapter 7)

• [EV07b] M. Ebrahimi and E. R. Vrscay, Solving the Inverse Problem of Image Zooming
Using “Self-examples. In Image Analysis and Recognition, volume 4633, pages 117-130,
Berlin/Heidelberg, Springer, 2007. (Chapter 9)

• [EV08a] M. Ebrahimi and E. R. Vrscay, Examining the Role of Scale in the Context of
the Non-Local-Means Filter. In Proceedings of The International Conference on Image
Analysis and Recognition, volume 5112, pages 170-181 Povoa de Varzim, Portugal, June
2008. (Chapter 8)



11.2. Contributions 150

• [EV08b] M. Ebrahimi and E. R. Vrscay, Multi-frame Super-resolution with no Explicit
Motion Estimation. In Proceedings of The International Conference on Image Processing,
Computer Vision, and Pattern Recognition, IPCV 2008, volume 2, pages 455-459, Las Vegas,
Nevada, USA, July 2008. (Chapter 10)

• [EV08c] M. Ebrahimi and E. R. Vrscay, Self-similarity in Imaging, 20 Years After “Fractals
Everywhere”, In the Proceedings of the International Workshop on Local and Non-Local
Approximation in Image Processing (LNLA), Lausanne, Switzerland, 2008. (Chapter 3)

• [OEW08] J. Orchard, M. Ebrahimi and A. Wong, Efficient Non-Local-Means Denoising
using the SVD, In the Proceedings of ICIP 2008.

The following talks have been delivered at various scientific events. Presented talks with
published proceedings are not listed below to avoid duplications with the above list.

• M. Ebrahimi and E. R. Vrscay, Nonlocal Approaches to Image and Video Resolution En-
hancement, Presented at SIAM Conference on Imaging Science, San Diego, California, USA,
July 7-9, 2008.

• M. Ebrahimi and E. R. Vrscay, Nonlocal-means Single-frame Image Zooming, Contributed
talk presented at the 6th International Congress on Industrial and Applied Mathematics
(ICIAM), Zurich, Switzerland, July 16-20, 2007.

• M. Ebrahimi and E. R. Vrscay, Image Super-resolution using Self-examples, Contributed
poster presented at BICV 2007.

• M. Ebrahimi and E. R. Vrscay, Generalized Fractal Image Coding using Projections onto
Convex Sets, Contributed talk presented at SIAM Conference on Imaging Science, Radisson
University Hotel, Minneapolis, Minnesota, USA, May 15-17, 2006.

The following manuscripts have been submitted for publication or are in progress.

• D. La Torre, and E. R. Vrscay, M. Ebrahimi and M. Barnsley, A Complete Metric Space of
Measure-valued Images and Associated Fractal Transforms, Submitted to the SIAM Journal
on Imaging Sciences, Submission year: 2007, In revision.

• M. Ebrahimi and E. R. Vrscay, A Necessary and Sufficient Contractivity Condition for the
Fractal Transform Operator, In progress.

• M. Ebrahimi and E. R. Vrscay, Addressing the Problem of Incomplete Fractal Codes, In
progress.
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11.3 Future Perspectives

11.3.1 Extending the Contractivity and Convergence Results of the

Fractal Transform Operator

Following the generalized collage theorem presented in the thesis, it may seem useful to find bounds
on the corresponding expression explicitly in terms of the coefficient of the affine transforms in
the fractal code. The theory presented for the necessary and sufficient condition gives such an
explicit bound in the case that T is a contraction. Furthermore, although theoretical contractivity
conditions were developed for codes involving same-size domain-range blocks, no experiments were
performed to evaluate the performance of such codes.

The interconnection and mixing of domain-range assignments is another important aspect of
fractal coding. This idea was implicitly in mind when we developed various theoretical results
in fractal coding. The author believes that employing other existing tools, e.g., graph theory
techniques, may lead to more efficient coding schemes in this context.

11.3.2 Generalized Fractal Image Coding as Projections onto Convex

Sets

A number of new questions arise following the introduction of POCS-based self-similarity con-
straints. The constraint sets and the associated projections in this thesis were computed based on
point-wise collage distances. It seems natural to extend the theory to handle domain-range blocks
instead of points. This may significantly improve the speed of the corresponding algorithms.

Also, the issue of inconsistency of constraints was not addressed although theoretical tools
for this extension are readily available. Furthermore, the theory may be easily applied to the
multiparent fractal coding schemes.

11.3.3 Regularized Fractal Image Decoding

The material on regularized fractal image decoding was viewed as an algebraic extension of the
POCS self-similarity formulation. Two important questions to ask here are the following. 1-How
to design fractal codes which are least sensitive to the loss of its components? 2-What regularizers
are most suitable to be used along with self-similarity constraints?

11.3.4 Regularization Expressions Involving Self-similarity

The author has made primitive efforts to define regularization expressions based on self-similarity
properties of images. In practice, the readily available models were employed including the fractal-
transform and the NL-means denoising operator, in a MAP-based formulation. The author be-
lieves that the pursuit of more efficient priors (regularization expressions) based on self-similarity
properties of images is a quite challenging yet extremely interesting and worthwhile goal.
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11.3.5 Same-scale vs. Cross-scale Approximations

More rigorous mathematical or statistical analysis may be required to analyze the performance
of same-scale and cross-scale approximations. In addition, the effect of using affine transformed
gray-scale values in various non-local approaches remains untouched.

11.3.6 Single-frame and Multi-frame Resolution Enhancement Tech-

niques

There are a number of possible extensions of the resolution enhancement algorithms proposed in
this thesis. This includes extending the algorithms to handle non-integer zooming factors and
experimenting in the space of color images.

It turns out that the multi-frame algorithm proposed is rather sensitive to the initial interpo-
lation used, which may be enhanced in a corresponding improved model. Another challenge is the
issue of examining different motion models in the reconstruction process. Automatic parameter
selection is another challenge of the proposed algorithms. As was pointed out earlier, many zoom-
ing algorithms proposed are computationally expensive. Developing computational approaches to
speed-up various non-local methods will be another challenge ahead of the imaging community in
the following years.

11.3.7 The Final Word

This thesis has been intended as a scholarly exercise for the author to become familiar with some of
the existing inverse theory techniques in imaging. The author plans to extend his knowledge and
contributions in the field and apply his expertise to the existing real-life problems in engineering
and medicine in the future.



Test Images

153



Test Images 154

(a) (b)

(c) (d)

(e) (f)
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Description of Test Images

• (a) Lena

• (b) Cameraman

• (c) Mandrill

• (d) Low Resolution Circle

• (e) Lime MRI, Cross-sectional magnetic resonance image of lime fruit
Courtesy of Drs. C. Lemaire and H. Peemoeller, Dept. of Physics, University of Waterloo

• (f) Porous Medium, Scanning Electron Microscope (SEM) image of a porous medium
Courtesy of Drs. Carolyn Hansson and Shahzma Jaffer, Dept. of Mechanical Engineering,
University of Waterloo



Abbreviations

CCD Charged-Coupled Device

CG Conjugate Gradient

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

HR High-Resolution

IFS Iterated Function Systems

IFSP IFS with Probabilities

IFSW IFS on Wavelet coefficient trees

KKT Karush-Kuhn-Tucker

LR Low-Resolution

LS Least Squares

MAP Maximum A posteriori

MLE Maximum Likelihood Estimator

MMSE Minimum Mean-Squared Error

MNLS Minimum Norm Least Square

MSE Mean Squared Error

NLmeans NonLocal-means

PDE Partial Differential Equations

PDF Probability Density Function

POCS Projection Onto Convex Sets

PSNR Peak Signal-to-Noise Ratio

RFDA Regularized Fractal Decoding Algorithm

RMSE Root Mean Squared Error

SD Steepest Descent

SEM Scanning Electron Microscope

SVD Singular Value Decomposition

TV Total Variation

VQ Vector Quantization
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