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Abstract

Java's Remote Method Invocation (RMI) architecture allows distributed applications to be

written in Java. Clients can communicate with a server via a local proxy object that hides the

network and server implementation details. This loosely coupled architecture makes it difficult

for client-side enhancements, such as method caching and validation, to obtain useful

information about server state and implementation. Statically-generated custom proxies can

provide a limited solution, but are troublesome to deploy and cannot change dynamically at

runtime. This thesis presents a framework for Java RMI smart proxies using a distributed aspect-

oriented platform. The framework allows server-controlled dynamic changes to Java RMI proxy

objects on the client, without requiring changes to the client application code or development

cycle. The benefits of this framework are demonstrated with three practical examples: method

caching, client-side input validation, and load balancing.
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Chapter 1: Introduction

In a distributed software environment, physically separated hosts work together to achieve

results that a single host cannot achieve on its own.  Within this topology, client applications

consume the services made available by servers.  Various design patterns are used to ease server-

client communication for software developers, such as the Proxy design pattern [6] used in the

Java Remote Method Invocation (RMI) specification [7].  Transparency to the client application

and encapsulation of network code are two major benefits of such a proxy design, and are

reasons for its widespread use and acceptance.

Software enhancements can be made to both clients and servers to help streamline the

communication between them.  Server enhancements have a distinct advantage over client

enhancements because of the server’s more extensive knowledge of the distributed system.  A

server is aware of each of its clients, and precisely how those clients are using its resources. 

This knowledge is valuable when determining how to allocate server resources in order to serve

all clients as efficiently as possible.  In contrast, the client has a limited view of the overall

system.  At best, it only has information about its own communication with the server.  Although

the client proxy is a logical extension of the server, it cannot easily benefit from the server’s

intelligence because of its physical isolation.

This paper proposes a framework that allows the intelligence and knowledge of the

server to be used at the client.  This results in “smart” clients and allows for better coordination

between both ends of the communication channel.  The framework uses a distributed aspect-

oriented programming implementation, set in a Java RMI environment.

1.1 Loose Coupling vs. Server Knowledge

The Java RMI specification is designed to allow clients and servers to communicate while

keeping their implementations as loosely coupled as possible.  The loose coupling between

client and server, elaborated in Chapter 2, reduces implementation dependencies in the
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distributed software so that components can be modified without fear of breaking other

components in the system.  Java RMI hides internal implementation details among hosts and

uses remote interfaces to achieve loose coupling, a property that is considered beneficial to

software development.

Although loose coupling reduces dependencies between server and client, it is

detrimental to implementing effective client-side communication enhancements because the

implementation details of the server are hidden from the client.  The more information the client

has about server state and implementation, the better it can coordinate with server-side changes

resulting in more efficient client-server communication.  The increased efficiency between

client and server is primarily realized by eliminating unnecessary remote method invocations

from a client to the server.  This has the secondary benefits of reducing network traffic,

decreasing server load, and speeding up the client application.

Loose coupling and effective client-side enhancements are both desirable, but it appears

one of them can improve only at the cost of the other.  Giving clients internal server-side

implementation details comes at the cost of breaking the loose coupling between client and

server.  Conversely, the current loosely coupled Java RMI architecture prevents clients from

using server knowledge to enhance their communication channel with the server.

This thesis proposes a solution that keeps the client and server software components

loosely coupled while allowing server state information and implementation knowledge to be

shared by client-side enhancements.  The goals in Section 1.2 describe desirable characteristics

of the proposed framework, used as criteria to determine if the solution maintains the loosely

coupled nature of Java RMI while still exposing server knowledge for client-side enhancements.

1.2 Goals

This thesis identifies four characteristics of a framework that accommodates both server

knowledge sharing and the loose coupling of distributed components.  A description

accompanies each goal indicating how it supports either knowledge sharing or loose coupling. 

A solution that maintains the loose coupling of Java RMI while still providing server knowledge
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to the client must satisfy all four goals.

1. Make server context available to the client.  In general, the more information a

program has about its environment the better decisions it can make and the more optimal

its solution becomes.  Servers have a wide view of a distributed software system,

whereas a client’s view is restricted.  By making the server state and implementation

details available to the client, the client’s knowledge of its environment is substantially

enhanced.  Client-side enhancements such as cache policies and validation rules can take

advantage of this knowledge to create a more intelligent and optimized client.  Any

solution that makes knowledge about internal server state or implementation details

available to the client meets this goal.

2. Obliviousness of the client application layer.  To help maintain a loose coupling

between the client and server, the client application layer should be oblivious to the

knowledge provided by the server.  The application layer is concerned with solving

problems and performing tasks in its domain and should not need to decide how to put

server-side knowledge to proper use.  The client application layer clearly requires remote

services to achieve its objectives, but its core concern does not involve the

communication efficiency between itself and the server.

3. No changes to existing client application.  An existing client application that complies

with the standard Java RMI specification should be able to apply the proposed

framework without any changes to its source code or development process.  The

developers should not be required to use any new libraries in their source code or new

compiling tools in their build process.  This goal ensures that the coupling between

server and client does not tighten by introducing new code in the client that depends on

server state or implementation.  This also agrees with the spirit of the second goal, that

the client application layer does not need to do anything special and is oblivious to

changes that occur in lower layers of the Java RMI architecture.

4. Dynamic sharing of server context.  The first goal requires that server knowledge is

shared with clients, but this knowledge sharing can conceivably occur at compile time,
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resulting in client programs that must be halted and recompiled whenever the server

wishes to impart new knowledge.  A dynamic knowledge sharing framework allows

server state information and implementation details to be transferred to the client at

runtime, and automatically altering the behaviour of clients on the fly.  This goal ensures

a flexible and adaptable framework for a frequently changing server environment.

These goals combine to ensure any solution satisfying all four goals can share server knowledge

with the client while still maintaining the loose coupling between server and client established

by the Java RMI architecture.  A solution that fails to fully meet any one of these goals severely

limits its ability to both share server knowledge and remain loosely coupled.

1.3 Benefits

This thesis introduces a distributed dynamic aspect-oriented solution to satisfy the goals

described in Section 1.2.  In additional to satisfying these goals, the solution also has several

separate benefits.

• Communication performance/efficiency.  The biggest benefit of having server

environment information available on the client is to improve the efficiency of client-

server communication.  This improvement is typically realized through the elimination of

unnecessary remote calls from clients to the server, which speeds up the client

application, reduces network traffic, and reduces the load on the server.

• Client customization.  The proposed framework allows the server to customize

enhancements on a per-client basis.  Since each client may have a unique relationship

with the server, the server can provide selective knowledge to each client individually to

improve the entire distributed system.  An example of this type of customization is

shown in Section 4.2.3.

• Easy to apply to existing Java RMI applications.  Goals 2 and 3 make the proposed

solution easy to incorporate into existing distributed Java applications that use standard
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Java RMI.  The solution is non-intrusive to the client application because it does not

require any client-side source code changes and it assumes that the client is oblivious to

enhancements supplied by the server.  Since the responsibility for client-side

enhancements is shifted to the server, the server needs to include additional source code

to manage the distribution of remote aspects.

1.4 Contributions

This thesis combines distinct methodologies and technologies, namely aspect-oriented

programming and distributed programming, in a Java environment.  It therefore provides several

contributions to these areas, especially in the domain where these areas intersect.

• Use aspects to capture client-side enhancements.  By viewing client-side

communication enhancements as crosscutting concerns (described in Section 2.2.1) of

the server, the theory and tools of aspect-oriented software development can be brought

to bear on the problem.  This insight influences many of the ideas presented in this thesis

since the client-side enhancements are treated logically like server concerns even though

they are physically separated from the server.

• Server remotely weaving advice on client.  Remote aspects have been proposed to

allow clients to advise server objects, but this thesis suggests using them in the opposite

direction, server to client.  By advising client objects from the server, the server is able to

expose its context in a controlled way without breaking the loosely coupled remote

communication architecture.

• Dynamically modify Java RMI proxy object behaviour.  This solution uses a dynamic

aspect-oriented framework to modify the behaviour of Java RMI proxy objects at

runtime, effectively allowing the communication gateway from the client to the server to

be controlled by the server itself.  This level of control of the client proxy is rarely given

to the server, opening up many potential uses.  The proxy object is not “wrapped” in any

additional control layer, but rather modified directly by remote aspects.
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These novel features of the proposed framework build upon Java RMI client-server

communication in several new directions.  In particular, encapsulating client-side enhancements

in aspects and remotely weaving them from server to client solves the knowledge sharing vs.

loose coupling problem by combining typically unrelated methodologies in an innovative way.

1.5 Summary

This thesis combines several distinct paradigms and technologies to solve a specific problem

relating to client-server communication in Java.  It proposes a framework that makes server

context available to the client while still abiding by the loose coupling imposed by the Java RMI

architecture.  The framework attempts to meet four important design goals, with an emphasis on

client obliviousness, separation of concerns, and server information sharing.

Chapter 2 gives background information on the technologies involved: the RMI

specification, especially the client proxy object; aspect-oriented programming, its terms and

motivation; and Java Aspect Components (JAC) [16, 17], the Java-based dynamic distributed

aspect-oriented platform that is used to implement these ideas.

Chapter 3 describes how the proposed solution works, from both a technical and abstract

point of view.  This chapter explains how aspects generated on the server can modify the client

proxy object to support client-side enhancements with server knowledge.  It shows how the JAC

platform can be used to implement aspects representing client-side enhancements and how the

server object can weave these aspects remotely on a client.

Chapter 4 shows three practical examples of communication concerns that can be

enhanced with server knowledge.  The first example, caching, allows return values to be cached

on the client according to a server-defined cache policy.  The second example, validation,

handles erroneous remote method calls on the client according to validation rules specified by

the server.  The third example, load balancing, suggests an alternate method of balancing load

across a server farm by using remote aspects to redirect client requests.
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Chapter 5 describes alternate solutions to the loose coupling vs. server knowledge problem and

how each solution meets or fails to meet the thesis goals in Section 1.2.  The advantages and

disadvantages of each solution are discussed in relation to the problem at hand and to the

intended problem domain for that particular solution.  Other related work in the area of

distributed and aspect-oriented research is also discussed in this chapter.

Chapter 6 presents future work that can be done to improve the proposed framework’s

versatility and examines more advanced uses for the framework such as predictive caching. 

Lastly, this chapter summarizes and concludes the thesis.
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Chapter 2:  Background

This chapter contains background information about the technologies used in this thesis.  The

ideas in this thesis combine a Java RMI application with the aspect-oriented programming

paradigm.  Even readers familiar with Java RMI and aspect-oriented programming may benefit

from this background since this chapter highlights characteristics pertinent to this thesis.

Section 2.1 explains Java RMI, the Java language protocol that allows Java applications

to communicate remotely with each other.  Java RMI is the problem domain in which the thesis

problem in presented, so an understanding of the specification details is important.  Section 2.2

describes the aspect-oriented programming paradigm and explains its goals, terminology, and

benefits to software development.  Understanding the aspect-oriented paradigm is important

because it provides the basis for the suggested solution of this thesis.  Section 2.3 introduces a

dynamic, distributed aspect-oriented framework called Java Aspect Components (JAC), which

allows the normally unrelated technologies of Java RMI and aspect-oriented programming to be

combined, and thus supports the environment for the thesis research.

2.1 Java RMI

The Remote Method Invocation (RMI) specification for Java [7], developed by Sun

Microsystems, allows Java programs to communicate with other Java programs running on

different virtual machines that are typically separated by physical distance, but connected via a

network.

Java RMI is designed to be a loosely coupled remote communication framework in three

respects.  First, the protocol used to transport method invocations over the network is loosely

coupled to the Java application.  Programmers are able to implement their own data marshalling

and network transport classes for network protocols that may not be supported by the RMI

implementation provided with the vendor’s runtime library.  
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Second, the RMI specification attempts to make remote invocations as invisible to the

Java application as possible.  It achieves this by using a proxy object that resides in the client

application.  The client application can call methods on this proxy object like it does with any

other local object.  The proxy object is responsible for forwarding the method call to the server

and returning the server’s response to the client application.  This results in a logical separation

between the Java application logic and the underlying network code that provides the remote

method invocation.  The Java application can focus on its core concerns because it does not need

to worry about lower-level remote communication considerations such as data marshalling and

network transport protocols.

Third, RMI is designed with the goal that the client and server applications know as little

as possible about the other’s implementation details.  In order for the client to invoke a method

on the server, all it needs is the remote interface that the server has implemented and a proxy

object for that server, as depicted in Figure 2.1 [7].  With this design, the server programmer is

free to change the server’s implementation without adversely affecting the client application.

2.1.1 RMI Proxy Object

Since this thesis proposes altering the proxy object at runtime, it is beneficial to examine the

proxy object in more detail.  An RMI compiler tool called rmic takes a server’s implementation

class and generates a corresponding stub class, as in Figure 2.2.  The name of the generated stub

class is the server’s implementation class name concatenated with “_Stub”.  Both of these

classes implement the remote interface that defines the services available for remote invocation.

Figure 2.1  Java RMI allows remote communication while keeping the client and server loosely coupled.
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// Stub class generated by rmic, do not edit.

public final class Calculator_Stub extends java.rmi.server.RemoteStub
    implements server.MathOperations
{
    // constructors
    public Calculator_Stub(java.rmi.server.RemoteRef ref) {

super(ref);
    }
    
    // methods from remote interfaces
    
    // implementation of factorial(int)
    public int factorial(int $param_int_1) throws java.rmi.RemoteException
    {

try {
    Object $result = ref.invoke(this, $method_factorial_0, new

java.lang.Object[] {new java.lang.Integer($param_int_1)}, -1108825836150346262L);
    return ((java.lang.Integer) $result).intValue();
} catch (java.lang.Exception e) {
    throw new java.rmi.UnexpectedException("undeclared checked exception", e);
}

    }
}

Figure 2.2  A stub class generated by rmic, based on the “Calculator” server implementation
class. 

Once the stub class is generated, it must be distributed to any clients who wish to use the server. 

RMI provides a naming registry to facilitate this distribution by binding a server’s

implementation object to a string name.  When a client looks up this name in the RMI registry,

an instance of the stub class for that server is returned to the client.  This distribution process is

presented in Figure 2.3  The stub instance is the proxy object that allows the client application to

communicate with the server.

Without any further facilities, the proxy object behaviour is fixed and cannot be modified

without re-coding and redistributing the server stub.  As will be shown in this thesis, it is

Figure 2.3 The RMI Registry service.  A client can get a reference to

the server using a well-known string name.
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possible to alter the proxy behaviour at runtime without sacrificing the benefits of loose coupling

between the client and server.

Java version 1.3 introduced a dynamic proxy feature [21], allowing multiple arbitrary

interfaces to be implemented in a single class at runtime.  JDK 1.5 leverages this facility for the

RMI architecture to create RMI client proxy objects dynamically if it cannot find the stub class

created by rmic.   This technique replaces statically-generated stubs with dynamically

generated proxy objects.  This thesis only considers rmic-generated proxies, though our

approach should also work with dynamic proxies.

2.2 Aspect-Oriented Software Development

Aspect-oriented programming [11] is a programming paradigm that is intended to complement

existing programming paradigms and address some of their limitations, namely the phenomena

of code tangling and code scattering.  Aspect-oriented programming in its modern form was

conceived and developed by Gregor Kiczales and his team at Palo Alto Research Center, Inc., at

the time known as Xerox PARC.  A Java-style aspect-oriented language called AspectJ [1] arose

from this research, and was quickly adopted as the standard aspect-oriented language because of

its ease of use and similarities with the popular Java programming language.

Aspect-oriented programming is now part of a wider software engineering field called

aspect-oriented software development, which encompasses other tools and software that aid in

the development of aspect-oriented systems.  These tools include source code and byte code

weavers, aspect visualization software, and custom Java virtual machines for dynamic weaving,

among others.  The following sections explain the basic terms and concepts behind aspect-

oriented software development.
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2.2.1 Code Tangling and Code Scattering

The problems of code tangling and code scattering are the main justification for using an aspect-

oriented approach.  Both code tangling and code scattering refer to how code of similar function

is distributed, and often duplicated, across different classes.  Most methods in a large software

system perform a variety of secondary tasks in addition to the core task to which they are

assigned.  In aspect-oriented parlance these tasks, or areas of interest, are called concerns. 

When a concern affects multiple unrelated classes, the concern is said to crosscut those classes. 

These crosscutting concerns are precisely what aspect-oriented programming is designed to

encapsulate.  Common examples of crosscutting concerns include logging, tracing, persistence,

and profiling, and usually affect a wide range of classes or modules.

Code tangling occurs in a method when code for a secondary concern is intertwined with

code for the core concern.  This is undesirable because the intent of the method becomes

obscured by code for secondary concerns.  For example, take a deposit() method for a bank

account that updates an instance variable, shown in Figure 2.4.  This method is clean, simple,

and its intent is obvious from a glance.  Real banking systems must consider several secondary

concerns for important banking operations.  These secondary concerns may include

synchronization, database transactions, logging, and security, as shown in Figure 2.5.  The code

for these concerns become tangled up with each other, making it difficult to understand code for

the core concern.

public class BankAccount {
private int balance;
public void deposit(int amount) {

balance += amount;
}

}

Figure 2.4  deposit() method with core concern.
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public class BankAccount {
private int balance;
public void deposit(int amount) {

SQLServerDataSource ds = new SQLServerDataSource();
ds.setDataSourceName(“SQLServer”);
ds.setServerName(“server”);
Connection con = ds.getConnection(“user”, “password”);
Statement stmt =con.createStatement();
stmt.executeUpdate(getSQLStatement(this, amount));

Log log = new BankAccountLog();
log.addDepositInfo(this, amount);

balance += amount;

stmt.close();
con.close();

}
}

Figure 2.5  deposit() method with tangled database and logging concerns.

Code scattering is the phenomenon of crosscutting concern code being scattered throughout

different classes in the program, as shown in Figure 2.6.  For instance, if the programmer wants

to log every public method in the program, they need to write logging code everywhere that a

public method exists.  This scattered logging code is likely to be the same throughout the

program, and duplicate code should be avoided whenever possible.  If the programmer wants to

change the logging code they have to change it in every public method instead of changing it

once in a self-contained module.  Furthermore if the programmer creates a new public method or

changes an existing method to be public, logging code must be added.

Figure 2.6  The code for the caching concern is scattered across multiple

classes, and in Class A the code for multiple concerns are tangled together.
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2.2.2 Aspects

The aspect-oriented paradigm builds upon existing paradigms by introducing a new structure

called an aspect, which encapsulates the information for a single concern.  An aspect contains

two types of sub-structures: pointcuts and advice.  Advice describes the concern’s behaviour,

and pointcuts indicate where to apply the advice in the program.  Used together, pointcuts and

advice can specify how a secondary concern alters classes and methods in the core program. 

Section 2.2.3 describes pointcuts in greater detail, and Section 2.2.4 covers the uses and types of

advice.

2.2.3 Join Points and Pointcuts

In aspect-oriented software, a join point is an event that occurs during the execution of a

program to which advice can be attached.  Valid join points vary from language to language, but

most aspect-oriented languages include method execution and field access in their join point

model.  The only join points that this thesis requires are method executions, so the pointcut

examples in this thesis exclusively target method executions.

Pointcuts specify a subset of join points of interest, using a pointcut language.  Pointcut

languages typically use a regular expression-like syntax to specify this subset, and allow the

programmer to include or exclude join points based on scope, access modifier, name, data type,

number and type of arguments (for methods), and other distinguishing language elements.

2.2.4 Advice

Advice is code inserted at the join points defined by the pointcut.  When this insertion occurs, the

aspect is said to be advising or decorating the join point.  Conceptually, a piece of advice
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determines an aspect’s behaviour or how it alters the program.  For a logging aspect, the advice

may contain code that prints messages to a file, or records the state of the program.

Most aspect-oriented programming languages support three types of advice: before, after,

and around.  Before advice is used to attach the advice before the join point.  This means the

advice code will run immediately before the join point code runs.  Likewise, after advice runs

after the join point code has finished.

Around advice can specify code to run both before and after the join point, and

additionally can control whether the join point runs at all.  A special method, typically named

proceed() is reserved to trigger the join point execution, and this method can be used

anywhere in the advice code.  If the proceed() method does not get called in the advice then

the join point will not run.  In this way, around advice can effectively guard the execution of any

join point it advises.

2.2.5 Code Weaving

A code weaver’s purpose is to merge or weave an aspect’s advice into the main program.  It

determines where to weave the advice by resolving the associated pointcuts into join points

within the program.  Once the join points are known, it weaves the advice before, after, or

around the join point depending on the type of advice being woven.

Code weaving can be done at different stages in the compile-link-run process.  A source code

weaver transforms the source code directly, and then sends the transformed program to a normal

compiler.  A byte-code weaver can weave byte-code directly, such as a compiled Java class. 

Often the compiler is combined with the weaver so that both weaving and compilation is

performed at the same time, as is the case with the compiler for AspectJ [13].  These are all

examples of static weaving, because the weaving is performed at compile time.

In contrast, dynamic weaving however allows advice to be woven at runtime.  Aspect-

oriented frameworks that support dynamic weaving have the ability to deploy or remove aspects

while the program is running.  This offers a lot of flexibility to the system, but also introduces

some dangers because developers have no way of knowing which aspects affect their code when



16

the program is running. 

2.3 JAC

Java Aspect Components (JAC) [14] is a dynamic aspect-oriented software development

framework implemented in the Java programming language.  Unlike other common Java-based

aspect-oriented programming languages such as AspectJ, JAC uses standard Java classes and

does not extend Java with any new language constructs.

In JAC, any Java class that extends the AspectComponent class represents an aspect. 

The pointcut() method is used in the aspect class’s constructor to define a pointcut

expression and associate advice with that pointcut.  There are several overloaded versions of this

method to construct a pointcut and advice in different ways, but we will only consider one of

these methods.  The syntax for this pointcut() method is:

void pointcut(String objects, String classes, String methods, Wrapper advice);

The first three arguments are used to define a set of join points in the program, and the final

argument contains the advice to be woven.  The arguments are:

· objects – a regular expression string that identifies the objects to which the advice

should be applied.  JAC allows advice to be woven on a per-object basis so that one

object can exhibit aspect behaviour but another does not, even if both objects are

instantiated from the same class.  An identifier for each object is created and maintained

by JAC in an object repository.  The mechanism for retrieving and using this identifier is

described in further detail in the future work section of Chapter 6.  For current uses, the

string “.*” is used to represent all instances.

· classes – a regular expression string that identifies the classes to which the advice

applies.  Fully qualified class names must be used (i.e, class names must be prefixed with

their package name).  The string “.*” represents all classes.
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· methods – a regular expression string that identifies the methods to be advised.  The

syntax for this parameter is “methodName(arg1_type,arg2_type, …):return_type”.  The

string “.*(.*):.*” represents all methods.

· advice – In JAC, the advice for an aspect is stored in a separate class that extends

Wrapper.  This parameter associates a wrapper object with a pointcut declaration.

2.3.1 JAC Wrappers

A JAC wrapper is a Java class that extends JAC’s Wrapper class.  The aspect developer should

override the invoke() method inherited from Wrapper.  The body of the invoke() method

is the advice that will be woven at the join points specified by the pointcut.  JAC only supports

around advice, but before and after advice can be simulated by placing a proceed() call at

the end or beginning of the invoke() method respectively.

The invoke() method has one parameter of type MethodInvocation that allows

reflection on the join point being advised.  Information about the join point receiver object

method name, argument types and values, and return type can be obtained from the

MethodInvocation object.  Furthermore, the advice can alter the value of the arguments

passed into the advised method, and can examine and alter the return value passed back to the

application.

Consider an example to record successful and failed login attempts to a system.  The

advice wrapper class, shown in Figure 2.7, includes the invoke() method that contains the

advice code.  This code calls the advised join point method, login(int), via proceed()

which returns a boolean value that determines if the login was successful.  The advice code in

Figure 2.7 records “Successful login” or “Failed login” to a log depending on the result of the

login method.



18

class LoggingWrapper extends Wrapper {
Log log = new Log();

public Object invoke(MethodInvocation mi) {
// Before advice goes here

Boolean loginOK = (Boolean) proceed(mi);

// After advice follows
if (loginOK)

log.add(“Successful login”);
else

log.add(“Failed login”);

return loginOK;
}

}

Figure 2.7  An example of logging advice in JAC.

Where the advice wrapper in Figure 2.7 specifies the logging behaviour to execute, the pointcut

declaration, shown in Figure 2.8, specifies that the advice should be executed whenever the

login() method runs.  A pointcut declaration in JAC is typically placed in the aspect class

constructor so that the pointcut is defined when an aspect class is instantiated.  The “.*” and

“ca.uwaterloo.*” arguments narrow the scope of target join points to methods defined in

objects instantiated from any class in the ca.uwaterloo package.  Furthermore, the

“login(int):boolean” argument specifies that the target join points should be methods

named login() that take a single int parameter and return a boolean value.  The new

LoggingWrapper() argument associates the advice, from Figure 2.7, with the login()

method join point.

public class LoggingAC extends AspectComponent {
public LoggingAC() {

pointcut(“.*”, “ca.uwaterloo.*”, 
“login(int):boolean”, 
new LoggingWrapper());

}
}

Figure 2.8  An example of a logging pointcut in JAC.

Although not strictly necessary, the wrapper class is often placed as an inner class to the aspect



19

class.  Figure 2.9 combines the advice in Figure 2.7 and the pointcut in Figure 2.8 in a complete

example of a logging aspect written in JAC.

public class LoggingAC extends AspectComponent {
public LoggingAC() {

pointcut(“.*”, “ca.uwaterloo.*”, 
“login(int):boolean”, 
new LoggingWrapper());

}

class LoggingWrapper extends Wrapper {
Log log = new Log();

public Object invoke(MethodInvocation mi) {
// Before advice goes here
Boolean loginOK = (Boolean) proceed(mi);
// After advice follows
if (loginOK)

log.add(“Successful login”);
else

log.add(“Failed login”);

return loginOK;
}

}
}

Figure 2.9   A logging aspect in JAC.

2.3.2 Distributed Aspects

In addition to being a dynamic aspect-oriented language, JAC also has a robust distribution

feature built into its framework [16].  The distribution feature allows aspects on one host to be

easily woven into remote objects running at a remote host.  The only requirement is that the

underlying application must be run in a special JAC container that acts as a distribution server. 

When this container recognizes an incoming aspect sent from a remote host, it automatically

weaves the aspect into its currently running Java application using the dynamic code weaving

facilities of the JAC framework.

To identify hosts that can send and receive aspects remotely, JAC stores a network

topology of all the hosts that comprise the distributed system.  This topology can be set up in a
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configuration file before the application is run, or hosts can be added to and removed from the

topology at run time.

The JAC framework also comes with a variety of prepackaged aspects in categories like

distribution, monitoring, persistence and transactions.  The most relevant aspects to this thesis

are the distribution aspects, composed of the deployment, consistency, broadcasting, and load

balancing aspects.  Chapter 4 presents an alternate load balancing implementation and briefly

compares it to JAC’s load balancing aspect.

2.4 Summary

Java RMI is a widely used communication technology for distributed Java applications that

encourages loose coupling between clients and servers.  It uses the proxy design pattern to help

enforce loose coupling and make it easy for the client application developer to find remote

server objects and call their methods.

Aspect-oriented software development is used to isolate and define cross-cutting concern

of a software system, and help reduce the tangling and scattering of these concerns throughout

the program.  Aspects, advice, and pointcuts are aspect-oriented language constructs used to

encapsulate these concerns and define their behaviour and scope.

Figure 2.10 depicts how this thesis combines Java RMI and aspect-oriented software

development to improve communications between clients and servers.  JAC lies at the heart of

this fusion because it provides a platform for dynamic distributed aspect-oriented software

development in Java.
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Figure 2.10 This thesis combines the technologies

and ideas of Java, distributed programming, and

aspect-oriented programming.
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Chapter 3: A Dynamic Aspect-Oriented Solution

3.1 Introduction

Chapter 2 discussed the advantages of loose coupling in RMI, but the properties that make

loosely coupled components so attractive can also be detrimental to efficient communication

between client and server.  One such property is the server’s facility to hide implementation

details from the client, which ensures the client software does not depend on the server’s

implementation and allows the server to change without adversely affecting its clients. 

However, if a client wants to optimize its communication with the server it is limited by its lack

of knowledge about the server state and implementation.  This thesis considers client-side

enhancements that can benefit from knowledge of server-side implementation details.

The problem considered in this thesis is to provide server implementation details to

clients so they can act intelligently, without compromising the benefits of loose coupling that

RMI supports.  This thesis proposes a solution that gives a client the knowledge it needs and still

maintains the loose coupling of RMI: make the server responsible for developing and deploying

the necessary client-side enhancements.

Shifting the development responsibility for client-side enhancements to the server

eliminates the need for clients to know about the server’s implementation details.  Furthermore,

the server can deploy these enhancements dynamically to its clients without clients needing to

halt or recompile their applications.  This solution maintains the advantages of RMI’s loosely

coupled architecture and provides the client with the server state and implementation knowledge

it needs to communicate efficiently.  Practical examples such as caching, validation, and load

balancing are provided to demonstrate these ideas and their benefits.  The caching example is

used throughout this chapter and Chapter 4 explores all three examples in greater detail.
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3.2 Aspect-oriented paradigm applied

The client-side enhancements mentioned in Section 3.1 can be considered crosscutting concerns

of the server. However, instead of crosscutting just classes or modules these concerns crosscut

hosts in the distributed system.  Therefore a distributed, dynamic, aspect-oriented platform is

required to represent and apply these client-side enhancements correctly, a role that JAC fills

perfectly.  

Aspects that encapsulate the client-side enhancements can be created on the server in

JAC, then remotely woven on a client using the distribution support included in JAC’s

framework.  These aspects can alter the behaviour of the client to improve the overall system’s

efficiency, but must do so in a way that is not intrusive to the client application layer.  The RMI

proxy object is the ideal place to weave aspects from the server for client-side enhancements for

two reasons.  First, altering its implementation does not require changes to the client application. 

Second, the RMI proxy object is the gateway from the client to the server, through which all

remote calls to the server must flow.  Behavioural changes on the client proxy object ensures

that each remote call is affected by those changes.

3.3 Client

The client application consists of a Java application that uses standard Java RMI with standard

rmic-generated stubs.  In order for the client application to realize the benefits of remote

aspects sent from the server, the JAC framework must be present on the client and the client

application must be run inside a JAC container.  It should be noted that running the client

application inside a JAC container does not involve client calls to JAC libraries, JAC

initialization code, nor any other references to JAC in the client application code.

The first step to running an application under JAC is to create an application descriptor. 

An application descriptor is simply a text file with a .jac extension that configures the

application.  For client applications, only the application name and launching class need to be

specified as shown in Figure 3.1.
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applicationName: RMI client
launchingClass: mypackage.RunClient

Figure 3.1 The application descriptor file for a Java RMI client application.

The application name is a string that uniquely identifies an application running in a JAC

container, and is used by the server to weave aspects remotely on the client.  The launching class

is a fully qualified Java class name that contains a public static void main(String[])

method and is launched when JAC starts the application.  To run the client application in a JAC

container, simply launch the JAC framework passing the path to the application descriptor as an

argument.  Figure 3.2 shows how to launch an RMI client application in a JAC container.

RMI client application launched normally:

java mypackage.RunClient arglist

RMI client application launched in a JAC container:

java -jar jac.jar -D containerName client.jac arglist  

Figure 3.2  The differences between running the client application normally and running it in a JAC container.

The -jar jac.jar option runs the org.objectweb.jac.core.Jac class that, among other

things, enables JAC’s aspect weaving class loader.  -D enables the distribution mode on the JAC

container with containerName providing a string identifier for the JAC container, used by other

remote JAC containers that wish to communicate with the local container.  client.jac

represents the path to an application descriptor file that, as shown in Figure 3.1, contains the

name of the application and the class that JAC launches to start the application.  arglist is a

list of arguments passed to the launching class defined in the application descriptor.

The client must notify the server about its JAC container so the server can send remote

aspects when appropriate.  The server needs to know the client application name (as defined in

the application descriptor), and the name and location of the JAC container.  The location can be

an IP address, computer name, or other network identifier used by the client host.

No other changes to the client application are needed.  When the JAC container receives

an aspect from the server, JAC will automatically and dynamically weave the advice into the
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RMI proxy object.  The client application does not need to be halted or recompiled for the

weaving process.

If the aspect is received while the proxy object is waiting for a remote method to return,

the behaviour does not manifest until a subsequent call from the client application is made to the

proxy object.  This avoids concurrency issues such as after advice executing without the

execution of its corresponding before advice.

Client application developers are no longer burdened with writing client-side

enhancement code since that responsibility now rests with the server.  Developers can focus on

the core concerns of their client application rather than a secondary concern, such as efficient

communication with the server.  In fact, the client application likely does not know which

aspects are applied to its RMI proxy object at any given time, nor should it.  The client

application simply calls the RMI proxy object’s methods when it needs a remote service, and the

server manages all the client-side enhancements.

3.4 Server

Similarly to a client, the server is a standard RMI server implementation.  The server

implements a remote interface, and rmic generates stubs from the implementation class.  The

server implementation object is typically exported to an RMI naming registry so that clients can

find the server easily through a name lookup.

The server requires the presence of the JAC framework and, like the client, runs inside a

JAC container.  An application descriptor that defines the server’s application name and

launching class is required.  The server does not need to notify its clients about its JAC container

or application name because clients do not need to send aspects to the server.  In this thesis

remote aspects travel in one direction only, from the server to the client.  This unidirectional

model is a characteristic of the solution proposed by this thesis, and not a restriction of JAC. 

JAC has the capability to weave aspects remotely in both directions, but this thesis only uses

JAC for server-to-client weaving.
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3.4.1 Client-side aspect

The contents of client-side aspects vary depending on the type of enhancements they represent,

but these aspects all have several things in common.  The pointcut, in particular, must be

carefully defined to target only the join point in the client’s RMI proxy object.  If the pointcut

matches join points in the client application code it can cause unexpected behaviour in the

client.  

Figure 3.3 shows a sample pointcut definition for a client-side aspect.  The first argument

identifies the Java objects where the aspect’s advice is woven, since JAC is a dynamic aspect-

oriented framework that has the ability to weave aspects on a per-object basis.  The string “.*”

indicates that all instantiations of the class specified in the second argument are considered as

matching join points.  The current framework dictates that this argument should always target all

proxies, but selective proxy targeting is possible and further discussed in Chapter 6.

pointcut( “.*”, 
“mypackage.ServerImpl_Stub”, 
“login(int,java.lang.String):boolean”, 
new CachingWrapper());

Figure 3.3  A pointcut declaration targeting the login() method in the ServerImpl_Stub proxy object.

The second argument identifies the classes that contain matching join points and is set to the

fully qualified server implementation class name concatenated with “_Stub”.  This class matches

the rmic-generated stub used by the client, and ensures that the RMI proxy object is advised

without inadvertently advising other objects in the client application.  The third argument is a

string that indicates the method signature of the target join point.  This value is set to one or

more of the method signatures defined in the remote interface.  Since the rmic-generated stub

class must implement the remote interface [7], these methods are guaranteed to exist.  Multiple

methods can be specified using a wildcard character or separated using the | (alternation)

operator.  The final argument associates the aspect’s advice with the pointcut definition.
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In addition to pointcuts and advice, the remote aspect may contain instance variables to

support the behaviour of the aspect.  These instance variables are typically used to store state

that persists between invocations of the RMI proxy object’s methods, such as a cache.

3.4.2 Weaving client-side aspects remotely

Once a client-side aspect is written, tested, and compiled at the server it can be woven remotely

on a client.  This is accomplished by calling the static remoteWeaveAspect() method in

the org.objectweb.jac.core.Jac class.  This method takes four string arguments, as

shown in Figure 3.4.

void Jac.remoteWeaveAspect(String applicationName, 
String clientContainer, 
String aspectClass, 
String aspectConfigPath);

Figure 3.4 The remoteWeaveAspect() method signature.

The remoteWeaveAspect() method has the following arguments:

• applicationName – The name of the application as defined in the client’s application

descriptor.  If the client uses the application descriptor file from Figure 3.1, this

argument would contain “RMI client”.

• clientContainer – The client container name is determined when the client

application is launched in the JAC container.  This is the name that appears after the -D

option in the Java application launch command line string.

• aspectClass – This argument is the fully qualified class name of the aspect being

woven.  For example, “mypackage.CachingAC”.

• aspectConfigPath – This is the file path of the aspect’s configuration file.  This file

can contain instructions to configure the aspect upon initialization.  An empty file results

in no custom configurations for the aspect.
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3.4.3 Remote Weaving Condition

The server decides not only what client-side enhancements to provide, but also the condition that

triggers the aspect to be remotely woven on a client.  This condition is dependent on the type of

client-side enhancement in question, but the remote methods that implement the server object

are logical places to have this condition.  When a client invokes a remote method, the server can

identify the client, examine the remote method’s arguments, and make an informed decision

about which aspects to weave remotely on that client.  A client’s usage habits such as calling

frequency, server resources used, time spent servicing the request, etc. can be collected over

time to help further inform this decision on a per-client basis.  Since the server has a wider

picture of the usage tendencies of all its clients, it can provide client-side enhancements that

benefit the distributed system as a whole.  This idea is demonstrated in Chapter 4 with caching,

validation, and load balancing enhancements.

3.5 Implementation Problems

Several unexpected problems were encountered during the development and testing of the client-

side enhancements remotely woven by the server.  The most significant problem is JAC’s

inability to weave the remote aspect on the Java RMI proxy object.  The version of JAC used in

the implementation of this thesis does not weave aspects on a Java RMI proxy object retrieved

from an RMI registry.  This unexpected behaviour is not accompanied by any error messages or

other signs of failure, but rather runs as if the JAC system is not aware of the aspect or its

associated advice.  If print statements are placed in the advice code and the aspect is woven on

the proxy object, the expected output messages do not appear when the appropriate proxy

methods are called from the client application.

The solution to this problem requires the client application to reinstantiate the stub class

retrieved from the RMI registry, illustrated in Figure 3.5.  The newInstance() method of

Java reflection is used to create a new instance of the proxy object, and the remote reference
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from the original proxy object is used in the constructor.  This essentially creates a clone of the

original proxy object with an identical remote reference.  JAC is able to weave aspects on this

clone proxy, unlike the original proxy object.  This workaround suggests that JAC is able to

weave classes loaded with the default classloader, but is unable to weave classes loaded with the

RMI classloader.  However, when the classloaders of the original and clone proxy objects are

examined they appear identical.  Both proxy instances appear to share the classloader that allows

JAC weaving to occur.  JAC uses a custom classloader to achieve aspect weaving, but it is not

clear why this classloader weaves for one instance of a class but not for another.

// Retrieve original stub from RMI registry
Registry registry = LocateRegistry.getRegistry();
RemoteInterface stub = (RemoteInterface) registry.lookup("ServerObj");

// Use Java reflection to construct a clone stub object
RemoteRef remoteRef = ((RemoteStub)stub).getRef();
Class stubClass = stub.getClass();
Constructor stubCons = stubClass.getConstructor(new Class[]{RemoteRef.class});
RemoteInterface newStub = (RemoteInterface) stubCons.newInstance(new Object[]  

{remoteRef});

Figure 3.5  This workaround instantiates a clone of the RMI proxy object.  Subsequent remote calls should use this

proxy instead of the original proxy.

This workaround needs to be performed on the client prior to the invocation of remote interface

methods on the proxy object.  This violates the thesis goal of having no source code changes to

the client application.  The statically-generated stub distribution technique discussed in Section

5.1 can be used here to apply this workaround without intruding on the client application

developer.  This workaround can be placed into the server-side statically-generated stub and then

distributed to the clients, allowing the workaround code to execute whenever the proxy object is

instantiated on the client.

The difference between this workaround and the statically-generated proxy strategy from

Section 5.1 is the ability for the client-side proxy object to be modified dynamically.  The

workaround code in Figure 3.5 bootstraps the dynamic aspect-oriented capabilities of JAC

allowing dynamic remote advice weaving for the lifetime of the proxy object.  In contrast, the

server-side rmic-generated stub is static, and can only be distributed once to the client during

its lifetime.  Combining the distribution technique in Section 5.1 with the workaround code in
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Figure 3.5 solves the proxy object weaving problem while still maintaining the non-intrusiveness

goals of this thesis.

3.6 Summary

By using the distribution and dynamic weaving features of the JAC platform, a typical Java RMI

application can be enhanced to allow remote aspect weaving from the server to the client. 

Incorporating this ability into an existing Java RMI application is unintrusive, since no

additional library calls or source code changes are required in the client program.  Instead, the

client application must run inside a JAC container, achieved by creating a simple application

descriptor file and running the client program with a modified command line.  The server

constructs aspects and remotely weaves them on clients, modifying the behaviour of the client-

side proxy object.

This chapter presented the technical details and abstract elements of the proposed

framework, but these concepts are more easily understood using concrete examples.  Chapter 4

describes three practical uses of the ideas presented in this chapter, and reiterates the framework

elements in the context of the three examples.
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Chapter 4: Practical Applications of Client-Side Aspects

The dynamic aspect-oriented framework for client-side enhancements discussed in Chapter 3 is

flexible and highly adaptable to a system’s requirements, allowing the framework to efficiently

address a variety of concerns involving client-server communication.  These aspects can involve

performance concerns on the network, client, or server; or can enforce business rules governing

the interactions between client and server.  This chapter explores three common examples of

such concerns: method value caching, method argument validation, and load balancing.

Section 4.1 extends the discussion of method value caching, used as an example

throughout Chapters 2 and 3.  Section 4.2 introduces method argument validation, the ability to

validate remote method arguments on the client before invoking an expensive remote method on

a server.  Finally, Section 4.3 shows how remote aspects can be used in a novel way to balance

load across multiple servers.

4.1 Method Value Caching

Method value caching, henceforth caching, is remembering the return values of a method then

retrieving them when the method is subsequently called using the same arguments.  By

retrieving return values that have already been computed, unnecessary method calls can be

avoided.  This is a valuable optimization in a remote object system since calling remote methods

involves expensive network communication that can be avoided by returning cached values.  It is

especially valuable when the amount of data exchanged between client and server is large.

In this case the method is part of the remote interface exposed by the server, the

arguments are sent from the client to the server, and the server computes and returns a value to

the client.  The RMI proxy object is a suitable place for a caching mechanism because it is a

gateway for both the remote method arguments and the remote method’s return value.

The caching solution in JAC has three parts: the client-side caching aspect, the client

implementation, and the server implementation.  The server implementation decides when to
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weave the caching aspect on the client and can provide configuration options to the aspect to

customize its behaviour.  The caching aspect contains a pointcut and advice, the latter being the

caching implementation.  The client implementation can be a typical RMI client that calls

methods on a remote object via an rmic-generated stub instance.

4.1.1 Client-side Caching Aspect

In JAC, aspects are Java classes that extend the AspectComponent class, and by convention

end with “AC”.  The pointcut is declared in the constructor, as shown in Figure 4.1.

public class CachingAC extends AspectComponent {
public CachingAC() {

pointcut(".*", "Calculator_Stub", "factorial(int):int", 
      new CachingWrapper(this), null);

}
}

Figure 4.1  The CachingAC class contains a pointcut declaration in its constructor.

For advice to be woven on the client’s RMI proxy object, the pointcut() method’s second

argument must be the fully qualified name of that proxy object’s class, as seen in Figure 4.1. 

Note the omission of a host argument in the pointcut definition, to identify where the join point

resides.  The pointcut does not need to know the join point host because the aspect is woven on a

specific host provided by the server implementation.

Recall from Chapter 2 that the aspect’s advice is contained in a separate class that

extends the org.objectweb.jac.core.Wrapper class.  This Wrapper class contains a

method called invoke() that is overridden in its subclasses to support advice, as shown in

Figure 4.2.  The cache object itself is implemented as a Java hash table, mapping the integer

argument of the factorial() method to its corresponding factorial value.  The

CachingWrapper’s constructor can simply delegate its work to the superclass’s constructor. 

The body of the invoke() method contains the caching logic that checks to see if the integer

argument already exists in the cache and retrieves its corresponding factorial value if it does. 

The proceed() method, which executes the join point method
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Calculator_Stub.factorial(int), is called when no matches are found in the local

cache.  This causes the invocation of the remote method, after which the return value is added to

the cache with its argument as the lookup key.

public class CachingWrapper extends Wrapper {
    private Map<Integer,Integer> cache = new Hashtable<Integer,Integer>();

    public CachingWrapper(AspectComponent ac) {
       super(ac);
    }

    public Object invoke(MethodInvocation mi) throws Throwable {
    Object[] arguments = mi.getArguments();

Integer arg = (Integer) arguments[0];
    Integer cachedAnswer = cache.get(arg);
    if (cachedAnswer == null) {
     // argument is not found in the cache, proceed with remote call

Integer result = (Integer) proceed(mi);
    cache.put(arg, result);
    return result;
    }
    else {

// argument is found in the cache, so return cached answer
    return cachedAnswer;
    }
    }
}

Figure 4.2  The CachingWrapper class contains advice for the caching aspect.

A caching mechanism is ideal for the factorial() method because a factorial is a function

of its integer argument only, and does not depend on the state of the remote object.  A cached

factorial value never becomes stale, and thus no cache policy is needed to purge the cache. 

Furthermore, computing factorials for large integers is a computationally intensive task, so the

client’s performance increases with the use of a client-side cache.  The advice in Figure 4.2 can

be changed by the server to support a cache policy if needed, but this determination should be

made by the server implementation, discussed further in Section 4.1.3.

4.1.2 Client Implementation

Any standard Java RMI client is able to make use of the framework proposed in this thesis.  The

key component that the client must have is an RMI proxy object, an instance of an rmic-
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public int factorial(int param_int_1) throws java.rmi.RemoteException
{
   Object result = ref.invoke(this, method_factorial_0,
      new java.lang.Object[] {new java.lang.Integer(param_int_1)});
   return ((java.lang.Integer) result).intValue();
}

Remote invocation code in the rmic-generated stub class.

Registry registry = LocateRegistry.getRegistry("serverhost");
MathOps proxy = (MathOps) registry.lookup("Calculator");
int x = proxy.factorial(100);

Invoke stub code

RMI client application

generated stub class, because this proxy object contains the join point targeted by the remote

aspect’s pointcut.  When a remote aspect is sent from the server to the client, its advice is woven

into the client’s proxy object, giving control of remote method invocations to the advice code. 

Figure 4.3 shows the program control flow before the advice is woven and Figure 4.4 shows the

program control flow after the advice is woven.  The advice’s caching code guards the call to the

proxy object’s factorial() method, preventing the remote method invocation if the factorial

result already exists in the cache.

Figure 4.3  The program control flow before the remote advice is woven on the client.
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Invoke stub code in advice if result not cached

public int factorial(int param_int_1) throws java.rmi.RemoteException
{
   Object result = ref.invoke(this, method_factorial_0,
      new java.lang.Object[] {new java.lang.Integer(param_int_1)});
   return ((java.lang.Integer) result).intValue();
}

Remote invocation code in the rmic-generated stub class.

public Object invoke(MethodInvocation mi) throws Throwable {
  Object[] arguments = mi.getArguments();
  Integer arg = (Integer) arguments[0];
  Integer cachedAnswer = cache.get(arg);
  if (cachedAnswer == null) {
    Integer result = (Integer) proceed(mi);
    

    cache.put(arg, result);
    return result;
  }
  else {
    return cachedAnswer;
  }
}

Advice implementation from caching aspect.

Registry registry = LocateRegistry.getRegistry("serverhost");
MathOps proxy = (MathOps) registry.lookup("Calculator");
int x = proxy.factorial(100);

Call to factorial intercepted by aspect

RMI client application

igure 4.4  The revised program control flow after the remote advice is woven on the client.

4.1.3 Server Implementation

The server application contains an object that implements a remote interface, and thus provides

the service implementation for its clients.  In a typical RMI application, this implementation is

responsible for performing the computations and tasks associated with the service.  Using the
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factorial() method, shown in Figure 4.5, this task is to simply calculate the factorial value

of a given integer.

public int factorial(int num) throws RemoteException {
if (num == 0) return 1;
int result = 1;
for (int i = 1; i <= num; i++) {

result *= i;
}
return result;

}

Figure 4.5 The primary task of the factorial() method is to calculate a factorial value.

To take advantage of server-provided client-side enhancements using distributed aspects, the

server must weave these aspects on the client’s proxy object.  This remote weaving occurs in the

service implementation method as a secondary task, in addition to the primary task of

calculating the factorial.  Figure 4.6 shows both of these tasks.

public int factorial(int num) throws RemoteException {
Jac.remoteWeaveAspect("clientApp", RemoteServer.getClientHost(), 

    "CachingAC", "caching.acc");

if (num == 0) return 1;
int result = 1;
for (int i = 1; i <= num; i++) {

result *= i;
}
return result;

}

Figure 4.6 The revised factorial() method with remote aspect weaving.

The static remoteWeaveAspect() method is used to weave the caching aspect on the client. 

This method takes four string arguments: the client application name, the client container name,

the caching aspect class name, and the path to the caching aspect configuration file.  The first

two arguments must match the parameters set when the client’s application is launched in a JAC

container.  The last two arguments indicate what aspect to weave and what configuration options

to use when initializing the aspect on the client.
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There is nothing to prevent the remote weaving command from being triggered by an event

outside the service implementation.  That is, the aspect can be woven into the client code at any

time by any process.  However, there are three benefits to having the remote weaving command

occur in the server implementation, as is done in Figure 4.6.  

First, it ensures that the remote aspect is woven when the client application is active and

running, since the service implementation method is only executed as a result of a remote

method invocation from the client.  If the remote aspect weaving is triggered by an event outside

the service implementation method, the server may try to weave a remote aspect when the client

is not running or is unable to receive the aspect for other reasons.  This may lead to a state where

the server believes a client is using a caching aspect when the client is not.

Second, it prevents potential concurrency problems in the client application due to the

synchronous invocation of remote methods required by the RMI specification [7].  When a client

makes a call to the server its thread of execution blocks until a response from the server is

received.  By triggering the remote weaving command in the service implementation method, it

is guaranteed that the client proxy object is blocked waiting for a response from the server, and

thus can be modified without risking unexpected behaviour from race conditions, deadlock, or

other concurrency problems.  Advice is only woven on the proxy object after the currently

blocked method in the proxy object has returned, so it is not possible to have a situation where

the proxy’s method executes up until the remote method invocation, then have after advice

execute once the remote invocation returns without executing its corresponding before advice. 

This property is similar to the atomicity of database transactions: either the entire advice is

woven into the join point method when it executes, or none of it is woven.

The third benefit of weaving the remote aspect from the service implementation method

is the ability for the service implementation method to determine the calling client via

RemoteServer.getClientHost().  This method returns a string representing the host of

the client, typically an IP address, which can be used to locate and identify the client.  Most

importantly, this string is used to target a specific client when weaving an aspect remotely, as

needed for the remoteWeaveAspect() method’s second argument, the client container

location.  The server needs to know on which host to weave its caching aspect, and
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RemoteServer.getClientHost() provides the only way to identify clients to the server. 

Since server methods outside the remote invocation call stack are unable to use

RemoteServer.getClientHost() to capture client host information, having the remote

aspect weaving trigger within the service implementation method allows this information to be

utilized.

The service implementation method in Figure 4.6 weaves the caching aspect on the

calling client every time the remote method is called.  A more realistic solution is to guard the

remote weaving command with a condition that evaluates to true or false, and determines

whether the aspect is woven on the remote host or not.  This weaving condition depends on the

type of client-side enhancement being woven, the nature of the service used by the client,

existing knowledge of the client, and knowledge of server resource usage.

There are several possible weaving conditions for a caching aspect.  Ideally, a caching

aspect for the factorial service is woven on a client for the duration of its execution.  This means

the server weaves a caching aspect on the client during the client’s first remote method call to

factorial(), and any subsequent calls to factorial() from the same client do not

trigger remote aspect weaving.  This can be implemented easily by storing the known client

hosts in an initially empty list on the server, as in Figure 4.7.  When a remote method call is

invoked, the service implementation uses RemoteServer.getClientHost() to retrieve

the calling client host, then checks whether the host exists in the known hosts list.  If it does not

appear in the list (an unknown host) then weave the caching aspect on the remote host and add

the host to the known list.  Otherwise it appears in the list (a known host) and thus already has

the caching aspect woven, so no action is needed.
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private List<String> knownHosts = new ArrayList<String>();

public int factorial(int num) throws RemoteException {
if (!knownHosts.contains(RemoteServer.getClientHost())) {

Jac.remoteWeaveAspect("clientApp", RemoteServer.getClientHost(), 
        "CachingAC", "caching.acc");

knownHosts.add(RemoteServer.getClientHost());
}

if (num == 0) return 1;
int result = 1;
for (int i = 1; i <= num; i++) {

result *= i;
}
return result;

}

Figure 4.7 The factorial() method with a simple weaving condition for known hosts.

This solution is easy to implement but has two drawbacks.  First, this solution cannot distinguish

between multiple clients running from the same host because getClientHost() only returns

the host information.  Another identifier for the client is needed to support multiple clients on a

single host.  Second and more significantly, the list of client hosts that have caching aspects

woven on them may become outdated.  This happens every time the execution of a client

application ends because all the advising code is lost.  Dynamic aspect weaving in JAC is

accomplished by modifying the class’s bytecode in memory, so if the class is reloaded from its

codebase location it loses all the advice woven on it and reverts to its original non-advised form. 

Unfortunately the server has no way of knowing when a client is closing or restarting, and thus

cannot update its list accordingly.  The result may be a client that can use a caching aspect to

improve its efficiency, but never receives a caching aspect from the server because the server

believes the client already has one.

A more complex but suitable approach is to base the weaving condition on the frequency

of identical remote method calls from a particular client.  The frequency of identical method

calls can be based on a time threshold (i.e., in the last minute, this client has called the

factorial() method twice with identical arguments); or based on a most-recent threshold

(i.e. out of the most recent 100 invocations by this client, 70 of them have been identical); or

some combination of both (i.e. in the last hour, identical calls have been made 70 times by this
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client).  Clearly, a more complex data structure than a simple list is needed to keep track of the

calling history for each client.

When a client passes the calling threshold set in the weaving condition, a caching aspect

is woven remotely on that client.  The caching aspect causes identical remote method

invocations from the client to fall well below the server’s threshold, preventing caching aspects

from being re-woven on clients that do not need it.  If a client happens to lose its caching aspect,

it eventually triggers the weaving condition, which causes another caching aspect to be woven

on the client.  Since this weaving condition technique does not store any state about the aspects

woven on clients, it does not suffer from the disadvantages associated with outdated client state

information.  

In fact, this technique delivers a client-side caching aspect precisely when it is needed, as

determined by the threshold set on the server.  This is a perfect example of using server

knowledge to get the optimal client-side caching solution.  This solution is adaptable because the

server is free to adjust the frequency threshold to its liking whenever it wishes, and it is dynamic

because adjusting the frequency threshold automatically results in the remote weaving of

caching aspects on clients that surpass the new threshold and thus trigger the weaving condition.

So far all discussion about the caching enhancement has used the factorial service

example, but this is an atypical example because the factorial service is stateless.  It is stateless

because the factorial service implementation does not depend on the state of the remote object,

nor does it use any server resources such as a database.  A stateless service result can be

computed solely by its arguments, making the caching strategy for such a service simple because

the cached values never get stale.

A stateful service is a much more realistic study, but has the additional problem of

cached data becoming stale over time.  Many cache policies have been invented to purge caches

periodically to keep their data fresh, but each cache policy is best suited to a different data

access pattern.

Since JAC is a dynamic aspect-oriented platform, it has the ability to weave and unweave

remote aspects into a client application at runtime.  This facility can be leveraged to provide a

dynamic caching policy, where the caching aspect’s advice can be altered by the server
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dynamically.  This means the server does not have to have a priori knowledge of its service

usage, but can continuously adapt its client-side cache policy to client calling trends and server

usage tendencies.

4.2 Validation

A validation aspect, like the caching aspect, examines the arguments of a remote method, but

instead of caching the method’s arguments it validates them.  The purpose of validating remote

method arguments on the client is to prevent erroneous or invalid remote method calls to the

server.  Catching this invalid call on the client saves an expensive remote call to the server that

will return with an error.  The main benefits of client-side validation are improved efficiency

and performance during client-server communication, and the ability for the server to provide

custom validation for a specific client.  

Section 4.2.1 introduces several validation techniques for method arguments.  Sections

4.2.2 and 4.2.3 show the client-side validation aspect and server-side implementation,

respectively.  Section 4.2.3 also discusses two distinct validation objectives, performance and

customization, and how their weaving conditions differ.

4.2.1 Introduction to Method Argument Validation

The purpose of the validation aspect is to examine arguments of method calls and either proceed

with the method invocation if all arguments are valid, or throw an exception if the call contains

an invalid argument.  The type of validation performed is often associated with the preconditions

of the method, and usually depends on the data types of the arguments, the information they

intend to carry, and their relevance to the method itself.

The simplest examples of argument validation are restricting the range of a value, or

ensuring data is well-formed.  For instance, consider a remote method that allows a client to

reserve a venue on a specified date with the month, day, and year being supplied as int

arguments: 



42

public void reserve(int month, int dayOfMonth, int year);

Realistically these arguments are encapsulated in a single Date object, but are separated here to

demonstrate the validation of simple arguments with interdependencies.  There is nothing

preventing the client from supplying, intentionally or unintentionally, an invalid integer value for

one of these arguments, so it falls to the validation aspect to check these arguments at runtime. 

For example, the month argument can be considered valid if and only if it is an integer between

1 and 12 inclusive.  Similarly, the dayOfMonth argument can be restricted to integers between

1 and 31, and the year argument is valid only for positive integers.

In addition to validating each argument in isolation, the relationships and dependencies

between arguments can also be validated.  In the reservation example, the validation rules for the

dayOfMonth argument can vary according to the month argument value, allowing a

dayOfMonth value of 31 to be valid for March but invalid for April.  The year argument can

even be considered when calculating the number of days in February, to account for leap years.

The purpose of the method can also influence the validation performed at the client.  In

the aforementioned example, a reservation request for a date in the past is nonsensical and can

be considered invalid, or the venue owner may only allow reservations during work days, in

which case the validation logic can invalidate reservations that fall on weekends or statutory

holidays.   Although the month, day, and year arguments may combine to represent a valid date,

the method call may still be considered invalid due to conditions imposed by the nature of the

service.  Figure 4.8 depicts the three validation techniques and how the arguments are validated

for each.
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Figure 4.8 Validation techniques for method arguments in increasing complexity (from left to right).  A precondition

engine typically supports validation in isolation and interdependency validation for simple data types, whereas a

validation aspect supports all three techniques with complex data types.

Other data types besides integers can be validated in a similar way.  Regular expression tests can

be applied to strings to ensure they are well-formed; objects variables can be checked for being

null; and the correct size of arrays and collections can be enforced.  Data structures with more

complexity, such as graphs or tables, may require more advanced validation logic, especially if

multiple data structures relate to each other in a nontrivial way.  The flexibility and power of an

aspect-oriented approach allows arbitrarily complex validation logic, and is not restricted to the

limited argument validation of precondition verification engines [10, 12].

4.2.2 Client-side Validation Aspect

A validation aspect for the venue reservation example in Section 4.2.1 is similar to the caching

example presented in Section 4.1, with the main difference being the advice.  Figure 4.9 shows

the validation aspect for this example, including the validation logic discussed in Section 4.2.1.

The pointcut definition, in ValidationAC’s constructor, contains the method signature for the

venue reservation service, “reserve(int,int,int):void”.  The aspect’s advice,

contained in the invoke() method of the ValidationWrapper class, validates the

reserve() method’s arguments.  The validation advice first extracts the argument values

from the MethodInvocation object provided by JAC, then it checks the month, day, and

year values to ensure they fall into the appropriate ranges.  It then verifies that the provided date
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occurs in the future, because making a reservation in the past is disallowed.  If the arguments

pass all the validation requirements, the advice calls proceed() which follows through with

the remote method invocation.  If validation fails, then an IllegalArgumentException is

thrown with a brief error message.
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public class ValidationAC extends AspectComponent {
public ValidationAC() {

pointcut(".*", "Venue_Stub", "reserve(int,int,int):void", 
   new ValidationWrapper(this), null);

}
}

public class ValidationWrapper extends Wrapper {
    public ValidationWrapper(AspectComponent ac) {
       super(ac);
    }

    public Object invoke(MethodInvocation mi) throws Throwable {
    Object[] args = mi.getArguments();
    int month = (Integer) args[0];
    int dayOfMonth = (Integer) args[1];
    int year = (Integer) args[2];

    
    // Ensure arguments constitute a valid date     
    if (month < 1 || month > 12)
    throw new IllegalArgumentException("Invalid month argument");
    if (dayOfMonth < 1 || dayOfMonth > daysInMonth(month, year))
    throw new IllegalArgumentException("Invalid dayOfMonth argument");
    if (year < 1)
    throw new IllegalArgumentException("Invalid year argument");

    
    // Retrieve today's month, day, year information
    Calendar today = GregorianCalendar.getInstance();
    int currentMonth = today.get(Calendar.MONTH);
    int currentDay = today.get(Calendar.DAY_OF_MONTH);
    int currentYear = today.get(Calendar.YEAR);

    
    // Ensure reservation date is in the future
    if (year     >= currentYear  && 

    month    >= currentMonth && 
    dayOfMonth >  currentDay)

    return proceed(mi);     // proceed with reservation request
    else
    throw new IllegalArgumentException("Past reservation");
   }

   // return total number of days in given month for the given year
   private int daysInMonth(int month, int year) {

...
   }
}

Figure 4.9 The validation aspect for a venue reservation service.
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4.2.3 Server Implementation

In addition to providing a service for clients, the remote method implementation must weave the

validation aspect on the appropriate clients to provide client-side validation for its services. 

Remote aspect weaving is achieved using JAC’s remoteWeaveAspect() method, as shown

in Figure 4.10.  This method sends the ValidationAC aspect to the client host to be woven

into the “clientApp” application.  The validation.acc file is empty in this case

because the ValidationAC class is non-configurable.

public void reserve(int month,int dayOfMonth,int year) throws RemoteException
{

Jac.remoteWeaveAspect("clientApp", RemoteServer.getClientHost(), 
    "ValidationAC", "validation.acc");

// reserve venue for the specified date
...

}

Figure 4.10 The reserve() method with remote aspect weaving.

Like the caching example, the server implementation can make use of a weaving condition that

controls whether a validation aspect gets woven on the client or not.  A weaving condition

should be chosen based on the objective of the client-side enhancement.  The objective of the

caching aspect, for example, is to reduce the number of remote calls with identical arguments,

thus a weaving condition based on the frequency of identical calls is best suited to meet this

objective, as discussed in Section 4.1.3.

Likewise, the objectives for a validation aspect are to improve performance by reducing

the number of erroneous remote method calls from the client, or to provide custom validation

rules on a per-client basis.  These objectives are not mutually exclusive since elements of both

can be incorporated into a validation aspect to both improve communication efficiency and

customize validation on the client.
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4.2.3.1 A Weaving Condition to Improve Communication Efficiency

When discussing the execution speed of a Java program, the cost of calling a remote method is

significantly higher than the cost of calling methods on objects in the local Java virtual machine. 

The reason for this difference is the extra steps needed to support a remote method call.  Remote

method arguments must be marshalled before being sent to the server, then unmarshalled into

Java types once they reach the server.  The marshalling process involves serializing the

arguments into a byte stream so they can be sent over the network, which is then deserialized on

the server as part of the unmarshalling process.  Any objects returned to the client from the

remote method must also undergo this marshalling/unmarshalling process in addition to the

network communication costs.

Other factors can contribute to the overhead of remote method invocations.  If a remote

method argument or return value contains an instance of a class that the Java virtual machine

does not recognize, the JVM must download that class from its codebase and then load the class

before it can continue executing.  This occurrence, while expensive, happens much less

frequently than marshalling because unrecognized classes quickly become known to the Java

virtual machine, and can be used immediately by subsequent remote calls because they are

already loaded into the virtual machine.

Performance benefits are not only realized through execution speed, but also by the

reduction of network traffic as a whole and to the server in particular.  Ideally server resources

are used to serve clients with valid requests instead of handling invalid requests that have no

benefit to the client.  A client-side validation aspect allows invalid requests to be handled by the

client’s proxy object, freeing server resources for legitimate requests.  Figure 4.11 shows how

requests are  handled both before and after advice has been woven on the proxy.
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Reducing the number of remote method calls to the server is obviously desirable, but is only

feasible if the client can accurately mimic the server’s response to a specific request.  Validation

and caching aspects both mimic responses from the server, but a validation aspect mimics

responses that indicate bad or inappropriate data in the method arguments whereas caching

mimics remote method return values in the case when the method completes successfully.

If the objective of the validation aspect is to reduce the number of remote method calls

with improper arguments, then the weaving condition should be based on the frequency of

remote method invocations from a particular client that contain this type of error.  Once the

frequency of erroneous remote calls from a client reaches a threshold set by the server, the

weaving condition is triggered and a validation aspect is woven on that client.  This weaving

condition only targets clients that can benefit from a client-side validation aspect, and ignores

clients that use the service with appropriate argument values.

Figure 4.11 A client-side validation aspect reduces unnecessary network traffic, decreases server load, and

decreases execution time for the client application.
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A notable limitation of client-side validation is the difficulty involved if server state is

required.  Any validation that uses server resources such as a server-side object or database must

be performed on the server.  In the aforementioned reservation example, one cannot verify from

the client whether a venue is already booked or not.

4.2.3.2 A Weaving Condition for Custom Validation Rules

Custom validation rules refer to the idea that each client’s validation logic can be different,

allowing the server to weave different validation rules to suit each client.  A unique business

relationship between the client and server drives the content of these customized validation

rules, the same type of business/service rules mentioned in Figure 4.7.

Recall from the venue reservation example in Section 4.2.1 that the service-specific

validation rules may prevent clients from reserving the venue on weekends or holidays.  Suppose

the venue owner wishes these rules apply to all his clients except a small handful who are

allowed to reserve the venue on any day.  The flexibility and adaptability of dynamic remote

aspects allows the server to weave any-day validation aspects on the handful of privileged

clients, and work-day-only validation aspects on the rest.  Clearly the work-day-only aspect

contains validation rules that invalidate reservations on weekends and holidays, and the any-day

aspect contains no such rules.

The weaving condition for a custom validation aspect differs from the weaving

conditions examined thus far.  Instead of a frequency-based weaving condition, the validation

aspect weaving is triggered by a client attempting to make a request that is against its rules.  An

unprivileged client that attempts to make a weekend reservation, for instance, triggers the

weaving condition resulting in a work-day-only aspect being woven into its proxy object.  Figure

4.12 highlights a customized weaving condition for the venue reservation example.
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public void reserve(int month,int dayOfMonth,int year) throws RemoteException
{

String clientHost = RemoteServer.getClientHost();
if (isWeekendOrHoliday(month, dayOfMonth, year) &&
    !clientList.getClientInfoByHost(clientHost).isPrivileged()) {

Jac.remoteWeaveAspect("clientApp", clientHost,
    "ValidationAC", "work-day-only.acc");

}

...
}

Figure 4.12  A weaving condition that restricts unprivileged clients to work-day reservations.

Since the behaviour of a validation aspect can be customized for each client, there must be a

mechanism to support different advice for a validation aspect.  One solution is to have different

aspects/advice for each supported custom configuration.  The reservation example has two

configurations (any-day and work-day-only) whose behaviour can be encapsulated in two

separate aspects, say AnyDayAC and WorkDayOnlyAC.  The server simply uses whichever

validation aspect is appropriate for a particular client.

A second solution, alluded to in Figure 4.12, uses the aspect component configuration

(.acc) file to externalize custom configuration options.  This solution only requires a single

validation aspect, ValidationAC, which is configured during its initialization using the

contents of a specific .acc file.  The configuration differences can then be expressed in two

separate .acc files (work-day-only.acc and any-day.acc) rather than two aspects.  In

addition, the validation aspect needs to be enhanced slightly to support multiple configurations. 

Figure 4.13 shows an example of work-day-only.acc, while Figure 4.14 shows the

corresponding methods required in ValidationAC.

restrictDayOfWeek “Saturday” ;
restrictDayOfWeek “Sunday” ;
restrictDate 1, 1 ;
restrictDate 12, 25 ;
restrictDate 12, 26 ;

Figure 4.13 The contents of work-day-only.acc restricts Saturdays, Sundays, January 1 , December 25  & 26 .st th th
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public class ValidationAC extends AspectComponent {
// instance variables save the configuration
private List<String> restrictedWeekdays;
private List<Date>   restrictedDates;

public void restrictDayOfWeek(String dayName) {
restrictedWeekdays.add(dayName);

}

public void restrictDate(int month, int dayOfMonth) {
restrictedDates.add(new Date(month, dayOfMonth));

}
}

Figure 4.14 Two public methods, restrictDayOfWeek() and restrictDate(), must be added to the

validation aspect to support the external configuration file.

As Figures 4.13 and 4.14 imply, the configuration commands and arguments in the .acc files

must have matching method names and arguments in the aspect class they configure.  The

methods themselves are typically used to set instance variables that save the state of the

configuration.  These variables can then be read by the advice code to enforce the configuration,

as in Figure 4.15.  Note that getter methods for these instance variables may be needed to obtain

them from the advice wrapper class.  The code in Figure 4.15 assumes ValidationWrapper

is an inner class of ValidationAC and has access to these variables.

Multiple configuration files can be created for different purposes, such as the work-day-

only and any-day configurations.  The any-day configuration file is empty because it does not

restrict the days when the venue can be reserved.  By referencing a specific configuration file

name in the remoteWeaveAspect() method call, the server can easily customize the

validation rules on a per-client basis.
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public class ValidationWrapper extends Wrapper {
public Object invoke(MethodInvocation mi) throws Throwable {

// extract the date from the method arguments
Object[] args = mi.getArguments();
int month = (Integer) args[0];
int day   = (Integer) args[1];
Date d = new Date(month, day);

// validate arguments using configuration rules
if (restrictedWeekdays.contains(d.getDayOfWeek()))

throw new VenueNotAvailableException();
if (restrictedDates.contains(d))

throw new VenueNotAvailableException();

return proceed(mi);
}

}

Figure 4.15  The advice code uses the saved configuration information to enforce the configuration rules.

4.3 Load Balancing

In the context of client-server communication, load balancing is the process of distributing client

requests evenly over a set of physical servers, collectively known as a server farm.  Load

balancing prevents any one server from becoming overloaded with client requests and attempts to

find an optimal use for server resources.  A load balancer also balances server load dynamically if

a physical server is added to or removed from the server farm.

Load balancing techniques are well established in modern servers, and a typical load

balancing architecture is shown in Figure 4.16.  The load balancer intercepts all client requests

and delegates the request to a physical server in the server farm.  When the server has prepared a

response for the client, it sends the response to the load balancer who in turn sends it to the

appropriate client.

Figure 4.16 The traditional load balancing architecture.  All requests and responses pass through the load balancer.



53

The distributed aspect-oriented framework proposed in this thesis provides a novel way to

approach the load balancing problem.  Instead of service requests and responses being routed

through the load balancer, the routing can be relocated to the client’s RMI proxy object via a

remotely distributed, dynamically woven aspect.  

This new architecture, depicted in Figure 4.17, requires the load balancer to configure and

distribute client-side aspects that modify the client proxy.  By dynamically modifying the server

target of a client’s remote method invocation, the load balancer controls which clients call which

servers and can therefore implement a load balancing strategy.

Figure 4.17 shows how load balancing is achieved in seven chronological steps:

1. A client makes a request to the server, which is handled by the load balancer.

2. The load balancer uses its server farm status and load information to determine the

physical server that is best able to serve the client and forwards the request to that server. 

3. The server handles the request and returns a response to the load balancer.

4. The load balancer weaves a load balancing aspect on the client’s proxy object that

redirects service requests to the chosen server.

5. The load balancer forwards the server response from step #3 to the client.  The load

balancing aspect woven in step #4 does not take effect on the client until after this

response is received.

Figure 4.17 The revised load balancing architecture.  Client-side aspects remotely woven by the load balancer

redirect subsequent service requests from a client to a physical server in the server farm.  The steps 1-7 indicate the

chronological order of events.
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6. The load balancing aspect causes subsequent requests to be sent directly to the chosen

physical server, bypassing the load balancer entirely.

7. Responses are sent from the physical server directly back to the client, also bypassing the

load balancer.

The main difference between these two architectures is the role of the load balancer.  In the

original architecture (see Figure 4.16) the load balancer is a server-side proxy that acts as a

demultiplexer for service requests.  In the revised architecture, the load balancer is used as a

bootstrap mechanism to get a client communicating with the appropriate server.  The advantages

and disadvantages of this revised architecture are discussed in Section 4.3.3.

4.3.1 Load Balancing Aspect

The load balancing aspect differs from the caching and validation aspects in a significant way. 

The caching and validation aspects both decide whether to proceed with a remote method

invocation or handle the remote call locally, but regardless of this decision the server target of the

remote method never changes.  Conversely, the load balancing aspect always proceeds with the

remote method invocation, and may change the server target.

The easiest way to target a specific server is to include an instance of its client-side stub in

the load balancing aspect.  The aspect’s advice then simply calls the remote method with this stub

instead of the proxy object it is advising.  Figure 4.18 shows a simplified load balancing aspect

that redirects the client’s remote method call using this technique.
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public class LoadBalanceAC extends AspectComponent {
public LoadBalanceAC() {

pointcut(".*", "LoadBalancer_Stub", "factorial(int):int", 
   new LoadBalanceWrapper(this), null);

}
}

public class LoadBalanceWrapper extends Wrapper {
private MathOps targetStub; 

public LoadBalanceWrapper(AspectComponent ac) {
       super(ac);
    }

    public Object invoke(MethodInvocation mi) throws Throwable {
    Object[] args = mi.getArguments();

int num = (Integer) args[0];
return targetStub.factorial(num);

    }
}

Figure 4.18 The load balancing aspect redirects remote method calls to a different server target.

The load balancing advice (the body of LoadBalanceWrapper.invoke() in Figure 4.18)

first extracts the remote method arguments from the MethodInvocation object, then uses

them in the remote method call to the new server.  The value of targetStub is set by the load

balancer when it instantiates and configures the load balancing aspect, but the methods

supporting this configuration are omitted from Figure 4.18 for simplicity.

Another noteworthy element of Figure 4.18 is the LoadBalancer_Stub class

reference in the pointcut definition.  Recall from Figures 4.16 and 4.17 that clients know only

about the load balancer and are ignorant of the physical servers in the server farm.  When a client

first uses the service it contacts the load balancer, and therefore must be using the load balancer’s

stub class.

A more complex load balancing strategy could involve the load balancing aspect having

stubs to all the physical servers in the server farm, and alternating among them for different

remote method calls.  This effectively spreads the remote method calls from a single client

among the available servers, balancing load by a somewhat different approach.  JAC’s library

happens to contain a load balancing aspect that works in this way, and supports both a round-

robin selection pattern and a random selection pattern.  This aspect needs to be reconfigured
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whenever a physical server is added to or removed from the server farm to keep the advice up to

date with the server farm status.

4.3.2 Load Balancer

The load balancer is responsible for distributing load evenly across the available servers in the

server farm.  Technically the load balancer is a well-known, remotely visible object that

implements the same remote service interfaces as the physical servers.  For dynamic load

balancing, the load balancer should be in constant contact with the server farm and have access to

information about server status (online/offline, up-time, etc.) and load statistics (request

frequency, duration of service, CPU usage, etc.).

Since the load balancer implements a service interface it must contain the same service

methods as the physical servers.  Figure 4.19 shows a possible service implementation for the

load balancer, using the factorial() remote method in the MathOps service interface as an

example.  This implementation does not compute any factorial values whatsoever since that task

falls to the server farm and not the load balancer.

public class LoadBalancer implements MathOps {
public int factorial(int num) throws RemoteException {

// assign a server to serve this client
MathOps assignedServer = assign(RemoteServer.getClientHost());
return assignedServer.factorial(num);

}
}

Figure 4.19 When a client first uses the remote service, the load balancer assigns it a server then delegates the request

to the assigned server.

Most of the work in Figure 4.19 is done in the assign() method, which finds the most suitable

server for the client.  Many factors can determine which server is most suitable but ideally the

assign() method should choose a server with the least current load, using status information

and statistics from the server farm to help it make an informed assignment.  Consider a simple

example where the most suitable server is the one currently serving the least number of clients,

and the load balancer can query each physical server to retrieve the number of clients it is
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currently serving via a call to getClientCount().  Figure 4.20 shows the assign()

method implemented with this criteria.

This assign() method first iterates through a list of its servers and finds the one that is

least busy.  Then it retrieves the URL of a preset aspect configuration file for the least busy server

and uses that configuration file along with the client host to weave a load balancing aspect on the

client’s proxy object.  Finally, the least busy server is returned to the caller.

Any subsequent calls from the client are intercepted by the client-side load balancing

aspect and redirected to the least busy server.  As long as the load balancing aspect is advising the

client’s proxy, the client will continue to use the physical server assigned to it.  If the client

application resets or otherwise loses its load balancing aspect, the default behaviour of the proxy

reestablishes itself and the load balancer once again gets called.  This triggers another process of

finding the least busy server and weaving the load balancing aspect back on to the client’s proxy

object.

In Figure 4.20, a separate thread can calculate the least busy server by periodically polling

the load status of each physical server in the server farm and determining which physical server is

least busy.  This process can then update the leastBusyServer variable to reflect this

knowledge.  Synchronization issues involved with writing this variable at the same time it is

being read should be taking into consideration, but are ignored in Figure 4.20 for simplicity.

public class LoadBalancer implements MathOps {
public ServerImpl leastBusyServer;
private List<ServerImpl> servers;
private Map<ServerImpl,String> configurations;

private MathOps assign(String clientHost) {
// select aspect configuration that corresponds to chosen server
String configURL = configurations.get(leastBusyServer);

// weave aspect remotely on client
Jac.remoteWeaveAspect("clientapp", clientHost, 

    "LoadBalanceAC", configURL);

return (MathOps)leastBusyServer;
}

}

Figure 4.20 The load balancer assigns the least busy server to a client by weaving a load balancing aspect on the client.
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4.3.3 Advantages and Disadvantages

By removing the load balancer from typical client-server communications an unnecessary relay

can be avoided.  It is advantageous to have the server that handles a client’s requests

communicate directly with the client since response times are delayed with each intermediate

process added to the communication line.

Eliminating the load balancer from client-server communications also has disadvantages. 

One significant benefit of a standard load balancer is fault tolerance.  If a server in the server

farm unexpectedly goes offline, the typical load balancer can compensate immediately by

redistributing its clients over the remaining physical servers.  The load balancer proposed here is

simply a bootstrap mechanism, and is not involved in subsequent client-server communications. 

If a server suddenly went offline, none of its clients would be redirected to other servers because

the load balancer is no longer part of the communication.

Fortunately, there is an aspect-oriented solution to this problem.  The load balancing

aspect shown in Figure 4.16 can contain a try-catch clause around the retargeted remote method

call to detect a ConnectException, ServerException, or any other

RemoteException that indicates a non-responsive server.  The exception handler for such an

event can simply call proceed() to revert back to the proxy’s standard behaviour.  The proxy

would then remotely invoke the load balancer causing it to find a more suitable server, and have

the load balancer re-weave the load balancing aspect with a different configuration.  Figure 4.21

shows the load balancing advice enhanced to support fault tolerance.
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public class LoadBalanceWrapper extends Wrapper {
private MathOps targetStub; 

public LoadBalanceWrapper(AspectComponent ac) {
       super(ac);
    }

    public Object invoke(MethodInvocation mi) throws Throwable {
    try {

Object[] args = mi.getArguments();
int num = (Integer) args[0];
return targetStub.factorial(num);

}
catch (RemoteException e) {

return proceed(mi);
}

    }
}

Figure 4.21 Load balancing advice with fault tolerance.  If targetStub.factorial() fails then try the original

target.

A similar technique can be used by the physical servers to shed server load.  If a server overloads,

it can remotely unweave the load balancing aspect on some of its clients, causing those clients to

stop calling the overloaded server and start calling the load balancer instead.  The load balancer

then remotely re-weaves a load balancing aspect on the clients to redirect them to a more capable

server.

This technique can be streamlined by maintaining a session on the load balancer for each

client, where we define a session as a sequence of individual remote method invocations that

constitute a single, logical request.  A server may hold state for the duration of a session, so it is

best to direct the individual requests to the same server.  When the session finishes the load

balancer can designate a different server for the next session.

4.4 Overhead Measurements

This section is taken from a conference paper submission [20] co-authored by Steve MacDonald.

This section evaluates the overheads associated with the use of dynamic server-side aspects on

load balancing.  These overheads were measured using a set of microbenchmarks that consisted
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of three processes (client, balancer, and server) running on three separate machines connected by

a 100 Mbit per second network.  The client invokes a remote method that is handled using

the strategy in Figure 4.17. The remote method does not take any arguments, has no return value,

and an empty method body, so the results presented here represent just the overhead introduced

by the dynamic distributed aspects in JAC.

As a baseline, the performance of the first load balancing strategy given in Figure 4.16

was measured, where all requests must be forwarded through the balancer before being directed

to an appropriate server.  From the perspective of the client, requests take an average of 0.51 ms

per round trip. Note that this time represents a lower bound since the balancer manages a single

server and does not have to make any decisions to balance the load. The request is simply

forwarded to the server.

The first assessment was the overhead of the first request by the client, which requires the

balancer not only forward the request to the server but also weave advice into the client. From the

perspective of the client, this first requests takes an average of 5.64 ms.  Note that the advice was

unwoven between successive calls to avoid any additional overhead that may accumulate by

repeatedly weaving advice on the same join point. To reduce the overhead of this weaving, it was

done by a separate thread that runs while the balancer forwards the method invocation to a server.

After the first request, the advice woven at the client proxy forwards all subsequent

requests directly to the server without involving the balancer. This avoids the overhead of an

extra exchange of messages, but incurs the overhead of invoking advice woven on the client

proxy. Some aspect-oriented constructs can incur a significant performance penalty in ways that

are not obvious [5].  In particular, around advice may include closure objects, which are

expensive to create and use. The use of proceed() to invoke the code for a join point has

unusual polymorphic properties that can be expensive to evaluate at runtime, and JAC uses Java

Reflection which can be expensive. However, the balancing advice replaces the client proxy code

rather than invoking it. Since proceed() is not called, some of this overhead should not be

present.

To assess the overhead of the advice at the client proxy, the cost of a remote method

invocation with an advised proxy and the cost of normal remote method invocation directly from
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client to server were both measured. These two measurements indicate the overhead of applying

aspects to the client proxy. From the perspective of the client, the cost of a remote method with a

balancing aspect was measured to average 0.357 ms per requests, which was identical to a round

trip with an unadvised proxy. The advice adds no appreciable overhead to the execution of the

proxy on the client.

The dynamic aspect-oriented load balancing strategy, which allows requests to be sent

directly to a server after the first request, cuts 0.153 ms from each request, a savings of 30%. 

However, this does come at the cost of weaving, which takes 5.64 ms in JAC.  This requires

clients to forward 44 requests to a given server to make up for this extra cost.  Again, though, this

represents a lower bound since the experimental setup did not include any scheduling decisions,

computations, or significant data transfer for method arguments and return values.  In a more

realistic environment, this number is expected to be lower.  In particular, given that remote

methods are normally large-grained to make up for communication overhead, this weaving

process can be overlapped with the execution of the method and may impose little overhead in

overall execution.  For requests that benefit greatly from server affinity, this approach may be

best even with its overhead.

4.5 Summary

This chapter demonstrates several practical applications of client-side enhancements and some of

the benefits when they are provided dynamically by the server.  Caching, validation, and load

balancing are already well-known and widely used techniques in distributed systems, but the

dynamic aspect-oriented framework realizes these client-side enhancements in a new way by

giving them access to changing server knowledge at runtime.

Despite the variety of practical uses for this framework, each example has the goal of

reducing unnecessary network traffic between the client and server.  The measurements

performed on the overhead of JAC with the load balancing example indicate that performance

savings are possible if sufficient remote method invocations are performed to recoup the

overhead losses of remotely weaving aspects from the server on the client.  Other framework uses
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such as customizable business rules and client-side caching that adapts to constantly changing

server state offers advantages besides performance.

Chapter 5 investigates other techniques and frameworks that can be used instead of a

dynamic aspect-oriented solution, and compares their advantages and disadvantages to those

presented in this thesis.
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Chapter 5:  Related Work

Recall from Chapter 2 that an RMI client has no knowledge about the internal state of the server

because the RMI specification promotes a loose coupling between client and server.  This lack of

server knowledge limits the ability of the client to make informed and intelligent decisions that

can lead to a more efficient communication channel with the server.  To address this problem,

this thesis presents methods and technologies that can create a “smart” client in a distributed Java

application.  This chapter explores other methods or technologies that provide a similar solution,

and compares their advantages and disadvantages in light of the goals mentioned in Chapter 1.

5.1 Statically-generated Proxy

The most straightforward solution to the client-side enhancement problem is for the server

developer to provide a statically generated proxy class to the client that contains code for a client-

side enhancement.  This code could be distributed in a library that the client application

developer would have to explicitly invoke, or by enhancing the contents of the RMI stub that the

client retrieves from the RMI registry.

The main advantage of the statically-generated proxy is its simplicity, since neither the

client developer nor the server developer needs to learn and implement new software

technologies, frameworks, or languages.  In addition, RMI’s loose coupling between client and

server remains intact giving the server the freedom to change its implementation without

worrying about its effects on the client.

Unfortunately this solution falls short of two thesis goals.  First, the client application

code ideally should not need to be aware of the communication enhancements provided by the

server.  Using server libraries or custom proxy classes in the client application intrudes on the

client’s core concerns and introduces extra code that becomes tangled with those concerns. 

Furthermore, client application developers are not oblivious of changes to the client-side

enhancements because they may be required to use a new library or a new stub class in their code.
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The second thesis goal is to apply client-side enhancements dynamically, without halting,

recoding, or recompiling the client application.  The statically-generated proxy technique fails

this objective because the client application may need to be halted and possibly altered and

recompiled in order to use new functionality provided by the server.  Dynamic behaviour changes

can be migrated from server to client through the use of a Strategy object [1] on the client, but

this solution is difficult to manage, requires extra communication between server and client to

coordinate the strategy, and can be intrusive to the client application.

One significant thesis goal that this model achieves is the use of server knowledge.  Since

the proxy class is written by the server developer, it is possible for the client-side enhancement to

leverage information about the internal state and implementation details of the server.  However

once the proxy is distributed to various clients, the server’s state or implementation may change,

causing the server knowledge contained in the client-side enhancement to become outdated.  This

may be acceptable if the server’s state or implementation rarely changes, but in a rapidly evolving

server environment a more adaptable solution is needed.

The most significant drawback of a statically generated and manually distributed client-

side enhancement is its inability to adapt quickly in a dynamic environment.  Contrast this to a

client-side enhancement that can be generated by the server on the fly and immediately delivered

to clients and take effect instantly.  The dynamic distribution of client-side enhancements clearly

has the advantage and provides more flexibility and faster adaptability.

5.2 Fragmented Object Approach

Kapitza et. al. [8, 9] propose a related idea that uses object fragments, also implemented in the

context of Java RMI.  Their framework, FORMI, extends RMI call semantics and protocols to

implement a fragment-oriented model.  This model allows an object’s state and functionality to

be partitioned into fragments, with each fragment existing on a potentially different host in the

distributed system.  Each object fragment exposes the object’s interface, but inter-fragment

proxies are used to access object state and functionality that does not exist in the local fragment.
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FORMI is relevant to this thesis because both distribute logically related functionality

among different hosts, and thus share many common goals for an RMI application.  In particular,

Kapitza et. al. emphasize the use of fragments as smart proxies:  

“In another scenario, the fragment on Node 1 may act as a smart proxy...those can support

caching mechanisms to reduce communication, or they may send method invocations to a

group of replicas in order to balance load or mask faults.” [8] 

This thesis adopts a similar philosophy, as shown by the caching and load balancing examples in

Chapter 4.  Although both technologies use smart clients to improve communication, this thesis

proposes a distributed dynamic aspect-oriented model to migrate functionality whereas FORMI

uses a fragment-oriented model.

FORMI supports the dynamic migration of functionality among fragments, shown in

Figure 5.1, analogous to the remote dynamic weaving described in Chapter 3.  When one

fragment exists on the server and another fragment on the client, the server can dynamically

change the client fragment’s implementation, achieving the same effect as a remotely woven

aspect.  

This dynamically adaptable solution satisfies one of the thesis goals because FORMI can

make the server’s implementation and state details available to the client.  This additional server

knowledge is a significant advantage over a standard RMI solution where the client is denied

access to internal server information, an advantage that FORMI shares with other dynamic,

distributed aspect-oriented frameworks like JAC.

Figure 5.1  FORMI allows an object’s functionality to be

fragmented across multiple nodes. [8]



66

In addition to allowing client-side enhancements to migrate from server to client, FORMI ensures

that the client application is oblivious to this migration by managing the fragment proxies and

inter-fragment communications in the background.  This satisfies the thesis goal of obliviousness

because each host in the distributed software assumes its object fragment contains the object’s

entire state and behaviour locally.  It should be noted that FORMI uses special interfaces in the

application code to access fragments, so complete obliviousness is impossible because the client

application source code would have to change from its vanilla RMI version to support FORMI.  

More specifically, FORMI fragment stubs are generated through a special fragment

factory that alters the marshalling mechanism of a typical Java RMI stub to provide an extra layer

of indirection.  The use of special FORMI libraries and interfaces to create and use fragments is

intrusive to the client application code, and goes against the obliviousness goals set out by this

thesis.

One goal that FORMI does achieve is the dynamic distribution of server knowledge to

clients, because the implementation of a fragment can change at run time.  A dynamic fragment is

significantly more complex for the object developer to program than a static fragment, but it is

still possible.  However, the FORMI framework again imposes on the development of client

applications by requiring fragment remote references to subclass FORMI classes and use a

custom stub generator tool.  Specialized development tools and libraries may make the FORMI

approach longer to learn and implement for client application developers than the solution

proposed here.

The separation between the application and inter-fragment communication layers allows

FORMI to maintain the loose coupling between client and server established by RMI.  The key to

keeping the fragments loosely coupled lies in FORMI’s ability to migrate functionality

dynamically, and the transparency of the inter-fragment communication needed to make the

migration work.
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5.3 D: A Language Framework for Distributed Programming

D [13] is an aspect language framework to define concurrency and remote access strategies in

distributed object-oriented programs.  D regards thread concurrency and copy semantics for

remote methods as crosscutting concerns of a distributed application, and attempts to encapsulate

these concerns in two new languages, Cool and Ridl.

Since concurrency in Java is typically achieved with synchronized blocks embedded

throughout the functional code, D views these blocks as a secondary concern tangled with the

core concern, and attempts to externalize these concurrency rules into a separate aspect language

called Cool.  Accordingly, D acts upon a language called Jcore, a subset of Java whose major

omission is the synchronized keyword and related structures.  Cool is a small language that

provides coordinators, structures that can group a class’s methods into two types of sets: self-

exclusive and mutually-exclusive.  A method in the self-exclusive set prevents two different

threads from calling that method at the same time.  Conversely, if one thread is calling a method

in a mutually-exclusive set, no other thread may call a different method in the same mutually-

exclusive set.

In Java RMI, remote method arguments are passed by copying the data for each argument. 

For an object-based data structure like linked lists or trees, the entire structure is copied by deep

copying the “head” object.  Ridl is a language designed to give the programmer more control over

which parts of the remote arguments should be copied.

The rules defined in both Cool and Ridl are enforced by an aspect weaver that pre-

processes the Jcore source code and generates Java structures at the appropriate join points.  D

does not need a separate pointcut language because the join points are already well-defined for

both Cool and Ridl.  The aspect weaver outputs a valid Java program that can be compiled with a

standard Java compiler.

D is useful for the distributed concerns of concurrency and remote access strategies, but it

is not powerful enough to encapsulate a generic distributed crosscutting concern.  Client-side

enhancements could not be written in D because there is no way for the programmer to define a

join point in the proxy object or the advice that should run there.  D uses a preprocessor to weave
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its aspects, requiring it to be done before compilation.  An application programmed in D needs to

be halted, changed, rewoven, recompiled, and restarted to alter its behaviour, ruling out a

dynamic weaving ability outlined in the thesis goals.  D is a good framework for the problems it

is designed to solve, but it is unsuitable for client-side enhancements provided dynamically by the

server.

5.4 Remote Pointcuts

The benefits of describing program crosscutting concerns using aspect-oriented programming

quickly led programmers to wonder if this benefit could be extended to a distributed program. 

The obvious way to test this is to take an existing well-established aspect-oriented language like

AspectJ and extend its functionality to support distributed crosscutting concerns, which is

precisely what DJcutter [15] does.

DJcutter is based on the AspectJ language, and uses the AspectBench Compiler (abc) [1]

framework to introduce the new pointcut predicate hosts(hostId,...).  The hosts()

predicate takes one or more arguments, each identifying a host on the network.  Used in

conjunction with the standard AspectJ pointcut predicates, hosts() can narrow the pointcut

scope to match join points on specific hosts.  Figure 5.2 shows how RMI proxies on client1

and client2 could be targeted in DJcutter.

pointcut clientProxies(): execution(public * *_Stub.*(..)) &&
hosts(client1, client2);

Figure 5.2 Pointcut declaration in DJcutter for the execution the proxy methods on client1 and client2.

The execution(public * *_Stub.*(..)) predicate identifies execution join points for

public methods in classes whose names end with “_Stub”.  The hosts(client1,client2)

predicate, introduced by DJcutter, restricts the matching join points to those that reside on

client1 or client2.

All aspects in DJcutter are stored on a single host designated the aspect server.  DJcutter

automatically distributes aspects from the aspect server to the other hosts in the distributed
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system, where classes are modified when they are loaded into the local Java virtual machine.  The

classes that are modified at load-time depend on the pointcuts of aspects known to the aspect

server.  When a join point event occurs that matches a join point declaration, a remote signal is

sent to the aspect server, where the corresponding advice is executed.  The advice for these

remote pointcuts are always executed on the aspect server, not on the host where the join point

originated.  Using the example from Figure 5.2, when a proxy method is invoked on client1 or

client2 the corresponding advice is executed on a third host, the aspect server.

There are three characteristics of DJcutter that are consistent with the goals of this thesis. 

The first is that DJcutter can be used by an aspect residing on the server to detect an event on the

client such as an RMI proxy method invocation.  Splitting the functionality of an aspect between

two remote hosts is essential for this solution to work.  The second characteristic of DJcutter that

supports the thesis goals is its non-intrusiveness to the client application.  The client application

source code does not need to include new libraries, alter the way it uses RMI, or otherwise

change in any way.  It would need to run under a DJcutter container or framework, but this is a

reasonable requirement.  Third, DJcutter does not break the loose coupling between client and

server provided by RMI because the internals of the server implementation remain hidden from

the client.  An additional advantage that DJcutter has over other approaches is its similarities to

AspectJ, an existing well-established, popular, and well-supported aspect-oriented programming

language.

There are two limitations of DJcutter that do not meet with thesis goals and make a

solution for dynamic client-side enhancements impossible.  The first and most significant

limitation is DJcutter’s inability to execute advice on a remote host.  Since all advice is executed

on a single host, the aspect server, writing advice to enhance the client proxy object is impossible

with DJcutter.  The second limitation is DJcutter’s lack of dynamic (run-time) weaving.  DJcutter

only supports load-time weaving, meaning that all client-side enhancements would have to be

ready on the aspect server prior to the client application loading.  The lack of dynamic weaving

prevents the server from weaving and unweaving client-side aspects at runtime, restricting the

flexibility and adaptability of the distributed application.  
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Although DJcutter has some benefits for aspect-oriented programming in a distributed

environment, it ultimately only supports distribution for one half of the aspect-oriented paradigm:

remote pointcuts but not remote advice.  Since the execution of remote advice is necessary to

implement client-side aspects, DJcutter alone is not suitable to solve the problems presented in

this thesis.

5.5 Aspects With Explicit Distribution (AWED)

One of the more comprehensive aspect-oriented languages with support for distributed aspects is

AWED [14], an abstract language that describes a general syntax for distributed advice and

pointcuts.  Although a concrete implementation of AWED is provided in Distributed JAsCo [22],

an extension to the aspect-oriented language JAsCo, this section focuses on AWED instead of

Distributed JAsCo because AWED can conceivably be incorporated into any existing aspect-

oriented language.

AWED has a very AspectJ-like grammar, in particular with its pointcut language and

advice definitions.  However AWED has three notable features that distinguish it from a non-

distributed aspect-oriented programming language: remote pointcuts, distributed advice, and

distributed aspect states.  Remote pointcuts and distributed advice allow the programmer to

specify a unique host for join point matches and advice execution respectively, and a distributed

aspect is capable of maintaining a consistent state even if deployed across multiple hosts.

Remote pointcuts are realized by a new pointcut predicate host(), which takes one

argument specifying the host or group of hosts where the join point is located.  For example,

host(localhost) indicates all join points on the local host, and host(“192.168.1.100”)

indicates all join points on 192.168.1.100.  Hosts can also be grouped together logically and

assigned a group identification string, which can then be used to indicate all hosts within the

group, such as host(“AllClients”).  The host() predicate can, as usual, be combined

with other predicates using the && and ! operators to further narrow the scope of the join point

set.
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Similarly, distributed advice is implemented with the new pointcut predicate on(),

taking one argument that indicates the host on which the join point event occurs.  Like the

host() predicate, this argument can be localhost, a host literal, or a group id.  The on()

predicate tells AWED where to execute the associated advice, and can be a completely different

host than the join point’s host.  For instance, the on() predicate can be used with a group id to

manage replication across hosts in a logical group.  A special argument called jphost indicates

the host of the join point matched by the current pointcut, and can be used by the on() predicate

to indicate that the advice should execute on the same host as the join point.

For example, consider the pointcut declaration in Figure 5.3.  The 

execution(public * get*()) && host(“AllClients”) part tells AWED to

match all getter method join points on hosts that are members of the AllClients group, and the

!on(jphost) part indicates that the associated advice should be executed on all hosts except

the host where the aforementioned pointcut matches.  In other words, whenever a host in the

AllClients group runs a getter method, the advice executes on all the other clients.

pointcut clientGetters(): execution(public * get*()) && host(“AllClients”)
&& 

!on(jphost)

Figure 5.3  A pointcut in AWED demonstrating the use of the host() and on() predicates.

This separation of join point event and advice execution is a significant departure from traditional

aspect-oriented languages where advice is thought to be woven directly before, after, or around a

particular join point.  This notion breaks down somewhat in a distributed environment where

advice can execute on a different host than the join point, but the added flexibility provided by

the separate host() and on() predicates makes for a powerful tool in distributed aspect-

oriented software design.

Many aspect-oriented programming languages, following AspectJ’s example, allow an

aspect to declare variables that define its state, analogous to how static variables in Java define a

class’s state.  This is straightforward in a non-distributed aspect-oriented environment because

the state can be stored in local program memory, but when one aspect is deployed to multiple

hosts, each with its own memory space, the aspect’s state can become unstable if it is
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desynchronized on different hosts.  To solve this, AWED synchronizes the states of shared

aspects automatically and provides field and aspect modifiers that let the programmer customize

the scope of aspect state sharing (e.g. globally, locally, by group, etc.).

AWED meets or exceeds the all of the goals set out by this thesis, assuming that it is

realized in a concrete language based on Java-like syntax.  In the context of server-client

communication and client-side enhancements, AWED allows client-side enhancement to use

server-level knowledge without disrupting the loose coupling between client and server.  It can

accomplish this the same way JAC does, by executing advice remotely on the client’s RMI proxy

object.  In fact, JAC’s distribution features are a subset of those provided by AWED, especially in

terms of remote pointcut flexibility.  JAC can send an aspect to be woven at a remote host, but

the aspect’s pointcut and advice only apply to that host.  AWED has the ability to specify both

join point host and execution host, neither of which need to be the local host, and so offers a

more versatile distributed solution.

Any disadvantages of an AWED implementation would likely arise from its rich

distributed aspect functionality since it supports the distribution of pointcuts, advice, and aspect

state.  JAsCo, for example, uses a very different aspect-oriented design compared to AspectJ, and

introduces several new language constructs like hooks and connectors to describe its crosscutting

concerns.  Any language that fully implements the features of AWED may take a while for server

developers and client developers to learn.

A significant limitation of the JAsCo implementation investigated here is its inability to

send advice among hosts.  The on() predicate in AWED is implemented as

executionhost() in JasCo, but is only able to execute advice already deployed on a remote

host.  A host must already know about all the advice code it will need to execute because there is

no obvious transport mechanism among hosts for remote advice execution.  Executing arbitrary

advice code from a remote host is not possible with this implementation, as in the case of server-

provided client-side enhancements.

Like JAC, the client must run their application in a AWED-compatible runtime

environment and make the server aware of the client host for remote advice execution to work. 

The client application does not need to be altered or recompiled, and the dynamic execution of
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advice from the server ensures that the client is oblivious to any changes made to the RMI proxy

object.  

5.6 Summary

Many different techniques are available to give clients access to server knowledge, but

occasionally at the expense of loose coupling between the client and server.  The approaches

discussed in this chapter satisfy the thesis goals to varying degrees, and differ in their level of

complexity.

The simplest solution involves distributing a statically-generated server-side proxy to the

client, but this solution has many maintenance drawbacks.  Other frameworks such as FORMI or

D provide an alternate solution to distributed knowledge but still maintain the loose coupling

between hosts in the distributed system.  The tools and technologies most closely resembling JAC

are other dynamic aspect-oriented programming platforms with explicit support for distribution,

such as JAsCo and DJcutter.
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Chapter 6: Future Work and Conclusion

This chapter presents future work based on the work in this thesis, and then presents some

concluding remarks.  The future work includes both technical enhancements for richer features

and versatility as well as additional uses for the distributed dynamic aspect-oriented framework.

6.1 Future Work

The distributed aspect-oriented framework presented in this thesis is flexible, extendable, and

useful for many domain specific problems.  There are several different directions that further

research into this area can take, with a few such ideas suggested in this chapter.  Sections 6.1.1

and 6.1.2 discuss two innovative ways the framework can be adapted to solve generic computing

problems, and Section 6.1.3 explains how JAC’s per-object weaving feature could be leveraged to

give finer control over proxy join points on the client.

6.1.1 Partial Client-side Execution of the Remote Method Implementation

Chapter 4 shows three practical uses of a distributed aspect-oriented framework, but its utility is

clearly not limited to just caching, validation, and load balancing.  For instance, parts of the

remote method implementation can be pushed down to the client via a remote aspect in much the

same way that validation logic is applied in the validation example.  Remote implementation

steps that require server resources obviously need to stay on the server, but independently

executable steps that occur at the beginning or end of the remote method can be moved to the

client by weaving those steps remotely on the client proxy object.

This technique can be used for problems that are difficult to solve in the worst case, but

whose average case is relatively easy to solve.  For example, consider a method that tests an

integer for primality.  Several efficient probabilistic primality tests such as Fermat [4] and Miller-

Rabin [18] exist which can determine if a random integer is prime with a high degree of certainty. 
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The probabilistic primality test can be woven into the client proxy to be performed first, and if

that test fails to determine the primality of the integer then the remote method can be called to

use a deterministic primality test.  Given a random positive integer, the client-side probabilistic

primality test would determine the primality in most situations, and only rare integers such as

pseudoprimes may require that the deterministic primality test on the server be used.

Any algorithms that contain base cases or check arguments for patterns that suggest easier

ways to solve the problem can benefit from migrating these initial steps to the client.  Since most

realistic problems appear under these base cases, the majority of remote service requests can be

handled at the client without performing a remote method invocation.

6.1.2 Predictive Cache

The caching example introduced in Section 4.1 remembers previously computed responses and

uses them when possible.  A predictive cache [3] in this context is a collection of responses

computed by the server and woven on the client, based on the requests the server predicts it will

receive from that client in the near future.  The server is clearly not precognitive, so it must

predict future requests based on the patterns of recent requests.

One obvious pattern to look for is an integer argument value that increments for each

successive remote method invocation.  The server can assume this pattern will continue, and

spawn a new thread that computes the responses for the next 100 consecutive integers.  These

integer arguments and their corresponding responses can be stored in a cache and then sent to the

client via a remote caching aspect.  The client can then perform the next 100 requests very

quickly because the responses are immediately available without needing to call the server.

For a concrete example, consider the factorial(int) method from the original

caching example.  A client that calls the server’s factorial() method inside a loop like that

in Figure 6.1 will generate the remote method calls factorial(0), factorial(1),

factorial(2), ... , factorial(n - 1).  If the server recognizes a pattern by

factorial(2), it can asynchronously compute all the values from factorial(3) to
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factorial(103) and store those values in a cache.  That cache can be included in the caching

aspect sent to the client, who will start using the cached values instead of calling the server.

for (int i = 0; i < n; i++) {
int fact = proxy.factorial(i);
System.out.println(fact);

}

Figure 6.1  A loop in the client application making remote method invocations with a clear pattern.

Another pattern to look for are successive remote recursive method calls.  Most recursive

algorithms reduce the problem size by a known amount for each successive recursive call.  The

problem size may be represented by an integer, an array or list size, or a string length, but these

cases should be easy to recognize and predict if the problem size decreases by a fixed amount for

each recursive iteration.

The more interesting situation is when recursion is used to traverse a data structure such

as a tree.  If the server recognizes a breadth-first traversal pattern from a client it can compute the

values for nodes in the tree X levels deep, where X is a parameter set by the server.  Once these

computed values are encapsulated in a caching aspect and sent to the client, the subsequent

recursive service requests should be very quick because no remote method invocations are

necessary.  Similar predictive caches can be constructed for the various depth-first traversal

patterns, also limited by a server parameter.

Like most predictive technologies, the predictive cache has disadvantages when its

predictions are wrong.  A client making a series of service requests triggering a pattern

recognition on the server but who does not continue the pattern of requests is simply wasting the

server’s time and resources.  The server can spend a lot of CPU cycles computing values that

never get used on the client in this worst-case scenario.  A slightly better scenario is when the

server predicts the correct pattern but underestimates the number of responses to compute.  The

client will exhaust the server-generated cache and continue its request pattern, but reverting to

slow remote method calls for each successive request.  A well designed pattern trigger will once

again recognize the request pattern, precompute the next batch of responses on the server, and

send the new cache to the client by remote aspect.
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The benefits of reduced remote method invocations needs to be balanced against the

disadvantages of wasted CPU cycles on the server.  There is ample room for further research by

tweaking the server’s limiting parameters and pattern recognition algorithms to optimize the

benefits of predictive caching.  Since the client application, like all programs, spends the majority

of its execution time in loops or recursion, reducing the number of remote method invocations

needed for successive related operations is extremely beneficial, and is something that cannot be

solved by typical caching or any of the other examples described in this thesis.

6.1.3 Proxy-specific Advice Distribution

One limitation to the remote aspect weaving proposed thus far is its inability to distinguish

between different proxy instances of the same class running on a client.  JAC supports dynamic

weaving on a per-object basis through the first parameter of the pointcut() method, a feature

that suggests a specific proxy object can be advised separately from another proxy instance on the

same client.

All the examples shown in this thesis supply an argument of “.*” for the first

pointcut() parameter, meaning all proxy instances are advised.  The join points selected by

this pointcut can be narrowed to a single proxy object by replacing “.*” with a unique JAC

object identifier.  This identifier is a string with two parts, separated by a hash (“#”) character. 

The first part is the name of the object’s class in lower case without the package prefix, and the

second part is an index that uniquely identifies the object to JAC.

An object’s index can be retrieved using the static getMemoryObjectIndex(obj)

method from the ObjectRepository class, where obj is the object in the JAC system. 

Suppose this method returns a value of 2 when it is called on an instance of the

Calculator_Stub class.  The corresponding identifier for this proxy object, used in the

pointcut() definition, is “calculator_stub#2".

The problem is that proxy indices are only accessible from the client, but are needed at the

server because the aspect, and thus the pointcut, originates on the server.  The client somehow

needs to make its proxy identification information available to the server to allow a finer
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granularity of control over the client proxy objects that are affected by remote aspects woven

from the server.

The first solutions that come to mind require the active cooperation of the client

application, sacrificing the obliviousness of the client and one of the main goals of this thesis. 

The client would no longer be operating with the ignorance of server-woven aspects, but would

be directly participating in the process in which proxies are advised.  This sacrifice may be

required to provide a proxy-specific advice weaving feature to the distributed system.  Another

possibility is making the index available through the RMI request itself.  This solution may

require custom RMI sockets on the client and server, again breaking the obliviousness and non-

intrusive goals set out by this thesis.  

The use of custom sockets opens up many other possibilities as well since the framework

has access to the transport layer of the RMI stack.  For instance, when remotely weaving on the

client proxy object, the remote aspect can be piggybacked on the Java RMI response that the

server returns to the client.  Since a key objective of this framework is to reduce the quantity of

messages sent between the client and server, combining remote aspects with the server response

message is consistent with this objective.  Server knowledge data can also be placed in the RMI

layer unbeknownst to the client application developer, allowing the statically-generated proxy

solution described in Section 5.1 to work without the corresponding complications involved with

maintaining a Strategy object.

6.2 Conclusion

The information resources and services that our society takes for granted relies on a vast

distributed software infrastructure composed of servers that provide services and clients that

consume those services.  Given the prevalence of client-server communication, research that

investigates ways to improve or enhance these communications is important and widely

applicable.

This thesis examined client-server communication in the context of Java RMI, and in

particular investigated a solution to the problem of supplying sufficient server knowledge to the
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client while still keeping the server and client loosely coupled.  Treating remote communication

efficiency as a software concern of the distributed system allows the tools and ideas of aspect-

oriented software development to be part of the solution.  

Remote communication efficiency differs from typical software concerns because it

crosscuts not just program modules, but also physical computers in a network.  An aspect-

oriented programming framework with distribution support is needed to encapsulate and

propagate this type of crosscutting concern in a distributed setting.  Java Aspect Components

(JAC) was  chosen to fill this role because it is a Java-based aspect-oriented programming

framework that supports remote advice execution and dynamic weaving.

The central idea behind the solution proposed in this thesis is to shift the burden of

developing useful client-side enhancements from the client to the server.  Aspects that represent

client-side enhancements are created on the server and then remotely woven into the Java RMI

proxy object on the client so they are executed when the client makes a remote call.  The aspects

are woven dynamically, which changes the behaviour of client proxy objects at runtime and

allows for a highly flexible and adaptable solution.  The server controls the content of the advice,

the conditions under which the aspect is woven, and the specific clients it wishes to advise.

6.2.1 Thesis Goals and Benefits

In the introductory chapter, Section 1.2, four goals were specified that describe the desirable

characteristics of a solution to the server knowledge sharing vs. loose coupling problem.  The

distributed dynamic aspect-oriented solution proposed in this thesis satisfies all four of these

goals:

1. Make server context available to the client.  This goal is achieved through the use of

remote aspects.  The server, which clearly has knowledge of its own state and internal

implementation, produces the aspect’s advice that modifies the client proxy object.  The

server context is made available on the client by weaving this advice remotely on the

client.
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2. Obliviousness of the client application layer.  Client obliviousness is maintained

because the remote aspects are woven dynamically on the Java RMI proxy object rather

than into the client application itself.  Since remote aspects in this solution only change

the behaviour of proxies, the client application can continue using those proxies in exactly

the same way without any idea that their behaviour may have changed.  Dynamic weaving

and unweaving of remote aspects allows the Java RMI proxy behaviour to be altered

without the knowledge of the client application.

3. No changes to existing client application code. The distributed dynamic aspect-oriented

solution is unobtrusive to the development cycle of the client application.  No changes

need to be made to the source code, referenced program libraries, or the build and

compile tools.  The only change required on the client is to run the client application

inside a JAC container, which simply requires a slightly different command to run the

application.

4. Dynamic sharing of server context.  The proposed solution uses JAC, an aspect-oriented

framework with built-in support for dynamic code weaving.  This allows server context to

be shared dynamically because the aspects that make use of server-side state and

implementation knowledge can be woven on the client at runtime.  The server has

significant runtime control over the client proxy behaviour because it can also

dynamically unweave aspects or weave multiple aspects on a single client to realize

several client-side enhancements at once.

Since the purpose of dynamic client-side enhancements are to make client-server

communications more efficient, the measurable benefits of this solution typically involve

eliminating unnecessary remote method calls from the client to the server.  This speeds up the

execution of the client application because requests handled on the client are much faster than



81

invoking a remote method.  Eliminating unnecessary remote calls also reduces overall network

traffic and unburdens the server so it can serve other clients with relevant requests.

The degree of control given to the server by the framework has other benefits, such as the

ability to provide custom enhancements to clients individually.  A client’s relationship with the

server may be unique, so a custom aspect can be woven only on that client to reflect this unique

relationship.  Examples of client-side enhancement customization may include redirecting VIP

clients to a faster, more powerful server; or making the validation rules more stringent for an

untrustworthy client.

6.2.2 Relevance to Practical Problems

The flexibility of the distributed dynamic aspect-oriented solution is emphasized throughout this

thesis, and the proposed framework can be adapted to many different domains to address a

variety of problems.  In Chapter 4, three practical client-side enhancements were introduced and

implemented in the framework to demonstrate its potential uses.

The caching example is a widely used technique to reduce repetitive and redundant

processing.  When applied to client-server communications, it eliminates unnecessary remote

method invocations to improve performance.  The biggest problem with most client-side caching

mechanisms is its lack of intelligent cache policy.  The client does not know how the data on the

server changes over time, making it difficult to select the most appropriate cache policy.  The

server, which does have this knowledge, needs to make the best cache policy available to the

client to yield the optimal caching mechanism.  The problem of making this cache policy

available without compromising the loose coupling between client and server is solved by the

framework proposed in this thesis.

The caching example may be extended to include predictive intelligence on the server that

analyses client request patterns, predicts future requests, and pre-computes corresponding

responses.  These request-response pairs can be encapsulated in an aspect and woven, via a

caching aspect, on the client.  Any subsequent client requests that were correctly predicted can be

retrieved from the local cache on the client proxy without requiring a remote method invocation.
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Method argument validation is another well-known technique to eliminate unnecessary

method calls.  The validation rules are similar to method preconditions, ensuring that certain

conditions about the arguments are met before the method is invoked.  The problem with typical

precondition engines is that the validation rules are bound to the method implementation and

defined statically.  The loose coupling between client and server allows the server

implementation to change without affecting the client, but changing the server implementation

may also change the method preconditions.  Proper client-side validation must make use of the

current server-side preconditions, so there needs to be a way of sending the server-side

preconditions to the client without exposing the server implementation.  Dynamically woven

remote validation aspects provide the solution to this problem.

The load balancing example modifies the client in a slightly different way than caching

and validation, and highlights the flexibility of this framework.  Instead of controlling whether or

not the remote method gets invoked, the load balancing example control which remote method

gets invoked.  More specifically, it alters the client proxy object to redirect the remote call to

different servers.  A load balancer uses this ability to distribute the load of client requests among

resources in a server farm.  The advantages of this load balancing mechanism over typical server-

side load balancing is direct client-to-server communication.  Typical load balancing requires all

requests and responses to be routed through the load balancer, introducing additional overhead

and communication traffic.  The distributed dynamic aspect-oriented framework eliminates this

middle-man in the communication channel, unbeknownst to the client.



83

Bibliography

[1] ajc, the AspectJ compiler/weaver, 2005.  12 Feb 2008.

http://www.eclipse.org/aspectj/doc/released/devguide/ajc-ref.html

[2] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble.  abc: An Extensible AspectJ Compiler.  In

Proceedings of the 4  International Conference on Aspect-Oriented Software Development,th

pages 87-98.  ACM Digital Library, 2005.

[3] P. Cao, E. W. Felten, A. R. Karlin, and K. Li.  A study of integrated prefetching and

caching strategies.  In Proceedings of the 1995 ACM SIGMETRICS Joint International

Conference on Measurement and Modeling of Computer Systems, volume 23, issue 1, pages

188-197.  ACM Digital Library, 1995.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.  Introduction to Algorithms.

Second Edition, MIT Press and McGraw-Hill, 2001.

[5] B. Dufour, C. Goard, L. Hendren, C. Verbrugge, O. de Moor, and G. Sittampalam. 

Measuring the dynamic behaviour of AspectJ programs.  In Proceedings of the 19th

Annual Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 150-169.  ACM Digital Library, 2004.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.  Design Patterns: Elements of Reusable

Object-Oriented Software.  Addison-Wesley, 1994.

[7] jGuru. Remote Method Invocation, 2000.  05 Sept 2007.

http://java.sun.com/developer/onlineTraining/rmi/RMI.html

http://java.sun.com/-developer/onlineTraining/rmi/RMI.html.


84

[8] R. Kapitza , M. Kirstein, H. Schmidt, F. J. Hauck.  FORMI: An RMI Extension for

Adaptive Applications. In Proceedings of the 4  Workshop on Adaptive and Reflectiveth

Middleware.  ACM Digital Library, 2005.

[9] R. Kapitza, J. Domaschka, F. J. Hauck, H. P. Reiser, and H. Schmidt.  FORMI: Integrating

Adaptive Fragmented Objects into Java RMI.  In IEEE Distributed Systems Online,

volume 7, issue 10, page 1.  IEEE Educational Activities Department, 2006.

[10] M. Karaorman, U. Hölzle, and J. L. Bruno.  jContractor: A Reflective Java Library to

Support Design by Contract.  In Proceedings of the 2  International Conference onnd

Meta-Level Architecture and Reflection, Lecture Notes in Computer Science, volume 1616,

pages 175-196.  Springer-Verlag, 1999.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.

Aspect-oriented programming. In Proceedings of 11  European Conference on Object-th

Oriented Programming, Lecture Notes in Computer Science, volume 1241, pages 220-242. 

Springer-Verlag, 1997.

[12] R. Kramer.  iContract - The Java  Design by Contract  Tool.  In Proceedings of theTM TM

Technology of Object-Oriented Languages and Systems, pages 295-307.  IEEE Computing

Society, 1998.

[13] C. Lopes. D: A Language Framework for Distributed Programming.  PhD thesis,

College of Computer Science, Northeastern University, 1997.

[14] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. De Fraine, and D. Suvée. Explicitly

distributed AOP using AWED. In Proceedings of the 5th International ACM Conference

on Aspect-Oriented Software Development (AOSD'06), pages 51-62. ACM Press, 2006.



85

[15] M. Nishizawa, S. Chiba, and M. Tatsubori.  Remote pointcut: A language construct for

distributed AOP.  In Proceedings of the 3  International Conference on Aspect-Orientedrd

Software Development, pages 7-15, 2004.

[16] R. Pawlak, L. Duchien, L. Seinturier, F. Legond-Aubry, G. Florin, and L. Martelli.  JAC:

An Aspect-based Distributed Dynamic Framework.  Software Practice and Experience,

volume 34, issue 12, pages 1119-1148.  John Wiley & Sons, Inc,  2004.

[17] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.  JAC: A Flexible Solution for Aspect-

Oriented Programming in Java. In Proceedings of the 3  International Conference onrd

Metalevel Architectures and Separation of Crosscutting Concerns, Lecture Notes in

Computer Science, volume 2192, pages 1-24.  Springer-Verlag, 2001.

[18] M. Rabin.  Probabilistic algorithm for testing primality.  Journal of Number Theory,

volume 12, pages 128-138, 1980.

[19] N. Santos, P. Marques, and L. Silva.  A framework for smart proxies and interceptors in

RMI. In Proceedings of the 15  ISCA International Conference on Parallel andth

Distributed Computing Systems, 2002.

[20] A. Stevenson and S. MacDonald.  Dynamic Aspect-Oriented Load Balancing in Java

RMI.  Submitted to The 2008 International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA ‘08)

[21] Sun Microsystems, Inc. Dynamic Proxy Classes, 2004.  20 Sept 2007.

http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html

[22] D. Suvee, W. Vanderperren, and V. Jonckers.  JAsCo: an Aspect-Oriented approach

tailored for Component Based Software Development. In Proceedings of the 2  nd



86

International Conference on Aspect-Oriented Software Development (AOSD), pages 21-29. 

ACM Press, 2003.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96

