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Abstract 

This research is concerned with bioenergy systems planning and optimization modelling in 

the context of locating biomass power plants and allocating available biomass feedstock to 

the active plants. Bioenergy, a promising renewable energy resource, has potentially 

significant benefits to climate change, global warming, and alternative energy supplies. As 

modern bioenergy applications in power production have the ability to generate cleaner 

electricity and reduce Green House Gas (GHG) emissions compared with traditional fossil 

fuels, many researchers have proposed various approaches to obtain competitive power 

generation prices from biomass in different ways. However, the highly dispersed 

geographical distribution of biomass is a big challenge for regional bioenergy systems 

planning.  

This thesis introduces an integrated methodology combining Geographic Information 

Systems (GIS) and discrete location theories for biomass availability assessment, biomass 

power plant candidate selection, and location-allocation of power plants and biomass 

supplies. Firstly, a well known discrete location model – the p-Median Problem (PMP) 

model is employed to minimize the weighted transportation costs of delivering all collectable 

biomass to active power plants. Then, a p-Uncapacitated Facility Location Problem (p-UFLP) 

model for minimizing the Levelized Unit Costs of Energy (LUCE) is proposed and genetic 

algorithms (GAs) for solving these optimization problems are investigated. To find the most 

suitable sites for constructing biomass power plants, the Analytic Hierarchy Process (AHP) 

and GIS based suitability analysis are employed subject to economical, societal, public health, 

and environmental constraints and factors. These methods and models are aimed at 

evaluating available biomass, optimally locating biomass power plants and distributing all 

agricultural biomass to the active power plants.  

The significance of this dissertation is that a fully comprehensive approach mixed with the 

applications of GIS, spatial analysis techniques, an AHP method and discrete location 

theories has been developed to address regional bioenergy systems planning, involving 

agricultural biomass potential estimation, power plants siting, and facility locations and 
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supplies allocation scenarios. With the availability of the spatial and statistical data, these 

models are capable of evaluating and identifying electric power generation from renewable 

bioenergy on the regional scale optimally. It thus provides the essential information to 

decision makers in bioenergy planning and renewable bioenergy management. An 

application sited in the Region of Waterloo, Ontario Canada is presented to demonstrate the 

analysis and modelling process. 
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Chapter 1 Introduction 

 

1.1 Research Motivation 

Energy and environmental issues are two common concerns of modern society. Energy is a 

central part of every human being’s daily life. In all its forms, such as chemical energy (food), 

thermal energy (heat), or electricity, energy has the ability to transform the daily lives of 

humans across the world by easing workloads, boosting economies and generally increasing 

the comfort of our lives. Worldwide energy consumption has been increasing rapidly. The 

increasing trend of energy consumption has been accelerated by the improvement of the 

quality of life that almost directly relates to the amount of energy consumed. At present, 

fossil fuels based energy resources, such as coal, gas, and oil, supply the majority of the total 

world energy requirement. According to the statistical data from the International Energy 

Agency (IEA), the world total final energy consumption is 7644 Mtoe1. As much as 66.7 

percent is supplied by fossil fuels (i.e., Oil: 42.3%, Gas: 16.0%, and Coal: 8.4%). 

Combustible renewable and waste account for 13.7%, electricity for 16.2%, and other energy 

resources shares 3.4% of the total energy consumption (IEA, 2006).  

Consuming fossil fuels has improved our lives in many ways, but burning fossil fuels has 

also created threats to our environment. Burning fossil fuels has provided us with energy for 

lights, refrigeration, air conditioning, and electronics- such as radio, TV, and computers. Yet 

the use of fossil fuel energy has also brought several problems. As Henry Ford II said, “The 

economic and technological triumphs of the past few years have not solved as many 

problems as we thought they would, and, in fact, have brought us new problems we did not 

foresee”. Fossil fuels were thought to be a perfect energy resource when they were 

increasingly used since the industrial revolution. They are applied for electricity generation 

                                                      
1 Mtoe: Million Tons of Oil Equivalent 
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in the 20th century, a period that is described as the golden era of fossil fuels. For example, 

the electricity generated by fossil fuels increased from less than 2% in 1900 to more than 

30% by 2000 (Smil, 2000). Environmental implications began to emerge due to the 

exponentially increased applications of fossil fuels in the middle part of the 20th century 

(Venema, 2004). Fossil fuels consumption is believed to be the primary factor contributing to 

serious environmental problems, such as global warming, climate change and acid rain, 

which are a serious threat to the world’s ecosystems and the prosperity of human civilizations. 

Figure 1.1 illustrates the world CO2 emissions by fuel from 1971 to 2004. The IEA (2006) 

statistical data shows that about 26583 Mt of CO2 was emitted to the atmosphere in 2004. 

99.7% of these CO2 emissions are contributed by fossil fuels, i.e. coal: 40.0%, oil: 39.9%, 

and gas: 19.8%. The other 0.3% CO2 emissions are from industrial waste and non-renewable 

municipal waste. Therefore, climate scientists argue that in order to stabilize the earth’s 

climate and prevent further global warming, the earth requires a 70% cut in present carbon 

dioxide emissions by 2050 [Flannery 2005]. 

 

Figure 1-1 World CO2 emissions by fuel (Source: IEA, 2006) 
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Besides the environmental fatigue or failure caused by the dominance of the current fossil-

fuel-based single-energy system, Li (2005) claimed that energy diversification and 

localization can provide security for energy supply and distribution as well for the energy 

consumers. For example, the blackout in the northeastern states to the Midwest of the United 

States and part of Canada on August 12, 2003 could have been avoided or resolved faster. In 

the end, Li (2005) recommended that energy diversity should be promoted as the only 

sensible and feasible solution for sustainable development. In order to mitigate climate 

change and global warming, carbon dioxide emission must be reduced significantly. The 

applications of renewable energy resources, such as biomass energy, hydropower, 

geothermal, wind power, and solar, should be encouraged. In the executive summary of IEA 

2006, it claims “Beyond 2020, the role of renewable energy in global energy supply is likely 

to become much more important”.  

Biomass energy is a traditional source of sustainable energy, which has been widely used in 

developing countries. As well, bioenergy will continue to be the major energy source in 

developing countries over the next two decades (IEA, 2006). Bioenergy is stored energy 

from the sun contained in materials such as plant matter and animal waste, known as biomass. 

Typical biomass resources include wood residues, generated from wood products industries; 

agricultural residues, generated by crops, agro industries and animal farms; energy crops, 

crops and trees dedicated to energy production; and municipal solid waste (MSW). From the 

latest final report prepared by Tremeer (2007), in 2004, renewable energy accounted for 

12.1% of the 11059 Mtoe of the world total primary energy supply. Combustible renewable 

and waste, 97% of which is biomass, represented 79.4% of total renewable resources, 

meaning that in 2004 biomass accounted for about 10% of World Total Primary Energy 

(TPES) or 1100 Mtoe (OECD2/IEA 2006). The largest contribution to energy consumption, 

on average between a third and a fifth, is found in developing countries compared with 3% in 

industrialized countries (Voivontas, et al., 2001). In non-OECD countries, Europe and the 

                                                      
2 The Organization of Economic Cooperation and Development, includes about 25 industrialized countries 
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former USSR3 renewables contribute, according to IEA statistics for 2004, 10.6% and 3% of 

TPES, respectively. 

The applications of biomass have great benefits on the environment if biomass resources are 

sustainably managed. Biomass energy is considered renewable because it is replenished more 

quickly when compared to the hundreds and millions of years required to replenish fossil 

fuels.  Figure 1.2 illustrates the recycling of carbon as biomass accumulates in energy crops 

and forests and is consumed in a power station. First of all, the collected biomass from 

agricultural or forestry residues is transported from the field to a conversion facility (i.e. 

biomass power plant). The energy stored in the chemical bonds of the biomass are extracted 

and converted into electricity by initially combusting with oxygen (O2). In this process, one 

of the products- carbon dioxide (CO2) is released to the atmosphere. So far, this process is 

almost the same as coal fired power generation. However, the carbon dioxide generated from 

biomass combustion is absorbed by agricultural crops and forests through photosynthesis, 

where carbon dioxide is absorbed and oxygen is released to the atmosphere. This course of 

action occurs in a relatively short period of time and the process is cyclical as the CO2 is 

available to produce new biomass. Nevertheless, fossil fuels which take millions of years to 

be converted from biomass are not deemed as renewable within a time-scale mankind can use. 

As McKendry (2002) has pointed out “burning fossil fuels uses ‘old’ biomass and converts it 

into ‘new’ CO2 which contributes to the greenhouse effect and depletes a non-renewable 

resource”.  

                                                      
3 Union of Soviet Socialist Republics 
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Figure 1-2 An illustration of the recycling of carbon in biomass application 

(Source: Matthews and Robertson, 2002) 

Besides the environmental benefits from biomass energy application, McKendry (2002) 

summarized two other factors that drive the usage of biomass energy: 

♦ Firstly, technological developments relating to the conversion, crop production etc. 

promise the application of biomass at lower cost and with higher conversion efficiency 

than was possible previously. For example, when low cost biomass residues are used for 

fuel, the cost of electricity is already now often competitive with fossil fuel-based power 

generation. More advanced options to produce electricity are looking promising and 

allow a cost effective use of energy crops. 

♦ The second main stimulus is the agricultural sector in Western Europe and in the US, 

which is producing food surpluses. This situation has led to a policy in which land is set 

aside in order to reduce surpluses. Related problems, such as the de-population of rural 

areas and payment of significant subsidies to keep land fallow, makes the introduction of 

alternative, non-food crops desirable. Demand for energy will provide an almost infinite 

market for energy crops grown on such potentially surplus land. 

Venema (2004) presents a comprehensive discussion about the role of rural renewable energy 

design. He concluded: “alleviating rural energy poverty begins with improved management 

and use of local bioenergy resources”. By adopting modern conversion technologies, existing 

biomass resources could be more efficiently converted into electricity, thereby addressing 
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chronic energy shortages in the rural areas of some developing countries, where about two 

billion people have no access to electricity (Venema and Calamai, 2003). Biomass based 

decentralized renewable generation (DRG) may become the most plausible way to achieve 

rural electrification. 

Despite the potential benefits from the applications of bioenergy, the large scale use of 

biomass is still controversial. Negative impacts of large scale uses of bioenergy may be 

imposed on land use, soil, biodiversity, hydrology energy and carbon balance, and natural 

scene when applying dedicated second generation biomass crops for power generation and 

liquid transportation (Rowe et al. (2007). Therefore, a local or regional scale of bioenergy 

application for power generation is more attractive. By only considering the agricultural and 

horticultural residues as the biomass feedstock to feed small scale of decentralized renewable 

generators, the impacts on the local environment and economics will be much reduced. 

However, the highly dispersed geographical distribution of biomass makes it difficult to 

estimate the potential biomass production, locate the best sites to construct decentralized bio-

power plants and allocate available biomass to these selected plants optimally. The research 

presented in this thesis focuses on regional bioenergy systems planning for power generation, 

and introduces a set of optimization models which utilize GIS screening techniques and 

discrete location theory to assess agricultural biomass availability, and select optimized bio-

power plant locations and biomass allocation scenarios. The results from this research are 

important in aiding spatial biomass energy system design practices. 

1.2 Research Objectives 

The goal of this thesis is to develop an integrated methodology combining Geographic 

Information Systems (GIS), Analytic Hierarchy Process (AHP), and discrete location theories 

to design spatially optimal biomass energy systems. The specific objectives of this research 

are to:  

♦ Develop a land use based agricultural biomass potential availability assessment model 

to evaluate biomass production; 
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♦ Develop a GIS and Analytic Hierarchy Process (AHP) based suitability analysis for 

potential biomass power plant candidates selection to be used for power plants siting by 

considering multiple constraints and factors; 

♦ Employ discrete location theories to formulate optimization models for spatially 

optimal bioenergy systems design; 

♦ Employ Genetic Algorithms (GAs) to solve the location-allocation models and 

present the results using GIS map presentations. 

The objectives are interrelated. The first two objectives provide not only the essential input 

parameters for the last two objectives, but also make it possible to achieve the last two 

objectives effectively.  

1.3 Scope of the Thesis 

This thesis consists of five chapters. This chapter introduces the background, motivation and 

objectives of this study. Chapter 2, Background and Literature Review, gives a detailed 

background introduction on biomass energy systems design and reviews different parts of the 

design procedure. Chapter 3, Basic Methodology, demonstrates the methodologies being 

applied in this research. GIS applications, biomass supplies evaluation model, suitability 

analysis methods, Analytic Hierarchy Process (AHP) method, p-median problem (PMP) 

model, and uncapacitated facility location problems (UFLP) are introduced in this chapter. A 

case study in the Region of Waterloo, Ontario Canada is completed in Chapter 4 by applying 

the proposed integrated methodology. Results from this study are illustrated in GIS maps. 

Chapter 5 presents the conclusions of this research and directions for future research work in 

bioenergy systems planning. 
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Chapter 2 Background and Literature 
Review 

 

The bioenergy systems planning process requires some basic understanding of background 

information including: 1) bioenergy resources and conversion; 2) the relationship between 

bioenergy applications and energy consumption and environmental problems; and 3) current 

existing biomass applications associated with bioenergy systems design and modelling 

approaches. This chapter consists of four sections discussing the background and review 

items mentioned above. A summary is presented in the last section. 

2.1 Bioenergy Resource and Conversion Technologies 

Rapidly increased demand and consumption of world energy and our progressively 

deteriorated environment drive researchers to look for alternative energy resources and try to 

solve the environmental issue at the same time. As briefly discussed in Chapter 1, bioenergy 

is a promising renewable energy resource not only with significant benefits with respect to 

the environment compared with non-renewable fossil fuels, but also as an alternative energy 

to meet energy demands. This section will discuss how bioenergy applications can have the 

potential to support energy supplies and protect the environment. 

2.1.1 Bioenergy Resources 

Biomass energy is the oldest major source of energy for mankind and is presently evaluated 

to contribute about 10% to 14% of the world’s energy supply (McKendry, 2002). Biomass is 

a scientific term for products derived from living organisms- wood from trees, harvested 

grasses, plant parts and residues such as twigs, stems and leaves, as well as aquatic plants and 

animal wastes. Domestic biomass resources include biomass processing residues, urban 
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wood wastes, municipal solid wastes (MSW), animal wastes and energy crops. These 

biomass resources are described briefly in the following excerpt from the Renewable Energy 

Policy Project (REPP). 

♦ Biomass processing residues include pulp and paper operation residues, forest residues, 

and agricultural or crop residues. All processing of biomass yields by-products and waste 

streams collectively called residues, which have significant energy potential. 

Agricultural and forest residues are the main categories of biomass residues that have 

been investigated. Agricultural residues consist of corn stover (stalks and leaves), wheat 

and rice straw, and processing residues such as nut hulls. Forest residues typically refer 

to those parts of trees unsuitable for forestry products or wood from forest thinning 

operations that reduce forest fire risk.  

♦ Municipal solid waste (MSW) is the residues associated with human activity, such as 

waste rubber tire, waste plastic, wood waste and yard wastes, and waste paper. Urban 

wood waste is the largest source of waste from construction products [Seadi, 2002]. 

Most of the MSW is derived from plant matter and could be used for firing special MSW 

power systems. In the United States, approximate 2,500MW of MSW could be used for 

electric power generation. 

♦ Animal manure is another type of biomass that includes cattle, chicken and pig waste. 

Animal waste can be converted into gas or burned directly for heat and power generation. 

In the developing world, dung cakes are used as a fuel for cooking. Since animal waste 

farms and animal processing operations create large amounts of animal wastes that 

constitute a complex source of organic materials with environmental consequences, 

utilizing the manure to produce energy properly lowers the environmental and health 

impacts.  

♦ Energy crops are fast growing plants, trees and other herbaceous biomass which are 

harvested specially for energy production other than food or feed. They are considered as 

very important sources for obtaining biomass energy. Typical energy crops include 

herbaceous energy crops, woody energy crops, industrial crops, agricultural crops, and 
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aquatic crops. These include switchgrass, hybrid poplars and willows, kenaf, soybean oil 

and meat, and algae.  

From the sources of biomass presented above, it is obvious that biomass resources are 

distributed all over the lands, unlike fossil fuels which are concentrated in some particular 

spots. It is this characteristic that presents the biggest challenge in spatial bioenergy systems 

planning. Another important property of biomass energy is their bulk density, or volume, 

both as produced and as subsequently processed. Table 2.1 shows the comparisons of the 

bulk density and volumetric energy contents of some selected biomass and fossil fuels. In 

this table, we can observe that raw biomass, such as agricultural residues, rice hulls, net 

shells, and wood, has a relatively low bulk density and lower volumetric energy contents 

compared to coal. However, if the raw biomass is converted into bio-products, such as bio-

diesel, pyrolysis oil, and ethanol, both the density and volumetric energy contents are very 

close or even higher than fossil fuels. In addition, it is apparent that transportation of raw 

biomass could be costly because of their low bulk density and volumetric energy contents 

compared to traditional fossil fuels. Thirdly, biomass has vast potential by world regions. The 

International Institute for Applied Systems Analysis (IIASA) produced a scenario for 

assessing the bioenergy potential based on economic criteria. Under this scenario, the 

bioenergy potential in 2020 could increase by 25% to 40% over 1990 reaching 67,557,569 

Mtoe (International Energy Agency 2001). Some regions have more bioenergy potential. For 

example, according to the research of BIOCAP4 Canada Foundation, Canada’s vast forest 

resources are on a similar scale in energy terms to that of the Alberta oil sand if the resources 

are carefully managed to ensure their long term sustainability. BIOCAP Canada estimates the 

above ground biomass has an energy content of about 535 EJ or 50% of the proven reserves 

in the oil sands. The biomass potential in Ontario, estimated by BIOCAP, is sufficient to 

support at least 27% of the total current energy need of the province (Layzell, et al., 2006).  

                                                      
4 A Canadian foundation dedicated to generating insights and technologies to inform the optimal use of Canada’s ‘biological 

capital’ (i.e. forests, farmlands, aquatic resources) to support the transition to a sustainable bioeconomy. 
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These two properties of biomass, i.e. highly spatial distribution and low density, increase the 

costs of harvesting, collecting and transporting of the agricultural and forestry residues and 

present a challenge in optimally locating conversion facilities and allocating available 

biomass feedstock to the facilities in biomass energy systems designed to reduce the costs of 

bioenergy production.  

Table 2.1 Density and volumetric energy contents of various solid and liquid fuels  

Fuel Bulk Density (kg/m3) Volumetric Energy Contents (GJ/ m3) 

Ethanol 790 23.5 
Methanol 790 17.6 
Bio-diesel 900 35.6 

Pyrolysis oil 1280 10.6 
Gasoline 740 35.7 

Diesel fuel 850 39.1 
Agricultural residues 50-200 0.8-3.6 

Hardwood 280-480 5.3-9.1 
Softwood 200-340 4.0-6.8 

Baled straw 160-300 2.6-4.9 
Bagasse 160 2.8 

Rice hulls 130 2.1 
Nut shells 64 1.3 

coal 600-900 11-33 
(Source: Brown, 2003)   

In this thesis, an integrated methodology for biomass energy systems design will be 

introduced applying a set of spatial analysis techniques and mathematical models. The 

following subsection discusses the biomass energy conversion technologies and their 

applications. 

2.1.2 Biomass Conversion Technologies and Applications  

In the previous subsection, biomass resources and two important characteristics impacting 

their viability as an energy source are discussed. In this subsection, fundamental biomass 
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applications and conversion technologies are examined. As Venema (2004) points out: 

“energy intervention programs historically attempted to move people up the ‘ladder of fuel 

preference’”. Traditional biomass applications, for instance, cooking or heating with wheat 

straw, are associated with low efficiency and poverty. The Energy ladder was first 

introduced by Leach (1992) in the context of energy transition theory. Energy applications 

move up on “ladder” from biomass fuels (animal dung, crop residues, and wood)  to cleaner, 

more efficient and more expensive liquid fuels (kerosene, gas) and electricity, as household 

possession increases. The fact that about two billion people (almost all of them live in the 

undeveloped rural areas) have little or no access to electricity and depend on biomass for 

their primary energy needs in the rural areas in some developing countries (Venema and 

Calamai 2003) reflects poor situations in their everyday life. It is essential to enhance the 

quality of life in the rural areas by converting the most accessible biomass into bio-fuels or 

electric power locally.  

The purpose of a biomass conversion technology is to transform biomass into higher energy 

applications on the energy ladder. Biomass conversion can be classified into two main 

process technologies: thermo-chemical and bio-chemical conversions.  

 

Figure 2-1 Main processes, intermediate energy carriers and final energy products from 

the thermo-chemical conversion of biomass (Source: Mckendry, 2002)  
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1) Thermo-chemical conversion 

Three main processes are used for the thermo-chemical conversion of biomass together with 

two lesser used options. The main processes, the intermediate energy carriers and the final 

energy products from the thermo-chemical conversion procedure are illustrated in figure 2.1. 

♦ Combustion 

Combustion is the rapid oxidation of fuels to obtain energy in the form of heat. Since 

biomass resources are primarily composed of carbon, hydrogen, and oxygen, the main 

oxidation products are carbon dioxide (CO2) and water (H2O). Figure 2.2 shows the 

combustion process. The combustion process converts the chemical energy stored in biomass 

into heat, mechanical power, or electricity by applying various combustion equipments, e.g. 

combustors, boilers, steam turbines, turbo-generators, etc. The combustion of biomass is 

feasible only for biomass with a moisture content less than 50%, unless the biomass needs to 

be pre-dried (McKendry 2002). Therefore, field drying of biomass is desirable to reduce both 

transportation costs and heating penalties if direct combustion is selected for conversion. Co-

combustion with coal is one option to generate electricity in the existing coal-fired power 

plants due to their high conversion efficiency. The net bioenergy conversion efficiency for 

biomass combustion power plant ranges from 25%-35% (1-100MW) and 35%-40% (larger 

than 100MW)  (Layzell, Stephen et al. 2006).  

 

Figure 2-2 Schematic representation of the combustion process 

♦ Thermal Gasification 

Thermal gasification uses high pressure and temperature to convert solid biomass into 

gaseous and liquid forms. This gas consists of carbon monoxide (CO), hydrogen (H2), 
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methane (CH4), nitrogen (N2), carbon dioxide (CO2), and small quantities of higher 

hydrocarbons. Figure 2.3 demonstrates the process of gasification. The produced gas can be 

burnt directly or used as a fuel for gas engines and gas turbines. The integrated 

gasification/combined cycle (IGCC) technology is considered to be a promising method of 

converting bioenergy. One advantage of IGCC gasification is to lower the emissions of 

particulate, NOx, and SOx (Layzell et al., 2006). Another important advantage of IGCC 

systems is that the gas is cleaned before being combusted in the turbine, allowing more 

compact and less costly gas cleaning equipment to be used, as the volume of gas to be 

cleaned is reduced (KcKendy, 2002).  

The research of BIOCAP Canada (2006) indicates that the overall efficiencies of high 

pressure IGCC systems can reach 40-55% which are gradually improved compared with 35-

38% in the research of Craig and Mann in 1997 and that of 40-50% in KcKendy’s study in 

2002. However, several technological issues, such as pre-treatment and tar removal, still need 

to be solved, resulting in a very slow development of biomass gasification in a rapid 

liberalised energy sector (Faaij 2006). 

 

Figure 2-3 Schematic representation of the gasification process 

♦ Pyrolysis  

Pyrolysis is a complicated series of thermally driven chemical reactions that decompose organic 

compounds in the fuel. Pyrolysis proceeds at relatively low temperatures (around 500℃) in the 

absence of oxygen. Figure 2.4 depicts the range and possible yields of pyrolysis energy 

products. Pyrolysis is used to produce bio oil as a pre-treatment step to reduce the 

transportation costs in further conversion, such as efficient power generation or oil 

gasification for syngas production. Faaij (2006) has demonstrated that pyrolysis is less well 

developed than gasification. Problems with the conversion process and subsequent use of the 
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oil, such as its poor thermal stability and its corrosivity still need to be overcome (McKendry, 

2002). The conversion efficiency of pyrolysis ranges from 20% to 25%.  

 

Figure 2-4 Energy products from pyrolysis (Adapted from McKendry 2002) 

♦ Other conversion technologies 

Other thermal chemical conversion technologies include hydro thermal upgrading (HTU) and 

liquefaction (conversion under high pressure) (Naber et al., 1997). HTU converts biomass in 

a wet environment at high pressure to partly oxygenated hydrocarbons. Liquefaction is the 

conversion of biomass into a stable liquid hydrocarbon using low temperatures and high 

hydrogen pressures. There are fewer applications of liquefaction mainly due to the fact that 

the reactors and fuel-feeding systems are more complex and more expensive than the 

pyrolysis processes (McKendry, 2002). 

2) Bio-chemical conversion 

There are three processes used in bio-chemical conversion of biomass: fermentation, 

anaerobic digestion (AD), and mechanical extraction/chemical conversion. Fermentation and 

AD are more popular than the mechanical extraction method. 

♦ Fermentation 

Fermentation is a biological process in which enzymes produced by micro-organisms 

catalyze energy releasing reactions that break down complex organic substrates under 
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anaerobic conditions. The major application in the fermentation industry is the production of 

ethanol, which is marketed to both fuel and beverage industries (Brown, 2003). It is 

commercially used on a large scale in various countries to produce ethanol from sugars crops. 

Several factors limit the use of the fermentation technology in the production of chemicals. 

Production rates by micro-organisms in aqueous media are inherently low. Most fermentation 

requires aseptic conditions, which can be difficult to achieve in large scale operations. 

Recovery of water soluble products from dilute solutions is expensive. The waste water in 

the process needs to be treated before being discharged due to the high biological oxygen 

demand (Brown, 2003). 

♦ Anaerobic Digestion 

Anaerobic digestion is the decomposition of organic wastes, including polysaccharides, 

proteins, and lipids, to gaseous fuel by bacteria in an oxygen-free environment. The desired 

product, known as biogas, is a mixture of CH4, CO2, and some trace gases. Figure 2.5 shows 

the general process of the anaerobic digestion application. Anaerobic digestion of biomass 

has been demonstrated and applied commercially with success in a multitude of situations 

and with a variety of biomass feedstock. As with natural gas, biomass sourced methane can 

be used in a turbine to produce power. Anaerobic digestion is particularly valuable for 

treatment of heterogeneous and high moisture biomass feedstock, such as organic domestic 

waste, organic industrial wastes, and manure. According to the study of Faaij (2006), the 

advanced, large scale anaerobic biomass digestion systems are developed in many countries, 

especially Denmark and Netherlands, to deal with various wet waste streams. As well, 

landfill gas is also deemed as a special source of biogas, which mainly contains methane 

(CH4). Faaij claims that the collection and use of landfill gas for electricity production are 

profitable not only because useful energy (electricity or alternative fuel) is produced, but also 

because the landfill gas, which contributes to a build up of GHGs in the atmosphere, would 

be reduced.  This utilization makes landfill gas an attractive GHG mitigation option and is 

widely adapted throughout the EU (Faaij et al., 1998). The conversion from biomass to 

biogas using AD has a relatively low efficiency at about 15-20%.  
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Figure 2-5 Schematic representation of the digestion process (Novem 2003) 

3) Bio-renewable Resources Products 

 Bio-renewable resources can be transformed into a variety of products, including bioenergy, 

transportation fuels, chemicals and natural fibers (Brown 2003). The most popular products 

are power/heat generation and transportation fuels. The biomass applications mentioned in 

this subsection focuses on power/heat generation and briefly introduces other biomass 

products. Figure 2.6 summarizes conversion technologies and main final products. 

 

Figure 2-6 Main conversion options for biomass to secondary energy carriers 

(Turkenburg et al., 2000) 
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♦ Bioenergy –Heat/Electricity 

Current heat and electricity generation that are primarily from fossil fuels are associated with 

negative environmental impacts. For example, in North America about 65% electricity and 

95% heat were produced by fossil fuels in 2004, i.e. coal, oil, and gas (refer to table 2.2). 

Heat and power generated from biomass, referred to as bioenergy, are much lower than those 

from fossil fuels. Figure 2.7 illustrates that bioenergy (heat and electricity) is the main 

product in current biomass applications. Every conversion technology can directly or 

indirectly produce heat or electricity. Biomass power generation has experienced the greatest 

growth over the last two decades compared to the other renewable power generation 

alternatives. In 1995 biomass based power generation provided more than 50 billion kWh of 

electric energy from 10,000 MW of installed capacity (Swezey, 1995). According to IEA 

World Energy Outlook 2001, “the use of bioenergy in combined heat and power applications, 

where markets for heat exist, can be cost effective in some cases. Co-firing may be a low cost 

option for existing coal power plants, especially for low cost sources of biomass such as 

waste derived fuels. Bioenergy for heat applications may be cost effective in some OECD 

countries, especially where wood resources are available”  

Table 2.2 Electricity and heat production in North America in 2004 (Data Source: IEA 2001) 

Production from Electricity 
(GWh) 

Heat (TJ) Percentage (%) 
Electricity Heat 

Coal 2193547 38795 45.96 13.99 
Oil 160907 17057 3.37 6.15 
Gas 763625 208512 16 75.22 

Biomass 55856 10299 1.17 3.72 
Waste 24575 2551 0.51 0.92 

Nuclear 903726 0 18.93 0 
Hydro 638957  13.39 0 

Geothermal 15487 0 0.32 0 
Solar PV 29  0.0006 0 

Solar thermal 587 0 0.01 0 
Other sources 15699 0 0.33 0 

Total Production 4772995 277214 100 100 
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The simplest way to get bioenergy is to burn biomass. This classic method of biomass 

application has been used for domestic heating in developing countries where people living 

in rural areas still use solid biomass, e.g. woods, straws, branches of trees, etc., for cooking 

and heating. But the traditional usage of biomass presents very low energy conversion 

efficiency, sometimes as low as 10% and generally goes with considerable emissions, e.g., 

dust and soot. Technology development has greatly improved this application with advanced 

heating systems which are automated, have catalytic gas cleaning and make use of 

standardized fuels (such as pellets). The efficiency of advanced domestic heating from 

biomass can be 70-90% with reduced emissions (Faaij, 2006). Natural Resources Canada’s 

(NRCan’s) Renewable Energy Deployment Initiative (REDI) promotes investments in 

renewable energy technologies, including biomass combustion systems that produce space 

heat and water heat for businesses. In addition, REDI will refund 25% of the purchase and 

installation costs of a biomass combustion system with high efficiency and low emissions as 

an allowance to encourage biomass application (Natural Resources Canada, 2001).  

The utilization of biomass to generate heat and power in combined heat and power (CHP) 

plants has much higher electrical efficiencies and lower costs (Visser, 2004). In combined 

heat and power (CHP) plants, plant oil, solid biomass and biogas can be used for the 

distributed co-generation of heat and power. Large capacity bio-power plants are being 

developed worldwide by applying direct combustion, co-combustion, anaerobic digestion, 

and gasification technologies. An example of a basic system schematic of integrated 

gasification/combined cycle power plant (IGCC) is shown in figure 2.7. According to the 

studies of Layzell (2006), electric power production from biomass (bio-power) has the 

following key features: 

1. May be used as base load power for the electrical grid; 

2. Complements existing fossil fuel power generation, such as co-fired with coal within 

the existing infrastructure; 

3. Can be used in centralized or distributed power systems. 
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Replacing coal with biomass in the existing coal-fired power plant is the single largest 

growing conversion route for biomass in many EU countries (Faaij, 2006). Also, in Canada, 

co-fired power generation projects are being considered. Case studies at Atikokan Power 

Generation Station (Ontario, Canada) , which has the ability to produce 900 million kWh per 

year, and at Nanticoke Power Generating Station, with the capacity of 3920 MW, show that 

the plants could be run on full/partly biomass energy at reasonable costs and have significant 

benefits to the regional economy (Layzell, 2006). 

 

Figure 2-7 IGCC power plant based on a gas turbine topping cycle (Brown, 2003) 

Another very important option to generate power from biomass is through Distributed 

Generation (DG) which has been used more and more frequently in recent years to meet 

different customer requirements. The DG plant can be designed to connect to the commercial 

power grids or be off-grid. Agrawal (2006) points out that “biomass has been considered one 

of the ideal energy resources for the DG mode of power generation” and lists the following 

advantages of utilizing biomass for power generation: 

1. ability to produce firm and dispatchable power; 
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2. amenability to storage and use as per power demand 

3. broadly similar combustion characteristics which may even enable partial co-firing 

with coal; 

4. no need for elaborate pre-firing preparation 

♦ Transportation Fuels 

Transportation fuels are chemicals with sufficient energy densities and combustion 

characteristics to make them suitable for transportation applications. The primary candidates 

for biomass based transportation fuels are ethanol, methanol, and bio-diesel. From figure 2.6, 

three main routes can be distinguished to produce fuels from biomass. Ethanol can be 

produced by fermentation of sugar or starch crops. Methanol can be produced by gasification 

as transportation fuel. Bio-diesel can be produced by the processing of the fatty acids in 

vegetable oils which are produced from an agricultural crop. Almost one fourth of energy 

consumption in the United States is consumed by transportation needs. Ethanol is a good 

substitute for gasoline. A mixture of 10% ethanol blended with gasoline can be run on a 

conventional internal combustion engines without any engine modification. Recently, some 

North American car manufactures began offering vehicles that can use a blend of up to 85% 

ethanol in gasoline-E85 (REWP5 report, 2003). Government allowance together with the 

technological advances in the production of biofuels, for example the use of woody 

bioenergy instead of agricultural crops, could reduce costs and increase renewables’ market 

share in the longer term (IEA 2001). 

♦ Other products from biomass 

Other products from biomass include chemicals and fibers. Chemicals from biomass are 

deemed as the broadest class of products. Several oxygenated organic compounds are 

commercially produced from bio-renewable resources. Plant fibers can be used in the 

manufacture of textiles, paper products, and composite materials.  

                                                      
5 Renewable Energy working Party 
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2.2 Bioenergy, Energy and the Environment  

Energy and environmental issues are both very important in modern society. Energy 

consumption is related to the quality of life. As the energy consumption per capital increases, 

an indicator of quality of life, the Human Development Index (HDI) which is calculated 

using the United Nations standard, also increases accordingly (Fanchi, 2005). As well, 

energy is considered a prime agent in the generation of wealth and also a significant factor in 

economic development (Balat, 2006). With the increasingly development of some countries, 

the world energy demand will be increased by 57% between 1997 and 2020 and electricity 

demand will grow more rapidly than any other end-use fuel (IEA 2001). However, with the 

transition from woody fuels to fossil fuels, environmental issues begin to emerge such as 

climate change, global warming, rising sea level, ozone depletion, and increased pollution, 

which are associated with elevated consumption of fossil fuels. During the past two decades, 

the risk and reality of environmental degradation have become more apparent. With the 

relative advantages of bioenergy applications with respect to the environment and the 

progress in conversion technologies, bioenergy is becoming the most promising alternative to 

fossil fuels. 

2.2.1 Bioenergy Application and Energy Supply 

Energy application plays an important role in the world’s future and affects all aspects of 

modern life. The demand for energy is increasing at an exponential rate due to the 

exponential growth of the world population. The IEA 2001 study indicates that the world 

primary energy demand is expected to continue to grow steadily, as it has over the last two 

decades. Energy resources have been divided into three categories: fossil fuels, renewable 

resources, and nuclear resources. As mentioned in subsection 2.1.2, biomass is a renewable 

resource that has the ability to be converted into almost all kinds of energy. This ability 

allows bioenergy to meet most energy demands, from traditional biomass combustion to 

electricity generation. However, due to the relatively high costs of generating bioenergy and 

the public opposition to biomass energy development (Upreti, et al., 2004), its share in total 
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primary energy supply is much lower than fossil fuels. IEA 2001 summarized the current and 

future worldwide application of bioenergy as follows: 

 The use of bioenergy in combined heat and power (CHP) applications, where markets for 

heat exist, can be cost-effective in some cases. Co-firing may be a low-cost option for 

existing coal power plants, especially for low-cost sources of bioenergy such as waste 

derived fuels. Bioenergy for heat applications may be cost effective in some OECD 

countries, especially where wood resources are available. On average, however, the 

development of bioenergy projects for electricity production will remain fairly costly. 

 Bio-fuels currently account for only a small portion of global transport fuels. In most 

countries, they are only competitive if they enjoy government subsidies. Technological 

advances in the production of bio-fuels, for example the use of woody bioenergy instead 

of agricultural crops, could reduce costs and increase renewables’ market share in the 

longer term. 

 Bioenergy will continue to be a major energy source in developing countries over the 

next two decades. The level of demand for bioenergy will increase by nearly 25% in 

these countries, but its share in total primary consumption will fall. 

 The share of bioenergy in residential energy demand in some developing countries is 

greater than 90%. Improving the efficiency of its use can lead to important savings in 

fuel-wood consumption and can prevent the rapid decline in forested areas. 

 Availability and cost will remain key factors in bioenergy development. Competition 

from agricultural uses, the seasonality in bioenergy crop production and the distances 

from bioenergy sources and energy use are major factors influencing cost. 

 The use of bioenergy can have many environmental benefits over fossil fuels if the 

resource is produced and used in a sustainable way. Environmental issues, resulting from 

airborne emission from solid bioenergy combustion will, however, increase in 

importance along with the use of this fuel. This is particularly important for waste 

incineration, which faces public opposition, and siting new facilities may be difficult. 
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Bioenergy can help to diversify the world energy supply and to increase energy security (Li, 

X., 2005). However, the costs of bioenergy generation limit its wide usage. Although the 

costs have largely fallen, further reductions are needed for them to compete with fossil fuels. 

The production costs will be more important to the long term energy supply outlook than the 

resource base (IEA 2001). Therefore, in order to increase bioenergy application toward total 

energy supply, all aspects of reducing bioenergy generation cost are essential. This research 

proposes integrated methodologies to reduce transportation costs of delivery biomass 

feedstock from fields to the biomass power plant facilities. Furthermore, the use of biomass 

as a source for power generation is investigated through the minimization of the Levelized 

Unit Costs of Energy (LUCE) (Venema, 2004). 

2.2.2 Bioenergy Application and Environmental Issues 

As a very important renewable energy source, the most significant contribution of bioenergy 

applications is to protect the environment via climate change mitigation, Green House Gas 

(GHG) emission reduction, as well as the reduction of acid rain and local or regional air 

pollution. The Kyoto Protocol to the United Nations Framework Convention on Climate 

Change (UNFCCC), agreed to in December 1997, marks an important turning point in efforts 

to promote the use of renewable energy worldwide. Since the original Framework 

Convention was signed at the Earth Summit in Rio de Janeiro in 1992, climate change has 

spurred many countries to increase their support of renewable energy. Even more ambitious 

efforts to promote renewable energies can be expected as a result of the Kyoto pact, which 

includes legally binding emissions limits for industrial countries, and for the first time, 

specially identifies promotion of renewable energy as a key strategy for reducing greenhouse 

gas (GHG) emissions (Demirbas, 2003). The risk of climate change due to emissions of 

carbon dioxide (CO2) from fossil fuel is considered to be the main environmental threat from 

the existing energy system. Based upon the statistical data, the total world CO2 emissions 

from the consumption of coal are 2427.14 million metric tons of carbon equivalents in 2001 

(WEC6, 2003). The use of bioenergy implies no net contribution to atmospheric greenhouse 
                                                      
6 World Energy Council 
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gas CO2, if the source biomass feedstock is sustainablely managed. (Ravindranath and Hall, 

1995 and IEA Bioenergy, 2002). Since bioenergy can provide about 11% of total global 

primary energy supply, and approximately 35% in the developing countries (Jurgens, et al., 

2006), the contribution to GHG reduction is significant if all the available biomass resources 

are sustainablely developed.  

Much has been made of the negative environmental impact of using fossil fuels. The 

assumption has often been made that anything that reduces use of fossil fuels will 

automatically benefit the environment. However, the reality is much more complicated. 

Everything has two sides and every technology introduces both benefits and costs. 

Exploitation of bioenergy is no exception. The application of bioenergy may cause 

environmental issues which we are trying to prevent by careful management, such as 

deforestation, soil erosion (soil carbon degradation), land use competition, water and air 

pollution (Abmann et al., 2006 and Brown, 2003). 

2.3 Review on Bioenergy Systems Design and Modeling 

In order to meet rapidly increased energy demands and alleviate the pressure from 

environmental problems, much research has been conducted in almost every aspect of 

bioenergy application. These include improving the yields of agricultural products for food to 

leave more land for energy crops cultivation, increasing the yields of energy crops and 

shortening the harvest periods, researching bioenergy conversion technologies to make 

progress on conversion efficiency, and transportation modelling approaches for reducing the 

delivery costs of biomass. The development and application of personal computers have 

enabled the use of Geographic Information Systems (GIS) to manipulate spatial data and 

construct complicated numerical models and various scenario analyses to better understand 

bioenergy systems design problems. Despite the generally high spatial heterogeneity of 

biomass resources, applications of location theory to bioenergy systems design are seldom 

found in the relevant literature. Although almost all aspects of bioenergy applications have 

been investigated separately, very few references address an integrated methodology for 

bioenergy systems planning taking account of potential biomass assessment, power plant 
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sites selection and biomass allocation –notable exceptions are Venema and Calamai (2003) , 

which have appeared in the operations research and rural development literature, not in 

bioenergy systems design literature. The section that follows provides a comprehensive 

review of existing research on biomass availability assessment, power plant siting, and 

discrete location theory based modelling approaches on spatial optimization. GIS based 

biomass assessment, biomass power plant siting, and location theory models are introduced 

in the sections that follow. 

2.3.1 Biomass Availability Assessment 

Biomass availability assessment is very important in the bioenergy systems planning process. 

Many previous studies have been conducted in this area. In 1998, an optimization model for 

energy generation from agriculture residues was developed by Kanniappan and 

Ranmachandran. By suitably allocating the land area for cultivation of various crops, their 

optimization model used linear programming to determine the maximum output of surplus 

biomass (agricultural residues) excluding the biomass assigned for fuel and fodder for 

animals. The optimal land use scenarios greatly increased power generation from agricultural 

residues. Graham et al. (2000) employed a GIS based modelling system for estimating 

potential biomass supplies from energy crops. They focus on the influence of geographic 

variation on the cost of biomass costs and supplies. Raster maps are presented showing the 

biomass feedstock delivering costs in eleven US states. Voivontas et al. (2001) have 

introduced a GIS based method to estimate the biomass potential for power production from 

agriculture residues. Their proposed Decision Support System (DSS), a computerized system 

used for decision making among alternatives, evaluates the theoretical potential, available 

potential, technological potential, and economical potential of biomass for electric power 

production. This DSS considers all possible restrictions and identifies candidate power plants. 

The required cultivated areas are established for biomass collection. Masera et al. (2006) 

used WISDOM, a GIS-based tool for analyzing wood fuel demand and supply spatial 

patterns, to assess the sustainability of wood fuel production as a renewable resource. 

Ramachandra and Shruthi (2007) applied GIS mapping tools to successfully map the 
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renewable energy potential in Karnataka State, India. GIS is used in spatial and temporal 

analysis of the resources and demand and also aids the Decision Support System (DSS) for 

implementing location specific renewable energy technologies. Unal and Alibas (2007) 

evaluated the production of agricultural residues and their conversion to electrical energy via 

gasification in Turkey. Based on their studies, the quantity of biomass from agricultural 

residues are capable of meeting nearly 17% of national electricity consumption if all of the 

unused residues are converted into energy. Related studies on biomass availability evaluation 

can also be found in Grassi and Bridgwater (1993), Liang et al. (1995), Downing and 

Graham (1996), Rozakis et al. (2001), Goor et al. (2003), Hoogwijk et al. (2005), Tuck. et al. 

(2006), and Lewandowski et al. (2006).  

Ways to decrease the biomass energy production costs are also studied in previous research. 

Noon et al. (1996) fully discussed Regional Integrated Biomass Assessment (RIBA) by 

analyzing transportation and site location in the United States. A series of costs related to 

biomass production and transportation are discuss in detail such as the hauling distance cost, 

the hauling time cost, the loading and unloading cost, and the marginal price for delivered 

energy crops. GIS-based continuous raster maps are derived from the costs model, 

representing feedstock costs of supplying energy crops feedstock upon the spatial variation. 

The RIBA systems also can select the sites of proposed conversion facilities and proximal 

bioenergy supply sites (pixels in the raster map). Graham et al. (2000) have investigated the 

effect of location and facility demand on the marginal cost of delivered wood chips from 

energy crops. Using the GIS-based decision support system-BRAVO (Noon and Daly, 1996), 

a spatial Decision Support System (sDSS) which is an interactive, computer based system 

designed to support a user or group of users in achieving a higher effectiveness of decision 

making while solving a semi-structured spatial problem, cost-supply curves were developed. 

BRAVO is designed to assist the spatial planner with guidance in making land use decisions. 

The study demonstrates one approach for quantifying the geographic complexity of biomass 

supplies and illustrates the need to consider the likely participation rate of farmers in 

projecting the possible costs of biomass feedstock. Swezey et al. (1995) discussed the 

potential impact of externalities considerations on the market for biomass power technologies 
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in the U.S. The paper summarizes the work undertaken to assess the status of externalities 

considerations in states and utility electricity resource planning processes and to determine 

how externalities considerations might help or hinder future development of biomass power 

plants. They suggested the bioenergy industries should emphasize the environmental and 

non-environmental benefits of applying biomass energy to the states and the public in order 

to get more government subsidies. Moller and Nielsen (2007) analyzed transportation costs 

of forest wood chips in Denmark. GIS raster data based techniques are employed to screen 

the transportation costs surface map between the highly distributed forest wood biomass and 

selected bioenergy plants. 

2.3.2 Biomass Power Plant Siting 
In order to develop decentralized power generation from biomass feedstock, appropriate sites 

of power plants should be identified by taking into account a variety of criteria. The Public 

Service Commission of Wisconsin (1999) summarized common power plant siting criteria, 

which involved community impacts, public health and safety concerns, environmental 

impacts, land use impacts, and economic impacts. Siting analysis with GIS began in the 

1970s and provided a variety of analytical tools for the integration of different spatial data, 

related to the parameters affecting the suitability of a location. GIS has been commonly used 

in many facility siting applications, such as power-plant locations, recreational and public 

facility location siting, ski resort sites, public school facility, and landfill sites identification. 

The best early examples of siting analysis with GIS involved identifying a power plant site in 

the state of Maryland. A variety of parameters were considered in a raster map presentation 

(Dobson, 1979). A GIS approach was utilized in order to apply the location criteria using 

three methods of overlay analysis, the process of combining spatial information from two or 

more maps from the same geographic area to derive a map considering of new spatial 

boundaries and entities or themes, for finding the most suitable locations for the siting of a 

coal power plant while considering all identified criteria, i.e. socio-economic and 

environmental. The results of their study outlined the areal extent of suitable versus non-

suitable sites in Franklin County, Illinois and can be further used as a tool to assist planners 

and managers in the decision making process (Delaney and Lachapelle, 2003). Beheshtifar et al. 
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(2006) have introduced a method along with appropriate models and GIS mapping 

techniques to define the suitable areas for the construction of coal-fired power plants. The 

research considers many factors that may influence the power plant sites selection such as 

transportation accessibility, gas pipe network, earthquake and geological faults, topographic 

consideration, water resources, power demand centers and so on. Suitable locations for 

constructing new power plants areas are selected and presented using GIS maps.  

The Analytic Hierarchy Process (AHP) is a structured technique for helping people deal with 

complex decisions. It was first developed by Thomas L. Saaty in the 1970s and has been 

extensively studied and successfully used in helping decision makers to structure and analyze 

a wide range of problems. However, it is rarely seen in the bioenergy systems planning 

literature. Expert Choice, a AHP based tools for decision making developed mainly by Saaty, 

was used in a particular biogas-fuelled combined heat and power (CHP) systems to evaluate 

the impacts of a variety of factors considered, such as air pollutants, GHG emissions, land 

use, economics, on the CHP system (Madlener, 2001). Delaney and Lachapelle, (2003) also 

proposed a scenario utilizing a pair-wise comparison matrix to determine the appropriate 

factor weights in a coal-fired power plant siting project. After applying AHP in the 

aquaculture/farming agent decision process, Pereira and Duarte, (2006) claimed that the AHP 

method is an easy way to help multi-criteria decision making adapt to each decision maker. 

The AHP was used for ranking of barriers to the adoption of improved cook stoves and 

biogas technology in Thailand in 2002. The results ranked the different barriers associated 

with the biomass based power generation. High initial cost, lack of financial aids, and lack of 

risk covering mechanisms have been found to be the three main barriers to biomass based 

power generation in Thailand (Asian Regional Research Programme in Energy, Environment 

and Climate Phase II, 2001). Ma et al. (2005) proposed a GIS combined with an AHP model 

for siting farm based centralized anaerobic digester systems for distributed power generation. 

A siting suitability map was produced to identify those areas that are most suitable for 

distributed bioenergy systems using animal manure. The results indicate that the integration 

of both spatial and non-spatial data allowed the GIS model to provide a broad-scale and 

multidimensional view on the potential bioenergy systems development in the study area 



 

 30 

accounting for environmental and social constraints as well as economic factors. In this thesis, 

an AHP method is used for determining the weights of the factors in the suitability analysis. 

Each factor is assigned a weight indicating the relative importance of the factors in the siting 

of power plants. 

2.3.3 Spatial Optimization 

Discrete location models are often classified in the literature based upon the number of 

facilities being located. Location models are widely employed in school planning and health 

care services planning (Rahman and Smith, 2000). But there is very little formal spatial 

optimization research in the field of bioenergy systems design, especially location-allocation 

models for minimizing the levelized unit cost of energy resulting from the application of 

different bioenergy conversion technologies. Venema and Calamai (2003) developed an 

approach for bioenergy systems planning using location-allocation and landscape ecology 

design principles to derive a two-stage p-median problem (PMP) model formulated to 

minimize domestic and commercial feedstock delivery costs. In a case study in India, the first 

stage of the model is to acquire domestic energy from proximal supply locations to feed the 

villages demand according to PMP location-allocation principles. A simultaneous PMP is 

also formulated between village demand locations and conversion facility locations to 

establish the commercial energy handling requirements at each active conversion location. 

The model is modified by adding a term that accounts for the cost of transporting biomass 

feedstock from the production zone to the centroid (biomass collection locations) to fully 

account for the weighted biomass flow-path distance in the designed systems.  Their research 

focuses on developing bioenergy systems that address the rural socio-ecological problem 

rather than toward a tool for general bioenergy systems planning, i.e. biomass availability 

and location-allocation power plant and biomass resources. 

Spatial optimization models are often combined with GIS screening techniques with the 

advantages of data acquisitions and manipulations. Venema et al. (2000) have addressed 

multi-objective spatial design principles for rural biomass energy planning. The paper aims at 

improving accessibility and ecological sustainability of biomass resources by applying 
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remotely sensed landscape information, GIS analysis, spatial optimization, and landscape 

ecology design principles for decentralized landscape-based biomass energy systems 

planning. After a general discussion on the interface between GIS and location science, 

Church (2002) claimed that GIS will have a major impact on the field of location science in 

terms of model application and development. Moller-Jensen and Kofie (2001) employed a 

location-allocation model for health service planning in rural Ghana. The model was used to 

select an optimal location and provide statistics information on average distance to health 

centers and percentage of population covered. Many research papers employing location-

allocation models in health service development planning in developing nations are fully 

reviewed by Rahman and Smith (2000). As an example, Pizzolato et al. (2004) studied 

school location problems and employed capacitated and uncapacitated p-median models for 

evaluating school locations. ArcView8.37 was used to handle large problems and improve the 

presentation and evaluation of their findings. 

Location models applied in the field of bioenergy systems planning are rarely found in the 

literature. Li et al. (2005) introduced a method integrating genetic algorithms (GAs) and GIS 

for optimal location search. This research involves finding optimal sites for building one or 

more facilities based on various constraints and multiple-objectives. GIS tools are employed 

to get the detailed population and transportation data in the study area, and then use the 

derived information to facilitate the calculation of fitness functions. Finally, genetic 

algorithms are used to solve the non-constrained multiple-objectives optimization problems. 

The results indicate the proposed method has much better performance than either a 

standalone GIS approach or a simulated annealing search method.  

The most comprehensive research in bioenergy systems planning in rural areas in the 

developing countries can be found in Venema’s doctoral dissertation (Venema, 2004). A 

rural renewable energy design approach that employs spatial optimization techniques for 

rural bioenergy planning and bioenergy constrained hybrid rural renewable energy system 

                                                      
7 ArcView 8.x is part of the ArcGIS Desktop software package developed by ESRI 
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design is fully discussed. In this thesis, location-allocation models (i.e. PMP and p-UFLP) 

are employed for bioenergy systems planning. 

Bioenergy planning deals with a production chain with many links and bioenergy activities 

cross several traditional professional boundaries. Consequently, planning structures for 

bioenergy are often more complex than for other industries. This complexity calls for 

stringency and transparency of the planning methods (Hektor, 2000). In addition, the 

research on individual aspects of bioenergy application are usually studied by researchers 

from different disciplines and integrating each aspects associated with bioenergy applications 

into an optimal bioenergy system has not received much attention. Therefore, continued 

research on an integrated methodology for bioenergy systems planning is necessary. The 

research in this thesis focuses not only on decreasing the bioenergy production costs, but also 

on making significant contribution to the environment. Methodologies, principles, and results 

are integrated in designing an optimal bioenergy system.  

2.4 Summary 

This chapter introduced the biomass resources, bioenergy conversion technologies, and 

products from biomass. The impacts of biomass energy applications on world energy supply 

and environmental issues are also briefly discussed. Previous research related to bioenergy 

systems planning are also reviewed such as biomass feedstock available assessment, 

bioenergy conversion facility locations siting, and spatial optimization design. The new 

methodology proposed in this thesis is intended to integrate the method and theories 

associated with bioenergy systems design and improve the performance of the systems by 

applying GIS screening techniques, Analytic Hierarchy Process (AHP), and discrete location 

models. The next chapter introduces the main methodologies and tools utilized in this 

research. 
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Chapter 3 Methodology 

The methodologies used for developing the proposed integrated bioenergy systems planning 

strategy are described in this chapter. Figure 3.1 depicts the various aspects of the 

methodology that is developed. Basically, this methodology can be divided into three main 

parts: biomass availability assessment, suitability analysis and biomass power plant 

candidates selection, and spatial optimization models of bioenergy systems design. GIS 

spatial data will be manipulated in the biomass assessment and suitability analysis to find the 

approximate amount of collectable biomass and the locations of power plant candidates in 

suitable areas with different suitability will be identified by employing the AHP method and 

spatial analysis techniques. Afterwards, the statistical and spatial information (i.e. available 

biomass, distances between power plant candidates and biomass supplies, conversion 

technologies information) will be employed in spatial optimization models to identify 

different location-allocation scenarios.  

 

Figure 3-1 Overview of the methodology process 
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In the first section of this chapter, GIS and its applications in suitability analysis, site 

selection, network analysis, and spatial optimization are introduced. Then in the second 

section, an Analytic Hierarchy Process (AHP) method for obtaining the relative weights of 

the model constraints and factors is fully discussed. In the third section of this chapter, the 

discrete location models applied in this research are introduced. Genetic Algorithms (GAs) 

are discussed in the fourth section. These methods and tools form the basis of the integrated 

methodology for designing bioenergy systems. A summary of these methods is presented in 

the last section of this chapter.  

3.1 Geographic Information Systems and Suitability Analysis 

3.1.1 Geographic Information Systems 

A Geographic Information System is a tool for making and using spatial information. Bolstad 

(2002) defines GIS as: “a computer-based system to aid in the collection, maintenance, 

storage, analysis, output, and distribution of spatial data and information.”  The first GIS 

was the Canada Geographic Information System which was designed in the mid-1960’s as a 

computerized map measuring system to identify the nation’s land resources and their existing 

and potential uses (Longley et al., 2005). With the development of information technology 

and the price of sufficiently powerful computers falling below a critical threshold, GIS has 

become widely used in the fields of government and public services, business and service 

planning, logistics and transportation, and environmental studies. Longley et al. (2005) state 

that a GIS is composed of six components: the network, which is the most fundamental part, 

hardware, software, spatial database, management and the participation of people.  

GIS software provides the tools to manage, analyze, and effectively display and disseminate 

spatial data and spatial information. There are many commercial GIS packages, such as 

ArcGIS®, GeoMedia, MapInfo, ERDAS, and AUTOCAD MAP. The most popular one 

among them is ArcGIS®, major software from the Environmental Systems Research Institute 

(ESRI). In this research, the main components of ArcGIS® including ArcMap, ArcCatalog, 
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and ArcInfo Workstation are employed for biomass availability assessment, suitability 

analysis and network analysis. 

Although GIS is a useful tool, it has some challenges. Foremost of these is the need for 

suitable and available digital spatial data. Without this data GIS can make little or no 

contribution to the problems which face us. Fortunately, the improvements in GIS and related 

technologies and reductions in prices, along with various kinds of government stimulus, have 

led to the rapid growth of the GIS data industry. Most land use/land cover, road networks, 

and terrain digital maps are available in the U.S. and Canada. Even some specialized datasets 

are produced by governments and database vendors. For example, a particular project for 

producing the high-resolution “National Biomass and Carbon Dataset (NBCD)”, which is 

funded by NASA’S Terrestrial Ecology Program, has been carried out by the scientists at the 

Woods Hole Research Center (Braun 2005). Many bioenergy research projects have been 

conducted using Geographic Information Systems. One of the earliest applications is the 

analysis of woody biomass production potential in the south-eastern United States by Ranney 

and Cushman in 1980 (Graham et al., 2000).  

The following subsections describe the spatial analysis applications of GIS in this research. 

3.1.2 Suitability Analysis 

Suitability analysis tools are commonly used for facility siting. In this thesis，the selection 

of suitable power plant candidate sites begins with identification of a set of criteria that can 

be used to differentiate those sites that are suitable from those which are not and to rank 

order suitable sites in terms of their desirability. Criteria that represent requirements that 

must be satisfied can be thought of as exclusionary because they eliminate certain areas from 

consideration. Other criteria may represent preferences rather than absolute requirements. 

Preferential criteria do not preclude development of a particular site but affect the site’s 

ranking in comparison to other potential sites. 

1) Exclusive Analysis 
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In this thesis, exclusive analysis is used to identify areas where it would be unsuitable to 

construct power plants. In order to identify all those areas that are deemed unsuitable by 

exclusionary criteria, which are usually represented as buffer zones indicating suitable and 

unsuitable areas in a series of binary raster maps corresponding to each considered criterion. 

For each criterion, the cells falling within a constrained area which are unsuitable are 

assigned “0”, and cells falling in the suitable areas are assigned “1”.  The cell values in the 

final exclusive analysis map are then calculated using the following equation.  

∏
=

=
n

j
jifinali CC

1
,,       (1) 

where, finaliC ,  is the thi Boolean cell value in the final exclusive analysis grid,  jiC , is the 

thi Boolean cell value in the grid of the thj constraint, and n  is the total number of 

exclusionary constraints considered. The multiplication of the Boolean constraint cell values 

result in the final exclusionary grid that will identify cells as unsuitable if they have value “0” 

in any one of the input layers. Only the cells that have a “1” in each input layer will have the 

value “1” in the final result, indicating a suitable cell. 

2) Preferable Analysis 

Unlike exclusionary criteria which have to be met absolutely, the preferable analysis is 

employed to measure the suitability (high, medium, or low) of each factor considered. In this 

thesis, for each factor map, the study area is classified into different cell values based on the 

corresponding criterion with a high cell value representing high suitability relative to the 

particular factor being considered. As well, each factor is assigned a weight representing its 

relative importance compared with the other factors in the suitability analysis. These weights 

are calculated through an Analytic Hierarchy Process (AHP) method which is described in 

section 3.2. The cell values in the final preferable analysis map are calculated using the 

following equation.  
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where, finaliC ,  is the thi cell value in the final preferable analysis grid,  jiC , is the thi cell value 

in the grid of the thj preferable factor, jw  is the weight corresponding to the thj preferable 

factor, and m is the total number of preferable factors considered. The final preferable 

analysis grid values indicate the overall rank preferences of each cell considering all the 

factors.  

3.1.3 Network Analysis 

Network analysis is a very important application in GIS. It is usually used to manage or 

optimize systems operation, such as utility, communication and transportation system 

operations. Utilities use network models to monitor and analyze their distribution systems 

and meter reading routes. Municipal public works departments use networks to analyze bus 

and trash routes and businesses use them to find the optimal routes for the delivery of goods 

and services.  

The three main types of network analyses are: network tracing, network routing and network 

allocation. The purpose of network tracing is to find a particular path through the network 

based on criteria such as shortest distance, fastest distance and minimum cost. Network 

routing determines the optimal path along a network. Network allocation deals with the 

designation of portions of the network to supply centers or demand points. It is widely 

recognized that network analysis can provide crucial insight into geographic and real world 

networks, and can be employed to obtain more accurate and appropriate solutions in these 

networks.  

In bioenergy systems planning, network analysis can be employed to find the lowest 

transportation costs in delivering biomass feedstock and in allocating all the collectable 

biomass to the conversion facilities, e.g. biomass power plants. In this study, ArcGIS® based 

network analysis was employed to: 

1) find the shortest road network distance for the delivery path of biomass feedstock; 

2) get the solutions of the p-median problem for locating the power plants and 

allocating the biomass supplies. 
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Many location-allocation problems are concerned with the provision of a service to satisfy a 

spatially dispersed demand which exists at a large number of widely distributed sites. To 

reduce costs, the service must be provided from a few, centralized locations to meet 

distributed demands.  

3.2 Analytic Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP) is a systematic procedure for representing the 

elements of any problem, hierarchically (Saaty and Kearns, 1985). It breaks a problem down 

into smaller and smaller parts and guides the decision making process through a series of 

pair-wise comparison between objectives or alternatives. This method was first introduced by 

Thomas Saaty in the 1970s and has become very successful in helping decision makers to 

structure and analyze a wide range of problems (Golden et al., 1989). The AHP enables the 

decision makers to express their qualitative judgments in a quantitative format, instead of 

assigning arbitrary weights to the qualitative factors. The mathematical foundations for AHP 

are established in references (Saaty, 1980) and (Saaty and Kearns, 1985). 

The first task of the AHP process is to structure the decision problem hierarchically in a 

manner such as that illustrated in figure 3-3. The goal of the decision making problem is at 

the top of the hierarchy and the considered criteria associated with the problem are at the 

second level. At the bottom level are the decision alternatives. There could be some sub-

criteria following the criteria if applicable.  

 

Figure 3-2  Hierarchy structure of the decision making process 
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Once this structuring of the problem is finished, the next step involves the elicitation of 

judgments for how “good” the decision alternatives perform under each criterion. The 

comparison of alternatives and criteria are conducted in a pair-wise fashion with respect to 

each item of the next higher level.  In order to deal with the relative importance of each 

criterion, a scale of relative importance is defined, as shown in table 3-1. This table assigns 

quantitative numbers to measure the qualitative comparisons. 

Table 3-1 Scale of relative importance (Saaty 1977) 

Intensity of relative 
importance 

Definition Explanation 

1 Equal importance Two activities contribute equally 

3 Moderate importance  
Experience and judgment slightly 
favor one activity over another 

5 Essential or strong importance 
Experience and judgments strongly 
favor one activity over another 

7 Demonstrated importance 
An activity is strongly favored and 
its dominance is demonstrated in 
practice 

9 Extreme importance 
The evidence favoring one activity 
over another is of the highest 
possible order of affirmation 

2,4,6,8 Intermediate values between the two 
adjacent judgments 

When compromise is needed 

Reciprocals of 
above numbers 

If an activity has one of the above 
numbers (e.g. 3) compared with a 
second activity, then the second 
activity has the reciprocal value (i.e. 
1/3) when compared to the first 
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According to the judgment assigned to each criterion, a pair-wise comparison matrix A and a 

weights vector w  can be computed as follows: 

1. Let ijA equals the intensity of relative importance between criterion i  and criterion j , 

as defined in table 3.1 with 
ij

ji A
A 1

= ; 

2. Compute ∑
=

=
n

i
ijj AA

1

, the sum of each column of  A ; 

3. Normalize A  by dividing each element ijA  in the comparison matrix A  by jA ; 

4. Compute ∑
=

=
n

j
iji A

n
w

1

1 , the weight of criterion i ; 

where n is the total number of criterion (i.e. the dimension of A ). 

An example of the above procedure is shown in table 3-2 below. 

Table 3-2 An example of pair-wise comparison matrix and weights 

 Criterion 1 Criterion 2 Criterion 3 Criterion 4 Weights 

Criterion 1 1 2 5 6 0.536 

Criterion 2 1/2 1 2 3 0.253 

Criterion 3 1/5 1/2 1 2 0.130 

Criterion 4 1/6 1/3 1/2 1 0.079 

The numbers in the table represent the relative importance between the criteria. For instance, 

the relative importance of criterion 1 versus criterion 3 is 5 and between criterion 3 and 

criterion 1 is 1/5. This indicates that criterion 1 is strongly important compared with criterion 

3. The numbers in the weights column show the relative weights of the corresponding criteria.  

To evaluate the credibility of the estimated weights, Saaty (1977 and 1980) proposed an 

eigenvector which is considered a theoretically and practically proven method for evaluating 

the credibility of the weights (Golden et al. 1989). The method can be described as follows: 

1. Calculate the maximum eigenvalue maxλ  of the pair-wise comparison matrix A ; 

2. Compute the consistency index (C.I.) defined by Saaty as: 
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3. Calculate the consistency ratio (C.R.)  

..

....
IR
ICRC =         (4) 

where the random index (R.I.) for different n  can be obtained from Golden el al. (1989).  

As a rule of thumb, a value of 1.0.. ≤RC is typically considered acceptable. Larger values 

require the decision maker to reduce inconsistencies by revising judgments (Harker, 1987).  

The eigenvector approach can be used for determining whether the pair-wise comparison 

matrix is acceptable or not. For instance, the C.R. value of the example in table 3.2 is 0.009 

which is much smaller than 0.1 indicating that the pair-wise comparison matrix and the 

computed weights are reasonable. 

In this thesis, the AHP method is used to determine the weights of preferable criteria, instead 

of arbitrarily assigning intuitive or empirical weights, and the eigenvector approach is 

utilized for measuring the consistency of the proposed pair-wise comparison matrix.  

3.3 Discrete Location Models 

Mirchandani and Francis (1990) classified discrete location problems into four families:  p-

Median problems (PMP), p-Center problems (PCP), uncapacitated facility location problems 

(UFLP), and quadratic assignment problems (QAP). In this chapter, we will detail p-median 

and uncapacitated facility location problems which are used in this bioenergy systems 

planning research. 

3.3.1 The p-Median Problem (PMP) Model 

The p-median problem was first introduced by Hakimi (1965). A PMP model can be used to 

locate p facilities on a network among n candidates such that the total (weighted) distances 

traveled from demand points to their nearest facility sites are minimized.  
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The p-median problem can be described as follows: Given a complete, weighted and 

undirected graph or a network ),( EVG = where V  is the set of vertices and E is the set of 

edges, associate with each edge a weight ),( ji VVd  which is the shortest distance in the 

network between vertices iV  and jV according to the metric .d  Construct the n  by n  shortest 

distance matrix )].,([ jiij VVdd = Assign a weight iw to each vertex iV  and construct the 

weighted distance matrix .ijiij dwW =  The problem is to find VVp ⊆  such that pVp = , 

where p is the number of facilities to be built, and such that the sum of the shortest distances 

from the vertices in the set { }pVV \  to their nearest vertex in pV  is minimized (Reese, 2005).  

ReVelle and Swain (1970) provided the following integer programming formulation for the 

discrete p-median problem. 

Minimize
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where 

N = total number of demand points in the network 

M = total number of candidate facilities 

iω = demand at demand point i  
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ijd  = travel distance between demand point i  and candidate facility j  

⎩
⎨
⎧

=
otherwise,  0

 ,facility   toassigned is  demand if  1
ij

ji
x  

⎩
⎨
⎧

=
otherwise,  0

 ,point  candidateat  located isfacility  a if  1
j

j
y  

p = number of facilities to be located. 

The objective (5) expresses the desire to minimize the sum of the (weighted) distances 

between the demand points and the assigned facilities. The constraints (6) guarantee that the 

demand at a point is assigned to exactly one facility. The total number of assigned facilities is 

defined by constraints (7) to equal p . The constraints (8) ensure that demands are only 

allocated to active or open facilities. The last set of constraints ensure that the decision 

variables ijx  and jy   are binary. 

The p-median problem is perhaps the most common facility location problem among 

researchers and practitioners. Since the p-median problem is an NP-hard combinatorial 

optimization problem (Kariv and Hakimi, 1979), optimal solutions to large sized problems 

are difficult to obtain. Solving NP-hard combinatorial optimization problems has been a core 

area in research for many communities in engineering, operational research and computer 

science (Dominguez and Munoz, 2005). Teitz and Bart (1968) first introduced the most well 

known interchange heuristic algorithm for the p-median problem. The algorithm starts with a 

random solution and improves it iteratively by swapping facilities in and out of the solution. 

It can achieve good solutions for small problems (Drezner and Hamacher, 2002). Other 

heuristics include the linear programming relaxation of Revelle and Swain (1970), the branch 

and bound algorithms of Khumawala (1972), Lagrangian relaxations methods proposed by 

Diehr (1972), Narula et al. (1977),  and Cornuejols et al. (1977), the linear programming dual 

of Erlenkotter (1978), and a gamma heuristic approach by Rosing et al. (1999). Lorena and 

Senne (2003) introduced a column generation approach, using Lagrangean/surrogate 

relaxation to accelerate sub-gradient like methods, to solve capacitated p-median problems. 
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Modern heuristics applied to the p-median problem include simulated annealing algorithms 

designed by Murray and Church (1996) and a Tabu search algorithm developed by Rolland et 

al. (1997). More recently, Genetic algorithms (GAs), which are discussed in the following 

section 4.3, have appeared in the literature for solving facility location problems. Due to their 

representation scheme for search points, genetic algorithms are one of the most easily 

applicable representatives of evolutionary algorithms. Early attempts at applying GAs for 

solving facility location problems included direct binary encoding for the p-median problem 

(PMP) but the results were discouraging (Hosage and Goodchild, 1986). Recently, the use of 

integer encoding and some theory of set recombination have shown that genetic algorithms 

could potentially become competitive (Castro and Velazquez, 1999). Jaramillo et al. (2002) 

proposed using genetic algorithms to solve a variety of facility location problems, including 

the PMP and the UFLP. Very good approximate solutions compared with Lagrangian 

heuristics are achieved by using GAs. Correa et al. (2001), Bozkaya et al. (2002), Lorena and 

Senne (2003), ALP et al. (2003), Deominguez and Munoz (2005), and Fathali (2006) have 

proposed GAs with various GA operators for solving p-median problem and have obtained 

encouraging approximate solutions. A comprehensive survey with the aim of providing an 

overview on advances in solving the PMPs using recent procedures based on meta-heuristic 

rules are addressed by Mladenovic et al. in 2007. 

3.3.2 The Uncapacitated Facility Location Problem (UFLP) Model 

The uncapacitated facility location problem deals with the supply of a single commodity 

from a subset of potential facility locations. Facilities are assumed to have unlimited capacity 

such that any facility can satisfy all demands. For given costs associated with the facilities 

and given the transportation routes from potential facility sites to clients, a minimum cost of 

production and transportation plan can be obtained. Two features distinguish the UFLP from 

the p-median problem. One is that a nonnegative fixed cost is associated with each potential 

facility location in the UFLP and this cost exists only if a facility is actually established at 

that candidate location. Another feature is that the number of facilities to be established is not 

pre-specified in the UFLP. 
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If the number of facilities to be established is pre-specified (i.e. if p  is specified), the 

formulation of the corresponding p -UFLP is given by 

Minimize
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where 

jf is the fixed cost if a facility is established at candidate site j , and where the other 

variables and parameters are defined as they were for the p -median problem in subsection 

3.3.1. Notice that if all 0=jf , the p -UFLP becomes the PMP problem. Similarly, the UFLP 

is obtained if p  is not pre-specified.  Therefore, the p  uncapacitated facility location 

problem is an extension of the p -median problem in that fixed costs like those encountered 

in the UFLP are associated with the potential facility sites.  

The objective of the UFLP is to locate facilities on a network so as to minimize the total net 

cost (or maximize the total net benefit), including not only (weighted) transportation cost but 

also the fixed cost of setting up the active facilities and providing service to customers 

located on the nodes of the network. The UFLP is also an NP-hard problem (Cornuejols et al., 

1990) and the integer restrictions of variables in these problems cause tremendous difficulty 

for classical optimization methods to find the optimal or a near-optimal solution. The popular 

branch-and-bound method is an exponential algorithm and faces difficulties in handling 
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integer linear programs (ILPs) having thousands or tens of thousands of variables (Deb and 

Pal, 2004). Two type of decomposition- Lagrangian duality and Dantzig-Wolfe 

decomposition methods have been used for solving the UFLP (Cornuejols et al., 1990). A 

new method for solving UFLP based on the exact solution of the condensed dual of the 

strong linear programming relaxation for UFLP via orthogonal projections is recommended 

by (Conn and Cornuejols, 1990). Gao and Robinson (1994) presented a general model and 

dual-based branch and bound solution procedure to find optimal solutions for several 

uncapacitated location problems including UFLP. A Tabu search algorithm was developed 

by Al-Sultan and Al-Fawzan (1999) to solve the UFLP. The computational results show that 

the proposed algorithm produces optimal solutions for all test problems and it is very 

efficient in terms of time compared to existing algorithms. In 2004, Deb and Pal efficiently 

solved very large resource location-allocation problems including UFLP by applying 

customized genetic algorithms. They claimed that the exploitation of linearity in the 

objective function and constraints through genetic crossover and mutation operation is the 

main reason for success in solving such large scale applications. Their paper encourages 

further use of customized implementation of GAs in similar facility location problems. 

Villegas et al. (2006) applied a bi-objective uncapacitated facility location problem 

(BOUFLP) model to the Colombia coffee supply network. They designed and implemented 

three algorithms, including the Non-dominated Sorting Genetic Algorithm, the Pareto 

Archive Evolution Strategy, and an algorithm based on mathematical programming, for 

solving the BOUFLP.  

In this thesis, PMP is solved by a commercial solver in ArcInfo Workstation and a GA is 

applied when the shortest path distances are used to represent the distances. The p-UFLP is 

solved using a GA based on the algorithm proposed by ALP et al. (2003). 

3.4 Genetic Algorithms (GAs) 

The concept of Genetic Algorithms was first proposed by Holland (1975) and described by 

Goldbery (1989). GAs are fundamentally stochastic search optimization techniques. 

Different from traditional optimization techniques, a GA seeks an optimal solution through 
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the mechanism of natural selection. In GAs, each candidate solution is coded as a 

chromosome string and the search process starts from a group of these chromosomes referred 

to as populations. The chromosomes evolve through successive iterations, called generations. 

During each generation, the chromosomes are evaluated using some measures of fitness. In 

order to generate new solutions (offspring) in the next generation, the most popular GA 

operators, crossover and mutation, are used. The crossover operation exchanges some genes 

in the identical positions from two chromosomes in the current generation. The mutation 

operation modifies the gene in a chromosome from the current generation. A new generation 

is formed from this intermediate population by selecting some parents and offspring and 

rejecting others so as to keep the population size fixed. Fitter chromosomes have higher 

probabilities of being selected. The algorithm is terminated after a specified number of 

generations or the change in the fitness of the population after several generations between 

successive generations becomes acceptably small. A representation of the simple genetic 

algorithm (SGA) is shown in figure 3-4. 

 

Figure 3-3  Overview of the simple genetic algorithm 

GAs work well for complex optimization problems since they preserve the common sections 

of the chromosomes that have high fitness values, discard poor solutions, and evaluate more 
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and more of the better solutions (ALP et al., 2003).  However, there are no generic genetic 

algorithms that can be used in all GA applications, so users have to custom design the 

algorithm for their problem individually. Application of a GA to a specific problem requires 

the development of a fitness function and the representation, or encoding, of a candidate 

solution in a chromosome string. MATLAB provides a genetic algorithm toolbox for solving 

optimization problems. Many build-in functions can be used for generating initial population, 

fitness scaling, selection, reproduction, mutation, and crossover. For particular optimization 

problems, users can customize their own genetic algorithm process functions.  

In this thesis, a custom genetic algorithm is developed in MATLAB. The components of 

genetic algorithm include: 

 Encoding  

The encoding of a solution is a critical decision since a poor choice will likely result in a poor 

algorithm regardless of its other features (Dominguez and Munoz, 2005). This issue has been 

investigated from many aspects. Gen and Cheng (2000) classified the encoding schemes into: 

binary encoding, real number encoding, integer or literal permutation encoding, and general 

data structure encoding. A string of bits is used to represent a solution of the problem in the 

binary encoding scheme. It is preferred by the majority of researchers (Back et al., 1997), 

however, binary encoding for function optimization problems has severe drawbacks limiting 

the applications of binary representation (Gen and Cheng, 2000). It has been demonstrated 

that real number encoding results in better performance than binary encoding for function 

optimization and constrained optimization whereas integer or literal permutation is best 

suited for combinatorial optimization problems since combinatorial optimization problems 

search for a best permutation or combination of elements subject to constraints. General data 

structure encoding can be used in more complicated problems to represent complex data 

structures. 

 Population  

The size of the population is an important parameter in the effectiveness of the genetic 

algorithm. Larger populations create a more diverse gene pool and enhance the probability of 
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achieving the global optimum solution, but require more computation time. Smaller 

populations contain a less diverse gene pool and run the risk of premature convergence. 

Therefore, a compromise must be made between larger populations with more substantial 

computation efforts, and smaller populations that may converge to local solution but require 

less computing time. Many trials have to be completed to select a proper population size 

since there are no universal rules for determining the optimal population size for a specific 

problem. 

 Selection 

The purpose of selection is to pick parents from the current population. These parents will be 

modified by crossover or mutation to create offspring. Numerous selection rules have been 

proposed for GAs including Roulette wheel selection, ranking selection, and tournament 

selection. All methods rely on the fitness of individual members of the population and 

explicit requirements that all fitness values are positive and larger magnitude fitness values 

are superior to smaller magnitude fitness values. Populations that do not meet these 

requirements must have their fitness values mapped. Elitist selection is also often used to 

retain the best members in the population for subsequent generations. When elitism is applied 

to a genetic algorithm the best individuals survive to the next generation. Although 

introducing elitism increases the risk of being trapped in a local optimal solution, this method 

is useful for preserving the best individual through subsequent generations. 

 Crossover and Mutation 

Crossover and mutation are two basic operators in a genetic algorithm. The crossover 

operator exchanges genes between two parents to form two offspring that inherit the traits of 

both parents. Holland (1975) noted that it was crossover, and not random point mutations, 

which separated genetic algorithms from other evolutionary computation methods. The 

cutting point for separating the genes is randomly selected and the decision on whether or not 

to perform a crossover operation on two selected parents is determined randomly based on 

the crossover probability. A large crossover probability is commonly used in most GAs. The 

mutation operator alters one or more genes of a single parent. This can be done by randomly 
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flipping bits from 1 to 0 or 0 to 1 in the binary encoding presentation. Mutation is generally 

considered as a method to recover lost genetic material rather than to search for better 

solutions. The decision on whether or not a given gene should be mutated is controlled by the 

mutation rate. Figure 3-5 illustrates crossover and mutation operations. 

 

Figure 3-4  Crossover and mutation operations in GA 

GAs are potentially powerful tools for solving large scale combinatorial optimization 

problems. Hosage and Goodchild (1986) developed a binary encoding genetic algorithm for 

solving discrete location-allocation problems. They observed that their algorithm is most 

likely to be trapped in a local optimum if the corresponding string is very dissimilar from the 

string of the true optimum. Jiang et al. (1997) solved two location models for physical 

distribution centers using genetic algorithms. Their results proved that both proposed models 

performed better than using the classical alternate location-allocation method (Jiang et al., 

1997). Jaramillo et al., (2002) explored the use of GAs to solve location problems. In their 

paper, uncapacitated and capacitated fixed charge problems, the maximum covering 

problems, and competitive location models are solved by GAs and compared with the 

performance of other well known heuristics. Their research revealed that GAs were able to 
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give good and robust solutions for each model except the capacitated fixed charge location 

problem. Bozkaya et al. (2002), Chaudhry et al. (2003), and ALP, et al. (2003) proposed 

efficient genetic algorithms for solving the p-median problem. In this thesis, GAs are 

employed and programmed for solving the proposed spatial optimization models as described 

in section 4.3. The attempts to solve discrete location-allocation problems using MATLAB 

are described in Chapter 4 and the script codes are presented in Appendix B. 

3.5 Summary 

In this chapter, GIS and its applications, the Analytic Hierarchy Process (AHP), discrete 

location models, and genetic algorithms and their application in location science, are 

introduced. GIS is an efficient data processing and analysis tool which can be used for 

biomass availability assessment, suitable sites selection when combined with the AHP 

method, and results visualization with GIS maps. In order to spatially locate the power plants 

and optimally allocate the available biomass, discrete location models are proposed. Genetic 

Algorithms capable of giving good solutions to the corresponding combinatorial optimization 

problems, when appropriate parameters are set, are also described.  
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Chapter 4 Model Implementation: A Case 
Study 

In this chapter, the integrated models of bioenergy systems planning are demonstrated with a 

case study in the Region of Waterloo, Ontario, Canada. The tools and methods described in 

the previous chapter are implemented in this case study and some results are presented using 

maps. Agricultural biomass availability estimation is conducted in the first section. The 

second section describes the implementation process and the criteria used in the selection of 

biomass power plant candidates using the GIS and AHP applications. Discrete location 

theory based spatial optimization models are formulated in the third section. A brief 

summary is presented in the last section of the chapter. 

The reason for selecting Waterloo region as the study area is to take advantage of the readily 

available GIS data and because it is an agricultural dominated region. However, the proposed 

methodology in this thesis can be carried out in any regions subject to the availability of 

spatial and statistical data. 

4.1 Biomass Availability Assessment Method and Implementation 

The proposed methodology for optimal bioenergy systems planning was applied to the 

Region of Waterloo which is located in the Southwest region of Ontario, Canada 

(approximate population 506,800 in 2006). The Region is made up of the cities of Cambridge, 

Kitchener and Waterloo as well as the Townships of North Dumfries, Wellesley, Wilmot and 

Woolwich.  

In this thesis, biomass availability is estimated based on the land use in this region. There are 

26 land use categories in the study area including urban areas, agricultural areas, grain 

system, and idle agricultural land. The spatial distribution of land use in this region is 

illustrated in figure 4-1 and statistically summarized in a table in Appendix A. By observing 
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the figure and table, it is obvious that not all the lands are suitable for producing biomass. In 

this thesis, the biomass feedstock available for power production was assumed to come 

primarily from crops residues and energy crops through combustion, co-combustion or 

gasification techniques. Other kinds of biomass, such as forestry wood residues, animal 

manure, and municipal solid waste are not taken into account in this biomass potential 

evaluation. This is because animal manure and municipal solid waste, which have more 

moisture content, are more suitable to conversion through anaerobic digestion, and forestry 

wood residues availability is associated with the forestry sustainable management and 

landscape ecology design problems which are beyond the scope of this research. 

 

Figure 4-1 Land use in the Region of Waterloo, Ontario, Canada 

(The Ontario Ministry of Natural Resource, 2002) 
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The procedure used to evaluate agricultural biomass supply in the study area involves the 

following three stages: 

• Assess the theoretical biomass production from each suitable land use category; 

• Partition the study area into several biomass supply zones based on the filtered power 

plant candidate locations (see section 4.2); 

• Overlay with the biomass production points data to determine the biomass supply of each 

zone. 

In the first stage, before calculating the available biomass, the land use categories that are not 

appropriate for producing biomass (such as built up urban areas, water, extensive field 

vegetables, etc.) are excluded from the land use map. After this exclusion, 14 land use 

categories are left as suitable land for biomass production. These are summarized in table 4-1.  

Table 4-1 Land use considered for biomass production 

Landuse Catalogues Number of polygons Total Areas(Ha) 

Continuous Row Crop 359 17135.198 

Corn System 383 24347.501 

Grain System 232 5270.384 

Grazing systems 52 741.525 

Hay system 294 8665.026 

Idle Agric Land 5-10 years 160 1693.575 

Idle Agric Land >10 years 107 1300.416 

Mixed Systems 274 35844.838 

Pasture system 94 1834.93 

Pastured Woodlot 13 152.596 

Reforested Woodlot 17 167.926 

Sod Farm 7 309.594 

Swamp/Marsh/Bog 15 161.491 

Horticultural System  828 18115.913 

Sum 2835 115740.913 
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Depending on the land use categorization (represented in the GIS by polygons showing the 

usages of each parcel in figure 4-1), the theoretically obtainable biomass in polygon n is 

calculated as follow: 

)(
1

ni

m

i
inn pyAB ∑

=

×=      (15) 

where, nB is the biomass production in polygon n (dry-ton), nA  indicates the area of polygon 

n (Ha), iy  is the biomass yield of crop i  (dry-ton/Ha), nip is the percentage of available 

biomass from crop i in polygon n, and m is the number of crops planted in polygon n. With 

the historical agricultural statistical data and biomass yield data (refer to Appendix A), iy  

and nip  can be obtained. These data were then used in equation (15) to compute biomass 

production in each land use polygon. In order to more conveniently calculate the yields of the 

biomass production zone in the second stage, these polygons were then converted to points 

by applying GIS feature conversion tools. The computed biomass potential associated with 

each polygon was stored in the “bio-production” field of the attribute table of the biomass 

production points. Figure 4-2 illustrates the distribution of suitable land use categories 

(excluding the unsuitable land use categories) for agricultural biomass production over the 

entire Region of Waterloo. Notice that the white areas in the map represent the filtered 

unsuitable land use categories for producing agricultural biomass. They are not considered in 

this study. 

In the next stage of assessing biomass availability, the study area is divided into several 

zones corresponding to the number of power plant candidate locations (see section 4.2). The 

purpose of this action is to create the same numbers and locations of biomass collection sites 

as the number of power plant candidates. It is neither practical nor feasible in the real world 

to collect and transport biomass in every land parcel in the study area to the assigned biomass 

power plant. A more viable way is to collect the biomass in several land parcels and send 

them to a selected closer site for preparation before transport to the conversion facilities. 
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Figure 4-2 Suitable land use for biomass production in the Region of Waterloo 

In addition, an advantage of using the same candidate sites for both the collection and power 

plant candidate sites is that it ensures that the biomass collected in a zone need not be 

transported to constructed power plants in a different geographic location. The process of 
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allocating the available biomass feedstock is conducted by applying the “Euclidean 

Allocation” tool in ArcMap 9.1. The Euclidean Allocation tool allocates each cell to the 

closest input sources (i.e. “SOURCE_GRID” in figure 4-3) based on Euclidean distance. 

Figure 4-3 illustrates this spatial distance tool in ArcMap.  The input source in the Euclidean 

allocation can be either a vector or raster dataset. If the input source data is a feature class, it 

will first be converted internally to a raster before the Euclidean analysis is performed. In this 

thesis, the input sources are the candidate sites of the biomass power plants and the purpose 

is to allocate the biomass production areas (represented as raster cells) to the nearest power 

plant candidates.  

 

Figure 4-3 Basic illustration of Euclidean Allocation 

By applying this tool, the study area is partitioned into several zones based on the power 

plant candidates as the input sources. Furthermore, the biomass production points are 

allocated to the proximal biomass collection sites, which have the same geographic 

coordinates as the biomass power plant candidates derived from section 4.2.  An example 

result of this process with 87 power plant candidates is illustrated in figure 4-4. 

In figure 4-4, the Voronoi diagram indicates how the Region of Waterloo has been 

partitioned into several biomass supply zones where each zone contains several biomass 

production points.  
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In the last stage of biomass availability estimation, the “bio-production” quantities for all 

biomass production points, identified in the first stage, within each biomass production zone 

are summed to obtain the biomass supply potential in each zone. 

 

Figure 4-4 An illustration of biomass supply zones in the Region of Waterloo 

The total biomass supply for each such zone is then computed based on its geographic 

distribution (using scripts written in Python8 and running in the ArcCatalog® of ArcGIS®, 

                                                      
8 A dynamic object-oriented programming language that can be used for many kinds of software development 
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refer to Appendix B) by simply summing the corresponding “bio-production” field values of 

all of the biomass production points in each such zone. A new field “BIO_SUPPLY” is 

added to the power plant candidate attribute table where the summed values are stored. 

Figure 4-5 shows the results of the biomass potential calculation in each biomass supply zone. 

 

Figure 4-5 Results of biomass assessment in the Region of Waterloo 

In figure 4-5, the bottom left figure illustrates the results of the biomass assessment in the 

Region of Waterloo and the upper left figure shows the details for the boxed in area of the 

lower figure. The locations of biomass supply zones are fixed to the locations of power plant 

candidates, which represent the supply input parameters to the location-allocation models 

described in section 4.3. The attribute table on the right of figure 4.6 shows how the 

attributes associated with each zone (i.e. the biomass supply and the point location) are stored.  



 

 60 

4.2 Power Plant Candidates Selection and Results 

In this thesis, we first assume that all the intersections in the road network of the study area 

are biomass power plant candidate sites. This is mainly because the optimal solutions of 

discrete location models are always found at the vertex of a network (Hakimi, 1964). As well, 

this assumption facilitates maximizing accessibility without unnecessarily increasing costs 

for road construction. However, this assumption may negatively impact on the efficacy of the 

location-allocation process in two ways.  

1) Not all road network intersections are feasible sites for constructing biomass power 

plants. Neither thermal power plants nor landfill gas power plants are suitable at 

every intersection. Environmental or public health constraints should ultimately be 

taken into account when selecting power plant sites (Public service commission of 

Wisconsin, 1999). For instance, it is unacceptable in most situations for a power 

plant to be located in an environmental sensitive protection area (ESPA), floodplains, 

or in an urban area near residential zones.  

2) Since the number of intersections in road networks is normally very large (9760 

intersections in the road network of the Region of Waterloo), the computational 

burden in solving the corresponding location-allocation models could make their 

solutions intractable. Consequently, since many intersections are in urban areas that 

are often unsuitable for power plant sites, it would be beneficial to conduct the 

suitability analysis process to reduce the number of suitable candidate sites. 

In this section, the Analytic Hierarchy Process and GIS based suitability analysis are 

utilized to limit the problem size by filtering out intersections in unsuitable areas and 

applying preferable criteria to rank order the areas that are most suitable for locating 

biomass power plants. The original spatial data of the study area used for the suitability 

analysis are listed in table 4-2. 
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Table 4-2 Spatial data 

Data Layers (Vector and Raster) 

Land use Water body Elevation 

Floodplain Road network Airports 

Water discharge Water supply Existing Substations 

Distribution network Urban areas Biomass supply 

4.2.1 Implementation and Results of Exclusive Suitable Analysis 

GIS based suitability analysis consists of exclusive and preferable analysis. This subsection 

describes the details of the implementation of exclusive analysis and presents the results 

derived from this spatial analysis process.  

Many criteria could be considered as exclusionary constraints which must be satisfied in the 

process of selecting suitable sites for building power plants. General considerations are listed 

in table 4.3 as the exclusive siting criteria (Public service commission of Wisconsin, 1999, 

Delaney et al., 2003 and Beheshtifar et al., 2006). The constraints and regulations aim to 

minimize the negative impact on the environment, to protect public health and safety and to 

keep the constructed power plants operating at lower costs and in more stable conditions.  

Depending on the concerns of the decision makers and the regulations in different regions or 

nations, some of the criteria summarized in table 4-3 could be chosen as particular exclusive 

constraints. 
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Table 4-3 Siting criteria for power plants by major category 

Considerations Major Categories 

Site Requirements  

• Accessibility 
• Site Geography 
• Topography 
• Site expandability 
• Solid waste management 
• Fuel delivery 

Community Impacts 

• Archaeological and historical sites 
• Community service costs 
• Aesthetics 
• Public attitude 
• Labour availability 
• Effects on wells 
• Numbers of relocations 

Public Health and 

Safety Concerns 

• Air quality 
• Electric and Magnetic Fields (EMF) 
• Noise 
• Operational odors 
• Traffic safety 
• Water treatment 

Environmental Impacts 

• Air and drink water quality 
• Groundwater impacts-recharge, discharge, quantity, quality 
• Protect species 
• Wetlands 
• Waste water treatment 
• Waste minimization, recycling ,reuse 

Economic Impacts 

• Delivered costs of energy 
• Future development 
• Jobs and purchases  
• Transmission and distribution changes 
• Property values 

Land Use Impacts 

• Industrial forests 
• Land acquisition 
• Land use compatibility 
• Previous land use 
• Prime agricultural land 
• Recreational areas 
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The regional official policies plan for the Region of Waterloo (1994) states: “Any 

infrastructure planning should meet the planning policies of the Region of Waterloo, the 

Region of Waterloo will review and comment on Environmental Assessment Studies (EAS), 

and may participate in the Environmental Assessment Process, for major hydro-electric 

power lines, oil lines, gas lines, communication lines or lines conveying other liquids or 

energy, to ensure that regional interests concerning impacts on the Natural Habitat Network, 

Heritage resources, sensitive groundwater areas, City and Township Urban Areas, Rural 

Settlement Areas, and natural resources are addressed. ” The goal is to achieve a Sustainable 

Regional Community.  

In this thesis, five constraints are taken into account as the exclusionary criteria according to 

the geographic characteristic and regulations of the region. Each exclusive constraint is 

implemented by separating the suitable areas and unsuitable areas using buffers. The intent of 

buffering is to minimize the negative effects of the plant by increasing the distance to 

neighbours through use of surrounding land that provides a “buffer”. Buffer area refers to the 

strips of land between the plant facilities and adjacent property owners, especially residential 

property owners. Generally, sites with large or higher quality buffer areas are more desirable. 

All the constraints considered in the exclusive suitability analysis are illustrated in figure 4-6 

and are described as follows: 

1) Residential zones (built up urban areas) 

In order to minimize the impacts of constructing new power plants on the residents in the 

local area, the plant sites should be buffered from residential zones. The considerations of 

public health and safety, such as noises, operational odors, traffic safety issues, EMF, dust 

etc., ought to be reduced to a minimum level. Appropriate buffers can provide not only 

relatively quiet safe isolation, but also avoid residents’ relocation.  

2) Floodplain 

It is important to reduce the potential for flood damage and plant shut down. Designs 

typically locate critical equipment above the 100-year flood level. Non-critical portions of 

the plant systems (e.g., road) below the 100-year level can be raised or protected (Public 
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service commission of Wisconsin, 1999). In this study, the zones within the floodplain 

buffers are excluded as potential power plant candidate sites.  

 

Figure 4-6 Constraints in the exclusive suitability analysis 

3) Slope 

It is obvious that other types of area which are unsuitable for construction are those liable to 

catastrophic slope movements such as landslides, rockslides, deep-seated creep etc. 
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Therefore, the slope of the land should be considered in the exclusive suitability analysis. 

The slope map in the study area is calculated in ArcGIS® and certain slope-angles are 

selected. Areas with slope-angles beyond 15° are excluded from the suitability map (Demek 

and Kalvoda, 1992). 

4) Distance to airports 

Usually, a power plant has high towers and chimneys and discharges large volumes of gas. 

Consequently for safety reasons and to comply with air space restrictions and regulations, 

plants should be located away from airports. Generally, sites at greater distances from 

airports and designated as clear zones are desirable, as are sites offset from runway 

alignments (Public service commission of Wisconsin, 1999).  

5) Water body/environmentally sensitive areas 

Water bodies include all lakes, rivers, wetlands and ponds in the region. They are considered 

environmentally sensitive areas. In order to protect water quality, biodiversity, and the 

natural habitat network, the proposed power plants should not be constructed near water 

bodies or environmentally sensitive areas. 

The purpose of the exclusive suitability analysis is to exclude all intersections located in 

unsuitable areas by considering the constraints above. The process is conducted in the 

environment of the model builder in ArcCatalog. The Data Flow Diagram (DFD) consisting 

of all spatial data taken into account in the model builder is illustrated in the following figure 

4-7. 

In particular, the buffer distance for urban areas is set to 1.0 kilometre. Water 

body/environmental sensitive areas and floodplain have a buffer distance of 300 meters. 

Intersections with slope-angle greater than 15° are excluded and intersections within 3 

kilometres of airports are prohibited. After applying the exclusive suitability analysis to the 

spatial data as described in the DFD in figure 4.8, an exclusive suitability map is generated. 

All the road network intersections in the region are overlaid with the derived exclusive 

suitability map to identify the power plant candidates in the Region of Waterloo as illustrated 

in figure 4-8. These filtered power plant candidate sites are identified as the facilities in the 
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location-allocation models and used as the locations for partitioning the study area into 

several biomass supply zones in section 4.1. 

 

Figure 4-7 Data flow diagram of the exclusive suitability analysis 
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Figure 4-8 An example of exclusive suitability analysis results 

To facilitate this process, an exclusive analysis toolbox was developed for conducting the 

exclusionary suitability analysis process interactively. By entering the buffer distances or 

slope-angles to this toolbox, a corresponding exclusive suitability analysis result is generated 

and presented in a GIS map. The toolbox was developed in Python 2.1 and runs in 

ArcCatalog 9.1. With this toolbox, the decision makers can conveniently get the analysis 

results without knowing much about ArcGIS® and Python. The interface to the toolbox is 
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shown in Figure 4-9 and the detailed scripts for this toolbox appear in Appendix B of this 

thesis. 

 

Figure 4-9 Interface of the exclusive analysis toolbox 

It is this exclusionary analysis that reduces the numbers of potential biomass power plant 

candidates from 9760 to a relatively small number (in this example, the number shrinks to 

87). In addition to accounting for power plant selection criteria this analysis also reduces the 

computational effort required to solve the spatial optimization models by reducing their size.  

The preferable suitability analysis described in the next section ranks the suitability of the 

remaining candidates for the construction of biomass power plants and provides some 

direction to the decision makers in cases where multiple solutions are obtained.  

4.2.2 Implementation and Results of Preferable Suitable Analysis 

There are six preferable factors, which rank the candidate areas based on their suitability 

considered in this case study. They are presented in table 4-4. 
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Table 4-4 Criteria in preferable suitability analysis 

Preferable Suitability Analysis 

Factors Description Criteria Weights
Biomass 
supply 

Indication of high, medium, and low 
biomass supply 

3 levels 
classifications 

0.438 

Substations 
Indication of the distance to the existing 

substations (the closer, the better) 
2,3,4,5,10km buffers 0.258 

Urban areas 
Indication of the distance to the urban 

areas (the further, the better) 
1.5,2,3,5km buffers 0.152 

Water supply 
Indication of high, medium, and low 

water supply 
3 levels 

classifications 
0.082 

Slope 
Indication of different level of slopes 

(the small, the better) 
5 levels 

classifications 
0.035 

Water 
discharge 

Indication of high, medium, and low 
water discharge 

3 levels 
classifications 

0.035 

In the preference analysis, each area is placed (by factor) into one of several buffers or 

classes. Each buffer or class has a preference rank relative to the factor being considered. For 

example, 3 classifications in the “biomass supply” factor indicate high, medium or low levels 

of available biomass feedstock and areas having a high, medium or low stock are assigned 

values 3, 2 or 1 respectively. It is obvious that it is more attractive to construct biomass 

power plants in areas with higher values. When these assigned values are multiplied by the 

corresponding weight (0.438) the resulting biomass supply contribution becomes part of the 

final preference layer where areas with higher numbers are more preferable than areas with 

lower numbers. Similarly, it is preferable to build biomass power plants in areas near to 

existing substations in order to reduce the electric power delivery expenses. 

In order to combine the preferable factors considered in this study, a Weighted Overlay tool 

is applied to integrate the effects of all the preference factors and to derive the final 

preferable analysis result which are reported using a map that shades areas of low, medium, 

and high suitability. The results of the preferable analysis combined with the location 

allocation model solutions, showing quantitative results of minimizing biomass power 

generation costs, can provide the decision making supports for decision makers. 
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The weights associated with the factors in table 4-4 are attained using the Analytic Hierarchy 

Process (Ma. et al. 2005). AHP, a systematic method for comparing a list of objectives or 

alternatives, was introduced in section 3.2. The AHP enables the decision makers to express 

their qualitative judgments in a quantitative format, instead of assigning arbitrary weights to 

the qualitative factors.  

Based on the relative importance of the factors affecting the suitability of areas in the 

bioenergy systems planning process, the pair-wise comparison matrix A, shown in table 4-5, 

was derived.  

Table 4-5 Pair-wise comparison matrix A in AHP 

 Biomass 
supply Substations Urban 

areas 
Water 
supply Slope Water 

discharge Weights 

Bio_supply 1 3 4 5 9 9 0.438 
Substations 1/3 1 3 4 7 7 0.258 
Urban areas 1/4 1/3 1 3 5 5 0.152 

Water supply 1/5 1/4 1/3 1 3 3 0.082 
Slope 1/9 1/7 1/5 1/3 1 1 0.035 
Water 1/9 1/7 1/5 1/3 1 1 0.035 

The meaning of each element in the matrix is described in table 3.1 and the weights in the 

last column, which represent the weight ranks of the factors considered by the decision 

makers, are computed following the procedure described in section 3.2. For example, since 

the distance from the plants to the biomass supply sites was considered most important, this 

factor was assigned the highest weight (0.438) by the AHP. In order to evaluate the 

credibility of the estimated weights, the consistency ratio (C.R.) was computed using the 

eigenvector method proposed by Saaty in 1977. The corresponding results were obtained 

using the procedure described in section 3.2 and are summarized in table 4-6 below. 

The computed consistency ratio, 0.039, indicates that the pair-wise matrix A is reasonable 

and the weights derived from A are acceptable. The scripts for computing the weights and the 

C.R. are presented in Appendix B.  
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Table 4-6 Computation results of consistency ratio 

Related 
variables maxλ  C.I. C.R. 

Values 6.2418 0.0484 0.0390 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

R.I. 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

After all these weights and criteria were computed, a number of GIS screening techniques 

were conducted in ArcGIS® to produce a preferable layer following the procedure in the data 

flow diagram illustrated in figure 4-10.  

 

Figure 4-10 Data flow diagram (DFD) of preferable suitability analysis 
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In the last procedure of the DFD, Weighted overlay, an important spatial analysis tool is 

employed. It is a technique for applying a common measurement scale to diverse and 

dissimilar inputs to create an integrated analysis. Geographic problems often require the 

analysis of many different factors that exist in different raster layers with different value 

scales: distances, degrees, and so on. You can't add a raster of slope (degrees) to a raster of 

distance to facilities (meters) and obtain a meaningful result. Additionally, the factors may 

not be equally important. For example, in our study the distance to biomass supply points is 

more important than the distance to substations. The principal of a weighted overlay is 

presented in the following figure 4-11. 

 

Figure 4-11 Illustration of weighted overlay 

In the illustration, the two input raster are first reclassified to a common measurement scale 

of 1 to 3. Each raster is then assigned a percentage influence. The resulting cell values are 

then multiplied by their percentage influence, and the results are added together and then 

rounded to create the output raster. For example, consider the top left cell. The values for the 

two inputs become (2 * 0.75) = 1.5 and (3 * 0.25) = 0.75. The sum of 1.5 and 0.75 is 2.25 

which is then rounded to 2.  The preferable suitability analysis layer, obtained after all factor 

layers were overlaid using weighted overlay, is shown in figure 4-12. 

The derived preferable suitability layer ranks the study area into four basic zones based on 

their preferable suitability. The filtered power plant candidate sites are scattered in each zone. 

If the optimal solutions from the location-allocation models are not unique or if the weighted 
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costs corresponding to alternate optimal solutions are very close the selection of sites in the 

areas with high suitability take priority and the decision makers can use this analysis to make 

appropriate choices.  

 

Figure  4-12 Results of the preferable suitability analysis 

Power plant selection and suitability analysis are very important steps in designing bioenergy 

systems. On one hand, they prepare the input data for the spatial optimization models and 

reduce the number of variables to improve computational performance. On the other hand, 

these processes consider multiple factors, including environmental, public health and safety, 
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feasibility, and community impacts in selecting the most suitable areas as candidates for the 

construction of biomass power plants. The methodologies, such as exclusive analysis, AHP, 

and preferable analysis, employed in the processes are easily performed and the decision 

makers do not require significant knowledge of GIS or AHP.  

The following section describes how the locations of the power plants and the allocation of 

the biomass supplies to these plants are computed to minimize the weighted transportation 

costs and levelized unit cost of energy (LUCE). 

4.3 Spatial Optimization Models of Bioenergy Systems 

4.3.1 Optimization Problems Identification 

In the previous section, a variety of factors are investigated for bioenergy systems design. In 

this section, the economics of designing bioenergy systems is addressed through the use of 

location-allocation models based on geographic variations. Firstly, a p-median problem 

model is proposed for minimizing the weighted transportation costs of delivering biomass 

feedstock from biomass supply zones to the selected power plants. Then a p-uncapacitated 

facility location problem (p-UFLP) model is used for minimizing the LUCE. The built-in 

PMP solver in ArcInfo, based on the Teitz and Bart (1968) Algorithm (TBA) and the Global 

Regional Interchange Algorithm (GRIA), is used to solve the p-median problem. Customized 

GAs, based on Alp et al. (2003), are used to obtain approximate solutions of the PMP and the 

p-UFLP models. These optimization models attempt to select the best power plant sites from 

the power plant candidates and to optimally allocate all available biomass supplies to those 

proximal located power plants by minimizing different costs (i.e. weighted transportation 

costs and LUCE). Finally, the selected power plants are connected to the existing power 

distribution network. The problem is depicted in figure 4-13.  

In figure 4-13, power plant candidates and biomass supplies points have the identical 

geographic coordinates. The existing distributed substations in this area are connected by 

high power transmission lines. The objectives of the optimization problem are to select the 

best sites on which to build biomass power plants and to distribute all biomass supplies to 
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those active power plants by optimizing the total weighted transportation costs or the LUCE. 

Once the active power plants are selected, these power plants are connected to the existing 

distributed substations to provide alternative “Green Electricity” to the local areas.  

 

Figure 4-13 Illustration of the spatial optimization problem 

Since the actual spatial data for the distributed power system in the region were not 

accessible, a distribution network was generated by applying the Minimum Spanning Tree 

(MST) algorithm and using the corresponding tree nodes to represent the locations of 

distributed substations in the study area. The procedure for creating the distribution network 

involves the following steps (detailed scripts are presented in Appendix B). 
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1) Randomly generate a specified number of points in the study area; 

2) Use the kruskal MST algorithm (Minieka 1978, Brassard and Bratley, 1988) in 

MATLAB to find the solutions of the minimum spanning tree by connecting the 

points generated in the first step; 

3) Use ArcGIS to create a distribution network representing the distributed substations 

and power lines using the solutions derived from step 2. 

In the location-allocation models, two types of distances, Euclidean distance and shortest 

paths in the networks are applied and compared. Euclidean distance can be easily computed 

from the following equation: 

22
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where, ( 1X , 1Y ) and ( 2X , 2Y ) are the coordinates of two points.  

Finding the shortest or least-cost path in a network connecting to points is more complicated. 

One approach to finding the least-cost path between an origin and a destination is to examine 

all possible paths between them and to choose one path with the least cost. However, 

computational consideration makes it impractical to examine all possible paths between two 

points since in many networks there are literally hundreds of thousands of possible paths 

between an origin and a destination. Therefore Dijkstra’s algorithm (Dijkstra, 1959), one of 

the simplest greedy path finding algorithms (ArcInfo Help, 2006), is employed in ArcGIS to 

find an approximate shortest path.  

In the following two subsections, the implementation and results of the optimizations are 

addressed. 

4.3.2 Total Weighted Transportation Costs Minimization 

Since the setup cost of building the facilities and equipping a facility in the study region is 

assumed to be independent of their location when a certain conversion technology is selected, 

only the costs of delivering biomass feedstock from the fields to the active power plants are 

considered in this thesis. Different scenarios for locating of power plants and allocating 
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biomass supplies affect the main costs of biomass power generation. Therefore, a PMP 

formulation is applied to model this particular discrete location problem. Expressions (17) to 

(21) formulate this problem. 

Minimize
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where, in equation (18), n is the number of power plant candidates, which is the same as the 

number of biomass supply points, α is the average biomass delivery price ($/ton-km), ic is 

the biomass supply in location i , ijd  is the transportation distance between location i and 

location j , ijx  is the decision variable representing the decision to allocate available biomass 

between supply i and power plant candidate j , jy represents whether candidate site j is 

selected as an active power plant site or not. Constraints (18) through (21) have the same 

interpretation as in constraints (6) through (9).  

In ArcInfo, there are two algorithms used for solving the PMP (i.e. TBA and GRIA). TBA is 

a robust heuristic used for solving location-allocation problems. Even though it is not 

guaranteed to find optimal solutions, it does so in many instances. TBA will usually find a 

very good solution referred to as a ‘local optimum that is close to optimal.’ However, there is 

no hard and fast rule to determine how close TBA solutions are to optimal (ArcInfo Help, 

2006). Teitz and Bart (1968) developed the first heuristic for the p-median problem. This 
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heuristic was based on the interchange or substitution process that was developed by Shin 

Lin (1965) for the Travelling Salesman Problem. Essentially, the process starts with a pattern 

or configuration of p locations. Then the process begins by selecting a candidate (but unused) 

site and considers swapping this candidate for each of the current p-facility locations. If any 

swap is encountered that improves weighted distance, then the best of those possible p swaps 

is made. The process then continues by selecting another candidate site and testing swaps. 

When no swap between candidate and a facility location, which can improve the objective, 

exists, the heuristic stops. The GRIA is a relatively new heuristic used for solving location-

allocation problems. It begins with a ‘starting solution’, or ‘seed’, of m candidates. The 

algorithm then goes through a global phase and a regional phase of candidate substitutions to 

arrive at a local optimum. In the global phase, a solution site is selected that makes the least 

increase in the total weighted distance once it is removed from the solution. It is replaced 

with the unselected candidate that decreases the total weighted distance the most. These 

substitutions are repeated until no further reduction in the total weighted distance can be 

achieved in this manner. The regional phase involves looking at the candidates allocated to 

each site. If a site can be replaced by one of these candidates to reduce the total weighted 

distance, the substitution is made. These substitutions are repeated until there is no further 

reduction in the total weighted distance. The degree of optimality obtained with GRIA is, like 

TBA, dependant on the data and the size of the problem.  

Many Genetic Algorithm approaches are proposed for solving the PMP. In this thesis, a 

genetic algorithm based on the study of ALP et al. in 2003 has been developed for solving 

the PMP model. This algorithm was compared to the commercial TBA and GRIA algorithms 

using the same dataset and parameters from the PMP model. It produced acceptable solution 

results for our particular PMP models. The GA is described in details as follow: 

♦ Encoding scheme:  

Instead of using binary encoding, this algorithm employs an integer string representation. 

Each solution is encoded as an integer string of length p, where each gene of the 

chromosome indicates the index of the facility selected as an active power plant. For instance, 
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the string [12, 23, 35, and 56] represents a candidate solution for the 4-median problem 

where sites 12, 23, 35 and 56 are selected as active power plant sites. This encoding scheme 

ensures that constraints (19) are always satisfied.  

♦ Fitness function computation:  

The fitness function is directly related to objective function (17). More specifically, the 

fitness of an individual is given by the expression (22) (Deminguez and Munoz, 2005). 
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where, s is an individual solution, n is the number of supply points, α is the average biomass 

delivery price ($/dry-ton·km), ic is the biomass supply in location i (dry-ton), and ),( jsid is 

the distance between supply point i  and site represented by the thj  component of s . This 

fitness value is easily computed using the problem data. The calculation assumes that every 

demand point would be allocated to the closest open facility. This ensures that constraints (18) 

and (20) are always satisfied. Hence, the selection of the fitness function and the encoding 

satisfy all constraints and no additional effort is needed in the implementation of the 

algorithm to enforce the constraint set. 

♦ Population size, initial population, and parents selection 

The population size should ensure that:  

(1) All possible genes of the approximate solution must be contained in the initial population. 

The initial gene pool greatly affects whether the best solution can be reached in the 

algorithm.  

(2) The population size should be proportional to the problem size. A larger problem should 

correspond to a larger population size.  

By considering these two properties of the population size, ALP et al. give the following 

expression to determine the population size of the algorithm.  



 

 80 

d
d
SnPopSize

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡ ⋅=

)ln(
100

,2max      (23) 

where, PopSize denotes the population size, n is the number of supply points, )(n
pCS = is the 

number of all possible solutions to the corresponding problem p  is the number of active 

power plants, ⎥
⎥

⎤
⎢
⎢

⎡
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p
nd is the minimum integer number of elements required to represent each 

gene in the initial population. By applying this population size determination scheme, every 

gene appears at least twice in the initial population and the size increases with the problem 

size. 

The initial population contains all genes of the problem and the frequency of the appearance 

of genes in the initial population is initially nearly constant. Suppose that the population size 

kd  is computed by (23) for some constant k . For the first set of 
p
n

members, genes 1, 2,…, 

p are assigned to the first member, genes ppp 2,......,2,1 ++ are assigned to the second 

member, and so on. For the second set of 
p
n members, similar assignments are made, but an 

increment of two in the sequences are used. For instance, for a problem 

with )2,4,12(),,( =kpn , the initial population is set as:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

121086
42119
7531

1211109
8765
4321  

If 
p
n is not an integer number, random genes are allocated to fill the empty places in the 

initial population matrix.  

After the initial population is computed, the next step randomly selects parents form this 

population and manipulates their genes to produce offspring. The process is described in 

what follows. 
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♦ Offspring generation, Mutation, and replacement 

The GA employs a greedy algorithm to generate offspring for the next generation. Firstly, the 

offspring generator forms the union of the genes in the two parents (called the draft member) 

and classifies its genes into “fixed genes” which are in both parents and “free genes” which 

are all others. Then the generator calculates the fitness value of the draft member draftf  , and 

removes whichever free gene results in the least increase in the fitness function value 

compared with draftf  . This process is repeated until the length of the draft member equals p 

and the chromosome (called candidate member) derived is the child of the parents for the 

following generation. In this GA, no mutation is used since all the genes are present in the 

initial population. It should be noted that ALP et al. claim that the mutation operator does not 

improve the performance of their algorithm.  

In order to keep a good average fitness value for the population, a replacement operator is 

used to discard the current child if it is identical to another member in the current population 

or if its fitness value is worse than the chromosome with the worst fitness in the current 

population.  The algorithm is terminated if the generated children have not made an 

improvement to the fitness after a given number of successive iterations determined by 

⎡ ⎤pn  )2( pn > or ⎡ ⎤pnn −  )2( pn ≤ . 

♦ Results 

The optimization results are obtained by applying TBA and GA with the spatial data derived 

from the previous sections. Maps are used to illustrate some of these results with different 

p values and distance measurements, i.e. Euclidean distance and shortest path distance. 

Figures 4-14, 4-15 and 4-16, show the results where Euclidean distance and the shortest path 

route distance are used respectively, the power plants are selected among all the candidates 

with pre-determined p values (i.e. 1, 4 and 15), and the available biomass in the area is 

allocated to the selected power plants so as to minimize the weighted transportation costs. 

Both the TBA algorithm and the proposed GA converge to the same approximate solutions 

but the solutions are different when different distance representations are employed.  
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Figure 4-14 PMP solutions with Euclidean distances and shortest distances n =87, p =1  

 

Figure 4-15 PMP solutions with Euclidean distances and shortest distances n =87, p =4 
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Figure 4-16 PMP solutions with Euclidean distances and shortest distances, n =87, p =15 

Figures 4-17 through 4-19 present statistical information associated with the solution of the 

PMP models for different values of p using the proposed methods. As expected when the 

number of selected power plants p is increased, both the average transportation distances and 

the furthest distance to be traveled initially decrease gradually. However for values of p 

larger than 13, the average transportation distance changes very little (see figure 4-17). The 

same trends are observed in the weighted distance comparison (see figure 4-18) and weighted 

transportation cost comparison in figure 4-19 with various p values. This indicates that as 

more power plants are constructed, the transportation costs become less dominant as the total 

capital costs increase. 
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Figure 4-17 Average and furthest transportation with different p values 

 

Figure 4-18 Comparison of weighted distance with different p values 
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Figure 4-19 Comparison of transportation costs between different distances 

Figure 4-19 shows the weighted transportation costs using the shortest network path 

distances and Euclidean distances for various values of p. Although both decrease with 

increasing values of p, the shortest network path distances are, as expected, always greater 

than the Euclidean distances for each value of p. In both cases, the transportation cost reaches 

zero when p equals 87 since each biomass supply will be assigned to a power plant sharing 

the same physical location with it. As p values increase, the installation and capital costs of 

constructing power plants will dominate the total energy cost and the costs of delivering 

biomass feedstock have fewer effects on the total energy generation price. 

In order to evaluate the overall power generation price in designing optimal bioenergy 

systems, an uncapacitated facility location problem model for minimize the levelized unit 

cost of energy is introduced in the following subsection. 

4.3.3 Levelized Unit Cost of Energy (LUCE) Minimization 

One way of representing the overall cost of electricity generation is by way of the levelized 

unit cost of energy (LUCE). LUCE is comprised of capital costs, transportation costs, 
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operation and maintenance costs, and fuel costs (Venema, 2004). Use of a LUCE calculation 

can assist decision makers in comparing various supply options- e.g. to compare the 

selections of energy conversion technologies (combustion, co-combustion, gasification, 

anaerobic digestion, or pyrolysis), and sources (coal, biomass, wind, nuclear etc.). The 

location-allocation model proposed in this thesis attempts to minimize the LUCE of 

generating electricity through biomass by using different bioenergy conversion technologies. 

It is assumed that two main bioenergy conversion technologies, Direct Combustion (DC) and 

Integrated Gasification/Combined Cycle (IGCC) which have different conversion 

efficiencies, are selected for comparison in this study. The general bioenergy spatial design 

problem is then to strike the optimum balance between transportation costs and capital costs 

realizing that many geographically-dispersed small plants will decrease transportation costs 

but incur relatively higher capital costs.  In this thesis, a p-UFLP model is used to compare 

by considering both transportation costs and capital costs to minimize the levelized unit cost 

of energy through converting biomass to electric power.  

With the spatial data from the sections on biomass assessment and power plant candidate 

selection, a p-UFLP based location-allocation model is specifically formulated to minimize 

the LUCE ($/kWh) as follows.  

Minimize
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where N is the number of biomass supply points which is also the number of candidate power 

plant locations, α is the unit biomass feedstock transportation cost ($/dry-ton/km), ic is the 

quantity of biomass supply in the location i (dry-tons), β is the conversion coefficient between 

energy and biomass potential (kWh/dry-ton), jIC  is the installed capacity of power plant j 

(kW), lf is the load factor representing the percentage of the electricity generated from 

biomass over the designed capacity of the power plant, cap j  is the annualized capital and 

installation cost ($/kW) at location j which varies in different locations depending on the 

bioenergy conversion technologies (i.e. direct combustion or gasification) applied and the 

capacity of power plant j, xC  is the total cost ($) of purchasing biomass fuel and operation 

and maintenance (O&M) for the selected biomass power plants, which is assumed to be a 

constant value in this study,  ijx  is the decision variable representing the allocation decisions 

of available biomass between supply i and power plant candidate j , jy represents whether 

candidate site j is selected as an active power plant site ( 1=j ) or not ( 0=j ). The parameters 

used in this model are listed in table 4-7 (Layzell et al., (2006), IEA Bioenergy, (2007), 

Khrushch et al. (1999)). 

Table 4-7 Parameter values used in the p-UFLP model 

Conversion Technology Capacity 
IC  (MW) 

Conversion 
Efficiency β  

Capital Cost cap  
($/kW) 

Load 
Factor 

Direct Combustion 5-25 30%-35% 3000-5000 0.6 or 0.9 
Integrated Gasification 

Combined Cycles(IGCC) 10-30 40%-55% 2500-5500 0.6 or 0.9 

Energy conversion coefficient 
Energy conversion Description Number Units 

Electrical Energy Joules to electrical energy 3.6 MJ/kWh 
Energy content of Crops(dry) Energy Content of Crops 18 GJ/dry-ton 

Trucking Transportation Cost α  Trucking Transportation Cost 0.125 $/dry-ton/km 

Biomass Cost (crop residues)  Bio-fuel Cost 3 $/GJ 
 O&M Cost  Operation and Maintenance cost 16 $/MWh 

Policy Incentives Federal Renewable Power 
Production Incentive 10 $/MWh 
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The parameter values from table 4-7 were used to define the objective function (24) of the p-

UFLP model in a MATLAB coded genetic algorithm solution approach. For different model 

settings, such as conversion technologies and load factors, the data from the following table 

were used in these genetic algorithms. “High”, “medium” and “low” in the table represent the 

relative capacity of the biomass power plants. As indicated the relative capital cost ($/kW) of 

building higher capacity power plants is lower than building small power plants. 

Table 4-8 Data selection for different conversion technologies 

Conversion 
Technology 

Load 
Factor 

Power Plant Capacities
(MW) Capital Costs ($/kW) Conversion 

Efficiency 

IGCC 
0.6 high Medium low high Medium low 

0.55 >30 10-30 <10 2500 4000 5500 0.9 

Direct 
Combustion 

0.6 high Medium low high Medium low 
0.35 >25 5-30 <25 3000 4000 5000 0.9 

The p-UFLP can be decomposed into two interdependent sub-problems – the location sub-

problem and the allocation sub-problem (Al-Sultan and Al-Fawzan, 1999). The location sub-

problem selects the facilities to be established (i.e., corresponding to 1=jy ) and the allocation 

sub-problem determines the demand distribution pattern for those established facilities (i.e., 

corresponding to 1=ijx ). In this thesis, it is assumed that the operation and maintenance cost is 

fixed for each power plant candidate. However, the capital costs vary with respect to the 

conversion technology selected and the power plant capacity. Generally, a larger power plant 

has higher conversion efficiency and lower capital and installation cost ($/kW) and vice 

versa.  

When a p-UFLP model is solved using genetic algorithms, the fitness of a chromosome in the 

population can be calculated by evaluating the two components of the objective function (i.e. 

the weighted transportation cost and the fixed facility cost). The fitness of any particular 

solution (chromosome) is given by the following expression which was obtained by 

combining the ideas of (Jaramillo et al., 2002) and (Dominguez and Munoz, 2005):  
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where s is an individual feasible solution (a chromosome) in the current generation and js is 

the thj gene in this chromosome. ic is the biomass supply at location i ,  
jsf is the fixed cost 

of establishing a plant at site js , α is the unit biomass feedstock transportation cost ($/dry-

ton/km), β is the conversion coefficient between energy and biomass potential (kWh/dry-ton), 

and ),( jsid is the distance between supply point i  and site represented by the thj  component 

of s . 

The procedures for solving this p-UFLP using a GA are different from those used in solving 

the PMP model. The steps of the overall algorithm are stated in what follows, where the 

number of power plant candidates is N, the number of power plants is p , and the population 

size is PopSize : 

1. Generate a initial population )( pPopSize ×  and calculate the allocation solution  for 

each individual chromosome in this population with respect to minimizing the 

weighted transportation costs; 

2. With the allocation solutions calculated from step 1, compute the bio-power 

capacities (MW) of the selected power plants for the population )( pPopSize × . The 

capacity in each selected power plant can be calculated by summing all the biomass 

supplies (dry-ton) according to the allocation solution. Based on the power plant 

capacities, assign the capital and installation costs for the power plants and calculate 

the fitness value for each individual based on equation (30); 

3. Repeat while 
⎪⎩

⎪
⎨
⎧

≤

>
=≤

2pn ,p-nn

2pn ,pn
m , wheremMaxIter  

3.1 calculate the best and worst fitness values in the current population; 

3.2 select parents from the current population using random selection;  
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3.3 generate a new child from the parents selected in 3.2 and compute the 

corresponding UFLP fitness value for the new child; 

3.4 if the child is not identical to any other chromosomes in the current generation, 

replace the chromosome having the worst fitness value in the current population 

with the child if its fitness is better than the worst, otherwise return; 

3.5 find the best individual in the new population. If it is same as the best individual 

in the previous generation, set MaxIter=MaxIter+1, otherwise, set 

MaxIter=MaxIter; 

3.6 output the best individual as the sub-problem solution in the current generation, 

repeat 3.1 -3.6 until MaxIter is greater than m. 

4. Select the best member from the population as the final location sub-problem solution; 

5. Based on the location sub-problem solution from step 4, calculate the corresponding 

allocation solutions and the LUCE considering operation and maintenance and fuel 

costs. 

The computational efforts of solving the p-UFLP model are much heavier than those required 

to solve the PMP model. It takes much longer CPU time to get approximate optimal solution 

than that required for solving the PMP model of the same size (i.e. N and p  are the same). 

This complexity of the computation is basically due to the introduction of the varied capital 

costs. The genetic algorithm runs for each pre-determined p  value with different conversion 

technologies, conversion efficiencies, and load factors. The corresponding results are 

obtained and illustrated in the figures that follow. 

Figures 4-20 through 4-23 illustrate the location of the biomass power plants and the 

allocation of the biomass feedstock to these power plants. In these example solutions, p is 

fixed to 11, either Integrated Gasification/Combined Cycle (IGCC) or Direct Combustion  

(DC) conversion technologies are selected for biomass conversion and load factors of either 

0.6 or 0.9 are used. The LUCE for those combinations are summarized in table 4-9.  
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Figure 4-20 Location-Allocation solution with Integrated Gasification/Combined Cycle 

(IGCC) conversion, load factor=0.9, p=11 

 

Figure 4-21 Location-Allocation solution with Gasification/Combined Cycle IGCC 

conversion, load factor=0.6, p=11 
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Figure 4-22 Location-Allocation solution with Direct Combustion (DC) conversion, load 

factor=0.9, p=11 

 

Figure 4-23 Location-Allocation solution with Direct Combustion (DC) conversion, load 

factor=0.6, and p=11 
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It is apparent that the IGCC conversion technology has lower LUCE costs than direct 

combustion for the same load factors. Although IGCC has a 10% higher conversion expense 

(5500$/kW) than DC (5000$/kW) when the capacity of the plant is small, IGCC conversion 

has a much higher conversion efficiency (0.55) than direct combustion (0.35). As well, the p-

UFLP model solutions have lower LUCE costs for higher load factors. The explanation for 

this is that the biomass power plants with high load factors convert a higher percentage of 

bioenergy to electric power and this causes the capital, maintenance and operation cost to be 

relatively low, therefore, resulting in lower LUCE costs. 

Table 4-9 Summary of a example p-UFLP solution with p=11 

Conversion Technology Load Factor LUCE Cost ($/kWh) 

IGCC 
0.6 0.4360 
0.9 0.2411 

Direct Combustion 0.6 0.5008 
0.9 0.2580 

By computing the solutions of the UFLP models when different p values are specified, the 

optimal number of biomass power plants (i.e. the value of p  corresponding to the lowest 

LUCE cost) can be found along with the corresponding optimal allocation solution. Figures 

4-24 through 4-27 plot the LUCE as a function of the number, p , of power plants to be 

constructed for both IGCC and DC conversion technologies and load factors of 0.6 and 0.9. 

Based on these results, the optimal numbers of active power plants corresponding to the 

minimum LUCE are summarized in table 4-10. 

Table 4-10 LUCE costs of optimal number of power plants with different parameters 

Conversion Technology Load Factor Optimal Number of 
Selected Power Plants 

LUCE Cost 
($/kWh) 

IGCC 
0.6 9 0.4282 
0.9 11 0.2411 

Direct Combustion 0.6 15 0.4925 
0.9 17 0.2518 

Although Figures 4-24 through 4-27 exhibit similar trends, the LUCE in each situation is 

quite different. The costs initially decrease sharply as the number of plants is increased but 

this change becomes much more gradual for larger values of p as the increase in capital, 



 

 94 

operation and maintenance costs start offsetting the reduced transportation costs. These 

figures also show that a higher load factor yields a lower LUCE and vice versa. 

 

Figure 4-24 p-UFLP model solutions, Gasification/Combined Cycle (IGCC) conversion, 

load factor=0.9, efficacy= 0.55 

 

Figure 4-25 p-UFLP model solutions, Gasification/Combined Cycle (IGCC) conversion, 

load factor=0.6, efficacy= 0.55 
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Figure 4-26 p-UFLP model solutions, Direct Combustion (DC) conversion, load 

factor=0.9, efficacy: 0.35 

 

Figure 4-27 p-UFLP model solutions, Direct Combustion (DC) conversion, load 

factor=0.6, efficacy: 0.35 
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The weighted transportation costs keep on decreasing and will reach zero when p equals N. 

On the other hand, the capital costs of constructing these selected power plants increase 

because the capacities of the power plants decrease and power plants with larger capacities 

have lower capital costs per kW. These relationships are illustrated in figures 4-28 through 4-

30 for DC conversion with load factor 0.6 and the solutions with different parameters are 

presented in Appendix C. Similar results will be achieved with different conversion 

technologies and load factors.  

 
Figure 4-28 Transportation costs with different p values, Direct Combustion, load 

factor=0.6 
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Figure 4-29 Capital costs with different p values, Direct Combustion, load factor=0.6 

 

Figure 4-30 Combined costs (sum of transportation costs and capital costs) with 

different p values, Direction Combustion, load factor=0.6 
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The results of the LUCE optimization, together with the consequences of the AHP and 

preferable analysis, assist decision makers in making scientific biomass energy systems 

planning decisions by considering not only environmental, public health, and social factors, 

but also economic concerns. 

4.3.4 The LUCE Minimization and Preferable Analysis Results Application 

Compared with the use of coal fired electric power, the application of biomass power does 

not only meet the electricity demands of the local area, but also benefits the local 

environment by improving air quality and reducing of CO2 emission. Since the LUCE 

minimization approach using location-allocation models provides quantitative measurements 

associated with the generation of biomass power, the solutions are appropriate when 

considering the economics of biomass energy systems design. On the other hand, the AHP 

and GIS based preferable suitability analysis, described in the previous subsections, 

addresses environmental, public health, and social considerations. The preferable analysis 

results illustrate the suitability levels of constructing biomass power plants in the study area 

using GIS map presentations. Therefore, in designing optimal bioenergy systems, the 

combination of LUCE minimization and preferable analysis results can provide valuable 

information for decision makers.  

Generally, there are many approximate “optimal” solutions to the p-UFLP model which 

LUCE costs that are very close to the optimal solution. Although they are not economically 

optimal for LUCE minimization, they may have more environmental, public health, and 

social benefits than the optimal solution resulting from their location in the preferable maps. 

The more power plants constructed in areas with higher preferable suitability levels, the more 

environmental credits can be achieved. Since the LUCE optimal solution to the p-UFLP 

model computed by the genetic algorithm is uncoupled from the preferable analysis, decision 

makers should consider these near optimal (LUCE) solutions in making trade offs between 

economical consideration and environmental, public health and social impact concerns.  

The following example is chosen to demonstrate the application of designing an optimal 

bioenergy system. Direct combustion is selected for biomass conversion, load factor equals 

0.6 and p is fixed to 15 since these values yield the best solution in the corresponding spatial 
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optimization model (see figure 4-27). The preferable analysis results illustrated in figure 4-12 

are selected for environmental consideration. For this demonstration, three 15-UFLP 

solutions, including the optimal solution, are chosen for comparison using the preferable 

suitability map. Each selected power plant is labelled with a unique number to assist in 

discriminating different locations, as shown in the following figures 4-31 and 4-32. The 

location (by number) of the selected power plants of each solution with corresponding LUCE 

cost is summarized in the following table 4-11. 

Table 4-11 Solutions of p-UFLP model in case of DC conversion, load factor=0.6, p=15 

Conversion 
Technology 

Load 
Factor 

LUCE Cost 
($/kWh) Selected Power Plant Location Label Numbers 

Direct 
Combustion 

0.6 

0.4925 (optimal) 4    13    31    33    43     51    58    61    66  67  79    
81    82    85  86 

0.4930 4    14    31    33    43    51    53    58    59    61    65    
67   79   82  85 

0.4986 4   14   31   33   43   51    58   61   66   67   79   81   
82   84  86 

The economically optimal solution (0.4925 $/kWh of LUCE cost) and the corresponding 

locations of other two solutions (0.4930 $/kWh and 0.4986 $/kWh of LUCE cost) are 

compared in the preferable analysis map as shown in figure 4-31 and 4-32. Firstly, from 

figure 4-31 which is the comparison of optimal solution (0.4925 $/kWh) and solution (0.4930 

$/kWh), there are four pairs of power plants (i.e., 13 and 14, 66 and 65, 81 and 59, 86 and 53) 

that have different locations based on the LUCE costs. Observing each pair of locations, we 

see that the locations of power plants in the first three pairs are in areas with the same 

suitability levels (i.e. all are in medium preferable suitability areas). However, the power 

plant labelled number 86 in the optimal LUCE solution is located in a medium suitability 

level area whereas the power plant labelled number 53 is located in a high suitability level 

area, as clearly illustrated in the zoom-in chart of figure 4-31.  

This suggestion that the alternate solution (0.4930 $/kWh with LUCE costs) in figure 4-31 

may be the preferred bioenergy system design solution if the decision makers are more 

concerned with the environmental impacts of the system.  
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Figure 4-31 Bioenergy systems design using the result of preferable analysis and the 

solutions of LUCE cost optimization (1) 

The comparison of the optimal solution and the second alternate solution is shown in figure 

4-32. There are two pairs of power plant sites selected in different locations, i.e., 13 and 14, 

85 and 84. The power plant labelled 13 in the optimal LUCE cost solution is in a medium 

preferable analysis suitability level area whereas the power plant labelled 14 in the alternate 

solution is in a low suitability level area. The other pairs of power plants (85 and 84) are both 

located in a medium suitability level area. Therefore, it is apparent that the alternate solution 

with LUCE cost of 0.4986 $/kWh is neither more economical nor more environmentally 

suitable than the optimal LUCE solution.  
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Figure 4-32 Bioenergy systems design using the result of preferable analysis and the 

solutions of LUCE cost optimization (2) 

4.4 Summary 

The main objective of this case study was to demonstrate the proposed integrated 

methodology implementation and the process of assessing biomass availability, power plant 

candidate selection, and spatial optimization of bioenergy systems. By reviewing the current 

bioenergy systems planning status and by considering the particular situation in the Regional 

Municipality of Waterloo, we can conclude that the integrated approach for bioenergy 

systems planning should be considered as part of the region’s development strategy. 

Through this case study and analyses, various aspects of the methodology have been 

examined. It is established that the models are capable of providing essential decision support 

information to the planners for regional bioenergy systems planning and management. 
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Biomass availability from agricultural residues, suitable areas for constructing decentralized 

biomass power generation, and optimally allocations of biomass feedstock can be 

qualitatively and quantitatively identified. 

By introducing the AHP method to the suitability analysis, qualitative factors are converted 

into quantitative measures and used to assign weights that reflect the relative importance of 

the factors.  In doing so, more accurate and scientific results identifying the most suitable 

areas can be derived from the GIS based suitability analysis model. GIS is a useful tool in 

processing and analyzing large amounts of spatial data for bioenergy systems design. In this 

study, GIS applications were implemented for basic data processing and information 

gathering, spatial analysis, and visualizing design results. Advanced GIS applications, such 

as the location-allocation solver, network analysis tools are also used for solving the p-

median problem model.  

In order to analyze the impact of the design parameters on the solutions of the location-

allocation design problems, experiments with varying numbers of established biomass power 

plants, conversion technologies and load factors have been conducted. Corresponding results 

associated with these different parameters are achieved and analyzed. At the end of this 

section, the application of the AHP and preferable analysis results combined with LUCE 

optimization solutions is also introduced. Planners will get important decision making 

supports for bioenergy systems planning through this application process.  

In this thesis, a comprehensive integrated approach is proposed for biomass energy planning. 

However, some of the acknowledged limitations of the research include: 1) Facility site 

selection, suitability analysis, and discrete location modeling are not programmed in the 

integrated environment (different software have to be applied for different analysis); 2) 

suitability analysis and AHP exercises have to be repeated when the input parameters are 

changed; 3) the optimization model does not consider the generated electricity distribution 

costs. These limitations should be addressed in the future studies in these fields. 
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Chapter 5 Conclusion, Contributions and 
Future Work 

5.1 Conclusions and Contributions 

As one of the most promising renewable energy resource, bioenergy for power generation 

has a lot of benefits from both an environmental point of view or in terms of energy security 

and energy balance. An integrated methodology combining GIS, AHP, and discrete location-

allocation models is introduced. This comprehensive design approach for bioenergy system 

planning addresses the difficulty resulting from the highly distributed biomass resources and 

promotes economically and environmentally sustainable development at the local or regional 

scale. 

An agricultural residues based biomass availability estimation model assesses the collectable 

biomass feedstock available to biomass power plants. By only including annual agricultural 

wastes, this model will consider plans having little impact on the environment and economics 

in the local area. GIS based suitability analysis, network analysis and AHP methods have 

effectively promoted the design performance. The results obtained can not only provide 

decision making support for planners but also decrease the computational efforts in the 

spatial optimization models. This study demonstrated the potential of GIS and AHP as 

efficient methods for bioenergy systems planning.  

This research work has investigated the overall process of bioenergy system design. Some 

key aspects related to bioenergy systems planning, from biomass availability assessment to  

locating power plants and distribution of biomass, have been investigated and a review of 

previous research on the corresponding fields (i.e. biomass assessment, power plant siting, 

and spatial optimization) was conducted. P-median models for finding the optimal location of 

power plants and allocation of biomass feedstock with the least weighted transportation costs 

are discussed. Another facility location problem model - the p-uncapacitated facility location 

problem model was also employed to minimize the levelized unit cost of energy to assess the 
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viability of using bioenergy for electric power generation. The modeling results demonstrate 

that these models are effective ways for spatial optimization in bioenergy systems design. 

The main contributions of this research include the following aspects: 

1. Prior to this study, an integrated model for regional scale bioenergy systems design 

has never been fully addressed in the bioenergy literature. This study fills this gap by 

proposing an integrated method for comprehensive bioenergy systems planning at the 

regional scale; 

2. The use of GIS based suitability analysis, network analysis and AHP for power plant 

siting; 

3. The utilization of a p-UFLP location-allocation model for LUCE minimization in 

bioenergy systems design; 

5.2 Future Work 

Future research on bioenergy systems planning should include modelling of the distribution 

of generated bio-power so that: (1) all acquired bio-power can be optimally injected into the 

local distribution grid, and (2) power plants and distribution substations can be selected by 

considering the local power demand to minimize power delivery costs. In addition, more 

bioenergy resources, such as MSW and wood residues, in the regional scale for power 

generation will be taken into account for bioenergy systems planning. Further development 

of the bioenergy systems design model may consider uncertainties and develop 

corresponding algorithms for solving the stochastic spatial optimization models.  
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Appendix A 
Statistical Data for Biomass Availability Assessment 

Table A- 1 Land use catalogues in the Region of Waterloo 

Land Use Catalogues Number of Polygon Area (Ha) 
Not Cataloged 277 37.98 
Built Up/Urban 5 41.83 

Built Up/Urban Area 95 17404.38 
Continuous Row Crop 359 17595.07 

Corn System 383 26203.87 
Extensive Field Vegetables 26 331.86 

Extraction Pits(pits/Quarries) 54 1033.95 
Grain System 232 5432.57 

Grazing System 52 771.77 
Hay System 294 10150.04 

Idle Agric Land 5-10 years 160 1792.95 
Idle Agric Land >10 years 107 1313.07 

Market Garden/Truck Farm 10 177.16 
Mixed System 274 25618.92 
Not Mapped 56 107.43 

Nursery 7 80.56 
Orchard 5 41.77 

Pasture System 94 2102.50 
Pastured Woodlot 13 155.55 

Recreation 35 1265.17 
Reforested Woodlot  209.02 

Sod Farm 7 317.26 
Swamp/Marsh/Bog 15 178.09 

Tobacco System 2 14.79 
Water 252 1681.91 

Woodlot 828 19571.52 
Sum 3659 133630.99 

 

The statistical data appearing in Appendix A are from the online dataset at Statistics Canada 

(http://www40.statcan.ca/l01/ind01/l2_920.htm ), the Regional Municipality of Waterloo 

spatial data from the University of Waterloo Map Library, and from Voivontas et al. (2001) 

and Layzell, et al. (2006).  

http://www40.statcan.ca/l01/ind01/l2_920.htm�
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Table A- 2 Yields of crop residues in the Region of Waterloo (2005 data) 

Crops species Areas 
(Ha,2005) 

Crop Planted 
(%) 

Average yield 
(t/Ha) 

Potential Bioenergy 
(dry-ton) 

Winter Wheat(straw) 11929 12.67 2.95 35189.51 

Spring Wheat(straw) 1988 2.11 2.87 5704.53 

Fall Rye(straw) 626 0.65 1.26 788.83 

Oats(straw) 1078 1.15 1.26 1358.33 

Barley(straw) 2442 2.59 2.12 5177.97 

Mixed Grain(straw) 1477 1.57 2.94 4341.48 

Grain Corn(straw) 18122 19.25 7.17 129933.11 

Canola 138 0.15 2.5 343.91 

Soybeans 24711 26.25 3.5 86487.60 

Dry White Beans 1044 1.11 3.5 3655.24 

Colored Beans 828 0.88 3.94 3263.04 

Fodder Corn 3296 3.50 2.5 8239.72 

Hay  26471 28.12 6.18 163590.67 

Table A- 3 Yields of horticultural residues in the Region of Waterloo (2005 data) 

Wood species 
Areas 

(Ha,2005) 
Crop 

Planted (%) 
Average yield 

(t/Ha) 
Potential Bioenergy 

(dry-ton) 

Apples 6,78 36.46 4.77 32340.84 
Apricots 29 0.16 16.92 491.58 

Blueberries, High bush 138 0.74 2.94 404.30 

Blueberries, Low Bush  15 0.08 2.12 32.85 

Cherries, (branches) 695 3.74 5.11 3553.19 

Cherries, (branches) 251 1.35 5.11 1281.72 

Grapes, Labrusca 1,61 8.64 1.26 2024.37 

Grapes, Vinifera 3,99 21.43 1.26 5022.49 

Nectarines(branches) 255 1.37 5.61 1428.87 

Peaches (branches) 1,98 10.64 5.61 11104.95 

Pears (branches) 705 3.79 16.92 11929.01 

Plums (branches) 333 1.79 6.21 2068.82 

Raspberries(branches) 314 1.70 5.11 1603.39 

Strawberries 1,16 6.23 1.26 1456.96 
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Table A- 4 Yields of biomass based on the land use in the Region of Waterloo 

Land use catalogs Areas (Ha) Average biomass 
yield (dry-ton/Ha) 

Potential bioenergy 
(dry-ton) 

Continuous Row Crop 17135.20 3.04 52133.84 

Corn System 24347.50 2.5 60868.75 

Grain System 5270.38 5.06 26641.79 

Grazing systems 741.53 6.18 4582.62 

Hay system 8665.03 6.18 53549.86 

Idle Agric Land > 5 years 2994.00 15 44909.86 

Mixed System 35844.84 3.28 117708.93 

Pasture system 1834.93 6.18 11339.87 

Pastured Woodlot 152. 06 5.73 874.27 

Reforested Woodlot 167.93 5.73 962.10 

Sod Farm 309.60 6.18 1913.29 

Swamp/Marsh/Bog 161.50 2 322.98 

Woodlot 18115.91 5.73 103791.24 
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Appendix B Scripts and MATLAB Codes Developed in This Thesis 

Appendx B-1. Scripts for Biomass Availability Assessment 

# --------------------------------------------------------------------------- 
# bioselectfrompw.py 
# Created on: Sun Mar 25 2007 01:13:03 PM  (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, win32com.client 
 
# Create the Geoprocessor object 
gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Analysis Tools.tbx") 
gp.overwriteoutput = 1 
 
# Local variables... 
landArea_FeatureToPoint_shp = 
"F:\\Suitability_analysis\\biomass_production\\landArea_FeatureToPoint.shp" 
rastert_eucallo3_shp = "F:\\Suitability_analysis\\test\\rastert_eucallo6area.shp" 
rastert_eucallo3_Select_shp = "F:\\Suitability_analysis\\test\\rastert_eucallo6area_Select.shp" 
select_clip_shp = "F:\\Suitability_analysis\\test\\select_clip.shp" 
select_clip_Statistics_dbf = "F:\\Suitability_analysis\\test\\select_clip_Statistics.dbf" 
rows=gp.InsertCursor("F:\\Suitability_analysis\\test\\select_clip_Statistics.dbf") 
#searchrows=gp.SearchCursor(select_clip_Statistics_dbf) 
searchPolygons=gp.SearchCursor("F:\\Suitability_analysis\\test\\rastert_eucallo6area.shp") 
searchBuf=searchPolygons.Next() 
 
while searchBuf: 
    #select one polygon from biosupply zones by its FID field 
    i=int(searchBuf.GetValue("FID"))+1 
    stringFID="\"rastert_eucallo3_shp.FID\"= " + str(i) 
    # Process: Select... 
    gp.Select_analysis(rastert_eucallo3_shp, rastert_eucallo3_Select_shp, stringFID) 
    # Process: Clip... 
    gp.Clip_analysis(landArea_FeatureToPoint_shp, rastert_eucallo3_Select_shp, select_clip_shp, "") 
    # Process: Summary Statistics... 
    select_clip_Statistics_dbf="F:\\Suitability_analysis\\test\\"+str(i)+".dbf" 
    print i 
    gp.Statistics_analysis(select_clip_shp, select_clip_Statistics_dbf, "Bio_sup SUM", "") 
    searchrows = gp.SearchCursor(select_clip_Statistics_dbf) 
    # Give the value to a new row, and insert the row intor the select_clip_Statistics.dbf 
    row = rows.NewRow() 
    searchrow = searchrows.Next() 
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    #row.OID = i 
    row.FREQUENCY = int(searchrow.GetValue("FREQUENCY")) 
    row.SUM_Bio_su = float(searchrow.GetValue("SUM_Bio_su")) 
    rows.InsertRow(row) 
    searchBuf=searchPolygons.Next() 

Appendx B-2. Scripts for Exclusive Suitability Analysis Toolbox 

# --------------------------------------------------------------------------- 
# exclusive.py 
# Created on: Tue Feb 13 2007 04:53:15 PM  (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, win32com.client 
 
# Create the Geoprocessor object 
gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1") 
 
# Set the necessary product code 
gp.SetProduct("ArcInfo") 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
gp.OverwriteOutput = 1  
 
# Load required toolboxes... 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Analysis Tools.tbx") 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Conversion Tools.tbx") 
 
#setup the inputs and outputs variables 
#inputs 
n1 = sys.argv[1]#Urban buffer length 
n2 = sys.argv[2]#slope degree 
n3 = sys.argv[3]#floodplain buffer 
n4 = sys.argv[4]#waterbody buffer 
n5 = sys.argv[5]#airport buffer 
n11=str(n1) 
n22=str(n2) 
n33=str(n3) 
n44=str(n4) 
n55=str(n5) 
 
# Local variables... 
clipslope = "F:\\Suitability_analysis\\clipslope" 
Floodplain_shp = "F:\\Suitability_analysis\\Floodplain.shp" 
waterbody_shp = "F:\\Suitability_analysis\\waterbody.shp" 
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dis_flplain = "F:\\Suitability_analysis\\scratch\\dis_flplain" 
Output_direction_raster__2_ = "" 
dis_waterbody = "F:\\Suitability_analysis\\scratch\\dis_waterbody" 
Output_direction_raster__3_ = "" 
recdis_wbody = "F:\\Suitability_analysis\\scratch\\recdis_wbody" 
recdis_fplain = "F:\\Suitability_analysis\\scratch\\recdis_fplain" 
time_Wbl = "F:\\Suitability_analysis\\scratch\\time_wbl" 
exclusive = "F:\\Suitability_analysis\\scratch\\exclusive" 
time_1 = "F:\\Suitability_analysis\\scratch\\time_1" 
exclusive_shp = "F:\\Suitability_analysis\\scratch\\exclusive.shp" 
sele_exclu_shp = "F:\\Suitability_analysis\\scratch\\sele_exclu.shp" 
pwcliped_shp = "F:\\Suitability_analysis\\scratch\\pwcliped.shp" 
urbanland_shp = "F:\\Suitability_analysis\\urbanland.shp" 
buff_urban_shp = "F:\\Suitability_analysis\\scratch\\buff_urban.shp" 
raster_buffer = "F:\\Suitability_analysis\\scratch\\raster_buffer" 
rec_buffer = "F:\\Suitability_analysis\\scratch\\rec_buffer" 
airports_shp = "F:\\Suitability_analysis\\airports.shp" 
buffer_ap_shp = "F:\\Suitability_analysis\\scratch\\buffer_ap.shp" 
pwcandidates_shp = "F:\\Suitability_analysis\\scratch\\pwcandidates.shp" 
power_plant_candidats_shp = "F:\\Suitability_analysis\\power plant candidats.shp" 
 
# Process: Euclidean Distance (2)... 
gp.EucDistance_sa(Floodplain_shp, dis_flplain, n3, "25", Output_direction_raster__2_) 
# Process: Euclidean Distance ... 
gp.EucDistance_sa(waterbody_shp, dis_waterbody, n4, "25", Output_direction_raster__3_) 
# Process: Buffer... 
gp.Buffer_analysis(urbanland_shp, buff_urban_shp, " n11 Meters", "FULL", "ROUND", "ALL", "") 
# Process: Feature to Raster (2)... 
gp.FeatureToRaster_conversion(buff_urban_shp, "Id", raster_buffer, "25") 
# Process: Reclassify... 
gp.Reclassify_sa(raster_buffer, "Value", "0 0;NODATA 1", rec_buffer, "DATA") 
# Process: Reclassify (3)... 
gp.Reclassify_sa(dis_flplain, "Value", "0 n33 0;NODATA 1", recdis_fplain, "DATA") 
# Process: Reclassify (2)... 
gp.Reclassify_sa(dis_waterbody, "Value", "0 n44 0;NODATA 1", recdis_wbody, "DATA") 
 
# Process: Times... 
gp.Times_sa(recdis_fplain, recdis_wbody, time_Wbl) 
# Process: Times (4)... 
gp.Times_sa(rec_buffer, time_Wbl, time_1) 
# Process: Times (3)... 
gp.Times_sa(time_1, clipslope, exclusive) 
# Process: Raster to Polygon... 
gp.RasterToPolygon_conversion(exclusive, exclusive_shp, "SIMPLIFY", "Value") 
# Process: Select... 
gp.Select_analysis(exclusive_shp, sele_exclu_shp, "\"GRIDCODE\" =1") 
# Process: Clip... 
gp.Clip_analysis(power_plant_candidats_shp, sele_exclu_shp, pwcliped_shp, "") 
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# Process: Buffer ... 
gp.Buffer_analysis(airports_shp, buffer_ap_shp, "n55 Kilometers", "FULL", "ROUND", "ALL", "") 
# Process: Erase... 
gp.Erase_analysis(pwcliped_shp, buffer_ap_shp, pwcandidates_shp, "") 

Appendx B-3. Python Scripts for Shortest Path Routes 

# --------------------------------------------------------------------------- 
# Routes87.py 
# Created on: dj. set 06 2007 01:27:56  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Check out any necessary licenses 
gp.CheckOutExtension("Network") 
gp.OverwriteOutput = 1  
 
# Load required toolboxes... 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Analysis Tools.tbx") 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Network Analyst Tools.tbx") 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Data Management Tools.tbx") 
gp.AddToolbox("C:/software/arcgis/ArcToolbox/Toolboxes/Conversion Tools.tbx") 
 
# Local variables... 
Facilities_Select_shp = "D:\\Suitability_analysis\\ShortestRoute\\Facilities_Select.shp" 
pwcandidates87_shp = "D:\\Suitability_analysis\\test\\pwcandidates87.shp" 
Closest_Facility = "Closest Facility" 
row_roadnetwork_ND = "D:\\Suitability_analysis\\row_roadnetwork.nd" 
Facilities = "Closest Facility" 
Incidents = "Closest Facility" 
Routes = "Closest Facility" 
Scratch = "D:\\Suitability_analysis\\ShortestRoute\\Scratch" 
Routes__3_ = "D:\\Suitability_analysis\\ShortestRoute\\Routes" 
Scratch__3_ = "D:\\Suitability_analysis\\ShortestRoute\\Scratch" 
Routes__2_ = "Closest Facility\\Routes" 
 
#The following scripts are designed for calculating the Shortest Routes representing 
#the real distances between Facilities and demands 
 
for n in range(87): 
 
    k=n+1 
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    stringId="\"pwcandidates87_shp.OBJECTID\"= "+str(k) 
     
    # Process: Make Closest Facility Layer... 
    gp.MakeClosestFacilityLayer_na(row_roadnetwork_ND, "Closest Facility", "Length", 
"TRAVEL_FROM", "", "1", "", "ALLOW_UTURNS", "", "NO_HIERARCHY", "", 
"TRUE_LINES_WITH_MEASURES") 
 
    # Process: Select... 
    gp.Select_analysis(pwcandidates87_shp, Facilities_Select_shp, stringId) 
 
    # Process: Add Locations... 
    gp.AddLocations_na(Closest_Facility, "Facilities", Facilities_Select_shp, "CurbApproach # 
0;Attr_Length # 0", "500 Meters", "", "rd_slrn SHAPE;row_roadnetwork_Junctions NONE", 
"MATCH_TO_CLOSEST", "APPEND", "NO_SNAP", "5 Meters") 
 
    # Process: Add Locations (2)... 
    gp.AddLocations_na(Closest_Facility, "Incidents", pwcandidates87_shp, "CurbApproach # 
0;Attr_Length # 0", "5000 Meters", "", "rd_slrn SHAPE;row_roadnetwork_Junctions NONE", 
"MATCH_TO_CLOSEST", "APPEND", "NO_SNAP", "5 Meters") 
 
    # Process: Solve... 
    gp.Solve_na(Closest_Facility, "SKIP") 
 
    # Process: Save To Layer File... 
    gp.SaveToLayerFile_management(Routes, Routes__3_) 
 
    # Process: Feature Class To Shapefile (multiple)... 
    gp.FeatureClassToShapefile_conversion("'Closest Facility\\Routes'", Scratch) 
 

Appendx B-4. MATLAB Codes for Consistency Check in AHP 
%calculate the weights and C.R.of the pair-wise conparison matrix A 
function [w,cr]=crcom(A) 
n=size(A,1); 
for i=1:n 
    a(i)=sum(A(:,i)); 
end 
for j=1:n 
    B(:,j)=A(:,j)/a(j); 
end 
for k=1:n 
    w(k)=mean(B(k,:)); 
end 
eigvalue=max(eig(A)); 
ri=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 
1.59]; 
ci=(eigvalue-n)/(n-1); 
cr=ci/ri(n); 
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if cr>0.1 
    display 'consistence ratio is not acceptable' 
else 
    display 'weights and consistence ratio are:' 
end 

Appendx B-5. MATLAB Codes for Minimum Spanning Tree (MST) 
%% random points generating for the biomass production areas in the 
Region of Waterloo  
clear; 
format long 
n=100;%number of points generated 
%x coordintes range 
a=510686.32;b=565707.99;%range of the x 
%y coordinates range 
c=4790684.67;d=4837391.63;%range of the x 
%generating random x,y coordinates between ranges 
x=a+(b-a).*rand(n,1); 
y=c+(d-c).*rand(n,1); 
ds=[x,y];%coordinates of the generated substations 
  
%% Creat substation point features 
% After obtaining the coordinates, create a new file named 
"substation.shp" by adding the x,y coordinates 
% to the points 
  
%% calculate the distance matrix of substions and generate the MST 
graph 
%coordinates of substation points 
s=shaperead('L:\M.Sc at UW\Research Work\data preparation\MST and 
Landuse\data folder\substation.shp'); 
sizes=size(s); 
n=sizes(1); 
for m=1:n 
    C(m,1)=[s(m).X]; 
    C(m,2)=[s(m).Y]; 
end 
x1=C; 
for n=1:size(x1,1) 
   for m=1:size(x1,1) 
   dis(n,m)=sqrt((x1(m,2)-x1(n,2)).^2+(x1(m,1)-x1(n,1)).^2); 
   end 
end 
A=sparse(dis);%distance matrix  
T=mst(A);%generate the MST graph, where MST is a agrithm of 
generating MST graph with respect to the given A 
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Appendx B-6. MATLAB Codes for Solving p-UFLP Models 

% Main program for solving p-UFLP model 
Clear 
for jj=1:30 
n=87;pbar=17;lf=0.9; 
load weights.mat; 
load shortestRoute.txt; 
dis=shortestRoute; 
%% 
load inipop17; 
inipopulation=qq; 
P=size(inipopulation,1); 
%% 
for i=1:P 
    iniallocation{i}=allocapmp(inipopulation(i,:),n,w,dis,pbar); 
end 
%% 
for i=1:P 
for j=1:pbar 
capacity(i,j)=(sum(w(iniallocation{i}{j}))*18/3.6)*0.35/(8670*lf);%assume 
the conversion efficency is 55% of IGCC 
if capacity(i,j)>25 
    fxcap(i,j)=3000; 
else if capacity(i,j)>5 & capacity(i,j)<=25 
        fxcap(i,j)=4000; 
    else 
        fxcap(i,j)=5000; 
    end 
end 
end 
end 
%% 
for i=1:P 
inifitness_values(i)=LUCEfitness(inipopulation(i,:),w,dis,lf,fxcap(i,:),in
iallocation{i}); 
end 
%% 
MaxIter=0; 
while MaxIter<=1500 
    MaxIter; 
    [bestvalue1,best1]=min(inifitness_values); 
    solution1=sort(inipopulation(best1,:)); 
    [p1,p2]=selectchild(P,inipopulation); 
    
[pchild,allocation_pchild,pchild_fitness]=LUCEchildgen(w,dis,n,pbar,p1,p2,
lf);% 
    
[newpopulation]=LUCEreplacement(inipopulation,pchild,w,dis,P,pbar,pchild_f
itness,lf,fxcap,iniallocation);     
inipopulation=newpopulation; 
    for i=1:P 
        iniallocation{i}=allocapmp(inipopulation(i,:),n,w,dis,pbar); 
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    end 
    for i=1:P 
        for j=1:pbar 
            
capacity(i,j)=(sum(w(iniallocation{i}{j}))*18/3.6)*0.35/(8670*lf);%assume 
the conversion efficency is 55% of IGCC,0.35 for DC 
            if capacity(i,j)>25 
                fxcap(i,j)=3000; 
              else if capacity(i,j)>5 & capacity(i,j)<=25 
                fxcap(i,j)=4000; 
              else 
                fxcap(i,j)=5000; 
              end 
            end 
        end 
    end 
    for k=1:P 
        
inifitness_values(k)=LUCEfitness(inipopulation(k,:),w,dis,lf,fxcap(k,:),in
iallocation{k}); 
    end 
    [bestvalue,best]=min(inifitness_values); 
    solution=sort(inipopulation(best,:)); 
    if all(solution==solution1) 
        MaxIter=MaxIter+1; 
    else 
        MaxIter=MaxIter; 
    end 
end 
%% 
solution_allocation=allocapmp(solution,n,w,dis,pbar); 
fx_solution=fxgen(solution_allocation,w,lf); 
f=LUCEfitness(solution,w,dis,lf,fx_solution,solution_allocation); 
%%  
ftranscap=f; 
totalw=sum(w); 
%fuel costs and OM cost 
ffuel=3*totalw*18;%3$/GJ 
%ffuel=3.5*totalw*18;%3.5$/GJ 
fom=(18000*totalw/3.6)*0.016*lf; 
%fom=(18000*totalw/3.6)*0.025*lf; 
%LUCE cost 
f=1/((18000*totalw/3.6)*lf)*(ftranscap+ffuel+fom); 
solution; 
jjj(jj,:)=[solution f ftranscap fom ffuel]; 
end 
[f,solutionindex]=min(jjj(:,pbar+1)); 
solution=jjj(solutionindex,1:pbar) 
solution_allocation=allocapmp(solution,n,w,dis,pbar); 
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Appendix C Solutions of p-UFLP Model 

Table C- 1 Summary of solutions in case of DC conversion, load factor=0.6 

p LUCE ($/kWh) Transportation Costs($) Capital Costs($) 

1 0.9985 1142862903.33  612103213.89  

2 0.7104 618616213.90  612103213.89  

3 0.5905 400395397.72  612103213.89  

4 0.5607 346226781.35  612103213.89  

5 0.5461 319617865.97  612103213.89  

6 0.5472 273648996.98  640752315.23  

7 0.5288 244353521.16  655850658.31  

8 0.5210 204030345.00  681925140.93  

9 0.5144 173011188.88  701093993.52  

10 0.5077 157700151.51  704244978.00  

11 0.5008 155231462.64  694156531.7  

12 0.5001 126224392.60  721812664.48  

13 0.4971 114320394.03  728254335.73  

14 0.4951 106117606.94  732880008.70  

15 0.4925 101365734.56  732880008.70  

16 0.4960 82371572.62  758288606.13  

17 0.4946 77649149.75  760504306.17  

18 0.4937 75970983.81  760504306.17  

19 0.4933 70973856.33  764907078.65  

20 0.4939 67565285.51  768904096.89  

30 0.5018 52980612.89  798163580.37  

40 0.5088 40072711.49  823781250.30  

50 0.5123 13592047.65  856636746.32  

87 0.5270 0 896926471.31  
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Table C- 2 Summary of solutions in case of DC conversion, load factor=0.9 

p LUCE ($/kWh) 
Transportation 

Costs($) 
Capital Costs($) 

1 0.5963 1142862903.33  534375821.65  

2 0.4042 618616213.90  534375821.65  

3 0.3249 402160188.11  534375821.65  

4 0.3136 349384673.56  534375821.65  

5 0.3067 297804309.21  572129188.99  

6 0.2964 266749123.14  819195256.40  

7 0.2908 229044159.06  875813337.73  

8 0.2859 201371329.70  892659950.68  

9 0.2701 173011188.88  914017893.73  

10 0.2630 157935267.90  1354399614.38  

11 0.2580 144574472.75  1184554700.57  

12 0.2555 131842479.38  1542436201.45  

13 0.2529 117982588.29  1590659877.23  

14 0.2548 107279521.09  2339959275.70  

15 0.2531 111604918.02  2488201677.02  

16 0.2524 107284092.12  2656554276.08  

17 0.2518 106003591.54  3050357941.06  

18 0.2527 93500381.36  3192319160.65  

19 0.2536 104458889.18  3105173540.33  

20 0.2537 87797236.56  3683358702.63  

87 0.2628 0 640910706.38  
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Table C- 3 Summary of solutions in case of IGCC conversion, load factor=0.6 

p LUCE ($/kWh) Transportation Costs($) Capital Costs($) 

1 0.9424 1142862903.33  612103213.89  

2 0.6543 618616213.90  612103213.89  

3 0.5344 400395397.72  612103213.89  

4 0.5008 346226781.35  612103213.89 

5 0.4773 319617865.97  612103213.89 

6 0.4544 273648996.98  640752315.23  

7 0.4409 244353521.16  655850658.31  

8 0.4315 204030345.00  681925140.93  

9 0.4282 173011188.88  701093993.52  

10 0.4324 157700151.51  704244977.99  

11 0.4360 155231462.64  694156531.71  

12 0.4484 126224392.59  721812664.48  

13 0.4499 114320394.03  728254335.73  

14 0.4531 106117606.94  732880008.70  

15 0.4635 101365734.56  732880008.70  

16 0.4641 82371572.62  758288606.13  

17 0.4588 77649149.75  760504306.17  

18 0.4657 75970983.81  760504306.17  

19 0.4674 70973856.33  764907078.65  

20 0.4667 67565285.51  768904096.89  

87 0.5687 0 11749566939.96  
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Table C- 4 Summary of solutions in case of IGCC conversion, load factor =0.9 

p LUCE ($/kWh) Transportation Costs($) Capital Costs($) 

1 0.5713 1142862903.33 408068809.26  

2 0.3793 618616213.90  408068809.26  

3 0.2999 402160188.11  408068809.26  

4 0.2807 339240874.67  424085389.35  

5 0.2705 300456354.17  434123600.93  

6 0.2608 272268311.44  437206421.74  

7 0.2602 229044159.06 451188002.23  

8 0.2540 201371329.70  458335050.14  

9 0.2486 172569628.57  488077868.47  

10 0.2472 153243658.06  488077868.47  

11 0.2412 138282479.27  489519498.93  

12 0.2413 128205133.45  492832079.65  

13 0.2474 112181245.33  501510554.24 

14 0.2484 113190757.66  505864326.41  

15 0.2510 108063775.27  506296114.29  

16 0.2506 83656144.55  528662011.51  

17 0.2528 79914899.10  530762667.83  

18 0.2531 74351025.40  539012810.91  

19 0.2556 73584471.80  542275478.18  

20 0.2534 66784660.97  549320614.56  

87 0.2805 0 8614349450.77  
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