
Novel Convex Optimization Approaches

for VLSI Floorplanning

by

Chaomin Luo

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c©Chaomin Luo 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The floorplanning problem aims to arrange a set of rectangular modules on a

rectangular chip area so as to optimize an appropriate measure of performance. This

problem is known to be NP-hard, and is particularly challenging if the chip dimensions

are fixed. Fixed-outline floorplanning is becoming increasingly important as a tool

to design flows in the hierarchical design of Application Specific Integrated Circuits

and System-On-Chip. Therefore, it has recently received much attention.

A two-stage convex optimization methodology is proposed to solve the fixed-

outline floorplanning problem. It is a global optimization problem for wirelength

minimization. In the first stage, an attractor-repeller convex optimization model pro-

vides the relative positions of the modules on the floorplan. The second stage places

and sizes the modules using convex optimization. Given the relative positions of the

modules from the first stage, a Voronoi diagram and Delaunay triangulation method

is used to obtain a planar graph and hence a relative position matrix connecting the

two stages. An efficient method for generating sparse relative position matrices and an

interchange-free algorithm for local improvement of the floorplan are also presented.

Experimental results on the standard benchmarks MCNC and GSRC demonstrate

that we obtain significant improvements on the best results in the literature. Overlap-

free and deadspace-free floorplans are achieved in a fixed outline and floorplans with

any specified percentage of whitespace can be produced. Most important, our method

provides a greater improvement as the number of modules increases. A very important

feature of our methodology is that not only do the dimensions of the floorplans in

our experiments comply with the original ones provided in the GSRC benchmark,

but also zero-deadspace floorplans can be obtained. Thus, our approach is able to

guarantee complete area utilization in a fixed-outline situation. Our method is also

applicable to area minimization in classical floorplanning.

iii

Acknowledgements

Firstly, I would like to sincerely and deeply acknowledge my academic advisors,

Prof. Anthony Vannelli and Prof. Miguel F. Anjos, for their guidance, encourage-

ment, assistance, constant patience, and continued support. I greatly appreciate them

for all that they taught me during the Ph.D. program. Their suggestions were most

helpful. I would like to thank my examining committee, Prof. Shawki Areibi, Prof.

Samir Elhedhli, and Prof. Catherine H. Gebotys. Special thanks to my external

examiner, Prof. Richard Shi.

I would like to thank our system administrators, Phil Regier and Fernando R.

Hernandez, for maintaining our computers healthy.

I would like to acknowledge financial support by Postgraduate Award from the

Natural Sciences and Engineering Research Council (NSERC) of Canada, Ontario

Graduate Scholarship, University of Waterloo President’s Graduate Scholarships, and

University of Waterloo Graduate Incentive Awards; this support was a great encour-

agement.

I also wish to thank the following friends and officemates for their assistance

and friendship: Rafael Avalos, Hemantkumar Barot, Doris Chen, Mohamed Elsalih,

Alexander Engau, Xinxin Fan, Bissan Ghaddar, Mohammad Towhidul Islam, Ibi

Jankovits, Hai Jiang, Christie Kong, Nathan Krislock, Xinhua Ling, Stanley Liu,

Matthias Takouda, Juan Vera, Kris Vorwerk, Ping Wang, Hua Wei, Zhizhong Yan,

Chenxi Zhang, and Jichen Zhang.

Last but not least, I am extremely grateful to my wife, Rong Yang, and my son,

Martin Luo, for their love and patience. I also thank my dear parents Ronghua Luo

and Xiuzhen Tian, my brother Youmin Luo, and my sister Ping Luo for their love,

support, and encouragement despite the distance. None of this would have been

possible without their understanding and patience.

iv

To my dear parents

Ronghua Luo,

Xiuzhen Tian

and

my dear wife and son

Rong Yang,

Martin Luo.

v

Contents

1 Introduction 1

1.1 Overview of the VLSI Design Process 1

1.2 Circuit Layout Cycle . 5

1.2.1 Partitioning . 5

1.2.2 Placement . 6

1.2.3 Routing . 8

1.3 Objectives of this Thesis . 8

1.4 Contribution of this Thesis . 9

1.5 Flowchart of the Proposed Model . 11

1.6 Organization of this Thesis . 12

2 VLSI Placement and Floorplanning 15

2.1 VLSI Placement . 15

2.1.1 Constructive Placement . 16

2.1.2 Iterative Improvement Placement 17

2.2 VLSI Floorplanning . 17

2.2.1 Floorplan Representations . 18

2.2.2 Classical and Fixed-Outline Floorplanning 22

2.3 Previous Research on Classical Floorplanning 26

vi

2.3.1 Rectangular Dualization . 27

2.3.2 Simulated Annealing . 28

2.3.3 Force-directed Methods . 29

2.3.4 Mathematical Programming Methods 30

2.4 Previous Research on Fixed-Outline Floorplanning 32

2.5 Zero-Deadspace Fixed-Outline Floorplanning 35

2.6 The Clique Model for Nets . 38

2.7 Wirelength Estimation . 40

2.8 Benchmarks of Test Circuits . 44

2.9 Summary . 48

3 A Nonlinear Optimization Methodology 49

3.1 Previous Research . 50

3.2 Rectilinear and Quadratic Objective Functions 54

3.3 First Stage Model . 55

3.4 Second Stage Model . 61

3.4.1 Inclusion of the Aspect Ratio Constraints 64

3.4.2 Minimization of Different Wirelengths 65

3.4.3 Minimization of Half Perimeter Wirelength 65

3.5 Computational Results . 68

3.5.1 Initial Configuration . 69

3.5.2 Computation of Overlapping Areas of Modules 72

3.5.3 Computational Results for the MCNC Benchmarks 76

3.5.4 Comparison with MK Model 78

3.5.5 Comparison with AM Model 79

3.5.6 Obtaining Zero-Deadspace Floorplans 80

vii

3.6 Summary . 82

4 The Relative Position Matrix Technique 85

4.1 Geometrical Structure of Non-overlap Among Modules 86

4.2 The Relative Position Matrix . 88

4.3 The Voronoi Diagram . 92

4.4 The Sparse Relative Position Matrix 96

4.5 Summary . 100

5 The Second Stage Convex Optimization Model 103

5.1 Previous ILP Model for Floorplanning 104

5.2 SDP-based Convex Optimization Model 106

5.2.1 Semidefinite Programming . 106

5.2.2 Area Constraints . 108

5.2.3 Aspect Ratio Constraints . 111

5.3 Experiments with the SDP Model . 117

5.4 SOCP-based Convex Optimization Model 118

5.4.1 Area Constraints . 121

5.4.2 Aspect Ratio Constraints . 121

5.5 Relationship of SDP and SOC Constraints 125

5.6 Experimental Results with the SOCP Model 126

5.6.1 Experiments for MCNC and GSRC Benchmarks 127

5.6.2 Comparison with MK Model 130

5.6.3 Comparison with AM Model 130

5.6.4 Comparison with TimberWolf 131

5.6.5 Obtaining Zero-Deadspace Floorplans 131

5.6.6 Comparison with Parquet, Capo, IMF, and IMFAFF Models . 135

viii

5.6.7 Comparison with Parquet, CC, and ZFS Models 135

5.7 Summary . 136

6 Interchange-Free Local Improvement 140

6.1 Algorithm for Interchange-Free Local Improvement 141

6.2 Summary . 143

7 Conclusion and Future Work 147

7.1 Conclusion . 147

7.2 Future Work . 149

Bibliography 153

ix

List of Figures

1.1 VLSI circuit design procedure . 3

1.2 VLSI circuit layout steps . 6

1.3 Layout example of VLSI circuit . 7

1.4 Flowchart of the Proposed Model . 13

2.1 Illustration of slicing floorplan. A: floorplan; B: slicing tree 20

2.2 Illustration of nonslicing floorplan . 21

2.3 Comparison of classical floorplanning and fixed-outline floorplanning . 23

2.4 Instance of four-module case for fixed-outline floorplanning 25

2.5 An example of clique and star models 39

2.6 Estimation of the wirelength by HPWL 43

2.7 Illustration of the MCNC benchmarks 46

2.8 Illustration of the GSRC benchmarks 47

3.1 An example of optimal placement . 55

3.2 Two circles with attractive and repulsive forces 57

3.3 Illustration of the bounding box for a four-module net 66

3.4 Initial configuration for 9-module circuit apte 71

3.5 Instance of four-module case for fixed-outline floorplanning 73

3.6 Best zero-deadspace floorplans for the two largest benchmarks 82

x

3.7 Floorplan for ami49 circuit with best HPWL 84

4.1 The two-module case with overlap . 86

4.2 The two-module case without overlap along the x-axis 87

4.3 The two-module case without overlap along the y-axis 88

4.4 Relative positions separated horizontally and vertically 90

4.5 Relative position of two modules separated diagonally 91

4.6 An example of a four-module case and its relation position graph . . 93

4.7 Example for apte circuit . 94

4.8 One-dimensional (one-row) six-module example 98

4.9 Example for the ami33 circuit . 101

5.1 Second-order cone of dimension 3 . 119

5.2 The model features of several convex optimization problems 120

5.3 Illustration of comparison of various solvers for ami49 circuit 128

5.4 Final layout for ami49 circuit . 133

6.1 First round layout for ami49 circuit 143

6.2 Second round layout for ami49 circuit 144

6.3 Final layout for ami49 circuit . 145

xi

List of Tables

2.1 Comparison of four-module case for fixed-outline floorplnning 24

2.2 The standard MCNC benchmark circuits 44

2.3 The standard GSRC benchmark circuits 45

3.1 Experimental results by the proposed model 77

3.2 Results reported by MK . 78

3.3 Improvements in total wirelength compared with MK 79

3.4 Results reported by AM . 80

3.5 Improvements in total wirelength compared with AM 81

3.6 Deadspace comparisons with MK and AM 83

5.1 Interpretation of the integer variables 105

5.2 MCNC results for SDP model . 117

5.3 MCNC experimental results with our SOCP model 127

5.4 GSRC experimental results with our SOCP model 129

5.5 Improvements in total wirelength compared with MK 130

5.6 Improvements in total wirelength compared with AM 131

5.7 Results reported by TimberWolf . 132

5.8 Improvements in total wirelength compared with TimberWolf 132

5.9 Deadspace comparisons with MK, AM, and TimberWolf 134

xii

5.10 Results for our model with I/O pads at the boundary 136

5.11 Comparisons for Capo, Parquet(Pq), IMF, and IMFAFF (10%) . . . 137

5.12 Results for our model (I/O pads at the original locations) 138

5.13 Comparison for Parquet 4.5 and CC (10% whitespace) 138

5.14 Comparison for Parquet 4.5 and CC (15% whitespace) 139

5.15 Comparison for ZFS and Parquet 4 with 15% whitespace 139

xiii

Chapter 1

Introduction

The explosive growth in technology for very large scale integration (VLSI) circuit de-

sign and manufacturing has led to entire systems with millions of components being

placed on a single chip. Due to the increasingly high complexity of modern chip de-

sign, VLSI CAD tools are vital for delivering high VLSI system performance and there

is a requirement for design automation tools. For most problems in layout design,

the computational complexity is NP-hard (Sherwani, 1999). The future tremendous

growth of VLSI circuits will rely on the development of physical design automation

tools.

1.1 Overview of the VLSI Design Process

In modern VLSI technology, a single chip typically contains millions of transistors.

The overall design task is divided into a series of steps: system specification, archi-

tectural design, behavioural or function design, logic design, circuit design, physical

design or circuit layout, fabrication, packaging, testing and debugging. This proce-

dure produces a packed chip. These design steps are illustrated by the flow chart

1

2

shown in Fig. 1.1 and are briefly outlined below (see e.g., Hu and Kuh, 1985; Sher-

wani, 1999; Behjat, 2002).

The design cycle starts with the system specification. This process determines

the specifications of the system, primarily functionality, performance, and physical

dimensions. The design techniques and fabrication technology are also involved in

this process. The specifications for the size, speed, power, and functionality of the

VLSI system are determined by compromising among technology, market demand,

and economical perspective.

In the architectural design step, the design purpose and system constraints are

defined. The system is split into components that interact with each other. This

process defines the tasks above. Additionally, the criteria specified during the archi-

tectural design include specifications such as power requirements, area requirements,

and timing requirements (Fig. 1.1).

The third step, functional design, involves identifying the main functional com-

ponents of the system as well as the interconnection requirements between the com-

ponents. The behavioural facets of the system are taken into account. Normally, a

timing pattern or other relationships between components are the end result of the

functional design. Improvement of the overall design process and reduction of the

complexity of subsequent stages are gained by means of the information resulting

from the functional design.

In the logic design step, the focus is on the derivation and testing of the logic

structure that conforms to the functional design. The logic design is typically rep-

resented by Boolean expressions which are simplified to generate the smallest logic

design corresponding to the functional design. The effectiveness and correctness of

the logic design of the system may be verified by simulation and testing.

In the fifth step, the circuit designer converts the logic design represented by

3

 System Specification

 Architectural Design

 Function Design

 Logic Design

 Circuit Design

 Circuit Layout

 Fabrication

 Packaging and Testing

Figure 1.1: VLSI circuit design procedure.

4

Boolean expressions into a circuit representation while satisfying the power and timing

requirements of the original design. A detailed circuit diagram that denotes the circuit

elements is typically used to express the circuit design.

The physical design is also called the circuit layout. A layout is the geometric

representation of a circuit. The main task of the circuit layout step is to convert the

circuit representation of each component into a geometric representation, which is a

set of geometric diagrams carrying out the intended logic function of the correspond-

ing component. A net is a collection of pins required to be electrically connected. A

circuit is usually described by a netlist, including modules and their interconnecting

wires and nets. The geometrical positions of modules and the course of nets are de-

termined by optimizing a given objective while satisfying certain design requirements.

The circuit layout process is so complex that it is usually broken down into various

subproblems. Each of these subproblems can be expressed as a nonlinear or discrete

optimization problem. This step is described in more detail in the following section.

In the seventh step, the fabrication contains several phases: tape out of the layout

data, preparation of the wafer, deposition, and diffusion of various materials on the

wafer. Once the implemented prototype of a chip has been tested successfully, it may

be mass produced.

In the packaging, testing and debugging step, which follows the steps above, the

wafer is fabricated and diced into individual chips in a fabrication facility. Each

chip may then be packaged and tested to ensure that all the design specifications are

satisfied.

Note that the VLSI design cycle is a complex and iterative procedure with trans-

formations of representations in various steps. Each step has an effect on the subse-

quent steps and any step may send feedback to revise previous steps. For instance,

a certain step may be repeated and revised if errors and/or violations are detected.

5

Such a cycle may be repeated as the representation is iteratively improved to ensure

that it meets the circuit specifications. Several iterations of the design procedure are

performed until all the design specifications of a chip are met. In this thesis, the focus

is on the circuit layout step of the VLSI design cycle.

1.2 Circuit Layout Cycle

The goal of circuit layout design is to physically realize the circuit obtained from

its logic and functional description represented by the circuit diagram. Naturally, a

circuit diagram is the input to the circuit layout design and the layout of the circuit

is its output.

Circuit layout design is such a complex process that it is typically divided into

several subproblems. It is usually solved as a sequence of intractable subproblems con-

sisting of partitioning, floorplanning and placement, and routing. The floorplanning

problem is the main focus of this research. A flow chart of the phases of circuit layout

is given in Fig. 1.2. For a global perspective, partitioning, placement, and routing are

briefly described in the following sections. Floorplanning will be described in Chapter

2. Fig. 1.3 illustrates a VLSI circuit (Pan, 2004).

1.2.1 Partitioning

Modern integrated circuits contain millions of elements. Because of resource, time,

and computational power limitations, it is usually difficult to handle the entire circuit

simultaneously. Hence circuit partitioning is used to split a large circuit into several

relatively independent subcircuits such that their sizes are small enough to be handled

by the existing physical design process (Kennings, 1994). The circuit performance

depends on the partition; A good partition is likely to significantly reduce circuit

6

 Partitioning

 Floorplanning

 Placement

 Routing

Figure 1.2: VLSI circuit layout steps.

layout expenses and improve circuit performance. Circuit partitioning is known to be

NP-hard (Alpert and Kahng, 1995). There are a number of heuristic methods that

provide approximate solutions to the partitioning problem. They can be classified into

constructive and iterative algorithms (Johannes, 1996). Also, partitioning heuristics

can be divided into two categories: deterministic and stochastic (Sait and Youssef,

1995).

1.2.2 Placement

The objective of placement is to minimize the total wirelength for all the nets and

to find a minimum-area placement of modules that allows completion of the routing

among modules (Sherwani, 1999). Traditionally, various placement techniques have

7

Pad
 Metal1
 Via
 Metal2

Data Path

PLA I/O

ROM/�

RAM

 A/D�

Converter

Random

Logic

Figure 1.3: Layout example of VLSI circuit (redrawn from Pan, 2004).

8

been proposed to minimize the total area and wirelength (Shahookar and Mazumder,

1991). Research on placement can be classified into several major approaches: sim-

ulated annealing (e.g., Kleinhans et al., 1991; Eisenmann and Johannes, 1998), min-

cut based placement (e.g., Dunlop and Kernighan, 1985; Takahashi et al., 1995),

force-directed based placement (e.g., Alupoaei and Katkoori, 2002; Rajagopal et

al., 2003; Vorwerk et al., 2004), evolution based placement (Kling and Banerjee, 1991),

numerical optimization placement (Cheng and Kuh, 1984), and convex optimization

placement (e.g., Etawil, 1999; Etawil et al., 1999).

1.2.3 Routing

The main aim of routing is to complete the interconnection among modules of the

circuit according to the specified netlists. The routing or wiring subproblem is solved

to determine the geometric layout of the wires that connect the modules. As the

routing problem is very difficult to solve even for small circuits, the routing stage

is generally composed of two phases, global and detailed routing (Sait and Youssef,

1995; Sherwani, 1999). In global routing, the exact geometric details of each wire and

pin are disregarded while the wires connecting the modules are determined. Following

the global routing, detailed routing accomplishes point-to-point connections between

the pins of the modules. Detailed routing involves channel routing and switchbox

routing and is completed for each channel and switchbox.

1.3 Objectives of this Thesis

Floorplanning is a very important step in circuit layout design. Previous floorplan-

ning research has focused on heuristics such as simulated annealing (e.g., Wong and

Liu, 1986; Wong and Liu, 1989; Brasen and Bushnell, 1990; Young et al., 2000b).

9

Optimization problems in floorplanning and placement are known to be NP-hard

(Sait and Youssef, 1995; Sarrafzadeh and Wong, 1996; Sherwani, 1999). Previous

research on optimization models for floorplanning lack convexity and so convergence

to a global optimal solution cannot be guaranteed (e.g., Mogaki et al., 1987; Onodera

et al., 1991; Sutanthavibul et al., 1991; Chen and Kuh, 2000).

The aim of this research is to investigate and develop floorplanning strategies

that use convex optimization. It will take advantage of the important property of

convex optimization that any local minimum is a global solution of the problem.

The proposed model should be able to generate a competitive optimal solution for

area minimization and wirelength minimization. The designed and developed math-

ematical programming method should be effective, efficient, optimal, stable, robust,

flexible, scalable, and applicable.

1.4 Contribution of this Thesis

The proposed optimization methodology demonstrates that optimization theory has

powerful applications in VLSI floorplanning. Also, the model may be helpful in

industrial applications. To the best of our knowledge, this is the first time that

a convex-optimization-based method has been used for fixed-outline floorplanning.

The contributions of this thesis can be summarized as follows:

1. A two-stage convex-optimization-based methodology is proposed for VLSI fixed-

outline floorplanning (optimality).

2. The experimental results demonstrate that, compared with some state-of-the-

art floorplanners, the performance of the new method is competitive on the

MCNC and GSRC benchmarks. The running time is competitive on the MCNC

10

benchmark and the total wirelength is competitive on the MCNC and GSRC

benchmarks. The quality of the total wirelength has significant impact on the

floorplan in this thesis research. Minimization of total wirelength aims to min-

imize chip size, and thus cost, but also minimizes power and delay, which are

proportional to the wirelength and wirelength squared, respectively. Minimizing

the total wirelength is the main objective of most existing floorplanners. There-

fore, the significantly improved quality in the total wirelength of our floorplanner

is one of our most important contributions (effectiveness and efficiency).

3. The first-stage convex optimization model provides the relative positions of the

modules on the floorplan.

4. The second-stage convex optimization model places and sizes the modules.

Overlap-free and deadspace-free floorplans are achieved in a fixed outline with

any specified percentage of whitespace. Our model provides flexibility to allow

zero-whitespace or any specific percentage of whitespace (for buffer insertion,

for example).

5. A Voronoi diagram (VD) is employed to obtain a planar graph and thus con-

nect the two stages. The VD spreads modules and constructs a planar graph.

VD-based module spreading is an efficient geometric method to evenly reduce

module density in the congested areas. A relative position matrix technique is

proposed to input the non-overlap constraints for the second stage model. This

technique efficiently linearizes the non-overlap constraints.

6. An efficient approach is used to generate sparse relative position matrices that

can improve computational efficiency. An interchange-free algorithm for local

improvement of the floorplan is proposed.

11

7. Our methodology is capable of achieving scalability under even the tightest

fixed-die constraints. Kahng (2000) criticizes classical floorplaning that seems

to lack scalability and the ability to handle tight fixed-die constraints. Our

methodology provides a greater improvement over other floorplanners as the

number of modules increases (scalability).

8. A very important feature of our methodology is that the dimensions of the

floorplans in our experiments comply with the original ones provided in the

MCNC and GSRC benchmarks, and moreover zero-deadspace floorplans can be

obtained. Thus, our approach is able to guarantee complete area utilization in a

fixed-outline situation. Furthermore, our methodology also produces floorplans

with any specified percentage of whitespace (stability, robustness).

9. The proposed methodology has been successfully applied to facility layout prob-

lems and excellent results have been obtained (Jankovits et al., 2007) (applica-

bility).

10. Although our methodology is currently focused on the soft module case and

wirelength minimization, it is in principle applicable to the hard module case

and area minimization. Also, the model can be applied in classical floorplanning

(flexibility, applicability).

1.5 Flowchart of the Proposed Model

A flowchart is shown in Fig. 1.4 that represents the computation process of our

model. It consists of initial configuration, first stage model, Voronoi diagram, second

stage model, local improvement and final floorplan. Every step will be described in

the following chapters, respectively. The second stage model takes most computation

12

time. Fig. 1.4 shows that these steps execute tasks in sequence and each component

includes several sub-tasks. The following data are given and input into the first stage

model: n modules with a list of areas ai, 1 ≤ i ≤ n; an interconnection matrix

Cn×n = [cij] , 1 ≤ i, j ≤ n, where cij captures the connectivity between modules i and

j that is symmetric (given by netlist). Finally, the coordinates (xi, yi), height hi and

width wi for each module should be obtained and also the total wirelength should be

minimized. The first stage model uses an attractor-repeller (AR) convex model, which

globally minimizes the total wirelength, to provides relative position of modules. A

Voronoi diagram (VD) is used to spread out modules on the floorplan and obtain a

planar graph. The non-overlap constraints are enforced in the second stage model

by a relative position matrix (RPM) achieved by VD stage. In the second stage, we

use Semidefinite Programming (SDP) and Second Order Cone Programming (SOCP)

model, which are both convex optimization problems, to size and place the modules

thus obtain the final floorplan.

1.6 Organization of this Thesis

The remaining chapters of this thesis are organized as follows.

In Chapter 2 placement and floorplanning (both classical and fixed-outline) are

introduced. We describe different types of placement and floorplanning and previous

models and algorithms in these areas. Their advantages and limitations are explained.

We also introduce zero-deadspace (ZDS) floorplanning, explaining the background

and importance of ZDS floorplans. Wirelength estimation and the clique model for

nets are also described in this chapter.

Chapter 3 addresses two-stage nonlinear optimization techniques for fixed-outline

floorplanning in which the first stage uses a convex optimization technique and the

13

 Initial Configuration

 First Stage Model
provide relative position of modules
minimize total wirelength

spread out modules
 Voronoi Diagram (VD)

produce a planar graph
build up RPM/SRPM

 Second Stage Model (SDP/SOCP)
provide precise position of modules
determine dimensions of modules
minimize total wirelength

 Final Floorplan

 End

 Yes

Local Improvement

 If aspect ratios are satisfied ? No

Figure 1.4: Flowchart of the Proposed Model.

14

second stage a nonlinear optimization model. An attractor-repeller model that is

a convex optimization problem is introduced, which also provides the relative posi-

tions of the modules for the second stage in Chapter 5. The nonlinear optimization

methodology is applied to obtain zero-deadspace floorplans by minimizing the total

wirelength using rectilinear and quadratic objective functions.

Chapter 4 discusses the creation of a relative position matrix (RPM) provided

by the first stage model and a sparse relative position matrix (SRPM). The SRPM

technique is intended to reduce the computational effort. Additionally, we employ

Voronoi diagrams (VD) and Delaunay triangulation (DT) to convert the relative

position graph into a planar graph.

Chapter 5 describes in detail the second stage model, a completely convex op-

timization problem, based on Semidefinite Programming (SDP) and Second Order

Cone Programming (SOCP) models. A variety of experiments on the MCNC and

GSRC benchmarks using state-of-the-art floorplanners are performed in this chap-

ter. The results demonstrate that the two-stage method is competitive with existing

floorplanners on these benchmarks. The zero-deadspace fixed-outline floorplans are

also obtained in this chapter.

In Chapter 6, an algorithm for interchange-free local improvement is described.

The motivation is to avoid violating the required upper bound on the aspect ratios of

the modules. The local relaxation of module position does not negatively affect the

total wirelength.

Finally, in Chapter 7, the contributions of this thesis are highlighted and some

important features are summarized. Recommendations for future work are presented.

Feasibility for some future work is also discussed.

Chapter 2

VLSI Placement and Floorplanning

The rapid growth in the complexity, size, and density of VLSI systems has made

placement and floorplanning challenging and these are critical phases that affect the

performance of the resulting system on a chip. Some placement algorithms and

floorplanning models are described in this chapter. Additionally, some background

on wirelength estimation and the clique model is presented. We introduce placement

because our first stage model, described in Chapter 3, may be regarded as a relative

placement problem. Both placement and floorplanning arrange a set of overlap-free

modules on a chip so that an appropriate objective is optimized. The main difference

between placement and floorplanning is shown as follows: shapes of modules and pin

positions on the periphery of circuit components are fixed for placement, while shapes

of modules are flexible for floorplanning.

2.1 VLSI Placement

The VLSI cell placement problem is known to be NP-hard (Sait and Youssef, 1995;

Sarrafzadeh and Wong, 1996; Sherwani, 1999). The input to the placement problem

15

16

is a set of modules with fixed shapes and fixed terminal positions, and a netlist rep-

resenting connection information among modules. The placement typically aims to

find the best locations for each module throughout the placement region while opti-

mizing the appropriate objective functions. There are two approaches: constructive

placement and iterative improvement placement (Kennings, 1997; Sherwani, 1999).

A subset of modules has typically pre-assigned positions (I/O pads) (Fig. 1.3).

2.1.1 Constructive Placement

Constructive approaches generate a placement directly from the circuit netlists. These

approaches can be classified into partition algorithms (e.g., Dunlop and Kernighan,

1985; Suaris and Kedem, 1988; Suaris and Kedem, 1989; Takahashi et al., 1995; Huang

and Kahng, 1997; Yildiz and Madden, 2001), placement by block Gauss-Seidel opti-

mization (Tsay et al., 1988), resistive network algorithms (Cheng and Kuh, 1984), and

analytical algorithms (e.g., Sigl et al., 1991; Kleinhans et al., 1991; Vygen, 1997; Eisen-

mann and Johannes, 1998; Etawil et al., 1999; Hu and Marek-Sadowska, 2002; Hur et

al., 2003; Kahng and Wang, 2004b; Viswanathan and Chu, 2004; Vorwerk et al., 2004).

The effective placement may be produced by combining partitioning and analytical

algorithms (e.g., Wipfler et al., 1983; Tsay et al., 1988).

In constructive methods, there exists no initial placement. The coordinates of

each module are viewed as variables. The advantage of these methods is that they

can rapidly build up reasonably acceptable layouts for large circuits, as they take all

the circuit interconnections into account simultaneously. As constructive approaches

can not generate the highest quality placements, they are typically used to produce an

initial placement for iterative improvement algorithms. The constructive approaches

are more practical for placement problems with a huge number of cells such as a sea-

of-gates placement (Tsay et al., 1988; Sarrafzadeh and Wong, 1996; Sherwani, 1999).

17

2.1.2 Iterative Improvement Placement

Iterative improvement approaches start with an initial placement and modify it in

search of an improved placement by making local changes to the existing placement.

If a cost reduction is achieved, the new placement is accepted; otherwise, it is aban-

doned. The process iterates until no further improvement can be obtained. Iterative

improvement approaches can be divided into two groups: deterministic and random-

ized algorithms. Deterministic algorithms accept only changes which produce an

improved solution. In order to escape from local minima, randomized algorithms

also accept, with a pre-defined small probability, changes that generate worse solu-

tions. Simulated annealing is currently the most popular technique in terms of place-

ment quality, but it takes an excessive amount of computation time (e.g., Sechen and

Sangiovanni-Vincentelli, 1986; Wang et al., 2000).

2.2 VLSI Floorplanning

Floorplanning has received much attention recently due to the increasingly high com-

plexity of modern chip design and the importance of hierarchical design and intel-

lectual property (IP) blocks. The future growth of VLSI circuits will rely on the

development of physical design automation tools. The floorplanning problem con-

sists of arranging a set of rectangular modules on a rectangular chip area so that

an appropriate measure of performance is optimized. The resulting layout is called

a floorplan. The floorplanning is also to decide the relative position of each mod-

ule. Modules with relatively high connections are arranged close to one another for

routability. In this section, we first describe floorplan representations. The prob-

lem statement and definition of the floorplaning will be presented, and classical and

fixed-outline floorplanning will then be discussed.

18

2.2.1 Floorplan Representations

As the floorplanning is the early stage of physical design, it significantly determines

the overall chip performance. Floorplanning is becoming an increasingly impor-

tant tool for designing flows in the hierarchical design of Application Specific In-

tegrated Circuit (ASIC) and System-on-Chip (SoC) (Adya and Markov, 2003; Bour-

bakis, 2008). Additionally, IP(module reuse)-based design methodology has been

widely adopted and this makes floorplanning even more important. Floorplanning

is a type of placement in which the embedded modules are flexible. The area of

each rectangular module is assumed to be fixed while its height and width are al-

lowed to vary subject to aspect ratio constraints (Wong and Liu, 1986; Sait and

Youssef, 1995). A VLSI circuit consists of a collection of variable-dimension rectan-

gular modules interconnected by nets, each module with its own prescribed fixed area

(Fig. 1.3). The floorplanning problem is to determine the positions and dimensions

of the circuit modules or IP modules on a chip to optimize the circuit performance

such that all the modules are enveloped in the rectangular floorplan. A complete and

formal representation of the floorplanning problem is described below (Wong and

Liu, 1986; Sutanthavibul et al., 1991; Sait and Youssef, 1995):

Generally, the inputs for a floorplanning problem are given as follows:

• a set of n rectangular modules S = {1, 2, . . . , n} with a list of areas ai, 1 ≤ i ≤ n;

• a partition of S into sets S1 and S2 representing the modules with fixed and

free orientations respectively;

• an interconnection matrix Cn×n = [cij] , 1 ≤ i, j ≤ n, where cij captures the

connectivity between modules i and j (we assume C is symmetric, i.e., cij = cji,

given by netlist);

19

• values ai for the area of each module i;

• bounds Rlow
i and Rup

i on the aspect ratio Ri of each module i;

• bounds wlow
F , wup

F , hlow
F , and hup

F on the width and height respectively of the

floorplan, for an instance of outline-free floorplanning; and

• values wF and hF for the width and height of the floorplan, for an instance of

fixed-outline floorplanning.

The required outputs are as follows. The floorplanning problem is to determine the

location, width, and height of each module on the floorplan so that:

• there is no overlap between the modules;

• coordinates (xi, yi), height hi and width wi for each module such that wi×hi =

ai, 1 ≤ i ≤ n;

• Rlow
i ≤ hi

wi
≤ Rup

i for every module i with fixed orientation (i ∈ S1);

• Rlow
i ≤ hi

wi
≤ Rup

i or 1
R

up
i

≤ hi

wi
≤ 1

Rlow
i

for every module i with free orientation

(i ∈ S2);

• all the modules are enveloped in the floorplan;

and the total wirelength is minimized.

An optimum floorplan is achieved by optimizing the desired objective function.

Possible objectives are (Lu et al., 2008):

• minimize area (bus area);

• minimize wirelength;

20

• maximize routability;

• minimize power dissipation;

• minimize timing/delays; or

• any combination of the above.

Practically, it is difficult to achieve all these objectives simultaneously as they

mutually conflict. Moreover, it is algorithmically difficult to take all the objectives

into consideration simultaneously.

Floorplan representations are typically grouped into two categories: slicing and

nonslicing. A slicing floorplan is a floorplan that is obtained by recursively cutting a

rectangle horizontally or vertically. A binary tree with n leaves and n-1 nodes used

to represent a slicing structure is called a slicing tree. Each node corresponds to a

vertical cut line or horizontal cut line relevant to the model and each leaf to a basic

rectangle (Sarrafzadeh and Wong, 1996). For example, a slicing floorplan is shown in

Fig. 2.1A and its corresponding slicing tree is obtained as Fig. 2.1B.

1

2 3

4 5

6

9

8

A

7

B

V

H H

H 1
V V

V H

6 7 8 9

2 3 4 5

Figure 2.1: Illustration of slicing floorplan. A: floorplan; B: slicing tree.

21

A nonslicing floorplan is one that is not restricted to be slicing. The floorplan of

Fig. 2.2A is nonslicing, where modules 4, 5, 6, 7, and 8 constitute a floorplan structure

known as a wheel, which is also the smallest nonslicing floorplan. Its corresponding

nonslicing tree is shown in Fig. 2.2B.

1

2 3

4
5

6

9
8

A

7

V

H H

V 1

2 3

9 W

4 6 7 85
B

Figure 2.2: Illustration of nonslicing floorplan. A: floorplan; B: nonslicing tree.

The computation time of slicing floorplans is faster than that of nonslicing floor-

plans because the slicing structure has a smaller solution space. However, the non-

slicing category is a more general representation for all types of packings. Otten

(1982) first proposed a binary-tree representation for a slicing floorplan; Wong and

Liu (1986) then improved on it by suggesting a normalized Polish expression.

There have been many studies using nonslicing floorplan representations in VLSI

floorplanning. The representations of the geometric relationships between modules

have been extensively studied so as to implement certain algorithms such as simu-

lated annealing more effectively. Typical representations in VLSI floorplanning are

as follows: SP (sequence pair) (Murata et al., 1995; Murata and Kuh, 1998), BSG

(bounded-sliceline grid) (Nakatake et al., 1996; Kang and Dai, 1997), O-tree (Guo

22

et al., 1999; Pang et al., 2000), CBL (corner block list) (Hong et al., 2000; Zeng et

al., 2003), B*-tree (Chang et al., 2000; Maruvada et al., 2002), MB*-tree (multilevel

B*-tree) (Lee et al., 2003), TCG (transitive closure graph) (Lin and Chang, 2001),

and CS (corner sequence) (Lin et al., 2003).

2.2.2 Classical and Fixed-Outline Floorplanning

In terms of practical physical designs, floorplans can be classified as variable-die or

fixed-die. The variable-die methodology uses 2-layer metal processes while the fixed-

die methodology is a modern standard that is suitable for metal processes with three

or more layers. Floorplanning handling fixed-die is called fixed-outline floorplanning,

while classical floorplanning handles variable-die (Adya and Markov, 2003). Fixed-

outline floorplanning works with a fixed floorplan outline, and aims to simultaneously

minimize an estimate to the total interconnecting wirelength and overlap, and possibly

also timing (Kahng, 2000), while classical floorplanning seeks to place the modules

inside a rectangular floorplan whose outline is variable so as to minimize the area of

the floorplan.

Classical floorplanning aims to find a feasible floorplan to envelop every module

without any overlap while minimizing the overall area (see Fig. 2.3). It is similar to

a generalized two-dimensional bin-packing problem. Even this simplified version of

floorplanning is known to be NP-hard (Baker et al., 1980; Sait and Youssef, 1995).

Fixed-outline floorplanning is significantly more difficult than outline-free floor-

planning (Adya and Markov, 2003; Kahng, 2000). Fixed-outline floorplanning typi-

cally aims to optimize the following circuit performance:

• total wirelength of the circuit;

• delay of critical path;

23

1

2

3

4

5

6

7

8
A

1

2

3

4

5

6

7
8

B

Figure 2.3: Comparison of classical floorplanning and fixed-outline floorplanning. A:

classical floorplan; B: fixed-outline floorplan.

• estimated timing performance;

• routability;

• heat dissipation;

• a combination of two or more of the above criteria.

Kahng (2000) pointed out five main problems with classical floorplanning: 1) an

excessive attention to packing-driven instead of connectivity-driven approaches and

corresponding benchmarks; 2) an unnecessary limitation of modules to only rectan-

gular, L, or T shapes; 3) a lack of emphasis on the register-transfer level (RTL)-down

methodology context; 4) a lack of attention to the fixed-outline constraints; and 5)

an inability to handle scalability. Adya and Markov (2003) have attempted to deal

24

with some of the issues above. However, the last two concerns are difficult. Our

methodology is focused on solving these two problems.

We use a 4-module instance to demonstrate fixed-outline floorplanning. Four

modules represented by M1, M2, M3, and M4 are interconnected via nets and also

connected to I/O pads P1, P2, P3, ..., and P8 that are fixed on the boundary of the

floorplan shown in Fig. 2.4. The netlists describe a list of all the nets in the circuit.

For instance, Net 1 connects P1, M3, M1, and P6. The sum of the area of the four

modules is equal to the entire area of the floorplan. A deadspace-free fixed-outline

floorplan can be achieved by enveloping all four modules within the floorplan. We first

randomly pack four modules inside the outline (Fig. 2.4A). The measured wirelength

is 127 and the length for Net 1 is 36. It is easy to observe that module 3 connects

to P1 and P7 that are located around the top-left corner, and module 4 connects

with P2 that is fixed in the left boundary. Therefore, modules 3 and 4 should be

moved to the left side of the floorplan (Fig. 2.4B). The improved floorplan has a total

wirelength of 91 and Net 1 becomes 36. The optimal floorplan finally attains a total

wirelength of 32 with Net 1 as 18 (Fig. 2.4C). The wirelength and length for Net 1

with these cases are shown in Table 2.1.

Table 2.1: Comparison of four-module case for fixed-outline floorplnning

Illustration Wirelength Length for Net 1

Fig. 2.4A 127 36

Fig. 2.4B 91 36

Fig. 2.4C 32 18

25

3

4
1

2

2 4 6 8 10 12 140

2

4

6

8

10

12

14

P1

P3 P4

P5

P6

P7 P8

P2

A B

3

4
1

2

2 4 6 8 10 12 140

2

4

6

8

10

12

14

P1

P3 P4

P5

P6

P7 P8

P2

3

4

1

2

2 4 6 8 10 12 140

2

4

6

8

10

12

14

P1

P3 P4

P5

P6

P7 P8

P2

C

Figure 2.4: Instance of four-module case for fixed-outline floorplanning. A: random

floorplan; B: improved floorplan; C: final floorplan.

26

2.3 Previous Research on Classical Floorplanning

The floorplanning problem has been tackled using various approaches: constructive

approaches, iterative approaches, knowledge approaches, and mathematical program-

ming approaches (Sait and Youssef, 1995).

Constructive approaches start from a seed module and then select one or several

modules to add to the partial floorplan. This procedure continues until all modules

have been selected. This approach produces a floorplan directly from the netlist. Typ-

ical constructive approaches are cluster growth, partitioning and slicing, connectivity

clustering, and rectangular dualization.

Iterative approaches search for an improved floorplan by making local changes

until a feasible floorplan is gained or no more improvements can be obtained. Popular

iterative techniques are simulated annealing (Sechen, 1988b; Wong et al., 1988; Wong

and Liu, 1989; Murata et al., 1998; Ranjan et al., 2001; Young et al., 2000b), force-

directed interchange/relaxation (Brasen and Bushnell, 1990; Choi and Kyung, 1991;

Youssef et al., 1995), and genetic algorithms (Cohoon et al., 1991; Fernando and

Katkoori, 2008).

Knowledge based approaches implement a knowledge expert system (Odawara et

al., 1985; Dickinson, 1986; Ackland, 1988; Ball et al., 1994; Xu et al., 2006). For

example, Ball et al. (1994) and Xu et al. (2006) used fuzzy-based floorplanning.

Mathematical programming approaches use linear programming (Sutanthavibul

et al., 1991; Kim and Kim, 2003; Chu and Young, 2004), the branch-and-bound

algorithm (Wimer et al., 1989; Onodera et al., 1991), convex programming (Moh et

al., 1996), or nonlinear programming (Qi et al., 1994a).

In this section we focus on rectangular dualization, simulated annealing, force-

directed methods, and mathematical programming methods. The emphasis is on the

27

latter three as they are most closely related to our methodology. The floorplans are

classified into slicing and nonslicing floorplans, which are different representations of

the floorplans (Sarrafzadeh and Wong, 1996). With the representation of floorplans,

the floorplanning still needs to use some techniques such as simulated annealing and

force-directed floorplanning to implement it. We review previous work using both

floorplanning approaches and floorplan representations since they are closely related.

2.3.1 Rectangular Dualization

A graph theoretic rectangular dualization method may be used to construct rectangu-

lar floorplans (Lai and Leinwand, 1988; Sait and Youssef, 1995). For instance, Tani

et al. (1988), and Lokanathan and Kinne (1989) proposed rectangular dual graph

approaches. A quadratic area for floorplanning with one or more linear constraints

is minimized by approximation using heuristics. The modules are compacted by a

rectangular dual approach. The rectangular dualization problem is transformed into

a matching problem on bipartite graphs. Floorplanning design using rectangular

dualization follows five steps (Sait and Youssef, 1995):

Step 1: represent the given circuit netlist as a graph;

Step 2: transform this graph into a planar graph (He, 1997);

Step 3: convert this planar graph into a planar triangulated graph (Kozminski

and Kinnen, 1984);

Step 4: check whether this planar triangulated graph is a properly triangulated

graph (PTP);

Step 5: seek a rectangular dual graph for floorplans (Tani et al., 1988; Lokanathan

and Kinne, 1989).

With a properly triangulated graph, a rectangular dual may be constructed and

thus a floorplan may be formed (Sait and Youssef, 1995).

28

2.3.2 Simulated Annealing

Simulated annealing (SA) has been widely applied in VLSI layout design (e.g., Ho

et al., 2004; Murata et al., 1998; Ranjan et al., 2001; Sechen, 1988b; Tang et al.,

2001; Wong et al., 1988; Wong and Liu, 1989; Young et al., 2000b; Chen and Chang,

2006; Lee et al., 2007; Law and Young, 2008). SA is particularly useful when the

solution space of the problem is not well understood. When using SA, the solution is

often restricted to be a slicing floorplan (Wong and Liu, 1989) (recall that a slicing

floorplan is a floorplan that is obtained by recursively cutting a rectangle horizontally

or vertically). The quality of floorplans obtained using SA is very competitive but

SA is time-consuming and takes substantial computation resources. Therefore, the

applicability of SA is restricted to floorplans with a small number of modules (Wong

and Liu, 1986; Wong and Liu, 1989). Murata et al. (1998) proposed a sequence-pair-

based SA model to implement floorplans by an adaptation strategy. Ranjan et al.

(2001) suggested a constructive technique for predicting floorplan metrics which is

used to obtain a fast and accurate SA-based floorplan prediction. Tang et al. (2001)

proposed a model based on SA with sequence pair (SP) utilization. The SP is used

for floorplanning where fast SP evaluation can be achieved to improve the quality of

floorplans. Adya and Markov (2003) also used SP utilization to represent the topology

of a floorplan, but proposed a moving technique based on slack computation and SA

to optimize the wirelength as well as the aspect ratio of the soft modules. Ho et

al. (2004) considered an orthogonal SA with an efficient generation mechanism to

solve large floorplanning problems. Among the SA methods listed above, the model

of Adya and Markov (2003) is a state-of-the-art approach, and they reported little

deadspace in their floorplans for the MCNC benchmarks. Therefore, we compare

their reported results with our own results in Chapter 3.

29

2.3.3 Force-directed Methods

Force-directed methods are analogous to Hooke’s law for the mechanics of a spring.

The floorplanning problem is solved by a set of simultaneous linear equations that

give the equilibrium positions of the modules. The force-directed method is used to

find a timing- and connectivity-driven topological arrangement. Then the entire area

of the floorplan is minimized from the topological arrangement. The forced-directed

approach is particularly suitable for a two-stage model.

Usually, competitive efficiency can be obtained by combining the force-directed

method with other approaches (Brasen and Bushnell, 1990; Choi and Kyung, 1991;

Youssef et al., 1995; Mohamood et al., 2007). For example, Brasen and Bushnell

(1990) implemented the timing-driven MHERTZ floorplanner using a two-step strat-

egy. In the first stage, a sequence of gradient descent manipulations based on force-

directed objective functions are adopted and timing constraints are taken into con-

sideration. In the second step, an SA optimization algorithm is used to minimize

the total wirelength and overall area of the floorplan and to remove module over-

laps. Youssef et al. (1995) combined a force-directed approach with a constraint

graph approach in a two-stage method. In the first stage, a force-directed approach

solves the timing- and connectivity-driven floorplanning problem. The overall area is

then minimized in the second stage while legalizing the floorplan. Qi et al. (1994b)

suggested a force-directed relaxation approach used for timing-driven floorplanning

that optimizes the interconnection delays between modules. Murofushi et al. (1990)

also implemented timing-driven floorplanning based on a force-directed approach that

minimizes the total wirelength and removes overlaps. They consider area utilization

simultaneously.

30

2.3.4 Mathematical Programming Methods

Mogaki et al. (1987) use linear programming (LP) to minimize chip width and height

simultaneously within given constraints on module size, relative module position,

and width of the intermodule routing space. Sutanthavibul et al. (1991) formulated

the problem as a mixed integer LP problem that minimizes the overall area of the

floorplan. Routability is simultaneously considered in the LP model. Kim and Kim

(2003) combined LP and SA: the floorplan is obtained from an SP by considering an

LP model or an alternative construction method. (For simplicity, they assume that

the pins of all the modules are located at the centres of the modules.) Chu and Young

(2004) applied a Lagrangian relaxation technique to solve their proposed LP problem.

They improved the area usage in the chip by changing the shapes and dimensions of

the soft modules to fill up the empty space. Chen and Kuh (2000) minimized chip

area using LP. Timing constraints are also modelled in the LP problem. The method

is iterative, and proceeds by solving a sequence of LP problems until it converges to

a local minimum.

Prasitjutrakul and Kubitz (1989) incorporated timing and geometrical constraints

into the process with the formulation of the mathematical programming problem. The

floorplanning problem with path-delay constraints is modelled and mathematically

formulated as a constrained nonlinear programming problem. Herrigel and Fichtner

(1989) suggested an analytic optimization technique based on nonlinear programming

to minimize wirelength and chip area simultaneously for floorplanning with R- or L-

shaped modules. The pin positions are also optimized in their second stage. Wang

et al. (2003) proposed Lagrangian relaxation for soft module floorplanning based on

an SP algorithm. They used an average-value method to compute initial values for

the Lagrange multipliers so as to reduce the running time. Computational effort

was significantly reduced but the total wirelength is longer. Ying and Wong (1989)

31

proposed a two-stage approach to minimize total wirelength and area by an uncon-

strained minimization model. Their model minimizes total wirelength and area using

a potential energy method in the first stage, and removes overlap in the second stage.

There is unavoidably much deadspace and the computational effort is high.

Some approaches use convex optimization (e.g., Chen and Fan, 1998; Moh et

al., 1996; Murata and Kuh, 1998; Rosenberg, 1989; Wimer et al., 1988). An important

property of convex optimization problems is that any local minimum is a global

solution of the problem. The minimal area floorplanning problem was formulated

as an optimization problem by Wimer et al. (1988). The existence and uniqueness

of a floorplan is proven but aspect ratio constraints on modules are not taken into

consideration. Moh et al. (1996) formulated the problem as a geometric programming

problem and thus transformed it into a convex optimization problem. The numbers

of variables and constraints in their convex formulation for area minimization were

greatly decreased by Chen and Fan (1998).

Murata and Kuh (1998) combined the convex optimization technique with a non-

slicing floorplan representation including variable modules and preplaced modules.

While their method to find a solution is very time-consuming, they do achieve very

little deadspace in their floorplans for the MCNC benchmarks, and thus their results

are compared to ours in Chapter 3 and Chapter 5. The rectangular modules they used

may encompass soft modules, hard modules, and semi-soft modules. Soft modules

have fixed areas with continuously variable aspect ratios. Hard modules have fixed

aspect ratios and pin locations. Semi-soft modules have fixed areas with discrete

aspect ratios.

Onodera et al. (1991), and Wimer et al. (1989) proposed branch-and-bound tech-

niques. Their approaches search the solution space and find optimal solutions by a

branch-and-bound technique subject to constraints on critical nets and the shape of

32

a chip. However, the solution obtained is only near-optimal.

Finally, the recent development of semidefinite programming (SDP) has led to its

application to VLSI physical design. Vandenberghe and Boyd (1996) applied SDP

to VLSI transistor sizing and pattern recognition by using ellipsoids. More recently,

Takouda et al. (2005) proposed a mixed integer SDP model to find global lower

bounds for the floorplanning problem. Their technique successfully provides global

lower bounds for the smaller MCNC benchmark circuits.

2.4 Previous Research on Fixed-Outline Floorplan-

ning

As described previously, the objective of fixed-outline floorplanning problem is to pack

all the modules within a given fixed floorplan outline that simultaneously minimizes

wirelength and overlap. Most floorplanning studies focus on area minimization for

variable-die floorplanning. Recall that handling fixed-outline floorplanning is signifi-

cantly more difficult than outline-free floorplanning. Only recently have floorplanners

begun tackling fixed-die floorplanning by minimizing the total wirelength (Adya and

Markov, 2003; Adya et al., 2004; Tang et al., 2006).

Parquet (Adya and Markov, 2003) and Capo (Adya et al., 2004) are two typical

floorplanners for dealing with fixed-die constraints when minimizing total wirelength.

Adya and Markov (2003) suggested a technique based on slack computation and SA

to optimize the wirelength by using SP that represents the topology of a floorplan.

The fixed outline is satisfied by using their local search technique. Capo (Adya et

al., 2004) effectively combines min-cut placement with SA to form a fixed-outline

floorplanner. At the stage of partitioning and placement, fixed-outline floorplanning

is completed while taking routability into account.

33

Recently, several fixed-outline floorplanners have been developed based on SA.

Chen et al. (2005) and Chen et al. (2008) developed a so-called IMF multilevel floor-

planner using a two-phase technique. IMF consists of a top-down partitioning phase

that partitions the floorplan into subregions, and a bottom-up merging phase that

merges subregions. The total wirelength is optimized via min-cut partitioning in the

first phase and by SA-based fixed-die floorplanning implemented in each subregion in

the second phase. The floorplanner IMFAFF incorporates accelerative fixed-outline

floorplanning (AFF) into IMF, and is 11 times faster than IMF but at the expense

of a 9% increase in the wirelength. Chen and Chang (2006) proposed an adaptive

fast-SA scheme based on a B*-tree floorplan representation. The total wirelength can

be effectively minimized by dynamically varying the weights of the objective function.

Fixed-die floorplanning is achieved by taking outline constraints into account.

A fast geometric algorithm, called Traffic, has recently been proposed for wire-

length minimization without SA (Sassone and Lim, 2006). Traffic also decomposes

floorplanning into two steps. In the first step, the modules are grouped by local

and global connectivity into several layers as rows by a partitioning algorithm. In

the second step, the modules in the same layer are moved to trapezoidal form by

wirelength minimization. Squeezing the constructed rows transforms them into the

required floorplans. The main advantage of this approach is that it is much faster

than SA-based models.

Genetic algorithm (GA)-based fixed-outline floorplanners have recently been stud-

ied (Lin et al., 2004; Chen et al., 2007). Lin et al. (2004) proposed a model that places

all the modules in enlarged floorplan outlines. The outlines were enlarged to 115% of

the total module area. Based on the GA concept, Lin et al. (2006) developed a genetic

clustering algorithm for slicing floorplans considering fixed-outline and boundary con-

straints. Those modules that should have stronger connectivity with I/O pads are

34

forced along the chip boundary to improve the total wirelength. Two evolutionary

operations for searching the solution space to find a fixed-outline floorplan based on

the GA are described by Chen et al. (2007).

Most recently, some other approaches were also proposed for fixed-outline floor-

planning. For example, Liu et al. (2005) achieved fixed-outline floorplanning by a

local search method based on instance augmentation adopting a sequence-pair repre-

sentation of the floorplan. Their algorithm explores both instances and sub-instances

in search of feasible and optimal solutions in the solution space but has difficulty at-

taining zero-deadspace. Feng and Mehta (2006) suggested a geometry-based moving

approach which minimizes the standard deviation of module densities. Zhan et al.

(2006) proposed an analytical approach for fixed-outline floorplanning dealing with

soft modules that minimizes total wirelength in two phases. In the first phase, the

wirelength and area distribution density of modules are minimized. In the second

phase, the overlap area and wirelength are optimized to achieve an overlap-free floor-

plan. Cong et al. (2006) developed a floorplanner that uses recursive bipartitioning

flow to minimize total wirelength and arranges soft and hard modules within a fixed-

outline floorplan. Chen and Yoshimura (2007) proposed a technique called Insertion

After Remove (IAR) for solution perturbation for the SA and arrangement of modules

in SP. They suggested a new objective function with width, height, and aspect ratio

of the chip. This objective function improves the success rate and minimizes area and

total wirelength simultaneously.

There have been few studies on fixed-outline floorplanning by convex optimiza-

tion (Moh et al., 1996; Murata and Kuh, 1998; Luo et al., 2007; Luo et al., 2008b).

Moh et al. (1996) formulated the floorplanning problem as a geometric program and

thus transformed it into a convex optimization problem. The aspect ratios of the

modules are also considered in their approach. As the geometric program problem

35

is formulated subject to height and width constraints in a given partition, their ap-

proach is suitable for area minimization. Murata and Kuh (1998) proposed a convex

optimization approach that minimizes the total wirelength by SA using a nonslicing

floorplan and SP representation. Their approach is time-consuming and has difficulty

achieving zero-deadspace.

2.5 Zero-Deadspace Fixed-Outline Floorplanning

The zero-deadspace (ZDS) floorplanning problem aims to pack a given set of soft

modules inside a fixed-die floorplan without any deadspace and/or overlap among

modules. In modern VLSI design, deadspace-free and overlap-free fixed-outline floor-

planning is required because the size of the fixed-die has usually been pre-determined

during the chip synthesis process. Therefore, it is necessary to pack a zero-deadspace

and zero-overlap layout into the fixed die. Furthermore, top-level routing and pin

assignment are iteratively performed. Fixed-die floorplanning is incorporated in a

top-down hierarcgical flow that uses multi-level floorplanning. One of the reasons to

seek ZDS and zero-overlap layout is that there are no unused resources and full area

utilization is required at top level (Kahng, 2000; Adya and Markov, 2003). Mosaic

floorplan is a term used by Hong et al. (2000) if the floorplan achieves ZDS.

Fixed-outline floorplanning is important in designing flows in the hierarchical de-

sign of ASICs and SoC (Kahng, 2000; Adya and Markov, 2003). It is relevant to

ASIC design and its formulation is easily enforced by application-specific constraints

such as alignment, abutment, order, region and symmetry (Adya and Markov, 2003).

Several authors have investigated ZDS in floorplanning (e.g., Wimer et al., 1988;

Wang and Chen, 1993; Peixoto et al., 2000; Young and Wong, 1997; Kahng, 2000;

Cong et al., 2006; Feng and Mehta, 2004; Mehta and Sherwani, 2000; Feng et al., 2004).

36

Methods for ZDS floorplanning include the network-flow method (e.g., Wimer et

al., 1988; Feng et al., 2004), the partition-based method (Cong et al., 2006), and the

resistive network approach (Wang and Chen, 1993). Previous research work achieved

ZDS on slicing floorplans (Peixoto et al., 2000; Young and Wong, 1997; Cong et

al., 2006) and on nonslicing floorplans (Wang and Chen, 1993). Some approaches

allow general floorplans (Wimer et al., 1988; Cong et al., 2006).

The first algorithms are due to Wimer et al. (1988) and Wang and Chen (1993).

However, these algorithms did not consider the aspect ratios of the soft modules.

ZDS floorplans with area minimization were achieved by Wang and Chen (1993) by

transforming the nonslicing floorplanning problem into a resistive network problem.

Wimer et al. (1988) described a network flow and planar graph approach that imple-

ments ZDS layout for area minimization and also proved the existence and uniqueness

of a ZDS floorplan.

There was then little research on ZDS until modern hierarchical design flows on

ASIC and SoC became popular. ZDS was now regarded as a constraint instead of as

an objective in the formulation (Adya and Markov, 2003). Kahng (2000) questioned

and challenged the supremacy of classical floorplanning and his work contains the

earliest suggestion that ZDS fixed-outline floorplanning is more consistent with the

requirements of modern design. He developed a formulation called the Perfect Recti-

linear Floorplanning Problem (PRFP) that produces provable ZDS perfectly packed

rectilinear floorplans with the fixed-outline constraint. Actually, the ZDS floorplan is

a compacted floorplan.

Some methods implement and achieve ZDS floorplans by experiment (e.g., Wimer

et al., 1988; Feng et al., 2004; Cong et al., 2006). Others propose theoretical analysis

and potential results (e.g., Peixoto et al., 2000; Young and Wong, 1997; Mehta and

Sherwani, 2000; Hong et al., 2000). For example, Peixoto et al. (2000) and Young

37

and Wong (1997) used theoretical analysis to propose upper bounds on the total area

minimization. Mehta and Sherwani (2000) considered a grid data representation and

developed corresponding algorithms by replacing the module rectilinear shapes such

as L-shapes with arbitrary rectilinear shapes. They stated that their algorithms are

theoretically able to implement ZDS.

Some methods directly achieve ZDS floorplans, while others obtain ZDS floorplans

by minimizing the whitespace inside floorplans. For example, the algorithm of Cong

et al. (2006) directly obtains a provable ZDS fixed-outline floorplan by a recursive

top-down area bi-partitioning algorithm. In contrast, in other algorithms, whitespace

is initially allowed. Feng and Mehta (2004) use an iterative refinement and area

redistribution approach to achieve ZDS. The ZDS is potentially a result of their min-

cut max-flow floorplanner. Feng et al. (2004) introduced three BFS (breadth first

search)-based algorithms following the work of Kahng (2000). They used a min-

cost max-flow network formulation that packs rectilinear-shaped modules into a ZDS

floorplan. Theoretically, some floorplan representations can implement the compacted

floorplan and thus a ZDS floorplan. For instance, the CBL (Corner Block List)

representation invented by Hong et al. (2000) potentially achieves ZDS floorplans

without empty rooms by assigning each room only one module in the slicing and

nonslicing floorplans.

The ZDS floorplanning problem may be defined as follows:

Definition 2.5.1 (ZDS Floorplanning) Given chip area A and n modules with

areas ai (i = 1, 2, ..., n), the objective is to arrange all the modules inside the floorplan

without any overlap, and to minimize the total wirelength such that
∑n

i=1 ai = A =

w̄F × h̄F , where w̄F and h̄F are the fixed width and height of the floorplan.

In our methodology, the sum of the module areas is equal to the area A of the

38

chip. We enforce this constraint into the second stage formulation by the height h̄F

and width w̄F of the chip, whose area is A (w̄F × h̄F = A). We are able to obtain ZDS

solutions and also to allow any percentage of deadspace in the fixed-outline floorplan.

One of the main advantages of our methodology is that it is not restricted to slicing

structures.

Whitespace in the floorplan is also an important consideration. Whitespace is

needed by designers due to power-density and temperature restrictions. Buffer inser-

tion that requires area at appropriate places on the timing paths is necessary. The

locations of buffers cannot be predicted prior to floorplanning. Therefore, whitespace

throughout the floorplanning is required by buffer insertion (Adya et al., 2006).

2.6 The Clique Model for Nets

A hypergraph is a generalization of a graph in which the edges link not just two but

any number of vertices. A circuit to be placed on a chip can be represented by a

hypergraph G(V, E). The vertices V represent the modules of the circuit, and the

hyperedges E represent the nets.

In the clique model, a k-pin net is typically transformed into k(k − 1)/2 two-

pin nets with certain weights. Different values are used for the weight of the two-

pin nets. Commonly used values are 2W/k (Kleinhans et al., 1991; Eisenmann and

Johannes, 1998) and W/(k−1) (Vygen, 1997) where W is the weight of the k-pin net.

In the star model, a hypergraph is converted into a graph by adding an artificial centre

vertex so as to construct two-pin nets by connecting this to the existing modules.

Obviously, a k-pin net generates k two-pin nets. The clique and star models for a

six-pin net are illustrated in Fig. 2.5.

We use the clique model to transform hypergraphs to two-pin nets and the result-

39

ing weights are used in our objective functions that minimize wirelength and area.

The fact that weights between pairs of modules are used in the objective functions

supports the use of the clique model. In our experiment in Chapter 3 and Chapter 5,

we use W/(k − 1) for the weight of the two-pin nets.

The connectivity information is typically expressed in the form of a symmetric

n × n matrix C, where element cij is the connectivity between modules i and j. If

wij represents the weight of a two-pin net (clique) between modules i and j, the sum

of weights wij on all the cliques between modules i and j forms the connectivity cij.

(x1 ,y1)
(x2 ,y2)

(x3 ,y3)

(x4 ,y4)

(x6 ,y6)

(x5 ,y5)

BA

(x1 ,y1)
(x2 ,y2)

(x3 ,y3)

(x4 ,y4)

(x6 ,y6)

(x5 ,y5)

Figure 2.5: An example of clique and star models converted from a six-pin net. A:

the clique model; B: the star model.

40

2.7 Wirelength Estimation

We estimate total wirelength to evaluate the quality of the floorplan. Wirelength

estimation has been extensively studied and used in floorplanning and placement

(e.g., Gamal, 1981; Hamada et al., 1996; Hebgen and Zimmermann, 1996; Pedram

and Preas, 1989).

A circuit is commonly represented by a hypergraph Gh = (V, E) with its ver-

tex set V = {v1, v2, . . . , vm} representing modules and its set of hyperedges E =

{e1, e2, . . . , en} representing the nets connecting the modules. The first step in our

approach is to construct a simple graph capturing this information. A clique model

is commonly used to form a graph from the hypergraph describing a circuit. The

resulting graph is represented by a symmetric n×n adjacency matrix C, where entry

cij ≥ 0 is an aggregate measure of the connectivity between modules i and j. A

positive weight W is associated with the net to indicate its criticality. In the clique

model, a k-pin net is typically transformed into k(k − 1)/2 two-pin nets with certain

edge weights. If W is the weight of the k-pin net, commonly used values for the edge

weights are 2W/k (e.g., Eisenmann and Johannes, 1998; Kleinhans et al., 1991) and

W/(k − 1) (Vygen, 1997). We use the clique model for transforming hypergraphs to

two-pin nets, and a value of 1/(k−1) for the edge weights of a net with k pins. If wij

represents the weight of a two-pin net between modules i and j, their total connec-

tivity cij is obtained by summing up wij over all the cliques involving both i and j.

The resulting connectivities are used in the objective functions of our mathematical

programming models.

The techniques of wirelength estimation can be classified into:

1. Complete graph technique: Every module in the netlist is connected to every

other module. For a k-pin net, the complete graph has k(k − 1)/2 edges.

41

2. Source-sink connection technique: One of the modules is assumed to be a

source and the rest to be sinks. All the sinks are connected to the source by separate

wires. The total wirelength of this method is high and therefore it is suitable for

approximation for heavily congested placement and floorplanning.

3. Minimum chain technique: Start from a vertex and connect the closest one,

and then the next closest, in a certain sequence, until all the vertices are enclosed.

The wirelength is estimated by all the lengths of chain included.

4. Spanning tree estimation: A spanning tree of a connected graph is a subgraph

which is a tree and contains all the vertices of the graph. In an n-pin net, the

algorithm searches the distances between all potential pairs of pins and connects the

smallest (n-1) edges without cycles to form the spanning tree.

5. Steiner tree estimation: A Steiner tree is a tree in a distance graph which

spans a given subset of vertices (Steiner Points) with the minimal total distance on

its edges. The so-called Steiner tree problem is to find a minimum Steiner tree, i.e., a

Steiner tree of minimum length. This problem is known as the Steiner tree problem

and finding the minimum Steiner tree is known to be NP-complete. A Steiner tree is

the shortest route when connecting a set of pins in modules (Sait and Youssef, 1995).

In an n-pin net, the net is able to start from any pin along its length to connect to

other pins of the net to form a Steiner tree.

6. Half-perimeter wirelength estimation: The quality of the floorplanning is mea-

sured in terms of the half-perimeter wirelength (HPWL). This simple and efficient

method for estimating the wirelength measures the half-perimeter of a box which

bounds the pins of a corresponding net.

In the past two decades, rectilinear (Manhattan) distance, Steiner tree, and span-

ning tree have been used as typical wirelength measures in VLSI placement and

floorplanning (e.g., Sait and Youssef, 1995; Sarrafzadeh and Wong, 1996). Wire seg-

42

ments using rectilinear distance connecting the different modules are parallel to the

x and y axes. Therefore, it is particularly suitable for two-pin nets. The minimum

Steiner tree that connects an n-pin net generates the minimum wirelength. However,

constructing the minimum Steiner tree is a difficult task. The rectilinear minimum

spanning tree (RMST) is a good choice to implement a multipin net that has mini-

mum wirelength with linear distance. RMST may be resulted from approximation to

Steiner tree. Hence, finding the RMST is also an intractable problem as the number

of nets in a modern circuit is large (for instance, there are 1893 nets and 4358 pins for

the GSRC n300 circuit). Consequently, a simpler and more efficient approximation

measure for the wirelength is necessary.

The HPWL is the most popular and efficient approximation of the wirelength.

The HPWL is equal to the weighted sum of half-perimeters of the bounding boxes

that encompass the modules incident on each net. This technique is used extensively

becasue its calculation is relatively simple and accurate. An instance that estimates

the wirelength of a net as the half-perimeter of the smallest enclosing rectangle is

illustrated in Fig. 2.6. The total HPWL Lt is computed as the sum of the half-

perimeter of the individual nets composed in the netlist; this is thus given by

Lt =

N
∑

i=1

(hi + wi) (2.1)

where hi and wi are the horizontal and vertical dimensions respectively of the bound-

ing box of net i.

Another reason for the popularity of the HPWL is that it is correlated with

shortest paths being used to route more nets in multilayer over-the-cell routing

(Kahng, 2000). There have been a number of studies on the minimization of the

HPWL. For example, Jackson and Kuh (1989) and Weis and Mlynski (1987) mini-

mize the HPWL using LP, while Hur and Lillis (1999) use a max-flow computation

43

0
 x

w

h

y

M1
M2

3M
4M

5M

6M

Figure 2.6: Estimation of the wirelength of a net by the half-perimeter of the minimum

rectangle enclosing the modules in the net, HPWL=h+w.

44

method. Kennings and Markov (2000) proposed an analytical algorithm based on

a convex approximation of the HPWL. Their regularization technique is able to ap-

proximate the HPWL with arbitrarily small relative error, and thus to minimize the

HPWL using unconstrained convex optimization.

Although we minimize different estimates of the wirelength in our models (i.e.,

rectilinear distance, quadratic distance, and direct HPWL known as Methods A, B,

and C in Section 3.4.2), we always use the HPWL to measure the quality of our final

floorplans.

2.8 Benchmarks of Test Circuits

Two benchmarks, Microelectronics Center of North Carolina (MCNC) and Gigascale

Systems Research Center (GSRC), are used as test circuits to evaluate the perfor-

mance of the proposed methodology in this thesis. The circuit characteristics of

MCNC (MCNC, 2004) and GSRC (GSRC, 2006) are presented in Table 2.2 and

Table 2.3, respectively.

Table 2.2: The standard MCNC benchmark circuits

Circuit # of modules # of nets # of I/O pads # of pins area

apte 9 97 73 287 46.56

xerox 10 203 2 698 19.35

hp 11 83 45 309 8.30

ami33 33 123 42 522 1.16

ami49 49 408 22 953 35.4

45

Table 2.3: The standard GSRC benchmark circuits

Circuit # of modules # of nets # of I/O pads # of pins area

n10 10 118 69 248 22.17

n30 30 349 212 723 20.86

n50 50 485 209 1050 19.86

n100 100 885 334 1873 17.95

n200 200 1585 564 3599 17.57

n300 300 1893 569 4358 27.32

Each circuit entry in Tables 2.2 and 2.3 consists of the number of modules, nets,

I/O pads, pins, and chip area. The test cases provided by these two benchmarks

cover a large spectrum of circuits. A great variety in circuit characteristics qualifies

the benchmarks to evaluate the robustness, scalability, efficiency, and effectiveness of

our model. Furthermore, results using these benchmarks are available in the literature

for comparison.

There are two choices for the locations of the I/O pads when performing experi-

ments. First, the I/O pads are originally fixed at the locations given by the bench-

marks. Second, the I/O pads are scaled to the boundary of the floorplans. We will

use these two cases to compare our experimental results with others in the literatures.

An illustration of the numbers of nets, I/O pads, and pins corresponding to the

number of modules for the MCNC benchmarks is shown in Fig. 2.7 and for the GSRC

benchmarks in Fig. 2.8.

46

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

Number of I/O pads

Number of pins

Number of nets

Number of modules

Nu
m

be
r

Figure 2.7: Illustration of the numbers of nets, I/O pads, and pins corresponding to

the number of modules for the MCNC benchmarks.

47

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of I/O pads

Number of pins

Number of nets

Number of modules

Nu
m

be
r

Figure 2.8: Illustration of the numbers of nets, I/O pads, and pins corresponding to

the number of modules for the GSRC benchmarks.

48

2.9 Summary

This chapter has shown the importance of placement and floorplanning in layout de-

sign. It has also provided a brief survey of previous approaches. These approaches

were classified according to their algorithms and features in the placement and floor-

planning. Floorplanning is becoming an increasingly important tool. First, floor-

planning is the early stage of physical design; it significantly determines the overall

chip performance. Second, it is becoming an increasingly important tool for designing

flows in the hierarchical design of ASICs and SoC (Kahng, 2000; Adya and Markov,

2003). Third, it is closely related to placement and it is a feasibility study of the

placement (Sait and Youssef, 1995).

Classical floorplanning and fixed-outline floorplanning, and zero-deadspace fixed-

outline floorplanning were described. Our methodology is motivated by the fixed-die

problem, also called fixed-outline floorplanning, but in principle it is applicable to

variable-die as well. Fixed-outline floorplanning is significantly more difficult than

variable-die floorplanning and it plays an important role in state-of-the-art hierarchi-

cal methods for multi-level large-scale circuit design (ASIC and SoC). First, ideally,

at the top level of design, all the space resources should be used. Second, in industry,

before the use of floorplanning during the chip synthesis process, usually the die size

and package have been chosen. Hence, fixed-outline floorplanning with non-overlap

and zero-deadspace is an important, realistic, but very difficult problem.

The clique model was introduced to transform a hypergraph into a graph with a

weight for each net. Total wirelength is commonly used to compare the quality of

different floorplans; various approaches of the estimation of the wirelength were briefly

analyzed and the HPWL measure method was introduced in this chapter. In the next

chapter, our mathematical programming model will be proposed for floorplanning.

Chapter 3

A Nonlinear Optimization

Methodology

We propose a two-stage nonlinear-optimization-based methodology specifically de-

signed to perform fixed-outline floorplanning by minimizing wirelength while simul-

taneously enforcing aspect ratio constraints on soft modules and handling a zero

deadspace situation. In the first stage, a convex optimization globally minimizes an

approximate measure of wirelength. This stage provides the relative position of mod-

ules without considering their shape and dimension. Modules are allowed to overlap.

Using the solution from the first stage as a starting point, the second stage minimizes

the wirelength by sizing the modules subject to the prescribed aspect ratios, and

ensuring no overlap (Luo et al., 2007).

Another important consideration is the use of soft modules, meaning that the

area of each rectangular module is assumed to be fixed while its height and width are

allowed to vary subject to given aspect ratio constraints (Wong and Liu, 1986; Sait

and Youssef, 1995). At this stage of the design process, the modules have not been

laid out in detail yet, and so the floorplanner will perform better if it is allowed to

49

50

change module dimensions in a controlled manner. (This control typically comes in

the form of aspect ratio constraints.) However, few studies using soft modules have

been done in the fixed-outline context. Cong et al. (2006) do consider this in their

PATOMA package. The PATOMA method requires the presence of deadspace (in

particular since it uses a partitioning-based approach), and all the results reported

have significant amounts of deadspace. The approach of Zhan et al. (2006) also

requires the presence of deadspace (the authors use a minimum of 10% deadspace in

all the results).

An important feature of our method is that it achieves complete area utilization

using soft modules in a fixed-outline situation, something that has not been achieved

in the literature to date. Computational results on the standard MCNC benchmark

demonstrate that the model is competitive with other approaches.

The first stage model introduced in this chapter will also provide the relative

position of modules for the second stage in Chapter 5. This chapter is organized as

follows. Previous nonlinear-programming-based models are described in Section 3.1.

Rectilinear and quadratic objective functions are discussed in Section 3.2. The first

stage model based on convex optimization is introduced in Section 3.3. The second

stage model is proposed in Section 3.4. The experimental results and comparisons

with other state-of-the-art floorplanners are described in Section 3.5. Finally, this

chapter is summarized in Section 3.6.

3.1 Previous Research

There are previous studies on obtaining relative position of modules by facility layout

approaches. We start to describe some previous models. Previous studies on nonlinear

optimization methods to the layout problem are reviewed. Let us first review the

51

DISCON model (Drezner, 1980) for the layout problem.

• Each module labelled 1, 2, . . . , N is represented as a circle with radius ri, i

= 1, 2, . . . , N .

• The location of each module 1, 2, . . . , N is given by the coordinates of its

centre denoted as (xi, yi).

• The non-negative cost per unit distance between modules i and j is expressed

by cij , which is equivalent to the weight between modules.

• The distance between modules i and j measured from centre to centre by Eu-

clidean distance (l2 norm) is denoted by dij

dij=
√

(xi − xj)2 + (yi − yj)2. (3.1)

Then the DISCON model is formulated as a minimization problem:

min
(xi,yj)

∑

1≤i<j≤N

cijdij

s.t.

ri + rj − dij ≤ 0, ∀ 1 ≤ i < j ≤ N

(3.2)

It is obvious that the objective function

∑

1≤i<j≤N

cijdij (3.3)

attempts to make distance dij as small as possible. It is able to attract pairs of circles

i and j towards each other and so can act as an attractor. On the other hand, the

constraints in the DISCON model

ri + rj − dij ≤ 0, ∀ 1 ≤ i < j ≤ N (3.4)

52

push any pair of circles away from each other to prevent them from overlapping.

A nonlinear optimization layout technique (NLT) (van Camp et al., 1991) was

proposed to solve the facility layout problem using a three-phase method. Modules

are approximated by circles whose radii are proportional to the areas of the modules.

The relative positions of the modules are captured in the first two stages by solving a

relaxation of the NLT model as formulation (3.5). The centres of the modules inside

the floorplan are evenly distributed in the first stage while the second stage decreases

the overlap among modules. Finally, the third stage determines the final solution,

starting from the result obtained from the second stage. The areas of the modules

and the floorplan are fixed and rectangular. The objective of the NLT model is to

optimize the height and width of each module.

min
(xi,yj),wi,hi,wF ,hF

∑

1≤i<j≤n

cijdij

s.t.

|xi − xj | ≥
1

2
(wi + wj) if

1

2
(hi + hj) > |yi − yj|,

|yi − yj | ≥
1

2
(hi + hj) if

1

2
(wi + wj) > |xi − xj |,

1

2
wF ≥ xi +

1

2
wi ∀ i,

1

2
hF ≥ yi +

1

2
hi ∀ i,

1

2
wF ≥ 1

2
wi − xi ∀ i,

1

2
hF ≥ 1

2
hi − yi ∀ i,

min(wi, hi) − lmin
i ≥ 0 ∀ i,

min(wF , hF) − lmin
F ≥ 0,

lmax
i − min(wi, hi) ≥ 0 ∀ i,

lmax
F − min(wF , hF) ≥ 0,

(3.5)

53

where (xi, yi) and dij are as defined previously, and

• wi, hi are the width and height of module i;

• wF , hF are the width and height of the floorplan;

• lmin
i , lmax

i are the minimum and maximum allowable lengths for the shortest side

of module i; and

• lmin
F , lmax

F are the minimum and maximum allowable lengths for the shortest side

of the floorplan.

The Spring Embedding (SE) model for facility layout problem proposed by Castillo

and Sim (2004) is inspired by a dynamic spring system. Again let the distance dij be

dij=
√

(xi − xj)2 + (yi − yj)2, (3.6)

then the total energy of springs is formulated in a dynamic spring system

E =
∑

i,j∈M

1

2
cijd

2
ij (3.7)

The ri and rj are radii of the modules i and j modelled by circles, respectively, i =

1, 2, . . . , N and j = 1, 2, . . . , N . If (xi, yi) and (xj , yj) are the coordinates of

the centre points of modules i and j, the generated SE model is:

min
(xi,yj),wF ,hF

∑

i,j∈M

1

2
cijd

2
ij +

∑

i,j∈M

max
{

0, ωij(ri + rj − dij)
}

s.t.

1

2
wF ≥ xi + ri and

1

2
wF ≥ ri − xi, for all i ∈ M,

1

2
hF ≥ yi + ri and

1

2
hF ≥ ri − yi, for all i ∈ M,

wup
F ≥ wF ≥ wlow

F ,

hup
F ≥ hF ≥ hlow

F ,

(3.8)

54

where ωij is a constant, ωij > 0. The mechanism on the relationships of dij and

ri, rj of the SE model is similar to that of the AR model in formulation (3.12). If

dij < ri + rj, so modules i and j overlap, ωij(ri + rj − dij) is penalized in the total

energy function to generate a repulsive force. If dij ≥ ri + rj , then modules i and j

do not overlap. The penalty term thus disappears from the objective function and

there is a net attractive force between modules i and j. The use of the max function,

which is non-smooth, is detrimental in the nonlinear programming solver. An optimal

solution of relative locations of modules will be obtained by solving this problem.

3.2 Rectilinear and Quadratic Objective Functions

We will investigate the influence of rectilinear and quadratic objective functions on

floorplanning and placement (Sigl et al., 1991).

The quadratic objective function has the property that it is continuously differ-

entiable and therefore can be minimized by solving a system of linear equations.

By using linear programming with a large number of constraints, the half perime-

ter can be minimized. In fact, for medium-size circuits (e.g., circuit ami33), mini-

mization of the half perimeter wirelength can be achieved in an acceptable time.

We use the following example to demonstrate the difference between rectilinear

and quadratic objective functions. Three modules, two fixed and one movable, are to

be placed. In Fig. 3.1, two fixed modules A and B are connected to movable module

C by three nets with lengths x, y, and z, respectively. The result x = y = 0 in Fig.

3.1A arises from minimizing the rectilinear objective function Lr = x + y + z, while

the result x = y = 1
2
z in Fig. 3.1B arises from minimizing the quadratic objective

function Lq = x2 + y2 + z2.

Several observations can be made from the experiments above. A rectilinear

55

Fixed

A

Movable Fixed

C B
x

y

z

A C B

x

y

z

B

A

Figure 3.1: An example of optimal placement based on different objective functions.

A: rectilinear; B: quadratic.

objective function is normally used in placement because more tracks and more

feedthroughs are needed; these are not important factors in floorplanning. On the

other hand, a quadratic objective function tends to reflect adjacency demands more

accurately. It also tends to route shorter lengths for the long nets (net z in Fig.

3.1B), and to increase the length of short nets (nets x and y in Fig. 3.1B). Therefore,

the standard deviation of the net lengths is larger for a rectilinear objective function

than for a quadratic objective function (Sigl et al., 1991).

3.3 First Stage Model

This is a relative placement stage providing the relative position of modules. The

dimension and shape of the modules are not considered.

Let (xi, yi) and (xj , yj) denote the coordinates of the centres of modules i and j.

Following Du and Vannelli (1998), the minimization of the quadratic wirelength with

56

respect to a given target distance may be formulated as a quartic objective function

of the form:

min
∑

i,j∈Netk

cij

[

(xi − xj)
2 + (yi − yj)

2 − d2
ij

]2
, (3.9)

where cij is the connectivity between modules i and j, and dij denotes the specified

target distance between modules i and j. This model is an early use of a target

distance. Solving the wirelength minimization problem (3.9) results in a placement

without overlap if the distances represented by the dij terms are chosen appropriately.

Further extensions of the concept of target distance to placement were introduced by

Anjos and Vannelli (2002), Anjos and Vannelli (2006), and Etawil et al. (1999).

We now describe the target distance methodology employed in the first stage of

our approach. Let each module i be represented by a circle of radius ri, where ri is

proportional to
√

ai, the square root of the area of module i. Following Anjos and

Vannelli (2002), we define the target distance for each pair of circles i, j as:

tij := α(ri + rj)
2, (3.10)

where α > 0 is a parameter. To prevent circles from overlapping, the target distance

is enforced by introducing a penalty term:

f(
Dij

tij
),

where f(z) = 1
z
−1 for z > 0, and Dij = (xi−xj)

2 +(yi−yj)
2. The objective function

is thus given by
∑

1≤i<j≤n

cijDij + f(
Dij

tij
). (3.11)

If ri + rj ≤ dij , there is no any overlap between circles (Fig. 3.1A), and the repeller

term is zero or becomes a negative value. So, the attractor in the objective function

applies an attractive force to the two circles. Conversely, if ri + rj > dij, the repeller

57

term (i.e. the penalty function) holds a positive value that acts as a repulsive force

to prevent the circles from overlapping (Fig. 3.2B).

B

A

Attractive force

Repulsive force

Figure 3.2: Two circles with attractive and repulsive forces. A: two disconnected

circles with attractive force, ri + rj ≤ dij; B: two connected circles with repulsive

force, ri + rj > dij.

The interpretation here is that the first term is an attractor that makes the two

circles move closer together and pulls them towards a layout where Dij = 0, while

the second term is a repeller that prevents the circles from overlapping. Indeed, if

Dij ≥ tij then there is no any overlap between circles and the repeller term is zero or

slightly negative, while the attractor in the objective function applies an attractive

58

force to the two circles. On the other hand, if Dij < tij then the repeller term is

positive, and it tends to positive infinity as Dij tends to zero, preventing the circles

from overlapping completely. Finally, note that there is no force between i and j

exactly if D2
ij = tij/cij. This observation leads to the definition of the generalized

target distance Tij below.

The model aims to ensure that
Dij

tij
= 1 at optimality, so choosing α < 1 sets a

target value tij that allows some overlap of the respective circles, which means that

the non-overlap requirement is relaxed. In practice, by properly adjusting the value of

α we achieve a reasonable separation between all pairs of circles. Let M and P denote

the set of mobile modules and the set of fixed I/O pads, respectively. Target distances

are applied only for pairs of mobile modules. The complete attractor-repeller (AR)

model as given by Anjos and Vannelli (2002) is:

min
(xi,yi),i∈M,wF ,hF

∑

i,j∈M∪P

cijDij +
∑

i,j∈M

f(
Dij

tij
)

s.t.

xi + ri ≤
1

2
wF and ri − xi ≤

1

2
wF , for all i ∈ M,

yi + ri ≤
1

2
hF and ri − yi ≤

1

2
hF , for all i ∈ M,

wlow
F ≤ wF ≤ wup

F ,

hlow
F ≤ hF ≤ hup

F ,

(3.12)

where (xi, yi) are the coordinates of the centre of circle i as previously defined; wF , hF

are the width and height of the floorplan; and wlow
F , wup

F , hlow
F , and hup

F are the lower

and upper bounds on the width and the height, respectively. The first two sets of

constraints require that all the circles be entirely contained within the floorplan, and

the remaining two pairs of inequalities bound the width and height of the floorplan.

(Note that the geometric centre is at the origin of the x− y plane.) In particular, for

59

fixed-outline floorplanning, we set wlow
F = wup

F = w̄F and hlow
F = hup

F = h̄F , where w̄F

and h̄F are the fixed width and height of the floorplan.

An important drawback of the AR model is that the objective function is not

convex, and hence the overall model is not convex. By modifying it to obtain a convex

problem, we expect to obtain a relaxation that better captures global information

about the problem. The effectiveness of this convex approach for the closely related

facility layout problem has been documented in Anjos and Vannelli (2006).

In real-world applications, the distances Dij between the circles should be in-

versely proportional to cij representing the weights on the wirelength, and should be

proportional to the relative size of the modules through the value of tij . Hence, a

generalized target distance, namely Tij, is defined such that Dij ≈ Tij at optimality

(Anjos and Vannelli, 2006). The analysis in Anjos and Vannelli (2002) and Anjos and

Vannelli (2006) motivates the definition of the following generalized target distance

Tij :

Tij :=

√

tij
cij + ε

, (3.13)

where ε > 0 is sufficiently small to ensure that Dij ≈
√

tij
cij

if Dij ≈ Tij . Using Tij , a

convex version of the AR model of Anjos and Vannelli (2006) may be stated as:

min
(xi,yj),wF ,hF

∑

1≤i<j≤n

Fij(xi, xj , yi, yj)

s.t.

xi + ri ≤
1

2
wF and ri − xi ≤

1

2
wF , for all modules i,

yi + ri ≤
1

2
hF and ri − yi ≤

1

2
hF , for all modules i,

wlow
F ≤ wF ≤ wup

F ,

hlow
F ≤ hF ≤ hup

F ,

(3.14)

60

where

Fij(xi, xj , yi, yj) :=







cijz +
tij
z
− 1, z ≥ Tij

2
√

cijtij − 1, 0 ≤ z < Tij

with z = (xi − xj)
2 + (yi − yj)

2. It was shown by Anjos and Vannelli (2002) that this

problem is convex, and that by construction Fij attains its minimum value whenever

the positions of circles i and j satisfy Dij ≤ Tij . This includes the case where Dij = 0,

i.e., both circles completely overlap. Of course, we do not want such a placement,

therefore what we seek is an arrangement of the circles where Dij ≈ Tij , since for such

arrangements the minimum value of Fij is still attained but the resulting overlap is

minimized.

Following the approach used in Anjos and Vannelli (2006), we use a slightly mod-

ified model whose minima satisfy Dij ≈ Tij at optimality. It can be viewed as a

compromise between convexity and computational practice, in the sense that we lose

the convexity of the model above, but gain a model which can be solved efficiently

and still aims to achieve the generalized target distances. The idea is to add to the

objective function a term of the form − ln (Dij/Tij) for each pair i, j of circles. (This

particular choice of function is inspired by the log-barrier functions in interior-point

methods for convex optimization.) Hence, the model solved in the first stage of our

61

method is:

min
(xi,yj),wF ,hF

∑

1≤i<j≤n

Fij(xi, xj , yi, yj) − βK ln(
Dij

Tij

)

s.t.

xi + ri ≤
1

2
wF and ri − xi ≤

1

2
wF , for all modules i,

yi + ri ≤
1

2
hF and ri − yi ≤

1

2
hF , for all modules i,

wlow
F ≤ wF ≤ wup

F ,

hlow
F ≤ hF ≤ hup

F ,

(3.15)

where β is a parameter selected empirically. K is chosen to reflect the weights of all

the pairs of mobile modules in the objective function:

K =
∑

i<j

cij . (3.16)

The topological relationships between modules are obtained in this first stage.

Without the term −βK ln (Dij/Tij) in formulation (3.15), this problem is convex

(Anjos and Vannelli, 2006). By solving formulation (3.15), the solution of the first

stage provides relative positions within the floorplan for all the modules represented

by circles.

3.4 Second Stage Model

The solution of the first stage provides relative locations for all the modules. In

the second stage, we determine the precise location and dimensions of the modules

while minimizing the total wirelength. At this point, classical floorplanning per-

forms a multi-objective minimization which seeks to minimize both the wirelength

and the area of the floorplan. We instead focus on fixed-outline floorplanning, and

62

use a mathematical program with complementarity constraints (MPCC) which min-

imizes wirelength and yields deadspace-free and overlap-free floorplans. (Note that

it is straightforward to incorporate the minimization of the area into the objective

function, but we use only the wirelength.)

The non-overlap constraints for each pair of modules can be expressed as

1

2
(wi + wj) ≤ |xi − xj | or

1

2
(hi + hj) ≤ |yi − yj|.

However, these constraints are disjunctive, nonlinear and non-convex. They were

reformulated in Anjos and Vannelli (2006) by introducing two new variables Xij and

Yij and expressing them as:























Xij ≥ 1
2
(wi + wj) − |xi − xj | Xij ≥ 0,

Yij ≥ 1
2
(hi + hj) − |yi − yj | Yij ≥ 0,

XijYij = 0.

(3.17)

It is straightforward to check that the constraints (3.17) enforce no overlap between

modules i and j. We also require that the area requirement wihi = ai be satisfied for

every module i.

Incorporating all these constraints, the problem of minimizing wirelength for fixed-

63

outline floorplanning is formulated as:

min
(xi,yi),wi,hi

∑

1≤i<j≤n

cijL(xi, xj , yi, yj)

s.t.

xi +
1

2
wi ≤

1

2
w̄F ∀ i,

yi +
1

2
hi ≤ 1

2
h̄F ∀ i,

1

2
wi − xi ≤

1

2
w̄F ∀ i,

1

2
hi − yi ≤ 1

2
h̄F ∀ i,

wihi = ai ∀ i,

wlow
i ≤ wi ≤ wup

i ∀ i,

hlow
i ≤ hi ≤ hup

i ∀ i,

1

2
(wi + wj) − |xi − xj | ≤ Xij ∀ 1 ≤ i < j ≤ n,

1

2
(hi + hj) − |yi − yj| ≤ Yij ∀ 1 ≤ i < j ≤ n,

Xij ≥ 0, Yij ≥ 0 ∀ 1 ≤ i < j ≤ n,

XijYij = 0 ∀ 1 ≤ i < j ≤ n,

(3.18)

where w̄F and h̄F are the fixed width and height of the floorplan, and L(xi, xj , yi, yj)

is the distance between modules i and j. (Different choices of L lead to different

methods as discussed in Section 3.4.2 below.) The above formulation is an instance

of an MPCC due to the presence of the complementarity constraints:

Xij ≥ 0, Yij ≥ 0, XijYij = 0.

One consequence of these constraints is that the problem lacks a strictly feasible point

(because at any feasible point Xij = 0 or Yij = 0 must be satisfied). To address this

64

difficulty, we penalize the complementarity constraints XijYij = 0 in the objective

function and solve the resulting problem. If XijYij = 0 is satisfied for all pairs of

modules i and j, then the computed solution is feasible for formulation (3.18).

This leads to the model used in the second stage of our method:

min
(xi,yi),wi,hi

∑

1≤i<j≤n

cijL(xi, xj, yi, yj) + γKXijYij

s.t.

xi +
1

2
wi ≤

1

2
wF ∀ i,

yi +
1

2
hi ≤ 1

2
hF ∀ i,

1

2
wi − xi ≤

1

2
wF ∀ i,

1

2
hi − yi ≤ 1

2
hF ∀ i,

wihi = ai ∀ i,

wlow
i ≤ wi ≤ wup

i ∀ i,

hlow
i ≤ hi ≤ hup

i ∀ i,

δ

(

1

2
(wi + wj) − |xi − xj |

)

≤ Xij ∀ 1 ≤ i < j ≤ n,

Xij ≥ 0 ∀ 1 ≤ i < j ≤ n,

δ

(

1

2
(hi + hj) − |yi − yj|

)

≤ Yij ∀ 1 ≤ i < j ≤ n,

Yij ≥ 0 ∀ 1 ≤ i < j ≤ n

(3.19)

where K is as in (3.16), and γ and δ are parameters.

3.4.1 Inclusion of the Aspect Ratio Constraints

We now show how the aspect ratio constraint for each module is easily incorporated

into the formulation (3.19). We assume that we are given lower and upper bounds

65

Rlow
i > 0 and Rup

i > 0 on the aspect ratio Ri of module i. Aspect ratios restrict

modules from becoming excessively narrow in either direction. By definition, the

aspect ratio Ri for module i is

Ri := max{hi, wi}/ min{hi, wi}.

If we set wlow
i = hlow

i =
√

ai/R
up
i where ai = wihi, then

wi ≥ wlow
i ⇒ w2

i ≥ ai/R
up
i ⇒ Rup

i w2
i ≥ ai ⇒ Rup

i ≥ hi/wi

since wi ≥ wlow
i > 0. Similarly, hi ≥ hlow

i > 0 implies Rup
i ≥ wi/hi.

By the same line of argument, setting wup
i = hup

i =
√

aiR
low
i enforces Rlow

i ≤ wi/hi

and Rlow
i ≤ hi/wi.

3.4.2 Minimization of Different Wirelengths

The formulations (3.18) and (3.19) allow different distance functions L(xi, xj , yi, yj)

to estimate the wirelength between modules i and j. Common choices of distance

function are:

• the rectilinear distance |xi − xj | + |yi − yj |;

• the quadratic distance (xi − xj)
2 + (yi − yj)

2; and

• the HPWL. This method requires additional linear constraints as well as a

specific choice of L. This is described in Section 3.4.3 below.

Computational results for these three choices are reported in Section 3.5.3.

3.4.3 Minimization of Half Perimeter Wirelength

We describe here how the formulations (3.18) and (3.19) can be used to minimize the

HPWL. We use a four-module net in Fig. 3.3 to illustrate the approach. In Fig. 3.3,

66

y

D

C

B

A

(xB ,yB)

(xA ,yA)

(xD ,yD)

(xC ,yC)

x

Figure 3.3: Illustration of the bounding box for a four-module net

67

the HPWL is equal to the half-perimeter of the bounding box of the four-module net

that includes the modules A, B, C, and D. We introduce two new variables, wlx and

wly, representing the components of the HPWL in the x and y directions respectively.

So, (xA,yA) is the coordinate of the centre point of module A. Clearly,

wlx = max{|xA − xB|, |xA − xC |, |xA − xD|, |xB − xC |, |xB − xD|, |xC − xD|},

wly = max{|yA − yB|, |yA − yC|, |yA − yD|, |yB − yC |, |yB − yD|, |yC − yD|}.

Therefore, we can minimize the HPWL for this small example by solving

min c(wlx + wly)

s.t.

wlx ≥ xA − xB, wlx ≥ xB − xA,

wlx ≥ xA − xC , wlx ≥ xC − xA,

wlx ≥ xA − xD, wlx ≥ xD − xA,

wlx ≥ xB − xC , wlx ≥ xC − xB ,

wlx ≥ xB − xD, wlx ≥ xD − xB,

wlx ≥ xC − xD, wlx ≥ xD − xC ,

wly ≥ yA − yB, wly ≥ yB − yA,

wly ≥ yA − yC, wly ≥ yC − yA,

wly ≥ yA − yD, wly ≥ yD − yA,

wly ≥ yB − yC , wly ≥ yC − yB,

wly ≥ yB − yD, wly ≥ yD − yB,

wly ≥ yC − yD, wly ≥ yD − yC ,

Xij ≥ 0, ∀ i,

Yij ≥ 0, ∀ i,

XijYij = 0, ∀ i,

(3.20)

where c is the connectivity of the four-module net.

68

Therefore, starting with formulations (3.18) and (3.19), adding a similar set of

constraints for each net in the circuit, and setting up the objective function as the

sum of the weighted half-perimeters, we can directly minimize the HPWL in the

second stage of our method.

We note that due to the large number of linear constraints that HPWL minimiza-

tion requires, it is computationally expensive to solve the placement problem when

there are many modules (Jackson and Kuh, 1989). However, the number of linear

constraints is technically acceptable for floorplanning since the number of modules is

relatively small.

3.5 Computational Results

In this section, the proposed method is applied to the standard MCNC benchmarks to

demonstrate its effectiveness and flexibility. We use the MCNC benchmark problems

apte, xerox, hp, ami33, and ami49 (MCNC, 2004) shown in Table 2.2.

All the modules are taken to be soft modules with fixed areas and variable dimen-

sions, and (as an approximation) all the pins are assumed to be at the centres of the

modules. The aspect ratio of every module is constrained to lie between 0.1 and 10,

so we set Rlow
i = Rup

i = 10 for every i. The multipin nets are transformed into cliques

using the clique model discussed in Section 2.6, and taking W = 1 for all the nets.

Both stages of our method were solved by the optimization package MINOS

(Murtagh and Saunders, 1982; Murtagh and Saunders, 1983) via the modeling lan-

guage AMPL (Fourer et al., 2003) accessed on the NEOS server (Czyzyk et al., 1998;

Ferris et al., 2000).

In the second stage, we apply the proposed optimization model in three different

ways:

69

Method A: Solve (3.19) with the rectilinear distance |xi−xj |+|yi−yj |, and calculate

the HPWL of the resulting floorplan;

Method B: Solve (3.19) with the quadratic distance (xi − xj)
2 + (yi − yj)

2, and

calculate the HPWL of the resulting floorplan;

Method C: Minimize the HPWL directly. This was described in Section 3.4.3.

Note that we always use the HPWL to compare the quality of the floorplans obtained.

For these instances of fixed-outline floorplanning, we respect the dimensions of

the floorplans provided in the MCNC data, so that the fixed layout area is a sum of

the areas of all the modules included in a circuit.

The parameters in our models took values in the following ranges:

• α ∈ [0.10, 2.90];

• β = 10;

• γ ∈ [0.10, 2.00];

• δ ∈ [0.01, 5.00].

3.5.1 Initial Configuration

MINOS is based on an iterative algorithm that requires the user to provide an initial

configuration. An ideal initial configuration for MINOS is not generally known a

priori. Anjos and Vannelli (2006) suggested a method for finding a starting config-

uration. They distribute the centres of the N modules at regular intervals around a

circle. Let the radius of the circle be

r = wup
F + hup

F (3.21)

70

then the centres (xi, yi) of the modules are initialized by

xi = r cos θi

yi = r sin θi,
(3.22)

where i = 1, ..., N , and θi is defined as

θi =
2π(i − 1)

N
(3.23)

Experiments demonstrated that the regular distribution of the centres of the mod-

ules around the circle leads to infeasible solutions for some circuits. Therefore, we

propose a method for placing the modules at arbitrary intervals around the circle.

We modify the radius of the circle as

r = (wup
F + hup

F)/φ, (3.24)

where φ is a constant to control the radius. We choose N uniformly distributed

numbers and sort them in ascending order, i.e.,

I = sort (rand (1, N)), (3.25)

where rand(1, N) is a function that produces a 1 × N matrix with random elements

chosen from a uniform distribution on the interval (0,1); and sort() sorts elements

in ascending order. The centres (xi, yi) of the modules are initialized by Equation

(3.22). However, θ is modified as

θ = 2π sort (rand (1, N)). (3.26)

The starting configuration of the 9-module circuit apte is illustrated in Fig. 3.4, where

nine modules represented by circles are arbitrarily distributed around a circle.

When MINOS solves the first stage model formulated in (3.15), it applies a

reduced-gradient algorithm associated with a quasi-Newton approach to exploit the

71

12

3

4

5
6

7

8

9

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

Figure 3.4: Initial configuration for 9-module circuit apte.

72

structure of the model. The model has 2N+2 variables and 4N+4 inequality con-

straints, all of which are linear, and objective function is nonlinear. Because of the

structure of this model, MINOS is superlinearly convergent and computationally ef-

ficient even for a fairly large number of modules.

3.5.2 Computation of Overlapping Areas of Modules

We address the computation of overlap between modules in this section, as we shall

verify whether the layout achieves ZDS and overlap-free floorplan and compute the

overlapping areas between modules.

If (xi,yi) and (xj ,yj) are centres of rectangular modules i and j, then the height

and width of modules i and j are hi, wi, and hj , wj , respectively. The geometric

relation of the non-overlap case between modules i and j is illustrated in Fig. 3.5A.

Modules may overlap partially (Fig. 3.5B) or completely (Fig. 3.5C and Fig.

3.5D). We use the following notation (see Fig. 3.5):

ξx =
1

2
(wi + wj)− |xi − xj |,

ξy =
1

2
(hi + hj) − |yi − yj |.

(3.27)

The following conditions are satisfied if modules i and j partially overlap along x:

1. |xi − xj | ≤ 1
2
(wi + wj);

2. |yi − yj | ≤ 1
2
(hi + hj);

3. ξx < min(wi, wj);

where condition (3) indicates that module i overlaps module j partially (see Fig.

3.5B). The overlap in x is computed as follows:

ϕx = ξx =
1

2
(wi + wj)− |xi − xj |. (3.28)

73

h
i

 x y i, i()

0
 x

y

h
j

w
j

 x y j, j()

w
i
 w
j
+1
2()

|x i
_x j |

h i

h
j

+
1 2
(

)

|y
 i_

y

 j
|

A

w
i
 w
i

h
i

 x y i, i()

0
 x

y

h
j

w
j

w
i
 w
j
+1
2()

 x y j, j()

xf

xx

yf

|x i
_x j |

h i

h
j

+
1 2
(

)

|y
 i_

y

 j
|

yx

B

w
i

h
i

 x y i, i()

0
 x

y

h
j

w
j

w
i
 w
j
+1
2()

 x y j, j()

xx

yf

xf

|x i
_x j |

h i

h
j

+
1 2
(

)

|y
 i_

y

 j
|

yx

C

w
i

h
i

 x y i, i()

0
 x

y

h
j

w
j

w
i
 w
j
+1
2()

|x i
_x j |

 x y j, j()

xx

yf

xf
h i

h

j

+

1 2
(

)

yx

|y i
_y j |

D

Figure 3.5: Instance of four-module case for fixed-outline floorplanning. A: no over-

lap; B: partial overlap; C: complete overlap along x; D: complete overlap.

74

Similarly, the overlap in y is computed as follows:

ϕy = ξy =
1

2
(hi + hj) − |yi − yj |. (3.29)

The following conditions are satisfied if modules i and j completely overlap along

x:

1. |xi − xj | ≤ 1
2
(wi + wj);

2. |yi − yj | ≤ 1
2
(hi + hj);

3. ξx ≥ min(wi, wj);

where condition (3) indicates that module i overlaps module j completely (see Fig.

3.5C and Fig. 3.5D). If ξx = min(wi, wj) as illustrated in Fig. 3.5C, which shows

module j overlapping module i but not embedded in module i, the overlap in x is

computed as follows:

ϕx = min(wi, wj), (3.30)

Similarly, the overlap in y is computed as follows:

ϕy = min(hi, hj), (3.31)

If module j overlaps module i and is also enveloped in module i, then ξx >

min(wi, wj) in condition (3). The overlap in x and y is given by equations (3.30) and

(3.31), respectively.

In summary, the overlap in x if modules i and j overlap can be computed as

follows:










ϕx = 1
2
(wi + wj)− |xi − xj |, if partial overlap;

ϕx = min(wi, wj), if complete overlap.
(3.32)

75

The overlap in y if modules i and j overlap can be computed as follows:











ϕy = 1
2
(hi + hj) − |yi − yj |, if partial overlap;

ϕy = min(hi, hj), if complete overlap.
(3.33)

Algorithms 1 and 2 below calculate overlaps ϕx and ϕy along x and y respectively,

and the overlapped area ϕA of modules i and j can be computed as follows:

ϕA = ϕx × ϕy. (3.34)

Input: Geometric property of every module

Output: Overlap in x

foreach Module i= 1 to M do

foreach Module j= 1 to N do

if Overlapped in y, |yi − yj | ≤ 1
2
(hi + hj) then

if Overlapped in x, |xi − xj| ≤ 1
2
(wi + wj) then

if ξx = 1
2
(wi + wj)− |xi − xj | < min(wi, wj) then

Overlap partially in x: ϕx = 1
2
(wi + wj)− |xi − xj |;

else

Overlap completely in x: ϕx = min(wi, wj).

end

end

end

end

end

Algorithm 1: Calculation of overlap ϕx along x

76

Input: Geometric property of every module

Output: Overlap in y

foreach Module i= 1 to M do

foreach Module j= 1 to N do

if Overlapped in x, |xi − xj | ≤ 1
2
(wi + wj) then

if Overlapped in y, |yi − yj | ≤ 1
2
(hi + hj) then

if ξy = 1
2
(hi + hj) − |yi − yj | < min(hi, hj) then

Overlap partially in y: ϕy = 1
2
(hi + hj) − |yi − yj |;

else

Overlap completely in y: ϕy = min(hi, hj).

end

end

end

end

end

Algorithm 2: Calculation of overlap ϕy along y

3.5.3 Computational Results for the MCNC Benchmarks

We compare our methods with two state-of-the-art academic floorplanners (Adya and

Markov, 2003; Murata and Kuh, 1998). All reported wirelengths are measured using

the HPWL, also used by Adya and Markov (2003) and Murata and Kuh (1998). Meth-

ods A, B, and C each use a different measure of wirelength as the objective function,

and once the final floorplan is obtained the corresponding HPWL is computed.

Methods A, B, and C were each run 20 times; we report the best floorplan achieved

and the average HPWL and runtime.

77

Table 3.1: Experimental results by the proposed model

Our Method

MCNC Total

circuit area Our Runtime HPWL

area Method A Method B Method C Method A Method B Method C

min/avg min/avg min/avg min/avg min/avg min/avg

(mm2) (mm2) (s) (s) (s) (mm) (mm) (mm)

apte 46.56 46.56 0.093/0.69 0.084/1.04 0.11/0.94 384.30/425.09 386.81/436.59 397.70/438.82

xerox 19.35 19.35 0.34/1.23 0.33/2.03 0.25/0.98 420.11/462.12 433.27/475.87 427.61/469.75

hp 8.30 8.30 0.37/1.17 0.21/1.65 0.42/1.72 131.83/154.84 139.80/149.64 130.50/151.28

ami33 1.16 1.16 8.11/14.16 7.41/10.03 7.53/9.51 60.36/65.31 60.25/62.37 61.40/62.83

ami49 35.4 35.4 37.91/66.09 38.78/55.53 38.90/56.46 684.62/720.65 681.72/706.06 681.70/709.46

78

3.5.4 Comparison with MK Model

First, we compare our approach with the MK model (Murata and Kuh, 1998). Re-

call that Murata and Kuh used a convex optimization algorithm to optimize the

aspect ratios of the soft modules, and iteratively carried out this procedure by an SA

algorithm to improve the SP for floorplanning.

Table 3.2: Results reported by MK

MCNC Total MK (Murata and Kuh, 1998)

circuit area Area Runtime HPWL

(mm2) (mm2) (s) (mm)

apte 46.56 46.55 789 344.36

xerox 19.35 19.50 1198 401.25

hp 8.30 8.83 1346 118.82

ami33 1.16 1.16 75684 53.39

ami49 35.4 35.58 612103 775.10

In Murata and Kuh’s experiment the chip aspect ratio for every benchmark was

modified to 1, thus requiring the chip to be square in shape. However, the dimensions

of the floorplans in our experiments comply with those provided in the benchmark.

Murata and Kuh assumed, as we did, that every module is soft with aspect ratio in

the range 0.1 to 10.

Table 3.1 gives the results obtained using our method, while Table 3.2 lists the

areas, computation times, and total wirelengths reported by Murata and Kuh. Com-

parisons of total wirelength are reported in Table 3.3. The results show that the total

HPWL is competitive for methods A, B, and C, and in fact we obtain an improve-

79

ment in total wirelength over MK for the largest benchmark problem ami49. Our

floorplanner takes 66.09 seconds for ami49 with 49 modules while MK requires seven

days using a 250 MHz DEC Alpha. For ami33 with 33 modules, our runtime is 14.16

seconds, while that of MK is 21 hours.

Table 3.3: Improvements in total wirelength compared with MK

Our Method vs MK

MCNC

circuit Method A Method B Method C

min min min

apte -11.60% -12.33% -15.49%

xerox -4.70% -7.98% -6.57%

hp -10.95% -17.66% -9.83%

ami33 -13.05% -12.85% -15.00%

ami49 +11.67% +12.05% +12.05%

Average -5.73% -7.75% -6.97%

3.5.5 Comparison with AM Model

We also compare our approach with the AM model (Adya and Markov, 2003). Recall

that Adya and Markov use sequence pair utilization to represent the topology of a

floorplan, together with a moving technique based on slack computation and SA.

Table 3.4 summarizes the areas, computation times, and total wirelengths reported

by Adya and Markov. Comparisons of total wirelength are reported in Table 3.5. Our

average HPWL is consistently better, and we obtain a better floorplan for several

80

Table 3.4: Results reported by AM

MCNC Total AM (Adya and Markov, 2003)

circuit area Area Runtime WL

min/avg avg min/avg

(mm2) (mm2) (s) (mm)

apte 46.56 46.97/48.95 15.4 464/560

xerox 19.35 19.51/20.62 20.1 373/468

hp 8.30 8.96/9.72 15.3 177/214

ami33 1.16 1.18/1.24 31.0 62.5/75.4

ami49 35.4 36.07/37.8 31.9 673/812

benchmarks.

On average, we improved the total wirelength by 14.94% to 16.15% compared to

AM.

3.5.6 Obtaining Zero-Deadspace Floorplans

The results show that our method is always competitive with, and frequently outper-

forms, the MK and AM methods. An important feature of our method is that the

dimensions of the floorplans comply with those provided in the MCNC benchmark,

and moreover zero-deadspace floorplans were obtained for all five problems, as shown

in Table 3.6. In Fig. 3.6, we depict the best zero-deadspace floorplans for ami33 and

ami49 that we obtained. In fact, our floorplans have little overlap, as demonstrated

by the average deadspace results in Table 3.6. We illustrate this by presenting in Fig.

3.7 the floorplan with the best HPWL for ami49; its deadspace is only 0.044% of the

81

Table 3.5: Improvements in total wirelength compared with AM

Our Methodology vs AM

MCNC

circuit Method A Method B Method C

min/avg min/avg min/avg

apte +17.18/+24.09% +16.64/+22.04% +14.29/+21.64%

xerox -12.63/+1.26% -16.16/-1.68% -14.64/-0.37%

hp +25.52/+27.65% +21.02/+30.07% +26.27/+29.31%

ami33 +3.42/+12.48% +3.60/+17.28% +1.76/+16.67%

ami49 -1.73/+9.22% -1.29/+13.05% -1.29/+12.63%

Average +6.35/+14.94% +4.76/+16.15% +5.28/+15.97%

82

total area. In contrast, MK and AM both have some deadspace in their floorplans.

6
 8
4
2
0
-2
-4
-6
-8

2

3

4

-1

0

-2

-4

-3

-5

1

5

Floorplan for ami33 with HPWL = 62.65

(α = 1.02, β = 10, γ = 1.08, δ = 1)

3020100-10-20-30

0

-10

-20

-30

-40

10

20

30

40

Floorplan for ami49 with HPWL = 716.74

(α = 0.15, β = 10, γ = 1, δ = 0.128)

Figure 3.6: Best zero-deadspace floorplans for the two largest benchmarks

3.6 Summary

We proposed a two-stage nonlinear-optimization-based methodology that can be ap-

plied to fixed-outline floorplanning. The first stage consists of a convex relaxation of

the problem which globally minimizes an approximate measure of wirelength. The

second stage minimizes wirelength by sizing the modules subject to the prescribed

aspect ratios. Computational results on MCNC benchmarks demonstrate that our

method is always competitive with, and frequently outperforms, the results reported

in the literature. We obtained ZDS floorplans for all five problems. Thus, our ap-

proach guarantees complete area utilization on the fixed-outline floorplan.

83

Table 3.6: Deadspace comparisons with MK and AM

MCNC Total MK AM Our Method

circuit area Area Deadspace Area Deadspace Area Deadspace

min/avg min/avg min/avg

(mm2) (mm2) (mm2) (mm2) Method A Method B Method C

apte 46.56 46.55 -0.02% 46.97/48.95 0.87%/4.88% 46.56 0%/0% 0%/0% 0%/0%

xerox 19.35 19.50 0.77% 19.51/20.62 0.82%/6.16% 19.35 0%/0% 0%/0% 0%/0%

hp 8.30 8.83 6.0% 8.96/9.72 7.40%/14.60% 8.30 0%/0% 0%/0% 0%/0%

ami33 1.16 1.16 0% 1.18/1.24 1.70%/6.45% 1.16 0%/0.11% 0%/0.034% 0%/0.013%

ami49 35.4 35.58 0.5% 36.07/37.8 1.86%/6.35% 35.4 0%/0.11% 0%/0.063% 0%/0.094%

84

3020100-10-20-30

0

-10

-20

-30

-40

10

20

30

40

Overlap

Deadspace

Deadspace

Figure 3.7: Floorplan for ami49 circuit with best HPWL (HPWL = 681.70, deadspace

= 0.044%; obtained with α = 0.15, β = 10, γ = 1, δ = 0.11)

Chapter 4

The Relative Position Matrix

Technique

Relative positions of modules are obtained from the first stage and must be enforced

at the second stage. In this chapter, we consider a relative position matrix (RPM)

technique to encode relative positions. Using this technique the non-overlap con-

straints that are originally disjunctive, nonlinear and non-convex can be linearized

and easily enforced in the second stage model. We consider the Voronoi diagram

(VD) method for three main reasons: (i) it spreads out modules in the floorplan, (ii)

it transforms the relative position graph into a planar graph, and (iii) it helps to build

up a sparse relative position matrix (SRPM). An SRPM approach is developed to de-

crease computational effort at the second stage. This chapter is organized as follows.

Section 4.1 describes the geometrical structure of non-overlap among modules and

the non-overlap constraints. In Sections 4.2 and 4.3 we introduce the RPM technique

and the VD used. The SRPM approach is presented in Section 4.4. Finally, Section

4.5 summarizes the chapter.

85

86

4.1 Geometrical Structure of Non-overlap Among

Modules

If (xi, yi), (xj , yj), wi, wj, hi, and hj are the coordinates, widths, and heights of rect-

angular modules i and j, respectively, the two-module case with overlap is illustrated

in Fig. 4.1. The non-overlap constraints for each pair of modules can be expressed as

1

2
(wi + wj)≤ |xi − xj | if |yi − yj| ≤

1

2
(hi + hj). (4.1)

1

2
(hi + hj) ≤ |yi − yj | if |xi − xj | ≤

1

2
(wi + wj). (4.2)

0
 x

w
i

h
i

w
j

h
j

 x y i, i()

 x y j, j()

y

∆
y

∆
x

Figure 4.1: The two-module case with overlap.

Constraint (4.1), requiring that there is no overlap along the x-axis for one pair

of modules, can be expressed as a separation in the x-direction as follows (see Fig.

87

4.2):

0 ≥ 1

2
(wi + wj) − |xi − xj |. (4.3)

Similarly, constraint (4.2), requiring that there is no overlap along y-axis for one

pair of modules, can be expressed as a separation in the y-direction as follows (see

Fig. 4.3):

0 ≥ 1

2
(hi + hj) − |yi − yj|. (4.4)

0
 x

w
i

h
i

 x y i, i()

y

w
j

h
j

 x y j, j()

∆y

Figure 4.2: The two-module case without overlap along the x-axis.

Constraints (4.3) and (4.4) are disjunctive, nonlinear and non-convex. Once rela-

tive positions for the modules have been obtained from the first stage, we may remove

the absolute values from inequalities (4.3) and (4.4), obtaining linear constraints.

88

0
 x

w
i

h
i

 x y i, i()

w
j

h
j

 x y j, j()

y

∆x

Figure 4.3: The two-module case without overlap along the y-axis.

4.2 The Relative Position Matrix

The relative positions of the modules are encoded in a relative position matrix (RPM).

An RPM is an N × N non-negative, symmetric matrix with zeros on the principal

diagonal, where N is the number of modules in the floorplan. The information in the

upper triangular portion suffices since the RPM is symmetric. The RPM matrix is

filled as follows:

• “1” is used to represent this case as an entry in RPM, meaning there is only

one constraint separating in the x-direction as inequality (4.3).

– “11” means that module i is on the left of module j (Fig. 4.4A). The

following inequality is satisfied:

0 ≥ 1

2
(wi + wj) − (xj − xi). (4.5)

89

– “12” means that module i is on the right of module j (Fig. 4.4B). The

following inequality is satisfied:

0 ≥ 1

2
(wi + wj) − (xi − xj). (4.6)

• “2” means that there is only one constraint separating in the y-direction as

inequality (4.4).

– “21” means that module i is above module j (Fig. 4.4C). The following

inequality is satisfied:

0 ≥ 1

2
(hi + hj) − (yi − yj); (4.7)

– “22” means that module i is below module j (Fig. 4.4D). The following

inequality is satisfied:

0 ≥ 1

2
(hi + hj) − (yj − yi). (4.8)

If we have the relative positions of two modules separated diagonally (Fig. 4.5),

a rule is defined to determine how the two modules are separated:

• If ∆y ≥ ∆x, then these two modules should be separated in the y-direction.

That is, only the vertical relative positioning is considered.

• If ∆x > ∆y, then these two modules should be separated in the x-direction.

That is, only the horizontal relative positioning is considered.

For instance, RPM(i,j) indicates the relative position between pair of modules i

and j. If the relative position of modules i and j is placed as in Fig. 4.4B, then

|xi − xj | ≥
1

2
(wi + wj) (4.9)

90

x

y
i j

A x

y
j i

B

x

y

j

i

C x

y

i

j

D

Figure 4.4: Relative positions of two modules separated horizontally and vertically.

A: module i is on the left of module j; B: module i is on the right of module j; C:

module i is above module j; D: module i is below module j.

91

i

j∆x

∆y

Figure 4.5: Relative position of two modules separated diagonally.

becomes

xi − xj ≥
1

2
(wi + wj), (4.10)

where the absolute value is eliminated. Constraint (4.10) is enforced in the second

stage model in Chapter 5. Similarly, the objective function describing the cost be-

tween modules i and j becomes (note that |yi − yj| = 0 in this case)

cij(xi − xj). (4.11)

With the RPM(i,j), the following constraint

|yi − yj| ≥
1

2
(hi + hj), (4.12)

becomes linear (the absolute values are removed). Also the absolute values in the

objective function are removed, with the RPM(i,j).

In summary, in the RPM, the following entries represent the relative position

relations of two modules:

92

• “11” with index (i, j): module i is horizontally separated from module j, and

module i is on the left of module j;

• “12” with index (i, j): module i is horizontally separated from module j, and

module i is on the right of module j;

• “21” with index (i, j): module i is vertically separated from module j, and

module i is above module j;

• “22” with index (i, j): module i is vertically separated from module j, and

module i is below module j.

An four-module example is used to demonstrate how an RPM can be generated.

A relation position graph obtained from the first stage for a four-module case is

illustrated in Fig. 4.6A. According to the encoding system, the RPM obtained for

this example is a 4×4 non-negative upper triangular matrix with zeros on the principal

diagonal shown in (4.13).















0 11 21 0

0 0 0 21

0 0 0 11

0 0 0 0















(4.13)

Based on this RPM, the final floorplan obtained using second-stage model (de-

scribed in Chapter 5) is illustrated in Fig. 4.6B.

4.3 The Voronoi Diagram

For the two-dimensional case, a planar graph that can reflect relative positions of

the modules is needed to build up an RPM for use in the second stage, inspired by a

93

M1 M2

M3 M4

A
x

y

M2M1

M3

0 1 2

1

2

3

3 4

4

M4

B

Figure 4.6: An example of a four-module case. A: the relation position graph; B: the

final floorplan.

94

1

2

3
 4

5

6

7

8

9

A

1

2

3
 4

5

6

7

8

9

B

1

2

3
 4

5

6

7

8

9

C

1

2

3
 4

5

6

7

8
 9

D

Figure 4.7: Example for apte circuit. A: the relative position figure; B: the corre-

sponding Voronoi diagram; C: the relative position graph, its Voronoi diagram and

Delaunay triangulation; D: the final floorplan.

95

navigation system model using the Voronoi diagram (VD) and Delaunay triangulation

(DT) for robot path planning (Rao et al., 1991). Jin et al. (2006) convert the relative

position graph into a planar graph using the VD obtained from DT. The VD and DT

can also be used to VLSI placement (Luo et al., 2005; Reda and Chowdhary, 2006).

The VD and DT are important topics in computational geometry and have been

extensively applied in many engineering fields (Rao et al., 1991; Papadopoulou and

Lee, 2004; Luo et al., 2005; Reda and Chowdhary, 2006).

VD is a useful geometric structure that represents distance relationships and par-

titions a plane into Voronoi cells. The objective is to obtain a relative position planar

graph. The VD induces a subdivision of the total area of the layout. The compu-

tational complexity of VD and DT algorithms ranges from O(n logn) to O(n2) (Jin

et al., 2006). Given n circles representing modules, the VD and DT of the centres

of the circles provide a planar graph G = (V, E), with vertices set V = v1, v2, ..., vn

corresponding to modules 1, 2, ..., n and edges E = e1, e2, ..., em corresponding to the

DT. The boundary of the graph is the boundary of the floorplan. A VD induces a

subdivision of the total area of the layout. A Voronoi diagram of m sites has at most

2m − 5 vertices and 3m − 6 edges (Jin et al., 2006).

The DT of sites S is the geometric dual of the VD of S. The DT is constructed

by connecting any two points p, q of S for which a circle C exists without containing

any other site of S in its interior when it passes through p and q. In the DT, each

site is connected to its nearest neighbour by an edge in the triangulation. Any point

to the centre of a given cell in the VD has shorter distance than to any other centres

of neighbouring cells to this cell. The central points of the circles in the relative

position graph are regarded as sites of the DT. By connecting any two central points,

i.e., sites, with a line segment, a DT is formed from the relative position graph. The

relative position graph is converted into DT and VD, each of which is a planar graph.

96

The positions of the centres of the circles obtained from the first stage, illustrated in

Fig. 4.7A, is used to partition the plane into the resulting Voronoi diagram.

In Fig. 4.7C, the relative position graph for the apte circuit is converted into its

corresponding DT, illustrated by fine lines, and corresponding VD, depicted by bold

lines. The RPM corresponding to this VD is given in (4.14).













































0 21 11 11 11 11 11 22 11

0 0 11 11 11 11 22 22 22

0 0 0 11 22 22 22 22 22

0 0 0 0 22 22 22 22 22

0 0 0 0 0 11 22 22 22

0 0 0 0 0 0 12 12 22

0 0 0 0 0 0 0 22 22

0 0 0 0 0 0 0 0 11

0 0 0 0 0 0 0 0 0













































(4.14)

As can been seen, by using the VD (see Fig. 4.7B), the layout is partitioned

into nine cells that represent the relative position of the nine modules. After solving

the second stage described in Chapter 5, a zero-deadspace fixed-outline floorplan is

obtained (Fig. 4.7D).

4.4 The Sparse Relative Position Matrix

The motivation for using a sparse relative position matrix (SRPM) instead of the full

RPM is to have fewer constraints and thus faster computation. The one-dimensional

97

six-module case given in Fig. 4.8 is used to show how the RPM and SRPM are built.

The upper triangular RPM for Fig. 4.8 is shown in (4.15).

RPM =



























0 11 11 12 11 11

0 12 12 12 12

0 12 12 11

0 11 11

0 11

0



























(4.15)

The distances between modules are obtained from their relative positions and in-

cluded in a distance matrix (DM), which indicates the distances among modules. We

take a one-dimension six-module case in Fig. 4.8 as an example. The DM for this

case is shown in (4.16). A parameter δ is defined to discriminate among the distances.

Those modules with distance at least δ from any given module can be eliminated from

consideration. Considering module 1 as the current module in Fig. 4.8, for instance,

and δ = 2, the neighbouring modules within a distance of δ are modules 3, 4, and 5.

Within a distance of δ from a current module, neighboring modules associated with

the current modules are included to indicate the significance of relative position of

modules in the DM. For instance, DM(1,3)=2, DM(1,4)=1, DM(1,5)=1, in (4.16) im-

ply that modules 3, 4, and 5 are significant to module 1. Modules 2 and 6 are located

farther than δ from module 1 thus the relative positions between modules 1 and 2, as

well as between modules 1 and 6 are considered insignificant (the distance from the

current module 1 to module 2 or module 6 exceeds δ, DM(1,2)=4, DM(1,6)=3; note

that DM(1,2)>δ, DM(1,6)>δ). The insignificant distances are highlighted in the first

row of (4.16).

98

x1 2 3 4 5 6

4 1 5 3 6 2

0

d

Figure 4.8: One-dimensional (one-row) six-module example.

DM =



























0 4 2 1 1 3

0 2 5 3 1

0 3 1 1

0 2 4

0 2

0



























(4.16)

By replacing insignificant entries by zeros, we form a sparse DM (SDM) in (4.17).

For instance, DM(2,4) = 5 denotes that the distance between modules 2 and 4 is 5.

It is only necessary to record the relative position if two modules have distance less

than 3. Therefore, the element in the SRPM corresponding to (2,4) is recorded to be

zero, i.e., SRPM(2,4):=0. The corresponding entries in the RPM shown in (4.15) are

replaced by zeros to form an SRPM in (4.18).

99

SDM =



























0 0 2 1 1 0

0 2 0 0 1

0 0 1 1

0 2 0

0 2

0



























(4.17)

SRPM =



























0 0 11 12 11 0

0 12 0 0 12

0 0 12 11

0 11 0

0 11

0



























(4.18)

An efficient approach for building a sparse RPM for the two-dimensional case is

illustrated using ami33. The underlying idea is similar to the one-dimensional case.

A VD is illustrated in Fig. 4.9A; δ now denotes the number of layers of neighbouring

modules. The distance δ in the two-dimensional case denotes the number of layer of

neighboring modules. For example, δ=1 indicates that the central module is closely

related to its first-layer neighbouring modules. Similarly, δ=2 indicates that the

central module is closely related to its second-layer neighbouring modules in Fig.

4.9A. Those modules beyond distance at δ from any given central module are not

significant in terms of relative position between modules. In Fig. 4.9, for instance,

central module 14 is closely related to its first-layer adjacent modules. The remaining

modules need not be considered.

100

Every module is adjacent to other modules. Module 10, for instance, is adjacent to

modules 9, 11, 12, 13, and 19 in the VD. Module 14 is adjacent to underlined modules

1, 6, 15, 16, 19, and 21 (Fig. 4.9A). Module 24 is adjacent to modules 1, 15, 22, 23, 25,

and 27. After the layout problem is solved (Fig. 4.9B), module 10 becomes adjacent

to modules 9, 12, 13, 19 and 21. Module 14 is adjacent to underlined modules 1, 6,

15, 19, and 21. Module 24 is adjacent to modules 1, 15, 22, 23, and 24.

Entries in the distance matrix (DM) are one if two moduels are adjacent and zero

otherwise; (4.19) gives the DM for the ami33 as our example. Use of SRPM instead

of RPM as constraints in the second stage model improves computational efficiency.

Constraints provided by SRPM is fewer than those supplied by RPM.

DM =







































1 2 . . . 13 14 15 16 17 18 19 20 21 . . . 33

1 0 0 . . . 0 1 0 0 0 0 0 0 0 . . . 0

2 0 . . . 0 0 0 0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

6 . . . 0 1 0 0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

14 0 0 1 1 0 0 1 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...

33 0 0







































(4.19)

4.5 Summary

In this chapter, geometrical structure of non-overlap among modules was described.

Various non-overlap constraints were studied. Two modules can be separated hori-

101

A

1

2
3

4

5

6

7

8

9

10

1112

13

14

15

16

17 18

19

20

21

22
23

24

25 26

27

28

29

30

31

32

33

12

14

17

29

1

2

7

16

4

6

8

11

19

26
20

27

24

25

23

22

21

3

28

30

18

32 33

31

9

13

5

10
15

B

Figure 4.9: Example for the ami33 circuit. A: the Voronoi diagram; B: the corre-

sponding floorplan.

102

zontally, vertically and diagonally. Therefore, relative positions of two modules can

be represented as horizontal, vertical and diagonal separation.

This chapter presented how non-overlap constraints that are originally disjunctive,

nonlinear and non-convex are linearized. RPM was described by introducing the non-

overlap constraints and the geometrical structure of overlapped modules. The relative

position graph obtained from the first stage is converted to a planar graph by the VD

and DT and thus the RPM is encoded for a floorplan problem.

VD is a useful geometric structure that represents distance relationships and par-

titions a plane into Voronoi cells. Use of VD spreads out modules in the floorplan.

VD and DT transform the relative position graph into a planar graph and produce

a sparse relative position matrix (SRPM). To accelerate the computation an SRPM

technique was proposed. Fewer constraints are required for the second stage formu-

lation by using SRPM.

In the next chapter, we propose convex optimization models to obtain final floor-

plan solution.

Chapter 5

The Second Stage Convex

Optimization Model

In the second stage, we determine the precise locations and dimensions of the modules

while minimizing the total wirelength. We focus on fixed-outline floorplanning, and

use Semidefinite Programming (SDP) and Second Order Cone Programming (SOCP)

formulations, which are both convex optimization problems. The idea behind is that

each local minimum of such a problem solved by this convex optimization model

must also be a global minimum. In this thesis, these two approaches, particularly,

the latter, will be used to minimize wirelength, and yields deadspace-free and overlap-

free floorplans. In this chapter, we first review a previous integer linear programming

(ILP) model for floorplanning (Sutanthavibul et al., 1991). We describe SDP-based

model with its experimental results, then SOCP-based model and its experiments

(Luo et al., 2008b). We also compare their experimental results in the section of

SOCP experiments (Section 5.6).

This chapter is organized as follows. The ILP model is reviewed in Section 5.1. The

SDP-based model is described in Section 5.2 and its experimental results are reported

103

104

in Section 5.3. The SOCP-based model is discussed in Section 5.4. Relationship of

SDP md SOC constraints are described in Section 5.5. Experimental results with the

SOCP model is reported in Section 5.6, where experimental results of the SDP and

SOCP models are also compared. Finally, this chapter is summarized in Section 5.7.

5.1 Previous ILP Model for Floorplanning

Some previous research on floorplanning used linear programming and mixed integer

linear programming (ILP) (Sutanthavibul et al., 1991; Chen and Kuh, 2000; Young

et al., 2000a; Young et al., 2001; Chu and Young, 2004).

In this section, we present a previous mixed integer linear programming formu-

lation for floorplanning (Sutanthavibul et al., 1991). The objective is to minimize

the area of the floorplan. A set of n modules S = {1, 2, ..., n} are given, with height

hi and width wi for ith module. Let (xi, yi) and (xj , yj) denote the coordinates of

the lower corners of modules i and j (1 ≤ i, j ≤ n). The non-overlap constraint for

modules i and j is as follows: one of the following linear constraints should be held

at any rate (Sutanthavibul et al., 1991).

xi + wi ≤ xj if module i is on the left of module j (5.1)

yi + hi ≤ yj if module i is below of module j (5.2)

xi − wj ≥ xj if module i is on the right of module j (5.3)

yi − hj ≥ yj if module i is above of module j (5.4)

If there is no overlap along the x-axis for modules i and j, then either constraint

(5.1), or constraint (5.3) is satisfied. If there is no overlap along the y-axis for modules

i and j, then either constraint (5.2), or constraint (5.4) is satisfied. Therefore, two

0-1 integer variables, xij and yij, are introduced for each pair of modules i and j

105

(Sutanthavibul et al., 1991).

Table 5.1: Interpretation of the integer variables

xij yij Interpretation

0 0 Constraint (5.1) is satisfied

0 1 Constraint (5.2) is satisfied

1 0 Constraint (5.3) is satisfied

1 1 Constraint (5.4) is satisfied

There are four possible choices shown in Table 5.1. If wF and hF are width and

height on the floorplan respectively, then |xi−xj | ≤ wF and |yi−yj| ≤ hF . Therefore,

non-overlap constraints for any pair of modules i and j may be given with xij and yij

as follows:

xi + wi ≤ xj + wF (xij + yij) (5.5)

yi + hi ≤ yj + hF (1 + xij − yij) (5.6)

xi − wj ≥ xj − wF (1 − xij + yij) (5.7)

yi − hj ≥ yj − hF (2 − xij − yij) (5.8)

It can be verified that one and only one non-overlap constraint from constraints

(5.5)-(5.8) above is enforced. Every module is enveloped on the floorplan with width

wF and height H . Hence, xi + wi ≤ wF and yi + hi ≤ H , 1 ≤ i ≤ n. If the width wF

is fixed, then the area of the floorplan may be minimized by minimizing the height H .

Therefore, the area minimization problem for the floorplanning by 0-1 integer linear

106

programming is formulated as follows (Sutanthavibul et al., 1991):

min H

s.t.

xi + wi ≤ wF ∀ 1 ≤ i ≤ n,

yi + hi ≤ H ∀ 1 ≤ i ≤ n,

xi + wi ≤ xj + wF (xij + yij) ∀ 1 ≤ i, j ≤ n,

yi + hi ≤ yj + H(1 + xij − yij) ∀ 1 ≤ i, j ≤ n,

xi − wj ≥ xj − wF (1 − xij + yij) ∀ 1 ≤ i, j ≤ n,

yi − hj ≥ yj − H(2 − xij − yij) ∀ 1 ≤ i, j ≤ n,

xi ≥ 0 ∀ 1 ≤ i ≤ n,

yi ≥ 0 ∀ 1 ≤ i ≤ n,

(5.9)

where all module coordinates are positive, xi ≥ 0 and yi ≥ 0.

The mixed integer linear programming formulation (5.9) of the floorplanning prob-

lem with n modules requires 2n continuous variables, n(n − 1) integer variables, and

2n2 linear constraints. Solving the formulation (5.9) will produce an optimal floorplan

solution (Sutanthavibul et al., 1991).

5.2 SDP-based Convex Optimization Model

5.2.1 Semidefinite Programming

SDP is a generalization of linear programming (LP) and is a convex optimization

problem that can be effectively solved by interior-point algorithms (Helmberg et

al., 1996; Wolkowicz et al., 2000). In recent years it has become one of the most

exciting and active research areas in optimization. It greatly attracts our attention

107

as we can take advantage of the property of SDP that any local minimum is a global

solution of the wirelength minimization problem (Helmberg et al., 1996). In this

section, area and aspect ratio constraints are formulated by applying semidefinite

optimization techniques. Additionally, the disjunctive non-overlap constraints in the

previous model in Chapter 3 are replaced by linear constraints due to already have

the relative positions of modules.

Definition 5.2.1 (Positive Semidefinite) A matrix X ∈ Sn, where Sn denotes

the set of n × n real symmetric matrices, is said to be Positive Semidefinite (psd) if

for all y ∈ Rn:

yTXy =
∑

i,j

Xi,jyiyj ≥ 0 (5.10)

Definition 5.2.2 (Semidefinite Programming) In Sn, a semidefinite program-

ming (SDP) is described as:

min C • X

s.t.

Ai • X = bi, for i = 1, 2, ...m,

X � 0,

(5.11)

where A • X =
∑

i,j Ai,jBi,j = trace(BT A); X is psd.

Definition 5.2.3 (Principal Minor) Given X ∈ Sn and a subset I ⊆ {1...n}, the

principal submatrix of X corresponding to I is the submatrix with rows and columns

indexed by I. Its determinant is called the principal minor.

Definition 5.2.4 (Primal and Dual Problems of Semidefinite Program-

ming) The primal and dual problems of SDP in the standard form are as follows:

108

Primal problem

min C • X

s.t.

Ai • X = bi, ∀ i = 1...m,

X � 0.

Dual problem

max bT y

s.t.

Z =
∑m

i=1
yiAi − C,

Z � 0.

where A • X =
∑

i,j Ai,jBi,j = trace(BT A), X is psd; b and y (as well as other small

alphabets) denote column vectors, while yi’s denote y’s ith component.

5.2.2 Area Constraints

The area constraint, wihi = ai, for each soft module can be relaxed as

wihi ≥ ai. (5.12)

If the space allocated for a module exceeds the required amount, it is still feasible for

layout implementation. According to the property of positive semidefinite matrices

that all principal minors are non-negative, and ai > 0, a semidefinite constraint for

this relaxed area constraint can be written as




wi

√
ai

√
ai hi



 � 0. (5.13)

Theorem 1 If X is Positive Semidefinite (psd), then all its principal minors are

non-negative (Vandenberghe and Boyd, 1996; Wolkowicz et al., 2000).

Example Given a symmetric matrix A as

A =











8 −2 2

−2 5 4

2 4 5











109

I = {1}, the principal submatrix is A(I) = 8, det(A) = 8.

I = {2}, the principal submatrix is A(I) = 5, det(A) = 5.

I = {3}, the principal submatrix is A(I) = 5, det(A) = 5.

I = {1, 2},

A =





8 −2

−2 5



 , det(A) = 36.

I = {1, 3},

A =





8 2

2 5



 , det(A) = 36.

I = {2, 3},

A =





5 4

4 5



 , det(A) = 9.

I = {1, 2, 3},

A =











8 −2 2

−2 5 4

2 4 5











, det(A) = 0.

As all the principal minors of A are non-negative, A is psd.

110

Theorem 2 SDP for Area For each soft module with height hi, width wi, and area

ai. If ai > 0, then the following is satisfied:

wihi ≥ ai ⇐⇒





wi

√
ai

√
ai hi



 � 0, ∀ i (5.14)

Proof

(1). To show necessity, consider the following inequalities:

wi > 0 (5.15)

hi > 0

wihi ≥ ai

then, we have

wihi ≥ (
√

ai)
2 > 0 (5.16)

⇒ wihi − (
√

ai)
2 ≥ 0

⇒





wi

√
ai

√
ai hi



 � 0

(2). To show sufficiency, since

X =





wi

√
ai

√
ai hi



 � 0 is psd

all the principal minors of X are non-negative, e.g.

wi ≥ 0 (5.17)

hi ≥ 0

wihi − (
√

ai)
2 ≥ 0,

111

therefore we obtain

wihi ≥ ai.

5.2.3 Aspect Ratio Constraints

Suppose a list of the aspect ratios βi of module i is given. Rlow
i and Rup

i are lower and

upper bounds on the aspect ratio of module i. To avoid excessively narrow modules

in either direction in the floorplan, the aspect ratio βi for module i is defined as

βi = max{hi, wi}/ min{hi, wi}. (5.18)

Assume that the aspect ratio of module i must be bounded above by a given value

β∗
i > 0. So, β∗

i ≥ βi.

Theorem 3 (SDP for Aspect Ratio for height) Given wlow
i = hlow

i =
√

ai/β∗
i

where ai = wihi,

(1)

aiβ
∗
i ≥ h2

i

(2)

aiβ
∗
i ≥ h2

i ⇐⇒





β∗
i hi

hi ai



 � 0, ∀ i

Proof.

(1). To show the SDP for Aspect Ratio for height, since

wi ≥ wlow
i =

√

ai/β
∗
i > 0, (5.19)

w2
i ≥ ai/β

∗
i , (5.20)

112

β∗
i w

2
i ≥ ai, (5.21)

β∗
i ≥ hi/wi. (5.22)

With Inequality (5.22) and wihi = ai, we obtain

β∗
i ≥ h2

i /ai. (5.23)

Further,

aiβ
∗
i ≥ h2

i (5.24)

(2).

(2.1). To show necessity, consider the following inequalities:

ai > 0 (5.25)

β∗
i > 0

aiβ
∗
i ≥ h2

i

then we have

aiβ
∗
i ≥ h2

i > 0 (5.26)

⇒ aiβ
∗
i − h2

i ≥ 0

⇒





β∗
i hi

hi ai



 � 0

(2.2). To show sufficiency, since

X =





β∗
i hi

hi ai



 � 0 is psd

113

all the principal minors of X are non-negative, e.g.

ai ≥ 0 (5.27)

β∗
i ≥ 0

aiβ
∗
i − h2

i ≥ 0,

therefore we obtain

aiβ
∗
i ≥ h2

i

Theorem 4 (SDP for Aspect Ratio for width) Given wlow
i = hlow

i =
√

ai/β
∗
i

where ai = wihi,

(1)

aiβ
∗
i ≥ w2

i

(2)

aiβ
∗
i ≥ w2

i ⇐⇒





β∗
i wi

wi ai



 � 0, ∀ i

Proof.

(1). To show SDP for Aspect Ratio for width, since

hi ≥ hlow
i =

√

ai/β∗
i > 0, (5.28)

h2
i ≥ ai/β

∗
i , (5.29)

β∗
i h

2
i ≥ ai, (5.30)

β∗
i ≥ wi/hi. (5.31)

114

With Inequality (5.31) and wihi = ai, we obtain

β∗
i ≥ w2

i /ai. (5.32)

Further,

aiβ
∗
i ≥ w2

i (5.33)

(2).

(2.1). To show necessity, consider the following inequalities:

ai > 0 (5.34)

β∗
i > 0

aiβ
∗
i ≥ w2

i

then we have

aiβ
∗
i ≥ w2

i > 0 (5.35)

⇒ aiβ
∗
i − w2

i ≥ 0

⇒





β∗
i wi

wi ai



 � 0

(2.2). To show sufficiency, since

X =





β∗
i wi

wi ai



 � 0 is psd

all the principal minors of X are non-negative, e.g.

ai ≥ 0 (5.36)

β∗
i ≥ 0

aiβ
∗
i − w2

i ≥ 0,

115

therefore we obtain

aiβ
∗
i ≥ w2

i .

In summary, the area and aspect ratios for height and width can be expressed as

follows, respectively:

wihi ≥ ai ⇐⇒





wi

√
ai

√
ai hi



 � 0, ∀ i (5.37)

aiβ
∗
i ≥ h2

i ⇐⇒





β∗
i hi

hi ai



 � 0, ∀ i (5.38)

aiβ
∗
i ≥ w2

i ⇐⇒





β∗
i wi

wi ai



 � 0, ∀ i (5.39)

116

Incorporating these constraints, the problem of minimizing the total wirelength

for fixed-outline floorplanning can be formulated as:

min
(xi,yi),wi,hi

∑

1≤i<j≤n

cijL(xi, xj, yi, yj)

s.t.

xi +
1

2
wi ≤

1

2
w̄F ∀ i

yi +
1

2
hi ≤ 1

2
h̄F ∀ i

1

2
wi − xi ≤

1

2
w̄F ∀ i,

1

2
hi − yi ≤ 1

2
h̄F ∀ i,

wlow
i ≤ wi ≤ wup

i ∀ i,

hlow
i ≤ hi ≤ hup

i ∀ i,




wi

√
ai

√
ai hi



 � 0 ∀ i,





β∗
i hi

hi ai



 � 0, ∀ i,





β∗
i wi

wi ai



 � 0, ∀ i

(5.40)

where 1 ≤ i < j ≤ n, w̄F and h̄F are the fixed width and height of the floorplan, and

L(xi, xj , yi, yj) is the rectilinear distance, |xi −xj |+ |yi− yj |, between modules i and

j. Note that the non-overlap constraints are absent in formulation (5.40). They are

enforced in the form of linear constraints if the RPM is available from the first stage.

117

5.3 Experiments with the SDP Model

The SDP formulation as the second stage is solved using SeDuMi 1.1 (Sturm, 1999)

and CSDP 5.0 (Borchers, 1999a; Borchers and Young, 2007). Results for the MCNC

benchmark are shown in Table 5.2.

Table 5.2: MCNC results for SDP model

Our Method

Circuit Total

area Our Runtime Runtime HPWL

area (SeDuMi) (CSDP)

(mm2) (mm2) (s) (s) (mm)

apte 46.56 46.56 2.464 1.719 397

xerox 19.35 19.35 6.319 4.635 411

hp 8.30 8.30 4.287 2.763 142

ami33 1.16 1.16 470 159 50.08

ami49 35.4 35.4 9465 1236 699

SeDuMi (Sturm, 1999), standing for Self-Dual-Minimization, is a Matlab software

package for solving optimization problems with linear, quadratic, and semidefinite

constraints using the self-dual embedding technique over self-dual homogeneous cones.

CSDP (Borchers, 1999a) is a predictor-corrector version of the primal-dual barrier

method (Helmberg et al., 1996) that solves optimization problems with LP and SDP

constraints (Borchers, 1999b). CSDP is written in C and can run in parallel on systems

with multiple processors and shared memory (Borchers and Young, 2007). It takes

advantage of constraint matrices with symmetric and sparse structure for efficiency.

In addition to its default termination criteria, CSDP allows the user to terminate the

118

solution process after any iteration. It is coded in C whereas SeDuMi is in Matlab

and C. CSDP has some features described above that improve computational efficacy.

Therefore, it is faster than SeDuMi for our SDP problem. Table 5.2 lists the CPU

times for solving the MCNC circuits by CSDP and SeDuMi. The table shows that

CSDP is about three times faster than SeDuMi for ami33 and is up to eight times

faster for ami49. There are memory limitation issues when SeDuMi is applied to large

(e.g., 100 modules) problems.

5.4 SOCP-based Convex Optimization Model

Second Order Cone Programming (SOCP) is a special class of convex programming

problems, in which a linear objective function is minimized subject to Second Order

Cone (SOC) constraints. As a special case of convex optimization, SOCPs have

attracted much attention; They can be efficiently solved by specialized interior-point

methods (Lobo et al., 1998; Andersen et al., 2003).

A standard SOC (also known as quadratic or Lorentz cone) of dimension n is

expressed as (Lobo et al., 1998):

Cn =











u

t





∣

∣

∣

∣

∣

u ∈ Rn−1, t ∈ R, ‖u‖ ≤ t







, (5.41)

where u ∈ Rn−1, t ∈ R, and the SOC defines a convex set. If n=1, the SOC degener-

ates to a ray on the t-axis with origin at t=0; for n=3, the SOC is illustrated in Fig.

5.1.

A SOC constraint of dimension n is defined as

‖Ax + b‖ ≤ cT x + d ⇐⇒





A

cT



x +





b

d



 ∈ Cn, (5.42)

119

t

0 u1

u2

Figure 5.1: Second-order cone of dimension 3 (n=3 in equation (5.41)).

where x ∈ Rk, parameter A ∈ R(n−1)×k, b ∈ Rn−1, c ∈ Rk, d ∈ R. Therefore, an

SOCP is a convex optimization problem of the form:

min gT x

s.t. ‖Aix + bi‖ ≤ cT
i x + di, ∀ i = 1, ..., L,

(5.43)

where the optimization variable is x ∈ Rn, g ∈ Rn is the objective function, Ai ∈
R(ni−1)×n, bi ∈ Rni−1, ci ∈ Rn, and di ∈ R. This SOCP problem may be converted

into standard form by introducing variables ui ∈ Rni−1 and ti ∈ R as follows:

min gTx

s.t.

‖ui‖ ≤ ti, ∀ i = 1, ..., L

ui = Aix + bi, ∀ i = 1, ..., L

ti = cT
i x + di, ∀ i = 1, ..., L,

(5.44)

where ‖u‖ ≤ t is the standard SOC constraint (‖u‖ = (uTu)
1

2). In the following

120

sections, we formulate area and aspect ratio constraints as SOC constraints. The

convex optimization package MOSEK can solve SOCP problems (MOSEK, 2006).

An SDP problem shown in definition (5.2.2) can be solved efficiently using interior-

point algorithms in O(
√

∑

i ni) iterations of complexity O(n2
∑

i n
2
i). However, using

the same algorithms, an SOCP problem takes O(
√

L) iterations, each of complexity

O(n2
∑

i ni), where ni is the dimension number of second order cone for ith constraint;

n is the dimension number of second order cone; L is the number of variables. There-

fore, SOCPs can be solved more efficiently than SDPs (Lobo et al., 1998). SOCPs

have been found to highly outperform SDP problems in terms of computational effi-

ciency (Lobo et al., 1998). Hence, an SOCP is applied to fixed-outline floorplanning

motivated by its simpler structure and its potential to be solved more efficiently

than SDP. For LP, QP(Quadratic Programming), QCQP (Quadratically Constrained

Quadratic Program), SOCP, and SDP problems, the model generality and solution

difficulty are shown in Fig. 5.2.

(Convex)
QP

(Convex)
QCQP

LP SOCP SDP

More Difficult

More GeneralLess General

Less Difficult

Model Generality

Solution Difficulty

Figure 5.2: The model generality and solution difficulty of several convex optimization

problems.

121

5.4.1 Area Constraints

The area constraint, wihi = ai, for each soft module can be relaxed as wihi ≥ ai. For

ai > 0, this can be formulated as an SOC constraint:

wihi ≥ ai

⇐⇒ h2
i + 2hiwi + w2

i ≥ (h2
i − 2hiwi + w2

i) + 4ai

⇐⇒ (hi + wi)
2 ≥ (hi − wi)

2 + 4ai ≥ 0

⇐⇒ hi + wi ≥
√

(hi − wi)2 + (2
√

ai)2

⇐⇒ hi + wi ≥

∥

∥

∥

∥

∥

∥





hi − wi

2
√

ai





∥

∥

∥

∥

∥

∥

2

, ∀ i. (5.45)

5.4.2 Aspect Ratio Constraints

A list of aspect ratios βi of module i is defined in (5.18) to avoid excessively narrow

modules in either direction in the floorplan. The aspect ratio of module i must be

bounded above by a given value β∗
i > 0. Given wlow

i = hlow
i =

√

ai/β
∗
i , where

ai = wihi, then wi ≥ wlow
i > 0, w2

i ≥ ai/β
∗
i , β∗

i w
2
i ≥ ai, β∗

i ≥ hi/wi. Similarly, since

hi ≥ hlow
i > 0, β∗

i ≥ wi/hi. With inequality β∗
i ≥ hi/wi and wihi = ai, we obtain

β∗
i ≥ h2

i /ai. Further, we obtain aiβ
∗
i ≥ h2

i . Combining inequality β∗
i ≥ wi/hi and

wihi = ai yields β∗
i ≥ w2

i /ai. Therefore, aiβ
∗
i ≥ w2

i .

The aspect ratio constraint for the height of a module denoted by inequality

122

aiβ
∗
i ≥ h2

i can be formulated by an SOC constraint as follows:

aiβ
∗
i ≥ h2

i

⇐⇒ a2
i + 2aiβ

∗
i + β∗

i
2 ≥ a2

i − 2aiβ
∗
i + β∗

i
2 + 4hi

2

⇐⇒ (ai + β∗
i)

2 ≥ (ai − β∗
i)

2 + (2hi)
2 ≥ 0

⇐⇒ ai + β∗
i ≥

√

(ai − β∗
i)

2 + (2hi)2

⇐⇒ ai + β∗
i ≥

∥

∥

∥

∥

∥

∥





ai − β∗
i

2hi





∥

∥

∥

∥

∥

∥

2

, ∀ i. (5.46)

Similarly, the aspect ratio constraint for the width of a module can be formulated

as follows:

aiβ
∗
i ≥ w2

i

⇐⇒ a2
i + 2aiβ

∗
i + β∗

i
2 ≥ a2

i − 2aiβ
∗
i + β∗

i
2 + 4wi

2

⇐⇒ (ai + β∗
i)

2 ≥ (ai − β∗
i)

2 + (2wi)
2 ≥ 0

⇐⇒ ai + β∗
i ≥

√

(ai − β∗
i)

2 + (2wi)2

⇐⇒ ai + β∗
i ≥

∥

∥

∥

∥

∥

∥





ai − β∗
i

2wi





∥

∥

∥

∥

∥

∥

2

, ∀ i. (5.47)

Incorporating these SOCP constraints, the complete problem of minimizing the

123

total wirelength for fixed-outline floorplanning can be formulated as:

min
(xi,yi),wi,hi

∑

1≤i<j≤n

cijL(xi, xj, yi, yj)

s.t.

xi +
1

2
wi ≤

1

2
w̄F ∀ i

yi +
1

2
hi ≤ 1

2
h̄F ∀ i

1

2
wi − xi ≤

1

2
w̄F ∀ i,

1

2
hi − yi ≤ 1

2
h̄F ∀ i,

wlow
i ≤ wi ≤ wup

i ∀ i,

hlow
i ≤ hi ≤ hup

i ∀ i,
∥

∥

∥

∥

∥

∥





hi − wi

2
√

ai





∥

∥

∥

∥

∥

∥

2

≤ hi + wi, ∀ i,

∥

∥

∥

∥

∥

∥





ai − β∗
i

2hi





∥

∥

∥

∥

∥

∥

2

≤ ai + β∗
i , ∀ i

∥

∥

∥

∥

∥

∥





ai − β∗
i

2wi





∥

∥

∥

∥

∥

∥

2

≤ ai + β∗
i , ∀ i

(5.48)

where 1 ≤ i < j ≤ n, w̄F and h̄F are the fixed width and height of the floorplan, and

L(xi, xj , yi, yj) is the rectilinear distance, |xi −xj |+ |yi− yj |, between modules i and

j.

Obviously L is not a linear function, so we need to linearize it. By defining

uij = |xi−xj | and vij = |yi−yj| and substituting for L using uij and vij, the objective

function of (5.48) becomes
∑

1≤i<j≤n cij(uij + vij). The following four constraints are

enforced in (5.48): uij ≥ xi − xj , uij ≥ xj − xi, vij ≥ yi − yj and vij ≥ yj − yi.

The model formulation of the fixed-outline floorplanning with only linear and SOC

124

constraints becomes:

min
(xi,yi),wi,hi

∑

1≤i<j≤n

cij(uij + vij)

s.t.

uij ≥ xi − xj ,

uij ≥ xj − xi,

vij ≥ yi − yj,

vij ≥ yj − yi,

xi +
1

2
wi ≤

1

2
w̄F ∀ i,

yi +
1

2
hi ≤ 1

2
h̄F ∀ i,

1

2
wi − xi ≤

1

2
w̄F ∀ i,

1

2
hi − yi ≤ 1

2
h̄F ∀ i,

wlow
i ≤ wi ≤ wup

i ∀ i,

hlow
i ≤ hi ≤ hup

i ∀ i,
∥

∥

∥

∥

∥

∥





hi − wi

2
√

ai





∥

∥

∥

∥

∥

∥

2

≤ hi + wi ∀ i,

∥

∥

∥

∥

∥

∥





ai − β∗
i

2hi





∥

∥

∥

∥

∥

∥

2

≤ ai + β∗
i ∀ i,

∥

∥

∥

∥

∥

∥





ai − β∗
i

2wi





∥

∥

∥

∥

∥

∥

2

≤ ai + β∗
i ∀ i,

(5.49)

where 1 ≤ i < j ≤ n, w̄F and h̄F are the fixed width and height of the floorplan, and

(uij + vij) is the rectilinear distance |xi − xj | + |yi − yj| between modules i and j.

Now we have a convex SOCP model that can be efficiently solved using the com-

125

mercially available conic software package MOSEK (MOSEK, 2006). Note that the

non-overlap constraints are not shown in (5.49). They are included in this formulation

in the form of linear constraints derived from the SRPM.

5.5 Relationship of SDP and SOC Constraints

An SOC constraint is equivalent to a linear matrix inequality (Lobo et al., 1998).

The SOC may be embedded in the cone of positive semidefinite matrices as

‖u‖ ≤ t ⇐⇒





tI u

uT t



 � 0, ∀ i (5.50)

The area and aspect ratio constraints can be expressed as SDP constraints that

can also be formulated to SOC constraints as follows:

For area:




wi

√
ai

√
ai hi



 � 0 ⇐⇒

∥

∥

∥

∥

∥

∥





hi − wi

2
√

ai





∥

∥

∥

∥

∥

∥

2

≤ hi + wi, ∀ i (5.51)

For aspect ratio (height):





β∗
i hi

hi ai



 � 0 ⇐⇒

∥

∥

∥

∥

∥

∥





ai − β∗
i

2hi





∥

∥

∥

∥

∥

∥

2

≤ ai + β∗
i , ∀ i (5.52)

For aspect ratio (width):





β∗
i wi

wi ai



 � 0 ⇐⇒

∥

∥

∥

∥

∥

∥





ai − β∗
i

2wi





∥

∥

∥

∥

∥

∥

2

≤ ai + β∗
i , ∀ i (5.53)

126

5.6 Experimental Results with the SOCP Model

We use the clique model for transforming hypergraphs to two-pin nets and the half-

perimeter wirelength (HPWL) to measure the quality of all our floorplans. For a set

of modules with total area A and maximum whitespace fraction γ, as well as given

aspect ratio ζ for a fixed outline, the height HF and width WF of the chip can be

given as follows (Adya and Markov, 2003):

HF =
√

(1 + γ)Aζ WF =
√

(1 + γ)A/ζ. (5.54)

Our method is applied to the standard MCNC and GSRC benchmarks and com-

pared with several state-of-the-art academic floorplanners (Murata and Kuh, 1998;

Adya and Markov, 2003; Adya et al., 2004; PARQUET, 2006; Chen et al., 2005; Sechen

and Sangiovanni-Vincentelli, 1986; Cong et al., 1999). All reported wirelengths are

measured using the HPWL, also used by Murata and Kuh (1998), Adya and Markov

(2003), Chen et al. (2005), and Cong et al. (1999). All the modules are chosen to be

soft with fixed areas and variable dimensions, and (as an approximation) all the pins

are assumed to be at the centres of the modules.

The second stage was solved by solver MOSEK (2006) on a Linux SUN Fire-V890

server with 16 1200-MHz processors and 32 GB RAM. The GAMS was compiled on

this computer then the problem was solved by one CPU. We report only CPU time for

the second stage. Solving the first stage takes significantly less time than the second

stage. Therefore, the CPU time for the first stage is negligible. For these instances

of fixed-outline floorplanning, we respect the dimensions of the floorplans provided

in the MCNC and GSRC benchmarks, so that the fixed layout area is a sum of the

areas of all of the modules included in a circuit if there is no whitespace. We choose

ζ=1 in (5.54). (Note that the experimental results of SDP model was described in

Section 5.3).

127

5.6.1 Experiments for MCNC and GSRC Benchmarks

We solved the first stage formulation (3.15) and second stage formulation (5.49)

bridged by the VD. Each circuit was run once, and we report the resulting CPU

time and HPWL wirelength in Table 5.3 for MCNC and Table 5.4 for GSRC. Com-

pared with Table 5.3 and Table 5.2, the SOCP model is 26 times faster than CSDP

with SDP and 78 times faster than SeDuMi with SDP for ami33; the SOCP model is

120 times faster than CSDP with SDP and 903 times faster than SeDuMi with SDP

for ami49 (see Fig. 5.3 for comparison). Therefore, the SOCP model is significantly

more efficient than the SDP model. A comparison between Table 5.2 and Table 5.3

shows that the total wirelengths produced by SDP and SOCP models are completely

identical because both are convex optimization models.

Table 5.3: MCNC experimental results with our SOCP model

Our Method

circuit Total

area Our Runtime HPWL

area

(mm2) (mm2) (s) (mm)

apte 46.56 46.56 1.03 397

xerox 19.35 19.35 1.12 411

hp 8.30 8.30 1.29 142

ami33 1.16 1.16 6.06 50.08

ami49 35.4 35.4 9.96 699

128

CSDP with SDP

SeDuMi with SDP

MOSEK with SOCP

Solvers

CP
U

tim
e f

or
 am

i4
9

(se
co

nd
s)

1 2 30

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 5.3: Illustration of comparison of various solvers with different constraints for

ami49 circuit.

129

Table 5.4: GSRC experimental results with our SOCP model

Our Method

circuit Total

area Our Runtime HPWL

area

(mm2) (mm2) (s) (mm)

n10a 22.17 22.17 1.21 37090

n30a 20.86 20.86 5.96 117236

n50a 19.86 19.86 10.08 123860

n100a 17.95 17.95 55.89 197490

n200a 17.57 17.57 1026.43 356520

n300a 27.32 27.32 1654.70 477800

130

5.6.2 Comparison with MK Model

First, in Table 5.5 we compare our approach with the MK model (Murata and Kuh,

1998). The results show that our total wirelength is competitive and in fact we obtain

an improvement in wirelength over MK for the two largest benchmark problems,

ami33 and ami49 (but 4.24% worse on average).

Table 5.5: Improvements in total wirelength compared with MK

MCNC Our Method vs MK

circuit Wirelength

apte -15.29%

xerox -2.43%

hp -19.51%

ami33 +6.20%

ami49 +9.82%

Average -4.24%

5.6.3 Comparison with AM Model

In Table 5.6, we compare our approach with AM model (Adya and Markov, 2003)

shown in Table 3.4. The results show that our average HPWL is consistently better,

and we obtain a better floorplan for several benchmarks. On average, our HPWL

wirelength is 24.49% better than theirs. The significant impact of this model is on

the quality of the total wirelength on the floorplan.

131

Table 5.6: Improvements in total wirelength compared with AM

MCNC Our Methodology vs AM

circuit Wirelength (min/avg)

apte +14.44/+29.11%

xerox -10.19/+12.18%

hp +19.77/+33.64%

ami33 +19.87/+33.58%

ami49 -3.86/+13.92%

Average +8.01/+24.49%

5.6.4 Comparison with TimberWolf

Our floorplaner does not currently take routing space requirements into account. In

Table 5.8 we compare our approach with a commercial tool, TimberWolf 1.3.3, which

is based on SA. Results for MCNC using TimberWolf 1.3.3 (Sechen and Sangiovanni-

Vincentelli, 1986) were reported by Cong et al. (1999). Cong et al. (1999) ignored

the routing space, as did our method.

Table 5.7 gives the TimberWolf results including areas, computation times, and

total wirelengths. Our method in the total wirelength is competitive, obtaining an

average improvement in HPWL of 21.8%.

5.6.5 Obtaining Zero-Deadspace Floorplans

The results show that our method is constantly competitive with, and frequently

outperforms, the MK, AM, and TimberWolf models. Moreover, we obtained zero-

132

Table 5.7: Results reported by TimberWolf

MCNC Total TimberWolf

circuit area Area Runtime HPWL

(mm2) (mm2) (s) (mm)

apte 46.56 48.50 66.00 487.71

xerox 19.35 22.64 101.20 526.92

hp 8.30 9.58 91.40 186.76

ami33 1.16 1.27 221.00 71.80

ami49 35.4 40.81 472.80 814.20

Table 5.8: Improvements in total wirelength compared with TimberWolf

MCNC Our Model vs TimberWolf

circuit Wirelength

apte +18.60%

xerox +22.00%

hp +23.97%

ami33 +30.25%

ami49 +14.15%

Average +21.79%

133

2

5

6

10

13

14

15
16

17

18

19
202122

23
24

25

26

27

2829

30

31

3233

34
35

3637

3839

40

41

42

4344

46

4748

49

11
12

45

9

1

7

4

8

3

Figure 5.4: Final layout for ami49 circuit.

deadspace floorplans for all five circuits as shown in Table 5.9. Zero-deadspace floor-

plans for the circuits apte, ami33 and ami49 obtained using our method are shown

in Fig. 4.7D, Fig. 4.9B and Fig. 5.4, respectively. Floorplanners MK, AM, and

TimberWolf all have some deadspace in their floorplans. In contrast, our approach

can guarantee complete area utilization in a fixed-outline floorplan.

134

Table 5.9: Deadspace comparisons with MK, AM, and TimberWolf

MCNC Total MK AM TimberWolf Our Methodology

circuit area Area Deadspace Area Deadspace Area Deadspace Area Deadspace

min/avg min/avg

(mm2) (mm2) (mm2) (mm2) (mm2)

apte 46.56 46.55 -0.02% 46.97/48.95 0.87/4.88% 48.50 4.00% 46.56 0%

xerox 19.35 19.50 0.77% 19.51/20.62 0.82/6.16% 22.64 14.53% 19.35 0%

hp 8.30 8.83 6.0% 8.96/9.72 7.40/14.60% 9.58 13.36% 8.30 0%

ami33 1.16 1.16 0% 1.18/1.24 1.70/6.45% 1.27 8.66% 1.16 0%

ami49 35.4 35.58 0.5% 36.07/37.8 1.86/6.35% 40.81 13.26% 35.4 0%

135

5.6.6 Comparison with Parquet, Capo, IMF, and IMFAFF

Models

For large GSRC circuits, we compare our model with Parquet (Adya and Markov,

2003; PARQUET, 2006), Capo (Adya et al., 2004), IMF and IMFAFF (Chen et al.,

2005), where I/O pads were shifted to the boundary of the chips. In our experiment,

I/O pads also were fixed on the boundary of the chips for comparison purposes. We

use the three largest GSRC circuits n100, n200, and n300. All reported wirelengths

were measured using the HPWL as the Parquet, Capo, IMF, and IMFAFF did. Each

circuit was run once and the floorplans obtained are reported in Table 5.10. The

whitespace in the Parquet, Capo, IMF, and IMFAFF is constrained to be less than

15% (Chen et al., 2005). We chose our 10% whitespace case for the comparison in

Table 5.11. Our model gives an improvement of 0.33% to 23.88% in terms of the total

wirelength. Parquet and Capo can handle both hard and soft modules. Our method

is currently focused on soft modules but in principle is applicable to hard modules.

It is not clear whether IMF and IMFAFF used hard or soft modules.

5.6.7 Comparison with Parquet, CC, and ZFS Models

We now compared our model with the Chen and Chang (CC) model (Chen and

Chang, 2006) and Parquet (Adya and Markov, 2003; PARQUET, 2006), with the

I/O pads fixed at the locations originally given by the benchmarks.

Our results for 0% and 5% whitespace are reported in Table 5.12, and the com-

parisons with CC and Parquet for 10% and 15% whitespace are given in Tables 5.13

and 5.14. (The data of zero-deadspace and 5% whitespace cases for CC and Parquet

are not available in their papers). The CC and Parquet results were obtained by

defining the maximum percentage of whitespace to be 10% and 15%. However, the

136

specific percentage was not reported. Therefore, we compare our experimental results

under both percentages of whitespace, 10% and 15%. Our model produces a greater

improvement in terms of the total wirelength as the number of modules increases.

Our method is also compared with the ZFS (Zhan et al., 2006) floorplan with 15%

whitespace obtained by ZFS and Parquet 4 dealing with soft modules reported by

Zhan et al. (2006). Table 5.15 gives the comparison; it shows that for soft modules,

we again produce greater total wirelength improvement as the number of modules

increases (Luo et al., 2008a).

Table 5.10: Results for our model with I/O pads fixed at the boundary of the chips

Circuit Zero-whitespace 5% whitespace 10% whitespace 15% whitespace

CPU(s) HPWL CPU(s) HPWL CPU(s) HPWL CPU(s) HPWL

n100 55.89 197490 55.32 200490 55.96 203700 55.03 207180

n200 1026.43 356520 1129.14 362070 990.79 367880 881.39 373840

n300 1654.70 477800 1669.590 485180 1428.92 492830 1461.95 500910

5.7 Summary

This chapter introduces two convex optimization models as the second stage. As-

sociated with the first stage model introduced in Chapter 3, a two-stage convex

optimization methodology for floorplanning is formed that can be applied to both

classical floorplanning and fixed-outline floorplanning. Area, aspect ratio constraints

formulated to SDP and SOC problems are described in this chapter. The solvers

used have varied according to the constraints included in the formulations in this

137

Table 5.11: Comparisons for Capo, Parquet(Pq), IMF, and IMFAFF; 10% whitespace

and I/O pads fixed at the boundary of the chips

Circuit Our Parquet Capo IMF IMFAFF

HPWL HPWL Imprv HPWL Imprv HPWL Imprv HPWL Imprv

n100 203700 242050 15.84% 224390 9.22% 207852 2.00% 208772 2.43%

n200 367880 432882 15.02% 385594 4.59% 369888 0.54% 372845 1.33%

n300 492830 647452 23.88% 522968 5.76% 489868 -0.60% 494480 0.33%

chapter. Computational results on the MCNC and GSRC benchmarks demonstrate

that our methodology clearly outperforms the results reported in the literature. Our

methodology guarantees complete area utilization in a fixed-outline situation, and

it also produces floorplans with any specified percentage of whitespace. Our model

provides flexibility to allow zero-whitespace or any specific percentage of whites-

pace (for buffer insertion, for example). Most importantly, our methodology provides

greater improvement over other floorplanners as the number of modules increases.

138

Table 5.12: Results for our model; I/O pads fixed at the locations given by the

benchmark

Circuit Zero- 5%

whitespace whitespace

n100 285070 287560

n200 506070 510700

n300 584640 591320

Table 5.13: Comparison for Parquet 4.5 and CC; 10% whitespace and I/O pads fixed

at the locations given by the benchmark

Circuit Our Parquet CC

HPWL HPWL Imprv HPWL Imprv

n100 290010 335600 13.58% 320600 9.55%

n200 515320 635500 18.91% 583300 11.65%

n300 597900 760500 21.38% 710000 15.79%

139

Table 5.14: Comparison for Parquet 4.5 and CC; 15% whitespace and I/O pads fixed

at the locations given by the benchmark

Circuit Our Parquet CC

HPWL HPWL Imprv HPWL Imprv

n100 292430 335600 12.86% 320600 8.79%

n200 519890 635500 18.19% 583300 10.87%

n300 604420 760500 20.52% 710000 14.87%

Table 5.15: Comparison for ZFS and Parquet 4 with 15% whitespace; soft modules

and I/O pads fixed at the locations given by the benchmark

Circuit Our ZFS Parquet4

HPWL HPWL Imprv HPWL Imprv

n100 292430 291628 -0.28% 342103 14.52%

n200 519890 572145 9.13% 630014 17.48%

n300 604420 702822 14.00% 770354 21.54%

Chapter 6

Interchange-Free Local

Improvement

The second stage model may fail to obtain a feasible solution. In this chapter, we

propose an automatic interchange-free strategy to perform local improvements to the

floorplan. The underlying idea is to locally relax the relationships of relative positions

for those modules whose aspect ratios exceed the required upper bounds.

Handling the aspect ratios of soft modules is important and difficult. Previous

approaches to optimize the aspect ratios use convex optimization (e.g., Murata and

Kuh, 1998; Takouda et al., 2005), stochastic optimization (Kang and Dai, 1997),

Lagrangian relaxation (Chu and Young, 2004), bi-partitioning (Cong et al., 2006),

and a graph-based methodology (Itoga et al., 2005).

Kang and Dai (1997) considered a stochastic optimization method combining sim-

ulated annealing (SA) and Genetic Algorithm (GA) approaches for optimal floorplans

while achieving the desired aspect ratios. Ma et al. (2001) suggested a simple method

based on an SA framework arbitrarily changes aspect ratios within a given discrete

range.

140

141

Several convex optimization techniques are also proposed to obtain desired aspect

ratios of soft modules. Takouda et al. (2005) formulated an SDP problem that obtains

required aspect ratios of modules. Murata and Kuh (1998) use SA and SP represen-

tation while Chu and Young (2004) use Lagrangian relaxation (LR) methodology to

formulate the constraints of aspect ratio.

Recently, a two-phase graph-based methodology was proposed to meet the re-

quirement of aspect ratio constraints in floorplanning (Itoga et al., 2005). In the

first phase, they use a graph-based minimal cut problem to adjust aspect ratios by

choosing a minimal set of soft modules. The second phase determines the aspect ra-

tio of each soft module using the Newton-Raphson method. A bi-partitioning based

approach where the wirelength is minimized by SA is used by Cong et al. (2006). The

floorplan is bi-partitioned into subregions whose aspect ratio bounds determine the

aspect ratio bounds of the soft modules.

Most approaches are based on interchange operations that require more compu-

tational efforts. We develop an interchange-free local improvement algorithm that

improves the aspect ratio constraints. This approach can satisfy the required aspect

ratio constraints while maintaining the topology quality and the optimal wirelength.

6.1 Algorithm for Interchange-Free Local Improve-

ment

If formulation (5.49) is infeasible, we relax the aspect ratio constraints. We then find

the modules with violated aspect ratios and locally relax the non-overlap constraints

for those modules which we call central modules. More precisely, we select two-

layer modules surrounding the central module and relax the relationships of relative

positions between the central and surrounding modules by entering zeros in the RPM.

142

We re-solve the SOCP problem iteratively until the upper bound on the aspect ratios

is satisfied (see Algorithm 1).

Definition 6.1.1 (Central Modules Mi) The Central Modules Mi(i = 1, 2, ..., p)

are those modules whose aspect ratios exceed the required upper bounds.

Definition 6.1.2 (First Layer Modules Mij) The First Layer Modules Mij(i =

1, 2, ..., p; j = 1, 2, ..., q) are those modules adjacent to Central Module Mi.

Definition 6.1.3 (Second Layer Modules Mijk) Similarly, the Second Layer Mod-

ules Mijk(i = 1, 2, ..., p; j = 1, 2, ..., q; k = 1, 2, ..., r) are those modules adjacent to first

layer module Mij.

Definition 6.1.4 (Relaxed RPM) The relaxed RPM is the RPM whose entries

corresponding to modules Mi, Mij, and Mijk, are set to zero (it relaxes the relationship

of the relative positions between Mi and Mij/Mijk).

As an example we solved (5.49) for ami49 circuit and obtain the layout shown in

Fig. 6.1. All the aspect ratios are satisfied except that the aspect ratio for Module

21 is 19.0408.

The first layer modules adjacent to central module M21 are M1, M13, M22, M24,

M39, and M45 (they are represented as M21,1, M21,13, M21,22, M21,24, M21,39, and M21,45,

respectively). We relax the relationships of relative position between the central

module M21 and surrounding modules and then we obtain the layout by solving the

SOCP problem (see Fig. 6.2). Based on updated SRPM, the final layout, shown in

Fig. 6.3, is found by re-solving the SOCP problem.

143

1

2

3

4

5

6

7
8
9

101112 13

14

15

16

1718

19
20

21

22
23

24

25 26

27

2829

30

31

3233

34

35

36

37

3839
40

41

42

43
4445

46

47

48

49

Figure 6.1: First round layout for ami49 circuit.

6.2 Summary

In this chapter, an interchange-free algorithm was developed to perform local im-

provements to satisfy the requirement of aspect ratios of soft modules. The reasonable

aspect ratio constraints are met by this interchange-free algorithm while maintaining

the topology quality and optimal total wirelength.

144

1

2

3

4

5

6

7
8
9

10
1112 13

14

15

16

1718

1920

21
22
23

24

25 26

27

2829

30

31

3233

34

35

36

37

3839

40

41

42

43
4445

46

47

48

49

Figure 6.2: Second round layout for ami49 circuit, where the relative positions of the

first and second layer modules are locally relaxed.

145

1

2

3

4

5

6

78

9

101112 13

14

15

16

1718

19
20

21
22
23

24

25
26

27

2829

30

31

3233
34

35

36

37

3839
40

41

42

43
4445

46

47
48

49

Figure 6.3: Final layout for ami49 circuit.

146

Algorithm 1 Algorithm for Interchange-free Local Improvement

Input: SRPM

Output: Aspect ratios, module dimensions

1. Solve SOCP model without aspect ratio constraints;

2. If all the aspect ratios are satisfactory, goto Step 9;

otherwise, goto Step 3;

3. Select all the Central Modules Mi;

4. Select and compute all the First Layer Modules Mij ;

5. Select and compute all the Second Layer Modules Mijk;

6. Set up the relaxed SRPM;

7. Solve the SOCP model with relaxed SRPM without aspect

ratio constraints to obtain a layout with overlaps; based on

this result to update the SRPM;

8. Re-solve SOCP model with aspect ratio constraints;

9. End.

Chapter 7

Conclusion and Future Work

In this chapter, the results obtained in this thesis research will be summarized in the

conclusion section. It also suggests suitable improvements and extension for further

work.

7.1 Conclusion

In this thesis, a two-stage optimization methodology was proposed to solve the fixed-

outline floorplanning problem that is a global optimization problem for wirelength

minimization. Some of the important points are listed below.

• This thesis presented a two-stage fixed-outline floorplanning scheme. In the

first stage, we transformed the original fixed-die floorplanning problem into a

convex model based on a facility layout problem (in Chapter 3). This global

optimization problem provided the relative positions of the soft modules on

the floorplan while the total wirelength was minimized. In the second stage,

a fixed-die floorplanning problem was formulated to nonlinear optimization (in

Chapter 3), SDP, and SOCP problems (in Chapter 5), respectively.

147

148

• An RPM was used to encode the relative positions of all modules (in Chapter

4). The RPM can avoid the operations of absolute values in the non-overlap

constraints.

• VD and DT techniques were used to spread out modules in the floorplan ob-

tained from the first stage and converted it into a planar graph. Sparse relative

position matrices (SRPM) further improved computational efficiency (in Chap-

ter 4).

• An interchange-free algorithm for local improvement of the floorplan was pre-

sented that achieves desired aspect ratio constraints on soft modules (in Chapter

6).

• Experimental results on the MCNC and GSRC benchmarks demonstrated that

our method substantially improved wirelength compared with several floor-

plnners. The significant impact of this thesis research is on the quality of the

total wirelength. Minimizing the total wirelength is the principal objective of

most existing floorplanners. Minimization of the total wirelength is helpful to

minimize chip size, and thus cost, but also minimizes power and delay, which

are proportional to the wirelength and wirelength squared, respectively. There-

fore, the considerably improved quality in the total wirelength of our floorplan-

ner is one of our most important contributions. This is the first time that a

convex-optimization-based method is used for fixed-outline floorplanning. The

proposed two-stage method is particularly suitable for fixed-outline floorplan-

ning and soft module case, and can also be extended to classical floorplanning

as well as hard module case.

149

7.2 Future Work

Although promising results were achieved for fixed-outline floorplaning using the pro-

posed approach, further work is necessary.

• Area Minimization: With advancements in nanotechnology devices, area mini-

mization technique in terms of circuit size is of paramount importance. We have

successfully solved wirelength minimization problem of fixed-outline floorplan-

ning by convex optimization approaches. We will develop novel optimization

algorithms based on SDP and SOCP techniques to tackle area minimization

problem.

• Timing Driven Floorplanning: Floorplanning is important for a VLSI chip per-

formance in terms of not only floorplan size but also timing constraint. Area and

wirelength minimization used to be the most important objective in floorplan-

ning design. However, as technology of the deep-submicron has been developed

rapidly, interconnect issues such as delay, routability, congestion have become a

major concern in floorplanning. It is essential for the floorplan to meet time con-

straints in a very deep sub-micron design. Previous research into timing-driven

floorplanning can be classified into path-based and net-based models.

The path-based method models the timing problem more accurately (Mo et

al., 2001; Donath et al., 1990; Donath et al., 1999). However, it is difficult to

incorporate it into floorplanning dominated by traditional techniques. Mo et al.

(2001) use the star model in a force-directed placement algorithm to deal with

path delay constraints. Jackson and Kuh (1989) suggested a linear program-

ming model for timing driven placement. RITUAL, developed by Srinivasan et

al. (1991), was more efficient, modelling the net length using a quadratic objec-

tive function. The number of timing constraints over the nets is decreased by

150

transforming the quadratic programming problem into a Lagrangian problem.

The net-based method assigns different weights to different nets according to the

criticality of the paths on which they lie (Brasen and Bushnell, 1990; Riess and

Ettelt, 1995; Tellez et al., 1996; Sarrafzadeh and Wang, 1997). The net-based

approach meets timing requirements by converting timing constraints into up-

per bounds over the net delays. Consequently, the main tasks of the net-based

model are to choose the weights and bounds.

The proposed preliminary timing-driven floorplanning method consists of two

stages. In the first stage, timing-driven floorplanning is performed while mini-

mizing wirelength using convex programming. The second stage deals with the

floorplan sizing problem stated previously. However, the sizes, shapes, and as-

pect ratios of the modules are determined based on the topological arrangement

achieved in the first stage by considering timing delay over nets.

• Multilevel Hierarchical Algorithm: As VLSI chip complexity in terms of the

number of components increases rapidly, some useful algorithms such as mixed-

size (Adya and Markov, 2002; Adya and Markov, 2003; Adya et al., 2004; Cong

et al., 2006; Sechen, 1988a; Khatkhate et al., 2004; Bourbakis, 2008; Kahng

and Wang, 2004a) and multilevel (Chan et al., 2003; Kahng and Wang, 2004b;

Chan et al., 2005; Cong et al., 2006) in placement are developed to process

floorplaning problem in a rough level to generate an initial coarse placement.

Therefore, it is necessary to pack a large number of standard cells mixed with

many macros such as RAMs, ROMs, and IP blocks. The macros are regarded

as hard modules while clusters of standard cells are packed as soft modules. In

modern VLSI circuit design, a floorplanner is typically required to pack more

than 300 modules. In our model, computational time increase rapidly as the

151

number of modules increases. Therefore, efficient partitioning, top-down and

multilevel hierarchical algorithms will be studied.

• Bus-driven Floorplanning: The bus driven floorplan is described as follows

(Xiang et al., 2003; Chen and Chang, 2006): Given a collection of p rectan-

gular modules M = {mi|i = 1, 2, ..., p} and q buses B = {bi|i = 1, ..., q}, each

bus bi with a width ki passes through a set of modules Mi, where Mi ⊆ M

and |Mi| = ni. Bus driven floorplanning seeks the positions of modules and

buses so as to minimize the chip area and the bus area, while each bus bi passes

through all of its ni modules without any overlap between two modules and two

vertical (horizontal) buses. As the bus constraints are linear, it is possible to

enforce them in our two-stage convex optimization model to form a bus-driven

floorplanning framework.

• Partitioning-based Fixed-outline Floorplanning: Convex optimization techniques

such as SDP and SOCP effectively solve VLSI floorplanning problem by interior-

point algorithm. However, for larger floorplanning problem, in particular, place-

ment problem, the computation efficiency by SDP and SOCP needs to be im-

proved. Partitioning-based approach is a good candidate. Circuit partitioning

decomposes a very large circuit into several relatively independent sub-circuits

such that their sizes are small enough to be handled by the existing physical

design process. The floorplanning and placement problems of every sub-circuit

can be formulated by convex optimization models with less constraints thus less

computational effort in total.

• Improvement of Computation Time of Floorplanning: Computation time to

solve the proposed model determines the time of design-to-market. Our exist-

ing method achieves promising computation time and high-quality floorplans.

152

The computation time can still be improved. First, the advanced and effec-

tive algorithm for solvers will be helpful for the acceleration of solving the

model. Second, effective partitioning-based approach and clustering techniques

will contribute great improvement in computation time.

Bibliography

Ackland, B. D. (1988). Knowledge-based physical design automation. In: Physical

Design Automation of VLSI Systems (B. T. Preas and M. J. Lorenzetti, Eds.).

pp. 409–454. The Benjamin/Cummings Publishing, Inc.. Menlo Park, California,

USA.

Adya, S. N. and I. L. Markov (2002). Consistent placement of macro-blocks using

floorplanning and standard-cell placement. In: Proc. of ACM Intl. Symp. on

Physical Design. pp. 12–17.

Adya, S. N. and I. L. Markov (2003). Fixed-outline floorplanning: Enabling hier-

archical design. IEEE Trans. on Very Large Scale Integration (VLSI) Systems

11(6), 1120–1135.

Adya, S. N., I. L. Markov and P. G. Villarrubiac (2006). On whitespace and stability

in physical synthesis. Integration, the VLSI Journal 39, 340–362.

Adya, S. N., S. Chaturvedi, J. A. Roy, D. A. Papa and I. L. Markov (2004). Unification

of partitioning, placement and floorplanning. In: Proc. of IEEE/ACM Intl. Conf.

on Computer-Aided Design. pp. 550–557.

Alpert, C. J. and A. B. Kahng (1995). Recent developments in netlist partitioning:

A survey. Integration: the VLSI Journal 19(1-2), 1–81.

153

154

Alupoaei, S. and S. Katkoori (2002). Net-based force-directed macrocell placement for

wirelength optimization. IEEE Trans. on Very Large Scale Integration (VLSI)

Systems 10(6), 824–835.

Andersen, E. D., C. Roos and T. Terlaky (2003). On implementing a primal-dual

interior-point method for conic quadratic optimization. Mathematical Program-

ming 95(2), 249–277.

Anjos, M. F. and A. Vannelli (2002). An attractor-repeller approach to floorplanning.

Mathematical Methods of Operations Research 56, 3–27.

Anjos, M. F. and A. Vannelli (2006). A new mathematical-programming framework

for facility-layout design. INFORMS Journal on Computing 18(1), 111–118.

Baker, B. S., E. G. Coffman Jr. and R. L. Rivest (1980). Orthogonal packing in two

dimensions. SIAM Journal on Computing 9, 846–855.

Ball, C. F., P. V. Kraus and D. A. Mlynski (1994). Fuzzy partitioning applied to

VLSI-floorplanning and placement. In: Proc. of IEEE Intl. Symp. on Circuits

and Systems. pp. 177–180.

Behjat, L. (2002). New Modelling and Optimization Techniques for the Global Routing

Problem. PhD thesis. University of Waterloo, Waterloo, ON, Canada.

Borchers, B. (1999a). CSDP 2.3 User’s Guide. Optimization Methods and Software

11(1), 597–611.

Borchers, B. (1999b). CSDP, a C library for semidefinite programming. Optimization

Methods and Software 11(1), 613–623.

155

Borchers, B. and J. G. Young (2007). Implementation of a primal-dual method for

SDP on a shared memory parallel architecture. Computational Optimization and

Applications 37(3), 355–369.

Bourbakis, N. G. (2008). A generic, formal language-based methodology for hier-

archical floorplanning-placement. Computer Languages, Systems and Structures

34(1), 25–42.

Brasen, D. R. and M. L. Bushnell (1990). MHERTZ: A new optimization algorithm for

floorplanning and global routing. In: Proc. of ACM/IEEE Design Automation

Conf. pp. 107–110.

Castillo, I. and T. Sim (2004). A spring-embedding approach for the facility layout

problem. Journal of the Operational Research Society 55, 73–81.

Chan, T. F., J. Cong and K. Sze (2005). Multilevel generalized force-directed method

for circuit placement. In: Proc. of ACM Intl. Symp. on Physical Design. pp. 185–

192.

Chan, T. F., J. Cong, T. Kong and J. R. Shinnerl (2003). Multilevel circuit placement.

In: Multilevel Optimization in VLSICAD (J. Cong and J. R. Shinnerl, Eds.).

Kluwer. Boston, MA, USA.

Chang, Y.-C., Y.-W. Chang, G.-M. Wu and S.-W. Wu (2000). B*-trees: A new repre-

sentation for nonslicing floorplans. In: Proc. of ACM/IEEE Design Automation

Conf. pp. 458–463.

Chen, D.-S., C.-T. Lin, Y.-W. Wang and C.-H. Cheng (2007). Fixed-outline floor-

planning using robust evolutionary search. Engineering Applications of Artificial

Intelligence 20, 821–830.

156

Chen, P. and E. S. Kuh (2000). Floorplan sizing by linear programming approxima-

tion. In: Proc. of ACM/IEEE Design Automation Conf. pp. 468–471.

Chen, S. and T. Yoshimura (2007). A stable fixed-outline floorplanning method. In:

Proc. of ACM Intl. Symp. on Physical Design. pp. 119–126.

Chen, T. and M. K. H. Fan (1998). On convex formulation of the floorplan area min-

imization problem. In: Proc. of ACM Intl. Symp. on Physical Design. pp. 124–

128.

Chen, T.-C. and Y.-W. Chang (2006). Modern floorplanning based on B*-tree and

fast simulated annealing. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems 25(4), 637–650.

Chen, T.-C., Y.-W. Chang and S.-C. Lin (2005). IMF: interconnect-driven multilevel

floorplanning for large-scale building-module designs. In: Proc. of IEEE/ACM

Intl. Conf. on Computer-Aided Design. pp. 159–164.

Chen, T.-C., Y.-W. Chang and S.-C. Lin (2008). A new multilevel framework for

large-scale interconnect-driven floorplanning. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems 27(2), 286–294.

Cheng, C. K. and E. S. Kuh (1984). Module placement based on resistive network

optimization. IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems 3(3), 218–225.

Choi, S.-G. and C.-M. Kyung (1991). A floorplanning algorithm using rectangular

Voronoi diagram and force-directed block shaping. In: Proc. of IEEE/ACM Intl.

Conf. on Computer-Aided Design. pp. 56–59.

157

Chu, C. C. N. and E. F. Y. Young (2004). Non-rectangular shaping and sizing of

soft modules for floorplan-design improvement. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems 23(1), 71–79.

Cohoon, J. P., S. U. Hegde, W. N. Martin and D. S. Richards (1991). Distributed

genetic algorithms for the floorplan design problem. IEEE Trans. on Computer-

Aided Design 10(4), 483–492.

Cong, J., M. Romesis and J. R. Shinnerl (2006). Fast floorplanning by look-ahead

enabled recursive bipartitioning. IEEE Trans. on Computer-Aided Design of In-

tegrated Circuits and Systems 25(9), 1719–1732.

Cong, J., T. Kong, D. Xu, F. Liang, J. S. Liu and W. H. Wong (1999). Relaxed

simulated tempering for VLSI floorplan designs. In: Proc. of Asia and South

Pacific Design Automation Conf. pp. 13–16.

Czyzyk, J., M. Mesnier and J. Moré (1998). The NEOS server. IEEE J. on Compu-

tational Science and Engineering 5, 68–75.

Dickinson, A. (1986). Floyd: a knowledge-based floor plan designer. In: Proc. of IEEE

Intl. Conf. on Computer Design. pp. 176–179.

Donath, W. E., R. J. Norman, B. K. Agrawal, S. E. Bello, S. Y. Han, J. M. Kurtzberg,

P. Lowy and R. I. McMillan (1990). Timing driven placement using complete

path delays. In: Proc. of ACM/IEEE Design Automation Conf. pp. 84–89.

Donath, W., P. Kudva and L. Reddy (1999). Performance driven optimization of

network length in physical placement. In: Proc. of IEEE Intl. Conf. on Computer

Design. pp. 258–265.

158

Drezner, Z. (1980). Discon: A new method for the layout problem. Operations Re-

search 28(6), 1375–1384.

Du, Y. and A. Vannelli (1998). A nonlinear programming and local improvement

method for standard cell placement. In: Proc. of IEEE Custom Integrated Circuit

Conf. pp. 1–4.

Dunlop, A. E. and B. W. Kernighan (1985). A procedure for placement of standard

cell VLSI circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems 4(1), 92–98.

Eisenmann, H. and F. Johannes (1998). Generic global placement and floorplanning.

In: Proc. of ACM/IEEE Design Automation Conf. pp. 269–274.

Etawil, H. (1999). Convex Optimization and Utility Theory: New Trends in VLSI

Circuit Layout. PhD thesis. University of Waterloo, Waterloo, ON, Canada.

Etawil, H., S. Areibi and A. Vannelli (1999). Attractor-repeller approach for global

placement. In: Proc. of IEEE/ACM Intl. Conf. on Computer-Aided Design.

pp. 20–24.

Feng, Y. and D. Mehta (2004). Constrained floorplanning with whitespace. In: Proc.

of the 17th Intl. Conf. on VLSI Design. pp. 969–974.

Feng, Y. and D. P. Mehta (2006). Module relocation to obtain feasible constrained

floorplans. IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems 25(5), 856–866.

Feng, Y., D. P. Mehta and H. Yang (2004). Constrained floorplanning using net-

work flows. IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems 23(4), 572–580.

159

Fernando, P. and S. Katkoori (2008). An elitist non-dominated sorting based genetic

algorithm for simultaneous area and wirelength minimization in VLSI floorplan-

ning. In: Proc. of IEEE Intl. Conf. on VLSI Design. pp. 337–342.

Ferris, M., M. Mesnier and J. Moré (2000). NEOS and Condor: Solving optimization

problems over the Internet. ACM Trans. on Math. Softw. 26(1), 1–18.

Fourer, R., D. M. Gay and B. W. Kernighan (2003). AMPL: A modeling language for

mathematical programming. Pacific Grove, CA: Thomson/Brooks/Cole.

Gamal, A. A. E. (1981). Two-dimensional stochastic model for interconnections in

master slice integrated circuits. IEEE Trans. on Circuits and Systems 28, 127–

138.

GSRC, Floorplan Benchmarks (2006). http://www.cse.ucsc.edu/research/surf/GSRC

/gsrcbench.html.

Guo, P.-N., C.-K. Cheng and T. Yoshimura (1999). An O-tree representation of non-

slicing floorplan and its applications. In: Proc. of ACM/IEEE Design Automa-

tion Conf. pp. 268–273.

Hamada, T., C. K. Cheng and P. M. Chau (1996). A wire length estimation tech-

nique utilizing neighborhood density equations. IEEE Trans. on Computer-Aided

Design 15, 912–922.

He, X. (1997). On floorplans of planar graphs. In: Proc. of ACM Symp. on Theory

of Computing. pp. 426–435.

Hebgen, W. and G. Zimmermann (1996). Hierarchical netlength estimation for timing

prediction. In: Proc. of Physical Design Workshop. pp. 118–125.

160

Helmberg, C., F. Rendl, R. J. Vanderbei and H. Wolkowicz (1996). An interior–point

method for semidefinite programming. SIAM Journal on Optimization 6(2), 342–

361.

Herrigel, A. and W. Fichtner (1989). An analytic optimization technique for place-

ment of macro-cells. In: Proc. of ACM/IEEE Design Automation Conf. pp. 376–

381.

Ho, S.-Y., S.-J. Ho, Y.-K. Lin and W. C.-C. Chu (2004). An orthogonal simulated

annealing algorithm for large floorplanning problems. IEEE Trans. on Very Large

Scale Integration (VLSI) Systems 12(8), 874–877.

Hong, X., G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng and J. Gu (2000). Corner

block list: An effective and efficient topological representation of nonslicing floor-

plan. In: Proc. of IEEE/ACM Intl. Conf. on Computer-Aided Design. pp. 8–12.

Hu, B. and M. Marek-Sadowska (2002). FAR: Fixed-points addition and relaxation

based placement. In: Proc. of ACM Intl. Symp. on Physical Design. pp. 161–166.

Hu, T. C. and E. S. Kuh (1985). VLSI circuit layout: Theory and design. IEEE Press.

New York, USA.

Huang, D. J. H. and A. B. Kahng (1997). Partitioning-based standard-cell global

placement with an exact objective. In: Proc. of ACM Intl. Symp. on Physical

Design. pp. 18–25.

Hur, S. W. and J. Lillis (1999). Relaxation and clustering in a local search framework:

Application to linear placement. In: Proc. of ACM/IEEE Design Automation

Conf. pp. 360–366.

161

Hur, S.-W., T. Cao, K. Rajagopal, Y. Parasuram, A. Chowdhary, V. Tiourin and

B. Halpin (2003). Force directed mongrel with physical net constraints. In: Proc.

of ACM/IEEE Design Automation Conf. pp. 214–219.

Itoga, H., C. Kodama and K. Fujiyoshi (2005). A graph based soft module handling in

floorplan. IEICE Trans. on Fundamentals of Electronics, Communications and

Computer Sciences 12(E88-A), 3390–3397.

Jackson, M. A. B. and E. S. Kuh (1989). Performance-driven placement of cell based

IC’s. In: Proc. of ACM/IEEE Design Automation Conf. pp. 370–375.

Jankovits, I., C. Luo, M. F. Anjos and A. Vannelli (2007). A convex optimization

framework for the unequal-areas facility layout problem. submitted to European

Journal of Operational Research.

Jin, L., D. Kim, L. Mu, D.-S. Kim and S.-M. Hu (2006). A sweepline algorithm for

Euclidean Voronoi diagram of circles. Computer-Aided Design 38, 260–272.

Johannes, F. M. (1996). Partitioning of VLSI circuits and systems. In: Proc. of

ACM/IEEE Design Automation Conf. pp. 83–87.

Kahng, A. B. (2000). Classical floorplanning harmful. In: Proc. of ACM Intl. Symp.

on Physical Design. pp. 207–213.

Kahng, A. B. and Q. Wang (2004a). An analytic placer for mixed-size placement and

timing-driven placement. In: Proc. of IEEE/ACM Intl. Conf. on Computer-

Aided Design. pp. 565–572.

Kahng, A. B. and Q. Wang (2004b). Implementation and extensibility of an analytical

placer. In: Proc. of ACM Intl. Symp. on Physical Design. pp. 18–25.

162

Kang, M. and W. Dai (1997). General floorplanning with L-shaped, T-shaped and

soft blocks based on bounded slicing grid structure. In: Proc. of Asia and South

Pacific Design Automation Conf. pp. 265–270.

Kennings, A. (1994). A Parallel Dual Affine Scaling Algorithm Using Netlist Parti-

tioning. Master’s thesis. University of Waterloo, Waterloo, ON, Canada.

Kennings, A. (1997). Cell Placement Using Constructive and Iterative Improvement

Methods. PhD thesis. University of Waterloo, Waterloo, ON, Canada.

Kennings, A. and I. Markov (2000). Analytical minimization of half-perimeter wire-

length. In: Proc. of Asia and South Pacific Design Automation Conf. pp. 179–

184.

Khatkhate, A., C. Li, A. R. Agnihotri, S. Ono, M. C. Yildiz, C.-K. Koh and P. H.

Madden (2004). Recursive bisection based mixed block placement. In: Proc. of

ACM Intl. Symp. on Physical Design. pp. 84–89.

Kim, J.-G. and Y.-D. Kim (2003). A linear programming-based algorithm for floor-

planning in VLSI design. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems 2(5), 584–592.

Kleinhans, J., G. Sigl, F. Johannes and K. Antreich (1991). Gordian: VLSI placement

by quadratic programming and slicing optimization. IEEE Trans. on Computer-

Aided Design 10(3), 356–365.

Kling, R. M. and P. Banerjee (1991). Empirical and theoretical studies of the sim-

ulated evolution method applied to standard cell placement. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems 10(10), 1303–1315.

163

Kozminski, K. and E. Kinnen (1984). An algorithm for finding a rectangular dual of

a planar graph for use in area planning for VLSI integrated circuits. In: Proc. of

ACM/IEEE Design Automation Conf. pp. 655–656.

Lai, Y. and S. M. Leinwand (1988). Algorithms for floorplan design via rectangular

dualization. IEEE Trans. on Computer-Aided Design 7(12), 1278–1289.

Law, J. H. Y. and E. F. Y. Young (2008). Multi-bend bus driven floorplanning.

Integration, the VLSI Journal 41(2), 306–316.

Lee, H.-C., Y.-W. Chang and H. H. Yang (2007). MB*-tree: a multilevel floorplanner

for large-scale building-module design. IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems 26(8), 1430–1444.

Lee, H.-C., Y.-W. Chang, J.-M. Hsu and H. H. Yang (2003). Multilevel floorplan-

ning/placement for large-scale modules using B*-trees. In: Proc. of ACM/IEEE

Design Automation Conf. pp. 812–817.

Lin, C.-T., D.-S. Chen and Y.-W. Wang (2004). Robust fixed-outline floorplanning

through evolutionary search. In: Proc. of Asia and South Pacific Design Au-

tomation Conf. pp. 42–44.

Lin, C.-T., D.-S. Chen and Y.-W. Wang (2006). Modern floorplanning with bound-

ary and fixed-outline constraints via genetic clustering algorithm. Journal of

Circuits, Systems, and Computers 15(1), 107–128.

Lin, J.-M. and Y.-W. Chang (2001). TCG: A transitive closure graph-based repre-

sentation for nonslicing floorplans. In: Proc. of ACM/IEEE Design Automation

Conf. pp. 764–769.

164

Lin, J.-M., Y.-W. Chang and S.-P. Lin (2003). Corner sequence – a P-admissible

floorplan representation with a worst case linear-time packing scheme. IEEE

Trans. on Very Large Scale Integration (VLSI) Systems 11(4), 679–686.

Liu, R., S. Dong and X. Hong (2005). An efficient algorithm to fixed-outline floor-

planning based on instance augmentation. In: Proc. of the Ninth Intl Conf. on

Computer Aided Design and Computer Graphics. pp. 210–215.

Lobo, M. S., L. Vandenberghe, S. Boyd and H. Lebret (1998). Applications of second

order cone programming. Linear Algebra and its Applications 284, 193–228.

Lokanathan, B. and E. Kinne (1989). Performance optimized floor planning by graph

planarization. In: Proc. of ACM/IEEE Design Automation Conf. pp. 116–121.

Lu, C.-H., H.-M. Chen and C.-N. Liu (2008). An effective decap insertion method con-

sidering power supply noise during floorplanning. Journal of Information Science

and Engineering 24(1), 115–127.

Luo, C., M. F. Anjos and A. Vannelli (2007). A nonlinear optimization methodology

for VLSI fixed-outline floorplanning. Special issue of Journal of Combinatorial

Optimization, to appear.

Luo, C., M. F. Anjos and A. Vannelli (2008a). Large-scale fixed-outline floorplanning

design using convex optimization. submitted to IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems.

Luo, C., M. F. Anjos and A. Vannelli (2008b). Large-scale fixed-outline floorplanning

design using convex optimization techniques. In: Proc. of Asia and South Pacific

Design Automation Conf. pp. 198–203.

165

Luo, T., H. Ren, C. J. Alpert and D. Z. Pan (2005). Computational geometry based

placement migration. In: Proc. of IEEE/ACM Intl. Conf. on Computer-Aided

Design. pp. 41–47.

Ma, Y., X. Hong, S. Dong, Y. Cai, C.-K. Cheng and J. Gu (2001). Floorplanning with

abutment constraints based on corner block list. Integration, the VLSI Journal

31(1), 65–77.

Maruvada, S. C., K. Krishnamoorthy and F. Balasa (2002). Block placement using

the segment tree data structure from computational geometry. In: Proc. of IEEE

Midwest Symp. on Circuits and Systems. pp. 111–114.

MCNC, Floorplan Benchmarks (2004). http://www.cse.ucsc.edu/research/surf/gsrc

/MCNCbench.html.

Mehta, D. and N. Sherwani (2000). On the use of flexible, rectilinear blocks to obtain

minimum-area floorplans in mixed block and cell designs. ACM Trans. on Design

Automation of Electronic Systems 5, 82–97.

Mo, F., A. Tabbara and R. K. Brayton (2001). A timing-driven macro-cell placement

algorithm. In: Proc. of IEEE Intl. Conf. on Computer Design. pp. 322–327.

Mogaki, M., C. Miura and H. Terai (1987). Algorithm for block placement with

size optimization technique by the linear programming approach. In: Proc. of

IEEE/ACM Intl. Conf. on Computer-Aided Design. pp. 80–83.

Moh, T.-S., T.-S. Chang and S. L. Hakimi (1996). Globally optimal floorplanning for

a layout problem. IEEE Trans. on Circuits and Systems 43(9), 713–720.

Mohamood, F., M. B. Healy, S. K. Lim and H.-H. S. Lee (2007). Noise-direct: a

technique for power supply noise aware floorplanning using microarchitecture

166

profiling. In: Proc. of Asia and South Pacific Design Automation Conf. pp. 786–

791.

MOSEK (2006). http://www.mosek.com/documentation.html.

Murata, H. and E. S. Kuh (1998). Sequence-pair based placement method for

hard/soft/pre-placed modules. In: Proc. of ACM Intl. Symp. on Physical De-

sign. pp. 167–172.

Murata, H., K. Fujiyoshi, S. Nakatake and Y. Kajitani (1995). Rectangle-packing

based module placement. In: Proc. of IEEE/ACM Intl. Conf. on Computer-

Aided Design. pp. 472–479.

Murata, H., K. Fujiyoshi, S. Nakatake and Y. Kajitani (1998). VLSI/PCB placement

with obstacles based on sequence pair. IEEE Trans. on Computer-Aided Design

17(1), 61–68.

Murofushi, M., M. Yamada and T. Mitsuhashi (1990). FOLM-planner: A new floor-

planner with a frame overlapping floorplan model suitable for sog (sea-of-gates)

type gate arrays. In: Proc. of IEEE/ACM Intl. Conf. on Computer-Aided De-

sign. pp. 140–143.

Murtagh, B. A. and M. A. Saunders (1983). MINOS 5.0 User’s Guide. Technical

Report SOL 83-20. Department of Operations Research, Stanford University.

Revised as MINOS 5.1 User’s Guide, Report SOL 83-20R, 1987.

Murtagh, B.A. and M.A. Saunders (1982). A projected Lagrangian algorithm and

its implementation for sparse nonlinear constraints. Math. Programming Stud.

(16), 84–117.

167

Nakatake, S., K. Fujiyoshi, H. Murata and Y. Kajitani (1996). Module placement on

BSG-structure and IC layout applications. In: Proc. of IEEE/ACM Intl. Conf.

on Computer-Aided Design. pp. 484–491.

Odawara, G., K. Iijima and K. Wakabayashi (1985). Knowledge-based placement

technique for printed wiring boards. In: Proc. of ACM/IEEE Design Automation

Conf. pp. 616–622.

Onodera, H., Y. Taniguchi and K. Tamaru (1991). Branch-and-bound placement

for building block layout. In: Proc. of ACM/IEEE Design Automation Conf.

pp. 433–439.

Otten, R. H. J. M. (1982). Automatic floorplan design. In: Proc. of ACM/IEEE

Design Automation Conf. pp. 261–267.

Pan, D. (2004). ECE 382V Lecture Notes, Optimization Issues in VLSI CAD Lecture

1, 10. The University of Texas at Austin, USA.

Pang, Y., C.-K. Cheng and T. Yoshimura (2000). An enhanced perturbing algorithm

for floorplan design using the O-tree representation. In: Proc. of ACM Intl.

Symp. on Physical Design. pp. 168–173.

Papadopoulou, E. and D. T. Lee (2004). The Hausdorff Voronoi diagram of polyg-

onal objects: a divide and conquer approach. Intl. Journal of Computational

Geometry and Applications 14(6), 421–452.

PARQUET (2006). http://vlsicad.eecs.umich.edu/bk/parquet/.

Pedram, M. and B. Preas (1989). Interconnection length estimation for optimized

standard cell layouts. In: Proc. of IEEE/ACM Intl. Conf. on Computer-Aided

Design. pp. 390–393.

168

Peixoto, H., M. Jacome, A. Royo and J. Lopez (2000). A tight upper bound for slicing

floorplans. In: Proc. of IEEE Intl. Symp. on Circuits and Systems. pp. 280–285.

Prasitjutrakul, S. and W. J. Kubitz (1989). Path-delay constrained floorplanning:

A mathematical programming approach for initial placement. In: Proc. of

ACM/IEEE Design Automation Conf. pp. 364–369.

Qi, X., Z. Feng and X. Yan (1994a). An algorithm of timing driven floorplanning for

VLSI layout design. In: Proc. of Intl. Conf. on Computer-Aided Drafting, Design

and Manufacturing Technology. pp. 642–646.

Qi, X., Z. Feng and X. Yan (1994b). An algorithm of timing driven floorplanning

for VLSI layout design. In: Proc. of the 4th Intl. Conf. on Computer - Aided

Drafting, Design and Manufacturing Technology. pp. 642–646.

Rajagopal, K., T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary and B. Halpin

(2003). Timing driven force directed placement with physical net constraints. In:

Proc. of ACM Intl. Symp. on Physical Design. pp. 60–66.

Ranjan, A., K. Bazargan, S. Ogrenci and M. Sarrafzadeh (2001). Fast floorplanning

for effective prediction and construction. IEEE Trans. on Very Large Scale In-

tegration (VLSI) Systems 9(2), 341–351.

Rao, N. S. V., N. Stoltzfus and S. S. Iyengar (1991). A ‘retraction’ method for learned

navigation in unknown terrains for a circular robot. IEEE Trans. on Robotics

and Automation 7(5), 699–707.

Reda, S. and A. Chowdhary (2006). Effective linear programming based placement

methods. In: Proc. of ACM Intl. Symp. on Physical Design. pp. 186–191.

169

Riess, B. M. and G. G. Ettelt (1995). SPEED: Fast and efficient timing driven place-

ment. In: Proc. of IEEE Intl. Symp. on Circuits and Systems. pp. 377–380.

Rosenberg, E. (1989). Optimal module sizing in VLSI floorplanning by nonlinear

programming. Methods and Models of Operations Research 33, 131–143.

Sait, S. M. and H. Youssef (1995). VLSI physical design automation : Theory and

practice. IEEE Press. New York, USA.

Sarrafzadeh, M. and C. K. Wong (1996). An introduction to VLSI physical design.

The McGraw-Hill Companies, Inc. New York, USA.

Sarrafzadeh, M. and M. Wang (1997). NRG: Global and detailed placement. In: Proc.

of IEEE/ACM Intl. Conf. on Computer-Aided Design. pp. 532–537.

Sassone, P. and S. K. Lim (2006). Traffic: A novel geometric algorithm for fast wire-

optimized floorplanning. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems 25(6), 1075–1086.

Sechen, C. (1988a). Chip planning, placement, and global routing of macro/custom

cell integrated circuits using simulated annealing. In: Proc. of ACM/IEEE De-

sign Automation Conf. pp. 73–80.

Sechen, C. (1988b). VLSI placement and global routing using simulated annealing.

Kluwer Academic Publishers. Boston, USA.

Sechen, C. and A. L. Sangiovanni-Vincentelli (1986). TimberWolf 3.2: A new stan-

dard cell placement and global routing package. In: Proc. of ACM/IEEE Design

Automation Conf. pp. 432–439.

Shahookar, K. and P. Mazumder (1991). VLSI cell placement techniques. ACM Com-

puting Surveys 23(2), 143–220.

170

Sherwani, N. A. (1999). Algorithms for VLSI physical design automation. Kluwer

Academic Publishers. Boston, USA.

Sigl, G., K. Doll and F. M. Johannes (1991). Analytical placement: A linear or

quadratic objective function. In: Proc. of ACM/IEEE Design Automation Conf.

pp. 427–432.

Srinivasan, A., K. Chaudhary and E. S. Kuh (1991). RITUAL: A performance driven

placement algorithm for small cell ICs. In: Proc. of IEEE/ACM Intl. Conf. on

Computer-Aided Design. pp. 48–51.

Sturm, J. F. (1999). Using sedumi 1.02, a matlab toolbox for optimization over sym-

metric cones. Optimization Methods and Software 11-12, 625–653.

Suaris, P. R. and G. Kedem (1988). An algorithm for quadrisection and its application

to standard cell placement. IEEE Trans. on Circuits and Systems 35(3), 294–

303.

Suaris, P. R. and G. Kedem (1989). A quadrisection-based combined place and route

scheme for standard cells. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems 8(3), 234–244.

Sutanthavibul, S., E. Shragowitz and J. B. Rosen (1991). An analytical approach to

floorplan design and optimization. IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems 10(6), 761–769.

Takahashi, K., K. Nakajima, M. Terai and K. Sato (1995). Min-cut placement with

global objective functions for large scale sea-of-gates arrays. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems 14(4), 434–446.

171

Takouda, P. L., M. F. Anjos and A. Vannelli (2005). Global lower bounds for the VLSI

macrocell floorplanning problem using semidefinite optimization. In: Proc. of the

Fifth Intl. Workshop System-on-Chip for Real-Time Applications. pp. 275–280.

Tang, X., R. Tian and D. F. Wong (2001). Fast evaluation of sequence pair in

block placement by longest common subsequence computation. IEEE Trans. on

Computer-Aided Design 20(12), 1406–1413.

Tang, X., R. Tian and M. D. F. Wong (2006). Minimizing wire length in floorplan-

ning. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems

25(9), 1744–1753.

Tani, K., S. Tsukiyama, I. Shirakawa and H. Ariyoshi (1988). Area-efficient draw-

ings of rectangular duals for VLSI floor-plan. In: Proc. of IEEE Intl. Symp. on

Circuits and Systems. pp. 1545–1548.

Tellez, G. E., D. A. Knol and M. Sarrafzadeh (1996). A performance-driven placement

technique based on a new budgeting criterion. In: Proc. of IEEE Intl. Symp. on

Circuits and Systems. pp. 504–507.

Tsay, R. S., E. Kuh and C. P. Hsu (1988). PROUD: A sea-of-gates placement algo-

rithm. IEEE Design and Test of Computers 5(6), 44–56.

van Camp, D. J., M. W. Carter and A. Vannelli (1991). A nonlinear optimization

approach for solving facility layout problems. European Journal of Operational

Research 57, 174–189.

Vandenberghe, L. and S. Boyd (1996). Semidefinite programming. SIAM Review

38(1), 49–95.

172

Viswanathan, N. and C. C.-N. Chu (2004). FastPlace: Efficient analytical placement

using cell shifting, iterative local refinement and a hybrid net model. In: Proc.

of ACM Intl. Symp. on Physical Design. pp. 26–33.

Vorwerk, K., A. Kennings and A. Vannelli (2004). Engineering details of a stable

force-directed placer. In: Proc. of IEEE/ACM Intl. Conf. on Computer-Aided

Design. pp. 573–580.

Vygen, J. (1997). Algorithms for large-scale flat placement. In: Proc. of ACM/IEEE

Design Automation Conf. pp. 746–751.

Wang, B., M. Chrzanowska-Jeske and M. Jeske (2003). Methods for efficient use of

lagrangian relaxation for soc soft-module floorplanning. In: Proc. of IEEE Intl.

Conf. on Systems-on-Chip. pp. 293–294.

Wang, K. and W. K. Chen (1993). A class of zero wasted area floorplan for VLSI

design. In: Proc. of IEEE Intl. Symp. on Circuits and Systems. pp. 1762–1765.

Wang, M., X. Yang and M. Sarrafzadeh (2000). Dragon2000: Standard-cell placement

tool for large industry circuits. In: Proc. of IEEE/ACM Intl. Conf. on Computer-

Aided Design. pp. 260–263.

Weis, B. X. and D. A. Mlynski (1987). A new relative placement procedure based on

MSST and linear programming. In: Proc. of IEEE Intl. Symp. on Circuits and

Systems. pp. 564–567.

Wimer, S., I. Koren and I. Cederbaum (1988). Floorplans, planar graphs, and layouts.

IEEE Trans. on Circuits and Systems 35(3), 267–278.

173

Wimer, S., I. Koren and I. Cederbaum (1989). Optimal aspect ratios of building

blocks in VLSI. IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems 8(2), 139–145.

Wipfler, G. J., M. Wiesel and D. A. Mlynski (1983). A combined force and cut algo-

rithm for hierarchical VLSI layout. In: Proc. of ACM/IEEE Design Automation

Conf. pp. 124–125.

Wolkowicz, H., L. Vandenberghe and R. Saigal (Eds.) (2000). Handbook of Semidef-

inite Programming: Theory, Algorithms, and Applications. Kluwer Academic

Publishers, Dordrecht. The Netherlands.

Wong, D. F. and C. L. Liu (1986). A new algorithm for floorplan design. In: Proc. of

ACM/IEEE Design Automation Conf. pp. 101–107.

Wong, D. F. and C. L. Liu (1989). Floorplan design of VLSI circuits. Algorithmica

(4), 263–291.

Wong, D. F., H. W. Leong and C. L. Liu (1988). Simulated annealing for VLSI design.

Kluwer Academic Publishers. Norwell, MA, USA.

Xiang, H., X. Tang and M. D. F. Wong (2003). Bus-driven floorplanning. In: Proc.

of IEEE/ACM Intl. Conf. on Computer-Aided Design. pp. 66–73.

Xu, N., Z. Jiang and F. Huang (2006). Fuzzy logic for low power driven floorplanning.

In: Proc. of IEEE Intl. Conf. on Solid-State and Integrated Circuit Technology.

pp. 23–26.

Yildiz, M. C. and P. H. Madden (2001). Improved cut sequences for partitioning based

placement. In: Proc. of ACM/IEEE Design Automation Conf. pp. 776–779.

174

Ying, C.-S. and J. S.-L. Wong (1989). An analytical approach to floorplanning for

hierarchical building blocks layout. IEEE Trans. on Computer-Aided Design

8(4), 403–412.

Young, F. Y. and D.F. Wong (1997). How good are slicing floorplans. Integration, the

VLSI Journal 23, 61–73.

Young, F. Y., C. C. N. Chu, W. S. Luk and Y. C. Wong (2000a). Floorplan area min-

imization using lagrangian relaxation. In: Proc. of ACM Intl. Symp. on Physical

Design. pp. 174–179.

Young, F. Y., C. C. N. Chu, W. S. Luk and Y. C. Wong (2001). Handling soft

modules in general nonslicing floorplan using lagrangian relaxation. IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems 20(5), 687–692.

Young, F. Y., D. F. Wong and H. H. Yang (2000b). Slicing floorplans with range

constraint. IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems 19(2), 272–278.

Youssef, H., S. M. Sait and K. J. Al-Farra (1995). Timing influenced force di-

rected floorplanning. In: Proc. of Design Automation Conf. with EURO-VHDL.

pp. 156–161.

Zeng, Y., S. Dong and X. Hong (2003). Floorplanning with soft rectilinear blocks

using corner block list. In: Proc. of IEEE Intl. Conf. on ASIC. pp. 356–359.

Zhan, Y., Y. Feng and S. S. Sapatnekar (2006). A fixed-die floorplanning algorithm

using an analytical approach. In: Proc. of Asia and South Pacific Design Au-

tomation Conf. pp. 771–776.

	Introduction
	Overview of the VLSI Design Process
	Circuit Layout Cycle
	Partitioning
	Placement
	Routing

	Objectives of this Thesis
	Contribution of this Thesis
	Flowchart of the Proposed Model
	Organization of this Thesis

	VLSI Placement and Floorplanning
	VLSI Placement
	Constructive Placement
	Iterative Improvement Placement

	VLSI Floorplanning
	Floorplan Representations
	Classical and Fixed-Outline Floorplanning

	Previous Research on Classical Floorplanning
	Rectangular Dualization
	Simulated Annealing
	Force-directed Methods
	Mathematical Programming Methods

	Previous Research on Fixed-Outline Floorplanning
	Zero-Deadspace Fixed-Outline Floorplanning
	The Clique Model for Nets
	Wirelength Estimation
	Benchmarks of Test Circuits
	Summary

	A Nonlinear Optimization Methodology
	Previous Research
	Rectilinear and Quadratic Objective Functions
	First Stage Model
	Second Stage Model
	Inclusion of the Aspect Ratio Constraints
	Minimization of Different Wirelengths
	Minimization of Half Perimeter Wirelength

	Computational Results
	Initial Configuration
	Computation of Overlapping Areas of Modules
	Computational Results for the MCNC Benchmarks
	Comparison with MK Model
	Comparison with AM Model
	Obtaining Zero-Deadspace Floorplans

	Summary

	The Relative Position Matrix Technique
	Geometrical Structure of Non-overlap Among Modules
	The Relative Position Matrix
	The Voronoi Diagram
	The Sparse Relative Position Matrix
	Summary

	The Second Stage Convex Optimization Model
	Previous ILP Model for Floorplanning
	SDP-based Convex Optimization Model
	Semidefinite Programming
	Area Constraints
	Aspect Ratio Constraints

	Experiments with the SDP Model
	SOCP-based Convex Optimization Model
	Area Constraints
	Aspect Ratio Constraints

	Relationship of SDP and SOC Constraints
	Experimental Results with the SOCP Model
	Experiments for MCNC and GSRC Benchmarks
	Comparison with MK Model
	Comparison with AM Model
	Comparison with TimberWolf
	Obtaining Zero-Deadspace Floorplans
	Comparison with Parquet, Capo, IMF, and IMFAFF Models
	Comparison with Parquet, CC, and ZFS Models

	Summary

	Interchange-Free Local Improvement
	Algorithm for Interchange-Free Local Improvement
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

