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Abstract

In multiple-input multiple-output (MIMO) systems, the use of lattice reduction

methods such as the one proposed by Lenstra-Lenstra-Lovász (LLL) significantly

improves the performance of the suboptimal solutions like zero-forcing (ZF) and

zero-forcing deceision-feedback-equalizer (ZF-DFE). Today’s high rate data com-

munication demands faster lattice reduction methods. Taking advantage of the

temporal correlation of a Rayleigh fading channel, a new method is proposed to

reduce the complexity of the lattice reduction methods. The proposed method

achieves the same error performance as the original lattice reduction methods, but

significantly reduces the complexity of lattice reduction algorithm. The proposed

method can be used in any MIMO scenario, such as the MIMO detection, and

broadcast cases, which are studied in this work.
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Chapter 1

Introduction

In recent years, using multiple antenna for communication in fading channels has

attracted many researchers. In these systems, the outputs can be described as a

linear combination of the inputs corrupted by additive noise. It is shown in [1],

[2] that there are advantages in using multiple antennas, namely they proved that

the capacity of a multiple input multiple output system increases linearly with the

minimum number of receive and transmit antennas. In point to point systems,

which in this work is often referred to as MIMO detection system, for moderate to

large values of number of antennas, decoding represents a challenging problem in

communication theory. Recently, many researchers have tried to employ some of the

methods used in lattice theory, as the solutions to this challenging problem [3], [4],

[5]. The MIMO detection problem translates to closest lattice point search problem

in lattice theory. Lattice reduction methods have proved themselves to be powerful

tools in solving the closest lattice point problems. There is no unique definition

for lattice reduction, and therefore, there exist many different methods for lattice

reduction. Among the lattice reduction methods, the LLL methods due to Lenstra,

Lenstra, and Lovász, [6] is the most practical one, due to its efficiency in finding near

orthogonal vectors with short norms. Generally, in most of the recent works like in

[7], the complexity of using the LLL algorithm is ignored. This can be justified in

a case that, the channel variations are slow enough, to make it possible to use the

result of the LLL reduction for quite a large number of received signals. In this way

at the beginning of each frame the lattice reduction is performed on the channel,

and for the rest of the frame the channel is assumed to be constant. However in

many practical situations, to achieve higher data rates, reduction algorithms less

complex than the LLL are required. In this work the channel is not assumed to
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be constant throughout the frame and the channel realizations have a temporal

correlation. The proposed method in this work, takes advantage of this correlation

to reduce the complexity of the reduction method. The main idea is to use the

results of the previous channel realization to perform an efficient reduction of the

new channel realization. The proposed adaptive method can be used along with

any reduction method, and it is not restricted to just the LLL algorithm. This

makes it a powerful tool in many problems in communication theory that use the

lattice reduction as a tool.

In addition, in this work the usage of the proposed method in broadcast scenario

is investigated. In broadcast model, in contrast to the MIMO detection, users at

the receiver side can not cooperate. In [8] and [9], it is shown that the sum-capacity

grows linearly with the minimum number of transmit and receive antennas. In order

to achieve the promised rate, some kind of precoding is required at the transmitter

side. Lattice reduction methods such as LLL found themselves a great role in

broadcast system too [10]. Therefore, the proposed adaptive method can be used

to reduce the complexity of the precoding stage in a broadcast system too.

1.1 Thesis Outline

The rest of this work is organized as follows. In chapter 2 the generating algorithms

for Rayleigh fading channel, are briefly described. Section 2.2, goes over an auto

regressive model used as a generator for our fading channel throughout this work.

In chapter 3, the system model for MIMO detection scenario is explained. In

sections 3.1, and 3.2, different algorithms for MIMO detection are explored along

with their advantages and disadvantages. Section 3.3, studies the preprocessing

algorithms used to reduce the complexity of the decoding stage. Details of the

LLL, lattice reduction algorithm can be found in this section. Section 3.4, reviews

recent efforts to reduce the complexity of the lattice reduction stage. In section 3.5,

the new adaptive method is proposed. Section 3.6 contains the simulation results,

investigating the error and complexity performance of the proposed algorithm.

Chapter 4 deals with the broadcast scenario, its system model and the precoding

methods used in this scenario. Sections 4.1-4.3 describe different algorithms used

in the precoding stage. In section 4.4, and 4.5, the proposed method, and the

simulation results are presented respectively.

In chapter 5 the reader can find the conclusion and the ideas for future work.
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Chapter 2

Channel Model

In this work, we are considering a fading channel, which is assumed to be Rayleigh.

The band limited Rayleigh process, which its power spectral density (PSD) is lim-

ited by maximum Doppler frequency has an extensive use in today’s wireless com-

munication problems. Many different techniques are developed to simulate Rayleigh

random process [11], [12],[13]. One of the the pioneer methods was to generate cor-

related Rayleigh process based upon Clark’s wide sense stationary (WSS) isotropic

scattering models [14]. The problem with this model is that in many practical situ-

ations, the scattering might not be isotropic. This will definitely, affect the second

order statistics of the channel. Some of the other popular simulation methods are

based on sum of sinusoids, white noise filtering or inverse discrete Fourier transform

(IDFT). In recent years some major problems were found in the commonly used

sum of sinusoids, namely it was shown that the classical Jakes simulator produces

fading signals that are not wide sense stationary [15]. On the other hand, the IDFT

method is well known to be accurate and efficient [11]. The major disadvantage of

this model is that all the samples are produced with a single Fast Fourier Trans-

form (FFT) operation. This can cause a huge problem when we are dealing with

generating a large number of variates.

In this work we use a general autoregressive model which was proposed by K.

E. Baddour, in [16].His technique essentially employs the all-pole infinite-impulse

response (IIR) filtering to shape the spectrum of uncorrelated Gaussian variates.
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2.1 Correlated Fading models

In Rayleigh fading model the variation of the channel is captured by its auto cor-

relation function (ACF) [17]. The second order statistics generally depend on the

geometric properties of the area, the pace the mobile user is moving with, and

characteristics of the antennas. A common situation (assumption) is that the prop-

agation path consists of a two dimensional isotropic scattering, with a vertical

monopole antenna at the receiver [18]. In this case, the theoretical PSD would be

of the form [18]

S(f) =
1

πfd

√
1− f

fd

2
(2.1)

where fd is the maximum doppler frequency. The in-phase and quadrature Gaussian

processes each should have the autocorrelation sequence

R[n] = J0(2πfm|n|) (2.2)

in which fm = fdT is the maximum doppler frequency normalized by the sampling

rate 1/T . Furthermore in this model the in-phase and quadrature components

should have zero mean and be independent of each other.

2.2 AR Modeling of Bandlimited Rayleigh Ran-

dom Processes

An autoregression model of order p can be generated in time domain via the recur-

sion [19]

x[n] = −
p∑

k=1

akx[n− k] + w[n] (2.3)

in which w[n] is a complex white noise Gaussian process with uncorrelated real and

imaginary components. In order to produce Rayleigh fading process, w[n] should

have zero mean and |x[n]| should be considered as the output. The PSD of the

aforementioned AR model can be expressed using the following rational form [19]

Sxx(f) =
σ2
p

|1 +
∑p

k=2 ak exp (−j2πfk)|2
(2.4)
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In order to characterize the model, we should solve for {a1, ..., ap} and the variance

σ2
p of the driving noise.

The AR spectrum is used to approximate the Doppler spectrum. If one makes p

sufficiently large, the approximation would be quite accurate. The relation between

the desired model ACF Rxx[j] and the AR parameters is given by [19]

Rxx[k] =

−
∑p

m=1 amRxx[k −m] k ≥ 1

−
∑p

m=1 amRxx[−m] + σ2
p k = 0

(2.5)

Considering k = 1, ..., p, and combining the equations together, we would have,

Rxxa = v (2.6)

Where

Rxx =


Rxx[0] Rxx[−1] · · · Rxx[−p+ 1]

Rxx[1] Rxx[0] · · · Rxx[−p+ 2]
...

...
. . .

...

Rxx[p− 1] Rxx[p− 2] · · · Rxx[0]

 (2.7)

a =
[
a1 a2 · · · ap

]T
(2.8)

v =
[
Rxx[1] Rxx[2] · · · Rxx[p]

]T
(2.9)

and considering the case for k = 0, it will results in,

σ2
p = Rxx[0] +

p∑
k=1

akRxx[−k] (2.10)

Therefore using the equations (2.7) to (2.10) and given the desired ACF, we can

solve for the unknown parameters. These equations can be efficiently solved using

Levinson-Durbin recursion in O(p2).

It can be proved that for large p the autocorrelation matrix will almost always

be ill conditioned [16], and therefore makes the solving process of the mentioned

equations numerically impractical. A heuristic approach that can be used to solve

the numerical problems is to improve the condition of the autocorrelation matrix

by adding a small value ε to the diagonal elements of the autocorrelation matrix.
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Therefore the first p+ 1 autocorrelation lags of the resulting AR(p) process will be

R̂xx[m] =

Rxx[0] + ε, m = 1

Rxx[m] m = 1, 2, · · · , p
(2.11)
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Chapter 3

MIMO Detection System Model

In this work, we consider a multiple input multiple output (MIMO) system with

M transmit, and N > M receive antennas. If we consider xc = [xc1, ..., x
c
M ]T ,

yc = [yc1, ..., y
c
M ]T , wc = [wc1, ..., w

c
M ]T and the N ×M matrix Hc, respectively as

the transmitted signal, the received signal, the noise vector and the channel matrix,

it will lead to the popular base-band model

yc = Hcxc + wc (3.1)

The channel is assumed to be Rayleigh, and the noise is Gaussian, i.e., the elements

of H, namely hci,j, are independent and identically distributed (i.i.d), with zero mean

and unit variance complex Gaussian distribution. The complex input signal xc is

composed of components, cci , chosen from a Q2-QAM constellation with energy ρ
M

,

in which ρ can be interpreted as the signal-to-noise ratio (SNR) observed at any

receive antenna. We can convert the whole system to its real counterpart using the

following transformations defined for vectors and matrices,

uc 7→ u =
[
<{uc}T ={uc}T

]
Hc 7→ H =

[
<{Hc} −={Hc}
={Hc} <{Hc}

]

Using the aforementioned transformations, the resulting real model is given by

y = Hx + w (3.2)
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in which, now the components of x is chosen with uniform probability from a Q-

PAM constellation, with energy ρ
2M

. We can further simplify the model by mapping

the PAM signals to integers using the following mapping.

c 7→ x = κc + v (3.3)

in which elements of c are in {0, 1, ..., Q − 1} , κ is a constant related to the

PAM constellation energy, and v is a constant vector. Using the (3.3) our system

simplifies to,

y = H(κc + v) + w (3.4)

In the resulting model , vector c has integer elements, therefore our problem

changes to detecting a lattice code transmitted over a linear channel with additive

white gaussian noise [20].

The maximum-liklihood(ML) solution to this problem is given by,

ĉ = arg min
c∈U
|y −Hv −Hκc| (3.5)

= arg min
c∈U
|y′ −H′c| (3.6)

in which U refers to the hypercube {0, 1, ..., Q − 1}n ∈ Rn, y′ = y − Hv, and

H′ = κH. In communication literature the optimization problem in (3.5) is referred

to as constrained Closest Lattice Point Search(CLPS). Solution to this problem is

vastly investigated in lattice theory like in, [3], [4], and [5]. It is shown that for a

general H, finding the optimal solution to this problem can be NP-hard. There exist

algorithms that deal with finding this optimal solution, such as Sphere Decoding

by Pohst [21]. Pohst proposed an efficient method to find all the lattice points

within a sphere of certain radius. It is shown that the Pohst algorithm lowers the

decoding complexity for higher SNRs, but still the complexity grows exponentially

with the system dimension.

3.1 Pohst and Schnorr-Euchner Enumeration

The idea of Post enumeration is as follows. Consider C0 to be the squared radius

of hyper sphere S(y′,
√
C0) in which the enumeration is trying to find a list of all

the points inside the hyper sphere. If a set Λ = {H′c : c ∈ Zn} is considered, the

goal of the Pohst enumeration is to find all the points in Λ ∩ S(y′,
√
C0). The first
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step is to perform QR decomposition on H′, and we would have,

H′ = [Q,Q′]

[
R

0

]
(3.7)

where R is m × m upper triangular matrix with positive diagonal elements, 0 is

m × (m − n) zero matrix, Q is a n ×m unitary matrix, and Q′ is a n × (n −m)

unitary matrix. The points inside the hyper sphere can be stated as

|y′ −H′c|2 6 C0 (3.8)

for some c ∈ Zn. Using the QR decomposition equation (3.8) can be rewritten as∣∣∣∣∣[Q,Q′]Ty′ −

[
R

0

]
c

∣∣∣∣∣
2

6 C0 (3.9)∣∣QTy′ −Rc
∣∣2 6 C0 − |(Q′)Ty′|2 (3.10)

|y′′ −Rc|2 6 C ′0 (3.11)

where y′′ = QTy′, and C ′0 = C0 − |(Q′)Ty′|2. Taking advantage of the upper

triangular property of R the inequality (3.11) can be rewritten as a set of conditions,

m∑
j=i

∣∣∣∣∣y′′i −
m∑
l=j

rj,lcl

∣∣∣∣∣
2

6 C ′0 i = 1, 2, · · · ,m (3.12)

Considering the above conditions starting from the last index(m) until we reach

the first index(1), for each ci we can find an interval in which the possible values

of ci belong. Assuming some value for ci, · · · , cm, we can compute the mentioned

interval for ci−1. More specifically, assume that cml = [cl, cl+1, · · · , cm]T be the last

m − l + 1 elements of the vector c. For a fixed cmi+1, ci can only take the integer

values in the interval Ii(cmi+1) = [Ai(c
m
i+1), Bi(c

m
i+1)], where

Ai(c
m
i+1) =

 1

ri,i

y′′i − m∑
j=i+1

ri,jcj −

√√√√C ′0 −
m∑

j=i+1

∣∣∣∣∣y′′j −
m∑
l=j

rj,lcl

∣∣∣∣∣
2
 (3.13)

Bi(c
m
i+1) =

 1

ri,i

y′′i − m∑
j=i+1

ri,jcj +

√√√√C ′0 −
m∑

j=i+1

∣∣∣∣∣y′′j −
m∑
l=j

rj,lcl

∣∣∣∣∣
2
 (3.14)
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This assumes that Ai < Bi, and
∑m

j=i+1

∣∣∣y′′j −∑m
l=j rj,lcl

∣∣∣2 6 C ′0, otherwise Ii = ∅,
which means there are no valid choices for ci and therefore the choices for cmi+1 are

not correct.

Pohst enumeration examines all the admissible lattice points and finds the one

which is closest to the the center of the hyper sphere, y′′. At each level i this

consists of testing all the admissible values of ci, which belong to Ii(cmi+1). Starting

from the last index(m) and computing each ci until we reach to the first index(1)

if Ii is non empty, then we have found a lattice point inside the hyper sphere S.

This means cm1 ∈ S(y′′,
√
C0). The euclidean distance of this lattice point from the

center of sphere is,

d2(y′′,H′c) =
m∑
j=1

∣∣∣∣∣y′′j −
m∑
l=j

rj,lcl

∣∣∣∣∣
2

(3.15)

The Pohst enumeration just outputs the point with the least euclidian distance. If

after spanning the interval corresponding to the last interval, Im, no valid lattice

point was found, then the radius of the hyper sphere should be increased, in order

to contain at least one lattice point. At each level i, Pohst enumeration starts from

the lowest integer in the interval, and spans all the integers in the interval. This is

called the natural spanning of the interval. A more wise method is to start from the

middle point of the interval and traverse the whole interval using zig-zag moves.

This method of enumeration was first used by Schnorr-Euchner [22] to improve

the performance of the Pohst enumeration. The mid point of the interval can be

expressed as

Si(c
m
i+1) =

⌈(
y′′i −

m∑
j=i+1

ri,jcj

)⌋
(3.16)

If Si(c
m
i+1) is rounded down meaning,

y′′i −
m∑

j=i+1

ri,jcj − ri,iSi(cmi+1) > 0 (3.17)

the order that the Schnorr-Euchner traverses the interval would be,

{Si(cmi+1), Si(c
m
i+1) + 1, Si(c

m
i+1)− 1, Si(c

m
i+1) + 2, · · · } ∩ Ii(cmi+1) (3.18)

or in contrast if Si(c
m
i+1) is rounded up, then the sequence would be

{Si(cmi+1), Si(c
m
i+1)− 1, Si(c

m
i+1) + 1, Si(c

m
i+1)− 2, · · · } ∩ Ii(cmi+1) (3.19)

10



Table 3.1: Schnorr-Euchner with boundary check(Input C ′0, y′′, R)
Step 1 (Initialize) i = m, dc = C ′0, Tm = 0, ξm = 0.
Step 2 Set ci = d(y′′i − ξi)/ri,ic and ∆i = sgn(y′′i − ξi − ri,ici)
Step 3 If dc < Ti + |y′′i − ξi − ri,ici|2 go to step 4(Already outside the hyper

sphere)
Else if ci /∈ {0, 1, · · · , Q− 1} go to step 6(Inside the hyper sphere but
outside the boundary)
Else(We are inside the hyper sphere and boundary set)

If i = 1 go to step 5
Else ξi−1 =

∑m
j=i ri−1,jcj, Ti = Ti−1 + |y′′i − ξi − ri,ici|2,

i = i− 1, goto step 2.
Step 4 If i = m terminate the algorithm, else i = i+ 1 and goto step 6
Step 5 (A valid point is found) dc = T1 + |y′′1 − ξ1 − r1,1ci|2, save ĉ = c, and

i = i+ 1, goto step 6.
Step 6 (Schnorr-Euchner enumeration at level i) ci = ci + ∆i, ∆i = −∆i −

sgn(∆i), and goto step 2.

If at any level i the interval Ii(cmi+1) is the empty set, then the enumeration algo-

rithm returns to (i + 1)th level and chooses the next value in the sequence as the

value for ci+1. In order to reduce the complexity of finding the closest lattice point,

we can update the radius of the sphere, as soon as a new lattice point is found.

We can set the new radius as the euclidean distance between the new found lattice

point and center of the sphere. For finding the maximum likelihood solution, at

each step i the algorithm should check the ci under test to make sure it belongs to

U . This might be easy for some well shaped U , like the one that is considered here,

but it can be quite complex to check for the boundaries in general. The loss of

performance for not checking the boundary is shown to be negligible, but the gain

in complexity is quite worthy. Detection of the signal without checking boundary

is often called lattice decoding in communication literature.

When U = {0, 1, · · · , Q − 1}n, the Schnorr-Euchner enumeration with radius

update can be written explicitly as in Table 3.1.

3.2 Babai Decoder

As mentioned before the optimal solution is in general complex and not practical to

find, in many of today’s communication systems. To further reduce the complexity

of the solution of the CLPS problem, the problem should be solved in an approxi-

mate fashion. The most obvious approximate solution is the linear zero forcing(ZF)
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decoder which was first proposed by Babai in [23]. The solution can be written as

ĉ = d(κH)−1(y −Hv)c (3.20)

In this way the interference is totally suppressed. This causes the noise effect to be

amplified. Using the decision feedback equalizer (DFE) can lessen this effect. DFE

can be done by performing QR algorithm on H′ to get H′ = QR. As mentioned

before, using (3.6), and the QR decomposition we can write,

ĉ = arg min
c∈U

∣∣[Q,Q′]Ty′ − [Q,Q′]TH′c
∣∣ (3.21)

= arg min
c∈U

∣∣∣∣∣[Q,Q′]Ty′ −

[
R

0

]
c

∣∣∣∣∣ (3.22)

= arg min
c∈U

(∣∣QTy′ −Rc
∣∣+
∣∣∣Q′Ty′

∣∣∣) (3.23)

= arg min
c∈U
|y′′ −Rc| (3.24)

Where y′′ = QTy′. Since R is triangular, the last symbol can be estimated as

ĉn = dy′′n/Rn,nc. We can then substitute the estimated value to cancel the noise

interference in y′′n−1. We can continue in this manner until the last symbol is found.

The solution can be written as,

ĉi =

⌈
y′′i −

∑n
j=i+1 ri,j ĉj

ri,i

⌋
for i = n, n− 1, · · · , 1 (3.25)

This is exactly what Babai proposed as an appriximate solution to the problem

(3.5). This is equivalent to the first point found using the Schnorr-Euchner enu-

meration with C0 =∞.

3.3 Pre-Processing

The error performance of Babai is far from ML in high SNRs. Therefore further ef-

forts have been done to develop methods with low complexity and error performance

near the ML solution. As it is mentioned in [7] most of sub-optimal algorithms can

be divided into two stages. Stage one is the preprocessing, and stage two is to

perform the search. The rough idea for the preprocessing stage is to transform the

original CLPS problem defined by the lattice κH and the constraint set U in a way
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which is suitable for the search stage. Complexity of the tree search stage is heavily

dependent on the efficiency of the preprocessing stage.

The first cause of complexity in solving the CLPS problem arises when the

channel matrix is ill conditioned. This intuitively causes the lattice generated by H′

to have a skewed fundamental cell. This causes some points of the set {H′c : c ∈ U}
be difficult to be distinguished from each other. This problem can be alleviated

using the left preprocessing. This stage changes the channel matrix and the noise

vector in a way that they are better conditioned for the search algorithms. As

the resulting CLPS problem may not be equivalent to the original problem, this

transformation causes the overall performance to be suboptimal and not ML.

The second problem is that sometimes it is difficult and complex to check for

boundaries. This can be solved be relaxing the boundaries and letting the CLPS

problem search in Zm instead of U . This relaxation of boundaries again causes

the algorithms to be suboptimal, but it makes it possible to replace the lattice

basis with one which is more appropriate for the rest of stages (tree search) in

the decoding process. As it was mentioned before, this is called lattice decoding in

communication literature. This change of lattice basis can be done using the right

preprocessing algorithms.

The right and left preprocessing algorithms combined with the lattice decoding

are effective ways to reduce the complexity of the search stage, but the expense

paid is the sub-optimality of these algorithms. I will try to briefly go over some of

the preprocessing algorithm in next few subsections.

3.3.1 Taming the channel: left preprocessing

Performing the QR decomposition on the H′, allows to employ a recursive detection

of the transmitted signal c. Q is the feed forward matrix, of the zero forcing,

decision feedback equalizer (ZF-DFE) [24]. Sphere decoders can be assumed as

a kind of ZF-DFE filtering, with ability to correct their previous decisions. It

is well known that the MMSE-DFE decoders, have better performance than ZF-

DFE decoders [25], in terms of signal to noise plus interference ratio(SINR). This

encourages the use of MMSE filtering in decoders. This can be done by performing

the QR decomposition on the augmented channel matrix.

H̃ =

[
H′

I

]
= Q̃R1 (3.26)
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in which Q̃ ∈ R(n+m)×m and has orthogonal columns, and R is upper triangular.

Let Q1 be the upper n×m sub matrix of Q̃, then Q1 and R1 are MMSE-DFE for-

ward and backward filters respectively. As an approximate solution to the original

problem, we can solve the following CLPS problem,

arg min
c∈U
|y′ −Rc| (3.27)

with y′ = QT
1 y −R1v. This new CLPS problem is not equivalent to the original

problem, because in general Q1 does not have orthonormal columns. Also the noise

in the new CLPS problem is no longer gaussian but it is still white. This causes

the solution of the new problem to be sub optimal comparing to the original CLPS

problem. The good point about this transformation is that the resulting Q1 is

always well conditioned, and has rank m.

3.3.2 Increasing the sparsity: right preprocessing

Matrix R is used to form a search tree. The search is performed on this tree.

The sparser the matrix R, the less complex would the tree search stage be. For

example considering R to be diagonal, then the symbol by symbol detection would

be optimal.

We can define a measure for sparsity of R as follows,

S(R) = max
i∈{1,··· ,m}

∑m
j=i+1 r

2
i,j

r2
i,i

(3.28)

Smaller S(R) means sparser R. The goal in this preprocessing is to find a new basis

S for the lattice {R1c : c ∈ Zm}, that when QR is performed on S, the resulting R

has the least S(R) among all the possible bases of the original lattice. This means

finding a unimodular matrix T(this means the entries of T and T−1 are integers)

that satisfies R1 = QRT and S(R) is the smallest possible for all Ts. The optimal

solution to this minimization is very difficult to find, but fortunately there exist

some suboptimal solutions that can increase the sparsity of R. As a few, we can

name lattice basis reduction algorithms, column permutations and combinations.

Permutation means to change the order of the columns of the lattice, to have a

sparser matrix. We can use the V-BLAST greedy ordering method proposed in

[24] This method finds a permutation matrix Σ that R1 = QRΣ and maximizes

mini r
2
i,i. This minimizes S(R) over the group of permutation matrices. The inter-
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esting point about all these preprocessing stages is that the lattice decoding is not

affected by them. As in lattice decoding we relax the boundaries to be the whole

Zm, the boundary is not affected by left and right preprocessing stages. It worths

to say that however the boundary checking for ML detection after preprocessing

can impose a lot of complexity on the decoder.

Figure 3.1: Reduction Effect, Solid line: Original basis, Dashed Line: Reduced
basis

The goal of the lattice basis reduction is to find a new basis, that the columns

of the new generator matrix S have a small norm, and they are as orthogonal

as possible. You can see the effect of reduction in figure 3.1. This concept was

proposed more than a century ago. There is no unique definition for lattice reduc-

tion. Minkowski proposed a definition in 1890s. A basis is Minkowski reduced if

for i = 1, · · · ,m, bi is the shortest vector that can be extended to a basis having

(b1, · · · ,bi−1). In this definition bis are the columns of the lattice basis B. The

problem of finding the shortest vector in general is considered to be NP-hard. In

1982, Lenstra, Lenstra, and Lovász(LLL) [6] proposed a breakthrough algorithm

for lattice reduction. A further improved version was developed by Schnorr and Eu-

chner [22] which is called deep insertion LLL. This modification gives significantly

shorter vector in comparison to the orignial LLL algorithm. The complexity of the
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original LLL is polynomial in lattice dimension. The complexity of the deep inser-

tion LLL in worst case can be exponential, but simulations show that on average

it does not require much more iterations than the original LLL [26].

Next, details of the LLL and the deep insertion LLL are explained.

LLL algorithm uses Gram-Schmidt orthogonalization, has a polynomial com-

plexity and guarantees a bounded orthogonality defect. The orthogonality defect

is defined as

δ =
(||b1||2||b2||2 · · · ||bm||2)

det BHB
(3.29)

As the determinant is constant for all the bases of a lattice, the lattice reduction

problem can be viewed as finding the minimum of (||b1||2||b2||2 · · · ||bm||2). Given

the lattice Λ with basis (b1,b2, · · · ,bm), one can compute the Gram-Schmidt mu-

tually orthogonal vectors, (b∗1,b
∗
2, · · · ,b∗m) using the following approach and per-

forming it for i = 1, · · · ,m:

b∗i = bi −
i−1∑
j=1

µijb
∗
j (3.30)

µij =
< bi,b

∗
j >

< bj,b∗j >
(3.31)

The < ·, · > is the inner product. A basis (b1, · · · ,bi−1) is LLL reduced if

• ||µij|| 6 1
2

for 1 6 i < j 6 m, and

• p · ||b∗i ||2 6 ||b∗i+1 + µi+1,ib
∗
i ||2

where 1
4
< p < 1. Choosing larger values for constant p, results in a better reduction

but also a higher complexity. At practice to get to best result, it is suggested to

choose the value of 0.99 for constant p, because for the ideal value p = 1 , although in

practice the running time seems to be polynomial, there is no analytical guarantee

that the running time of the algorithm is polynomial. The detailed LLL algorithm

can be written as you can see in Table 3.2 [26].

In the original LLL algorithm, to check if a basis is LLL reduced, only adjacent

columns are checked against each other. One can argue that this condition can be

strengthened, to take into account the earlier columns too. This leads to a non-

polynomial algorithm both in theory and practice. Obviously this was one of the

reasons that the authors of LLL chose the relaxed condition. Schnorr and Euchner
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Table 3.2: LLL algorithm details
Step 1: Initialization

Set k = 2, kmax = 1,b∗1 = b1, B1 =< b1,b1 >,H = In
Step 2: Incremental Gram-Schmidt

if k < kmax go to step 3.
else

kmax = k,b∗k = bk
for j = 1, . . . , k − 1

µk,j =
<bk,b

∗
j>

Bj
, b∗k = b∗k − µk,jb∗j

Bk =< b∗k,b
∗
k >

Step 3: Testing for LLL condition
Run RED(k, k − 1)
if Bk < (0.75− µ2

k,k−1)Bk−1

Run SWAP(k) (See Table 3.4)
k = max(k − 1, 2)
Go to step 3

else
for l = k − 2, k − 3, . . . , 1

Run RED(k, l) (See Table 3.3)
k = k + 1

Step 4: Test for termination
if k 6 m go to step 2
Terminate the program and output bis and the transformation matrix
H

Table 3.3: RED(k, l) sub-algorithm
if |µk,l| 6 0.5 exit the sub algorithm
else

q = dmuk,lc
bk = bk − qbl,Hk = Hk − qHl, µk,l = µk,l − q
for i = 1, . . . , i− 1
µk,i = µk,i − qµl,i

terminate the sub algorithm

Table 3.4: SWAP(k) sub-algorithm
Swap vectors bk and bk−1,Hk, and Hk−1

if k > 2
for j = 1, . . . , k − 2, exchange µk,j with µk−1,j

µ = µk,k−1, B = Bk + µ2Bk−1, µk,k−1 = µBk−1/B, b = b∗k−1,b
∗
k−1 = b∗k + µb,

b∗k = −µk,k−1b
∗
k + (Bk/B)b, Bk = Bk−1Bk/B,Bk−1 = B

for i = k + 1, k + 2, · · · , kmax
t = µi,k, µi,k = µi,k−1 − µt, µi,k−1 = t+ µk,k−1µi,k Terminate the program.
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proposed a method to strengthen the condition without losing much practical speed

[22].

In the proposed algorithm it is possible to insert bk between bi−1 and bi for

some i < k. In this case the new ||b∗i ||2 will become:

||b∗i ||2 = ||bk||2 −
∑

16j<i

µ2
k,j||b∗j ||2 = |b∗k||2 +

∑
i6j<k

µ2
k,j||b∗j ||2 (3.32)

If the norm of the vector k inserted at position i is significantly smaller than that

of the current vector at position i, then the insertion is performed. Significantly

smaller means norm of the new vector at position i to be at most p times the norm

of the vector previously at position i. It worth to note that, the insertion of k at

(k − 1)th position is exactly, what was done in the original LLL.

The pseudo code for Deep Insertion LLL due to Schnorr and Euchner can be

found in Table 3.5 [26].

3.4 Reduced Complexity Pre-processing Stage

The complexity of the preprocessing is usually ignored, this can be justified by the

assumption of a flat-fading channel, that allows us to perform all the preprocessing

algorithms at the beginning of a new frame, and to use the results within the whole

frame. As it was said before, in many of the preprocessing scenarios, a reduction

method is used to reduce the lattice basis vectors. The goal for this reduction is

to form a new basis for the lattice, which has shorter basis vectors. Finding the

shortest lattice vectors is again NP-hard. Near optimal methods are proposed in

[6]. The LLL algorithms have found many usages in different applications. LLL

algorithm is still a complex algorithm, therefore many efforts have been done to

reduce the complexity of the LLL itself.

It worths to say that the application of the LLL algorithm is not limited to just

the MIMO detection problem. This algorithm, also has applications in cryptanal-

ysis of public key encryption schemes, finding integer solutions to problems, and

etc. Although the complexity of the LLL algorithm is proved to be bounded with a

polynomial, but still the average time it takes to execute is quite high. Therefore,

many efforts have been done to reduce the complexity of this algorithm. Effective

LLL [27] which is proposed by Cong Ling, and Nick Howgrave-Graham, is one of
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Table 3.5: LLL with deep insertions
Step 1: Initialization

Set k = 1, , H = In
Step 2: Incremental Gram-Schmidt

b∗k = bk
for j = 1, . . . , k − 1

µk,j =
<bk,b

∗
j>

Bj
, b∗k = b∗k − µk,jb∗j

Bk =< b∗k,b
∗
k >

if k = 1
k = 2, go to Step 5.

Step 3: Initialize test
For l = k − 1, k − 2, . . . , 1

Execute sub algorithm RED(k, l). See Table 3.3.
B =< bk,bk >, i = 1

Step 4 Deep LLL test
If i = k

k = k + 1, Goto Step 5
Else if 3

4
Bi 6 B

B = B − µ2
k,i, i = i+ 1, Go to Step 4.

Else
Execute INSERT(k, i)
if i > 2
k = i− 1, B =< bk,bk >, i = 1, Goto Step 4

if i = 1
k = 1, Goto Step 2.

Step 5: Test for termination
if k 6 m go to step 2
Terminate the program and output bis and the transformation matrix
H

Table 3.6: INSERT(k, i) sub-algorithm
b = bk,V = Hk

for j = k, k − 1, . . . , i+ 1
bj = bj−1,Hj = Hj−1

bi = b,Hi = V
Terminate the sub-algorithm.
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these efforts. They studied the application of LLL in the MIMO detection and

reduced the complexity of the LLL algorithm by lowering the number of size reduc-

tions done in the LLL algorithm. This was done without any change in the error

performance of the MIMO detection.

3.4.1 Effective LLL

In their paper [27] they studied the decision region of the ZF-DFE decoder and

the effect of the LLL algorithm on that region. At high SNR the performance is

dominated by the minimum distance in the decision region. The decision region

of ZF-DFE decoder is a fundamental parallelogram centered at the transmitted

codeword. This decision region can be specified by the Gram-Schmidt orthogonal

vectors. The size reduction of a vector which is done by sub-algorithm RED(k, l)

in Table 3.3, does not affect the size reduction of the other vectors. By studying

the LLL algorithm it is not hard to see that, the size reduction does not affect the

Gram-Schmidt orthogonal vectors.

As the decision region of the ZF-DFE decoder is determined by Gram-Schmidt

orthogonal vectors b∗i , and the size reduction does not affect these vectors, therefore

a weaker version of the LLL algorithm can be used in the MIMO detection applica-

tions. This makes it possible to develop a new version of the LLL algorithm, called

effective LLL, which is suitable for MIMO detection. Because of the relaxed condi-

tions, the effective LLL runs faster than the original LLL. In their paper, authors

discuss that, it is not possible to totally remove the reduction part, and they have

to perform some size reductions in order to maintain the same error performance

as the original LLL. They prove in their paper that, it is enough to just size reduce

adjacent vectors against each other to maintain the same error performance as the

original LLL. Therefore a set of basis vectors are called effectively LLL reduced if

• ||µi−1,i|| 6 1
2

for 1 < i 6 m, and

• p · ||b∗i ||2 6 ||b∗i+1 + µi+1,ib
∗
i ||2

The effective LLL terminates with the same number of iterations as the original

LLL. As you can see the only thing missed in the new algorithm is size reducing

against the other vectors which has not any effect on the Lovasz test. This alter-

ations removes the most complex part of the algorithm. With this slight change, as

stated before, there is no change in the error performance of the ZF-DFE detection
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algorithm. Furthermore, the authors propose a way to convert the effectively LLL

reduced basis to LLL reduced basis. They claimed that by performing the full size

reduction at the end of the modified algorithm one can get the same output as the

original LLL algorithm gives.

The complexity analysis of the Effective LLL figure can be seen in figure 3.2

Figure 3.2: Effective LLL, complexity performance

3.4.2 Seysen’s Lattice Reduction Algorithm

Authors of [28] proposed using Seysen’s lattice reduction algorithm instead of LLL.

They claimed that, this algorithm outperforms LLL in terms of error performance

and has lower complexity for practical MIMO situations. In the proposed method

the lattice basis and its dual are reduced at the same time, using an efficient al-

gorithm. A local minimum for Seysen’s Orthogonality measure is achieved using

this method. Seysen’s Orthogonality measure, like orthogonality defect, reaches the

minimum value, if the basis vectors are orthogonal. Seysen’s orthogonality measure
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is defined as follows [29],

S(B̃) =
m∑
i=1

||b̃i||2||b̃#
i ||2 (3.33)

In which b̃i and b̃#
i are the ith basis vectors of the lattice and its dual respectively.

The minimum for S(B̃) is m, and is achieved if and only if, the basis vectors are

orthogonal. The proposed method finds a local minimum of S(B̃) = S(BH) in

an iterative way. In Seysen algorithm a basis update can be performed using the

following relation,

B̃ = [b̃1, . . . , b̃s−1, b̃
′

s, . . . , b̃M ] with b̃
′

s = b̃s + λs,tb̃t (3.34)

H = [h1, . . . ,hs−1,h
′

s, . . . ,hM ] with h
′

s = hs + λs,tht (3.35)

For each pair of (i, j), the update for this pair should be done in a way that

minimizes the resulting lattice. This can be done be choosing,

λi,j =

⌊
1

2

(
b̃#H
j b̃#

i

||b̃#
i ||2

−
b̃Hj b̃i

||b̃i||2

)⌉
(3.36)

If this minimization results in a non-zero value for λi,j, the updating results in better

lattice. This means S(B̃i,j) < S(B̃), and B̃i,j = [b̃1, . . . , b̃i−1, b̃
′
i, b̃i+1, . . . , b̃M ]. A

basis is called SA-reduced if and only if, it is not possible to find any pair (i, j) that

λi,j 6= 0. It is possible to find a SA-reduced basis using a greedy algorithm. In each

iteration pair (s, t) is chosen in a way to maximize the amount of reduction.

(s, t) = arg max
(i,j)

S(B̃)− S(B̃i,j) (3.37)

The basic idea behind Seysen Algorithm is expressed as in table 3.7.

3.5 Proposed Method

In this paper we are trying to deal with a case that the assumption of flat fading is

not valid. This means, the channel is changing in a way that, we can not assume it to

be fixed for the whole frame. This means that we have to perform the preprocessing

stage, every time a set of signal is received in receive antennas. As it was formerly

discussed, the preprocessing stage can be quite complex because of the reduction
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Table 3.7: Seysen lattice reduction algorithm
Step 1: Initialize

H = IN and B̃ = B
Step 2: Seysen Reduction Algorithm

Repeat until B̃ is SA-reduced
for each possible pair (i, j) compute λi,j
for each pair (i, j) compute ∆i,j = S(B̃)− S(B̃i,j)
choose (s, t) that maximizes ∆i,j

Update the basis according to (3.34) and (3.35)

required to perform in it.

We know that the channel has changed slightly from previous reception of signal.

This triggers the idea that the previous steps done for the basis reduction of the

previous channel might be quite useful.

As it was mentioned before the output of the LLL algorithm is a reduced matrix

and a transformation matrix. The transformation matrix is used to convert the

initial channel matrix to the reduced one. This relation can be expressed as follows,

Hred,1 = H1Utrans,1 (3.38)

In which Hred,1,H1,Utrans,1 are the reduced matrix, channel matrix, and the trans-

formation matrix respectively. The reduced matrix has the property that it satisfies

the Lovasz and Size Reduce conditions. Studying the Lovasz and Reduce conditions

in the LLL algorithm, shows that they merely depend on the Gram-Shmidt vectors

of the reduced matrix. Considering a small value for fm in the MIMO fading chan-

nel model, the variations in each element of the channel will be modest through

time. This can be written as follows,

H2 = H1 + ∆H (3.39)

in which H1 and H2 are two consecutive channel realizations and ∆H is a matrix

with small elements. Considering these small changes, it seems quite reasonable to

make use of the previous transformations for H1 in computing the reduced matrix

for the new channel H2. Using the previous transformation on the new matrix
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results in,

H̃2 = H2Utrans,1

= (H1 + ∆H)Utrans,1

= H1Utrans,1 + ∆HUtrans,1

= Hred,1 + ∆HUtrans,1 (3.40)

Using the fact that Utrans,1 is a uni-modular matrix, H̃2 is still a basis for the space

spanned by columns of H2. As Hred,1 is already LLL reduced, it satisfies all the

Lovasz and size reduce conditions. If the other term in equation (3.40) is small

enough, the Gram-Smidt coefficients of the resulting matrix in the right-hand side

of equation (3.40) are close to those of the Hred,1. Therefore, performing LLL on

H̃2, does not require many more swaps and reductions. Thus, using H̃2 as the

initial input for the LLL algorithm reduces the complexity of the LLL algorithm

significantly, in comparison with starting from the original channel matrix H2.

Roughly speaking, starting from an almost LLL reduced matrix results in less

complexity for LLL reduction. Performing LLL on H̃2 results in,

Hred,2 = H̃2Ũtrans,2 (3.41)

= (H2Utrans,1)Ũtrans,2 (3.42)

= H2Utrans,2 (3.43)

In which Utrans,2 = Utrans,1Ũtrans,1 is the transformation matrix for reducing H2.

Note that, the proposed adaptive method of matrix reduction results in a reduced

matrix which might be different from the result of applying the LLL algorithm di-

rectly on H2, but as both resulting matrices are LLL reduced,the error performance

of the MIMO decoder should be the same.

For using this adaptive method another input should be added to the LLL

algorithm in Table 3.2. This input is used to pass the transformation of the previous

channel realization to the LLL algorithm. Furthermore, In Step 1 of the LLL

algorithm, the transformation matrix, should be initialized by the new input instead

of the identity matrix. As mentioned above, this revised algorithm should be called

to reduce H̃2.
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3.6 Simulations Results

In this section performance and complexity of the adaptive reduction method is

studied and compared with other conventional reduction methods. We consider the

MIMO channel with M = N , transmit and receive antennas. Channel is assumed

to be the Rayleigh fading channel explained in section 2.2. A 4-QAM constellation

is used to investigate the error performance of the proposed method. Figure 3.3

shows the bit error rate versus the average transmitted energy per information bit

Eb, divided by one sided noise power spectral density N0. In this simulation the

proposed method is used to modify the deep insertion LLL(”DILLL”) and the LLL

algorithm as the one in [6]. As it was expected, it can be seen in figure 3.4(b),

the proposed method(”Adaptive DILLLL”) has the same error performance as the

original deep insertion LLL algorithm. Also it can be seen from 3.4(a) that using

the proposed method does not affect the performance of the LLL algorithm.

We study different aspects of complexity to assess the performance of the pro-

posed method. The number of flops, number of basis updates, and running time

are used as measures to compare complexity. Figure 3.4 illustrates the average

running time for different number of antennas for the modified deep insertion LLL

and the conventional deep insertion LLL. The simulations for running times are

run on a Pentium Dual Core 2.4GHz, with 2GB of RAM, and under Fedora Linux

7.0. Furthermore, all the source codes are in mex files to produce better running

times. The running time is averaged over one million channel realizations, in which

each 10000 channels form a frame and they are correlated with each other. In order

to measure time, the MATLAB 7.0 {tic,toc} functions are used. It is seen that

the adaptive method improves the running time significantly with respect to the

conventional method. It is also seen that the time saving from using the adaptive

algorithm increases with increasing the lattice dimension in the deep insertion LLL

case.

Figure 3.5 compares average number of basis updates for the LLL algorithm and

the Adaptive LLL algorithm. As you can see in the figures there exist an obvious

gain in using the proposed method without loosing in error performance.

Figure 3.6 shows the average number of required reductions and insertions for

both deep insertion LLL and adaptive deep insertion LLL. As it was expected from

the adaptive nature of the proposed method, there is a significant gain in terms

of number of basis updates. This admits that for the channel we have consid-
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Figure 3.3: Error performance of the proposed algorithm
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ered in these simulations, using the transformation matrix of the previous channel

realization gives, a quite good reduction for the current channel realizations.

As the next step, we use the average number of flops as another measure for

complexity analysis as in [30] and [31]. The counting is only done for the lattice

reduction part and the other parts such as detection, channel simulations, and etc.

are not counted for, in this simulation. Figure 3.7 contains a comparison of the the

LLL algorithm and the Adaptive LLL algorithm. Figure 3.8 compares the average

number of flops for deep insertion LLL and adaptive deep insertion LLL. This is

seen that the adaptive methods outperform the non-adaptive algorithms in terms

of flops, and as the number of antennas increases, for the deep insertion case in

contrast to the original LLL, the gap between the two algorithms, tends to get

larger. This might be justified by the exponential nature of the deep insertion

LLL, but further analysis requires a more in depth study of the LLL and DILLL

algorithms.

Figure 3.9 compares the cumulative density function (CDF) of adaptive LLL

and LLL. Also in figure 3.10 a comparison between the CDF of the number of

flops for the deep insertion LLL and the adaptive deep insertion LLL, is made.

The empirical CDF is calculated and plotted for different number of antennas. As

you can see in the figures the adaptive methods are better than the non-adaptive

methods for all the considered number of antennas. Comparing the three plots in

each figure, you can see that, the number of flops required to reduce the matrix

increases by an increase in number of antennas.

Next in figure 3.11 the behavior of the adaptive deep insertion LLL is investi-

gated for different values of fm and it is compared to deep insertion LLL. The range

used for fm, is tried to be consistent with the practical data of the GSM standard.

Velocities investigated for the moving receiver varies from walking speed to a high

speed train. In this plot for each value of fm, number of reductions(insertions) of

the deep insertion LLL over the number of reductions(insertions) of adaptive deep

insertion LLL is plotted. The simulation results show that along with increasing the

speed of the moving receiver, the complexity gain from using the proposed method

gets smaller. Also it can be seen that the proposed algorithm performs better than

the deep insertion LLL for all the velocities considered.
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Figure 3.5: Average Number of basis updates for different number of antennas
(LLL)
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Figure 3.6: Average number of basis updates for different number of anten-
nas(DILLL)
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Figure 3.7: Average number of flops for different number of antennas (LLL)
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Figure 3.8: Average number of flops for different number of antennas (DILLL)
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Figure 3.9: CDF of number of flops for different number of antennas (DILLL)
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Figure 3.10: CDF of number of flops for different number of antennas(DILLL)

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Number of flops

F
(x

)

 

 
DILLL
Adaptive DILLL

(a) 4× 4 4-QAM

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Number of flops

F
(x

)

 

 
DILLL	
Adaptive DILLL

(b) 14× 14 4-QAM

10
5

10
6

10
7

10
8

0

0.2

0.4

0.6

0.8

1

Number of flops

F
(x

)

 

 
Original DILLL
Adaptive DILLL

(c) 34× 34 4-QAM

33



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
10

0

10
1

10
2

10
3

f
m

# 
of

 D
IL

LL
 b

as
is

 u
pd

at
es

 / 
# 

of
 A

da
pt

iv
e 

D
IL

LL
 b

as
is

 u
pd

at
es

 

 
Insertions
Reductions

Figure 3.11: Performance of Adaptive DILLL for different fm(chosen based on GSM
model)

34



Chapter 4

Broadcast System Model

Quite recently the multiuser broadcast problem received considerable attention in

comparison with the point to point scenario. Gains of using multiple antennas in a

single user scenario is now apparent to every one. Caire and Shamai [32] showed that

many of these advantages translate to their counter part in the multiuser scenario.

Authors of [1] and [2] showed that the capacity of MIMO point-point channel

increases linearly with the minimum number of the receive and transmit antennas.

Many different techniques have been proposed by different authors that exploit

these advantages. Equivalently, it is also shown in [1] that the sum capacity defined

as the total of transmission rates of all the users grows linearly with the minimum

of the number of users and number of transmit antennas. Achieving the sum rate

capacity is shown to be possible via using some information theoretic schemes,

based on dirty paper coding. Practical solutions are investigated by researchers

in recent years. Nested lattices is a method proposed by the authors of [33] as

a practical method for interference channel and general multiuser channel. These

methods are still of high complexity for implementation.

Pre-coding techniques are lately used as practical and less complex methods,

in multiuser MIMO systems. Channel inversion is one of the most obvious meth-

ods proposed in [32] as a solution. In this technique the data for different users

can effectively separated at the receiver side. Opposed to its ease for implementa-

tion, channel inversion method is vulnerable to poor-channel conditions. The near

singularity of the channel results in poor symbol error rate for this method.

Vector perturbation method is another method proposed in [34] that overcomes

this problem. However this technique requires a lattice decoder which is NP-hard

in general.
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In this work a multiple antenna broadcast system with NT transmit anten-

nas and K 6 NT users with single antennas are considered. Considering xc =

[xc1, ..., x
c
NT

]T , yc = [yc1, ..., y
c
K ]T , nc = [nc1, ..., n

c
K ]T and the NT × K matrix Hc,

respectively as the transmitted signal, the received signal, the noise vector and the

channel matrix, this system model can be expressed as follows

yc = Hcxc + nc (4.1)

Moreover the transmitted signal energy is constrained with E(||xc||2) = 1 and ele-

ments of the noise are assumed to be i.i.d complex Gaussian random variables, i.e.,

nk ∼ CN (0, σ2
n). A requirement for all the pre-equalization techniques is knowing

the channel state. In this work it is assumed that the channel state is completely

known at the transmitter. Using the same relations as the ones in chapter 3, the

system can be converted to the real counterpart which results in the following real

valued model,

y = Hx + n (4.2)

The data to be transmitted to the K users, will be denoted as ac = [ac1, . . . , a
c
K ]T .

Each ai belongs to a M -QAM constellation. This means for example for M = 4,

aci ∈ {±(1/2) ± j(1/2)}, i = 1, . . . , K. For the real equivalent of the model this

would be ai ∈ {±(1/2)}, for i = 1, . . . , 2K.

In a broadcast system the users can not cooperate with each other, and each

one has to decode its data separately. The main idea to overcome this constraint

is to use pre-coding techniques at the transmitter side, which make it possible for

the users to decode their data separately. The easiest method in the category of

pre-coding techniques is the channel inversion.

4.1 Channel Inversion

In this method the complex model of the system is used. At the transmitter side

the data vector is multiplied by right pseudo inverse of the channel and then sent

over the channel. In this way each user at the receiver side only receives its data

plus noise. This method can be written explicitly as follows,

xc = Hc†ac (4.3)
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where Hc† = HcH(HcHcH)−1 is the right pseudo inverse of Hc. In this method

each user can decode its data by simply quantizing its received signal to the QAM

constellation.

There exist a problem that makes this system inefficient in terms of symbol

error rate. When the channel is poorly conditioned i.e. having a determinant of

near zero, this method results in infinite power meaning that ||xc|| will be quite

large. This can happen when one of the singular values of Hc is very small , which

results in vectors with large norm as the columns of HcH .

In [35] a better method in terms of power efficiency, called Tomlinson-Harashima,

was proposed by the authors. This method requires a modulo operation at the

transmitter side, and uses another modulo operation at the receiver side before

quantizing the received signal to QAM constellation.

Both these methods perform linear pre-equalization for at least one of the sub

channels, and therefore they both suffer from the imposed diversity order of NT −
K + 1.

4.2 Search based broadcast precoding

In this method which is proposed in [34], the authors use the real equivalent of

the system and they employ a modulo operation at the receiver side, which can be

written as follows,

ỹk = yk mod A = yk − A
⌊(

yk +
A

2

)
/A

⌉
(4.4)

The scalar A should be chosen in a way that all the constellation points used in

the transmitter side can be uniquely recovered at the receiver side. For the case of

4-QAM constellation A = 2 can be used. In this method the transmitted signal is

based upon the formula that follows,

x = H†(a + p) (4.5)

p = arg min
p′∈AZ2K

||H†(a + p′)||2 (4.6)

Taking a closer look at (4.6) one can see that the minimization problem in (4.6) is

a closest lattice point search. As it was mentioned in chapter 3 the solution to this
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problem is in general NP-hard. For this system the receiver observes

y = HH†(a + p) + n (4.7)

= a + p + n (4.8)

Therefore each user in the receiver side can decode its data by first using the modulo

operation and then rounding to the QAM constellation.

ỹk = (ak + pk + nk) mod A = (ak + nk) mod A (4.9)

4.3 Lattice-Reduction-Aided Broadcast Pre-coding

Comparing the search based broadcast precoding with the channel inversion and

Tommlinson-Harashima linear pre-equalization methods, one may find it quite com-

plex. In order to reduce complexity, authors of [10] offer to solve the minimization

in (4.6) with an approximate method similar to the one used in [36] and [37]. The

LLL lattice reduction can be used to solve equation (4.6) for an approximate value.

Having the real equivalent data a and the real equivalent channel H the LLL algo-

rithm can be performed to get,

W = H†R (4.10)

In which R is a uni-modular transformation matrix and W is the reduced lattice.

Using the procedure rounding off in [38] the approximate solution can be written

as,

papprox. = −RQAZ2K{R−1a} (4.11)

in which QAZ2K{·} is used to denote componentwise rounding of a 2K-dimensional

vector to the scaled integer lattice. The authors of [10] claimed and showed by

simulations that their proposed method achieves a diversity gain, equal to the one

for the vector perturbation method in [34].

In figure 4.1 you can see the simulation results by [10],

4.4 Proposed Method

The idea is the same as the one in section 3.5. As it was mentioned before, in

Lattice Aided reduction method the goal is to find the approximate solution to
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Figure 4.1: Simulation Results for different precoding schemes NT = K = 4, 4-
QAM in channel without temporal correlation

4.11. Therefore, when the channel realizations are correlated in time, as the one we

are using as our channel model, it is possible to take advantage of this correlation

to reduce the complexity of precoding stage in a broadcast system. The Adaptive

Lattice Aided Reduction which can be defined as performing the adaptive method

explained in 3.5 to approximate 4.11 is a way to achieve this reduction in complexity.

4.5 Simulation Results

In this section, the results of using the proposed method, Adaptive LLL is repre-

sented. The results are compared with the results of the none adaptive case. As

the simulation results for the MIMO detection case, error performance and the

complexity of the proposed method is considered. We consider a Rayleigh fading

channel in which each 10000 are correlated in time.

For error performance analysis, a system with NT = 4 transmitter antennas,

and K = 4 users is considered. The constellation used for this system is a 4-

QAM constellation. In figure 4.2, bit error rate is plotted against Eb/N0. As it was

expected, the proposed method has the same performance as the Lattice Reduction

Aided Precoding method that uses the non-adaptive LLL. It can also be seen that
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the error performance of the system is exactly the same as the case without any

temporal correlation between channel realizations.
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Figure 4.2: Error performance of the proposed method in temporal correlated chan-
nel

In figure 4.3 the number of basis updates are considered. Simulations show

that using the adaptive LLL method instead of the LLL, gives an almost constant

gain in terms of average number of basis updates over the the range of antennas

considered.

Figure 4.4 compares the average number of flops required for the reduction,

for the LLL and the Adaptive LLL method. For the range of number of antennas

considered, there has always been a gain in using the Adaptive method. However

the gain seems to be lessened as the number of antennas is increased.

In figure 4.5 number of flops is considered as a measure for comparing the

complexity of the Lattice Reduction method using LLL, and Adaptive LLL. As it

can be seen from the figure, for all the dimensions considered, the adaptive LLL

method was able to reduce the complexity of the reduction method. Comparing

the three plots in figure 4.5, one can see that the increase in number of antennas

results in an increase in number of flops required in the precoding stage.
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Figure 4.3: Average number of basis updates for different number of antennas
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Figure 4.4: Average Number of flops for Lattice Aided Reduction Precoding

To summarize, the curves show that, for the range of number of antennas con-

sidered there has always been a gain in complexity by using the Adaptive method,

without any loss in error performance.
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Figure 4.5: CDF of number of flops for different number of antennas
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Chapter 5

Conclusions and Future Work

In this work different methods used in MIMO detection scenario were studied.

Most of the efficient decoding techniques require a preprocessing stage that involves

lattice reduction. In a Rayleigh fading channel that the channel realizations are

correlated in time, it was shown that it is possible to take advantage of this temporal

correlation, and reduce the complexity of the lattice reduction, and therefore the

preprocessing stage. This helps the decoding systems to be practical to be used

in today’s communication devices that have a constraint on energy and processing

power.

As it was explained throughout this work, using the adaptive method improves

the complexity of the lattice reduction algorithms in a Rayleigh fading channel

MIMO system, without any loss in error performance. This makes the proposed

algorithm to be quite practical and appealing to be used in any MIMO scenario

that needs lattice reduction.

Furthermore, the use of the proposed algorithm was tested in the Broadcast

scenario. In Broadcast scenario the lattice reduction was used to reduce the pseudo

inverse of the channel. The proposed algorithm gave us the same gains in complex-

ity, again without any loss in power efficiency of the system.

As a future work the performance of the proposed algorithm can be studied in

MAC protocol. It is assumed that it will again improve the complexity without

any loss in error performance.

Also, it is possible to perform the Gram-Schmidt orthogonaliztion adaptively. In

matrix algebra there are methods to update the Gram-Schmidt orthogonal vectors

for a rank one and rank two updates [39]. This method can be added to our proposed
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method, and it will further reduce the complexity of the lattice reduction, and it

will make lattice reduction more practical to be use in MIMO systems.
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