
Design Methodologies and CAD Tools

for Leakage Power Optimization in

FPGAs

by

Hassan Hassan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c© Hassan Hassan 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The scaling of the CMOS technology has precipitated an exponential increase

in both subthreshold and gate leakage currents in modern VLSI designs. Conse-

quently, the contribution of leakage power to the total chip power dissipation for

CMOS designs is increasing rapidly, which is estimated to be 40% for the cur-

rent technology generations and is expected to exceed 50% by the 65nm CMOS

technology. In FPGAs, the power dissipation problem is further aggravated when

compared to ASIC designs because FPGA use more transistors per logic function

when compared to ASIC designs. Consequently, solving the leakage power problem

is pivotal to devising power-aware FPGAs in the nanometer regime. This thesis

focuses on devising both architectural and CAD techniques for leakage mitigation

in FPGAs. Several CAD and architectural modifications are proposed to reduce

the impact of leakage power dissipation on modern FPGAs.

Firstly, multi-threshold CMOS (MTCMOS) techniques are introduced to FP-

GAs to permanently turn OFF the unused resources of the FPGA, FPGAs are

characterized with low utilization percentages that can reach 60%. Moreover, such

architecture enables the dynamic shutting down of the FPGA idle parts, thus re-

ducing the standby leakage significantly. Employing the MTCMOS technique in

FPGAs requires several changes to the FPGA architecture, including the place-

ment and routing of the sleep signals and the MTCMOS granularity. On the CAD

level, the packing and placement stages are modified to allow the possibility of

dynamically turning OFF the idle parts of the FPGA. A new activity generation

algorithm is proposed and implemented that aims to identify the logic blocks in a

design that exhibit similar idleness periods. Several criteria for the activity genera-

tion algorithm are used, including connectivity and logic function. Several versions

of the activity generation algorithm are implemented to trade power savings with

runtime. A newly developed packing algorithm uses the resulting activities to min-

imize leakage power dissipation by packing the logic blocks with similar or close

activities together. By proposing an FPGA architecture that supports MTCMOS

and developing a CAD tool that supports the new architecture, an average power

savings of 30% is achieved for a 90nm CMOS process while incurring a speed penalty

of less than 5%. This technique is further extended to provide a timing-sensitive

version of the CAD flow to vary the speed penalty according to the criticality of

each logic block.

Secondly, a new technique for leakage power reduction in FPGAs based on the

use of input dependency is developed. Both subthreshold and gate leakage power

iii

are heavily dependent on the input state. In FPGAs, the effect of input dependency

is exacerbated due to the use of pass-transistor multiplexer logic, which can exhibit

up to 50% variation in leakage power due to the input states. In this thesis, a new

algorithm is proposed that uses bit permutation to reduce subthreshold and gate

leakage power dissipation in FPGAs. The bit permutation algorithm provides an

average leakage power reduction of 40% while having less than 2% impact on the

performance and no penalty on the design area.

Thirdly, an accurate probabilistic power model for FPGAs is developed to quan-

tify the savings from the proposed leakage power reduction techniques. The pro-

posed power model accounts for dynamic, short circuit, and leakage power (includ-

ing both subthreshold and gate leakage power) dissipation in FPGAs. Moreover,

the power model accounts for power due to glitches, which accounts for almost

20% of the dynamic power dissipation in FPGAs. The use of probabilities in the

power model makes it more computationally efficient than the other FPGA power

models in the literature that rely on long input sequence simulations. One of the

main advantages of the proposed power model is the incorporation of spatial cor-

relation while estimating the signal probability. Other probabilistic FPGA power

models assume spatial independence among the design signals, thus overestimating

the power calculations. In the proposed model, a probabilistic model is proposed

for spatial correlations among the design signals. Moreover, a different variation is

proposed that manages to capture most of the spatial correlations with minimum

impact on runtime. Furthermore, the proposed power model accounts for the input

dependency of subthreshold and gate leakage power dissipation. By comparing the

proposed power model to HSpice simulation, the estimated power is within 8% and

is closer to HSpice simulations than other probabilistic FPGA power models by an

average of 20%.

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisors Prof. Mohamed

Elmasry and Dr. Mohab Anis for their guidance and expertise. Without their

knowledge and support, this work would not have been possible. I would also like

to thank Prof. Farid Najm, Prof. Anthony Vannelli, Prof. Catherine Gebotys, and

Prof. John Vanderkooy for reviewing this work as well as their valuable comments

to make the thesis come out in this current form.

I am also grateful to Prof. Andrew Kennings who first introduced me to FPGA

CAD design in the ECE647, which was one of the most interesting courses I at-

tended during my study at Waterloo. I am thankful to Prof. James Barby, whose

guidelines in teaching and course management will always be in mind if I ever get

the chance to teach a course in the future.

I have been fortunate to work with many wonderful people in the VLSI research

group in the University of Waterloo. I am thankful to all of them for their time

and ideas that made this work more productive and my time spent at Waterloo

memorable. I always remember the funny as well as informative discussions I used

to have with some of my friends in the lab, including Ayman Hassan, Mohamed

Abu Rahma, and Mohamed Elsaid. During my PhD studies in the University of

Waterloo, I interacted with a wide group of interesting people that will always be

my friends, including, Mohamed El-Abd, Shady Hassan, and Hatem Elbehiry.

I would like to thank Dr. Nizar Abdallah and Dr. Julien Dunoyer of Actel Corp.

for their valuable discussion and support during my visit to Actel headquarters in

2007.

Moreover, I would like to express my deepest gratitude to my parents for going

through so much in supporting my academic choices, even though it meant being

away from them. Finally, I am deeply thankful to my wife who joined and supported

me in the final and rough stages of this journey. I really appreciate her support

during my defense exam.

v

Contents

List of Tables xi

List of Figures xii

List of Algorithms xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Contributions . 2

1.3 Thesis Organization . 3

2 FPGA Overview: Architecture and CAD 4

2.1 Introduction . 4

2.2 FPGA Logic Resources Architecture 5

2.2.1 Altera Stratix III Logic Resources 6

2.2.2 Xilinx Virtex-5 Logic Resources 6

2.2.3 Actel ProASIC3/IGLOO Logic Resources 8

2.3 FPGA Routing Resources Architecture 8

2.4 CAD for FPGAs . 9

2.4.1 Logic Synthesis . 10

2.4.2 Packing . 10

2.4.3 Placement . 11

2.4.4 Timing Analysis . 12

vi

2.4.5 Routing . 13

2.5 Versatile Place and Route (VPR) CAD Tool 13

2.5.1 VPR Architectural Assumptions 14

2.5.1.1 VPR Logic Architecture 14

2.5.1.2 VPR Routing Resources Architecture 15

2.5.2 Basic Logic Packing Algorithm: VPack 17

2.5.3 Timing-Driven Logic Block Packing: T-VPack 19

2.5.4 Placement: VPR . 20

2.5.5 Routing: VPR . 22

2.5.5.1 Routability-Driven Router 22

3 Leakage Power in Modern FPGAs 23

3.1 Dynamic Power Reduction Techniques in FPGAs 23

3.2 CMOS Technology Scaling Trends and Leakage Power in VLSI Circuits 24

3.3 CMOS Devices Leakage Mechanisms 27

3.4 Current Situation of Leakage Power in Nanometer FPGAs 28

3.5 Leakage Power Reduction Techniques in FPGAs 29

3.5.1 Leakage Power Reduction in the Logic Blocks 29

3.5.2 Leakage Power Reduction in Routing Circuitry 31

3.6 Power Reduction Techniques in Commercial FPGAs 33

3.6.1 Altera Stratix III Power Reduction Techniques 33

3.6.2 Xilinx Virtex-5 Power Reduction Techniques 34

3.6.3 Actel IGLOO Power Reduction Techniques 34

4 Power Estimation in FPGAs 35

4.1 Introduction . 36

4.2 Power Estimation in VLSI: An Overview 37

4.2.1 Simulation-Based Power Estimation Techniques 37

4.2.2 Probabilistic-Based Power Estimation Techniques 39

vii

4.3 A Survey of FPGA Power Estimation Techniques 41

4.3.1 Commercial FPGA Power Estimation Techniques 44

4.3.1.1 Spreadsheet Power Estimation Tools 44

4.3.1.2 CAD Power Estimation Tools 45

4.4 Spatial Correlation and Signal Probabilities Calculations 45

4.5 Exploration Phase: Locating Spatial Correlation 46

4.6 Proposed Signal Probabilities Calculation Algorithm Under Spatial

Correlation . 47

4.7 Power Calculations due to Glitches 51

4.8 Signal Probabilities and Power Dissipation 52

4.8.1 Dynamic Power Dissipation 53

4.8.2 Leakage Power Dissipation 54

4.8.3 Gate Leakage Power Dissipation 56

4.9 Results and Discussions . 56

4.10 Conclusion . 65

5 Leakage Power Reduction in FPGAs Using MTCMOS Techniques 66

5.1 Introduction . 66

5.2 MTCMOS FPGA Architecture . 69

5.3 Sleep Transistor Design and Discharge Current Processing 72

5.3.1 Sleep Transistor Sizing . 72

5.3.2 Mutually Exclusive Discharge Current Processing 75

5.3.3 Logic-Based Discharge Current Processing 76

5.3.4 Topological Sorting and Discharge Current Addition 77

5.4 Activity Profile Generation . 80

5.4.1 Connection-based Activity Profile Generation Algorithm (CAP) 82

5.4.2 Logic-based Activity Profile (LAP) Generation 86

5.4.2.1 Activity Vectors 86

5.4.2.2 Hamming Distance: A Measure of the Correlation

Between Activity Profiles 88

viii

5.4.2.3 The LAP Algorithm Operation 89

5.4.2.4 Reverse Logic Activity Profile (R-LAP) Generation

Algorithm . 91

5.5 Activity Packing Algorithms . 93

5.5.1 Activity T-VPack (AT-VPack) 93

5.5.2 Force-based Activity T-VPack (FAT-VPack) 95

5.5.3 Timing-Driven MTCMOS (T-MTCMOS) AT-VPack 96

5.6 Power Estimation . 97

5.7 Results and Discussions . 98

5.7.1 Experimental Setup . 99

5.7.2 Algorithms Comparison . 100

5.7.3 Impact of Activity Packing on Performance 101

5.7.4 Leakage Savings Breakdown 104

5.7.5 Impact of Utilization and ON Time on Leakage Savings . . . 105

5.7.6 Impact of the Sleep Region Size 107

5.7.7 Scalability of the Proposed Algorithms with Technology Scaling107

5.8 Conclusions . 108

6 Leakage Power Reduction in FPGAs Through Input Pin Reorder-

ing 109

6.1 Leakage Power and Input State Dependency in FPGAs 110

6.1.1 Subthreshold Leakage Current 110

6.1.1.1 Drain Induced Barrier Lowering (DIBL) 111

6.1.1.2 Body Effect . 112

6.1.2 Gate Leakage . 113

6.1.3 Low-Leakage States in Pass-Transistor Multiplexers 113

6.1.4 Leakage Power in Inverters/Buffers 115

6.2 Proposed Input Pin Reordering Algorithm 115

6.2.1 Logic Pin Reordering (LPR) Algorithm 117

ix

6.2.1.1 Input Pins Padding 117

6.2.1.2 Input Pins Swapping 117

6.2.1.3 Most Probable States 119

6.2.1.4 Unutilized Logic Resources 120

6.2.2 Routing Switches Pin Reordering (RPR) Algorithm 121

6.2.2.1 Input Pins Padding 121

6.2.2.2 Most Probable States 121

6.2.2.3 Unutilized Routing Resources 122

6.3 Experimental Results . 122

6.3.1 Pin Reordering and Performance 124

6.3.2 Pin Reordering and Technology Scaling 126

6.4 Conclusion . 126

7 Conclusions and Future Work 129

7.1 Conclusions . 129

7.2 Future Work . 130

Bibliography 132

x

List of Tables

2.1 VPR temperature update schedule [28]. 21

3.1 Constant field scaling of the CMOS process. 26

3.2 FPGA leakage power for typical designs and design-dependent vari-

ations [48]. 28

4.1 Relative error in the switching activity from the proposed algorithm

when compared to [92]. 58

4.2 Relative error in the switching activity from the proposed algorithm

when compared to [92]. 58

4.3 Small benchmark circuits. 59

4.4 Percentage change in power estimation under spatial correlation when

compared to spatial independence. 62

5.1 Leakage power Savings for the different activity profile packing algo-

rithms across several FPGA benchmarks. 100

6.1 Leakage current in a minimum-sized inverter. 115

6.2 Leakage savings by the proposed pin reordering algorithm across

several FPGA benchmarks. 123

xi

List of Figures

2.1 Modern FPGA fabric. 5

2.2 Altera’s Stratix III ALM architecture [10]. 7

2.3 Xilinx’s Vertex-5 slice architecture [11]. 7

2.4 Actel’s ProASIC3/IGLOO VersaTile architecture [12]. 8

2.5 Routing resources in island-style FPGAs. 9

2.6 A typical FPGA CAD flow. 10

2.7 An example of packing. 11

2.8 Building blocks of SRAM programmable FPGAs used by VPR. . . 14

2.9 VPR BLE architecture. 15

2.10 VPR logic cluster architecture. 15

2.11 VPR FPGA routing architecture. chan width x = 1, chan width y

= 1, chan width io = 0.5, io rat = 2, Fc,input = 3, Fc,output = 1, and

Fc,pad = 2. 16

2.12 Switch topologies supported by VPR. 17

2.13 Packing LUTs and registers into BLEs [28]. 19

2.14 Adding a BLE to a cluster can decrease the number of used cluster

inputs [28]. 20

2.15 FPGA model assumed by the VPR placer. 21

3.1 Gate length scaling of CMOS technologies [1]. 25

3.2 Leakage power contribution to the total chip power [1]. 26

3.3 Leakage current mechanisms of deep submicron devices [46]. 27

3.4 VDD programmable low-power FPGA resources [49]. 30

xii

3.5 Programmable low-power routing switches [58]. 32

4.1 A circuit that exhibits spatial correlation through reconvergent paths. 46

4.2 A graph representation of the circuit in Figure 4.1. 47

4.3 A circuit that exhibits spatial correlation. 49

4.4 A 2:1 pass transistor logic multiplexer. 54

4.5 DIBL impact on subthreshold leakage in FPGA pass transistor devices. 55

4.6 Average relative error in estimating the signal probabilities under

spatial correlation by varying the number of cycles considered. . . . 59

4.7 Percentage error in estimating the signal probabilities under spatial

correlation when compared to HSpice versus the length of the input

sequence. 60

4.8 Percentage error in estimating the signal probabilities under spatial

independence when compared to HSpice versus the length of the

input sequence. 61

4.9 Percentage error between power estimated with and without spatial

correlation when compared to HSpice. 61

4.10 Average percentage change in power dissipation to account for spatial

correlation for different technology nodes. 64

4.11 Average percentage change in leakage power dissipation with and

without spatial correlation for different technology node. 64

4.12 Average percentage change in dynamic power dissipation with and

without spatial correlation for different technology node. 65

4.13 Percentage change in power dissipation between spatial correlation

and independence versus the cluster size. 65

5.1 MTCMOS architecture. (a) General MTCMOS architecture, (b)

Equivalent ST circuit in the active mode. 67

5.2 FPGA CAD flowchart. (a) Conventional VPR flowchart. (b) Pro-

posed CAD flowchart integrated in the VPR flow. 68

5.3 MTCMOS FPGA architecture. The logic blocks connected to one

sleep transistor are called sleep region. 69

5.4 MTCMOS-based FPGA fabric with sleep transistors. 71

xiii

5.5 Sleep transistor implementations. (a) NMOS footer. (b) PMOS

header. 71

5.6 Mutually exclusive discharge current processing. 75

5.7 Mutually exclusive discharge current processing. 76

5.8 Linear vector approximation of discharge current and logic-based

current vectors summation. 77

5.9 Different types of sleep regions. 78

5.10 Steps of the current feasibility check for a combinational connected

sleep region. (a) A is selected to be deleted, (b) A is ordered in the

first position and B and C are selected for deletion, (c) B and C are

ordered in the same position, (d) Final ordering, (e) Current vectors

summation . 79

5.11 Steps of the current feasibility check for a sequential connected sleep

region. (a) Both A and B are selected for deletion, (b) A and B are

ordered on the same position, with B an unconnected node and C is

marked for deletion, (c) C is ordered in the next position, (d) Final

ordering, (e) Current vectors summation. 80

5.12 Leakage power savings vs the maximum activity region capacity. . . 84

5.13 Average activity region size across several benchmarks vs. δ. 85

5.14 CAP activity generation flow for maxCap = 4 and δ = 0.2 85

5.15 A circuit example. 87

5.16 Speed penalty experienced in the different benchmarks due to the

use of sleep transistors. 102

5.17 ‘s298’ leakage savings vs maximum speed penalty for the R-LAP and

T-MTCMOS combination. 103

5.18 ‘s298’ leakage savings vs minimum speed penalty for the R-LAP and

T-MTCMOS combination. 103

5.19 Critical path distribution for timing-driven MTCMOS designs. . . . 104

5.20 Leakage power savings breakdown. 105

5.21 Percentage savings in power for different FPGA fabric utilizations

using the combination of R-LAP and T-MTCMOS. 106

xiv

5.22 Percentage savings in power for different utilizations and operational

time using the combination of R-LAP and T-MTCMOS. 106

5.23 Impact of the sleep region size on the leakage savings. 107

5.24 Impact of technology scaling on power savings. 108

6.1 DIBL effect in a 90nm CMOS process. 112

6.2 DIBL impact on subthreshold leakage in FPGA pass-transistor devices.112

6.3 Gate leakage dominant states in FPGA pass-transistor devices. . . . 113

6.4 Total leakage dominant states in FPGA pass-transistor devices. . . 114

6.5 Inputs to pass-transistors pairs. 114

6.6 Gate leakage dominant states in FPGA pass-transistor devices. . . . 116

6.7 VPR CAD flow with the proposed pin reordering algorithms. 116

6.8 Input padding for logic blocks with inputs less than the maximum. 118

6.9 Input pin swapping for logic blocks to minimize leakage power dissi-

pation. 119

6.10 Leakage savings breakdown in logic blocks. 123

6.11 Leakage savings breakdown in the routing resources. 124

6.12 Performance penalty due to the proposed algorithm. 125

6.13 Leakage savings to avoid affecting the performance. 125

6.14 Trading leakage savings to reduce critical path delay in RCP. 127

6.15 Leakage current vs. technology. 128

6.16 Total leakage dominant states in FPGA pass transistor devices. . . 128

xv

List of Algorithms

2.1 SA generic placer pseudocode. 12

2.2 VPack pseudocode [28]. 18

4.1 The exploration phase pseudocode used to identify reconvergent paths

in a circuit. 48

4.2 Probabilities calculation under spatial correlation algorithm. 50

5.1 Pseudocode of the proposed logic-based discharge current processing

algorithm. 81

5.2 Pseudocode of the proposed CAP algorithm. 86

5.3 Pseudocode of LAP. 91

5.4 Pseudocode of the proposed R-LAP. 93

5.5 Pseudocode for the AT-VPACK algorithm. 95

xvi

Chapter 1

Introduction

1.1 Motivation

Fueled by the increase in functionality and size of modern Field Programmable

Gate Arrays (FPGAs) , the market for FPGAs has witnessed a notable expansion

in the past few years. This increase in demand has pushed FPGA vendors to design

modern FPGAs using state-of-the-art CMOS technologies. Consequently, modern

FPGAs suffer greatly from the deep submicron issues that affected the ASIC indus-

try earlier along the technology scaling road. The biggest deep submicron challenge

that hurdles further expansions of the use of FPGAs in the VLSI industry is leak-

age power dissipation. In order for FPGAs to continue competing with the ASIC

industry, FPGA vendors must tackle this issue using architectural and/or CAD

techniques.

The continuous scaling of the CMOS process has attracted FPGA vendors to

integrate more and more devices on the same chip to increase the chip function-

ality. As a result, the power dissipation of modern FPGAs increased significantly.

Much of this increase in power dissipation is attributed to the increase in leakage

power dissipation which is expected to exceed 50% of the FPGA power dissipation

as modern FPGAs start using the 65nm CMOS process [1]. In addition, the exces-

sive scaling of the MOS gate oxide thickness tox resulted in a significant increase in

the gate oxide tunneling current, thus exacerbating the leakage problem. In recent

experiments, it was found that both the subthreshold and gate leakage power dis-

sipation increase by about 5X and 30X, respectively, across successive technology

generations [2].

Traditionally, FPGA vendors were concerned with performance and area opti-

1

mization to reduce the gap between FPGAs and ASIC designs. In the past few

years, a shift in the industry towards power optimization has been witnessed as

new power efficient FPGAs are introduced to the market. However, these power

efficient FPGAs are mainly concerned with dynamic power reduction. With the

expected dominance of leakage power dissipation, FPGA vendors are starting to

move towards developing low-leakage FPGA devices.

1.2 Thesis Contributions

This thesis will provide several CAD and architectural modifications to FPGA

designs to reduce the impact of leakage power dissipation on modern FPGAs.

Leakage reduction techniques have been applied in ASIC designs for the past few

years. One of the most successful techniques is the use of Multi-threshold CMOS

(MTCMOS). MTCMOS employs a high threshold voltage Vth (HVT) device, called

sleep transistor (ST), in a circuit that is made of low-Vth devices (LVT). Hence,

the design benefits from the high performance of the LVT devices and the reduced

leakage power dissipation of the HVT device. In this thesis, MTCMOS techniques

will be employed in FPGAs for leakage power reduction. Moreover, this architecture

will enable shutting down the unused or idle parts of the FPGA, thus reducing their

standby leakage significantly. Employing this technique in FPGAs requires several

changes to the FPGA architecture, including the placement of the sleep transistors;

location and connections to the sleep transistors, as well as the CAD design flow.

The packing and placement stages of the CAD flow will be changed to reflect the

addition of the sleep transistor and allow the possibility of turning OFF the idle

parts of the FPGA. Furthermore, a new step is added in the CAD flow to identify

the logic blocks that share common idleness periods so they can be collectively

turned OFF during their idle periods.

Leakage power is characterized by being significantly state dependent. Depend-

ing on the input vector, the leakage power dissipation can vary by about 50%. In

this thesis, a new methodology for leakage power optimization in FPGAs is pro-

posed that depends on the state dependency of leakage power. By varying the

order of the inputs to the logic blocks, the logic block leakage power is noticeably

reduced. Moreover, the algorithm changes the deign configuration to put the FPGA

components in the lowest leakage power mode.

In order to measure the leakage power savings from the proposed power op-

timization techniques, a newly proposed accurate power model for FPGAs is ex-

2

plained in this thesis. The power model takes into consideration the spatial corre-

lation among the design signals. In addition, the power model developed is very

flexible in terms of being able to estimate power dissipation in different FPGA

architectures.

1.3 Thesis Organization

This thesis is organized as follows: an overview of the architecture; logic and rout-

ing architecture, and CAD flow of FPGAs is presented in Chapter 2. Chapter 3

discusses the current status of leakage power dissipation in modern FPGAs as well

as some of the methods proposed in the literature to address power dissipation in

FPGAs. Chapter 4 presents the newly proposed accurate power modeling tech-

nique for FPGAs. The proposed MTCMOS implementation of FPGAs is discussed

in Chapter 5. The input reordering leakage power minimization methodology is

proposed in Chapter 6. Finally, this thesis is concluded in Chapter 7 and possible

future work is discussed.

3

Chapter 2

FPGA Overview: Architecture

and CAD

2.1 Introduction

Fueled by the increase in the time-to-market pressures, the rise in ASIC mask

and development costs, and increase in the Field Programmable Gate Arrays (FP-

GAs) performance and system-level features, more and more traditionally ASIC

designers are migrating their designs to programmable logic devices. Moreover,

programmable logic devices progressed both in terms of resources and performance.

The latest FPGAs have come to provide platform solutions that are easily customiz-

able for system connectivity, Digital Signal Processing (DSP), and/or data process-

ing applications. These platform building tools accelerate the time-to-market by

automating the system definition and integration phases of the System on Pro-

grammable Chip (SoPC) development.

The market of programmable logic devices is dominated by two main prod-

ucts; FPGAs and Complex Programmable Logic Devices (CPLDs). FPGAs mostly

employ a look-up table approach to implement logic functions, while CPLDs use

sum-of-products for logic implementation. Recently, FPGA vendors provided a

comprehensive alternative to FPGAs for large volume demands called structured

ASICs [3, 4]. Structured ASICs offer a complete solution from prototype to high-

volume production, and maintain the powerful features and high-performance ar-

chitecture of their equivalent FPGAs with the programmability removed. Struc-

tured ASIC solutions not only provide performance improvement, but also result

in significant high-volume cost reduction over FPGAs.

4

FPGAs consist of programmable logic resources embedded in a sea of pro-

grammable interconnects. The programmable logic resources can be configured

to implement any logic function, while the interconnects provide the flexibility to

connect any signal in the design to any logic resource. The programming technol-

ogy for the logic and interconnect resources can be Static Random Access Memory

(SRAM), flash memory [5], or antifuse [6, 7]. SRAM-based FPGAs offer in-circuit

reconfigurability at the expense of being volatile, while antifuse are write-once de-

vices. Flash-based FPGAs provide an intermediate alternative by providing recon-

figurability as well as non-volatility. The most popular programming technology in

state-of-the-art FPGAs is SRAM.

Traditionally, FPGAs consist of input/output pads, logic resources, and routing

resources. However, state-of-the-art FPGAs usually include embedded memory,

DSP blocks, Phase-Locked Loops (PLLs), embedded processors, and other special

feature blocks, as shown in Figure 2.1. These features allowed FPGAs to be an

attractive alternative for some SoPC designs. The next Sections shed light on some

of the available commercial FPGA architectures and FPGA CAD flow.

I/O

Pads

Logic

Resources

Routing

Resources

D
S
P

B
lo
c
k
s

Memory

Blocks

Special Feature

Blocks

Figure 2.1: Modern FPGA fabric.

2.2 FPGA Logic Resources Architecture

The logic blocks in FPGAs are responsible for implementing the functionality

needed by each application. Increasing the functional capability of the logic blocks

5

increases the number of logic functions that can be packed into it. Moreover, in-

creasing the size of logic blocks, i.e., increasing the number of inputs to each logic

block, increases the number of logic functions performed by each logic block as

well as improving the area/delay performance of the logic block [8]. However, this

comes on the expense of wasted resources because not all of the blocks will have all

of their inputs fully utilized.

Most commercial FPGAs employ look-up tables (LUTs) to implement the logic

blocks. A k-input LUT consists of 2k configuration bits in which the required truth

table is programmed during the configuration stage. The almost standard number

of inputs for LUTs is four, which was proven optimum for area and delay objectives

[9]. However, this number can vary depending on the targeted application by the

vendor. Moreover, modern FPGAs utilize a hierarchial architecture where every

group of basic logic blocks are grouped together into a bigger logic structure, logic

cluster. The remaining of this Section describes the programmable logic resources

in three of the most popular commercial FPGAs.

2.2.1 Altera Stratix III Logic Resources

The logic blocks in Altera’s Stratix III are called Adaptive Logic Modules (ALMs).

An 8-input ALM contains a variety of LUT-based resources that can be divided

between two adaptive LUTs [10]. Being adaptive, ALMs can perform the con-

ventional 4-input LUT operations as well as implementing any function of up to

6-inputs and some 7-input functions. Besides the adaptive LUTs, ALMs contain

two programmable registers, two dedicated full adders, a carry chain, a shared arith-

metic chain, and a register chain. Using these components, ALMs can efficiently

perform arithmetic and shift operations. A detailed view of an ALM is shown in

Figure 2.2. Every eight ALMs are grouped together to form a Logic Array Block

(LAB).

2.2.2 Xilinx Virtex-5 Logic Resources

The slice is the basic logic resource in Xilinx Virtex-5 FPGAs. Slices consist of

four LUTs, wide function multiplexers, and carry logic [11]. Figure 2.3 shows

the architecture of a typical Virtex-5 slice. The slices employ four 6-LUTs that are

capable of performing any 6-input logic function. Functions with up to 8-inputs can

be implemented using multiplexers to combine the output of two LUTs. Every two

interconnected slices are grouped together in a Configurable Logic Block (CLB) [11].

6

CLR

QD

CLR

QD

reg_chain_in labclk

reg_chain_out

adder0

adder1

6-input LUT

6-input LUT

Combinational ALUT0

Combinational ALUT1

carry_outshared_arith_out

To general or

local routing

To general or

local routing

To general or

local routing

To general or

local routing

carry_inshared_arith_in

dataf1

datae

datad

datac

datab

dataa

datae0

dataf0

Figure 2.2: Altera’s Stratix III ALM architecture [10].

Figure 2.3: Xilinx’s Vertex-5 slice architecture [11].

7

2.2.3 Actel ProASIC3/IGLOO Logic Resources

Actel ProASIC3/IGLOO FPGAs employ a flash-based architecture, instead of the

conventional SRAM-based FPGAs used by both Altera and Xilinx, to store the

configuration bits. The flash architecture provides the FPGAs with both reconfig-

urability and non-volatility. The ProASIC3/IGLOO FPGAs employ the VersaTile

3-input logic block that can implement any 3-input logic function as well as se-

quential functionality, as shown in Figure 2.4 [12]. Furthermore, the hierarchal

architecture is not employed in the ProASIC3/IGLOO FPGAs and the output of

each VersaTile can be directly routed to either the fast local lines or long routing

resources. Another interesting characteristic of the VersaTile is that it does not

adopt the conventional LUT architecture in FPGAs, as shown in Figure 2.4.

CLK

X2

CLR/

ENABLE

X1

CLR

XC

Data

X3 F2

YL

Figure 2.4: Actel’s ProASIC3/IGLOO VersaTile architecture [12].

2.3 FPGA Routing Resources Architecture

Routing resources in FPGAs can be divided into two components; segmented local

routing and dedicated routing . Segmented local routing is used to provide con-

nection among the logic blocks. As depicted in Figure 2.5, the segmented wires

are prefabricated in channels to provide programmable connections between switch

blocks, connection blocks, and logic blocks. The number of wires in one channel is

usually denoted by W [13].

8

Logic

Block

Programmable

Switch Block

Programmable

Connection Block

Long

Wire

Figure 2.5: Routing resources in island-style FPGAs.

The I/O of the logic blocks are dynamically connected to the segmented routing

channels on all four sides using connection blocks . The number of wires in each

channel to which a logic block pin can connect to is called the connection block

flexibility Fc. In addition, the switch blocks provide programmable connectivity

between the horizontal and vertical wires. The switch block flexibility Fs is defined

as the number of wires to which each incoming wire can connect to in a switch

block. The segment length of a certain wire segment is defined as the number of

logic blocks spanned by the routing wire. Modern FPGAs use a combination of

wires of different segment lengths to achieve the optimum performance in terms of

routability, delay, or both.

Dedicated routing is used for global signals that fan out to a large number

of logic blocks, e.g., clock and reset, thus providing low-skew. Moreover, some

commercial FPGAs employ PLLs and Delay-Locked Loops (DLLs) for further skew

reduction. Modern FPGAs have the flexibility to provide different clock domains

inside the FPGA to enable asynchronous designs.

2.4 CAD for FPGAs

FPGAs are implemented using a huge number of programmable switches that are

used to implement a certain logic function. The CAD tools of FPGAs transform

the design, entered either as a schematic or using a hardware description language,

9

to a stream of ‘1’s and ‘0’s that program the FPGA during the configuration time.

The flow chart in Figure 2.6 shows the different steps involved in the CAD flow for

a typical FPGA design.

Packing

Placement

Routing

Circuit

description

Logic Synthesis

FPGA configuration

file

Figure 2.6: A typical FPGA CAD flow.

2.4.1 Logic Synthesis

In the synthesis phase, the circuit description is converted to a netlist of basic logic

gates. This phase is usually divided into two different stages; logic optimization

and technology mapping [14–17].

Logic optimization is a technology-independent stage that involves simplifying

the logic function of the design without the use of any technology information. Any

redundant logic is removed at this stage. The optimized user circuit is then mapped

into LUTs and flip-flops in the technology mapping stage, where each k-bounded

logic function in the circuit is mapped into a k-LUT. This step resolves to finding

a set of k-feasible cuts that include all the nodes in the circuit in such a way to

minimize the delay, area, and/or power dissipation of the final implementation.

The process of technology mapping is often treated as a covering problem.

2.4.2 Packing

The packing phase converts the netlist of LUTs and flip-flops into a netlist of logic

blocks, as shown in Figure 2.7. The input netlist is converted into clusters of

10

logic blocks that can be mapped into the physical logic blocks of the FPGA. Most

packing algorithms minimize the number of resulting logic blocks, the number of

connections between them, and/or the delay along the critical path. The packing

algorithm has to consider the physical limitations of the actual logic blocks of the

FPGA in terms of the maximum number of LUTs in a logic block and the number

of distinct input signals and clocks a logic block has.

E

CB

D

A

E

E

B

A

C

Figure 2.7: An example of packing.

Packing algorithms can be categorized as either bottom-up [14, 18–20] or top-

down [21,22]. Bottom-up packing algorithms build each cluster individually around

a seed LUT until the cluster is full. However, top-down packing approaches parti-

tion the LUTs into clusters by successive circuit subdivision. Bottom-up algorithms

are much faster and simpler than top-down approaches because they only consider

local connections. However, this comes at the expense of solution quality.

2.4.3 Placement

In the placement phase, the packed logic blocks are distributed among the phys-

ical logic blocks in the FPGA fabric. Placement algorithms try to minimize the

delay along the critical path and enhance the resulting circuit routability. Avail-

able placement algorithms can be classified into three categories; min-cut [23, 24],

analytic [25, 26], and simulated annealing [27–29] based algorithms. Most of the

commercial placement tools for FPGAs employ simulated annealing-based algo-

rithms because of their flexibility to adapt to a wide variety of optimization goals.

11

Simulated annealing (SA) placement tools depend on the SA algorithm, which

is derived from the annealing process used to cool molten metals [30]. Initially, a

random initial placement for all the logic blocks is generated. Afterwards, pairs of

logic blocks are selected at random as candidates for swapping to improve the cost

function. If the swap results in a decrease in the cost function, it is directly allowed,

otherwise, it is only allowed with a probability that decreases as the algorithm

progresses, thus allowing less worsening swaps after every iteration. A pseudocode

for the SA placer is listed in Algorithm 2.1.

Algorithm 2.1 SA generic placer pseudocode.

S = RandomPlacement()

T = InitialTemperature()

while ExitCriterion() == False do

/* Outer loop */

while InnerLoopCriterion () == False do

/* Inner loop */

Snew = GenerateViaMove(S)

∆C = Cost(Snew) - Cost(S)

r = random(0,1)

if r < e−∆C/T then

S = Snew

end if

end while

T = UpdateTemp()

end while

2.4.4 Timing Analysis

Timing analysis [31] is used to guide placement and routing CAD tools in FPGAs

to: (1) determine the speed of the placed and routed circuit and (2) estimate the

slack of each source-sink connection during routing to identify the critical paths.

Timing analysis is usually performed on a directed graph representing the circuit,

where the nodes represent LUTs or registers and the edges represent connections.

The minimum required clock period of the circuit can be determined by a

breadth first search through the graph, starting from the primary inputs, to find

the arrival time at node i using the following relation

Tarrival(i) = max
∀j∈fanin(i)

{Tarrival(j) + delay(j, i)} , (2.1)

12

where delay(j, i) is the delay on the edge between j and i. The required time at

node i is calculated by a breadth-first search of the graph, starting from the primary

outputs, and using the following relation

Trequired(i) = min
∀j∈fanout(i)

{Trequired(j) + delay(i, j)} . (2.2)

Afterwards, the slack on the connection between node i and j is calculated as

slack(i, j) = Trequired(j)− Tarrival(i)− delay(i, j) . (2.3)

Connections with a zero slack are critical connections, while those with a positive

slack are non-critical ones that can be routed using longer routes.

2.4.5 Routing

The routing phase assigns the available routing resources in the FPGA to the dif-

ferent connections between the logic blocks in the placed design [28]. The objective

of a typical routing algorithm is to minimize the delay along the critical path and

avoid congestions in the FPGA routing resources. Generally, routing algorithms

can be classified into global routers and detailed routers . Global routers consider

only the circuit architecture without paying attention to the number and type of

wires available, while detailed routers assign the connections to specific wires in the

FPGA.

2.5 Versatile Place and Route (VPR) CAD Tool

The CAD flow used in this thesis is based on the Versatile Place and Route (VPR)

CAD tool. VPR is a popular academic placement and routing tool for FPGAs [28].

Moreover, VPR is the core for Altera’s Modeling Toolkit (FMT) CAD tool [32,33].

VPR is usually used in conjunction with T-VPack [18, 27], a timing-driven logic

block packing algorithm. VPR consists of two main parts; a placer and router

and an area and delay model. These two components interact together to find

out the optimum placement and routing that satisfies a set of conditions. This

Section describes the FPGA architecture supported by VPR as well as giving a

quick overview about the tool flow.

13

2.5.1 VPR Architectural Assumptions

VPR assumes an SRAM-based architecture, where SRAM cells hold the configura-

tion bits for all the pass-transistors multiplexers and tri-state buffers in the FPGA

in both logic and routing resources, as shown in Figure 2.8(a). The SRAMs used are

the six-transistor SRAM cell made of minimum size transistors, as shown in Figure

2.8(b). Moreover, an island-style FPGA is assumed by VPR, where the logic clus-

ters are surrounded by routing tracks from all sides. VPR uses an architecture file

to describe the underlying FPGA architecture used. The architecture file contains

information about the logic block size, wire segment length, connection topologies,

and other information used by VPR. The use of the architecture file allows VPR

to work on a wide range of FPGA architectures. However, there are some general

architectural assumptions made by VPR which are discussed in this Section.

SRAM SRAM

(a) Programmable switches and
tri-state buffers in VPR
FPGA architecture.

VDD

Load lines

for loading the values

during configuration

Q Q

Program line

To enable configuration

(b) Six-transistor SRAM circuit.

Figure 2.8: Building blocks of SRAM programmable FPGAs used by VPR.

2.5.1.1 VPR Logic Architecture

VPR targets the hierarchal or cluster-based logic architecture, where every N of

the smallest logic element, called Basic Logic Element (BLE), are grouped together

to a form a Cluster of Logic Blocks . Each BLE consists of a k-LUT, a D flip-flop

(DFF), and a 2:1 multiplexer (MUX), as shown in Figure 2.9. Such configuration

allows both the registered and unregistered versions of the output to be readily

14

available. Local routing resources are used to connect the BLEs inside each logic

cluster to each other and to the inputs/outputs of the logic cluster, as shown in

Figure 2.10. As noticed in Figure 2.10, not all of the BLE inputs are accessible

from outside. However, any of the BLEs inputs can be connected to any of the

BLEs outputs or any of the external inputs.

LUT DFF

2
:1
 M
U
X

.

.

.

Figure 2.9: VPR BLE architecture.

BLE (1)

BLE (1)

.

.

.
.
.
.

Output 1

Output N

k-inputs

I-inputs

.

.

.

Clock

Figure 2.10: VPR logic cluster architecture.

A logic cluster is defined in the architecture file by four main parameters: (1)

the size of its LUTs k, (2) the number of BLEs in the cluster N , (3) the number

of external inputs to the cluster I, and (4) the number of external clock inputs

Mclk. It should be noted that VPR assumes minimum-sized transistors are used to

implement the LUTs, as a result, the capacitances of these transistors are ignored.

However, VPR accounts for the capacitance of the internal routing tracks within

the logic cluster.

2.5.1.2 VPR Routing Resources Architecture

VPR divides the routing resources characterization into three categories: channel,

switch block, and wire parameters. The channel information specifies the channel

15

width and the connections between between the IO pads and logic blocks from one

side and the routing tracks from the other side. The channel width parameters

include the width of horizontal (chan width x) and vertical (chan width y) routing

channels, the width of the IO channel (chan width io), and the number of IO pads

that fit in one row or column of logic clusters (io rat). The connections between

the routing tracks and either the logic blocks or IO pads are defined by the number

of tracks connected to each logic block input (Fc,input) and output (Fc,output) and

the number of tracks connected to each IO pad (Fc,pad). As an example, Figure

2.11 shows a high-level view of a sample VPR FPGA routing model and the values

of the parameter used to describe the channel.

Logic

Clusters

I/O

Pads

Routing

Tracks

Logic

Cluster

Vertical

Channel

Horizontal

Channel

IO

Channel

Switch

Block

Connections

between the

tracks and logic

block input pin

Connections

between tracks

inside a switch

block

Connections

between the

tracks and logic

block ouput pin

Connections

between the IO

pads and the

tracks

Figure 2.11: VPR FPGA routing architecture. chan width x = 1, chan width y =

1, chan width io = 0.5, io rat = 2, Fc,input = 3, Fc,output = 1, and Fc,pad = 2.

Switch blocks are used to provide programmable connectivity between the hor-

izontal and vertical routing tracks, as shown in Figure 2.11. VPR characterizes

switch blocks by their resistance (R), input capacitance (Cin), output capaci-

tance (Cout), intrinsic delay (Tdel), connection flexibility (Fs), switch type (whether

buffered or not), and the switch block topology. The connection flexibility of a

switch is defined as the number of connections available for each pin to other pins on

the other sides of the switch. Figure 2.8(a) shows the unbuffered and buffered ver-

sions of the switch blocks supported by VPR. Four different topologies of switches

can be used within VPR: Disjoint [34], Universal [35], Wilton [36], and Imran [37],

16

as shown in Figure 2.12.

0 31 2

0 31 2

0

3

1

2

0

3

1

2

(a) Disjoint switch
block.

0 31 2

0 31 2

0

3

1

2

0

3

1

2

(b) Universal
switch block.

0 31 2

0 31 2

0

3

1

2

0

3

1

2

(c) Wilton switch
block.

0 31 2

0 31 2

0

3

1

2

0

3

1

2

(d) Imran switch
block.

Figure 2.12: Switch topologies supported by VPR.

Finally, VPR describes wire segments by: the usage frequency of the segment in

the FPGA (segment frequency), the number of logic clusters spanned by the wire

(segment length), the resistance (Rmetal) and capacitance (Cmetal) per unit length,

the switch type that connects the wire and logic clusters (opin switch), the switch

type that connects the wire with other wires (wire switch).

2.5.2 Basic Logic Packing Algorithm: VPack

VPack is a logic packing algorithm that converts an input netlist of LUTs and

registers into a netlist of logic clusters. The packing is done in a hierarchial manner

in two stages: packing LUTs and registers into BLEs and packing a group of N ,

or less, BLEs into logic clusters. The pseudocode for VPack is listed in Algorithm

2.2.

The first stage of VPack is a pattern matching algorithm that packs a register

and a LUT into one BLE when the output of the LUT fans out to only one register,

as shown in Figure 2.13. The second phase packs the BLEs into logic blocks to

achieve two objectives: (1) fill the logic clusters to their full capacity N and (2)

minimize the number of inputs to each cluster. These two objectives originate from

the two main goals of packing: area reduction and improving routability. Packing

starts by putting BLEs into the current cluster sequentially in a greedy manner

while satisfying the following hard constrains:

1. the number of BLEs must be less than or equal to the cluster size N ,

2. the number of externally generated signals, and used inside the cluster, must

be less than or equal to the number of inputs to the cluster I,

17

Algorithm 2.2 VPack pseudocode [28].

Let: UnclusteredBLEs be the set of BLEs not contained in any cluster

- C be the set of BLEs in the current cluster

- LogicClusters be the set of clusters (where each cluster is a set of BLEs)

UnclusteredBLEs = PatternMatchToBLEs (LUTs, Registers)

LogicClusters = NULL

while UnclusteredBLEs != NULL do

/* More BLEs to cluster */

C = GetBLEwithMostUsedInputs (UnclusteredBLEs)

while |C| < N do

/* Cluster is not full */

BestBLE = MaxAttractionLegalBLE (C, UnclusteredBLEs)

if BestBLE == NULL then

/* No BLE can be added to cluster */

break

end if

UnclusteredBLEs = UnclusteredBLEs - BestBLE

C = C ∪ BestBLE

end while

if |C| < N then

/* Cluster not full — try hill-climbing */

while |C| < N do

BestBLE = MINClusterInputIncreaseBLE (C, UnclusteredBLEs)

C = C ∪ BestBLE

UnclusteredBLEs = UnclusteredBLEs - BestBLE

end while

if ClusterIsIllegal (C) then

RestoreToLastLegalState (C, UnclusteredBLEs)

end if

end if

LogicClusters = LogicClusters ∪ C

end while

3. the number of distinct clock signals needed by the cluster must be less than

or equal to the number of clock inputs Mclk.

A seed BLE is selected for each cluster such that it has the maximum number of

inputs among the unclustered BLEs. Other unclustered BLEs B are attracted to

18

LUT

Reg.

(a)
LUT and register packing
into one BLE

LUT

Reg.

LUT

(b) LUT and register packing into two BLEs

Figure 2.13: Packing LUTs and registers into BLEs [28].

the cluster C in such a way as to maximize the attraction() objective function

Attraction(B) = |Nets(B) ∩NetsC| , (2.4)

where Nets(x) are the nets connected to BLE (or cluster) x. This process continues

until the cluster is filled to its maximum capacity N .

If the cluster does not reach its maximum capacity, but the number of inputs

used by the BLEs inside it reaches I, a hill-climbing stage is invoked. In this stage,

unclustered BLEs are added to the cluster in such a way to minimize the increase

in the number of inputs to the cluster, an example of that is depicted in Figure

2.14. This is achieved by minimizing the following cost function

∆cluster inputs(B) = |Fanin(B)| − |Nets(B) ∩Nets(C)| . (2.5)

It is worth mentioning that the hill-climbing stage allows violating the number of

inputs constraint while executing, but does not permit violating the clock inputs

constraint. The hill-climbing phase terminates when the cluster size reaches N . If

the cluster is infeasible, i.e., its inputs are more than I, the algorithm retracts to

the last feasible cluster. Afterwards, VPack selects a new seed BLE and constructs

a new cluster.

2.5.3 Timing-Driven Logic Block Packing: T-VPack

T-Vpack [18, 27] is a modified version of the VPack algorithm that attempts to

minimize the number of inter-cluster connections along the critical path, besides

packing the clusters to their maximum capacity. This achieves speed up along the

critical path as local interconnects (intra-cluster connections) are faster than inter-

cluster interconnects. T-VPack employs a timing analyzer to calculate the slack

19

BLE BLE

a b c

d e

BLE

a b

c

BLE BLE

a b

d e

BLE

b

c

Add another BLE

Figure 2.14: Adding a BLE to a cluster can decrease the number of used cluster

inputs [28].

along the connections in the design and identify the critical path(s). The criticality

measure of a connection is calculated as

ConnectionCriticality(i) = 1− slack(i)

MaxSlack
, (2.6)

where MaxSlack is the largest slack in the circuit.

In T-VPack, the BLE with the highest criticality, i.e., the BLE connected to

the nets with the highest ConnectionCriticality, is selected as the seed BLE for

the cluster. Afterwards, BLEs are attracted to the cluster to maximize a modified

version of the Attraction() function in Eq. (2.4), given by

Attraction(B) = λ× Criticality(B) + (1− λ)× Nets(B) ∩Nets(C)

MaxNets
, (2.7)

where MaxNets is and λ is Criticality(B)

2.5.4 Placement: VPR

VPR models that the FPGA as a block array of logic clusters bounded by routing

tracks, as shown in Figure 2.15. Simulated Annealing (SA) is used as the opti-

mization algorithm for placement in VPR using an adaptive annealing schedule to

adapt to the current placement at any time instant.

The initial temperature is selected from the basic features of the circuit. Assume

that the total number of logic clusters in the design is Nclusters. After the initial

random placement is evaluated, Nclusters pairwise swaps are performed and the

initial temperature is calculated as 20 times the standard deviation of the cost of

the different Nclusters combinations evaluated. Moreover, the number of inner moves

20

Logic

Clusters

I/O

Pads
Routing

Channels

Figure 2.15: FPGA model assumed by the VPR placer.

performed at each temperature is evaluated as

MovesPerTemperature = InnerNum×N
4/3
clusters , (2.8)

where InnerNum is a constant and usually set to 10.

Another feature of the adaptive SA algorithm used in VPR is the way the

temperature is updated. In conventional SA, almost all of the moves are accepted at

high temperatures, while at low temperatures, only improving moves are accepted.

In the adaptive SA [28], the cooling scheme tries to prolong the time spent in

these cost improving temperatures (medium and low temperatures) at the expense

of possibly cost worsening temperatures (high temperatures) using the following

temperature update relationship

Tnew = γ × Told , (2.9)

where γ is evaluated with respect to the percentage of moves accepted (α), according

to Table 2.1.

Table 2.1: VPR temperature update schedule [28].

α γ

0.96 < α 0.5

0.8 < α ≤ 0.96 0.9

0.15 < α ≤ 0.8 0.95

α ≤ 0.15 0.8

21

2.5.5 Routing: VPR

VPR incorporates two different routing algorithms; a routability-driven router and

a timing-driven router.

2.5.5.1 Routability-Driven Router

The VPR routability-driven router is based on the Pathfinder algorithm [38]. The

Pathfinder algorithm repeatedly rips-up and re-routes every net in the circuit dur-

ing each routing iteration until all congestions are removed. Initially, all nets are

routed to minimize the delay, even if this results in congestion. Afterwards, routing

iterations are applied to overused routing resources to resolve such congestions. In

VPR, the cost of using a routing resource n when it is reached by connecting it to

routing resource m is given by

Cost(n) = b(n)× h(n)× p(n) + BendCost(n,m) , (2.10)

where b(n), h(n), and p(n) are the base cost, historical congestion, and present

congestion, respectively. b(n) is set to the delay of n, delay(n). h(n) is incremented

after each routing iteration in which n is overused. p(n) is set to ‘1’ if routing the

current net through n will not result in congestion and increases with the amount

of overuse of n. The BendCost(n,m) is used to penalize bends in global routing to

improve the detailed routability.

2.5.5.1.1 Timing-Driven Router

The timing-driven router in VPR is based on the Pathfinder, but timing information

is considered during every routing iteration. Elmore delay models are used to

calculate the delays, and hence, timing information in the circuit. In order to

include timing information, the cost of including a node n in a net’s routing is

given by

Cost(n) = Crit(i, j)× delay(n, topology) + [1− Crit(i, j)]× b(n)× h(n)× p(n) ,

(2.11)

where a connection criticality Crit(i, j) is given by

Crit(i, j) = max

{[
MaxCrit− slack(i, j)

Dmax

]η

, 0

}
, (2.12)

where Dmax is the critical path delay and η and MaxCrit are parameters that

control how a connection’s slack impacts the congestion-delay tradeoff in the cost

function.

22

Chapter 3

Leakage Power in Modern FPGAs

The tremendous growth of the semiconductor industry in the past few decades is

fueled by the aggressive scaling of the semiconductor technology following Moore’s

Law. As a result, the industry witnessed an exponential increase in the chip speed

and functional density with a significant decrease in power dissipation and cost per

function [39]. However, as the CMOS devices enter the nanometer regime, leakage

current is becoming one of the main hurdling blocks to Moore’s law. According to

Moore himself, the key challenge for continuing process scaling in the nanometer

era is leakage power reduction [40]. Thus, circuit designers and CAD engineers

have to work hand in hand with device designers to deliver high-performance and

low-power systems for future CMOS devices.

In this Chapter, the leakage power problem is discussed in the VLSI industry

in general and in FPGAs in particular. Moreover, the proposed techniques in the

literature to combat both dynamic and leakage power dissipation in FPGAs are

presented and their advantages and disadvantages are discussed.

3.1 Dynamic Power Reduction Techniques in FP-

GAs

Most of the low-power design techniques proposed for FPGAs targeted dynamic

power dissipation. These works were motivated by the fact that dynamic power

dissipation constituted most of the power dissipation in old CMOS technologies,

180nm and before. In [41], a hierarchal interconnect architecture is proposed to

reduce dynamic power dissipation in the interconnect multiplexers. The basic idea

23

behind this work was to reduce the capacitance of the interconnects by reducing

the number of wire segments connected to each switch box. Moreover, the authors

proposed the use of lower supply voltage to reduce the total power dissipation.

A low swing signalling scheme was proposed in [42] for FPGAs for total power

reduction. The authors used level converters at both sides of long interconnects

that reduces the voltage of the transmitted signal. Moreover, the authors proposed

a symmetric mesh architecture for the FPGA interconnects that reduces the total

wire capacitance.

An efficient power-aware CAD flow was implemented in [43]. The authors in-

troduced power figures of merits to the cost function at every level of the FPGA

CAD design flow. The main idea of the work is to minimize the capacitance of

signals with high switching activity. In the technology mapping phase, the au-

thors include the switching activity of the feasible cuts evaluated during mapping.

The clustering phase tries to cluster the logic blocks connected to a high activity

net together to reduce the net capacitance. Similarly, during the placement stage,

clusters connected to high activity nets are placed close to each other.

A power-aware technology mapping methodology for FPGAs was proposed in

[44] that aims to keep nets with high switching activity out of the FPGA routing

network and takes an activity-conscious approach to logic replication. As result,

the wire capacitance of high activity nets is reduced significantly.

A methodology to reduce glitching power in FPGAs was proposed in [45] that

relies on adding extra programmable delays to balance path delays. By adding extra

delays to nets with positive slacks, the authors managed to equalize the delays at

most of the inputs to each logic block in the design. As a result, glitching power is

reduced to almost zero.

3.2 CMOS Technology Scaling Trends and Leak-

age Power in VLSI Circuits

The main driving forces that govern the CMOS technology scaling trend are the

overall circuit requirements; the maximum power dissipation, the required chip

speed, and the needed functional density. The overall device requirements such

as the maximum MOSFET leakage current, minimum MOSFET drive current,

and desired transistor size are determined to meet the overall circuit requirements.

Similarly, the choices for MOSFET scaling and design, including the choice of

24

physical gate length Lg and equivalent oxide thickness of the gate dielectric tox,

etc., are made to meet the overall device requirements. Figure 3.1 depicts the

scaling trend for the CMOS feature size across several technology generations as

well as some future predictions according to the semiconductor roadmap published

by the International Technology Roadmap for Semiconductors (ITRS) [1].

180
130

90
65 45 32 22

250

350

500

0

100

200

300

400

500

600

1993 1995 1997 1999 2001 2004 2007 2010 2013 2016

Year

F
ea

tu
re

 S
iz

e
(n

m
)

Figure 3.1: Gate length scaling of CMOS technologies [1].

There are two common types of scaling trends in the CMOS process: constant

field scaling and constant voltage scaling. Constant field scaling yields the largest

reduction in the power-delay product of a single transistor. However, it requires

a reduction in the power supply voltage as the minimum feature size is decreased.

Constant voltage scaling does not suffer from this problem, therefore, it provides

voltage compatibility with older circuit technologies. The disadvantage of constant

voltage scaling is that the electric field increases as the minimum feature length is

reduced, resulting in velocity saturation, mobility degradation, increased leakage

currents, and lower breakdown voltages. Hence, the constant field scaling is the

most widely used scaling approach in the CMOS industry. Table 3.1 summarizes

the constant field scaling in the CMOS process.

In order to maintain the switching speed improvement of the scaled CMOS

devices, the threshold voltage VTH of the devices is also scaled down to maintain

a constant device overdrive. However, decreasing VTH results in an exponential

increase in the subthreshold leakage current,

ID ∝ 10
VGS−VTH+ηVDS

S , (3.1)

where S = nkT
q

ln10. Moreover, as the technology is scaled down, the oxide thickness

tox is also scaled down, as shown in Table 3.1. The scaling down of tox results in

an exponential increase in the gate oxide leakage current.

25

Table 3.1: Constant field scaling of the CMOS process.
Parameter Symbol Constant Field Scaling

Gate Length L 1/α

Gate Width W 1/α

Field ε 1
Oxide Thickness tox 1/α

Substrate Doping Na α

Gate Capacitance CG 1/α

Oxide Capacitance Cox α

Circuit Delay td 1/α

Power Dissipation Pd 1/α2

Area A 1
Power Density P/A 1

As a result of the continuous scaling of VTH and tox, the contribution of the

total leakage power to the total chip power dissipation is increasing notably. The

contribution of leakage power is expected to exceed 50% of the total chip power by

the 65nm CMOS process [1], as shown in Figure 3.2.

N
o
rm

a
liz

e
d
 P

o
w

e
r

Year

1990 1995 2000 2005 2010 2015 2020

0.0000001

0.0001

0.01

1

100

500 350 250 180 130 90 65 45 22

Technology Node (nm)

Dynamic Power

Leakage Power

Figure 3.2: Leakage power contribution to the total chip power [1].

26

3.3 CMOS Devices Leakage Mechanisms

There are six short-channel leakage current mechanisms in CMOS devices. Figure

3.3 summarizes the leakage current types that affect state-of-the-art CMOS devices

[46]. I1 is the reverse-bias pn junction leakage; I2 is the subthreshold leakage; I3

is the oxide tunneling current; I4 is the gate current due to hot-carrier injection;

I5 is the Gate Induced Drain Leakage (GIDL); and I6 is the channel punchthrough

current. Currents I2, I5, and I6 are OFF-state leakage currents, while I1 and I3

occur in both ON and OFF states. I4 can occur in the OFF state, but more

typically occurs during the transistor transition [46]. The main sources for leakage

power dissipation in current CMOS technologies are the subthreshold leakage and

gate oxide leakage currents.

Gate

Source Drain

n
+

n
+

p-well

I3,I4

I2
I1

I5

body

I6

Figure 3.3: Leakage current mechanisms of deep submicron devices [46].

There are two main components for the reverse-bias pn junction leakage I1;

minority carrier diffusion/drift near the edge of the depletion region and electron-

hole pair generation in the depletion region of the reverse-biased junction. I2 flows

between the source and drain in a MOSFET when the gate voltage is below Vth.

I3 occurs by electrons tunneling from the substrate to the gate and also from the

gate to the substrate through the gate oxide layer. I4 occurs due to electrons or

holes gaining sufficient energy from the applied electric field to cross the interface

potential barrier and enter into the oxide layer. I5 is due to the high field effect in

the drain junction of the MOSFET. Because of the proximity of the drain and the

source, the depletion regions at the drain-substrate and source-substrate junctions

extend into the channel. Channel length reduction and the increase in the reverse

bias across the junctions push the junctions nearer to each other until they almost

merge, thus leading to the punchthrough current I6.

27

Out of these six different leakage current mechanisms experienced by current

CMOS devices, subthreshold and gate leakage currents are the most dominant

leakage currents. Furthermore, the contribution of subthreshold leakage current to

the total leakage power is much higher than that of gate leakage current, especially

at above room temperature operating conditions. The contribution of gate leakage

current to the leakage power dissipation is expected to increase significantly with the

technology scaling, unless high K materials are introduced in the CMOS fabrication

industry [1].

3.4 Current Situation of Leakage Power in Nanome-

ter FPGAs

For FPGAs to support reconfigurability, more transistors are used than those used

in an ASIC design that performs the same functionality. Consequently, leakage

power dissipation in FPGAs is higher than that in their ASIC counterpart. It was

reported in [47] that on average, the leakage power dissipation in FPGA designs

is almost 5.4 times that of their ASIC counterparts under worst-case operating

conditions. The excess leakage power dissipated in FPGAs is mainly due to the

programming logic that is not present in ASIC designs.

A study of the leakage power dissipation in a 90nm CMOS FPGA was performed

in [48], of which the results are summarized in Table 3.2. By comparing the average

leakage power dissipation of a typical 90nm CMOS FPGA at 25◦C and 85◦C, it

can be seen that the average leakage power increases by four times. Moreover, the

results in the first column are for a utilization of 75%, hence, the leakage power

dissipation for a 1,000 CLB FPGA would be in the range of 4.2mW. If these FPGAs

are to be used in a wireless mobile application, which has a typical leakage current

of 300µA, then the maximum number of CLBs that can be used would be 86 CLBs

for the 25◦C and 20 CLBs for the 85◦C.

Table 3.2: FPGA leakage power for typical designs and design-dependent variations

[48].

T
Typical PLEAK Best-Case Worst-Case

(avg. input data; UCLB = 75%) input data input data
25◦C 4.25µW/CLB -12.8% +13.0%
85◦C 18.9µW/CLB -31.1% +26.8%

28

In addition, the dependance of leakage on the input data increases significantly

with the temperature. This can be deduced from Table 3.2 as the variation due to

the worst and best cases input vectors change from ±13% at 25◦C to about ±28%

at 85◦C. Furthermore, in another experiment conducted in [48], it was found out

that for a 50% CLB utilization, 56% of the leakage power was consumed in the

unused part of the FPGA. Hence, in future FPGAs these unused parts have to be

turned down to reduce this big portion of leakage power dissipation.

3.5 Leakage Power Reduction Techniques in FP-

GAs

With the increasing contribution of leakage power to the total power dissipation,

leakage power started to take a front seat in FPGAs power reduction. In this

Section, a survey of the leakage reduction techniques in FPGAs proposed in the

literature is presented.

3.5.1 Leakage Power Reduction in the Logic Blocks

In [49], a dual-VDD power reduction approach for FPGA logic and routing resources

is proposed. The buffers in the FPGA fabric have the flexibility to either connect

to a high or a low VDD depending on the criticality of the net. Nets with high

criticality are routed through logic and routing resources controlled by high-VDD

switches and less critical nets are routed through low-VDD resources. Thus, in each

LUT, the designer can select either of the two VDDs according to the performance

requirements. In addition, some of the logic elements can be hardwired directly

to either of the supply lines. Figure 3.4 shows the different logic blocks available

(Figure 3.4(a) high-VDD block H-Block, Figure 3.4(b) low-VDD block L-Block, and

Figure 3.4(c) programmable-VDD block P-Block).

The CAD flow that makes use of the proposed architecture is developed to

efficiently select the values of the dual supply voltage, as pre-defined VDD values

were not used to increase the power savings. Furthermore, a level converter is used

to transform the output of a low-VDD LUT to the high VDD value to avoid short

circuit power dissipation. The average power savings achieved from this approach is

about 14%. This approach suffers from the complexity of finding the correct value of

the low-VDD during each configuration. Moreover, the use of level converters adds

29

Logic

Block

High-VDD

(a) H-Block

Logic

Block

Low-VDD

(b) L-Block

Logic

Block

High-VDD

Low-VDD

Config

Bit

Config

Bit

(c) P-Block

Figure 3.4: VDD programmable low-power FPGA resources [49].

a huge area and power penalty to the final design. This approach also requires

external circuitry to generate the two supply voltages needed.

The idea was further extended by the authors in [50] by including a two-bit

control for the VDD supply to enable power-gating for the unused FPGA resources.

By enabling power gating, the percentage power savings was increased to 50%.

Another extension for this methodology was presented in [51], where the authors

proposed a dual-Vt fabric in addition to the dual-Vdd. In this architecture, the

threshold voltage VTH of the pass transistors inside the LUT is lowered according

to the VDD to minimize the performance losses due to lowering VDD. The dual-Vdd

dual-Vt approach achieves an average power savings of 13.6% and 14.1% for com-

binational and sequential circuits, respectively. In addition to the above mentioned

issues for the dual-Vdd approach, the dual-Vt requires a double-well technology

to support body biasing, which is an expensive process. A similar approach for

leakage power dissipation was proposed in [52], where dual voltage is enabled by

the use of header and footer devices to change the LUT voltage supply.

In [53,54], an active leakage power reduction methodology was proposed for both

the logic blocks and the routing resources that use pass transistor multiplexers. The

main idea behind that work is that the amount of leakage current depends on the

inputs to the circuit. Hence, by manipulating the inputs, the unused parts of the

FPGA can be placed in a low-leakage state. Moreover, by utilizing the complement

of the signals, the authors managed to reduce the leakage of the used parts of the

FPGA. The static probabilities of the signals were used to estimate the dominant

states of the signals and then an optimization problem was developed to make

that dominant state a low-leakage one. The average active leakage power reduction

achieved by this method was 25% for a 90nm CMOS process.

30

In [55], a leakage reduction technique that depends on the use of sleep transistors

to switch off the power supply from the unutilized parts of the FPGA was proposed.

Moreover, the parts of the FPGA that exploit similar idleness periods are turned

on/off during runtime. The logic blocks with similar idleness profile are placed close

to each other in the FPGA fabric using a region constrained placement. However,

the authors of [55] did not provide a method to automatically identify these logic

blocks that have similar activity profiles. They resorted to a manual step, which in

turn is inappropriate to be included in a CAD flow. Moreover, during the placement

stage, the region constrained placement algorithm tries to place all those blocks with

the same activity profile right beside each other, irrespective of the connections

between these logic blocks and the other logic blocks that have a different activity

profile. This approach can seriously affect the delays of the placed design, especially

in designs with a large number of critical nets. Finally, the authors presented results

based on only one benchmark without considering the fact that the amount of power

saving depends on the benchmark used.

In [56], the authors proposed to use the unutilized pins inside the logic block to

reduce the glitching power inside the LUT. The methodology is based on forcing

the unused pins to constant values in such a way that glitches do not occur in

the pass-transistor multiplexer. Moreover, the authors also use the placement and

routing stages of the CAD flow to reduce the length of the wires that have transition

probabilities.

3.5.2 Leakage Power Reduction in Routing Circuitry

The ability to program and reprogram the FPGA results in a huge overhead in the

routing resources of the FPGA. As a result, the routing circuitry is the main source

of power dissipation in FPGAs. A number of recent studies reported that 60%-70%

of the total FPGA power dissipation is consumed in the routing resources [57].

In [58], two low leakage routing switch designs were proposed to operate in three

different modes; high-speed, low-speed, or sleep mode, as shown in Figure 3.5. The

main idea is based on the use of sleep transistors to block the supply voltage VDD

when the circuit is idle. The difference between the routing switches in Figure

3.5 is that the one in Figure 3.5(b) uses body biasing to change Vth of the PMOS

transistors by tieing their bodies to the virtual ground line VV D.

In the two configurations in Figure 3.5, both sleep transistors, MNX and MPX

are on when the circuit is operating in the high-speed mode, thus acting as a

31

~SLEEP LOW_POWER v SLEEP

VDD VDD

VVD

OUT

MPXMNX

(a)

~SLEEP LOW_POWER v SLEEP

VDD VDD

VVD

OUT

MPXMNX

(b)

Figure 3.5: Programmable low-power routing switches [58].

transmission gate and driving the circuit with a full rail-to-rail voltage. MPX is

turned off in the low-speed mode, while MNX is kept on, thus reducing the circuit

drive to VDD − Vth to GND and lowering its speed. In the low-speed mode, the

circuit power consumption, both dynamic and leakage power dissipation, is reduced.

In the sleep mode, both MNX and MPX are turned off, thus blocking the supply

from the circuit.

On average, the configuration in Figure 3.5(a) offers leakage and dynamic power

reduction in the low-power mode by 36-40% and 28%, respectively, while the leakage

reduction in the sleep mode is 61%. The routing switch in 3.5(b) reduces the

average leakage and dynamic power dissipation by 28-30% in the low-power mode

while offering a 36% area reduction.

In [57], the authors compared the pros and cons of several low-leakage tech-

niques available in the ASIC domain and their chances of being applied to the

FPGA domain. All of the leakage mitigation techniques were applied to the rout-

ing resources of the FPGA. The authors experimented with logic duplication in

the memory cells of the routing resources and and achieved a two-fold decrease in

leakage power dissipation with a 1.3X-2X increase in the FPGA area. A dual-Vt

design of the routing resources, where LVT devices are used to route critical nets

and HVT devices are used to route non-critical ones, achieved a leakage power re-

duction of 70% without any area penalty. Body biasing techniques, to change VTH

of the routing multiplexers pass transistors, achieved a 1.7X-2.5X leakage power

reduction, with an area increase of 1.6X-2X. However, body biasing techniques are

expensive, process wise, because of the need for an extra step during fabrication.

Gate biasing was also used to lower the VGS of the off devices below zero to mini-

32

mize their subthreshold leakage current, leakage current is proportional to VGS. A

2.5X-4X of leakage power reduction was witnessed by gate biasing with a negligible

area penalty.

In [59], the authors proposed a heterogenous routing structure, where the wire

lengths are varied and the devices used in the routing resources too are varied. A

combination of transistors with high-Vth, regular device, devices with long channel

lengths are used to trade off the final design performance with the leakage power

dissipation. The CAD flow identifies the signals with low criticality and forces

them to get rerouted to slower paths that use either high-Vth devices or devices

with longer channel lengths. A similar approach was proposed in [60], however,

only high-Vth devices were used.

3.6 Power Reduction Techniques in Commercial

FPGAs

In the past few years, FPGA vendors started adding power reduction techniques to

their commercial FPGAs. Most commercial FPGAs use SRAM cells with high-Vth

devices to limit the power dissipation in the configuration SRAM. In this Section,

the methodologies used in commercial FPGAs for power reduction in three of the

most popular FPGAs will be presented.

3.6.1 Altera Stratix III Power Reduction Techniques

The Stratix III devices are equipped with the ability to operate at two core voltages;

1.1V and 0.9V. The programmable power supply powers the logic and routing

resources, DSP blocks, memory blocks, and clock networks. However, the I/O pads

are kept operating at a fixed voltage of 1.1V. The ability to operate at a lower

supply voltage achieves both dynamic and leakage power dissipation since dynamic

power is proportional to the square of the supply voltage while leakage power is

proportional to the supply voltage.

In addition, the Stratix III devices offer supply voltage programmability inside

the core by giving the designers the flexibility to change the supply voltage of

individual logic blocks inside the device. In this case, performance is traded off

with power dissipation. However, this property is only available for the logic blocks,

thus limiting the power savings achieved. The main disadvantage of the dual core

33

devices is that two external supply voltages are needed, which does not make such

a device a strong choice in hand-held applications.

3.6.2 Xilinx Virtex-5 Power Reduction Techniques

The Virtex-5 devices use clock gating techniques for dynamic power dissipation

reduction. The logic blocks in the Virtex-5 devices have an enable control for

the input clock signals that can disable the clock when needed, thus reducing the

dynamic power dissipation. Moreover, the clock tree is also equipped with a control

to prevent further propagation of the clock signals when needed.

3.6.3 Actel IGLOO Power Reduction Techniques

A main advantage for IGLOO FPGAs is the use of flash for their configuration

bits, compared to SRAM used in Stratix III and Virtex-5. Flash power dissipation

is much lower than that of SRAM. Moreover, IGLOO devices are equipped with a

Flash Freeze technology that enables the user to put the whole FPGA in a standby

mode when needed. The Flash Freeze is programmable, so it can automatically

bring the deice up again when certain conditions are satisfied. This technology is

enabled by the non-volatile nature of the flash cells used in IGLOO. As a result,

IGLOO devices offer significant dynamic and leakage power dissipation.

34

Chapter 4

Power Estimation in FPGAs

With power dissipation posing as an important factor in the design phase of FPGAs,

power estimation and analysis techniques have become huge challenges for FPGA

vendors. Power characterization is an important step in designing power efficient

FPGA architectures and FPGA applications. Designers need a method to quantify

the power advantage of the architectural design decisions without having to go

through fabrication. Moreover, FPGA users need to check the power efficiency of

the several possible implementations without actually going through the lengthy

design phase.

Power models for FPGAs need to consider both components of power dissipa-

tion, dynamic and leakage power. To further improve the accuracy of the power

model, all the subcomponents of both dynamic power (switching, short circuit, and

glitch power), and leakage power (subthreshold and gate leakage power), need to

be accounted for. In addition, other factors that affect power dissipation, including

spatial correlation and input dependency of leakage power, should be considered,

especially in the sub-nanometer regime since their impact is highlighted as the

CMOS minimum feature size is scaled down.

In this Chapter, a newly proposed power estimation methodology under spatial

correlation for FPGAs is presented. Moreover, the proposed power estimation tech-

nique accounts for glitching power as well as the dependency of leakage power on

the input states. The Chapter starts by a quick introduction to the power estima-

tion problem in general in Section 4.1. An overview of the main research projects

that targeted power estimation in the VLSI in general and FPGAs in particular

is given in Sections 4.2 and 4.3, respectively. Section 4.4 describes the impact of

spatial correlation on power estimation. The proposed algorithms for power esti-

mation under spatial correlations and glitching power estimation are presented in

35

Sections 4.5 and 4.6 and Section 4.7, respectively. Section 4.8 describes the power

modeling strategy used in this work. Finally, the results and the discussions of this

Chapter are presented in Section 4.9.

4.1 Introduction

Modern CMOS processes suffer from two dominant sources of power dissipation;

dynamic and leakage power. Dynamic power dissipation can be divided into switch-

ing, glitch, and short circuit power dissipation, while leakage power dissipation can

be further divided into subthreshold leakage and gate leakage power dissipation.

Historically, CMOS circuits were dominated by dynamic power dissipation, how-

ever, by the 65nm CMOS process, leakage power is expected to dominate the total

power dissipation, as explained in Chapter 3. In addition, further down the scaling

road, gate leakage power is expected to surpass subthreshold power dissipation,

especially at lower operating temperatures, as predicted by the semiconductors

roadmap issued by the ITRS [1], unless high K materials are used to implement

the devices gates.

All sources of power dissipation in CMOS circuits exhibit significant state de-

pendency. In order to develop an accurate power model, accurate information

about signal probabilities needs to be available. Several works in the literature

have addressed this problem and a complete survey was presented in [61].

The switching component of the dynamic power dissipation is expressed as

Powerdyn =
1

2
× fclk × V 2

DD ×
n∑

i=1

Ci × αi , (4.1)

where fclk is the circuit clock frequency, VDD is the supply and swing voltage, Ci

is the capacitance of the ith node in the circuit, and αi is a measure of the number

of transitions per clock cycle experienced by node i. As a result, the problem of

switching power estimation resolves to finding the capacitance and measure of the

number of transitions at every node.

Glitching power occurs because of the spurious transitions at some circuit nodes

due to unbalanced path delays. Consequently, glitching power results in an increase

in the number of transitions at every circuit node that is susceptible to glitches.

Hence, the impact of glitching power can be modeled just by adding a factor to

the transitions estimate α in Eq. (4.1). Finally, short circuit power dissipation

is the power dissipated due the presence of a direct current path from the power

36

supply to the ground during the rise and fall times of each transition. Hence,

short circuit power is a function of the rise and fall times and the load capacitance.

Several research projects have been directed to provide an accurate estimate of

short circuit power dissipation [62–65]. However, the simplest method to account

for short circuit power dissipation is to set it as a percentage of the dynamic power

dissipation, usually 10% [66].

4.2 Power Estimation in VLSI: An Overview

The power estimation is defined as the problem of evaluating the average power

dissipation in a digital circuit [61]. Power estimation techniques fall into two main

categories: simulation-based or probabilistic-based approaches.

4.2.1 Simulation-Based Power Estimation Techniques

In simulation-based techniques, a random sequence of input vectors is generated and

used to simulate the circuit to estimate the power dissipation. The first approaches

developed were based on the use of SPICE simulations to simulate the whole circuit

using a long sequence of input vectors [67,68]. However, the use of such methods in

today’s VLSI industry is impractical, especially with the huge levels of integration

achieved, that it might take days if not weeks to simulate a complete chip using

SPICE. Moreover, these methods are significantly pattern dependent due to the use

of a random sequence of input vectors. If an intelligent method is used to select the

input sequence, these methods would provide the most accurate power estimation.

Several simplifications of these methodologies were proposed to reduce the com-

putational complexity of power estimation [69–72]. The methods still rely on simu-

lations, but instead of using SPICE simulations, other level of circuits simulations

were performed including switch-level and logic-based simulations. These method-

ologies trade accuracy for faster runtime. In order to perform these simulations,

the power supply and ground are assumed constant. However, these methods still

suffer from pattern dependency since there is a need to generate a long sequence

of input vectors to achieve the required accuracy. Although these simulations are

more efficient than SPICE simulations, yet they are somewhat impractical to use

for large circuits, especially if a long input sequence is used to increase the method

accuracy.

37

In order to solve the pattern dependency problem of simulation-based power

estimation methods, several statistical methods had been proposed [73–78]. These

statistical methods aim to quantify two parameters: the length of the input sequence

and the stopping criteria for simulation, required to achieve a predefined power

estimate accuracy.

The earliest of these studies focused on the use of Monte Carlo simulations

to estimate the total average power [73]. A random sequence of N input vectors

was independently generated and used to simulate the circuit. Let p̄ and s be the

average and standard deviation of the power measured over a time period T and

Pav is the average power. Hence, the error in the average power estimated can be

expressed with a confidence of (1− α)× 100% as

|p̄− Pav|
p̄

<
tα/2s

p̄
√

N
, (4.2)

where tα/2 is generated from the t-distribution with (N−1) degrees of freedom [73].

Hence, to tolerate a percentage error of ε, the required length of the input sequence

is expressed as [73]

N ≥
(

tα/2s

εp̄

)2

. (4.3)

An extension of this work was proposed in [74] to provide an estimate of the average

power dissipation in each gate instead of the whole circuit.

A disadvantage of the use of Eq. (4.3) is that the value of N can not be

estimated before simulation. In [75], the authors proposed a different formulation

of the required length on input vectors a priori to simulation. A single-rising-

transition approximation was adopted for circuits that do not experience glitches,

and the value of N for an error of ε and confidence of (1 − α) is approximated

by [75]

N ≈
z2
1−α/2

ε2
, (4.4)

where z2
1−α/2 is the 100× (1−α/2)th percentile of the standard normal distribution.

For circuits with glitches or large logic depths, N for an error of ε and confidence

of (1− α) is approximated by [75]

N ≈
4z2

1−α/2

49ε2
× (t + 1)2 , (4.5)

where t is the maximum number of transitions that the circuit can experience per

each input vector.

38

Another disadvantage with Eq. (4.3) is the large number of input vectors needed

to achieve the required accuracy, since it depends on the square of the sample

variance. Moreover, as the resulting power estimate deviates from the normal

distribution, the simulation might terminate early, thus compromising the accuracy

of the results. In [76,78], solutions for these two issues were proposed using a Markov

chain to generate the input sequence. The resulting sequences are more compact

than the ones used in [73] and provide a reduction in the simulation time by orders

of magnitude while keeping the estimated average power within 5%.

Another statistical method proposed in the literature to provide the needed

length for the input sequence is based on the least-square estimation methods [77].

The authors viewed the estimation problem of the input sequence as an approxi-

mation problem and explored the use of sequential least square and recursive least

square to solve the problem of finding the input sequence that has minimum vari-

ance and without making any probabilistic assumptions about the data. It was

reported in [77] that least square algorithms need much smaller number of itera-

tions, i.e., smaller input sequence, to provide a close estimate of the average power

dissipation to that of [73].

4.2.2 Probabilistic-Based Power Estimation Techniques

Probabilistic power estimation techniques have been proposed to solve the problem

of pattern dependency of simulation-based approaches. In these techniques, signal

probabilities are propagated through the circuit starting from the primary inputs

until the outputs are reached. These estimation techniques require circuit models

for probability propagation for every gate in the library.

The first ever probabilistic propagation model was proposed in [79]. In this

model, a zero-delay assumption was considered, under which the delay of all logic

gates and routing resources was assumed zero. The switching activity of node x was

defined as the probability that a transition occurs at x. The transition probability

of x, Pt(x) is calculated according to

Pt(x) = 2× Ps(x)× Ps(x̄) = 2× Ps(x)× [
1− Ps(x)

]
, (4.6)

where Ps(x) and Ps(x̄) are the probabilities that x = 1 and x = 0, respectively.

In adopting Eq. (4.6), the authors assume that the values of the same signal in

two consecutive clock cycles are independent, which is referred to as temporal inde-

pendence. Moreover, the signal probabilities at the primary inputs are propagated

39

into the circuit while assuming that all internal signals are independent. This as-

sumption is referred to as spatial independence. Furthermore, [79] ignores glitching

power since a zero delay model was adopted.

In [80], the authors proposed the use of the transition density to represent the

signal probabilities more accurately than the simple transition probability in Eq.

(4.6). The transition density is defined as the average number of transitions per

second at a node in the circuit. The transition density at node x, D(x), is given by

D(x) = lim
T→∞

nx(T)

T
, (4.7)

where nx(T) is the number of transitions within time T . The authors in [80] formu-

lated the relationship between the transition density and the transition probability

by

D(x) ≥ Pt(x)

Tc

, (4.8)

where TC is the clock cycle. Hence, the transition probability will always be less

than the transition density, thus underestimating the power dissipation. The tran-

sition density at node y with a set of inputs x0, x1, ..., xn is given by the following

set of relationships

D(y) =
n∑

i=1

P (
∂y

∂xi

)D(xi) , (4.9)

∂y

∂xi

, y|xi=1 ⊕ y|xi=0 , (4.10)

where ∂y
∂xi

is the boolean difference of y with respect to its ith input and ⊕ denotes

exclusive OR operation. In order to evaluate the boolean difference at each node,

the probabilities at each node need to be propagated through the whole circuit. It

should be noted that the use of (4.9) only provides a better estimate for the number

of transitions than the transition density given in Eq. (4.6) and this model still

suffers from both spatial and temporal independence assumptions.

In [81], the authors proposed the use of Binary Decision Diagrams (BDDs) to

account for spatial and temporal correlations. The regular boolean function of any

logic gate stores the steady-state value of the output given the inputs. However,

BDDs are used to store the final value as well as the intermediate states, provided

that circuit delays are available beforehand. As a result, such a probabilistic model

can predict the signal probabilities at each circuit node under spatial and temporal

correlation. However, this technique is computationally expensive and only practi-

cal for moderate-sized circuits. In addition, a BDD is required for every logic gate,

40

if some gates have a large number of intermediate states, then this technique might

become impractical even for medium-sized circuits.

Several other research projects have been proposed in the literature to handle

spatial and temporal correlations [82–87].

4.3 A Survey of FPGA Power Estimation Tech-

niques

Power modeling in FPGAs did not receive wide attention in the literature, espe-

cially for generic FPGA architectures. Several works that targeted specific FPGA

architectures includes [41, 48, 88–91]. These works are only applicable to one ar-

chitecture because they depend on the specific architecture details to extract the

power dissipation. Moreover, all of these works targeted only dynamic power es-

timation in FPGAs, except for [48] that provided an insight into leakage power

dissipation in a 90nm CMOS commercial FPGA. On the other hand, power dis-

sipation in general architecture FPGA has been targeted in a limited number of

research projects [92–96]. However, all of these research projects did not provide an

analytical methodology for estimating the effect of spatial correlation on the total

power dissipation.

In [41], a Xilinx XC4003ATM FPGA was used to study the power breakdown in-

side the FPGA. The power reported was the actual power measured recorded from

the physical FPGA itself. The authors of [88] introduced a technology dependent

empirical correction factor for dynamic power estimation in the Xilinx VirtexTM

FPGA. The factor introduced was used to adjust the switching activity estimated

through regular probabilistic analysis similar to [80]. The power dissipation in

the FPGA under consideration was physically measured for different benchmarks

and the power dissipation was calculated in a similar manner to [80] for the same

benchmarks. The ratio between the measured and estimated power values was cal-

culated as the correction factor for power estimation. The main reason for using

that correction factor is to account for the factors that affect power dissipation,

including temporal and spatial correlations, that are not captured in the proba-

bilistic calculations presented in [80]. It should be noted that this power estimation

methodology is heavily dependent on the benchmarks used to compute the value of

the correction factor as different types of benchmarks will result in different value

of the factor. It should be noted that both [41,88] do not account for leakage power

dissipation in the FPGA under consideration.

41

A model for dynamic power dissipation in Xilinx Virtex-IITM FPGAs was de-

scribed in [89]. The switching activity was estimated using logic simulation of some

practical input vectors obtained from the users. The different node capacitances

were evaluated from post-silicon capacitance extraction techniques. An extension

of this work was presented in [90], where the node capacitances were evaluated us-

ing simple RC models for the Xilinx Spartan-3TM FPGA. The methodology is still

simulation-based since it relies on logic-level simulation to find the node activities.

The power model proposed in [91] tries to predict accurate switching activities

in Xilinx FPGAs using curve fitting theories and empirical formulae. The main goal

of this work is to account for glitches in the transitions activity used in dynamic

power calculations. A prediction function was proposed to calculate the change in

transitions activity to account for glitching in the form of

PRi = α×GENi + β ×GEN2
i + γ × PROPi + υ × PROP2

i

+ν ×Di + ξ ×D2
i + η × PROPi ×GENi

+ι×GENi ×Di + ρ× PROPi ×Di + φ , (4.11)

where α, β, γ, υ, ν, ξ, η, ι, ρ, φ are scalar constants, GENi is a parameter used to

quantify the amount of glitches generated at node i, PROPi represents the amount

of glitch propagation at node i, and Di is a parameter to represent the depth

of node i. The authors used a commercial Xilinx Virtex-IITM PRO FPGA and

using a predefined input sequence and a commercial simulation tool, generated the

number of transitions experienced by every gate per clock cycle in several FPGA

benchmarks. Afterwards, using curve fitting theories, the constants in Eq. (4.11)

were evaluated.

Although the method proposed in [91] tries to formulate the impact of glitches

on dynamic power estimation in FPGAs, it has several drawbacks. Firstly, the

method is architecture dependent and can not be readily used to estimate dynamic

power dissipation in other FPGA architectures than the one used. Moreover, in

order to apply this method on a new architecture, the linear regression model needs

to be trained, hence, there is a need for a reference power estimator to train the

linear regression model. In addition, the model accuracy is heavily dependent on

the type of circuits used to evaluate the curve fitting parameters, which makes it

very susceptible to errors for the different circuit types.

A study of the leakage power dissipation in the CMOS 90nm Xilinx Virtex-

IITM FPGA was presented in [48]. The leakage power modeling was performed

using lookup tables of HSpice simulations. The leakage power for every input

42

vector measured, obtained using HSpice simulations, was recorded and used to

study the impact of the state dependency and utilization on FPGA leakage power

dissipation. The study showed that the input state dependency can vary leakage

power in modern FPGAs by about 60%. Moreover, a breakdown of leakage power

dissipation in the different parts of the FPGA was provided. It should be noted

that this study ignored the effect of signal correlations on leakage power. Moreover,

the authors of [48] did not evaluate the total leakage power dissipation in the whole

FPGA, only the leakage power per logic block was evaluated.

The power models that target general architectures consider dynamic, leakage,

and short circuit power dissipation in FPGAs. The first power model for generic

FPGA architectures was proposed in [92]. This power model is analytic in nature,

making it very easy to implement with fast runtime. However, for this model to have

such fast runtime, several approximations were assumed by the authors. Firstly,

for dynamic power estimation, the authors of [92] assume spatial and temporal

independence among the internal design signals, as well as ignoring the impact of

glitching power. Secondly, the leakage power was calculated across all the transis-

tors in the circuit while considering the VGS to be half the threshold voltage VTH ,

thus, significantly reducing the accuracy of the leakage power estimation. Moreover,

the state dependency of leakage power was not considered in that model, which has

a significant impact on FPGAs built using current nanometer CMOS technologies,

as explained in [48].

In [93–95], the authors presented another FPGA power model for generic FP-

GAs. Leakage power dissipation was calculated through the use of lookup tables,

that do not consider the state-dependency of leakage power. Moreover, the power

model depended on logic simulation to estimate the switching activities of the

different circuit nodes. Although this method can achieve high accuracy, its com-

putational cost is quite high. The authors tried to limit the execution time by

limiting the number of input vectors to 2000, irrespective of the circuit size and its

number of inputs. However, this approach sacrifices the accuracy of the algorithm

significantly as explained in [97].

The input dependency of leakage power dissipation in generic FPGAs was first

addressed in [96]. The authors proposed a leakage power model based on the BSIM4

models while accounting for the state dependencies. However, spatial correlation

among internal signals was not addressed. Moreover, the authors used some empir-

ical constants in the power formulation obtained using curve fitting, thus, rendering

the power model technology dependent. Finally, The temperature dependence of

power dissipation in FPGAs was studied in [98]. The authors tried to estimate a

43

factor that captures the dependence of total power dissipation on the temperature

using empirical experimentation.

4.3.1 Commercial FPGA Power Estimation Techniques

Commercial FPGA vendors offer a variety of power estimation techniques for cus-

tomers. There are basically two categories of commercial FPGA power estimation

techniques: device-specific spreadsheets [99–101] and CAD-based power estimation

techniques [100,102,103].

4.3.1.1 Spreadsheet Power Estimation Tools

FPGA power spreadsheets analyze both the leakage and dynamic power dissipa-

tion in the FPGA. This method of power estimation is usually used in the early

stages of the design process to give a quick estimate of the power dissipation of the

design [99–101]. In spreadsheet-based power estimators, the users must provide the

clock frequency of the design and the toggle percentage for the logic blocks. Conse-

quently, this method gives a rough approximation of power and requires designers

to thoroughly understand the switching activity inside their circuits.

For dynamic power computation, designers provide the average switching fre-

quency α for all the logic blocks, or for each module in the design. Coefficients for

adjusting the dynamic calculation are provided in the device data sheet. The total

dynamic power is calculated according to

Pdyn = K × fclk × VDD ×
∑

all components

αiCiVswing,i , (4.12)

where K is the coefficient used in adjusting the power estimate for each device

family. The value of the node capacitance is usually provided as an average value

for each family in the power spreadsheet.

In modeling leakage power dissipation, spreadsheets list the leakage power of

each FPGA component Pleak per component, and the total leakage is calculated by

summing the leakage power for each component used in the design according to

Pleak =
∑

all components

Pleak per component . (4.13)

The value of Pleak per component is provided for each device family.

The total estimated power is the summation of the dynamic and leakage power

evaluated using Eq. (4.12) and (4.13), respectively.

44

4.3.1.2 CAD Power Estimation Tools

Commercial CAD power estimation tools rely on cycle accurate simulations to cap-

ture the switching at each node in the design [100, 102, 103]. The user specifies

a simulation testbench, and the design is simulated using logic simulators. The

number of transitions per clock cycle and logic probability are computed at each

node during the logic simulation. Although this power estimation technique pro-

vides a better estimate for power dissipation than spreadsheets, the runtime of this

technique is very long and the power estimate accuracy is dependent on the length

of the test vector used.

4.4 Spatial Correlation and Signal Probabilities

Calculations

The signal probability can be computed at the output of each logic block through

simple probabilistic calculations to evaluate the probability of the output of the

logic block being high. In all of the available probabilistic power models for FP-

GAs, the inputs to any specific logic block are assumed independent, the spatial

independence assumption. This assumption is made to simplify the probabilities

calculation. However, the spatial independence assumption reduces the accuracy

of any analytical power model by overestimating the signal probabilities, as will be

explained later. As an example, for the small circuit shown in Figure 4.1, assuming

that the probability of A = 1 is 0.5, dynamic power estimators operating under the

spatial independence assumption will calculate the probability of B being high as

P (B = 1) = P (A = 1)× P (A = 1) = 0.5× 0.5 = 0.25 , (4.14)

thus resulting in a transition probability of 0.375 (2 × 0.25 × 0.75), according to

Eq. (4.6). However, by clear inspection of Figure 4.1, this circuit suffers from a

reconvergent path. Both A and A can never be ‘1’ at the same time, hence, the

probability of B being high should be zero, assuming the zero delay model. It

should be noted that such a structure is common in FPGA circuits which will be

depicted later in Table 4.4.

As noticed from the previous example, the spatial independence assumption

can significantly affect the dynamic power calculations. If spatial correlation is to

be taken into consideration, conditional probability should be used to evaluate the

45

A
B

Figure 4.1: A circuit that exhibits spatial correlation through reconvergent paths.

probability of all signals. As an example, considering the circuit in Figure 4.1, the

probability of B being high is formulated as

P (B = 1) = P (A = 1|A = 1)× P (A = 1|A = 1)× P (A = 1)

+P (A = 1|A = 0)× P (A = 1|A = 0)× P (A = 0) , (4.15)

which resolves to zero. From the above example, it can be deduced that the spatial

independence assumption can significantly affect the accuracy of power estimation

in VLSI circuits in general. Moreover, by inspecting Eq. (4.15), it can be noticed

that spatial correlation will cancel one or more of the conditional probabilities listed.

Hence, the impact of spatial independence will always be towards overestimating

the power dissipation by overestimating the signal probabilities. Thus, the spatial

independence assumption costs the designers in terms of over-design to account for

the overestimated power dissipation.

In this work, a methodology to calculate the signal probabilities under spatial

correlation is proposed. In order to consider spatial correlation for power calcula-

tions, such reconvergent paths, as the one shown in Figure 4.1, need to be identified,

as discussed in Section 4.5, and their signal probabilities corrected accordingly, as

explained in Section 4.6. The proposed methodology is explained in the following

two sections.

4.5 Exploration Phase: Locating Spatial Corre-

lation

Spatial correlation among signals in VLSI circuits occurs whenever 2 signals are

correlated. Correlations arise when 2 or more signals share a common driver or a

common parent logic block (x) and are connected as inputs to another logic block

(y), i.e., reconvergent paths. If the circuit is converted to a cyclic graph with the

gates as the nodes and the signal wires as the edges, the connections between x and

y form a cycle with 2 paths, as shown in Figure 4.2. Hence, the detection of signals

that might exhibit spatial correlation resolves to identifying possible cycles in the

46

circuit. For example, in Figure 4.2, a cycle would be detected that goes through

A → ā → Ā → b → A.

bā B
A

Figure 4.2: A graph representation of the circuit in Figure 4.1.

In this work, depth-first search algorithm is used to identify such loops in the

design. The algorithm starts with the circuit primary inputs i, and depth-first

search is used to navigate through all the logic blocks that share a path with each

primary input. Whenever a logic block j is visited, it is marked with the name

of the primary input used in this search. When a logic block j gets visited twice,

this means that there are two paths from the current primary input i to logic block

j. Afterwards, the two different paths are recorded as cycles that might result in

spatial correlation among the inputs to logic block j. By employing the depth-first

search algorithm, the complexity of the exploration phase gets significantly reduced.

A pseudocode for the exploration phase is shown in Figure 4.1.

As a result of the algorithm listed in Algorthim 4.1, every logic block that expe-

riences spatial correlation among its inputs will have all the paths that contribute

to the reconvergent paths recorded. However, these paths can be very long, espe-

cially in circuits with long logic depth. As a result, a cleanup stage is performed on

these paths to remove the redundancy in these paths. For example, in Figure 4.2,

the two paths recorded for B would be A → Ā and A. If A is not a primary input,

then the two paths will also include logic blocks that generate the inputs to A in

the circuit and so on until the primary inputs. Hence, the cleanup stage deletes

all the nodes in the path that are common and only keeps the fanout stem of the

reconvergent path, which is A in this example.

4.6 Proposed Signal Probabilities Calculation Al-

gorithm Under Spatial Correlation

Once all of the cycles in the circuit that contribute to spatial correlation are iden-

tified and recorded, the algorithm starts correcting the signal probabilities for all

the logic blocks that have correlated inputs. As a first step, all of the logic blocks

are sorted in a topological order according to their connections. In this ordering,

47

Algorithm 4.1 The exploration phase pseudocode used to identify reconvergent

paths in a circuit.

Function: explore

for all primary inputs i do

for all blocks j connected to i do

depth first(j,i)

end for

end for

return

Function: depth first(j,i)

if j has been visited before by i then

a cycle is found

record the path i → j

else

label j as visited by i

end if

for each block k connected to j do

depth first(k,i)

end for

return

48

the primary inputs come in first, followed by those logic blocks that only have

primary inputs as their inputs, and so on. This ordering is essential because it is

the same order at which the signal probabilities, and hence, transition densities are

calculated according to Eq. (4.9).

In the second step, all the signal probabilities in the design are calculated based

on the spatial independence assumption among the circuit signals. Processing the

logic blocks according to the topological ordering performed earlier ensures that

whenever a logic block is processed, all of its inputs have already been processed

and signal probabilities have been calculated for them.

In the third step, the logic blocks that have cycles are examined. For each

logic block that has cycles, the number of different fanout stems for the cycles are

recorded. As an example, in Figure 4.3, logic block E will have 2 cycles with A

and B being the fanout stem of the 2 cycles. The first cycle has A as the first

path and A → C as the second path. The second cycle has B → C as the first

path and B → D as the second path. It should be noted that these 2 cycles

are not independent, they both share C, thus making the calculation of the signal

probabilities more complex.

A

B
C

D

E

Figure 4.3: A circuit that exhibits spatial correlation.

If the number of fanout stems for logic block i is n, then for the conditional

probability calculations, there are 2n different conditional probabilities to calculate

for every input to the logic block that experiences reconvergent paths. For the

circuit in Figure 4.3, the conditional probabilities that need to be calculated are:

P (C = 1|A = 0&B = 0), P (D = 1|A = 0&B = 0)

P (C = 1|A = 0&B = 1), P (D = 1|A = 0&B = 1)

P (C = 1|A = 1&B = 0), P (D = 1|A = 1&B = 0)

P (C = 1|A = 1&B = 1), P (D = 1|A = 1&B = 1)

(4.16)

49

The algorithm starts by assuming the first combination for the fanout stems,

which is A = 0 and B = 0 in this case, and then propagates through all the

cycle paths recorded for logic block E and evaluates their probabilities. This phase

is stopped when all of the probabilities of the inputs to block E are evaluated.

Afterwards, the conditional probability for block i is calculated and multiplied by

the probability of occurrence of the tested input combination, i.e., P (A = 0&B = 0)

in the example in Figure 4.3. This process continues until all of the 2n combinations

are processed. The probability of logic block E output being high under spatial

correlation, will be the summation of the probabilities evaluated for each input

combination for block E according to Eq. (4.16). This process continues on until all

of the logic blocks in the design are processed. The importance of the cleanup phase

mentioned in Section 4.5 is that it reduces the number of probabilities calculations

to a greater extent by getting rid of the common paths. A pseudocode for the

algorithm is listed in Algorithm 4.2.

Algorithm 4.2 Probabilities calculation under spatial correlation algorithm.

Order Logic Blocks()

Calc Prob Under Independence()

for each block i with cycles do

n = Find Num Fanout Stems(i)

probi = 0

for j=0 : j = 2n do

Adjust Prob Fanout Stems(j)

prob fanout stems = Find Prob Fanout Stems(j)

probi = probi + Find Prob(i) × prob fanout stems

end for

end for

The function Adjust Prob Fanout Stems(j) in Algorithm 4.2 converts the in-

teger j to its binary equivalent and adjusts the probabilities of the fanout stems

accordingly. As an example, for the circuit in Figure 4.3, if j = 2, then P (A) = 1

and P (B) = 0. Find Prob Fanout Stems(j) finds the probability of the fanout

stems combination given by j, e.g., when j = 2, prob fanout stems = P (A =

1) × P (B = 0), assuming that A and B are independent. If A and B are not

dependent, then the probability of P (A) = 1 and P (B) = 0 was calculated by the

algorithm when it processed A and B. Find Prob(i) evaluates the probability of

block i for the current input combination of the fanout stems. This is performed by

evaluating the probabilities of all the logic blocks in the paths contributing to the

50

cycles connected to block i. It should be noted that similar algorithms had been

used in the literature for fault detection in VLSI circuits [104–107].

By inspecting the algorithm in Algorithm 4.2, it can be deduced that the com-

plexity of the algorithm is O(m × 2n × k), where m is the number of logic blocks

with cycles, n is the number of fanout stems that any logic block can have, and

k is the maximum number of cycles that any logic has. Signal probabilities un-

der spatial correlation depends on the maximum number of cycles handled. If all

the cycles at the input of any logic block are handled, then the algorithm would

have the highest accuracy at the expense of the increased complexity and execution

time. Hence, having a maximum for the number of cycles to be considered by the

algorithm would result in slightly less accurate value for the probabilities but with

a faster runtime.

The proposed algorithm was executed first for all the FPGA benchmarks listed

in Table 4.4 while considering all the cycles present in the design. Afterwards a

maximum limit on the number of fanout stems for each node to be considered was

set and the algorithm was executed several times for different maximum values. The

paths that are rejected are those that their children have the lowest probabilities.

For example, in Figure 4.3, if one of the paths is to be rejected, if the P (C = 1) <

P (B = 1) < P (A = 1), then the paths that have C in them are rejected. This

decision is taken because they will have the least impact on the final probability [74].

It was found that when the number of fanout stems handled by the algorithm was

limited to five, the accuracy of the signal probabilities calculated, when compared

to the first case, had an error below 4%, while the algorithm execution time got

reduced significantly when compared to the case with all the cycles. Hence, in this

work, the number of fanout stems handled is limited to five to reduce the algorithm

complexity while achieving the best accuracy. The results of this experiment are

presented later on in Section 4.9.

4.7 Power Calculations due to Glitches

Glitches occur in VLSI circuits due to the difference in the arrival times of the inputs

to any logic block, e.g., both A and C have different arrival times as inputs of E in

Figure 4.3. To identify the logic blocks that might generate glitches, the post layout

arrival times of all the design signals are extracted using VPR [28]. VPR takes as

input the capacitances and resistances of the different wire segments in the FPGA

fabric under considerations. Using this information, VPR calculates the arrival

51

times for every signal at every circuit node using simple Elmore delay calculations.

There are two conditions needed for glitch generation: (i) the differences in the

arrival times should be larger than the intrinsic delay of the logic cell and (ii) the

logic implemented results in a glitch. Moreover, it should be noted that glitches

are filtered out of the circuit through re-timing elements like latches and buffers.

The proposed algorithm for glitch probability calculations consists of three

phases: glitch generation, glitch propagation, and glitch termination. Starting

with the logic cells connected to the primary inputs, and parsing the circuit in a

depth-first strategy, when conditions (i) and (ii) are satisfied, glitches are generated

at the output of the logic cell. For instance, in Figure 4.3, if a glitch at E occurs

when A switches to ‘1’ and C to ‘0’, then the probability that such a glitch occurs

is

Pg(E) = P (C = 0|A = 1)× P (A = 1) , (4.17)

It should be noted that the algorithm for calculating the signal probabilities under

spatial correlation calculates the conditional probability in Eq. (4.17) if they are

correlated, otherwise, Eq. (4.17) resolves to P (C = 0)× P (A = 1).

When a glitch from the output of one cell is fed to the input of the next cell,

that glitch propagates only if the logic function of the second cell allows the glitch

to. The probability of that certain glitch will propagate is equal to the probability

of the glitch multiplied by the conditional probabilities of the inputs needed to

propagate the glitch. The proposed glitch propagation algorithm keeps on parsing

the circuit by the depth-first search until the probability of glitch propagation is

less than 0.01, at which point the glitch is dropped, glitch termination. It should be

noted that no new probabilities are calculated by the glitch processing algorithm.

4.8 Signal Probabilities and Power Dissipation

In this Section, the effect of signal probabilities on the components of power dissipa-

tion is discussed. Moreover, the method used in this work to model both dynamic

and static power dissipation is presented.

52

4.8.1 Dynamic Power Dissipation

Utilizing the transition density in calculating the dynamic power dissipation using

Eq. (4.1) results in [80]

Pdyn =
1

2
× fclk × V 2

DD

n∑
i=1

CiDi , (4.18)

where Di is the transition density of node i. The transition density is calculated

from the signal probabilities using Eq. (4.9) and (4.10) [80]. From the above equa-

tions, it is shown that the calculation of the transition density depends heavily on

the proper calculation of the signal probabilities. Consequently, spatial correlation

directly affects the accuracy of the transition density calculation. The transition

density at each node is calculated efficiently by simple propagation algorithms that

depend on the signal probabilities at each node [80].

The above discussion is valid for combinational logic, however, for sequential

circuits, some approximations are made. In [108], iterations were used to calculate

the output probability of sequential feedback loops. Initially, the input and output

probabilities are set to the same value, then by performing several probability

calculation iterations, the output probability is adjusted. The authors of [108]

also demonstrated that the transition probability of the feedback loop is within

5% compared to the exact transition probability value, provided that sufficient

number of iterations are performed. In this work, the same methodology proposed

in [108] and used in [66] are used to calculate the transition density at the output

of sequential feedback loops. It should be noted that this methodology has been

selected due its ease of implementation, rather that the quality of its results.

The capacitances used in Eq. (4.18) are extracted from commercial CMOS

processes using the post-layout capacitance extractor available in Cadence tools.

A small fabric is designed using the fully custom design flow and the layout of

the circuit was performed together with the routing tracks and multiplexers. After-

wards, Cadence is used to extract the resistances and capacitances of all the routing

tracks with different lengths in our FPGA architecture. The chosen frequency in

this work to calculate the power dissipation is 600MHz. This value was chosen be-

cause it corresponds to the maximum clock frequency that state-of-the-art FPGAs

operate at [11,109].

53

4.8.2 Leakage Power Dissipation

In FPGAs, logic functions and routing resources are implemented using pass-

transistor based multiplexers, as shown in Figure 4.4. In the logic resources Look-

Up Tables (LUTs), the inputs (S0-S3) are connected to SRAM cells, while the

controls (C0-C1) are connected to the inputs of the LUT. However, in the FPGA

routing resources, the inputs are connected to the signals to be routed and the

controls are connected to SRAM cells that control the routing switch.

C0

C0

C0

C0

C1

C1

S0

S1

S2

S3

Figure 4.4: A 2:1 pass transistor logic multiplexer.

In [53], the authors demonstrated the dependence of leakage power dissipation

in the pass-transistor based multiplexers on the input vector. For a 90nm CMOS

process, the leakage power dissipation in the pass-transistor multiplexer in Figure

4.4 can vary by 14X depending on the input combination [53]. Two main factors

affect the threshold voltage of the pass-transistors, hence, leakage power dissipation

in these multiplexers; body effect and drain induced barrier lowering (DIBL). The

effect of body bias on VTH is formulated as

VTH = VTH0 + γ
(√

Φs − VBS −
√

Φs

)
, (4.19)

where VTH0 is the ideal VTH at zero VBS, γ is the body bias coefficient, and Φs is the

surface potential. Having a negative VBS would result in increasing the subthreshold

voltage, which in turn will reduce the subthreshold leakage current. It should be

noted that CMOS devices in pass transistor multiplexers will never experience

a positive VBS. Pass transistors with logic ‘0’ or opposite signal polarity at both

terminals will not experience body effect because their VBS would be zero. However,

54

those devices with logic ‘1’ at both their terminals will experience subthreshold

leakage current reduction due to body effect because their |VBS| would be maximum

(either VDD or VDD − VTH).

In nanometer CMOS devices, the DIBL effect causes the threshold voltage to

be a function of the drain source voltage. Applying a large drain source voltage to

the CMOS device results in decreasing the subthreshold voltage, hence, increasing

the subthreshold current. For minimum sized 90nm NMOS devices, VTH can vary

by almost 25% and leakage current by 4.5X due to a difference in VDS equal to the

supply voltage.

Pass transistor multiplexers used in FPGAs can experience four different values

of VDS. The transistors in the first and last stages of the multiplexer are the

only ones that can experience the worst case VDS of VDD. The middle stages can

experience a maximum of VDD−VTH because of the weak ‘1’ passed by the NMOS

pass transistors. Figure 4.5 shows the four different values of VDS that the pass

transistors can experience in FPGAs and the impact on leakage current. Since

the signal probability is an indication of the probability that a certain signal is

high, then a more accurate leakage power model needs to take into account the

different signal states. This fact was used by [96] to develop the first FPGA leakage

power model that considers state dependency, however, spatial independence was

assumed.

In
c
re
a
s
in
g
 V
d
s

In
c
re
a
s
in
g
 I
le
a
k

Figure 4.5: DIBL impact on subthreshold leakage in FPGA pass transistor devices.

In this work, the pass transistor multiplexer in Figure 4.4 is simulated using

HSpice using all the possible input combinations and the resulting leakage power

dissipation is recorded in each case. The leakage values are recorded in a lookup

55

table and used in the power modeling technique. The total leakage power dissipa-

tion in any multiplexer in the design is the sum of the leakage power dissipation

for a certain input combination (Pleaki
) multiplied by the probability of occurrence

of this combination (Pi),

Pleak =
l∑

i=0

Pleaki
× Pi , (4.20)

where l is the total number of input combinations. Using Eq. (4.20), the proposed

power model will take into consideration the state-dependency of subthreshold leak-

age power under spatial correlation if the probabilities are computed under spatial

correlation using the algorithm presented in Section 4.6.

4.8.3 Gate Leakage Power Dissipation

Under the predictions of [1], the contribution of gate leakage is expected to increase

significantly when compared to subthreshold leakage power in future technology

nodes. Unlike subthreshold leakage, gate leakage is available in both the ON and

OFF states of the CMOS devices. The value of gate leakage is again a strong

function of both VGS and VDS. Large values of VGS and small values of VDS result

in a larger gate leakage current. Hence, an accurate power model for future FPGAs

should consider the state dependency, including spatial correlation, of gate leakage

power dissipation.

In this work, the values of the gate leakage of all the basic circuit elements that

are used in FPGAs are evaluated using HSpice simulations. The values of the gate

leakage current under all the input combinations are recorded in a lookup table and

used to evaluate the gate leakage power in a similar manner to Eq. (4.20).

4.9 Results and Discussions

The proposed power estimation methodology under spatial correlation is imple-

mented and integrated into the VPR CAD tool [28]. In order to evaluate the

performance of the proposed algorithm for signal probabilities estimation under

spatial correlation, several experiments were performed. Firstly, in order to test

the accuracy of the algorithm in evaluating the signal probabilities for the different

signals in the design, several FPGA benchmarks are simulated using a logic simu-

lator under the zero-delay assumption. A pseudo-random input vector is applied

to the inputs of each benchmark and the signal probabilities of the circuit internal

56

nodes are recorded. The length of the input vector used is 105, which is proven to

result in small inaccuracies [97]. In order to quantify the accuracy of the proposed

algorithm, the following metrics are used. The average relative error of the signal

switching activity is used as a metric of the algorithm accuracy in estimating the

switching activity [110]

e =
1

signals

∑

signal i

∣∣∣∣
αi,alg − αi,sim

αi,sim

∣∣∣∣ , (4.21)

where αi,alg and αi,sim are the switching activities estimated by the proposed al-

gorithm and the input vector simulation method, respectively. We also define the

maximum and minimum relative error of the signal switching activity as

emin = min
signal i

∣∣∣∣
αi,alg − αi,sim

αi,sim

∣∣∣∣ , (4.22)

emax = max
signal i

∣∣∣∣
αi,alg − αi,sim

αi,sim

∣∣∣∣ (4.23)

The switching activities evaluated from the input simulations are then compared

to those evaluated from the proposed algorithm and [92]. The resulting relative

errors are reported in Table 4.1. The benchmarks marked with a grey background

are those with a combinational section while the others are datapath circuits. It

can be noticed from Table 4.1 that the proposed algorithm manages to capture the

correlation between the internal signals of the design even though only 5 cycles were

included in the switching activity estimation. The average emax resulting from the

proposed algorithm is almost 4X smaller than the average e evaluated from [92].

The averages of the relative errors according to the circuit type are listed in

Table 4.2. It can be noticed that the average error for datapath circuits is much less

than that for non-datapath circuits. This observation agrees with [110]. Moreover,

the big gap in the signal probabilities estimation accuracy between datapath and

non-datapath circuits is much less in the proposed algorithm than [92].

In another experiment to evaluate the optimum number of cycles to be con-

sidered by the algorithm, the same experiment above was repeated for different

number of maximum cycles and the results are plotted in Figure 4.6. It can seen

that the accuracy of the algorithm does not improve a lot after the 5 cycles limit.

This is mainly because the rejected cycles are those with very small probabilities,

which have insignificant effect on the final probabilities. It should be noted that

the error does not converge to zero with increasing the number of cycles because

of the error in power estimation in sequential circuits that is inherited from the

methodology adopted for sequential power calculations.

57

Table 4.1: Relative error in the switching activity from the proposed algorithm

when compared to [92].

Benchmark
Relative error [92] Relative error (%) (this work)

e emin e emax

alu4 28.94 3.58 4.78 6.88
apex2 38.05 3.92 5.78 8.17
apex4 29.98 3.66 5.02 7.67
bigkey 43.62 6.87 8.91 13.20
clma 40.53 4.68 6.06 10.30
des 38.02 2.97 4.19 6.92

diffeq 43.89 4.75 6.08 8.93
dsip 43.18 4.58 6.77 10.16

elliptic 42.49 4.05 6.00 9.30
ex1010 38.12 4.61 5.90 9.86
ex5p 33.94 3.73 4.84 8.07
frisc 42.93 6.55 8.67 12.52

misex3 23.33 3.99 5.42 8.91
pdc 38.58 3.27 5.09 7.95
s298 43.15 5.08 6.39 10.23

s38417 47.78 6.40 8.22 13.26
s38584.1 49.31 4.40 6.25 9.36

seq 36.1 3.82 5.07 7.58
spla 37.95 4.31 5.55 8.90
tseng 48.65 4.73 7.48 11.95

Average 39.427 4.498 6.12 9.51

Table 4.2: Relative error in the switching activity from the proposed algorithm

when compared to [92].

e [92]
Relative error (this work)
emin e emax

Datapath Circuits 34.30 3.79 5.16 8.09

Mixed Circuits 44.55 5.21 7.08 10.92

In order to study the accuracy of the proposed power model in estimating the

total FPGA power, the algorithm is applied to 4 small FPGA circuits. A brief

description of the 4 test circuits is presented in Table 4.3. Moreover, circuits 1

and 2 are datapath circuits while 3 and 4 are mixed circuits containing sequential

logic and feedback loops. Moreover, the circuits are selected to feature almost no

glitches to remove their effect on the results accuracy. The architecture of the

58

���
����

��

� � � � ����	
��
� ��� �� ������ ������� �� �� ��! ��
"�#$%

Figure 4.6: Average relative error in estimating the signal probabilities under spatial

correlation by varying the number of cycles considered.

target FPGA employed has a 4-input LUT and each logic cluster contains 4 LUTs.

The different signal probabilities of all the signals in the test circuits are evaluated

with and without considering spatial correlation. Afterwards, the benchmarks are

designed and simulated using HSpice using a random function generator to generate

the circuit inputs. The length of the stream generated by the function generator is

varied from 10 to 10,000.

Table 4.3: Small benchmark circuits.
Benchmark # of logic blocks # of inputs # of cycles

circuit1 7 3 2

circuit2 10 5 3

circuit3 10 4 6

circuit4 14 3 8

Figures 4.7 and 4.8 plot the average error in the signal probabilities for the case

when spatial correlation is considered and when spatial independence is assumed,

respectively, against the length of the input vector. The percentage error is calcu-

lated between the average signal probability calculated from the HSpice simulation

and the estimated ones. In Figure 4.7, it is noticed that the percentage error goes

below 1% for an input vector of length 100. It should be noted that ‘circuit2’ ini-

tially has the largest error because it has a large number of inputs, 5, which are not

fully covered by the 10 input combinations. On the other hand, ‘circuit4’ has the

least number of inputs, 3, hence, has the least percentage error for an input vector

of length 10.

59

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000

Length of Input Sequence

%
 E

rr
o

r
in

 S
ig

n
al

 P
o

rb
ab

ili
ti

es

Circuit1 Circuit2 Circuit3 Circuit4

Figure 4.7: Percentage error in estimating the signal probabilities under spatial

correlation when compared to HSpice versus the length of the input sequence.

Figure 4.8 plots the average percentage error in estimating the signal probabili-

ties under the spatial independence assumption. It can be noticed that the graphs

for ‘circuit1’ and ‘circuit4’ saturate very quickly, mainly because they have the

smallest number of inputs, hence, they reach their final probabilities using a small

number of inputs. ‘circuit2’ has the maximum number of inputs that are not prob-

ably covered by a vector length of 10, thus it has the maximum percentage error for

that input vector length. It should be noted that the final values of the percentage

error for each circuit is due to spatial correlation. An interesting point in Figure

4.8 is that both ‘circuit2’ and ‘circuit3’ have the same number of logic blocks, yet

the average error in estimating the signal probabilities in ‘circuit3’ is higher than

that of ‘circuit2’. This is because ‘circuit3’ has more cycles than ‘circuit2’ as well as

having sequential feedback paths, hence, the error due to the spatial independence

assumption is magnified.

In the next set of experiments, the same four circuits are simulated using

HSpice using a CMOS 90nm technology and their total power dissipation values are

recorded. Similarly, the power dissipation in these four circuits was evaluated using

the proposed power model. The total power dissipation is calculated twice, using

the same equations, using transition density values computed with and without

spatial correlations and the results are plotted in Figure 4.9. The maximum error

between HSpice power calculation and that evaluated using spatial correlation is

8.8%. On the other hand, the error between the power recorded by HSpice and

that calculated while assuming spatial independence is 24.2%.

60

0

10

20

30

40

10 100 1000 10000
Length of Input Sequence

%
 E

rr
o

r
in

 S
ig

n
al

 P
ro

b
ab

ili
ti

es Circuit1 Circuit2 Circuit3 Circuit4

Figure 4.8: Percentage error in estimating the signal probabilities under spatial

independence when compared to HSpice versus the length of the input sequence.

0

1

2

3

4

5

circuit1 circuit2 circuit3 circuit4

Circuit

T
ot

al
 P

ow
er

 (
µW

)

Spatial Indepndence Spatial Correlation Hspice

Max Error = 8.8%

Max Error = 24.2%

Figure 4.9: Percentage error between power estimated with and without spatial

correlation when compared to HSpice.

In the next set of experiments, the proposed power model is used to calculate the

power dissipation under spatial correlation in several FPGA benchmarks. Moreover,

the same power model is used to calculate power dissipation in the same bench-

marks while assuming spatial independence between the different design signals.

The experiments were run on a quad Xeon processor machine running at 3.4GHz

61

with a total of 16GB RAM. Table 4.4 lists the percentage difference between the

power evaluated when considering spatial correlations and while assuming spatial

independence. It should be noted that the times reported in 4.4 correspond to the

proposed power modeling technique with spatial correlation. Moreover, Table 4.4

lists the number of cycles found in each benchmark, which suggests that cycles

are frequent in VLSI circuits, hence, spatial correlation among the different signals

in a design is common. An interesting point in Table 4.4 is that the runtime is

almost proportional to the number of cycles, except for two benchmarks, ‘clma’

and ‘s38584.1’. This is mainly because these two are the largest benchmarks and it

takes long time to process them, even without considering spatial correlation. For

small benchmarks, regular probability propagation consumes considerable runtime

which covers for the increase in runtime to account for signal correlations. However,

for bigger benchmarks, the runtime gets dominated by the correlation processing

algorithm.

Table 4.4: Percentage change in power estimation under spatial correlation when

compared to spatial independence.

Benchmark
of Logic # of Run % Change in % Change in % Change in

Blocks Cycles Time(s) Dynamic Power Leakage Power Total Power

alu4 1522.00 606.00 9.00 -20.54 -26.39 -21.45

apex2 1878.00 623.00 13.00 -24.63 8.80 -20.44

apex4 1262.00 600.00 6.00 -26.54 9.83 -20.04

bigkey 1707.00 452.00 12.00 -25.82 4.84 -20.52

clma 8381.00 2343.00 614.00 -20.04 -15.74 -17.44

des 1591.00 715.00 9.00 -25.17 8.29 -19.51

diffeq 1494.00 304.00 12.00 -18.95 22.55 -9.38

dsip 1370.00 454.00 9.00 -22.97 15.19 -17.91

elliptic 3602.00 722.00 100.00 -27.29 14.24 -18.86

ex1010 4598.00 3257.00 216.00 -37.12 33.96 -24.39

ex5p 1064.00 721.00 6.00 -22.61 -19.43 -20.57

frisc 3539.00 1417.00 128.00 -26.24 21.31 -13.17

misex3 1397.00 615.00 7.00 -23.27 -26.12 -25.35

pdc 4575.00 3882.00 264.00 -18.61 -13.80 -10.15

s298 1930.00 609.00 18.00 -22.20 -11.43 -17.09

s38417 4096.00 117.00 195.00 -25.07 32.83 -16.20

s38584.1 6281.00 1396.00 281.00 -28.12 13.42 -16.90

seq 1750.00 641.00 11.00 -22.54 -33.87 -25.28

spla 3690.00 3082.00 131.00 -18.12 -30.53 -20.01

tseng 1046.00 234.00 8.00 -29.48 -16.65 -24.64

By examining the results in Table 4.4, it can be noticed that after considering

spatial correlation, the dynamic power estimated for all the designs decreased be-

cause of the over-estimation nature of the spatial independence assumption. On

62

the other hand, there is no clear trend on the impact of spatial correlation among

the design signals on leakage power dissipation. This is because considering spatial

correlation will only change the probabilities of some of the leakage states. The

state that experiences a change in its probability might be the one with the highest

or lowest leakage current. Hence, there is no limitation on the change in the leakage

power estimation due to spatial correlation. The average change in the total power

dissipation is almost 19%.

As the CMOS process is scaled down, the contribution of leakage power dissipa-

tion to the total power dissipation is expected to increase notably until it surpasses

the dynamic power by the 65nm process [1]. In order to evaluate the scalability of

the proposed power modeling technique with the increasing contribution of leakage

power, the proposed power model is applied to all of the FPGA benchmarks in

Table 4.4 using several CMOS processes (90nm, 65nm, and 45nm). The percent-

age change in power estimation between the spatial correlation and independence

assumptions are recorded in each case, and the average change per technology is

calculated.

Figure 4.10 plots the average difference between the dynamic, leakage, and to-

tal power dissipation with and without spatial correlation. It can be deduced that

the average difference in the total power dissipation estimation is almost the same

for the CMOS 90nm, 65nm, and 45nm technologies. Although, the percentage of

dynamic power dissipation decreases across technologies, the impact of spatial cor-

relation on the total power dissipation still remains the same. This is because the

impact of spatial correlation on leakage power dissipation stays almost the same

across technologies, while the contribution of leakage power increases with the tech-

nology scaling, thus compensating for the decrease in dynamic power dissipation.

This conclusion is verified by Figures 4.11 and 4.12 which plot the similar

changes broken down for leakage and dynamic power dissipation, respectively. The

dependence of leakage power dissipation on the spatial correlation increases as the

technology scales down, thus compensating for the decrease in dependence in dy-

namic power dissipation.

In another experiment, the cluster size is varied between 4BLEs, 6BLEs, and

8BLEs and the results are plotted in Figure 4.13 for a 90nm CMOS process. From

Figure 4.13, it can be deduced that as the cluster size increases, the impact of con-

sidering the spatial correlation on the power dissipation decreases. This observation

can be justified by the fact that increasing the cluster size, decreases the wire-length

of the whole circuit and hence, the total capacitance value in (4.1), hence, the total

63

0

10

20

30

40

90nm 65nm 45nm

CMOS Technology

%
 C

h
an

g
e

in
 P

o
w

er
 D

is
si

p
at

io
n

Dynamic Leakage Total

Figure 4.10: Average percentage change in power dissipation to account for spatial

correlation for different technology nodes.

0

5

10

15

20

25

90nm 130nm 180nm

CMOS Technology

%
 C

h
an

g
e

in
 L

ea
ka

g
e

P
o

w
er

 D
is

si
p

at
io

n

Routing Logic Total

Figure 4.11: Average percentage change in leakage power dissipation with and

without spatial correlation for different technology node.

circuit dynamic power dissipation decreases. As a result, the dependency of dy-

namic power of the transition density will decrease as well. Moreover, increasing

the cluster size, increases the levels of pass-transistors levels for the multiplexer in

Figure 4.4, thus resulting in a decrease in the subthreshold leakage power dissipa-

tion of the multiplexers. Hence, the total leakage power dissipation of the circuit

decreases significantly, resulting in a decrease in the dependency of leakage power

on the signal probabilities.

64

0

5

10

15

20

25

30

35

40

90nm 130nm 180nm

CMOS Technology

%
 C

h
an

g
e

in
 D

yn
am

ic
 P

o
w

er
 D

is
si

p
at

io
n

Routing Logic Total

Figure 4.12: Average percentage change in dynamic power dissipation with and

without spatial correlation for different technology node.

0

5

10

15

20

25

30

4BLEs 6BLEs 8BLEs

CLuster Size

P
er

ce
n

ta
g

e
C

h
an

g
e

in
 P

o
w

er Dynamic Leakage Total

Figure 4.13: Percentage change in power dissipation between spatial correlation

and independence versus the cluster size.

4.10 Conclusion

This Section described a methodology for calculating the signal probabilities in

FPGAs under spatial correlation. The signal probabilities under spatial correlation

are integrated into a novel power model for FPGAs to model both the dynamic

and leakage power dissipation in FPGAs. The accuracy of the model is within

10% of HSpice simulations while spatial independence approaches are within 25%

of HSpice simulations.

65

Chapter 5

Leakage Power Reduction in

FPGAs Using MTCMOS

Techniques

This Chapter proposes supply gating techniques in FPGAs through the use of

Multi-Threshold CMOS (MTCMOS) approaches for subthreshold leakage power

reduction. A modified FPGA architecture with sleep transistors is proposed and

the CAD algorithms needed to benefit from the architecture changes are developed.

Specifically, a new activity profiling phase is introduced in the CAD flow to identify

the blocks that exhibit similar idleness to collectively turn them OFF during their

idle times. Moreover, new packing techniques are developed to pack those blocks

with similar activity profiles together to easily turn them OFF.

This Chapter is organized as follows: an introduction to MTCMOS in general is

given in Section 5.1. The MTCMOS FPGA architecture is proposed in Section 5.2.

Section 5.3 discusses the problem of sizing the sleep transistor in the MTCMOS

architecture. The methodology developed to identify the logic blocks that exhibit

similar idleness periods is presented in Section 5.4. Section 5.5 proposed the packing

algorithms used to benefit from the activities generated by the activity profiling

stage. Finally, the results are discussed in Section 5.7.

5.1 Introduction

In FPGA designs, leakage power reduction has been overshadowed by performance

improvements and dynamic power minimization techniques. However, recently,

66

leakage power started to gain increased attention by both FPGA circuits and CAD

designers. The leakage power dissipation problem is more crucial in FPGAs com-

pared to custom ASIC designs because of the unutilized resources in FPGAs. On

average, the percentage utilization of resources in FPGAs is around 60% [55], thus,

almost 40% of the FPGA consumes standby leakage power without delivering useful

output. Moreover, FPGAs employed in wireless applications can go into idle mode

for long periods of time [111]. In such designs, even the utilized resources need to

be forced into a low-power (standby) mode during their idle periods to save leakage

power.

One of the most popular techniques used in leakage power reduction in ASIC

designs is Multi-threshold CMOS (MTCMOS) [112, 113]. In an MTCMOS im-

plementation, a high VTH (HVT) device called the Sleep Transistor, connects the

pull-down network employing low VTH (LVT) devices of a circuit to the ground,

as shown in Figure 5.1(a). When the sleep transistor is turned OFF, the circuit

subthreshold leakage current is limited to that of the sleep transistor which is sig-

nificantly low. Hence, the circuit benefits from the high-performance of the LVT

pull-down network when the sleep transistor is turned ON, while limiting the circuit

subthreshold leakage current when the sleep transistor is turned OFF.

LVT

Pull-down

Network

VDD

SLEEP
ST

Vx

I

(a)

LVT

Pull-down

Network

VDD

R

Vx

I

(b)

Figure 5.1: MTCMOS architecture. (a) General MTCMOS architecture, (b) Equiv-

alent ST circuit in the active mode.

The sleep transistor acts as a small finite resistance R to the ground when

the SLEEP signal is high with a finite small voltage at the virtual ground rail

Vx, as shown in Figure 5.1(b). However, the sleep transistor resistance R incurs

a performance penalty because the driving potential of the circuit is reduced to

VDD−Vx [111,114]. When the SLEEP signal is low, the circuit goes into a standby

mode with the voltage at Vx rising to a voltage between 0 and VDD, with the sleep

transistor acting as a very high resistance, thus reducing the standby subthreshold

leakage current considerably.

67

In FPGAs, sleep transistors can reduce subthreshold leakage by: (i) permanently

powering-down the unutilized parts of the chip per configuration, (ii) dynamically

turning ON and OFF the utilized parts of the chip depending on their activity,

and (iii) powering down all of (or a large part of) the FPGA during the design idle

time.

In this Chapter, the MTCMOS technique is employed in FPGA design and

the changes needed at the CAD level are developed to take full advantage of the

technique in maximizing the leakage savings. These changes are integrated into the

academic Versatile Place and Route (VPR) flow [27]. A flowchart of a typical VPR

CAD flow is shown in Figure 5.2(a) and a flowchart of the proposed modifications

is shown in Figure 5.2(b). In Figure 5.2(b), a new stage is added to the CAD flow,

the activity generation phase, in which the design is analyzed to identify the logic

blocks that exhibit similar activity profiles. Blocks with similar activity profiles

are forced into a standby mode together. The activity profiles generated by the

activity generation algorithms are then integrated into the T-VPack algorithm to

result in the activity T-VPack algorithm (AT-VPack), as shown in Figure 5.2(b).

A modified power model, that takes into consideration the proposed changes in

the FPGA architecture is used to properly calculate the power savings from the

proposed MTCMOS FPGA architecture.

Packing

(T-VPack)

Placement

(VPR)

Routing

(VPR)

Power Estimation

(flexible power model)

Synthesized

Circuit

(a)

Activity Profile

Generation

Packing

(AT-VPack)

Placement

(VPR)

Routing

(VPR)

Power Estimation

(modified flexible

power model)

Synthesized

Circuit

(b)

Figure 5.2: FPGA CAD flowchart. (a) Conventional VPR flowchart. (b) Proposed

CAD flowchart integrated in the VPR flow.

68

5.2 MTCMOS FPGA Architecture

The conventional hierarchial FPGA architecture, adopted by most modern FPGAs,

utilizes logic blocks, which are conventionally made of a 4-input Look-Up Table

(LUT), a flip-flop, and a 2:1 multiplexer, as shown in Figure 5.3. Several logic

blocks are further grouped together to form a cluster of logic blocks. Inside each

cluster, the logic blocks are connected using the local routing resources, while the

clusters are connected using the global routing resources.

The MTCMOS FPGA architecture proposed in this thesis follows the broad

guidelines of the hierarchial architecture, however, every N clusters are connected

to the ground through one sleep transistor, as shown in Figure 5.3. Moreover, the

latches in each cluster are used to retain the value of the logic blocks outputs when

they enter the sleep mode, thus they are not connected to the sleep transistors.

The logic blocks served by one sleep transistor are called the sleep region. It should

be noted that the sleep transistors are not confined to the logic resources of the

FPGA, but applied to the routing resources of the fabric as well.

Logic

Block

VDD

Logic

Block

VDD

LUT DFF

Logic

Block

Logic

Block

VDD VDD

STSleep

Signal

Sleep

Region

Figure 5.3: MTCMOS FPGA architecture. The logic blocks connected to one sleep

transistor are called sleep region.

Each sleep transistor is controlled by a SLEEP signal, deactivating the SLEEP

signal forces the N clusters in the corresponding sleep region into low-power mode

during their inactive periods. Before entering the sleep mode, the output of each

logic block is stored in the latch so it can be recovered when the sleep region wakes

up again. The SLEEP signals of the unutilized, whether logic or routing, resources

of the FPGA are kept deactivated at all times to turn them permanently OFF.

The SLEEP signals are generated dynamically during the device runtime us-

ing the partial reconfiguration logic available in modern FPGAs [115, 116], thus

providing minimum area overhead. The SLEEP signals can be generated if the

application of the design is well-known in advance. For example, if the design is

69

used to implement an MPEG decoder, then the sequence of operations to be exe-

cuted is known in advance as well as the statistics of each signal, which can then

be used to generate the SLEEP signals as will be explained later in Section 5.4.

This is a very interesting point since the majority of the FPGA applications are

indeed dedicated ones where the application is well-known in advance. However, if

the design application is a general one, earlier works formulated a methodology for

predicting the statistics of the design signals in a methodology similar to branch

prediction methodologies [117].

The number of clusters that can fit in one sleep region is determined by: (1) the

size of the sleep transistor, which in turn corresponds to the maximum performance

loss allowed, (2) leakage power savings, (3) area overhead permitted in the design

due to sleep transistors, and (4) the maximum permitted ground bounce on the

virtual ground lines. For the same performance penalty, large sleep regions employ

larger, but fewer in number, sleep transistors. As a result, the control circuitry

needed to generate the SLEEP signals is typically less complex, consumes less

power, and occupies smaller area when compared to the small sleep regions case.

However, large sleep regions have limited leakage power savings capability due to

the use of large sleep transistors, which sink larger subthreshold leakage current.

Moreover, large sleep regions suffer from a smaller selectivity in turning OFF idle

clusters, thus reducing their resulting leakage power savings. Hence, the optimum

granularity is set based on a compromise between the area overhead and the required

leakage power savings. In [118], the authors concluded that the optimum granularity

ranges between 4 to 8 logic blocks.

A diagram of the proposed FPGA fabric is shown in Figure 5.4, where the

sleep transistors are prefabricated with a fixed size in the FPGA fabric. It was

shown in [119] that such a placement provides the minimum area overhead while

ensuring full connectivity between the sleep transistors and the logic blocks. More-

over, the SLEEP control signals for each sleep transistor are hardwired during the

FPGA fabrication. The virtual ground V GND line is used to connect the pull

down networks of the logic blocks to the sleep transistor, as shown in Figure 5.4.

The V GND lines are hardwired to their corresponding sleep transistors. Several

research works proposed optimum layouts for the sleep transistors to provide the

minimum area overhead [120], and the average area overhead of MTCMOS archi-

tectures with fine granularity (between 4 to 8 logic blocks) in FPGAs is reported

to be around 5% [121,122].

It should be noted that there are two approaches for sleep transistor implemen-

tations: header or footer devices. Header devices use a PMOS sleep transistor to

70

Sleep Region

Sleep Region

Sleep Region

V
DD

V
DD

V
DD

GND

GND

GND

VGND

Sleep Region

Sleep Region

Sleep Region

VGND

Sleep Region

Sleep Region

Sleep Region

VGND

Figure 5.4: MTCMOS-based FPGA fabric with sleep transistors.

block the path from the supply rail, while the footer approach uses a NMOS to

block the path to the ground, as shown in Figure 5.5. The PMOS header approach

has the disadvantage if incurring a large area penalty when compared to the NMOS

footer approach. This is mainly because of the lower drive current of PMOS devices

due to the lower mobility of holes when compared to electrons. As a result, to have

the same performance penalty due to sleep transistors, PMOS headers with larger

areas are needed. Consequently, in this work, only footer NMOS sleep transistors

are used.

Logic

Block

VDD

(a)

Logic

Block

VDD

(b)

Figure 5.5: Sleep transistor implementations. (a) NMOS footer. (b) PMOS header.

Typically, there are two sleep transistors architectures; local and global sleep

71

transistors. Local, or distributed, sleep transistors are placed at the local block

level, where the local block is defined as a part of the circuit that can be inde-

pendently idle. On the other hand, a global sleep transistor architecture employs

a single sleep transistor for a large circuit block that includes several local blocks.

In this work, a local sleep transistor architecture is adopted for the following rea-

sons: (1) the V GND lines are short enough to be treated as local connections,

hence, there is no need to fabricate them using wide metal lines like VDD and GND

rails, (2) the routing complexity of the V GND lines is significantly easy in local

sleep transistor architectures when compared to the global architecture, and (3)

local sleep transistors provide less routing overhead in terms of the criticality of

the sleep signals, better noise margins, and higher turn OFF flexibility, thus higher

power savings. However, the control systems for local sleep transistors architecture

are more complicated.

5.3 Sleep Transistor Design and Discharge Cur-

rent Processing

In this Section, several issues related to the sleep region are discussed. Firstly, the

design problem of the sleep transistor is introduced and a formulation for the tran-

sistor size is presented in terms of the total discharge current of the sleep region.

Secondly, two methods for total sleep region discharge current calculations are pro-

posed, the first one is a modified version of the mutually exclusive discharge current

algorithm proposed in [114]. The second method is a newly proposed algorithm that

considers the logic function implemented by the logic blocks.

5.3.1 Sleep Transistor Sizing

The proper sizing of the sleep transistor is crucial to achieve the maximum sub-

threshold leakage power savings without incurring large performance and area

penalties, as explained in Section 5.2. While the delay penalty is inversely pro-

portional to the width of the sleep transistor, a large sleep transistor results in

a large subthreshold leakage current and higher parasitic capacitances, which re-

sults in high dynamic power dissipation during the switching of the sleep transistor.

Moreover, a large sleep transistor consumes a larger part of the total chip area. The

first step in sizing the sleep transistor is to formulate the delay penalty experienced

by the FPGA circuitry due to the sleep transistors.

72

The delay of a CMOS gate without any sleep transistors td is expressed as

[112,123]

td ∝ CLVDD

(VDD − VTHl
)α

, (5.1)

where CL is the gate load capacitance, VTHl
is the threshold voltage of the circuit

low VTH transistors (LVT), and α is the velocity saturation index. The delay of the

same gate in the presence of a sleep transistor td,sleep is expressed as [114]

td,sleep ∝ CLVDD

(VDD − Vx − VTHl
)α

, (5.2)

where Vx is virtual ground rail voltage, as shown in Figure 5.1(a).

In order to balance between the performance penalty and power savings, the

maximum allowable performance loss should be limited to a predefined value. Let

the ratio between td and td,sleep given by

td,sleep − td
td,sleep

= x , (5.3)

where x is the performance loss due to sleep transistors. For simplicity, assume

that α can be approximated to be equal to 1 [114]. Therefore, substituting with

Eq. (5.1) and (5.2) into (5.3), yields

Vx = x× (VDD − VTHl
) . (5.4)

When the sleep transistor is turned ON, it will operate in the linear mode of oper-

ation, as explained earlier. Using the square law for the MOS device current, the

drain to source current flowing through the sleep transistor Isleep, i.e., discharge

current, can be approximated by

Isleep = µnCox

(
W

L

)

sleep

[
(VDD − VTHh

)× Vx − V 2
x

2

]
, (5.5)

where µn is the device mobility, Cox is the oxide thickness, W and L are the

device width and length, respectively, and VTHh
is the threshold voltage of the sleep

transistor, which is a HVT device. Substituting with the expression of Vx given

in Eq. (5.4) into the value of Isleep in Eq. (5.5) and rearranging the relationship

results in [114]

W

L

∣∣∣∣
sleep

=
Isleep

xµnCox(VDD − VTHl
)(VDD − VTHh

)
. (5.6)

The parameters in Eq. (5.6) are all technology parameters except for the speed

penalty x and the maximum discharge current allowed through the sleep transistor

73

Isleep. In most previous works, x has been set to a constant value, usually 5% [114].

As a result, all the circuit paths will experience a fixed speed degradation. However,

in this thesis, two possibilities are explored, setting x to a fixed value as well as

using variable speed penalties to improve the final design performance, as will be

explained in Section 5.5.

The next step in finding the proper size of the sleep transistor is to compute

the sleep region maximum discharge current Isleep. It should be noted that this

work employs footer devices, i.e., NMOS devices, as sleep transistors. Hence, the

main criterion that controls the sizing of footer devices is the discharge current of

the pull-down network. The charging current flows through the pull-up circuit and

the sleep transistor is not involved in this process, hence, the charging time is not

affected.

The worst-case maximum value for Isleep is the sum of discharge currents of all

the logic blocks inside the sleep region. Since all the logic blocks in FPGAs are

identical, then the values of their discharge currents would be equal. As a result,

the value of Isleep would be expressed as

Isleep = Idischarge ×N , (5.7)

where Idischarge is the discharge current of one logic block and N is the granularity

of the sleep region, i.e., the number of logic blocks in one sleep region.

However, this is more of an upper bound on the value of Isleep due to two

factors: (1) the delays of the logic blocks are finite and (2) not all the logic blocks

inside the sleep region will discharge simultaneously. The choice and computation

of the discharge current Isleep inside the sleep region is explained in the following

subsections. Selecting a value for Isleep depends on the allowable number of logic

blocks in each sleep region. In order to find the optimum value of Isleep to be used

in this work, the discharge current of each cluster placed using the conventional

VPR tool is calculated for several FPGA benchmarks. It was found that the value

of the discharge current of all the clusters is usually less than 75% of the worst-case

discharge current, which is therefore used in this work. However, it should be noted

that the sum of discharge currents of all the logic blocks inside the cluster must

not exceed the value of Isleep, or else the sleep region will experience a bigger speed

penalty than that used to evaluate
(

W
L

)
sleep

in Eq. (5.6).

74

5.3.2 Mutually Exclusive Discharge Current Processing

The mutually exclusive discharge current processing technique was first proposed

in [114] for standard cells MTCMOS design. This technique makes use of the

finite delays of each gate to provide a sequence of discharge current patterns inside

each sleep region. The discharge current of any logic gate is represented using a

symmetric triangular approximation, as shown in Figure 5.6(b). Due to the finite

delay of A in Figure 5.6(a) and the dependence of B on the inputs to A, B will not

start discharging before the discharge current of A reaches its peak [114]. In this

case, A and B are said to be mutually exclusive in their discharge current, since

they are not going to discharge simultaneously.

A
B

(a) A circuit example for the tim-
ing diagram.

0 T1 2T1

I1

I2

T1+T2T1 T1+2T2

(b) Timing diagram for mutually
exclusive logic gates.

Figure 5.6: Mutually exclusive discharge current processing.

In Figure 5.6(a), two parameters characterize the discharge current of each gate:

the maximum value the discharge current can reach Ii and the time it takes for the

discharge current to reach its peak Ti, as shown in Figure 5.6(b). The values of

these two parameters depend on the type of the gate, since every gate would have a

different delay and maximum discharge current, and the fanout, increasing the gate

fanout slows down the discharge by decreasing the value of Ii and increasing Ti.

Hence, in order to use this technique, all gates in the design library are characterized

initially by simulating their discharge currents under all possible loading scenarios

using HSpice.

Applying this technique for discharge current processing in FPGAs is much

simpler than the standard cells case due to the regularity of FPGAs. Firstly, all

FPGA logic blocks are identical, since a k-input logic block can implement any

k-input logic function. As a result, only one circuit is characterized using HSpice.

Secondly, the loading effect in FPGAs is very uniform due to the use of routing

switches. Hence, there is a very limited number of loading scenarios that can be

experienced. These two facts decrease the number of HSpice simulations needed to

75

characterize the logic gates significantly. As an approximation, this work assumes

that the discharge current patterns, in terms of peak value and duration, are the

same for all the logic blocks in the design.

If the small circuit example in Figure 5.6(a) is implemented in an FPGA, the

discharge current of these two logic blocks will be represented as shown in Figure

5.7(a). It can be noticed in Figure 5.7(a) that the discharge currents of both A

and B are identical to reflect the fact that FPGA logic blocks are identical. These

two discharge currents can be summed in a vector manner to result in the total

discharge current for these two logic blocks, as shown in Figure 5.7(b). Hence, if

these two logic blocks are placed in one sleep region, then the maximum discharge

current that this sleep region will ever experience is only equal to Idischarge of one

logic block. This proves the worst case value of Isleep given in Eq. (5.7) is not

always needed for the logic blocks inside the sleep region.

0

I

I

tmax 2tmax

tmax 2tmax 3tmax

(a) FPGA timing diagram of the cir-
cuit in Figure 5.6(a).

0

I

tmax 2tmax 3tmax

(b) Summation of discharge currents.

Figure 5.7: Mutually exclusive discharge current processing.

5.3.3 Logic-Based Discharge Current Processing

Earlier MTCMOS works adopted a worst-case discharge current processing algo-

rithms by assuming that whenever a logic block A discharges, all of its outputs will

start discharging after the discharge current of A reaches its maximum [114], as

shown in Figure 5.8(b). However, The discharge of the fanout logic blocks of A will

depend on the logic they implement. Therefore, a more efficient current processing

algorithm has to include the probability of the circuit actually discharging based

on the logic function implemented by the circuit.

For example, consider the small circuit in Figure 5.8(a), assume that B imple-

ments the following logic function: b = ā + az. Hence, whenever the output of A

goes low, the output of B will always go high. Consequently, A and B are mutually

76

A

B

a
x

y

z

b

(a) Small circuit ex-
ample.

A

Imax

0

I

t

B

I

t

0 …….. tmax ……. 2tmax

0 …….. tmax ……. 2tmax

Imax

0

I

t

0 …….. tmax ……. 2tmax ……. 3tmax

Imax

0

(b) Logic-based discharge
current processing for
non-mutually exclusive
logic blocks.

A

Imax

0

I

t

I

t

0 …….. tmax ……. 2tmax

0 …….. tmax ……. 2tmax

Imax

0

I

t

0 …….. tmax ……. 2tmax ……. 3tmax

Imax

0

B

(c) Logic-based discharge cur-
rent processing for mutually
exclusive logic blocks.

Figure 5.8: Linear vector approximation of discharge current and logic-based cur-

rent vectors summation.

exclusive in their discharge. As a result, the total discharge current of these two

logic blocks would be only equivalent to that of one of them, as shown in Figure

5.8(c). As a result, adding block B to the sleep region that contains A comes at no

expense in term of the discharge current of the sleep region, hence, speed penalty.

This property will give the packing algorithms, which will be introduced later on in

Section 5.5, more flexibility in packing logic blocks in the same sleep region without

violating the maximum discharge current constraint of the sleep region. This new

technique used in calculating the total discharge current inside a sleep region is

called logic-based discharge current processing.

5.3.4 Topological Sorting and Discharge Current Addition

In this work, topological sorting is used to properly align the current vectors in the

sleep region to find the total discharge current. The topological sorting algorithm

encounters three different types of sleep regions: a combinational sleep region where

each logic block shares at least one net with any other logic block in the sleep

region (Figure 5.9(a)), a combinational sleep region with at least one logic block

not sharing any net with any other logic block in the sleep region (Figure 5.9(b)),

or a sequential sleep region that contains one or more loops (Figure 5.9(c)).

For a combinational connected sleep region, as shown in Figure 5.9(a), the algo-

rithm starts by converting the logic blocks inside the sleep region into an undirected

graph. The graph in Figure 5.10(a) is equivalent to the sleep region in Figure 5.9(a).

77

A

C

B

D

Sleep Region

(a) Combinational connected.

A

C

B

D

Sleep Region

(b) Combinational with un-
connected blocks.

A

C

B

D

Sleep Region

(c) Sequential with loops.

Figure 5.9: Different types of sleep regions.

Afterwards, a topological sorting of the resulting graph is used to find the relation-

ship between all the logic blocks in the sleep region by converting the graph to

a hierarchal data structure. An example of the topological sorting procedure is

shown in Figure 5.10, where A is found as the parent node, B and C are ordered in

the same level, and D in the last level. The linear approximation for the discharge

current for the logic blocks in the sleep region is shown in Figure 5.10(e) as well

as the resulting sum of the discharge current vectors. It should be noted that the

summation in Figure 5.10(e) assumes that the logic blocks will have non-mutual

exclusive discharge.

For a combinational graph with unconnected nodes, as shown in Figure 5.11,

instead of using the triangular approximation as discussed before, the discharge

current is assumed to be constant and equal to the peak value for the unconnected

logic blocks because it is difficult to predict when the unconnected node is expected

to discharge. The unconnected node is identified only during the first iteration of

the algorithm. Figure 5.11(a) represents the graphical representation of the sleep

region in Figure 5.9(b), node B is identified as an unconnected node. The algorithm

then continues as the previous case to sort the rest of the graph. Afterwards, the

current vector of the unconnected node B is represented as a rectangle with width

equal to the sum of widths of the other vectors and added to the rest of the currents,

as shown in Figure 5.11(e).

The last case is when the graph contains one or more loops. Having a loop in the

graph makes the topological ordering infeasible, hence, a loop has to be detected

before starting the topological sorting algorithm. Thus, before the topological

sorting phase, loop detection is employed on the sleep region graph, if a loop is

found, then a loop resolving algorithm is used. It was found out that the presence

of loops does not change the value of the peak current of the sleep region, it only

affects the shape of the discharge current pattern. Whenever a loop is detected,

78

A

B

C

D

(a)

B

C

D

A

(b)

D

A

B C

(c)

A

B C

D

(d)

A

B

C

D

0 …...….. tmax …...…. 2tmax

0 …...….. tmax …...…. 2tmax

0 …...….. tmax …...…. 2tmax

0 …...….. tmax …...…. 2tmax

0 …...…... tmax …....…. 2tmax ….... 3tmax …....…. 4tmax

Imax

0

Imax

0

Imax

0

2Imax

Imax

0

Imax

0

(e)

Figure 5.10: Steps of the current feasibility check for a combinational connected

sleep region. (a) A is selected to be deleted, (b) A is ordered in the first position

and B and C are selected for deletion, (c) B and C are ordered in the same position,

(d) Final ordering, (e) Current vectors summation

it is broken at any point while and a virtual edge to represent the broken edge is

kept. Afterwards, the algorithm continues in the same manner as earlier.

A pseudocode for the discharge current processing algorithm with topological

sorting is listed in Algorithm 5.1. In the first step in Algorithm 5.1, the logic

block under consideration is added to the cluster under consideration. Following

topological sorting (Top Sort), the logic blocks are checked according to their order

in the sorting. If a block is found to be unconnected, then its current vector is

treated as a rectangle with a maximum of Imax and starting time of 0 (rect(Imax, 0)),

as shown in Figure 5.11(e). If 2 blocks are sorted in the same level, as blocks B

and C in Figure 5.10(d), then their triangular discharge current either start at the

same time or only one of them is considered, depending whether they are mutually

exclusive from the block on the upper level. Similarly for blocks from different

levels, their triangular discharge current depends on whether their discharge current

79

A

B

C

D

(a)

C

D

A B

(b)

D

A

C

B

(c)

A

C

B

D

(d)

B

A

C

D

0 …...….. tmax …...…. 2tmax

0 …...….. tmax …...…. 2tmax

0 …...….. tmax …...…. 2tmax

0 …...…... tmax …....…. 2tmax ….... 3tmax …....…. 4tmax

Imax

0

Imax

0

Imax

0

2Imax

Imax

0

0 …...…... tmax …....…. 2tmax ….... 3tmax …....…. 4tmax

Imax

0

(e)

Figure 5.11: Steps of the current feasibility check for a sequential connected sleep

region. (a) Both A and B are selected for deletion, (b) A and B are ordered on the

same position, with B an unconnected node and C is marked for deletion, (c) C is

ordered in the next position, (d) Final ordering, (e) Current vectors summation.

is mutually exclusive or not.

5.4 Activity Profile Generation

In order to properly explain this phase of the CAD flow, a few definitions will be first

presented. An activity profile is a representation of the periods that a logic block is

active (switching). If a group of logic blocks are expected to switch in the same time

periods, then it is said that they have similar activity profiles. In order to maximize

the power savings from the use of sleep transistors, logic blocks with similar activity

profiles should be packed together and connected to one sleep transistor. The main

goal of the activity generation is to identify the logic blocks that have similar activity

profile so that the packing algorithm can cluster them together. By the end of this

phase, all the logic blocks in the design are given labels to divide them into several

80

Algorithm 5.1 Pseudocode of the proposed logic-based discharge current process-

ing algorithm.

for each block B to be added to activity region C do

C = C + B

Sort C = Top Sort(C)

currC = 0

for i = 0 : size(Sort C)− 1 do

if blocki is unconnected then

curri = rect(Imax, 0)

else

if leveli == leveli−1 then

if !(blocki ⊕ blocki−2) then

curri = trig(Imax, (i− 1)× tmax)

end if

else

if (blocki ⊕ blocki−1) then

curri = trig(Imax, i× tmax)

end if

currC = currc + curri

end if

end if

end for

if max currC > Isleep then

C = C −B

else

break

end if

end for

activity regions according to their activity profile. Logic blocks with similar activity

labels have similar activity profiles. In this work, two activity profile generation

algorithms are proposed: Connection Activity Profile (CAP) generation and Logic

Activity Profile (LAP) generation, as well as a modification for the LAP algorithm

Reverse-LAP (R-LAP).

81

5.4.1 Connection-based Activity Profile Generation Algo-

rithm (CAP)

The main criterion used by CAP to identify the activity profiles is connectivity.

Logic blocks that are connected to each other are expected to have similar activity

profiles. The main reasoning behind this assumption is that whenever the inputs

to a logic block change, its output is expected to change as well, which in turn will

cause the logic blocks connected to its output to switch too. This is a pessimistic

approximation of the real case as the change in the output depends on the logic

implemented by the logic block.

The algorithm begins with the circuit primary inputs and greedily allocates

activity regions as it traverses the circuit netlist by means of a simple depth-first

graph search algorithm, thus, resulting in a fast and computationally efficient algo-

rithm. While traversing the circuit netlist, whenever a new logic block is reached,

it is necessary to determine whether to add this logic block to the current activity

region, or to place it in a new activity region. There are two principal driving costs

that need to be considered at each node: the size of the activity region and the

attraction of a certain logic block to that activity region.

Reducing the size of the activity region provides the clustering algorithm with

more flexibility to pack only those logic blocks that manifest the same activity, not

those that have close activity profiles. Although this leads to a greater leakage

savings, increasing the number of activity regions results in increasing the number

of sleep signals used, thus causing a power-inefficient implementation, as well as

complicating the control circuitry for generating these signals. Furthermore, the

algorithm must be expansive while each logic block is processed. The addition of

any logic block to the current activity region, implies the addition of all of its fan-in

and fan-out logic blocks, because the algorithm is connection-based. Consequently,

the number of fan-ins and fan-outs of any logic block, should be considered during

the process and the cost of adding the current logic block to the current activity

region is expressed as

cost1 =
currCap + α×Neighbors−maxCap

maxCap
, (5.8)

where maxCap is the predefined maximum capacity for the activity region, currCap

is the current capacity of the activity region, Neighbors is the number of logic

blocks directly connected to B and not yet placed in any activity region, and α is a

weighting constant to control the quality of the final solution. The use of Neighbors

82

provides the cost function with the ability to look around the current logic block

to examine which other logic blocks are expected to be attracted to the current

activity region, if the logic block under investigation is placed in it. It should be

noted that the value of Neighbors can be easily evaluated during the file parsing

stage without the need for a special pre-processing phase. The parameters that

need to be tuned in (5.8) are maxCap and α.

The value of maxCap should be a function of the circuit size to ensure its scal-

ability with the different circuits. In this work, maxCap is selected as a function

of the number of logic blocks on the longest path in the circuit. Reducing maxCap

enables the activity generation algorithm to pack only those logic blocks that man-

ifest the same activity, i.e., closely connected to each other, not those that have

close activity profiles, thus resulting in a large number of activity regions, as well as

sleep regions. Although this leads to more leakage savings, yet increasing the num-

ber of activity regions results in increasing the number of sleep signals used, thus

complicating the control circuitry needed for generating these signals. On the other

hand, a large value for maxCap will result in a large activity region with a short

sleep time, thus reducing the leakage power savings resulting from the algorithm.

By running the algorithm on several benchmarks for a wide variety of values

for maxCap, it was found that a value for maxCap of 1.5 times the longest path

from input to output in the circuit provides the best results in terms of power

savings. The average leakage power savings across the tested benchmarks is plotted

in Figure 5.12. Increasing maxCap than 1.5 times the longest path in the circuit

results in having excessively large activity regions that have limited leakage power

saving capability. On the other hand, decreasing maxCap increases the number of

activity regions in the final design, thus resulting in a complex and power-hungry

sleep-signal generation circuitry.

On the other hand, α controls the expansive ability of the algorithm. The value

of α should range between 0 and 1, where a 0 value means that the algorithm

considers that adding the current logic block to the cluster will not attract other

logic blocks to it. A value of 1 for α means that adding the current logic block to

the cluster will result in adding all of the logic blocks connected to it as well. In

this work, the value of α is updated adaptively according to currCap based on the

following relation

α =





0.3 currCap < 0.5×maxCap

0.6 0.5×maxCap ≤ currCap < 0.7×maxCap

1 0.7×maxCap ≤ currCap

83

0

5

10

15

20

25

30

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

maxCap (x longest path length)

A
ve

ra
g

e
P

o
w

er
 S

av
in

g
s

(%
)

Large sleep regions
with short sleep
periods

Large number of sleep
regions with complex
sleep signal generation

Figure 5.12: Leakage power savings vs the maximum activity region capacity.

The second cost function is the attraction between logic block B and the current

activity region C, which is expressed as

cost2 = Nets(B) ∩Nets(C) , (5.9)

where ∩ denotes the number of nets shared between B and C. The decision of

whether or not a certain logic block should be added to the current activity region

resolves to a comparison between cost1 and cost2

δ × cost2 − cost1 ≥ 0 ⇒ add to the current activity region

δ × cost2 − cost1 < 0 ⇒ start a new activity region

where δ is a normalization factor. It should be noted that cost1 is always nega-

tive, ranging from -1 to 0, unless the activity region capacity exceeds that of the

maximum capacity. On the other hand, cost2 is a positive integer. When δ is close

to 0, the activity region maximum capacity maxCap is the main limiting factor

to assigning activity labels, thus all activity regions will have capacity equals to

maxCap. When δ is close to 1, the attraction to the activity region is the driving

factor for activity labeling, thus the activity region capacity might exceed maxCap.

In order to determine the optimum value of δ, the CAP algorithm is run several

times for values of δ ranging from 0 to 1 across different benchmarks and the ca-

pacity of the activity region is recorded in each case. The average activity region

size, in terms of maxCap, across all the tested benchmarks is plotted in Figure

5.13, which shows that the average activity region size increases with δ. The value

84

0.8

1

1.2

1.4

1.6

1.8

0.1 0.3 0.5 0.7 0.9�A
ct

iv
it

y
R

eg
io

n
 (

x
m

ax
C

ap
)

Over-filled
sleep region

Under-filled
sleep region

Figure 5.13: Average activity region size across several benchmarks vs. δ.

A

D

F

B
E

cost 1|D =-0.6

cost 2|D = 1

C

A

D

F

B
E

C

(a)

(d)

cost 1|F = 0.25

cost 2|F = 1

A

D

F

B
E

cost 1|B = -0.35

cost 2|B = 1

C

A

D

F

B
E

C

(e)

(b)

cost 1|E = -0.5

cost 2|E = 1

cost 1|C = -0.75

cost 2|C = 1

A

D

F

B
E

C

ON when the inputs of A or B change

ON when the inputs of B or C change

(c)

cost 1|B = 0

cost 2|B = 1

Figure 5.14: CAP activity generation flow for maxCap = 4 and δ = 0.2

of δ used in this work is 0.2 which results in an average activity region capacity of

about 1.03maxCap. A value greater than that will result in larger activity regions.

Figure 5.14 depicts an example of activity generation by the modified CAP

algorithm for a maximum activity region size of four. Figure 5.14 indicates that

the algorithm begins with node A and then studies its child D to select the path

that minimizes the total cost function, which in this case is D. Following that the

children and parents of D are examined (E and B, respectively). At that point, both

B and E have equal cost1, hence, cost2 is checked and E is selected because it has

the smallest cost2. The procedure continues until the algorithms starts processing

F , at which the activity region will be full and a new activity region will start.

Hence, F and C will be in the same activity region. The pseudocode for the

modified CAP algorithm is given in Algorithm 5.2.

85

Algorithm 5.2 Pseudocode of the proposed CAP algorithm.

Create an undirected graph from the netlist

Traverse the graph using DFS

for each node i do

for each node j connected to i do

calculate cost1,j and cost2,j

if cost1,j ≤ min cost1 then

min node = j

end if

end for

if δ ×min cost2 −min cost1 > 0 then

add to the current activity region

else

start a new activity region

end if

end for

5.4.2 Logic-based Activity Profile (LAP) Generation

The Logic-based Activity Profile (LAP) generation algorithm depends on repre-

senting the activities of the logic blocks as a binary sequence. The circuit topology

is ignored in the LAP algorithm and instead the circuit logic function is used to

find the optimum clustering that prolongs the OFF periods of each logic block. In

order to properly explain this algorithm, several definitions and notations will be

first introduced.

5.4.2.1 Activity Vectors

Definition 1: Activity Vector

Given a net x in a circuit netlist, the activity vector Ax of x is defined as:

Ax = [a1 a2 a3 a2n−1 a2n]T ,

where n is the total number of inputs to the circuit, ai is a binary variable that is ‘1’

if any of the outputs of the circuit depend on net x for evaluation when the inputs

to the circuit are given by the ith input vector, and T represents the transpose of

the vector.

In FPGAs, each logic block has only one output; thus, the activity vector of

each net resolves to be the activity vector of the logic block driving that net. The

86

circuit in Figure 5.15 provides an example of the operation of LAP, where the logic

of each block is depicted underneath the circuit. Logic blocks F and G must be

ON all of the time to generate the outputs of the circuit f and g, respectively.

Consequently, the activity vectors Af and Ag for blocks F and G, respectively, are

given by

Af = [1 1 1 1 1 1 1 1]T ,

Ag = [1 1 1 1 1 1 1 1]T .

On the other hand, for computing the activity vector at the inputs of block F ,

D

a

b

d

E

c

F
e

f

G g

I hH

i

d = a.b e = a.b’+a’.b f = c.d+c’.e g = a+f

i = a.c h = e+i

Figure 5.15: A circuit example.

it is noteworthy that block D will be only used to generate the output signal f if

the input c is ‘1’. Similarly, block E is only used when c is ‘0’. Hence, the activity

vectors for D and E, when f is evaluated, are represented by

Ad = [0 1 0 1 0 1 0 1]T ,

Ae|f = [1 0 1 0 1 0 1 0]T .

However, to evaluate h, E will have the following activity vector:

Ae|h = [1 1 1 1 1 1 1 0]T .

Hence, the resulting Ae is given by

Ae = Ae|f + Ae|h = [1 1 1 1 1 1 1 0]T .

Finally, the activity vector for i is given by

Ai = [1 1 0 0 0 0 1 1]T .

87

From this discussion, it can be deduced that if F , G, and H are active for

all the input combinations, packing them together will result in improved results.

Moreover, E will be active for almost all of the input combinations except for only

one, thus it can also be packed with F , G, and H in the same cluster. Therefore,

the cluster containing E, F , G, and H will be always ON. On the other hand, D

and I have similar activity profiles for half of the input combinations, thus it will

be a good strategy to group them together and turn OFF this cluster for half of

the circuit operational time.

From the above discussion, it can be deduced that the complexity of the original

LAP algorithm is proportional to 2n where n is the total number of circuit inputs.

In large circuits with hundreds of inputs, this complexity renders the LAP algorithm

impractical. In the next subsections, several modifications are proposed to reduce

its complexity significantly.

5.4.2.2 Hamming Distance: A Measure of the Correlation Between Ac-

tivity Profiles

The relation between the activity profiles of the different logic blocks is evaluated

by means of the Hamming distance between their activity vectors.

Definition 2: Hamming Distance

Given two binary sequences of length n; An and Bn, the Hamming distance d(a,b)

between these two sequences is defined as

d(a,b) =
n−1∑

k=0

|ak − bk| , (5.10)

where ak and bk are the kth elements of An and Bn, respectively.

Hence, the Hamming distances between the activity vectors of the signals in

Figure 5.15 are evaluated as

d(f,g) = 0 d(f,d) = 4 d(f,e) = 1 d(f,i) = 4

d(g,d) = 4 d(g,e) = 1 d(g,i) = 4 d(e,d) = 5

d(e,i) = 5 d(e,h) = 1 d(d,i) = 4 d(d,h) = 4

d(i,h) = 4

It can be noticed that the Hamming distance between the activity vectors of any

two logic block is a measure of the correlation between their activity profiles. A

Hamming distance close to the absolute minimum of zero, indicates that the two

88

blocks will exhibit the same activity profile, thus when positioned together in the

same cluster will result in maximum power savings and vice versa. This is verified by

examining the values of the Hamming distances above and the results stated in the

previous sub-section. However, the Hamming distance between the activity vectors

of two logic blocks does not take into consideration the probability of occurrence

of the different input combinations, which can notably affect the quality of the

results. The Weighted Hamming Distance is used to efficiently incorporate the

various probabilities of the circuit input combinations.

Definition 3: Weighted Hamming Distance

Given two binary sequences of length n; An and Bn, and a weighting vector Wn,

the weighted Hamming distance dw(a,b) between these two sequences is defined as

dw(a,b) =
n−1∑

k=0

wk × |ak − bk| , (5.11)

where ak, bk, and wk are the kth elements of An, Bn, and Wn, respectively.

The use of the weighted Hamming distance is not a sufficient measure for the

difference in activity between the different logic blocks. If for example, there are 2

logic blocks with a weighted Hamming distance between them of 1. However, this

net at which they differ is an active net that continuously toggles. This implies

that the ST will switch frequently, increasing the dynamic power dissipation to the

extent that it might override any savings in leakage power dissipation. In order to

avoid such condition, the transition density [80] of the net needs to be considered

while calculating the Hamming distance. The transition density D is defined as the

average number of transitions per unit time.

Definition 4: Transition Weighted Hamming Distance

Given the weighted Hamming distance dw(a,b) between two activity vectors; A and

B, and Di the transition density of signal i, the transition weighted Hamming

distance dw(a,b) between these two activity vectors is defined as

dw(a,b) = dw(a,b) ×max{DA, DB} . (5.12)

5.4.2.3 The LAP Algorithm Operation

The LAP algorithm consists of two main phases: activity vector generation and

activity labeling. The activity vector generation phase exhaustively simulates the

circuit by iterating all the input vectors and finding the values of all the circuit nets

resulting from that input vector. Afterwards, for each input vector iteration, each

89

signal (or block) is tested to investigate whether or not it affects the evaluation of the

circuit outputs. This is performed by complementing the value of the signal under

consideration and then proceeding from that point towards the circuit outputs. If

the output of the logic blocks that have this net as an input will change, then

this change is taken to the next circuit level, otherwise, a ‘0’ is placed in the

corresponding row of the input vector. If a loop is found, then this net is given ‘1’

in its activity vector for that input combination. It should be noted that the number

of levels checked from the net under consideration increases the computational time

significantly. In order to limit this computational complexity, the number of levels

to be checked is limited to three. After exhaustively generating all the activity

vectors for all the circuit nets, the static probability of each net is calculated.

The next step is the calculation of the Hamming distance between each two logic

blocks in the design. This is performed recursively through all the design elements.

The transition weighted Hamming distance dw between every two logic blocks is

then calculated. At this point, the activity labels can be assigned according to the

weighted Hamming distance. However, this approach can result in performance

deterioration as the connections between the different logic blocks is not considered.

Since those logic blocks that will have a similar activity label are expected to be

placed in the same sleep region, i.e., will be placed close to each other. Hence,

it seems that the wire length should be included in the activity labeling as well.

Since at this stage the algorithm does not have any information about where each

block will be placed, an approximation for the wire length is adopted. If any two

logic blocks share one net, then the distance between them l is considered as zero,

e.g., E and F in Figure 5.15. If there is one level of logic blocks in between any

two logic blocks, then the distance is considered as 1, and so on.

In order to combine the transition weighted Hamming distance and the distance

between logic blocks, logic blocks are assigned activity labels by minimizing the cost

function given below

min{dw + δ × l} , (5.13)

where δ is a normalization constant selected to be 0.5. To avoid having activity

regions with a large number of logic blocks, which will decrease the leakage savings,

the size of the activity region is limited to 1.5 times the longest path from input to

output in the circuit. This value was obtained by running the algorithm on several

benchmarks. Assigning a constant value for activity region size, irrespective of the

circuit size, results in impractical results. Increasing the activity region size more

than 1.5 times the longest path in the circuit results in having excessively large

activity regions that are usually not fully filled up by the algorithm. On the other

90

hand, reducing the activity region size increases the number of activity regions in

the final design.

Hence, the algorithm starts to greedily assign activity labels to the logic blocks

according to (5.13) until the maximum activity region size is reached. Afterwards, a

new logic block is selected as a seed cell for a new activity region and the procedure

is repeated. The pseudocode of the algorithm is listed in Algorithm 5.3.

Algorithm 5.3 Pseudocode of LAP.

for all the input combinations do

for all the nets in the circuit do

find the value of the net

end for

for each net in the circuit do

toggle the value of the net

Activity[input vector][net] = 0

proceed with the new value of the net

if the value of any output changes then

Activity[input vector][net] = 1

end if

end for

end for

for each net in the circuit do

find the static probability

find the transition density

find the distance to each net in the circuit

end for

5.4.2.4 Reverse Logic Activity Profile (R-LAP) Generation Algorithm

In this section, the Reverse Logic Activity Profile (R-LAP) generation algorithm is

presented. The R-LAP algorithm is a modification of the LAP algorithm that offers

a significant execution time improvement as well as more leakage power savings.

R-LAP represents the logic blocks activity profiles using an activity vector, similar

to the LAP algorithm.

91

5.4.2.4.1 R-LAP Algorithm Operation

In order to reduce the complexity of the LAP algorithm, this work proposes the

Reverse Logic-based Activity Profile (R-LAP) generation algorithm. In the R-LAP

algorithm, instead of generating the activity vectors for the outputs of each logic

block, R-LAP generates the activity vectors of the inputs to each logic block. This

is performed by checking each logic block whether its ith input will contribute

to the output when the other inputs are given by a certain combination. If the

ith input is needed for evaluating the output, then a ‘1’ is placed in the input

signal activity vector that corresponds to this input combination, otherwise, a ‘0’

is entered. Hence, the complexity of the algorithm is O(2(m−1) × m), where m is

the number of inputs to the logic block, which is usually around four [28].

As an example, for the circuit shown in Figure 5.15, when ‘b’ is ‘0’, ‘a’ is not

needed to evaluate ‘d’. On the other hand, ‘a’ is always needed to evaluate ‘e’.

By taking a look at logic block F , ‘e’ is not needed to evaluate ‘f ’ when ‘c’ is ‘1’.

Similarly, ‘d’ is only needed when ‘c’ is ‘1’. Furthermore, ‘f ’ is needed to evaluate

‘g’ when ‘c’ is ‘0’. Hence, the R-LAP algorithm will evaluate the activity vectors

of the different signals in Figure 5.15 as

Ad|c = [0 1] Ae|c = [1 0] Af |c = [1 0]

Hence, it can be deduced that placing F and E in the same sleep region will result

in maximum power leakage savings as they both can be turned OFF when ‘c’ is ‘1’.

For each logic block, the different activity vectors for all of its inputs are gener-

ated as mentioned above. As a result, each net will have p different activity vectors

associated with it, where p is the number of the net fanout. In order to find the

Hamming distance between the logic blocks inside any sleep region, a large activity

vector is generated using the smaller activity vectors of each logic block inside it,

and then the Hamming distance is evaluated from the sleep region activity vec-

tor. It should be noted that the R-LAP algorithm generates the activity vectors

for each logic block with respect to all the other logic blocks it is connected to.

Furthermore, sleep regions are usually filled by logic blocks that share connections

to reduce the total wirelength and enhance the final design performance. Hence,

there is no need to generate the activity vectors for each logic block with respect

to all the other logic blocks in the circuit that they do not share a connection with.

The pseudocode of the R-LAP algorithm is listed in Algorithm 5.4.

92

Algorithm 5.4 Pseudocode of the proposed R-LAP.

for each logic block i do

for each input j of i do

for each of the other inputs combinations k do

Evaluate the output of block i when input j is ‘0’

Evaluate the output of block i when input j is ‘1’

if i|j=0 == i|j=1 then

Aj|i[k] = 0

else

Aj|i[k] = 1

end if

end for

end for

end for

5.5 Activity Packing Algorithms

Modern island-style FPGAs have a hierarchal architecture, where several logic

blocks are packed together to form clusters. The packing process takes a netlist of

LUTs and registers and outputs a netlist of logic clusters. The main aim of the

available packing algorithms is to minimize the total area (by packing clusters to

their full capacity), minimize the delay (by packing LUTs on a certain critical path

together [18]), and/or maximize routability (by minimizing the number of inputs to

each cluster). However, the goal of minimizing power dissipation, either dynamic

or leakage power dissipation, has been rarely addressed. In this work, the activity

profiles obtained earlier are incorporated into the T-VPack [18] algorithm to pack

logic blocks to minimize leakage power dissipation.

5.5.1 Activity T-VPack (AT-VPack)

In this work, the T-VPack algorithm is modified to include activity profiles, thus

the modified T-VPack is called Activity T-VPack (AT-VPack). In AT-VPack, a

set of logic blocks are selected as candidates to be added to the cluster under

investigation. The selection criteria for these candidate logic blocks are: (i) the

combined discharge current of the logic blocks inside the cluster plus the logic

block to be added does not exceed Isleep and (ii) the activity label of the logic block

to be added is the same as that of the logic blocks inside the cluster. From the pool

93

of candidate logic blocks, the one that maximizes Attraction and satisfies the three

hard constraints of VPack is selected to be added to the cluster. If AT-VPack fails

to fill out all of the spaces in the cluster, the hill-climbing approach used in the

original T-VPack is invoked to start filling the vacant places while satisfying both

(i) and (ii).

Unlike T-VPack, AT-VPack might still be unable to fill the cluster to its max-

imum capacity due to the additional two constraints (i) and (ii). Hence, a second

hill-climbing stage is used that employs simulated annealing to swap the logic blocks

in the cluster with other candidate logic blocks that have not been clustered yet

and then try to fill the cluster. If the set of logic blocks currently in the cluster

is given by A and the set of logic blocks that had not been clustered is called B,

the algorithm swaps block i from set A with block j from set B while satisfying

constraint (iii) using the following cost function

min

{
α

[
κ
(
Attraction(Ai)−Attraction(Bj)

)
+(1−κ)

number of vacant places

total number of places

]}
,

(5.14)

where α is a variable that represents the transition weighted Hamming distance

between A and Bj (α = 1 + dw) and κ is a weighting constant (0 ≤ κ ≤ 1) that

is used to give importance to either filling up the cluster with any blocks or to

consider the attraction force. A small value of κ would result in a faster filling

for the cluster, while a decrease in the Attraction() can be tolerated, while a large

value will keep the decrease in Attraction() to a minimum and accepting partially

filled clusters. By performing several experiments using AT-VPack for different

FPGA benchmarks, it is found that the best value for κ is 0.5. The value chosen

for α forces the algorithm to start looking at first for blocks with the same activity

as the cluster before looking for blocks with other activities. Even when it does

look for logic blocks with different activities, it always searches for those with close

activity profiles. This ensures maximum leakage savings (clusters with blocks that

have different activity profiles will be on for a longer period).

Moreover, the cost function in (5.14) minimizes the loss in the quality of the

solution, in terms of the attraction force, by minimizing the difference between

Attraction(Ai) and Attraction(Bj). Similarly, the current constraint is kept as

a hard constraint throughout this hill-climbing stage. By the end of this hill-

climbing stage, the cluster is full to its maximum capacity. A pseudocode for AT-

VPACK algorithm is listed in Algorithm 5.5. In addition, the starting temperature

parameter of the simulated annealing and the number of inner iterations to be

94

performed are chosen not to be large to speed up the packing process and avoid

decreasing the quality of the original solution.

Algorithm 5.5 Pseudocode for the AT-VPACK algorithm.

Perform T-VPACK with 2 extra constraints:

- Icluster ≤ Isleep

- activityblocks in cluster is constant

while there are empty spaces in the cluster do

for all unclustered blocks do

find blocks i and j with min cost (equation(5.14))

add i to the cluster

if max Icluster ¿ Isleep then

remove i

end if

end for

end while

The ability of AT-VPack in minimizing the number of logic blocks used in the

design can be verified by finding the maximum number of unfilled clusters in each

benchmark. Among all of the benchmarks tested, the maximum number of unfilled

clusters is 4, which is less than 1% of the total number of clusters in the design.

5.5.2 Force-based Activity T-VPack (FAT-VPack)

The Activity T-VPack (A-VPack) algorithm suffers from long execution time be-

cause it added two hard constraints to the conventional T-VPack algorithm; (i) the

combined discharge current of the logic blocks inside the cluster plus the logic block

to be added does not exceed Isleep and (ii) the activity profile of the logic block to

be added is the same as that of the logic blocks inside the cluster. As a result this

algorithm suffers from a long runtime. In this work, the FAT-VPack algorithm is

proposed to reduce the complexity of the AT-VPack algorithm by getting rid of

one of the added hard constraints used in AT-VPack. The activity profiles of the

different logic blocks are added to the Attraction() function in Eq. (2.7) by includ-

ing a new activities gain function. It should be noted that the constraint on the

maximum discharge current of the activity region is still adopted in the FAT-VPack

algorithm.

The ActivityGain is a representation of how close is the activity vector of block

B to that of cluster C. In R-LAP algorithm, the ActivityGain(B,C) of adding

95

block B to cluster C is calculated as

ActivityGain(B) =
2n − d̄w(b,c)

2n
. (5.15)

where n is the number of cluster inputs.

The total FAT-VPack gain function used in this work is given by

Attraction(B) = (1− α) ×
[
λ× Criticality(B) + (1− λ)× SharingGain(B,C)

]

+ α× ActivityGain(B, C) (5.16)

where α is weighting constant (0 ≤ α ≤ 1). Setting a large value for α will force

the packing algorithm to pack the blocks that have the shortest Hamming distance

in the same cluster, hence, same sleep region, without giving much weight to the

timing information and wirelength. In the following experiments, α will be set to

0.5 and the impact of its value on both the leakage savings and speed penalty will

be discussed later.

5.5.3 Timing-Driven MTCMOS (T-MTCMOS) AT-VPack

In both the AT-VPack and FAT-VPack algorithms, the total discharge current

constraint was kept as a hard constraint for all the clusters. In the T-MTCMOS

algorithm, the maximum discharge current is varied from one cluster to the other.

From Eq. (5.6), it can be noticed that for the same W
L

∣∣
sleep

of the sleep transistor,

the performance loss depends on Isleep. A sleep region with a large Isleep will have a

larger performance loss than another one with smaller Isleep, if they employ equal-

sized sleep transistors.

This work makes use of this observation to avoid incurring a large performance

penalty on the critical path. Hence, the maximum performance loss along the

critical path can be limited to a value smaller than that along non-critical ones,

i.e., timing-driven MTCMOS (T-MTCMOS). The timing information of the logic

blocks is used to vary Isleep of each cluster according to its criticality using the

proposed T-MTCMOS technique.

The maximum discharge current inside any cluster should not exceed the value

used in (5.6) for a speed penalty of x%. The value of the discharge current can vary

from one cluster to the other depending on the criticality of each cluster, hence,

the speed penalty imposed on the cluster. In order to account for the different

criticalities along the signal paths, Isleep(C) is formulated as

Isleep(C) =

[
1 + δ

(
1− Criticality(C)

Max Criticality

)]
× Îsleep , (5.17)

96

where Îsleep is the maximum discharge current calculated for the minimum perfor-

mance penalty, i.e., 3%, δ is a weighting constant, Criticality(C) is the criticality

of cluster C, and Max Criticality is the criticality of the critical path(s) of the cir-

cuit. From (5.17), it can be noticed that if the criticality of the cluster is equal to

the maximum criticality of the circuit, i.e., the cluster lies on the critical path, the

value of Isleep will be equal to that for the minimum performance penalty, i.e., 3%,

otherwise, a larger value for Isleep will be used, hence, a larger performance penalty.

The weighting factor δ is used to make sure that after adding block B to cluster

C, the path does not become a critical path itself. If δ is set to a value close to

0, then all of the sleep regions will have an Isleep very close to that for a 3% per-

formance penalty. On the other hand, if δ is set to 1.6, the sleep regions will have

a wide variety of Isleep values, hence speed penalties, with a maximum penalty of

8%. However, a large value for δ increases the possibility that the added perfor-

mance penalty might cause some uncritical paths to become critical. By conducting

several experiments on the value of Isleep, it was discovered that by adopting an

adaptive update technique for δ, shown below, depending on the criticality ratio

(Criticality(C)/Max Criticality), resulted in no new critical paths while having

a wide variety for Isleep values.

0 < Criticality(C)/Max Criticality ≤ 0.5 δ = 1.6

0.5 < Criticality(C)/Max Criticality ≤ 0.8 δ = 0.8

0.8 < Criticality(C)/Max Criticality ≤ 1 δ = 0

5.6 Power Estimation

In order to evaluate the performance of the proposed algorithms, the power dissi-

pation in the placed and routed design is compared to that of the same benchmark

without sleep transistors. The power model proposed in Chapter 4, which calculates

dynamic, short-circuit, and leakage power, is used to estimate the power dissipation

in the design without sleep transistors. In order to measure the power dissipation

in the design with sleep transistors, several modifications are added to the power

model.

There are two standby modes for any circuit; full standby and partial standby.

In the fully standby state, the whole circuit is in the idle state and all of the sleep

transistors in the circuit should be turned off. During that period, the circuit only

consumes standby leakage power. During partial standby, some parts of the circuit

are in the active state and other parts are in the idle state. Hence, some of the

97

sleep transistors are turned ON and others are OFF. Thus, the circuit will consume

a combination of dynamic power and active and standby leakage power.

The total power dissipation Pt is expressed as

Pt = ton × Pon + toff × Pidle , (5.18)

where ton and toff are the percentages of ON and OFF times of the FPGA and Pon

and Pidle are the power dissipation during the active and idle modes of operation

of the FPGA. Pon is expressed as

Pon = [Pdyn + Psckt + Pleak]utilized + Pleak|unutilized , (5.19)

where Pdyn, Psckt, and Pleak are the dynamic, short-circuit, and active leakage power

dissipations, respectively, in the utilized logic blocks, while Pleak|unutilized is the

standby leakage in the unutilized logic blocks.

Three different modifications were done to the power model presented in Chap-

ter 4. (1) Leakage current is calculated only due to the sleep transistor rather than

calculating the leakage through all the devices in the circuit because the sleep tran-

sistors act as a bottleneck for the subthreshold leakage current. (2) Short circuit

power dissipation is approximated as 15% of the dynamic power dissipation rather

than the 10% used in the original model to account for the increased rise/fall times

of the logic blocks with sleep transistors. The 15% approximation was evaluated

by simulating logic blocks with and without an sleep transistor using HSpice. (3)

The dynamic power consumed in the sleep transistor during switching between the

ON and OFF states is calculated and added to the total power dissipation.

5.7 Results and Discussions

In this section, the capability of the proposed activity profile generation algorithms

presented in Section 5.4 and the packing algorithms discussed in Section 5.5 to

reduce leakage power dissipation will be tested. The CAP, LAP, and R-LAP algo-

rithms are integrated into the VPR tool together with the AT-VPack, FAT-VPack,

and T-MTCMOS. In addition, the power model presented in Chapter 4 with the

modifications discussed in Section 5.6 is used to estimate the power savings achieved

by each combination of activity profile generation algorithm and activity packing

algorithm in the final design. It should be noted that the proposed logic-based

discharge current processing algorithm is used to calculate the discharge currents

98

of the sleep regions. The proposed algorithms are tested on several FPGA bench-

marks to assess their capability in minimizing both standby and active leakage

power dissipation.

The decision whether to keep a utilized sleep region ON all of the time or dy-

namically switching between ON and OFF depending on its activity profile is based

on a balance between the leakage power savings resulting from turning it OFF dur-

ing its idle periods and the dynamic power dissipated in the sleep transistor during

the transition. Whenever the dynamic power dissipated in the sleep transistor dur-

ing waking up or putting the cluster into sleep exceeds the leakage savings from

any cluster, the cluster is kept always ON. Leakage power savings can be achieved

when the cluster stays OFF for a certain period of time, Tbreak even. In this work,

the transition density [80], the average number of transitions per cycle, is used as

a measure of how long a signal stays in a certain state. Based on the transition

density of each sleep signal, if the signal experiences a large number of transitions

such that Tbreak even is never or rarely reached, the sleep region is kept always ON,

otherwise, it is dynamically turned ON and OFF depending on the activity profile.

5.7.1 Experimental Setup

In the first set of experiments, the sleep region size is set to one cluster and each

cluster has four logic blocks. This is only a starting point for the experiments and

later on the optimum size of the sleep region will be evaluated. Moreover, the

selected size is close to the optimum sleep region size reported in [118].

It should be noted that the maximum allowable performance loss due to the

sleep transistors in all of the benchmarks is kept fixed at 5% in the AT-VPack and

FAT-VPack algorithm, i.e., x in Eq. (5.6) is set to 0.05. However, in the case of

the T-MTCMOS algorithm, the value of x is varied depending on the criticality of

the logic blocks in the sleep region.

All the circuits tested are mapped onto the smallest square FPGA array that

can accommodate them, i.e., maximum utilization percentage. The case where

the design is mapped onto the minimum FPGA array is called 100% utilization.

Moreover, the design is assumed to be operating without standby periods for the

whole benchmark. This case is referred to as 100% ON time. Initially, the results

reported are for a 90nm CMOS process, however, towards the end of this section,

the proposed leakage reduction algorithms are applied to 130nm, 65nm, and 45nm

CMOS technologies.

99

5.7.2 Algorithms Comparison

Table 5.1 lists the results of applying the different activity generation algorithms

with a variety of the proposed activity packing algorithms on several FPGA bench-

marks under the above mentioned conditions. The power dissipated by each design

is calculated using the modified power model discussed in Chapter 4 and the per-

centage savings in the total power are listed in Table 5.1. It should be noted that

Table 5.1 does not iterate the results from all the possible combinations of the pro-

posed algorithms. Only the combinations that achieve large leakage power savings

are reported.

Table 5.1: Leakage power Savings for the different activity profile packing algo-

rithms across several FPGA benchmarks.

Benchmark

% of Unutilized % Savings in Power (100% on time)

Clusters CAP & LAP & R-LAP & R-LAP &

AT-VPack AT-VPack FAT-VPack T-MTCMOS

alu4 4.5 10.82 17.23 37.05 61.78

apex2 2.48 10.35 15.54 29.09 55.8

apex4 2.16 8.59 13.38 25.74 50.91

bigkey 2.72 9.59 14.92 30.42 56.62

clma 0.76 7.37 12.09 24.48 50.82

des 0.25 7.49 11.99 24.47 51.97

diffeq 6 11.51 17.74 36.07 57.48

dsip 4.7 8.79 14.18 30.23 50.49

elliptic 5.9 10.2 16.42 32.03 51.24

ex1010 0.26 7.73 12.09 23.07 48.49

ex5p 6.92 11.14 17.51 35.92 54.3

frisc 1.56 8.08 12.97 24.51 50.98

misex3 2.21 9.37 14.57 29.86 58.33

pdc 0.78 6.8 11.29 21.5 46.34

s298 8.32 14.28 21.06 40.94 56.75

s38417 5.6 12.46 18.21 36.34 60.19

s38584.1 1.56 8.17 12.93 25.73 51.51

seq 0 4.62 7.14 15.23 32.03

spla 3.6 8.73 12.85 27.41 50.08

tseng 8.3 13.25 19.75 39.32 56.37

Average Leakage
9.47 14.69 29.47 52.62

Power Savings (%)

The power savings presented in Table 5.1, show that the combination of the

R-LAP and the FAT-VPack algorithms provide more leakage power savings than

the combination of CAP and LAP with AT-VPack. Furthermore, integrating the

T-MTCMOS algorithm with R-LAP results in the highest power savings.

The combination of logic-based discharge current processing, R-LAP, and FAT-

VPack result in higher power savings than the combination of CAP and LAP with

100

AT-VPack because the FAT-VPack algorithm can cluster logic blocks that have

close activity profiles, not necessarily the same activity profile, by finding a cor-

relation between their activity profiles, hence, achieve more leakage savings. On

the other hand, the AT-VPack algorithm can only pack the logic blocks with the

same activity profiles in the same cluster, otherwise, the cluster is left ON at all

times. In addition, the logic-based discharge current processing algorithm provides

the packing algorithm with the flexibility to pack those logic blocks that have simi-

lar activity profiles without violating the discharge current constraint. As a result,

more power savings can be achieved.

On the other hand, the T-MTCMOS algorithm achieves more power savings

than FAT-VPack across all of the benchmarks. The average improvement in the

power savings is almost 50%. The main reason behind the increase in power savings

is that in FAT-VPack, the discharge current constraint is a hard constraint across

all of the benchmarks, thus the algorithm might fill a cluster with logic blocks that

have different activity profiles and satisfy the current constraint, although there

are other blocks that have closer activity profiles but violate the current constraint.

On the other hand, T-MTCMOS allows the current constraint to be violated to a

certain extent along non-critical paths, thus giving more freedom to the packing

algorithm to pack logic blocks with close activity profiles to achieve more leakage

power savings.

5.7.3 Impact of Activity Packing on Performance

As mentioned earlier, the use of sleep transistors results in a performance penalty

due to the added resistance of the sleep transistor to the ground. Moreover, both

FAT-VPack and T-MTCMOS do not result in the same packing as that found

by the conventional T-VPack, because of the added constraints, either discharge

current or activity profile, or gain functions to the optimization problem. Hence,

the resulting packing might suffer from an additional speed degradation because of

that reason. In this work, the performance loss of the critical path is considered as

an indication of the performance loss for the whole design. In this experiment, the

delays along the critical paths in the placed designs and packed using the proposed

packing algorithms are compared to those when the designs are packed and placed

using the conventional VPR flow. Figure 5.16 plots the average speed penalties

among all of the benchmarks used in this work. Moreover, Figure 5.16 shows the

maximum and minimum speed penalties experienced in the different benchmarks

for each case.

101

0

2

4

6

8

10

12

R-LAP + FAT-Vpack R-LAP + T-MTCMOS

Algorithm Used

%
 P

er
fo

rm
an

ce
 P

en
al

ty

Min Average Max

Figure 5.16: Speed penalty experienced in the different benchmarks due to the use

of sleep transistors.

From Figure 5.16 it can be deduced that the resulting design from T-MTCMOS

outperforms that of FAT-VPack in terms of timing properties. The FAT-VPack

algorithm incurs a minimum of 5% delay penalty across all the paths in the design.

However, T-MTCMOS increases the delay across the critical path by a minimum

of 3% while making sure no other critical paths get created.

In another experiment, the maximum performance penalty allowed in T-MTCMOS

is varied from 8% to 14%, while the minimum performance penalty is kept at 3%

and the results for the ‘s298’ benchmark are plotted in Figure 5.17. It was noticed

that for a sleep region of size 4 logic blocks, the leakage savings increased with the

maximum speed penalty until a speed penalty of 10%, after which the curve almost

flattens. The increase in leakage savings can be justified by the fact that increasing

the maximum speed penalty allows the packing algorithm to pack logic blocks that

exhibit similar activity profiles in the same cluster without worrying about their

discharge current. On the other hand, as the speed penalty is increased beyond a

certain limit, the packing algorithm can not achieve more leakage savings because

the sleep regions are now packed to their maximum (4 logic blocks). However, as

the number of logic blocks per sleep regions is increased, more leakage savings can

be experienced, as shown in Figure 5.17. It should be noted that increasing the

size of the sleep region beyond 8 logic blocks, results in an increase in the leakage

savings, however, the dynamic power dissipation in the sleep transistors, which are

significantly up-sized, increases to cancel out most of the leakage savings.

In another experiment, the maximum speed penalty is set to 12 for the ‘s298’

102

30

35

40

45

50

55

60

65

70

8 9 10 11 12 13 14
Percentage speed penalty along non-critical paths

P
er

ce
n

ta
g

e
P

o
w

er
 S

av
in

g
s

4-BLE sleep region
6-BLE sleep region
8-BLE sleep region

Figure 5.17: ‘s298’ leakage savings vs maximum speed penalty for the R-LAP and

T-MTCMOS combination.

benchmark while varying the minimum speed penalty (Figure 5.18). As the mini-

mum performance penalty increases (by up-sizing the sleep transistor), the leakage

savings increases, until a certain limit after which the savings decrease because of

the increase in dynamic power of the sleep transistors. It can be noticed that the

breakpoint gets smaller as the size of the sleep region increases because larger sleep

regions employ large sleep transistors.

0

50

100

150

200

250

3 4 5 6 7 8 9 10

Percentage delay along the critical path

P
er

ce
n

ta
g

e
la

ek
ag

e
sa

vi
n

g
s 4-BLE 6-BLE 8-BLE

Figure 5.18: ‘s298’ leakage savings vs minimum speed penalty for the R-LAP and

T-MTCMOS combination.

Figure 5.19 plots the relative path delays distribution in the ‘ex5p’ benchmark

with respect to the critical path delay. From Figure 5.19 it can be deduced that

the number of critical paths did not increase. In addition, the maximum circuit

delay changed by only 3%. The final shape of the delay distribution can be varied

103

by changing δ.

0

200

400

600

800

1000

1200

1400

0.5 0.6 0.7 0.8 0.9 1

Relative Delay w.r.t. the Critical Delay

N
o

. o
f

P
at

h
s

Before T-MTCMOS

After T-MTCMOS

Figure 5.19: Critical path distribution for timing-driven MTCMOS designs.

5.7.4 Leakage Savings Breakdown

In each benchmark, the leakage power savings consist of two parts; savings from

permanently turning OFF all the unused clusters and savings from dynamically

turning ON and OFF the used clusters in the design depending on their activity

profile. By taking a look at the results for the ‘seq’ benchmark in Table 5.1, this

benchmark has no unused clusters while the power savings achieved ranges from

7.14% to 15.23%, depending on the combination of the activity profile generation

and the packing algorithms used. This power savings is entirely from dynami-

cally turning ON and OFF the different used clusters in the design depending on

their activity profile. On the other hand, the ‘s298’ benchmark has the maximum

percentage of unused blocks among all of the benchmarks and it resulted in the

maximum power savings, ranging from 21.06% to 40.94% depending on the activ-

ity generation and packing algorithm used.

In order to quantify the leakage power savings provided by the unused and

used clusters of the design, the power savings from each source is recorded for

each benchmark. Figure 5.20 plots the average power savings achieved by each

combination of algorithms used across all the benchmarks. It should be noted that

the average power savings achieved by turning OFF the unused clusters is 4.92% and

is constant across all the combination of algorithms used. This is mainly because

all the combination of algorithms provide almost the same number of clusters after

packing, hence, the number of unused clusters remains the same. Figure 5.20

104

shows that even for the least power efficient combination of algorithms (CAP &

AT-VPack), the power savings from the used clusters is almost double that from

the unused clusters. The contribution of the used clusters to the total power savings

increases with the algorithm efficiency.

0

10

20

30

40

50

60

CAP & AT-Vpack LAP & AT-Vpack R-LAP & FAT-
Vpack

R-LAP & T-
MTCMOS

Algorithm Used

P
er

ce
n

ta
g

e
P

o
w

er
 S

av
in

g
s

Savings in Unused Clusters

Savings in Used Clusters

Figure 5.20: Leakage power savings breakdown.

5.7.5 Impact of Utilization and ON Time on Leakage Sav-

ings

In reality, the utilization percentage is less than the 100% utilization assumption

used in finding the results in Table 5.1. Typically, the utilization in FPGAs ranges

from 80% to 60% [55]. In order to investigate the impact of the utilization per-

centage on the total power savings by turning OFF the unused logic blocks, the

benchmarks are mapped on a larger FPGA fabric and the results are plotted in

Figure 5.21 for utilization percentages of 80% and 60% using the R-LAP and T-

MTCMOS combination. It can be noticed that the power savings achieved by

permanently turning OFF the unused clusters increases almost exponentially with

decreasing the utilization percentage.

Moreover, the 100% ON time assumption made earlier is impractically high.

The average on time of most applications is around 50% to 20% for some hand-

105

0

5

10

15

20

25

60 80 100

Percentage Utilization

P
o

w
er

 S
av

in
g

s
fr

o
m

 t
h

e
U

n
u

se
d

C

lu
st

er
s

Figure 5.21: Percentage savings in power for different FPGA fabric utilizations

using the combination of R-LAP and T-MTCMOS.

held applications [111]. Hence, the same benchmarks are tested again using ON

times of 100%, 60%, and 40% and the average power savings from the used clusters

of the FPGA are plotted in Figure 5.22. From Figure 5.22, it can be noticed

that with reducing the operational time increases the total power savings from the

proposed algorithms significantly.

0

10

20

30

40

50

60

70

80

CAP & AT-Vpack LAP & AT-Vpack R-LAP & FAT-Vpack R-LAP & T-
MTCMOS

Algorithm Used

P
er

ce
n

ta
g

e
P

o
w

er
 S

av
in

g
s

in
 t

h
e

U
se

d
 C

lu
st

er
s 100% ON time 60% ON time 40% ON time

Figure 5.22: Percentage savings in power for different utilizations and operational

time using the combination of R-LAP and T-MTCMOS.

106

5.7.6 Impact of the Sleep Region Size

In another experiment, several sizes for the sleep region are tested for different

cluster sizes. The size of the cluster is changed from 3 to 6 logic blocks and the

size of the sleep region is changed from 1 to 5 clusters. The leakage savings in each

of these experiments are recorded and plotted in Figure 5.23. From Figure 5.23,

it can be noticed that for each cluster size, there is an optimum sleep region size.

Moreover, leakage savings is always maximum for sleep regions of size around 8 logic

blocks. This proves the fact stated earlier that too large (will require a large sleep

transistor, which results in large standby leakage and dynamic power dissipation in

the sleep transistor) and too small (will result in partially unfilled clusters, which

will increase the area and decrease the number of permanently OFF sleep regions,

hence, increases the total leakage power) sleep regions will result in lower leakage

savings.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

of blocks in the sleep region

3 BLEs 4 BLEs 5 BLEs 6 BLEs

%
 P

o
w

er
 S

av
in

g
s

Figure 5.23: Impact of the sleep region size on the leakage savings.

5.7.7 Scalability of the Proposed Algorithms with Technol-

ogy Scaling

In order to investigate the scalability of the proposed algorithms, the R-LAP FAT-

VPack combination as well as the R-LAP T-MTCMOS combination are applied to

several current CMOS technologies (130nm, 90nm) and predictive CMOS technolo-

107

gies (65nm, 45nm) [124]. The average power savings across all the benchmarks are

plotted in Figure 5.24.

0

10

20

30

40

50

60

70

80

130nm 90nm 65nm 45nm

CMOS Technology

T
o

ta
l P

o
w

er
 S

av
in

g
s

R-LAP + FAT-VPack R-LAP + T-MTCMOS

Figure 5.24: Impact of technology scaling on power savings.

5.8 Conclusions

In this Chapter, the proposed MTCMOS architecture for FPGAs is introduced.

Moreover, the developed algorithms for activity generation (CAP, LAP, and R-

LAP) and activity packing (AT-VPack, FAT-VPack, and T-MTCMOS) are pre-

sented. It was found that the combination of the R-LAP algorithm and T-MTCMOS

results in the maximum leakage power savings and minimum performance penalty

on the final design.

108

Chapter 6

Leakage Power Reduction in

FPGAs Through Input Pin

Reordering

Input dependency of leakage power has been witnessed in VLSI circuits in general

[125] and in FPGAs in particular [48], where it was reported that 4X variations in

leakage power can be experienced in commercial 90nm FPGAs.

Input signal forcing techniques have been used in [53] to reduce the active leak-

age power dissipation in FPGAs. Since leakage current is heavily state dependent,

by manipulating the inputs of some logic blocks, the unused parts of the FPGA

can be placed in a low-leakage state. Moreover, by utilizing the complements of the

signals, the authors have managed to reduce the total leakage power of the utilized

parts of the FPGA. However, the methodology in [53] is based on the assumption

that only one output state can result in the minimum leakage power dissipation.

This is basically due to the fact that the authors only studied the power dissipation

in the inverters, without trying to find a low-leakage state in the pass-transistor

multiplexers. It will be demonstrated in this thesis that there is more than one low

leakage state that can be further exploited to achieve a bigger reduction in leakage

power dissipation. The technique proposed in [53] focuses on leakage power mini-

mization only in the inverters and buffers of the FPGA without considering leakage

power minimization in the other parts of the FPGA, including the pass-transistor

multiplexers.

In FPGAs, input signal forcing is a substantial leakage power reduction tech-

nique, since FPGAs depend on pass-transistor logic in their design, where power

109

dissipation is strongly state dependent. In this Chapter, a complete new methodol-

ogy, based on input pin reordering, is developed to reduce the total leakage power

dissipation in all components of FPGAs, unlike [53] that focuses only on the in-

verter, without incurring any area or performance penalties in the final design. In

the proposed methodology, the logic and routing resources are handled differently

to achieve maximum leakage savings. Moreover, a modified version of the proposed

methodology is implemented to improve the performance along the critical path,

and still achieves significant leakage power savings in the design. Moreover, the

impact of technology scaling on the lowest leakage states is investigated in this

work.

This Chapter is organized as follows; the state dependency of leakage power in

FPGAs is discussed in Section 6.1. The proposed input pin reordering algorithm is

introduced in Section 6.2. Finally, the results of applying the proposed algorithm

on the generic FPGA architecture are discussed in Section 6.3.

6.1 Leakage Power and Input State Dependency

in FPGAs

Leakage current in nanometer CMOS technologies has two main components; sub-

threshold and gate leakage currents. Subthreshold leakage current flows from the

drain to the source of an OFF CMOS device. On the other hand, gate leakage

current flows through the gate of the device to or from one or both the diffusion

terminals. Gate leakage has both an ON and OFF component, with its OFF com-

ponent almost ignorable relative to the ON part [46]. Both components of leakage

power exhibit strong dependency on the state of the input signals as discussed in

this Section.

6.1.1 Subthreshold Leakage Current

The subthreshold leakage current Isub is defined as the current that flows between

the drain and source of a MOS device when VGS is less than VTH . Isub is formulated

as

Isub = µoCox
W

L
(m− 1)× v2

T × e(VGS−VTH)/mvT × (1− e−VDS/vT) , (6.1)

where µo is the device mobility, Cox is the oxide capacitance, W and L are the

device dimensions, vT is the thermal voltage (kT/q), and m is the subthreshold

110

swing coefficient, which is given by

m = 1 +
3tox

Wdm

, (6.2)

where tox is the oxide thickness and Wdm is the maximum depletion layer width.

The contribution of the subthreshold leakage current to the total power dissipation

increases with technology scaling due to the continuous reduction in VTH to improve

the device performance.

The input state dependency on the subthreshold leakage current can be readily

seen in Eq. (6.1) in the dependence of Isub on VDS and VGS. Two dominant

factors affect the input dependency of subthreshold leakage current: Drain Induced

Barrier Lowering (DIBL) and Body Effect. Subthreshold leakage current is also a

strong function of the temperature, increasing significantly with increasing the chip

temperature.

6.1.1.1 Drain Induced Barrier Lowering (DIBL)

In nanometer CMOS devices with short channels, the drain-source potential has a

strong impact on the band bending over a significant part of the CMOS device. As

a result, the threshold voltage of the CMOS devices becomes a function of the drain

source voltage. Applying a large drain to source voltage to the CMOS device results

in decreasing the threshold voltage, hence, increasing the subthreshold current.

Figure 6.1 plots the change in VTH and the subthreshold leakage current Isub of

a minimum size 90nm NMOS device with the change in VDS from 0V to 1.2V.

It should be noted that this 90nm CMOS process has a supply voltage of 1.2V,

thus the change in the drain to source voltage plotted in Figure 6.1 can be readily

experienced during operation. Figure 6.1 shows that for two equal-sized transistors,

their VTH can differ by almost 25% and their leakage current can vary by 4.5X, due

to the DIBL effect, because of a difference in VDS equal to the supply voltage.

Pass-transistor multiplexers used in FPGAs can experience four different values

of VDS, as shown in Figure 6.2. The transistors in the first and last stages of the

multiplexer are the only ones that can experience the worst case VDS of VDD. The

middle stages can experience a maximum of VDD − VTH because of the weak ‘1’

passed by the NMOS pass-transistors. From Figure 6.2, it can be deduced that the

maximum leakage current occurs when the signals at both diffusion terminals of a

multiplexer transistor are different, i.e., to have the largest value of VDS.

From the above discussion, it can be concluded that a means of reducing sub-

threshold leakage in pass-transistors multiplexers is to ensure that the majority of

111

0 0.4 0.8 1.2
0.15

0.2

0.25

V
DS

 (V)

V
T

H
 (

V
)

0 0.4 0.8 1.2
0

5

10

15

20

25

30

V
DS

 (V)

I D
S
 (

nA
)

Figure 6.1: DIBL effect in a 90nm CMOS process.

In
c
re
a
s
in
g
 V
d
s

In
c
re
a
s
in
g
 I
le
a
k

Figure 6.2: DIBL impact on subthreshold leakage in FPGA pass-transistor devices.

the pass-transistors experiences the smallest VDS. It should be noted that if the

first stage of the multiplexer is designed to have the smallest VDS, the total multi-

plexer subthreshold current will be limited significantly, since the total subthreshold

current has to flow through them.

6.1.1.2 Body Effect

The impact of the body to source voltage VBS on VTH has been witnessed in CMOS

devices for several technology generations. The effect of body bias is formulated as

VTH = VTH0 + γ
(√

|Φs| − VBS −
√
|Φs|

)
, (6.3)

112

where VTH0 is the ideal VTH at zero VBS, γ is the body bias coefficient, and Φs is the

surface potential. Having a negative VBS would result in increasing the threshold

voltage, which in turn will reduce the subthreshold leakage current.

It should be noted that CMOS devices in pass-transistor multiplexers will never

experience a positive VBS, since the body of the pass-transistors is always connected

to GND. Pass-transistors with logic ‘0’ at one or both of the diffusion terminals will

not experience body effect as VBS would be zero. However, those devices with logic

‘1’ at both their diffusion terminals will experience subthreshold leakage current

reduction due to body effect because their |VBS| would be maximum, either VDD

or VDD − VTH .

6.1.2 Gate Leakage

Gate leakage exists in both the ON and OFF states of the CMOS devices [46].

However, the off component of the gate leakage is ignorable with respect to the

ON component. The value of gate leakage is a strong function of both VGS and

VDS. Large values of |VGS| and small values of VDS generate a large gate leakage

current. Figure 6.3 shows the two dominant gate leakage current configurations

and how they depend on the input state. The gate leakage resulting from the

other input configurations is much smaller than these two configurations and can

be safely assumed zero, at least for the 90nm CMOS process used in this thesis. It

should be noted that the gate leakage current is not a function of the temperature,

and thus, stays constant with the change in the chip temperature.

VDD VDD - VTH

0 0

In
c
re
a
s
in
g
 Ig
a
te

VDD

0

Figure 6.3: Gate leakage dominant states in FPGA pass-transistor devices.

6.1.3 Low-Leakage States in Pass-Transistor Multiplexers

From the above discussion, it can be concluded that there is one or more input states

where the leakage power will be minimum in pass-transistor multiplexers. The input

113

state depends on the relative magnitude of the subthreshold leakage current to that

of the gate leakage current. In [96] it was reported that the gate leakage power

dissipation is less than 1/20 of the subthreshold leakage power dissipation in 90nm

FPGAs at room temperature. In the experiments done in this work, the maximum

gate leakage current in a 90mn minimum-sized device is in the order of 300pA, which

is much less than than the smallest subthreshold leakage current measured which is

in the order of 1nA. Moreover, the contribution of the gate leakage power decreases

with the increase in temperature due to the strong dependence on subthreshold

leakage power on the temperature. Consequently, in this work, the most dominant

leakage states are considered to be those of the subthreshold leakage current. Figure

6.16 shows the input states that result in the lowest and highest leakage current

that can be experienced in FPGAs pass-transistors.

VDD VDD - Vth0 0

00

(1) (2)

(a) Lowest leakage states.

0 VDD - Vth0 VDD

0 0

(1) (2)

(b) Highest leakage states.

Figure 6.4: Total leakage dominant states in FPGA pass-transistor devices.

The configuration labeled (1) in Figure 6.4(a) results in the lowest leakage cur-

rent. The highest leakage state is the one labeled (1) in Figure 6.4(b), which

experiences the highest VDS, hence, the maximum DIBL effect and no body effect.

By looking at the low leakage states shown in Figure 6.4(b), it can be deduced that

the lowest leakage states occur if every pair of pass-transistors in the multiplexer

have inputs with similar value, as shown in Figure 6.5(a). The highest leakage state

occur whenever the inputs to the multiplexer pair are different, as shown in Figure

6.5(b). ��� � ��� �
(a) Pass-transistor pair with similar inputs.

��� �
(b) Pass-transistor pair with different inputs.

Figure 6.5: Inputs to pass-transistors pairs.

114

6.1.4 Leakage Power in Inverters/Buffers

In this experiment a minimum-sized inverter is designed to have equal rise and fall

times to minimize short circuit power dissipation. This is achieved by increasing the

width of the PMOS device while keeping the NMOS device to minimum width to

balance the difference in mobility of the two devices. The inverter is then simulated

using HSpice and the total leakage power is recorded in both cases when the output

of the inverter is ‘1’ and ‘0’. The values of the measured leakage current are recorded

in Table 6.1. As seen in Table 6.1, even if the PMOS and NMOS devices of the

inverter are designed to have equal driving capabilities, the NMOS still leaks more

than the PMOS device. The ratio between the NMOS total leakage current to that

of the PMOS is almost 2X. This is mainly due to the inverse narrow width effect

experienced by trench isolated CMOS devices. PMOS devices in trench isolated

devices experience an increase in VTH with the initial increase in the width of the

device. Afterwards, the leakage current starts increasing with the device width. As

a result, PMOS devices in the inverters sink a smaller subthreshold leakage current

than the NMOS devices because of their larger width.

Table 6.1: Leakage current in a minimum-sized inverter.

Inverter Output Total Leakage Current

‘0’ 17.03nA

‘1’ 31.12nA

This is an interesting phenomenon as it can be used to further reduce leakage

inside LUTs pass-transistors multiplexers. Multiplexers need inverters to generate

the complement of the control signals, which are generated inside the LUT using

minimum-sized inverters similar to the one simulated above, as shown in Figure 6.6.

If the input control signal are all zeros, A and B in Figure 6.6, then all the inverters

would have a high output, thus, sinking the largest leakage current. Hence, it is

more leakage efficient to avoid having the most probable input state being all zeros,

where all the inverters would generate the highest leakage current.

6.2 Proposed Input Pin Reordering Algorithm

The proposed pin reordering algorithm for leakage power reduction utilizes the

conclusions developed in Section 6.1 to reduce total leakage power in the pass-

transistor multiplexers. The algorithm consists of two phases; the first one targets

115

B

Ā

A

B

Figure 6.6: Gate leakage dominant states in FPGA pass-transistor devices.

leakage reduction in the FPGA logic blocks, Logic Pin Reordering (LPR), and the

second phase targets the routing switches, Routing Pin Reordering (RPR). The

LPR stage is performed right after synthesis and before the packing stage, while

RPR is performed after the routing stage, as shown in Figure 6.7. Again, the CAD

flow used in this thesis is based on the VPR CAD flow [28] where the packing is

performed using T-VPack and placement and routing is performed using the VPR

CAD tool.

Figure 6.7: VPR CAD flow with the proposed pin reordering algorithms.

116

6.2.1 Logic Pin Reordering (LPR) Algorithm

The LPR algorithm reorders the input pins in such a way to have the maximum

number of signals with similar polarities at the inputs of any multiplexer pair, as

shown in Figure 6.5(a). The algorithm also avoids having the input configuration

with the highest probability to be the one with all zeros to further minimize leakage

power in the LUT, as explained in Section 6.2. Furthermore, the LPR algorithm

handles logic blocks differently according to the number of inputs of each logic

block. The LPR algorithm is divided into four separate phases as discussed in the

next subsections.

6.2.1.1 Input Pins Padding

In most FPGA CAD tools, whenever a logic block has inputs less than the maximum

number of allowable inputs to a logic block, the unused inputs are either left floating

or connected to either VDD or GND. The choice whether to connect the unused input

pin to either rail does not follow a certain reasoning, but rather it is an architecture

choice. In this thesis, a padding methodology is proposed to make use of the fact

that multiplexer pairs with similar inputs at both diffusion ends sink less leakage

current than those with different inputs, as shown in Figure 6.5.

If a logic block has inputs less than the maximum number of allowable inputs,

the extra inputs are padded in such a way to create the largest number of low-

leakage multiplexer pairs. As an example, assume that the maximum number of

inputs for every logic block is three and the logic block shown in Figure 6.8(a)

has only two inputs, A and B. The LPR algorithm then pads the extra input C

to the circuit, as shown in Figure 6.8(b). C is a fixed signal that can be set to

either ‘1’ or ‘0’. It should be noted that all modern FPGAs have the ability to

generate a constant signal from within the logic block with no need to use any

extra resources. As a result, the circuit with the padded inputs will have all of its

first level multiplexer pairs with identical signals at both inputs, as shown in Figure

6.8(b), hence, maximum leakage reduction can be achieved in this case. It should

be noted that the inputs padded into the circuit always go into the least significant

bits of the multiplexer.

6.2.1.2 Input Pins Swapping

The second phase of the LPR algorithm is involved with the swapping of the input

pins to have the maximum number of multiplexer pairs with similar signals at

117

(a) Logic block with
inputs less than
the maximum.

(b) Resulting circuit after in-
put padding.

Figure 6.8: Input padding for logic blocks with inputs less than the maximum.

their inputs. Assume that the inputs to a 4-input logic block are A0A1A2A3. The

algorithm picks the first input signal from the synthesized circuit A0 and looks at

the outputs of the logic function implemented when A1A2A3 are given by ‘000’,

while A0 is both ‘0’ and ‘1’. If the two outputs are equal, the counter for A0 is

incremented by 1. Afterwards, the algorithm looks at the outputs of the function

when A1A2A3 are given by ‘001’, and so on until all the 23 different combinations

are considered. The same procedure is repeated for the other 3 inputs A1, A2,

and A3. The input with the highest count of equal signals is selected as the least

significant input pin. The computational complexity of this phase is O(m× 2m−1),

where m is the maximum number of inputs to the logic block. A conventional value

of m is 4 [28].

As an example of the algorithm operation, consider the 2-input logic block shown

in Figure 6.9(a). The count of signals with similar input multiplexers would be zero

for A and two for B. Hence, the algorithm would move B to be the least significant

bit of the multiplexer instead of A. The resulting logic block with configuration

SRAM bits is shown in Figure 6.9(b), where it can be seen that now the first stage

multiplexers have signals with similar polarity at their inputs.

After identifying the least significant input, the algorithm tries to find the order

of the remaining inputs using the same methodology. However, in finding the least

significant input pin, the inputs to the multiplexer are known since they are the

contents of the configuration SRAM cells. In the following multiplexer stages,

118

0

Ā

1

0

1

A

A

Ā

B

B

out

(a) Logic block before input pins
swapping.

0

1

1

0

B

B

Ā

A

out

B

B

(b) Resulting circuit after input
swapping.

Figure 6.9: Input pin swapping for logic blocks to minimize leakage power dissipa-

tion.

static probability is used to find the most probable value expected at their inputs.

If the static probability of the control input to the least significant multiplexer

is higher than 0.5, the algorithm assumes that all the values connected to the

transistor controlled by the least significant pin will pass to the second stage. On

the other hand, if the static probability is less than 0.5, the inputs controlled by the

compliment of the least significant input pin are assumed to go through. The same

procedure used to select the least significant pin is used to order the remaining

input pins.

It should be noted that most of the leakage savings is achieved from the selection

of the least significant input pin. This is mainly because the leakage current in the

multiplexer will be limited to the smallest leakage current on the path. However,

rearranging the pins of the latter stages adds an extra amount of leakage savings

by adding more resistance in the leakage current path. It is worth mentioning that

this phase of LPR does not add any physical overhead to the design, since it merely

rearranges the input pins and the configuration SRAM contents.

6.2.1.3 Most Probable States

As presented in Section 6.1.4, CMOS inverters dissipate almost 2X more leakage

power when their output is ‘1’. Since the multiplexers use several inverters to

generate the needed input signals to control the multiplexer, then it might be

119

wise to avoid having the most probable input being given by all zeros. Such an

input will generate the highest leakage power dissipation in the inverters inside the

multiplexer. As a matter of fact, it is more desirable to have the most probable

input being all ones.

To make use of this property, the LPR algorithm looks at the static probabilities

of the different input combinations to each multiplexer, if the highest one contains

a large number of zeros, i.e., more than half the maximum number of inputs, the

algorithm tries to avoid that by inverting one or more of the input signals. This

can be easily done in FPGAs as it only implies changing the contents of the SRAM

cells in the logic blocks that are connected to this signal.

The LPR algorithm looks at the set of inputs that need to be inverted and tries

to invert only a small number of them that is needed to counterbalance the effect of

the large number of zero inputs. As an example, consider a 4-input logic block that

has the most probable input being ‘1000’. Then the algorithm would need to toggle

two of the three least significant inputs to counterbalance the effect of the majority

of zeros in the most probable inputs. The toggling is performed by toggling the

contents of the configuration SRAM cells in the logic block that generates these

signals. The choice of which signals to toggle is based on the probabilities of the

next most probable inputs. If a certain signal appears ‘0’ more than once in the first

five most probable inputs states, that it has a higher probability of being selected by

LPR to be toggled. If the five most probable input states have static probabilities

given by P1,2,3,4,5,, and the value of the input j in input state i is given by Ij,i. The

inputs selected for toggling are those the maximize

max
∀j

5∑
i=0

Ij,i × Pi . (6.4)

6.2.1.4 Unutilized Logic Resources

The unutilized logic resources should always be placed in a low-leakage state to

avoid wasting leakage current. From the discussion presented in Section 6.1 and

summarized in Figure 6.4(b) and Table 6.1, the lowest leakage state occurs when all

the SRAM cells store ‘0’. In addition, the input to the inverters that generate the

control signals inside the logic blocks should be connected to VDD. Since FPGAs

have the flexibility to connect any input inside the logic blocks to either of the supply

rails, then this phase of LPR guarantees placing the unutilized logic resources in a

low-leakage mode without incurring any physical costs.

120

6.2.2 Routing Switches Pin Reordering (RPR) Algorithm

The routing architecture assumed in this work is the disjoint architecture with a

flexibility of three. The RPR algorithm is composed of three phases.

6.2.2.1 Input Pins Padding

The input padding phase of the RPR algorithm is similar to that of the LPR

algorithm. If one of the routing multiplexers has one of its inputs left floating,

that input is connected to a constant signal in such a way to reduce the leakage

power in that multiplexer, according to the guidelines in Section 6.1. Similar to

the logic phase, these multiplexers have the flexibility to generate constant signals

from within, thus reducing the need for extra hardware. However, the inputs to

the drains of the pass-transistors of the routing switches are not known beforehand,

unlike the logic blocks which are dictated by the contents of the configuration SRAM

cells. This work depends on the static input probabilities of the routed signals to

estimate the most probable value of the signal and based on that pad the vacant

input signals accordingly to minimize the leakage power dissipation.

6.2.2.2 Most Probable States

Some of the routing resources employed in FPGAs are buffered routing switches,

where the output of the multiplexer is connected to a buffer to transmit the signal

for a long distance across the FPGA fabric. However, these buffered switches are

prone to the input dependency of the leakage power dissipation in the buffers,

especially since they are designed with large dimensions. This observation is the

core of the earlier work proposed in [53].

The leakage power dissipation in the buffers can be minimized by avoiding the

state with the highest leakage. Inside the buffer, both inverters dissipate leakage

power dissipation, however, the second inverter dissipates more leakage power be-

cause it is designed with a larger size. Consequently, the desired low-leakage state

is that of the second inverter. According to that, the low-leakage state is when the

input to the buffer is ‘1’. Since the input to the buffer is not previously known,

static probability is used to estimate the most probable input to all the buffered

routing switches. If the most probable input is not ‘1’, then the input is inverted

simply by inverting the values of the logic blocks connected to that net. It is note-

worthy that this phase of the RPR algorithm is applied first since it might affect the

121

actions taken by input padding phase. The algorithm used in this work is similar

to the one presented in [53].

6.2.2.3 Unutilized Routing Resources

Similar to the LPR algorithm, the RPR is applied to place all the unutilized routing

resources in a low-leakage state. This is performed by generating constant signals

within the unused routing multiplexers to manipulate them into the lowest leakage

state.

6.3 Experimental Results

The proposed leakage power reduction pin reordering algorithm is tested on a 90nm

CMOS process using several FPGA benchmarks [28]. The algorithm takes as an

input a readily synthesized circuit and then rearranges the inputs to each LUT

to result in the minimum leakage power dissipation. The benchmark circuits are

synthesized using the SIS sequential circuit synthesis tool [126]. Both the LPR

and RPR algorithms are integrated into the VPR CAD flow [28] according to the

flowchart shown in Figure 6.7. The leakage power modeling is performed using

the proposed power modeling approach presented in Chapter 4 to take the state

dependency of leakage power into consideration.

The proposed pin reordering algorithm is applied to several FPGA benchmarks

and the percentage leakage savings are listed in Table 6.2 for a 4-input LUT com-

pared to the control case. Moreover, Table 6.2 also lists the total leakage savings

achieved by [53]. The total average leakage savings is around 50% across all the

benchmarks tested, while that achieved by [53] is around 24.72%. It can be easily

shown that the proposed algorithm outperforms that of [53] in terms of leakage

savings. In addition, Table 6.2 shows how the leakage savings due to the LPR al-

gorithm vary with the number of inputs to the logic blocks. The larger the number

logic blocks with inputs less than 4, the higher the leakage savings due to LPR due

to its padding phase.

Figure 6.10 shows a breakdown of the leakage savings due to the LPR phase.

It can be shown that the maximum savings are generated by the input swapping

phase. Figure 6.10 shows that very small leakage savings originate from placing

the unutilized logic into a low-leakage state because the benchmarks tested were

mapped into the smallest FPGA square array that can hold them, thus resulting

122

Table 6.2: Leakage savings by the proposed pin reordering algorithm across several

FPGA benchmarks.

Benchmark

Percentage of logic blocks with Avg Leakage Avg Leakage Tot. Leakage Avg Leakage

2 inputs 3 inputs 4 inputs
Savings in Savings in Savings Savings (%)

Logic (%) Routing (%) (%) [53]

alu4 0.07 0.29 0.62 60.92 40.76 50.3 20.7

apex4 0.01 0.42 0.55 57.34 41.35 48.9 26.5

des 0.05 20 0.74 57.28 45.74 50.96 29.99

dsip 0 0 0.98 20.13 45.72 33.16 20.86

frisc 0.07 0.27 0.64 68.34 42.18 54.61 26.16

pdc 0.01 0.21 0.76 52.07 42.28 47.18 24.5

s298 0.08 0.22 0.68 58.84 42.27 50.12 26.85

s38584.1 0.25 0.18 0.53 79.48 43.79 61.49 16.48

spla 0.01 0.24 0.74 53.78 42.8 48.02 21.2

apex2 0.06 0.31 0.62 56.68 41.51 48.78 30.36

bigkey 0.2 0 0.79 64.08 43.43 53.28 28.69

clma 0.06 0.24 0.69 49.91 42.6 46 17.79

diffeq 0.09 0.29 0.61 67.87 41.32 53.8 27.02

elliptic 0.12 0.28 0.59 60.01 44.07 51.27 27.19

ex5p 0.04 0.21 0.74 40.80 41.27 41.04 36.7

misex3 0.04 0.35 0.59 66.08 39.29 52.2 18.7

s38417 0.04 0.41 0.52 57.10 43.74 50.27 18.83

seq 0.07 0.33 0.59 68.44 41.72 54.2 24.7

tseng 0.12 0.27 0.6 70.58 43.47 56.05 19.18

ex1010 0.04 0.42 53 69.84 41.09 54.09 31.9

Average 58.98 42.38 50.29 24.72

in the absolute minimum unutilized logic resources. It should be noted that if the

benchmarks were mapped into more practical FPGA sizes, the percentage leakage

savings in the unutilized resources would increase notably.������������	
����
��������������������	��� ���� ������
�
Figure 6.10: Leakage savings breakdown in logic blocks.

The leakage power savings achieved using RPR breakdown is shown in Figure

6.11. It can be noticed that the average savings in the unutilized routing resources

is larger than that resulting for the logic resource. This is mainly because the

percentage of unutilized routing resources is usually larger than that of the logic

123

resources. Another observation is that the percentage leakage savings in the invert-

ers is larger in the routing resources, which can be justified by the fact that the

inverters used in the routing resources are of larger sizes than those used in the

logic resources, thus they consume larger leakage.

�����������	 ��
���
�������	 ���� ��������	
Figure 6.11: Leakage savings breakdown in the routing resources.

6.3.1 Pin Reordering and Performance

The pin swapping algorithm results in changing the VTH of the transistors in the

pass transistor multiplexers due to the DIBL and body effects previously explained.

Its main aim is to have a net increase in VTH to result in subthreshold leakage

savings. As a result, the delay through these multiplexers ends up increasing.

In order to investigate the impact of changing the input ordering on the design

performance, several SPICE simulations were performed to calculate the average

delay through the pass transistor multiplexer for all the possible input combinations.

A look-up table is then structured for all the possible delays. To quantify the

increase in delay due to the proposed algorithms, the delay across the critical path

of the resulting designs are compared to those designed using the regular VPR

and the performance penalty is plotted in Figure 6.12. It can be seen that the

performance penalty is always less 3% across all benchmarks tested.

In another experiment, the algorithm was applied in such a way to avoid chang-

ing the logic blocks and routing resources along the benchmark critical path. The

critical path is identified using the state dependent delay look-up table explained

above. Logic blocks and routing resources along the critical path are marked as do

not touch for the LPR and RPR algorithms not to change them. This version of

the algorithm is called No-change for the Critical Path (NCP). The NCP version

results in less leakage savings than those recorded in Table 6.2. The leakage savings

resulting from the NCP versions are plotted in Figure 6.13 for all the benchmarks

124

����������������
�� �	 �
��	
 ��
 ��
 � �� ��

 � ���� �����	 �� �
� � �
��� � � �� �� �� ��
��� �� ��� �
 � � ���
 �� ���� ���	�! ��� ��"� ���#�#$ %&' (&)*+,%$ %+*-. /0 12

Figure 6.12: Performance penalty due to the proposed algorithm.

tested. The horizontal line represents the average of the leakage reduction, which is

around 49.14%, which is slightly less than the average savings in Table 6.2 (50.29%).

���������
������

�	
� ��
�� �
� � �� � � �� �� �� � ���� ������ �� ��	 � ��
�� �� ��
� �	 � ����
!
		� �"� �
�� � � �
�� �����# �
! " �
$�
��%�%& '() (*'+ (,- .*/01
2

3456789:;
Figure 6.13: Leakage savings to avoid affecting the performance.

In another experiment, instead of leaving the logic and routing resources along

the critical path unchanged, the pin swapping algorithm is applied to actually

125

increase the multiplexers Vth. As a result, the leakage power along the critical path

increases, while the delay along it is reduced. This provides a means of trading off

some of the leakage savings to improve the circuit performance. This version of the

algorithm is called Reduce the Critical Path (RCP). Figure 6.14 plots the percentage

leakage savings as well as the improvement in the design performance for each

benchmark achieved by the RCP version. The average performance improvement

is 2.4% while the average reduction in leakage savings is 47.7%.

6.3.2 Pin Reordering and Technology Scaling

Based on the ITRS report [1], both types of leakage currents are expected to in-

crease significantly with the technology scaling as shown in Figure 6.15. However,

the increase in the gate leakage current is expected to be steeper resulting in gate

leakage current exceeding subthreshold leakage current in future CMOS technolo-

gies.

The minimum leakage state depends heavily on the relative magnitude of the

subthreshold leakage and gate leakage currents. Hence, it is expected that the min-

imum leakage states will change for each technology. In the next set of experiments,

the minimum leakage state is evaluated for several future technology nodes [124]

using the BSIM4 leakage model. The results are presented in Figure 6.16. It can

be noticed that the state where the input and the output of the multiplexer are

given by ‘0’ is no longer the minimum leakage states for technologies beyond the

90nm. This is because this state has the maximum gate leakage current, so once

the contribution of gate leakage current starts to dominate the total leakage cur-

rent, the total leakage of that state will increase. The next observation is that as

the technology is scaled down, the body effect starts to have a smaller effect on

the device Vth, hence, the total leakage of the state where the input and output

are given by ‘1’ starts to increase. Moreover, the gate leakage of that state is the

second highest gate leakage current achievable.

6.4 Conclusion

In this Chapter, a leakage reduction algorithm is proposed for FPGAs without any

physical or performance penalties by employing the input dependency of leakage

power. Input reordering is used to place the logic and routing resources in their

lowest leakage state. The proposed methodology targets both the logic and routing

126

���������
������

�	
� ��
�� �
� � �� � � �� �� �� � ���� ������ �� ��	 � ��
�� �� ��
� �	 � ����
!
		� �"� �
�� � � �
�� �����# �
! " �
$�
��%�%& '() (*'+ (,- .*/01
2

3456789:;
(a) Leakage savings for the RCP version.

����������������
�� �	 �
��	
 ��
 ��
 � �� ��

 � ���� �����	 �� �
� � �
��� �� �� �� �� ��
��� �� ����
 � � ���
 �� ���� ���	�! ��� ��"� ���#�#$ %&' (&)*+,%-).&(

/%)%+0123
456789:;<

(b) Performance improvement for the RCP version.

Figure 6.14: Trading leakage savings to reduce critical path delay in RCP.

resources using the LPR and RPR algorithms, respectively. The newly developed

algorithm achieves an average leakage savings of 50%. Another version of the

proposed algorithm is also developed that results in a performance improvement of

2.4%, while achieving an average leakage reduction of 47.7%.

127

��
� ����� ���� ���

��	
 ��	
 ��	
 ��	
 ��	
 I g
a

te
d

e
n

si
ty

 (
A

/c
m

2
)

I s
u

b
(μ

A
/μ

m
)

Technology Node

����������� ����

Figure 6.15: Leakage current vs. technology.

0 VDD - Vth

0 VDD

VDD VDD - Vth

0 0

In
c
re
a
s
in
g
 I
le
a
k

(a) 90nm.

0 VDD - Vth

0 VDD

VDD VDD - Vth

0 0

In
c
re
a
s
in
g
 I
le
a
k

(b) 65nm and 45nm.

0 VDD - Vth

0 VDD

VDD VDD - Vth

0 0

In
c
re
a
s
in
g
 I
le
a
k

(c) 32nm and 22nm.

Figure 6.16: Total leakage dominant states in FPGA pass transistor devices.

128

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis proposed several methodologies for leakage power reduction in mod-

ern nanometer FPGAs. The use of supply gating using Multi-Threshold CMOS

(MTCMOS) techniques was proposed to enable turning OFF the unused resources

of the FPGA, which are estimated to be close to 30% of the total FPGA area.

Moreover, the utilized resources are allowed to enter a sleep mode dynamically dur-

ing run-time depending on certain circuit conditions. Several new activity profiling

techniques (CAP, LAP, and R-LAP) were proposed to identify the FPGA resources

that will share common idleness periods, such that these resources will be turned

OFF together. To increase the benefits from the MTCMOS FPGA architecture,

new packing techniques (AT-VPack, FAT-VPack, and T-MTCMOS) were proposed

to include the logic blocks activities and pack those with similar activity profile to-

gether. The proposed techniques were applied to several FPGA benchmarks, and

it was found out that the combination of R-LAP and T-MTCMOS for activity and

packing algorithms, respectively, yields the most leakage savings while incurring the

minimum performance penalty. On average, the R-LAP and T-MTCMOS combi-

nation yields about 52% leakage savings, while the performance loss affecting the

critical paths was kept at 3%.

Another techniques proposed in this thesis for leakage power reduction in FP-

GAs is the pin reordering algorithm. The pin reordering algorithm makes use of

the input state dependency of leakage power to place as much as possible of the

FPGA circuits in a low leakage mode without incurring and physical or perfor-

mance penalties. The guidelines for finding the lowest leakage power dissipation

129

mode were derived and it was shown how they vary with every process node depend-

ing on the relative magnitude of subthreshold and gate leakage power components.

The proposed pin reordering technique was applied to several FPGA benchmarks

and resulted in an average of 50% leakage power savings. Furthermore, another

version of the proposed algorithm is also developed that results in a performance

improvement of 2.4%, while achieving an average leakage reduction of 47.7%.

In order to quantify the amount of power savings achieved by the proposed leak-

age reduction techniques, an accurate power model for FPGAs is developed. The

new power model considers both dynamic and leakage power dissipation. Moreover,

glitching power of FPGA designs is also calculated. Furthermore, spatial correlation

between design signals is also accounted for to calculate the total power dissipation

in FPGAs. The accuracy of the model is within 10% of HSpice simulations while

spatial independence approaches are within 25% of HSpice.

7.2 Future Work

While this thesis attempted to provide practical methods for leakage power reduc-

tion in modern FPGAs, it provides a road to a bigger project that requires further

research. The first goal of any future work would be to apply the proposed MTC-

MOS design methodology to existing FPGA macros. FPGA vendors provide their

users with ready-made designed macros that implement specific functionality, such

as adders and multipliers. These macros have pre-known functionality and they

can be designed easily using the proposed MTCMOS techniques to provide a low-

leakage alternative for power sensitive applications. Along the same line of thought,

some new FPGA macros can also be designed that serve a certain consumer market.

Examples of these macros include MPEG and JPEG encoders/decoders. Finally,

the MTCMOS techniques proposed in this thesis can be modified to be implemented

in the ASIC design domain.

A second area for future research is to investigate the impact of parameter vari-

ations on the proposed leakage reduction techniques. Parameter variations affect

CMOS designs by reducing the final yield. The impact of parameter variations

increases as the device feature size is scaled down. For future CMOS technologies,

there is a need to design low power design techniques that are immune to parameter

variations. It should be noted that leakage power is very sensitive to any small vari-

ations in the device parameters. Moreover, future FPGA power models should be

able to calculate total power dissipation under the impact of parameter variations.

130

A third area for possible future research is to develop an analytical methodology

to calculate leakage power dissipation inside the FPGA logic blocks under all input

configurations. In this thesis, lookup tables resulting from HSpice simulations were

used both in the developed power model and pin reordering algorithm. These

lookup tables can be replaced by the analytical method to speed up the setup phases

of these algorithms while providing portability over as much CMOS technologies

as possible.

131

Bibliography

[1] The International Technology Roadmap for Semiconductors website. [Online].

Available: http://public.itrs.net

[2] S. Borkar, “Design Challenges of Technology Scaling,” IEEE Micro, vol. 19,

no. 4, pp. 23–29, 1999.

[3] B. Zahiri, “Structured ASICs: Opportunities and Challenges,” in Proc. of

Intl. Conf. on Computer Design, 2003, pp. 404–409.

[4] R. R. Taylor and H. Schmit, “Creating a Power-Aware Structured ASIC,” in

Proc. of Intl. Symp. on Low Power Electronics and Design, 2004, pp. 74–77.

[5] K. J. Han, N. Chan, S. Kim, B. Leung, V. Hecht, B. Cronquist, D. Shum,

A. Tilke, L. Pescini, M. Stiftinger, and R. Kakoschke, “Flash-based Field

Programmable Gate Array Technology With Deep Trench Isolation,” in Proc.

of IEEE Custom Integrated Circuits Conf., 2007, pp. 89–91.

[6] S. D. Brown, “An Overview of Technology, Architecture and CAD Tools for

Programmable Logic Devices,” in Proc. of IEEE Custom Integrated Circuits

Conf., 1994, pp. 69–76.

[7] J. Greene, E. Hamdy, and S. Beal, “Antifuse Field Programmable Gate Ar-

rays,” Proc. IEEE, vol. 81, no. 7, pp. 1042–1056, July 1993.

[8] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size on Deep-

Submicron FPGA Performance and Density,” in Proc. of ACM Intl. Symp.

on Field Programmable Gate Arrays, 2000, pp. 3–12.

[9] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of Field-

Programmable Gate Arrays: The Effect of Logic Block Functionality on Area

Efficiency,” IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1217–1225, Oct.

1990.

132

[10] Altera Corp. Stratix III Device Handbook. [Online]. Available:

http://www.altera.com/literature/hb/stx3/stratix3 handbook.pdf

[11] Xilinx Inc. Vertix-5 FPGA User Guide. [Online]. Available:

http://www.xilinx.com/support/documentation/user guides/ug190.pdf

[12] Actel Corp. ProASIC3 Handbook. [Online]. Available:

http://www.actel.com/documents/PA3 HB.pdf

[13] J. Rose and S. Brown, “Flexibility of Interconnection Structures for Field-

Programmable Gate Arrays,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp.

277–282, 1991.

[14] J. Cong and M. Smith, “A Parallel Bottom-Up Clustering Algorithm with

Applications to Circuit Partitioning in VLSI Design,” in Proc. of IEEE/ACM

Design Automation Conf., 1993, pp. 755–760.

[15] J. Cong, J. Peck, and Y. Ding, “Rasp: A general logic synthesis system for

sram-based fpgas,” in Proc. of IEEE/ACM Design Automation Conf., 1996,

pp. 137–143.

[16] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a general

and efficient fpga mapping solution,” in Proc. of ACM Intl. Symp. on Field

Programmable Gate Arrays, 1999, pp. 29–35.

[17] A. Ling, D. P. Singh, and S. D. Brown, “Fpga technology mapping: A study

of optimality,” in Proc. of IEEE/ACM Design Automation Conf., 2005, pp.

427–432.

[18] A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks and

Timing-Driven Packing to Improve FPGA Speed and Density,” in Proc. of

ACM Intl. Symp. on Field Programmable Gate Arrays, 1999, pp. 37–46.

[19] J. Cong, L. Hargen, and A. B. Kahng, “Random Walks for Circuit Cluster-

ing,” in Proc. of IEEE Intl. Conf. on Application Specific Integrated Circuits,

1991, pp. 14–21.

[20] J. Cong and S. K. Lim, “Edge Separability Based Circuit Clustering with Ap-

plication to Circuit Partitioning,” in Proc. of IEEE/ACM Asia South Pacific

Design Automation Conf., 2000, pp. 429–434.

133

[21] L. W. Hagen and A. B. Kahng, “Combining Problem Reduction and Adaptive

Multi-Start: a New Technique for Superior Iterative Partitioning,” IEEE

Trans. Computer-Aided Design, vol. 16, no. 7, pp. 709–717, July 1997.

[22] D. J.-H. Huang and A. B. Kahng, “When Clusters Meet Partitions: New

Density-Based Methods for Circuit Decomposition,” in Proc. of European

Design and Test Conf., 1995, pp. 60–64.

[23] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard

Cell VLSI Circuits,” IEEE Trans. Computer-Aided Design, vol. 4, no. 1, pp.

92–98, 1985.

[24] D. J.-H. Huang and A. B. Kahng, “Partitioning-Based Standard-Cell Global

Placement with an Exact Objective,” in Proc. of ACM Intl. Symp. on Physical

Design, 1997, pp. 18–25.

[25] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GOR-

DIAN: VLSI Placement by Quadratic Programming and Slicing Optimiza-

tion,” IEEE Trans. Computer-Aided Design, vol. 10, no. 3, pp. 356–365, Mar.

1991.

[26] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “Ritual : A Performance Driven

Placement Algorithm for Small Cell ICs,” in Proc. of Intl. Conf. on Computer

Aided Design, 1991, pp. 48–51.

[27] A. Marquardt, V. Betz, and J. Rose, “Timing-Driven Placement for FPGAs,”

in Proc. of ACM Intl. Symp. on Field Programmable Gate Arrays, 2000, pp.

203–213.

[28] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs. Norwell, MA: Kluwer Academic Publishers, 1999.

[29] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and

Routing Package,” IEEE J. Solid-State Circuits, vol. 20, no. 4, pp. 510–522,

Apr. 1985.

[30] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, 4598, pp. 671–680, 1983.

[31] R. B. Hitchcock, “Timing Verification and the Timing Analysis Program,” in

Proc. of IEEE/ACM Design Automation Conf., 1982, pp. 594–604.

134

[32] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman,

D. Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. Mc-

Clintock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schle-

icher, K. Stevens, R. Yuan, R. Cliff, and J. Rose, “The Stratix II logic and

routing architecture ,” in Proc. of ACM Intl. Symp. on Field Programmable

Gate Arrays, 2005, pp. 14–20.

[33] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt,

C. McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff, and

J. Rose, “The StratixTM Routing and Logic Architecture,” in Proc. of ACM

Intl. Symp. on Field Programmable Gate Arrays, 2003, pp. 12–20.

[34] G. G. Lemieux and S. D. Brown, “A Detailed Routing Algorithm for Allocat-

ing Wire Segments in Field-Programmable Gate Arrays,” in Proc. of ACM

Physical Design Workshop, 1993, pp. 215–226.

[35] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Universal Switch Modules for

FPGA Design,” ACM Trans. Des. Autom. Electron. Syst., vol. 1, no. 1, pp.

80–101, Jan. 1996.

[36] S. J. Wilton, “Architectures and algorithms for field-programmable gate

arrays with embedded memory,” Ph.D. dissertation, Univ. of Toronto,

Toronto, 1997. [Online]. Available: http://www.eecg.toronto.edu/ ja-

yar/pubs/theses/Wilton/StevenWilton.pdf

[37] M. I. Masud and S. J. Wilton, “A New Switch Block for Segmented FPGAs,”

in Proc. of Intl. Workshop on Field Programmable Logic and Applications,

1999, pp. 274–281.

[38] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement And

Routing Tools For The Triptych FPGA,” IEEE Trans. VLSI Syst., vol. 3,

no. 4, pp. 473–482, Dec. 1995.

[39] G. E. Moore, “Lithography and the Future of Moore’s Law,” in Proc. Opti-

cal/Laser Microlithography VIII, vol. 2440, 1995, pp. 2–17.

[40] ——, “No Exponential is Forever: But “Forever” Can Be Delayed,” in Dig.

of Tech. Papers IEEE Intl. Solid-State Circuits Conf., 2003, pp. 2–17.

[41] E. Kusse and J. Rabaey, “Low-Energy Embedded FPGA Structures,” in Proc.

of Intl. Symp. on Low Power Electronics and Design, 1998, pp. 155–160.

135

[42] V. George, H. Zhang, and J. Rabaey, “The Design of a Low Energy FPGA,”

in Proc. of Intl. Symp. on Low Power Electronics and Design, 1999, pp. 188–

193.

[43] J. Lamoureux and S. Wilton, “On the Interaction Between Power-Aware

FPGA CAD Algorithms,” in Proc. of Intl. Conf. on Computer Aided Design,

2003, pp. 701–708.

[44] J. Anderson and F. N. Najm, “Power-Aware Technology Mapping for LUT-

Based FPGAs,” in Proc. of IEEE Intl. Conf. on Field-Programmable Tech-

nology, 2002, pp. 211–218.

[45] J. Lamoureux, G. G. Lemieux, and S. J. E. Wilton, “GlitchLess: An Active

Glitch Minimization Technique for FPGAs,” in Proc. of ACM Intl. Symp. on

Field Programmable Gate Arrays, 2007, pp. 156–165.

[46] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Cur-

rent Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer

CMOS Circuits,” Proc. IEEE, vol. 91, no. 2, pp. 305–327, Feb 2003.

[47] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” in

Proc. of ACM Intl. Symp. on Field Programmable Gate Arrays, 2006, pp.

21–30.

[48] T. Tuan and B. Lai, “Leakage Power Analysis of a 90nm FPGA,” in Proc. of

IEEE Custom Integrated Circuits Conf., 2003, pp. 57–60.

[49] F. Li, Y. Lin, L. He, and J. Cong, “FPGA Power Reduction Using Config-

urable Dual-Vdd,” in Proc. of IEEE/ACM Design Automation Conf., 2004,

pp. 735–740.

[50] F. Li, Y. Lin, and L. He, “Vdd Programmability to Reduce FPGA Intercon-

nect Power,” in Proc. of Intl. Conf. on Computer Aided Design, 2004, pp.

760–765.

[51] F. Li, Y. Lin, L. He, and J. Cong, “Low-Power FPGA Using Pre-defined Dual-

Vdd/Dual-Vt Fabrics,” in Proc. of ACM Intl. Symp. on Field Programmable

Gate Arrays, 2004, pp. 42–50.

[52] N. Azizi and F. Najm, “Look-Up Table Leakage Power Reduction for FP-

GAs,” in Proc. of IEEE Custom Integrated Circuits Conf., 2005, pp. 187–190.

136

[53] J. Anderson, F. N. Najm, and T. Tuan, “Active Leakage Power Optimiza-

tion for FPGAs,” in Proc. of ACM Intl. Symp. on Field Programmable Gate

Arrays, 2004, pp. 33–41.

[54] J. H. Anderson and F. N. Najm, “Active Leakage Power Optimization For

FPGAs,” IEEE Trans. Computer-Aided Design, vol. 25, no. 3, pp. 423–437,

2006.

[55] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and

T. Tuan, “Reducing leakage energy in fpgas using region-constrianed place-

ment,” in Proc. of ACM Intl. Symp. on Field Programmable Gate Arrays,

2004, pp. 51–58.

[56] S. Gupta, J. Anderson, L. Farragher, and Q. Wang, “CAD Techniques for

Power Optimization in Virex-5 FPGAs,” in Proc. of IEEE Custom Integrated

Circuits Conf., 2007, pp. 85–88.

[57] A. Rahman and V. Polavarapuv, “Evaluation of Low-Leakage Design Tech-

niques for Field Programmable Gate Arrays,” in Proc. of ACM Intl. Symp.

on Field Programmable Gate Arrays, 2004, pp. 23–30.

[58] J. Anderson and F. N. Najm, “Low-Power Programmable Routing Circuitry

for FPGAs,” in Proc. of Intl. Conf. on Computer Aided Design, 2004, pp.

602–609.

[59] A. Rahman, S. Das, T. Tuan, and A. Rahut, “Heterogeneous Routing Ar-

chitecture for LowPower FPGA Fabric,” in Proc. of IEEE Custom Integrated

Circuits Conf., 2005, pp. 183–186.

[60] A. Kumar and M. Anis, “A Leakage-Tolerant Dual-Vt CAD Flow for FP-

GAs,” IEEE Trans. Computer-Aided Design, vol. 26, no. 1, pp. 53–66, Jan.

2007.

[61] F. N. Najm, “A Survey of Power Estimation Techniques in VLSI Circuits,”

IEEE Trans. VLSI Syst., vol. 2, no. 4, pp. 446–455, Dec. 1994.

[62] S. R. Vemuru and N. Scheinberg, “Short-circuit Power Dissipation Estimation

For CMOS Logic Gates,” IEEE Trans. Circuits Syst. I, vol. 41, no. 11, pp.

762–765, Nov. 1994.

[63] Q. Wang and S. B. Vrudhula, “On Short Circuit Power Estimation Of CMOS

Inverters,” Proc. of Intl. Conf. on Computer Design, pp. 70–75, 1998.

137

[64] E. Acar, R. Arunachalam, and S. R. Nassif, “Predicting Short Circuit Power

from Timing Models,” in Proc. of IEEE/ACM Asia South Pacific Design

Automation Conf., 2003, pp. 277–282.

[65] H. Fatemi, S. Nazarian, and M. Pedram, “A Current-based Method for

Short Circuit Power Calculation under Noisy Input Waveforms,” in Proc. of

IEEE/ACM Asia South Pacific Design Automation Conf., 2007, pp. 774–779.

[66] K. Poon, S. Wilton, and A. Yan, “A Detailed Power Model for Field-

Programmable Gate Arrays,” ACM Trans. Des. Autom. Electron. Syst.,

vol. 10, no. 2, pp. 279–302, Apr. 2005.

[67] S. M. Kang, “Accurate Simulation of Power Dissipation in VLSI Circuits,”

IEEE J. Solid-State Circuits, vol. 21, pp. 889–891, Oct. 1986.

[68] G. Y. Yacoub and W. H. Ku, “An Accurate Simulation Technique for Short-

Circuit Power Dissipation Based on Current Component Isolation,” in Proc.

of Intl. Symp. on Circuits and Systems, 1989, pp. 1157–1161.

[69] T. H. Krodel, “PowerPlay-Fast Dynamic Power Estimation Based on Logic

Simulation,” in Proc. of Intl. Conf. on Computer Design, 1991, pp. 96–100.

[70] F. Rouatbi, B. Haroun, and A. J. Al-Khalili, “Power Estimation Tool for Sub-

Micron CMOS VLSI Circuits,” in Proc. of Intl. Conf. on Computer Aided

Design, 1992, pp. 204–209.

[71] Tony D. Givargis, Frank Vahid, and Jörg Henkel, “Trace-driven System-

level Power Evaluation of System-on-a-chip Peripheral Cores,” in Proc. of

IEEE/ACM Asia South Pacific Design Automation Conf., 2001, pp. 306–

312.

[72] A. K. Murugavel and N. Ranganathan, “Petri Net Modeling of Gate and

Interconnect Delays for Power Estimation,” in Proc. of IEEE/ACM Design

Automation Conf., 2002, pp. 455–460.

[73] R. Burch, F. N. Najm, P. Yang, and T. N. Trick, “A Monte Carlo Approach

for Power Estimation,” IEEE Trans. VLSI Syst., vol. 1, no. 1, pp. 63–71,

Mar. 1993.

[74] M. G. Xakellis and F. N. Najm, “Statistical Estimation of the Switching

Activity in Digital Circuits,” in Proc. of IEEE/ACM Design Automation

Conf., 1994, pp. 728–733.

138

[75] A. M. Hill and S.-M. S. Kang, “Determining Accuracy Bounds for Simulation-

Based Switching Activity Estimation,” IEEE Trans. Computer-Aided Design,

vol. 15, no. 6, pp. 611–618, June 1996.

[76] R. Marculescu, D. Marculescu, and M. Pedram, “Sequence Compaction for

Power Estimation: Theory and Practice,” IEEE Trans. Computer-Aided De-

sign, vol. 18, no. 7, pp. 973–993, July 1999.

[77] A. Murugavel, N. Ranganathan, R. Chandramouli, and S. Chavali, “Least-

Square Estimation of Average Power in Digital CMOS Circuits,” IEEE Trans.

VLSI Syst., vol. 10, no. 1, pp. 55–58, Feb. 2002.

[78] X. Liu and M. C. Papaefthymiou, “A Markov Chain Sequence Generator for

Power Macromodeling,” IEEE Trans. Computer-Aided Design, vol. 23, no. 7,

pp. 1048–1062, July 2004.

[79] M. A. Cirit, “Estimating Dynamic Power Consumption of CMOS Circuits,”

in Proc. of Intl. Conf. on Computer Aided Design, 1987, pp. 534–537.

[80] F. N. Najm, “Transition Density: A New Measure of Activity in Digital

Circuits,” IEEE Trans. Computer-Aided Design, vol. 12, no. 2, pp. 310–323,

Feb. 1993.

[81] A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of Average

Switching Activity in Combinational and Sequential Circuits,” in Proc. of

IEEE/ACM Design Automation Conf., 1992, pp. 253–259.

[82] R. Marculescu, D. Marculescu, and M. Pedram, “Efficient Power Estima-

tion for Highly Correlated Input Streams,” in Proc. of IEEE/ACM Design

Automation Conf., 1995, pp. 628–634.

[83] ——, “Probabilistic Modeling of Dependencies During Switching Activity

Analysis,” IEEE Trans. Computer-Aided Design, vol. 17, no. 2, pp. 73–83,

Feb. 1998.

[84] C.-Y. Tsui, M. Pedram, and A. M. Despain, “Efficient Estimation of Dynamic

Power Consumption Under a Real Delay Model,” in Proc. of Intl. Conf. on

Computer Aided Design, 1993, pp. 224–228.

[85] R. Marculescu, D. Marculescu, and M. Pedram, “Switching Activity Analysis

Considering Spatiotemporal Correlations,” in Proc. of Intl. Conf. on Com-

puter Aided Design, 1994, pp. 294–299.

139

[86] J. C. Costa, J. C. Monteiro, and S. Devadas, “Switching Activity Estimation

Using Limited Depth Reconvergent Path Analysis,” in Proc. of Intl. Symp.

on Low Power Electronics and Design, 1997, pp. 184–189.

[87] S. Bhanja and N. Ranganathan, “Switching Activity Estimation of VLSI

Circuits Using Bayesian Networks,” IEEE Trans. VLSI Syst., vol. 11, no. 4,

pp. 558–567, Aug. 2003.

[88] K. Weiß, C. Oetker, I. Katchan, T. Steckstor, and W. Rosenstiel, “Power

Estimation Approach for SRAM-Based FPGAs,” in Proc. of ACM Intl. Symp.

on Field Programmable Gate Arrays, 2000, pp. 195–202.

[89] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic Power Consumption

in VirtexTM-II FPGA Family,” in Proc. of ACM Intl. Symp. on Field Pro-

grammable Gate Arrays, 2002, pp. 157–164.

[90] V. Degalahal and T. Tuan, “Methodlogy for High Level Estimation of FPGA

Power Consumption,” in Proc. of IEEE/ACM Asia South Pacific Design Au-

tomation Conf., 2005, pp. 657–660.

[91] J. H. Anderson and F. N. Najm, “Power Estimation Techniques in FPGAs,”

IEEE Trans. VLSI Syst., vol. 12, no. 10, pp. 1015–1027, 2004.

[92] K. Poon, A. Yan, and S. Wilton, “A Flexible Power Model for FPGAs,” in

Proc. of ACM Intl. Symp. on Field Programmable Gate Arrays, 2002, pp.

312–321.

[93] F. Li, D. Chen, L. He, and J. Cong, “Architecture Evaluation for Power-

Effecient FPGAs,” in Proc. of ACM Intl. Symp. on Field Programmable Gate

Arrays, 2003, pp. 175–184.

[94] F. Li, Y. Lin, H. Lei, D. Chen, and J. Cong, “Power Modeling and Character-

istics of Field Programmable Gate Arrays,” IEEE Trans. VLSI Syst., vol. 24,

no. 11, pp. 1712–1724, 2005.

[95] Y. Lin, F. Li, and L. He, “Power Modeling and Architecture Evaluation for

FPGAs with Novel Circuits for Vdd Programmability,” in Proc. of ACM Intl.

Symp. on Field Programmable Gate Arrays, 2005, pp. 199–207.

[96] A. Kumar and M. Anis, “An Analytical State Dependent Leakage Power

Model for FPGAs,” in Proc. of Design, Automation, and Test in Europe,

2006, pp. 612–617.

140

[97] T.-L. Chou and K. Roy, “Statistical Estimation of Sequential Circuit Activ-

ity,” in Proc. of Intl. Conf. on Computer Aided Design, 1995, pp. 34–37.

[98] H. Y. Lui, C. H. Lee, and R. H. Patel, “Power Estimation and Thermal

Budgeting Methodlogy for FPGAs,” in Proc. of IEEE Custom Integrated

Circuits Conf., 2004, pp. 711–714.

[99] Altera Corp. PowerPlay Early Power Estimator. [Online]. Available:

http://www.altera.com/literature/ug/ug stx3 epe.pdf

[100] Xilinx Inc. Xilinx Power Estimator User Guide. [Online]. Available:

http://www.xilinx.com/products/design resources/power central/ug440.pdf

[101] Actel Corp. IGLOO Power Calculator. [Online]. Available:

http://www.actel.com/documents/IGLOOpowercalculator.zip

[102] Altera Corp. PowerPlay Power Analysis. [Online]. Available:

http://www.altera.com/literature/hb/qts/qts qii53013.pdf

[103] Actel Corp. SmartPower v8.2 Users Guide. [Online]. Available:

http://www.actel.com/documents/smartpower ug.pdf

[104] H.-J. Wunderlich, “PROTEST: A Tool for Probabilistic Testability Analysis,”

in Proc. of IEEE/ACM Design Automation Conf., 1985.

[105] S. C. Seth, L. Pan, and V. D. Agrawal, “PREDICT - Probabilistic Estimation

of Digital Circuit Testability,” in Dig. of Tech. Papers IEEE Intl. Symp. on

Fault-Tolerant Comp., 1985.

[106] F. Maamari and J. Rajski, “A Reconvergent Fanout Analysis for Efficient

Exact Fault Simulation of Combinational Circuits,” in Dig. of Tech. Papers

IEEE Intl. Symp. on Fault-Tolerant Comp., 1988.

[107] S. Chakravarty and H. B. Hunt, “On Computing Signal Probability and De-

tection Probability of Stuck-At Faults,” IEEE Trans. Comput., vol. 39, no. 11,

pp. 1369–1377, Nov. 1990.

[108] C.-Y. Tsui, M. Pedram, and A. M. Despain, “Exact and Approximate Meth-

ods for Calculating Signal and Transition Probabilities in FSMs,” in Proc. of

IEEE/ACM Design Automation Conf., 1994, pp. 18–23.

[109] Stratix III Device Handbook, Altera Corp. [Online]. Available:

http://www.altera.com/literature/hb/stx3/stratix3 handbook.pdf

141

[110] P. Schneider and S. Krishnamoorthy, “Effects of Correlations on Accuracy of

Power Analysis - An Experimental Study,” in Proc. of Intl. Symp. on Low

Power Electronics and Design, 1996, pp. 113–116.

[111] J. Kao and A. Chandrakasan, “Dual-Threshold Voltage Techniques for Low-

Power Digital Circuits,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp.

1009–1018, July 2000.

[112] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Ya-

mada, “1-V Power Supply High-speed Digital Circuit Technology With

Multithreshold-voltage CMOS,” IEEE J. Solid-State Circuits, vol. 30, no. 8,

pp. 847–854, Aug. 1995.

[113] S. Shigematsu, S. Mutoh, Y. M. Y. Tanabe, and J. Yamada, “A 1-V High-

Speed MTCMOS Circuit Scheme for Power-Down Application Circuits,”

IEEE J. Solid-State Circuits, vol. 32, no. 6, pp. 861–869, June 1997.

[114] M. Anis, S. Areibi, and M. Elmasry, “Design and Optimization of Multi-

threshold CMOS (MTCMOS) Circuits,” IEEE Trans. Computer-Aided De-

sign, vol. 22, no. 10, pp. 1324–1342, Oct. 2003.

[115] Altera. Stratix Device Handbook, Volume 1. [Online]. Available:

http://www.altera.com/literature/hb/stx/stratix handbook.pdf

[116] Xilinx. Two Flows for Partial Reconfiguration: Mod-

ule Based or Difference Based. [Online]. Available:

http://direct.xilinx.com/bvdocs/publications/xapp290.pdf

[117] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and

P. Bose, “Microarchitectural Techniques for Power Gating of Execution

Units,” in Proc. of Intl. Symp. on Low Power Electronics and Design, 2004,

pp. 32–37.

[118] A. Rahman, S. Das, T. Tuan, and S. Trimberger, “Determination of Power

Gating Granularity for FPGA Fabric,” in Proc. of IEEE Custom Integrated

Circuits Conf., 2006, pp. 9–12.

[119] S. V. Kosonocky, M. Immediato, P. Cottrell, T. Hook, R. Mann, and

J. Brown, “Enchanced Multi-Threshold (MTCMOS) Circuits using Variable

Well Bias,” in Proc. of Intl. Symp. on Low Power Electronics and Design,

2001, pp. 165–169.

142

[120] H.-O. Kim, Y. Shin, H. Kim, and I. Eo, “Physical Design Methodol-

ogy of Power Gating Circuits for Standard-Cell-Based Design,” in Proc. of

IEEE/ACM Design Automation Conf., 2006, pp. 109–112.

[121] B. Calhoun, F. Honoré, and A. Chandrakasan, “A Leakage Reduction

Methodology for Distributed MTCMOS,” IEEE J. Solid-State Circuits,

vol. 39, no. 5, pp. 818–826, May 2004.

[122] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm Low-Power

FPGA for Battery-Powered Applications,” in Proc. of ACM Intl. Symp. on

Field Programmable Gate Arrays, 2006, pp. 3–11.

[123] D. A. James Kao, Anantha Chandrakasan, “Transistor Sizing Issues and Tool

for Multi-threshold CMOS Technology,” in Proc. of IEEE/ACM Design Au-

tomation Conf., 1997, pp. 409–414.

[124] The Berkeley Predictive Technology Model website. [Online]. Available:

http://www-device.eecs.berkeley.edu/∼ptm/

[125] R. S. Guindi and F. N. Najm, “Design Techniques for Gate-Leakage Reduc-

tion in CMOS Circuits,” in Proc. of IEEE Intl. Symp. on Quality of Electronic

Design, 2003, pp. 61–65.

[126] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli,

“SIS: A System for Sequential Circuit Synthesis,” Department of Electrical

Engineering and Computer Science, University of California, Berkeley, CA,

Tech. Rep. UCB/ERL M92/41, May 1992.

143

List of Publications Resulting from this Work

1. H. Hassan, M. Anis, and M. Elmasry, “CAD Techniques for Leakage-Tolerant

MTCMOS FPGAs,” IEEE Transactions on VLSI, submitted for publication.

2. H. Hassan, M. Anis, and M. Elmasry, “Total Power Modeling in FPGAs

Under Spatial Correlation,” IEEE Transactions on VLSI, accepted for pub-

lication.

3. H. Hassan, M. Anis, and M. Elmasry, “Input Vector Reordering for Leak-

age Power Reduction in FPGAs,” IEEE Transactions on CAD, accepted for

publication.

4. H. Hassan, M. Anis, and M. Elmasry, “A Timing Driven Algorithm for Leak-

age Reduction in MTCMOS FPGAs,” in Proc. ACM Asia and South Pacific

Design Automation Conference, 2007, pp. 678–683.

5. H. Hassan, M. Anis, A. El Daher, and M. Elmasry, “Activity Packing in FP-

GAs for Leakage Power Reduction,” in Proc. ACM/IEEE Design Automation

and Test in Europe Conference, 2005, pp. 212–217.

6. H. Hassan, M. Anis, and M. Elmasry, “A leakage-aware CAD flow for MTC-

MOS FPGA architectures,” in Proc. ACM/IEEE International Symposium

on Low Power Electronics and Design, 2005, pp. 257–262.

7. H. Hassan, M. Anis, and M. Elmasry, “Design Methodology and CAD Tools

for Nanometer FPGAs: Optimization for Leakage Power,” in SIGDA Ph.D.

Forum at the ACM/IEEE Design Automation Conference, 2008, (abstract -

poster).

8. H. Hassan, M. Anis, and M. Elmasry, “Leakage-aware Placement for FPGAs,”

in Proc. ACM International Symposium on FPGAs, 2005, pp. 267 (abstract

- poster).

144

