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Abstract
Access controls are mechanisms to enhance security by protecting data from unauthorized

accesses. In contrast to traditional access controls that grant access rights at the granularity of
the whole tables or views, fine-grained access controls specify access controls at finer granularity,
e.g., individual nodes in XML databases and individual tuples in relational databases.

While there is a voluminous literature on specifying and modeling fine-grained access con-
trols, less work has been done to address the performance issues of database systems with fine-
grained access controls. This thesis addresses the performance issues of fine-grained access
controls and proposes corresponding solutions. In particular, the following issues are addressed:
effective storage of massive access controls, efficient query planning for secure query evaluation,
and accurate cardinality estimation for access controlled data.

Because fine-grained access controls specify access rights from each user to each piece of
data in the system, they are effectively a massive matrix of the size as the product of the number
of users and the size of data. Therefore, fine-grained access controls require a very compact
encoding to be feasible. The proposed storage system in this thesis achieves an unprecedented
level of compactness by leveraging the high correlation of access controls found in real system
data. This correlation comes from two sides: the structural similarity of access rights between
data, and the similarity of access patterns from different users. This encoding can be embedded
into a linearized representation of XML data such that a query evaluation framework is able to
compute the answer to the access controlled query with minimal disk I/O to the access controls.

Query optimization is a crucial component for database systems. This thesis proposes an
intelligent query plan caching mechanism that has lower amortized cost for query planning in
the presence of fine-grained access controls. The rationale behind this query plan caching mech-
anism is that the queries, customized by different access controls from different users, may share
common upper-level join trees in their optimal query plans. Since join plan generation is an
expensive step in query optimization, reusing the upper-level join trees will reduce query opti-
mization significantly. The proposed caching mechanism is able to match efficient query plans
to access controlled query plans with minimal runtime cost.

In case of a query plan cache miss, the optimizer needs to optimize an access controlled
query from scratch. This depends on accurate cardinality estimation on the size of the interme-
diate query results. This thesis proposes a novel sampling scheme that has better accuracy than
traditional cardinality estimation techniques.
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Chapter 1

Introduction

Access controls are mechanisms to enhance security by protecting data from unauthorized ac-
cesses. They define what actions or operations a user is allowed to perform on a specific piece of
data. Traditional access control mechanisms for database systems are implemented by granting
users access rights to the entirety of the entities in the databases, such as tables and views. When
a user submits a query, all of the entities referred to in his query will be checked against the user’s
access rights. If one of the entities is inaccessible to the user, the whole query will be rejected.
Such mechanisms are also referred to as coarse-grained access controls.

As systems scale and become more complex, coarse-grained mechanisms fail to satisfy the
requirements imposed on modern database systems. For example, suppose a system has thou-
sands of users, each of whom is trying to see his payroll information. Suppose the payroll
information for all users is centralized inside one table, and each user is allowed to see only his
own information. Using a traditional coarse-grained access control mechanism, each user needs
to be provided with a distinct view containing only his information from the table. This will give
rise to thousands of views in the system just to implement one access control requirement.

In contrast to coarse-grained access controls, fine-grained access controls (FGAC) specify
access rights at finer granularity. For example, FGAC may specify, for each tuple or cell in a
relational table, or for each element or attribute in XML data, whether or not a user has read or
write access to that data. If we consider the users, the data, and the action modes (such as read,
write) as being three orthogonal dimensions, FGAC specifications can be modeled as a three
dimensional matrix with a true or false value in each cell indicating whether the corresponding
piece of data is accessible or inaccessible to the specific user under the specific action mode.
When a user submits a query, the system may provide a partial answer to the query based on the
accessible portion of the entities referred to in the query, instead of rejecting the whole query if
the user does not have access rights to the entirety of these entities.

FGAC enables us to fulfill sophisticated access control requirements much more efficiently
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2 Query Evaluation in the Presence of Fine-grained Access Control

than traditional coarse-grained access control does. Take the previous example in which users
query their payroll information. With FGAC, each tuple in the table is conceptually associated
with an extra attribute encoding the accessibility information for that tuple. The database system
only applies each user’s query on the tuples he has access to, by checking the tuples’ associated
access control information. Now we are able to treat access control information as part of the
data, by slightly modifying the schema. Recall that in the case of coarse-grained access control
we need to create thousands of views (schema objects) to fulfil this same requirement. By using
FGAC, not only is the schema cleaner, but the access control information is easier to manage, as
we shall see later in this thesis.

Moreover, FGAC is capable of enforcing access control requirements that are beyond the
expressiveness of coarse-grained access control. For example, coarse-grained access control is
based on views and will not change once data value changes. FGAC also allows the determina-
tion of more sophisticated access control rules, such as access control propagations and conflict
resolution. We will see more of these examples in Chapter 2. These features make FGAC an
effective mechanism for enforcing more sophisticated security requirements. Therefore, all ma-
jor database vendors have started to provide FGAC implementations in their products [78]. For
example, Oracle provides Virtual Private Database (VPD) [70] and Oracle Security Label (OLS)
[69] as two means of supporting FGAC, DB2 offers Label-Based Access Control (LBAC) [45],
and SQL Server delivers a similar label-based mechanism [66].

1.1 Motivation
While there is a voluminous literature on specifying and modeling FGAC, as we shall see in
Chapter 2, less work has been done to address the performance issues of database systems with
FGAC. A database system that supports FGAC will inevitably have components not found in a
traditional database system. These components will in turn affect query evaluation performance
and system maintenance.

Figure 1.1 depicts database query processing with and without FGAC. Compared to query
evaluation without FGAC (the left side of the figure), a system with FGAC needs to store the
FGAC specifications that correspond to the access control matrix mentioned in the previous
section. If access controls are implemented using the view-based approach describe in Chapter 2,
user queries must be modified so that they are applied against the user’s view of the database
objects. The optimizer needs both database statistics and the FGAC specifications to estimate
the cardinality of intermediate results for effective query planning for the modified user’s query.
When processing the query plan, the database engine needs to look up the accessibility of each
piece of data for the current user, if access controls are enforced through instance-based FGAC
(also see more in Chapter 2).
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From the above, we can summarize the following issues for database systems with FGAC:

1. FGAC specifications will incur extra storage and maintenance costs. As we will see in
Chapter 2, uncompressed FGAC matrix takes space proportional to the product of the
number of fine-grained data elements and the number of users.

2. When there are no access controls, a given query can be answered by the same query plan
regardless of which user submits the query. The database system only needs to optimize
this query once, as it can cache and reuse the query plan if the query is subsequently sub-
mitted by other users. With coarse-grained access controls, the database system only needs
to validate the users’ right to access each of the relations in the query before reusing the
same cached query plan. This checking can be done with negligible cost. However, with
FGAC, the same query submitted by different users will be rewritten into many different
queries according to the distinct users’ fine-grained access controls. These queries, known
as FGAC-customized queries, will have different structures and semantics, and may not
share the same optimal query plan. Therefore, the database system needs to compute
query plans for all these customized queries, adding significant cost to query optimization.

3. FGAC adds to the complexity of query optimization for each FGAC-customized query.
Without FGAC, the optimizer only needs to estimate the cardinality of data selected by
the queries. With FGAC, the optimizer needs to estimate the amount of data satisfying
both the original query and the access controls. If the access controls and the queries are
correlated, these cardinality estimations may have large errors and may therefore lead to
inefficient query plans.

4. Query execution will incur extra cost for checking access rights at runtime. Moreover,
if the FGAC specifications are not compressed, loading these specifications may incur
significant I/O cost. On the other hand, if the FGAC specifications are compressed to
alleviate the storage problem, the runtime cost to interpret such compressed specifications
can be high.

1.2 Contributions and Scope
This thesis addresses the issues outlined in the previous section, and makes the following contri-
butions:

1. A compact storage scheme called DOL (Document Ordered Labeling) for storing FGAC
specifications for XML databases. This storage scheme is scalable in the size of data and
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the number of users, and is easy to maintain. The DOL scheme achieves compression by
leveraging the high correlation of access controls found in real system data. This corre-
lation comes from two sides: the structural similarity of access rights among database,
and the similarity of access patterns of different users. This work addresses the first issue
defined in the previous section.

2. A scheme called POM (Partitioned query Optimization for Multiple users) for efficient
relational query planning in the presence of FGAC. POM is an intelligent plan caching
mechanism that reduces the amortized cost of query optimization of a large number of
FGAC-customized queries. The rationale behind this query plan caching is that the queries,
customized for different users’ access controls, may share common upper-level join trees
in their optimal query plans. Since join tree enumeration and creation are expensive op-
erations in query optimization, reusing the upper-level join trees will reduce query op-
timization significantly. This POM mechanism is able to match efficient query plans to
FGAC-customized queries with negligible runtime cost, and hence addresses the second
issue outlined in the previous section.

3. In case of a cache miss on a query plan from POM, the optimizer needs to optimize the
FGAC-customized query from scratch. This depends on accurate estimation of the cardi-
nality of intermediate query results. This thesis presents PSALM (Partitioned SAmpLing
for Multiple-user system), a synopsis structure that captures the distribution of data in the
presence of FGAC. More specifically, PSALM is a sampling scheme that provides more
accurate estimation of the cardinality of the data satisfying both the query and the access
controls than the traditional uniform sampling scheme. PSALM is compact and scalable
in the number of users with distinct access rights. This work addresses the third issue
mentioned in the previous section.

4. A query processing mechanism that efficiently verifies access rights. This thesis shows a
way of embedding the DOL representation of the access controls into a linearized repre-
sentation of XML data such that a query evaluation framework called NoK [98] is able
to compute the answer to the access controlled query with reduced disk I/O to the access
controls. This addresses the fourth issue in the previous section.

The scope of this thesis can be illustrated by the chart in Figure 1.2. This thesis focuses
on the issues that affect query evaluation performances and database architecture, and addresses
such issues for XML and relational databases. For query evaluation, we look at both query
optimization and query processing. For database architecture, we look at FGAC storage and
maintenance, and auxiliary data structures.
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Figure 1.2: Thesis contribution

The work of DOL covers both FGAC storage and query processing for XML data. The POM
scheme handles query optimization for relational data, and the PSALM work handles issues in
query optimization and auxiliary data structures for FGAC. The approach in PSALM can be
applied for both XML and relational data.

This thesis does not address the issues that are not relevant to query evaluation with FGAC,
such as the specification of FGAC. There is already a substantial amount of work in the field of
FGAC specification, as will be shown in Chapter 2.

1.3 Thesis Organization
This thesis is organized as follows: Chapter 2 presents background and related work on FGAC.
Chapter 3 presents the DOL representation of fine-grained access controls. Chapter 4 describes
the POM query optimization scheme. Chapter 5 presents the PSALM synopsis scheme. Chap-
ter 3, Chapter 4, and Chapter 5 together provide the solutions for the building blocks in a high-
performance database system with FGAC, as was illustrated in Figure 1.1. Chapter 6 concludes
the thesis with discussions and proposes future work.



Chapter 2

Background

This thesis addresses many aspects of query processing under the theme of FGAC. Because there
is a voluminous literature in the field of query evaluation, this thesis only includes related work
on query evaluation that is most relevant to the theme of the thesis. Furthermore, the related work
on query evaluation is split among the subsequent chapters for side-by-side comparison with the
thesis work. For similar reasons, we do not address any database security technologies [19] that
are not directly related to access controls, such as defending against inference attacks [29, 35],
privacy preservation through K-anonymity [59, 79, 86], intrusion detection [61], authentication
and encryption [17, 68, 87], watermarking [14, 84], and logging and auditing [50]. In this chapter
we provide an overview of related work in FGAC modeling and implementation.

2.1 Definition of FGAC
As mentioned in Chapter 1, database systems are increasingly being used to store information
for large, sophisticated applications. Data stored in these systems are vital business assets and
therefore need to be kept from unauthorized parties. Access controls, in general, provide such
protection to ensure that the data are not revealed or modified to certain users.

There are three essential elements in access controls for a database system: the users, the
data, and the reasons for access. Here the users can be the real users, or processes accessing the
databases. The data can be base tables, views, or other entities in the databases. The reasons for
access, also known as action modes, includes read, update, and others.

One way to model access controls is to think of them as a grid in a three-dimensional space,
where the X, Y, and Z axes of the space corresponding to the users, the data, and the reasons for
access. Each cell in this grid represents a mapping from a specific user, a data item, and a reason
for access to a decision of either accessible or inaccessible. Therefore, this three-dimensional

7
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space is also referred to as the access control matrix [42, 55].
For example, the traditional coarse-grained access control mechanism found in relational

database systems corresponds to an access control matrix with the users in the system forming
the users dimension, the tables and the views as the data dimension, and the action modes such as
read and update as the reasons for access dimension. Each cell in the matrix has a flag indicating
whether the user at that cell is able to read or update the corresponding data item.

Compared to the number of users and the number of data items, the number of elements in
the reasons for access dimension is usually a small constant. Therefore, we can remove this
dimension from the access control matrix by slicing the 3D matrix into a fixed number of two-
dimensional matrices, each having only the users and data dimensions. In the rest of the thesis,
we will focus on this two-dimensional representation for simplicity.

As we have already mentioned in Chapter 1, FGAC specifies access controls at a fine data
granularity. Speaking in terms of the access control matrix model, the major difference between
FGAC and the traditional coarse-grained access control is that the tables or the views (or the
whole XML documents) in the data dimension in coarse-grained access control matrix are now
replaced with rows, columns, or field (for relational data) or nodes (for XML data) in the FGAC
access control matrix.

2.2 Specifying Fine-grained Access Control
Because the size of the access control matrix is proportional to the number of items in the data
dimension, FGAC will have a much larger matrix representation than that of the coarse-grained
access control. Moreover, as the system scales up, more and more users are added to the scene.
Therefore, this matrix representation must have a compact implementation to be practical for
database systems.

One way to represent the matrix compactly is to record the cells as tuples of <user, object>,
where the existence of such tuple denotes that the user has access to the object. Such tuples
form an Authorization Relation [82]. If the tuples are clustered by the user column, this relation
is called a Capability List [19]; if the tuples are clustered by the object column, the relation
is called an Access Control List [19]. Even though these tuple-based representations take less
space than the original access control matrix, their sizes are still proportional to the product of
the number of users and the number of objects. With that size, FGAC specification and storage
is still cumbersome.

For this reason, sveral access control modeling techniques are proposed to implement FGAC
efficiently. Each of these modeling techniques is designed for a specific type of access control
needs. The Discretionary Access Control (DAC) [55] [82] model, which is heavily used in
operating systems and existing database systems, allows the owner of an object to dictate the
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access control based on his discretion. The Mandatory Access Control (MAC) [28][81] model,
which is mostly used in military information systems, has a hard-coded security level for each
object and each user in the system. A user with security level M can only read objects with
security level equal to or less than M , and can only write to objects with security level equal to
or higher than M . This way MAC is able to specify information flows in a strict top-down or
bottom up fashion. A third model, called Role-Based Access Control (RBAC), has received lots
of attention from researchers. The idea behind RBAC is to create roles and assign privileges to
the roles. Users are assigned to roles, and the roles can be assigned to other roles, forming a
subject hierarchy. A user derives his access rights from all his ancestors in the subject hierarchy.

It was shown in [71] [80] that RBAC is able to express both MAC and DAC. Therefore, we
will describe RBAC and its variants in the rest of this chapter.

2.2.1 Modeling Through Explicit Specifications
The power of RBAC is that a system administrator is able to define a few explicit access control
specifications corresponding to a few <user, object> cells in a two-dimensional access control
matrix. These explicit access control specifications can propagate to the other cells in the access
control matrix. After propagation, every cell in the matrix will be defined as either accessible or
inaccessible. The derived, unambiguous specifications over the entire two-dimensional matrix
are also referred to as the effective access control specifications.

The access control propagation procedure is based on hierarchy among the users or among
the data. Data often have a tree structure. One example of this tree structure is found in Unix file
systems. The users also form groups or subject hierarchies, as from the roles mentioned earlier.
One strategy to exploit such hierarchy is to specify explicit access rights for the roles or user-
groups in the subject hierarchy, or for the items in the data hierarchy. Then these explicit access
specifications are propagated by letting the children inherit accessibility from their ancestors, or
letting the users inherit access rights from their groups or roles. For example, the file system in
Windowsr operating system specifies that a file by default inherit its access controls from its
parent. On the other hand, users in UNIX file systems inherit their access rights from the user
groups. Hierarchy in the reason for access dimension and access rights propagation along that
dimension can be found in [53, 97].

Figure 2.1 shows an example of propagating explicit access control specifications to effective
access control specifications. Suppose we have the subject hierarchy as shown on the left side
in Figure 2.1, where a subject S3 derives his access rights from subject S2 and subject S1. The
three hollow dots in the matrix in the middle of the figure represent the explicit specifications.
Each hollow dot means the corresponding user is allowed access to the corresponding object at
the explicit specification level. If the propagation rule specifies that the descendant users inherit
access rights from their ancestors, these explicit specifications will propagate to produce the
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O1    O2    O3

S3
S2
S1

Raw AC  Effective AC 

O1    O2    O3

S3
S2
S1

S2

S1

S3

Subject hierarchy

Figure 2.1: Access control propagation

effective specifications on the right side in the figure, where the existence of a solid dot means
the user at the cell has access to the corresponding object.

In the rest of the discussion, we use the term subject to denote an item in the subject hierarchy,
which can be a user, a user-group, or a role. We also use the term object to denote an item in
the data hierarchy, which can be a tuple, a column, or a field in relational data or a node in XML
data.

2.2.2 Negative Authorizations
In the previous discussion, we assume the explicit access specifications are positive authoriza-
tions, i.e., they represent privileges granted to the subjects. However, lack of positive authoriza-
tion on a subject does not prohibit the subject from getting access rights. For example, the subject
can derive such access rights from its ancestor subjects. If we want to make sure that certain users
are never allowed access to some sensitive data, we will need a mechanism to explicitly enforce
such a requirement. A negative authorization allows the administrator to explicitly specify that
a subject cannot access an object, preventing that subject from being implicitly authorized to
access the object, e.g., through access rights propagation from the subject’s ancestors. Nega-
tive authorization is also an effective means to specify “exceptions” to access right assignments
within a large user group, in which only a few users do not have access to the same objects as the
other members of the group.

The effective access control specification must be consistent and complete, which means
every cell of the access control matrix must be defined as being either “accessible” or “inac-
cessible”. If a system allows both positive and negative explicit authorizations, both types of
authorizations can propagate along the subject or the object hierarchy to the same cell in the
access control matrix, leading to conflicts.

Therefore, we need policies to prevent conflicts and to resolve them after the explicit access
control specifications propagate to the effective specifications. There are several such policies in
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literature [23, 51, 76], and we list some of the policies with respect to subject hierarchy from the
work by Jajodia et al. [51]:

Most Specific Override Propagation This policy specifies propagation of explicit access con-
trol specifications in the following manner: a subject a propagates its explicit access control
specification on an object to its descendant subject c if there is no subject b that is both a de-
scendant of a and an ancestor of c, and that has a conflicting explicit specification on the same
object.

+ office
-office

University 
Student

James

Intern
Student

-office

Figure 2.2: Most specific propagation

For example, the subject University Student in Figure 2.2 cannot propagate its explicit pos-
itive authorization on the object office to the subject James since there is another subject Intern
Student between them with explicit negative authorization on the same object office. In this ex-
ample, only the subject Intern Student can propagate its access control specification to the subject
James.

Path Override Propagation This policy specifies that a subject a propagates its explicit access
control specification on an object to its descendant subject c if the descendant c does not have
a conflicting explicit specification on the same object. Using the example in Figure 2.2, both
the subject University Student and the subject Intern Student can propagate their explicit access
specifications to the subject James.
Negative Precedence Conflict Resolution Conflicts may exist after applying propagations using
either of the above policies. As shown in Figure 2.3, both the explicit positive and the explicit
negative authorization from the subject DB student and the subject intern student can be propa-
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gated to the same subject James, since there is no ancestor-descendant relationship between the
subjects DB student and the subject intern student. In this scenario, the conflicts can be resolved
by adopting the Negative Precedence policy, which always allows a negative authorization over-
ride a positive authorization.

Other conflict resolution policies are the Strong-Weak policy [76] (a strong authorization al-
ways overrides a weak authorization), and the Positive-Precedence [51] policy (a positive autho-
rization always overrides a negative authorization). The Strong-Weak policy does not resolve the
conflicts between two strong authorizations or between two weak authorizations. The Positive-
Precedence policy is simply symmetric to the Negative Precedence policy.

+ printer

James

DB student

-printer

Intern student

-printer

Figure 2.3: Negative precedence resolving

Closed and Open Policies
Under certain scenarios, there can be some <subject, object> cells without access control

specifications in the matrix after explicit specification propagation and conflict resolution. These
cells contain undefined access control information. There are two policies to resolve these un-
defined cells, namely the Closed Policy and the Open Policy [51]. The Closed Policy assumes
that all the objects in these non-defined cells are by default inaccessible to the corresponding
subjects, while the Open Policy says all subjects by default have access to the corresponding
objects. By adopting either the Open or the Closed Policy together with the conflict resolution
policies, we can make sure that every cell in the access control matrix is defined as being either
accessible or inaccessible.

2.2.3 Other Specification Languages
The access control matrix is a conceptual authorization model. This model can be specified using
approaches such as DAG, MAC, or RBAC, as has been described in the previous section. More-
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over, this conceptual matrix model can be enriched and implemented using different languages.
The expressiveness of these languages and their runtime complexity varies. We already listed
several policies for implementing the access control matrix using a small set of explicit access
control specifications. In this section we list some other specification languages that have been
described in the literature.

Early attempts to model and implement access controls date back to the 1970s, when the
first rule-based access control language was designed for operating systems [42]. That language
supports changing of access specifications and updating the domains by adding or deleting users
and objects. However, the language is undecidable. Later Woo et al. [94] specified an access
control language that is independent of the underlying system. This language is decidable, but
its computation is still intractable.

Jajodia et al. [52] modeled access controls using stratified Datalog. Their language supports
several propagation policies, and conflict resolution policies, together with the open and closed
policies. The system administrator is able to specify a few explicit specifications and let the
Datalog program convert it to a fully defined, non-conflicting access control matrix. This lan-
guage takes polynomial time to compute. Later two independent works [51, 92] both provided
algorithms to incrementally maintain the access controls in response to updates to the high level
specifications. Bertino et al. [11] addressed access control modeling using a larger fragment of
Datalog (i.e., not just stratified Datalog). Further more, they allowed user defined predicates in
their language. However, the model cannot be computed within polynomial time.

Wijesekera et al. [90, 91] used algebra to model a class of access control policies that is
equivalent to those modeled by Jajodia et al. Their language is able to reason about complete-
ness and consistency of the access control semantics, to determine if two sets of access controls
are equivalent, and to decide whether an algebraic framework is ambiguous. Other algebraic
approaches can be found in [16, 89].

There are access control languages that model provisional authorization (pre-conditions) or
the obligations to the users or the systems that must be fulfilled (post-conditions) [15] [99].
Temporal constraints on access controls are introduced in [9, 54].

For database systems, there are access control languages specifically for relational data [13]
and XML data [10, 12]. However, these languages do not have polynomial time guarantees and
hence cannot be implemented efficiently.

2.3 Query Evaluation with FGAC
Most existing database systems support coarse-grained access controls by assigning each user
with several logical views as the user’s accessible data. In the rest of the discussion, we name
these logical views as authorization views according to their special purposes. The user’s query
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should only refer to his authorization views, i.e., the query can never syntactically refer to any
relation that he does not have access to.

One drawback of the above approach is that the users are forced to use their authorized views
to formulate their queries, which means the users have to worry about the access controls while
formulating the business logic of their queries.

Instead of prohibiting the users’ queries from syntactically referring to inaccessible relations,
researchers propose that the users be allowed to formulate queries referring to any relation in the
database. The database system will enforce the access controls by rewriting the queries so that
they use only the users’ accessible data. The rewritten query will be evaluated, and the result
will be returned to the user as if the original query had been evaluated. This can be formalized
as follows:

Definition 2.3.1. A user’s authorized data consists of a set of authorization views V = {V1, V2,
. . . , Vm}. Each authorization view Vi is a two tuple < V D

i , V I
i > such that V D

i is the view
definition and V I

i is the view instance.
A query rewriting for a user’s query Q based on his authorization views is a query Q′ such

that Q′ only refers to the view definitions V D
i in the authorization views V , and Q′ is only applied

on the view instance V I
i in the authorization views V .

There are two models of answering the query based on the relationship between Q and Q′,
one is called the certain answer model, and the other is called the equivalent query rewriting
model.

2.3.1 Certain Answer Model
This model is based on the notion of certain answers, whose definition depends on two different
assumptions, namely the closed-world assumption and the open-world assumption.

Let V = {V1, V2, . . . , Vm} be a set of authorization views. Let {V D
1 , V D

2 , . . . , V D
m } be view

definitions in these authorization views, and let {V I
1 ,V I

2 ,. . .,V I
m} be the view instances.

Definition 2.3.2. [3] Under the closed world assumption(CWA), the authorization view instance
stores all the tuples from the database R that satisfy the authorization view definition, i.e. V I

i =
V D

i (R) for every i, 1 ≤ i ≤ m. Under the open world assumption (OWA), the authorization view
instance is possibly incomplete and might only store some of the tuples from the database R that
satisfy the authorization view definitions, i.e., V I

i ⊆ V D
i (R) for every i, 1 ≤ i ≤ m.

Definition 2.3.3. [3]
Let Q be a query and V = {V1, V2, . . . , Vm} be a set of authorization views with both view

definitions and view instances.
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A tuple α is a certain answer to the query Q under the closed-world assumption if α ∈ Q(I)
for every database instance R such that V D

i (R) = V I
i for every i, 1 ≤ i ≤ m.

A tuple α is a certain answer to the query Q under the open-world assumption if α ∈ Q(I)
for every database instance R such that V D

i (R) ⊇ V I
i for every i, 1 ≤ i ≤ m.

For example [3], consider the following two authorization view definitions on the same base
relation R:

V D
1 (X) : − R(X, Y )

V D
2 (Y ) : − R(X, Y )

Also the authorization view instances are the following:

V I
1 = {a}

V I
2 = {b}

Under the open world assumption, we only know that some tuple in relation R has value a
as its first component, and some (possibly different) tuple has value b as its second component.
Under the closed world assumption, however, we can conclude that all tuples in R have value
a as their first component and value b as their second component, i.e. base relation R contains
exactly the tuple (a, b).

Definition 2.3.4. Under the Certain Answer Model, the rewritten query Q′ computes all the
certain answers of the user’s original query Q with respect to the set of authorization views
granted to the corresponding user.

It is easy to see that the rewritten query Q′ is always contained in the original query Q for any
database instance. In fact, there is a relationship between the maximally contained query with
the certain answers under the open-world assumption. Details of this relationship can be found
in [41].

According to the definition of the certain answer model, if the view instances given to the
users are computed from the entire database instance, the rewritten query based on the authoriza-
tion views should compute all the certain answers under the closed-world assumption. On the
other hand, if the view instances given to the users are partial results computed from the database
instance using the view definitions, the rewritten query based on the authorization views should
compute all the certain answers under the open-world assumption.



16 Query Evaluation in the Presence of Fine-grained Access Control

Under the open-world assumption, it was shown in [3] that all the certain answers can be
computed in polynomial time for many practical cases. However, if we allow union operators
in the view definition or 6= operator in the users’ queries, computing all the certain answers is
co-NP hard [3]. It was also shown in [3] that computing certain answers under the closed-world
assumption is co-NP in the size of the view instances, even if the views and the queries are
defined by conjunctive queries without comparison predicates.

The Truman Model as Relaxation

We already mentioned the computational intractability in the previous discussion under the
closed world assumption. Even under the open world assumption, the results from [3] are
only applicable to queries and views under set-semantics. The computational complexity under
multiset-semantics is still unknown.

Several restrictions have been proposed to make the query rewriting based on authorization
views feasible. A restricted version of authorization views was proposed in industry, such that
each user has only one authorization view on each base relation, and each authorization view has
the same schema as the underlying base relation. This can be formally defined using the concept
of filter authorization view through the notion of filter function:

Definition 2.3.5. A filter function with respect to user u on relation R maps each tuple from R
to either true (accessible to u) or false (inaccessible to u).

Definition 2.3.6. A filter authorization view for user u on relation R is an authorization view
< V D, V I > such that the view definition V D is σfilter(R), which selects the tuples from instance
of R using a filter function for u on R. The view instance V I is derived by applying the view
definition on the complete instance R.

If we restrict to one filter authorization for each base relation, and do not insist on the certain
answer model under either open or closed world assumption, there exists a query rewriting model
(called the Truman Model [77]) based on such restricted authorization views. The rewriting is
straightforward and can be computed in linear time in the number of authorization views. We
illustrate this model using the following procedure.

Suppose user u submits a query which refers to relations R1, R2, . . . , Rk. We denote this
query as QR1,R2,...,Rk

. We use RI
i , 1 ≤ i ≤ k to denote the contents of these relations in the

database instance. When there are no access controls, the answers can be computed from the
following:

QR1,R2,...,Rk

(
RI

1, R
I
2, . . . , R

I
k

)
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Definition 2.3.7. With FGAC under the Truman Model, the system defines a filter function for
each user on each relation. The filter function for user u and relation Ri generates an autho-
rization view, which we denote by <Ri, V

I
i >. When a user submits query QR1,R2,...,Rk

, this query
gets customized to a rewritten query (denoted by Qu) according to the user’s access controls so
that it is applied on the view instances from the user’s filter authorization views:

Qu = QR1,R2,...,Rk

(
V I

1 , V I
2 , . . . , V I

k

)

The Truman model is straightforward to understand and incurs negligible query rewriting
cost. Therefore, this model is implemented in Oracle VPD, Oracle OLS, and DB2 LBAC for
relational data. For XML data, there is a similar filter based query processing mechanism. Details
on this perspective can be found in Chapter 3.

The disadvantage of the Truman model is that it does not follow a rigorous model such as the
certain answer model. Thus it may mislead the user if the user is not fully-aware of the query
rewritings. Several such scenarios are presented in the work by Rizvi et al. [77].

2.3.2 Equivalent Query Rewriting Model
This model specifies that a user’s query be accepted and evaluated only if there is a valid query
rewriting using his accessible data. If there is no such valid rewriting, or the system fails to find
such a rewriting, the user’s query will be rejected.

The key concept here is the definition of a valid query rewriting. The work by Rizvi et
al. [77] illustrates two types of valid query rewriting using a user’s accessible data. One is called
the unconditionally valid query rewriting, and the other is called the conditionally valid query
rewriting [77].
Unconditionally Valid Query Rewriting

This type of query rewriting is defined formally as the following:
Given a set of definitions for authorization views (V D

1 , V D
2 , . . . , V D

m ) defining the accessible
data for user u from the database. A user’s query Qu can be answered by a rewritten query
Q′ based on these authorization view definitions (denoted as Q′

V D
1 ,V D

2 ,...,V D
m

), such that for any
database

Qu ≡ Q′
V D
1 ,V D

2 ,...,V D
m
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Such a query rewriting Q′
V D
1 ,V D

2 ,...,V D
m

is called an unconditionally valid query rewriting for
the user’s query.
Conditionally Valid Query Rewriting[77]

This type of query rewriting is more complex and can be defined formally as follows:
Given a set of authorization views (V1, V2, . . . , Vm) where each authorization view Vi consists

of view definition V D
i and view instance V I

i , a user’s query Qu can be answered by a rewritten
query if the rewritten query is based on the view definitions from the authorization views (denoted
by Q′

V D
1 ,V D

2 ,...,V D
m

), and for every database instance R satisfying V D
i (R) = V I

i , 1 ≤ i ≤ m, we
have

Qu(R) = Q′
V D
1 ,V D

2 ,...,V D
m

(V I
1 , V I

2 , . . . , V I
m)

Such query rewriting Q′
V D
1 ,V D

2 ,...,V D
m

is called a conditionally valid query rewriting for the
user’s query.

Although these two equivalent query rewriting models will not give misleading results to the
users, they do suffer from several drawbacks. First, instance-based FGAC will result in a greater
chance of rejecting queries. Moreover, the computational complexity for finding conditionally
valid query rewriting is

∏p
2 complete even under set semantics [100]. Unconditionally valid

query rewriting is an application of query rewriting using views and is shown to be intractable in
many cases [41].

2.4 FGAC Implementations
FGAC is typically implemented in database systems using two approaches, depending on the
components of the authorization views. The first approach, namely the view-based FGAC, de-
pends on the authorization view definition. The view instance in the corresponding authorization
view is derived by applying the view definition on the underlying database instance. Hence view-
based FGAC has authorization views in the form of < V D, V D(R) >, where R denotes the un-
derlying database. The view definitions can be a complete query, or a parameterized query with
variables bound to any constant at runtime. The second approach, namely the instance-based
FGAC, defines each view instance in the authorization views without giving the corresponding
view definition. Usually this approach is accomplished by bundling each piece of data with its
access control information. The view definition V D is the same as the original relation R, but
the view instance V I contains only the tuples that have an ’accessible’ label to the user. There-
fore, instance-based FGAC has authorization views in the form of < R, V I >. Currently, both
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view-based and instance-based FGACs are implemented in commercialized database systems
[45, 66, 69, 70].

2.4.1 View-based FGAC Case Study
The Oracle Virtual Private Database [70] implements FGAC using view-based FGAC. The autho-
rization views are user-specific, parameterized views defined by security predicates and security
policies. A security predicate is in the form of Xθc, where X is an attribute in a base relation,
and c is a constant or a variable in the current user’s profile, and θ ∈ {>,≥, =,≤, <}. A security
policy is a set of “if-else” statements that maps each user in the system to exactly one security
predicate. Each base relation in the database is associated with one security policy. Therefore,
each user has an authorization view defined on each base relation by applying his security predi-
cate (mapped from the security policy) on that base relation. In this way, the authorization views
have the same schema as the base relations.

Answering queries using the authorization views can be done efficiently as follows. The
database system rewrites the user’s queries by checking the security policy of each relation re-
ferred to by the query. If there is a security predicate for the user on that relation, the security
predicate will be transparently appended to the “where” clause of the user’s query to make sure
the user only queries the accessible tuples from this relation.

To summarize Oracle Virtual Private Database using the terms described earlier in this sec-
tion, the security policies and the security predicates define the filter authorization views for each
user. The user’s query is rewritten and answered under the Truman model.

As an example, consider a CENSUS table in the database with three attributes: age, salary,
citizenship. There are three user groups: administrator, employee, and trainee. Suppose that the
administrators are allowed to access every tuple in the CENSUS table, and the employees are
allowed to access tuples having salary less than 100K, and the trainees have no access to any of
the tuples in this relation. Then the security policy for the CENSUS table can be defined using
the following statement, which returns one of the three predicates based on the user’s identity:

IF ($USER = ADMINISTRATOR)
THEN RETURN TRUE;

ELSE IF($USER = EMPLOYEE)
THEN RETURN salary>100K

ELSE IF($USER = TRAINEE)
THEN RETURN FALSE

Later, suppose a user’s query is
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select * from CENSUS

This query will be transparently rewritten to the following queries, depending on the identity
of the user:

ADMINISTRATOR: select * from CENSUS where TRUE;

EMPLOYEE: select * from CENSUS where salary>100K;

TRAINEE: select * from CENSUS where FALSE;

This view-based implementation is easy to understand and straightforward to implement.
However, this implementation has the following drawback: if a user is both an administrator and
an employee, the order of the if-else statements in the security policy decides the access control
predicate. If the system allows a user to be member of multiple user groups, the security policy
should consider the combined effect of several access control constraints. The other drawback
of this model is that it does not explicitly support negative authorizations.

2.4.2 Instance-based FGAC Case Study
Examples of instance-based FGAC include the Label-Based Access Control (LBAC) in DB2 [46]
and the Oracle Label Security (OLS) in Oracle [69]. We focus on LBAC here.

In LBAC, the accessibility of each tuple to a user is decided by the security labels associated
with that tuple, the security label assigned to that user, and several security functions defined on
the relation containing that tuple. Each such security function takes the tuple’s security label (Lt)
and the user’s security label (Lu), and returns either true or false. When a user submits a query,
the query executor invokes all security functions relevant to the relation referred to by the user’s
query. The accessibility of the tuple to the user is decided by the disjunction of all these security
functions as in Formula 2.1, where a true value from the disjunction means the user has access
to the tuple and a false value means otherwise:

F1(Lu, Lt) ∨ F2(Lu, Lt) ∨ · · ·Fn(Lu, Lt) (2.1)

A security label can be one of the two types: a set of elements, or a set of nodes from a tree.
Users’ security labels and the tuples’ security labels are always chosen to be the same type and
consist of elements from the same domain. If the security labels of the user and of the tuple are
sets of elements, the security function will return true if the user’s label is a superset of the tuple’s
label, and false otherwise. When the security labels are a set of nodes from a tree, the security
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function will return true if any node in the tuple’s security label is equal to, or is a descendant
of some node in the user’s security label. We can see that essentially LBAC is implementing
Role-based access control with no propagation under closed-world policy.

2.5 Summary
Specifying FGAC manually at the conceptual access control matrix level can be a daunting task.
Several approaches have been proposed to ease the task of this specification. Among these
approaches, the Role-based Access Control specification model is the most popular one, and it
has been enriched by various models and been formalized using several languages.

An implementation of FGAC should be both flexible and efficient. This means not only
should it capture the expressiveness of various business requirements, but it should also have
storage and runtime efficiency. However, many models proposed from academia do not have
tractable runtime, and even the tractable models are not necessarily feasible to be implemented.
For example, Jajodia et el [51] proposed a model that is flexible and takes polynomial time and
space for processing. However, its size is still quadratic in the number of data items in the
database, which makes it impractical in reality.

Compared to existing coarse-grained access control mechanisms, query evaluation with FGAC
enforcement is more flexible yet more sophisticated. Several models have been proposed to de-
scribe how to evaluate queries in a secure fashion using users’ accessible data. Computational
models based on the certain answers or the equivalent query rewritings are intractable in general.

Because of the intractability of both FGAC specification and FGAC query evaluation, com-
mercial database vendors propose restricted FGAC models. For example, the Truman Model
imposes the restriction that each user has one authorization view for each table, the authorization
view has the same schema as the underlying relation, and the answers are not restricted to the
certain answer model or the equivalent query rewriting model.

View-based FGAC and instance-based FGAC are the two ways of specifying data accessi-
bility in database systems. Compared to view-based FGAC, instance-based FGAC has more
flexibility in specifying arbitrary access controls. For example, by bundling the access specifica-
tions with data, we are able to define different access controls for two tuples of the same value
in the same relation. The instance-based FGAC also has the property that access controls do not
change as the database is updated. On the other hand, the view-based FGAC mechanism has the
advantage of storage efficiency and ease of maintenance.

Aside from having different expressiveness and maintenance costs, view-based FGAC and
instance-based FGAC have different query evaluation performance. For example, while the
view-based approach can be enforced by just rewriting the original query using the authorization
views, the instance-based approach requires that the query processor check the access control
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specifications bundled with each piece of data. Loading these access control specifications and
checking each of them can be very costly.

2.6 FGAC Settings in the Thesis
This thesis addresses performance issues in database systems with FGAC. Therefore, our work
focuses on improving existing FGAC implementations in database systems. For this reason,
the work in this thesis is based on the Truman Model, and it considers both view-based and
instanced-based FGAC for XML and relational data.

For relational data, we assume a FGAC implementation similar to the Oracle Virtual Private
Database (VPD). However, we allow each user to have multiple security predicates. Some of the
predicates specify positive authorizations, and other security predicates correspond to negative
authorizations. These explicit specifications can be converted to effective access controls in an
off-line manner as described in Jajodia et al. [51]. Recent work [24] gives an efficient solution for
getting effective access controls from explicit specifications at query evaluation time. We argue
that this model does not have the same ordering issue as Oracle VPD as outlined in Section 2.4.1,
and is more flexible since it allows negative authorizations.

For XML data, we implement FGAC using instance-based FGAC that is much simpler than
that of LBAC (Section 2.4.2). We do not assume any FGAC specification model, but rather start
from the instance-based, effective access control specifications on an XML document. Thus we
assume each node in the XML document is associated with a vector containing the accessibility
information for all users under a specific action mode (reason for access). We will show how to
store and maintain these data in Chapter 3.



Chapter 3

Compact Access Control Labeling for
Efficient Query Processing

3.1 Introduction
As already described in Chapter 2, fine-grained access controls specify users’ access rights at
the granularity of individual nodes for XML data. Therefore, the size of such access control
specifications can be proportional to the product of the number of nodes (elements and attributes)
and the number of users. This requires an effective mechanism for specifying these rights and a
compact scheme to store the access control specifications. Moreover, access control lookup must
be efficient, since a single query evaluation may involve many access right checks.

There is a plethora of literature on specifying fine-grained access controls on XML data using
high level languages, as already described in Chapter 2. Deriving FGACs from raw access con-
trols and propagation rules is much more efficient than manually specifying access control for
each XML node. Meanwhile, the raw access controls and propagation rules are compact to store.
However, inferring accessibility at runtime can be costly. A second approach is to materialize the
net effect of these access control rules into an incrementally maintainable accessibility map, in
which each XML node is labeled as either accessible or inaccessible for each subject under each
action mode [96]. The key to this approach is the compression ratio of the accessibility map and
the efficiency of the runtime accessibility check.

This chapter takes the second approach and addresses the problem of storing and checking
the net effect of FGACs, and presents a scheme called Document Ordered Labeling (DOL). Like
the CAM work by Yu et al. [96], DOL exploits the structural locality of the access control data
to achieve compression. Unlike CAM, DOL is able to exploit correlations among the access
rights of different users to achieve a substantial amount of additional compression in multi-user
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environments. Moreover, DOL is a disk-oriented, multi-user scheme, while a CAM is intended
to store a single user’s access control data in memory.

The DOL access control representation is also highly compatible with next-of-kin (NoK)
pattern matching, which is an efficient technique for processing XML twig queries [98]. NoK
query processing uses a compact representation of document structure to efficiently evaluate
certain types of structural query constraints (e.g. parent/child relationships). This chapter also
shows how to implement secure twig query processing by integrating DOL-based access control
with NoK query processing, such that access control lookup cost is reduced. We have used
both real and synthetic access control data to evaluate the DOL technique. In terms of space
efficiency, our results show that a single-user DOL is somewhat less compact than a single-user
CAM. However, in a multi-user environment the DOL representation is much more compact than
a set of per-user CAMs.

3.2 DOL: Access Control Labeling
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Figure 3.1: XML data with fine-grained access control and its DOL

We model an XML document as a tree in which the nodes correspond to the document’s
elements and the edges represent parent/child relationships among the elements. Sibling nodes
in the tree are ordered.

As described in Chapter 2, our fine-grained access control model consists of a set of subjects
(denoted by S), a set M of action modes such as read and write, and a set D of nodes in the
XML tree whose access is to be controlled. Here the subjects can be users or user groups or
roles, which together form a subject hierarchy. The subject hierarchy, which describes group
membership or role assignment, is assumed to be maintained separately from the XML data. We
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model the net effect of a set of raw access control specifications over an XML database instance
as an access control matrix with these three sets of elements forming three dimensions. For XML
data, the access control matrix can be represented by associating with each XML node a list of
subjects able to access that node under each action mode. In the rest of the chapter we will refer
to an XML tree without a FGAC specification as a data tree, and to an XML tree with a FGAC
specification as a secured tree.

We will initially assume that there is only one single action mode (i.e., |M| = 1). We will
relax this assumption in Section 3.5. We first present the DOL scheme for a single subject, and
then show how to generalize it to multiple subjects. Figure 3.1(a) shows a secured tree for a
single subject, and the corresponding DOL representation of the subject’s access rights. Shaded
nodes are accessible to the subject, unshaded nodes are inaccessible. We define a transition node
to be a secured tree node whose accessibility is different from its document-order predecessor
(i.e., its immediately preceding node in document-order). As a special case, the root node of
a secured tree is also considered to be a transition node. The DOL corresponding to a given
secured tree is simply a list, in document order, of the tree’s transition nodes, together with their
accessibilities. In the DOL shown in Figure 3.1(a), accessible and inaccessible transition nodes
are labeled with “+” and “−”, respectively.

Document order is, of course, one of many possible orderings one could choose. We have
chosen document order for several reasons. First, since XML parsers and other tools process
XML data in document order, a document order encoding of access rights can be constructed on-
the-fly using a single pass through a labeled XML document. Second, NoK query processing uses
a document order encoding of document structure [98], and we want DOL to be compatible with
NoK. Finally, and most importantly, it allows structural locality of access controls to be exploited
to reduce their size. The terms “vertical” and “horizontal” locality have been used to describe
locality among parent/child nodes and among sibling nodes, respectively [96]. Structural locality
is encouraged by access control specifications that propagate access rights along the hierarchical
structure of the XML data, and it has been observed in real access control data [96]. Nodes that
are adjacent in document order often have parent/child or sibling relationships in the document.
Although this is not always the case, we expect that much of the structural locality that exists in a
document’s access controls will translate to locality in document order. Such locality will reduce
the number of transition nodes, and hence the size of the DOL. In Section 3.6 we measure the
impact of this locality on the size of the DOL using several access control datasets.

3.2.1 DOL for Multiple Subjects
Aside from the structural locality of access controls for a single subject, we conjecture that
different subjects in an access control system may exhibit correlated access constraints. (There
may also exist correlations among action modes. We will discuss this in Section 3.5.) For
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example, users in the same department may have similar access controls. We wish to further
compress the access control labeling by taking advantage of such correlations.

Figure 3.1(b) shows a tree labeled with access rights for two subjects. In the figure, each
node is divided into two parts, with the left part representing the access rights of one subject
and the right part representing the access rights of the other. As was the case in Figure 3.1(a),
shading represents accessibility. For example, node e is accessible to the first subject but not to
the second.

We can encode these access rights in much the same way as we did for a single user, by
recording a list of transition nodes. With each transition node we record its access control list.
Thus, when several consecutive nodes have the same access control list, we only record it once.
Furthermore, we expect the access control lists for the transition nodes will reoccur frequently
throughout the secured tree. We can exploit this using dictionary compression: each distinct
access control list that appears in the secured tree is recorded once in a codebook (dictionary).
With each transition node in the DOL we record a reference to the appropriate access control list
in the codebook, rather than the access control list itself.

Figure 3.1(c) shows the multi-user DOL that corresponds to the secured tree in Figure 3.1(b).
Each transition node in the list has a numeric index. This is the access control code (index into
the codebook) for that transition node. The codebook itself contains three entries, because only
three of the four possible distinct access control lists actually appear in the secured tree. Each
codebook entry is an access control list, which we present as a bit vector with one bit for each
access control subject.

The overall storage cost of DOL includes the distinct access control lists (the codebook), the
list of transition nodes and their associated codes. The number of distinct access control lists
and transition nodes depends on the correlations among subjects’ access controls. If the access
controls are not closely correlated, the transition nodes will be dense and the number of code-
book entries will be large. Suppose the data is of size |D|, and we have |S| single subject DOLs,
each having T transition nodes (in reality, each DOL would have a different number of transition
nodes, but we simplify this here). In the worst case, when subjects access controls are inde-
pendent, the number of distinct access control codes in the combined multi-subject DOL would
grow exponentially with the number of subjects until it reaches an upper bound of min(|D|, 2|S|).
Meanwhile, the number of non-transition nodes would be:

|D| × (1− T

|D|)
|S|

That is, as S goes up, the number of non-transition nodes would shrink exponentially until
each XML node becomes a transition node. In practice, however, we expect the situation to be
much better than this worst case. The real access control systems that we have studied do not
exhibit worst case behavior. We will see in Section 3.6 that there do exist strong correlations of



27

access controls among subjects in these systems that make the overall size of DOL grow slowly
as the number of subjects increases.

3.3 Physical Representation of the DOL
In this section we describe our physical representation of the DOL, which is intended to be
incorporated into an existing query processor framework called NoK [98] to reduce disk I/O for
access control lookup. For this reason, we begin with a brief overview of NoK query processing.

3.3.1 NoK Query Modeling and Physical Storage
A NoK query processor accepts twig queries described by pattern trees and evaluates them
against an XML document by pattern matching. Each successful pattern match generates a set of
bindings between pattern tree nodes and data tree nodes. The query result consists of all possible
bindings. For example, the pattern tree in Figure 3.2(a) will generate one match from the data
tree in Figure 3.2(c).

The NoK query processor first partitions the pattern tree into NoK subtrees, each having
only parent-child or following-sibling relationships (the so-called “next-of-kin” relationships)
among its nodes. Then the processor finds matches for these NoK subtrees from the data tree.
Finally it matches the ancestor-descendant relationships using structural joins. For example, the
pattern tree in Figure 3.2 would be split into two NoK subtrees, each matches to a fragment in
the data tree. The two fragments are then connected by the ancestor-descendant relationship
between nodes a and h.

The NoK query processor uses a physical representation of the data tree that allows it to
match NoK subqueries very efficiently. The structure of the data tree is stored separately from
the node values in a compact representation. The structure is encoded by listing the nodes in
document order, with embedded markup to indicate where subtrees begin and end. For exam-
ple, the structure of the data tree of Figure 3.2 would be encoded using the following string:
(a(b)(c)(d)(e(f)(g)(h(i)(j)(k)(l)))), where the nesting of parentheses captures the nesting of
subtrees. This document-order string is decomposed into blocks for storage on disk. Each block
has a header with meta data for that page (e.g., the number of nesting parentheses for the first
node in the page).

It can be seen that nodes connected by “next-of-kin” relationships tend to be clustered in this
physical representation and thus such nodes are more likely to be located in the same physical
block. By keeping the block meta data in memory and exploiting this clustered representation
of document structure, a NoK query processor can match a NoK pattern using a few I/O opera-
tions [98].
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3.3.2 Integrating Access Control Data
To integrate access control with NoK query processing, we physically cluster the access control
data with the NoK structural data. Specifically, our scheme for physical representation of the
access control data consists of the following three components (Figure 3.3):

• The DOL codebook is maintained in memory for fast accessibility lookup. If the codebook
grows beyond the capacity of memory, each accessibility lookup may result in an extra
physical page read for loading the codebook entry. However, our results in Section 3.6
show that, in practice, the codebook will be quite small.

• The DOL transition nodes are embedded into the NoK structural data. Figure 3.3 shows
the embedding for the secured tree of Figures 3.1(b) (the page header does not show NoK
meta-data for simplicity). For the purposes of the illustration, we have assumed that these
data are spread across three disk blocks. In the physical encoding, we treat the first node
in each block as if it were a transition node, regardless of whether it is actually a transition
node. The access control code for this initial transition node is stored in the block header,
which is described next. These initial transition nodes ensure that we can determine the
access rights of any node using only the codes in that node’s block.

• For each disk block, there is a small access control header which contains two items.
The first is the access control code for the first data node in the block. The second is
a “change” bit which is set if there is at least one transition node (other than the initial
node) in the block, and cleared otherwise. The aggregate size of these headers is small.
For example, for 1TB of XMark data [2], the NoK query processor will first convert it to
a succinct physical layout as in [98], which only occupies about 107 blocks, assuming a
4KB block size. Measurements from our data sets (Section 3.6) suggest that 2 bytes is
more than sufficient for an access control code. If we conservatively assume 4 bytes per
access control block header, the total size of the headers is only 40 MB. Therefore, we
can keep all of the block headers in memory (or part of the headers that include enough
information for the current pages to be read), and the NoK query processor can further
optimize I/O operations, as we shall describe shortly.

3.3.3 Access Lookup
To check the accessibility of a node d for subject s, the query processor locates the transition
node that precedes node d (if d is not itself a transition node). Since the first node in every block
is a transition node, the transition node will be found in d’s block. That transition node’s access
control code is then used to identify an entry in the in-memory access control codebook. The
s-th bit in that codebook entry indicates the accessibility of the node for subject s. As we will
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see in Section 3.4, the NoK query processor checks nodes’ accessibility while it matches NoK
query patterns. Provided that d’s disk block has been loaded for query evaluation by the NoK
evaluator, the access control check for d requires no additional I/O.

In some cases, the query processor can make use of the in-memory DOL page header to avoid
unnecessary page reading: if the starting transition node in the header indicates inaccessible to
the user, and the “change” bit in the header is not set (meaning there are no other transition nodes
in this page), all nodes in that page are inaccessible to the user. Thus the query processor can
entirely avoid loading that page.

3.3.4 DOL Updates
We consider two types of access control update operations: the updates to the accessibility of
nodes (e.g.,adding read permission for a given subject to a node), and updates to the subjects.

We first consider how to change the accessibility of a single node, x. Suppose we are to
make x “accessible” for a certain subject. We first locate the nearest preceding transition node
(or the node itself if it is a transition node). We will denote this node by x̂. If x̂’s access control
code indicates “accessible” for the subject, we stop. Otherwise, we mark x as a new transition
node and set its access control list to be the same as that of x̂, except that x is accessible to the
specified subject. We need to find this access control list in the codebook, and assign its access
control code to node x. If the required access control list is not already in the codebook, then
we need to add it. Finally, if the node immediately after x is not already a transition node, we
mark it as a transition node with an access control code equal to that of x̂. All of these operations
occur in memory after loading the page containing x. Note that x̂ is guaranteed to be on the same
page as x, because the first node in every page is always a transition node. For the same reason,
if the node after x is on a different page than x then it must also be a transition node, which will
not require modification. Thus the I/O cost for updating x’s access control list is a page read
followed by a page write flushing the updates to disk.

To change the accessibility of all of the nodes in a subtree rooted at node x, we can use the
above procedure to change the accessibility of each node in the subtree, in document order. The
I/O cost of such a bulk update will be much smaller than one read and one write per subtree node.
This is because the physical representation clusters these nodes. If each page can hold B nodes,
the total I/O cost for updating the accessibility of a subtree with N nodes will be N/B pages
reads (and writes). It is worth noting that all updates to DOL have the update locality property,
i.e., an update to a subtree only affects the nodes within the pair of transition nodes that surround
the subtree. This property guarantees that updates are confined within a contiguous region of the
affected data.

In addition to the updates to the XML data, we need to consider updates to S , the set of ac-
cess control subjects. With DOL, it is relatively simple to add a new subject who has no (initial)
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access rights, or whose access rights initially match those of some existing subject. This can be
accomplished by simply adding an additional column to each entry in the in-memory codebook.
No changes to the embedded transition nodes and the references are required. Deletion of a sub-
ject can also by accomplished within the codebook. This may leave unnecessary codes embedded
in the structural data, since the deletion of a subject may decrease the number of transition nodes.
However, any such redundancy can be corrected lazily.

3.4 Secure Query Evaluation
We use the semantics by Cho et al. [25] for secure query evaluation. The semantics is based on
the Truman model. Recall that the (unsecured) evaluation of a twig query Q returns all of the
possible sets of bindings of query pattern nodes to data nodes. Secure evaluation of Q for subject
s eliminates from this result any sets of bindings that include data nodes that are inaccessible to
s. In other words, this semantics require us replace all inaccessible nodes in the secured tree with
“dummy nodes” that do not match any nodes in the query. For example, the pattern tree shown
in Figure 3.2 will return a single set of bindings if nodes a, b, c, h, j, k and l in the data tree are
all accessible to the subject s. It will return no bindings if any of those nodes are inaccessible to
s. Note that the accessibility of nodes d, e, f, g and i has no impact on the secure evaluation of
the particular query shown in Figure 3.2.

3.4.1 DOL for Secure NoK Pattern Matching
In Section 3.3.1 we described that a NoK query processor works by first decomposing a pattern
tree into NoK subtrees, and then attempting to match each NoK subtree to the data. One node
in the NoK pattern tree is set as the returning node, which means the nodes in the data tree that
match this node should be returned for this pattern matching.

The secure NoK pattern matching algorithm is shown in Algorithm 1. The input parameter
proot is the current node from the NoK pattern tree, and droot is the current document node that
is being matched to proot. The third parameter R is set to ∅ initially and will contain a list of
data tree nodes (in document order) that match the returning node. To match NoK subtrees, the
query processor uses a recursive navigational approach, starting with an initial match from the
data for the root of the NoK pattern tree. It then proceeds by recursively matching children of
proot to children of droot. This top-down recursive pattern matching requires O(|P | · |D|) time
(instead of exponential time) to find all matches, where P is the size of the pattern tree and the
D is the size of the document [98]. The subroutines FIRST-CHILD and FOLLOWING-SIBLING

use the block-oriented physical encoding of the document structure to return the first child of the
droot in document-order, or the next sibling of the current node, respectively. The subroutine
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Algorithm 1 ε-NoK Pattern Matching

NOK-PATTERN-MATCHING(proot, droot, R)

Pre-condition: droot is accessible; proot and droot match on tag and node value
1: if proot is the returning node
2: then LIST-APPEND(R, droot);
3: P ← all children of proot ;
4: d ← FIRST-CHILD(droot);
5: repeat
6: if ACCESS(d) = TRUE

7: then for each unmarked p ∈ P that matches d with
both node tag and node value

8: do
9: b ← NOK-PATTERN-MATCHING(p, d, R);

10: if b = TRUE

11: then mark p in P ;
12: d ← FOLLOWING-SIBLING(d);
13: until d = NIL or all nodes in P are marked
14: if ∃ node in P that is not marked
15: then R ← ∅;
16: return FALSE;
17: return TRUE;
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ACCESS (line 6) checks the accessibility of the child of the current document subtree root to be
matched. Since a node’s accessibility is checked immediately after it is loaded (by FIRST-CHILD

or FOLLOWING-SIBLING), and since its access control code will be found on the same page as
the node itself, no additional I/O will be required for node accessibility checks. Note that the pre-
condition of Algorithm 1 is the droot node be accessible. This means before we use Algorithm 1
to recursively match NoK pattern trees, the root of the NoK data tree should be checked to make
sure it is accessible. According to the query evaluation semantics given early in Section 3.4, we
can also skip the recursion on the child if the child is not accessible.

After NoK subtree matches are located, they can be structurally joined based on ancestor-
descendant relationships. We have the following theorem:

Theorem 1. Algorithm ε-NoK, together with any non-secured structural join algorithm, securely
evaluates XML twig queries.

Proof. The NoK pattern matching algorithm returns all and only those matched pattern trees[98].
Further, NoK pattern matching together with any (non-secured) structural join algorithm will
evaluate any XML twig query [98]. Algorithm ε-NoK is based on the NoK pattern matching
algorithm and adds an accessibility check for each potential matching node from the data tree.
This ensures that each matching NoK pattern trees reported by ε-NoK consists only of accessible
nodes. Unlike the unsecure NoK pattern matching algorithm, ε-NoK terminates its recursion as
soon as it encounters an inaccessible node within a potential pattern match in the data tree.
Since all data nodes in a pattern match must be accessible, this early-out mechanism will not
cause ε-NoK to fail to report any accessible matches. Furthermore, it will not cause ε-NoK to
miss any accessible, matching NoK tree that is beneath the inaccessible node, since the (secure)
NoK matching algorithm will be invoked for each document node that has the same node-tag
as the root of the NoK pattern [98]. If there is an accessible matching NoK tree underneath the
inaccessible node, it will be checked and returned by another ε-NoK invocation. Therefore ε-
NoK retrieves all and only the accessible NoK patterns according to the secure query semantics.
Since ε-NoK pattern matching returns only accessible matches, and since the accessibility of
nodes outside of these matches is not relevant to the secure query evaluation semantics, the
structural-join algorithm does not require any further accessibility checks. Therefore, the ε-
NoK algorithm and any non-secured structural join algorithm will securely evaluate XML twig
queries.

3.4.2 Alternative Access Control Semantics
There is another semantics for secure query evaluation, which is defined by Gabillon and Bruno
[36]. This semantics is also based on the Truman model, but is more restrictive than the semantics
by Cho et al. This semantics specifies that a subtree rooted at an inaccessible node can not provide



34 Query Evaluation in the Presence of Fine-grained Access Control

answers, even if it contains accessible nodes. For example, the pattern tree in Figure 3.2 will not
find any matches from the data tree if node e is not accessible, even if all of the remaining nodes
are accessible.

Secure NoK pattern matching, as implemented in Algorithm 1, is not sufficient for enforcing
this more restrictive semantics. In addition to ensuring that each NoK query pattern matches
only accessible nodes, we must also ensure that when these matches are structurally joined to
produce the final answer, the structural joins do not depend on inaccessible nodes. Continuing
with the example from Figure 3.2, this means that we must ensure that the matches for the two
NoK subqueries (rooted at nodes a and h), do not structurally join through inaccessible nodes,
e.g., node e.
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We have developed a secure structural join algorithm which, together with the secure NoK
pattern matching algorithm from Figure 3.2, can be used to implement the more restrictive se-
mantics of Gabillon and Bruno if this is desired. The secure structural join algorithm must check
the access control lists of all nodes on the path between the NoK subtrees that are being joined.
In the NoK physical representation, these nodes are not necessarily clustered on the same phys-
ical pages as the NoK subtrees. As a result, secure query evaluation under this more restrictive
semantics may be much more expensive than secure evaluation under our original semantics.

We based our secure structural join algorithm on the most efficient structural join paradigm,
the Stack Tree Desc (STD) join algorithm [7]. The algorithm uses a stack (the Anc Stack) for
storing ancestor nodes, with each node in the stack being a descendant of the node below it. Once
a descendant node is found to be a descendant of the top of stack, it is joined with the nodes in
the Anc stack all at once. Figure 3.4 illustrates the structural join of ancestor nodes {a1, a2, a3}
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with descendant nodes {d1, d2, d3}. Since a2 is a descendant of a1, the Anc stack has a1 below
a2. When d1 and d2 are found to be descendants of a2 (the stack top), they are joined with a1 as
well, avoiding extra Anc-Desc relationship checking with a1.

For secure structural join, we need to check the nodes on the path between the Anc-Des pairs.
There are two accessible nodes n1, n2 and one inaccessible node n3 in the figure. Both d1 and
d2 have n1 on the path from a1, therefore we could check the accessibility of n1 once for both
Anc-Des pairs. On the other hand, there is an inaccessible node (n3) on the path from a2 to d3.
That means we could also abort the join between a1 and d3, since a1 is ancestor of a2 and can not
reach d3 via a path of all accessible nodes. We could also ignore a3 since it has an inaccessible
ancestor (n3) and will not join with any descendants.

The above optimizations can be accomplished by using an additional stack (the Secure stack)
containing the nodes that are already checked for accessibility. The complete secure structural
join algorithm (ε-STD, Algorithm 2) consists of a Stack Tree Desc variant plus a security check-
ing sub-routine (Check).

Before we push an ancestor node into the Anc stack, we check the nodes on the path from
stack top to the current ancestor node (via sub-routine Check). We check the nodes in sequence,
and if a node is accessible, we push it onto the Secure stack (Line 5 in Check), otherwise we
skip the current ancestor node and all its descendants (Line 6 in Check). We do the same when
a descendant node is joined with the Anc stack. Before we push nodes into the Secure stack,
we pop out the top nodes that are not ancestors of the node to be pushed in (Line 2 in Check).
Figure 3.4 illustrates the changing content of the Secure stack. The last change occurs when a3

is to be pushed into the Anc stack and n3 is to be checked for accessibility. This requires us to
pop n2 from the Secure stack since it is not ancestor of n3. Then we find that n3 is inaccessible
and skip a3 and d3.

We have the following theorem for ε-STD algorithm’s I/O cost:

Theorem 2. If there are N nodes between the ancestors and descendants for structural join, and
these N nodes are located on M pages, where M ≤ N , the ε-STD algorithm loads each of the
M pages at most once (in document order) for all of the AD joins.

Proof. The algorithm only loads the nodes in one pass, thus the same page will not be loaded
twice.

We also have the following theorem for the correctness of ε-STD algorithm for securely
computing structural joins:

Theorem 3. Algorithm ε-NoK and Algorithm ε-STD together compute the alternative semantics
defined in [36].
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Algorithm 2 ε-STD Structural Join

ε-STD(AList,DList)

Pre: AList, DList are sorted on document order
1: Anc ← ∅;
2: Let a, d be the first node in AList and DList
3: while a and d are not null
4: do while top(Anc) is not ancestor of a or d
5: do pop(Anc);
6: if a is ancestor of d
7: then if CHECK(a,AList) = TRUE

8: then push(Anc, a)
9: a = Alist.next;

10: else if a is before d in document order
11: then a = Alist.next
12: else if CHECK(d,DList) = TRUE

13: then for each a1 in Anc
14: do output (a1, d)
15: d = DList.next

CHECK(n,List)
1: while top(Secure) is not an ancestor of n
2: do pop(Secure)
3: for each p on the path from top(Secure) to n
4: do if (p is accessible)
5: then push(Secure, p)
6: else remove n’s descendants from List
7: return FALSE

8: return TRUE
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Proof. The Stack Tree Desc join algorithm computes all and the only matching Ancestor-Descendants
[7]. The ε-STD algorithm adds a Check sub-routine before it stores each ancestor/descendant
for matching. The Check routine relies on the Secure stack, which, at all times, contains only
accessible nodes. The Check sub-routine returns true if and only if all of the ancestors of the
input node n are accessible. Therefore, both the ancestors (in AList) and the descendants (in
DList) must have only accessible ancestors in order to be matched by the ε-STD algorithm.
Hence, the ε-STD algorithm reports all and only those matching Ancestor-Descendants from the
Stack Tree Desc algorithm that have no intervening inaccessible nodes, as required by the alter-
native secure query evaluation semantics. Further, from the proof of Theorem 1 we know ε-NoK
retrieves all and only the accessible NoK patterns. If one node in an accessible NoK pattern tree
has accessible ancestors only, every other node in the that NoK tree will also have accessible
ancestors only. Therefore, the ε-STD algorithm reports Ancestor-Descendant NoK tree pairs
that contains accessible nodes only, and every node in the output has accessible ancestors only.
Hence the theorem holds.

3.5 Multiple Action Modes
Access control correlation may also exist between different action modes. The correlation may
come from the action mode hierarchy [53], through which, for example, a write access right
might imply a read access right on a given object. However, we envision that even when there is
no such action hierarchy between different action modes, there may still be correlation between
different action modes. In fact, our codebook based approach could be similarly applied on
multi-action modes regardless of the existence of an action mode hierarchy.

Suppose a system has multiple action modes (M > 1). We have two choices in building
codebook entries. First, we can view the S × D × M 3-dimensional access cube as a stack
of D independent slabs; each slab is a S × M 2-dimensional matrix, holding the complete
access control information for a specific object. Following this perspective, we can store one
transition node for each object that has a different access control slab than its predecessor, and
each transition node points to one “slab” of size S ×M in the codebook. Alternatively, we can
view the 3-dimensional cube as D×M 1-dimensional vectors; each vector has S bits, recording
the complete access control information for a specific object and action mode. In this case, the
entries of codebook are still vectors of size S; but for each transition object (one that does not
agree with its predecessor on the accessibility for any user under any action mode), we need to
maintain M pointers, one for each action mode 1. Suppose T denotes the number of transition
nodes (the number of transition nodes are the same for either approaches), R denotes the size of

1We could also keep only the changing pointers for each transition node, but in that case, DOL lookup becomes
expensive since we might need to look ahead for several transition nodes
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one pointer from a transition node, Vl denotes the number of distinct access control slabs, and Vc

denotes the number of distinct access control vectors. The space cost of the vector approach and
the slab approach can be calculated by formula 3.1 and 3.2 respectively.

SIZEslab = T ×R︸ ︷︷ ︸
on disk

+ Vl × (|M| × |S|)︸ ︷︷ ︸
in memory

(3.1)

SIZEvector = T × |M| ×R︸ ︷︷ ︸
on disk

+ Vc × (|S|)︸ ︷︷ ︸
in memory

(3.2)

Both approaches have advantages and disadvantages. Since T grows with D and is usually
much greater than S and M, the overall space cost is likely to be dominated by the cost of the
on-disk part. Comparing with the vector approach, the slab approach has lower overall space
cost, as it has a smaller on-disk part, but it requires more memory, depending on the value of Vl

and Vc. We analyze these values in Section 3.6.3.

3.6 Performance Evaluation
We evaluated the DOL technique using both synthetic and real access control data. We generated
single-user, single-access-mode synthetic access controls on XML data from XMark benchmarks
[2] by randomly choosing some nodes from the document as seeds, and then labeling these seeds
as accessible or inaccessible. We simulate horizontal structural locality by selecting nodes from
among the seeds’ direct siblings and set them with the same accessibility as the seeds, provided
that the siblings are not themselves seeds. Then, we simulate vertical structural locality by
propagating the accessibilities of the labeled nodes to their descendants using the Most-Specific-
Override policy [51], i.e., a node inherits its accessibility from its closest labeled ancestor. We
always choose the document root as a seed to ensure that all nodes are labeled. Access control
generation is controlled by two parameters. The propagation ratio determines percentage of
nodes that are seeds while the accessibility ratio determines the percentage of seeds that are
accessible.

In addition, we used two sets of real multi-user access control data. The first data set describes
the fine-grained access control information from a production instance of OpenText LiveLink 2,
which provides web-based collaboration and knowledge management services in a corporate
intranet. The LiveLink system has a total of 8639 subjects (among which there are 1568 leaf
users), around 370, 000 data items in a tree-structure with an average depth of 7.9 and a maximum
depth of 19, and ten action modes. The second data set consists of the access control data from

2LiveLink is a trademark of OpenText Corporation.
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a multiuser Unix file system at the University of Waterloo. This system has 182 users and 65
user groups, more than 1.3 million files/directories, and three action modes (read, write, execute).
Although neither of these systems stores real XML data, both provide tree-structured data models
and instance-level access controls. In the absence of real access controlled XML data, we treat
these systems as surrogates for real multi-user access controlled XML databases for the purposes
of our experiments. In order to map our unordered tree data to ordered XML nodes, we pick one
arbitrary ordering among sibling nodes in our test data: files under the same directory are ordered
by their names, and sibling LiveLink data items are ordered by their appearance in the LiveLink
system catalog. These two ordering choices are orthogonal to access controls, but the structural
locality in the access controlled data still holds, as we shall see from the experiments.

3.6.1 Space Efficiency in Single-User Environments
We first evaluate DOL for a single subject. Since CAM [96] is the state of the art compact la-
beling for single subject access controls, we compare DOL with CAM. We first use an XMark
document of about 17, 000 nodes with synthetic access controls produced by different accessi-
bility and propagation ratios. Our metric is the ratio of the number of CAM nodes to the number
of DOL transition nodes (the codebook size is negligible for one subject). Thus, values less than
1.0 favor CAM and those greater than 1.0 favor DOL.

Figure 3.5(a) shows the comparisons as the accessibility ratio varies from 10% to 90%. We
tried three propagation ratios with these different accessibility and the results are similar. When
the accessibility ratio is low (few nodes are accessible), the number of CAM nodes is around
53% of the number of DOL transition nodes. As accessibility goes up, this difference becomes
smaller.

We also compared single user CAM and DOL using the LiveLink data. The LiveLink system
supports ten different action modes. For each of the ten action modes we sample a number of
users and built CAM and DOL for each single user. The ratio of the number of DOL transition
nodes to the number of CAM labels for an average user is shown in Figure 3.5(b), with the ten
action modes shown on the horizontal axis. In the worst cases, DOL had 20-25% more nodes
than CAM labels. In other cases, CAM has about the same number of labels as DOL transition
nodes.

Note that our performance metric implicitly favors CAM because it assumes that CAM nodes
and DOL transition nodes are the same size. In practice, however, the DOL nodes are likely to
be much smaller. This is because CAM stores the access rights separately from the data. As a
result, each CAM node must include a reference to a document node and pointers to the node’s
children in the CAM, in addition to the access control information itself. In contrast, DOL, which
piggybacks access control information into the document encoding, stores only an access control
code per transition node. Thus, although CAM may have fewer nodes than DOL, the total space
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required for CAM may be greater.

3.6.2 Space Efficiency in Multi-User Environments
We used our two real data sets to evaluate the space efficiency of DOL in multi-user environ-
ments. We only present the results under “SEE” action mode of LiveLink and the “READ”
action mode of the Unix file system, since other action modes of both data show similar trends.
To get a sense of how the codebook size might vary as a function of the number of subjects, we
selected a number of subjects randomly and computed DOL codebooks for the selected subjects
only. In Figures 3.6(a) and 3.6(b) we have plotted the number of codebook entries as a function
of the cardinalities of these selected group of subsets. The X-axis shows the number of randomly
chosen subjects in the group. Each group is a subset of the next larger group. We tried three
independent runs. The lines in these figures show the mean value of number of codebook entries
over the three runs. The min and the max values at each point over the three runs are shown as the
error boxes. If subjects’ access controls were uncorrelated, we would expect to see exponential
growth in the number of codebook entries as the number of subjects increased. However, our
results show that the growth is much slower in practice. With all 8639 subjects, the LiveLink
system required around 4000 codebook entries. At approximately 1100 bytes per codebook en-
try (one bit per subject), the complete LiveLink codebook would occupy only about 4.4MB of
memory. The Unix system required about 855 codebook entries for 247 subjects, with an overall
size of only 25KB.

The other major storage concern is the number of DOL transition nodes. Figures 3.7(a),
3.7(b) show the numbers of transition nodes required for the LiveLink and Unix systems as the
number of subjects increases (using the same methodology that was used for Figures 3.6(a) and
3.6(b))3. Figure 3.7(a) shows a sub-linear growth of transition nodes. For over 8000 subjects, the
number of transition nodes is only about 4 times larger than the number for a single subject. For
Unix file system, we see a similar situation in Figure 3.7(b), in which the number of transition
nodes of 247 subjects is only twice as many as the number for 50 subjects. Recall there are about
370, 000 objects in the LiveLink system, and the number of files (directories) in the Unix system
is about 1.3 million. Thus, the density of transition nodes is less than 10% for both systems (for
all the subjects). We tried different subsets of subjects and the result is similar. These results
indicate that the access rights for different subjects are highly correlated in real world.

To compare the overall storage cost between DOL and CAM, we first look at a single subject
in LiveLink (under action mode 1): DOL needs about 6000 transition nodes while CAM needs
4500 labels. However, for all 8639 subjects in the same system under the same action mode, DOL
needs 18800 transition nodes while CAM needs 8639× 4500 labels, a difference of three orders

3We tried different subset of users in each run, and the number of subjects varies within 10% between each runs
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Action Mode read write execute all slab
CodeBook# 855 883 857 995 1608

Table 3.1: Codebook entries for vector/slab-based approaches (Unix system)

of magnitude. Assuming each DOL transition node requires a 2 byte access control code (for
the 4000 codebook entries), and each CAM label takes 2 bits for its accessibility encoding, and
(unrealistically) only 1 byte for node pointers, the DOL’s total space requirement will be a 4MB
codebook plus 40KB of embedded transition nodes, while CAM’s will be 46.6MB. The Unix file
system’s situation is similar. Clearly, correlation among the subjects contributes substantially to
compression effectiveness.

A final observation, from both systems, is that the frequency of the access control lists in the
codebook is highly biased. Figure 3.8 shows the rank/frequency plots of the access control list in
the Unix and LiveLink Systems. Here we choose “Read” action mode for Unix and action mode
1 for LiveLink since they are representative of the remaining action modes. In the Unix system,
about ten access control lists account for more than 80% of all the files’ access controls. A
single access control list (granting access to everyone) accounts for more than half of the access
controls on all the files. Similarly, in the LiveLink system, ten access control lists account for
about half of the all objects’ access controls.

This frequency skew, together with the locality of access rights, helps to explain the space
efficiency of the DOL approach. It also suggests that, in small-memory environments, good
performance can be achieved without keeping the entire codebook in memory. If only the most
frequently used access control lists are kept in memory, it should be possible to answer most
access control lookups efficiently. In our experiments with LiveLink data, if we load in memory
1000 most frequently entries out of all the 4198 entries of the codebook, we can answer more
than 95% of the accessibility queries without loading any codebook entries from the disks.

3.6.3 Multiple Action Modes: Vectors Versus Slabs
Recall that the total space cost of the codebook scheme includes two parts: the on-disk part oc-
cupied by the access control codes and the in-memory part occupied by the access control code-
book. When there are multiple action modes, the DOL can be implemented either as a codebook
with access control vectors for all action modes (where each transition node will have multiple
pointers to different codebook entries for each action mode) or as an array of access control slabs
(where each transition node points to one slab entry for all action modes), as described in Section
3.5.

We first tested the vector approach on the Unix file system. Table 3.1 illustrates the number of
distinct access control vectors (i.e., the number of codebook entries) for read, write, and execute
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modes, together with the number of distinct codebook entries across all three action modes (the
all column). We can see the total number of distinct access control vectors of all three action
modes is much fewer than the sum of the number of distinct vectors under the individual action
modes. This tells us that the access control vectors of different action modes are similar.

Next, we tested the slab approach by concatenating the access control vectors into slabs.
If the access controls under different action modes are not correlated, we would have seen all
combinations of concatenated access control vectors in the slabs, making the number of distinct
slabs grow exponentially in the number of action modes. However, as we observed from our
real data, the number of distinct slabs is only about four times the number of distinct access
control vectors (see column slab in Table 3.1). Since the Unix system has 247 subjects, each
access control vector would require 247 bits, leading to a total codebook size of approximately
31 KB under the vector-based approach. Since there are three access modes, each slab would
require 741 (247×3) bits, giving a total codebook size of 149 KB under the slab-based approach.
Therefore, the codebook of the slab approach is only around five times the size of the codebook
under vector approach.

Action Mode 1 2 3 4 5 6 7 8 9 10 all slab
CodeBook# 4235 3926 5591 4273 4144 4362 4684 22 4325 4198 9863 10976

Table 3.2: Codebook entries for vector/slab-based approaches (LiveLink system)

We noticed an even stronger correlation between action modes in the LiveLink data (Ta-
ble 3.2), where the number of distinct access control vectors for all action modes is less than
25% of the total of all distinct access control vectors under each action mode, and the number
of distinct slabs is almost the same as the number of distinct access control vectors for all action
modes. Since the LiveLink system has around 8600 subjects, each access control vector would
require 1075 bits, thus the vector-based codebook has size of 10.6MB (1075× 9863). The slab-
based codebook has each entry as ten vectors concatenated, thus its size is approximately 118MB
(10976× 1075× 10). Therefore, the slab-based codebook is only about ten times the size of the
combined vector-based codebook.

Aside from codebook entries, we can be sure that the density of transition nodes for the slab
approach is the same as the vector approach, since either approach would need a transition node
whenever the accessibility changes for one user under one action mode. However, under the
vector approach, each transition node needs M pointers to the entries of the codebook for the
M action modes, whereas the slab approach only requires one. Considering that the number of
transition nodes grows with the number of objects in the system (recall from Section 3.6.2 that
transition nodes are around 10% of the total objects for all users for both real data sets), the size of
transition nodes would dominate the size of the codebook by several orders of magnitude. Thus
we could save considerable space by using the slab based approach at the cost of a (moderately)
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larger codebook in main memory.

3.6.4 Query Evaluation
We compared the performance of secure NoK query evaluation to the performance of non-
secured NoK query evaluation to measure the overhead of fine-grained access control. We im-
plemented both ε-NoK, ε-STD, and the non-secure versions of the NoK and STD algorithms
using Java 1.5. All of the experiments were conducted using a dedicated PC with a Pentium III
997MHz CPU, 512MB RAM, and 40GB hard disk running Windows XP.

Our test database is a 50MB XMark instance (832911 element nodes) with synthetic access
controls. The data are stored on disk with each page at 4K bytes. The benchmark queries are
shown in Table 3.3. The top three queries represent three classes of NoK pattern trees: those with
branches at the end (Q1), in the middle (Q2), or a single path (Q3). The bottom three queries are
for ancestor-descendant structural joins and represent those having descendants located close to
the ancestors(Q4), far from the ancestors (Q6), or at a medium distance (Q5). To ensure that file
system and other level of caching does not affect our experiments, we force the system to read a
large file whose size exceeds main memory between consecutive queries.

Q1 /site/regions/africa/item[location][name][quantity]
Q2 /site/categories/category[name]/description/text/bold
Q3 /site/categories/category/description/text/bold
Q4 //parlist//parlist
Q5 //listitem//keyword
Q6 //item//emph

Table 3.3: Sample queries

Figures 3.9(a), 3.9(b) and 3.9(c) show the performance of the ε-NoK algorithm. We measure
the total wall clock time required (CPU time plus I/O plus other latency) for both algorithms,
by taking the difference between the time stamp of submitting the query and the time stamp of
getting the complete results back. The result set is not large so the time to output the results
is negligible. The two lines in each figure depict the ratio of processing time and answers re-
turned between the ε-NoK and non-secure NoK algorithms. The processing time of the ε-NoK
algorithm is at most 20% greater than the processing time of the non-secure NoK algorithm, and
does not depend on the accessibility ratio. This is still true when the majority of the document
is accessible (thus most answers of the original NoK algorithm are returned, and nodes in these
answers are all checked). The reason is that accessibility checking does not require extra I/O for
the ε-NoK algorithm.
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Figures 3.10(a),3.10(b) and 3.10(c) show the performance of the secure ε-STD algorithm.
Figure 3.10(a) shows the ratio of processing time between the ε-STD and non-secure STD algo-
rithms for Queries 4, 5, and 6. As we can see, ε-STD is much more expensive. However, when
the number of answers decreases as node accessibility decreases (in Figure 3.10(b)), the corre-
sponding processing time also goes down. Also, we note that processing time decreases faster
for the queries with longer ancestor-to-descendant paths. This shows that ε-STD is more sensi-
tive to node accessibility and query topology, and its performance is better when majority of the
document is inaccessible. The reason is that the ε-STD algorithm can optimize by skipping the
accessibility checks for some nodes on the ancestor-to-descendant path. This is verified in Fig-
ure 3.10(c), where the y-axis shows the percentage of nodes (between each ancestor-descendant
pairs) checked with accessibility by ε-STD Algorithm. As we can see, the number of accessibil-
ity checks goes down (at different speed for three queries) as node accessibility goes down.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

20% 30% 40% 50% 60% 70% 80% 90%

 e
-N

oK
 / 

N
oK

percentage of accessible nodes

processing time
answers returned

(a) Query 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

20% 30% 40% 50% 60% 70% 80% 90%

 e
-N

oK
 / 

N
oK

percentage of accessible nodes

processing time
answers returned

(b) Query 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

20% 30% 40% 50% 60% 70% 80% 90%

 e
-N

oK
 / 

N
oK

percentage of accessible node

processing time
answers returned

(c) Query 3

Figure 3.9: Performance between ε-NoK and NoK as a function of node accessibility
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3.7 Comparison to Related Work
Gabillon and Bruno [36] define view-based semantics for secure query evaluation. They define
a secured view for each user group, and queries are applied against the secure views. Since
their approach is based on view-based access controls (see Chapter 2), the FGAC specifications
do not take much space. However, their approach prunes all subtrees with an inaccessible root,
regardless whether there are accessible nodes in that subtree or not. Cho et al. [25] define a more
relaxed pattern-matching based semantics. This semantics allows answers to come from a subtree
whose root is inaccessible. They use schema information to rewrite queries to optimize query
evaluation time. Stoica et al. [85] use secured views and secure data schema (both generated
from original data schema and access control policies) for answering XML queries. Similarly,
Fan et al. [34] use secured views generated from DTD schemas and access control rules for
secure query evaluation. The access control rules in these two approaches are based on the
data schema, which must exist. Moreover, all these models are also built on view-based access
controls, and have the limitation as described in Chapter 2. On the other hand, instance-based
access control is necessary when there is no schema, or when the desired access controls cannot
be described by schema level specifications.

Lee et al. [57] propose a secure XML evaluation framework in which access controls are
specified on the XML model but enforced in an underlying relational database. However, the
XML data instance needs to be first shredded into the relational model. There is also work [30]
on efficient dissemination of sensitive XML data based on pattern matching. The DOL approach
can be similarly used for dissemination of XML data to multiple users. The difference is that
DOL is based on instance-based fine-grained access controls.

Yu et al. [96] developed the CAM representation for fine-grained access controls on XML
data. A separate CAM structure is required for each user under each action mode, so CAM does
not exploit the commonality among multiple users to achieve better compression ratio. Recently,
Jiang and Fu proposed Integrated Compressed Accessibility Maps (ICAM) as an improvement
over the original CAM approach [53]. Like DOL, this approach exploits correlations between
different action modes and compresses the CAMs for different action modes into one integrated
structure. However, the approach also requires that the action modes follow a strict operational
hierarchy, i.e., a subject with write access rights on an object always has read access on that same
object. This is not always desireable. e.g., a user may be able to write to a file while not being
able to read it, as in the Mandatory Access Control model [82]. The DOL, in contrast, neither
requires nor exploits an operational hierarchy.





Chapter 4

Intelligent Query Plan Caching

4.1 Introduction
Under the Truman model described in Section 2.3.1, each user’s query will be applied on his
accessible data only. If access controls are view-based, the queries will be rewritten to be ap-
plied on the views containing the user’s accessible data. We already described in Section 2.4.1
that Oracle VPD implements view-based access control under the Truman model by appending
access controls as predicates to the where clauses in user queries. In this way, one query can
be customized into different user-specific versions corresponding to different users’ access con-
trols. We use the term customized query to denote such a query. In this chapter we consider the
problem of query optimization for such customized queries.

Because access controls can be based on personal data or user profiles, the number of distinct
customized queries from the diversified access controls can be as large as the number of users.
These different customized queries pose new challenges to the query optimizer. Suppose a broker
(u1) submits a query Q, searching for any stock whose price chart shows a double formation (or
M-Top pattern) in the past week. The system first customizes this query Q into Qu1 according
to the broker’s access rights for stock information, and then computes the optimal query plan P1

for Qu1 . Since the uncustomized query is already complex [27], optimization of the customized
query may take some time. Suppose another broker (u2) submits the same query Q, which gets
customized to Qu2 . Qu2 is largely the same as Qu1 except that Qu2 manifests different access
control customization than Qu1 if u2 has different access rights. If the system is to optimize Qu2

from scratch, the cost of optimization has to be paid again.
Suppose there are Q queries and U users, and each user submits his customized version of

Q, it will take Q × U time to optimize all possible customized queries from scratch at runtime.
We call this approach the “Näive Dynamic” approach or ND as shown in Figure 4.1. The ND
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approach is expensive and unsuitable for the online nature of these queries.

optimization cost

plan effic
iency

storage space

|U| * |Q|
optim

al

poor|U| * |Q|

ND

NS
PQO

PLASTIC

Figure 4.1: Query optimization for multiple users

Our objective is to reduce the optimization cost of the ND approach, while continuing to
produce high-quality query plans. There are several existing techniques that are potentially ap-
plicable to this problem:

1. Cache query plans so that the same query plan can be used for exactly the same query if it
is submitted again. However, this requires exact matching on queries, and does not help if
all these customized queries different from each other in both syntax and semantics.

2. Compute a query plan for each customized query in advance. When user u submits query
Q, the system locates the pre-computed plan for Qu and executes it. In this way, the run-
time cost of query optimization is near zero. However, this approach requires that we know
all customized queries at query compilation time, and the users’ access controls remain
fixed thereafter, which may not always be the case. Moreover, this approach requires
space proportional to |Q| × |U| to store all query plans, which is prohibitive when |U| is
large. We call this approach the Näive Static approach or NS in Figure 4.1.

3. Prepare query plans offline in a manner similar to parametric query optimization (PQO) [43,
44, 49]. However, we will show in Section 5.8 that this PQO approach fails to compute
efficient query plans even if it is enriched by extra means.

4. Reuse query plans in a way similar to plan selection with query plan clustering (PLAS-
TIC) [39]. This is not a suitable approach, as we will show in Section 5.8, since it depends
on query structure.

In the context of user-customized queries, each of these approaches has a significant weak-
ness. We hope to overcome these limitations with the approach presented here.
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4.1.1 Approach Overview
This chapter presents an intelligent plan caching mechanism, called Partitioned Optimization
for Multiple-user (POM), as a technique for optimizing a large number of customized queries.
Our observation is that although the customized queries are different from each other in syntax
and semantics, they stem from the same uncustomized query. Therefore their query plans may
only differ at the parts that implement customizations. In this case, partial plans can be reused,
avoiding re-optimization of customized query versions. For example, if the customizations are
limited to the access paths (e.g., leaves of the query plans), the whole upper-level join trees of
the query plans can be reused.

We study the characterizations of customized queries that share the same upper-level partial
query plan. Based on the study, we are able to cache and reuse the partial plan from previously
optimized queries for new queries. With a careful design of the partial plan reuse algorithm, we
propose POM as an intelligent plan caching mechanism that

1. reduces query optimization cost compared to the ND approach, if the partial plan corre-
sponds to a time-consuming component of a query plan,

2. achieves a much higher cache hit ratio than a traditional plan caching mechanism, and
guarantees superior performance of the query plan built from the cached partial plan, and

3. has an adjustable cache size which does not have to be as large as the NS approach.

The proposed POM plan caching mechanism is illustrated by the star in Figure 4.1.

4.2 Example of Query Plan Reuse
We will use the following running example for the rest of the chapter.

Example 1. There are three customized queries as follows, with their customizations shown in
bold font.

Q1 select * from R, S where R.a=S.b and R.a=5 and S.b=5

Q2 select * from R, S where R.a=S.b and R.c<5

Q3 select * from R, S where R.a=S.b and R.a<5
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answer
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tbl-scan(S)
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A correct query plan for Q3

Figure 4.2: Example of reusing partial query plan

Assume there is an unclustered index on attribute R.a.
Suppose Q1 is submitted first and the optimizer rewrites Q1 into Q′

1 by removing the redun-
dant join predicate:

Q′
1: select * from R, S where R.a=5 and S.b=5

The optimizer computes Q1’s optimal query plan based on this rewriting as a Cartesian
product over an index-scan on R.a and a table-scan on S, as shown on the top left of Figure 4.2.

Then Q2 is submitted and the optimizer computes Q2’s optimal query plan as a hash-join
over a table-scan on R with select condition (R.c<5) and a table-scan on S, as shown on the top
right of the figure.

Now suppose Q3 is submitted. If we modify Q2’s query plan by replacing its left child with an
index-scan on R.a together with the select condition (R.a < 5), the modified query plan, which
is shown on the bottom in Figure 4.2, correctly computes Q3 . However, we are not sure if this
query plan is the optimal query plan for Q3.

On the other hand, if we try to replace the left subplan of Q1’s query plan with an index-scan
on R.a having a select condition (R.a < 5), the modified query plan may not compute the correct
answer for Q3. The reason is that Q1 experiences different query rewrites than Q3, and its query
plan does not have the join predicate that Q3 depends on.

The above example shows that under some scenarios we are able to modify the query plan
of a customized query to create a query plan that computes a different customized query. How-
ever, we may not do so if the customized queries have gone through different query rewrites.
Example of such query rewrites includes removing the distinct operator, adding or removing
join predicates, or replacing sub-expressions with materialized views. Moreover, even if we are
able to modify one customized query’s query plan to compute the correct answer for another
customized query, we may not guarantee the optimality of the modified query plan for the new
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query. Therefore, we aim to provide answers to the following questions:

1. Under what situation can we substitute parts of an existing query plan to get a correct query
plan for a new customized query?

2. Will the modified query plan be an optimal query plan for the new customized query?

Note that the queries in the example are deliberately made simple for presentation pur-
poses. We envision our proposed solution will be beneficial for complex queries that are time-
consuming for query planning.

4.3 Foundation of Query Plan Substitution
Before introducing our plan caching and plan modification mechanism, we need some insights
into query plan composition. We first observe that a query including joins over several tables can
be expressed as a top-level query over several subqueries, where each subquery is either a single
table or a join over several tables, i.e.

Q ≡ Qtop(Q1, Q2, . . . , Qm)

Correspondingly, the optimal query plan for this query consists of a top-level plan and several
subplans, where each subplan is an access path on a relation or a sub-join query plan, i.e.

P ≡ Ptop(P1, P2, . . . , Pn)

Suppose we have another query Q′ whose query plan is P ′. Moreover, Q′ and P ′ can be ex-
pressed as Q′

top(Q
′
1, Q

′
2, . . . , Q

′
m′) and P ′

top(P
′
1, P

′
2, . . . , P

′
n′) respectively. We have the following

proposition:

Proposition 4.3.1. If the following conditions hold between Q and Q′ and between P and P ′:

1. There is a one to one mapping between subqueries in Q and subqueries in Q′ such that
each pair of subqueries has the same schema.

2. There is a one-to-one mapping between the subplans of P and the subqueries in Q such
that each subplan Pi implements the corresponding subquery Qi; and the same applies to
P ′ and Q′.

3. The top-level sub-queries Qtop and Q′
top are identical.
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4. Each subplan P ′
i is physically compatible (to be explained later) with Pi with respect to

the top-level query plan Ptop of P .

then we are able to create a new query plan P ′′ = Ptop(P
′
1, P

′
2, . . . , P

′
n′) such that P ′′ com-

putes Q′, as illustrated in Figure 4.3.

subqueries

Q
Query Plan for Q

top-level query

… …Q1 Q2 Qn

Qtop

P2P1
Pn

Ptop

Q’

…Q’1 Q’2 Q’n

Q’top

Implements

Union-

compatible

…
P’2P’1 P’n

P’top

Implements

…

Ptop

P’2P’1 P’n

Query Plan for Q’

Query Plan for Q’

Figure 4.3: Subplan replacement

Figure 4.3 illustrates this proposition. As mentioned in the proposition, when connecting the
subplans of P ′ to the top-level part Ptop of P , we need to consider whether the subplans are phys-
ically compatible with the top-level query plan at the connecting points. Each database system
has its own specific requirements on what types of plan operators are physically compatible. We
will illustrate this in Section 4.3.1.

Definition 4.3.1. A subplan P ′
i is a compatible substitute for subplan Pi with respect to query

plan P if

1. P ′
i and Pi have the same schema.

2. P ′
i is physically compatible with Ptop of P at the point at which Pi connects to Ptop.

Proposition 4.3.1 suggests a plan caching mechanism, which can be applied for computing
query plans for a large number of customized queries. Suppose we have Q and Q′ as two cus-
tomized queries, and we have already computed the optimal query plan for Q and cached its
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top-level query plan Ptop. Now we are able to compute a query plan P ′′ for Q′ by reusing Ptop

and connecting it with the subplans of Q′ that are compatible substitutes to the subplans in P
with respect to Ptop. If the subplans of Q′ can be computed much faster than computing the
whole query plan of Q′, we reduce the query optimization cost for Q′, by using P ′′ as the query
plan for Q′ rather than computing optimal query plan for Q′ from scratch. However, in order to
apply this proposition, we need to be able to do the following:

1. Decompose Q and Q′ into top-level queries (Qtop and Q′
top) and subqueries ({Qi} and

{Q′
i}).

2. Check whether there exists one-to-one correspondence between the subqueries {Qi} and
{Q′

i} such that each pair of subqueries have the same schema, and check whether Qtop and
Q′

top are identical.

3. Decompose P to establish a one-to-one correspondence between subplans of P with sub-
queries of Q, such that each subplan Pi implements exactly the corresponding subquery
Qi.

4. Compute subplans {P ′
i} for subqueries {Q′

i}.

5. Check whether each subplan P ′
i is a compatible substitute for another subplan Pj with

respect to Ptop.

With the above prerequisites, we are able to show the POM plan reuse framework as in
Algorithm 3.

The query plan produced by procedure Reuse P lan in Algorithm 3 is called a stitched plan.
There are several issues with this plan caching and reusing algorithm. First, the decomposi-
tions required in line 1 and line 3 of the procedure Cache P lan and in line 2 of the procedure
Reuse P lan cannot be arbitrary decompositions. We wish to decompose queries and query
plans such that the conditions at line 3 and line 5 of the procedure Reuse P lan can be satisfied.
Second, we can not guarantee the optimality of the replaced query plan for Q′. To resolve these
issues, we need to look at the details of query planning for an actual query optimizer.

In the next section we will use the optimizer of PostgreSQL, an open-source database system,
to show how we are able to accomplish the five prerequisites for Algorithm 3. Also, we will show
how to extend Algorithm 3 to decompose queries and query plans to accommodate plan stitching,
and to ensure the correctness and the optimality for the stitched query plan. We will also extend
Algorithm 3 for a more general optimizer model in Section 4.3.2.
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Algorithm 3 POM Plan Reuse Framework

CACHE PLAN(Q) // Q is a customized query
1: Decompose Q into Qtop and subqueries Q1, Q2, . . . , Qm

2: Compute optimal query plan P for Q using existing optimizer;
3: Decompose P into Ptop and subplans P1, P2, . . . , Pn

4: Cache Qtop, Q1, Q2, . . . , Qm and Ptop, P1, P2, . . . , Pn

REUSE PLAN(Q′) // Q′ is another customized query
1: Check whether Q′ and Q are from the same base query

(i.e., whether they only differ in selection predications)
2: Decompose Q′ into Q′

top and Q′
1, Q

′
2, . . . , Q

′
m′

3: if Qtop and Q′
top are not identical

4: then Return null;
5: if {Q′

1, Q
′
2, . . . , Q

′
m′} and {Q1, Q2, . . . , Qm}

have one-to-one mapping such that each subquery pair has the same schema
6: then Build subplans {P ′

i} for {Q′
1, Q

′
2, . . . , Q

′
m′}

7: if for each cached subplan Pi there is a compatible substitute
from {P ′

i} with respect to Ptop

8: then Replace each subplan in P with its compatible substitute;
9: return the replaced query plan;

10: return null;
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4.3.1 Case Study: PostgreSQL
We first briefly describe query processing in PostgreSQL. A query is first parsed and represented
in a block-based structure, with subqueries as blocks linked from the main query block. Each
block represents a join over several relations, and the block includes all join predicates and select
predicates in its join. Each block may be wrapped with top-level operators such as aggregation,
distinct, and order-by. The optimizer then rewrites the query by flattening the block structure,
normalizing and pushing the select operators to each relation. The left side of Figure 4.4 il-
lustrates the internal representation of rewritten query of Q1 from Example 1. We can see the
redundant join predicate is removed after query rewriting.

The optimizer then generates a query plan based on the rewritten query in a bottom-up fash-
ion. Access paths on the leaf relations are built first. These implement exactly the same logic
of the single-table subqueries in the rewritten query. For example, in Figure 4.4, the index-scan
on R.a implements the left subquery (σR.a=5(R)) while the table-scan on S implements the right
subquery (σS.b=5(S)).

After the access paths are built, the optimizer enumerates join trees on top of these access
paths using dynamic programming, forming optimal joins over all pairs of relations, then forming
optimal joins over every triple relations, and so on until the complete join plan of all the relations
in the query is built. Finally the join plan is wrapped by the top-level operator of the query block
to form a complete query plan, which is the optimal query plan.

Q1: select * from R, S 
where R.a=S.b

and R.a=5 and S.b=5

)()5.( RaR =
σ )()5.( SbS =

σ

answer

Cartesian  prod.

topP

Idx-scan(R.a)

R.a=5

access pathsInternal representation of Q’1

Tbl-scan(S)

S.b=5

Figure 4.4: Subplans correspond to subqueries in PostgreSQL

Physical Compatibility Requirements
Recall that Proposition 4.3.1 requires each subplan P ′

i be a compatible substitute to some
subplan Pi with respect to the top-level query plan Ptop of P . To be a compatible substitute for
Pi, P ′

i must be physically compatible with Ptop at the point at which Pi attaches to Ptop. To
see why we need this, consider the example illustrated in Figure 4.5. The left side shows the
query plan for Q2 in Example 1, which is a hash-join over two table-scans. The right side shows
the query plan for Q3, which is a merge-join on an index-scan on R.a and an table-scan on S
sorted by S.b. Suppose we have cached the query plan of Q3, and wish to replace its access paths
with the access path of Q2 to create a query plan for Q2. The conditions for subplan-subquery
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correspondence are established already. However, we cannot replace the index-scan on R.a in
the query plan of Q3 with the table-scan on R from the query plan of Q2, since the table-scan on
R does not generate the interesting order required by the merge-join operator.

In PostgreSQL, there are two physical properties that we need to consider when stitching
subplans to top-level partial plan.

Idx-Scan(R.a) Tbl-Scan(S)

merge-join

Tbl Scan (R) Tbl Scan (S)

hash-join

Query plan for Q2 Query plan for Q3

Sort:S.b

Figure 4.5: Order requirement

a The interesting order property of a subplan which sends tuples to its parent operator in a
specific order.

b The index-probe-able property of a subplan corresponds to the right child of an indexed-
nested-loop join operator. This property requires that the subplan get a specific tuple from
an index given the tuple’s identity.

Other database systems may have different sets of physical compatibility requirements. The
complete list of physical compatibility requirements between query plan operators depends on
the specific optimizer, and we will discuss the more general cases in the next section.

Physical Property Requirement for Subplans
Once we identify the physical properties for the physical compatibility requirements, we

can check whether a subplan is physically compatible with a top-level partial plan. To do this,
we need to cache the set of requirements on physical properties that the new subplans need to
satisfy to be physically compatible to the already cached top-level partial plan. We call these
requirements physical property requirements for the cached partial plan. Hence we need to store
the upper-level query plan, and the physical property requirements on its subplans, in the POM
cache.

Applying Algorithm 3 for PostgreSQL
To apply Algorithm 3 for PostgreSQL, we need to satisfy the five prerequisites as outlined in

Section 4.3.
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1. How to decompose Q and Q′ into top-level queries (Qtop and Q′
top) and subqueries ({Qi}

and {Q′
i}):

We decompose the queries such that each subquery involves a single relation.

2. How to check whether there exists one-to-one correspondence between the subqueries
{Qi} and {Q′

i} such that each pair of subqueries have the same schema, and check whether
Qtop and Q′

top are identical:

By decomposing two queries Q and Q′ as in the previous step, we are able to check whether
the two queries have subqueries working on the same relation. If Qtop and Q′

top are iden-
tical, and the two single-table subqueries are from the same relation, then these two sub-
queries have the same schema. This is because these two subqueries must contribute the
same number of fields to their upper-level partial query, and their projection operators must
be the same. We can then check whether there exists a one-to-one mapping between the
subqueries of Q and Q′ having the same schema. We extract Qtop and Q′

top from the in-
ternal representation of the rewritten queries (denoted as Qrw and Q′

rw respectively), by
trimming all selection and projection operators on these relations from the query block.
The trimmed representation corresponds to the top-level partial queries of the rewritten
query. To check whether the top-level queries Qtop and Q′

top are identical, we simply com-
pare Qtop and Q′

top.

3. How to decompose P to establish a one-to-one correspondence between subplans of P
with subqueries of Q, such that each subplan Pi implements exactly the corresponding
subquery Qi:

Since each access path exactly implements each single relation subquery, the one-to-one
correspondence between the access paths (subplans) and the subqueries can be established.

4. How to compute subplans {P ′
i} for subqueries {Q′

i}:

PostgreSQL creates query plans in a bottom-up fashion. Thus we can invoke the optimizer
to build the subplans (access paths) for the subqueries.

5. How to check whether each subplan P ′
i is a compatible substitute for another subplan Pj

with respect to Pj’s upper level partial plan Ptop:

P ′
i is a compatible substitute for Pj with respect to Ptop when the following two conditions

hold:

(a) P ′
i ’s returned tuples are sorted in an order that is consistent with or dominates the sort

order required by Ptop from Pj .
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(b) if Pj is the right child of an indexed-nested-loop join operator, then P ′
i is the right

child of an indexed-nested-loop based on the same index (or a composite index that
dominates the same index).

With the above prerequisites, we are able to apply Algorithm 3 for PostgreSQL. According
to Proposition 4.3.1, Algorithm 3 will generate correct query plan for Q′.

POM allows us to compute query plans by computing access path (subplans) for each sub-
query without computing the whole query plan. Therefore, POM saves us from computing the
whole upper-level join plan for the queries. Since upper-level join plan generation is the most
expensive part of query optimization [48], the savings from POM can be significant. We will
illustrate this by experiment in Section 4.7.3.

4.3.2 More General Cases
The above approach in PostgreSQL can be extended for other optimizers. For example, DB2
internally represents queries using the Query Graph Model (QGM) [74]. Like PostgreSQL, DB2
builds access plans that correspond to the subqueries of leaf relations in QGM. Thus the one-
to-one correspondence from the subplans to the subqueries can be established. We can “trim”
a QGM by removing all of its base table boxes and the edges linked to these boxes. We also
remove all of the loop links, which correspond to all select predicates, in the remaining boxes.
The trimmed QGM represents a top-level query and can be serialized into string for checking
top-level query identicalness. Moreover, this optimizer allows us to compute the subplans of
each leaf subquery without computing the whole query plan.

Different database systems have different query plan operators and may have different phys-
ically compatibility requirements for its query plan operators. For example, a Bloomjoin opera-
tor [63] requires one of its children to hash its tuples into a bit-vector while the other child reduces
its input using the bit-vector and the same hash functions. A Rankjoin operator [47] requires its
children to have certain properties in terms of ordering. Given a specific database system, we
need to carefully examine its query plan operators to add other property requirements to the
picture.

4.4 POM Caching for Access Control Customized Queries
In this section we show how to build the intelligent plan caching mechanism for access control
customized queries. This caching mechanism is based on the foundation of plan reuse presented
in Section 4.3. For the rest of the discussion we continue to use PostgreSQL to demonstrate
our plan caching mechanism. We will explain how this architecture can be modified for other
optimizers in Section 4.8.
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4.4.1 Access Control Customization Formalism
We envision a query issued by many users U where each user invokes a customization of the
query. We first formalize the representation of access control customization through the follow
definitions:

Definition 4.4.1. A local predicate on relation R is a predicate that involves only attributes of R
and constants.

Definition 4.4.2. A local predicate formula on relation R is one or several local predicates
connected by AND, OR and NOT .

Suppose the query is defined on relations R1, R2, . . . , Rk. We use Q(R1, R2, . . . , Rk) to
denoted this query. For each user u ∈ U and each relation Ri, there is a user-customization
view of Ri for u, which we denote by V u

i . Each customization view V u
i is defined over Ri in

the form of σCu
i
Ri, where Cu

i is a local predicate formula on Ri. When user u submits a query
Q(R1, R2, . . . , Rk), the database system customizes Q for u into a user-specific version (denoted
by Qu), by replacing references to each Ri in Q with references to V u

i :

Qu ≡ Q(V u
1 , V u

2 , . . . , V u
k )

In this chapter we model users’ access control customization as local predicate formulae
on relations. This is a natural extension to the Oracle Virtual Private Database model, which
customizes user’s query by appending at most one local predicate to each relation referred to in
the query [70]. In Section 4.8 we will show that our approach can be extended for more general
access control customizations (e.g., customization through join predicates).

4.4.2 Architecture
Before illustrating the POM architecture, we need to define some terminology:

Definition 4.4.3. A leaf query is a subquery whose operators only refer to one relation. The
query with its leaf queries removed is called a partial query.

Definition 4.4.4. A partial plan (P̂ ) is a query plan with all its access paths removed. Each point
of removal is labeled with the name of the relation accessed by the removed access path.

Definition 4.4.5. Plan stitching is the process of connecting a set of access paths to the leaves
of a partial plan, such that each access path matches to the relation labeled at the leaf of the
partial plan. A stitched query plan has every leaf connected to an access path.
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Since access control customizations are in the form of local predicate formulae, it is antic-
ipated that the queries’ query plans compute different answers just because of their different
access paths. In another word, their upper level partial plans implements the same logic. This
suggests we apply Proposition 4.3.1 to reuse top-level partial query plans for customized queries
and save query optimization effort. More specifically, we cache partial plans for customized
queries, and stitch them with the access paths computed for new customized queries to create
query plans for the new customized queries. This idea leads to the architecture as illustrated
in Figure 4.6. It has two components: the plan-cache component and the plan matching-and-
stitching component.

Plan-Cache: For each query Qu that is optimized from scratch, POM stores the top-level query
Qtop from Qu, the partial plan P̂ for Qu, and some meta-data, in its cache. The meta-data includes
the schema information of the single-table subqueries, and the physical property requirements
from the partial plan on the removed access paths, and some other data whose purposes will be
described in Section 4.5.

Plan Matching and Stitching Component: After a new customized query Q′u is submitted,
POM first decomposes this query into upper-level query and single-table subqueries. Then POM
finds all cache entries whose top-level query is identical to the top-level query of Q′u, and whose
subqueries have the same schema as this new query’s subqueries. These cache entries corre-
sponds to other customized queries from the same base query. Then POM computes access paths
for Q′u, and for each of these cache entries, POM checks whether Q′u has a set of access paths
that can be stitched to the partial plan P̂ of that cache entry, by looking at the physical property
requirements of the partial plan. If there are such access paths, POM stitches them to that par-
tial plan to create a query plan that correctly computes Q′u. After doing this, POM also checks
whether the stitched query plan has the potential to be an optimal query plan. We will describe
this step in detail in Section 4.5. There can be multiple stitched query plans from multiple cached
partial plans that match the new customized query. In the last step, POM will pick the stitched
query plan with the lowest cost.

Using this architecture, POM significantly reduces query optimization time compared to op-
timizing each plan from scratch. This is because POM avoids enumerating and evaluating all
possible join trees for each new customized query once there is a partial plan matched, and join
tree enumeration and generation is considered the dominant expense of query optimization[48].
Moreover, each cached partial plan can be matched for a group of new queries, if the new queries
have the same partial rewritten query and access paths that are physically compatible. Thus the
cache hit ratio can be much higher than syntax level query plan caching. Finally, the cache size
can be adjusted based on resource availability and does not have to be as large as the NS approach
described in Section 4.1.

We will show in Section 4.5 that a carefully designed partial plan matching algorithm will
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Figure 4.6: POM architecture

guarantee that the generated query plans have performance close to the optimal query plans for
the new queries. Therefore, POM fulfills all the design goals set in Section 4.1.1.

Like other plan caching mechanisms, we require that the data be relatively static in order
for POM to work. If the system undergoes significant changes (adding or removing indexes,
changing data distribution, etc), we need to discard the cached partial plans and restart from
scratch.

For ease of presentation, in the rest of the discussion we use Q to denote a query that is
already optimized, and use Q′ to denote a new query for which we wish to reuse the query plan
for Q. We use P to denote the optimal query plan for Q, and we use P ′ to denote the stitched
query plan for Q′.

4.5 Plan Matching for Optimality
Section 4.3 presents the foundation of query plan reuse by plan stitching. Section 4.4 applies this
theory to access controlled customized queries. In this section, we focus on the performance of
stitched query plans generated by PostgreSQL. We assume the stitched query plans are correct,
i.e., the top-level query of Q is identical to that of Q′, and there exists a set of access paths of
Q′ that are compatible substitutes for the original access paths with respect to P̂ . These two
conditions are prerequisites for the correctness of the stitched plan, as described in Section 4.3.

Our approach consists of two steps. First, we try to establish an upper-bound on the cost of
the stitched query plan using P̂ . Then we show that under certain conditions this upper-bound is
also the lower-bound. Therefore, the stitched query plan is an optimal query plan for Q′.
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In the remainder of Section 4.5, we consider any query optimizer that has the following
properties:

1. The cost of each subplan depends only on the costs and sizes of its child subplans, and the
operator at the root of the subplan.

2. Query plans are computed in a cost-based, bottom-up fashion, by creating the access paths
first, and then the join trees. There are no randomized heuristics involved.

3. Access paths implement the single-table subqueries, while the top-level query plan (with
access paths removed) corresponds to the upper-level query (with single-table subqueries
removed).

For example, the PostgreSQL optimizer has such properties.

4.5.1 An Upper Bound on Stitched Query Plan Cost
Before introducing the upper bound on stitched query plan’s cost, we need the following defini-
tion:

Definition 4.5.1. If a subplans P1 and P2 have the same schema, the same physical properties,
and the same cost, and P1 and P2 return the same number of tuples, then P1 and P2 are matching
subplans. If both P1 and P2 are access paths, then P1 and P2 are matching access paths (Figure
4.7).

For any optimizer that has properties listed at the beginning of Section 4.5, we have the
following performance guarantee on stitched query plans:

Theorem 4. If the access paths in P of query Q are replaced with their matching access paths
for another query Q′, then the new query plan (P̂ stitched with these matching access paths) not
only correctly computes Q′, but also has the same cost as P .

Proof. Since we assumed the partial plan P̂ of P implements the top level of Q′, the top-level
queries of rewritten Q and Q′ must be identical. Therefore, the access paths of Q′ that are
physically compatible to P̂ of P can be stitched with P̂ to create correct query plan for Q′, as
already described in Section 4.2. Since the optimizer computes the cost of query plan based only
on the sizes and costs of subplans, and the generated query plan has exactly the same sizes and
costs with P for each element, the theorem holds.

Theorem 4 shows when we are able to generate a query plan with the same cost as P . When
such a plan can be generated, its cost can serve as an upper bound on the cost of an optimal query
plan for Q′. In the next section we will show this upper bound is also the lower bound of the
optimal query plan under certain scenario, hence the optimality of the stitched query plan.
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Figure 4.7: Matching access paths to partial plans

4.5.2 Ensuring Optimality of Stitched Query Plans
Now we show how to ensure the optimality of the stitched query plan P ′. There are two possible
scenarios under which the stitched query plan P ′ can be a sub-optimal plan for Q′:

1. The optimal query plan P ′′ has a different set of access paths than P ′.

2. The optimal query plan P ′′ has the same set of access paths but a different partial plan than
P ′.

We first show that the second scenario will not happen in PostgreSQL. In fact, for any opti-
mizer that has the first property listed at the beginning of Section 4.5, if P ′ and the optimal query
plan P ′′ for Q′ have the same set of access paths, then their partial plans must be identical.

In fact, if every access path in P ′′ is a matching access path of the corresponding access path
in P ′, then P ′ and P ′′ must have identical partial plans, by the same reasoning.

Therefore, the only scenario in which the stitched query plan P ′ may not be optimal is a sce-
nario in which at least one access path failed to match when the stitched plan P ′ was computed.
If this does not happen, we will be able to guarantee the optimality of the stitched query plan P ′.

Before continuing, we first introduce the notion of a subplan Pi being a universally com-
patible substitute for another subplan Pj: Pi is compatible substitute for Pj with respect to any
upper-level query plan. For example, in PostgreSQL, if an access path P1 has a stronger or
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equivalent order than access path P2, and P1 and P2 have the same schema, then P1 is a univer-
sally compatible substitute for P2. Please note that a pair of matching subplans are universally
compatible substitutes for each other.

Now, we focus on the case in which the optimal query plan P ′′′ has a different set of access
paths than P ′. We have the following Lemma:

Lemma 1. If, for every non-matching access path P ′′
i of Q′, there exists an access path P ′′′

i for
Q such that

1. P ′′′
i is a universally compatible substitute for P ′′

i ,

2. P ′′′
i has a lower cost than P ′′

i ,

then P ′′
i will not be in the optimal query plan for Q′.

Proof. Assume the non-matching access path P ′′
i appears in the optimal query plan P ′′ for Q′.

We prove that this cannot happen. We can replace the non-matching access path P ′′
i in P ′′ with

access path P ′′′
i , since this P ′′′

i is a universally compatible substitute for P ′′
i . We then replace each

of the remaining matching or non-matching access paths in P ′′ with their compatible substitute
access paths for Q. We are able to do this since the assumption of this lemma is that each non-
matching access path has a universally compatible substitute, and each matching access path of
Q′ has a matched access path for Q that can replace it.

The resulting query plan (denoted by P ′′′) computes Q. This is because:

1. the top-level queries of Q and Q′ are identical;

2. P ′′′
i is a universally compatible substitute of P ′′

i , so P ′′′
i is physically compatible with the

upper-level query plan of P ′′;

3. all other replacement access paths are compatible substitute for the access paths of P ′′ with
respect to the upper-level query plan of P ′′.

4. the upper-level query plan P ′
top implements the upper query Q′

top, which is equivalent to
Qtop. The access paths of P ′′′

i and P ′′
j implement the single-table subqueries of Q.

Now since P ′′′
i has a lower cost than P ′′

i , P ′′′ is cheaper than P ′′, which is cheaper than P ′.
We already know that the stitched plan P ′ has the same cost as P from Theorem 4. Therefore,
P ′′′ should have a cost lower than P . This contradicts our assumption that P is the optimal query
plan for Q.
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Figure 4.8 illustrates Lemma 1, where we have Q optimized and its query plan P cached. We
have a new query Q′, whose only non-matching access path P ′′

1 has a compatible substitute P ′′′
1

for Q. P ′′′
1 also has a lower cost than P ′′

1 . Assume Q′ has an optimal query plan P ′′ with P ′′
1 as

its access path, as shown on the lower right side of the figure. We can replace P ′′
1 with P ′′′

1 , and
each of the remaining access paths (P ′′

2 and P ′′
3 ) with their compatible substitutes (P2 and P3).

We know that we can do this, because if P ′′
2 (or P ′′

3 ) is a non-matching access path, then from
the assumption of the lemma there must be an access path of Q that is a universally compatible
substitute for P ′′

2 (or P ′′
3 ) with a lower cost; if P ′′

2 (P ′′
3 ) is a matching access path, then there must

be a matched access path for Q that is already a universally compatible substitute. Now we have
a query plan P ′′′ as shown on the lower left side of Figure 4.8. This plan computes Q, even if
Ptop is not the same as P ′

top.

Ptop

chosen APs

P:  Optimal Plan for Q

non-chosen AP
compatible to P’’1 

matching APs

P’:  Stitched Plan for Q’

non-matching AP

P1 P2 P3
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P’ top

P’’’ 1
P’’ 1

P’’: optimal plan for Q’
cheaper than P’

P’’ 1 P’’ 2 P’’ 3

P’ top

Figure 4.8: Optimality guarantee

Theorem 5. If each non-matching access path of Q′ has an access path for Q that is a compatible
substitute with a lower cost, then the stitched query plan from Theorem 4 is an optimal plan for
Q′.

Proof. According to Lemma 1, none of these non-matching access paths should appear in the
optimal query plan for Q′. Since there are only two possible scenarios under which the stitched
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plan is not an optimal query plan for Q′, and both scenarios are not possible, then the stitched
plan is an optimal plan for Q′.

On the other hand, if one of the non-matching access paths for Q′ does not have an equivalent
compatible substitute from any of the access paths of Q, or if none of its equivalent compatible
substitutes for Q has a lower cost, then we cannot guarantee the optimality of the stitched query
plan from the matching access paths. For example, suppose we have already cached Q2’s query
plan, and try to reuse it for Q3, as in Figure 4.9. Q3 has all of its access paths computed as in
Figure 4.7, and its index-scan on R.a is not matched to the access paths in the optimal query
plan for Q2, since its cost and order properties do not match with the corresponding access path
on table R. We find that there is one compatible substitute access path for Q2, which is the
index-scan access path on R.a. However, this index-scan access path has a tremendous cost
at 20000, which is much higher than the cost of the non-matching index-scan access path for
Q3. Therefore, we cannot guarantee the optimality of the stitched query plan from the previous
section. In fact, the optimal query plan for Q3 is a merge-join based plan (the lower right of
Figure 4.9).

Tbl-Scan (R)
cost:   300
size: 100
Order: none

Tbl-Scan(S)
Cost:  500
Size: 200
Order: none

Hash-join (cost=2000)

Tbl Scan (R)
Cost:   300
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Tbl-Scan (S)
Cost:  500
Size:   200
Order: none

Idx-Scan(R.a)
Order: R.a
Cost:  20000

Idx-Scan (R.a)
Order: R.a
Cost:  100

matching access paths

Stitched Query Plan for Q3

non-matching

access path

chosen access paths

Optimal Query Plan for Q2
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Size:   200
Order: none

Merge-join (cost = 1500)
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Optimal Query Plan for Q3

Hash-join (cost = 2000)

Q2: select * from R,S where

R.a=S.b and R.c<5

Q3: select * from R,S where

R.a=S.b and R.a<5

Figure 4.9: Non-matching access paths change optimality
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4.5.3 Implementing POM Plan Caching
Theorem 4 tells us how to compute a stitched query plan with the same cost as a previous query
plan. Theorem 5 allows us to check whether this stitched query plan is indeed optimal. To apply
these theorems in POM, we need to record the sizes, costs, and ordering properties of both the
access paths for Q that appear in its optimal query plan P (i.e., the chosen access paths), and
the access paths for Q that do not appear in P (i.e., the non-chosen access paths). Using the
example in Figure 4.9 again, when the optimizer computes query plan for Q2, we store the cost,
size, order and index information of all three possible access paths for Q2: the table-scan on R,
the table-scan on S, and the index-scan on R.a. All this information, together with the top-level
of the rewritten query of Q2, are the meta-data associated with the partial plan P̂ of P .

Size/order/cost for 

chosen and non-

chosen access paths

Qtop
(string)

Partial plan
new query Qu

string-matching

Matching

Checking for optimality

Cache Entries in POM

non-matching

access paths

matching

access paths

Qtop

Size/order/cost for 

chosen and non-

chosen access paths

Qtop
(string)

Partial plan

Figure 4.10: POM cache entry matches to a query

When a new customized query Q3 is issued and we wish to reuse Q2’s partial plan, we do so
using the following steps:

1. We first use Q2’s top-level query and the information of its chosen access paths to check
whether Q2’s partial plan can be used to correctly compute the new query in a manner
described in Theorem 4.3.1.

2. We then invoke the optimizer to compute all possible access paths for Q3.

3. We look at the information of Q2’s chosen access paths, and try to find a set of matching
access paths of Q3 for the chosen access paths of Q2. If such access paths exist, we connect
these access paths to Q2’s partial plan and get the stitched plan. Otherwise, we will have to
compute the complete query plan for Q3 and cache the partial plan and meta-data as was
done for Q2.
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4. We then check whether the stitched plan is optimal. We do this by looking at the non-
matching access paths of Q3 and the information of all of Q2’s access path, as described in
Theorem 5. If each of the non-matching access path has a universally compatible substitute
with a lower cost, we know that the stitched plan is the optimal plan. In this case, we say
the non-matching access path is dominated by that POM cache entry. If one of the non-
matching access path does not have a universally compatible substitute access path with a
lower cost, then this POM cache entry does not dominate this non-matching access path,
and we will have to compute the query plan for Q3 from scratch and cache the partial plan
and meta-data as was done for Q2.

The detailed procedure for reusing previously cached plans for customized queries under
PostgreSQL is illustrated in Algorithm 4. Note that the one-to-one mapping between subqueries
of Q and subqueries of Q is implied by compatible substitutes between access paths. The purpose
of PLANmatch and the procedure Update Cache will be discussed in the next section.

4.5.4 Cache Maintenance
Whenever a customized query Qu fails to find any matching partial plan from the cache, POM
needs to optimize the new query from scratch, and update the cache with a new entry consisting
of the top-level of the rewritten query of Qu, the partial query plan, together with the information
on the chosen and non-chosen access paths.

For example, suppose POM first computes query plan for Q2 from Example 1 and caches its
partial plan. Now suppose another customized query Q4 is submitted as follows:

Q4: select * from R, S where R.a=S.b and (R.a>1000)
POM first computes the access paths of Q4, which include an index-scan access path on R.a.

This access path has cost as 200, which is much lower than the corresponding access path of
Q2. We also assume the predicate (R.a>1000) selects the same number of tuples as the predicate
(R.c<5) in Q2. We can see that POM does not match the partial plan of Q2 for Q4 since there
does not exist a non-chosen access path of Q2 that is a universally compatible substitute with
lower cost to the index-scan access path of Q4. Therefore, we cannot apply Theorem 5 to ensure
the optimality of the stitched plan. We will have to computes the query plan for Q4 from scratch.
Suppose the optimal query plan for Q4 is also a hash-join over two table scans. POM caches the
partial query plan of this query plan. Now the POM cache consists of two entries, as illustrated
in Figure 4.11 (the upper one comes from Q2 and the lower one from Q4).

A close look at these two entries shows that they have an identical top-level query Qtop, iden-
tical information on the chosen access paths, and an identical partial plan. The only difference is
that the first entry (corresponds to Q2) has a higher cost for the non-chosen access path. In this
case, we are certain that this entry is redundant. The reason is that any query that is matched by
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Algorithm 4 Detailed POM Procedure

PLAN REUSE(Qu)

1: PLANmatch = ∅ // plans match on chosen access paths
2: PLAN stitch = ∅ //stitched query plans
3: Popt = NULL; // to store the optimal plan for Qu

4: Compute Qtop for Qu;
5: Build access paths AP for Qu;

6: Find POM cache entries E with same Qtop and same base relations;
7: for each entry E ∈ E
8: do if (AP has matching access paths for E)
9: then Add E to PLANmatch;

10: Record the matching access paths;
11: if (every non-matching access path of Qu is dominated by E)
12: then P = P̂ stitched with matching access paths;
13: Add P to PLAN stitch;
14: if (PLAN stitch 6= ∅)
15: then Popt= the cheapest plan in PLAN stitch;
16: else Compute query plan for Qu, assign to Popt;
17: Update Cache(Popt, Qtop,AP , PLANmatch);

UPDATE CACHE(Popt, Qtop,AP ,PLANmatch)

1: if (PLANmatch 6= ∅)
2: then for each E ∈ PLANmatch

3: do if (P̂ in E is same as P̂ of Popt)
4: then Update costs of non-matching access paths in E
5: else
6: Create new POM entry Enew;
7: Add Qtop to Enew;
8: Add P̂ of Popt to Enew;
9: Add properties of access paths of Popt to Enew;

10: Add properties of all rest access paths in AP to Enew;
11: Add entry Enew to POM cache;
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Figure 4.11: Two entries cached for Q2 and Q4

the first entry can be matched by the lower entry with a lower cost for the stitched plan, but not
vice versa. Therefore we can remove the first entry.

More generally, if we find two or more entries with the same top-level query, the same partial
plan and the same information on chosen access paths, we are able to merge them by taking
the minimum costs for all their non-chosen access paths. This merge step is critical for the
effectiveness of POM. First we reduce the number of redundant entries to make the cache more
effective. Second, the new entry has the minimum costs on its non-chosen access paths among
all of the merged entries. The lower the costs of non-chosen access paths, the less likely the
“optimality check” step in Theorem 5 fails, and the more cache hits from POM.

The detailed POM cache update procedures is formalized as procedure Update Cache in
Algorithm 4. Here PLANmatch from procedure Plan Reuse represents all the POM cache
entries that might be merged with the entry of the new customized query.

4.5.5 Practical Concerns
Checking each entry in the POM cache for a customized query can be time-consuming. There-
fore, we sort and cluster these entries according to the size property of the matching access
paths. In this way we are able to quickly discard a large number of entries that do not match the
incoming queries.

Although Theorem 4 and Theorem 5 guarantee the optimality of the stitched plan if all condi-
tion in the theorems hold, it is very rare that access paths from two queries have the same size and
cost properties. Therefore, most of the time POM does not have a cache hit. A remedy for this
is to sacrifice optimality for higher cache hit ratio: instead of requiring the access paths of a new
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query agree exactly on the two properties for the chosen access paths, we relax the requirement
so that the two properties are matched for access paths if they are within a relatively close range.
The side-effect of this trade-off is that the stitched query plan might be sub-optimal. However,
our experiment shows that the stitched query plans are still mostly optimal at a moderately large
approximation range for these properties. Another issue is that once we bring in approximation,
there can be multiple partial plans that can be used for creating a query plan for the new query.
In this case, we simply pick the stitched query plan with the lowest cost.

Aside from approximation of the cost and size properties, POM may also produce sub-
optimal query plans due to our assumptions on the optimizer model. We assume that the op-
timizer estimates join sizes and join costs based on the join predicates, the inputs’ sizes and the
inputs’ costs. Other database optimizers may have factors that are not included in our model.
However, those ad hoc factors can be treated as “properties” in a similar fashion and added to
our model to improve POM accuracy.

4.6 Comparison to Related Work
There is a history of work on efficient query processing for large numbers of users with different
user preferences [8, 31, 95]. However, these works do not address cost-effective query planning.
The approaches in [20] and [83] address multiple query planning with common sub-expressions,
but their emphasis is on creating a single query plan that makes the best use of intermediate
results that correspond to common subexpressions from similar queries.

The closest related work is parametric query optimization (PQO) [49]. The idea is that there
may exist certain query parameters that can not be determined at query optimization time, yet
these parameters affect the choice of optimal query plans. Examples of these parameters include
buffer pool size and data distribution at query time. The optimizer thus treats these parameters as
variables, and creates many query plans, each being an optimal query plan when these variables
fall in a value range. At runtime the system chooses the optimal query plan from these pre-
compiled query plans according to the actual value of these parameters. For example, a query
Q involves joining two tables. The system does not know how much memory will be assigned
to this query at runtime. If the memory size is big enough to fit a hashtable of a smaller table,
a hash-join will be more efficient, while a merge-join will be faster under lower memory size.
Therefore, the optimizer may create two query plans, one based on hash-join for larger memory
size, one based merge-join for smaller memory size. At runtime, the actual memory allocation
between concurrent queries is known and the database system is able to choose from the two
query plans according to the actual memory allocated. In this way, PQO provides an optimal
query plan with negligible query planning cost at runtime.

PQO itself does not provide a viable solution to our problem since it is for planning queries
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with varying parameter values, not for queries with unknown structures and values from cus-
tomizations. In other words, PQO assumes a set of complete query plans to choose from at
runtime, each of which computes exactly the answer for the query submitted. This can not be
used to solve our problem since we do not know what the customizations are when computing
query plans. However, we can enrich PQO by modeling the selectivity of the user-customizations
as a runtime parameter, and compute several query plans each being optimal at a range of selec-
tivities. At runtime, we first compute the selectivity of the actual user-customizations, and choose
the query plan that has matching selectivities. The chosen query plan can be augmented with the
user-customization at its plan leaves to correctly answer the customized query. However, this
enriched PQO approach does not generate good query plans, as we shall see from the experi-
ments. Moreover, the number of query plans to compute offline is exponential in the number of
parameters, although many configuration of the parameters will not be used at all by the users.

Another closely related work is called query PLan SelecTIon based on Clustering (PLASTIC)[39].
The rationale of this approach is to cluster “similar queries”’ and assign to each cluster one query
plan template. Any query in this cluster is able to get its optimal query plan by replacing the ta-
ble name, attribute name, or constants in the template with the table name, attribute name, or
constants from the query. Queries in one cluster must have similar syntax and schema, similar
data distribution, and similar auxiliary data structures (e.g., indexes and materialized views) for
the tables in the query. Later when a new query is issued, a classifier is used to determine which
cluster this new query belongs to. In this way PLASTIC is able to reduce query optimization
cost at runtime.

However, we argue that the PLASTIC approach may wrongly match a query plan for a query,
or fail to detect a good matching query plan due to the over-simplified matching algorithm of its
classifier. Consider again the following three customized queries, where the customizations are
in bold characters.

Q1 select * from R, S where R.a=S.b and R.a=5 and S.b=5

Q2 select * from R, S where R.a=S.b and R.a=5

Q3 select * from R, S where R.a=S.b and R.a=4 and S.b=6

PLASTIC will assign Q1 and Q3 to the same cluster, leaving Q2 to a different cluster. Now
suppose a smart optimizer detects the join predicate R.a = S.b in Q1 to be redundant, and
generates optimal query plan for Q1 as a cartesian product over the inputs from two tables R and
S. Since Q3 is matched to the same cluster, PLASTIC will use this query plan as template for
Q3, thus generating a wrong query plan. On the other hand, Q2 might have the same internal
representation as Q1 after query rewriting. In this case, Q2 should use the same query plan
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template as Q1. Even if we require the classification be based on rewritten queries, PLASTIC
may still miss matches. Consider another query Q4 as follows:

Q4: select * from R, S where R.a=S.b and R.a=5 and R.a2=9
If the conjunctive predicate R.a=5 and R.a2=9 selects the same number of tuples as the

predicate R.a=5, Q4 and Q2 may share the same upper level join plan. However, PLASTIC will
miss the match due to its syntactic matching algorithm. PLASTIC will not be able to detect such
matching between customized queries unless we modify it to use the “property-based” matching
in POM.

4.7 Experimental Evaluation
The POM prototype is implemented on top of PostgreSQL 8.0.3. We perform our experiments
on a Pentium III 800HZ with 256Mb memory, running Linux Redhat 9.0. We create eight ta-
bles as in TPC-H, and duplicate each table twice to make a total of 24 tables in our database.
These tables are populated using TPC-H tool with 150M data. More than twenty indexes are cre-
ated on the primary key or foreign-key columns in these tables, such that each of the big tables
(lineitem, orders, partsupp, part, supplier, customer) has one or two indexes.

Each uncustomized query is formulated over a subset of these 24 tables, ranging from 12 to
16 tables. The tables in each query are connected by join predicates randomly from a pool of
predefined primary-foreign key join predicates. The queries are either star queries, or consist of
small cliques of (three to five) tables fully connected by join predicates. There are no cartesian
product allowed in these queries.

To simulate user customizations, for each uncustomized query we choose four big tables
(from lineitem, orders, partsupp, part) as customizable tables on which to apply user cus-
tomization. We simulate user customizations by creating a set of local predicates on these ta-
bles. Each of these local predicates is applied on an index-sargable attribute, or on a non-index-
sargable attribute, or on a join attribute. We generate enough local predicates and pick a set that
has a varying selectivity from 1

6
to 2

3
. Thirty-three percent of the user customizations are single

local predicates and 67% are compound local predicates. Among the compound local predicates
75% are conjunctions and 25% are disjunctions.

We set up the experiment by filling up the POM cache with 100 customized queries as train-
ing queries. We then feed POM with 500 customized queries as test queries. Both the training
and test customized queries are derived from the same uncustomized query. We compare POM
with a caching mechanism that resembles parametric query optimization, i.e., selectivity-based
plan stitching (denoted as SPS). Given the training queries, SPS estimates the selectivity of user-
customizations in each of these queries, and computes the optimal query plans based on the
selectivities for each customized query. When doing this, SPS assumes the access paths on the
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relations do not generate any interesting orders and have costs that correspond to table-scans.
Then SPS caches the partial plans of these queries, together with the user-customizations’ se-
lectivities. When a new customized query is submitted, SPS computes the access paths for the
query and matches the access path with the lowest cost to the partial plan that matches on Qtop

and selectivities. Then the access paths are stitched to the matching partial plan as the query plan
for the new query. This SPS approach is more space efficient than the enriched PQO approach
described in Section 5.8 since it only caches the partial plans for customized queries that it has
encountered. On the other hand, compared to POM, this SPS approach ignores order and cost
properties, and does not have any optimality guarantee.

4.7.1 Cache Hit Ratio
The entries in the POM cache are determined by the customized queries, the cache size, and the
cache replacement policy. We choose to use the Least-Recently-Used (LRU) policy for cache
replacement. The cache hit ratio depends on the degree of approximation when matching on the
size and the cost properties of access paths. If we insist on matching sizes and costs exactly,
we can guarantee the optimality of the stitched query plan according to previous discussion.
However, the cache hit ratio will be extremely low, and the saving on query optimization time
from POM will be trivial. To avoid having extremely low cache hit ratio, we can relax the
matching algorithm such that the sizes are matched if the size of the new access path is within
a bounding box [64] of the size of the original access path. Matching on the cost property can
be similarly defined. If we adopt such matching algorithm, the cache hit ratio will increase, and
savings from query optimization will increases. However, such a relaxed matching algorithm
will no longer guarantee the optimality of the stitched query plan. The difference of the stitched
query plan and the optimal query plan will depend on the size of the bounding box, and the
join operator on top of the access paths, as described in the work by Markl et al. [64]. In our
experiments we define that two access paths are matched on their size property if their costs (C1

and C2) differ by at most 10%, i.e., C1−C2

max(C1,C2)
≤ 10%. Matching on cardinalities is defined using

the same 10% bounding box. We choose this 10% empirically as it shows good tradeoff between
cache hit ratio and quality of stitched plan. In the future we will experiment with different
bounding boxes for each type of join operator to maximize cache hit ratio without hurting query
plan quality too much.

We first compare the cache hit ratio between POM and SPS under varying cache sizes and
query sizes. Given the same cache size, SPS needs to store the partial queries, the partial plans
and the size property of the access paths, while POM needs to store the order and cost properties
of the access paths in addition to what SPS stores. The number of non-chosen access paths
depends on the number of indexes on the relations. In our experiment setting, small tables
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Figure 4.12: Cache hits for POM and SPS under different cache size and query size
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like nation or region do not have indexes while large tables like lineitem or orders have two
indexes each. In this setting, POM needs less than 8% more space than SPS to store the same
number of query plans. Therefore, giving the same size of cache, SPS is able to store roughly
8% more partial plans than POM.

Even with the same amount of cached query plans, the cache hit ratio of SPS is higher than
that of POM. This is because POM not only requires that query plans be matched on sizes, but
also that they be matched on the cost and the order properties. Further, POM requires a potential
match to pass the optimality check on non-matching access paths.

Figure 4.12 shows the number of cache hits from POM and SPS on 500 test customized
queries under the same number of cached partial plans. Both POM and SPS are warmed up
using 2500 training customized queries. We can see that the cache hits ratio of POM is mostly
lower than SPS, and the larger the number of customizable tables, the larger the gap between
SPS and POM. On the other hand, the gap of cache hit ratio between POM and SPS is smaller
when the number of customizable tables is small. The reason is that SPS’s size property space is
fully covered and its cache becomes saturated, while POM continues to grow its coverage on a
larger property space given more cache space.

Note the above comparison assumes the same number of cached partial plans for POM and
SPS. It is anticipated that for the same fixed cache size the cache hit ratio would be roughly 8%
more in favor of SPS, due to the space overhead of POM entries.

4.7.2 Query Plan Quality
Although POM loses to SPS in terms of cache hit ratio as expected, the quality of the query
plans generated by POM is superior to that of SPS. We compare the costs of the stitched query
plans from these two approaches. Figure 4.13 compares the performance of POM plans and SPS
plans. The X-axis shows the cost of a SPS stitched plan while the Y-axis shows the cost of the
POM stitched plan for the same query. A dot on the lower-right means that the POM stitched
plan is superior. We can see that mostly the POM stitched plans are superior to the SPS query
plans, except certain rare cases. A close look reveals that POM has fewer matching partial plans
than SPS since SPS only matches based on selectivities. Therefore, SPS is able to compare more
stitched plans and return the best one, while POM has only one matched partial plan.

Figure 4.14 shows the percentage of stitched plans from POM and SPS that differ from the
optimal query plan as selected by the original optimizer. The percentage of deviant POM plans
are consistently lower than that of SPS. Moreover, we see from Figure 4.15 that among the plans
that differ from the optimal query plan generated using the un-modified optimizer, the plans from
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Figure 4.13: Cost of POM plan vs. cost of SPS plan
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POM are highly in accordance with the optimal plan. However, the SPS plans on the average
deviate significantly from the optimal plans.

query optimization time
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Figure 4.16: Query planning overhead between POM, SPS, and ND

4.7.3 Query Planning Overhead
We showed that POM generates better query plans on a cache hit than SPS, and that POM query
plans are very close to the optimal query plans that are computed from scratch. We now compare
the query planning overhead between POM, SPS, and the “Näive Dynamic” (ND) approach pre-
sented at the beginning of this chapter. We pick 10 customized queries that have matches from
both POM and SPS, and record the query planning time for all three approaches. Figure 4.16
shows that for all these queries, POM and SPS have negligible query planning overhead. How-
ever, the ND approach takes significant amount of time for query planning from scratch.

4.7.4 Concluding Remarks on Experiments
Figure 4.17 shows the query planning cost and the cost of generated query plans for 500 queries
between POM, SPS, and ND approaches. Both POM and SPS have 900 plan cache entries, and
their caches are warmed up using 2500 training queries. The queries are all customized queries
for the same base query, where the customizations are single local predicates randomly applied
on five pre-defined tables. The X-axis shows the number of seconds to create all query plans
for the 500 queries, and the Y-axis shows the average cost (in terms of PostgreSQL optimizer
plan cost unit) of the 500 query plans under each approach. Compared to SPS, POM has a lower
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Figure 4.17: Query planning cost vs. plan quality between POM, SPS, and ND

cache hit ratio and a higher query planning cost, but POM query plans have much lower costs
than SPS query plans.

It should be noted that Figure 4.17 is for illustrating the performance characteristics of POM,
which is:

1. Total optimization cost of POM is always lower than ND, but higher than SPS.

2. Average plan cost from POM is close to that from ND, but lower than SPS.

For both SPS and POM, their total optimization cost depends on the queries. Complex queries
have higher optimization cost. Thus the more complex the queries are, the more saving from a
cache hit. However, more complex queries need more space to cache information about all of
their access paths and their partial query plans. More complex queries may have more different
upper level partial plans. Therefore, given the fixed cache size, both POM and SPS ’s cache
hit ratio will become low for more complex queries. It is anticipated that under a fixed cache
size, both POM and SPS has its own “optimal” workload such that the reduction in its total
optimization time is maximized.

On the other hand, and average query plan cost of POM and SPS depends on both the queries
and the bounding box of our matching algorithm as described in Section 4.7.1. Larger bounding
box may benefit the cache hit ratio, but may also increase average query plan costs. However,
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some queries may be insensitive to larger bounding boxes while some queries may be signifi-
cantly affected. To avoid having very bad query plans, we need to carefully choose the size of
the bounding boxes according to the upper-level partial plans. Details of sizing bounding box
can be found in Markl et al.’s work [64].

To compare SPS and POM, we need to balance the trade off between total query optimization
time and average plan costs. The total query processing cost consists of query optimization cost
and query execution cost, and can be formulated as follows, where H denotes cache hit ratio, O
denotes optimization cost and E denotes query execution cost:

(1−H) ·O + E

We ignore query matching and stitching time from POM and SPS since it remains a constant
that is negligible relative to other costs. POM and SPS have different cache hit ratio (denoted by
Hpom and Hpqo respectively), and their stitched plans have different costs (denoted by Epom and
Epqo). The total query processing cost using POM is lower than SPS when the following holds:

·O ≤ Epqo − Epom

Hpqo −Hpom

Similarly, when comparing to the Näive Dynamic approach described in Section 4.1, POM
becomes favorable when the following holds:

O ≥ Epom − Eopt

Hpom

The cache hit ratio can be guessed from running a subset of the workload. Query optimization
cost and execution cost can be estimated using optimization time estimator [48] and execution
time estimator [22, 62] respectively. Hence we have a way of choosing POM or alternatives
based on quantitative analysis.

4.8 Discussion and Possible Extensions
Throughout this chapter, we assume that the optimizer separates logical rewriting from query
plan generating. For an optimizer that intermingles these two tasks (e.g., SQL Server), we need
to check at each query transformation step whether the top-level query Qtop remains the same.
Example transformation rules that might change Qtop include adding or dropping join-predicates,
removing unnecessary distinct operator, flattening a nested subquery, using materialized view
for answering query, any many more. If there is one such transformation, the partial plan com-
puted cannot be used for other customized query. Applying this check at each step ensures there
is no incorrect plan stitching.
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We also assume all users’ access-control customizations are local predicate formulae. The
difference between users’ customizations differentiates the costs of the access paths, which fur-
ther differentiates the top-level join trees of their optimal query plans. That is why we partition
optimization between the leaf queries and the partial queries, and cache the partial plans for the
varying plan leaves generated from users’ customizations. However, if POM builds all access
paths plus all pair-wise join on these access paths at runtime, and find matching partial plans
based on information from both the access paths and the pair-wise joins, it is able to handle user-
customizations as join-predicates. The reason is that query plans are built based on lower-level
subplans, and if we have information on the properties of all subplans on single relations and two
relations, we will be able to know what top-level query plan will be. Another way to understand
this is by considering all pair-wise joins on access paths as materialized views. If two queries
have the same pair-wise matching access paths, and same set of materialized views that might
be useful for answering this query, their top-level join trees must be the same. In this way, POM
is able to handle all join predicates involving two relations. However, the number of pair-wise
joins grows exponentially to the size of query, and the cache hits based matching both the access
paths and the pair-wise joins drop exponentially. Therefore, the expense on storage and runtime
computation may not be worth the marginal runtime optimization saving.



Chapter 5

Accurate Sampling for Cardinality
Estimation

5.1 Introduction
Recall that under the Truman Model [77] described in Section 2.3.1, a user’s query is answered
as if the database includes only those tuples that are accessible to the user. Oracle implements the
Truman model through its Virtual Private Database, which extracts an access control predicate
from the user’s profile and appends the predicate to the where clause of the user’s query [70].
Similarly, DB2 Label-Based Access Control [45] implements the Truman model by hiding every
tuple having an inaccessibility label from the user. In both cases, the fine-grained access controls
become access control filters applied to the tuples from the base relations.

More formally, suppose that a query includes a predicate PQ on one of its input relations,
T . PQ may be a simple or complex predicate. Suppose further that each user’s access rights for
the target relation are defined by a user-specific access control predicate. We use PACi to denote
the access control predicate for the ith user on the target relation. Tuples are accessible to user
i if and only if they satisfy PACi. The form of PACi is not important. It may be an actual SQL
predicate, as in Oracle VPD [70], or it may be implemented as an externally-defined function, as
is the case in some fine-grained label-based access control systems [45, 66, 69]. For the purposes
of our work, it is only necessary to be able to evaluate the predicate given a tuple from the target
relation. If the query is being executed on behalf of the ith user, the effect of the fine-grained
access controls is to replace PQ in the query with PQ ∧ PACi.

To create efficient query plans under this setting, a query optimizer needs accurate cardinality
estimates that account for the effect of the access control filters. That is, instead of estimating the
number of tuples that satisfy a particular query predicate, the optimizer must estimate the number

87
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of tuples that satisfy both the query predicate and the access control filters, i.e., the number of
tuples satisfying PQ ∧ PACi. This chapter addresses the problem of accurately estimating the
number of such satisfying tuples.

There are many approaches for estimating the number of satisfying tuples for PQ ∧ PACi

through the conjunctive selectivity of PQ and PACi. Among them the most widely used technique
uses multi-dimensional histograms. We can treat PACi just the same as PQ and build multi-
dimensional histogram on the attributes in PQ and PACi. However, this approach of treating
PACi and PQ alike inherits all the problems of cardinality estimation with multiple attributes.

1. First, the users’ access controls can be based on a large number of different attributes. It
is hard to anticipate all possible correlations between the query attributes and different
users’ access control attributes. If we are going to build multidimensional histograms for
all possible groups of correlated attributes from PQ and PACi, the cost of building such
histograms can be prohibitively expensive.

2. Second, if we do not exhaustively build all the histograms, certain PQ ∧ PACi will not
be accommodated with relevant statistics, and we will have to rely on the attribute value
independence (AVI) assumption on the query attributes and the access control attributes. It
is well-known that cardinality estimation techniques based on the AVI assumption would
generate results that are wildly off the mark.

In fact, treating PACi as a normal SQL predicate does not recognize nor leverage the special
feature of the access control predicates: they are known a priori. The access control predicates
are also relatively static: a user’s access rights change only in response to changes in the system’s
access control policies or the users’ position in the company, and we expect that such changes will
occur much less frequently than adhoc queries do. Moreover, if PACi is expressed as complex
functions on access control specifications bundled with each tuple, as in the case of DB2 Label-
based Access Controls [45], Oracle Label Security [69], or SQL-Server security mechanism [66],
we simply cannot build multi-dimensional histograms to estimate the cardinality of PQ ∧ PACi.

In this chapter, we propose an approach that leverages the fact that PACi is known a priori
and is relatively static. Our approach is essentially a lazy way to achieve the same accuracy as the
prohibitively expensive multi-dimensional histograms, by projecting sample data on the views
defined through the access control predicates PACi. Since the samples are already projected
from PACi, this approach does not suffer from the high-dimensional correlation brought from
the access control attributes. We will show that this approach not only provides more accurate
estimation than multi-dimensional histograms under the same sample space budget, but also has
a system-wide accuracy guarantee, a feature that can not be achieved using multi-dimensional
histograms. The samples also support accurate cardinality estimation with disjunctions on the ac-
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Table 5.1: Symbols used in this chapter
U number of users in the system
PQ query selection predicate

PACi access control predicate for the ith user
N cardinality of the target relation
Ni number of tuples matching PACi

Ni,j number of tuples matching both PACi and PACj

Ci number of tuples matching PQ ∧ PACi

C̃i estimate of Ci

ni number of tuples in ith user’s private sample
ci number of tuples in ith user’s private sample

that satisfy PQ ∧ PACi

εi estimation error for ith user
ε mean estimation error over all users
ε maximum estimation error over all users

ε̂i estimation error bound for ith user
ε̂mean mean estimation error bound over all users

∆ confidence level for estimation error bounds

cess control predicates, which enable cardinality estimation in the presence of role-based access
controls (see more in Section 5.7).

The remainder of the chapter is organized as follows. Section 5.2 introduces preliminaries
for selectivity estimation in the presence of fine-grained access controls, including terminology
and notation. Section 5.3 presents basic-PSALM and compares it to simple random sampling.
Section 5.4 formalizes a general, but computationally intractable approach to improve basic-
PSALM. Section 5.5 and Section 5.6 describe two practical steps to improve the accuracy of
basic-PSALM by using a hybrid scheme and a refinement procedure that exploits access rights
correlations between users. The ordering of these two steps matters, as described in Section 5.6.
Section 5.7 describes how to use PSALM to estimate cardinality in the presence of role-based
access controls. Section 5.8 compares these techniques with related work.

5.2 Definition and Notation
As discussed in Section 5.1, our problem is to estimate the selectivity of query predicates in the
presence of access control predicates. We will focus on the problem of estimating the cardinality



90 Query Evaluation in the Presence of Fine-grained Access Control

of the result of applying the query predicate, PQ, to a single access-controlled relation. When
there are multiple relations, our estimation techniques can be applied independently to each
relation.

We use PACi to denote the access control predicate for the ith user on the target relation. We
use N to denote the cardinality of the target relation, and Ni to denote the number of tuples from
the target relation that are accessible to the ith user. That is, Ni is the number of target relation
tuples for which PACi is true. Finally, we use Ci to denote the number of tuples from the target
relation that satisfy PQ ∧ PACi. Ci is the cardinality we wish to estimate, for any given user,
target relation, and query predicate PQ. Table 5.1 summarizes the notation that we use in this
chapter.

Given a fixed space budget for cardinality estimation, our goal is to design estimation tech-
niques with small estimation error. We use C̃i to denote the cardinality estimate produced by one
of the estimation techniques to be presented in this chapter. Following earlier work in this area
[6, 21], we define εi, the estimation error for the ith user, to be

εi =
|C̃i − Ci|

Ci

This metric characterizes the estimation error relative to the actual cardinality of the query
result. For example, εi = 0.3 indicates that the estimate is±30% of the actual cardinality. Unlike
absolute error metrics such as |C̃i−Ci| or |C̃i−Ci|/N , our relative error metric reflects the fact
that the same cardinality estimation error may be more significant to the query optimizer when
the true cardinality is small than when the true cardinality is large. For example, if |C̃i − Ci| =
10000 and C̃i = 100000, the estimation error may have little effect on the optimizer. However,
if |C̃i − Ci| = 10000 and C̃i = 100, the optimizer may significantly underestimate the cost
of a candidate query plan. One disadvantage of our metric is that estimation error explodes as
Ci → 0. To avoid the blowup, we simply avoid scenarios in which Ci is extremely small when
comparing the accuracy of estimations. Please note that our cardinality estimation techniques
do not require calculating estimation error. Estimation error is used only for comparing the
estimation techniques.

5.3 Single-Sampling and Basic-PSALM
We begin by presenting two simple sampling-based estimation techniques. The first uses a single
uniform random sample to generate a cardinality estimate for any user. That is, estimates for all
users are based on the same sample from the target relation. The second technique is basic
Partitioned SAmpling for MuLtiple users, or basic-PSALM. It partitions the available space and
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draws a separate, smaller sample for each user. Each user’s cardinality estimations are based on
that user’s private sample.

We determine the bounds on the estimation error resulting from each technique, and char-
acterize the situations in which basic-PSALM provides more accurate estimates than the single-
sample approach. In the subsequent sections, we will present techniques that improve the basic-
PSALM technique such that it always provide more accurate estimates than the single-sample
approach.

5.3.1 Single-Sampling
We can estimate the cardinality of PQ ∧ PACi, for any user and any query predicate, using a
single random sample of n tuples from the target relation. Such a sample can be built with a
single pass over the target relation, using a technique such as reservoir sampling [88]. If desired,
such a sample can be incrementally maintained in the face of tuple insertions and deletions in the
target relation [38]. Alternatively, the target relation can be periodically resampled as necessary
to account for changes.

To obtain a cardinality estimate for PQ for the ith user, we evaluate PQ∧PACi for each sample
tuple, and count the number of tuples for which the predicate is true. An unbiased cardinality
estimate can then be obtained by

C̃i = ci
N

n

where ci is the number of sample tuples matching PQ ∧ PACi.
Because C̃i is based on a random sample of tuples rather than the entire relation, the estimate

may not be accurate. Since each sample tuple satisfies PQ ∧ PACi with probability Ci

N
, ci can be

modeled as a binomial random variable with parameters n and Ci

N
. Using the Chernoff inequality,

we can bound the estimation error as follows:

Prob[ |C̃i−Ci|
Ci

≤ ε] = Prob[
| ciN

n
−Ci|

Ci
| ≤ ε]

= Prob[(1− ε)nCi

N
≤ ci ≤ (1 + ε)nCi

N
]

≥ 1− 2e(−nCiε
2)/(4N)

Thus, with probability (1 − ∆), the cardinality estimation error εi for the ith user under the
single random sample method is bounded by

εi ≤ ε̂i =

√
4N

nCi

log
2

∆
(5.1)
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We refer to ∆ as the confidence level of the error bound ε̂i. Note that the estimation error
bound is inversely related to Ci which is the number of tuples that satisfy PQ ∧ PACi. Thus,
as either the query predicate PQ or the user’s access controls PACi become more selective, the
estimation error bound increases.

5.3.2 Basic-PSALM
Another way to estimate the cardinality of PQ∧PACi is to create and maintain a separate sample
for each user. Let ni denote the size of the sample for the ith user, and let U represent the number
of users. We can choose the ni such that

∑U
i=1 ni = n to ensure that basic-PSALM technique

uses the same amount of space as the single-sample approach.
Under the basic-PSALM approach, the sample for the ith user is a simple uniform random

sample of the tuples that are accessible to the ith user. As was the case for the single-sample
approach, we can draw all U such random samples using a single pass over the target relation
by maintaining Useparate reservoir samples in parallel during the scan. Each tuple encountered
in the scan is considered separately and independently for inclusion in the sample for each user.
For the ith user, the tuple is first tested against PACi. If the tuple satisfies the predicate, then it is
considered for inclusion in the reservoir sample for user i as usual. Otherwise, it is not included
in the ith sample.

To estimation cardinality for PQ for the ith user, we evaluate PQ for each tuple in the ith

user’s sample, and count the number of tuples for which the predicate is true. All other users’
samples are ignored. An unbiased cardinality estimate can then be obtained by

C̃i = ci
Ni

ni

where ci is the number of sample tuples matching PQ in the ith user’s sample. Notice that
this estimator makes use of Ni, the total number of target relation tuples that are accessible to the
ith user. This value can be determined exactly for every user during the same scan that is used to
draw the tuple samples from the target relation.

Using an analysis similar to the one in Section 5.3.1, we can bound, with confidence level ∆,
the estimation error that results from the basic-PSALM technique:

εi ≤ ε̂i =

√
4Ni

niCi

log
2

∆
(5.2)

Recall that under the single sample approach, the estimation error bound is inversely related
to the selectivity of the joint predicate PQ∧PACi. For the basic-PSALM technique, the estimation
error is inversely related to Ci/Ni, which is the conditional selectivity of the query predicate PQ,
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given that a tuple is accessible to the ith user. Unlike the single sample approach, basic-PSALM’s
estimation error is independent of the selectivity of the users’ access control predicates. This
makes sense, because the basic-PSALM technique ensures that it has a sample of size ni of
tuples accessible to the ith user, regardless of how many such tuples exist.

One question remains for the basic-PSALM technique: how should we determine the number
of tuples, ni, to include in the sample for the ith user? To answer this question, we define ε̂mean

as the mean estimation error bound for all users in the system:

ε̂mean =

∑U
i=1 ε̂i

U

For example, from Formula 5.1 we have the mean estimation error bound for a single uniform
sampling as the following:

1

U

U∑
i=1

√
4N

n · Ci

log
2

∆
(5.3)

Similarly, the mean estimation error bound for basic-PSALM is

1

U

U∑
i=1

√
4Ni

ni · Ci

log
2

∆
(5.4)

Ideally, we would like to distribute the available space among the users’ samples in basic-
PSALM in such a way as to minimize the mean estimation error bound. In general, the best such
distribution will be workload dependent, determined by the conditional selectivities of the query
predicates with respect to each user’s accessible tuples. However, for the special case in which
the query predicates PQ in the workload are independent of the users’ access controls, there is
a simple workload-independent way to determine optimal per-user sample sizes such that the
mean estimation error bound is minimized:

Theorem 6. If the query predicate PQ is independent of the access control predicates PACi of
all users, then the expected ε̂mean is minimized by choosing ni = n/U for every user.

Proof. Basic-PSALM has a mean estimation error bound of

∑U
i=1 ε̂i

U
=

∑U
i=1

√
4Ni

niCi
log 2

∆

U

Because we assume PQ is independent of the access control predicates, (Ni/Ci) is in expec-
tation the same for all users, and we can rewrite the mean estimation error as
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α

U∑
i=1

√
1

ni

where α is a constant term independent of i. Our goal is to minimize this quantity by adjusting
{ni, i ∈ (1, . . . , U)} under the constraint that

∑U
i=1 ni = n. We use the method of Lagrange

multipliers. Adding the constraint to our formula, we have:

Φ(X, λ) = α

U∑
i=1

√
1

ni

+ λ

(
U∑

i=1

ni − n

)

The critical value of Φ occurs when the gradients on {ni, i ∈ (1, . . . , U)} and λ are all zero:

∂Φ

∂ni

=
∂ α√

ni

∂ni

+ λ = −αn
− 3

2
i + λ = 0, i ∈ {1, . . . , U}

∂Φ

∂λ
=

U∑
i=1

ni − n = 0

Solving the above, we have ni = n
U
, i ∈ (1, . . . , U).

Note that we are assuming independence of the query predicate and the access controls only
for the purpose of choosing the sizes of the per-user samples. The actual estimation of cardi-
nalities using those samples does not rely on the independence of query predicates and access
controls.

Comparing Formula 5.1 and Formula 5.2, we can see that the ith user will have a tighter error
bound in basic-PSALM under the condition:

ni

Ni

>
n

N

This condition states that basic-PSALM will provide more accurate estimates than the single-
sample approach for the ith user if the ith user’s accessible tuples are represented more in the
samples. In Assuming that the basic-PSALM sample sizes are chosen according to Theorem 6
(ni = n/U ), then basic-PSALM will have a tighter estimation error bound for the ith user if

Ni <
N

U
(5.5)

Thus, users with very limited access rights, i.e., highly selective access control predicates,
will benefit from the basic-PSALM technique. However, users with broad access rights may
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experience larger estimation errors. Over all of the users in the system, we have the following
theorem concerning the mean estimation error bound:

Theorem 7. If the query predicate PQ is independent of the access control predicates PACi of
all users, basic-PSALM using the sample quota assignment from Theorem 6 has a lower mean
estimation error bound ε̂mean than the single sample approach if

U∑
i=1

√
N

Ni

> U
3
2

Proof. When (Ni/Ci) is in expectation the same for all users, the mean estimation error bound

of basic-PSALM reaches its minimum (αU
√

U
n
) when we assign equal sample quota to each

user, and the mean estimation error bound of uniform sampling is (α
∑U

i=1

√
N

nNi
). Here α is a

constant. Comparing these two values, we get the theorem.

5.4 Generalized Approach to Improve Basic-PSALM
The condition in Theorem 7 is very strict. In most cases it will not hold for a realistic multi-user
system, which means that basic-PSALM fails to out-perform single-sampling in terms of mean
estimation error bound.

To improve on basic-PSALM, we first look at the expression of the basic-PSALM’s mean
estimation error bound (Formula 5.2). We notice that there are three sets of variables that deter-
mine the value of this expression. The first set of variables are the sizes of users’ accessible data
(Ni). The second set of variables are the sizes of data satisfying the joint predicate (Ci). The
third set of variables are the sizes of samples that are uniformly taken from the users’ accessible
data (ni). The first and the second sets of variables are fixed once PACi and PQ are determined.
Therefore, we aim at increasing ni for all of the users. Our general approach is to group users
and let them share tuples from their private samples. If a sample tuple is shared by more than
one user in a group, we can remove the duplicates from the private samples of the users in this
group. This allows us to sample more tuples from the users’ accessible data in the same amount
of space. If the users have more sample tuples from their accessible data, the users will have
lower cardinality estimation error bounds.

More formally, given Usamples (one per user) such that the total sample size is n, we partition
the users into k groups G = {G1, G2, . . . Gk}. We assign a sample size ni to each group Gi, 1 ≤
i ≤ k, and the sample tuples for each group are extracted uniformly at random from the union of
the sets of accessible tuples for each user in the group. If we use Gr(i) to denote user ui’s group,
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and NGr(i) to denote the size of the union of the accessible tuples from all users in Gr(i), and

nGr(i) to denote the size of the private sample for Gr(i), then
(
nGr(i)(

Ni

NGr(i)
)
)

is the expected
number of user ui’s accessible tuples in his group’s private sample.

We estimate the cardinality for PQ ∧ PACi by applying PQ ∧ PACi on user ui’s groups’
private sample. If ci is the number of matching tuples from the private sample, we estimate the
cardinality of tuples satisfying PQ ∧ PACi as:

C̃i = ci
Ni(

nGr(i)(
Ni

NGr(i)
)
)

Our goal is to find a grouping of the users (e.g., the groups and the group mapping function),
and a way to decide each group’s sample size ni so that

∑
1≤i≤k ni = n, and the mean estimation

error bound from all users is minimized. By referring to Formula 5.2, and assuming (Ni/Ci) is
in expectation the same for all users, our goal is equivalent to minimizing the following:

∑

1≤i≤U

√√√√ 4 log 2
δ

nF(i)(
Ni

NGF(i)

)
(5.6)

5.4.1 Computing the Optimal Sample Size Assignment
We have the following theorem on how to analytically compute the optimal sample size assign-
ment:

Theorem 8. Under a user grouping G, the optimal sample assignment nj, 1 ≤ j ≤ |G| will be
the following:

nj =
n ·H

1
3
j

∑|G|
j=1 H

1
3
j

Here Hj is
∑

(i:ui∈Gr(j))

NGr(j)

Ni
, which is fixed constant once the user-grouping is chosen.

Under this optimal sample size assignment, the mean estimation error bound will be:

√
4 log

2
δ
· n 1

2




|G|∑

j=1

H
1
3
j




3
2
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Proof. Formula 5.6 can be rewritten as follows:

∑

1≤j≤|G|

√√√√4 log 2
δ ·NGr(j)

nj
·

∑

(i:ui∈Gr(j))

1
Ni

(5.7)

If we have chosen a user grouping (and thus a fixed G), we can rewrite the above as

|G|∑

j=1

(
α

√
Hj

nj

)
(5.8)

Here α equals
√

4 log 2
δ
, which is a constant, Hj is

∑
(i:ui∈Gr(j))

NGr(j)

Ni
, which is fixed once

the user-grouping is chosen.
The Lagrange formula for the minimum average estimation error bound becomes

|G|∑

j=1

(√
Hj

nj

)
+ λ




|G|∑

j=1

nj − n


 (5.9)

Then we have

λ =
1
2
H
− 1

2
j nj

− 3
2 (5.10)

From the above and
∑|G|

j=1 nj − n = 0 we have:

λ =

(∑|G|
j=1 H

1
3
j

) 3
2

2n
3
2

(5.11)

Then, we have the following:

nj =




(∑|G|
j=1 H

1
3
j

) 3
2

n
3
2 ·H

1
2
j




− 2
3

=
n ·H

1
3
j

∑|G|
j=1 H

1
3
j

(5.12)

We put this back to Equation 5.8, then we have the mean estimation error bound as:
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α · n 1
2




|G|∑

j=1

H
1
3
j




3
2

(5.13)

The problem now reduces to finding a grouping over the users such that the following is
minimized:

|G|∑

j=1

H
1
3
j (5.14)

5.4.2 Finding an Optimal User-grouping
The grouping of the users that minimizes the value of Formula 5.14 lies in the search space of
all possible groups over the users. The number of possible groupings of N users is the same as
the number of partitions of N different item, which is known as the Bell Number [93]. If we use
Bn to denote the Bell Number of n items, we have the following recursive representation for Bn

[93]:

Bn+1 =
n∑

k=0

(
n
k

)
Bk

which has a non-recursive representation as Dobinski’s formula [93]:

Bn =
1

e

∞∑

k=0

kn

k!
(5.15)

It is obvious from Formula 5.15 that the number of partitions Bn is exponential in the number
of items n, which means a brute force enumeration of all possible user-groupings is infeasible.
Even if we apply techniques such as dynamic programming to solve the problem, the runtime
remains exponential in general. The existence of a polynomial time solution that computes the
optimal partition is still unknown. However, in Section 5.5 and Section 5.6, we introduce two
polynomial-time algorithms that rely on heuristics to aggressively prune the search space. These
algorithms are applied in an ordered fashion, and we will describe the reason for this ordering in
Section 5.6.
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5.5 Exploiting Access Privilege Skew
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Figure 5.1: Amount of accessible data for users in University of Waterloo file system

Formula 5.5 shows that basic-PSALM works better than single-sampling for those users hav-
ing few accessible tuples. However, basic-PSALM does not provide a lower mean estimation
error bound than single-sampling if the condition in Theorem 7 is not satisfied. In this section,
we develop a hybrid technique that combines advantages of both approaches, and we show that
this hybrid technique always provides a mean estimation error bound that is at least as tight as
those provided by single-sampling and basic-PSALM. Moreover, this hybrid estimation tech-
nique runs in time linear in the number of users.

Figure 5.1 shows the amount of data accessible to various users in a UNIX file system at
University of Waterloo, and Figure 5.2 shows the amount of data accessible to various users in
a Opentext Livelink content management system. In both systems the amount of data accessible
to different users is highly skewed: some high-privileged users have access to most of the data
while many low-privileged users have very limited access. This skew suggests the use of a hybrid
approach, which we call hybrid-PSALM, where the users are divided into two groups; one group
consisting of high privilege users and the other consisting of low privilege users. We will denote
the high privilege and low privilege groups by UH and UL, respectively. Later, we will show how
to decide which group each user should belong to.
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Figure 5.2: Amount of accessible data for different users in Opentext Livelink system

Hybrid-PSALM maintains a single shared sample for all users in UH , and a separate private
sample for each individual user in UL. We will use n0 to represent the size of the shared sample
for the users in UH . If the ith user is in UL, we will use ni to represent the size of that user’s
private sample.

To obtain a cardinality estimate for PQ for the ith user, hybrid-PSALM proceeds as follows:

• If the ith user is in UH , we evaluate PQ ∧ PACi against the tuples in the shared sample. If
ci is the number of matching tuples from the shared sample, then the cardinality estimate
for PQ is

C̃i = ci
N

n0

As was the case for the single-sample approach, we can show that the estimation error for
this estimate is bounded, with confidence level ∆, by

εi ≤
√

4N

n0Ci

log
2

∆
(5.16)

• If the ith user is in UL, evaluate PQ against the tuples in that user’s private sample. If ci is
the number of matching tuples from the private sample, the cardinality estimate is
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C̃i = ci
Ni

ni

(5.17)

and the estimation error for this estimates is bounded, with confidence level ∆, by

εi ≤
√

4Ni

niCi

log
2

∆
(5.18)

To implement this hybrid approach, we must determine which users belong in UL and which
belong in UH . In addition, we must determine the sizes ni of the private samples for users in UL

and the size n0 of the shared sample for those in UH . As was the case for basic-PSALM, our goal
is to minimize the mean estimation error bound ε̂mean over all of the users.

5.5.1 Minimizing the Mean Estimation Error Bound
The following theorem tells us how to choose sample sizes given an arbitrary partitioning of the
users into two groups, UH and UL.

Theorem 9. Suppose that the users are partitioned arbitrarily into two groups, UL and UH , such
that each user in UL is given a private sample for cardinality estimation while all users in UH

share a single common sample, and that the sum of the sample sizes is n. If query predicates
PQ are independent of the access control predicates of all users, then the mean estimation error
bound ε̂mean for hybrid-PSALM is minimized when the sample sizes are chosen as

n0 = n Y
2
3

Y
2
3 +|UL|

for UH

ni = nL = n 1

Y
2
3 +|UL|

for each user ui in UL

where Y =
∑

ui∈UH

√
N
Ni

.

Proof. Hybrid-PSALM has mean estimation error bound of

1

U

( ∑
ui∈UL

√
4Ni

niCi

log
2

∆
+

∑
ui∈UH

√
4N

n0Ci

log
2

∆

)
(5.19)

Because the query predicate PQ is independent of the access control predicates PAC , this can
be rewritten as
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β

( ∑
ui∈UL

√
1

ni

+
∑

ui∈UH

√
N

n0Ni

)
(5.20)

where β is a constant independent of i. Our goal is to find n0 and ni to minimize this expression
under the constraint that n0 +

∑
ui∈UL

ni = n.
We use Lagrange multipliers to find the minimum, by adding the constraint n = n0 +∑

ui∈UL
ni as multiplier:

Φ(X, λ) = β

( ∑
ui∈UL

√
1

ni

+
∑

ui∈UH

√
N

n0Ni

)
+

λ

( ∑
ui∈UL

ni + n0 − n

)

The critical value of Φ occurs when the gradients on n0, ni, λ are all zero:

∂Φ

∂ni

= β
∂ 1√

ni

∂ni

+ λ = −β

2
n
− 3

2
i + λ = 0, ui ∈ UL

∂Φ

∂n0

= −β

2

∑
ui∈UL

√
N

Ni

n
− 3

2
0 + λ = 0

∂Φ

∂λ
=

∑
ui∈UL

ni + n0 − n = 0

We use Y to represent
(∑

ui∈UH

√
N
Ni

)
. The mean estimation bound reaches its minimum

when the following holds:

λ =
β

2
[
Y

2
3 + |UL|

n
]
3
2

n0 =
Y

2
3

Y
2
3 + |UL|

n

ni =
1

Y
2
3 + |UL|

n, ui ∈ UL
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With Theorem 9 in place, we next consider how to partition the users into UH and UL to
minimize the mean estimation error bound. To do this, we use Algorithm 5, which checks all
possible partitions having the property that no user in UL has access to more tuples than any user
in UH . There are (U + 1) such partitions to be checked.

Theorem 10. The partition returned by Algorithm 5 minimizes the mean estimation error bound
ε̂mean over all possible two-way partitions of the users.

Proof. Using Theorem 9 and Formula 5.20, we can write the mean total estimation error of a
given user grouping as:

β


 ∑

ui∈UL

√
Y

2
3 + |UL|

n
+

∑

ui∈UH

√
N

Ni

√
Y

2
3 + |UL|
nY

2
3




= β

√
Y

2
3 + |UL|

n


|UL|+

∑
ui∈UH

√
N
Ni√

Y
2
3




= β

√
Y

2
3 + |UL|

n

(
|UL|+ Y

Y
1
3

)

= β

(
|UL|+ Y

2
3

) 3
2

√
n

Because both n and β are constants and the function F (x) = x
3
2 is monotone, minimizing the

above expression is equivalent to minimizing

|UL|+

 ∑

ui∈UH

√
N

Ni




2
3

(5.21)

Suppose the user-grouping returned by Algorithm 5 is:

UL = {u1, u2, . . . , uj}, UH = {uj+1, uj+2, . . . , uU}
We use E to denote the value of Formula 5.21 for this user-grouping. Now suppose there is

another user-grouping as follows:

U ′L = {up1 , up2 , . . . , upl
}, U ′H = {upl+1

, upl+2
, . . . , upU

}
We use E ′ to denote the value of Formula 5.21 from this user-grouping. Assume E ′ < E.

We will show that this assumption leads to a contradiction.
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From Formula 5.21, we have:

E = j +


 ∑

i∈(j+1,...,U)

√
N

Ni




2
3

E ′ = l +


 ∑

i∈(pl+1,...,pU )

√
N

Ni




2
3

Now suppose that we sort all of the users in descending order of the number of tuples to
which they have access, and we consider a configuration with UH consisting of the first l users,
i.e., the users that can access the most tuples. Let E ′′ represent the value of Formula 5.21 under
this configuration:

E ′′ = l +


 ∑

i∈(l+1,...,U)

√
N

Ni




2
3

Because UH consists of the l users with access to the most tuples, we have E ′′ ≤ E ′. We also
have E ≤ E ′′ because both of those configurations are considered by Algorithm 5, which returns
the configuration with the lowest error bound among those that it considers. Therefore E ≤ E ′,
a contradiction.

By partitioning the users into UH and UL according to Algorithm 5 and choosing sample
sizes according to Theorem 9, we can minimize the mean estimation error bound for hybrid-
PSALM. Because both the single-sample estimation technique and the basic-PSALM technique
are special cases of hybrid-PSALM, we have the following corollary:

Corollary 1. Hybrid-PSALM under the user-partitioning from Algorithm 5 and the sample size
assignment from Theorem 9 has a mean estimation error bound no greater than the mean esti-
mation error bound of single-sample and no greater than the mean estimation error bound of
basic-PSALM.

5.5.2 Analysis of Mean Estimation Error Bounds
Figure 5.3 illustrates the mean 95%-confidence estimation error bounds for the single-sample,
basic-PSALM and hybrid-PSALM approaches under a variety of conditions. These curves are
determined by Equations 5.1 and 5.2 for the single-sample and basic-PSALM approaches, and by
Formula 5.19 for hybrid-PSALM. To obtain these curves, we varied the total number of users (U )
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Figure 5.3: Mean Estimation Error Bounds of hybrid-PSALM, basic-PSALM, and single-
sampling
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Algorithm 5
input: the number of accessible tuples (Ni) for each user
output: optimal user grouping {UL,UH}

1: Sort the users by their number of accessible tuples
in ascending order into list {ui i ∈ (1, . . . , U)};

2: min = ∞, Gopt = ∅;
3: for p = 0 to U
4: do UL = {uj, j ∈ (1, . . . , p− 1)};

UH = {uj, j ∈ (p, . . . , U)};

5: val = p +


 ∑

uj∈UH

√
N

Nj




2
3

6: if (val < min)
7: then min = val;

Gopt = {UL,UH};
8: return Gopt;

and the total sample size (n) as shown in the Figure. We chose the number of tuples accessible
to each user (Ni) by choosing some percentage of users as high-privileged users (UH), and the
remaining users as low-privileged users (UL). The percentage of high-privileged users is denoted
as high-fraction in the experiments. Each high-privileged user has 50% of the data accessible
to him while each low-privileged user has 1% of the data accessible to him. Finally, we fixed
the selectivity of the query predicate PQ at 50%, and assumed independence between PQ and
the users’ access control predicates. Varying the selectivity of PQ rescales the reported mean
estimation error bounds, but does not affect the shape of the curves.

Figure 5.3(a) shows the behavior of the sampling techniques as the percentage of low-privileged
users varies. The basic-PSALM technique is insensitive to this parameter, while the perfor-
mance of the single-sample approach gets better as we tend towards more high-privilege users
and fewer low-privilege users. This is because the single-sample technique is more effective
for high-privilege users than for low-privilege users. The hybrid-PSALM approach outperforms
both of the simpler alternatives. Figure 5.3(b) shows that all of the techniques are able to exploit
an increasing sample space budget to improve accuracy. Finally, Figure 5.3(c) shows estimation
error as a function of the number of users, with the sample budget fixed at 500 tuples. The single-
sample technique is relatively insensitive to the number of users, while both PSALM techniques
do best when the number of users is small. The basic-PSALM and single-sample techniques have
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a crossover point, as shown in Theorem 7. However, the hybrid-PSALM technique performs at
least as well as either simpler technique regardless of the number of users.

5.5.3 Simulation Results
We used simulation analysis to study the actual mean estimation error (ε) of hybrid-PSALM and
multi-dimensional histograms. Our experiments use synthetic data created using an approach
similar to that of Bruno, Chaudhuri and Gravano in their evaluation of STHoles multidimentional
histograms [18]. We first create 500,000 tuples from a data domain of [0, 1000)d, where d is the
dimension, i.e., number of attributes in these tuples. We experiment with different d ranging
from one to eight. These tuples are distributed among 100 clusters in the data domain. This is
done by randomly creating 100 evenly distributed tuples as the center (mean) of each cluster,
and then for each cluster, randomly creating tuples from its mean with perturbation such that the
tuples in each cluster form a multidimensional Gaussian distribution with standard deviation 25.
The number of tuples contained in each cluster follows a zipfian distribution with parameter 1.0.

Our workload consists of pairs of access control predicates and query predicates. These
predicates are generated as multi-dimensional range queries using an approach similar to that
of Pagel et al. [72]. These multi-dimensional range predicates are applied on randomly chosen
attributes of the data, where each range is a window around a randomly chosen spot in the
data domain. In our case, the width of the window is chosen to be (100 ∗ d). The reason we
choose larger window for larger data dimension is that as the dimension goes up, the number
of conjuncts in a predicate increases, and we wish the predicate’s selectivity remains non-zero.
We create predicates using three types of range queries: type A having their mean follow the
same distribution as the data, type B having their query centers following uniform distribution
in the data domain, and type C having their query centers following a Gaussian distribution
independent of the data distribution. Similar predicates have been used by Bruno, Chaudhuri and
Gravano [18]. We can use different types of range queries for PQ and PAC . We only show the
result of using type A for PAC since other combinations show similar trends.

The multidimensional histogram is based on an equi-width grid-based implementation simi-
lar to the work by Aboulnaga and Chaudhuri [4]. We create histograms with different numbers of
dimensions, under the same space budget as hybrid-PSALM. For example, if we use a total sam-
ple space budget of 560 bytes, we can have a sample-based approach with a total of 70 sample
tuples, with each tuple having two attributes of type float (4 bytes); or an 11 ∗ 11 2D histogram,
which takes 121 float values for the frequency values and 20 float values for the grid rulers; or a
5 ∗ 5 ∗ 5 3D histogram. In our experiment we choose the total space budget as being 1000 tuples
each having d attributes.

For each experiment, we choose a value for d and the number of dimensions in the query
and access control predicates. We use D4Q2 to denote test on data with four attributes, and PAC
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and PQ each is a conjunction of range queries on two randomly chosen attributes, the histogram
is a 4D histogram under the same space budget of 1000 tuples from the test data. Similarly,
D8Q4 means test on data with eight attributes, with PAC and PQ each as a conjunction of range
queries on four randomly chosen attributes. We generated random pairs of query and access
control predicates. For each pair, we determined the actual cardinality of PQ ∧ PACi as well as
the estimated cardinality produced by hybrid-PSALM and the multi-dimensional histogram. We
then calculated the mean estimation error (ε) for both technique.

Figure 5.4 shows a comparison of the mean estimation error of the two techniques using data
and queries with different number of attributes, using type A for PQ∧PACi We can see that when
the data dimension is low, the multi-dimension histogram (or the single dimension histogram
as in D1Q1) has mean estimation error close to or lower than hybrid-PSALM. However, as
soon as dimension goes to four, hybrid-PSALM has much lower mean estimation error than
multi-dimensional histogram. In all of these experiments, hybrid-PSALM chooses different user
partitions ranging from 0% users in UL to 100% users in UL, with an average of 90% users in UL.

5.6 Exploiting Access Privilege Correlation
Data in Chapter 3 shows strong correlations in access privileges among different users. In this
section, we explore an enhancement to the hybrid-PSALM technique that exploits such correla-
tions.

Suppose that we use the hybrid-PSALM algorithm to partition users into UL and UH and to
assign sample sizes nL for users in UL and n0 for users in UH , as described in Section 5.5. The
enhancement to be introduced in this section will improve the accuracy of cardinality estimates
by exploiting access privilege correlations among the users in UL. The approach is to identify
groups of low-privilege users that have correlated access privileges, using a technique that will
be described shortly. Suppose that G ⊆ UL is such a group. Instead of creating a separate, private
sample for each user in G, we create a single, combined sample of size |G|nL that is shared by
all users in G. Here nL is the private sample size for the users in UL, and is a consistent value for
all such users in G according to Theorem 9. This new shared sample is a random sample drawn
from among all tuples that satisfy PACG, defined as

PACG =
∨
i∈G

PACi

That is, we sample from among those tuples that are accessible to at least one user in the
group. To compute an unbiased cardinality estimate for predicate PQ for user ui ∈ G, we use
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C̃i = ci
NG

|G|nL

(5.22)

where ci is the number of sample tuples matching PQ ∧ PACi and NG is the number of tuples in
the target relation that satisfy PACG. This results in a ∆-confidence estimation error bound of

εi ≤
√

4NG

|G|nLCi

log
2

∆
(5.23)

for all users in G.
Grouping users in this way does not change the cardinality estimates of users outside the

group, nor does it affect the accuracy of those estimates. Thus, any change in the total estimation
error bound from all users comes from the change of the estimation error bound of the users in
G. By combining Equations 5.2 and 5.23, we can see that user grouping will result in lower
mean estimation error bound among the users in the group if

∑
i∈G

√
4NG

|G|nLCi

log
2

∆
<

∑
i∈G

√
4Ni

niCi

log
2

∆

Simplifying, we find that this inequality holds provided that

∑
i∈G

√
NG

|G|Ci

<
∑
i∈G

√
Ni

Ci

When there is little overlap among the accessible tuples of the grouped users, then NG ap-
proaches

∑
i∈G Ni and there is no benefit to grouping users to reduce the total estimation error

bound or the maximum estimation error bound. However, if the grouped users have most of their
accessible tuples in common, then NG is much smaller and grouping will result in improved
estimates for all users in the group because of the larger size of the group’s sample. Thus, to
form groups of users we should identify users that have correlated access rights and group them
together. In the following, we describe how we group the users together.

5.6.1 Grouping Correlated Users
To determine which users to group together, we first define a pairwise similarity function, SIM,
over the users in UL. The similarity between the ith and jth users is defined as follows:

SIM(i, j) = min

(
Ni,j

Ni

,
Ni,j

Nj

)
(5.24)
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Figure 5.5: An example of user grouping

Here Ni,j is defined as the number of tuples from the target relation that are accessible to both
user i and user j. This similarity function has property similar to other set similarity functions
like the Jaccard Coefficient [1],i.e., it has a value between 0 and 1, and a value close to 1 indicates
a strong similarity while a value of 0 indicates no similarity.

Using this function SIM, we can define a similarity graph as an undirected graph with one
node for each user in UL. There is an edge between user i and user j if and only if SIM(i, j) ≥ θ,
where θ is a tunable parameter of the grouping algorithm. We will describe how to pick θ in
Section 5.6.2.

To place the users into groups, we attempt to find a minimum clique partition [26] of the
user similarity graph. This identifies a set of non-overlapping cliques that, together, cover the
entire user similarity graph. Each such clique becomes one of the user groups for which we will
create a sample. By using cliques as sampling groups, we ensure that all users in a group have
pairwise similar access rights. By minimizing the number of cliques we minimize the number of
separate samples that are required, thus allowing us to use larger samples while remaining within
the space budget.

The example in Figure 5.5 illustrates the process of identifying user groups. The example
illustrates a scenario in which there are five users (u1, u2, . . . , u5) and eight tuples (t1, t2, . . . , t4).
The large matrix indicates which tuples are accessible to each user, with a 1 indicating accessi-
bility. Using a similarity threshold θ of 0.5, we obtain the user similarity graph with pairwise
connections among u1, u2 and u3, as shown in Figure 5.5. A minimum clique partition for this
graph is illustrated using dashed lines.

The problem of finding a minimum clique partition is NP-complete [26]. Thus, we use a fast
greedy algorithm to partition the graph. The algorithm produces a set of non-overlapping cliques
that cover the user similarity graph, but the set is not guaranteed to have minimum cardinality.
The greedy algorithm first finds a maximal clique in the graph by starting from a random node,
finding the clique around the node, and removing all nodes in the clique and all edges induced
by these nodes. This process continues until there are no more nodes. We repeat this greedy
algorithm several times from different initial nodes and record the smallest clique partition that
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is found. Recall that hybrid-PSALM already partitions the users into UH and UL, so the users
to apply this greedy algorithm do not include the high privileged users. This is one reason why
we want to apply the hybrid-PSALM technique first before grouping users with similar access
controls.

5.6.2 Choosing θ for Grouping Users
Although grouping correlated users reduces the mean estimation error bound, some users may
incur significant loss in estimation accuracy. For example, consider two users ui and uj from UL.
Suppose each of them would have a private sample size of k tuples without correlation-based
grouping. If ui and uj are grouped based on correlation, they have a total sample size of 2k
tuples. If we randomly sample 2k tuples from the union of their accessible data, user ui will have
the following expected number of tuples from his accessible data included in the sample:

2k · Ni

Ni + Nj −Ni,j

If Nj is much larger than Ni, we can see from the above formula that the expected number of
sample tuples for ui will be less than his original sample quota k. This means ui will more likely
to have a higher estimation error bound after grouping with uj . Fortunately, hybrid-PSALM
already partitions users into UH and UL so that the number of accessible tuples among users in
UL will be not as skewed as it is among users in general. This is another reason that we need to
apply the hybrid-PSALM technique before grouping users with correlated access controls.

We have the following lemma for grouping user ui and uj together:

Lemma 5.6.1. Both user ui and user uj will have lower estimation error bound after grouping
if the following holds, where Ni,j denotes the tuples in the database that are accessible to both
user ui and user uj .

Ni,j > |Ni −Nj|
Proof. The number of tuples accessible to both user ui and uj is (Ni + Nj −Ni,j). The number
of tuples in each of these two user’s private samples is nL, and their merged private sample size
will be 2 · nL. From Formula 5.1, both user ui and uj will have a lower cardinality estimation
bound if the following two formulae hold:

√
4(Ni + Nj −Ni,j)

2nL · Ci

log
2

∆
<

√
4Ni

nL · Ci

log
2

∆
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√
4(Ni + Nj −Ni,j)

2nL · Cj

log
2

∆
<

√
4Nj

nL · Ci

log
2

∆

The above is equivalent to

Nj −Ni < Ni,j

Ni −Nj < Ni,j

From the above we have the proof.

We can extend the above lemma to the case of grouping more than two users. We have the
following theorem based on the access control similarity threshhold θ computed from Formula
5.24.

Theorem 11. Suppose we have users {u1, u2, . . . , u|G|} such that they have access controls with
pairwise similarity (as defined in Formula 5.24) above a constant θ. Then everyone of these users
will have a lower cardinality estimation error bound after merging all their sample quotas if the
following hold for every user ui, 1 ≤ i ≤ |G|:

θ >

∑|G|
j=1 Nj − |G| ·Ni∑|G|

j=1 Nj −Ni

(5.25)

Proof. Let’s look at an arbitrary user, say ui. If another user uj has access controls that are
SIM(i, j) similar to ui, then the size of the union of their accessible tuples will be bounded by

Ni + (1− SIM(i, j)) ·Nj

= SIM(i, j) ·Ni + (1− SIM(i, j))(Ni + Nj)

Therefore, if user ui is to be merged with users {u1, u2, . . . , ui−1, ui+1, . . . , u|G|}, and sup-
pose the similarity function value between user ui and all these users are greater than a constant
θ, then the union of user ui and these users’ accessible tuples will be bounded by

θ ·Ni + (1− θ) ·
|G|∑
j=1

Nj

In order to ensure that user ui has a lower estimation error bound after merging his sample
quota with all other users’, the following must hold:



114 Query Evaluation in the Presence of Fine-grained Access Control

√
4(θ ·Ni + (1− θ) ·∑|G|

j=1 Nj)

|G|nL · Ci

log
2

∆
<

√
4Ni

nL · Ci

log
2

∆

Solving the above, we have the proof.

To make sure that no user will have a higher estimation error bound after grouping than
before grouping, we need to verify that Formula 5.25 satisfies for every user in each clique when
performing the greedy clique-partitioning algorithm as described in Section 5.6.1. At the end of
every iteration, we check if this formula is violated for some users in a clique, and remove those
users from that clique. We keep iterating until this formula is satisfied for every user in each
clique.

5.6.3 Cost of Exploiting Correlation
Once user groups have been defined and the corresponding samples have been drawn, the cost of
estimating query cardinalities is essentially the same whether low-privilege users are grouped or
not. In either case, a predicate is evaluated against each tuple in the appropriate sample and an
estimate is computed using either Formula 5.17 or Formula 5.22. Similarly, all of the necessary
samples can be drawn in a single pass over the target relation, regardless of whether grouping is
used.

Since grouping depends only the access rights of the various users, and not on the query
predicates, user groups will not need to change unless access privileges are redefined. We assume
that this will occur rarely with respect to query evaluation.

There is an additional cost associated with determining how users should be grouped together.
To group users according to Formula 5.24, it is necessary to obtain {Ni,j} for all pairs of users in
UL to compute SIM(i, j). This can be piggy-backed during the same scan on the target relation
to get {Ni} before running Algorithm 5, if we maintain a U ∗ U integer array for all pairs of
users. After getting {Ni,j} and computing the correlated user groups, we need one more scan
on the target relation to get NG for each correlated user group G. During that scan we can do a
reservoir sampling for each correlated user group. Thus, exploiting access privilege correlations
increases the cost of one scan on each target relation to two scans.

5.6.4 Effectiveness of User-Grouping
As a test of the procedure for forming user groups, we applied the procedure to the access control
data taken from the LiveLink multi-user content management system as described in Section 3.6.
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The system had approximately 370000 access-controlled objects and a total of 1584 users. We
experimented with different similarity thresholds θ ranging from 0.3 to 0.7. We randomly se-
lected sets of users from among all 1584 users, and we applied our user grouping algorithm to
each selected set of users.
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Figure 5.6 shows the number of user-groups (or private samples) required after merging,
with different threshholds θ. We found that the user grouping algorithm effectively reduces the
number of samples. However, the effect of θ is not that significant. The reason is that while a
lower θ value introduces larger cliques and results in fewer groups, many users in the cliques
may fail Formula 5.25, and have to be discarded.

Figure 5.7 shows the improved mean estimation error bound after grouping users in UL under
different threshholds θ. In this figure, we fix the private sample size for each user, and the total
sample size grows linearly to the number of users for grouping. The more users for grouping, the
higher chances that users with similar access controls can merge their sample quota and share a
larger private group sample. The more users in each group, the larger their group’s private sample
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size after merging, and the lower these users’ new estimation error bounds. While user-grouping
lowers the average estimation error bound, the effect of θ is again not significant.

5.7 Cardinality Estimation Under Role-based Access Control
For the previous discussion we have assumed that the fine-grained access controls are explicitly
specified for each user in the system. However, as described in Section 2.2.1, fine-grained access
controls are usually specified through raw access controls define on several roles, and the raw
access controls propagate to each of the users. In this section, we show how to use PSALM to
estimate cardinality under such role-based access control mechanisms.

Suppose a user is authorized with k roles directly or indirectly from the role hierarchy, and
each role Ri has access control predicate PACi on a target relation I . The user’s access control
predicate on the target relation is thus (

∨
i∈{1,...,k} PACi). Given query selection predicate PQ, we

are trying to estimate the cardinality of the set of tuples matching PQ ∧ (
∨

i∈{1,...,k} ACi) from
the target relation.

A straightforward approach to compute the estimated cardinality is to compute the effective
access controls for each user from all his roles, and apply PSALM sampling scheme for all the
users. However, if there are many users with distinct access controls, the private samples may
become extremely small. On the other hand, the users have different effective access controls
simply because they are granted different combinations of roles. If we build PSALM samples
based on roles, we will have fewer, larger private samples. Therefore, our goal is to accurately es-
timate the number of accessible tuples satisfying a given query predicate by applying the PSALM
sampling scheme to the roles.

We first apply the distributive law to rewrite the access control predicate:

PQ ∧ (
∨

i∈{1,...,k}
PACi) ≡

∨

i∈{1,...,k}
(PQ ∧ PACi) (5.26)

We are able to apply PSALM sampling on the roles to estimate the cardinality of each PQ ∧
PACi(I) accurately. However, to the best of our knowledge, there is no effective approach to
directly estimate the cardinality of disjunctive predicates on a relation. One approach used in
PostgreSQL is to estimate cardinality of disjuncts by rewriting them into a conjunctive form. For
example, the cardinality of the disjunctive predicate (P1∨P2∨P3) on relation I can be estimated
as follows:
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|(P1 ∨ P2 ∨ P3)(I)|
= |P1(I)|+ |P2(I)|+ |P3(I)| −

|(P1 ∧ P2)(I)| − |(P1 ∧ P3)(I)| − |(P2 ∧ P3)(I)|+
|(P1 ∧ P2 ∧ P3)(I)|

where the cardinality of each conjunct is estimated separately. However, one significant disad-
vantage of this approach is that the number of terms in the formula is exponential in the size of
the disjunctions. In the next section, we present an alternative approach that solves this problem.

5.7.1 Coverage Algorithm for Estimating Size of Union of Sets
We use the Coverage Algorithm [67] to estimate cardinality of disjunctive predicates. This ap-
proach takes time polynomial in the number of conjunctions in a disjunctive formulae, has more
accurate estimates than the approach used in PostgreSQL, and can be built on top of PSALM.
The Coverage Algorithm is able to accurately estimate the size of union

⋃
i∈(1,...,k) Ci, provided

that [67]:

1. we can accurately estimate the cardinality of each set Ci, and

2. we can sample uniformly at random from each Ci, and

3. we can determine in polynomial time whether a given tuple belongs to Ci.

The Coverage Algorithm takes as input the sets C = {Ci, i ∈ {1, . . . , k}} and proceeds as
in Algorithm 6. The algorithm starts with a counter W with value zero, and a total sample size
n. It then samples from each of the sets Ci, where the number of samples taken from Ci is
proportional to |Ci|. For each sample from Ci, we determine whether it belongs to any Cj such
that j ∈ {1, . . . , i − 1}. If it does not belong to any of these sets, we increment the counter W
by one.

After checking all the samples from C1, C2 . . . , Ck, we take the counter W from this routine
and compute estimated cardinality |C| = |⋃i∈(1,...,k) Ci| as follows:

|C| =
∑

i∈{1,...,k}
|Ci|W

N
(5.27)

Theorem 12. [67] Algorithm 6 and Formula 5.27 yield an ε-approximation to |C| with (1−∆)
probability, provided sample size n ≥ 4k

ε2
ln 2

∆
.
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Algorithm 6 Coverage Algorithm
[67]

COVERAGE(C, n)

1: set counter W = 0;
2: sort sets in C by their sizes in descending order
3: for each Ci ∈ C
4: do sample n|Ci|P

C∈C |C| tuples uniformly from Ci

5: for each tuple t sampled
6: do if t 6∈ Cj, j ∈ {1, . . . , i− 1}
7: W + +;
8: return W ;

5.7.2 Applying the Coverage Algorithm
We now show how to apply the Coverage Algorithm for estimating the cardinality of disjunctive
predicates in the form shown in Formula 5.26. Given a target relation T , we need to be able to
do the following to apply the Coverage Algorithm:

1. estimate the size of each PQ ∧ PACi(T ), and

2. sample uniformly from each PQ ∧ PACi(T ), and

3. decide whether a given tuple satisfies PQ ∧ PACi in polynomial time.

The first requirement is already met by PSALM . The third requirement can be met if the
predicate does not involve exponential computation. For access control predicates, this require-
ment is easily satisfied. For the second requirement, we can satisfy it by sampling from role
Ri’s already materialized PSALM private sample tuples. We can accomplish this by reservoir-
sampling on the PSALM private samples of role Ri that satisfy PQ, i.e., we sample from role
Ri’s PSALM private sample on the fly, discard all tuples that do not satisfy PQ, and feed the
qualifying sampled tuples into the reservoir sample. We have the following Lemma:

Lemma 5.7.1. Reservoir-sampling on the (already materialized) PSALM private sample tuples
of role Ri that satisfy PQ generates a uniform sampling of PQ ∧ PACi.

Proof. We use Di to denote the reservoir from role Ri. We first have that each tuple in PQ(Di)

is also in PQ ∧PACi. We also know that a tuple in PQ ∧PACi has probability |PQ∧PACi|
Ni

to appear
in Di, and this probability is independent of other tuples in PQ ∧ PACi. Hence the proof.
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5.7.3 Evaluating the Coverage Algorithm
We evaluated the Coverage Algorithm on top of the PSALM technique using a data set that
describes American household expenditures 1. This data set consists of 127931 tuples, with each
tuple representing a family’s expenses on insurance, property tax, electricity, gas, water, and fuel
(altogether six attributes). There is some correlation among the different attributes.

We simulate users’ access controls by randomly creating four roles. The access control of
each role is a single predicate PAC on one of the six attributes of the data. We then randomly
assign these four roles to users. Each user may have one to four roles, and the user’s access con-
trol predicate is a disjunct over the single attribute predicates from his roles. Therefore, there are
altogether 15 distinct access controls, which represent all our users. All of the disjunctions that
we considered in this experiment had an actual selectivity of approximately 0.25, meaning that
each user has access to approximately one quarter of the tuples. The reason for this selectivity
will be clear later.

Our workload for this experiment consists of one-dimensional range queries with the same
selectivity (0.25) as the access controls. We generated a series of such queries and, for each pair
of query and user’s access control predicate, calculated both the actual result cardinality and the
estimated cardinality. We compared two approaches for cardinality estimation. The first is the
PSALM combined with the Coverage Algorithm, as described previously. This approach uses
PSALM to generate cardinality estimates for each of the four roles, and then combines those
estimates using the coverage algorithm to obtain cardinality estimates for user queries.

The second approach is to ignore the disjunctive structure of the access controls. Instead we
treat each user’s disjunctive predicate as an atomic predicate, and we apply PSALM directly on
these 15 users to estimate the cardinality of that predicate.

Figure 5.8 shows the estimation error of the two estimation techniques, assuming that both
techniques are given a sample space budget of 60 tuples. Each point in the figure represents a
query from a user. The x-coordinate denotes the estimation error using PSALM directly on all
users and the y-coordinate denotes the estimation error using the Coverage Algorithm on top
of PSALM on the roles. In most cases, the estimates produced by the Coverage Algorithm are
significantly more accurate than those produced by PSALM directly on users.

5.8 Comparison to Related Work
There exists a broad literature on cardinality estimation techniques for conjunctive predicates
without the attribute value independence assumption. Among them, multi-dimensional his-
tograms [4, 18, 58, 75], wavelet-based techniques [65] and sampling [40, 60, 56] are the three

1available from http://www.ipums.org
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Figure 5.8: Accuracy of two techniques for estimating the cardinality of disjunctive predicates

most common techniques. We focus on sampling-based techniques in this chapter, because it not
only accommodates SQL predicates but also predicates based on user-defined functions, as in
the case of label-based access controls [45, 66, 69].

There are two main approaches to sampling data for cardinality estimation. One is to sample
for each query at runtime, either proactively before executing the query [32], or reactively after
executing the query [5]. The other approach is to sample off-line without prior knowledge of the
queries. Although PSALM takes advantage of prior knowledge access controls, it is closer to the
off-line sampling category since it does not make any assumptions about the users’ queries.

Kolmogorov’s statistics show that a moderately-sized sample gives accurate selectivity esti-
mation for queries, and that the required sample size does not depend on the size of the underlying
dataset [33]. However, that evaluation is based on the relative error of selectivity, rather than the
relative error of cardinality. It is well-known that uniform random sampling does not provide
accurate cardinality estimation when the data distribution is highly skewed or the query results
are very small. Therefore, instead of specifying a fixed sample size for all queries, adaptive
sampling [60] (also known as sequential sampling [40]) iteratively samples from data until the
accuracy of the estimation satisfies a stopping rule. This approach falls into the runtime sampling
category.

Another approach for handling skewed data or highly selective queries is to sample without
uniformity. This includes biased sampling [73] or stratified sampling [21], whose idea is to par-
tition data into non-overlapping clusters of different density, and then assign different weights
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to the sample tuples from clusters of different density. The density distributions are either es-
timated through a pilot sampling phase, or from prior knowledge of the queries together with
some statistics on the data.

The work by Acharya, Gibbons and Poosala [6] is similar to our approach. Their sampling
mechanism is intended for efficient approximate answering of aggregation queries, and their
approach is to partition data according to the prior knowledge of grouping attributes, and judi-
ciously assign sample quota among all the partitions to minimize estimation variance. However,
their approach, like those of other biased or stratified sampling techniques, assumes that the data
are partitioned into non-overlapping sets for sampling. In our setting, the set of tuples accessible
to different users may overlap.

Some recent work proposes the use of statistics on views [37] as well as sample views [56],
which consist of a sample of tuples drawn from a particular view. The set of tuples accessible
to a given user from a given target relation can be thought of as a user-specific view defined by
the user’s access control predicate. From this perspective, the samples drawn by the PSALM
technique are sample views, and could potentially be exploited by the mechanism described by
Larson et al. [56]. However, their work does not consider the problem of determining which views
to define. The view definitions assumed to be given, and the emphasis is on how to maintain and
exploit the sample views. In contrast, PSALM is about choosing which views to define, given
some information about static predicates (the access control predicates) that appear repeatedly in
many queries.



Chapter 6

Conclusion

6.1 Summary and Contributions
This thesis addresses three problems of query evaluation in the presence of fine-grained access
controls: physical storage of access control specifications, query optimization for access con-
trolled queries, and cardinality estimation for access controlled queries. These three issues mark
the major distinctions between normal query evaluation and access controlled query evaluation.
This thesis presents novel solutions for each of these problems.

Fine-grained access controls specify accessibility at a fine data granularity. The access con-
trol specifications can be gigantic and therefore call for a compact representation. On the other
hand, each piece of data needs to be checked for accessibility during query processing, and that
requires an efficient access control lookup mechanism. This thesis presents a physical storage
scheme that meets these two requirements at the same time:

1. We first noticed from real-world applications that the access controls show strong struc-
tural locality among database for each user. Based on that observation, we designed a
compact encoding for each user’s access controls. This encoding can be embedded inside
the original data.

We also observed that there is strong correlation between different users’ access controls.
We encoded the access controls of all users on one piece of data as a bit vector. We found
that the number of distinct bit vectors across all pieces of data is relatively small. This
observation suggests that we use a code-book to store all distinct access control bit vectors
among all users, and replace the access control encodings of all users with pointers to the
entries in the code-book. This further compresses the access control data.

2. Since the code-book is small, we can fit it in memory. This makes accessibility checks
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efficient during query processing. Other access control data that are embedded in the orig-
inal data fit nicely with an existing query evaluation framework. This framework, called
NoK, is able to piggy-back access control data while doing query evaluation. Therefore,
the disk-IO required to retrieve access control data is reduced.

Fine-grained access controls require that each user’s query be evaluated against his accessible
data. In a multi-user system, the same original query will have many different access controlled
versions based on the users’ access controls. If the database system computes query plans for all
of these access controlled queries from scratch, the query optimization cost can be significant.
This thesis presents an intelligent query caching mechanism that reduces the amortized query
optimization cost for access controlled queries. This caching mechanism is based on the obser-
vation that the user-specific access controlled queries may share a significant common structure
in their optimal query plans. The optimizer could cache query plans computed from earlier user-
specific queries and reuse the upper-level portion of the query plans for later queries. By reusing
the upper-level portion of the query plans, which is the most time-consuming portion to compute,
the system reduces query optimization cost.

There are two concerns when reusing the cached query plans for the new access controlled
queries:

1. First, the system needs to know whether a cached query plan is suitable to make a correct
query plan for a new query. Our query plan caching mechanism addresses this problem by
not only caching the query plans, but also caching the query rewrites of the corresponding
queries. When a new query comes, the optimizer rewrites the query and compares the
rewritten query with the cached query rewrites. Only when two query rewrites agree for
their upper level part (i.e., all excluding the leave operators) the optimizer will reuse the
corresponding cached query plan. This step guarantees the correctness of the new query
plan.

2. Second, the new query plan built from a cached query plan must be an efficient query plan
for the new query. The thesis presents a plan matching algorithm that is based on the char-
acteristics of the access paths of the new query and the characteristics of the access paths
of the cached query plans. The thesis demonstrates that if the two sets of characteristics
match, the query plan built on the cached query plan has performance close or equals to
the optimal query plan.

Cardinality estimation is for estimating the size of intermediate results during query process-
ing. The accuracy of the estimate is crucial for query optimization since an inaccurate estimate
may result in a query plan that runs much slower than the optimal query plan. To accurately esti-
mate the cardinality of the intermediate query results, the system maintains certain synopses that
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capture the statistic distribution of the data. These synopses are usually in the form of histograms
or samples.

Under fine-grained access controls, the optimizer needs to estimate the joint selectivity of the
original query predicates and the access control predicates of each user. This thesis shows that
the cardinality estimation from one single uniform sample will not be accurate for those users
having small amounts of accessible data. On the other hand, cardinality estimation from many
individual samples with one sample for each user will not be more accurate than a single uniform
sample under the same total sample size. To minimize the estimation error for all users, the thesis
proposes a novel sampling mechanism that is guaranteed to provide estimates at least as accurate
as those provided by simple technologies, such as a single uniform sample. Moreover, we show
this sampling scheme is better than multi-dimensional histograms when the query predicates and
access control predicates refer to a large number of attributes.

6.2 Future Work
The three contributions presented in this thesis are beneficial in the presence of fine-grained
access controls: the compact representation of access control specifications alleviates the hefty
storage requirement; the POM query plan caching mechanism reduces the amortized query op-
timization cost from all access control customized queries, and the PSALM sampling technique
results in accurate cardinality estimation for high-quality query planning.

However, a substantial amount of work is still required to build a database system that fully
supports fine-grained access controls without significant performance degradation. We list some
of the improvements on the three components presented in this thesis as follows:

1. The DOL access control labeling mechanism compresses access control specifications by
taking advantage of access control correlations among XML data and among different
users. Although the same correlation among the users may exist in relational databases,
the correlation of access controls among the data may be different among tuples that are
non-tree structured. Further, the DOL scheme nicely fits with the NoK query processor,
and lowers the cost of access control lookup. It remains unknown if this scheme can be
integrated into existing relational query processors to reduce runtime access control lookup
overhead. One big challenge in embedding such a piggy-back mechanism in a relational
system is that we need not only change every access path operator, but also the query
optimizer to take this factor into consideration.

2. The POM query caching mechanism works for optimizers that separate query rewriting
from physical plan generating. It is challenging to customize POM for optimizers of dif-
ferent architecture, i.e., an optimizer that mixes logical query rewrites with physical plan
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generation. Moreover, if a database system has its unique physical properties or logical
properties that affect its query planning (e.g., ranking operators), POM needs to be cus-
tomized for those new properties. It is a daunting task to customize POM for every possible
property coming from novel database operators.

3. The PSALM sampling scheme requires the samples be built in advance. Adaptive sam-
pling is not currently present. In the future, PSALM can continuously update its samples
while executing the access-control-customized queries, in a similar fashion as self-tuning
statistics [5]. Moreover, PSALM can be used to assist design sample views [56] under a
total sample space budget.
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