
Power Management
for

Deep Submicron Microprocessors

by

Ahmed Youssef

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c© Ahmed Youssef 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

As VLSI technology scales, the enhanced performance of smaller transistors comes
at the expense of increased power consumption. In addition to the dynamic power con-
sumed by the circuits there is a tremendous increase in the leakage power consumption
which is further exacerbated by the increasing operating temperatures. The total power
consumption of modern processors is distributed between the processor core, memory
and interconnects. In this research two novel power management techniques are pre-
sented targeting the functional units and the global interconnects.

First, since most leakage control schemes for processor functional units are based on
circuit level techniques, such schemes inherently lack information about the operational
profile of higher-level components of the system. This is a barrier to the pivotal task of
predicting standby time. Without this prediction, it is extremely difficult to assess the
value of any leakage control scheme. Consequently, a methodology that can predict the
standby time is highly beneficial in bridging the gap between the information available
at the application level and the circuit implementations.

In this work, a novel Dynamic Sleep Signal Generator (DSSG) is presented. It uti-
lizes the usage traces extracted from cycle accurate simulations of benchmark programs
to predict the long standby periods associated with the various functional units. The
DSSG bases its decisions on the current and previous standby state of the functional
units to accurately predict the length of the next standby period. The DSSG presents an
alternative to Static Sleep Signal Generation (SSSG) based on static counters that trigger
the generation of the sleep signal when the functional units idle for a prespecified number
of cycles.

The test results of the DSSG are obtained by the use of a modified RISC superscalar
processor, implemented by SimpleScalar, the most widely accepted open source vehicle
for architectural analysis. In addition, the results are further verified by a Simultaneous
Multithreading simulator implemented by SMTSIM. Leakage saving results shows an
increase of up to 146% in leakage savings using the DSSG versus the SSSG, with an
accuracy of 60-80% for predicting long standby periods.

Second, chip designers in their effort to achieve timing closure, have focused on
achieving the lowest possible interconnect delay through buffer insertion and routing
techniques. This approach, though, taxes the power budget of modern ICs, especially
those intended for wireless applications. Also, in order to achieve more functionality,
die sizes are constantly increasing. This trend is leading to an increase in the average
global interconnect length which, in turn, requires more buffers to achieve timing closure.

iii

Unconstrained buffering is bound to adversely affect the overall chip performance, if the
power consumption is added as a major performance metric. In fact, the number of global
interconnect buffers is expected to reach hundreds of thousands to achieve an appropriate
timing closure.

To mitigate the impact of the power consumed by the interconnect buffers, a power-
efficient multi-pin routing technique is proposed in this research. The problem is based
on a graph representation of the routing possibilities, including buffer insertion and iden-
tifying the least power path between the interconnect source and set of sinks.

The novel multi-pin routing technique is tested by applying it to the ISPD and IBM
benchmarks to verify the accuracy, complexity, and solution quality. Results obtained
indicate that an average power savings as high as 32% for the 130-nm technology is
achieved with no impact on the maximum chip frequency.

iv

Acknowledgements

All praise is due to Allah for guiding me throughout my life and giving me the ability
to complete this work. I am at a loss of words to express my gratitude to my family for
their continuous love and support.

This thesis would not be possible without the support of many individuals, to whom
I would like to express my gratitude. I will always be indebted to my supervisors Prof.
Mohamed Elmasry and Prof. Mohab Anis, for their key role in my development as a
person and as a researcher. They offered me support, encouragement, guidance, and most
importantly trust. Their input and guidance was invaluable to the quality and contribution
of the work presented in this thesis, as well as in other publications. Their trust and
support was instrumental in giving me confidence to achieve many accomplishments.

I would like also to thank many faculty members of the University of Waterloo,
most notably my committee members, Prof. John Yeow, Prof. Mark Aagaard, and Prof.
Manoj Sachdev, for their valuable input and suggestions. I would like also to thank Prof.
Shawki Areibi and Prof. Mohamed Zahran for valuable discussions and ideas. I wish to
thank many of my colleagues at the VLSI Lab, especially Mohamed Elsaid, Muhammad
Nummer, Mohamed Elgebaly, Hassan Hassan, Ayman Ismail, and Mohamed Hassan,
for valuable discussions and feedback. I am grateful to Wendy Boles for her help on
administrative issues and to Phil Regier for his great computing resources support.

I would like to thank NSERC for their financial support. I would like to thank Hazem
Shehata, Shady Shehata, Mohamed El-Abd, Ismael El-Samahy, Mohamed El-Dery, and
Hatem Zeineldin for being such great friends.

My wife, Wessam, shared with me every day throughout the course of this work. Her
love, support, and understanding played a major role in helping me finish this thesis. I
am also grateful to my sister, Amira, for her love, support, and encouragement.

My deepest gratitude to my mother and father for their ever continuous support, en-
couragement, and prayers. No words of appreciation could ever reward them for all they
have done for me. I am, and will ever be, indebted to them for all achievements in my
life.

v

Dedication

To my wife Wessam, my sister Amira,

my Father Mohamed and Mother Eman.

with love and appreciation.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Leakage Power in Processor Functional Units 2

1.1.2 Dynamic Power in Global Interconnects 4

1.2 Thesis Organization . 6

2 CMOS Power Consumption 8

2.1 Technology Scaling . 8

2.2 Sources of Power Consumption . 9

2.2.1 Switching Power . 10

2.2.2 Short-Circuit Power . 11

2.2.3 Leakage Power . 11

2.3 Managing CMOS Power Consumption 13

2.3.1 Dynamic Power Management 13

2.3.2 Leakage Power Management 14

3 Microprocessor Leakage Power Management 15

3.1 Microprocessor Architecture . 15

3.1.1 Pipelined Processors . 16

3.1.2 Superscalar Processors . 17

3.1.3 SMT Processors . 22

3.2 Leakage Power Management Techniques 25

vii

3.2.1 Leakage Power Management Overview 25

3.2.2 Circuit-Level Leakage Control Techniques 27

3.2.3 System-Level Leakage Control Techniques 33

3.2.4 Program Profiling . 40

3.2.5 Phase Extraction . 41

3.2.6 Discussion . 42

3.3 Summary . 42

4 Predictive Sleep Signal Generation 43

4.1 Sleep Signal Generation . 43

4.2 Proposed Dynamic Sleep Signal Generation 45

4.2.1 The DSSG architecture . 47

4.3 Sleep Signal Generation for Superscalar Processors 51

4.3.1 Superscalar Simulation Environment 52

4.3.2 DSSG and SSSG Circuit Implementation and Power Consumption 54

4.3.3 Accuracy of the Sleep Signal Generators on Superscalar Processors 61

4.3.4 DSSG and SSSG Design Issues 65

4.3.5 Superscalar Leakage Saving Potential for Sleep Signal Generators 66

4.4 Summary . 70

5 Application of Sleep Signal Generation on SMT Processors 72

5.1 SMT Experimental Setup . 73

5.2 Predictive Sleep Signal Generation on SMT processors 74

5.2.1 DSSG and SSSG Circuit Implementation and Power Consump-
tion for SMT processors . 75

5.2.2 Accuracy of the Sleep Signal Generators on SMT Processors . . 77

5.2.3 The Sleep Signal Generators Workload Dependence on SMT
Processors . 79

5.2.4 SMT Leakage Savings Potential for Sleep Signal Generators . . 82

5.3 Architectural Dependence of Predictive Sleep Signal Generation 85

viii

5.3.1 Floating Point ALU . 86

5.3.2 Floating Point Multiply . 86

5.3.3 Integer Multiply . 89

5.3.4 Memory Latency . 90

5.3.5 Load Store Queue (LSQ) . 91

5.4 Embedded Processors . 92

5.5 Summary . 92

6 Multi-Pin Interconnect Power Optimization 93

6.1 Power Driven Routing . 93

6.2 Introduction . 95

6.2.1 Global Routing: Unified Timing and Congestion Minimization . 95

6.2.2 Buffer Insertion-Based Methods 96

6.3 Preliminaries . 98

6.3.1 Global Routing Problem . 98

6.3.2 Global Routing Techniques . 99

6.3.3 Interconnect Modeling . 100

6.4 Power-Efficient Multi-pin ILP Based Global Routing 103

6.4.1 PIRT Phases . 103

6.4.2 Phase I (Initialization) . 103

6.4.3 Phase II (Power Minimization) 107

6.5 Experimental Results . 109

6.5.1 Experimental Results for Multi-Pin Nets 110

6.6 Summary . 115

7 Conclusions and Future Work 117

7.1 Contributions . 118

7.2 Future Work . 119

Publications 121

References 122

ix

List of Tables

2.1 Constant field scaling . 9

2.2 Power management . 13

4.1 SPEC:GZIP integer multiply usage patterns. 48

4.2 SPEC:MESA integer divide usage patterns. 48

4.3 Functional units in the superscalar test processor. 54

4.4 Superscalar test processor architecture. 55

4.5 Breakeven point with no overheads. 58

4.6 Power consumption of the sleep signal generators. 59

4.7 Breakeven point with overheads. 60

4.8 SPEC2000 benchmarks. 62

4.9 Leakage savings potential for SSSG and DSSG. 68

4.10 Miss ratio. 69

4.11 Leakage savings for the DSSG. 69

4.12 Hit penetration. 70

5.1 SMT test processor architecture. 74

5.2 Functional units in the SMT test processor. 74

5.3 SMT simulation workloads. 75

5.4 Power consumption of the sleep signal generators. 76

5.5 Breakeven point with no overheads. 76

5.6 Breakeven point with overheads. 77

5.7 Leakage savings potential for SSSG and DSSG on SMT processors. . . 84

x

5.8 Energy savings for SSSG and DSSG on SMT processors. 85

5.9 Architectural modifications to the base processor 85

6.1 ISPD98, IBM, and ISPD2007 benchmark statistics. 109

6.2 Model parameters for global interconnects. 110

6.3 Comparison of delay minimization and power minimization models. . . 114

6.4 Computation time comparison. 115

6.5 Computation time comparison with power driven routers. 116

xi

List of Figures

1.1 System design space. 2

2.1 Trends of processors’ power density. 9

2.2 Sources of output load capacitance. 10

2.3 Leakage power with technology scaling. 12

3.1 Pipelined processor. 16

3.2 Generic superscalar pipeline. 18

3.3 O-o-O superscalar processor. 19

3.4 Reservation station. 21

3.5 Fine grained Multithreading. 23

3.6 Coarse grained Multithreading. 24

3.7 Simultaneous Multithreading. 24

3.8 SMT resource sharing. 24

3.9 Dynamic leakage control. 26

3.10 Dynamic leakage control mechanisms. 26

3.11 Breakeven point. 27

3.12 Two input NAND gate. 28

3.13 Adaptive body biasing technique. 30

3.14 Power gating within the framework of a power management unit. 31

3.15 Sleep transistor in power gating circuits. 31

3.16 O-o-O superscalar processor. 34

3.17 Branching in pipelined processors. 36

xii

4.1 Static Sleep Signal Generator state machine. 46

4.2 Floating point multiplier unit standby trace histogram. 47

4.3 Sample standby trace. 48

4.4 Dynamic Sleep Signal Generator state machine. 49

4.5 The DSSG timing diagram. 50

4.6 The DSSG implementation. 51

4.7 Issue and operational latency. 53

4.8 DSSG circuit implementation. 56

4.9 SSSG circuit implementation. 57

4.10 FO4 inverter chain. 58

4.11 DSSG and SSSG average prediction accuracy FP-ALU. 63

4.12 DSSG and SSSG average prediction accuracy FP-ALU-2. 64

4.13 DSSG and SSSG average prediction accuracy multiply and divide units. 64

4.14 Impact of DSSG parameters on accuracy. 65

4.15 The threshold value for the integer ALU unit running the MESA program. 66

5.1 DSSG vs. SSSG prediction accuracy FP-ALU. 78

5.2 DSSG vs. SSSG prediction accuracy multiply units. 79

5.3 Floating point multiplier unit standby trace histogram. 80

5.4 Prediction accuracy for the integer multiplier unit. 80

5.5 Prediction accuracy for the floating point multiplier Unit. 81

5.6 DSSG prediction accuracy for floating point units. 82

5.7 DSSG prediction accuracy for floating point units for 2 and 4 threads. . 83

5.8 Histograms of the execution traces on the FP-ALUs. 87

5.9 Leakage Savings for FP-ALU. 87

5.10 Leakage Savings for FP-MULT. 88

5.11 Histograms of the execution traces on the FP multiply. 88

5.12 Integer multiply comparison . 89

5.13 Histograms of the execution traces on the integer multiply. 89

xiii

5.14 DSSG vs. SSSG with the change of memory latency (floating point ALUs) 90

5.15 Histograms of the execution traces with memory latency variation. . . . 90

5.16 Histograms of the execution traces on the floating point ALU. 91

5.17 Leakage Savings for FP-MULT. 91

6.1 Buffer insertion and sizing. 96

6.2 Wire sizing. 97

6.3 Grid graph for standard-cell based designs. 98

6.4 RC tree. 101

6.5 Wire structure for capacitance extraction. 101

6.6 PIRT flow chart. 104

6.7 Buffer insertion for two-terminal nets. 105

6.8 Buffer insertion for three terminal nets. 106

6.9 Buffered tree generation algorithm. 107

6.10 Buffer location generation. 112

6.11 Power savings by PIRT. 112

6.12 Delay variation due to PIRT. 113

6.13 Average power reduction over different buffer sizes. 114

xiv

Glossary of Terms

BBV Basic Block Vector

BTB Branch Target Buffer

CISC Complex Instruction Set Computer

CPI Cycles per Instruction

CMOS Complementary Metal Oxide Semiconductor

DSM Deep Submicron

DSSG Dynamic Sleep Signal Generator

DVS Dynamic Voltage Scaling

DIBL Drain Induced Barrier Lowering

EDA Electronic Design Automation

FO4 Fanout of 4

FP Floating-point Unit

FU Functional Unit

ID Instruction Decode

IE Instruction Execute

IF Instruction Fetch

ILP Instruction Level Parallelism

IPC Instructions per Cycle

xv

ITRS International Technology Roadmap for Semiconductors

ISA Instruction Set Architecture

MTCMOS MultiThreshold CMOS (Power Gating)

NOP No Operation

NP-hard Non deterministic polynomial hard problems are a subset of combinatorial
problems which are not solvable in polynomial time

O-o-O Out-of-Order

PDP Power Delay Product

RAS Return Address Stack

RAW Read after Write (Data Hazard)

RF Register File

RISC Reduced Instruction Set Computer

ROB Reorder Buffer

RUU Register Update Unit

SMT Simultaneous MultiThreading

SOC System on Chip

SSSG Static Sleep Signal Generator

TK/NT Taken versus Not Taken branch

TLB Translation Look-aside Buffer

VTCMOS Variable Threshold CMOS

WAR Write after Read (Data Hazard)

WAW Write after Write (Data Hazard)

xvi

Chapter 1

Introduction

Microprocessors determine the sophistication of many consumer electronics applica-
tions [1]. Particularly, portable equipment not only requires more processing power,
but also a very stringent power envelope. Accordingly, modern microprocessors must
handle increased throughput, complex algorithms, and real time requirements. At the
same time, though, the VLSI complexity must remain within the bounds of low area and
power consumption.

1.1 Motivation

As the demand for faster and more complex applications increases, the semiconduc-
tor industry has been aggressively scaling the silicon technology in order to match the
continuous increase in chip requirements. Dynamic and leakage power has consistently
increased with every technology generation. The processor core, memory and global
interconnects power consumption constitute the majority of the power budget of modern
processors.

In this research, two power management techniques are proposed to handle leakage
power consumption in the processor core as well as the dynamic power consumption of
the global interconnects. Section 1.1.1 details the motivation behind the implementa-
tion of a standby predictor for managing leakage power for processor cores, while Sec-
tion 1.1.2 presents the motivation behind a low power multi-pin global routing method-
ology that handles the dynamic power consumption of the processor interconnects.

1

1.1.1 Leakage Power in Processor Functional Units

The continuous reduction of the transistor dimensions, entailed by technology scaling,
has created many challenges to chip designers. One of the major challenges is the reduc-
tion of the supply voltage due to smaller gate oxides that cannot withstand the traditional
3.3V and 5V supplies [2]. Reducing the supply voltage necessitates the reduction of the
transistor threshold to maintain an adequate overdrive voltage. In turn, the reduction of
the threshold voltage increases the transistor’s subthreshold conduction, which translates
into an increase in leakage power consumption.

Due to the significant increase in leakage power, research has focused on the reduc-
tion of the core leakage [3–5]. Research in [3] shows that managing leakage power in
the microprocessor core can save up to 18% of the total power when power gating and
adaptive body biasing is employed.

To deal with the increased leakage power and to maintain the complexity of mod-
ern processors, low power techniques are necessary throughout the design process. If
the process is divided into levels, as depicted in Fig. 1.1, it is imperative to consider
the combined effect of all these levels in order to exploit the full potential of leakage
management [6]. Many circuit and system-level techniques have been proposed to deal
with leakage power. However, very few of them focus on crossing the level boundaries,
limiting their leakage saving capabilities.

St
an

db
y

Pr
ed

ic
tio

n

Architecture

Algorithm

Logic / Circuit

System

Device / Process

Figure 1.1: System design space [6].

Circuit level leakage control techniques should reduce the leakage power, and ensure
that the intended logic operation is performed correctly. However, these circuit tech-

2

niques are characterized by their inability to predict the circuit usage patterns. These
usage patterns can be obtained by answering questions such as how many times was the
circuit accessed during a certain number of cycles?, how many times were the neigh-
boring circuit blocks used?, and was there any regularity in the usage of the circuit?.
Knowing the answers to these questions can significantly enhance the design process.

To deduce the usage patterns, the architecture needs to keep track of the standby pe-
riods of the various circuit blocks. These periods, defined as the length of time that the
circuit stays idle, can be used as indicators of the circuits’ usage profiles. Fortunately,
for microprocessors, and programmable DSPs in particular, the information about the
standby periods can be obtained from the executed code. Accordingly, a standby pre-
diction methodology is expected to enhance the performance of the various circuit level
techniques by supplying the circuits with standby information extracted from the algo-
rithm.

The objective of this research is to introduce the concept of standby prediction by
developing a Dynamic Sleep Signal Generator (DSSG). The new DSSG uses the high-
level information found in the running application code to predict the standby profile of
the processor functional units.

Contributions

The following outlines the main contributions of the proposed DSSG

1. Contrary to compiler-based low leakage techniques that are bound to a specific
Instruction Set Architecture (ISA), the DSSG depends on only the information
about current and previous standby periods.

2. Phase extraction techniques that are concerned with the coarse granularity predic-
tion of program phases are not adequate for the task of low leakage management.
These techniques are generally slow and perform complex tasks, prohibiting the
techniques’ application in small-scale leakage management. In contrast, the DSSG
focuses on a fine granularity analysis (a few hundred cycles) of the profile infor-
mation.

3. Current circuit techniques for leakage power reduction depend on detecting when
the circuit is actually in standby, which leaves the techniques prone to erroneous
decisions regarding very short standby periods, since the techniques lack the ability
to predict the length of the period ahead of time [3–5]. Accordingly, the proposed

3

DSSG should eliminate these short periods from the decision tree of these tech-
niques

4. The proposed DSSG and the associated finite state machine are capable of track-
ing the executed program behavior across different time segments and predict the
length of the standby periods accordingly. This leads to a high accuracy in assert-
ing the sleep signal when it is most likely to achieve a net increase in the total
power savings. This is accomplished with minimal power overhead.

5. The DSSG is a simple hardware based approach. This allows the incorporation
of the DSSG in existing microprocessors (General purpose and embedded) with
minimal design overheads.

6. The DSSG finite state machine does not rely on any memory like structure re-
ducing the layout footprint and the overall power consumed to achieve the higher
prediction accuracy targeted by the DSSG.

7. The DSSG exhibits low power consumption, in the order of 300 µW to achieve
accuracies up to 80% in predicting the length of the standby period.

In summary, the principal objective of this part of the research is to devise an accurate
prediction methodology that allows circuit designers to explore novel low leakage power
management schemes.

1.1.2 Dynamic Power in Global Interconnects

Global interconnects are gradually dominating the performance of deep sub-micron chips.
In fact, the number of interconnects and buffers for achieving timing closure are one of
the primary challenges facing designers for sub-90nm ICs. This is attributed to the con-
tinual increase in the number of logic blocks, due to the continuous shrinking of device
dimensions. To mitigate the impact of the interconnects, designers have shifted their
focus to interconnect centric designs, where the wire is the center of the chip design
flow [7].

The interconnect problem is a multi-objective optimization problem, where delay,
power, and routing are core objectives. Traditionally, delay and routing have been the
focus of most optimization efforts [7]. However, the power consumption of the inter-
connects is becoming a crucial factor in determining the overall chip performance [8].
Research in [9] shows that global signaling nets can consume up to 21% of the total
dynamic power [10].

4

To address the interconnect bottleneck, researchers have developed several subprob-
lems that deal with the various aspects of the interconnects. These problems begin with
the simple problem of buffer insertion, determining the number and the positions of
buffers to minimize delay [11], and increase in complexity up to Optimal Power Maze
Routing, where a combined routing and power optimization under relaxed delay con-
straints is introduced [12, 13].

Research in [12–19] focused on the low power interconnect problem through opti-
mum buffer insertion. The main limitation facing many of the interconnect power min-
imization efforts is the lack of simultaneous optimization of the various interconnect
performance metrics. As an example, the work in [14,15] focuses on only single net op-
timization which inherently implies a net ordering effect. The net ordering effect means
that for successful chip timing closure the nets has to be ordered according to their impor-
tance. This ordering limits the ability of the technique to find globally optimum solution.
In the meantime, the research in [16–19] focuses on the optimum buffer insertion assum-
ing prerouted nets. This in turn limits the ability of the technique to prevent congestion
in general and especially buffer related congestion where the availability of buffer inser-
tion locations is contested by several nets. Finally, to address some of the limitations, the
work in [12, 13]1 simultaneously routes the interconnects while inserting the buffers to
optimize for the power consumption. However, the effort in [12] focuses only on two-pin
nets while the work in [13] is characterized with excessively long runtime.

On the other hand, analytical solutions to the power optimization problem [20–22]
are also limited in their ability to simultaneously optimize the various metrics since they
depend on mathematically differentiating some cost function with respect to one param-
eter. In addition, these techniques are incapable of accommodating the buffer blockage
arising from the preplaced blocks.

In order to address the limitation of the previous techniques, a formulation for a
power-efficient interconnect optimization technique is proposed in this work. The goal
is to find a solution through the formulation of a Power-Efficient multi-pin Integer linear
programming based global Routing Technique (PIRT). The new formulation simultane-
ously solves for a minimum power tree for each global net in the chip without affecting
the chips maximum frequency requirements.

Contributions

The technical contributions of the newly formulated PIRT can be summarized as follows

1This work is the authors pervious contributions in the power optimal interconnect optimization.

5

1. Unlike previous approaches, the newly developed approach is capable of timing
optimization, buffer insertion and power reduction simultaneously with routability
consideration.

2. The optimization of power consumption and simultaneously accounting for the
buffer blockage, which has not been considered in previous analytical formulations
of the power optimization problem, is formulated.

3. The optimization of the power consumption without affecting the chip’s maximum
frequency.

4. The problem is formulated so that it is independent of the delay and the power
models used, allowing for more flexibility in applying the new technique to scaled
technologies.

5. PIRT is capable of simultaneously routing and power optimizing the chip with
runtime less than 0.1 second per net.

In conclusion, the goal of the novel multi-pin power optimization methodology is to
devise a fast, yet accurate technique to reduce the power consumption of global intercon-
nects while maintaining the chip’s maximum clock frequency.

1.2 Thesis Organization

To formulate the concept of standby prediction and the multi-pin global routing problem,
it is important to explore relevant topics. Accordingly, in Chapter 2, the physical nature
of the VLSI power consumption problem is described.

Chapter 3 presents the architecture of generic superscalar and SMT processors, ex-
ploring the various building blocks of state-of-the-art microprocessors. After a discus-
sion of the concepts of power consumption and microprocessor architecture, the most
popular circuit-level leakage control techniques are reviewed in Chapter 3. This is fol-
lowed by a description of the various system-level techniques available for the reduc-
tion of microprocessor power consumption. The focus is on low-power pipelines and
low-power software design. Chapter 3 is concluded by reviewing some of the profile
prediction literature.

In Chapter 4 after the concept of standby prediction is introduced, the results of
applying the DSSG to the SPEC2000 benchmark suite on a Superscalar processor are

6

given. These results are obtained by modifying the SimpleScalar performance simulator
in order to extract the functional units’ usage patterns.

Chapter 5 details the results of running the DSSG on an SMT architecture using
the SMTSIM simulator to extract the functional units’ usage patterns. Chapter 5 also
presents the results of applying the SSSG and the DSSG on several microprocessor ar-
chitectures.

Chapter 6 starts by reviewing the state-of-the-art techniques for power optimal inter-
connect optimizations. Then, the chapter presents the new formulation of the low power
global routing problem (PIRT). In addition, the results of running PIRT on the IBM and
ISPD floorplan benchmarks is discussed.

Lastly, the thesis is concluded by outlining the major contributions of this research
and the potential enhancement in future work.

7

Chapter 2

CMOS Power Consumption

CMOS circuits are the foundation for most modern microprocessors. The CMOS tech-
nology offers high density, high performance with low power consumption. To tackle the
microprocessor power management problem it is imperative is to explore the physical na-
ture of CMOS power consumption. Accordingly, this Chapter presents the fundamentals
behind the sources of power consumption in CMOS circuits.

2.1 Technology Scaling

The semiconductor industry has been aggressively pursuing an ever shrinking minimum
feature size. The shrinking minimum feature size allowed for lower cost per function,
higher frequencies and compact light-weight electronics [23].

Constant field scaling proposed by Dennard et al. in [24] entails the continuous
reduction of the vertical and horizontal dimensions while simultaneously scaling the ap-
plied voltages to maintain constant electric fields across the smaller devices [25]. The
constant electric field scaling ensures the reliability of the scaled devices by limiting hot
carrier injection. Table 2.1 shows the constant field scaling rules for some device and
chip parameters.

Due to the continuous increase in die sizes the dynamic power consumption is in-
creasing with each technology node. Moreover, the leakage power consumption is also
exponentially increasing due to the reduced threshold voltages. In fact it is projected
that a huge increase in the power density will occur with each technology node [26, 27].
Fig. 2.1 presents the projected increase in chip’s power density [26]. Due to the impact of
the increased dynamic and leakage power consumption modeling and understanding the

8

Table 2.1: Constant field scaling
Technology Parameter Scaling Factor

Device Dimension (tox,L,W) 1/S
Voltage 1/S
Doping Concentration S

Electric Field 1
Carrier velocity 1
Gate Capacitance 1/S
Drift Current 1/S
Circuit Delay 1/S
Dynamic Power Dissipation 1/S2

Leakage Dissipation exponential
Circuit Density (α1/A) S2

Power Density 1

nature of the CMOS power consumption is an important prerequisite before any further
discussion of processor power management.

25Po
w

er
 D

en
si

ty
 (

W
at

t/c
m

)2

0.25 0.13 0.1µm µmµm

Technology Node

50

75

Figure 2.1: Trends of processors’ power density [26].

2.2 Sources of Power Consumption

With the continuous scaling of CMOS technology, the semiconductor industry is slowly
shifting towards more power centric designs. Typically, the total power dissipation of

9

CMOS circuits (Ptotal) is given by [11]

Ptotal = Pswitching + Pshort−circuit + Pleakage, (2.1)

where Pswitching is the switching power, Pshort−circuit is the short-circuit power, and
Pleakage is the leakage power.

2.2.1 Switching Power

The switching power is the component of power consumption that is associated with the
charging and discharging of the capacitances of the CMOS gate. A simple yet accurate
estimation of the switching power of the gate is given by [6]

Pswitching = αV 2
dd.fclk(Cgate + Cwire), (2.2)

where α is the switching factor of the gate, Vdd is the supply voltage, fclk is the clock
frequency, Cgate is drain diffusion capacitance at the output and the total input gate ca-
pacitances of the subsequent gates, and Cwire is the total wire capacitance at the fan-out
of the gate. Fig. 2.2 presents the basic capacitive sources in a CMOS inverter.

(b)

in

Cgate

Cgate

Cgate

Cgate

Cdrain Cwire

Cdrain

Vin
Vout

Cwire

Vout

(a)

V

Figure 2.2: Sources of output load capacitance.

10

It is interesting to note that the switching power consumption is quadratically de-
pendant on the supply voltage [28]. This dependence motivates different approaches to
reduce the switching power by scaling the supply voltage. However, the scaling of the
supply voltage means an increase in the leakage power, since the reduction of the sup-
ply requires a corresponding reduction in the threshold voltage. This reduction in the
threshold voltage causes an exponential increase in the subthreshold leakage current.

2.2.2 Short-Circuit Power

Due to the fact that for actual CMOS circuits there are finite rise and fall times the PMOS
and NMOS transistors are briefly on, simultaneously. This results in short circuit current
flowing due to the direct path through both transistors [11].

The average short circuit power can be calculated using

Pshort−circuit = tscVDDIpeakfclk (2.3)

where tsc is the period of time when both devices are conducting, VDD is the supply
voltage, Ipeak is the peak current flowing during the period of tsc, and fclk is the clock
frequency

2.2.3 Leakage Power

The quadratic dependence of the switching power on the supply voltage can be utilized
to reduce the switching power [28]. In fact, the reduction of the supply voltage is also
bound to the scaling of the device’s dimensions. For example, the reduction of the gate
oxide thickness limits the value of the maximum electric field tolerated on the gate, which
imposes an upper bound on the supply voltage. Nevertheless, reducing the supply volt-
age forces the reduction of the threshold voltage of the devices in order to maintain the
overdrive voltage (VGS − Vth). This leads to an exponential increase in the subthreshold
leakage current [29].

Indeed, leakage power is expected to dominate the overall power consumption as the
technology scales [28]. This is confirmed by the trend reflected in Fig. 2.3, where the
leakage power will constitute more than 50% of the total power consumption for the
technologies beyond 65nm if it is not properly addressed.

The leakage power consumption due to the subthreshold current can be calculated
using the expression,

Pleakage = VddIsub, (2.4)

11

Technology
0.01 1

(%
)

L
ea

ka
ge

 P
ow

er

T
ot

al
 P

ow
er

50

25 18% at 130nm

42% at 90nm

54% at 65nm

0.1

Figure 2.3: Leakage power consumption as a percentage of the total power for various
technology nodes [29].

where Isub is the subthreshold current which is computed by the following [30]:

Isub = I0e
(Vgs−Vth)/mVT (1− e−Vds/VT), (2.5)

where m is the subthreshold swing coefficient, Vth is the threshold voltage, and VT =

KT/q is the thermal voltage.

Although this research focuses on subthreshold leakage control techniques, the fol-
lowing section describes briefly the various sources of leakage current in today’s CMOS
circuits.

2.2.3.1 Sources of Leakage Current

The various components of the leakage current can be summarized as follows [28]

• PN junction reverse leakage; this occurs due to the minority carrier drift near the
depletion region, this current is usually small and can be neglected. However, if
the electric field across the reverse biased PN junction reaches 106V/m, significant
current will flow due to band to band tunneling [31].

• Drain induced barrier lowering; due to the relative size of the drain/source deple-
tion width in the vertical dimension to the channel size, the source drain potential
affects the band bending over a significant portion of the device width. Higher
drain potential in effect reduces the transistor threshold, increasing its leakage [30].

12

• Gate induced drain leakage; this occurs at negative VG and high VD, which causes
a high electric field under the gate drain overlap region causing significant band to
band tunneling.

• Gate oxide tunneling; this is due to the tunneling of electrons through the gate ox-
ide especially when the electric field is very high coupled with small oxide thick-
ness.

• Subthreshold leakage; this is the current flowing between the source and the drain
when the transistor is in the weak inversion and the gate voltage is below the thresh-
old voltage. This component is exponentially dependant on the threshold voltage,
currently making it the most critical component of leakage power consumption.

2.3 Managing CMOS Power Consumption

Several techniques have been envisioned to manage the increasing strain on the chip
power budget. These techniques vary based on the time of application between design
time, sleep mode and runtime power management schemes [11]. Table 2.2 summarizes
some of the major vehicles of power management available to processor designers.

Table 2.2: Power management
Design Time Sleep Mode Run Time

Dynamic Power
Lower Vdd, Multi-Vdd,

Clock Gating
Dynamic

Sizing, Voltage
Logic optimization Scaling

Leakage Power Multi-Vth

VTCMOS,
VTCMOS

MTCMOS

2.3.1 Dynamic Power Management

To reduce the dynamic power consumption of a microprocessor core chip designers resort
to several techniques that focuses on manipulating the various parameters in equation 2.2.
Transistor sizing and logic optimization targets the reduction of the total capacitance that
is switched each cycle. Logic optimization can also help reduce the dynamic power
consumption due to glitching.

13

Reducing the supply voltage as mentioned earlier quadratically influences the overall
power consumption. Low-Vdd designs in portable and medical applications tremendously
extends the battery lifetime at the expense of slower performance.

On the other hand Multi-Vdd designs allows for the reduction of the power consump-
tion of non-critical components while maintaining the performance of mission critical
logic. Multi-Vdd designs face challenging requirements with respect to their power de-
livery network, where multiple supply rails are required in addition to level converters
between voltage islands.

Dynamic voltage scaling (DVS) allows the designers to scale the voltage down when
the application requirements are low and increase it when the demand is high. Similar
to Multi-Vdd, the power delivery and level converters are some of the limitation for DVS
techniques. In addition to DVS, clock gating is a very effective technique to reduce the
dynamic power when the logic is not utilized. However, clock gating does not tackle
leakage power consumption.

Since both DVS and clock gating techniques act at the circuit level they require sys-
tem level policies to ensure the power-performance trade off is maintained across various
workload requirements.

2.3.2 Leakage Power Management

Multi-Vth technologies allow designers the flexibility of using low-threshold high-leakage
devices to build the logic of critical paths while using high-threshold low-leakage devices
in non-critical paths. Multi-Vth designs require careful attention to path selection since
the slow down introduced to non-critical paths might cause them to become the critical
paths in the design.

VTCMOS techniques allow the designer to change the threshold of the devices during
runtime or sleep mode. Changing the threshold allows the logic to manage its leakage
at the expense of some performance loss. MTCMOS designs allow for an aggressive
shutdown of the supply network to limit the overall leakage. MTCMOS and VTCMOS
design also require system level policies to ensure maximum performance.

In this research the dynamic sleep signal generator technique will target the manage-
ment of leakage power in standby mode while the interconnect optimization effort targets
the design time dynamic power minimization. In the following chapter, an overview of
the state-of-the-art microprocessors’ architectures is presented. In addition, a more de-
tailed survey of the low leakage circuit and system-level techniques is conducted.

14

Chapter 3

Microprocessor Leakage Power
Management

In order to establish the background necessary for the advanced leakage management
technique proposed in this thesis, the study of the modern microprocessor architecture is
crucial. In addition, modern leakage management techniques need to be investigated.

3.1 Microprocessor Architecture

State-of-the-art general purpose processors result from pursuing the latest techniques that
can enhance the execution throughput. Microprocessors, from the software perspective,
are designed to perform as a sequential engine,1 capable of handling sequential sets of
instructions and producing sequential output that matches the program order of instruc-
tions. This is simply described by considering pipelined processor architectures. These
architectures divide the tasks, corresponding to the code execution, among a set of hard-
ware blocks.

Single pipelined processors are especially useful for embedded applications, where
the processors satisfy the computational requirements without the need for the more
complicated superscalar architectures. In contrast to single pipelined processors, super-
scalar processers are capable of handling more than one instruction in each cycle. This
nature allows the superscalar processor to increase its throughput by exploiting some of
the inherent Instruction Level Parallelism (ILP) in the application code [1]. Finally, Si-

1This statement excludes explicitly parallel coding techniques that expect a multi-engine architecture.
This multi-engine includes multi-processors and multi-core chips.

15

multaneous Multithreading (SMT) processors enhances the performance of superscalar
processors by running multiple applications simultaneously.

3.1.1 Pipelined Processors

Pipelining is a means of fully utilizing the hardware capabilities. It allows for a slightly
increased latency in the processor operation, while significantly increasing the processor
throughput.

Fig. 3.1 illustrates a simple pipelined processor. Each stage is attached to the next
by a latch that is capable of storing the results of stage n that are used by stage (n + 1),
while stage n is performing the next task.

Figure 3.1: Pipelined processor [1].

Perfect pipelining requires that the executed code be divisible in a uniform set of
steps that requires, approximately, similar execution times. Consequently, the latency
of the various stages is expected to be approximately equal, ensuring that the pipelined
stages are utilized to their maximum without any one stage completing the job ahead of
the others. This is not naturally achievable, since some pipeline stages such as multipliers
and dividers are inherently slower than other stages.

In addition to the divisibility, perfect pipelines assume that the code is generally
repetitive. This translates into similar resource requirements for each executed instruc-
tion. In reality, executed instructions vary in their resource requirements, causing the
pipeline stages to idle when not in use.

Finally, the major goal of the pipeline design is to minimize the inter-instruction
dependencies. These dependencies cause the pipeline to stall, where stage n waits for

16

stage (n− 1) to finish its job, because stage n needs the results of stage (n− 1) [1].

In order to address some of the limitations of scalar pipelines, superscalar processors
are discussed.

3.1.2 Superscalar Processors

Superscalar processors are an attempt by processor architects to increase the performance
of the scalar pipeline. The main challenges of scalar pipelines can be summarized as
follows [1].

• The performance of the scalar pipeline can be enhanced by reducing the number
of instructions per program, reducing the number of Cycles per Instruction (CPI),
or by increasing the clock frequency. However, the upper bound on the average
Instruction per Cycle (IPC) is always one, since only one instruction can be fetched
per cycle.

• The unified resource nature of a scalar pipeline proves inefficient when the instruc-
tions are not similar. For example, floating point, integer, and memory instruc-
tions are inherently difficult to unify, since they require fundamentally different
resources.

• A pipeline that stalls due to data dependency is also a major deficiency. Since many
of the stalls are avoidable if the pipeline is able to jump the stalled instruction and
proceed to execute the non-dependent instructions.

The first approach to enhance the performance by increasing the IPC is to use simple
replicates of a scalar pipeline, represented in Fig. 3.2(a). This ensures that the processor
is capable of issuing more than one instruction per cycle, and in theory, raises the bound
on the IPC to s, where s is the number of the parallel stages. However, simply replicating
the pipeline does not solve the problem of the diversified requirements of the executed
instructions. As a result, diversifying the pipelines is more adequate, since it allows
for the customization of the instruction path to the instructions’ resource requirements
(Fig. 3.2(b)). To diversify the pipelines, the processor employs different functional units
at the execution stage, allowing the processor to route the instructions in the pipeline
depending on their requirements.

Early generation superscalars employed diversified pipelines, where the instructions
are issued, decoded, and then forwarded to the execution stages without buffering, as

17

(a) Parallel pipeline (b) Diversified parallel pipeline

Figure 3.2: Generic superscalar pipeline [1].

long as the instructions are not dependent on other instructions. Processors such as the
Alpha 21064, PowerPC 601, and the Pentium adopted such direct issue designs [32].
However, the major bottleneck for direct issue designs, is the blocking of the issue stage,
when existing instructions are waiting for the unresolved dependencies.

Another major problem introduced by superscalar pipelines is the increased require-
ments in the cache bandwidth. Superscalar processors are capable of issuing more than
one instruction per cycle, implying that for an s-wide pipeline, a corresponding s-wide
Instruction Cache (I-Cache) is needed. In addition, a multi-port Data Cache (D-Cache)
is needed, since more than one instruction may be requesting a read or write operation.

In addition to the memory bandwidth issue, branch misprediction penalties increase
with wider pipelines. Branch penalties are the cost of recovery from mispredicted branches.
The wider pipelines can increase the frequency of the branches per cycle, and thus, in-
crease the chance of misprediction [32].

For later generations of superscalar processors, the solution for the problem of direct
issue involved employing an Out-of-Order (O-o-O) execution. In the O-o-O scheme, the
instructions, in theory, are only bound in their sequence of issuance, if they have data
dependencies. In practice, Superscalar processors employ the hybrid technique denoted
in Fig. 3.3, where the front end of the superscalar processor is an in-order fetch-decode-
dispatch, followed by a reservation station, and then an out-of-order execution stage with

18

a reorder buffer, and finally, an in-order backend.

Figure 3.3: O-o-O superscalar processor [1].

3.1.2.1 Superscalar Pipeline Stages

The superscalar architecture can be explored by following the steps of an instruction
execution in an s-wide processor [1]. This is composed of five steps

• Instruction Fetch (IF)

• Instruction Decode (ID)

• Instruction dispatch

• Instruction Execution (IE)

• Instruction completion and retirement

19

Step 1: Instruction Fetch (IF) The goal of the instruction fetch stage is to communi-
cate with the I-Cache as quickly as possible to maximize the fetch bandwidth and attempt
to fetch s instructions per machine cycle. The I-Cache is organized in blocks, containing
consecutive instructions of the program. The program counter is used to search the I-
Cache to determine if the requested instruction is in the I-Cache (cache hit) or not (cache
miss) [33].

Typically, the fetch rate, measured in instructions per cycle, must match the max-
imum decode and execution rate, and in practice, is designed to be slightly higher to
allow for cache misses or situations when fewer than the maximum instructions can be
fetched. These situations arise when there is a misalignment of the fetched instructions
block2 with the cache boundaries. This causes the fetch stage to fetch only the instruc-
tions within the cache boundary in one cycle, then fetch the rest of the instruction block
in the following cycle. This problem can be solved through a compile time I-Cache
alignment or run-time hardware alignment [1].

Step 2: Instruction Decode (ID) The ID is responsible for identifying the instructions,
determining the instruction types, and detecting the inter-instruction dependencies for the
instructions that have been fetched but not yet dispatched.

In the Reduced Instruction Set Computer (RISC) architectures, the decode stage is
simple, since it does not need to check for instruction boundaries. This substantially
simplifies the decode operation and allows it to be merged with the register reading.
In addition, the ID stage of a RISC processor is responsible for quickly identifying the
control flow instructions in the fetch block in order to provide prompt feedback to the IF
stage.

Contrary to the RISC, the Complex Instruction Set Computer (CISC) ID is quite
complex. Besides the primary responsibility of the ID to identify the instructions, the
CISC ID needs to identify the unfixed instruction boundaries. Moreover, the ID must
translate the CISC instruction to its RISC-like operations, corresponding to the micro-
operations (µOPs) in the Intel and RISC operations (ROP) in AMD.

Predecoding is sometimes useful to reduce the burden on the CISC ID. The CISC
instructions are partially decoded on their way from the memory to the I-Cache. These
instructions and a set of pre-decode bits are saved in the I-Cache, simplifying the decode
operations. However, predecoding introduces two problems: an increased I-Cache miss
penalty due to the increased overhead and extra storage requirements for the pre-decode
bits.

2A fetch instruction block is the set of instructions that needs to be fetched together by the IF stage.

20

Another task for the ID stage is register renaming. This is required because modern
processors contain physical register files that are larger than the architectural register
files [33]. The physical registers can be used to solve false data dependencies. Data
dependencies will be revisited in more detail in Section 3.2.3.1.

Step 3: Instruction Dispatch Contrary to scalar processors, superscalar processors
need an instruction dispatch stage to route instructions to the corresponding functional
units, depending on the resource requirements of these instructions.

Instruction dispatching uses a reservation station which is a temporary buffer that
holds the instructions that have been decoded, but not all its operands are ready. For ex-
ample, those instructions that are dependant on an earlier instruction write to the register
file (RF).

Reservation stations can be centralized, similar to the one denoted in Fig. 3.4(a).
These stations provide the full capability of an O-o-O execution processor, since any in-
struction can be dispatched to any functional unit. However, the underlying complexity
of the routing fabric limits the practicality of such stations in a wide superscalar proces-
sor. On the other hand, distributed stations in Fig. 3.4(b) are a partial solution to this
problem. They allow the functional units to have their own buffers for queuing purposes,
and keep a smaller dispatch buffer to perform the global routing of the instructions to the
functional units’ buffers. This reduces the routing complexity without eliminating the
advantages of the O-o-O execution.

(a) Centralized (b) Distributed

Figure 3.4: Reservation station [1].

Step 4: Instruction Execution (IE) In this stage, the instructions utilize the resources
of the functional units to perform the intended task of each instruction.

21

The trend is towards massively parallel IE stages, and the specialization of the func-
tional units. This allows for more performance efficiency, since the dedicated functional
units are used instead of a general purpose alternative.

The R10000 MIPS superscalar processor is a good example of such diversity. The
integer execution stage of the R10000 contains two integer ALUs. The first ALU con-
sists of a 64-bit adder and branch condition logic; the second ALU has a partial integer
multiplier array and an integer divide logic. The floating-point execution stage contains
a floating-point adder for addition, subtraction, comparison, and conversion, besides a
floating-point multiplier for the multiplication and move operations. Finally, the R10000
contains a dedicated floating-point divide and a square root unit [34].

Step 5: Instruction Completion and Retirement After execution, the instructions are
stored in the completion buffer, and are allowed to retire when they are done writing to
the memory.

In this stage, the in-program order of the instructions is restored through the reorder
buffer. The need for reordering is evident when the interrupt and exception handling is
taken into account. Both interrupts and exceptions require that the processor retains its
architectural machine state, and presents it as if the program is executed in order.

The reorder buffer is employed to handle this situation. The instructions enter the
reorder buffer out-of-order and exit in-program order. The instructions that cause excep-
tions are flagged, and when they reach the exit of the reorder buffer, they are held until
all the previous instructions are retired. Then, all ensuing instructions are discarded.

3.1.3 SMT Processors

To address the main limitation of Superscalar processors namely the absolute dependence
on the instruction flow from a single application, SMT processors are devised. The ap-
plications running on a superscalar architecture do not make the best use of the available
resources due to the latencies introduced by the memory system, branch mispredictions,
and dependencies on high latency instructions.

Because of these latencies, the application remains idle, waiting for the data to ar-
rive or the dependence to be resolved. This idleness results in a low usage of pipeline
resources in superscalar processors that has led to the SMT architecture [35].

Such architectures execute several applications on the same pipeline and at the same
time. This results in a better usage of the available resources, and serves also as a latency

22

hiding technique. When an application is on hold, waiting for the data to arrive from the
memory, for example, another application continues to be executed. Therefore, the SMT
architecture has a higher throughput with a system that combines a superscalar capability
and multithreading.

However, when several applications are simultaneously run on the processor, the be-
havior is entirely different from that of a single application workload. When several
applications share the pipeline resources, two things occur. The first is that the utiliza-
tion of these resources is expected to increase, increasing the power dissipation. The
second thing is that the behavior of these resources, in terms of the busy and idle periods,
becomes less predictable.

3.1.3.1 SMT scheduling and resource sharing

SMT scheduling: The goal of multi-threaded processors is to maximize the sharing
of the processor resources between requesting threads. Earlier implementation of fine-
grained multithreading included round robin techniques which allotted specific time slots
to each thread [1]. This implementation has maximum utilization of the resources if the
number of threads are equal to the available time slots, otherwise the processor will idle
during the empty time slots (Fig. 3.5). In addition, single thread performance is heavily
impacted due to the unnecessary latency associated with the round robin implementation.
To mitigate the drawbacks of fine-grained multithreading coarse-grained multithreading
is introduced where the processor switches between threads when the pipeline stalls on
long latency events. Hence, the processor pipeline is utilized by an alternate thread
while the initial thread awaits the resolution of the stall (Fig. 3.6). The challenge for
the course-grained processor is to make sure that each thread enjoys a fair chance in
getting execution resources, a tough task when the stall profile of the executing threads
is different.

. . . . Thread1Thread2 Empty EmptyThread1 Thread3 Thread2

Slots Boundry Slots Boundry

. . . .

Figure 3.5: Fine grained Multithreading.

Simultaneous multithreading (SMT) combines a fine-grained implementation with
the ability to dynamically switch between instructions from multiple threads as shown
in Fig. 3.7. The SMT is very well suited to run on out-of-order processors since the
instructions are already decoupled in their execution from the program order.

23

Long latency stall

. Thread1 Thread2

Figure 3.6: Coarse grained Multithreading.

Thread2 Thread1Thread2Thread1 Thread3 Thread2 Thread2

Figure 3.7: Simultaneous Multithreading.

Resource sharing: In order to implement an SMT processor the resources available
to the threads has to be modified to allow multiple threads to proceed in the processor
pipelines [1]. The choice between the various implementations in Fig. 3.8 is controlled
based on the efficiency of sharing each processor block between the various threads.

Figure 3.8: SMT resource sharing [1].

Designing the SMT pipeline requires the designers to choose between a single shared
pipeline stage versus a partitioned stage. A single shared pipeline stage allows for max-
imum single thread performance since the pipeline stage is completely available to each
thread. Partitioning the pipeline stage limits the single thread performance when there are
no competing threads. However it significantly simplifies the design of the pipeline stage.
The main limitation of the sharing of the fetch stage lies in the instruction cache [1]. Ac-
cordingly, modern SMT implantation similar to SUN’s Niagara processor uses a shared
fetch stage while multiplexing the requests to the instruction cache [36]. Using the same
thread multiplexing logic, a decode stage can be shared overriding the complexity of ex-
tending a single interleaved decode stage between threads and the associated difficulty
of resolving the instruction dependencies of unrelated threads [36]. Since the register re-

24

naming involves the translation of the architectural registers to the shared pool of physical
registers, simultaneous accesses can be easily accommodated. The execution stage with
its diversified resources can very well be simultaneously accessed from multiple threads
with minimum overheads.

Sharing the memory is fairly straightforward using multi-port caches. However, the
complexity of sharing the load-store queue might warrant the partitioning of the queues
based on the number of threads. Finally, the retire stages is better partitioned between
threads [1]. In summary, the decision of sharing each of these resources is a tradeoff
between single thread performance and the hardware complexity. An interleaved stage
allows for better single thread performance at the expense of a complex hardware to
resolve the thread specific information and vice versa.

In order to complete the background of processor power consumption, the following
section presents an overview of the leakage power management techniques available for
state-of-the-art processors.

3.2 Leakage Power Management Techniques

As mentioned in Section 1.1, to successfully design a low power microprocessor, the
designer needs to consider the combined effects of the system, the algorithm, and the
circuits. Accordingly, to formulate the proposed standby prediction methodology, it
is also important to explore the most popular circuit and system-level leakage control
techniques. In the following Sections, various dynamic low leakage circuit techniques
available to VLSI designers are explored. In particular, power gating is further discussed
since it is later used as a test vehicle for the dynamic sleep signal generators. Then, in
Section 3.2.3, the combined application of these circuit techniques and system-wide mea-
sures to exploit the power saving potential is explained. Finally, building on the circuit
and system low-power foundation, Section 3.2.4 introduces some of the compiler and
architecture-based program profiling techniques that are relevant to the task of standby
prediction.

3.2.1 Leakage Power Management Overview

Referring to Fig. 3.9, the task of leakage control is divided between two major compo-
nents; the leakage control mechanism, and the sleep signal generator.

Many leakage control mechanisms have been studied [3, 28, 30, 37–40]. Power gat-
ing circuit techniques are based on shutting down parts of the circuit which employ high

25

Power

Signal
Generator

Mechanism
Control
Leakage

Unit
Functional

IdleSleep

Management
Unit

Sleep

Figure 3.9: Dynamic leakage control.

threshold transistors between the functional units and the supply rail (Fig. 3.10(a)) [28].
The high threshold transistors exhibit 10 times less leakage than low threshold transis-
tors [30]. Accordingly, turning off these transistors during standby reduces leakage of
the whole functional unit [37]. Alternatively, input vector activation is based on chang-
ing the inputs of the circuit to reduce its leakage (Fig. 3.10(b)). The leakage reduction
results from the dependence of the transistor leakage on the number of OFF transistor be-
tween the supply and ground. Accordingly, maximizing the number of OFF transistors
in standby reduces the overall leakage [38]. Finally, since transistor leakage is expo-
nentially related to the transistor threshold voltage, adaptive body biasing techniques
reduce the functional units’ leakage in standby by raising the transistor threshold voltage
(Fig. 3.10(c)). Raising the threshold voltage is achieved by applying a reverse bias to the
transistor body [3, 39, 40].

(b)

2
V

1

Unit
Functional

SleepUnit
Functional

Sleep

Low

Input
Leakage

Input
Regular

Unit
Functional

Sleep

(c)(a)

V

Figure 3.10: Dynamic leakage control mechanisms a) Power gating. b) Input vector
activation. c) Adaptive body biasing.

In order to fully describe the operation of the leakage control mechanisms discussed
so far, the timing diagram shown in Fig. 3.11 represents the major regions of operation
for these mechanisms. The first region is where the functional unit is being used. In this
region, the leakage control mechanism is disabled. The second region begins when the

26

functional unit idles. As soon as the sleep signal generator asserts the sleep signal, the
third region begins. During this region the total power consumed initiating the leakage
control mechanism is less than the total savings achieved through the reduction of leak-
age power. Finally, the fourth region begins when the power consumed by the circuit
initiating the leakage control mechanism equals the power saved from leakage reduction.

From Fig. 3.11, the breakeven point is defined as the point in time when the energy
consumed to generate the sleep signal is equal to the energy savings due to the leakage
reduction. The breakeven point is illustrated by the onset of region 4. This breakeven
point determines if enough power savings is achieved to warrant the use of any leakage
management circuit (i.e., to assert the sleep signal).

Time

Idle period starts

Breakeven point (BEP) reached

Region
2 4

Region Region Region
1 3

Unit

Switching

in
Functional

Leakage power in Functinal Unit
(leakage mechanism not applied)

Time

power

Unit

Switching

in
Functional

Switching
power

Generator
Sleep Signal

(leakage mechanism applied)
Leakage power in Functinal Unit

(leakage mechanism not applied)

mechanism

power
leakage control

Switching

mechanism

power
leakage control

Switching

Functional
Unit being used

Leakage mechanism
initiated

Time

power

Turn OFF Turn ON

Figure 3.11: Breakeven point.

3.2.2 Circuit-Level Leakage Control Techniques

Leakage control circuits can be classified into static and dynamic techniques, depending
on whether the control is statically applied at the design phase, or dynamically managed

27

during the circuit operation. In dynamic leakage control techniques, the circuit blocks
enter a low leakage mode that can be short or long, according to the usage profile of the
circuit. Sections 3.2.2.1 to 3.2.2.4 are a review of some of the dynamic leakage control
techniques in the literature.

3.2.2.1 Input Vector Activation

In their earlier work, Ye et al. have introduced the concept of input vector activation by
noting the dependence between the leakage current in a transistor stack and the input to
these transistors [38]. Fig. 3.12 shows a two-input NAND gate to illustrate the relation
between the inputs and the leakage power. With both NMOS devices OFF, the leakage
current flowing through them is approximately an order of magnitude smaller than the
leakage of a single transistor. This reduction in leakage is attributed to the negative
gate-to-source biasing and the increase in the M1 transistor threshold due to the body
effect [38].

M1

M2

Figure 3.12: Two input NAND gate.

Capitalizing on this dependence of the leakage current on the number of OFF tran-
sistors between the Vdd and the ground, many researchers have focused on changing
this path in the standby state to put the circuit into a low leakage mode. However, the
problem of finding the input vector that minimizes leakage has been shown to be NP-
complete [41]. NP-Complete problems are non deterministic polynomial hard problems.
These problems are a subset of combinatorial problems that are not solvable in poly-
nomial time. Accordingly, alternative heuristics have been implemented to identify the
most effective input vectors [42], where the input vector activation is combined with
transistor stacking to further enhance the leakage power performance.

28

One of the major challenges of input vector activation techniques is that the effect
of the input vector diminishes with the logic depth, which, for example, translates into
low savings for large multipliers [43]. This hurdle can be managed by using bypass
multiplexers to control the internal nodes of the data path.

3.2.2.2 Dynamic Voltage Scaling (DVS)

In Dynamic Voltage Scaling (DVS) techniques, the DC supply of the circuit is adjusted
on the fly to a lower value to reduce the leakage current [30]. The lower DC supply
benefits both the switching and leakage power. The leakage is reduced because the sub-
threshold leakage, due to drain-induced barrier lowering (DIBL), decreases as the supply
voltage scales down [44]. It has been shown that reductions in the subthreshold and gate
leakage are proportional to V 3

dd and V 4
dd, respectively [45]. However, it is noteworthy that

the performance of the circuits becomes more sensitive to the variation of Vdd and Vth at
lower supply voltages. In addition to the change of the supply voltage, DVS techniques
are accompanied by a change of the circuit speed. Earlier research reports that up to a
three-fold reduction in the frequency can be observed, if the supply is scaled from 1V to
0.5V [46].

To implement the DVS, an efficient DC-DC converter is required, adding to the com-
plexity and area overhead. Gutnik et al. have employed a PLL-based DC-DC conver-
sion [47]. This technique has the advantage of controlling the supply voltage and the
system frequency simultaneously.

3.2.2.3 Adaptive Body Biasing

Adaptive body biasing techniques are based on changing the threshold voltage of the de-
vices according to the circuit state. These techniques apply a forward bias to the body,
when the circuit is active, to enhance performance, and a reverse bias, when the circuit
is idle, to reduce leakage. Vbias shown in Fig. 3.13 is used to control such a technique.
Reducing the Vbias causes an increase in the circuit threshold, reducing its leakage. Con-
versely, increasing Vbias reduces the threshold, which increases the circuit speed [39].
This operation is governed by the following equation:

Vth = Vtho + γ(
√
|VSB − 2φf | −

√
2|φf |), (3.1)

where γ is the body effect coefficient, φf is the fermi potential, and VSB is the source to
bulk potential represented by Vbias.

29

Pull

Vbias

Network
Up

Figure 3.13: Adaptive body biasing technique.

However, this approach is limited in its use to low temperature operation, since higher
temperatures increase the leakage current between the n-well and the p-well in the triple
well structure needed to isolate the various transistors [40].

Another limitation to the adaptive body biasing techniques is their diminishing per-
formance as CMOS technologies scale down. Research shows that the maximum achiev-
able leakage power reduction is reduced four-fold per technology generation [48]. This
is attributed to the increased band-to-band tunneling for smaller transistors.

3.2.2.4 Power Gating

Referring to Fig. 3.14, the task of leakage control for any circuit that employs power
gating3 is divided between two major components; the sleep transistor network, and the
sleep signal generator. The basic idea behind power gating techniques is to shut down
parts of the circuit when they are not utilized, using a high threshold device between
the functional unit and the supply rail [3, 28, 30, 37]. These devices are setup in a sleep
transistor network as shown in Fig. 3.14. The high threshold transistors exhibit 10 times
less leakage than low threshold transistors [30]. Turning off these transistors during
standby reduces leakage of the whole functional unit [37].

During the active mode, when sleep signal is low and the sleep transistor is ON,
the sleep transistor can be modeled as a resistor between the functional unit and the
supply rail. This generates a small voltage drop VX across the resistor (Fig. 3.15). The
voltage drop VX has two effects [49]. First, it reduces the driving capabilities of the gates
inside the functional units from Vdd to (Vdd − VX) and second, it causes the threshold

3Power gating is also known as Multi-threshold CMOS (MTCMOS).

30

voltage of the low threshold pull-down devices to increase due to the body effect [38,50].
Both effects degrade the speed of the circuit. Therefore, the resistor should be made
small, and consequently, the size of the sleep transistor be made large. This comes at
the expense of extra area and power. On the other hand, if the resistor is sized too large
(i.e., the sleep transistor is sized small), the circuit speed will degrade and the loading on
the sleep signal generator circuitry will decrease. Therefore, a tradeoff exists between
achieving sufficient performance and low power values. This tradeoff becomes even
more evident in the DSM regime. In DSM technologies, the supply voltage is scaled
down aggressively, causing the resistance of the sleep transistor to increase dramatically,
requiring even larger size sleep devices. This will cause leakage and dynamic power
to significantly increase in the standby and active modes, respectively. Therefore, an
important design criterion is sizing the sleep transistor to attain sufficient performance.

Virtual Rail

Unit
Functional

Sleep

Sleep
Signal

Generator

Management
Unit

Power

Network
Transistor

Sleep

Idle Signal

Figure 3.14: Power gating within the framework of a power management unit.

Unit
Functional

VX

Unit
Functional

Sleep R I

Figure 3.15: Sleep transistor in power gating circuits.

For power gated circuits the breakeven point is defined as the point in time when the
energy consumed to generate the sleep signal and turn off the sleep transistor network is
equal to the energy savings due to the leakage reduction. The breakeven point determines
if enough power savings is achieved to warrant the use of power gating. The value of
the breakeven point is highly dependent on the amount of energy consumed going in and
out of the low leakage mode and the time needed for the DC operating point to converge

31

to its final value [3]. Hu et al. in [4] use a highly parameterizable analytical model to
show that the breakeven point for power gating techniques can reach as low as 10 cycles.
However, in real implementations such as the integer ALU in [3] the breakeven point is
achieved around 100 cycles. This difference is mainly attributed to the block size (course
vs. fine granularity) and the value of the decoupling capacitance as it adds to the total
capacitance that needs to be discharged. Furthermore, tests in Section 4.3.2.2 will discuss
the value of the breakeven point in more details through circuit simulations of Fanout of
4 (FO4) inverter networks and a standard cell implementation of an open source floating
point unit [51]. These tests indicate that a 10 to 500 cycles is a reasonable range for the
breakeven points, the exact value of which depends on the functional unit being power
gated.

Another issue for MTCMOS implementation is the data loss, when the circuit is
switched to the sleep mode. Data retention high-threshold buffers are available to retain
the data through the sleep state. However, these buffers increase the complexity and can
result in leakage sneak paths [52].

Beside the need for data retention buffers, MTCMOS circuits are constrained by
the overhead needed to charge and discharge the virtual rail seen in Fig. 3.14. This
constraint further limits the use of MTCMOS circuits to reduce leakage during long
standby periods. Variants of the MTCMOS scheme introduce soft sleep states, where the
data is retained by clamping the virtual rail to Vth, allowing for a faster recovery with
lower power overhead [53].

3.2.2.5 Discussion

The principal challenge in all the leakage control techniques is the identification of the
circuit’s usage patterns during operation. For example, the performance of dynamic leak-
age control techniques depends heavily on the length of time the circuit can be put in a
standby mode. This time is a major factor, since the overall savings in leakage need to
be calculated accounting for the overhead of forcing the circuit into the standby mode,
waking up the circuit when an operation is pending, and the impact of the delay required
to wake up the circuit on the overall performance. Consequently, these techniques work
best when there is an accurate estimation of the standby times, and when there is flexi-
bility in changing the task schedule in order to maximize the total sleep time.

To estimate the circuit’s usage patterns, system-level power management is needed.
System-level power controllers are able to observe the various system components and
their interactions.

32

3.2.3 System-Level Leakage Control Techniques

The low power circuits presented in the previous section are the basic building blocks
for system-wide low power design. System-level power management has the potential of
overseeing multiple circuit blocks and their interactions. Thus, more power savings can
be achieved by optimizing the overall performance of the microprocessor at the system
level.

In addition to general purpose microprocessors, there are also their embedded coun-
terparts and programmable DSPs that are used for specific applications such as automa-
tion, video and audio processing, coding/decoding, and filtering. Fortunately, these ap-
plications have characteristic performance needs. For example, video processing tends to
be differential in nature, calculating only the difference between the successive frames.
This fact allows for more system-level optimization than what is available for general
purpose processors.

In this section, the various system level techniques present in the literature are dis-
cussed. Section 3.2.3.1 presents some of the challenges and techniques available to su-
perscalar and SMT processors, whereas Section 3.2.3.2 introduces software-level power
consumption control.

3.2.3.1 Power Management for Superscalar and SMT Processors

As mentioned in Section 3.1.2, superscalar pipelining and SMT are two of the most
prevalent approaches for enhancing processor performance. However, these architectures
introduce issues that need to be considered for the processor operation to be successful.
To describe some of the challenges and low power potential for superscalar and SMT
processors, the generic superscalar processor presented earlier in this Chapter is used.
This processor is represented in Fig. 3.16 for clarity. In the following sections, some of
the pipeline aspects are presented with the objective of exploring some of the potential
situations for reducing the overall power consumption.

Pipeline Stall By using the pipeline structure in Fig. 3.16, instructions are fetched in
each clock cycle. In an ideal situation, the instructions utilize 100% of the processor all
of the time. However, in reality, many situations arise that force one or more pipeline
stages to be idle. These situations, which are presented in the following sections, can be
considered for potential power savings.

33

Figure 3.16: O-o-O superscalar processor [1].

Read After Write (RAW)

I1 : R3 ← R1

I2 : R5 ← R3

Consider two consecutive instructions I1 and I2. I1 writes to a memory or register file
location R3, and I2 needs to read from the same location. I1 will only write to R3 at
the Retire stage. However, I2 is following I1, and I2 needs to read R3 before being
executed. This situation shows the Read after Write data hazard that forces the pipeline
to stall, waiting for I1 to write back before I2 can proceed for execution.

34

Write After Write (WAW)

I1 : R3 ← R1

I2 : R5 ← R3 op Rx

I3 : R3 ← R7

Consider three instructions: I1, I2, and I3. I1 and I3 write to the same memory or the
RF location R3. I2 reads R3 after I1, but before I3. This situation presents a Write after
Write data hazard. In this case, if I3 writes to R3 before I2 is at dispatch, the data for
I2 is corrupted. This case can arise, if the core has more than one execution unit and a
scheduler that may allow I3 to execute faster than I2. This can also happen if I3 does
not need the ALU attention, and is only a write operation to the RF; in this case, I3 is
stalled while waiting for I2 to finish. This situation is more prevalent in O-o-O execution
processors, where the instructions in flight are not in the same program order.

Write After Read (WAR)

I1 : R3 ← R1 op Rx

I2 : R1 ← Ry

Consider two instructions I1 and I2. In the first instruction, R1 is being written to R3.
In the second instruction, a value is being written to R1. Since I2 modifies the R1 value,
this instruction cannot be allowed to write back before I1 does. Again, this situation can
arise with processors with multiple execution units or O-o-O processors.

Cache Miss A key potential power saving situation is the cache misses. In this case,
instructions try to read nonexistent data from the cache, resulting in a multiple cycle wait
for the higher-level cache or the external memory to return the data. A methodology,
similar to the work by Zhu et al. [54], can be used to predict memory accesses and
manage the execution stages, depending on the memory access profile.

Resource Contention Another aspect that can cause the pipeline to stall is the
resource contention. The reservation station can overflow, causing a dispatch stall. The
cross bar switch, responsible for routing the instructions to the various functional units,
can also become overloaded, causing a stall. Finally, the rename register is also a shared
resource that can cause a stall, when it is unavailable [1].

35

In all these situations, power gating can be used to set the pipeline stages into low
power mode, when the pipeline is stalled. In addition, the DVS can be used to slow down
the pipeline stages in order to equalize the execution time, or to prevent RAW, WAW, and
WAR hazards. Also, the DVS can be used in the cache miss situation to slow down the
circuit operation, until the higher-level cache returns the data [55, 56].

Branching Typically, branch instructions and subroutine calls are detected in the
decode stage. However, the Taken/Not Taken (TK/NT) branch is not resolved, until the
instruction reaches the execution stage. In addition, the branch target4 is calculated in
the execution stage. Accordingly, any instructions that are fetched in the shadow of the
branch must be flushed, in case the branch is mispredicted. This is illustrated in Fig. 3.17,
where I1, I2 and I3 are discarded, if the Branch (Br) is taken.

To mitigate the impact of the branch TK/NT problem, accurate branch prediction
techniques have been developed to accurately guess the direction of the branch. Earlier
work has focused on the low power implementation of the branch prediction [57]. Re-
searchers have investigated the supply gating of inactive prediction arrays5. Later, the
accuracy of the branch predictor was used as a gauge of power consumption [58]. More
accurate branch predictors are less prone to prediction error, saving the power consump-
tion of the processor core.

RD

ID

IF Br

Br

I1

I2

I2I1 I3

I1

Br

Br

Instructions in the shadow
of a Branch

EX

WB

Figure 3.17: Branching in pipelined processors.

4The branch target is the memory address that the branch is jumping to.
5Branch prediction is preformed through a set of two-bit state machines arranged in an array capable

of predicting more than one branch.

36

3.2.3.2 Low-Power Software Design

Most of the effort in low power processor design is concentrated on the hardware, since
it is the actual vehicle performing the various operations [59]. However, the impact of
software design on the total power consumption is substantial. This is obvious since the
program code contains information about the sequence of events that take place in the
underlying hardware. In the following section, some of the sources of software power
consumption and popular low power software design techniques are investigated.

3.2.3.3 Sources of Software Power Consumption

The power consumption of general purpose processors is the collective contribution of
many components: Memory, ALU, multipliers, buses, clock, and control logic. The
following components are the principal contributors to the power consumption of the
processor [59].

Memory Subsystem: Typically, memory accesses are power hungry, since they in-
volve the switching of large capacitance word/address line and activating row/column
decode logic. For example, the L2 cache of the dual core UltraSPARC microprocessor
consumes up to 14% of the chip’s power consumption [60]. Accordingly, software ef-
forts that utilize data locality and minimize memory accesses can be extremely beneficial
in minimizing power consumption.

LOAD/STORE are the main instructions accessing the memory, the order of which
can be used to power gate some of the execution units, predict pipeline stalls, or slow
down the execution, using techniques similar to the DVS [59].

Buses: Buses are also a source of power consumption, since many components are con-
nected to the same bus, increasing the overall bus capacitance. Reducing the bus activity
using the information available at compilation time can be very helpful in minimizing
power consumption. This can be achieved through compiler directives or instruction
rearrangement with the objective of minimizing the bus activity [61].

Functional Units: Functional units are another major source of power consumption.
These units consume approximately 38% of the UltraSPARC core’s power consump-
tion [60]. Accordingly, efforts to reduce their power consumption greatly enhance the
processor performance. Although an exact prediction of the inputs to the functional units

37

is not possible, the sequence of instructions is available at the compilation time. Knowl-
edge of the sequence of the instructions can be used to minimize the power consumption
by changing the execution blocks used. For example, if a sequence of instructions is
not dependent on a multiply instruction, this instruction can be transformed to a regular
software multiplication. This reduces the overall power consumption of the multiplier
unit, or keeps the unit in the sleep mode longer [59].

3.2.3.4 Software Power Reduction

Power Estimation: The first task for attaining low power software is the modeling of
the power consumed by the application code. This is achieved by the following steps [59]

1. Base Cost Calculation: In this step, the power consumed by each instruction, as-
suming that it is the only instruction in the processor, is calculated. This power
is independent of the sequence of events and bypasses the cache misses, pipeline
stalls, branch mispredictions, and bus switching due to the opcode differences.
This step is achieved by inserting the instruction in a loop that is long enough to
eliminate the branch overhead at the end of the loop, but not too long to cause
cache misses.

2. Circuit State Cost Calculation: Here, pairs of consecutive instructions are exam-
ined to determine the following.

• The Opcode change and the associated change on the instruction bus.

• The switching of control lines to account for the alternation between the var-
ious functional units.

• The switching associated with the rerouting of the data from the ALU through
the bypass paths to the register file.

3. Total Program Power Calculation: In this step, the following equation is used to
quantify the total power consumed by each program [59].

Ep =
∑

i

(Bi ×Ni) +
∑
i,j

(Oi,j ×Ni,j) +
∑

k

Ek, (3.2)

where Ep is the overall power consumed by the code. Σi(Bi×Ni) is the base cost
calculation, where Bi is the base cost of instruction type i, and Ni is the number of
instructions of type i in the code. Σi,j(Oi,j × Ni,j) is the circuit state cost, where
Oi,j is the cost of the instruction of type i, followed by an instruction of type j, and
Ni,j is the number of occurrences of the {i,j} sequence. Finally, ΣkEk is the cost
of the pipeline stalls, cache misses, branch mispredictions, and interrupts.

38

Power Optimization The second aspect of developing low power software is to ex-
plore the power saving potential of the application code and determine the appropriate
solutions. This step is especially beneficial for embedded processors since they are usu-
ally tied to a specific application, allowing the use of application specific measures to
combat the power consumption.

Minimizing the memory access cost is one of the promising solutions to the power
consumption problem. Minimizing the memory access cost can be achieved by the fol-
lowing [59].

• Minimizing the number of accesses to the memory by using data locality. This is
achieved by code reordering to localize the computations to the data available in
the register file before requesting new data.

• Ordering the memory references by proximity, by accessing the registers first, the
caches, and then the main memory.

• Using multiple word LOADs6 to further minimize the number of required memory
accesses.

Another approach for software power reduction is related to instruction selection and
ordering. In this case, the code is modified to minimize the power consumed in the
processor core by the following:

• Instruction Packing: In this technique, more than one instruction is packed in an
instruction bundle. This packing minimizes the overhead attached to individual
instructions and allows for more control over the power consumption [62].

• Instruction Ordering: By using the information available from the power estima-
tion step, certain code sequences can be identified as a potentially power hungry
combination. This is due to excess bus switching or the changing of the func-
tional units. Code reordering can be employed to eliminate these sequences at the
expense of increased compilation time [63].

• Data Flow Management: Alternately, if the objective is to minimize the leakage
of a DSP core, data flow management techniques can be used to prevent the over
switching of some circuits which results in shorter standby times. In essence, data
flow management techniques throttle data flow to the execution units such that an
objective is achieved. For example, this objective can be maximizing the standby
time [64].

6A regular LOAD instruction loads only one word from the memory; multiple word LOAD reads more
than one word per cycle.

39

3.2.4 Program Profiling

After a discussion of the circuit and system-level techniques that attempt to manage the
leakage power, it is crucial to review the previous research related to program profiling.
The objective of program profiling is to identify the trends in the executed code. Trends
such as the number of loops in the executed code and when they are executed, or the
impact of the code execution on the IPC. Understanding program profiling is an essential
factor in the work towards standby prediction.

In this section, two approaches that attempt to identify program profiles are discussed.
In Section 3.2.4.1, compiler-based approaches are presented, followed by the higher-
level approach of software and hardware phase extraction in Section 3.2.5.

3.2.4.1 Compiler-Oriented Approach

The idea of compiler support for managing the different aspects of hardware is not new.
However, the main drawback of compiler-based modifications is the need to recompile
much of the existing code to benefit from such techniques. In addition, as the hardware
implementation changes, some of the older techniques or microarchitectural features can
become ineffective or even undesirable. If some of these older features are promoted to
the Instruction Set Architecture (ISA) level, then they become part of the ISA, resulting
in an installed software base or legacy code containing these features. Thus, all future
implementations must support the entire ISA to ensure the portability of the existing
code [1].

Rele et al. have used compiler directives to manage leakage power consumption [65].
The technique is based on modifying the instruction set by adding an OFF/ON instruc-
tion pair to each of the processor’s functional units. For example, for the floating-point
multiplier, the compiler is assigned the task of analyzing the program offline, and iden-
tifying the program regions that do not use the floating-point multiplier. The compiler
then inserts a pair of OFF/ON instructions between the boundaries of these regions. In
order to prevent OFF/ON pairs that are close in time, the OFF instruction only sets the
functional unit status to pending-OFF. If an ON instruction for the same functional unit is
encountered before the OFF instruction retires, the functional unit is kept on, otherwise
it is powered down.

To extend this work, Kim et al. have used the compiler to tune the instruction per
cycle (IPC) in order to manage the leakage periods more efficiently [66]. This technique
exploits the inherent variations of the demand for functional units in an application to
change the amount of instruction parallelism to reduce the functional units’ usage. The

40

idea behind this technique is to tag loops according to the amount of parallelism they
require, and using these tags to power down the unused functional units.

3.2.5 Phase Extraction

In addition to compiler-based approaches, hardware and software-based techniques that
extract the usage profile at a coarse granularity have been studied. Contrary to the
compiler-based techniques discussed in Section 3.2.4.1, these techniques do not focus
on managing leakage power. Instead, they attempt to extract the trends of major code
sections. These trends are called program phases.

Hardware Assisted Phase Extraction: Hardware assisted techniques are implemented
by periodically probing the processor utilization. Such techniques extract the usage pro-
file and submit this information to the operating system in order to perform tasks such as
dynamic voltage or frequency scaling. The probing can be performed by the processor
itself or by a profiling co-processor [67, 68].

Narayanasamy et al. have chosen hardware-based tables to set aside important code
characteristics such as LOADs that frequently miss and are frequent in the code. This
information is helpful for techniques such as multipath execution and cache prefetch-
ing [67]. Similar techniques use long execution segments (10 million instructions) to
identify similar program phases aimed at DVS and phased-based task scheduling [68].

Due to the slow nature of such techniques, they are only useful when the overhead of
the decision and the power savings are large. This is the case for some of the dynamic
voltage and frequency scaling techniques, where the decision to vary the supply voltage
or frequency requires a series of steps that are time consuming.

Software Assisted Phase Extraction: Similar to the hardware techniques, the program
code is analyzed to extract long-term trends. Sherwood et al. have reported an especially
important implementation of these extraction techniques [63]. By defining the Basic
Block Vector (BBV) as a section of code that is executed from start to finish with one
entry and one exit. The researchers have managed to use the BBV as a metric to compare
the behavior of the program across various BBVs. The concept of the BBV has been
valuable to reduce the simulation time of cycle accurate performance simulators [69].
This is performed by identifying the program phases and tagging them with their IPC,
cache misses, and branch mispredictions. Searching through these tags, they manage

41

to identify patterns in the executed code. These patterns are later used to prevent the
re-simulation of code segments that are similar, reducing the total simulation time.

3.2.6 Discussion

To implement all of the system-level power management measures, mentioned in this
chapter, the designer needs two assets

Cycle Accurate Simulator: This set of performance simulators is used to simulate
the processor execution on a cycle-by-cycle basis. Furthermore, these simulators have
the ability to estimate the flow of instructions in the processor. Also, these simulators
are capable of generating usage reports that contain information about pipeline stalls.
The SimpleScalar and SMTSIM are two of the most accurate performance simulators
available [70].

Benchmarks: To perform cycle accurate simulations, the designer needs accurate bench-
marks that can predict the behavior of an average program. The SPEC2000 bench-
marks [71] are suitable for general purpose processors, whereas MiBench is more ap-
propriate for embedded processors [72].

3.3 Summary

In summary, in order to maximize the power saving potential of any leakage management
technique the system designers need to consider the combined effect of the application,
the architecture and the circuits. In order to build a leakage management system that is
capable of tracking the application behavior the following Chapter presents the concept
of predictive sleep signal generation.

42

Chapter 4

Predictive Sleep Signal Generation

General purpose and embedded processors represent the cornerstone of many consumer
electronics applications [1]. Processors in portable equipment are faced with a very
stringent power envelope due to the battery dependence. On the other hand, server class
processors are also power-bound by the available heat sinking capabilities and the in-
creasing cost of operation due to the power consumption in server clusters. These facts
have slowly shifted the focus of the processor design process to a significantly more
power aware strategy as opposed to performance centric designs [73].

The semiconductor industry’s drive towards aggressive scaling of the silicon technol-
ogy to match the continuous increase in chip requirements is accompanied by a drastic
increase in chips’ leakage power consumption. Indeed, as mentioned in Chapter 2 leak-
age power is slowly dominating the overall power consumption (Fig. 2.3). Accordingly,
the concept of predictive sleep signal generation aims to tackle the leakage power man-
agement problem while maintaining the processor performance. The objective is to uti-
lize the observed behavior of the running application code to help alleviate the overheads
associated with leakage power consumption in modern processors.

4.1 Sleep Signal Generation

Chapter 3 summarized several leakage control techniques that have been proposed to
deal with leakage power [4, 65, 66]. In these techniques, when the functional units are
not used, an idle signal is sent to a sleep signal generator which is located in the power
management unit. The sleep signal generator is responsible for asserting the sleep sig-
nal to a leakage control mechanism that sets the functional unit to a low leakage mode
(Fig. 3.9). Applying the leakage control mechanism consumes switching power in both

43

the functional unit and the sleep signal generator circuit. In addition, the application of
the leakage control mechanism introduces a delay overhead due to the need to restore
the state of the functional unit after the idle period ends. Accordingly, the main chal-
lenge for all leakage control techniques is to balance the power and the delay overhead
incurred by asserting the sleep signal, with the leakage power savings gained by setting
the functional unit to the low leakage mode.

In order to generate the sleep signal, many system level techniques have been pro-
posed. Compiler-based leakage control techniques discussed in Section 3.2.4.1 are based
on offline analysis of application code to assist the generation of sleep signal [65, 66].
This is achieved by using the application code to identify the periods in time when the
functional unit is not used, and shutting them down accordingly. However, the main
drawback of compiler-based techniques is the need to recompile existing applications
in order to capitalize on these modifications as well as the enforced hardware backward
compatibility that would limit future enhancements [1].

In addition to compiler-based approaches, hardware and software-based techniques
that extract major program trends have been studied [63, 67–69]. Although these tech-
niques can dynamically track the utilization of the functional units and in turn assist
the task of sleep signal generation, these techniques suffer from large power and delay
overhead.

Branch prediction based techniques were studied [4]. In these techniques, when a
branch misprediction is encountered, the functional unit is powered down. However,
these techniques do not guarantee that the functional unit will stay idle long enough to
recoup the power consumed in the shut down period.

Finally, Hu et al. have proposed the use of a simple counter based technique that
shuts down the functional unit after being idle for a fixed time interval [4]. Although this
technique is characterized by a low power overhead, it suffers from very low accuracy
predicting the length of the standby period that will follow.

This research tackles the task of sleep signal generation for microprocessors’ func-
tional units. However, compared to earlier attempts that focused on static generation of
the sleep signal when the functional unit is idle for a specified number of cycles [4], the
proposed technique introduces a dynamic approach that has a better accuracy predicting
the length of the sleep period with minimal power overhead. This maximizes leakage
savings by applying the sleep signal when it is most likely for the functional unit to
stay idle long enough for the power savings to exceed the power overhead introduced by
the application of the sleep signal. In this work, the proposed dynamic approach uses
an instruction level analysis of the utilization of the functional units. Accordingly, the

44

functional units are treated as a whole block as opposed to much finer granularity tech-
niques at the sub-block level. The technical contributions in of the dynamic sleep signal
generator can be summarized as:

1. The proposed dynamic sleep signal generator (DSSG) is capable of tracking the ex-
ecuted program behavior across different time segments and predicting the length
of the standby periods. This translates into high accuracy delaying the generation
of the sleep signal when the program is frequently utilizing the functional units.
It is also capable of early sleep signal generation when the program rarely utilizes
the functional units.

2. Contrary to compiler-based low leakage techniques that are bound to a specific
Instruction Set Architecture (ISA), the proposed hardware based DSSG depends
on only the information about current and previous standby periods. Accordingly,
the DSSG can be easily incorporated in existing microprocessor designs.

3. Compared to program phase extraction techniques that depend on a small memory
structure to save program trend information, the DSSG only keeps track of the pro-
gram behavior through a simple finite state machine. This translates into smaller
area and lower power consumption.

4. The DSSG provides a general framework for predicting the length of the standby
period independent of the kind of implemented low leakage circuit mechanism.
This applies to dynamic low leakage circuit control techniques such as power gat-
ing, adaptive body biasing and input vector activation.

5. The DSSG exhibits low power consumption, in the order of 300 µW to achieve
accuracies up to 80% in predicting the length of the standby period.

4.2 Proposed Dynamic Sleep Signal Generation

After reviewing the information in Chapter 2, it is clear that all the dynamic leakage
control circuit techniques require the external generation of the sleep signal. In addition,
high level compiler and phase extraction based techniques are limited in their applica-
bility due to the large overhead they entail. Thus, a fast and power efficient sleep signal
generator would be an asset.

Defining the breakeven point as the point in time when the total overheads entering a
sleep mode is equated to the total leakage savings achieved, the most simple approach to

45

deal with sleep signal generation would be the counter-based Static Sleep Signal Gener-
ator (SSSG) implemented in [4]. The control state machine of this technique is presented
in Fig. 4.1. In this technique whenever the functional unit is idle, a counter is started.
When the counter reaches a predefined threshold 1 dictated by the breakeven point, the
sleep signal is generated.

Idle

Wait ShutdownThreshold

Figure 4.1: Static Sleep Signal Generator state machine.

This technique is caught between two mutually exclusive alternatives. First, use a
long threshold and miss potential leakage savings through relatively short standby peri-
ods that are longer than the breakeven point. Second, use a short threshold and run at a
higher risk of generating the sleep signal for periods that are shorter than the breakeven
point. Fig. 4.2 presents a sample histogram of the sleep periods on an SMT processor.
Examining the histograms further clarifies the limitation of the static approach. Varying
the software mix on the same processor resulted in a widely varying profile. Furthermore,
the number of sleep periods that are potentially longer than the threshold but shorter than
the breakeven point can be a significant fraction of the overall sleep profile (Fig. 4.3).
Accordingly, the technique’s inability to adapt the threshold to the running application
severely limits the accuracy of such a technique in predicting the length of the sleep pe-
riod before generating the sleep signal. Hence, this technique is more prone to initiating
the sleep cycle for short standby periods that do not reach the breakeven point.

In order to overcome such limitation, the proposed DSSG dynamically changes the
threshold according to the requirements of the running application. This approach limits
the mutual exclusivity between the two alternatives. When the application is utilizing
the functional unit in short repetitive bursts, i.e. the functional units idles frequently but
for very short periods, the DSSG raises the threshold to limit the sleep signal generation
in this application phase. On the other hand, when the application uses the functional

1This threshold should not be confused with the transistor threshold voltage.

46

N
um

be
r

of
 s

le
ep

 p
er

io
ds

Sleep length

���� �
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

100 200 4003000
��

(a) 2 threads

Sleep length

N
um

be
r

of
 s

le
ep

 p
er

io
ds

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 200 400300100�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(b) 4 threads

Figure 4.2: Floating point multiplier unit standby trace histogram. The x-axis represents
the sleep length, and the y-axis is the number of sleep instances with the corresponding
sleep length.

unit infrequently, the DSSG lowers the threshold to cash-in on the ability to generate the
sleep signal early on, maximizing the potential leakage savings.

The DSSG success is based on the fact that application code tends to fall into repet-
itive patterns. For example, the usage patterns in Table 4.1 and Table 4.2 are repeatedly
present in the usage profiles of the integer multiply unit for the GZIP benchmark and
the integer divide units for the MESA benchmark, respectively. These patterns are rep-
resented by the pair (The length between the successive uses/the length of usage), for
each functional unit. In these patterns the functional units are repeatedly utilized in a
similar pattern just before an extended sleep period. Due to these repetitive patterns, it
is expected that the DSSG stabilizes the threshold above the short standby periods but
sufficiently below the long standby periods to maximize the leakage power savings.

4.2.1 The DSSG architecture

In order for the DSSG to predict the length of the standby periods, the DSSG uses a
set of internal counters to keep track of how many times the standby period reached
the breakeven point and vice versa. Using these counters, the DSSG bases its decision
whether to raise the sleep signal, reduce or increase the threshold, on the history of
utilization of the functional unit. This enables the DSSG to assert the sleep signal when
it is most likely for the idle period to stay beyond the breakeven point.

47

N
um

be
r

of
 s

le
ep

 p
er

io
ds

Sleep length

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
������������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 200 400300100

Figure 4.3: Sample standby trace.

Table 4.1: SPEC:GZIP integer multiply usage patterns.
Event 1 Event 2 Event 3 Event 4

Pa
tte

rn

12/5 12/5 13/5 12/5
7/1 7/1 6/1 7/1
6/1 6/1 6/1 6/1
3/1 3/1 4/1 3/1
4/1 4/1 3/1 4/1
3/1 3/1 3/1 3/1
4/1 4/1 4/1 4/1

1726469/3 740910/3 196027/3 1717387/3

Table 4.2: SPEC:MESA integer divide usage patterns.
Event 1 Event 2 Event 3 Event 4

Pa
tte

rn 25/1 25/1 19/1 25/1
19/1 19/1 24/1 19/1
24/1 24/1 19/1 24/1

228/1 193/1 258/1 228/1

The idea behind the DSSG can be described using the six operating regions depicted
in the state machine shown in Fig. 4.4, and the timing diagram shown in Fig. 4.5.

1. Idle: In this state, the DSSG is idle while the functional unit is being used.

2. Threshold Wait: This state is initiated when the functional unit idles. In this state,
the DSSG counts the number of clock cycles since the functional unit idled and
compares them to the threshold. As soon as the threshold is reached, the DSSG

48

Limit

Miss
BEP
Hit

Threshold
Wait

Idle

BEP Wait

Decision
Wrong

Decision
Correct

Limit

BEP
Hit

Repeatedly

Miss
BEP

BEP

Figure 4.4: Dynamic Sleep Signal Generator state machine.

raises the sleep signal to high. After the sleep signal is asserted the DSSG waits
in the BEP Wait state until the sleep period either reaches the breakeven point or a
pre-breakeven wake-up request is detected.

3. BEP Hit: This state is reached when the functional unit stays idle longer than the
breakeven point. Whenever the DSSG reaches this state, the total leakage savings
exceeds the overheads 2.

4. BEP Hit Limit: A small counter is attached to the DSSG to count the number of
times the BEP Hit state is reached. When the BEP Hit is reached a predefined
number of times denoted by hit-limit the DSSG reduces the threshold by a
step equal to step-.

5. BEP Miss: This state is reached if the threshold is reached but the functional unit
does not stay in the idle state longer than the breakeven point.

6. BEP Miss Limit: Similar to the BEP Hit Limit, the DSSG keeps track of the number
of BEP misses. When they reach a predefined value denoted by miss-limit,
the DSSG increases the threshold by a step that is equal to step+.

In order to describe the various parameters of the DSSG, the quartet (step+, step-,
miss-limit, hit-limit) is used. As an example, if these parameters take the val-
ues (5, 20, 3, 15), the operation of the DSSG will proceed as follows:

2These overheads include the switching power consumed by both the DSSG and the leakage control
technique chosen from the alternatives presented in Section 3.2.2

49

5− BEP Miss
6− BEP Miss Limit

Breakeven
point reached

(b) Wrong decision

2− Threshold Wait
3− BEP Hit
4− BEP Hit Limit

Time

Idle period ends

Threshold reached

(a) Correct decision

Idle period starts

Time
Threshold reached

Breakeven point
not reached

1− DSSG Idle

Functional unit being used

Idle period ends

1 2 6

Idle period starts

5

2 41 3

Figure 4.5: The DSSG timing diagram.

• Idle period > breakeven point (Fig. 4.5(a)).

1. The DSSG starts at state 1.

2. The idle period starts and the sleep signal is generated at end of state 2.

3. The idle period stays beyond the breakeven point, and the DSSG goes to state
3.

4. If state 3 is reached 15 times, the threshold is reduced by 20 cycles (state 4).

• Idle period < breakeven point (Fig. 4.5(b)).

1. The DSSG starts at state 1.

2. The idle period starts and the sleep signal is generated at end of state 2.

3. The idle period does not stay beyond the breakeven point, and the DSSG goes
to state 5.

4. If state 5 is reached 3 times, the threshold is increased by 5 cycles (state 6).

It is important to note that checking if the sleep period reaches the breakeven point
is calculated from the start of the idle period independent of the threshold value. This

50

Sleep Signal Generator

Global Counter

idle sleep

DSSG−1

FU−1

idle sleep

FU−2 FU

DSSGDSSG−2

idle sleep

DSSG−N

FU−N

Power Management Unit

Figure 4.6: The DSSG implementation.

in turn puts an upper bound on the value of the threshold at the breakeven point mi-
nus step+. Otherwise, the functional unit will miss power saving opportunities if the
threshold exceeds the breakeven point.

Implementing the DSSG technique in a microprocessor will require that a DSSG
is attached to each functional unit. In order to reduce the switching power overhead
introduced by the DSSG, a single global clock counter is used by all the DSSGs in
the processor. Accordingly, each DSSG captures the value of the global counter at the
beginning of the Threshold Wait state. The DSSGs can then be implemented as shown
in Fig. 4.6.

In order to assess the potential of the DSSG scheme presented so far, the following
Sections presents the experimental results of applying the DSSG to the SPEC bench-
marks using the superscalar SimpleScalar simulator [70].

4.3 Sleep Signal Generation for Superscalar Processors

In order to compare the DSSG and the SSSG, three major issues need to be tackled.
Firstly, the accuracy of the DSSG and the SSSG in matching the sleep signal assertion
to the breakeven point of the functional units needs to be investigated. However, adding
a sleep signal generator to the functional units affects the value of the breakeven point
by adding to the overhead of the sleep cycle. Accordingly, to guarantee that the total
power is reduced due to the savings achieved by the DSSG the design and the power
consumption of the DSSG versus the SSSG is the second issue that needs to be analyzed.
In the following sections, the design of both the DSSG and the SSSG using a 90nm
process will be described with special emphasis on the dynamic power consumption
overhead. Thirdly, this will be followed by the analysis of the accuracy of the DSSG
versus the SSSG in predicting the length of the sleep period and the ability to match the

51

sleep signal generation to the different applications being executed while emphasizing
the potential leakage savings achievable for both techniques.

4.3.1 Superscalar Simulation Environment

To test the sleep signal generation schemes, the SimpleScalar [70] simulator is modified
to report the usage profiles of the various functional units. These simulations use a MIPS-
like architecture as a test vehicle. After the modified SimpleScalar simulator is presented,
the test microprocessor architecture is described.

4.3.1.1 Modified SimpleScalar

The SimpleScalar tool set includes an open source processor simulator, a cross com-
piler, and a set of precompiled test executables [70]. The simulator implements the
SimpleScalar architecture, which is a close derivative of the MIPS architecture [74]. The
tool set provides a set of processor simulators that range from simple, sim-fast, to
the more complete, sim-outorder. Sim-outorder is a superscalar, O-o-O sim-
ulator that is capable of performing cycle-by-cycle instruction simulation. In addition,
sim-outorder supports speculative execution.

The sim-outorder simulator is modified in order to track the usage patterns, as-
sociated with the various function units.

4.3.1.2 Sim-outorder

The sim-outorder simulator depends on the Register Update Unit (RUU) [75] to
support the out-of-order issue and execution. The RUU uses a reorder buffer to perform
register renaming and to hold the results of the pending instructions; then, in each cycle,
the reorder buffer retires the completed instructions in-program order. This architecture
is similar to the one described earlier in Section 3.1.

The simulator memory system employs a load/store queue that allows for speculative
STOREs. The LOADs are satisfied either from the memory system or through an earlier
STORE value in the queue, if the addresses match. LOADs are dispatched to the memory
when the addresses of all the previous STOREs are known, preventing the reading of
obsolete data.

52

4.3.1.3 Sim-outorder-trace

In order to perform the tests and extract profile information, the sim-outorder main
execution loop, given next, is slightly modified based on the power update pointers ex-
tracted from the Wattch SimpleScalar based simulator [76].

%ruu_init();

for (;;)

{

ruu-commit();

ruu-writeback();

lsq-refresh();

ruu-issue();

ruu-dispatch();

ruu-fetch();

}

This loop is executed for each simulated machine cycle. When the simulated pro-
gram ends by issuing an exit(), this loop is broken by a longjmp() enabling the
main() to generate the program usage statistics. Note that the loop pipeline is traversed
in the reverse order to enable the simulator to handle the inter-stage latch synchronization
correctly in one pass [70]

To extract the usage profiles, the ruu-issue() function is modified by adding
software probes that can identify the used/not used state of each of the functional units
available to the processor. The ruu-issue() is selected because it contains informa-
tion about the availability of the functional units, in addition to the status of the memory
dependencies of the simulated instruction. The software probes keep track of the suc-
cessive accesses of the various functional units in the processor, recording the time span
of usage and the time difference between each two successive accesses to the functional
unit.

Time
���������������
���������������
���������������

���������������
���������������
���������������

�������
�������
�������

�������
�������
������� Issue latency

Operationl latency

Figure 4.7: Issue and operational latency.

The sim-outorder-trace uses the sim-outorder resource pool definition
of the functional units. This definition is given in Table 4.3, where the operational latency

53

is the time between the instruction issuance and the availability of the results, whereas the
issue latency is the minimum time between each two successive instructions (Fig. 4.7).

Table 4.3: Functional units in the superscalar test processor.
Functional Unit Operational Latency Issue Latency Available

(cycles) (cycles) Units

Integer ALU 1 1 4
Integer Multiply 3 1 1
Integer Divide 20 19 1
Floating-Point Adder 2 1 4
Floating-Point Multiply 4 1 1
Floating-Point Divide 12 12 1
Floating-Point SQRT 24 24 1

To configure the remaining options of the test processor, the simulator is setup with
the model parameters of Table 4.4. These parameters are chosen to be similar to the test
processor in [5].

The following section reveals the test results of running the modified simulator on
the various benchmarks and applying sleep signal generation to the extracted traces.

4.3.2 DSSG and SSSG Circuit Implementation and Power Consump-
tion

In order to design the DSSG, the MIPS-like processor architecture shown in Table 4.4 is
assumed. The execution core of this processor contains the functional units in Table 4.3.
Besides the DSSG, the SSSG is designed assuming the same processor architecture and
execution core. This ensures the fairness of the comparison between both techniques
with respect to the associated power overhead.

The following section describes the design of both the SSSG and the DSSG while
Section 4.3.2.2 presents the test structures that are used to emulate the functional units’
circuits for the assessment of the breakeven point variation due to the introduction of the
sleep signal generators. Finally, Section 4.3.2.3 compares the DSSG and the SSSG with
respect to their power consumption overhead.

54

Table 4.4: Superscalar test processor architecture.
Parameter Value

Fetch Queue 8 entries
Branch predictor comb of bimodal and 2-level gshare;

bimodal/gshar level 1/2 entries-
2048, 1024 (hist. 10), 4096 (global), resp.;

Combining pred. entries - 1024;
RAS entries - 32 ; BTB - 4096 sets, 2-way

Branch misprediction latency 10 cycles
Decode and Issue Width 4 instructions
Reorder Buffer 128
Load Entries 32
Store Entries 32
Instruction TLB 256 entry 4-way, 8K pages, 30 cycles miss
Data TLB 512 entry 4-way, 8k pages, 30 cycles
Memory Latency 80 cycles

L1 I-Cache 64KB, 4-way, 64B line, 2 cycles
L1 D-Cache 64KB, 4-way, 64B line, 2 cycles
L2 Unified 2 MB, 8-way, 128B line, 12 cycles

4.3.2.1 SSSG and DSSG circuits for Superscalar Processors

In order to compare the SSSG and the DSSG, both sleep signal generators are custom
designed using the STMicroelectronics 90nm CMOS process. Both designs are set to
run at 500MHz and 2GHz to match the implementation of the functional units that will
be discussed in Section 4.3.2.2. Additionally, to further ensure fairness, both the DSSG
and the SSSG adopted the structure of the power management unit shown in Fig. 4.6.
This design divides the impact of the global counter among the different functional units
that need to be managed through sleep signal generation.

Fig. 4.8 shows the internal design of the DSSG. In this design, the circuit operation
of the DSSG closely matches the finite state machine depicted in Fig. 4.4. As soon as
the functional unit idles, an idle signal goes high triggering the DSSG to capture the
global counter into a local register. The DSSG then uses an XOR array to compare the
value of the global counter to that of the local register. When the number of clock cycles
elapsed since idle went high is equal to the current threshold, the DSSG raises the sleep
signal. If the functional unit stays idle beyond the breakeven point, the DSSG updates its

55

Counter

Counter
Global

Control
Logic

Miss

8

Local Register
8−bit

XOR Array

8−wide

Counter
Hit

Sleep Signal

8

Idle Signal

Figure 4.8: DSSG circuit implementation.

hit counter; otherwise the miss counter is incremented. When the idle signal goes low,
the DSSG checks to see if either the hit or miss counters reached their respective limits
(hit-limit and miss-limit), and updates the states accordingly by reducing or
incrementing the threshold.

On the other hand, the SSSG has the simpler structure shown in Fig. 4.9. In this
design, similar to the DSSG, the operation starts when the idle signal goes high. As
soon as the idle signal goes high, the SSSG local register captures the counter signal and
compares it using an XOR array. When the number of elapsed cycles since the idle signal
went high is equal to a predefined threshold, the SSSG raises the sleep signal.

Since the XOR array represents an important component affecting both the speed and
the power consumption of the sleep signal generators, the low power 8 transistors XOR
presented in [77] is used. In addition, all the internal counters in the DSSG are ripple
counters, since they are not on the critical path. This allows the DSSG to consume less
dynamic power3. The rest of the design is implemented in standard static CMOS.

4.3.2.2 Functional Units Emulation

In order to fully quantify the impact of the DSSG versus the SSSG on the sleep signal
generation process, the breakeven point of the functional units in Table 4.3 needs to be
identified. This is achieved using two different testbenches. The first testbench (FO4)

3Flip-flops do not receive a direct clock signal, mimicking the effect of clock gating.

56

Control
Logic

Idle Signal

8

Local Register
8−bit

XOR Array

8−wide

8

Counter

Sleep Signal

Global

Figure 4.9: SSSG circuit implementation.

uses FO4 inverter chains to emulate the functional units. The second testbench (FPU100)
is a standard cell implementation of a floating point unit based on the work in [51].

FO4 Inverter Chain Implementation (FO4) FO4 inverter delay is a widely used de-
lay metric that is used to identify various parameters of VLSI circuits [78, 79] and pro-
cessor performance [80]. Additionally, FO4 inverter chains are further used for power
optimal pipelining [81]. According to Hrishikesh et al. in [80] the optimum clock period
is 8 FO4 inverter delays for an integer unit, and 6 FO4 inverter delays for a floating point
unit. Based on this conclusion, the structures shown in Fig. 4.10 are used to emulate the
integer and floating point functional units in Table 4.3. These structures correspond to
a single pipe stage each. In these structures, the inverter chains are implemented with
devices having low threshold voltage, while the sleep transistor connected between the
virtual rail and the ground is a high threshold device. The inverter chains are sized for
500MHz and 2GHz operation. Additionally, the sleep transistor is sized to ensure that
the maximum delay penalty due to the introduction of the series resistance is less than
3% [82]. This sizing also ensures that the maximum ground bounce is less than 30mV.

Assuming that the functional units are designed for 32-bit operation, the structures
in Fig. 4.10 are replicated in parallel 64 times for each functional unit representing the
64 inputs that will be needed for the operation. Finally, for each functional unit, the
operational latency in Table 4.3 is used as an indicator for the pipeline depth4. For exam-
ple, the floating point multiply has an operational latency of 4 cycles; this corresponds

4The FP SQRT and Integer and FP divide are not fully pipelined

57

(a) Integer Unit

DFF

DFF

Sleep

Sleep

(b) Floating Point Unit

Virtual Rail

Virtual Rail

Figure 4.10: FO4 inverter chain for integer and floating point units representing 1 pipe
stage.

Table 4.5: Breakeven point of testbench functional units without sleep signal generators’
overhead.

Functional Unit Testbench
Breakeven Point

(cycles)
0.5GHz 2GHz

Integer ALU

FO4

38 136
Integer Multiply 37 134
Integer Divide 33 120
Floating-Point Adder 50 178
Floating-Point Multiply 46 167
Floating-Point Divide 44 160
Floating-Point SQRT 39 142

Floating-Point Adder

FPU100

22 -
Floating-Point Multiply 25 -
Floating-Point Divide 49 -
Floating-Point SQRT 11 -

to four stages from Fig. 4.10-b cascaded in series. The breakeven point of each of the
integer and floating point units without the overhead from the sleep signal generator is
highlighted in Table 4.5. This corresponds to the overhead of shutting down the sleep
transistor network compared to the leakage savings that can be achieved.

Standard Cell Based FPU (FPU100) The second testbench is based on the design of

58

the 32-bit FPU in [51]. The FPU is subdivided into four subcomponents representing the
floating point add, multiply, divide, and square root operations. The design is synthesized
using Synopsys design compiler5 and the 90nm STMicroelectronics standard cell library.
Because the FPU100 critical path has 37 gates, the maximum operational frequency is
500MHz. The second part of Table 4.5 also includes the breakeven point of the second
testbench without the sleep signal generators’ overhead.

4.3.2.3 Superscalar DSSG and SSSG Power Consumption Overhead Comparison

Table 4.6: Power consumption of the sleep signal generators.

Frequency
DSSG SSSG Global Counter
(µW) (µW) (µW)

2GHz 266 104 277
500MHz 184 48.3 143

In order to compare the power consumption overhead between the DSSG and the
SSSG, Table 4.6 establishes the baseline by summarizing the dynamic power consump-
tion of both generators extracted from spice simulations. Comparing the dynamic power
of both generators to a modern 64-bit ALU in the dual core UltraSPARC microprocessor
running at approximately 400 mW 6 highlights the minimal impact that both techniques
have on the power budget of the processor core [60].

However, more importantly the impact of both sleep signal generators on the breakeven
point is given in Table 4.7. Additionally, the table shows the percentage increase in the
breakeven point value comparing both generators combined with their respective global
counters.

The breakeven point is calculated using the following equations.

Breakeven (Cycles) = Eoverhead/Esaved (4.1)

where
Eoverhead = PSTN × Ttrans + Psleep × Tcycle (4.2)

Esaved = Pleakage savings × Tcycle (4.3)

5Although the standard cells are rarely used in processor functional units, the use of such emulation
platform gives an important insight on the power trade-off between the SSSG and the DSSG

6Calculated based on 2 ALUs consuming approximately 16% of the 5.3 Watt core power.

59

Table 4.7: Breakeven point of testbench functional units with sleep signal generators’
overhead.

Functional Unit Testbench
Breakeven Point Percentage

(cycles) Increase
SSSG DSSG

Integer ALU

FO4 @ 2GHz

197 266 34.86
Integer Multiply 155 177 14.66
Integer Divide 123 126 2.4
Floating-Point Adder 219 264 20.74
Floating-Point Multiply 187 210 11.97
Floating-Point Divide 166 173 4.29
Floating-Point SQRT 145 148 2.13

Integer ALU

FO4 @ 0.5GHz

67 125 86.38
Integer Multiply 47 66 40.63
Integer Divide 35 37 7.16
Floating-Point Adder 69 107 55.5
Floating-Point Multiply 56 75 33.7
Floating-Point Divide 47 53 12.67
Floating-Point SQRT 41 43 6.37

Floating-Point Adder

FPU100 @ 0.5GHz

25 31 25.26
Floating-Point Multiply 26 29 11.98
Floating-Point Divide 53 60 13.75
Floating-Point SQRT 13 15 21.71

where PSTN is the total power to shutdown and turn on the sleep transistor network,
Ttrans is the total time needed to fully turn ON or OFF the sleep transistor network,
Psleep is the total dynamic power needed to generate the sleep signal for either sleep
signal generators and Pleakage savings is the difference between the leakage of a non-power
gated and power gated functional unit.

Additionally, the breakeven point is calculated assuming that there are 7 functional
units to control, where the overhead of each sleep signal generator is calculated using the
following equation.

Psleep = Pcounter/N + PSSG (4.4)

where N is the number of functional units to be managed, Pcounter is the dynamic power
of the unified counter and PSSG is the dynamic power of the sleep signal generator.
Table 4.7 shows that the breakeven point can increase between 2 to 86% by applying

60

the DSSG instead of the SSSG. However, this piece of information does not allow for
a complete comparison between both generators, since it ignores an important factor
which is the accuracy of each generator in predicting the standby period length. This
accuracy is a major factor, since a low overhead operation that is 40% accurate, is worse
than a slightly higher overhead operation that is 80% accurate. In order to complete the
comparison, the following section compares the operation of both sleep signal generators
under SPEC2000 benchmarks workload to identify their respective accuracies.

4.3.3 Accuracy of the Sleep Signal Generators on Superscalar Pro-
cessors

This section will discuss the accuracy of both techniques with special emphasis on the
implications of the breakeven points presented earlier in Table 4.7. In order to calculate
the accuracy of the DSSG, the SimpleScalar simulator is modified to report the usage
data of each functional unit. Additionally, to match the earlier power analysis the Sim-
pleScalar is configured with the same architecture as in Table 4.4, while the execution
core contains the functional units in Table 4.3.

Using this processor model, the modified superscalar out-of-order processor imple-
mented in SimpleScalar is used to trace the usage profiles of the processor’s various
functional units for the SPEC2000 benchmarks. Since the full SPEC2000 inputs require
very long simulation times, the tests use the MinneSPEC [83] input workload to reduce
the run time. Table 4.8 indicates the subset of the SPEC benchmarks used and the corre-
sponding instruction count.

Using the traces extracted from the modified SimpleScalar, the proposed DSSG and
the SSSG in [4] are implemented in C++. For both techniques the breakeven point is
varied from 10 to 290 cycles. These values correspond to the breakeven points extracted
earlier from the circuit simulations of both the DSSG and the SSSG in Section 4.3.2.
Additionally, these values explore the design space for all the functional units in the test
processor shown in Table 4.3 while maintaining an 8-bit wide counter as a test vehicle
similar to Fig. 4.8 and Fig. 4.9.

Comprehensively comparing the results of the DSSG and the SSSG, regarding their
abilities to predict the length of the standby period ahead of time, requires a common
accuracy metric. The accuracy is defined as the percentage of the correct decisions to the
total number of decisions made by the sleep signal generator. In both the SSSG and the
DSSG, a correct decision is made when the sleep signal generator raises the sleep signal
and the functional unit indeed stays idle beyond the breakeven point. This is considered

61

Table 4.8: SPEC2000 benchmarks.
Benchmark Number of Instructions

Nature
Name (Billions)
ART 7.7 Floating-Point
APPLU 0.95 Floating-Point
BZIP2 15.2 Integer

GCC 6.4
Integer with some

floating-point operations
GZIP 12.2 Integer
MCF 1.7 Integer
MESA 1.3 Floating-Point
PARSER 5.6 Integer
SWIM 1.3 Floating-Point
VORTEX 1.5 Integer

VPR 5.3
Integer with many

floating-point operations

a hit. The total number of decisions includes all the hits and misses. Misses are encoun-
tered when the sleep signal generator raises the sleep signal but the functional unit does
not stay idle beyond the breakeven point. In effect, the accuracy can be calculated as:

Accuracy (%) =
Number of hits

Number of hits + Number of misses
(4.5)

In order to compare the SSSG and the DSSG techniques, the results for both tech-
niques for the floating point ALUs, the integer and floating point multiply and divide will
be presented in the following sections.

4.3.3.1 Floating Point ALU

Testing the floating point ALU required the simulator to track the (FP) ADD/SUB oper-
ations as well as the integer to floating-point conversion and floating-point comparison.
Using the accuracy metric in Equation (4.5), Fig. 4.11 depicts the results of applying
both SSSG and DSSG to the standby traces of all the floating point ALUs. Fig. 4.11
shows that the DSSG maintains a comfortable lead over the SSSG across a wide range
of breakeven points.

As a further example, Fig. 4.12 shows the results for floating point ALU-2, the ver-
tical dashed lines correspond to the DSSG and SSSG breakeven points from Table 4.7

62

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(i) Floating Point ALU-0

DSSG SSSG

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(ii) Floating Point ALU-1

DSSG SSSG

(a)

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(i) Floating Point ALU-2

DSSG SSSG

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(ii) Floating Point ALU-3

DSSG SSSG

(b)

Figure 4.11: DSSG and SSSG average prediction accuracy for the floating point ALUs.

while the horizontal arrows define the direction of the increase in the breakeven point.

It is clear that the tremendous increase in the prediction accuracy for the DSSG espe-
cially at higher breakeven points overshadows the increase in the breakeven point due to
the DSSG overhead. For example, the floating point ALU with SSSG breaks even at 219
cycles, with prediction accuracy of 45%. On the contrary, with the DSSG it breaks even
at 264 cycles with prediction accuracy of 90%. This is one of the major advantages of
the DSSG, since it is capable of compensating for its misses by manipulating the sleep
generation threshold.

4.3.3.2 Integer and Floating Point Multiply/Divide

Figs. 4.13(a) and 4.13(b) show the maximum achievable accuracy running both the SSSG
and the DSSG on the integer and floating point multiply and divide. Similar to the
previous graphs the vertical lines correspond to the breakeven points in Table 4.7. These
units are generally less utilized compared to the integer and floating point ALUs. Less
utilized functional units stay idle longer and hence result in better hit to miss ratio. These
results are consistent with the DSSG behavior for the ALUs. Applying the DSSG slightly
increases the breakeven point, but tremendously enhances the quality of the standby
prediction. However, it is interesting to note that DSSG advantage diminishes for lower
frequencies and the associated lower breakeven points. Fig. 4.13(a) shows that the DSSG
and the SSSG are equal in their prediction accuracies for such low breakeven points. This

63

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Floating Point ALU-2

DSSG SSSG

@
FO4

2GHz

@
FO4

0.5GHz

FPU100

0.5GHz
@

25 32 69 107 219 264

Figure 4.12: DSSG and SSSG average prediction accuracy for the floating point ALU 2.
Vertical lines correspond to breakeven points from Table 4.7 and the horizontal arrows
depict the changes in the breakeven points.

 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(i) Integer Divide

DSSG SSSG

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(ii) Integer Multiply

DSSG SSSG

6647 155 177

123 126~35

(a) Integer multiply and divide.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(i) Floating Point Divide

DSSG SSSG

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

(ii) Floating Point Multiply

DSSG SSSG

1665347 173

56 75

210

187

(b) Floating point multiply and divide

Figure 4.13: Average DSSG and SSSG prediction accuracy. Vertical lines correspond to
breakeven points from Table 4.7. The arrows depict the changes in the breakeven points.

can be attributed to the small threshold needed to reach such breakeven point leaving the
SSSG with less mistakes compared to the higher breakeven points.

64

4.3.4 DSSG and SSSG Design Issues

In order to determine the maximum accuracy for both the DSSG and SSSG in the tests in
Sections 4.3.3.1 and 4.3.3.2, the four parameters step+, step-, miss-limit, and
hit-limit for the DSSG are required. Accordingly, the simulations are designed to
explore the impact of the variation of these parameters in the range between 1 and 20.
This range results in the most accurate predictions using the DSSG. On the other hand,
for the SSSG, the threshold is varied between 10 and 80 cycles in steps of 10 cycles. Be-
yond 80 cycles the SSSG power saving potential as discussed in Section 4.3.5 is dropped
significantly since it eliminates more sleep periods that would have been otherwise in-
cluded.

The final choice of the DSSG parameters is part of the DSSG design process which
can only be settled during the actual design of the processor. In order to explore the
impact of these parameters on the DSSG each parameter is given the values 1,5 and 20
yielding 81 combinations. Fig. 4.14 shows the impact of changing the step+, step-,
miss-limit and hit-limit on the DSSG accuracy by presenting the five best com-
binations. Across all the functional units the quartets (20 5 1 1) and (20 20 1 1) leads
to the highest DSSG accuracy. At this configuration, the DSSG quickly increases the
threshold after a miss and a hit with slightly varying step sizes. The final values for these
parameters should be assigned based on each functional unit’s breakeven point.

 60

 65

 70

 75

 80

 85

 50 100 150 200 250

Ac
cu

ra
cy

 (%
)

Predicted Standby time (Cycles)

Accuracy (int-multiply)

(5 5 1 1)
(20 5 1 1)

(20 20 1 1)

(5 20 1 20)
(20 20 1 20)

Figure 4.14: Impact of DSSG parameters on accuracy.

65

In addition, as an example, Fig. 4.15 visualizes the dynamic threshold trends through-
out the execution of the MESA benchmark program. This graph is compiled by sampling
the traces of the MESA program for the integer ALU-3 unit. In this graph, the breakeven
point is hypothetically set at 250 cycles. Each point in this graph represents a change
in the threshold, hence stable threshold periods are only represented by a single point.
It is instructive to see that the DSSG adapts the threshold depending on the program
execution phase.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
hr

es
ho

ld

Time

T
hr

es
ho

ld

Time

T
hr

es
ho

ld

Time

Figure 4.15: The threshold value for the integer ALU unit running the MESA program.

Finally, the results show that although it is tempting to quickly assert the sleep signal
for the functional units when they are idle to maximize the leakage savings, the total
power overhead quickly increases when the functional units regularly fail to stay idle
beyond the breakeven point. Accordingly, the ability of the DSSG to postpone the asser-
tion of the sleep signal when it is less likely for the functional unit to stay idle beyond
the breakeven point greatly enhances the leakage saving performance of power gating
techniques.

4.3.5 Superscalar Leakage Saving Potential for Sleep Signal Gener-
ators

A detailed discussion of the DSSG will not be complete without describing the power
saving potential of such technique. Referring to the definition of a hit as a correct deci-
sion, and a miss as a wrong decision, each hit or miss will be associated with a number of

66

cycles that correspond to the total power savings or losses. For a hit, any cycles beyond
the breakeven points adds to the total savings, while for a miss any cycles between the
pre-breakeven wake-up and the breakeven point correspond to a total loss. Assuming
constant leakage savings per power-gated cycle the Hit-Cycle-Count (HCC) and Miss-
Cycle-Count (MCC) can be defined as follows

HCC = Sleeplength−BreakevenPoint (4.6)

MCC = BreakevenPoint− Sleeplength (4.7)

where Sleeplength is the actual number of cycles the functional units stayed idle, HCC
will correspond to the total leakage savings represented in number of cycles beyond the
breakeven, and MCC will correspond to the total power losses due to wake-up before
the breakeven. Subtracting the MCC from the HCC shows the worthiness of either the
DSSG or the SSSG. A positive number indicates net power savings and vice versa. Also
a larger positive number indicates better power savings. Accordingly, the net savings of
either sleep signal generators can be calculated by computing

NetSavings = HCC −MCC. (4.8)

Using this equation in conjunction with the traces extracted from the processor simula-
tor and the breakeven points presented in Table 4.7 for the 2GHz implementation of the
functional units, Table 4.9 presents the HCC and MCC running all the benchmarks in
series. The table also presents the net savings as a number of cycles for each sleep signal
generator besides the ratio of savings of the DSSG to the SSSG. Although it is expected
that the results will vary depending on the software benchmark mix, the trends in Ta-
ble 4.9 should be maintained across different benchmark mixes. This is expected since
both the DSSG and the SSSG have a very limited history dependence, which translates
into results that are mostly independent of the order the benchmarks are run.

Table 4.9 highlights many important aspects regarding the operation of the SSSG
versus the DSSG. Firstly, the results of the net savings in the dark gray cells show that
neither sleep signal generators are usable for the integer ALU 0 or 1, both sleep signal
generators consume more power than their respective savings. However, for integer ALU
2 and 3 the SSSG still fails to achieve any saving while the DSSG has a considerable
ability to achieve net positive power savings. Secondly, for most floating point units the
DSSG outperforms the SSSG in its power savings capability achieving up to 80% more
savings for the floating point adder as shown in the Saving Ratio Column. Finally, for
several benchmarks the total savings in terms of number of cycles is the same (Saving

67

Table 4.9: Leakage savings potential for SSSG and DSSG.
SSSG DSSG

Functional Unit Number HCC MCC Net Savings HCC MCC Net Savings Saving
(cycles) (cycles) (cycles) (cycles) (cycles) (cycles) Ratio

Integer ALU
1 96417 5.57E8 -5.57E8 2870 3.80E5 -3.77E5 -
2 1.08E7 6.80E8 -6.69E8 9.50E6 2.04E6 7.46E6 -
3 8.24E8 1.39E9 -5.61E8 7.87E8 3.71E7 7.50E8 -

Integer Multiply - 2.48E10 8.10E8 2.40E10 2.43E10 3.09E8 2.40E10 1
Integer Divide - 2.69E10 4.49E8 2.64E10 2.68E10 2.46E8 2.65E10 1

Floating-Point Adder

0 4.48E9 2.38E9 2.10E9 4.19E9 4.08E8 3.78E9 1.8
1 1.09E10 2.18E9 8.70E9 9.19E9 5.97E8 8.60E9 0.99
2 1.22E10 6.71E8 1.16E10 1.23E10 5.40E7 1.22E10 1.06
3 1.36E10 3.48E8 1.33E10 1.36E10 4.37E7 1.35E10 1.02

Floating-Point Multiply - 1.12E10 2.60E9 8.61E9 1.04E10 5.24E8 9.85E9 1.14
Floating-Point Divide - 1.48E10 2.88E8 1.45E10 1.44E10 1.09E8 1.43E10 0.98
Floating-Point SQRT - 8.06E9 3.40E5 8.06E9 8.06E9 3.65E3 8.06E9 1

Ratio = 1). However, careful consideration of the values of the MCC for each sleep signal
generator shows that the DSSG achieves the same leakage savings with proportionally
less mistakes than the SSSG. This is further confirmed by the results of Table 4.10 which
shows the number of misses for each functional unit and the ratio between the SSSG
and the DSSG. The lower number of misses associated with the DSSG has an important
effect on the total performance of the functional unit, less misses means lower ground and
supply rail bounce, which in return considerably reduces the number and values of area
and power hungry decoupling capacitances [29]. In addition, the lower number of misses
translates into higher performance due to the reduction of the number of wake-up events
that invariably will affect the IPC of the processor due to the unnecessary unavailability
of the functional units.

Evaluating the exact value of the leakage savings depends heavily on the value of the
leakage savings per cycle. Using the emulation structures of FO4 that were introduced
earlier in Section 4.3.2.2, these values are listed in Table 4.11. These values correspond
to the subtraction of the leakage power when the functional unit is not power gated versus
a power gated unit. This Table also multiplies these leakage savings per cycles by the net
savings presented in Table 4.9 which correspond to the number of cycles with real savings
after removing the overheads and the clock period to show a sample of the achievable
leakage energy savings. Research in [3] shows that power gating of the functional units
can save up to 18% of the total dynamic power. Since the floating point units in the
UltraSPARC presented in [60] consume up to 22% of the core’s dynamic power, power
gating these functional units can save approximately 4% of the core’s power.

The last aspect that should be considered for evaluating the performance of the DSSG
versus the SSSG is the penetration ratio. The penetration ratio is defined as the ratio of

68

Table 4.10: Miss ratio.

Functional Unit #
Saving SSSG DSSG Miss
Ratio Misses Misses Ratio

Integer ALU
1 - 2.89E6 2060 1402.77
2 - 3.61E6 11940 302.14
3 - 7.76E6 2.33E5 33.26

Integer Multiply - 1 7.97E6 2.98E6 2.67
Integer Divide - 1 6.39E6 3.16E6 2.02

Floating-Point Adder

0 1.8 1.65E7 2.56E6 6.46
1 0.99 1.61E7 4.22E6 3.81
2 1.06 3.63E6 4.39E5 8.27
3 1.02 2.00E6 2.93E5 6.85

Floating-Point Multiply - 1.14 2.21E7 4.55E6 4.86
Floating-Point Divide - 0.98 2.59E6 1.03E6 2.51
Floating-Point SQRT - 1 2978 312 9.54

Table 4.11: Leakage savings for the DSSG.

Functional Unit #

Leakage DSSG SSSG
Savings Net Total Net Total

per Cycle Savings Energy Savings Energy
(µW) (Cycle) Savings (µJ) (Cycle) Savings (µJ)

Integer ALU
1 2.35 -3.77E5 - -5.57E8 -
2 2.35 7.46E6 0.01 -6.69E8 -
3 2.35 7.50E8 0.88 -5.61E8 -

Integer Multiply - 7.1 2.40E10 85.25 2.40E10 85.25
Integer Divide - 54.7 2.65E10 725.89 2.65E10 725.89

FP Adder

0 3.55 3.78E9 6.71 2.10E9 3.73
1 3.55 8.60E9 15.26 8.70E9 15.43
2 3.55 1.22E10 21.64 1.16E10 20.58
3 3.55 1.35E10 23.95 1.33E10 23.6

FP Multiply - 7.19 9.85E9 35.43 8.61E9 30.97
FP Divide - 22.6 1.43E10 161.58 1.45E10 163.84
FP SQRT - 52.31 8.06E9 210.82 8.06E9 210.82

hits to the total available hits. The total available hits are all the sleep periods longer than
the breakeven point. This analysis is useful in showing future enhancement potential for

69

both techniques. Results in Table 4.12 shows relatively high penetration ratio for both
techniques for all the functional units except the integer ALUs. However, the penetration
ratio of the DSSG is mostly lower than the SSSG, this is mainly due to the cautious nature
of the DSSG. The DSSG favors less penetration over more mistakes, which considerably
increased the return on investment of the DSSG as shown earlier in Table 4.9

Finally, it should be noted that the results and breakeven points have been computed
at room temperature (25◦C). However, in reality, high performance functional units that
have high activity are likely to have higher temperatures (more subthreshold leakage)
compared to other functional units with less activity (less subthreshold leakage) [30].
That would translate to a drop in the breakeven point for high activity units.

Table 4.12: Hit penetration.

Functional Unit #
DSSG SSSG

Penetration (%) Penetration (%)

Integer ALU
1 1.62 13.2
2 15.57 32.39
3 41.8 56.72

Integer Multiply - 60.33 71.9
Integer Divide - 15.66 47.85

Floating-Point Adder

0 16.67 53.03
1 62.12 79
2 98.79 97.29
3 65.14 84.84

Floating-Point Multiply - 30.8 67.91
Floating-Point Divide - 76.4 84.13
Floating-Point SQRT - 94.25 94.25

4.4 Summary

So far, the results of running the DSSG on a Superscalar processor shows that the pro-
posed technique is a simple yet effective method for the accurate generation of the sleep
signal. The DSSG is capable of adjusting its behavior to match the running application
requirements. This is opposed to the static counter based techniques that generate the
sleep signal at a fixed interval after the functional unit idles. In effect, the DSSG ex-
tends the static techniques by dynamically changing the generation interval to match the

70

requirements of the applications.

The DSSG exhibits accuracy ranging from 60 - 80%, while consuming approxi-
mately 266µW of power at 2GHz. In addition to the low power consumption introduced
by the DSSG at 2GHz, the DSSG is capable of operating at much higher frequencies
by using a clock divider to interface the DSSGs global counter. This in effect, extends
the range of applicability of the DSSG to future processor implementations. Finally, the
ability of the DSSG to capture execution profiles of the application allows it to bridge the
gap between the architecture and the low level leakage management circuit techniques.

71

Chapter 5

Application of Sleep Signal Generation
on SMT Processors

In SMT architecture, the processor executes several threads simultaneously in the same
pipeline. Therefore, for SMT cores, the hardware multithreading is combined with su-
perscalar technology by issuing several instructions from different threads per cycle, in-
creasing the throughput and making better use of the pipeline resources [33]. The pri-
mary goal of SMT architecture is to amortize the cost of the microarchitectural structures,
such as branch predictors, execution units and reorder buffers, over a higher number of
Instructions Per Cycle (IPC), extracted from multiple threads.

Although this concept leads to a better usage of the processor resources, the power
consumption is substantially increased, a major issue in SMT and multicore chips. Since
the SMT architecture utilization of the functional unit is different than the Superscalar
architecture it is interesting to determine the impact of the SSSG and the DSSG on an
SMT processor.

To fully quantify the impact of the SSSG and the DSSG on an SMT processor, several
key parameters similar to the Superscalar implementation need to be investigated. First,
the accuracy of both generators should be investigated taking into account the impact
of the generators on the value of the breakeven point. Accordingly, the design and the
power consumption of the DSSG and the SSSG when attached to the SMT processor is
the second issue that needs to be analyzed. Thirdly, their performances under various
workloads must be evaluated.

In addition to the results of applying the SSSG and DSSG to a certain SMT processor
architecture, it is instructive to study the impact of the processor architecture on the
performance of the SSSG and DSSG.

72

In the following section, the SMT experimental setup is detailed with emphasis on
selection of the workload benchmarks. Section 5.2 presents the results of applying the
SSSG and DSSG on an SMT processor. This is followed in Section 5.3 by a detailed
study of the impact of the processor architectural parameters on the performance of the
sleep signal generators.

5.1 SMT Experimental Setup

To conduct the experiments to establish the idle and active periods of the functional units,
a modified version of the cycle-accurate SMTSIM simulator [84] is chosen. It faithfully
implements a simultaneous multithreaded processor [35]. Tables 5.1 and 5.2 list the
typical parameters of an SMT high performance processor. The simulator is modified to
generate the required statistics.

For benchmarks, two groups of multiprogrammed SPEC2000 workloads are selected.
The first group consists of several combinations of four benchmarks, and the second
group consists of combinations of two benchmarks. Each combinations runs for 5 billion
instructions, and all the benchmarks are compiled to the Alpha binary with the default
compiler settings of the suite.

The number of benchmarks in the workload groups is chosen since they are represen-
tative of the traditional workloads of current desktops. To form these groups of hetero-
geneous workloads, similar combinations of memory-oriented and processor-oriented
workloads, as in [85–87] are used. Table 5.3 summarizes the workload combinations.
Each combination has a different proportion of memory-oriented workloads and processor-
oriented workloads. For instance, most of the workloads in apsi-art
equake-ammp and applu-ammp are memory-oriented; that is, they tend to access the
memory system more often than the functional units. This is due to either a large work-
ing set, or a large portion of I/O. However, such combinations as crafty-vortex
wupwise-mesa and fma3d-mesa are mostly processor-oriented. Therefore, they are
expected to access the functional units more frequently. With these various combinations
and their different characteristics, the efficiency of the SSSG and DSSG with different
access patterns is tested.

73

Table 5.1: SMT test processor architecture.
Parameter Value

Fetch Queue 32 entries
Branch Predictor comb of bimodal and 2-level gshare;

bimodal/gshar level 1/2 entries-
2048, 1024 (hist. 11), 4096 (global), resp.;

combining pred. entries - 1024;
RAS entries - 32 ; BTB - 512 sets, 4-way

Branch misprediction latency 10 cycles
Decode and Issue Width 8 instructions
Reorder Buffer 128
Load/Store Queue Entries 64
Instruction TLB* 256 entry 4-way, 8K pages, 30 cycles
Data TLB* 512 entry 4-way, 8k pages, 30 cycles
Memory Latency 150 cycles

L1 I-Cache* 64KB, 4-way, 64B line, 2 cycles
L1 D-Cache* 64KB, 4-way, 64B line, 2 cycles
L2 Unified 2 MB, 8-way, 128B line, 12 cycles

Table 5.2: Functional units in the SMT test processor.
Functional Unit Operational Latency Issue Latency Available

(cycles) (cycles) Units

Integer ALU 1 1 3
Integer Multiplier 3 1 1
Floating-Point ALU 2 1 2
Floating-Point Multiplier 4 1 1

5.2 Predictive Sleep Signal Generation on SMT proces-
sors

In order to quantify the performance of predictive sleep signal generation on the SMT
processor the following sections present the power consumption, accuracy and leakage
saving potential of the sleep signal generators. In addition, the dependence of the perfor-
mance on the workloads is studied.

74

Table 5.3: SMT simulation workloads.
Mix (4 threads) Mixture (2 threads)

apsi art equake mesa applu ammp

ammp mesa swim vortex crafty vortex

apsi crafty mcf mesa applu vortex

ammp crafty vortex wupwise mcf twolf

crafty vortex wupwise mesa fma3d mesa

apsi art equake ammp art crafty

5.2.1 DSSG and SSSG Circuit Implementation and Power Consump-
tion for SMT processors

In order to design the DSSG, the SMT processor architecture, shown in Table 5.1 is cho-
sen. The execution core of this processor contains the functional units in Table 5.2. The
SSSG is designed with the same processor architecture and execution core. This ensures
the fairness of the comparison between both techniques with respect to the associated
power consumption overhead.

The following section describes the design of both the DSSG and the SSSG. Sec-
tion 5.2.1.2 compares the DSSG and the SSSG with respect to their power consumption
overhead. The SMT tests use the functional units emulation structures presented earlier
in Section 4.3.2.2.

5.2.1.1 DSSG and SSSG Circuits

In order to test the impact of both generators the experiments utilize the 90nm CMOS
designs of the SSSG and the DSSG described in Section 4.3.2. In addition to the emu-
lation circuits described in Section 4.3.2.2. In order to explore the impact of the sleep
signal generators at higher frequencies, the designs are set to run at 2 and 4GHz.

To quantify the impact of the DSSG and the SSSG on the sleep signal generation
process, the breakeven point of the functional units in Table 5.2 must be identified. How-
ever, due to the higher operating frequency set for the SMT tests only the emulation
testbenches that depend on FO4 inverter chains to emulate the functional units is used.

75

5.2.1.2 Power Consumption Overhead Comparison

To compare the power consumption overhead of the DSSG and the SSSG, the baseline
in Table 5.4 is compiled by summarizing the dynamic power consumption of both gen-
erators, extracted from SPICE simulations. The table takes into account an extra bit for
the global counter in order to count up to 512 cycles to cover the higher breakeven points
associated with the higher frequencies.

Table 5.4: Power consumption of the sleep signal generators.
Frequency SSSG DSSG Global Counter

(µW) (µW) (µW)
2GHz 104 266 277
4GHz 208 531 554

Table 5.5: Breakeven Point of Testbench Functional Units without Sleep Signal Genera-
tors’ Overhead.

Functional Unit Testbench Breakeven Point
(cycles)

2GHz 4GHz

Integer ALU

FO4

136 271
Integer Multiplier 134 269
Floating-Point Adder 178 357
Floating-Point Multiplier 167 334

Table 5.5 presents the breakeven points of the various functional units without adding
the overhead of the sleep signal generators. However, more important is the impact
of the two sleep signal generators on the breakeven points in Table 5.6. Additionally,
the table shows the increase in the breakeven point values for both generators and their
respective global counters. The breakeven point is calculated by assuming that there
are four functional units to control1, where the overhead of each sleep signal generator
is calculated using the overhead equation (4.4). Table 5.6 indicates that the breakeven
points can increase between 12% to 34% by applying the DSSG instead of the SSSG.
However, again this does not allow for a complete comparison between both generators,
since it ignores the accuracy of each generator in predicting the standby period length.
The following section analyzes the operation of both sleep signal generators under the
benchmark workloads in Table 5.3 to identify their respective accuracies.

1The integer ALUs are heavily utilized, rarely remaining in standby beyond 50 cycles. As a result, no
sleep signal generation circuit is attached to them.

76

Table 5.6: Breakeven Point of Testbench Functional Units with Sleep Signal Generators’
Overhead.

Functional Unit Frequency
Breakeven Point Percentage

(cycles) Increase
SSSG DSSG

Integer ALU

2GHz

210 278 32.71
Integer Multiplier 159 182 14.26
Floating-Point Adder 227 273 19.95
Floating-Point Multiplier 191 214 11.69

Integer ALU

4GHz

395 531 34.86
Integer Multiplier 309 355 14.66
Floating-Point Adder 438 529 20.74
Floating-Point Multiplier 374 419 11.97

5.2.2 Accuracy of the Sleep Signal Generators on SMT Processors

By adopting the traces extracted from the modified SMTSIM, the C++ implementa-
tion for both the DSSG and the SSSG introduced earlier in Section 4.3.3 is used. For
both techniques, to accommodate the higher operating frequency, the breakeven point
is changed from 10 to 500 cycles. These values correspond to the breakeven points,
extracted earlier from the circuit simulations of both the DSSG and the SSSG in Sec-
tion 5.2.1.2. In addition, these values explore the design space for all the functional units
in the test processor in Table 5.2. On the other hand, for the SSSG, the threshold is varied
between 10 and 80 cycles in steps of 10 cycles.

Using the accuracy metric set in Section 4.3.3 the results of the DSSG and the SSSG,
regarding their capability to predict the length of the standby period can be studied. This
accuracy metric is defined as the percentage of correct decisions to the total number of
decisions, made by the sleep signal generator. To compare the SSSG and the DSSG
techniques, the results for both techniques for the integer and floating point ALUs and
multiplier units will be introduced in the following sections.

5.2.2.1 Integer and Floating Point ALU

By referring to Table 5.2, the test processor has three integer and two floating point
ALUs. In order to test the integer ALUs, the modified SMTSIM simulator is instructed
to keep track of all the instructions that utilize any of the three integer ALUs in the test

77

processor core. This creates a standby trace that contains the information about all the
periods of time during which the ALUs are employed. The evaluation of the accuracy
metric in Equation (4.5) indicates that the DSSG and the SSSG have a very low accuracy
in tracking the integer ALU units. This is expected since these units are heavily utilized
and rarely stay idle long enough to allow for a shutdown.

For the floating point ALU, Fig. 5.1 reveals that the DSSG has a higher accuracy
for predicting the standby length, especially at the higher breakeven points. The two
vertical lines at 2 and 4GHz show the breakeven values from Table 5.6. Clearly, the
small increase in the overhead, due to the application of the DSSG, is counter-balanced
by the increased accuracy.

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (FP-adder-1)

DSSG SSSG

2GHz

4GHz

(a)

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (FP-adder-2)

DSSG SSSG

2GHz

4GHz

(b)

Figure 5.1: DSSG vs. SSSG prediction accuracy for the floating point ALU (a) unit 1
and (b) unit 2.

5.2.2.2 Integer and Floating Point Multipliers

By comparing the results for the integer and floating multipliers in Fig. 5.2, it is clear that
the DSSG outperforms the SSSG in accurately predicting the sleep length for the higher
breakeven points. And similar to Fig. 5.1, the vertical lines are the actual breakeven
points from Table 5.6.

In addition to the superior average accuracy of the DSSG over the SSSG, Fig. 5.3
draws attention to a significant aspect of the decision to use either of the sleep signal
generators. This figure depicts a set of histograms for the different benchmark combi-
nations run on the SMTSIM simulator. The x-axis represents the sleep length, and the
y-axis is the number of sleep instances with the corresponding sleep length. The most
important aspect in Fig. 5.3 is the dynamic nature of the sleep traces. A single static value

78

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (integer-MULT)

DSSG SSSG

2 GHz

4GHz

(a)

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (FP-MULT)

DSSG SSSG

4GHz

2GHz

(b)

Figure 5.2: DSSG vs. SSSG prediction accuracy for the (a) integer multiplier unit and
(b) floating point multiplier unit.

for the sleep signal generation threshold consistently underperforms that of the dynamic
approach that matches the threshold to the current application. For example, setting the
threshold to 80 cycles and assuming a 200 cycle breakeven, the SSSG will always trigger
a shutdown, and will almost always miss since many sleep periods reach the 80 cycles
mark but never reach the 280 cycles required to achieve any savings. Setting the fixed
threshold lower than 80 cycles will reduce the required 280 cycles but will substantially
increase the misses, raising it will eliminate any saving opportunities. On the other hand,
with the same 200 cycle breakeven, the DSSG will either increase the threshold to pre-
vent this erroneous shutdowns when the multiplier is used similar to Fig. 5.3(b).v where
there is no sleep period that reaches the 200 cycles. Alternatively, the DSSG can re-
duce the threshold to zero to maximize the savings when the multiplier is used similar to
Fig. 5.3(a).ii where all the sleep periods reach 200 cycles. This ability of the DSSG to
change the threshold based on the application profile is its greatest advantage.

5.2.3 The Sleep Signal Generators Workload Dependence on SMT
Processors

In this section, the effect of the workload characteristics on the accuracy of DSSG and
SSSG is explained.

Figures 5.4(a) and 5.4(b) depict the accuracy of the DSSG and SSSG for one of
the two integer multiplier units. These figures show the average of all the workloads,
and reveal several things. First, the DSSG has a consistently higher accuracy than the
SSSG, especially at the high breakeven points. Secondly, from the breakeven point of

79

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

1

2

3

4x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

0.5

1

1.5

2x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

2

4

6

8

10

12x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

2

4

6

8x 10
5 FP−MULT−DIV−10

iii

iii iv

viv

(a) 2 threads

0 100 200 300 400
0

1

2

3

4

5

6

7x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

1

2

3

4

5x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

2

4

6

8

10

12x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

1

2

3

4

5

6x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

2

4

6

8

10x 10
6 FP−MULT−DIV−10

0 100 200 300 400
0

0.5

1

1.5

2x 10
6 FP−MULT−DIV−10

iii

iii iv

viv

(b) 4 threads

Figure 5.3: Floating point multiplier unit standby trace histogram. The x-axis represents
the sleep length, and the y-axis is the number of sleep instances with the corresponding
sleep length.

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (integer-MULT)

0(5 5 1 1)

1(20 5 1 1)

2(5 20 1 1)

3(20 20 1 1)

5(20 5 20 1)

7(20 20 20 1)

8(5 5 1 20)

15(20 20 20 20)

(a)

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (integer-MULT)

Threshold = 10

Threshold = 20

Threshold = 30

Threshold = 40

Threshold = 50

Threshold = 60

Threshold = 70

Threshold = 80

(b)

Figure 5.4: (a) DSSG and (b) SSSG prediction accuracy for the integer multiplier unit.

100, the SSSG accuracy decays. However, the DSSG behavior can be divided into two
intervals. From the breakeven points of 100 to 300 DSSG the accuracy decreases, but at
a rate that is slower than that of the SSSG in the same interval. The DSSG saturates at the

80

breakeven points above 300. Recall that in Table 5.6, higher frequency processors tend to
have higher breakeven points. This implies that for high performance systems and higher
clock frequencies, the DSSG is the better choice At the breakeven points below 100, the
behaviors of the DSSG and SSSG differ. The SSSG accuracy decreases consistently,
whereas the accuracy of the DSSG alternates between saturation and decline.

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (FP-MULT)

0(5 5 1 1)

1(20 5 1 1)

2(5 20 1 1)

3(20 20 1 1)

5(20 5 20 1)

7(20 20 20 1)

8(5 5 1 20)

15(20 20 20 20)

(a)

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (FP-MULT)

Threshold = 10

Threshold = 20

Threshold = 30

Threshold = 40

Threshold = 50

Threshold = 60

Threshold = 70

Threshold = 80

(b)

Figure 5.5: (a) DSSG and (b) SSSG prediction accuracy for the floating point multiplier
Unit.

The situation is different for the floating point multiply unit in Figures 5.5(a) and
5.5(b). The utilization of this unit is lower than that of the integer counterpart. The
accuracy of the DSSG does not only saturate, but also slightly increases at the high
breakeven points. The SSSG accuracy does not increase at the high breakeven points,
but the decay does slow down.

Due to the very high utilization of the integer ALU units, the accuracy of both the
DSSG and SSSG is low, and saturates for the breakeven points above 200. But still the
accuracy of the DSSG is higher than that of the SSSG.

The workloads to test the DSSG and the SSSG are categorized into processor-bound
workloads, memory-bound workloads and neutral workloads. Since Processor-bound
workloads are expected to have high utilization of execution units, the prediction accu-
racy is expected to be low. Alternatively, since Memory-bound workloads access the
memory system more often, the utilization of the execution units will be lower and the
prediction accuracy higher. The neutral workloads fall somewhere in between as dis-
played in Figure 5.6. The other execution units exhibit similar behavior. The SSSG
exhibits similar behavior but with a lower accuracy. It is important to note here that
the behavior of the neutral workload differs with the execution unit and the number of
threads. So sometimes the neutral has better accuracies than the memory and sometimes

81

it is worse.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (FP-adder-1)

Memory Processor Neutral

Figure 5.6: DSSG prediction accuracy for floating point add/sub. unit running
processor/memory/neutral-bound workloads.

Another factor that affects the utilization of the execution units is the number of
threads in each workload. Figure 5.7 portrays the DSSG accuracy for a floating point
adder/subtracter with two-thread and four-thread workloads. As it is clear from the
figure, the accuracy for the two-thread workload is higher due to the lower utilization
compared to that of the four-thread workload.

It can be concluded that as the functional unit utilization increases, it becomes more
difficult to make a prediction. However, the accuracy of the DSSG remains higher than
that of the SSSG, especially at the high breakeven points.

5.2.4 SMT Leakage Savings Potential for Sleep Signal Generators

To fully characterize the performance of the DSSG and the SSSG on an SMT proces-
sor, their leakage savings for the microprocessor’s functional units in Table 5.1 needs
to be identified. Similar to Section 4.3.5 the number of cycles the functional units are
idle after the breakeven point is used to represent the leakage savings. The number of
cycles after the breakeven is the real performance metric, since the accurate prediction

82

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Breakeven Point (Cycles)

Accuracy (FP-adder-1)

Two threads Four threads

Figure 5.7: DSSG prediction accuracy for floating point add/sub. unit running two and
four thread workloads.

to determine if the functional units reach the breakeven point guarantees only that the
processor is not losing power. It is the counting of the cycles beyond the breakeven that
will determine the actual leakage savings. However, the number of cycles, where there
is a pre-breakeven wake-up, must be deducted from the savings, since these cycles rep-
resent wasted power. Accordingly, the net savings of either sleep signal generators can
be calculated by evaluating equation (4.8).

Equation (4.8) is used in conjunction with the SMT traces and the breakeven points
in Table 5.6 to calculate the savings in Table 5.7. Table 5.7 also provides the difference
in savings between the DSSG and the SSSG. Again, the SMT traces are used to simulate
all the benchmarks running in series and due to the limited history dependence of both
the DSSG and the SSSG, the trends in Table 5.7 are expected to remain independent of
the order in which the benchmarks are run.

From the results in Table 5.7, it is obvious that both the DSSG and the SSSG cannot
be used to power gate integer ALUs, since they consume more power during the misses
than the total power savings. However, it is noteworthy that the absolute value of the
power losses for the DSSG, highlighted by the gray cells in Table 5.7, are between 1 and
7 orders of magnitude lower than those of the SSSG. This is an incentive for future mod-
ifications to the DSSG to better predict the ALUs performance, creating power gating

83

Table 5.7: Leakage savings potential for SSSG and DSSG on SMT processors.
Functional Unit # Frequency Net Savings (Cycles) Percentage

SSSG DSSG Difference

Integer ALU 1

2GHz

-1.56E10 -5.54E6 -
Integer ALU 2 -1.38E10 -1.16E9 -
Integer Multiplier 4.46E10 4.46E10 -0.14
Floating-Point Adder 1 3.01E10 3.46E10 15.17
Floating-Point Adder 2 1.82E10 2.26E10 23.88
Floating-Point Multiplier 1.64E10 1.92E10 16.77

Integer ALU 1

4GHz

-3.61E12 -8.85E5 -
Integer ALU 2 -4.96E10 -1.26E6 -
Integer Multiplier 3.96E10 4.18E10 5.57
Floating-Point Adder 1 2.05E10 3.23E10 57.03
Floating-Point Adder 2 8.66E9 2.13E10 146.32
Floating-Point Multiplier 7.67E9 1.77E10 131.44

opportunities.

The DSSG and the SSSG are equivalent for the integer ALU-1 at 2GHz. In this case,
the SSSG is better suited for the task due to its simplicity. This trend is broken for the
other functional units at 2GHz, where the DSSG outperforms the SSSG by 15% to 23%.
At 4GHz, the DSSG consistently outperforms the SSSG for all the functional units. This
is attributed to the higher breakeven points, associated with the shorter clock period, and
the relatively lower accuracy of the SSSG at these breakeven points.

Another significant aspect in quantifying the leakage savings of the two signal gen-
erators is the absolute value of the energy savings. However, determining this value
depends substantially on the values of the leakage savings per cycles. By using the
emulation circuits of FO4 introduced in Section 4.3.2.2, the values in Table 5.8 are de-
termined. They correspond to the subtraction of the leakage power, when the functional
unit is not power gated, from that of a power gated unit. Also, Table 5.8 lists the leak-
age savings per cycle, multiplied by the net savings in Table 5.7 and the clock period to
exemplify the achievable leakage energy savings.

84

Table 5.8: Energy savings for SSSG and DSSG on SMT processors.
Functional Unit # Frequency Leakage Total Energy Percentage

Savings Savings (µJ) Difference
(µW) SSSG DSSG

Integer Multiplier

2GHz

7.10 158.42 158.42 0
Floating-Point Adder 1 3.55 53.40 61.38 14.95
Floating-Point Adder 2 3.55 32.29 40.09 24.18
Floating-Point Multiplier 7.19 58.99 69.06 17.07

Integer Multiplier

4GHz

7.10 70.33 74.24 5.56
Floating-Point Adder 1 3.55 18.18 28.65 57.56
Floating-Point Adder 2 3.55 7.68 18.89 145.96
Floating-Point Multiplier 7.19 13.79 31.83 130.77

5.3 Architectural Dependence of Predictive Sleep Signal
Generation

After studying the performance of the sleep signal generators on a model processor it is
instructive to investigate the changes in the performance of the sleep signal generators
for various modifications of the processor architecture. In order to ensure the fairness of
the comparison, a base processor modeled similar the processor in Table 5.1 is used. The
base processor is modified and the SPEC benchmarks introduced earlier in Table 5.3 are
rerun on the modified processor.

Table 5.9: Architectural modifications to the base processor
Architectural Unit Base Value Modified Value

Floating Point ALU 2 4
Floating Point Multiply 1 2
Integer Multiply 1 2
Load Store Queue 64 32 - 128
Memory Latency 150 100 - 300

Table 5.9 summarizes the modifications introduced to the processor. These modi-
fications are applied to the processor separately in order to identify the impact of each
modification. The modifications in the execution stage listed in Table 5.9 are limited to
the subset of functional units that experienced performance gain using either sleep signal

85

generators.

5.3.1 Floating Point ALU

In order to examine the performance of the DSSG relative to the number of the floating
point ALUs available to the processor, two additional floating point units are added to the
base architecture. Fig. 5.8 presents the histograms of the sleep periods of each FP-ALU
in the processor. The x-axis represents the sleep length, and the y-axis is the number
of sleep instances with the corresponding sleep length. Comparing the histograms of
ALU-1 and ALU-2 in Fig. 5.8 shows that ALU-2 has a flatter distribution of the sleep
periods corresponding to the lower utilization of this ALU. Accordingly, the DSSG has
better performance tracking ALU-2 compared to ALU-1 as shown in Fig. 5.9. Fig. 5.9
shows the leakage savings ratio between the DSSG and the SSSG. The ratio of the DSSG
to the SSSG for the ALU-3 and 4 is lower compared to ALU-1 and 2. This is attributed
to the fact that the number of long sleep periods for ALU-3 and 4 is more compared to
ALU-1 and 2. The higher number of long sleep periods allow the SSSG to compensate
for its mistakes which can go up to 5 to 10 times more than that of the DSSG. However,
this does not account for the disruption of the processor due to the erroneous shutdowns
performed by the SSSG.

Comparing the results of the ALU-1 and 2 between the base architecture and the
modified version shows little change with respect to the leakage savings achieved by the
DSSG. This is due to the fact that the added ALUs slightly affected the number of sleep
periods in the region between 50 and 100 cycles in Fig. 5.8 while preserving the overall
trends. The change in the lower regions of the histograms results in no change in the
predictive behavior of the DSSG since it ignores these periods when targeting the higher
breakeven points.

5.3.2 Floating Point Multiply

Increasing the number of floating point multiply units is limited to an extra one func-
tional units due to the low utilization of this functional unit compared to the ALUs and
the limitation on the simultaneous requests for multiply instructions. Comparing the re-
sults of the base architecture to the modified architecture reveal slight variation in the
DSSG performance as compared to the SSSG (Fig. 5.10). This is attributed to the com-
parable histogram of both architectures. Although the second multiplier increases the
performance by allowing multiple multiply instructions to execute simultaneously, it has

86

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8
x 10

7 FP−ALU−1

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7 FP−ALU−2

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14
x 10

6 FP−ALU−3

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7
x 10

6 FP−ALU−4

Figure 5.8: Histograms of the execution traces on the FP-ALUs.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

Le
ak

ag
e

S
av

in
gs

 R
at

io

Breakeven Point (Cycles)

FP-ALU

ALU-1 ALU-2 ALU-3 ALU-4

Figure 5.9: Leakage Savings for FP-ALU.

87

little effect on the first multiplier sleeping patterns. This can be explained if we take for
example two pending multiply instructions. These instructions will run consecutively on
a single multiply unit and then the unit will go into a standby period depending on code
behavior. In a two multiplier architecture the instructions will be split between both.
However, this split has little impact on the standby period as it is mainly controlled by
the succession of requests from the executing code.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

Le
ak

ag
e

S
av

in
gs

 R
at

io

Breakeven Point (Cycles)

FP-MULT

base-1 modified-1 modified-2

Figure 5.10: Leakage Savings for FP-MULT.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7 FP−MULT−1

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7 FP−MULT−2

Figure 5.11: Histograms of the execution traces on the FP multiply.

Comparing the results of the first and second multipliers (modified-2) shows that the
histograms in Fig. 5.11 has an increased number of long sleep periods compared to the
first multiplier. The increase in long sleep periods allows the SSSG to recover some of
its losses.

88

5.3.3 Integer Multiply

The integer multiply unit was augmented by a second multiplier. In the case of the
integer multiplier the savings achieved by the DSSG as compared to the SSSG is rela-
tively lower compared to the savings achieved for the floating point ALU and multipliers
(Fig. 5.12(a)). This is mainly attributed to the heavy presence of long standby periods
in the case of the integer multiply (Fig. 5.13). However, the savings achieved by the
DSSG and the corresponding shutdown periods are in the order of 4 ∼ 5 × 1010 cycles
(Fig. 5.12(b)). This means that the DSSG was capable of successfully shutting down the
multipliers for approximately 72 ∼ 90% of the total simulation time in cycles.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

Le
ak

ag
e

S
av

in
gs

 R
at

io

Breakeven Point (Cycles)

Integer-MULT

MULT-1 MULT-2

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

 5.5e+10

 0 100 200 300 400 500 600

Le
ak

ag
e

S
av

in
gs

 (
C

yc
le

s)

Breakeven Point (Cycles)

Integer-MULT

SSSG-MULT-1

DSSG-MULT-1

SSSG-MULT-2

DSSG-MULT-2

Figure 5.12: a) Ratio of savings between the DSSG and the SSSG. b) Leakage savings
represented in number of cycles.

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12
x 10

6 integer−MULT−1

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7
x 10

6 integer−MULT−2

Figure 5.13: Histograms of the execution traces on the integer multiply.

89

5.3.4 Memory Latency

An interesting aspect of the processor design is the memory latency. The memory latency
was set to 100, 150 and 300 cycles. Although the actual memory latency is gradually
increasing the use of ”latency hiding” techniques, such as prefetching and the trend to
move more parts of the memory on-chip results in an effective reduction of the memory
latency as seen from the perspective of the functional units. Tracking the behavior of the
DSSG versus the SSSG shows that the DSSG performance increases with the reduction
of the effective memory latency as seen by the functional units. Fig. 5.14 shows the
behavior of the DSSG targeting the floating point ALUs. The lower memory latencies
causes more sleep periods to occur at the shorter sleep lengthes. This shift in the length
of sleep periods when the memory latency is moved from 300 to 100 is depicted in
Fig. 5.15.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

Le
ak

ag
e

S
av

in
gs

 R
at

io

Breakeven Point (Cycles)

FP-ALU-1

150 cycles 100 cycles 300 cycles

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

Le
ak

ag
e

S
av

in
gs

 R
at

io

Breakeven Point (Cycles)

FP-ALU-2

150 cycles 100 cycles 300 cycles

Figure 5.14: DSSG vs. SSSG with the change of memory latency (floating point ALUs)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 S

le
ep

 P
er

io
ds

Standby Time (Cycles)

FP-ALU-2

mem-100 mem-300

Figure 5.15: Histograms of the execution traces with memory latency variation.

90

5.3.5 Load Store Queue (LSQ)

The LSQ size was changed between 32, 64 and 128 entries. The relevance of the size of
the LSQ is most pronounced when there is burst of load/store instructions. Accordingly,
it is expected that the functional units with the highest utilization and corresponding
load/store requests will be affected since the time to satisfy the request will increase.
The histograms in Fig. 5.16 show such trend. The smaller LSQ size caused the heavily
utilized ALU-1 to stall more frequently especially for shorter sleep lengths.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 S

le
ep

 P
er

io
ds

Breakeven Point (Cycles)

FP-ALU-1

lsq-32 lsq-128

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 S

le
ep

 P
er

io
ds

Breakeven Point (Cycles)

FP-ALU-2

lsq-32 lsq-128

Figure 5.16: Histograms of the execution traces on the floating point ALU.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

Le
ak

ag
e

S
av

in
gs

 R
at

io

Breakeven Point (Cycles)

FP-ALU-1

lsq-32 lsq-64 lsq-128

Figure 5.17: Leakage Savings for FP-MULT.

The variation of the sleep length between the LSQ-32 and LSQ-128 resulted in the
variation in the DSSG performance shown in Fig. 5.17. The the higher number of smaller
sleep periods tends to trick the SSSG in triggering the sleep signal. However, these
periods never reach the breakeven point thus favoring a dynamic approach to handle this
changes.

91

5.4 Embedded Processors

Since embedded processors face a more stringent power budget compared to general pur-
pose processors they are severely affected by the increase of leakage power. Accordingly,
the importance of sleep signal generation for embedded processors is significant.

Although embedded processor designers have tighter control on the software running
on the processor, the sleep profile is not expected to be uniform. Accordingly, based on
understanding the performance of both the DSSG and the SSSG on general purpose
processors it is expected that embedded processors will also benefit from the use of the
DSSG since it is capable of tracking non-uniform sleep profiles.

Finally, it is important to note that embedded processors are usually in-order scalar
processors. This in turn will introduce some challenges to the task of power gating since
it will require the complete shutdown of the processor front end. Alternatively, the DSSG
can be used with DVS techniques to slow down the core instead of a complete shutdown.

5.5 Summary

Reviewing the results of applying the DSSG and the SSSG on several state-of-the-art
processors draws attention to the viability of aggressive leakage management of proces-
sor functional units. The SSSG is generally superior for small, low frequency functional
units albeit at a higher miss rate potentially compromising the processor performance due
to unnecessary shutdowns. The DSSG on the contrary maintains a comfortable lead on
both the superscalar and SMT architectures. The DSSG has higher accuracies at higher
breakeven points which correspond to high frequency operations. However, results show
that neither techniques is overly successful in targeting the integer ALUs. The integer
ALUs are very heavily utilized preventing successful shutdowns during code execution.

92

Chapter 6

Multi-Pin Interconnect Power
Optimization

Since interconnect wires are slowly dominating the overall chip performance, intercon-
nect delays are becoming more critical to design than gate delays, and the interconnect-
related power consumption is determining the total power that is consumed by the chip.
Therefore, power awareness is crucial to optimize the interconnects.

In this chapter, the formulation for a power-aware multi-objective interconnect opti-
mization methodology is discussed. The focus is on solving a Power-Efficient multi-pin
Integer linear programming based global Routing Technique (PIRT).

6.1 Power Driven Routing

Timing driven routing is the focus of most current research on global interconnect de-
sign [88–90]. However, due to the tremendous increase in dynamic power consumption
in global interconnects, research has also focused on minimizing their dynamic power
while striving to minimize the impact on the chip delay.

Research in [12–19] tackled the low power interconnect problem through optimum
buffer insertion within the framework of sequential global routers. Research in [14, 15,
91] focuses on only single net optimization. In the meantime, the research in [16–19,92,
93] focuses on the optimum buffer insertion assuming prerouted nets.

The main limitation facing power optimal sequential global routers is the lack of
simultaneous optimization of the various interconnect performance metrics. Sequential
routers are based on single net optimizations [14, 15, 91] which inherently implies a net

93

ordering effect. Net ordering effect means that for successful chip timing closure the
nets has to be ordered according to their importance. This ordering limits the ability of
the technique to find globally optimum solution. Furthermore, several sequential routers
postpone the task of buffer insertion after net routing [16–19, 92, 93] limiting the ability
of the technique to prevent congestion in general and especially buffer related congestion
where the availability of buffer insertion locations is contested by several nets.

PIRT on the other hand introduces a simultaneous power optimal routing technique
that eliminates the dependence on the net ordering while considering buffer insertion in
conjunction with routing. The technical contributions for the newly developed technique
were presented in Chapter 1 and are summarized as follows:

1. Unlike previous approaches, the newly developed approach is capable of timing
optimization, buffer insertion and power reduction simultaneously with routability
consideration.

2. The optimization of power consumption and simultaneously accounting for the
buffer blockage, which has not been considered in previous analytical formulations
of the power optimization problem, is formulated.

3. The optimization of the power consumption without affecting the chip’s maximum
frequency.

4. The problem is formulated so that it is independent of the delay and the power
models used, allowing for more flexibility in applying the new technique to scaled
technologies.

5. PIRT is capable of simultaneously routing and power optimizing the chip with
runtime less than 0.1 second per net.

The objective of PIRT is to find a globally optimal routing solution. The routing
solution involves the simultaneous power optimization and routing of all the nets. The
PIRT solution strives to trade-off the slack between the maximum required frequency
and the delay of the nets that are faster than the required frequency with the optimization
of the interconnect power consumption. In order to present the proposed power optimal
multi-objective optimization for global interconnects, the various efforts pertaining to
interconnect optimization should be revisited.

In Section 6.2 general background information pertaining to the global routing and
buffer insertion problems are presented. This is followed by Section 6.3 discussing pre-
liminary routing techniques and the power and delay models used in the formulation.

94

Section 6.4, introduces the ILP based routing formulation (PIRT). Lastly, Section 6.5
provides the results of applying the new formulation on industrial benchmarks.

6.2 Introduction

6.2.1 Global Routing: Unified Timing and Congestion Minimization

One of the fundamental goals of global routing is to route all the nets within the cir-
cuit without overflow (i.e., congestion minimization). Several works have been proposed
in this area such as sequential approaches [94], rip-up-and-reroute techniques [95, 96],
multicommodity flow-based techniques [97,98], and hierarchical methods [99]. As tech-
nology scales in terms of the device dimensions, the interconnect delay becomes a per-
formance bottleneck. Therefore, minimizing congestion alone is not sufficient. To deal
with this trend, several research efforts have been performed on timing-driven global
routing [100–105] (i.e., interconnect delays are considered explicitly during global rout-
ing).

In [100], a set of routing trees, satisfying timing constraints for each net, have been
initially chosen, after which a multicommodity flow method was applied to choose a sin-
gle routing tree for each net such that the congestion was minimized. In [101], the nets
have been individually routed after which the congested area was ripped up and rerouted
by a multicommodity flow algorithm. The work in [102] has incorporated timing issues
with an iterative deletion technique for standard cell designs. A top-down hierarchical
and assignment method that is combined with timing constraints has also been used for
FPGA routing [103]. In almost all the aforementioned methods, several wires have re-
quired detours (to avoid congestion); therefore, the signal delay might be detrimentally
affected (i.e., congestion and delay are often competing objectives). In [104] an ap-
proach has been suggested to simultaneously optimize congestion and delay according
to a network flow formulation so that the timing slack consumptions were adaptive for
the congestion distributions. In [105] the authors have formulated global routing as a
multicommodity flow problem, and adopted a shadow price mechanism to incorporate
the timing performance and routability into a unified objective function. Although most
of these researchers have proposed solutions to offer two important and competing ob-
jectives, congestion and delay, none has considered the power minimization of realistic
interconnect trees under given timing budgets.

95

1

(b)

(a)

L

x
1

x
2

x
1

x
2

L
n

Figure 6.1: Buffer insertion and sizing: (a) the buffer sizing problem finds values of
buffer sizes that satisfy delay constraint and (b) the buffer insertion problem finds opti-
mum buffer positions to satisfy delay constraint.

6.2.2 Buffer Insertion-Based Methods

Buffer insertion-based techniques are effective for reducing interconnect delay. Several
works have examined delay driven buffer insertion for 2-pin nets [12,106–109]. Broadly
characterizing the interconnect optimization efforts have indicated two principal tech-
niques: analytical and dynamic programming.

Analytical optimization techniques have been applied to find a closed form expres-
sion that can minimize one of the major objectives: delay, power and routing topology,
with the other objectives kept within bounds. Simple optimization techniques have been
employed to minimize the delay of the interconnect by buffer insertion, disregarding all
other aspects of the interconnect [11,110]. However, an important limitation to these for-
mulations of the problem is that it has not taken into account the case when the optimum
buffer positions lie on top of the pre-placed functional blocks. This limitation has intro-
duced another set of problems to find the independent buffer sizes (x1 6= x2 . . . 6= xn)
that minimize the delay, as shown in Fig. 6.1(a), and the exact sizes of the wire segments
independently (L1 6= L2 . . . 6= Ln) that minimize this delay, as seen in Fig. 6.1(b).

It is also interesting that these efforts have been extended to include the more elab-
orate problem of wire sizing, where the wire lines are divided into a discrete set of seg-
ments, and each segment is sized independently (W1 6= W2 . . . 6= Wn), as represented in
Fig. 6.2. In fact, the proper wire sizing has been proven to minimize the signal delay in
an RC interconnect line [111].

96

1
w

3
w

4
w

2
w

Figure 6.2: Wire sizing.

More advanced techniques have involved the combined buffer insertion/wire sizing
problem while minimizing the power consumption of the buffers [112,113]. These tech-
niques have employed a delay relaxed formula (D = κtcrit), where tcrit was the mini-
mum achievable delay on a global net, and κ > 1. Therefore, κ was used as a control
knob trading off the delay of the interconnect for its power consumption. The work
in [112] has demonstrated that a 15% relaxation in delay can save up to 33% of the
power consumed by the interconnect buffers. These efforts has been adapted to plot the
delay-power trade off curve in order to determine the optimal number of buffers and their
respective positions [8, 114–117].

Analytical approaches lack the capacity to accommodate buffer blockage, which is
defined as the presence of macro blocks that prevent buffer insertion. The fact that the
closed form solutions can provide the optimal number of buffers and their separation as a
fixed wire length, limits their capability to deal with the blockage. Moreover, analytical
solutions can even prevent an optimal solution, if the blockage area is too large. This is
not the case if a dynamic programming or graph-based algorithm is employed since they
generally allow for unequal buffer spacing.

Typically, dynamic programming techniques depend on finding a solution within the
framework of a graph theoretic representation of the problem. Usually, such techniques
are derived from the extension of van Ginneken’s algorithm [118] to find the optimal
delay within the framework of the optimal power. In [119], fixed buffer locations have
been used, and in [120], anO(n5) algorithm has been employed to find the optimal setup.
In addition, Sapatnekar et al. [121] have formulated this problem with the framework
of fixed buffer locations. Although, in most of these efforts the blockage has not been
explicitly considered, it can be easily incorporated into these methodologies. To combine
the efforts to find a power optimal solution, a power optimal maze routing methodology
has been devised in [12]. This work extends the efforts of delay optimal maze routing
and buffer insertion in [122] by considering the shortest paths algorithm to find the power
optimal path. The drawback in [122] is the inability to find the routing tree for the multi-
pin nets. These nets represent 30% to 40% of the interconnects on a modern chip [123].
This issue has been addressed in [13] at the expense of a significant increase in the total

97

runtime.

6.3 Preliminaries

In this section, some of the fundamental concepts related to the new formulation are
discussed.

cells global bins I/O Pads

routing channel

(a)

vertical Edges
vertices

horizontal edges

(b)

Figure 6.3: Grid graph for standard-cell based designs. (a) Global bin graph. (b) The
corresponding grid graph.

6.3.1 Global Routing Problem

In global routing, the connection pattern for each net that satisfies the different objectives
must be decided. The input to the global routing problem consists of a net-list that indi-
cates the interconnections between the terminals and placement information, including
the terminal positions and the location of the routing channels between them. Typically,
the global routing problem is presented as a graph problem, where the routing regions
and the module connections are modeled by using a grid graph. Initially, a given circuit
is partitioned into a set of rectangular regions, called global bins. After the cells are
placed in these bins, each cell is assumed to be placed at the center of the global bin, as
depicted in Figure 6.3(a).

From Fig. 6.3(b), it is clear that the global bins and edges can be transformed into a
grid graph. The vertices of the graph represent the possible positions of the interconnect

98

terminals, and the horizontal and vertical edges (called the grid edge) that lie between
two adjacent vertices represent channels that can be used for wire routing. A net is an
unordered set of points on the grid graph. A route (or tree) of a net is a set of grid edges
for connecting all the terminals of the net. Since the routing resources are finite, each
grid edge has a capacity. With such a graph representation, the graph version of the
global routing problem, instead of the original problem can be solved.

6.3.2 Global Routing Techniques

Since all versions of the global routing problem are NP-hard [124], a variety of heuristic
algorithms have been developed for it. They are classified as sequential global routing
and concurrent global routing algorithms. The most common approach to global routing
is sequential routing 1. In such an approach, the nets are first ordered according to their
importance, and then based on the ordering, the nets are routed sequentially. The quality
of a sequential global router largely depends on the ordering of nets. Due to the sequen-
tial nature of these techniques, they fail to give adequate results. Besides, the sequential
heuristic techniques cannot provide a key answer as to whether or not a feasible solution
exists. In other words, if they fail to yield a feasible solution, it is not clear whether this
is attributable to the non-existence of a feasible solution or due to the shortcomings of
the heuristic. Moreover, when a heuristic does find a feasible solution, it is not known
whether or not this solution is optimal, or how far it is from optimality.

To avoid the net ordering problem and to make the solution more predictable, concurrent-
based global routing algorithms, in the form of Integer Programming models, have been
developed to route all the nets simultaneously. In the mathematical programming-based
approach, global routing is formulated as a 0/1 integer programming problem. Given a
set of Steiner trees for each net and a routing graph, the objective of the Integer Pro-
gramming technique is to select a Steiner tree for each net from its set of Steiner trees
without violating the channel capacities while minimizing the total wire-length [125].
This approach tends to result in a more global solution and no initial ordering of the nets
is required.

A general formulation of the ILP based global routing is as follows:

Minimize
t∑

j=1

bjxj, (6.1)

subject to

1Most industrial tools utilize Maze Routers as a solver.

99

∑
xj∈Nk

xj = 1, k ∈ {1, ..., n},

t∑
j=1

aijxj ≤ Capj, i ∈ {1, ..., p},

xj ∈ {0, 1} j ∈ {1, ..., t}
(6.2)

In this model, The global routing problem is formulated as a 0/1 ILP problem by associ-
ating a variable xj with each tree which connects a net. The variable xj equals “1” if that
particular tree is selected and “0” otherwise. The constant bj is the cost of connecting
a net using jth tree. Capj is the edge capacity representing the routing supply of each
edge. For the second constraint, all the possible tree combinations created for each net
in the two routing layers are represented by a (0,1) matrix [Aij], with the ith row corre-
sponding to the ith edge in the grid graph and each column corresponding to the possible
tree combinations for each net. The element aij is expressed as:

aij =

{
1 if tree j passes through edge i;
0 otherwise.

There are two types of constraints in this formulation. The selection of one and
only one routing for each net is forced by the first set of constraints. The edge capacity
requirements of each edge are represented by the second set of constraints. The time
to solve the Integer Programming problem increases exponentially with the number of
Steiner trees generated in the formulation of the program. Therefore, techniques to solve
the ILP-based global routing problem efficiently becomes a significant issue.

6.3.3 Interconnect Modeling

In this research, the Elmore delay model is chosen for its simplicity [126] for modeling
the delay of the interconnects. The model states that the delay Di from the source node
i (as shown in Fig. 6.4) is calculated as follows:

Di =
N∑

k=1

CkRik, (6.3)

where Rik represents the resistance, shared among the paths from the source node s
to nodes i and k, Ck is the capacitance of each wire segment between the nodes (Fig. 6.4),
and N is the number of nodes.

100

3

R
i

C
i

i

R
k

R
2

C
2

2

c

R
1

C
1

1
S

C
3

3

C
k

k

a

b

R

Figure 6.4: RC tree [11].

To estimate the interconnect wire capacitance, the model introduced in [127] is used.
It accounts for the fringing, coupling, and plate capacitances for an interconnect accord-
ing to the structure in Fig. 6.5. The unit length capacitance (cwire) of the wire is2

=

C f
C a

C a

C f

C c C c

C a C fC af

Bottom Plate

T

h

W

S

Wire under Test

Top Plate

+

Figure 6.5: Wire structure for capacitance extraction.

cwire = 2Caf + 2Cc, (6.4)

where Caf is the total wire fringing and plate capacitance, and Cc is the coupling capac-
itance between the metal line and the adjacent metal lines. Caf is given by computing
[127]

2The equations were used and evaluated by the Berkeley Predictive Technology Model (BPTM) which
is provided by the Device Group at UC Berkeley [128].

101

Caf

εILD

=
W

h
+ 2.04

(S

S + 0.5355h

)1.773 (6.5)

.(
T

T + 4.532h

)0.071

where εILD is the interlayer-dielectric primitivity, W is the wire width, T is the wire
thickness, S is the spacing between the wires, and h is the spacing between the wire and
the ground plans. Cc is given by the following:

Cc

εILD

= 1.411
T

S
exp
(−4S

S + 8.014h

)
(6.6)

+2.3074
(W

W + 0.3078S

)0.25724

.
(h

h+ 8.691S

)
.exp

(−2S

S + 6h

)
.

The ITRS [2] predictions are employed to estimate the interconnect wire resistance.
Note that although an analytical model is chosen for the capacitance and resistance cal-
culations, without the loss of generality, more exact extraction techniques can be used
with no modification to the problem formulation in the next section.

In practice, the number of sinks, connected to the same driver without a buffer be-
tween the sinks, is small [129]. In fact, connecting too many sinks to a single source
results in excessive delays that cannot be recovered by buffer insertion. Accordingly, if
the degree of this net configuration is limited, the wire lengths of a, b, and c in Fig. 6.4
can be computed by generating a limited set of Steiner trees between the driver and the
set of sinks connected to it.

On the other hand, to estimate the total power, consumed by the driver and sink gates
and the driven interconnect, the power consumption model employed in [8] is used. The
switching power (Pactive) is hence calculated as follows:

Pactive = αV 2
DD.fclk ×

(Wdriver.Co + cwire.l +

W1.CLsink 1
+ . . .+Wp.CLsink p

), (6.7)

where VDD is the supply voltage, fclk is the clock frequency, Wdriver and W1 ... p are the
widths of the driver and all the sink gates connected to it, respectively, α is the switching
factor which is assumed to be 0.15 [110], cwire is the wire capacitance per unit length, Co

is the output capacitance of the driving gate and CLi
is the loading capacitance of sink

gate i. In addition, l is the total Steiner tree wire length.

The following section presents the performance and power driven ILP-based global
routing technique followed by the experimental results.

102

6.4 Power-Efficient Multi-pin ILP Based Global Rout-
ing

In order to optimize the routing and interconnect delay, as well as to reduce the power
consumed by the interconnect buffers, a Power-efficient multi-pin ILP based global
Routing Technique (PIRT) is proposed in this section. This performance and power
aware routing algorithm is based on the Integer Linear Programming (ILP)-based global
routing model in [130].

The goal of the proposed PIRT is to find an efficiently powered buffer path for each
net without violating the delay constraint. The routing area is modeled by using a routing
grid that is similar to the one in Fig. 6.3(b). In this grid, G = (V,E), each vertex u
represents a buffer possible location, and each edge (u, v) represents a possible route for
interconnect wires. In this case, the problem can be formally described as follows:

PIRT: Given a predefined routing grid (G = (V,E)), a buffer library (B), a buffer
function (f(u) = 1) if a buffer is allowed at vertex u, and (f(u) = −1) otherwise, and a
set of nets (net1, net2, ..., neti), find the minimum power path for each net, subject to a
delay constraint

6.4.1 PIRT Phases

The PIRT flow can be illustrated by dividing it into two distinct phases, as shown in
Fig. 6.6. First, an initialization phase (phase I) where the initial minimum Steiner trees
are constructed for each net. To reduce the global routing congestion, additional detoured
trees are also built for each net. In order to create enough routing alternatives considering
the delay requirements several buffered trees (i.e., trees with buffers inserted) are built
for each net, if possible. Next, a power optimization phase (phase II) is invoked. This
phase attempts to find a low power route (i.e., tree) for each net so that the total power of
all the nets is minimized while satisfying the delay requirement of the chip.

6.4.2 Phase I (Initialization)

In order to perform the interconnect power optimization in phase II, several routing al-
ternatives are needed for each net. Creating routing alternatives allows the ILP model in
phase II to pick a globally optimum solution that covers all the nets on the chip simul-
taneously. The routing alternatives are either unbuffered or buffered routes that connect
the interconnect source to its sinks.

103

Congestion?

Phase I
Tree Generation

Additional Tree Generation

Phase II

Yes

No

Placement Input

Tree Construction

Congestion Estimation

Buffer Location Generation

ILP Power Optimization

Figure 6.6: PIRT flow chart.

Unbuffered Tree Construction

The first step in this phase is to produce a set of admissible routes for each net. In a
practical circuit, the terminals in a net are connected by horizontal and vertical wires.
Therefore, only the rectilinear spanning trees or rectilinear Steiner trees are considered
in the tree construction process. These trees become the unknown variables of the ILP
problem. In the experimental section, FLUTE presented in [131] is used to construct the
trees. Obviously, the number of trees for each net should not be too large, since the time
complexity of the ILP problem is a function of the number of trees. However, a number
of trees should be built for each net to guarantee the feasibility of the problem. To remedy
this problem, an additional tree generation step is proposed in [130] to reduce the number
of trees created for each net, while ensuring that the constructed trees will likely result
in a promising (feasible and optimal) solution. Initially, the potentially congested areas
in the routing graph are predicted by a heuristic technique [130, 132] in the congestion
estimation stage. This a priori congestion information is then used in the additional tree
generation stage to eliminate the congested areas by adding trees to the nets passing
through these areas iteratively. The congestion of the circuit is re-estimated after each
additional tree generation step.

104

Complexity Analysis of Tree Generation

The complexity of the initial tree construction for each net is O(mlogm), where m is
the degree of the routed net [131]. The complexity of the tree construction for the whole
chip is O(N.mlogm) where N is the total number of routed nets. The complexity of
congestion estimation is O(E), where E is the total number of edges in the graph. The
complexity of the additional tree construction is O(C), where C is the total number of
nets that pass through the congested edges [130]. Since the maximum value of C is less
than N , E � N and m� N , the complexity of the initial tree construction, congestion
estimation and the additional tree construction is O(N).

Buffered Tree Construction

Since unbuffered nets are not guaranteed to achieve the timing requirements of the chip,
a set of buffered routes has to be added to the unbuffered trees generated earlier to extend
the alternatives presented to the optimization step at phase II.

Buffers

 (a) (b)

Figure 6.7: Buffer insertion for two-terminal nets (a) buffered-tree with one buffer. (b)
buffered-tree with two buffers.

However, due to the preplaced modules there is usually a limited number of available
buffer locations. In this formulation, each location is expected to allow for a limited
number of buffers to be inserted. Accordingly, in our current implementation, for
each tree of a two-terminal net, at most two buffered trees are produced: one with one
buffer inserted and the other with two buffers inserted, as denoted in Fig. 6.7. The buffer
insertion process of three-terminal nets begins by identifying the Steiner point or middle

105

C

B

segment 1

segment 2 & 3
Steiner Point

A

 (a)

middle point

B

C

A

segment 1 & 2

 (b)

Figure 6.8: Buffer insertion for three terminal nets (a) three terminal net with Steiner
point. (b) three terminal net with middle point.

point of the net in Fig. 6.8. Following this, each net is divided into two or three segments,
based on the presence of either a Steiner point or a middle point. If one segment is much
longer than the other segments (> 90%), the buffer insertion is considered for only the
longest segment. Otherwise, all the segments are sorted in descending order, based on
their length, and one buffer is inserted in each segment. For the generated buffered
two and three terminal nets, only the trees, where the addition of a buffer results in the
reduction of the delay are added to routing alternatives for Phase II.

Limiting the alternatives to two buffered trees per unbuffered tree assists in limiting
the runtime of the algorithm. However, this limit can be removed at the expense of longer
runtime. Also, limiting the number of buffers to at-most two is a runtime trade-off that
can be tuned.

In addition, due to the limited availability of buffer locations, all the nets are first
sorted in descending order according to their wirelength such that the long nets have a
higher priority for buffered routes generation. However, the priority of short critical or
highly loaded nets can be easily elevated to allow for buffered routes to be created for
these nets. It is important to note that the buffer route generation priority does not affect
the non-ordering nature of the formulation specially for the congestion consideration in
phase II.

Complexity Analysis of Buffered Tree Generation

Fig. 6.9 illustrates the pseudocode of the buffer generation algorithm. The time com-
plexity of step 1 (i.e., sorting all the nets) is O(N logN), where N is the total number of
routed nets. For step 2, the complexity is O(NT), where T is the number of trees built

106

Figure 6.9: Buffered tree generation algorithm.

1. Sort all the nets based on the wirelength.
QuickSort(Nets)

2. Insert buffer for each sorted net.
For each net i

For each tree j of net i
find buffer location and insert buffer;
calculate the power and delay;
if(inserted buffer reduces delay)

connect the buffered tree to
the tree list of net i ;

End For
End For

3. Stop.

for each net. Since T is a constant the complexity is O(N). Accordingly, the complexity
of the whole algorithm is O(N logN).

6.4.3 Phase II (Power Minimization)

To achieve PIRT’s objective to minimize the power consumption of the interconnect
while satisfying the chips delay constraints a constantMax Delay is needed. Max Delay

is the maximum acceptable delay for all the nets which is derived from the clock fre-
quency set by the product specifications. Since, any net having shorter delay thanMax Delay

is unnecessarily fast, PIRT strives to trade this delay slack with the power consumption.

Accordingly, PIRT power minimization underMax Delay constraint is presented as
follows:

Minimize
t∑

j=1

wpjxj, (6.8)

107

subject to

∑
xj∈Nk

xj = 1, k ∈ {1, ..., n}, (6.9)

∑
xj∈Nk

Dxj
xj ≤Max Delay, k ∈ {1, ..., n}, (6.10)

t∑
j=1

aijxj − Capi ≤ Zi, i ∈ {1, ..., p}, (6.11)

xj ∈ {0, 1} j ∈ {1, ..., t},
Zi ∈ {0, C},

Similar to (6.1) introduced in Section 6.3, The global routing problem is formulated
as a 0/1 ILP problem by associating a variable xj with each tree which connects a net.
The variable xj equals “1” if that particular tree is selected and “0” otherwise. The first
constraint ensures that only a single tree among all the possible trees generated for net k
is selected. wpj is the weight associated with the power of tree j and is calculated as:

wpj =
power of tree j

max power of trees constructed for net k
(6.12)

The power of tree j3 is modeled and calculated by equation (6.7).

For the second constraint, Dxj is the delay of tree j calculated using equation (6.3).
This constraint ensures that for all the selected nets, the delay of each net does not exceed
the Max Delay.

For the third constraint, all the possible tree combinations created for each net in the
two routing layers are represented by a (0,1) matrix [Aij], with the ith row corresponding
to the ith edge in the grid graph and each column corresponding to the possible tree
combinations for each net. The element aij is expressed as:

aij =

{
1 if tree j passes through edge i;
0 otherwise.

Since the routing resources are finite, each grid edge has a capacity. The capacity of
each edge is represented by constraint (6.11), where p is the number of edges on the
grid graph, t is the total number of trees produced for all the nets, and Capi is the edge
capacity of the ithedge. In order to achieve a global routing solution a slight allowance

3Low activity nets can be pruned quickly from the search space to eliminate unnecessary runtime
overhead.

108

on the overflow is set by Zi which is a variable associated with the routing overflow of
each edge. C is the upper bound on Zi. It is a positive value obtained from experimental
results. The value of C represents the minimum number of extra tracks needed by the
detailed router to achieve a fully routed chip.

Solving the minimization problem set by equation (6.8) ensures that the final net
selection simultaneously achieves the delay constraints and minimize the power con-
sumption.

6.5 Experimental Results

The ILP-based router is implemented in C++ on a 900 MHz Sun Blade 2000 workstation
with a 1 GB memory. FLUTE [131] is used for the Steiner tree construction, and iLog
CPLEX10.0 package is used as the ILP solver. Table 6.1 shows the statistics of the
ISPD98 IBM benchmarks [133] and ISPD2007 benchmarks [134], used in this work.

Table 6.1: ISPD98, IBM, and ISPD2007 benchmark statistics.
Benchmarks Total H/V Grid Chip

Nets Cap Size Size (mm)

ibm08 35195 32/21 64× 192 1.2× 3.6

ibm09 39592 28/14 64× 256 1.2× 4.8

ibm10 49491 40/27 64× 256 1.2× 4.8

ispd01 176715 70/70 324× 324 5× 5

ispd02 207972 80/80 424× 424 5× 5

ispd03 323887 92/92 474× 479 5× 5

ispd04 357104 92/92 474× 479 5× 5

It is important to note that for these benchmarks, two-terminal and three-terminal nets
constitute the majority of the nets in all the test benchmarks. The column, “Total Nets”,
indicates the total number of nets in each benchmark. The column, “H/V Cap”, lists the
horizontal and vertical edge capacity. Additionally, Table 6.1 lists the grid size and the
chip size to demonstrate the size of the routing problem. Based on the work in [12], the
chosen 130nm technology requires a buffer library that spans the range between 5 and 15
times the minimum sized buffer of Wp/Wn = 260/130nm to efficiently buffer the nets.

Accordingly, the buffer library for these tests represents three types of buffers; weak,
medium and strong. They are chosen to correspond to three different buffer sizes:

109

5, 10, 15×, the minimum buffer size of the 130nm technology. This allows the ver-
ification of the technique for different buffer driving capabilities. Table 6.2 lists the
parameters of the 130nm technology used for the power and delay calculation.

Table 6.2: Technology and equivalent circuit model parameters for global interconnects.

Parameters for 130nm Technology

Oxide thickness Tox(nm) 2.3
Gate relative dielectric constant εr 3.9
ILD relative dielectric constant εr 3.0

Transistor length Lmin(nm) 130
Supply voltage VDD(V) 1.2

Clock frequency fclk(GHz) 1.6
Saturation current IDD(µA/µm) 900

Subthreshold leakage Ioff (µA/µm) 0.01
Parasitic capacitance percent of

19%
ideal gate capacitance

Wire width Wwire(nm) 670
Wire width / thickness A/R 2.0

Wire height hwire(nm) 670
Wire spacing swire(nm) 670

Wire resistance rwire(kΩ/m) 24.5
Wire capacitance cwire(pF/m) 211.4

To fully quantify the performance of the proposed technique, the power savings,
routing quality, and runtime need to be discussed. Consequently, the following sections
introduce the results for these parameters when the PIRT is applied to the multi-pin
netlists in different benchmarks.

6.5.1 Experimental Results for Multi-Pin Nets

6.5.1.1 Power Savings

To calculate the power savings achieved by applying PIRT the value of Max Delay

needs to be identified. In addition, a baseline that does not perform power optimiza-
tion has to be established for comparison purposes. In the absence of clock frequency
constraints in the IBM and ISPD benchmarks the Max Delay value has to be identified

110

using the available routing information. SinceMax Delay is the longest net delay when
the chip is properly routed, i.e. all nets are optimized for their minimum delay, a delay
minimization model that uses the data from PIRT’s phase I and solves for the minimum
delay instead of minimum power will properly route the chip and the longest net delay
can be easily extracted. In addition, the power consumed by the final routing solution
of the delay minimization model is the perfect baseline to identify the power savings
achieved by PIRT in comparison to this delay minimization model.

6.5.1.2 Delay Minimization

In order to define the Max Delay and the power consumption of delay optimal routed
chip the following delay minimization model is solved.

Minimize
t∑

j=1

wdjxj, (6.13)

subject to

∑
xj∈Nk

xj = 1, k ∈ {1, ..., n},

t∑
j=1

aijxj − Capi ≤ Zi, i ∈ {1, ..., p},

xj ∈ {0, 1} j ∈ {1, ..., t},
Zi ∈ {0, C},

(6.14)

where xj represents tree j built for net k, Capi is the routing supply of each edge, and
Zi is a variable associated with the routing overflow of each edge. wdj represents the
weight, associated with the delay of tree j and is calculated by the following:

wdj =
delay of tree j

max delay of trees constructed for net k
(6.15)

The delay of tree j is modeled and calculated by (6.3).

In order solve the delay minimization model a number of allowable buffer locations
(about 10% of the total vertices) are generated(Fig. 6.10).

After the delay minimization problem is solved, one tree is selected for each net k
such that the total delay of all the nets is minimized under the routing overflow constraint.
The delay of net k equals the delay of the selected tree. The maximum delay of a circuit

111

Terminal 2

Terminal 1

Source

Buffer allowable location

Figure 6.10: Buffer location generation.

is defined as Max Delay = maxk∈N{dk}, where dk is the delay of net K after the
delay minimization. In addition, the power consumed by the final solution represents the
baseline power consumption for the calculation of the power savings.

6.5.1.3 Power Savings Comparison

Fig. 6.11 depicts the power savings achieved when the PIRT is applied to the various
benchmarks in Table 6.1 in comparison to the power consumption baseline established
in Section 6.5.1.2. In addition to the average power savings for the IBM and ISPD
benchmarks, respectively. This figure also compares the power savings when considering
only the two and three terminal nets that were buffered in phase I to the total power
savings when all the nets are included.

 0

 5

 10

 15

 20

 25

 30

 35

 40

IBM
8

IBM
9

IBM
10

ISPD1

ISPD2

ISPD3

ISPD4

Avg IBM

Avg ISPD

P
ow

er
 s

av
in

gs
 (

%
)

Buffered nets
Whole chip

Figure 6.11: Power savings by PIRT and the average for IBM and ISPD benchmarks
(strong buffer size.)

For the two and three terminal nets, the average savings for the IBM benchmarks and

112

ISPD2007 benchmarks are 16% and 32%, respectively. These values drop to 6.5% and
19%, when the remaining unbuffered nets are factored in. Since the global interconnects
consume up to 21% of the total dynamic power [9], PIRT is capable of saving up to
4% of the total dynamic power. A comparison of the results for the IBM and ISPD
benchmarks indicates a significant increase in savings for the ISPD benchmarks. This can
be attributed to the fact that the larger ISPD benchmarks have a higher number of long
buffered nets which are the primary target of the PIRT. Since the trend for future chips
is an increase in size,4 this enhanced performance of the PIRT for the ISPD benchmarks
emphasizes the importance of the PIRT as a power management technique.

Since PIRT specifies the delay constraint on the chip to be the delay of the worst net,
it is interesting to see how the PIRT affects the delay of the second worst net on the chip.
Fig. 6.12 shows the percentage difference between the delay of the worst and the second
worst nets. It is evident that the effect of the PIRT is to reduce the slack between these
two nets and translate it into power savings. Consequently, the average reduction of the
slack from 29% to 7% explains the savings in Fig. 6.11.

 0

 10

 20

 30

 40

 50

 60

IBM
8

IBM
9

IBM
10

ISPD1

ISPD2

ISPD3

ISPD4

Average

D
el

ay
 d

iff
er

en
ce

 (
%

)

Delay Minimization
Power Minimization

Figure 6.12: Delay difference for the second longest net between delay minimization and
power minimization.

Finally, a comparison of the PIRT average power savings with the different buffer
sizes in Fig. 6.13 shows that PIRT has more potential for larger buffer libraries. This
is explained by noting that the removal of a large power hungry-buffer from the strong
library results in higher savings, compared to the weak buffers, less power hungry, from
the same library. Although it is tempting to try to route the nets by using the weakest
buffer from the beginning, a significant hit to the signal integrity of the routed nets oc-
curs. Accordingly, the use of a mixed buffer library ensures that the nets are optimally
performing over a wide range of chip sizes.

4Although the area might not change, the number of nets and buffers are exponentially growing.

113

 10

 15

 20

 25

 30

 35

W
eak

M
edium

Strong

P
ow

er
 s

av
in

gs
 (

%
)

Figure 6.13: Average power reduction over different buffer sizes (5,10 and 15 times the
minimum sized buffer).

6.5.1.4 Routing Quality

Table 6.3 provides the total wirelength, number of bends, and overflow of the delay
minimization model, and power minimization model for the buffer size 15 x 130nm. As
shown, the power minimization model reduces the total overflow significantly without
increasing the total wirelength and total number of bends for both the IBM and ISPD
benchmarks. The overflow is reduced since PIRT allows for a more relaxed constraint
on the non-critical nets allowing for more detours. Although the wirelength of some nets
might slightly increase, the freed up tracks usually allows for an overall reduction of
power consumption by properly routing heavily loaded nets.

Table 6.3: Comparison of delay minimization and power minimization models.

Routing Results for Multi-pin Nets

Circuit Delay Minimization (15x130nm) Power Minimization (15x130nm)

Wirelength Bends OverFlow Wirelength Bends OverFlow

ibm08 1147507 9761 17 1147495 9592 6
ibm09 1043231 10264 634 1042778 10119 436
ibm10 1988162 13531 1180 1985537 13246 946

ispd01 1845740 61029 5 1845718 60962 0
ispd02 1698413 87202 53 1698048 86560 15
ispd03 2887420 106369 13 2887350 105656 3
ispd04 2950644 139298 4 2950627 138948 0

114

6.5.1.5 Computation Time

Table 6.4: Computation time comparison of PIRT for buffer size 15 x 130nm.

Computation Time of the PIRT (Routing Multi-pin Nets)

Circuit PIRT Method (buffer size:15 x 130nm)

T-Time(s) B-Time(s) S-Time(s) Tot-Time(s) T/PerNet(s)

ibm08 95 31 1 127 0.003
ibm09 167 46 9 222 0.005
ibm10 182 57 15 254 0.005

ispd01 5412 1850 28 7290 0.04
ispd02 12713 3290 50 16053 0.07
ispd03 23482 8197 880 32559 0.1
ispd04 24071 11007 980 36058 0.1

Table 6.4 displays a comparison of the computation time of the different phases of
the PIRT. Columns “T-Time”, “B-Time”, “S-Time”, and “Tot-Time” reveal the compu-
tation times of the tree construction phase, buffer insertion phase, power or delay model
solving time, and the total time, respectively. It is clear that most of the computation
time is consumed by the tree construction phase which is common to most other rout-
ing algorithms. Buffer insertion and power minimization phases consume a relatively
small part of the total computation time. Due to this small overhead, the PIRT manages
to achieve its goal of power reduction without affecting the total runtime. This enables
many existing routing techniques to benefit from the inclusion of the PIRT for power
minimization.

Finally, Table 6.5 compares the total runtime of PIRT versus state of the art power
minimization techniques. Since all existing techniques target the power minimization of
single nets and expect a sequential router to finalize the chip routing, they do not account
for congestion. On the other hand PIRT is capable of minimizing power, while managing
congestion with considerably lower average runtime.

6.6 Summary

Timing optimization and low power are important goals in global routing, especially
in deep submicron designs. Previous efforts that focused on power optimization for

115

Table 6.5: Computation time comparison with power driven routers.

Router
Processor and Memory Overflow Runtime(s)/net

Specifications avg/max avg/max

PB [93] 1.9GHz/2GB NA 472/1859
FREEZE [135] 2.8GHz/1GB NA 4.09/12.7
GP [136] 3.2GHz/0.5GB NA <1
PRI [137] 2.2GHz/1GB NA <0.12

PIRT
0.9GHz/1GB 200/946

0.03/0.1
SparcV9 (<2%)

global routing are hindered by excessively long run times or the routing of a subset of
the nets. Accordingly, the development of a multi-objective power efficient multi-pin
global routing technique (PIRT) is a critical component towards balancing chip’s power
budget. The integer linear programming based technique strives to find a power efficient
global routing solution. The results indicate that an average power savings as high as
32% for the 130-nm technology can be achieved with no impact on the maximum chip
frequency.

116

Chapter 7

Conclusions and Future Work

As transistor sizes shrink, the total power consumption of chips is becoming a dominant
factor in determining the chip performance. The power consumption of microprocessor
cores and interconnects constitutes a significant portion of the total power consumption
of modern microprocessors.

In this thesis, two power management techniques that tackle the power consump-
tion of the processor core and interconnects are developed. Both techniques represent a
cornerstone in the quest to achieve power budget closure for modern processors.

The concept of predictive sleep signal generation is developed through the design
of a Dynamic Sleep Signal Generator (DSSG) that is capable of tracking the processor
standby profile. The DSSG is responsible for the accurate generation of the sleep signal
for microprocessor functional units through the use of a simple finite state machine. The
DSSG is evaluated in comparison to a Static Sleep Signal Generator that triggers the sleep
signal based on a simple counter that is shown to be incapable of tracking the processor
behavior. A DSSG model is implemented in C++ to verify the accuracy. In addition, a
custom built 90nm DSSG circuit is designed to verify the power saving capabilities.

The DSSG exhibits accuracies up to 80% with leakage savings as high as 146%
compared to the SSSG. The newly proposed DSSG allows the processor to maximize its
leakage savings while minimizing the impact on the processor performance through the
reduction of the number of unnecessary assertions of the sleep signal.

In addition, a Power-efficient multi-pin ILP based global Routing Technique (PIRT),
that is able to accommodate simultaneous routing, congestion minimization and buffer
insertion is formulated. The methodology is able to account for the buffer and wire block-
age, and performs the optimization without affecting the chips maximum frequency.

117

The PIRT is formulated in two phases comprising buffered and unbuffered tree gen-
eration in addition to solving a power optimal ILP based model for minimizing power
while meeting the chips delay constraints. The tree generation steps are O(N logN)

where N is the total number of routed nets. While the power minimization model was
solvable in less than 0.1 second per net for several industrial benchmarks. Finally, PIRT
provides up to 32% power savings for the 130nm technology used in the formulation.

7.1 Contributions

The contributions of the research for this thesis can be summarized as follows:

Leakage power optimization for microprocessor cores

1. Contrary to compiler-based low leakage techniques that are bound to a specific
Instruction Set Architecture (ISA), the DSSG depends on only the information
about current and previous standby periods.

2. Phase extraction techniques that are concerned with the coarse granularity predic-
tion of program phases are not adequate for the task of low leakage management.
These techniques are generally slow and perform complex tasks, prohibiting the
techniques’ application in small-scale leakage management. In contrast, the DSSG
focuses on a fine granularity analysis (a few hundred cycles) of the profile infor-
mation.

3. Current circuit techniques for leakage power reduction depend on detecting when
the circuit is actually in standby, which leaves the techniques prone to erroneous
decisions regarding very short standby periods, since the techniques lack the ability
to predict the length of the period ahead of time [3–5]. Accordingly, the proposed
DSSG should eliminate these short periods from the decision tree of these tech-
niques

4. The proposed DSSG and the associated finite state machine are capable of track-
ing the executed program behavior across different time segments and predict the
length of the standby periods accordingly. This leads to a high accuracy in assert-
ing the sleep signal when it is most likely to achieve a net increase in the total
power savings. This is accomplished with minimal power overhead.

5. The DSSG is a simple hardware based approach. This allows the incorporation
of the DSSG in existing microprocessors (General purpose and embedded) with
minimal design overheads.

118

6. The DSSG finite state machine does not rely on any memory like structure re-
ducing the layout footprint and the overall power consumed to achieve the higher
prediction accuracy targeted by the DSSG.

7. The DSSG exhibits low power consumption, in the order of 300 µW to achieve
accuracies up to 80% in predicting the length of the standby period.

Dynamic power optimization for global interconnects

8. Unlike previous approaches, the newly developed approach is capable of timing
optimization, buffer insertion and power reduction simultaneously with routability
consideration.

9. The optimization of power consumption and simultaneously accounting for the
buffer blockage, which has not been considered in previous analytical formulations
of the power optimization problem, is formulated.

10. The optimization of the power consumption without affecting the chip maximum
frequency.

11. The problem is formulated so that it is independent of the delay and the power
models used, allowing for more flexibility in applying the new technique to scaled
technologies.

12. PIRT is capable of simultaneously routing and power optimizing the chip with
runtime less than 0.1 second per net.

7.2 Future Work

Since the DSSG has shown tremendous potential for managing the leakage in processor
functional units, it is expected that an extension of the DSSG to handle processor caches
will be beneficial as well. A cache targeting DSSG will require careful attention to the
shutdown procedure of the caches since a single cycle wake-up will inevitably strain the
power delivery grid.

In addition to cache targeted DSSG, state preserving low leakage techniques can be
employed to reduce the overhead of repopulating the caches on power up. However, it is
expected that predictively managing leakage in processor caches will require significant
changes the cache design.

119

Although the DSSG was tested on the RISC architecture the analysis of the DSSG
on CISC and multicore architectures can further extend the application domain of the
DSSG.

Finally, PIRT can be extended by further enhancement of the tree generation phase.
Priority tree generation where non critical nets can be tagged for elimination. In addi-
tion, the ability to elevate the priority of short critical nets can be easily incorporated.
PIRT can also be extended using enhanced buffer insertion techniques. These techniques
are expected to yield higher performance by increasing the quality of the buffered trees
constructed.

120

Publications

Publications resulting from this research

[1] Ahmed Youssef, Mohab Anis and Mohamed Elmasry, “A Comparative Study
between Static and Dynamic Sleep Signal Generation Techniques for Leakage Tolerant
Designs,” IEEE Transactions on VLSI Systems, accepted (in press)

[2] Ahmed Youssef, Mohamed Zahran, Mohab Anis and Mohamed Elmasry “On the
Power Management of Simultaneous Multithreading Processors”, IEEE Transactions
on VLSI systems (under review)

[3] Ahmed Youssef, Zhen Yang, Mohab Anis, Shawki Areibi, Anthony Vannelli, and
Mohamed Elmasry, “A Power-Efficient Multi-Pin ILP Based Routing Technique”, to
IEEE Transactions on Circuits and Systems-I (under review)

[4] Ahmed Youssef, Mohab Anis and Mohamed Elmasry, “Dynamic Standby Prediction
for Leakage Tolerant Microprocessor Functional Units,” Proceedings of the IEEE/ACM
conference on Microarchitecture (MICRO), 2006, pp. 371-381.

[5] Ahmed Youssef, Tor Myklebust, Mohab Anis and Mohamed Elmasry, “A
Low-Power Multi-Pin Maze Routing Methodology,” Proceedings of the IEEE
International Symposium on Quality Electronic Design (ISQED), 2007, pp. 153-158.
(Best Paper Award Nomination)

121

References

[1] J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of Superscalar
Processors. Boston: McGraw-Hill, 2005.

[2] “International Technology Roadmap for Semiconductors,” 2002. [Online].
Available: http://public.itrs.net/Files/2002Update/2002Update.htm.

[3] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar, and V. De, “Dynamic Sleep
Transistor and Body Bias for Active Leakage Power Control of Microprocessors,”
IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1838–1845, Nov. 2003.

[4] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose,
“Microarchitectural Techniques for Power Gating of Execution Units,” Proceed-
ings of the International Symposium on Low Power Electronics and Design, pp.
32–37, 2004.

[5] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman, “Man-
aging Static Leakage Energy in Microprocessor Functional Units,” IEEE/ACM In-
ternational Symposium on Microarchitecture, pp. 321–332, 2002.

[6] A. Bellaouar and M. I. Elmasry, Low-Power Digital VLSI Design. Boston:
Kluwer Academic Publishers, 1995.

[7] J. Cong, L. He, C. Koh, and P. H. Madden, “Performance Optimization of VLSI
Interconnect Layout,” Integration, the VLSI Journal, vol. 21, no. 1-2, pp. 1–94,
Nov. 1996.

[8] K. Banerjee and A. Mehrotra, “A Power-Optimal Repeater Insertion Methodology
for Global Interconnects in Nanometer Designs,” IEEE Transactions on Electron
Devices, vol. 49, no. 11, pp. 2001–2007, Nov. 2002.

[9] N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-Power Dissipa-
tion in a Microprocessor,” Proceedings of International Workshop on System Level
Interconnect Prediction, pp. 7–13, Feb. 2004.

122

http://public.itrs.net/Files/2002Update/2002Update.htm.

[10] D. Sylvester, H. Kaul, K. Agarwal, R. Rao, S. Nassif, and R. B. Brown, “Power-
Aware Global Signaling Strategies,” IEEE International Symposium on Circuits
and Systems, vol. 1, pp. 604–607, May 2005.

[11] J. Rabaey, A. Chandrakasan, and B. Nikolic’, Digital Integrated Circuits. NJ:
Prentice Hall, 2003.

[12] A. Youssef, M. Anis, and M. Elmasry, “POMR: A Power-Aware Interconnect Op-
timization Methodology,” IEEE Transactions on Very Large Scale Integration Sys-
tems, vol. 13, no. 3, pp. 297–307, March 2005.

[13] A. Youssef, T. Myklebust, M. Anis, and M. Elmasry, “A Low-Power Multi-Pin
Maze Routing Methodology,” Proceedings of the IEEE International Symposium
on Quality Electronic Design, pp. 153–158, 2007.

[14] Y. Peng and X. Liu, “Low-Power Repeater Insertion with both Delay and Slew
Rate Constraints,” Proceedings of the Design Automation Conference, pp. 302–
307, 2006.

[15] K. H. Tam and L. He, “Power Optimal Dual-Vdd Buffered Tree Considering
Buffer Stations and Blockages,” Proceedings of the Design Automation Confer-
ence, pp. 497–502, 2005.

[16] X. Liu, Y. Peng, and M. C. Papaefthymiou, “Practical repeater insertion for low
power: What repeater library do we need?” Proceedings of the Design Automation
Conference, pp. 30–35, 2004.

[17] Y. Peng and X. Liu, “FREEZE: Engineering A Fast Repeater Insertion Solver
for Power Minimization Using the Ellipsoid Method,” Proceedings of the Design
Automation Conference, pp. 813–818, 2005.

[18] V. Wason and K. Banerjee, “A Probabilistic Framework for Power-Optimal Re-
peater Insertion in Global Interconnects Under Parameter Variations,” Proceed-
ings of the International Symposium on Low Power Electronics and Design, pp.
131–136, 2005.

[19] W. T. Cheung and N. Wong, “Power optimization in a repeater-inserted intercon-
nect via geometric programming,” Proceedings of the International Symposium
on Low Power Electronics and Design, pp. 226–231, 2006.

[20] P. Kapur, G. Chandra, and K. C. Saraswat, “Power Estimation in Global Inter-
connects and its Reduction Using a Novel Repeater Optimization Methodology,”
Proceedings of the Design Automation Conference, pp. 461–466, 2002.

123

[21] H. Fatemi, B. Amelifar, and M. Pedram, “Power Optimal MTCMOS Repeater
Insertion for Global Buses,” Proceedings of the International Symposium on Low
Power Electronics and Design, pp. 98–103, 2007.

[22] K. Nose and T. Sakurai, “Power-Conscious Interconnect Buffer Optimization with
Improved Modeling of Driver MOSFET and its Implications to Bulk And SOI
CMOS Technology,” Proceedings of the International Symposium on Low Power
Electronics and Design, pp. 24–29, 2002.

[23] “International Technology Roadmap for Semiconductors,” 2007. [Online].
Available: http://public.itrs.net/Files/2007ITRS/Home2007.htm.

[24] R. H. Dennard, F. H. Gaensslen, W.-N. Yu, V. L. Rideout, E. Bassous, and A. R.
Leblance, “Design of Ion-Implanted MOSFET’S with Very Small Physical Di-
mensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256– 268, Sept.
1974.

[25] A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Performance Micro-
processor Circuits. IEEE Press, 2000.

[26] S. Thompson, P. Packan, and M. Bohr, “MOS Scaling: Transistor Challenges for
the 21st Century,” Intel Technology Journal, p. 19, 1998.

[27] M. Ellsworth, “Chip Power Density and Module Cooling Technology Projections
for the Current Decade,” Proceedings of the Intersociety Conference on Thermal
and Thermomechanical Phenomena in Electronic Systems, pp. 707–708, 2004.

[28] L. Wei, K. Roy, and K. D. Vivek, “Low Voltage Low Power CMOS Design Tech-
niques for Deep Submicron ICs,” Proceedings of the International Conference on
VLSI Design, pp. 24–29, 2000.

[29] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold Leakage Modeling
and Reduction Techniques,” Proceedings of the International Conference on
Computer-Aided Design, pp. 141–148, 2002.

[30] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Current Mech-
anisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Cir-
cuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, Feb. 2003.

[31] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. NY: Cambridge
University Press, 1998.

124

http://public.itrs.net/Files/2007ITRS/Home2007.htm.

[32] D. Sima, “Decisive Aspects in the Evolution of Microprocessors,” Proceedings of
the IEEE, vol. 92, no. 12, pp. 1896–1926, Dec. 2004.

[33] J. Smith and G. Sohi, “The Microarchitecture of Superscalar Processors,” in Pro-
ceedings of the IEEE, vol. 83, no. 12, pp. 1609–1624, Dec. 1995.

[34] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro,
vol. 16, no. 2, pp. 28–41, April 1996.

[35] D. M. Tullsen, S. Eggers, and H. M. Levy, “Simultaneous Multithreading: Max-
imizing On-Chip Parallelism,” Proceedings 22th International Symposium on
Computer Architecture, pp. 392–403, 1995.

[36] P. Kongetira, K. Aingaran, and K. Olukotun, “ Niagara: A 32-Way Multithreaded
SPARC Processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29, April 2005.

[37] P. Babighian, L. Benini, A. Macii, and E. Macii, “Post-Layout Leakage Power
Minimization Based on Distributed Sleep Transistor Insertion,” Proceedings of
the 2004 International Symposium on Low Power Electronics and Design, pp.
138–143, 2004.

[38] Y. Ye, S. Borkar, and V. De, “A New Technique for Standby Leakage Reduction
in High-Performance Circuits,” Digest of Technical Papers of the Symposium on
VLSI Circuits, pp. 11–13, June 1998.

[39] J. Kao, M. Miyazaki, and A. Chandrakasan, “A 175-mV Multiply-Accumulate
Unit Using an Adaptive Supply Voltage and Body Bias Architecture,” IEEE Jour-
nal of Solid-State Circuits, vol. 37, no. 11, pp. 1545–1554, Nov. 2002.

[40] H. Ananthan, C. H. Kim, and K. Roy, “Larger-than-Vdd Forward Body Bias in
Sub-0.5V Nanoscale CMOS,” Proceedings of the 2004 International Symposium
on Low Power Electronics and Design, pp. 8–13, 2004.

[41] M. Johnson, D. Somasekhar, and K. Roy, “Models and Algorithms for Bounds
on Leakage in CMOS Circuits,” Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 18, no. 6, pp. 714–725, June 1999.

[42] M. Johnson, D. Somasekhar, L.-Y. Chiou, and K. Roy, “Leakage Control with
Efficient Use of Transistor Stacks in Single Threshold CMOS,” Transactions on
VLSI Systems, vol. 10, no. 1, pp. 1–5, Feb. 2002.

125

[43] D. Duarte, Y.-F. Tsai, N. Vijaykrishnan, and M. J. Irwin, “Evaluating Run-Time
Techniques for Leakage Power Reduction,” Proceedings of the Design Automation
Conference, pp. 31–38, Jan. 2002.

[44] A. Bhavnagarwala, B. Austin, K. Bowman, and J. Meindl, “A Minimum Total
Power Methodology for Projecting Limits on CMOS GSI,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 8, no. 3, pp. 235–251, June. 2000.

[45] S. Tyagi, M. Alavi, R. Bigwood, T. Bramblett, J. Brandenburg, W. Chen, M. H.
B. Crew, P. Jacob, C. Kenyon, C. Lo, B. Mcintyre, Z. Ma, P. Moon, P. Nguyen,
L. Rumaner, R. Schweinfurth, S. Sivakumar, M. Stettler, S. Thompson, B. Tufts,
J. Xu, S. Yang, and M. Bohr, “A 130nm Generation Logic Technology Featuring
70nm Transistors, Dual Vt Transistors and 6 Layers Cu Interconnects,” Interna-
tional Electron Devices Meeting Technical Digest., pp. 567–570, 2000.

[46] M. Meijer, F. Pessolano, and J. P. de Gyvez, “Technology Exploration for Adaptive
Power and Frequency Scaling in 90nm CMOS,” Proceedings of the 2004 Interna-
tional Symposium on Low Power Electronics and Design, pp. 14–19, 2004.

[47] V. Gutnik and A. Chandrakasan, “Embedded Power Supply for Low-Power DSP,”
Transactions on VLSI Systems, vol. 5, no. 4, pp. 425–435, Dec. 1997.

[48] A. Keshavarzi, S. Narendra, S. Borkar, C. Hawkind, K. Roy, and V. De, “Tech-
nology Scaling Behavior of Optimum Reverse Body Bias for Standby Leakage
Power Reduction in CMOS IC’s,” International Symposium on Low Power Elec-
tronics and Design, pp. 252–254, 1999.

[49] M. Anis and M. Elmasry, Multi-Threshold CMOS Digital Circuits - Managing
Leakage Power. Norwell: Kluwer Academic Publishers, 2003.

[50] Z. Chen, L. Wei, and K. Roy, “Estimation of Standby Leakage Power in CMOS
Circuits Considering Accurate Modeling of Transistor Stacks,” Proceedings of the
International Symposium on Low-Power Electronics and Design, pp. 239–244,
1998.

[51] J. Al-Eryani, “FPU100 at Opencores.org,” 2007. [Online]. Available: http:
//www.opencores.org/projects/fpu100

[52] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-V High-
Speed MTCMOS Circuit Scheme for Power-Down Application Circuits,” IEEE
Journal of Solid-State Circuits, vol. 32, no. 6, pp. 861–869, June 1997.

126

http://www.opencores.org/projects/fpu100
http://www.opencores.org/projects/fpu100

[53] S. Kim, S. Kosonocky, D. Knebel, and K. Stawiasz, “Experimental Measurement
of a Novel Power Gating Structure with Intermediate Power Saving Mode,” Pro-
ceedings of the 2004 International Symposium on Low Power Electronics and
Design, pp. 20–25, 2004.

[54] Z. Zhu and X. Zhang, “Look-Ahead Architecture Adaptation to Reduce Processor
Power Consumption,” IEEE Micro, vol. 25, no. 4, pp. 10–19, July 2005.

[55] H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy, “Deterministic Clock
Gating for Microprocessor Power Reduction,” The International Symposium on
High-Performance Computer Architecture, pp. 113–122, 2003.

[56] H. Li, C. Cher, K. Roy, and T. N. Vijaykumar, “Combined Circuit and Architec-
tural Level Variable Supply-Voltage Scaling for Low Power,” IEEE Transactions
on Very Large Scale Integration Systems, vol. 13, no. 5, pp. 564–576, May 2005.

[57] A. Baniasadi and A. Moshovos, “Branch Predictor Prediction: a Power-Aware
Branch Predictor for High-Performance Processors,” Proceedings of the IEEE In-
ternational Conference on Computer Design: VLSI in Computers and Processors,
pp. 458–461, 2002.

[58] D. Parikh, K. Skadron, Y. Zhang, and M. Stan, “Power-Aware Branch Prediction:
Characterization and Design,” IEEE Transactions on Computers, vol. 53, no. 2,
pp. 168–186, 2004.

[59] K. Roy and S. Prasad, Low-Power CMOS VLSI Circuit Design. NY: Wiley-
Interscience, 2000.

[60] T. Takayanagi, J. L. Shin, B. Petrick, J. Y. Su, H. Levy, H. Pham, J. Son, N. Moon,
D. Bistry, U. Nair, M. Singh, V. Mathur, and A. S. Leon, “A Dual-Core 64-bit
UltraSPARC Microprocessor for Dense Server Applications,” IEEE Journal of
Solid-State Circuits, vol. 40, no. 1, pp. 7–18, Jan 2005.

[61] C.-L. Su, C.-Y. Tsui, and A. M. Despain, “Low Power Architecture Design and
Compilation Techniques for High-Performance Processors,” in Proceedings of the
IEEE Computer Conference, 1994, pp. 489–498.

[62] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee, “Instruction Level Power Anal-
ysis and Optimization of Software,” Journal of VLSI Signal Processing, vol. 13,
no. 2-3, pp. 223–238, Aug. 1996.

127

[63] T. Sherwood, E. Perelman, and B. Calder, “Basic Block Distribution Analy-
sis to Find Periodic Behavior and Simulation Points in Applications,” Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pp. 3–
14, 2001.

[64] N. Pettis, L. Cai, and Y.-H. Lu, “Dynamic Power Management for Streaming
Data,” Proceedings of the International Symposium on Low Power Electronics
and Design, pp. 62–65, 2004.

[65] S. Rele, S. Pande, S. Onder, and R. Gupta, “Optimizing Static Power Dissipa-
tion by Functional Units in Superscalar Processors,” Lecture Notes in Computer
Science, vol. 2304, pp. 261–276, 2002.

[66] H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “Adapting Instruction
Level Parallelism for Optimizing Leakage in VLIW Architectures,” Proceedings
of the ACM SIGPLAN conference on Languages, Compilers, and Tool support for
Embedded Systems, vol. 38, no. 7, pp. 275–283, 2003.

[67] S. Narayanasamy, T. Sherwood, S. Sair, B. Calder, and G. Varghese, “Catching
Accurate Profiles in Hardware,” Proceedings of the International Symposium on
High-Performance Computer Architecture, pp. 269–280, 2003.

[68] J. Lau, S. Schoenmackers, and B. Calder, “Transition Phase Classification and
Prediction,” Proceedings of the International Symposium on High-Performance
Computer Architecture, pp. 278–289, 2005.

[69] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Discovering and
Exploiting Program Phases,” IEEE Micro, vol. 23, no. 6, pp. 84–93, Nov.-Dec.
2003.

[70] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An Infrastructure for Computer
System Modeling,” IEEE Computer Magazine, vol. 35, no. 2, pp. 59–67, Feb.
2002.

[71] “SPEC Benchmark Suite Release 1.3,” SPEC 2000, 2000. [Online]. Available:
http://www.spec.org

[72] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “MiBench: A Free, Commercially Representative Embedded Benchmark
Suite,” IEEE International Workshop on Workload Characteristics, pp. 3–14,
2001.

128

http://www.spec.org

[73] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma, and M. G.
Rosenfield, “New Methodology for Early-Stage, Microarchitecture-Level Power
Performance Analysis of Microprocessors,” IBM Journal of Research and Devel-
opment, vol. 47, no. 5/6, pp. 653–670, Sept./Nov. 2003.

[74] C. Price, “MIPS IV Instruction Set, revision 3.1,” MIPS Technologies, Inc., Moun-
tain View, CA, January 1995.

[75] G. S. Sohi, “Instruction Issue Logic for High-Performance, Interruptible, Multiple
Functional Unit, Pipelined Computers,” IEEE Transactions on Computers, vol. 39,
no. 3, pp. 349–359, March 1990.

[76] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” Proceedings of Interna-
tional Symposium on Computer Architecture, pp. 83–94, 2000.

[77] M. Elgamel, S. Goel, and M. Bayoumi, “Noise Tolerant Low Voltage XOR-XNOR
for Fast Arithmetic,” Proceedings of the ACM Great Lakes symposium on VLSI,
pp. 285–288, 2003.

[78] N. Azizi, M. Khellah, V. De, and F. N. Najm, “Variations-Aware Low-Power De-
sign With Voltage Scaling,” Proceedings of the Design Automation Conference,
pp. 529–534, 2005.

[79] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,” in Proceedings of
the IEEE, vol. 89, no. 4, pp. 490–504, April 2001.

[80] M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and P. Shivakumar,
“The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays,”
Proceedings of the International Symposium on Computer Architecture, pp. 14–
24, 2002.

[81] S. Heo and K. AsanoviC, “Power-Optimal Pipelining in Deep Submicron Tech-
nology,” Proceedings of the International Symposium On Low Power Electronics
And Design, pp. 218–223, 2004.

[82] M.Anis, S.Areibi, and M.Elmasry, “Design and Optimization of Multi-Threshold
CMOS (MTCMOS) Circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 22, no. 10, pp. 1324–1242, Oct. 2003.

[83] A. K. Osowski and D. J. Lilja, “MinneSPEC: A New SPEC Benchmark Workload
for Simulation-Based Computer Architecture Research,” Computer Architecture
Letters, vol. 1, pp. 7–10, 2002.

129

[84] D. Tullsen, “Simulation and Modeling of a Simultaneous Multithreading Pro-
cessor,” 22nd Annual Computer Measurement Group Conference, pp. 819–828,
1996.

[85] S. Choi and D. Yeung, “Learning-Based SMT Processor Resource Distribution via
Hill-Climbing,” Proceedings of the International Symposium on Computer Archi-
tecture, pp. 239–251, 2006.

[86] J. Chang and G. Sohi, “Cooperative Caching for Chip Multiprocessors,” Proceed-
ings of the International Symposium on Computer Architecture, pp. 264 – 276,
2006.

[87] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Optimizing Replication, Com-
munication, and Capacity Allocation in CMPs,” Proceedings of the International
Symposium on Computer Architecture, pp. 357–368, 2005.

[88] I. M. Liu, A. Aziz, and D. E. Wong, “Meeting Delay Constraints in DSM by Min-
imal Repeater Insertion,” Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 436–440, 2000.

[89] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “BoxRouter 2.0: Architecture and Im-
plementation of a Hybrid and Robust Global Router,” Proceedings of the Interna-
tional Conference on Computer-Aided Design, pp. 503–508, 2007.

[90] R. T. Hadsell and P. H. Madden, “Improved Global Routing through Conges-
tion Estimation,” Proceedings of the Design Automation Conference, pp. 28 – 31,
2003.

[91] M. Hrkic and J. Lillis, “S-Tree: a technique for buffered routing tree synthesis,”
Proceedings of the Design Automation Conference, pp. 578–583, 2002.

[92] Y. Peng and X. Liu, “Low-Power Repeater Insertion with both Delay and Slew
Rate Constraints,” Proceedings of the Design Automation Conference, pp. 302–
307, 2006.

[93] K. H. Tam and L. He, “Power Optimal Dual-Vdd Buffered Tree Considering
Buffer Stations and Blockages,” Proceedings of the Design Automation Confer-
ence, pp. 497–502, 2005.

[94] C. Chiang, C. K. Wong, and M. Sarrafzadeh, “A Weighted Steiner Tree-based
Global Router with Simultaneous Length and Density Minimization,” IEEE

130

Transactions on Computer-Aided Design, vol. 13, no. 12, pp. 1461–1469, Dec.
1994.

[95] W. A. Dees and P. G. Karger, “Automated rip-up and reroute techniques,” Pro-
ceedings of ACM/IEEE Design Automation Conference, pp. 432–439, 1982.

[96] B. S. Ting and B. N. Tien, “Routing Technique for Gate Array,” IEEE Transac-
tions on Computer-Aided Design, vol. 2, no. 4, pp. 301–312, Oct. 1983.

[97] C. Albercht, “Global Routing by New Approximation Algorithms for Multicom-
modity Flow,” IEEE Transactions on Computer-Aided Design, vol. 20, no. 5, pp.
622–632, May 2001.

[98] R. Carden, J. Li, and C. Cheng, “A Global Router with a Theoretical Bound on the
Optimal Solution,” IEEE Transactions on Computer-Aided Design, vol. 15, no. 2,
pp. 208–216, February 1996.

[99] J. Cong, J. Fang, and Y. Zhang, “MARS-A Multilevel Full-Chip Gridless Routing
System,” IEEE Transactions Computer-Aided Design, vol. 24, no. 3, pp. 382–394,
March 2005.

[100] J. Huang, E. S. Kuh, C.Cheng, and X. Hong, “An Efficient Timing-Driven Global
Routing Algorithm,” Proceedings of the Design Automation Conference, pp. 596–
600, 1993.

[101] D. Wang and E. Kuh, “Performance-Driven Interconnect Global Routing,” Pro-
ceedings of the Great Lakes Symposium on VLSI, pp. 132–136, 1996.

[102] J. Cong and P. Madden, “Performance Driven Global Routing for Standard Cell
Design,” Proceedings of the ACM International Symposium on Physical Design,
pp. 73–80, 1997.

[103] K. Zhu, Y. W. Chang, and D. F. Wong, “Timing-Driven Routing for Symmetrical-
Array-Based FPGAs,” Proceedings of the International Conference on Computer
Design, pp. 628–633, 1998.

[104] J. Hu and S. Sapatnekar, “A Timing-Constrained Algorithm for Simultaneous
Global Routing of Multiple Nets,” Proceedings of the International Conference
on Computer-Aided Design, pp. 99 –103, 2000.

[105] T. Jing, X. L. Hong, J. Y. Xu, , C. K. C. heng, and J. Gu, “UTACO: A Unified Tim-
ing and Congestion Optimization Algorithm for Standard Cell Global Routing,”
IEEE Transactions Computer-Aided Design, vol. 23, pp. 358–365, 2004.

131

[106] I.-M. Liu, A. Aziz, D. F. Wong, and H. Zhou, “An Efficient Buffer Insertion Algo-
rithm for Large Networks Based on Lagrangian Relaxation,” Proceedings of the
International Conference on Computer Design, pp. 210–215, 1999.

[107] R. Chen and H. Zhou, “Efficient Algorithms for Buffer Insertion in General Cir-
cuits Based on Network Flow,” Proceedings of the International Conference on
Computer-Aided Design, pp. 509–514, 2005.

[108] M. Waghmode, Z. Li, and W. Shi, “Buffer insertion in large circuits with construc-
tive solution search techniques,” Proceedings of the Design Automation Confer-
ence, pp. 296–301, 2006.

[109] C. N. Sze, C. J. Alpert, J. Hu, and W. Shi, “Path based buffer insertion,” Proceed-
ings of the Design Automation Conference, pp. 509–514, 2005.

[110] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design.
Boston: Kluwer Academic Publishers, 1995.

[111] C. Chu and D. Wong, “Closed Form Solution to Simultaneous Buffer Inser-
tion/Sizing and Wire Sizing,” ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 6, no. 3, pp. 343–371, July 2001.

[112] R. Otten and G. S. Garcea, “Simultaneous Analytic Area and Power Optimiza-
tion for Repeater Insertion,” Proceedings of the International Conference on
Computer-Aided Design, pp. 568–573, 2003.

[113] R. Li, D. Zhou, J. Liu, and X. Zeng, “Power-Optimal Simultaneous Buffer In-
sertion/Sizing and Wire Sizing,” Proceedings of the International Conference on
Computer-Aided Design, pp. 581–586, 2003.

[114] A. Nalamalpu and W. Burleson, “A Practical Approach to DSM Repeater Inser-
tion: Satisfying Delay Constraints while Minimizing Area and Power,” Proceed-
ings of the IEEE International ASIC/SOC Conference, pp. 152–156, Sept. 2001.

[115] S. Turgis, N. Azemard, and D. Auvergne, “Design and Selection of Buffers for
Minimum Power-Delay Product,” Proceedings of the The European Design and
Test Conference, pp. 224–228, 1996.

[116] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl, “Minimum Repeater Count,
Size, and Energy Dissipation for Gigascale Integration (GSI) Interconnects,” Pro-
ceedings of the International Interconnect Technology Conference, pp. 56–58,
1998.

132

[117] C. Chu and D. Wong, “An Efficient and Optimal Algorithm for Simultaneous
Buffer and Wire Sizing,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 18, no. 9, pp. 1297–1304, Sept. 1999.

[118] L. P. P. P. van Ginneken, “Buffer Placement in Distributed RC-Tree Networks for
Minimal Elmore Delay,” Proceedings of the International Symposium on Circuits
and Systems, pp. 865–868, 1990.

[119] J. Cong, C. Koh, and K. Leung, “Simultaneous Buffer and Wire Sizing for Perfor-
mance and Power Optimization,” Proceedings of the International Symposium on
Low Power Electronics and Design, pp. 271–276, 1996.

[120] J. Lillis, C. Cheng, and T. Lin, “Simultaneous routing and buffer insertion for high
performance interconnect,” Proceedings of Great Lakes Symposium on VLSI, pp.
148–153, 1996.

[121] J. C. Shah and S. S. Sapatnekar, “Wiresizing with buffer placement and sizing for
power-delay tradeoffs,” Proceedings of VLSI Design, pp. 346–351, 1996.

[122] M. Lai and D. Wong, “Maze Routing with Buffer Insertion and Wiresizing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 21, no. 10, pp. 1205–1209, Oct. 2002.

[123] J. Cong and Z. Pan, “Interconnect Performance Estimation Models for Design
Planning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 20, no. 6, pp. 739–752, June 2001.

[124] N. Sherwani, Algorithms for VLSI Physical Design Automation. Boston, MA:
Kluwer Academic, 1999.

[125] D. M. Warme, “A New Exact Algorithm for Rectilinear Steiner Trees,” Interna-
tional Symposium on Mathematical Programming, 1997.

[126] W. C. Elmore, “The Transient Response of Damped Linear Networks,” Journal of
Applied Physics, vol. 19, pp. 55–63, Jan. 1948.

[127] S. C. Wong, G.-Y. Lee, and D.-J. Ma, “Modeling of Interconnect Capacitance,
Delay, and Crosstalk in VLSI,” IEEE Transactions on Semiconductor Manufac-
turing, vol. 13, no. 1, pp. 108–111, Feb. 2000.

[128] “BPTM Provided by the Device Group at UC Berkeley,.” [Online]. Available:
http://www-device.eecs.berkeley.edu/∼ptm/introduction.html

133

http://www-device.eecs.berkeley.edu/~ptm/introduction.html

[129] X. Tang, R. Tian, H. Xiang, and D. F. Wong, “A New Algorithm for Routing Tree
Construction with Buffer Insertion and Wire Sizing under Obstacle Constraints,”
Proceedings of the International Conference on Computer-Aided Design, pp. 49–
56, 2001.

[130] Z. Yang, S. Areibi, and A. Vannelli, “An ILP Based Hierarchical Global Routing
Approach for VLSI ASIC Design,” Optimization Letters, vol. 1, pp. 281–297,
June 2007.

[131] C. Chu, “ FLUTE: Fast Lookup Table Based Wirelength Estimation Technique,”
Proceedings of the International Conference on Computer Aided Design, pp. 696–
701, 2004.

[132] L. Behjat, A. Vannelli, and A. Kennings, “ Congestion Based Mathematical Pro-
gramming Models for Global Routing,” Proceedings of the Midwest Symposium
on Circuits and Systems, pp. 599–602, 2002.

[133] ISPD98/IBM, “www.ece.ucsb.edu/ kastner/labyrinth/benchmarks/,” 1998.

[134] ISPD2007, “http://www.ispd.cc/ispd07 contest.html,” 2007.

[135] Y. Peng and X. Liu, “FREEZE: Engineering a Fast Repeater Insertion Solver for
Power Minimization Using the Ellipsoid Method,” Proceedings of the Design Au-
tomation Conference, pp. 813–818, 2005.

[136] W. T. Cheung and N. Wong, “Power Optimization in A Repeater-Inserted Inter-
connect Via Geometric Programming,” Proceedings of The International Sympo-
sium on Low Power Electronics and Design, pp. 226–231, 2006.

[137] Y. P. X. Liu and M. Papaefthymiou, “Practical Repeater Insertion for Low Power:
What Repeater Library Do We Need?” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 5, pp. 917–924, May 2006.

134

	Introduction
	Motivation
	Leakage Power in Processor Functional Units
	Dynamic Power in Global Interconnects

	Thesis Organization

	CMOS Power Consumption
	Technology Scaling
	Sources of Power Consumption
	Switching Power
	Short-Circuit Power
	Leakage Power

	Managing CMOS Power Consumption
	Dynamic Power Management
	Leakage Power Management

	Microprocessor Leakage Power Management
	Microprocessor Architecture
	Pipelined Processors
	Superscalar Processors
	SMT Processors

	Leakage Power Management Techniques
	Leakage Power Management Overview
	Circuit-Level Leakage Control Techniques
	System-Level Leakage Control Techniques
	Program Profiling
	Phase Extraction
	Discussion

	Summary

	Predictive Sleep Signal Generation
	Sleep Signal Generation
	Proposed Dynamic Sleep Signal Generation
	The DSSG architecture

	Sleep Signal Generation for Superscalar Processors
	Superscalar Simulation Environment
	DSSG and SSSG Circuit Implementation and Power Consumption
	Accuracy of the Sleep Signal Generators on Superscalar Processors
	DSSG and SSSG Design Issues
	Superscalar Leakage Saving Potential for Sleep Signal Generators

	Summary

	Application of Sleep Signal Generation on SMT Processors
	SMT Experimental Setup
	Predictive Sleep Signal Generation on SMT processors
	DSSG and SSSG Circuit Implementation and Power Consumption for SMT processors
	Accuracy of the Sleep Signal Generators on SMT Processors
	The Sleep Signal Generators Workload Dependence on SMT Processors
	SMT Leakage Savings Potential for Sleep Signal Generators

	Architectural Dependence of Predictive Sleep Signal Generation
	Floating Point ALU
	Floating Point Multiply
	Integer Multiply
	Memory Latency
	Load Store Queue (LSQ)

	Embedded Processors
	Summary

	Multi-Pin Interconnect Power Optimization
	Power Driven Routing
	Introduction
	Global Routing: Unified Timing and Congestion Minimization
	Buffer Insertion-Based Methods

	Preliminaries
	Global Routing Problem
	Global Routing Techniques
	Interconnect Modeling

	Power-Efficient Multi-pin ILP Based Global Routing
	PIRT Phases
	Phase I (Initialization)
	Phase II (Power Minimization)

	Experimental Results
	Experimental Results for Multi-Pin Nets

	Summary

	Conclusions and Future Work
	Contributions
	Future Work

	Publications
	References

