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Abstract

For some applications, elliptic curve cryptography (ECC) is an attractive choice be-

cause it achieves the same level of security with a much smaller key size in comparison

with other schemes such as those that are based on integer factorization or discrete log-

arithm. Unfortunately, cryptosystems including those based on elliptic curves have been

subject to attacks. For example, fault-based attacks have been shown to be a real threat

in today’s cryptographic implementations. In this thesis, we consider fault-based at-

tacks and countermeasures for ECC. We propose a new fault-based attack against the

Montgomery ladder elliptic curve scalar multiplication (ECSM) algorithm. For security

reasons, especially to provide resistance against fault-based attacks, it is very important

to verify the correctness of computations in ECC applications. We deal with protections

to fault attacks against ECSM at two levels: module and algorithm. For protections at

the module level, where the underlying scalar multiplication algorithm is not changed, a

number of schemes and hardware structures are presented based on re-computation or

parallel computation. It is shown that these structures can be used for detecting errors

with a very high probability during the computation of ECSM. For protections at the

algorithm level, we use the concepts of point verification (PV) and coherency check (CC).

We investigate the error detection coverage of PV and CC for the Montgomery ladder

ECSM algorithm. Additionally, we propose two algorithms based on the double-and-add-

always method that are resistant to the safe error (SE) attack. We demonstrate that one

of these algorithms also resists the sign change fault (SCF) attack.
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Chapter 1

Introduction

Cryptography refers to design principles, means and methods for rendering plain

information unintelligible to unauthorized parties. In the past, cryptography was

used only for secret communications between powerful security entities such as

military and intelligence agencies. Today, with the widespread use of computers

and the Internet, secure communications are more than a privilege; they are a

priority requirement even for the general public. In 1976, with the introduction of

public key cryptography by Diffie and Hellman [25], secure communications were

made practical. E-commerce and smart cards are examples of how cryptographic

applications have become a part of everyday life.

Elliptic curve cryptography (ECC) was independently proposed by both Miller

[67] and Koblitz [50] in 1985. Since then, ECC has been a subject of extensive re-

search and standardization efforts that have led it to be widely known and accepted.

Some of the ECC standards include: FIPS 186 [33], IEEE P1363 [42], ANSI X9.62

[5], and ISO 15946 [43]. Today ECC is an attractive choice because it achieves
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2 Introduction

the same level of security with a much smaller key size in comparison with other

methods such as integer factorization or discrete logarithm based cryptosystems.

Smaller key sizes generate smaller signatures, require less memory for storage, and

use less bandwidth for communications. Because of this, for devices such as smart

cards, personal digital assistants (PDAs), and mobile telephones, ECC appears to

be an attractive choice for providing the public key services required for secrecy,

authentication and non-repudiation purposes. In secrecy terms, ECC could provide

the key distribution privacy needed for symmetric algorithms. For authentication

and non-repudiation, ECC could be used to provide digital signatures.

Unfortunately, cryptosystems including those based on elliptic curves have been

subject to attacks. Cryptoanalytic attacks may reveal system vulnerabilities, which

then need to be addressed with countermeasures. Various researchers have empha-

sized the significance of cryptographic applications being resistant to side-channel

analysis (e.g., reconstruction of a secret key from analysis of timing [52], power

consumption signals [53], and electromagnetic emanations [2] during cryptographic

operations).

Another type of attacks that has received considerable attention is the fault

analysis attack. Introduced by Boneh et al. [15], this attack is based on produc-

ing malfunctions in cryptosystems to leak sensitive information (i.e., secret keys).

They have shown how some cryptographic schemes, such as the RSA and Rabin

digital signatures, are vulnerable to induced computational errors. Particularly,

for an implementation of RSA based on the Chinese Remainder Theorem (CRT),

they have demonstrated that with only two signatures of the same message (one

computed correctly and one produced after some fault), it is possible to efficiently

factor the modulus used. In order to avoid such attacks, they suggest verifying
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the correctness of computations in cryptographic applications. In 1997, based on

Boneh’s work, Biham and Shamir generalized this technique for any secret key

cryptographic algorithm proposed in the open literature [10].

Anderson and Kuhn reported a more practical fault attack just few months

after Biham and Shamir’s publication in 1997 [3]. It is based on producing faults

in instructions rather than in data. The underlying idea does not appear to be

new; in fact, it seems that this technique was used by amateur hackers on satellite

television smart cards [4]. It consists of applying a high frequency glitch into the

clock or power supply signals. Due to different delays in the processor’s internal

signal paths, this glitch might affect only some signals. Varying the timing and

duration of the glitch, the attacker can possibly enforce to execute different wrong

instructions which might compromise some sensitive information (e.g., a stored

cryptographic key). Recently, Kim and Quisquater [48] showed how general propose

microcontrollers can be targets of a so called double-fault attack, i.e., one attack

to the RSA signature generation and the other to part of the status register (i.e.,

zero flag). Their fault injection method is based on inducing a glitch which makes

a transient fault with a voltage spike. These glitches are used to corrupt data

transferred between registers and memory or to prevent the execution of the code.

They mount successfully this attack on a microcontroller computing the Chinese

remainder theorem (CRT) based RSA signature generation algorithm.

Skorobogatov and Anderson [84] introduced a new way to induce faults into a

single bit using a laser beam. This is called optical fault induction attack. They

used a low-cost laser in order to change the contents of any single RAM bit. Using

this with the principles of differential fault analysis, it is possible to mount an

inexpensive attack against many microcontrollers used today in constrained devices.
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Biehl et al. [9] extended fault-based attacks to cryptosystems using elliptic

curves [9]. They proposed two attacks. The basic idea behind the first attack

is to enforce, by a fault, a computation in a weaker group where solving the elliptic

curve discrete logarithm problem (ECDLP) is feasible. Using this principle, they

show how it is possible to derive secret information (e.g., a secret key) from a de-

vice that computes the elliptic curve scalar multiplication (ECSM). They assume

that it is possible for an attacker to select the input point P or to induce a fault

in that point. The second proposed attack is known as differential fault analysis

(DFA) attack. In fact the latter is an extension of the attack presented by Boneh

et al. [15] for RSA cryptosystems. This attack assumes that the adversary knows

the implementation details, i.e., the underlying ECSM algorithm, the curve param-

eters, and the internal variables representation. Also, they consider that the result

of the error-free computation of an EC scalar multiplication Q = kP is known,

where scalar k is the secret. In this case if the attacker injects a single-bit fault

(i.e., bit flip) in a register that holds an ECSM partial result, and the faulty result

Q̃ is released, it is possible to reduce the exhaustive search space. If this process is

repeated varying the timing of the attack, then the scalar bits can be retrieved in

small blocks.

In order to resist the attacks presented by Biehl et al. [9], one can simply

verify that the output is on the valid elliptic curve. This process is known as

point verification (PV). However, this basic countermeasure is not sufficient for

two other fault based attacks: the safe error (SE) attack proposed by Yen and

Joye [91] and Yen et al. [92], and the sign change fault (SCF) attack presented by

Blömer et al. [14]. The former shows the vulnerability of algorithms that utilize

dummy instructions for making a uniform execution flow such as the double-and-
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add-always method (e.g., [23]). On the other hand, the SCF attack is applicable

to elliptic curves over prime fields, where a sign change in a point implies only

a change of sign of its y-coordinate. An interesting aspect of this attack is that

the elliptic curve operations do not need to leave the original group E(Fp). They

assume that the attacker can induce a fault that produces a sign change into an

intermediate point during the ECSM operation. After having a set of erroneous

results due to SCF attacks and the correct result Q, it is possible to recover the

scalar k for a input pair (k, P ).

As described above, fault-based attacks against cryptosystems are a real threat

and should be taken into account. Accordingly, the design of cryptosystems should

include some countermeasures against fault-based attacks. In this thesis we present

our work on fault-based attacks and countermeasures for ECC.

In general, fault attacks take advantage of errors that occur while a crypto-

graphic device is performing a private-key operation. Such errors may be induced

by a malicious adversary who has physical access to the device or may occur be-

cause of hardware failure. An adversary may derive sensitive information from the

incorrect output. Thus, error detection is an essential process from a security point

of view. In the case of ECC, PV has been shown to be an important countermeasure

against fault attacks. However, since there exist attacks where PV is not sufficient,

it is necessary to include other protections.

While error detection is a sufficient countermeasure for preventing fault-based

attacks, fault-tolerant characteristics enable a system to perform its normal opera-

tion in the presence of some faults. This will result in more reliable systems where

faults may occur due to natural causes such as, abnormal temperature, electro-

magnetic interference (EMI) or power supply changes. Error detection plays an
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important role in the context of fault-tolerant system design. In detecting system

failure it indicates the necessity for remedial actions.

1.1 Thesis organization

The organization of the remainder of this thesis is as follows: In Chapter 2, we

present a brief overview of finite fields and elliptic curve cryptography (ECC).

We also describe important fault attacks reported in the open literature for ECC.

Additionally, in this chapter we present the error detection strategies that are used

in this thesis. Chapters 3, 4, and 5 present the major research contributions of this

thesis.

In Chapter 3, we present invalid-curve attacks that apply to the Montgomery

ladder ECSM algorithm. An elliptic curve over the binary field is defined using

two parameters, namely a and b. We show that with a different “value” for curve

parameter a, there exists a cryptographically weaker group in nine of the ten NIST-

recommended elliptic curves over F2m . Thereafter, we present two attacks that are

based on the observation that parameter a is not utilized for the Montgomery ladder

algorithms proposed by López and Dahab [58]. We also present the probability of

success of such attacks for general and NIST-recommended elliptic curves. At the

end of the chapter, we give some countermeasures to resist this attack.

In Chapter 4, we present error detection and fault tolerance in ECSM by working

with EC scalar multiplication modules and without making changes in the under-

lying scalar multiplication algorithm. To that end, first we describe a number of

encoding techniques that rely on properties of elliptic curves. Thereafter, we give

error-detecting and fault-tolerant structures for ECSM based on re-computation
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and parallel computation. We show that it is possible to have fault-tolerant schemes

utilizing two ECSM modules. This contrasts with the three modules needed by the

well-known triple modular redundancy (TMR) based scheme. Then we give over-

head costs and experimental results for the probability of undetected errors.

Algorithm-level error detection in ECSM is presented in Chapter 5. First, we

analyze the error detection coverage of PV and coherency check (CC) for the Mont-

gomery ladder ECSM algorithm over the binary field. Then, we provide left-to-right

and right-to-left double-and-add-always ECSM methods that will resist an SE at-

tack. We show that the right-to-left version will also resist an SCF attack. Next,

we discuss the case where two faults could be injected in one run of the ECSM, the

first where sensitive information is used, and the second for skipping conditional

tests. Finally, we provide a countermeasure to this strong attack model.

Chapter 6 provides concluding remarks and future research work. In the bibliog-

raphy which begins on page 173, each reference ends with numbers that correspond

to the page number in this thesis where that reference appears.

1.2 Summary of research contributions

The main contributions in this thesis are as follows:

• New invalid-curve attack on the Montgomery ladder ECSM algorithm over

the binary field.

• Error detection in ECSM using repeated and parallel computation.

• Fault-tolerant ECSM using re-computation, parallel computation, and PV.
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• Analysis of error detection of the Montgomery ladder ECSM algorithm over

the binary field that reveals the advantage of performing an integrity check

(IC) of the input point P .

• New double-and-add-always algorithms that resist the SE attack. The right-

to-left version also resists the SCF attack.



Chapter 2

Background

In this chapter, we first present an overview of the mathematical background per-

taining to elliptic curve cryptography (ECC). The fundamental operation used for

ECC is the elliptic curve scalar multiplication (ECSM). We present this operation

and some algorithms used for computing it. We also provide an overview of recent

fault attacks on ECC. Error detection plays an important role as a countermeasure

against such attacks. Moreover, it is a basic task in the context of fault-tolerant

system design. Hence, we give some error detection strategies that are utilized in

the remainder of this thesis.

For a better understanding of the materials to be presented in the following

chapters, we give below some background related to finite fields and ECC. For

more on these topics, the reader is referred to the following references [51], [62],

[11], [40], [64], and [22].

9
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2.1 Finite fields

Definition 2.1 An abelian group is a set G with a binary operation ∗ on G that

satisfies the following five properties:

1. The operation ∗ is closed (i.e., a ∗ b ∈ G for all a, b ∈ G).

2. The operation ∗ is associative (i.e., a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G).

3. The operation ∗ is commutative (i.e., a ∗ b = b ∗ a for all a, b ∈ G).

4. There exists an identity element e ∈ G called identity such that a∗e = e∗a = a

for any a ∈ G.

5. For every a ∈ G , there exists an inverse element a−1 ∈ G such that a∗a−1 = e.

Sometimes, we denote the group as a triple (G, ∗, e). An example of an abelian

group is the integers under the addition operation, with an identity element e = 0

and an inverse a−1 = −a. It could be referred to as (Z, +, 0). In cryptography the

used groups typically have a finite number of elements. The number of elements in

any group G is called the order of G, denoted as |G| or ord(G).

Definition 2.2 A finite group G is said to be cyclic if all elements of the group

can be generated by applying the group operation repeatedly to an element α ∈ G

which is denoted as a generator of the group G.

Definition 2.3 For a finite group (G, ∗, e), the order of an element a (denoted

ord(a) = b) is the smallest positive integer b such that a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
b times

= e.
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Theorem 2.1 Let G be a cyclic group of order n and d|n. Then G has φ(d)

elements of order d and φ(n) generators, where the function φ is called the Euler

phi function1 [66].

Fact 2.1 Some properties of the Euler phi function include:

1. If p is prime, then φ(p) = p− 1.

2. If m and n are relatively prime, then φ(mn) = φ(m) · φ(n).

3. If n =
∏j−1

i=0 pri

i is the prime factorization of n, then φ(n) = n ·
∏j−1

i=0 (1− 1
pi

).

By utilizing the group concept, we can define a field as follows:

Definition 2.4 A field F is a set of elements with two binary operators, denoted

as + and ·, which exhibits the following properties:

1. F is an abelian group under the operation +.

2. The non-zero elements of F form an abelian group under the operation ·.

3. The distributive laws apply (i.e., a·(b+c) = a·b+a·c and (b+c)·a = b·a+c·a
for all a, b, c ∈ F ).

A finite field is a field with a finite number of elements. It is referred to as

Galois field, named after its inventor, Évariste Galois (1811-1832). The finite or

Galois field with q elements is denoted by Fq.

Example 2.1 (a) The set of real numbers under multiplication and addition is a

field (infinite field). (b) Let p be a prime. The set {0, 1, . . . , p− 1} forms a finite

1φ(n) corresponds to the number of positive integers < n and relatively prime to n.
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field of order p under modulo-p addition and multiplication. It is commonly referred

to as prime field Fp.

Theorem 2.2 For p prime and m ≥ 2, there is a unique finite field of order pm,

denoted as Fpm . It is called the extension field of the prime field. A proof of this

theorem is presented by Golomb and Gong [38].

Definition 2.5 Let m ≥ 2. The field F2m is called characteristic-two finite field or

binary finite field. It can be seen as a vector space of dimension m over the field F2

which has only the elements 0 and 1. There are m elements (αm−1, αm−2, . . . , α1, α0)

in F2m such that each element a ∈ F2m can be represented in the following form:

a = am−1αm−1 + am−2αm−2 + · · ·+ a1α1 + a0α0, where ai ∈ F2.

The set {αm−1, αm−2, . . . , α1, α0} is called a basis of F2m over F2. Every element

in the field can be represented as a bit string of the form (am−1am−2 . . . a1a0). The

field addition is simply the bit-wise XOR operation, and the field multiplication

depends on the field basis chosen. The selection of a particular basis may depend

on the used platform (e.g., hardware or software). This choice frequently influences

implementation cost and the complexity of finite field computations. The two most

common types of bases used in conventional software and hardware applications are

polynomial and normal bases. Others, like dual, redundant and triangular bases,

are less commonly used but have some advantages in specific implementations. The

work discussed in this thesis uses polynomial basis.

In polynomial basis the elements of F2m are represented as linear combinations

of the set {αm−1, αm−2, . . . , α2, α, 1}, where α is a root of an irreducible polynomial

f(z) of degree m over F2. Polynomial basis is in many cases referred to as canonical
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Binary finite field Reduction polynomial

F2163 f(z) = z163 + z7 + z6 + z3 + 1

F2233 f(z) = z233 + z74 + 1

F2283 f(z) = z283 + z12 + z7 + z5 + 1

F2409 f(z) = z409 + z87 + 1

F2571 f(z) = z571 + z10 + z5 + z2 + 1

Table 2.1: NIST-recommended binary finite fields and their reduction polynomials

or standard basis. For U.S. Federal Government usages, the National Institute of

Standards and Technology (NIST) has recommended five binary fields along with

their corresponding reduction polynomials (see Table 2.1 [32]). It is important to

note two aspects of these polynomials. First, these polynomials are trinomial or

pentanomial. Second, the degree of the second leading term is a small number in

comparison with the extension degree of the binary field (i.e., m). Both aspects are

important in terms of efficiency of finite field operations.

Binary finite fields are very attractive to implementers due to their “carry-

free” arithmetic, and the availability of different representations of the field (i.e.,

basis and/or polynomial selection) which can be suited to and optimized for the

computational environment [11]. Some cryptographic applications, such as elliptic

curve cryptosystems, permit the use of either a prime field Fp or a binary finite

field F2m . For hardware implementation, in order to reduce the complexity of the

design, a binary finite field may be selected [1] [78].

Solving quadratic equations over F2m

Solving second-degree equations over F2m has a number of applications in ECC.

For example, to obtain the value(s) of y ∈ F2m that might satisfy an elliptic curve
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equation from a given x ∈ F2m . Also, it plays a crucial step in the context of

ECSM utilizing point halving [49]. In this thesis, some results from this subsection

are used in Chapters 3 and 5. For more details on this topic the reader is referred

to [8] and [18].

First, let us define two functions that are important for solving quadratic equa-

tions over the binary field, the trace and half-trace functions:

Definition 2.6 The trace function of an element β ∈ F2m , denoted by Tr(β), can

be defined as

Tr(β) =
m−1∑

i=0

β2i

.

Definition 2.7 Let m be an odd integer. The half-trace function of an element

β ∈ F2m , denoted by Ht(β), can be defined as

Ht(β) =

(m−1)/2∑

i=0

β22i

.

The trace and the half-trace functions are linear, i.e., Tr(α+β) = Tr(α)+Tr(β)

and Ht(α + β) = Ht(α) + Ht(β), for all α, β ∈ F2m . Also it can be shown that

Tr(β) = Tr(β2) = Tr2(β), Ht(β2) = Ht2(β), and Ht(β2) + Ht(β) = Tr(β) + β, for

all β ∈ F2m .

Let us solve an equation over F2m of the form M2 + uM + v = 0. First consider

the trivial case where u = 0 in which case the solution is M =
√

v = v2m−1

. Then

for u 6= 0, we can perform a change of variables M ←Mu that yields the following

simplified equation

M2 + M + w = 0, where w = v/u2. (2.1)
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Theorem 2.3 Let m be an odd integer. Equation (2.1) has a solution over F2m if

and only if Tr(w) = 0. In such a case one solution corresponds to z = Ht(w) and

the other to Ht(w) + 1.

Proof Let z be a solution of Equation (2.1). Obtaining the trace function of this

equation, we have

Tr(z2 + z + w) = Tr(z2) + Tr(z) + Tr(w) = 0.

This will be valid if and only if Tr(w) = 0. To show that z = Ht(w) is a solution

we can obtain that

z2 + z = Ht2(w) + Ht(w) = w + Tr(w),

in which case z is a solution as claimed. It can be easily verified that Ht(w)+1 also

satisfies Equation (2.1).

2.2 Elliptic curve cryptography (ECC)

Definition 2.8 Let Fq be a finite field. An elliptic curve E over Fq is formed by

the points (x, y) that satisfy the following equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ Fq. (2.2)

Equation (2.2) is referred to as the affine form of the Weierstrass equation. The

resulting set of points, plus an additive identity defined as the point at infinity

(O), together with a particular operation, denoted as point addition (]), form an

abelian group.
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Definition 2.9 Two elliptic curves are isomorphic over Fq if they have defining

equations which are the same under some admissible changes of variables.

2.2.1 Non-supersingular elliptic curves of characteristic two

From Equation (2.2) we can perform the following change of variables:

x = a2
1x1 +

a3

a1

y = a3
1y1 +

a2
1a4 + a2

3

a3
1

,

with a1 6= 0 the resulting relationship is

y2
1 + x1y1 = x3 + a′

2x
2
1 + a′

6,

where a′
2 and a′

6 are appropriate functions of a1, a2, a3, a4, and a6. Now we can write

a simplified affine Weierstrass equation for binary finite fields for non-supersingular

elliptic curves as follows,

y2 + xy = x3 + ax2 + b. (2.3)

Theorem 2.4 Let E and E be non-supersingular elliptic curves defined over F2m .

E and E given by the equations

E : y2 + xy = x3 + ax2 + b

E : y2 + xy = x3 + āx2 + b̄

are isomorphic over F2m if and only if Tr(a) = Tr(ā) and b = b̄. If the last conditions

are met, then there is an admissible change of variables (x, y) → (x, y + tx) that

converts E into E for some t ∈ F
∗
2m that satisfies ā = t2 + t + a.
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2.2.2 Elliptic curves of characteristic p > 3

From Equation (2.2) we can complete the square in the left side,

(
y +

a1x

2
+

a3

2

)2

= x3 +

(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x +

(
a2

3

4
+ a6

)
,

which can be rewritten as

y2
1 = x3 + a′

2x
2 + a′

4x + a′
6,

where y1 = y + a1x
2

+ a3

2
; and a′

2, a′
4, and a′

6 are appropriate functions of a1, a2, a3,

a4, and a6. Now we can perform a change of variable in the right side as x1 = x+
a′

2

3

obtaining,

y2
1 = x3

1 + ax1 + b,

for some constants a and b. Now we can write a simplified affine Weierstrass

equation for prime finite fields (p > 3) as follows,

y2 = x3 + ax + b, (2.4)

where a, b ∈ Fp, and 4a3 + 27b2 6= 0 (mod p).

2.2.3 Group law

Let P and Q be any two distinct points on E, which is defined by either Equation

(2.3) or (2.4). The rules for point addition are given as follows:

1. The point O is used as the identity element. For any point P , P ] O = P

and O ] P = P .
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2. The negative of the point P = (x, y), denoted as −P , such that P ](−P ) = O
is,

−P =





(x, x + y) if E is defined over F2m ,

(x,−y) if E is defined over Fp.

3. Let P = (x1, y1) 6= O and Q = (x2, y2) 6= O, where P 6= ±Q. The point

addition, R = P ]Q = (x3, y3), is defined as follows,

x3 =





(
y1 + y2

x1 + x2

)2

+
y1 + y2

x1 + x2

+ x1 + x2 + a if E is defined over F2m ,

(
y2 − y1

x2 − x1

)2

− x1 − x2 if E is defined over Fp.

y3 =





(
y1 + y2

x1 + x2

)
(x1 + x3) + x3 + y1 if E is defined over F2m ,

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1 if E is defined over Fp.

4. Let P = (x1, y1) 6= O and P 6= −P . The point doubling, R = P ] P = 2P =

(x3, y3), is defined as follows,

x3 =





(
x1 +

y1

x1

)2

+

(
x1 +

y1

x1

)
+ a if E is defined over F2m ,

(
3x2

1 + a

2y1

)2

− 2x1 if E is defined over Fp.

y3 =





(x1 + x3)

(
x1 +

y1

x1

)
+ x3 + y1 if E is defined over F2m ,

(
3x2

1 + a

2y1

)
(x1 − x3)− y1 if E is defined over Fp.
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2.2.4 Group order and structure

Definition 2.10 The order of an elliptic curve E defined over Fq, denoted as

#E(Fq), is defined as the number of points in E(Fq).

Definition 2.11 The order of a point P ∈ E(Fq), denoted as ord(P ), is the small-

est positive integer e such that eP = O.

Using a result of Lagrange’s theorem from group theory [89], we can affirm that

the order of any point always divides the order of the group. As a result, if #E(Fq)

is prime, then the order of any point is #E(Fq) and it can be used as a generator.

For cryptographic applications, the order of a selected point P should be divisible

by a sufficiently large prime [42].

In order to learn more about the structure of the group E(Fq), it is important

to know the value of #E(Fq). The next well-known theorem gives us a bound for

this parameter.

Theorem 2.5 (Hasse’s Theorem). Let E be an elliptic curve defined over Fq.

Then

#E(Fq) = q + 1− t, where |t| ≤ 2
√

q.

The exact value of #E(Fq) can be efficiently obtained using some point counting

algorithms such as the Schoof-Elkies-Atkin algorithm [11] for curves over prime

fields, or the Satoh-Skjernaa-Taguchi algorithm [77] for curves over the binary field.

Let Zn be a cyclic group of order n. The following theorem is about the group

structure of E(Fq).

Theorem 2.6 (Rück Theorem [75]). Let E be an elliptic curve over Fq. Then

E(Fq) is isomorphic to Zn1
× Zn2

where n2|n1 and n2|(q − 1).
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E over Coordinate system Points Correspondence

Affine (A) (x, y)

F2m Standard projective (P) (X,Y,Z) (X/Z, Y/Z)

(non-super- López and Dahab (LD) (X,Y,Z) (X/Z, Y/Z2)

singular) Jacobian (J ) (X,Y,Z) (X/Z2, Y/Z3)

Affine (A) (x, y)

Fp Standard projective (P) (X,Y,Z) (X/Z, Y/Z)

(p > 3) Jacobian (J ) (X,Y,Z) (X/Z2, Y/Z3)

Chudnovsky Jacobian (J c) (X,Y,Z, Z2, Z3) (X/Z2, Y/Z3)

Table 2.2: Examples of coordinate systems

Based on Theorem 2.6, E(Fq) can be either a cyclic group or the direct sum of

two cyclic groups. With #E(Fq) = n1n2, if n2 = 1, then E(Fq) is a cyclic group. If

n2 > 1, then E(Fq) is said to have rank 2 [40].

2.2.5 Coordinate systems

The elliptic curves obtained from Equations (2.3) and (2.4) with their respective

point addition rules are for affine coordinates (i.e., (x, y)). In order to reduce

computational cost, a number of projective coordinate systems (i.e., (X,Y, Z))

have been suggested in the literature. In Table 2.2 some of these systems with their

correspondence with the affine system are presented.

For each coordinate system, the total number of field operations is different

resulting in different time cost for elliptic curve point addition and doubling. Pre-

viously in Subsection 2.2.3, the EC group law using affine coordinates has been

given. Using relations between some other systems with the affine, it is possible to

obtain the point addition and doubling equations for those systems.

Standard projective (P) [64], Jacobian (J ) [42], Chudnovsky Jacobian (J c)
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[19], and López and Dahab’s (LD) [57] coordinate systems avoid the necessity to

compute one multiplicative inverse in each point operation. This is achieved at

the expense of more multiplications and storage space. The decision regarding

whether to use affine coordinate system or other is based primarily on implemen-

tation aspects such as the availability of memory for storing temporary values and

the relative performance of the field inversion and multiplication algorithms used

to implement the EC group operations. Table 2.3 shows the number of finite field

operations needed to perform point addition and doubling for each system [40] [22].

The symbols M , S, and I denote, respectively, the cost of finite field multiplication,

squaring, and inversion. These symbols are used for the remainder of this thesis.

2.3 Elliptic curve scalar multiplication (ECSM)

Definition 2.12 Let k be a positive integer and P be a point in E(Fq), then the

elliptic curve scalar multiplication (ECSM) is given as follows,

kP = P ] P ] · · · ] P︸ ︷︷ ︸
k times

.

To carry out ECSM, it is necessary to perform point doublings and additions.

As described above in the EC group law, such operations require some finite field

arithmetic (i.e., multiplication, addition, squaring, and multiplicative inverse). The

dependency of ECSM on EC point doubling is explained below.

Let (kt−1 · · · k1 k0)2 be the t-bit binary representation of k. The scalar multipli-

cation kP can be computed as follows,

Q = kP =

(
t−1∑

i=0

ki2
i

)
P,
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E over Point addition Point doubling

A+A → A 2M+1S+1I 2A → A 2M+1S+1I

P + P → P 13M + 1S 2P → P 7M + 5S

F2m LD+LD→LD 14M + 4S 2LD → LD 4M + 5S

(non-super- J + J → J 14M + 4S 2J → J 5M + 5S

singular) P +A → P 12M + 2S

LD +A → LD 8M + 5S

J +A → J 11M + 3S

A+A → A 2M+1S+1I 2A → A 2M+2S+1I

P + P → P 12M + 2S 2P → P 7M + 3S

Fp J + J → J 12M + 4S 2J → J 4M + 4S

(p > 3) J c+J c → J c 11M + 3S 2J c → J c 5M + 4S

J +A → J 8M + 3S

J + J c → J 11M + 3S

J c+A → J c 7M + 3S

Table 2.3: Field operations count for point addition and doubling using various
coordinate systems

Q =
(
kt−12

t−1P
)
]
(
kt−22

t−2P
)
] · · · ] (k12P ) ] (k0P ) . (2.5)

By factoring out 2 we obtain,

Q = 2 ((kt−12
t−2P ) ] (kt−22

t−3P ) ] · · · ] (k1P )) ] (k0P ) .

Now we can repeat this operation until we have

Q = 2(2(· · · 2 (2 (kt−1P ) ] kt−2P ) ] · · · ) ] k1P ) ] k0P. (2.6)

The operations in Equations (2.5) and (2.6) can be performed utilizing the well-

known double-and-add method. To that end, Algorithm 2.1 implements the opera-

tions of Equation (2.6). This algorithm scans bits of scalar k from left to right (i.e.,

from the most significant bit to the least significant bit), one bit at a time. In every
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iteration, a point doubling is performed. Additionally, depending on the scanned

bit value, a point addition is performed. On the other hand, the right-to-left coun-

terpart of Algorithm 2.1 is illustrated as Algorithm 2.2. The operations in this

algorithm are performed corresponding to Equation (2.5). These algorithms use a

method that is commonly referred to as binary method [22]. The expected number

of point operations performed in Algorithms 2.1 and 2.2 is t point doublings and

t/2 point additions on average.

Algorithm 2.1. Left-to-right ECSM by

double-and-add

Input: P ∈ E(Fq), k = (kt−1 · · · k1 k0)2.

Output: Q = kP .

1. Q← O.

2. For i = t− 1 downto 0 do

2.1 Q← 2Q.

2.2 If (ki = 1) then

2.2.1 Q← Q ] P .

3. Return(Q).

Algorithm 2.2. Right-to-left ECSM by

double-and-add

Input: P ∈ E(Fq), k = (kt−1 · · · k1 k0)2.

Output: Q = kP .

1. Q← O.

2. For i = 0 to t− 1 do

2.1 If (ki = 1) then

2.1.1 Q← Q ] P .

2.2 P ← 2P .

3. Return(Q).

For ECC applications that use a projective coordinate system for point repre-

sentation, Algorithm 2.1 is usually preferred over Algorithm 2.2. The main reason

is that the point addition required in Algorithm 2.1 uses a fixed operand (i.e., P ).

This aspect permits the use of mixed coordinates for point addition, i.e., one point

to be added is given in some projective coordinate system, and point P in the affine
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system. As illustrated in Table 2.3, the use of mixed coordinates saves some finite

field multiplications.

Coron [23] has shown that algorithms with a non-homogeneous operation flow,

such as Algorithms 2.1 and 2.2, are vulnerable to a simple power analysis (SPA)

attack. As a countermeasure he proposed a method called double-and-add-always.

The idea is to add a dummy point addition operation whenever the bit scalar is

equal to zero during the main loop. The corresponding method is presented in

Algorithms 2.3 and 2.4 for the left-to-right and right-to-left versions, respectively.

The included dummy operation permits to have a uniform execution flow, i.e., one

point addition and one point doubling are executed in every iteration during the

loop. As a result, there is a performance penalty since the required point operations

are t doublings and t additions. Moreover, Yen and Joye [91] have observed that

algorithms with dummy operations might be susceptible to a special fault attack

Algorithm 2.3. Left-to-right ECSM by

double-and-add-always

Input: P ∈ E(Fq), k = (kt−1 · · · k1 k0)2.

Output: Q = kP .

1. Q0 ← O.

2. For i = t− 1 downto 0 do

2.1 Q0 ← 2Q0.

2.2 Q1 ← Q0 ] P .

2.3 Q0 ← Qki
.

3. Return(Q0).

Algorithm 2.4. Right-to-left ECSM by

double-and-add-always

Input: P ∈ E(Fq), k = (kt−1 · · · k1 k0)2.

Output: Q = kP .

1. Q0 ← O.

2. For i = 0 to t− 1 do

2.1 Q1 ← Q0 ] P.

2.2 P ← 2P .

2.3 Q0 ← Qki
.

3. Return(Q0).
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called safe-error (SE) attack. This is an example that in some cases a countermea-

sure against one attack may benefit another attack.

2.3.1 Montgomery’s ECSM method

Montgomery [68] presented a method to compute multiples of points for a special

type of elliptic curve over prime fields. His technique has been generalized to other

curves of cryptographic interests [58] [69] [17]. Utilizing a variant of the binary

method known as binary ladder [24], Montgomery’s idea is based on the fact that

the addition of two points can be obtained without the y-coordinates of such points

knowing the difference between them.

The binary ladder method follows the next observation [47]2. Let k =
∑t−1

j=0 kj2
j

and Q = kP be the scalar and ECSM result, respectively. Let us define two integers

as Li =
∑t−1

j=i kj2
j−i and Mi = Li + 1. Then we can obtain Li+1 as

Li+1 =
t−1∑

j=i+1

kj2
j−i−1 =

1

2
(Li − ki).

We can write expressions for Li and Mi as follows,

Li = 2Li+1 + ki = Li+1 + Mi+1 + ki − 1,

Mi = 2Mi+1 + ki − 1 = Li+1 + Mi+1 + ki.

Using the above equations, let us define the pair (Li,Mi) as

(Li,Mi) =





(2Li+1, Li+1 + Mi+1) if ki = 0,

(Li+1 + Mi+1, 2Mi+1) if ki = 1.
(2.7)

2Joye and Yen described this idea in the context of modular exponentiation.
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Now, let Q0,i = LiP and Q1,i = MiP be points for i ∈ {0, t−1}. Utilizing Equation

(2.7), we can obtain the pair (Q0,i, Q1,i) as follows

(Q0,i, Q1,i) =





(2Q0,i+1, Q0,i+1 ]Q1,i+1) if ki = 0,

(Q0,i+1 ]Q1,i+1, 2Q1,i+1) if ki = 1.
(2.8)

Note that if Lt−1 = 1 and Mt−1 = 2 (i.e., Q0,t−1 = P and Q1,t−1 = 2P ), and we use

Equation (2.8) repeatedly for i from t− 2 to 0, then Q0,0 and Q1,0 will be kP and

(k + 1)P , respectively. The complete procedure that uses this idea is presented as

Algorithm 2.5. This algorithm is referred to as basic Montgomery’s ladder ECSM.

Let us use the word “basic” to distinguish this algorithm among others that do not

utilize the y-coordinate of the intermediate points Q0 and Q1 during the ECSM

computation.

Algorithm 2.5. Basic Montgomery’s ladder ECSM

Input: P ∈ E(Fq), k = (kt−1 · · · k1 k0)2 with kt−1 = 1.

Output: Q = kP .

1. Q0 ← P , Q1 ← 2P.

2. For i = t− 2 downto 0 do

2.1 If (ki = 0) then

2.1.1 Q1 ← Q0 ]Q1, Q0 ← 2Q0;

2.2 Else

2.2.1 Q0 ← Q0 ]Q1, Q1 ← 2Q1.

3. Return(Q0).
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This algorithm keeps the difference between Q1 and Q0 equal to P at any value of

i during the loop. Also, one point doubling and one point addition are performed in

every iteration which make this algorithm attractive against attacks such as timing

[52] and SPA [53]. Additionally, since it does not have dummy instructions, the SE

fault attack does not apply. Furthermore, due to the usage of all point coordinates,

it is possible to have an improved error detection using coherency check among

involved variables. We discuss this in Chapter 5.

An extension of the ECSM Montgomery idea for non-supersingular elliptic

curves over the binary finite field was presented by López and Dahab [58]. They

showed algorithms for both affine and projective coordinate systems. Let us present

some resulting expressions from lemmas given by López and Dahab [58]. Let

P0 = (x0, y0) and P1 = (x1, y1) be points that belong to the elliptic curve defined

by Equation (2.3). The x-coordinate of P0 ] P1, x2, can be obtained as follows:

x2 =
x0y1 + x1y0 + x0x

2
1 + x2

0x1

(x0 + x1)2
. (2.9)

Suppose that P = (x, y) is the difference between P1 and P0, i.e., P1 − P0 = P .

If P is known, then the x-coordinate of P0 ] P1 can be obtained by the following

function:

x(P0 ] P1) =





x2
0 +

b

x2
0

if P0 = P1,

x +
x0

x0 + x1

+

(
x0

x0 + x1

)2

if P0 6= P1.

(2.10)

Additionally the y-coordinate of P0, y0, can be obtained from P = (x, y), and the
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x-coordinates of P0 and P1 (i.e., x0 and x1, respectively) as follows:

y0 =
(x0 + x) [(x0 + x)(x1 + x) + x2 + y]

x
+ y. (2.11)

Based on Algorithm 2.5 and Equations (2.10) and (2.11), Algorithm 2.6 implements

the affine version of Montgomery’s ECSM. During each interaction of the algorithm,

a point doubling and a point addition are performed without y-coordinate. This is

possible due to the difference of the two intermediate points, namely Q0 and Q1,

being known (i.e., = P ). After the final interaction the x-coordinates of Q0 = Q =

kP and Q1 = (k + 1)P are obtained, i.e., Q0x
and Q1x

. Using these values and P ,

the y-coordinate of the result is computed in Step 3. Note that in Algorithm 2.6

x(·) corresponds to the x-coordinate of the point given in the argument.

Algorithm 2.6. Montgomery’s ladder ECSM in affine coordinates

Input: P = (x, y) ∈ E(F2m), k = (kt−1 · · · k1 k0)2 with kt−1 = 1.

Output: Q = kP .

1. Q0x
← x, Q1x

← x(2P ).

2. For i = t− 2 downto 0 do

2.1 If (ki = 0) then

2.1.1 Q1x
← x(Q0 ]Q1), Q0x

← x(2Q0);

2.2 Else

2.2.1 Q0x
← x(Q0 ]Q1), Q1x

← x(2Q1).

3. Q0y
= (Q0x

+ x) [(Q0x
+ x)(Q1x

+ x) + x2 + y] /x + y.

4. Return(Q0x
, Q0y

).
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In Algorithm 2.6 the intermediate points and their related operations are in

the affine coordinate system. In applications where the multiplicative inverse is

relatively expensive, it might be more attractive to use a projective coordinate

system. To this end, López and Dahab [58] presented the projective version of

Algorithm 2.6. This particular algorithm represents an attractive option because

it gives a computational advantage over other algorithms that do not use pre-

computation such as that the binary [64] and addition-subtraction [42] methods.

Let P0 = (X0, Y0, Z0) and P1 = (X1, Y1, Z1) be points represented in the López

and Dahab projective coordinates system. Suppose that P = (x, y) is the difference

in affine coordinates between P1 and P0. Then, the Z- and X-coordinates of the

point doubling and addition can be obtained by the following functions:

Z(P0 ] P1) = Z2 =





X2
0Z

2
0 if P0 = P1,

(X0Z1 + X1Z0)
2 if P0 6= P1.

(2.12)

X(P0 ] P1) = X2 =





X4
0 + bZ4

0 if P0 = P1,

xZ2 + X0X1Z0Z1 if P0 6= P1.
(2.13)

Using these group formulas, it is possible to have an efficient algorithm to com-

pute the ECSM. Algorithm 2.7 presents the resulting method, where X(·) and Z(·)
correspond to the X- and Z-coordinate, respectively, of the point given in the

arguments. Similar to the algorithm of the affine system, point operations are per-

formed without Y -coordinates since the difference between Q1 and Q0 is known.

Here, after the last interaction the X- and Z-coordinates of Q0 = Q = kP and

Q1 = (k + 1)P are obtained, i.e., Q0X
, Q0Z

, Q1X
, and Q1Z

. Using these values, the

affine representation of Q = (x2, y2) is computed in Steps 5.1-5.3. In comparison

with Algorithm 2.5, not handling the Y -coordinates helps to have fewer memory
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requirements and a faster method since some finite field multiplications are saved.

Algorithm 2.7. Montgomery’s ladder ECSM in projective coordinates

Input: P = (x, y) ∈ E(F2m), k = (kt−1 · · · k1 k0)2 with kt−1 = 1.

Output: Q = kP .

1. Q0X
← x, Q0Z

← 1, Q1X
← X(2P ), Q1Z

← Z(2P ).

2. For i = t− 2 downto 0 do

2.1 If (ki = 0) then

2.1.1 T ← Z(Q0 ]Q1), Q1X
← X(Q0 ]Q1), Q1Z

← T ,

2.1.2 T ← X(2Q0), Q0Z
← Z(2Q0), Q0X

← T ;

2.2 Else

2.2.1 T ← Z(Q0 ]Q1), Q0X
← X(Q0 ]Q1), Q0Z

← T ,

2.2.2 T ← X(2Q1), Q1Z
← Z(2Q1), Q1X

← T .

3. If (Q1Z
= 0) then return(O);

4. Else if (Q0Z
= 0) then return(x, x + y);

5. Else

5.1 T ← 1/(xQ0Z
Q1Z

),

5.2 x2 ← xQ0X
Q1Z

T ,

5.3 y2 ← (x + x2) [(x2 + y)Q0Z
Q1Z

+ (Q0X
+ xQ0Z

)(Q1X
+ xQ1Z

)] T + y,

5.4 Return(x2, y2).

2.3.2 Elliptic curve discrete logarithm problem (ECDLP)

The ECSM is the base operation used for ECC. In fact, the elliptic curve discrete

logarithm problem (ECDLP) is based on the difficulty of obtaining k given P and
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Q(= kP ) for some integer k and P , Q ∈ E(Fq). This principle has led to schemes

equivalent to DLP-based cryptosystems, such as: Diffie-Hellman key exchange [25],

ElGamal public key encryption [30], ElGamal digital signatures [30], and DSA [33].

In practice for the ECDLP to be intractable, it is important to select appropriate

domain parameters such as the finite field Fq where the curve E is defined, the curve

E itself, and the base point P . When the order n of the base point P is a large prime,

the fastest known algorithms to solve the ECDLP, namely the baby-step giant-step

[82] and the Pollard’s rho [73] algorithms, need O(
√

n) steps. Consequently, for

security purposes it is necessary that the size of the underlying finite field be at

least the double of the security level in bits. Security level of L bits is referred to

as the best algorithm for breaking the system that takes approximately 2L steps

[40]. For example, for achieving an 80-bit security level, the cryptosystem would

require an elliptic curve defined over a finite field Fq, where q ≈ 2160. With respect

to the selection of the elliptic curve E, some types of curves should be avoided for

cryptographic applications since the ECDLP can be reduced. These curves include

supersingular curves [65], anomalous curves [76] [80], and curves over F2m for some

non-prime values of m [34] [36] [61].

If the order of the base point P does not contain at least a large prime fac-

tor, then it is possible to use an extension for ECC of the Silver-Pohlig-Hellman

algorithm [72] to solve the ECDLP as presented in Algorithm 2.8. This algorithm

reduces the problem to subgroups of prime order. Let n be the order of the base

point P with a prime factorization n =
∏j−1

i=0 pei

i , where pi < pi+1. Suppose that

Q = lP , where P, Q ∈ E(Fq) and l ∈ [0, n− 1]. This algorithm obtains during the

outer loop, the value of l mod pi
ei for each 0 ≤ i ≤ j − 1. With these values l mod n

can be uniquely computed using the CRT. It is important to note that at Step
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1.3.2 one EC discrete logarithm needs to be computed. However, this operation

is in a subgroup at the most of order pj−1. It can be performed with the fastest

known algorithms for ECDLP such as the Pollard’s rho algorithm with an expected

running time of O(
√

pm), where pm is the largest prime divisor of ord(Pi).

Algorithm 2.8. Silver-Pohlig-Hellman’s algorithm for solving the ECDLP

Input: P ∈ E(Fq), Q ∈ 〈P 〉, n = ord(P ) =
∏j−1

i=0 pei

i , where pi < pi+1.

Output: l mod n.

1. For i = 0 to j − 1 do

1.1 Q′ ← O, li ← 0.

1.2 Pi ← (n/pi)P.

1.3 For t = 0 to (ei − 1) do

1.3.1 Qt,i ← (n/pt+1
i )(Q ]Q′).

1.3.2 Wt,i ← logPi
Qt,i. {ECDLP in a subgroup of order ord(Pi).}

1.3.3 Q′ ← Q′ −Wt,ip
tP.

1.3.4 li ← li + ptWt,i.

2. Use the CRT to solve the system of congruences l ≡ li (mod pi
ei). This gives

us l mod n.

3. Return(l).

Example 2.2 Let E be the curve y2 + xy = x3 + 1 over the field F211 given by the

polynomial f(z) = z11+z2+1. Let us represent the elements of F211 in hexadecimal

form. Consider the point P = (0x10F,0x27A) whose order is n = 92 = 22 · 23. Let

Q = (0x1FB,0x2C6). We can use Algorithm 2.8 to obtain l = logP Q as follows:
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• During the first loop for i = 0 we can obtain l0 = l mod 22. We can find that

l0 = W0,0 + 2W2,0 = 1 + 2 · 0 = 1.

• For the second loop for i = 1 we determine l1 = l mod 23. It can be shown

that l1 = W1,0 = 18.

• Finally we have the following pair of congruences: l mod 4 = 1 and l mod 23 =

18. Solving using the CRT we have l = 41.

To resist the Silver-Pohlig-Hellman attack one can simply select an elliptic curve

E such that its group order, #E(F2m), is prime or almost prime, i.e., #E(F2m) =

hn, where n is a prime and h is small [40] (e.g., h ∈ [1, 4]). However, in Chapter

3 we will show how Algorithm 2.8 could be useful under an invalid-curve attack to

the ECSM algorithm based on Montgomery’s ladder.

2.4 ECC fault-based attacks

In 1996 fault analysis attack was introduced by Boneh et al. [15]. This attack is also

known as Bellcore and is based on fault injection in a device performing an RSA

or Rabin digital signature. Biehl et al. [9] proposed the first fault-based attack on

ECC. Their basic idea is to force, through a fault, a computation in a weaker group

where solving the ECDLP is feasible. They consider that the attacker can either

select or modify the input point P ∈ E(Fq) of the ECSM (i.e., P ← P̃ , P̃ ∈ Ẽ(Fq)).

A basic assumption for this attack is that the parameter a6 from Equation (2.2)

is not involved for point operations formulas. In this way, the computation could

be performed in a cryptographically less secure elliptic curve Ẽ(a1, a2, a3, a4,, ã6),
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which differs from the original elliptic curve E(a1, a2, a3, a4, a6) only in the curve

parameter a6. The relation between ã6 and P̃ = (x̃, ỹ) can be obtained from

Equation (2.2) as follows:

ã6 = ỹ2 + a1x̃ỹ + a3ỹ − x̃3 − a2x̃
2 − a4x̃. (2.14)

If the attacker can choose P̃ , then ã6 could be selected in a such way that the order

of Ẽ(Fq), #Ẽ(Fq), has small enough prime factors for solving the ECDLP in such

a group. For a given ã6, the point P̃ can be chosen by selecting values of x̃ and ỹ

that satisfy Equation (2.14). Let r be the order of P̃ , i.e., r = ord(P̃ ). Since the

computation is performed in Ẽ(Fq) instead of E(Fq), each ECSM computation with

P̃ can supply the value k mod r from kP̃ . Repeating this procedure with sufficiently

different chosen points P̃i could give us a unique solution for k using the CRT. The

same idea can be applied to the short versions of the Weierstrass equation (i.e.,

Equations (2.3) and (2.4)). If the curve operations do not consider parameter b,

then this attack can be mounted by selecting a point on a weaker curve Ẽ(a, b̃),

which differs from the original elliptic curve E(a, b) only in parameter b.

Ciet and Joye [21] have shown how to recover the secret key k by having an

unknown but fixed faulty input point P̃ . This is a more realistic scheme because,

excluding EC ElGamal encryption, in most EC cryptosystems the point P is prede-

termined and might be fixed. The attacker cannot select this point which is usually

stored in the memory of a device. Their fault model considers that only one coordi-

nate x or y is faulty. If it is assumed that the x-coordinate of a point P = (x, y) is

altered, the resultant point will be P̃ = (x̃, y). The scalar multiplication algorithm

computes Q̃ = kP̃ . The faulty result Q̃ = k(x̃, y) = (x̃k, ỹk), is over Ẽ(Fq) on which
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the operation was performed, defined as Ẽ(a1, a2, a3, a4, ã6), where ã6 is obtained

as follows

ã6 = ỹ2
k + a1x̃kỹk + a3ỹk − x̃3

k − a2x̃
2
k − a4x̃k.

Using Equation (2.2) for Ẽ we obtain

Ẽ : y2 + a1xy + a3y = x3 + a2x
2 + a4x + ã6. (2.15)

Since P̃ ∈ Ẽ(Fq), it needs to follow Equation (2.15). Substituting its coordinates

(x̃, y) and grouping the terms with x̃ we have the following expression

x̃3 + a2x̃
2 + (a4 − a1y)x̃ + (ã6 − y2 − a3y) = 0.

By solving the above equation for x̃, we can have up to three different roots, where

one is the fault generated x-coordinate. If the point P is known (usually this

parameter is public), x̃ can be distinguished easily since it will differ from x just

for the faulty bits. Having P̃ and Q̃, the procedure described by Biehl et al. [9]

for obtaining k can be followed. Additionally, the authors consider other attacks

where the underlying finite field or the elliptic curve parameters are disturbed

by a fault. They assume that it is possible to inject a transient fault into these

parameters. For example, in a smart card system parameters are usually stored

in non-volatile memory (e.g., EEPROM) and they are transferred into RAM for

executing a specific algorithm. It is possible to induce an error in such data before

or during this transfer.

Antipa et al. [6] state the importance of checking whether the received point for

any EC key agreement and public-key encryption protocols are on the proper elliptic
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curve. Specifically, they show the vulnerability under this scenario of the one-pass

EC Diffie-Hellman protocol, the EC integrated encryption scheme (ECIES), the

one-pass ECMQV protocol and the EC digital signature algorithm. Some of these

protocols or algorithms are defined in standards such as ANSI X9.62, ANSI X9.63,

IEEE 1363-2000, ISO/IEC 15946-3, FIPS 186-2, and ISO 15946-2. They mention

the significance for implementers of taking into account point verification, even

when some standards do not mandate that. A possible countermeasure considered

by Antipa et al. [6] is to use other formulas for the addition law that use both

elliptic curve parameters, a and b. In fact, some standards such as IEEE 1363

[42] include group formulas for curves over F2m that involve both parameters (i.e.,

point doubling formula uses b while point addition uses a). In this scenario, the

invalid-curve attacks described by Biehl et al. [9] and Ciet and Joye [21] might not

constitute a threat.

It is important to note that the invalid-curve attacks presented by Biehl et

al. [9] and Ciet and Joye [21] apply to applications where parameter b is not used

for the group formulas. However for Algorithms 2.6 and 2.7, it is not the case since

parameter b is utilized. In Chapter 3 we present an attack that takes advantage of

parameter a not being used in these algorithms.

Biehl et al. [9], in addition to the invalid-curve attack, proposed an ECC dif-

ferential fault analysis (DFA) attack. Their work was an extension of the attack

presented by Boneh et al. [15] for RSA cryptosystems. They assume that the

adversary knows the details of the implementation, such as the parameters, the

utilized algorithm, and the representation of internal variables. They consider that

the attacker can precisely flip a bit in a register that holds a partial result during

the ECSM operation. They also assume that the attacker can determine that the
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fault was induced v iterations before the ECSM computation finished. Consider

a left-to-right algorithm where the scalar bits are processed from i = t − 1 to 0

(e.g., Algorithm 2.1). If v is small enough for doing an exhaustive search, then the

attacker can obtain the v least significant bits as follows:

1. Compute the normal ECSM, i.e., Q = kP .

2. Repeat the operation inducing a single bit-flip fault into a variable that holds

a partial result (e.g., Step 2.1 of Algorithm 2.1) at i = v − 1 to obtain Q̃.

3. For all v-bit integers d compute Q− dP and Q̃− dP.

4. Look for pairs of results that differ only in one bit. Biehl et al. [9] show that

the probability that more than one pair satisfies this condition is low. If only

one pair exists, then they are the original and the faulty intermediate results,

respectively. The associated value of d gives the v least significant bits of k.

The full value of k can be recovered by repeating Steps 1-4 for different (and

ascending) values of v and utilizing the known bits of the scalar.

One countermeasure against the attacks presented by Biehl et al. [9], Ciet and

Joye [21], and Antipa et al. [6] is to verify whether or not the output point lies on

the original elliptic curve. This process is often called point verification (PV). This

basic countermeasure is not sufficient for all cases. Blömer et al. [14] presented an

ECC fault-based attack called sign change fault (SCF) attack in which PV is not a

sufficient protection. This attack is based on changing the sign of an intermediate

point during the ECSM. It is important to note that this attack only applies to

cryptosystems that use elliptic curves over prime fields where the change of a point

involves only a change of the sign of the y-coordinate.
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An interesting aspect of the SCF attack is that the elliptic curve operations do

not leave the original group E(Fp) in contrast with those attacks described by Biehl

et al. [9], Ciet and Joye [21], and Antipa et al. [6]. Blömer et al. assume that the

attacker can induce a fault that produces a sign change into an intermediate point

Q′, such that Q′ ← −Q′ during the ECSM operation. They show the applicability

of this attack for applications utilizing conventional crypto co-processors. The SCF

attack can be mounted in some ECSM algorithms such as the non-adjacent form

(NAF) based ECSM by double-and-add (e.g., Algorithm 1 of [14]). In this case

the attacker needs to induce a SCF in the point Q′ during the execution of specific

steps (e.g., Steps 3 and 4 of Algorithm 1 of [14]). The error can be induced for

some unknown values of i during the loop. They show that having a number of

c = (t/m) log(2t) attacks on the same input pair (k, P ) and the correct result Q,

it is possible to recover the scalar k with a probability of at least 1/2, where t

is the length of NAF(k) and m is a parameter related with the amount of offline

work. Otto [70] has extended the SCF attack to other algorithms such that the

ECSM by double-and-add (Algorithm 2.1) and the basic Montgomery ladder ECSM

(Algorithm 2.5).

A straightforward countermeasure against an SCF attack is to use a version

of Montgomery’s ladder algorithm that does not use the y-coordinate for comput-

ing ECSM (e.g., [17]). Another countermeasure presented by Blömer et al. uses

a second elliptic curve whose order is a small prime number. This curve is uti-

lized to define a named “combined curve” that is used to verify the final result

to avoid this SCF attack. One disadvantage of this approach is that elliptic curve

crypto-processors might have fixed parameters (e.g., those recommended by NIST).

Hence, it might not be possible to redefine the curve parameters for having such
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a countermeasure. In Chapter 4 we present some structures that permit detection

of errors in ECSM without modifying the curve parameters. These are based on

re-computation and parallel computation. In Chapter 5, we present an algorithm-

level countermeasure against this attack that utilizes coherency check among the

involved variables.

Another fault-based attack that has received considerable attention is the safe

error (SE) attack proposed separately by Yen and Joye [91] and Yen et al. [92].

Even when the idea behind both attacks is in essence the same (i.e., attack during

dummy operations), the most important difference between them is their fault

models. Yen and Joye [91] assume that the attacker can modify the value of some

operand(s) stored in a register (i.e., memory-safe error). On the other hand, Yen

et al. [92] consider that the adversary can damage the computed result of some

operation (i.e., computational-safe error). In both cases algorithms with dummy

instructions can be a potential target (e.g., Algorithms 2.3 and 2.4).

These attacks were originally presented in the context of RSA signature gen-

eration. However, they can generally be extended to ECSM. For example, let us

consider the right-to-left ECSM by double-and-add-always algorithm (Algorithm

2.4). Assume that the attacker, during the main loop at i = l, can modify the

value of Q1 just after the computation of Step 2.1. If the scalar bit kl is 0, there is

a dummy instruction at Step 2.3 (i.e., Q0 ← Q0) that will not be affected for the

faulty value of Q1. In the next round, Q1 will be overwritten when Q1 = Q0 ] P

is computed. Accordingly, the final result will be correct even when a SE fault was

injected. In contrast, if kl = 1, the value of Q0 will be infected by Q1 at Step 2.3

(i.e., Q0 ← Q1). This is likely to produce an incorrect result. This scenario allows

an oracle attack, i.e., kl = 1 if the final result is faulty and kl = 0 otherwise. The
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last example was for a memory-safe error fault attack. However, it can be easily

extended to a computational-safe attack if the attacker changes the result of the

operation performed in Step 2.1 (Q1 = Q0 ] P ) and follows in similar way the

procedure described above. Note that SE attack depends only on the availability

of injecting a fault during loop iterations where a dummy instruction is computed.

One countermeasure against SE attack is to utilize randomization. In fact,

randomization of the data processed is essential in resisting other attacks such as

SPA and differential power analysis (DPA) attacks [28]. Another way to prevent

the SE attack is to use an algorithm that does not have dummy operations (e.g.,

the Montgomery ladder algorithm). Another countermeasure is to verify, even in

dummy operations, that an error has occurred. This approach will be utilized in

Chapter 5 for detecting errors during the ECSM using coherency check among the

involved variables.

2.5 Error detection strategies

In this section, we give an overview of some techniques that can be used for error

detection in ECSM. First, a method that is specific for applications using elliptic

curves, namely PV process, is described. Next we present general re-computation

and parallel computation schemes that can also be used for detecting errors in

ECSM. Additionally, we describe an error detection technique using coherency

check (CC) among the involved variables that can be utilized for having protec-

tions at the algorithm level.
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Figure 2.1: Point verification (PV) module after the ECSM module

2.5.1 Error detection using point verification (PV)

For ECC, PV can be used to detect errors during the ECSM. This is a basic

countermeasure to prevent some fault attacks on ECC and it has been considered

by Biehl et al. [9], Ciet and Joye [21], Antipa et al. [6], Blömer et al. [14], and

Domı́nguez and Hasan [27]. A PV module takes a point Q as its input and checks

whether the point is in E(Fq) (see Figure 2.1). This checking is done simply by

verifying whether the coordinates of Q satisfy the governing elliptic curve equation,

e.g., Equation (2.3) for curves defined over binary fields and represented with affine

coordinates. If they do, only then an affirmative signal (say ‘ok’) is generated as

output, i.e.,

PV(Q) =





ok = 1 if Q ∈ E(Fq),

0 otherwise.

The PV process requires only a few finite field operations, and hence, its imple-

mentation is relatively easy. For example, for curves defined over the binary field

using affine coordinates it takes two finite field multiplications, two squarings, and

three additions3. If implemented in hardware as a separate module, assuming a

3Assume a = 1. If a = 0, one less addition is required. If a /∈ {0, 1}, one more multiplication
is needed.
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pipelined implementation i.e., while the PV module is verifying a current output,

the ECSM module executes the next operation, the finite field multiplier in PV

module could be designed to run at a much slower speed since PV is needed just

once for each scalar multiplication. On the other hand, the multiplier in the ECSM

module is often optimized for speed since its operation is repeated many times. For

instance, the ECSM using Algorithm 2.1 with affine coordinates over F2163 will need

approximately4 489 finite field multiplications, 244 squarings, 1630 additions, and

244 inverses, on average.

Although, PV is an important countermeasure against some ECC fault-based

attacks, this process alone is not sufficient for some cases, let us describe two

examples:

• SCF attack : The SCF attack is based on changing the sign into an targeted

intermediate point during the ECSM operation. Then, the faulty points never

leave the original elliptic curve E and the PV module alone cannot provide

resistance against this attack.

• SE attack : Let us assume that we have a PV module after the ECSM module

as illustrated in Figure 2.1. Consider that the ECSM algorithm uses dummy

instructions for having a uniform execution (e.g., Algorithm 2.4). If an SE

attack is mounted as described in previous section the attacker can perform

a similar oracle attack, i.e., kl = 1 if the final result is not given and kl = 0 if

the correct result is released by the PV module. Consequently, PV does not

provide the sufficient protection.

4Utilizing the addition formulas given by Avanzi et al. [22].
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Since some attacks are not prevented with PV module alone, it is necessary to add

other protections.

2.5.2 Error detection using re-computation and parallel

computation

For applications where the time required for error detection is not critical, it is

possible to compute the result twice (i.e., once at time t0 and then again at time t1)

and then compare the two results to detect a possible error. This technique and its

variants are used in various computing applications (e.g., integer multiplication);

however, to the best of our knowledge there has been no precedence of our extension

of these techniques to ECSM. Under this technique, a transient error occurring in

any one of the two ECSM computations (i.e., at time t0 or t1), but not in both will

be detected. However, if the computation module is permanently in a faulty state,

the errors produced will remain undetected. Because of this, the re-computation

at time t1 is better done with a different method.

A general re-computation based scheme that uses only one computing module is

shown in Figure 2.2. The compute module is multiplexed between the upper and the

lower data paths at time t0 and t1, respectively. The result of the upper data path

is stored in a register. The encoder in the bottom data path of the figure produces a

different set of inputs to the compute module and the decoder transforms the output

of the module back to the original domain for the final comparison. The encoding

and the decoding processes enable us to detect errors caused by a permanent fault in

the compute module. Encoding and decoding can be carried out through a number

of approaches. For conventional number systems, the most popular ones include:
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Figure 2.3: General parallel computation based scheme

alternating logic [74], re-compute with shifted operands [71] and re-compute with

swapped operands [45]. In Chapter 4, we provide encoding and decoding processes

that are suitable for ECSM.

Similar to re-computation, where we have one module that performs the compu-

tation twice, we can have two independent modules working in parallel. A general

parallel computation based scheme is given in Figure 2.3, where the register or the

delay unit synchronize the inputs to the comparator.
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2.5.3 Error detection using coherency check (CC)

Consistency or coherency check (CC) process verifies the intermediate or final re-

sults with respect to a valid pattern. In fact, this technique is widely used in

areas such as telecommunications, computers, and media storage. For example,

some computers use address and op-code coherence checking to avoid accessing an

invalid memory register or executing an invalid instruction.

In the context of public key cryptography, this technique has been used for de-

tecting errors during the RSA signature generation. As shown by Boneh et al. [15],

the RSA digital signature scheme using the CRT is particularly vulnerable to fault

attacks, i.e., with only one faulty signature and its corresponding error-free version

it is possible to efficiently factor the modulus used. A natural countermeasure for

this attack is to verify the signature utilizing the public exponent. However, in

some applications this value might not be available. Additionally, if the public

exponent is not small, then the verification could be costly. For these reasons, a

number of countermeasures that include protections inside the modular exponenti-

ation algorithm have been proposed in the literature (e.g., [81], [94], [13], [20], [37],

and [16]5). The countermeasures proposed by Giraud [37] and Boscher et al. [16]

use CC for detecting errors during the modular exponentiation operation. Let us

describe both approaches.

Giraud [37] has shown how the SPA-and-SE resistant algorithm published by

Joye and Yen [47] can be utilized to prevent fault analysis (FA) attacks. This

modular exponentiation algorithm is based on the Montgomery ladder method.

Let N be the product of two large primes. Let (dn−1 · · · d1 d0)2 be the binary

5Many of them have been shown vulnerable when they are analyzed under a different fault
model (e.g., [7], [88], [12], and [48]).
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representation of the exponent d. Consider that the signature S = md mod N

of a message m is computed with Giraud’s FA-resistant modular exponentiation

algorithm (Algorithm 2.9). The basic idea for detecting errors in this algorithm is

based on the fact that the pair (a0, a1) is of the form (mβ,mβ+1) after each iteration

during the loop. If there is an error in either the modular multiplication (Step 2.1)

or the squaring (Step 2.2), then the coherency between a0 and a1 will be lost. In

such a case, since for each iteration the values of a0 and a1 are used for obtaining

the next pair (a0, a1), it is expected that the final pair is not of the form (md,md+1).

In this way, a coherency verification step can be included after the main loop to

check if a0 ·m ≡ a1 (mod N). Whether or not the computed signature S is returned

depends on this test.

Recently, Boscher et al. [16] proposed a new FA-resistant modular exponenti-

ation algorithm (Algorithm 2.10). Their idea is very close to Giraud’s one. The

main difference is that they use the square-and-multiply-always method instead

of the Montgomery ladder. This algorithm permits the verification of coherency

among three variables, namely a0, a1, and A. At the end of the loop the expected

value for these variables is:

a0 = md mod N,

a1 = m2n−d−1 mod N,

A = m2n

mod N.

In fact, in an error-free computation this relation holds

a0 · a1 ·m = m2n

= A.

In this way, errors can be detected at the end of the modular exponentiation if
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the above expression does not hold as illustrated in Step 3 of Algorithm 2.10. In

Chapter 5 we extend some of the concepts utilized by Giraud [37] and Boscher

et al. [16] for detecting errors in ECSM. For example, for the Montgomery ladder

ECSM we investigate the difference in terms of error detection between PV and

CC.

Algorithm 2.9. Giraud’s FA-resistant

modular exponentiation

Input: m 6= 0, d = (dn−1 · · · d1 d0)2, N .

Output: S = md mod N .

1. a0 ← 1, a1 ← m.

2. For i = n− 1 downto 0 do

2.1 adi
← adi

· adi
mod N.

2.2 adi
← a2

di
mod N.

3. t← a0 ·m mod N.

4. If (t = a1) then

4.1 Return(a0).

5. Return(“Error detected”).

Algorithm 2.10. Boscher-Naciri-

Prouff’s modular exponentiation

Input: m 6= 0, d = (dn−1 · · · d1 d0)2, N .

Output: S = md mod N .

1. a0 ← 1, a1 ← 1, A← m.

2. For i = 0 to n− 1 do

2.1 adi
← adi

· A mod N.

2.2 A← A2 mod N.

3. t← a0 · a1 ·m mod N.

4. If (t = A) and (A 6= 0) then

4.1 Return(a0);

5. Return(“Error detected”).

2.6 Conclusion

In this chapter, we have presented background related to ECC. This includes the

fundamental operation for elliptic curve cryptosystems, i.e., the scalar multiplica-

tion (ECSM). We have given some algorithms that can be utilized for computing
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this operation. Additionally, we have presented an overview of the recent ECC

fault-based attacks. Finally, we have introduced the error detection strategies that

are utilized for the remainder of this thesis.



Chapter 3

Fault-Based Attack on

Montgomery’s Ladder Algorithm

In Section 2.4, we have presented important fault-based attacks reported in the

open literature for ECC. The invalid-curve attacks reported by Biehl et al. [9], and

Ciet and Joye [21] apply only to applications where parameter b is not utilized

for the group formulas. However, this is not the case for the Montgomery ladder

ECSM algorithm proposed by López and Dahab [58] (Algorithms 2.6 and 2.7) where

parameter b is considered specifically for point doubling formulas.

In this chapter, we present fault-based attacks that apply to Montgomery’s

ladder ECSM algorithm. First, we present some preliminary work with examples for

the NIST-recommended curves over the binary field. Next, we present two invalid-

curve based attacks on the target algorithm. Finally, we present some possible

countermeasures to the attacks presented in this chapter.

49
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3.1 Preliminaries

By Theorem 2.4 we can state that the number of isomorphism classes for elliptic

curves defined by Equation (2.3) is 2m+1− 2. The latter comes from the number of

possible values for parameter b (i.e., 2m − 1) times the possible values of the trace

function of parameter a (i.e., 2). With the last observation, for a fixed value of

parameter b there are only two isomorphic classes of curves, one for each value of

γ ∈ {0, 1}, where Tr(a) = γ. Let us define two representative elliptic curves, E0

and E1, one for each of these isomorphic classes:

E0 : y2 + xy = x3 + b (a = 0), (3.1)

E1 : y2 + xy = x3 + x2 + b (a = 1). (3.2)

Lemma 3.1 Let E0 and E1 be two elliptic curves over F2m defined by Equations

(3.1) and (3.2), respectively.

(i) The only points that E0(F2m) and E1(F2m) share are O and (0,
√

b).

(ii) Let (u, v) ∈ Ej(F2m), where u ∈ F
∗
2m , v ∈ F2m , and j ∈ {0, 1}. Then, there

does not exist any point in Ej(F2m) of the form (u,w) for any w ∈ F2m , where

j = 1− j.

(iii) There exist two points of the form (u, v) and (u, u + v) in either E0(F2m) or

E1(F2m) for each u ∈ F
∗
2m and some v ∈ F2m .

(iv) The orders of E0(F2m) and E1(F2m) satisfy the following

#E0(F2m) + #E1(F2m) = 2m+1 + 2. (3.3)
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Proof First, if we solve the quadratic expressions resulting from Equations (3.1)

and (3.2) with x = 0, we obtain a unique solution y =
√

b. For x 6= 0, by Theorem

2.3 Equation (2.3) has a solution for y if and only if

Tr(x) + Tr(a) + Tr

(
b

x2

)
= 0. (3.4)

Since the only difference between Equations (3.1) and (3.2) is the value of parameter

a, we can conclude from Equation (3.4) that if any value of x ∈ F
∗
2m does not have

a solution with a = j, then it does with a = j̄ for j = 0 or 1. Also this equation

shows that it is not possible to have a solution for both E0 and E1 with the same

x 6= 0.

Additionally, by Theorem 2.3 we know that for a given value of x 6= 0 we have

two distinct solutions that represent two elliptic curve points (i.e., a point and its

negative). To this end, for x 6= 0, #E0(F2m) + #E1(F2m) consider exactly 2m+1− 2

points on both curves. In addition, the points O and (0,
√

b) are common and are

counted twice in the sum of both orders, bringing the total up to 2m+1+2 as shown in

Equation (3.3).

Example 3.1 Let us consider F25 as represented by the irreducible polynomial

f(z) = z5 + z2 + 1. Let us represent the elements of F25 in hexadecimal form. Let

E0 and E1 be the curves y2 + xy = x3 + 1 and y2 + xy = x3 + x2 + 1, respectively,

defined over F25 . E0(F25) has an order of 44 with the following set of points:

{(0x00,0x01),(0x01,0x00),(0x01,0x01),(0x02,0x1F),(0x02,0x1D),(0x03,0x0C),
(0x03,0x0F),(0x04,0x12),(0x04,0x16),(0x05,0x1A),(0x05,0x1F),(0x07,0x1F),

(0x07,0x18),(0x09,0x1D),(0x09,0x14),(0x0B,0x16),(0x0B,0x1D),(0x0C,0x05),

(0x0C,0x09),(0x0D,0x0B),(0x0D,0x06),(0x0F,0x19),(0x0F,0x16),(0x10,0x09),

(0x10,0x19),(0x11,0x03),(0x11,0x12),(0x12,0x14),(0x12,0x06),(0x15,0x12),

(0x15,0x07),(0x17,0x0B),(0x17,0x1C),(0x18,0x0F),(0x18,0x17),(0x1A,0x11),
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(0x1A,0x0B),(0x1B,0x0F),(0x1B,0x14),(0x1C,0x09),(0x1C,0x15),(0x1F,0x06),

(0x1F,0x19),O}.

On the other hand, E1(F25) has an order of 22 with the following set of points:

{(0x00,0x01),(0x06,0x10),(0x06,0x16),(0x08,0x17),(0x08,0x1F),(0x0A,0x18),
(0x0A,0x12),(0x0E,0x07),(0x0E,0x09),(0x13,0x1C),(0x13,0x0F),(0x14,0x0D),

(0x14,0x19),(0x16,0x02),(0x16,0x14),(0x19,0x04),(0x19,0x1D),(0x1D,0x1B),

(0x1D,0x06),(0x1E,0x15),(0x1E,0x0B),O}

Example 3.2 Examples for NIST-recommended curves: Let E(a, b) be a NIST-

recommended elliptic curve defined over the binary field F2m with curve parameters

a and b. In Table 3.1 each NIST-recommended randomly chosen elliptic curve over

F2m is presented, where m = 163, 233, 283, 409 and 571. Then, for each of these

curves its corresponding curve Ê(â, b) is shown, where â = 1 − Tr(a). Similarly,

Table 3.2 gives the NIST-recommended Koblitz curves. For each curve the “values”

of m, f(z), a, b, and #E(F2m) are listed, where f(z) is the irreducible trinomial or

pentanomial used as the reduction polynomial. For the random curves, parameter

b is shown in hexadecimal form. For each case the group order #E(F2m) is given

in decimal, followed by its prime factorization.

We notice that for each listed NIST-recommended curve E, the group Ê(F2m) is

cryptographically weaker, i.e., all the prime factors of #Ê(F2m) are smaller than the

larger prime factor of #E(F2m), with only one exception for the case of m = 283 for

Koblitz curves, where the orders of both E(F2m) and Ê(F2m) are almost prime. In

Table 3.3, the size of each prime factor of the group orders of these elliptic curves is

presented. Additionally, it can be shown by Theorem 2.6 that E(F2m) and Ê(F2m),

where m ∈ {163, 233, 283, 409, 571}, are cyclic groups for all the curves in Tables

3.1 and 3.2.
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Example for m = 163: f(z) = z163 + z7 + z6 + z3 + 1,
b = 0x 00000002 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD

Standard Curve B-163. a = 1
#E(F2163) = 11692013098647223345629484885752781378513686403174

= (2)(5846006549323611672814742442876390689256843201587)

Weaker Curve. â = 0
#Ê(F2163) = 11692013098647223345629472437707746935981234284444

= (2)2 (31)(907)(18908293)(192478327)(28564469476693963307545101353)

Example for m = 233: f(z) = z233 + z74 + 1,
b = 0x 00000066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42 81FE115F 7D8F90AD

Standard Curve B-233. a = 1
#E(F2233) = 1380349269358112757486951172455405111167962547469002711075876726897-

0926

= (2)(690174634679056378743475586227702555583981273734501355537938363-

4485463)

Weaker Curve. â = 0
#Ê(F2233) = 1380349269358112757486951172455405069812481041399151910989132962622-

6260

= (2)2 (5)(283)(541)(584818873)(783195327693846094609)(984201054369690-

6015214412423419303)

Example for m = 283: f(z) = z283 + z12 + z7 + z5 + 1,
b = 0x 027B680A C8B8596D A5A4AF8A 19A0303F CA97FD76 45309FA2 A581485A F6263E31

3B79A2F5

Standard Curve B-283. a = 1
#E(F2283) = 1554135113780583256735569525458815125313925184875380977821839305354-

0088555574757385742

= (2)(777067556890291628367784762729407562656962592437690488910919652-

6770044277787378692871)

Weaker Curve. â = 0
#Ê(F2283) = 1554135113780583256735569525458815125313925757608042256181060550228-

2380007708578585076

= (2)2 (7)(19)2(5942982169)(48758898298463720443)(45527407299960753170-

946983)(116544641275194419631177527)

Table 3.1: Examples for NIST-recommended randomly chosen curves over F2m
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Example for m = 409: f(z) = z409 + z87 + 1,
b = 0x 0021A5C2 C8EE9FEB 5C4B9A75 3B7B476B 7FD6422E F1F3DD67 4761FA99 D6AC27C8

A9A197B2 72822F6C D57A55AA 4F50AE31 7B13545F

Standard Curve B-409. a = 1
#E(F2409) = 1322111937580497197903830616065542079656809365928562438569297596608-

315549654749610416287447524358221931959734576733135053542

= (2)(661055968790248598951915308032771039828404682964281219284648798-

304157774827374805208143723762179110965979867288366567526771)

Weaker Curve. â = 0
#Ê(F2409) = 1322111937580497197903830616065542079656809365928562438569297584489-

307615290495772884469394234502917458405113523360298163484

= (2)2(13)(43)(599)(1867)(4201)(10711)(378828133699627599347)(3101704-

0828999712946665122892352599407801073958767427697543570603579682776-

895114772929)

Example for m = 571: f(z) = z571 + z10 + z5 + z2 + 1,
b = 0x 02F40E7E 2221F295 DE297117 B7F3D62F 5C6A97FF CB8CEFF1 CD6BA8CE 4A9A18AD

84FFABBD 8EFA5933 2BE7AD67 56A66E29 4AFD185A 78FF12AA 520E4DE7 39BACA0C

7FFEFF7F 2955727A

Standard Curve B-571. a = 1
#E(F2571) = 7729075046034516689390703781863974688597854659412869997314470502903-

0382845791208490722879987788315461662677622438538889724937449256336-

26140469056576606664822786382210571406

= (2)(386453752301725834469535189093198734429892732970643499865723525-

1451519142289560424536143999389415773083133881121926944486246872462-

816813070234528288303332411393191105285703)

Weaker Curve. â = 0
#Ê(F2571) = 7729075046034516689390703781863974688597854659412869997314470502903-

0382845791208490724870675488587656835867018821548197369665697185383-

24482502578117261658172001541048722292

= (2)2(7)(1153)(99262049966063)(641043691173743374578683)(36502311411-

08073953669603)(562516514411236993734142229508523209240999366989)(1-

832372106849886832903758716153488484939785889992701131641)

Table 3.1: (Contd.) Examples for NIST-recommended randomly chosen curves over
F2m
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Example for m = 163: f(z) = z163 + z7 + z6 + z3 + 1, b = 1

Standard Curve K-163. a = 1
#E(F2163) = 11692013098647223345629483507196896696658237148126

= (2)(5846006549323611672814741753598448348329118574063)

Weaker Curve. â = 0
#Ê(F2163) = 11692013098647223345629473816263631617836683539492

= (2)2(653)(6521)(34101072914026637)(20129541232727197849723433)

Example for m = 233: f(z) = z233 + z74 + 1, b = 1

Standard Curve K-233. a = 0
#E(F2233) = 1380349269358112757486951172455405104228376395544900850531234809896-

5372

= (2)2(34508731733952818937173779311385127605709409888622521263280870-

24741343)

Weaker Curve. â = 1
#Ê(F2233) = 1380349269358112757486951172455405076752067193323253771533774879623-

1814

= (2)(92269)(114861079)(130034039)(5062109767067236109)(9893311373906-

30128765577490907)

Example for m = 283: f(z) = z283 + z12 + z7 + z5 + 1, b = 1

Standard Curve K-283. a = 0
#E(F2283) = 1554135113780583256735569525458815125313924693517224529718349999011-

9263318817690415492

= (2)2(38853377844514581418389238136470378132848117337930613242958749-

97529815829704422603873)

Other Curve. â = 1
#Ê(F2283) = 1554135113780583256735569525458815125313926248966198704284549856570-

3205244465645555326

= (2)(777067556890291628367784762729407562656963124483099352142274928-

2851602622232822777663)

Table 3.2: Examples for NIST-recommended Koblitz curves over F2m
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Example for m = 409: f(z) = z409 + z87 + 1, b = 1

Standard Curve K-409. a = 0
#E(F2409) = 1322111937580497197903830616065542079656809365928562438569297580091-

522845156996764202693033831109832056385466362470925434684

= (2)2(33052798439512429947595765401638551991420234148214060964232439-

5022880711289249191050673258457777458014096366590617731358671)

Weaker Curve. â = 1
#Ê(F2409) = 1322111937580497197903830616065542079656809365928562438569297601006-

100319788248619098063807927751307333979381737622507782342

= (2)(5616389)(90250595219)(53825825250806581242382638109975931)(2422-

9267173791843616709438844395814578119094439350345010422887252197351)

Example for m = 571: f(z) = z571 + z10 + z5 + z2 + 1, b = 1

Standard Curve K-571. a = 0
#E(F2571) = 7729075046034516689390703781863974688597854659412869997314470502903-

0382845791208490725359140908268473388268512033014058450946998962664-

69247718729686468370014222934741106692

= (2)2(19322687615086291723476759454659936721494636648532174993286176-

2572575957114478021226813397852270671183470671280082535146127367497-

4066617311929682421617092503555733685276673)

Weaker Curve. â = 1
#Ê(F2571) = 7729075046034516689390703781863974688597854659412869997314470502903-

0382845791208490722391522368634645110276129227073028643656147479054-

81375252905007399952980564988518187006

= (2)(83520557720108799306580699)(596201686362718542354710701)(776087-

9540369714171579633139517983435067803444075923356781485100647555483-

4232354494027998284398410755824034465814826497)

Table 3.2: (Contd.) Examples for NIST-recommended Koblitz curves over F2m
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Case m Curve
Size of each prime factor of
#E(F2m) (in bits)

163 NIST B-163 E 2,163

Weaker curve Ê 2, 5, 10, 25, 28, 95

233 NIST B-233 E 2, 233

Randomly Weaker curve Ê 2, 3, 9, 10, 30, 70, 113

chosen 283 NIST B-283 E 2, 283

curves Weaker curve Ê 2, 3, 5, 33, 66, 86, 87

409 NIST B-409 E 2, 409

Weaker curve Ê 2, 4, 6, 10, 11, 13, 14, 69, 284

571 NIST B-571 E 2, 570

Weaker curve Ê 2, 3, 11, 47, 80, 82, 159, 191

163 NIST K-163 E 2, 163

Weaker curve Ê 2, 10, 13, 55, 85

233 NIST K-233 E 2, 232

Weaker curve Ê 2, 17, 27, 27, 63, 100

Koblitz 283 NIST K-283 E 2, 281

curves Other curve Ê 2, 284

409 NIST K-409 E 2, 281

Weaker curve Ê 2, 23, 37, 116, 234

571 NIST K-571 E 2, 569

Weaker curve Ê 2, 87, 89, 395

Table 3.3: Size of each prime factor of #E(F2m) and #Ê(F2m) (in bits) for the
examples of Tables 3.1 and 3.2
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3.2 Invalid-curve attacks on Montgomery’s lad-

der algorithm

Consider a cryptosystem that uses a strong elliptic curve E(a, b) defined over F2m

with curve parameters a and b (e.g., a NIST-recommended elliptic curve), where

m is an odd number. Assume that Ê(â, b) is a weaker curve defined over F2m

with curve parameters â and b, such that Tr(â) = 1 − Tr(a). Consider that the

attacker has the computational power for computing the EC discrete logarithm

using the Silver-Pohlig-Hellman algorithm in the cryptographically weaker group

Ê(F2m). Also consider that Ê(F2m) is a cyclic group, which implies that there are

φ(#Ê(F2m)) points of order #Ê(F2m). Additionally, for the attacks presented in

this section we need to obtain #Ê(F2m). Using Equation (3.3), this value can be

obtained from #E(F2m) which is usually public or can be obtained with some point

counting algorithms, e.g., [79] [77]. Consider that the underlying ECSM algorithm

is the Montgomery ladder (Algorithm 2.6 or 2.7). Since these algorithms do not

utilize the curve parameter a, depending of the input point the computation can be

carried out in either E(F2m) or Ê(F2m). Then, the idea behind the attacks presented

below is to produce an incorrect result from the computation being performed in

Ê(F2m) due to a fault.

3.2.1 Basic attack

Fault model. Let us assume that the adversary can inject a flip-fault (single or

multiple bit) into the x-coordinate of the input point P = (Px, Py) ∈ E(F2m) of a

device computing the ECSM utilizing either Algorithm 2.6 or 2.7. Suppose that

the resulting finite field pair after the fault injection is known and is P̃ = (P̃x, Py).
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Consider that the result Q̃ = kP̃ = (Q̃x, Q̃y) is released.

For a given P̃ = (P̃x, Py) we can verify if there exists a point in Ê(F2m) with the

same x-coordinate, i.e., if ∃ P̂ ∈ Ê(F2m) such that P̂ = (P̃x, P̂y) for some P̂y ∈ F2m .

In fact, by Lemma 3.1 we can expect that if we flip single or multiple bits of the x-

coordinate such a point exists with a probability of about 1/2. When P̂ ∈ Ê(F2m),

in a similar way we can obtain Q̂ = (Q̃x, Q̂y) ∈ Ê(F2m) for some Q̂y ∈ F2m .

Having P̂ , Q̂ ∈ Ê(F2m) one can obtain l = k or #Ê(F2m) − k mod n using

Algorithm 2.8, where n = ord(P̂ ). This would be possible because the computation

is performed in the weaker group Ê(F2m) and not in the original group E(F2m).

One can then exhaustively search for an integer k′ that satisfies (i) l = k′ mod n or

#Ê(F2m) − k′ mod n and (ii) Q̃ = k′P̃ . Thus, the idea of the basic attack is that

the adversary with only one pair (P̂ , Q̂) and some acceptable amount of exhaustive

search will be able to retrieve the secret scalar k with a probability of success ρ.

Let e be a parameter such that 2e is the maximum acceptable amount of exhaustive

search space. The complete attack procedure is presented as Algorithm 3.1.

In Step 8 of Algorithm 3.1, l = k or #Ê(F2m)− k mod n is obtained. The value

of l has only partial information about k. The remaining part of the scalar might

be obtained using an exhaustive search. The latter involves two main steps: (i)

solve a system congruences with a test candidate and the known part of the scalar

(Step 11.2.1), and (ii) perform a scalar multiplication to verify if the solution of the

system of congruences is the desired scalar (Step 11.2.2).

Let r be the exhaustive search space. This value depends on n and #Ê(F2m).

In Step 11.2.1, for having a unique solution mod #Ê(F2m) it is necessary that

lcm(n, r) = #Ê(F2m). (3.5)
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Algorithm 3.1. Basic invalid-curve attack on Montgomery’s ladder ECSM

algorithm

Input: E defined over F2m , access to either Algorithm 2.6 or 2.7, the base point

P = (Px, Py) ∈ E(F2m), the order #Ê(F2m), a parameter for acceptable amount of

exhaustive search e.

Output: Scalar k with a probability of ρ.

# Phase 1: Collect faulty output

1. Inject a fault in P = (Px, Py) for obtaining P̃ = (P̃x, Py).

2. Compute Q̃ = kP̃ = (Q̃x, Q̃y) using either Algorithm 2.6 or 2.7.

3. T ← Q̃x + b/Q̃2
x + â.

4. If (Tr(T ) = 0) then

4.1 Q̂x ← Q̃x, Q̂y ← Q̃x · Ht(T );

5. Else

5.1 Go to Step 1.

# Phase 2: Obtain k partially using the Silver-Pohlig-Hellman algorithm

6. P̂x ← P̃x, P̂y ← P̃x · Ht(P̃x + b/P̃ 2
x + â).

7. Obtain n = ord(P̂ ).

8. Utilize Algorithm 2.8 with (P̂ , Q̂, n) to obtain l mod n.

# Phase 3: Exhaustive search and verification

9. Find the smallest value of r for lcm(n, r) = #Ê(F2m) (see Equation (3.7)).

10. If (r = 1) then
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10.1 Compute R = lP̃ using either Algorithm 2.6 or 2.7.

10.2 If (R = Q̃) then return(l); else return(#Ê(F2m)− l).

11. Else if (r ≤ 2e) then

11.1 k′ ← 0.

11.2 While (k′ < r) do

11.2.1 Solve the system of congruences k′′ ≡ k′ (mod r) and k′′ ≡ l (mod n).

11.2.2 Compute R = k′′P̃ using either Algorithm 2.6 or 2.7.

11.2.3 If (R = Q̃) then return(k′′);

11.2.4 Else if (R = −Q̃) then return(#Ê(F2m)− k′′);

11.2.5 Else k′ ← k′ + 1.

12. Else return(“failure”).

For efficiency r should be selected as the minimum value that satisfies Equation

(3.5). Let #Ê(F2m) = 2e0pe1

1 pe2

2 · · · p
eu−1

u−1 be the prime factorization of #Ê(F2m),

where ej ≥ 1 for j ∈ [0, u − 1]. Let n = 2f0pf1

1 pf2

2 · · · p
fu−1

u−1 be the prime fac-

torization of n = ord(P̂ ), where 0 ≤ fj ≤ ej for j ∈ [0, u − 1]. Similarly, let

r = 2g0pg1

1 pg2

2 · · · p
gu−1

u−1 be the prime factorization of r. Using notations similar to

those utilized by Menezes et al. [66] with regard to lcm, we can express Equation

(3.5) as

2max(f0,g0)p
max(f1,g1)
1 p

max(f2,g2)
2 · · · pmax(fu−1,gu−1)

u−1 = 2e0pe1

1 pe2

2 · · · p
eu−1

u−1 . (3.6)

The exponents of the minimum value of r that satisfies Equation (3.6) are

gj =





0 if ej = fj,

ej otherwise,

(3.7)
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for j ∈ [0, u− 1].

Note that if r > 2e, Algorithm 3.1 returns in Step 12 “failure”. This means

that from a specific pair (P̃ , Q̃) the exhaustive search space required to obtain

uniquely the value of k (i.e., r) is more than the maximum admissible exhaustive

search space (i.e., 2e). For example for a weaker group Ê(F2m) from the NIST-

recommended curves, as we show below, the probability of failure is quite low even

for small values of e. Moreover, in the case of not success with a particular pair

(P̃ , Q̃), the attacker can repeat the attack procedure until an inevitable success.

The probability of success of Algorithm 3.1 (i.e., ρ), depends on the maximum

acceptable amount of exhaustive search 2e and the order of point P̂ . Assume that

point P̂ is taken randomly from group Ê(F2m). In a cyclic group, it is well known

that the number of elements of order d is φ(d). Here #Ê(F2m) is not prime, and

consequently not all the points in Ê(F2m) have an order #Ê(F2m). Moreover, if

#Ê(F2m) has several prime factors (i.e., it is expected since Ê(F2m) is assumed to

be a weaker group), the order of the points could have any combination of those

prime factors or their respective prime powers. For example the number of points

with the full order #Ê(F2m) is φ(#Ê(F2m)). In contrast, there is only one point of

order two which corresponds to (0,
√

b).

Obtaining the probability of success ρ. Let #Ê(F2m) = 2n0pn1

1 pn2

2 · · · p
nu−1

u−1

be the prime factorization of #Ê(F2m), where nj ≥ 1 for j ∈ [0, u−1] and pj < pj+1

for j ∈ [1, u− 2]. Assume that point P̂ is taken randomly from the group Ê(F2m).

Here we will obtain the probability of success ρ, first for specific values and then

for an arbitrary value of e.

• Case 1: e = 0. If e = 0, then the attack will succeed when ord(P̂ ) =
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#Ê(F2m). The number of points in Ê(F2m) of order #Ê(F2m) is

φ(#Ê(F2m)) = 2n0−1

u−1∏

j=1

pni

i (1− 1
pi

),

and for this case the probability ρ is

ρe=0 =
φ
(
#Ê(F2m)

)

#Ê(F2m)
=

1

2

u−1∏

j=1

(1− 1

pj

). (3.8)

Clearly this value is bounded to 1/2. If p1 >> 1, then ρe=0 would be close to

1/2 (e.g., all the Koblitz curves in Example 4.2).

• Case 2: e = 1. For e = 1, this probability can be obtained as follows

ρe=1 =





u−1∏

j=1

(1− 1
pj

), if n0 = 1,

1
2

u−1∏

j=1

(1− 1
pj

), otherwise.

(3.9)

• Case 3: e = 2. For e = 2 we can have two cases. First, if p1 6= 3, then ρe=2 is

ρe=2 =





u−1∏

j=1

(1− 1
pj

), if n0 = 1 or 2,

1
2

u−1∏

j=1

(1− 1
pj

), otherwise.

(3.10)

Secondly, if p1 = 3, then it is necessary to take into account points of order

#Ê(F2m)/h, with h ∈ [1, 3]. In this case ρe=2 is
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ρe=2 =





5
6

u−1∏

j=2

(1− 1
pj

), if n0 = 1 or 2, and n1 = 1,

2
3

u−1∏

j=2

(1− 1
pj

), if n0 = 1 or 2, and n1 ≥ 2,

1
6

u−1∏

j=2

(1− 1
pj

), if n0 ≥ 3, and n1 = 1,

1
3

u−1∏

j=2

(1− 1
pj

), otherwise.

(3.11)

• Case 4: Arbitrary e with some conditions. Let

#Ê(F2m) = 2n0pn1

1 pn2

2 · · · p
nt−1

t−1 pnt

t p
nt+1

t+1 · · · p
nu−1

u−1 .

Assume that #Ê(F2m) splits completely in e bits such that

log2(2
n0pn1

1 · · · p
nt−1

t−1 ) ≤ e and log2(pt) > e.

If these conditions are satisfied, then the number of points whose order divides

pnt

t p
nt+1

t+1 · · · p
nu−1

u−1 is

s =

g−1∑

i=0

φ
(
2j0(i)p

j1(i)
1 p

j2(i)
2 · · · pjt−1(i)

t−1 pnt

t p
nt+1

t+1 · · · p
nu−1

u−1

)
, (3.12)

where

g = (n0 + 1)(n1 + 1) · · · (nt−1 + 1)

j0(i) = i mod (n0 + 1),
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j1(i) =

⌊
i

n0 + 1

⌋
mod (n1 + 1),

j2(i) =

⌊
i

(n0 + 1)(n1 + 1)

⌋
mod (n2 + 1),

...

jt−1(i) =

⌊
i

(n0 + 1)(n1 + 1) · · · (nt−2 + 1)

⌋
mod (nt−1 + 1).

It can be shown that

g−1∑

i=0

φ
(
2j0(i)p

j1(i)
1 p

j2(i)
2 · · · pjt−1(i)

t−1

)
= 2n0pn1

1 pn2

2 · · · p
nt−1

t−1

Since the function φ is multiplicative1 we can reduce Equation (3.12) and

obtain

s = 2n0pn1

1 · · · p
nt−1

t−1 pnt−1
t (pt − 1)p

nt+1−1
t+1 (pt+1 − 1) · · · pnu−1−1

u−1 (pu−1 − 1).

In this case ρ is as follows,

ρ =
s

#Ê(F2m)
=

(pt − 1)(pt+1 − 1) · · · (pu−1 − 1)

ptpt+1 · · · pu−1

. (3.13)

• Case 5: Arbitrary e. When we cannot split #Ê(F2m) in the form as in the

previous case we can proceed as follows. First, search for the smallest prime

factor such that log2(pi) > e. Let t be the index of such prime factor. Let

d = pnt

t pnt

t+1 · · · p
nu−1

u−1 . From all the possible combinations of the prime factors

p0p1 · · · pt−1 and their respective powers, we need to consider only those whose

product with d have a value of r that satisfies Equation (3.5) and r ≤ e. The

1If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).
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complete procedure for this case is stated in Algorithm 3.2. This algorithm

also includes the computation of ρ for Cases 1-4.

Algorithm 3.2. Probability of success ρ for Algorithm 3.1

Input: The order #Ê(F2m) = 2n0pn1

1 pn2

2 · · · p
nt−1

t−1 pnt

t pnt

t+1 · · · p
nu−1

u−1 , a parameter for

acceptable amount of exhaustive search e, where 0 ≤ e < log2 (pu−1).

Output: Probability of success ρ.

1. If (e = 0) then return(ρe=0) using Equation (3.8);

2. Else if (e = 1) then return(ρe=1) using Equation (3.9);

3. Else if (e = 2) then return(ρe=2) using Equation (3.10) or (3.11);

4. Else if #Ê(F2m) splits completely in e bits such that log2(2
n0pn1

1 · · · p
nt−1

t−1 ) ≤ e

and log2(pt) > e

4.1 Return(ρ) using Equation (3.13);

5. Else

5.1 Search for the smallest prime factor such that log2(pi) > e. Set t with

this index.

5.2 d← pnt

t p
nt+1

t+1 · · · p
nu−1

u−1 .

5.3 ρ← 0.

5.4 For jt−1 = 0 to nt−1 do

For jt−2 = 0 to nt−2 do
...

For j0 = 0 to n0 do
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h← 2j0pj1
1 · · · p

jt−2

t−2 p
jt−1

t−1 .

Find the smallest value of r for lcm(d ·h, r) = #Ê(F2m).

If (r ≤ 2e) then

ρ← ρ + φ(h).

5.5 ρ← ρ(pt − 1)(pt+1 − 1) · · · (pu−1 − 1)/(2n0pn1

1 pn2

2 · · · p
nt−1

t−1 ptpt+1 · · · pu−1).

5.6 Return(ρ).

Probability of success ρ for Ê(F2m) from the NIST-recommended curves.

Table 3.4 presents the probability of success of Algorithm 3.1 for Ê(F2m) from

the NIST-recommended curves (see Example 3.2). This shows the probability of

obtaining the scalar k using a single faulty point P̃ ∈ Ê(F2m) and specific values

of parameter e. We notice that with the minimum amount of exhaustive search

(i.e., e = 0) the values are close to 1/2, especially for the Koblitz curve cases

where the relation between the two smallest prime factors of #Ê(F2m) is greater

(e.g., p1/2 ≈ 10.8 × 106 for the example of the Koblitz curve over F2409). Also for

the Koblitz curve examples, it can be noticed that with e = 2 their probabilities

are close to unity as shown in the fifth column of Table 3.4. In contrast, for the

randomly chosen curves, similar values close to the unity are obtained with e = 10

as illustrated in the right-most column of this table.

Table 3.5 shows the minimum value of parameter e for obtaining a probability

ρ smaller than some specific values. From this table it can be noticed that for

practical situations e could be quite small for an exhaustive search (e.g., say 14)

and still have a reasonably high probability of success ρ (e.g., ρ > 999
1000

).
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ρ

Case m e = 0 e = 1 e = 2 e = 5 e = 10

163 0.48333745 0.48333745 0.96667491 0.98278616 0.99943089

Randomly 233 0.39784981 0.39784981 0.79569963 0.99462453 0.99677211

chosen 283 0.40601504 0.40601504 0.81203008 0.94736842 0.96992481

curves 409 0.44966230 0.44966230 0.89932460 0.93679646 0.99732494

571 0.42819973 0.42819973 0.85639945 0.99913270 0.99913270

163 0.49915775 0.49915775 0.99831549 0.99831549 0.99908107

Koblitz 233 0.49999457 0.99998915 0.99998915 0.99998915 0.99998915

curves 409 0.49999991 0.99999982 0.99999982 0.99999982 0.99999982

571 0.49999999 0.99999999 0.99999999 0.99999999 0.99999999

Table 3.4: Probability of success ρ of obtaining k with Algorithm 3.1 for Ê(F2m)
from the NIST-recommended curves3 for a given parameter e

Cost of Algorithm 3.1. Most of the computational cost of Algorithm 3.1 is in-

volved in phases 2 and 3, i.e., obtaining k partially using the Silver-Pohlig-Hellman

algorithm (Algorithm 2.8) and the exhaustive search with verification process, re-

spectively. The cost of both phases depends on the order of P̂ , i.e., n, and the order

#Ê(F2m). Let us consider the cost of each phase:

• Silver-Pohlig-Hellman’s algorithm (phase 2 of Algorithm 3.1). Step 1.3.2 of

the Silver-Pohlig-Hellman algorithm (Algorithm 2.8), which is the only step

in this algorithm with significant cost, needs to compute one EC discrete log-

arithm. This operation can be performed with a fast algorithm for ECDLP

such as Pollard’s rho algorithm [73] with an expected number of point op-

erations of about 3
√

pt−1, where pt−1 is the largest prime divisor of n. This

3The case of m = 283 for Koblitz curves is omitted for this and any subsequent table since
there does not exist a cryptographically weaker group Ê(F2m).
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Parameter e (in bits)

Case m ρ < 1 − 1

100
ρ < 1 − 1

1000
ρ < 1 − 1

1×106

163 7 10 17

Randomly 233 5 12 20

chosen 283 11 14 14

curves 409 8 12 23

571 5 5 15

163 2 10 15

Koblitz 233 1 1 18

curves 409 1 1 1

571 1 1 1

Table 3.5: Minimum value of parameter e for obtaining a probability ρ smaller than
some given values for Ê(F2m) from the NIST-recommended curves

running time can be further reduced using a parallelized version of the Pol-

lard’s rho algorithm [86] to about (
√

πpt−1/2)/M point operations, where M

is the number of processors used for solving the ECDLP instance. Addition-

ally, as shown by Gallant et al. [35] if a Koblitz curve over F2m is utilized,

then the parallelized version of the Pollard’s rho algorithm can take about

(
√

πpt−1/m)/(2M) point operations.

• Exhaustive search and verification (phase 3 of Algorithm 3.1). With n =

ord(P̂ ) and #Ê(F2m), the exhaustive search space r is obtained using Equa-

tion (3.5) (see Step 9 of Algorithm 3.1). Thus, assuming t ≈ m the phase 3

of Algorithm 3.1 will require r scalar multiplications in the worst case which

represents at most (3mr)/2 point operations if a binary method is utilized

(e.g., Algorithm 2.1).
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Example 3.3 Let us consider the cost of phases 2 and 3 of Algorithm 3.1 for

Ê(F2m) from the NIST-recommended curve K-163. For a single processor, the

cost of phase 2 is of about 3
√

p4 ≈ 243.6 point operations, where p4 is the largest

prime factor of #Ê(F2m) (see Table 3.2). Now, assume that we have M = 10, 000

computers for solving the instance of the ECDLP. In this case the expected number

of point operations for each processor is approximately (
√

πp4/163)/20000 ≈ 224.9.

For the phase 3 cost, from Tables 3.1 and 3.5 we can notice that with a probability

greater than 999
1000

the exhaustive search space will be less than 210, which implies a

number of point operations < 3(163)(210)/2 ≈ 217.9.

3.2.2 Attack with unknown faulty base finite field pair P̃

Fault model. Let us assume that the adversary can inject a single bit-flip fault

into the x-coordinate of the input point Pi = (Pi,x, Pi,y) ∈ E(F2m) of a device

computing the ECSM utilizing either Algorithm 2.6 or 2.7 for some i. Suppose that

the resulting finite field pair after the fault injection P̃i = (P̃i,x, Pi,y) is unknown.

Also, consider that the fault location is at a random position of the x-coordinate.

Consider that the result Q̃i = kP̃i = (Q̃i,x, Q̃i,y) is realized.

Under this scenario the attacker might retrieve the secret scalar as follows. First,

it is necessary to collect some faulty outputs of the form Q̃i = kP̃i = (Q̃i,x, Q̃i,y)

for which there exists a point Q̂i ∈ Ê(F2m) such that Q̂i = (Q̃i,x, Q̂i,y) for some

Q̂i,y ∈ F2m . In fact, with two different points Q̂i ∈ Ê(F2m), where i ∈ {0, 1}, and

some acceptable amount of exhaustive search it is possible to obtain k with a high

probability.

Let P̂i be a point in Ê(F2m) with the same x-coordinate as P̃i = (P̃i,x, Pi,y),
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Figure 3.1: Tables A0 and A1 with the output of the Silver-Pohlig-Hellman algo-
rithm for each (Ri,j, Q̂i, ni,j), where i ∈ {0, 1}, j ∈ [0, ci − 1], and ni,j = ord(Ri,j)

i.e., P̂i = (P̃i,x, P̂i,y) ∈ Ê(F2m) for some P̂i,y ∈ F2m . Since P̃i (and consequently

P̂i) is unknown, we need to guess it among those finite field pairs that differ from

each Pi in only one bit of their x-coordinate. Let ci be the number of possible

candidates for P̂i, where i ∈ {0, 1}. Let Ri,j be a candidate for P̂i, where i ∈ {0, 1}
and j ∈ [0, ci − 1]. Initially, by Lemma 3.1 we can expect that ci is about m/2.

However, this amount could be further reduced depending on the order of Q̂i.

This is possible because we known that ord(Q̂i) ≤ ord(P̂i), and more precisely

ord(Q̂i)|ord(P̂i). Let ηi be the reduction factor due to the latter condition such

that ci ≈ ηi
m
2
.

After collecting the faulty outputs we can construct two tables Ai of ci en-

tries with the output of the Silver-Pohlig-Hellman algorithm for each (Ri,j, Q̂i, ni,j),

where i ∈ {0, 1}, j ∈ [0, ci− 1], and ni,j = ord(Ri,j). These tables are illustrated in
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Figure 3.1. Thus, having li,j mod ni,j in each entry of Tables A0 and A1, we could

distinguish those that are likely to be equivalent to either k or #Ê(F2m)− k. The

idea is to search entry pairs v and w that satisfy either

l0,v ≡ l1,w (mod gcd(n0,v, n1,w)) or (3.14)

l0,v ≡ #Ê(F2m)− l1,w (mod gcd(n0,v, n1,w)). (3.15)

In practical situations where m ≥ 163 it is more likely to have a unique candidate

pair that satisfies either (3.14) or (3.15). The main reason is because it is expected

that ni,j >> ci for i ∈ {0, 1} and j ∈ [0, ci − 1]. Nevertheless, even if there

is not a unique candidate pair it is possible to verify which one is equivalent to

k or #Ê(F2m) − k after performing an exhaustive search similarly to the attack

presented in the previous subsection. The complete attack procedure is presented

in Algorithm 3.3. Let e be a parameter such that 2e is the maximum acceptable

amount of exhaustive search per candidate pair found in Step 5 of Algorithm 3.3.

Also, let us define σ as the probability of success for retrieving the scalar k using

Algorithm 3.3.

Algorithm 3.3. Invalid-curve attack with unknown faulty base point P̃

Input: E defined over F2m , access to either Algorithm 2.6 or 2.7, base point Pi =

(Pi,x, Pi,y) ∈ E(F2m) with i ∈ {0, 1}, the order #Ê(F2m), a parameter for acceptable

amount of exhaustive search e.

Output: Scalar k with a probability of σ

# Phase 1: Collect faulty outputs

1. i← 0.



3.2. Invalid-curve attacks on Montgomery’s ladder algorithm 73

2. While (i < 2) do

2.1 Inject a fault in Pi = (Pi,x, Pi,y) for obtaining P̃i = (P̃i,x, Pi,y).

2.2 Compute Q̃i = kP̃i = (Q̃i,x, Q̃i,y) using either Algorithm 2.6 or 2.7.

2.3 T1 ← Q̃i,x + b/Q̃2
i,x + â.

2.4 If (Tr(T1) = 0) then

2.4.1 Q̂i,x ← Q̃i,x, Q̂i,y ← Q̃i,x · Ht(T1), i← i + 1.

# Phase 2: Construct tables

3. For i = 0 to 1 do

4. T2 ← 1.

4.1 For j = 0 to m− 1 do

4.1.1 Rx ← Pi,x + T2.

4.1.2 T3 ← Rx + b/Rx
2 + â.

4.1.3 If (Tr(T3) = 0) then

(a) Ry ← Rx · Ht(T3).

(b) Obtain n = ord(R).

(c) If (ord(Q̂i)|n) then

(i) Utilize Algorithm 2.8 with (R, Q̂i, n) to obtain l mod n.

(ii) Store (l, n) in Table Ai.

4.1.4 T2 = T2 � 1.

# Phase 3: Searching for candidate pairs

5. For some entries v and w in tables Tables A0 and A1, respectively, search for

candidate pairs that satisfy lv ≡ lw (mod gcd(nv, nw)) or lv ≡ #Ê(F2m) −
lw (mod gcd(nv, nw)).
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6. For the candidate pairs where lv ≡ #Ê(F2m) − lw (mod gcd(nv, nw)) set

lw ← #Ê(F2m)− lw (mod nw) in Table A1.

# Phase 4: Exhaustive search and verification

7. For each candidate pair do

7.1 Solve the system of congruences l ≡ lv (mod nv) and l ≡ lw (mod nw).

7.2 n← lcm(nv, nw).

7.3 Find the smallest value of r for lcm(n, r) = #Ê(F2m).

7.4 If (r = 1) then

7.4.1 Compute R = lP̃ using either Algorithm 2.6 or 2.7.

7.4.2 If (R = Q̃) then return(l);

7.4.3 Else if (R = −Q̃) then return(#Ê(F2m)− l′′).

7.5 Else if (r ≤ 2e) then

7.5.1 k′ ← 0.

7.5.2 While (k′ < r) do

(a) Solve the system of congruences k′′ ≡ k′ (mod r) and k′′ ≡
l (mod n).

(b) Compute R = k′′P̃ using either Algorithm 2.6 or 2.7.

(c) If (R = Q̃) then return(k′′);

(d) Else if (R = −Q̃) then return(#Ê(F2m)− k′′);

(e) Else k′ ← k′ + 1.

8. Return(“failure”).
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Number of entries of Tables A0 and A1. Let #Ê(F2m) = 2e0pe1

1 pe2

2 · · · p
eu−1

u−1

be the prime factorization of #Ê(F2m). As stated before, the number of entries of

Table Ai, ci, depends on the reduction factor ηi. The latter in turn depends on the

order of Q̂i and the order of the candidate points for P̂i, Ri,j, where i ∈ {0, 1} and

j ∈ [0, ci − 1]. Assuming that the points Ri,j are taken randomly from the group

Ê(F2m), it can be shown that ηi depending on ord(Q̂i) has the following bounds

ηmax ≤ ηi ≤ 1,

where ηmax = 1
2

∏u−1
j=1 (1− 1

pj
). The lower bound of the above expression correspond

for the case when ord(Q̂i) = #Ê(F2m). In this case the reduction factor is maximum

(i.e., ηmax), and consequently the number of entries of Table Ai is minimum (i.e.,

cmin ≈ ηmaxm
2

). On the other hand, theoretically the upper bound of ηi holds only

when ord(Q̂i) is the point of order two (0,
√

b). However, for the cases where p1 >>

2 (e.g., Ê(F2m) for the Koblitz curves of Table 3.2) if ord(Q̂i) = #Ê(F2m)/2e0 , then

the reduction factor is close to unity. For these cases the number of entries of Table

Ai is maximum (i.e., cmax ≈ m
2
). In Table 3.6 the values of ηmax, cmin, and cmax are

given for each Ê(F2m) from the NIST-recommended curves. Also, this table shows

the average cases for ηi and ci (i.e., η and c, respectively).

Algorithm 3.3 needs to compute in total c0 + c1 EC discrete logarithms using

the Silver-Pohlig-Hellman algorithm. This number is fixed since the search for

candidate pairs and the exhaustive search phases are performed after the tables’s

construction. If we merge these three phases, a speedup on average can be achieved.

Let us describe two approaches one could take to combine these phases:

1. We can first completely construct Table A0. Then, each time an entry of

Table A1 is obtained we can verify whether this entry satisfies the congruence
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Case m ηmax η ηmaxm

2
≈ cmin

m

2
≈ cmax

ηm

2
≈ c

163 0.483 0.665 39.4 81.5 54.2

Randomly 233 0.398 0.574 46.3 116.5 66.9

chosen 283 0.406 0.573 57.5 141.5 81.1

curves 409 0.450 0.623 92.0 204.5 127.3

571 0.428 0.603 122.2 285.5 172.1

163 0.499 0.686 40.7 81.5 55.9

Koblitz 233 0.499 0.749 58.2 116.5 87.4

curves 409 0.499 0.749 102.2 204.5 153.4

571 0.499 0.749 142.7 285.5 214.1

Table 3.6: Minimum, maximum and average number of entries of Tables Ai for
Ê(F2m) from the NIST-recommended curves

in (3.14) or (3.15) with any entry of A0. For each candidate pair found (if

any) we proceed with the exhaustive search and verification process. If the

verification fails, then we continue to obtain the next entry of Table A1 and

repeat the process until the scalar is obtained. Even when using this approach

the number of EC discrete logarithms in the worst case is the same as that

using Algorithm 3.3 (i.e., c0 + c1), on average it is roughly c0 + 1
2
c1.

2. Another approach is to construct Tables A0 and A1 in alternate way. Each

time an entry in Ai is obtained, we can search Table Ai for candidate pairs that

satisfy either Congruence (3.14) or (3.15) for i ∈ {0, 1}. For each candidate

pair found (if any) we proceed with the exhaustive search and verification

process. This process is repeated until a candidate pair passes the verification

process, i.e., the scalar is found. Let Tables A0 and A1 be of the same size,

i.e., c0 = c1. For this case the average number of EC discrete logarithms
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is ≈ 4
3
c0. In Appendix A we show how the latter value is obtained. This

appendix also includes the case where c0 6= c1.

Obtaining the probability of success σ. The probability of success σ of Al-

gorithm 3.3 depends on parameter e and the order of both P̂0 and P̂1. Consider

that the latter two points are taken randomly from the group Ê(F2m). For each trio

(P̂i, Q̂i, ni), the Silver-Pohlig-Hellman algorithm provides li mod ni, where i ∈ {0, 1}
and ni = ord(P̂i). Utilizing these values, a system of congruences is solved and a

solution mod n is obtained, where n = lcm(n0, n1) (see Step 7.2). This “combina-

tion” of modulus ni might reduce the exhaustive search space in comparison with

the individual case of n0 or n1. This observation permits us to obtain a relation be-

tween the probabilities of success ρ and σ for Algorithms 3.1 and 3.3, respectively.

In this case ρ is the probability that from an individual pair (li, ni), i = 0 or 1, we

could obtain the scalar using exhaustive search for a given value of e. Then we can

express σ as follows:

σ = 2ρ− ρ2 + λ. (3.16)

The first two terms represent the probability that for a given e we could obtain

the scalar from at least one of the two pairs. The third term, λ, is the probability

that the “combination” does succeed in obtaining the scalar with exhaustive search

when neither pair individually does so for a given value of e. Equation (3.16) gives

an explicit lower bound for σ, i.e., σ ≥ 2ρ − ρ2. In fact, for the cases of Ê(F2m)

from the NIST-recommended curves we notice that σ ≈ 2ρ− ρ2 for e ≥ 2.

For obtaining a more precise value of σ one can check, from all the possible

order values of two points (i.e., P̂0 and P̂1), which ones provide sufficient scalar

information for obtaining the rest using exhaustive search for a given parameter e.
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Additionally we need to consider the probability of occurrence of every point order

combination. The complete procedure is put together in Algorithm 3.4.

Algorithm 3.4. Probability of success σ for Algorithm 3.3

Input: The order #Ê(F2m) = 2n0pn1

1 · · · p
nu−1

u−1 , a parameter for acceptable amount

of exhaustive search e, where e ≥ 0.

Output: Probability of success σ.

1. σ = 0

2. For Ju−1 = 0 to nu−1 do

For Ju−2 = 0 to nu−2 do
...

For J0 = 0 to n0 do

D ← 2J0pJ1

1 · · · p
Ju−1

u−1

N ← φ(D)

For ju−1 = 0 to nu−1 do

For ju−2 = 0 to nu−2 do
...

For j0 = 0 to n0 do

d← 2j0pj1
1 · · · p

ju−1

u−1

n← lcm(D, d)

Find the smallest value of r for lcm(n, r) = #Ê(F2m).

If (r ≤ 2e) then

σ ← σ + N · φ(d).

3. σ = σ/(#Ê(F2m))2

4. Return(σ).
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σ

Case m e = 0 e = 1 e = 2 e = 5 e = 10

163 0.74921865 0.74921865 0.99895820 0.99973864 0.99999970

Randomly 233 0.71998855 0.71998855 0.95998473 0.99998410 0.99999555

chosen 283 0.73265871 0.73265871 0.97687829 0.99722992 0.99926508

curves 409 0.74515657 0.74515657 0.99354209 0.99797754 0.99999814

571 0.73469332 0.73469332 0.97959110 0.99999925 0.99999925

163 0.74999822 0.74999822 0.99999763 0.99999763 0.99999939

Koblitz 233 0.74999999 0.99999999 0.99999999 0.99999999 0.99999999

curves 409 0.74999999 0.99999999 0.99999999 0.99999999 0.99999999

571 0.74999999 0.99999999 0.99999999 0.99999999 0.99999999

Table 3.7: Probability of success σ of obtaining k with Algorithm 3.3 for Ê(F2m)
from the NIST-recommended curves for a given parameter e

Probability of success σ for Ê(F2m) from the NIST-recommended curves.

Table 3.7 presents the probability of success of Algorithm 3.3 for Ê(F2m) from the

NIST-recommended curves. This shows the probability of obtaining the scalar k

for specific values of parameter e. These values were obtained using Algorithm 3.4.

We notice that the probability of success is better in comparison with the basic

attack. In fact, for e ≥ 2 the relation between the probability of success of both

attacks is σ ≈ 2ρ− ρ2. In Table 3.8, we list the minimum value of parameter e for

obtaining a probability σ smaller than some specific values. This table shows that

even with small values of e (e.g., say 14) the probability of success is quite high

(e.g., σ > 999,999
1,000,000

).

Cost of Algorithm 3.3. The most significant computational cost of Algorithm

3.3 is involved in phases 2 and 4, i.e., construction of tables and the exhaustive
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Parameter e (in bits)

Case m σ < 1 − 1

100
σ < 1 − 1

1000
σ < 1 − 1

1×106

163 2 5 10

Randomly 233 5 5 12

chosen 283 3 9 14

curves 409 2 6 12

571 3 5 5

163 2 2 10

Koblitz 233 1 1 1

curves 409 1 1 1

571 1 1 1

Table 3.8: Minimum value of parameter e for obtaining a probability σ smaller
than some given values for Ê(F2m) from the NIST-recommended curves

search with verification process, respectively. Let us consider the cost of each

phase:

• Construction of tables (phase 2 of Algorithm 3.3). Comparing with the ba-

sic attack presented in the previous subsection (Algorithm 3.1), Algorithm

3.3 needs to perform c0 + c1 instances of the Silver-Pohlig-Hellman algorithm

(Algorithm 2.8) instead of one, where ci is the size of Table Ai for i ∈ {0, 1}.
Similar to the cost of phase 2 of Algorithm 3.1, the cost to construct the

tables with a single processor is about 3(c0 + c1)
√

pt−1 point operations,

where pt−1 is the largest prime divisor of #Ê(F2m). If M processors are

used, then about (c0 + c1)
√

πpt−1/2/M point operations are required. If a

Koblitz curve over F2m is utilized, then this cost can be reduced to about

(c0 + c1)(
√

πpt−1/m)/(2M) point operations. These costs clearly depends di-

rectly on values of ci which depends on the order of Q̂i and the order of the
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candidate points for P̂i. As discussed earlier, the bounds for ci are approxi-

mately ηmaxm
2
≤ ci ≤ m

2
, where ηmax is the maximum reduction factor which

depends on #Ê(F2m).

• Exhaustive search and verification (phase 4 of Algorithm 3.3). In phase 3

of Algorithm 3.3 using Tables A0 and A1, a search for candidate pairs that

satisfy either (3.14) or (3.15) is performed. As discussed earlier, for today’s

applications where m ≥ 163 it is expected to have a unique candidate pair.

In this way, in phase 4 an exhaustive search is performed in order to obtain

the full value of the scalar. Here, the exhaustive search space r is obtained in

Steps 7.2 and 7.3. Thus, assuming t ≈ m the phase 4 of Algorithm 3.3 will

require r scalar multiplications in the worst case which represents at most

(3mr)/2 point operations if a binary method is utilized (e.g., Algorithm 2.1).

Example 3.4 Let us consider the cost of phases 2 and 4 of Algorithm 3.3 for

Ê(F2m) from the NIST-recommended curve K-163. Let us use the minimum and

maximum values of ci form Table 3.6 to give an interval for each cost. For a single

processor, the cost of phase 2 is approximately in the interval [6cmin
√

p4,6cmax
√

p4] ≈

[249.9, 250.9] point operations, where p4 is the largest prime factor of #Ê(F2m) (see

Table 3.2). Now, assume that we have M = 10, 000 computers for solving the

instances of the ECDLP. In this case the expected number of point operations

for each processor is approximately in the interval [
cmin(
√

πp4/163)

10000
,

cmax(
√

πp4/163)

10000
] ≈

[231.2, 232.2]. For the phase 4 cost, from Tables 3.1 and 3.5 we can notice that with

a probability greater than 999
1000

the exhaustive search space will be r ≤ 4. Here the

cost of phase 4 is negligible.
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3.3 Countermeasures

The attacks presented in the previous section only need one or two faulty outputs

to break the given instance of ECSM with a high probability of success. Hence, this

may constitute a threat to cryptosystems using the Montgomery ladder ECSM for

elliptic curves over the binary field. Therefore, some countermeasures are needed.

In the following, we will describe possible protections against the attacks presented

in this chapter.

Group formulas change. A possible countermeasure is to use alternative group

formulas that include both elliptic curve parameters a and b. However, such for-

mulas are likely to require more computations and hence cause a degradation in

terms of performance. Additionally, if this approach is the only protection used, no

errors due to faults are detected and this might constitute a risk for other attacks

such as the DFA attack presented by Biehl et al. [9].

Curve selection. The attacks presented in this chapter assume that Ê(F2m) is a

cryptographically weaker group where the ECDLP could be solved in a reasonable

period of time for a given E(F2m). However, this assumption is not true if both

#E(F2m) and #Ê(F2m) are almost prime. From the NIST-recommended curves,

the only curve that satisfies this condition is referred to as K-283. Although, this

curve selection criteria is an effective countermeasure against the fault-based attacks

presented in this chapter, it might be too restrictive from the practical point of view.

Moreover, the following two countermeasures represent a possible solution without

limiting the use of particular group E(F2m) even when the order of Ê(F2m) is not

an almost prime number.
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Point verification (PV). It is important to verify that the input point is in

E(F2m). In the case that this checking could be bypassed, it is more important to

verify whether or not the output is on the original elliptic curve. This countermea-

sure not only prevents from the attacks presented in this chapter, but also others

such as those described by Biehl et al. [9], Ciet and Joye [21], and Antipa et al. [6].

It is important to note that this verification needs to be implemented in a secure

environment. Otherwise the attacker might bypass this protection and carry out

an invalid-curve attack such as one of those described earlier in this chapter.

Coherency check (CC). In addition to PV that could be applied to any ECSM

algorithm, the Montgomery ladder ECSM algorithm permits us to have another

way to detect errors in scalar multiplication using coherency check (CC). We can

use the fact that the temporary pair (Q0, Q1) is of the form (l ·P, (l+1)P ) for some

integer l at any value of i during the loop of Algorithms 2.5-2.7. Since the difference

between Q1 and Q0 should be P at any iteration, one can check this during and

after the ECSM operation. Note that if the attacker is able to modify the input

point P in the way described in Algorithms 3.1 and 3.3, the operation Q1−Q0 needs

to be implemented using group formulas that include both curve parameters, a and

b, or at least parameter a for avoiding that this checking operation is performed

in Ê(F2m). This approach for error detection will be presented in more detail in

Chapter 5.
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3.4 Conclusion

In this chapter we have presented two invalid-curve attacks that apply to the Mont-

gomery ladder ECSM algorithms proposed by López and Dahab [58]. These attacks

exploit the fact that parameter a is not used in the group formulas for these partic-

ular algorithms. In this way, if Ê(F2m) is a weaker group with the same parameters

than the original group E(F2m) except for parameter a and we are able to inject

a fault in the input point as described in Algorithms 3.1 and 3.3, then we would

retrieve the scalar k with a high probability of success. For the purpose of the

NIST-recommended curves, we have shown that there exists a weaker group for

nine of the ten cases that include the randomly chosen and Koblitz curves. The

only exception is the curve K-283 for which #E(F2m) and #Ê(F2m) are almost

prime. Also, we have obtained the theoretical probability of success for each of the

presented attacks. Additionally, we have determined numerical values of the prob-

abilities of success for Ê(F2m) from the NIST-recommended curves. And finally,

we have presented some countermeasures to prevent the attack described in this

chapter.



Chapter 4

Robust ECSM Using Repeated

and Parallel Computations

In this chapter we present some structures that permit detection of errors in ECSM

without modifying the curve parameters. These are based on re-computation and

parallel computation. We use a number of encoding techniques that rely on the

properties of elliptic curves and provide a high probability of detection of errors

caused by faults that occurred naturally or injected deliberately by an attacker.

In addition, we consider fault-tolerant ECSM. While error detection is a suffi-

cient countermeasure for preventing fault-based attacks, fault-tolerant characteris-

tic enables a system to perform its normal operation in spite of faults. For certain

fault models, we propose structures that can perform correct ECSM operations

in the presence of faults that may occur in a limited number of ECSM modules,

primarily due to natural causes such as abnormal temperature, electromagnetic in-

terference, or power supply changes. An attacker who is not able to inject faults at

85
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precise time and locations (i.e., “less sophisticated” attacker) is assumed to have

an effect similar to that of natural causes. On the other hand, a “sophisticated”

attacker is able to inject faults at precise locations in arbitrary number of ECSM

modules. For provide resistance against a sophisticated attacker, the encoding tech-

niques used with the inputs can essentially prevent such structures from outputting

incorrect results due to faults. Most of the work presented in this chapter has been

presented by Domı́nguez and Hasan [26] [27].

The organization of the remainder of this chapter is given as follows: In Section

4.1, we present encoding schemes for error detection for ECSM and probability of

undetected errors. In Section 4.2, we give fault-tolerant ECSM structures. We

present overhead costs and experimental results for the probability of undetected

errors in Sections 4.3 and 4.4, respectively. Finally, we make some concluding

remarks in Section 4.5.

4.1 Encoding/decoding and error detection for

ECSM

In this section, we propose error-detecting structures for ECSM. Here, we consider

a high-level design, where the ECSM module is the main block implemented in

hardware to accelerate some ECC applications and may become faulty either by

natural causes or by deliberate attacks from an adversary. Other modules used in

our structures are much less complex1 than the ECSM module and are assumed to

be implemented in a secure environment – either in software or hardware.

1In Section 4.3, area and time complexities of these modules are given for F2163 .
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For practicality of the above-mentioned assumption, one can consider a scenario

where ECC is to be implemented in an embedded system that stores the secret key

in a tamper-resistant memory and allows the key to be available to ECC operations

via a protected bus. If the memory and the bus for the secret key are not secure

enough to begin with, then these two would likely become an adversary’s first

points of attacks for easily extracting the key. The embedded system is likely to

have a general-purpose processor or microcontroller, which avoids being tied up or

attempts to improve system performance by off-loading the time consuming scalar

multiplication operations to the ECSM module. The latter acts much like a co-

processor and may have been acquired from a commercial vendor as an ASIC or

even as an IP core for other implementation choices, such as field programmable

gate arrays. In our work, the adversary is assumed to be able to inject faults only

into the ECSM module, where the sensitive information (i.e., secret key) is utilized

for the cryptographic computation.

The party responsible for the implementation of ECC may have no access to

or lack proper knowledge of the internal circuit design of the ECSM module, and

hence, deploys the module without any modification. The ECSM module does

not have built-in encoder/decoder, comparator/voter or PV units. These can be

implemented using dedicated hardware or the general purpose processor that the

embedded system has in it. However, they require considerably less computation

than a scalar multiplier does and, hence, can be implemented in a fault-tolerant

manner, say by applying the triple modular redundancy (TMR) technique, without

requiring excessive resources in terms of silicon area and/or computation time.

Throughout the rest of the document, we use the following assumptions:
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• The input point P is verified by the cryptosystem which uses the ECSM

module to be on the valid elliptic curve before each ECSM computation.

This validation is especially important for preventing the attacks described

in Chapter 3 and those proposed by Biehl et al. [9] and Antipa et al. [6].

• The order of a selected point P is a sufficiently large prime. This check

guarantees that P is not in a small subgroup of E(Fq) of order dividing the

cofactor h [40].

• An appropriate elliptic curve has been selected (e.g., using the guidelines of

a recognized standard such as FIPS 186-2 [32]).

• The input and output of the ECSM are given in projective coordinates.

4.1.1 Encoding/decoding for ECSM

The encoding/decoding process in Figures 2.2 and 2.3 plays an important role

in the detection of errors caused by faults in the compute (i.e., ECSM) module.

For example, without the encoding/decoding the re-computation based scheme in

Figure 2.2 would fail to detect errors produced in two cases: (i) the errors are

produced by permanent errors and (ii) the same transient fault is present for both

‘runs.’ In both cases, the erroneous results at times t0 and t1 will be the same and

the comparator would not detect such errors. Similarly, for the parallel computation

based scheme in Figure 2.3, if the two ECSM modules have the same permanent

and/or transient faults, in the absence of the encoding/decoding the two modules

generate erroneous but the same results. Again, such errors are not detected by

the comparator.
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Below, we present encoding/decoding schemes suitable for ECSM operations.

These schemes are primarily based on properties of elliptic curves. For a given

input pair k and P , a ‘good’ encoding scheme will produce input representations

that are different for the lower and the upper data paths (see Figures 2.2 and 2.3),

and hence, faults – whether or not identical on the two data paths – are likely to

affect the two ECSM operations differently. Consequently, the two values to be

compared by the comparator are also likely to be different.

Encoding for input point P

Taking advantage of the simplicity of negating an EC point, it is possible to use

the negative of a point as the encoded input. For a point P given in the affine

coordinate system, it is well known that the point negation is simply

−P = −(x, y) =





(x, x + y) x, y ∈ F2m ,

(x,−y) x, y ∈ Fp.

(4.1)

For projective coordinates, namely the López and Dahab system for curve E over

F2m and the Jacobian system for E over Fp, the point negation is

−P = −(X,Y, Z) =





(X,XZ + Y, Z) X,Y, Z ∈ F2m ,

(X,−Y, Z) X,Y, Z ∈ Fp.

(4.2)

In Figure 2.2, if the input is point P , then the encoder performs the point negation

in accordance with Equation (4.1) or (4.2). For the encoded input, the output of
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the ECSM module is k(−P ) = −kP. Hence, the decoder in Figure 2.2 also performs

a point negation to generate the expected output kP.

Although, the encoding (and decoding) using point negation is simple – for pro-

jective coordinates, one multiplication and one addition for E over F2m , and only

one addition for E over Fp – it is important to note that such an encoding scheme

changes only the y-coordinate of the input point, while the x- and, if applicable, the

z-coordinate remain unchanged. As a result, even in the presence of some faults in

the ECSM module, it is possible that the comparator in Figure 2.2 gets two equal

but incorrect points at its input and generates an ‘ok’ signal. This is illustrated in

Appendix B.

To change all the coordinate values of the input point, we can use a property of

projective coordinate systems, which consists of having multiple representations for

a given point. This principle is known as point randomization [23] and is applicable

to all the projective coordinate systems [46]. For the López and Dahab and the

Jacobian projective systems, Equations (2.3) and (2.4) become

Y 2 + XY Z = X3Z + aX2Z2 + bZ4 (4.3)

and

Y 2 = X3 + aXZ4 + bZ6, (4.4)

respectively. It is easy to verify that trios (γX, γ2Y, γZ), where γ ∈ F
∗
2m , satisfy

Equation (4.3) and have the same affine representation as that of (X,Y, Z). Thus,

these trios can give different projective representations of a single point on the

curve defined by Equation (2.3). Similarly trios (γ2X, γ3Y, γZ), where γ ∈ F
∗
p,
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have different projective representations of a single point in the curve defined by

Equation (2.4).

Based on the above discussion, a single projective representation (X,Y, Z) can

be encoded, in some random way, to one of the q − 1 possible projective represen-

tations (γcX, γdY, γZ), where for the López and Dahab system, c = 1, d = 2, and

γ ∈ F
∗
2m ; and for the Jacobian system c = 2, d = 3 and γ ∈ F

∗
p. Since (X,Y, Z)

and (γcX, γdY, γZ) correspond to the same point, the two ECSM operations, i.e.,

k(X,Y, Z) and k(γcX, γdY, γZ), result in the same point on the curve, i.e.,

k(X,Y, Z) ∼ k(γcX, γdY, γZ). (4.5)

One implication of (4.5) is that if the encoder in Figure 2.2 or 2.3 is only for

the mapping

(X,Y, Z) 7→ (γcX, γdY, γZ), (4.6)

then the decoder is not needed.

Encoding for scalar k

It is well known that the order of any point P divides the order of the group #E(Fq),

i.e., #E(Fq)P = O. Let k′ = #E(Fq)− k. Then

k′P = (#E(Fq)− k)P ≡ −kP.

Thus, k can be simply encoded to k′, which can be viewed as some kind of scalar

negation operation, and the corresponding decoding process involves a point nega-
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tion to convert −kP to kP . However, this decoding process can be omitted if

the corresponding input point P is also negated in the encoding process (i.e.,

k′(−P ) = kP ).

For the scalar k, more complex encoding schemes are possible. When k is fixed,

in order to resist differential power analysis attacks, it has been suggested [23] to

randomize k by the following mapping:

k 7→ k′′ = k + j#E(Fq), (4.7)

where j is a random integer of at least 20 bits long2. Such randomization can also

be used as an encoding scheme, since

k′′P = (k + j#E(Fq))P ≡ kP.

Such an encoding requires an integer multiplication; however, no computations are

needed for decoding. We assume that the bus of the scalar input is wide/flexible

enough to carry the encoded scalar k + j#E(Fq), where k is the secret key.

Among other possible encoding schemes, the binary unsigned representation of

k can be converted into one of the many binary signed representations of k. This

conversion/encoding can be done in a random way. For an m-bit integer k, there

are O(3bm
2 c) different binary signed digit representations on average [29]. This

however requires the ECSM module to support the double-and-add/sub algorithm

and is not considered here.

2For today’s applications, a 20-bit random integer j is recommended by Coron in order to
resist the DPA attack [23].
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4.1.2 Error-detecting structures and probability of unde-

tected error

As stated before, for the purpose of encoding, one can map input pair k and

P = (X,Y, Z) to k + j#E(Fq) and (γcX, γdY, γZ), respectively. These encod-

ing schemes produce different representations of inputs that are equivalent to the

original input and do not require the decoding process. In addition, as shown in

Section 4.4 with experimental results, these two encoding schemes lead to a lower

probability of undetected errors when compared with other encoding schemes dis-

cussed earlier, namely P 7→ −P alone or combined with k 7→ k′ = #E(Fq) − k.

As a result, in this work, we use these two encoding schemes for error detection in

ECSM. In particular, for re-computation based error detection, at t0 we compute

the ECSM with (k, j0, P, γ0) as inputs, and then at t1 compute another ECSM with

(k, j1, P, γ1), where j0 and j1 are two random integers of appropriate length (say 20

bits for a 160 bits long k), and γ0 and γ1 are two random non-zero elements of the

underlying finite field.

In the comparator unit, the outputs of the two ECSM operations that are in

projective representation need to be compared. For this matter, below we apply an

idea originally presented by Meloni [63] in a different context, namely to speed up

ECC scalar multiplication. Assume that Q0 = (X0, Y0, Z0) and Q1 = (X1, Y1, Z1)

are the two input points of the comparator. Then, similar to (4.5), we can transform

each Q0 and Q1 with γ = Z1 and Z0, respectively, i.e.,

Q0 ∼ (X0Z
c
1, Y0Z

d
1 , Z0Z1),
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Q1 ∼ (X1Z
c
0, Y1Z

d
0 , Z0Z1),

where for the López and Dahab system c = 1 and d = 2, and for the Jacobian system

c = 2 and d = 3. If Q0 and Q1 map to the same affine representation, then the new

X- and Y -coordinates of Q0 and Q1 must be equal since the new Z-coordinates

are the same. Thus, the cost of comparison of these two points is four finite field

multiplications and two squarings for the López and Dahab system, and six finite

field multiplications and two squarings for the Jacobian system. In addition, two

dlog2 qe-bit comparators are needed. The main advantage of this comparison scheme

is that an explicit transformation from projective to affine coordinates is not needed

resulting in the elimination of expensive field inversion operations.

Finally, if the compared points are the same, one of them is produced as the

final output. Otherwise, no final output is given. This scheme is shown in Figure

4.1, and we refer to it as full re-computation based scheme or RC for short.

Because of random γi and ji for i = 0 and 1, one can assume that in the presence

of faults – whether identical or not – the ECSM module’s output Qi is a random trio

(Xi, Yi, Zi) of finite field elements. If the fault makes the ECSM module produce an

incorrect result, then Qi 6= kP . Since the number of elements in the finite field is q

and Qi has q− 1 different projective representations, the probability that Q0 = Q1

and Qi 6= kP (i.e., undetected error) can be expressed as follows:

Pr(undetected error)RC ≈
q − 1

q3
≈ 1

q2
. (4.8)

For many of today’s security applications , where q ≈ 2160, the above probability

of undetected error is quite small. The counterpart of RC that uses parallel com-
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Figure 4.1: ECSM using full re-computation with point and scalar randomization
(RC)

putation is shown in Figure 4.2. This parallel computation based scheme (or PC

for short) can detect any error confined in one module. Additionally, if both ECSM

modules have errors, since they use different input representations, the probability

of having equal erroneous outputs from these modules is low as given in Equation

(4.8).

4.1.3 Error detection using partial re-computation

The main penalty of using full re-computation (i.e., using RC) is that it doubles

the running time of ECSM. In applications where the ECSM module is subject to

only permanent faults injected by an attacker or caused naturally, the running time
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can be reduced by performing a partial re-computation (RC partial) as discussed

below.

Under RC partial, input point P is encoded twice using point randomization

described in (4.6) so that it has different representations at t0 and t1. Input scalar

k is encoded to k′′ using (4.7) for ECSM at t0, but no encoding is done for t1 and

only a few bits (say, least significant l bits, where 0 ≤ l ≤ m) of the encoded k are

used. Let these l bits correspond to integer ks =
∑l−1

i=0 2ik′′
i , where k′′

i ∈ {0, 1} .

Based on the above discussion, at time t0, an ECSM is computed with (k, j0, P, γ0).

Let us denote the output of this computation as Q0. As part of the computation,

assuming a left-to-right double-and-add algorithm, ksP is expected to be generated

after l iterations of the algorithm. This value (i.e., point ksP ) or an erroneous ver-

sion of it – in case there are errors due to faults – is saved for a later comparison.

Let us denote the saved value as Q0, partial.

At time t1, an ECSM is computed with (ks, 1, P, γ1). Since ks is l bits long, this
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computation requires l − 1 point doublings and H(ks) − 1 point additions, where

H(ks) denotes the Hamming weight of ks. Let us define the output of this ECSM as

Q1. If the affine representations of Q1 and Q0, partial are the same, then Q0 computed

at t0 is produced as the final result.

The probability of undetected errors in the RC partial scheme depends on the

value of l. If l takes the maximum value i.e., l = m, then RC partial is the

same as RC discussed earlier and doubles the running time, but the probability

of undetected errors is very low as given in Equation (4.8). On the other hand, if

l is minimum i.e., 0, then there is no re-computation at all and no errors will be

detected unless other techniques such as PV are used. For practical purposes, l may

be taken as a small fraction, say 10%, of the number of bits in k and still achieve

a low probability of undetected error since the point encoding technique described

in (4.6) produces two random projective representations of the point at t0 and t1.

4.1.4 Error detection under faults injected by a sophisti-

cated attacker

In this subsection, we discuss scenarios where a sophisticated adversary could mount

an attack using the principles of today’s best known fault attacks for ECC. Here, two

attacks are considered. First, like the scenario given by Biehl et al. [9], the attacker

is able to flip a single bit in a register that holds an intermediate point during the

ECSM operation. Second, the attacker exploits the possibility of changing the sign

of an intermediate point in order to mount the SCF attack as described by Blömer

et al. [14]. For details on these attacks, the reader is referred to [9] and [14].
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1) ECC differential fault attack: Suppose that the attacker can inject a fault

at a random state in a register that holds partial results during the ECSM operation

as described by Biehl et al. [9]. In such a case, the point operations result in normal

additions before the fault and pseudo-additions [9] after the fault. The latter, in

turn, represents an operation that leaves the original group structure. Thus, after

the fault a random finite field trio is obtained at the ECSM output and the PV

process can detect such errors with a probability of

Pr(Qi ∈ E(Fq)) =
(#E(Fq)− 1)(q − 1) + 1

Number of finite field element trios
≈ q2

q3
=

1

q
. (4.9)

Therefore, for large q, PV after the ECSM (Figure 2.1) might represent a counter-

measure against this attack. However, that is not the case for all ECC fault attacks

as shown in the following scenario.

2) SCF attack: Consider a cryptosystem based on an elliptic curve over prime

field where a sign change in a point implies only a change in the Y -coordinate.

Assume that the attacker is able to change this sign in an intermediate point during

the ECSM operation as described by Blömer et al. [14]. In such a case, the erroneous

results, which are valid points on the original elliptic curve, would be undetectable

by the PV process. Hence, the probability of undetected error under this attack

for the scheme of Figure 2.1 would be equal to unity. Now, let us consider the

RC scheme under this attack where the adversary would need to inject an SCF

into both ECSM runs. Here, the original assumption that a random finite field

trio is generated after the fault is bypassed. The reason is that the output is now

restricted only to the set of points on the curve. Due to random input point and
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scalar, if we consider that the output is now a random point on the curve, then the

probability of undetected error is about 1/q. The same probability applies for the

PC scheme if the attacker is able to inject an SCF to each ECSM module. Both

schemes, RC and PC, can be utilized as a countermeasure to the SCF attack. The

extra cost for these schemes in terms of time and area will be presented in Section

4.3.

4.2 Fault-tolerant structures for ECSM

From the cryptographic point of view, while error detection is a sufficient counter-

measure for preventing fault-based attacks, fault-tolerant characteristic enables a

system to perform its normal operation in spite of faults. This will result in more

reliable systems where faults may occur due to deliberate attacks or due to nat-

ural causes such as abnormal temperature, electromagnetic interference, or power

supply changes.

In this section, we present methods for fault tolerance for ECSM. Here, we

assume static redundancy only. This means that the system can tolerate faults

using masking; in fact, such faults are bypassed without any reparability or recon-

figuration capabilities. First, a classical example of hardware redundancy, triple

modular redundancy (TMR), is considered for ECSM. Then, by taking advantage

of the simplicity of PV operation, we present a double modular redundancy (DMR)

based fault-tolerant scheme, namely DMR PV. Finally, by combining parallel com-

putation with re-computation, we present another ECSM fault-tolerant structure

that is as robust as TMR, and achieves an area efficiency close to DMR PV. For

each of the fault-tolerant schemes, we also give its reliability, which is defined as
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its characteristic expressed by the probability that it will perform its function [85].

Finally, we provide a reliability comparison among these schemes.

4.2.1 TMR based fault-tolerant ECSM

Traditional TMR utilizes three elements performing the same operation [87]. In

the context of the work presented here, these elements would correspond to ECSM

modules as shown in Figure 4.3. In this TMR scheme, as long as two or all three

ECSM modules yield correct results, the majority voter produces a correct final

output. When two or more ECSM modules become faulty by natural causes or by

some simple malicious action by a less sophisticated attacker, then the faulty mod-

ules are likely to produce different but incorrect results, and the majority voter will

produce no final output. However, when a sophisticated attacker can deliberately

inject faults that may cause two or more ECSM modules to generate the same but

incorrect result, then the majority voter will produce an erroneous output and the

TMR scheme will fail.

In an attempt to reduce the chance of TMR producing an erroneous result, we

proceed as follows: Scalar k and point P , which are inputs to the ECSM modules,

are encoded using the randomization techniques discussed in Section 4.1, as illus-

trated in Figure 4.4. The ECSM outputs are connected to a secure majority voter

implemented in either software or hardware.

Like the comparator unit, the majority voter needs to process their inputs in

projective coordinates. Assume that Q0 = (X0, Y0, Z0), Q1 = (X1, Y1, Z1), and

Q2 = (X2, Y2, Z2) are the three input points of the majority voter. Then, similar

to (4.5), we can transform each Q0, Q1, and Q2 with γ = Z1Z2, Z0Z2, and Z0Z1,
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respectively, i.e.,

Q0 ∼ (X0(Z1Z2)
c, Y0(Z1Z2)

d, Z0Z1Z2),

Q1 ∼ (X1(Z0Z2)
c, Y1(Z0Z2)

d, Z0Z1Z2),

Q2 ∼ (X2(Z0Z1)
c, Y2(Z0Z1)

d, Z0Z1Z2),

where c and d are as defined earlier. With this new transformed points, a normal

voting process can be performed that will produce a final result QTMR, which is the

majority of these points. If there is no majority, then no final output is generated.

Clearly, if errors occur in only one of the ECSM modules, then their effects can be

masked and a correct final output can be obtained.

Assume that an attacker can inject the same fault, transient or permanent, in

two or all three modules in an attempt to make the faulty modules produce the

same but incorrect result. In such circumstances, the point and scalar encodings
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help to keep the risk of giving an incorrect result to a low level. This is explained

as follows: Because of the encoding of inputs, in the presence of faults, each ECSM

module is expected to produce a random projective representation, which maps

to one of the q2 affine coordinates representations. An erroneous final result is

produced by the majority voter if two or all three outputs represent the same but

incorrect points. Thus, the probability that the final result has an error is

Pr(QTMR 6= kP ) ≈
(

3

2

)
× q2(q2 − 1)

q2 × q2 × q2
+

q2

q2 × q2 × q2

=
3

q2
+

1

q4
≈ 3

q2
(for large q). (4.10)
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We note that TMR can be viewed as a special case of an N -modular redundant

system with N modules, where faults confined in up to
⌊

N−1
2

⌋
modules can be

masked.

4.2.2 DMR PV fault-tolerant ECSM

In applications where it is important to reduce silicon area, perhaps at the expense

of increases in the probability of an incorrect result, instead of using the TMR

based scheme discussed earlier, one can use the dual modular redundant (DMR)

system combined with PV, namely DMR PV, as shown in Figure 4.5. As it can

be clearly seen, compared to TMR, DMR PV uses one less ECSM module. An

important aspect is that this scheme is only appropriate for elliptic curves over the
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binary finite field F2m . For elliptic curves over the prime field Fp, the PV module

is not sufficient for detecting errors produced by the SCF attack. However, for the

case of elliptic curves over F2m , where the SCF attack does not apply, we can use

the PV module to validate the ECSM operations.

As shown in Figure 4.5, the two ECSM modules operate in parallel and their

outputs are verified by PV modules. The F block is used to stop the system output

if Q0, Q1 /∈ E(F2m); or when Q0 6= Q1, and Q0, Q1 ∈ E(F2m). The final output of

the DMR PV based system is given as follows:

QDMR PV =





Q1 (or Q0) if PV(Q0 or Q1) = ok and Q0 = Q1,

Qi if Qi ∈ E(F2m) and Qi /∈ E(F2m),

no output otherwise,

where i = 1− i.

The DMR PV scheme can clearly tolerate any faults confined in only one of the

two modules and can produce the correct final output. Additionally, the scheme

can detect some situations where errors exist in the outputs of both modules and

hence helps to avoid producing erroneous results at the final output. However,

there are two cases of reasonably low probability when this scheme fails and gives

an incorrect result: first, if Q0 = Q1 and Q0, Q1 ∈ E(F2m) \ kP ; secondly, when

Q0 6= Q1, Qi ∈ E(F2m)\kP , and Qi /∈ E(F2m) for i = 0 or 1. Then, the probability

of giving an incorrect result when both ECSM modules are in error is

Pr(QDMR PV 6= kP ) ≈ 1

q3
+ 2

(
1− 1

q2

)(
1

q

)(
1− 1

q

)
≈ 2

q
(for large q). (4.11)
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4.2.3 Parallel and re-computation based fault-tolerant

ECSM

The above DMR PV scheme reduces the silicon area requirement but increases the

probability of an incorrect result. It is possible to have a fault-tolerant ECSM sys-

tem that is as area efficient as DMR PV and has the same low probability of incor-

rect result as TMR. To this end, one can use a parallel and re-computation3 (PRC)

based scheme shown in Figure 4.6. In PRC, at time t0, with input (k, j0,t0 , P, γ0,t0)

and (k, j1,t0 , P, γ1,t0) the two ECSM modules produce Q0,t0 and Q1,t0 , respectively.

These two points are then compared using the technique on page 94. If the points

are the same, then one of them is produced as the final output QPRC . Otherwise, the

ECSM modules perform re-computations with (k, j0,t1 , P, γ0,t1) and (k, j1,t1 , P, γ1,t1)

and produce Q0,t1 and Q1,t1 . If errors are confined in only one of the ECSM mod-

ules, then for only one of the two values of i, i.e., either i = 0 or i = 1, Qi,t0 and

Qi,t1 are the same after their Z-coordinates are made equal and one of them can

be produced as the final output QPRC .

An erroneous final QPRC may be produced in the following two cases: (i) the

ECSM modules produce the same but incorrect result at t0, and (ii) any of the

two ECSM modules gives an incorrect but same result at both t0 and t1. For the

PRC operation described above, the probability that an erroneous final result is

produced is

Pr(QPRC 6= kP ) ≈ 1

q2
+ 2

(
1− 1

q2

)(
1

q2

)
≈ 3

q2
(for large q) (4.12)

3The combination of time and hardware redundancy for fault-tolerant system design has been
considered in other contexts, e.g., Lima et al. [55] have used this combination for having fault-
tolerance on FPGAs.
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Figure 4.6: Parallel and re-computation (PRC) based fault-tolerant ECSM
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which matches (4.10) for TMR.

We note that the re-computation in the PRC based scheme is performed when

one or both ECSM modules generate incorrect results and hence doubles the run-

ning time under such situations. If both ECSM modules are properly working, then

the running time of PRC is the same as that of TMR and DMR PV.

4.2.4 Effect on reliability

The reliability comparison between several fault-tolerant systems has been consid-

ered in the literature [83] [54]. In the context of this work, note that compared to

the ECSM module, each of the other modules in Figures 4.4, 4.5, and 4.6, namely

the majority voter, the point and the scalar randomization modules, PV modules,

comparators, registers, and multiplexors would require a lot less hardware in prac-

tice. Thus, these small components can be implemented such that each of those

will have a reliability factor that is close to unity. Then, for the case of TMR

based ECSM, i.e., a correct result is obtained when at least two out of three ECSM

modules are performing their functions, the reliability is

RTMR ≈ r3
ECSM + 3r2

ECSM(1− rECSM) = 3r2
ECSM − 2r3

ECSM , (4.13)

where rECSM is the reliability factor of a single ECSM module. On the other hand,

for both DMR PV and PRC based ECSM schemes their reliability RDMR PV/PRC is

related to the probability that at least one of the two ECSM modules work without

errors. The resulting expression for RDMR PV/PRC is:

RDMR PV/PRC ≈ r2
ECSM + 2rECSM(1− rECSM) = 2rECSM − r2

ECSM . (4.14)



108 Robust ECSM Using Repeated and Parallel Computations

If we subtract Equation (4.13) from (4.14), we obtain

RDMR PV/PRC −RTMR

= 2rECSM − r2
ECSM − (3r2

ECSM − 2r3
ECSM)

= 2rECSM(1− rECSM)2.

Since 0 < rECSM < 1, RDMR PV/PRC − RTMR is always positive, i.e., we can state

that the reliabilities of DMR PV and PRC based schemes are greater than that

of the TMR based system (see Figure 4.7). The improved reliability of DMR PV

and PRC schemes is primarily due to their ability to mask out errors confined in

one module with fewer number of ECSM modules compared to the TMR. The use

of the reduced number of ECSM modules is possible due to the PV modules in

DMR PV and the re-computation in PRC.

4.3 Overhead cost

The error-detecting and fault-tolerant ECSM structures presented in Sections 4.1

and 4.2 require a number of extra modules, namely PV module, point randomiza-

tion module, scalar randomization module, register, comparator, majority voter,

and multiplexor. In this section, we give costs of these components based on hard-

ware implementation using FPGAs. We also give the time impact on the ECSM

operation, in terms of number of clock cycles, due to the inclusion of these extra

components. We also note that these components must be implemented in a secure

environment so that they are not vulnerable against faults.

For ECSM operation, we use the performance results given by Lutz [59], where
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Figure 4.7: Reliability comparison among TMR, DMR PV and PRC schemes

a NIST-recommended elliptic curve over F2163 has been used. The performance

results are based on a Xilinx Virtex 2000E FPGA implementation, and the ECSM

operation uses a finite field multiplier, a squaring unit, and an adder. The area and

timing results of these arithmetic units are:

Multiplier: 2364 slices and 4 cycles

Squaring unit: 165 slices and 1 cycle

Adder: 94 slices and 0 cycles.

The entire module, which performs ECSM, with input and output points in pro-

jective coordinates, requires 5009 slices and 17160 clock cycles for each scalar mul-

tiplication.

For implementing the extra modules (i.e., PV module, point and scalar random-
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Element Slices Cycles

ECSM module 5009 17160

PV module 760 824

Point randomization module 528 653

Scalar randomization module1 815 18

Register 245 1

Comparator 549 656

Majority voter 824 1476

Multiplexor 245 0
1Size of j = 20 bits.

Table 4.1: Cost and performance for the ECSM and other extra modules used for
error-detecting and fault-tolerant structures

ization modules, register, comparator, majority voter, and multiplexor), we have

used the same FPGA to be consistent with the ECSM module implemented by

Lutz [59]. For some modules, namely PV, point randomization, comparator, and

majority voter, in order to optimize the area requirement we have used a low speed

multiplier which occupies 286 slices and 163 cycles for each finite field multipli-

cation. The results of performance and cost for these extra modules are given in

Table 4.1.

Incorporating the extra modules with the ECSM modules as shown in the error-

detecting structures of Section 4.1, we obtain the time and space complexity results

given in Table 4.2. The corresponding results for the fault-tolerant structures of

Section 4.2 are shown in Table 4.3.

The clock cycle data in Tables 4.2 and 4.3 correspond to the time needed to

produce a final ECSM output given input pair k and P . In applications where

many such ECSM operations are to be performed, a more important measure of
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ECSM with Figure No. Slices Latency Throughput

(Cycles) ratios1

no error detection NA 5009 17160 1

PV 2.1 5769 17984 1

RC 4.1 7146 35795 1
2

RC partial2 NA 7146 20319 1
1+l/m

PC 4.2 11910 19452 1
1With respect to the ECSM with no error detection.

2Size of l = 16 bits.

Table 4.2: Performance and cost for error-checking systems over F2163

Scheme Figure No. Slices Latency Throughput

(Cycles) ratios1

TMR based fault-tolerant ECSM 4.4 17194 21090 1

DMR PV ECSM 4.5 12916 19452 1

PRC ECSM 4.6 13136 194522 12 or 1
2

1With respect to the ECSM with no error detection.

2If no error is detected at t0, otherwise the running time is doubled/throughput is halved.

Table 4.3: Performance and cost for fault-tolerant systems over F2163

performance is the throughput, which can be defined as the number of ECSM

outputs per unit of time. In the rightmost column of Table 4.2, we give ratios of

the throughput with no error detection to that with various error detection schemes,

such as PC, RC, and RC partial. Similarly, in Table 4.3, we give such ratios for

fault-tolerant schemes. In determining the ratios, we assume that the operations of

an ECSM module and comparator/PV can be overlapped. The ratio results show

a number of trade-offs one can consider between area and throughputs.

For the FPGA implementation described here, the clock frequency is 66 MHz.
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At this speed, the ECSM with the PV module, as shown in the second row of

Table 4.2, will require 17984/(66 × 106) ≈ 272.48 µsec. On the other hand, if all

modules are implemented in software, then using the results reported by Hankerson

et al. [39] for finite field arithmetic units, an ECSM unit with the PV module will

require approximately 5.38 msec. These results may vary depending on the target

platform and the level of optimization used; nevertheless, they show the speed

advantage of using hardware over software.

4.4 Experimental results for undetected errors

with a small prototype

As discussed earlier, when an error occurs due to a fault in the ECSM module, it is

possible that the error remains undetected by the schemes presented in Section 4.1.

Whether or not a fault causes an undetected error depends on a number of factors

including the input pair k and P , the implementation, and the fault itself. The

latter, in turn, could be characterized by some parameters that include location,

type (e.g., stuck-at, bit flip, or bit set or reset), number of bits affected (e.g.,

single or multiple), and duration (e.g., permanent or transient). In this section, we

present experimental results of undetected error probabilities based on an exhaustive

generation of faults for a small prototype ECSM module. The prototype is modeled

using VHDL with a Xilinx Spartan 3 1000 FPGA as the hardware target.

An exhaustive generation of faults at finite field level is chosen in order to ob-

tain average numbers that do not depend only on a specific fault location. For the

experiments, we also included all the possible input pairs (k, P ) to avoid the de-
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pendability of the results for a specific input pair. Clearly, these exhaustive fashion

experiments limit the maximum feasible finite field size that the system can han-

dle. However, the main factor for this limitation is the number of ECSM operations

needed for finding errors in structures where the probabilities of undetected errors

are expected to be very low (e.g., 1/q, 1/q2).

In order to have experiments with the above description in a reasonable amount

of time, we have selected the prototype to be based on the finite field F211 . For

this small prototype, the simplest experiment that involves only the PV module,

the number of ECSM operations is approximately 0.5 billion4 requiring roughly

2.5 hours to complete in the actual hardware. Other experiments involve much

more operations, for example in each parallel computing scheme the number of

ECSM operations is approximately 35 billions5 and about seven days to complete.

Although this ECSM prototype is small for a real application, it allows us to perform

experiments in an exhaustive way, which in turn permits us to illustrate the error

detection coverage for the schemes presented earlier.

4.4.1 Parameters, fault model, and process

For efficient implementation, the irreducible binary trinomial z11 + z2 + 1 of degree

11 has been selected to construct the finite field F211 . The elliptic curve used is E:

y2 + xy = x3 + x2 + 1, which has an order of 1982 = 2× 991, where 991 is prime.

The double-and-add algorithm has been used for obtaining the ECSM with the

López and Dahab projective coordinates. For finite field operations, the methods

illustrated in Table 4.4 have been utilized. In total, 134 gates have been used for

41980(input points)×134(fault locations)×989(input scalars)×2(fault types).
51980(input points)×1342(fault locations)×989(input scalars) for each fault type.
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implementing the finite field operations (117, 6 and 11 for finite field multiplication,

squaring and addition, respectively) over F211 . The fault model used is a permanent

stuck-at-0 or stuck-at-1 fault in these gates, and only one gate can be faulty at a

time.

Faults have been injected in a similar way as described by Zarandi et al. [95].

The idea is to add a multiplexor to each gate to be tested, such that we can select

if the gate will work normally or with a stuck-at-0 or stuck-at-1 fault at its output

(see Figure 4.8). Presence or absence of a fault is controlled by the fault injection

signal (FIS). The fault selector signal (FSS) chooses a stuck-at-0 or stuck-at-1

fault for the experiment.

Finite field
operation

Method Number
of gates

Multiplication Look-up table-based group level
Multiplication [41] 1

117 2

Squaring Modified look-up table-based
group level Multiplication [59] 1

6 3

Inversion Itoh & Tsujii [44]. With 4 multi-
plications and 10 squarings.

0

Addition Bit-wise XOR 11 3

1Group size = 6. 281 2-input AND gates, 20 2-input XOR gates, 11 5-input

XOR gates, and 5 2-input OR gates. 32-input XOR gates.

Table 4.4: Methods utilized for finite field operations over F211

The elliptic curve utilized has 1980 points on it that are of order either 1982

or 991. In our experiments, these 1980 points6 are input for each value of scalar k

in the range of 2 to 990. For each fixed set of input point and scalar, a fault-free

6The remaining two points include the point at infinite and (0x00,0x01). The latter has the
order of two. Both of these points are not considered suitable for cryptographic applications.
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Figure 4.8: Stuck-at-0 or 1 fault injection method

computation is performed to obtain kP . Then a stuck-at-0 or stuck-at-1 fault is

injected for each individual gate used for the finite field operations and the ECSM

operation is repeated. The result is then compared with the fault-free case to

determine if the fault has produced an erroneous result.

For the case of PV, the experiment consists of obtaining, after a single fault

(stuck-at-0 or 1), the probability that an erroneous result is in E(F211). For the

re-computation based schemes, after the injected fault, two scalar multiplications

with their respective encoding process are performed (at t0 and at t1) and then the

results are compared. Additionally, in order to show the importance of the choice

of the encoding/decoding processes, to each re-computation scheme presented in

Section 4.1 (i.e., RC and RC partial), we include other types of encoding/decoding

processes in the experiment.

Similar to the re-computation case, an experiment is performed for the PC

scheme presented in Section 4.1. In this scheme, there are two ECSM modules. In

one set of experiments, we inject faults in only one of the two modules at a time.

In another set of experiments we consider the case where each of the two ECSM

modules has a single fault at the same time (at the same or different location).
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4.4.2 Results obtained

Encoding schemes

As we stated in Section 4.1, the encoding/decoding process plays an important role

for error detection capability for schemes shown in Figures 2.2 and 2.3. To see

their relative effectiveness, we ran experiments for different encoding techniques

for ECSM re-computation based schemes. Table 4.5 shows their probabilities of

undetected errors. The results of the table imply that the combination of the

encoding schemes (4.6) and (4.7) i.e., (k, P ) 7→ (k′′, P ′) yields the least probability

of undetected errors, and this is why we have earlier presented our theoretical results

using this encoding technique. In the following discussions, we present experimental

results using this encoding for the proposed error detection schemes.

Pr(undetected error)

Encoding Stuck-at-0 Stuck-at-1

fault fault

(k,−P ) 1 1
117

1
12,692

(k′,−P ) 2 1
128

1
1,395,753

(k, P ′) 3 1
421,190

1
2,029,025

(k′′, P ′) 3, 4 1
1,097,914

1
7,497,185

1Point negation is needed for decoding. 2k′ = #E(F211) − k.
3P ′ = (γX, γ2Y, γZ), γ ∈ F

∗

2m . 4k′′ = k + j#E(F211).

Table 4.5: Probabilities of undetected errors for re-computation based schemes
using different encoding in the experiment over F211
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Error detection schemes

For each error-detecting scheme presented in Section 4.1, the probability of unde-

tected error was obtained. Table 4.6 shows these probabilities for the stuck-at-0

and stuck-at-1 fault models. The PV alone gives the worst error detection coverage

for these schemes (i.e., 1
217

for the stuck-at-0 fault model).

Our experiment for scheme RC shows values that are close of the value from

Equation (4.8) if an average of the stuck-at-0 and stuck-at-1 results is considered

(i.e., q2 = 4, 194, 304 vs. 4,297,550). For the PC scheme, if the faults are confined in

only one of the two ECSM modules, then there are no undetected errors as shown

in the fourth row of Table 4.6. The results for the case where both ECSM modules

had a fault each are shown in the last row.

Pr(undetected error) Pr(Q = O, P |undetected error)

Scheme Stuck-at-0 Stuck-at-1 Stuck-at-0 Stuck-at-1

fault fault fault fault

ECSM with PV 1
217

1
1,547

536,935
603,404

2,030
7,711

ECSM with PV1 1
1,974

1
2,100 NA NA

RC 1
1,097,914

1
7,497,185

236
239

197
1,400

PC2 0 0 NA NA

RC partial3 1
19,653

1
397,980

28
81

20
81

PC4 1
1,678,848

1
9,806,261

20,705
20,944

370
3,447

1Modifying the PV module to exclude O and P as valid outputs. 2Injecting faults only to one ECSM module.

3l = 3. 4Injecting faults to both ECSM modules.

Table 4.6: Probabilities of undetected errors for our experiment over F211
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4.4.3 Comments

We have noticed that for both types of faults and especially for the stuck-at-0 fault

model, the probability of obtaining two special points, namely O and P is relatively

high. The following two scenarios contribute to these higher probabilities. First,

if the projective Z-coordinate QZ of the ECSM result Q is zero, then irrespective

of the values of X- and Y -coordinates the result is the O point. Second, consider

the case where the Z-coordinate of the variable representing Q is zero in the last

iteration of the loop in the double-and-add algorithm for ECSM. In such a case,

assuming a left-to-right version of the algorithm, the final result will be O or P

depending of the value of the least significant bit of k.

With the above observations, it is useful that the PV module does not consider

O or P as a valid output of ECSM. In fact, from the cryptographic point of view, if

P and k are selected as a non trivial value (i.e., k 6= {0, 1, ord(P )}), a valid result

will not be either O or P . If we assume that the PV module is modified such that

O and P are not considered as a valid ECSM output, the resulting probabilities are

very close to the value obtained using Equation (4.9), i.e., 1982
211211 ≈

1
2116

as shown

in the second row of Table 4.6.

Another interesting observation of this experiment is that it is more likely to

obtain a result equal to O with faults that are stuck-at-0 than those with stuck-

at-1. For our experiments, stuck-at-0 faults tend to reduce the Hamming weight

of the Z-coordinate of the output as shown in Table 4.7. In contrast, on average

stuck-at-1 faults produce results with more binary 1s. For this reason, the stuck-at-

0 faults have more cases with QZ = 0, and consequently, the resulting point on the

curve corresponds to Q = O. This fact implies that the probabilities of undetected
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Case Average(H(Q̃Z))

Fault free 5.5

Stuck-at-0 5.159

Stuck-at-1 5.534

Table 4.7: Average Hamming weight of the Z-coordinate of the result for our
experiment over F211

error for stuck-at-1 cases are less than their stuck-at-0 counterparts (e.g., 1
7,497,185

vs. 1
1,097,914

for RC).

As stated earlier, the error detection capability depends on various factors in-

cluding the actual inputs, the faults and implementation architecture. For our

experiments, the architecture might have considerable impact on the numerical re-

sults, since the finite field arithmetic unit was invoked several times during each

ECSM operation. In addition, the fault type (stuck-at or bit-flip), fault location,

etc. might have affected our experiments.

4.5 Conclusion

In this chapter, we have presented error-detecting and fault-tolerant structures for

ECSM. For the purpose of error detection, the concepts of re-computation and

parallel computation have been used. In order to have a higher probability of er-

ror detection during the ECSM operation, we have presented encoding/decoding

schemes suitable for ECSM computation. Schemes are based on the concepts of

scalar and point randomization. These schemes provide resistance to attacks where

fault-induced operations do not leave the original elliptic curve (e.g., the SCF at-
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tack). By generating single stuck-at faults exhaustively for a small ECSM prototype

we have given experimental results that show the probabilities of undetected errors

for the proposed error-detecting schemes.

Traditionally, the concept of having only two modules working in parallel has

been associated with error-detecting systems only. However, for ECSM, we have

shown that with only two ECSM modules along with either PV (i.e., the proposed

DMR PV based scheme) or re-computation (i.e., PRC based scheme), it is possible

not only to detect but also correct errors due to faults. These fault-tolerant schemes

are more efficient, i.e., it uses one less ECSM module than the TMR based scheme.



Chapter 5

Algorithm-level Error Detection

for ECSM

In Chapter 4 we have presented error detection and fault tolerance in ECSM at the

module level. That is, we have added external elements to the ECSM module in

order to detect errors and/or tolerate faults, where the underlying scalar multiplica-

tion algorithm is not modified. In contrast, this chapter presents error detection at

the algorithm level. Here, we add protections inside the ECSM algorithm in order

to detect errors caused either by natural causes or deliberately by faults injected by

an attacker. For this purpose, we use point verification (PV) and coherency check

(CC) among selected variables utilized for the ECSM. The CC functions that we

define in this chapter are algorithm specific. On the contrary, PV can be applied

to any ECSM method.

In this chapter we investigate the error detection capability of different methods

in ECSM. For the remainder of this chapter, the following assumptions are made:

121
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• Any variable utilized in the ECSM can be a target of natural faults or faults

injected by an attacker. For simplicity in the analysis we assume that variables

such as the loop counter i and scalar k can be checked for integrity in order

to prevent disturbance of their values.

• Faults might occur directly in the registers containing the variables using a

flip-bit fault model or at a finite field arithmetic level. In the latter, any error

might spread into one or more variables.

• In Sections 5.1 and 5.2 we assume that decisional tests (e.g., “if (PV(Q) = 1)

then”) are not susceptible to faults. This might be the case for secure mi-

crocontrollers utilized in today’s smart cards where hardware protections are

added for not permitting fault injection into sensitive registers (e.g., CPU’s

status register). In Section 5.3 we relax this assumption considering the dou-

ble-fault attack proposed by Yen et al. [94] and refined by Kim and Quisquater

[48] for RSA cryptosystems.

• In this chapter a number of algorithm specific functions for CC are defined.

These are labelled as CCi, where i ∈ [1, 4] (i.e., CC1-CC4).

Let us define a vector (V0, V1, . . . Vj−1) which is composed of the variables utilized

in the ECSM algorithm. As a consequence of faults produced naturally or injected

by an attacker the vector might be changed to (Ṽ0, Ṽ1, . . . Ṽj−1). Depending on

the resultant vector, the error-detecting scheme may detect the presence of an

error caused by the fault. Whether or not the error is detected depends on the

rules utilized for error detection (e.g., PV(Q)) and the actual values of the specific

variables to be tested. We can see this by analogy as a binary code of coding
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theory. For this case the length of the code n is the size (in bits) of the vector

(V0, V1, . . . Vj−1). The codewords are those cases where no error is detected, i.e., the

error-detecting scheme cannot distinguish between an error-free computation and

a faulty one. For comparing the error-detecting schemes presented in this chapter

we use the following definition [56]:

Definition 5.1 The ratio cR = log2(r)/n is called the code rate, where r and n are

the number of codewords and length of the code, respectively.

The error detection capability of a particular coding scheme is correlated to

its code rate. A higher code rate can be seen as high information content and low

coding overhead. However, the fewer bits used for coding redundancy, the less error

protection is provided [90].

The organization of the remainder of this chapter is as follows. In Section 5.1,

we consider error detection in the Montgomery ladder ECSM. Section 5.2 presents

error detection in the double-and-add-always method. In Section 5.3, we give a

countermeasure that can be used against the double-fault attack. Finally, we make

some concluding remarks in Section 5.4.

5.1 Error detection in the Montgomery ladder

algorithm

In this section we present our work on error detection in the Montgomery ladder

ECSM algorithm for non-supersingular elliptic curves over the binary finite field

proposed by López and Dahab [58]. First, we consider the case where a PV process

is placed at the end of the ECSM. Then, we use CC among the involved variables
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for error detection. We give a comparison between both approaches that suggests

the use of an integrity check (IC) with either a PV or CC process.

Let k = (kt−1 · · · k1 k0)2 and Q = kP be the scalar and the ECSM result,

respectively, where P = (x, y) ∈ E(F2m) and n = ord(P ). First, let us define the

“exceptional” cases for the ECSM result be Q = ±P , Q = O, and Q = (0,
√

b). In

the Montgomery ladder algorithm (Algorithm 2.5), for fault-free computations the

exceptional cases arise from the following values of k:

k =





n + 1 (i.e., Q0 = P , Q1 = 2P ),

n− 1 (i.e., Q0 = −P , Q1 = O),

n (i.e., Q0 = O, Q1 = P ),

n/2 (i.e., for n even Q0 = (0,
√

b)).

In the algorithms presented in this section let us restrict these exceptional cases for

error-free computations, i.e., simply by restricting the input k being n ± 1 and n,

and n/2 if n is even.

5.1.1 PV process at the end of the ECSM

The Montgomery ladder algorithm in affine coordinates proposed by López and

Dahab [58] (Algorithm 2.6) is shown in Algorithm 5.1 with a PV process at the

end of the ECSM. This algorithm restricts the occurrence of the exceptional cases

described above. In Step 3.1, as defined by Equation (2.11), the y-coordinate of

the output (i.e., Q0y
) is computed using the following function:

g(Q0x
, Q1x

, x, y) =
(Q0x

+ x) [(Q0x
+ x)(Q1x

+ x) + x2 + y]

x
+ y. (5.1)
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For Algorithm 5.1 let us obtain the cases where PV(Q0) = 1 in Step 3.2, i.e.,

where Q0 is released as the ECSM output. Clearly this occurs always in an error-free

computation. However, this is not likely to be the case when errors are produced

by faults occurring naturally or injected deliberately by an attacker. Let us assume

that an adversary can induce fault(s) during the execution of the ECSM. Consider

that this produces an incorrect result Q̃ 6= Q which will be checked by the PV

process.

Algorithm 5.1. Montgomery’s ladder ECSM with PV at the end

Input: P = (x, y) ∈ E(F2m) of order n, where n is an odd prime. A positive integer

k = (kt−1 · · · k1k0)2, where kt−1 = 1, k 6= n, and k 6= n± 1.

Output: Q = kP .

1. Q0x
← x, Q1x

← x(2P ).

2. For i = t− 2 downto 0 do

2.1 If (ki = 0) then

2.1.1 Q1x
← x(Q0 ]Q1), Q0x

← x(2Q0);

2.2 Else

2.2.1 Q0x
← x(Q0 ]Q1), Q1x

← x(2Q1).

3. If ((Q0x
6= x) and (Q0x

6= 0) and (x 6= 0)) then

3.1 Q0y
= g(Q0x

, Q1x
, x, y).

3.2 If (PV(Q0) = 1) then return(Q0x
, Q0y

);

3.3 Else return(“Error detected”).

4. Else return(“Error detected”).
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Let us consider that any variable utilized by the ECSM algorithm can be affected

by errors due to faults. For the case of Algorithm 5.1 instead of having an error-

free vector (Q0x
, Q1x

, x, y) we have the erroneous vector (Q̃0x
, Q̃1x

, x̃, ỹ). From now

on, let us refer to Q0x
, Q1x

, x, and y as the final value of these variables after

the main loop. Assume that the adversary is able to inject faults during the main

loop, i.e., where the sensitive information (i.e., scalar k) is utilized. With the above

considerations let us obtain the cases where PV(Q̃0) = 1. We can substitute the

point (Q̃0x
, Q̃0y

) in the governing elliptic curve equation (Equation (2.3)) to obtain:

Q̃2
0y

+ Q̃0x
Q̃0y

= Q̃3
0x

+ aQ̃2
0x

+ b. (5.2)

Using Equation (5.1), in Step 3.1 Q̃0y
is computed as a function of Q̃0x

, Q̃1x
, x̃, and

ỹ. Replacing this value of Q̃0y
in Equation (5.2) we can get the following quadratic

expression for Q̃1x

(
Q̃4

0x

x̃2
+ x̃2

)
Q̃2

1x
+

(
Q̃3

0x

x̃
+ x̃Q̃0x

)
Q̃1x

+Q̃2
0x

(
Q̃2

0x
+

ỹ2

x̃2
+ x̃2 +

ỹ

x̃
+ x̃ + a

)
+b = 0.

The above equation has two solutions if and only if Tr(w1) = 0, where

w1 = Q̃2
0x

+
ỹ2

x̃2
+ x̃2 +

ỹ

x̃
+ x̃ + a +

b

Q̃2
0x

. (5.3)

In such a case the two solutions for Q̃1x
are

Q̃1x(a) =
x̃Q̃0x

x̃2 + Q̃2
0x

Ht(w1), (5.4)

Q̃1x(b) =
x̃Q̃0x

x̃2 + Q̃2
0x

(Ht(w1) + 1). (5.5)
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If Tr(w1) = 0 and the relation among Q̃0x
, Q̃1x

, x̃, and ỹ satisfies either Equation

(5.4) or (5.5), then PV(Q̃0) = 1. In this scenario PV fails to detect such errors.

Lemma 5.1 For an arbitrary vector (Q̃0x
, Q̃1x

, x̃, ỹ), the number of combinations

where PV(Q̃0) = 1 in Step 3.2 of Algorithm 5.1 is about 23m.

Proof For this case for each possible value of Q̃0x
(i.e., #E(F2m)/2− 2) there are

two solutions for Q̃1x
. For fixed Q̃0x

and Q̃1x
, the number of possible values for x̃

and ỹ is 2m − 2 and 2m, respectively (i.e., x̃ 6= Q̃0x
, and x̃ 6= 0). Thus, the number

of combinations where PV(Q̃0) = 1 in Step 3.2 of Algorithm 5.1 is

2m(#E(F2m)− 2)(2m − 2) ≈ 23m.

Using Lemma 5.1 we can obtain the code rate cR for this case as

cR =
log2(2

m(#E(F2m)− 2)(2m − 2))

4m
≈ 3

4
. (5.6)

In Step 3.1 of Algorithm 5.1 Q0y
is obtained as a function of Q0x

, Q1x
, x, and

y. This computation assumes that the difference between Q1 and Q0 is P . If due

to a fault this difference is lost, then presumably the corresponding Q̃0 will become

a finite field pair that does not rely on E(F2m). Then PV process at the end of

ECSM will detect such errors. This is not the case for the combinations obtained

in Lemma 5.1.

5.1.2 CC process at the end of the ECSM

Instead of obtaining Q0y
assuming that Q1 − Q0 = P , we can verify first if the

coherency among Q0x
, Q1x

, x, and y does exist. Only if it does, the correspond-
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Figure 5.1: Multiples of point P of order n

ing ECSM output is released. For checking the coherency among a given vec-

tor (Q0x
, Q1x

, x, y) we can proceed as follows. First, we can search for a point

Q̂0 ∈ E(F2m) of the form (Q0x
, Q̂0y

) for some Q̂0y
∈ E(F2m). This step involves

the solution of a quadratic equation for Q̂0y
from the elliptic curve equation. Let

us consider an error-free computation for which Q̂0 will always exist. In fact, for

Q0x
6= 0 there are two solutions of the quadratic equation. Let us set Q̂0y

to one

of these solutions. In this way, Q̂0 will be either Q0 or −Q0, depending on which

solution is selected. With Q̂0, we can perform Q̂0 ] P which will result in either

Q1 = (k + 1)P or (n − k + 1)P , where n = ord(P ) (see Figure 5.1). Adding also

−Q̂0 ] P permits identifying which one of Q̂0 or −Q̂0 corresponds to Q0. For CC

purposes, since the only information available about Q1 is its x-coordinate, we can

perform only x(Q̂0 ]P ) and x(−Q̂0 ]P ) and compare the results with Q1x
. Let us

define the CC function that defines the error detection rules for this scheme as:

CC1(Q0x
, Q1x

, x, y) =





ok = 1 if x(Q̂0 ] P ) = Q1x
or x(−Q̂0 ] P ) = Q1x

,

0 otherwise.
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Algorithm 5.2 implements this function. Additionally, if the CC passes, then

the corresponding Q0y
is also returned. This algorithm utilizes the group formulas

given on pages 17-18.

Algorithm 5.2. Computing CC1 and Q0y

Input: Q0x
, Q1x

, x, y.

Output: CC1(Q0x
, Q1x

, x, y), Q0y
.

1. If ((Q0x
6= x) and (Q0x

6= 0) and (x 6= 0)) then

1.1 w2 ← Q0x
+ b/Q2

0x
+ a.

1.2 If (Tr(w2) = 0) then

1.2.1 Q̂0y
← Q0x

· Ht(w2)

1.2.2 T1 ← 1/(Q0x
+ x).

1.2.3 T2 ← T1 · (Q̂0y
+ y).

1.2.4 T2 ← T 2
2 + T2 + Q0x

+ a.

1.2.5 If (T2 = Q1x
) then return(1, Q̂0y

);

1.2.6 Else

T2 ← T1 · (Q0x
+ Q̂0y

+ y).

T2 ← T 2
2 + T2 + Q0x

+ a.

If (T2 = Q1x
) then return(1, Q0x

+ Q̂0y
);

Else return(0, “Error detected”).

1.3 Else Return(0,“Error detected”).

2. Else return(0, “Error detected”).

The Montgomery ladder ECSM algorithm that uses function CC1 at the end for

error detection is presented as Algorithm 5.3. Now let us examine the cases where

Algorithm 5.3 releases Q0, i.e., CC1(Q0x
, Q1x

, x, y) = 1. This is always the case for
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error-free computations. Similar to PV in Algorithm 5.1, let us assume an erroneous

vector (Q̃0x
, Q̃1x

, x̃, ỹ). Let us define εP ∈ F2m as εP = ỹ2 + x̃ỹ+ x̃3 +ax̃2 +b. Based

on this definition, P̃ ∈ (F2m) iff εP = 0. By Theorem 2.3, Q̂0 = (Q̃0x
, Q̂0y

) ∈ E(F2m)

exists if and only if Tr(w2) = 0, where

w2 = Q̃0x
+

b

Q̃2
0x

+ a. (5.7)

In such a case, Q̂0y
is set to one of the two quadratic equation solutions, i.e.,

Q̂0y
= Q̃0x

Ht(w2). Utilizing the same group formulas as Algorithm 5.2, we can

obtain x(Q̂0 ] P̃ ) and x(−Q̂0 ] P̃ ). Whenever any of these results is equal to Q̃1x
,

function CC1 will fail to detect such errors. The corresponding values for Q̃1x
,

where this condition is satisfied, are:

Q̃1x(a) =
x̃Q̃0x

x̃2 + Q̃2
0x

(
Ht(w2) + x̃ +

ỹ

x̃
+ Q̃0x

+
εP

x̃Q̃0x

)
, (5.8)

Q̃1x(b) =
x̃Q̃0x

x̃2 + Q̃2
0x

(
Ht(w2) + x̃ +

ỹ

x̃
+ Q̃0x

+
εP

x̃Q̃0x

+ 1

)
. (5.9)

Algorithm 5.3. The Montgomery ladder ECSM in affine coordinates with CC

Input: P = (x, y) ∈ E(F2m) of order n, where n is an odd prime. A positive integer

k = (kt−1 · · · k1k0)2, where kt−1 = 1, k 6= n, and k 6= n± 1.

Output: Q = kP .

1. Q0x
← x, Q1x

← x(2P ).

2. For i = t− 2 downto 0 do

2.1 If (ki = 0) then

2.1.1 Q1x
← x(Q0 ]Q1), Q0x

← x(2Q0);
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2.2 Else

2.2.1 Q0x
← x(Q0 ]Q1), Q1x

← x(2Q1).

3. Use Algorithm 5.2 to compute c = CC1(Q0x
, Q1x

, x, y) and Q0y
.

4. If (c = 1) then return(Q0x
, Q0y

);

5. Else return(“Error detected”).

It can be shown that for an arbitrary (Q̃0x
, Q̃1x

, x̃, ỹ) the count of combinations

where Algorithm 5.3 fails to detect errors is the same as Algorithm 5.1 obtained

in Lemma 5.1. Consequently, cR for Algorithm 5.3 is also ≈ 3/4. In the next

subsection we compare the error detection coverage of these two algorithms.

5.1.3 Error detection comparison between PV and CC1

In the following lemmas we show some similarities and differences in terms of error

detection between PV(Q0) and CC1(Q0x
, Q1x

, x, y). In particular, the next lemma

shows that if one of these error-detecting approaches fails to detect a vector with a

specific value of Q̃0x
, then the other approach also fails to detect some vectors with

the same Q̃0x
.

Lemma 5.2 Let (r, s, u, v) be a particular vector of (Q̃0x
, Q̃1x

, x̃, ỹ), where r, u ∈
F
∗
2m , s, v ∈ F2m , and r 6= u (i.e., not considering the exceptional cases). Let Q̃0y

= l

be the value obtained by function g in Step 3.1 of Algorithm 5.1 as function of

r, s, u, and v.

(i) If PV((r, l)) = 1, then there exists a vector (r, s′, u′, v′) for which CC1(r, s′,

u′, v′) = 1 for some s′, v′ ∈ F2m , and u′ ∈ F
∗
2m .
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(ii) If CC1(r, s, u, v) = 1, then there exists a pair (r, l′) for which PV((r, l′)) = 1,

for some l′ ∈ F2m .

Proof For PV(Q̃0), to obtain solutions to Q̃1x
using Equations (5.4) and (5.5)

we should have Tr(w1) = 0, where w1 is defined by Equation (5.3). Similarly for

CC1(Q0x
, Q1x

, x, y), Q̂0 ∈ E(F2m) exists if and only if Tr(w2) = 0, where w2 is

defined by Equation (5.7). From Equation (5.3) we can obtain

Tr(w1) = Tr

(
Q̃2

0x
+

ỹ2

x̃2
+ x̃2 +

ỹ

x̃
+ x̃ + a +

b

Q̃2
0x

)
,

= Tr(Q̃0x
) + Tr(a) + Tr

(
b

Q̃2
0x

)
,

which corresponds to Tr(w2), i.e., Tr(w1) = Tr(w2). Then (i) and (ii) are true since

Tr(w1) (and Tr(w2)) depends on Q̃0x
and not on Q̃1x

, x̃, or ỹ.

In some cases, these error-detecting approaches fail to detect the same vectors.

As illustrated in Figure 5.2, this happens in about 22m+1 of the possible combina-

tions of arbitrary (Q̃0x
, Q̃1x

, x̃, ỹ). This is explained in the following lemma.

Lemma 5.3 Let l, r, s, u, and v be defined as in Lemma 5.2.

(i) There exists a vector (r, s, u, v) for which PV((r, l)) = 1 and CC1(r, s, u, v) =

1, i.e., cases where both Algorithms 5.1 and 5.3 fail in detecting the same

vector (Q̃0x
, Q̃1x

, x̃, ỹ) (the overlapping area in Figure 5.2).

(ii) For all cases where (i) is satisfied, εP is either 0 or r · u (i.e., 0 or x̃Q̃0x
).

(iii) The number of combinations that satisfies (i) is about 22m+1.
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Figure 5.2: Error detection coverage for arbitrary (Q̃0x
, Q̃1x

, x̃, ỹ)

Proof For having the same vector (Q̃0x
, Q̃1x

, x̃, ỹ) for which both PV(Q̃0) = 1 and

CC1(Q̃0x
, Q̃1x

, x̃, ỹ) = 1, it is necessary from Equations (5.4-5) and (5.8-9) that

either

Q̃1x(a)PV = Q̃1x(a)CC1 or Q̃1x(a)PV = Q̃1x(b)CC1.

Clearly, if one of these conditions is satisfied, then either Q̃1x(b)PV = Q̃1x(a)CC1 or

Q̃1x(b)PV = Q̃1x(b)CC. If we equate Equations (5.4) and (5.8), and Equations (5.4)

and (5.9) we obtain

x̃Q̃0x
Tr

(
Q̃0x

+
ỹ

x̃
+ x̃

)
= εP , (5.10)

x̃Q̃0x

[
Tr

(
Q̃0x

+
ỹ

x̃
+ x̃

)
+ 1

]
= εP , (5.11)

respectively. Depending on the value of Tr(Q̃0x
+ ỹ

x̃
+ x̃), Equations (5.10) and

(5.11) are reduced, one to

εP = 0, (5.12)
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and the other to

εP = x̃Q̃0x
, (5.13)

which shows that (i) and (ii) are true. In summary, for a given vector (Q̃0x
, Q̃1x

, x̃, ỹ),

if Q̃0x
, Q̃1x

, x̃, and ỹ satisfy either Equation (5.4) or (5.5), and either Equation

(5.12) or (5.13), then PV(Q̃0) and CC1(Q̃0x
, Q̃1x

, x̃, ỹ) do not detect such an erro-

neous vector. Now let us obtain the number of combinations that satisfies (i). Let

us consider separately the cases where εP = 0 from those with εP = x̃Q̃0x
:

• Case 1: εP = 0. Here P̃ ∈ E(F2m), where x̃ 6= Q̃0x
, and x̃ 6= 0. For each P̃

there are (#E(F2m)/2− 1) possible values of Q̃0x
with two solutions for each

one. Accordingly, for this case there are (#E(F2m)− 2)(#E(F2m)− 4) ≈ 22m

combinations.

• Case 2: εP = x̃Q̃0x
. From the definition of εP we have:

ỹ2 + x̃ỹ + x̃3 + ax̃2 + b + x̃Q̃0x
= 0. (5.14)

The resultant quadratic expression for ỹ will have a solution if and only if:

Tr

(
x̃ + a +

b

x̃2

)
= Tr

(
Q̃0x

x̃

)
. (5.15)

For arbitrary x̃, where x̃ ∈ F
∗
2m and x̃ 6= Q̃0x

the left side of Equation (5.15) is 0

in #E(F2m)−4 cases, i.e., it is the same condition for solving the quadratic on

the elliptic curve equation (Equation (2.3)). On the other hand, for arbitrary

Q̃0x
and x̃ the right side of this equation is expected to be 0 for one half of

the cases and 1 for the other half. As a consequence, Equation (5.15) will
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be satisfied in about half of the combinations for which two solutions for ỹ

are obtained for arbitrary Q̃0x
and x̃. Accordingly, for each possible value of

Q̃0x
we can have about 2m pairs of (x̃, ỹ) that satisfy Equation (5.14). Then

the number of combinations for which both Algorithms 5.1 and 5.3 fail when

εP = x̃Q̃0x
is (#E(F2m)− 2)2m ≈ 22m.

Adding the counts obtained when εP = 0 and εP = x̃Q̃0x
we obtain the value given

in (iii) (i.e., ≈ 22m+1).

From Lemma 5.3 we can deduce that if we combine PV(Q0) and CC1(Q0x
, Q1x

,

x, y) we can obtain a code rate of

cR ≈
2m + 1

4m
=

1

2
+

1

4m
. (5.16)

However, from this lemma we can also see that if εP = 0 both error detection

approaches have the same error detection coverage. This means that if we add

a point verification process to P (i.e., PV(P )), we can use either PV(Q0) or

CC1(Q0x
, Q1x

, x, y) and have an improved cR of about ≈ 1
2
. This code rate of

about 0.5 means that the number of redundant bits utilized for error detection is

about half of the length of the code.

5.1.4 PV and integrity check (IC) at the end of the ECSM

In the previous two subsections we have provided an analysis of two different ap-

proaches to detect errors in the Montgomery ladder ECSM. The first consists of

only verifying whether or not the result Q0 lies on E(F2m) which is a basic coun-

termeasure against fault-based attacks and has been considered by Biehl et al. [9],
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Figure 5.3: Error detection utilizing PV and IC processes

Ciet and Joye [21], Antipa et al. [6], Blömer et al. [14], and Domı́nguez and Hasan

[27]. The second approach consists of checking the coherency between the involved

variables which is an extension of the work presented by Giraud [37] in the context

of RSA cryptosystems. Even when both approaches (and their combination) give

a very good code rate, it is possible to have a further improvement with practically

no cost. The idea is to have an integrity check (IC) of P . That is, a verification

after the main loop to check whether or not the register containing P = (x, y)

corresponds to the original input point. Hence, IC does not involve computations

with other variables as required for CC. This idea is illustrated in Figure 5.3. The

IC process can be implemented using duplication and/or the well-known cyclic re-

dundancy check. Let us assume that this mechanism permits the detection of any

alteration on the register containing P .

Let us obtain the cases where the error-detecting scheme presented in Figure 5.3
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will not detect an erroneous output Q̃0 6= kP . Using function g, Q̃0y
is computed

as a function of Q̃0x
, Q̃1x

, x, and y. Replacing this value of Q̃0y
in Equation (5.2)

we get the following quadratic expression for Q̃1x

(
Q̃4

0x

x2
+ x2

)
Q̃2

1x
+

(
Q̃3

0x

x
+ xQ̃0x

)
Q̃1x

+Q̃2
0x

(
Q̃2

0x
+

y2

x2
+ x2 +

y

x
+ x + a

)
+b = 0.

The above equation has two solutions if and only if Tr(w3) = 0, where

w3 = Q̃2
0x

+ x2 +
b

x2
+

b

Q̃2
0x

. (5.17)

In such a case the two solutions for Q̃1x
are

Q̃1x(a) =
xQ̃0x

x2 + Q̃2
0x

Ht(w3), (5.18)

Q̃1x(b) =
xQ̃0x

x2 + Q̃2
0x

(Ht(w3) + 1) . (5.19)

Since P ∈ E(F2m) the following relation holds

x Ht

(
x +

b

x2
+ a

)
=





y or

x + y.

Utilizing these values, Equations (5.18) and (5.19) can be rewritten as follows

Q̃1x(a) =
xQ̃0x

x2 + Q̃2
0x

[
Ht(w′

3) +
y

x
+ x + Tr(x)

]
, (5.20)

Q̃1x(b) =
xQ̃0x

x2 + Q̃2
0x

[
Ht(w′

3) +
y

x
+ x + Tr(x) + 1

]
. (5.21)

where w′
3 = Q̃2

0x
+ b

Q̃2
0x

+a. Here for each possible value of Q̃0x
(i.e., (#E(F2m)/2−2))
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there are two solutions to Q̃1x
. Thus, the number of combinations where this scheme

fails in detecting an erroneous Q̃0 is #E(F2m)− 4.

For an arbitrary (Q̃0x
, Q̃1x

, x̃, ỹ), IC verifies any change in the register that

contains point P . This permits having the following cR:

cR =
log2(#E(F2m)− 4)

4m
≈ 1

4
, (5.22)

which represents the best value of cR obtained so far. This is mainly based on

the simple observation of checking the integrity of P . The overhead of this error-

detecting mechanism is quite low in comparison with the main ECSM procedure.

Assuming a random vector (Q̃0x
, Q̃1x

, x̃, ỹ), a code rate of 0.25 is equivalent of having

a theoretical probability of undetected error of 1/23m which is zero for any practical

scenario. However, the assumption of having a random vector of (Q̃0x
, Q̃1x

, x̃, ỹ)

might not be true for faults injected by a sophisticated attacker (e.g., SCF attack

for applications using elliptic curves defined over Fp).

5.1.5 Basic Montgomery’s ladder ECSM algorithm

We have shown that by using simple techniques such as PV and IC it is possible

to detect errors efficiently in the involved variables. Now, let us consider the basic

Montgomery ladder ECSM (Algorithm 2.5). As discussed in Subsection 2.3.1 this

algorithm uses the y-coordinate of the intermediate points Q0 and Q1 during the

ECSM computation. Thus, after the main loop we have all the point coordinates

of Q0 = kP and Q1 = (k+1)P . Let us add a PV process for Q0 and one IC process

to P at the end of the ECSM, i.e., PV(Q0) and IC(P ). Now let us define a CC

function as
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CC2(Q0, Q1, P ) =





ok = 1 if Q0 ] P = Q1,

0 otherwise.

Since Q0, Q1, P ∈ E(F2m), for each pair (Q0, P ) there is only one value of Q1 for

which CC2(Q0, Q1, P ) = 1. Then, for an arbitrary vector (Q̃0, Q̃1, P̃ ) the value for

cR is

cR ≈
m

6m
=

1

6
. (5.23)

Even when this approach theoretically has an improved error detection capabil-

ity, it has an important drawback in terms of performance as illustrated in Table

5.1. This table compares the operation counts for ECSM among the Montgomery

ladder algorithms proposed by López and Dahab [58] (Algorithms 2.6 and 2.7),

the Montgomery ladder with PV at the end, the basic Montgomery ladder (Algo-

rithm 2.5), and the basic Montgomery ladder (Algorithm 2.5) with PV(Q0) and

CC2(Q0, Q1, P ). This table shows that the basic Montgomery ladder with PV(Q0)

and CC2(Q0, Q1, P ) requires about double the number of finite field multiplications

in comparison with the Montgomery ladder with PV at the end for the algorithms

that use the affine system, i.e., 4tM vs. (2t + 4)M . For the case of algorithms

that use the projective coordinate system, the basic Montgomery ladder algorithm

with PV(Q0) and CC2(Q0, Q1, P ) requires about the triple more finite field mul-

tiplications than the Montgomery ladder with PV at the end, i.e., (18t − 6)M vs.

(6t + 6)M .

5.1.6 Security discussion on Montgomery’s ladder method

In this section we have considered error detection in Montgomery’s ladder methods

for non-supersingular elliptic curves over the binary finite field. Note that the SCF



140 Algorithm-level Error Detection for ECSM

Coordinate
system

ECSM Method Operations required for the
ECSM

Montgomery ladder 1 (2t− 1)I + (2t + 2)M + 2tS

Affine Montgomery ladder with PV(Q0)
1,2 (2t− 1)I +(2t+4)M +(2t+2)S

(A) Basic Montgomery ladder 3 (2t− 2)I +(4t− 4)M +(2t− 2)S

Basic Montgomery ladder with
PV(Q0) and CC2(Q0, Q1, P ) 3,4

(2t− 1)I + 4tM + (2t + 1)S

Montgomery ladder 5 1I + (6t + 4)M + (5t− 2)S

Projective Montgomery ladder with PV(Q0)
5,2 1I + (6t + 6)M + 5tS

(LD) Basic Montgomery ladder 3 1I + (18t− 18)M + (9t− 9)S

Basic Montgomery ladder with
PV(Q0) and CC2(Q0, Q1, P ) 3,4

1I + (18t− 6)M + (9t− 1)S

1Using Algorithm 2.6. 2With error detection scheme of Figure 5.3. 3Using Algorithm 2.5.

4With PV(Q0) and CC2(Q0, Q1, P ). 5Using Algorithm 2.7.

Table 5.1: Operation counts for computing the ECSM utilizing error detection at
the algorithm level for Montgomery’s ladder method

attack proposed by Blömer et al. [14] only applies to applications using curves over

Fp, and not for those using curves defined over F2m . Additionally, because of its

uniformity this method is resistant to attacks based on timing [52] and simple power

analysis [53].

For invalid-curve attacks, including those discussed in Chapter 3, verifying if

the output is in E(F2m) is crucially important. For all the approaches presented

in this section that utilize PV and/or CC the output always relies on the original

elliptic curve. In DFA, the attacker needs to inject faults in a given location during

a number of runs during the ECSM algorithm and obtain erroneous results. How-

ever, as we have shown in this section the error detection coverage of the methods

presented is quite high. This makes DFA impractical. However, “a security sys-



5.2. Error detection in ECSM by double-and-add-always 141

tem is only as strong as its weakest link. It doesn’t matter how strong the other

parts are” [31]. For applications utilizing elliptic curves over F2m , from the attacker

point of view, PV (or CC1 or CC2) can be seen as a strong protection that does

not permit producing any faulty results as output. Then, the question is how this

type of protections can be bypassed. And, in such a case what protections should

be added against these strong adversaries. In Section 5.3 we consider the scenario

where the attacker can inject a fault in the main algorithm and then bypass an

error detection mechanism based on decisional tests (e.g., “if (PV(Q) = 1) then”).

5.2 Error detection in ECSM by double-and-add-

always

In this section we consider error detection in the double-and-add-always ECSM

method proposed by Coron [23] for preventing the SPA attack. This method is

based on adding dummy instructions to make the number of point operations con-

stant during the main loop. However, Yen and Joye [91] and Yen et al. [92] have

shown that adding dummy instructions makes possible an SE attack.

Here we first present a left-to-right version of the double-and-add-always that is

resistant to attacks such as SE and DFA attacks. As we discussed in Chapter 2, for

applications utilizing projective coordinates the left-to-right version permits the use

of mixed coordinates. Thereafter, we present an extension of the right-to-left version

presented in the context of RSA cryptosystems by Boscher et al. [16] (Algorithm

2.10). For this approach we use the concepts of PV, CC, and IC presented in the

previous section. We show that this ECC version of this Algorithm can prevent not
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only SE and DFA attacks but also the SCF attack. This is an interesting result,

since to the best of our knowledge the only countermeasures proposed against SCF

attack are to use a called combined curve [14], utilizing the Montgomery ladder

algorithm without the y-coordinates, and those that use scalar randomization [27].

For this section, let us consider elliptic curves defined over either F2m or Fp, i.e.,

Fq.

5.2.1 Left-to-right ECSM by double-and-add-always

Compared to Algorithm 2.1, Algorithm 2.3 adds a dummy instruction in Step 2.3

whenever the scanned bit of the scalar is 0, i.e., if kl = 0 Step 2.3 becomes Q0 ← Q0

for any l ∈ [0, t − 1]. Since the value of Q1 is not utilized when kl = 0 and it is

overwritten at i = l + 1 with Q1 ← Q0 ] P , it can be target of the SE attack.

The idea is to modify this algorithm in such a way that even during dummy

instructions the alteration of the related registers could be detected. The resultant

method is presented as Algorithm 5.4. Here, Q0 follows the same sequence of oper-

ations as the original double and add method (Algorithm 2.1), i.e., each interaction

Q0 is doubled and if ki = 1 then it is added with P . On the other hand, Q1 will

change only during the dummy instructions, i.e., whenever ki = 0, Q1 will be added

to P . In this way at the end of the loop Q1 = H(k)P , where H(k) denotes the

Hamming weight of the binary complement of k, i.e., k = 2t− k− 1. Note that the

output Q0 does not depend on Q1. However, for defending against an SE attack

we can check any alteration on Q1 utilizing the following CC function:

CC3(k, P,Q1) =





ok = 1 if Q1 = H(k)P,

0 otherwise.
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Since H(k) ∈ [0, t − 1], in the worst case the scalar multiplication H(k)P takes

2dlog2(t−1)e point operations. For example, for an elliptic curve defined over F2163

and t = m, H(k)P takes at the most 16 point operations. If P is known a priori,

we can precompute jP for j ∈ [2, t − 1] and store those results in a table. Since

k and P are verified for integrity, and assuming that the computation of H(k)P is

error free, CC3 function will detect any alteration in Q1 resulting in an effective

defense against the SE attack.

Algorithm 5.4. Left-to-right double-and-add-always ECSM with PV and CC

Input: P = (x, y) ∈ E(F2m) of order n, where n is an odd prime. A positive integer

k = (kt−1 · · · k1k0)2.

Output: Q = kP .

1. Q0 ← O, Q1 ← O.

2. For i = t− 1 downto 0 do

2.1 Q0 ← 2Q0.

2.2 Qki
← Qki

] P.

3. If ((PV(Q0) = 1) and (IC(P ) = 1) and (CC3(Q1, k, P ) = 1)) then

3.1 Return(Q0);

4. Else return(“Error detected”).

In addition to the SE attack protections, Algorithm 5.4 includes PV and IC

processes. This permits for an arbitrary vector (Q̃0, Q̃1, P̃ ) to have a code rate

equivalent to the basic Montgomery ladder ECSM, i.e., from Equation (5.23) cR ≈
1
6
. Even when this code rate might be quite good for some cases (e.g., random

errors), for curves defined over Fp Algorithm 5.4 is insecure against the SCF attack.
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In a similar way as described by Blömer et al. [14], if the attacker can change the

sign of the register containing the intermediate value of Q0 at random values of

i, then the attacker can retrieve the scalar. The problem of Algorithm 5.4 is that

PV is not sufficient to avoid the SCF attack, i.e., faulty points never leave E(Fp).

Additionally, the CC3 function does not verify alterations in Q0, i.e., CC3 verifies

alterations in Q1 that permits to resist the SE attack. In the next subsection we

show that using another CC function it is possible to resist the SCF attack for the

right-to-left version of ECSM by double-and-add-always.

5.2.2 Right-to-left ECSM by double-and-add-always

Similar to the left-to-right version, Algorithm 2.4 performs a dummy instruction

during the main loop (i.e., Q0 ← Q0) when kl = 0 at Step 2.3, for l ∈ [0, t − 1].

Extending to ECC the idea from Boscher et al. [16], it is possible that Q1 could

hold a computation, different than kP , that could be checked at the end of the

ECSM. The resultant method is presented as Algorithm 5.5. After the main loop

the expected value of the following points is:

Q0 = kP,

Q1 = kP,

Q2 = 2tP,

where k = 2t − k − 1. Note that if we add Q0, Q1, and P we obtain

Q0 ]Q1 ] P = kP ] (2t − k − 1)P ] P = 2tP = Q2.
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Hence, for verifying the coherency among these points we can use the following CC

function

CC4(Q0, Q1, Q2, P ) =





ok = 1 if Q2 = Q0 ]Q1 ] P,

0 otherwise.

In addition to CC, Algorithm 5.5 includes PV and IC processes. This permits for

an arbitrary vector (Q̃0, Q̃1, Q̃2, P̃ ) to have a code rate cR ≈ 1
4
.

Algorithm 5.5. Right-to-left double-and-add-always ECSM with PV and CC

Input: P = (x, y) ∈ E(F2m) of order n, where n is an odd prime. A positive integer

k = (kt−1 · · · k1k0)2.

Output: Q = kP .

1. Q0 ← O, Q1 ← O, Q2 ← P.

2. For i = 0 to t− 1 do

2.1 Qki
← Qki

]Q2.

2.2 Q2 ← 2Q2.

3. If ((PV(Q0) = 1) and (PV(Q1) = 1) and (CC4(Q0, Q1, Q2, P ) = 1) and

(IC(P ) = 1)) then

3.1 Return(Q0);

4. Else return(“Error detected”).

Security Analysis on Algorithm 5.5

As we discussed earlier, a DFA attack becomes impractical when PV of the output

is performed. However there are two attacks, namely SE and SCF, for which PV

does not provide enough protection. Let us consider these two attacks on Algorithm

5.5.
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SE Attack: Let us assume that the attacker can inject one fault, single or

multiple-bit, in one variable during the ECSM. In fact, since the output Q0 does

not depend on intermediate values of Q1, the register holding the latter point might

be exploited for mounting the SE attack. Suppose that the attacker injects a fault

in Q1 at a specific iteration i, i.e., Q1,i becomes Q̃1,i. This error will propagate

for subsequent values of the variable Q1. At the end the main loop we will have

Q̃1 6= kP . Here Algorithm 5.5 provides a two-level protection. The first is with

PV of variable Q1. For a random error in the corresponding coordinates of Q1,i,

PV(Q1) might be sufficient to make SE impractical. However, suppose the attacker

can inject a fault in such a way that Q̃1,i ∈ E(Fq) (e.g., SCF attack). For this case

PV(Q̃1) = 1 and CC4 provides a second protection. Here, CC4 will compute

Q0 ] Q̃1 ] P = (k + 1)P + Q̃1.

The latter value will be equal to Q2 (i.e., CC4(Q0, Q̃1, Q2, P ) = 1) if, and only if,

Q̃1 = (2t − k − 1 + jn)P, (5.24)

where j is an integer and n = ord(P ). For these exceptional cases PV and CC4

will fail detecting such errors. However in our opinion this is unlikely to happen in

practice for the following reasons. First, the only known attack where Q̃1 ∈ E(Fq)

is the SCF attack. Secondly, even if an SCF is injected on Q1,i, the attacker is

unlikely to have the precision for obtaining a final result Q̃1 that satisfies Equation

(5.24) since he/she does not know k. As a result, Algorithm 5.5 can be considered

as SE resistant.
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SCF Attack: Let us assume that the attacker can inject one SCF into an in-

termediate point of Algorithm 5.5 at some random and unknown loop iteration

i ∈ [0, t−1]. This fault model is similar to the assumed by Blömer et al. [14]. Since

the intermediate values of Q0 and Q2 are used for computing the final result of the

ECSM, these two points might be susceptible to an SCF attack. From Equation

(2.6), we can obtain the output of Algorithm 5.5 Q0 = kP as

Q0 = kt−12
t−1P ] kt−22

t−2P · · · ] ki+12
i+1P ] ki2

iP · · · ] k12P ] k0P︸ ︷︷ ︸
Q0,i

,

=
t−1∑

j=i+1

kj2
jP ]Q0,i, (5.25)

where Q0,i is the intermediate value of Q0 during some loop iteration i ∈ [0, t −
1], i.e., Q0,i =

∑i
j=0 kj2

jP. Now, let us consider separately an SCF attack on

intermediate values of Q0 and Q2.

• SCF attack targeting Q0 in Step 2.1. Assume that the attacker mounts an

SCF attack on Q0 at some loop iteration i ∈ [0, t−1], such that Q̃0,i = −Q0,i.

From Equation (5.25) we have

Q̃0 =
t−1∑

j=i+1

kj2
jP −Q0,i =

t−1∑

j=i+1

kj2
jP −

i∑

j=0

kj2
jP .

The above expression can be rewritten as

Q̃0 = Q0 − 2
i∑

j=0

kj2
jP .

Note that if the attacker knows Q̃0 and Q0, and i is small enough for doing

an exhaustive search, then he/she can obtain the i+1 least significant bits of
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k. This can be repeated for different and ascending values of i utilizing the

known bits of k until the retrieval of the complete scalar. However, CC4 does

not permit to release any Q̃0 6= Q0 since

Q̃0 ]Q1 ] P = −2
i∑

j=0

kj2
jP ] 2tP,

which does not match with Q2 = 2tP for
∑i

j=0 kj 6= 0. Hence, CC4 protects

Algorithm 5.5 for the SCF attack in Q0,i.

• SCF attack targeting Q2 in Step 2.2. For this case the SCF attack is on Q2 at

some loop iteration i ∈ [0, t− 1], such that Q̃2,i = −Q2,i. Since Q2,i = 2i+1P,

Q̃2,i = −2i+1P, and at the end of the loop we have

Q̃2 = −2tP .

From Equation (5.25) we can obtain the faulty value Q̃0 at the end of the

loop as

Q̃0 = Q0,i −
t−1∑

j=i+1

kj2
jP =

i∑

j=0

kj2
jP −

t−1∑

j=i+1

kj2
jP ,

which can be expressed as

Q̃0 = 2
i∑

j=0

kj2
jP − kP .

Similarly, it can be shown that the final value of Q̃1 is

Q̃1 = 2
i∑

j=0

kj2
jP − kP .
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Then, with these values CC4 will compute

Q̃0 ] Q̃1 ] P = 2
i∑

j=0

kj2
jP ]

i∑

j=0

kj2
jP − kP − kP,

= 2
i∑

j=0

2jP ] 2P − 2tP,

= 2i+2P − 2tP,

which matches Q̃2 = −2tP if, and only if,

2i+2P = O.

The latter cannot be true if the order of P is prime. As a result, CC4 will

detect any SCF attack in Q2,i.

Under the same fault model as the utilized by Blömer et al. [14], Algorithm 5.5 is

SCF attack resistant. This is an interesting result because this algorithm does not

use a combined curve [14] or randomization as RC and PC schemes presented in

Chapter 4. This protection is based on CC among the involved variables and it

resists both the SE and the SCF attacks.

5.2.3 Costs for ECSM by double-and-add-always

In this section we have presented double-and-add-always ECSM methods that are

resistant to both DFA attack and SE attack. The former is prevented simply by

performing a PV of the output. For the algorithms presented in this section the SE

attack is prevented with a CC of the variables involved. In Table 5.2 we present
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Double-and-add- Coordinate SE-DFA- Operations required for the

always method system resistant ECSM

Left-to-right 1 A No 2tI + 4tM + 2tS

LD No 1I + (12t + 2)M + (10t + 1)S

Right-to-left 2 A No 2tI + 4tM + 2tS

LD No 1I + (18t + 2)M + (9t + 1)S

Left-to-right with A Yes 2t′I + (4t′ + 2)M + (2t′ + 2)S 5

PV and CC 3 LD Yes 1I + (12t′ + 4)M + (10t′ + 3)S 5

Right-to-left with A Yes (2t+2)I +(4t+8)M +(2t+6)S

PV and CC 4 LD Yes 1I + (18t + 31)M + (9t + 18)S

1Using Algorithm 2.3. 2Using Algorithm 2.4. 3Using Algorithm 5.4 to obtain kP and Algorithm

2.3 for H(k)P. 4Using Algorithm 5.5. 5t′ = t + dlog2(t − 1)e.

Table 5.2: Operation counts for the double-and-add-always ECSM method for
curves defined over F2m

the cost in terms of finite field operations for the double-and-add-always algorithms

utilizing elliptic curves defined over F2m . The first four rows present the cost of

Algorithms 2.3 and 2.4 which do not include any error-detecting processes. In

contrast, the last four rows shows their counterparts that includes PV and CC (Al-

gorithms 5.4 and 5.5). Table 5.3 shows estimates of these costs for a specific value

of t = m = 163. In this table we can notice an overhead in terms of finite field oper-

ations for the algorithms that include PV and CC for error detection in comparison

with the algorithms without error detection. For affine coordinates, these overheads

are approximately 4.91%I +5.06%M +5.32%S and 0.61%I +0.92%M +1.23%S for

Algorithms 5.4 and 5.5, respectively. On the other hand, for the projective coordi-

nates case, the overheads are of about 4.95%M +5.08%S and 1.00%M +1.07%S for

Algorithms 5.4 and 5.5, respectively. Additionally, we can notice a speed advantage



5.2. Error detection in ECSM by double-and-add-always 151

Double-and-add-always method Coordinate Field operations

system I M S

Left-to-right 1 A 326 652 489

LD 2 1 1959 1142

Right-to-left 3 A 326 652 489

LD 1 2611 1305

Left-to-right with PV and CC 3 A 342 685 515

LD 2 1 2056 1200

Right-to-left with PV and CC 5 A 328 658 495

LD 1 2637 1319

1Using Algorithm 2.3. 2Using mixed coordinates for point addition. 3Using Algorithm

2.4. 4Using Algorithm 5.4 to obtain kP and Algorithm 2.3 for H(k)P, assuming H(k) =

dt/2e = 82. 5Using Algorithm 5.5.

Table 5.3: Number of finite field operations for the double-and-add-always ECSM
method for t = m = 163 for curves over F2163

of using the left-to-right versions over a their right-to-left counterparts when using

projective coordinates, e.g., 1I +1959M +1142S vs. 1I +2611M +1305S for Algo-

rithms 2.3 and 2.4, respectively; and 1I +2056M +1200S vs. 1I +2637M +1319S

for Algorithms 5.4 and 5.5, respectively. This is mainly for the use of mixed coor-

dinates.

Similarly, Table 5.4 shows the count of finite field operations for the double-and-

add-always algorithms utilizing elliptic curves defined over Fp. In addition, Table

5.5 gives estimates of these costs for a specific value of t, i.e., t = 192. For the

case of affine coordinates, in this table we can notice an overhead of approximately

4.17%I+4.30%M +4.51%S and 0.52%I+0.78%M +1.04%S for Algorithms 5.4 and

5.5, respectively. For the projective coordinates case, the overheads are of about
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4.20%M +4.31%S and 0.85%M +0.91%S for Algorithms 5.4 and 5.5, respectively.

Additionally, we have shown that the right-to-left version of the double-and-add-

always ECSM can be equipped with PV and CC in order to resist the SCF attack.

The overhead if the ECSM is computed in affine coordinates is of about 0.53%1.

For the case of Algorithm 5.5 utilizing projective coordinates, let us compare it

with the left-to-right version without error detection. The main reason is due to

the penalty for not using mixed coordinates. With this consideration, the overhead

of Algorithm 5.5 utilizing projective coordinates is about 27.4%1. This contrasts

with the 30− 40% reported by Blömer et al. [14] or about the 100% for RC or PC

schemes.

Double-and-add- Coordinate SE-DFA- SCF- Operations required for the

always method system resistant resistant ECSM

Left-to-right 1 A No No 2tI + 4tM + 3tS

J No No 1I + (12t + 3)M + (7t + 1)S

Right-to-left 2 A No No 2tI + 4tM + 3tS

J No No 1I + (16t + 3)M + (8t + 1)S

Left-to-right with A Yes No 2t′I + (4t′ + 1)M + (3t′ + 2)S 5

PV and CC 3 J Yes No 1I + (12t′ + 4)M + (7t′ + 3)S 5

Right-to-left with A Yes Yes (2t+2)I +(4t+6)M +(3t+6)S

PV and CC 4 J Yes Yes 1I + (16t + 29)M + (8t + 15)S

1Using Algorithm 2.3. 2Using Algorithm 2.4. 3Using Algorithm 5.4 to obtain kP and Algorithm 2.3 for H(k)P.

4Using Algorithm 5.5. 5t′ = t + dlog2(t − 1)e.

Table 5.4: Operation counts for the double-and-add-always ECSM method for
curves defined over Fp

1We assume that I = 80M and S = 0.85M as [40].
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Double-and-add-always method Coordinate Field operations

system I M S

Left-to-right 1 A 384 768 576

J 2 1 2307 1345

Right-to-left 3 A 384 768 576

J 1 3075 1537

Left-to-right with PV and CC 3 A 400 801 602

J 2 1 2404 1403

Right-to-left with PV and CC 5 A 386 774 582

J 1 3101 1551

1Using Algorithm 2.3. 2Using mixed coordinates for point addition. 3Using Algorithm

2.4. 4Using Algorithm 5.4 to obtain kP and Algorithm 2.3 for H(k)P, assuming H(k) =

dt/2e = 96. 5Using Algorithm 5.5.

Table 5.5: Number of finite field operations for the double-and-add-always ECSM
method for t = 192 for curves over Fp192

5.3 Double-fault attack resistant ECSM

Yen et al. [94] noted that error detection schemes based on decisional tests should

be avoided. Their observation relies on the fact that decisional tests depend on the

use of the zero flag of the CPU. Then, if the attacker can inject a fault in this bit of

the status register, the conditional test may be bypassed. Today’s smart cards are

equipped with countermeasures that protect sensitive registers with robust mech-

anisms [37]. In such a case this attack might not be possible. However, Kim and

Quisquater [48] showed that general propose microcontrollers can be target of a so

called double-fault attack, i.e., one attack to the RSA signature generation and the

other to status register (i.e., zero flag). Since there is a growing use of portable and

embedded systems that may not be protected for this type of attack, some protec-
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tions should be added. In this section we present algorithm level countermeasures

against this type of attacks for ECSM.

Fault Model. The attacker can mount two attacks during one run of the ECSM

algorithm. The first to the main algorithm in order to corrupt operations that

depend on sensitive information (i.e., scalar k). The second to any decisional test

used even on those with error detection procedures (e.g., “if (PV(Q) = 1) then”).

Let us base our countermeasure on Montgomery’s ladder ECSM for non-super-

singular elliptic curves over the binary finite field proposed by López and Dahab

[58] (Algorithm 2.6). However, these concepts can generally be extended to the

corresponding Montgomery’s ladder ECSM for prime fields presented by Brier and

Joye [17]. Since SCF attack does not apply to Montgomery’s ladder ECSM methods

that do not use the y-coordinate for computing the ECSM, under this double-fault

model the most dangerous threat is the DFA attack. An effective defensive measure

against this attack can be achieved adding randomness to the computation in such

a way that the attacker cannot obtain useful information from a faulty output. In

fact, if a projective coordinate system is utilized one can simply apply base point

randomization [23] for making DFA impractical. However, for the affine system we

can use the concept of point “blinding” presented by Coron [23]. The idea is to add

a random point R to the initial values of Q0 and Q1. Let r be defined as r = logP R,

i.e., R = rP . Using Equation (2.7), the original Montgomery ladder algorithm sets

Lt−1 = 1 and Mt−1 = 2 (i.e., Q0 = P and Q1 = 2P ), and we use Equation (2.8)

repeatedly for i from t − 2 to 0 to obtain Q0 = kP and Q1 = (k + 1)P . Now, we

can set Lt−1 = 1 + r and Mt−1 = 2 + r (i.e., Q0 = P ] R and Q1 = 2P ]R). Note

that since R is added initially to both Q0 and Q1, at each iteration during the loop
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their corresponding part dependent on R is doubled. Thus, after the main loop the

following is obtained:

Q0 = kP ] 2t−1R,

Q1 = (k + 1)P ] 2t−1R.

Then, to obtain Q = kP we need to compute Q = Q0 − 2t−1R. This is depicted in

Figure 5.4. The complete procedure that implements this version of Montgomery’s

ladder is presented as Algorithm 5.6. In this way, if the attacker can inject a

fault to avoid the conditional test of Step 10, then the output’s finite field pair

will be released regardless of whether it is or not in E(F2m). However, if the

attacker also injects a fault during the main loop, where the sensitive information

is utilized, the output might be not useful since he/she does not know R. In fact,

a requirement for mounting the DFA proposed by Biehl et al. [9] is to know the

details of the implementation, such as the parameters, the algorithm utilized, and

the representation of internal variables. The latter is not satisfied by adding a

random point R to the initial values of Q0 and Q1. The overhead of Algorithm 5.6

in comparison with Algorithm 2.6 that does not include any fault attack protections

is about 50% more field multiplicative inverses and squarings, and about 100% more

field multiplications, i.e., (3t + 3)I + (4t + 6)M + (3t + 7)S vs. (2t + 1)I + (2t +

1)M + (2t + 1)S.
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Figure 5.4: Blinding point P for the Montgomery ladder ECSM

Algorithm 5.6. Double-fault attack resistant Montgomery ladder ECSM

Input: P = (x, y) ∈ E(F2m) of order n, where n is an odd prime. A positive integer

k = (kt−1 · · · k1 k0)2, where kt−1 = 1, k 6= n, and k 6= n± 1.

Output: Q = kP .

1. Pick a random point R = (Rx, Ry) ∈ E(F2m) with odd prime order.

2. Q2 ← −R.

3. T ← (y + Ry)/(x + Rx).

4. Q0x
← T 2 + T + x + Rx + a.

5. T ← x/(x + Q0x
).

6. Q1x
← T 2 + T + Rx

7. For i = t− 2 downto 0 do

7.1 T ← x(Q0 ]Qki
), Q1x

← x(Q1 ]Qki
), Q0x

← T , Q2 ← 2Q2.
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8. Q0y
= g(Q0x

, Q1x
, x, y).

9. Q0 ← Q0 ]Q2.

10. If ((PV(Q0) = 1) and (PV(Q2) = 1) and (IC(P ) = 1) and (Q0x
6= 0) and

(Q0x
6= x)) then

10.1 Return(Q0);

11. Else return(“Error detected”).

5.4 Conclusion

In this chapter we have presented error-detecting schemes at the algorithm level

for ECSM. We have used PV in conjunction with CC functions that are algorithm

dependent. In the Montgomery ladder algorithm, we have considered the use of PV

of the output and the concept of CC. In fact, we have shown that if we verify the

integrity of the input point P (i.e., IC(P )), these two approaches are equivalent with

respect to their error detection coverage. In this way, we can use PV of the output

along with IC of P to have an improved error detection coverage with negligible

cost. The double-and-add-always ECSM method presented by Coron [23] have

been shown to be susceptible to the SE attack [91] [92]. In this chapter, we have

presented the left-to-right and the right-to-left methods which provide resistance

to the SE attack by utilizing CC among selected variables. Additionally, we have

shown that for the right-to-left ECSM by double-and-add-always it is possible to

resist the SCF attack presented by Blömer et al. [14]. This result is interesting since

this algorithm do not use the combined curve [14], or the use randomization as RC

and PC schemes. For applications utilizing affine coordinates it has a negligible cost
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in terms of additional finite field operations needed (i.e., less that 1% for t ≥ 192).

And even, for the case of projective coordinates, we have noted that the cost is of

about 27.4% for t = 192. This value is less than the 30− 40% reported by Blömer

et al. [14], or about 100% for schemes like RC or PC. Finally, we have considered

the case where an attacker could mount a double-fault attack. Even with this

strong fault model, it is possible to avoid fault attacks by utilizing some type of

randomization. In this case we have utilized the concept of point blinding on the

Montgomery ladder ECSM method.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, several aspects of fault-based attacks and countermeasures for ECC

have been studied. We have presented a new fault-based attack against a popular

algorithm, namely the Montgomery ladder ECSM for curves over the binary field.

In addition, we have presented error-detecting schemes for ECSM at both module

and algorithm levels.

In Chapter 3, we have introduced an invalid-curve attack on the Montgomery

ladder ECSM algorithm proposed by López and Dahab. This attack is based on

the fact that curve parameter a is not utilized for point operation formulas in this

ECSM method. From an original group E(F2m), we have assumed that there exists

a weaker group with the same parameters except for a. We have shown that this

assumption is true for nine of the ten NIST-recommended elliptic curves over the

binary field. Under a specific fault model, we have presented two versions of this

159
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attack with their respective probabilities of success. This attack underlines the

importance of verifying the correctness of the ECSM operation.

Error detection is an essential task for protecting against fault-based attacks.

Applying some properties of elliptic curves, it is possible to detect errors during

the ECSM operation utilizing different techniques. The most obvious is to verify

if the output relies on the original elliptic curve. However, it has been shown that

in some cases this protection is not sufficient. Other techniques utilized to detect

errors during the ECSM computation have been presented in Chapters 4 and 5.

In Chapter 4, we have used the concepts of re-computation and parallel com-

putation to achieve error detection and fault tolerance on ECSM. By means of

this we have introduced encoding/decoding schemes suitable for ECSM which are

based on scalar and point randomization. The proposed structures permit us to

detect errors with high probability. Additionally they resist attacks such as the

SCF attack without modifying the curve parameters. This might be important for

crypto-processors that have fixed parameters (e.g., those recommended by NIST).

Also, utilizing a small ECSM prototype, we have presented experimental results for

the probability of undetected errors for the error-detecting structures presented.

We have also shown that, with two ECSM modules working in parallel, it is possi-

ble to have fault-tolerant schemes that will not only detect but also correct errors.

This contrasts with the three modules needed for the TMR based systems. Using

an FPGA as hardware target with an NIST-recommended elliptic curve over F2163 ,

we have shown that the savings in terms of area with respect to TMR based ECSM

is about 24.8% for DMR PV and 23.6% for PRC.

In Chapter 5, we have presented error detection at the algorithm level for ECSM.

We have utilized the concepts of PV, CC, and IC. The idea of CC has been carried
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out by algorithm specific functions CC1-CC4. For the Montgomery ladder ECSM

algorithm for elliptic curves over the binary field, we have demonstrated that PV has

the same error detection coverage as CC1 if an IC of the input point is performed.

We have shown that using PV and IC it is possible to have improved error detection

without degrading the performance. This contrasts with the notable error detec-

tion coverage of the basic Montgomery ladder ECSM algorithm where the penalty

in performance might be unacceptable. Utilizing CC as error-detecting technique,

we have proposed two versions of the double-and-add-always ECSM method (Algo-

rithms 5.4 and 5.5). We have shown that both algorithms resist the SE attack. In

addition, we have proved that the right-to-left version (Algorithm 5.5) resists the

SCF attack. This is the first countermeasure against the SCF attack reported in

the literature that does not use a combined curve [14] or randomization as RC and

PC schemes presented in Chapter 4. For today’s applications, where t ≈ 192, we

have shown that our countermeasure has a overhead in terms of finite field opera-

tions of about 0.8% when using the affine coordinate system and about 27.4% for

applications utilizing the projective coordinate system. These values contrast with

the overhead utilizing a combined curve (i.e., 30− 40% [14]) or re-computation or

parallel computation (i.e., about 100% for RC and PC schemes).

6.2 Future work

In Chapter 4, we have presented experimental results for probabilities of undetected

errors with a small prototype. The fault model utilized was based on single-bit

stuck-at faults into the gates used for finite field operations. It would be interesting

to obtain results for other fault models such as flip-bit faults in registers holding
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partial results of the ECSM and/or multiple-bit faults. Additionally, it would

also be interesting to obtain experimental results for the ECSM with protections

at the algorithm level described in Chapter 5. Also we are interested to have

some experimental results for a real size system, e.g., m = 163, used in practical

applications.

A basic assumption for the error-detecting and fault-tolerant structures for

ECSM presented in Chapter 4 is that all modules except the ECSM module are

implemented in a secure environment. It would be interesting to design those extra

modules using error detection and/or fault tolerant techniques and show that this

assumption can be carried out in practice.

In Chapter 5 we have considered algorithms that do not use precomputation. It

is well known that if P is fixed the ECSM can be speeded up by precomputing some

data that depends exclusively on P . Some ECSM methods that use this principle

are: fixed-base windowing, fixed-base comb, and interleaving. It would be interest-

ing to study protections for fault attacks on algorithms that use precomputation.

With some results of Chapter 5, we have noted the advantages of including

countermeasures against fault-attacks at the algorithm level. It would be interesting

to extend these concepts to fault-tolerance in ECSM.

Finally, it would also be interesting to extend some of the concepts of the re-

search work presented in this thesis to hyperelliptic curves.



Appendix A

Average Number of EC Discrete

Logarithms for Algorithm 3.3

In this appendix we include the computations of the average number of EC discrete

logarithms for Algorithm 3.3 using the second improved approach described on page

75. As assumed in Subsection 3.2.2, the fault location is at a random position of

the x-coordinate of the base point P . This assumption implies that the value of

k mod ni is at a random position in Tables Ai, where ni = ord(P̂i) and i ∈ {0, 1}.
Let us define the random variable w as the number of entries needed for having

k mod ni in both tables. The order of the possible values of w is shown in Figure

A.1 for the case c0 < c1.

Case: c0 = c1. In this case the accumulative probability distribution F (w) for

some given values is as follows:
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Figure A.1: Values of the random variable w according to entries of Tables A0 and
A1 considering c0 < c1

F (1) = 0 F (2) = 1/c2
0

F (3) = 2/c2
0 F (4) = 4/c2

0

F (5) = 6/c2
0 F (6) = 9/c2

0

F (7) = 12/c2
0 F (8) = 16/c2

0

...
...

F (2c0 − 1) = (c0 − 1)/c0 F (2c0) = 1

We can write F (w) as

F (w) =





(w2 − 1)/(4c2
0) w odd, and 1 ≤ w ≤ 2c0 − 1,

w2/(4c2
0) w even, and 2 ≤ w ≤ 2c0.
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Then the probability distribution f(w) = F (w)− F (w − 1) is

f(w) =





(w − 1)/(2c2
0) w odd, and 1 ≤ w ≤ 2c0 − 1,

w/(2c2
0) w even, and 2 ≤ w ≤ 2c0.

The mean µ can be expressed by

µ =

2c0∑

w=1

wf(w).

After performing a change of variables (i.e., y = w−1
2

and y = w
2

for the odd and

even number cases, respectively) µ can be re-written as

µ =
c−1∑

y=0

y(2y + 1)

c2
0

+

c0∑

y=1

2y2

c2
0

=
8c2

0 + 3c0 + 1

6c0

≈
4

3
c0 (for c0 >> 1). (A.1)

Case: c0 < c1. Similar to the previous case we can write F (w) for some given

values as follows

F (1) = 0 F (2) = 1/(c0c1)

F (3) = 2/(c0c1) F (4) = 4/(c0c1)

F (5) = 6/(c0c1) F (6) = 9/(c0c1)
...

...

F (2c0 − 1) = (c0 − 1)/c1 F (2c0) = c0/c1
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F (2c0 + 1) = (c0 + 1)/c1 F (2c0 + 2) = (c0 + 2)/c1

...
...

F (c0 + c1 − 1) = (c1 − 1)/c1 F (c0 + c1) = 1

We express F (w) as

F (x) =





(x2 − 1)/(4c0c1) x odd, and 1 ≤ x ≤ 2c0 − 1,

x2/(4c0c1) x even, and 2 ≤ x ≤ 2c0,

(x− c0)/c1 2c0 + 1 ≤ x ≤ c0 + c1.

For this case the probability distribution f(x) is

f(x) =





(x− 1)/(2c0c1) x odd, and 1 ≤ x ≤ 2c0 − 1,

x/(2c0c1) x even, and 2 ≤ x ≤ 2c0,

1/c1 2c0 + 1 ≤ x ≤ c0 + c1.

We can obtain the mean µ as follows

µ =

c0+c1∑

x=1

xf(x)

After performing a change of variables (i.e., y = x−1
2

and y = x
2

for the odd and

even number cases, respectively, where 1 ≤ x ≤ 2c0 ) µ can be expressed as
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µ =

c0−1∑

y=0

y(2y + 1)

c0c1

+

c0∑

y=1

2y2

c0c1

+

c0+c1∑

x=2c0+1

x

c1

,

µ =
3c2

1 − c2
0 + 6c0c1 + 3c1 + 1

6c1

. (A.2)

Case: c0 > c1. This case is vary similar to the previous case. In fact, from

Equation (A.2) we can perform the changes of variables c0 ← c1 and c1 ← c0 to

obtain the mean for this case:

µ =
3c2

0 − c2
1 + 6c0c1 + 3c0 + 1

6c0

. (A.3)





Appendix B

Example of Undetected Errors

with Point Negation

Encoding/Decoding

Suppose we compute the ECSM using re-computation (Figure 2.2) and point nega-

tion as encoding and decoding process using the affine coordinate system. Let the

elliptic curve utilized be E(a, b) and be defined over F2m . Assume that this scheme

is implemented in hardware with one fault in the ECSM module. For simplicity

assume that we have a stuck-at-1 fault, and it is located at the gate that gets bit i

of the y-coordinate ypi
as shown in Figure B.1. Let the elliptic curve points that are

input to the ECSM module at time t0 and t1 be P = (xp, yp) and −P = (xp, yp),

respectively, where xp = xp and yp = xp + yp. The input y-coordinates passing
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gate

0p
x

1p
x

2−mp
x

1−mp
x

0p
y

1p
y

2−mp
y

1−mp
y

ip
y

Q

p
x

p
y

),(
pp
yxP =

ECSM
module

Figure B.1: Stuck-at-1 fault at the gate that gets bit i of the y-coordinate

through the faulty gate are as follows:

ỹp = yp | (00 . . . 010...00),

ỹp = (xp + yp) | (00 . . . 010...00),

where the vector (00 . . . 010...00) has 0s in all its bits with the exception of bit

position i, and the operator | is a bit-wise OR.

If ypi
= 1 and xpi

+ypi
= 1, this fault does not produce any error in either of the

two ECSM runs (see Table B.1). This is because the i-th bit of both y-coordinates

is 1 and the fault does not change this bit’s value. Any other combination of ypi
and

xpi
+ ypi

gives a different value as shown in Table B.1. For the second (respectively

third) case we can see that an original input point, P (respectively −P ), is present

at time t0 (respectively t1). For these two cases the results will be different. This

is because it is necessary to have complementary points at both input modules in
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ypi
xpi

+ ypi
ECSM input at t0 (after the fault)

1 1 (xpi
= 0) (xp, ỹp), where ỹp = yp (i.e., P )

1 0 (xpi
= 1) (xp, ỹp), where ỹp = yp (i.e., P )

0 1 (xpi
= 1) (xp, ỹp), where ỹp 6= yp (i.e., 6= ±P )

0 0 (xpi
= 0) (xp, ỹp), where ỹp 6= yp (i.e., P1)

ypi
xpi

+ ypi
ECSM input at t1 (after the fault)

1 1 (xpi
= 0) (xp, ỹp), where ỹp = yp (i.e., −P )

1 0 (xpi
= 1) (xp, ỹp), where ỹp 6= yp (i.e., 6= ±P )

0 1 (xpi
= 1) (xp, ỹp), where ỹp = yp (i.e., −P )

0 0 (xpi
= 0) (xp, ỹp), where ỹp 6= yp (i.e., P2)

Table B.1: Possible alteration of the input coordinates

order to have the two outputs to match. For the fourth case, the input points are

different from P and −P , say P1 and P2. The resultant finite field element pairs

are the negative of each other, say P1 = −P2. Furthermore, they are not part of

the original elliptic curve E(a, b), but they are part of another elliptic curve, say

Ẽ(a, b̃). Because the point addition and doubling might not use the parameter b,

the two ECSM runs will be performed over Ẽ(F2m). When the computations are

complete, the two results will be the same but incorrect. In this particular case the

system will fail by accepting an erroneous result. Similar analysis and results can

be obtained for a stuck-at-0 fault at the same bit position of the y-coordinate (i.e.,

ypi
), or if the fault is located at the gate that gets the i-th bit of the x-coordinate

(i.e., xpi
).
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[13] J. Blömer, M. Otto, and J.-P. Seifert, “A new CRT-RSA algorithm secure

against Bellcore attacks,” in ACM Conference on Computer and Communica-

tions Security. ACM, 2003, pp. 311–320. 45

[14] ——, “Sign change attacks on elliptic curve cryptosystems,” in FDTC 2005:

Fault Diagnosis and Tolerance in Cryptography, ser. LNCS 4236. Springer-

Verlag, 2006, pp. 36–42. 4, 37, 38, 41, 97, 98, 136, 140, 142, 144, 147, 149, 152,

157, 158, 161

[15] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of eliminating

errors in cryptographic computations,” Journal of Cryptology, vol. 14, no. 2,

pp. 101–119, 2001. 2, 4, 33, 36, 45

[16] A. Boscher, R. Naciri, and E. Prouff, “CRT RSA algorithm protected against

fault attacks,” in WISTP 2007: Information Security Theory and Practices.

Smart Cards, Mobile and Ubiquitous Computing Systems, International Work-

shop, ser. LNCS 4462. Springer-Verlag, 2007, pp. 229–243. 45, 46, 47, 141,

144

[17] E. Brier and M. Joye, “Weierstraß elliptic curves and side-channel attacks,”

in PKC 2002: Public Key Cryptography, ser. LNCS 2274. Springer-Verlag,

2002, pp. 335–345. 25, 38, 154

[18] C.-L. Chen, “Formulas for the solutions of quadratic equations over GF (2m),”

IEEE Transactions on Information Theory, vol. 28, no. 5, pp. 792–794, 1982.

14

[19] D. V. Chudnovsky and G. V. Chudnovsky, “Sequences of numbers generated by



176 BIBLIOGRAPHY

addition in formal groups and new primality and factorization tests,” Advances

in Applied Mathematics, vol. 7, no. 4, pp. 385–434, 1986. 21

[20] M. Ciet and M. Joye, “Practical fault countermeasures for Chinese remainder-

ing based RSA,” in FDTC 2005: Workshop on Fault Diagnosis and Tolerance

in Cryptography, 2005, pp. 124–132. 45

[21] ——, “Elliptic curve cryptosystems in the presence of permanent and transient

faults,” Designs, Codes and Cryptography, vol. 36, no. 1, pp. 33–43, 2005. 34,

36, 37, 38, 41, 49, 83, 136

[22] H. Cohen and G. Frey, Eds., Handbook of elliptic and hyperelliptic curve cryp-

tography. CRC Press, 2005. 9, 21, 23, 42

[23] J.-S. Coron, “Resistance against differential power analysis for elliptic curve

cryptosystems,” in CHES 1999: Cryptographic Hardware and Embedded Sys-

tems, ser. LNCS 1717. Springer-Verlag, 1999, pp. 292–302. 5, 24, 90, 92, 141,

154, 157

[24] R. E. Crandall, “Method and apparatus for public key exchange in a crypto-

graphic system,” United States Patent 5,159,632, October 1992. 25

[25] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans-

actions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976. 1, 31

[26] A. Domı́nguez-Oviedo and M. A. Hasan, “Error-detecting and fault-tolerant

structures for ECC”,” CACR Technical Reports CORR 2005-10, University of

Waterloo, Tech. Rep., 2005. 86



BIBLIOGRAPHY 177

[27] ——, “Improved error-detection and fault-tolerance in ECSM using input ran-

domization,” CACR Technical Reports CACR 2006-41, University of Water-

loo, Tech. Rep., 2006, a revised version to appear in IEEE Transactions on

Dependable and Secure Computing. 41, 86, 136, 142

[28] N. Ebeid, “Key randomization countermeasures to power analysis attacks on

elliptic curve cryptosystems,” Ph.D. dissertation, University of Waterloo, 2007.

40

[29] N. Ebeid and M. A. Hasan, “On randomizing private keys to counteract DPA

attacks,” in SAC 2003: Selected Areas in Cryptography, ser. LNCS 3006.

Springer-Verlag, 2003, pp. 58–722. 92

[30] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4,

pp. 469–472, 1985. 31

[31] N. Ferguson and B. Schneier, Practical Cryptography. Wiley, 2003. 141

[32] FIPS 186-2 Digital Signature Standard (DSS), Federal Information Processing

Standards Publication 186-2. National Institute for Standards and Technology,

2000. 13, 88

[33] FIPS 186 Digital Signature Standard (DSS), Federal Information Processing

Standards Publication 186. National Institute for Standards and Technology,

1994. 1, 31

[34] G. Frey, “Applications of arithmetical geometry to cryptographic construc-



178 BIBLIOGRAPHY

tions,” in Proceedings of the Fifth International Conference on Finite Fields

and Applications. Springer-Verlag, 2001, pp. 128–161. 31

[35] R. Gallant, R. Lambert, and S. Vanstone, “Improving the parallelized Pollard

lambda search on anomalous binary curves,” Mathematics of Computation,

vol. 69, no. 232, pp. 1699–1705, 2000. 69

[36] P. Gaudry, F. Hess, and N. P. Smart, “Constructive and destructive facets

of Weil descent on elliptic curves.” Journal of Cryptology, vol. 15, no. 1, pp.

19–46, 2002. 31

[37] C. Giraud, “An RSA implementation resistant to fault attacks and to simple

power analysis,” IEEE Transactions on Computers, vol. 55, no. 9, pp. 1116–

1120, 2006. 45, 47, 136, 153

[38] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wire-

less Communication, Cryptography, and Radar. Cambridge University Press,

2005. 12
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