
A Framework for Records

Management in Relational

Database Systems

by

Ahmed Ayaz Ataullah

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Ahmed Ayaz Ataullah 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The problem of records retention is often viewed as simply deleting records when

they have outlived their purpose. However, in the world of relational databases there

is no standardized notion of a business record and its retention obligations. Unlike

physical documents such as forms and reports, information in databases is organized

such that one item of data may be part of various legal records and consequently

subject to several (and possibly conflicting) retention policies. This thesis proposes

a framework for records retention in relational database systems. It presents a mech-

anism through which users can specify a broad range of protective and destructive

data retention policies for relational records. Compared to näıve solutions for en-

forcing records management policies, our framework is not only significantly more

efficient but it also addresses several unanswered questions about how policies can

be mapped from given legal requirements to actions on relational data. The novelty

in our approach is that we defined a record in a relational database as an arbitrary

logical view, effectively allowing us to reduce several challenges in enforcing data

retention policies to well-studied problems in database theory. We argue that our

expression based approach of tracking records management obligations is not only

easier for records managers to use but also far more space/time efficient compared

to traditional metadata approaches discussed in the literature. The thesis concludes

with a thorough examination of the limitations of the proposed framework and sug-

gestion for future research in the area of records management for relational database

management systems.

iii

Acknowledgments

I would like to acknowledge the support of friends and family without which this

thesis and the work represented therein would not have been possible.

iv

Contents

1 Introduction 1

1.1 Records Management . 1

1.1.1 Records Retention . 2

1.2 Policy Management . 3

1.2.1 Identification and Classification 3

1.2.2 Policy Conflicts . 4

1.3 Legal Requirements and Implications 5

1.4 State of the Art in Records Retention 7

1.5 Problem Statement . 8

2 Records in Relational Database Systems 11

2.1 Practical Implications . 11

2.1.1 Proposed Definition . 13

2.2 Temporal Records . 14

2.3 Physical Documents as Sets of Views 15

3 Protecting Relational Records 19

3.1 Requirements . 19

3.2 Protective Policy Specification . 20

3.3 Syntax and Examples . 21

3.3.1 Protection Levels . 22

v

3.3.2 Temporal Records and Protection Levels 23

3.4 Framework for Implementation . 24

3.4.1 Non-Temporal views . 24

3.4.2 Temporal Views . 26

3.4.3 Expected Performance . 27

4 Timely Destruction of Relational Records 29

4.1 Requirements . 29

4.2 Flexibility and Proof of Compliance 32

4.3 Correct Enforcement . 33

4.4 Weak Correctness . 35

4.5 Integrity Preservation . 37

4.5.1 Primary Key and Uniqueness 38

4.5.2 Foreign Keys . 38

4.5.3 Other Issues in Integrity Preservation 40

4.6 Schema and Policy Set Evolution . 41

5 Making it Work 43

5.1 Inter-Policy Conflicts . 43

5.1.1 Detecting Conflicts . 43

5.1.2 Source of Conflicts . 44

5.2 Conflict Avoidance . 45

5.3 Implementation . 48

5.4 Experimental Evaluation . 50

6 The Broader Picture in Records Retention 57

6.1 Existing Solutions . 57

6.2 Guaranteed Destruction of Records 60

6.2.1 Backups and Offline Databases 60

vi

6.2.2 Distributed Systems . 61

6.2.3 Unwarranted Data Retention 62

6.3 Future Work . 62

6.4 Summary of Contributions . 64

A Policy Descriptions and View Definitions (DB2) 65

A.1 Policy 1 . 65

A.1.1 View Definition . 65

A.1.2 Trigger on Orders . 66

A.1.3 Trigger on Lineitem . 66

A.2 Policy 2 . 67

A.2.1 View Definition . 67

A.2.2 Trigger on Orders . 68

A.2.3 Trigger on Lineitem . 68

A.3 Policy 3 . 69

A.3.1 View Definition . 69

A.3.2 Trigger on Orders . 69

A.3.3 Trigger on Lineitem . 70

A.4 Policy 4 . 70

A.4.1 View Definition . 70

A.4.2 Trigger on Orders . 71

A.4.3 Trigger on Lineitem . 72

A.5 Policy 5 . 72

A.5.1 View Definition . 72

A.5.2 Trigger on Orders . 73

A.5.3 Trigger on Lineitem . 73

A.6 Policy 6 . 74

A.6.1 View Definition . 74

vii

A.6.2 Trigger on Orders . 74

A.6.3 Trigger on Lineitem . 75

A.7 Policy 7 . 75

A.7.1 View Definition . 75

A.7.2 Trigger on Orders . 76

A.7.3 Trigger on Lineitem . 76

A.8 Policy 8 . 77

A.8.1 View Definition . 77

A.8.2 Trigger on Orders . 77

A.8.3 Trigger on Lineitem . 78

A.9 Policy 9 . 78

A.9.1 View Definition . 78

A.9.2 Trigger on Orders . 79

A.9.3 Trigger on Lineitem . 79

A.10 Policy 10 . 80

A.10.1 View Definition . 80

A.11 Policy 11 . 81

A.11.1 View Definition . 81

A.12 Policy 12 . 81

A.12.1 View Definition . 82

References 82

viii

Chapter 1

Introduction

1.1 Records Management

Storage of records has always been a fundamental objective of information systems.

However in the past decade managing sensitive information throughout its lifecycle,

from creation to destruction (or archival), has become of significant importance. The

increasing awareness of the impact of technology on privacy has added momentum

to the need to have better enforcement of records retention policies. Organizations

today not only have to comply with regulations, but also have to maintain a balance

between operational record keeping requirements, minimizing liability of storing

private information, and customer privacy preferences.

There is no globally accepted definition of a record and one of the primary ques-

tions addressed in this thesis is to answer what is a record in the context of relational

database systems. The ISO 15489 standard defines a record as “information created,

received, and maintained as evidence and information by an organization or person,

in pursuance of legal obligations or in the transaction of business.” Unfortunately,

like most attempts to define a record, it leaves much to the interpretation of the

records manager. For example, the question of whether an organization’s internal

emails should be treated as business records, cannot be directly answered using this

definition. It is often fundamentally impossible to mechanize the process of classify-

ing a piece of information as a business record and to determine whether storing it

will be beneficial for the business. The tendency in most organizations traditionally

has been to play it safe and to lean towards a “store everything” approach.

This work will not attempt to define the term “record” in the broad context.

Instead the term will be treated in all its generality and then applied to the world

1

of relational databases. Without attempting to differentiate terms such as data,

knowledge, information and record, it is recommended that the reader maintain

a simple but consistent definition of a record throughout this thesis. Since the

proposed framework is heavily geared towards records generated using a typical

relational database system, the examples used in the work will be those of trans-

actional records. Examples include a sales report, an invoice, a telephone bill or a

student’s transcripts. Such records typically exist as physical documents, and they

have a visible structure and strong correlation with the underlying relational data.

Examples of non-typical transactional records include, a single number such as the

total number of employees in a business or the number of employees with first name

“James.” Non-traditional records typically become part of other records and are

quite often ignored for policy enforcement, especially when embedded in physical

documents.

Records management as described by ISO 15489 is “the field of management

responsible for the efficient and systematic control of the creation, receipt, main-

tenance, use and disposition of records, including the processes for capturing and

maintaining evidence of and information about business activities and transactions

in the form of records.” In essence the task of a records manager is identifying sources

of information where records are created and then managing them throughout their

lifecycle. Typical duties of a records manager include determining and enforcing

policies on records, such as access control, archiving and destruction.

1.1.1 Records Retention

Recent trends in privacy and data management have led to a retention paradigm

different from the store-everything approach. Most organizations have realized that

there can often be significant costs associated with storage of information. The

protection of customers’ personal and financial information, for example, is a duty

and a potential source of liability for online businesses. As the size of a corporate

record repository grows, so does the cost of an accidental information leak. Fur-

thermore the general increase in privacy awareness is leading modern consumers to

demand that their private information not be retained indefinitely by organizations.

Consequently many businesses have voluntarily enforced limited retention practices

where sensitive records are destroyed when the cost of retaining them outweighs the

benefits.

Equally concerning are the plethora of legal requirements that businesses face

today. Globally, the number of regulatory requirements mandating businesses to

2

retain records for minimum periods have increased significantly. For example after

the Enron scandal, the Sarbanes-Oxley Act in the United States has mandated that

audit records of businesses be maintained for at least five years [MS02]. Similarly, in

the wake of the Madrid and London bombings, the EU Directive on Data Retention

has explicitly mandated strict record keeping requirements for businesses such as

telecommunications companies and Internet Service Providers [DFK06].

Many businesses today faces the unique challenge of finding the correct balance

between legal compliance, operational record keeping, and satisfying consumer pri-

vacy preferences. Destroying records too early can constitute a criminal offense

and retaining them for too long can become a liability or constitute a violation of

published policy.

1.2 Policy Management

1.2.1 Identification and Classification

There are several fundamental problems in retention policy management that make

records management a difficult task. However, the most critical requirements for

proper records retention are identification and classification of records.

Record identification is the task of determining which information or event needs

to be documented and treated as a significant business record. The legal definition

of a record, or an event leading to information being recognized as a record, is

usually unclear and varies depending on the situation. As an example, consider a

scenario where an employee is notifying his employer regarding a workplace safety

hazard. Such first notices are recognized as critical legal records, and they are often

used for litigation purposes. These records also have legislated minimum retention

periods, regardless of the medium in which they are presented, which largely puts the

burden of records identification and preservation on the corporation. In this case,

the employee has the right to mention workplace safety related issues in an informal

conversation with his supervisor, in a meeting, as a formally written complaint, as

an email, or as part of a report. It is important to recognize that from a purely

legal perspective, in many situations no physical document needs to be created

for a record to be realized. Visible records with structure and purpose such as

reports, invoices and requisition forms are relatively easy to identify. However, if

a typical personal email or a daily status report contains a special notice about

workplace safety, it needs to be treated very differently from other similar types

3

of communication. Consequently most businesses train and require employees to

identify issues and to observe the relevant record keeping obligations related to

them, so that the corporate records management policy can function effectively.

Since it is infeasible to design an individual retention policy for every record,

policies are typically specified for types or classes of records. Once a particular record

is identified the next step is to classify it into one of the pre-defined classes to ensure

the correct retention policies are enforced on it. Although the task of classification

is significantly easier when compared to identification, it leads to potential cross-

classification conflicts as we begin to integrate policies originating from different

areas of a business.

1.2.2 Policy Conflicts

Formulating records management policies within a particular department may be

challenging, but integrating records and policies that involve several functional ar-

eas of an organization can be a significantly more complicated task. Various de-

partments can use the same records differently and may specify retention policies

without considering the company-wide implications. A retention conflict is essen-

tially a conflict between two different actions (deletion and protection) required on

a particular record. The primary source of conflicts are varying minimum and max-

imum retention periods among different types of business records. For example, a

typical scenario in businesses is that of the human resource department warrant-

ing that employment details be deleted a fixed time after an employee leaves the

company. An employment record on which such policy is defined may contain a

substantial amount of detailed information such as the social insurance number,

positions held, pay-cheques issued and taxes paid on behalf of the employee. Some

of this information, such as taxation, may have its own independently legislated re-

tention obligations, and other parts, such as salary paid, may be required to persist

indefinitely by other departments of the organization.

The task of a records manager in such situations is to mediate policy require-

ments between various parts of the business. A conflict of policy without a pre-

determined mechanism for resolution represents a situation where user intervention

is required. It is also worth noting that in most business scenarios, due to the com-

plexity of business processes and ill-defined nature of records, it is almost impossible

to enumerate all sources of policy conflicts.

4

1.3 Legal Requirements and Implications

Since there are no clear cut definitions of records over disparate sources of data,

the ability to specify and enforce retention policies without ambiguity is severely

diminished. Typically most legal requirements have to be interpreted by records

managers and applied to each situation independently of other constraints. An

interesting example of a vague definition, taken from the United States Health In-

surance Portability and Accountability Act (HIPAA 2002), is that of “uniquely iden-

tifiable information.” HIPAA mandates that any exchange of health related data of

patients among organizations for non-medical purposes (such as research and sta-

tistical analysis) must adhere to principles of privacy and not disclose information

that can lead to the unique identification of a patient. Unfortunately the question

of which pieces of information can lead to unique identification of an individual is

not addressed in the law. As pointed out by Sweeney in her work on k-anonymity

[Swe02], the concepts of candidate and primary keys are largely inapplicable in this

case. She noticed that the 3-tuple {ZIP, gender, date of birth}, although strictly

not a candidate key, can easily and uniquely identify 87% of Americans. Similarly

for different combinations of given information, such as ethnicities, age ranges and

street addresses, it may be possible to identify many individuals precisely. The law

however, puts the burden of defining and assessing which information (combination

of tuples) can lead to unique identification of every individual on the record keeper.

Needless to say that implementing mechanisms to comply with such regulations is

an extremely challenging task.

Some industries that are legally mandated to demonstrate effective retention

policies in their record keeping practices include health-care, financial manage-

ment (banks, credit issuing organizations and auditing/accounting firms), insur-

ance, telecommunication and Internet services providers. These retention laws can

be independently specified at the federal level, at the level of individual states and

provinces and possibly (but rarely) at the level of local governing bodies. It is inter-

esting to note that records can be subject to a variety of temporal and non-temporal

conditions. A typical example in health care is that of the Florida Administrative

Code for medical facilities with a pediatric program [ML03]: if a minor is treated in

a medical facility that is subject to this code, then all medical records (diagnostic

reports and treatments given) must be maintained until three years after the pa-

tient reaches the age of majority as specified in the state law. In 2002, with the

introduction of the Sarbanes-Oxley Act, a much broader umbrella of record keep-

ing requirements were put on all public companies in the United States. These

5

requirements mostly dealt with establishing mandatory minimum retention periods

for corporate financial (primarily auditing related) records. The granularity of data

on which retention periods are defined is still very vague and can be interpreted to

go as far as mandating minimum retention periods for invoices, individual emails,

and even voice-mail messages that may be significantly related to the financial oper-

ations of an organization. The rule of thumb for Sarbanes-Oxley compliance is that

any information that is significant for financial auditing must be preserved (retained

and protected from being tampered) for at least 7 years. Organizations facing these

ambiguously defined record keeping requirements can not only be asked to present

their “records” for examination but can also be faced with fines if they fail to satisfy

an auditor of records that they have adequately managed their corporate records.

In many record keeping situations, such as law enforcement, no single piece of

data can ever be truly deleted. Blanchette and Johnson point out in their exami-

nation of modern data retention practices [BJ98] that in situations such as juvenile

criminal records, data retention can be a curse for many individuals throughout

their life. Even though crimes can be pardoned, they are rarely deleted from crim-

inal records: instead they are appended with a pardon-related entry. Her critical

review of data retention practices in several industries leads to the conclusion that

social-forgetfulness (which arguably may be beneficial for our society) is generally

not supported by our rigid record keeping infrastructure.

From a different perspective data retention requirements, where not mandated

legally, can be an operational business requirement. An interesting case is that of

contractors of the Department of Defense in the United States (DoD). The DoD

mandates that all electronic communications (especially emails) between DoD em-

ployees and any contractors must not be retained by the contractor for more than

three years. Each organization that wishes to do business with the DoD must sub-

mit to a retention audit and, apart from hundreds of other security related require-

ments, must also demonstrate that electronic communications are properly deleted

according to a transparent schedule. Recently other business have also begun im-

plementing similar operational requirements. VISA, for example, is attempting to

extract guarantees from its online credit card processing subsidiaries that warrant

deletion of customers’ data after a fixed and publicly available time after a credit

card transaction is completed.

6

1.4 State of the Art in Records Retention

Although records management is a very mature field in itself, software solutions

for effective management of business records have only emerged in the last two

decades. In the realm of software, the term for managing business records that

is widely recognized is Enterprise Content Management. Enterprise Content Man-

agement (ECM) can best be described as the use of computerized techniques for

effective management of content generated through the activities of a business. The

word ‘content’ is specifically used to encompass all forms of digital and non-digital

information. ECM aims to simplify the overall task of creating, distributing and

maintaining business related content, such as documents, videos, spreadsheets, pre-

sentations. Most ECM systems also attempt to aid in inter-team communications

(groupware) and provide workflow management facilities. The largest players in the

ECM market are OpenText with their LiveLink suite of products followed by EMC

and IBM [Eid06].

The umbrella of content which current ECM solutions manage has been sig-

nificantly extended to include emails, instant messages and even mobile messages

between employees. Among the features offered in records management suites, the

focus has been on collaboration (versioning and distribution), work flow manage-

ment, and access control. Since the broader need to demonstrate records retention

compliance has emerged only recently, retention is a relatively new feature in soft-

ware based ECM systems. The functionality for retention offered in such systems

is usually geared towards proper classification of records and then destroying them

according to a certain fixed schedule.

The expressiveness of retention policies in most ECM systems is sufficient for

a broad range of user requirements. Content is typically managed (classified and

retained) using metadata. For example, in the LiveLink eDOCS Email Management

System, company-wide emails can be automatically classified based on message

metadata such as date received, sender address and receiver address. Advanced

features such as classification based on regular expression matches within the email

body and attachments are also available, and classification on-demand can also be

performed. Retention rules, for example, deleting emails five years after creation,

can be specified for classes of similar emails. ECM systems are generally expected

to track client and server copies of records (emails in this case) and ensure that any

retention conflict arising through cross-classification is brought to the attention of

the administrator.

7

Figure 1.1: The broader picture in records management

1.5 Problem Statement

In this thesis we focus on several core problems of retention policy management for

records in relational databases including identification, classification, enforcement,

conflict detection and resolution. Our work is motivated by the fact that ECM

systems do not consider databases as content and are therefore unable to support

the enforcement of retention policies at the granularity of rows and attributes. We

also note that timely destruction of documents (derived through relational data)

does not necessarily imply that the information contained within those documents

has been lost. Figure 1.1 depicts this disconnect between physical records and

relational databases. It is obvious that shredding the relevant printed documents

and deleting electronic versions of those documents is not sufficient if they can simply

be recreated using the underlying data. All retention policies and obligations that

are enforced on the paper or electronic versions of these documents must also be

enforced in some way on the data which led to the creation of such records.

Furthermore, when we consider relational systems, there may be many docu-

ments or records that are never materialized. Reports involving relational data may

be dynamically created and viewed by users, but never printed or persisted as files.

However, depending on the legal circumstances, these virtual records may be subject

to the same obligations as physical records.

There has not been any significant work done in the area of records retention

for records encapsulated within relational databases. Since ECM systems view the

database as a single object or file it is unlikely that effective retention policies can

be specified and enforced using such a coarse perspective. It is stipulated that there

are not many organizations that implement, monitor and maintain company wide

relational record retention policies. Needless to say database systems do not have

any native functionality for retention, and it has to be modeled as an elaborate

8

set of access control mechanisms (for enforcing minimum retention periods) and

batch programs (for enforcing maximum retention periods). The problem is further

exacerbated by the fact that schema evolution and introduction of new policies can

pose significant overhead costs in manually updating the control mechanisms for

retention.

It is obvious that the traditional ECM approach of simply attaching metadata

to records containing policy requirements for data cannot be translated efficiently

onto the relational world. Having a timestamp which denotes when data needs to be

protected/removed, associated with every row/attribute is simply space inefficient

and will most certainly not scale up for modern high performance database systems.

Furthermore the issue of how these timestamps will be assigned and maintained by

administrators is unclear. This thesis addresses the need for a much more efficient

and systematic way of retaining records in relational database systems than a sim-

ple metadata approach. We re-examine the problem of records retention from a

different perspective and present a new way of looking at records, which makes the

task of record identification and classification in relational systems easy for records

managers. The thesis examines efficient mechanisms for enforcing protective reten-

tion policies, such as those that mandate records be protected from unwarranted

deletions, and also develops a framework for destruction of relational records as they

outlive their retention period. Most importantly a formal layer of reasoning about

records and detecting policy conflicts is presented. It is expected that using the

proposed framework in situations involving complex and evolving database schemas

will very likely minimize the cost of retention policy management.

9

Chapter 2

Records in Relational Database

Systems

2.1 Practical Implications

From a non-technical perspective, database systems simply store data, and it is only

when data is presented in a meaningful fashion that it is considered to be a record.

However, when talking in terms of database concepts and attempting to correlate

the commonly held notion of records with data stored in relations, it is challenging

to derive a definition of a record that can be widely accepted.

As an example of the complexity involved, consider a typical university database

which manages student enrollment and finances. For the university registrar, the

term ‘student record’ will most likely refer to the entire history of courses in which

the student has enrolled. However, it is unlikely that the finance department will

have the same definition of a student record, as they would be more interested in

the various fee payments made by the student. Similarly an instructor might want

to know whether students enrolled in his class have all the relevant pre-requisites,

consequently defining a record as a subset of what the registrar considers as a

record. Going back to the issue of meaningful presentation of data, a single tuple

representing an entity, such as a student, can be meaningful and considered to be

a record. At the same time a single tuple in a many-to-many relation, such as one

relating a student number to a course number indicating the enrollment of a student

in a particular course, may not be meaningful in isolation (if not considered in the

context of a join).

11

Figure 2.1: Queries and physical records are both infinite sets with possible over-

lapping information present between them.

There is no simple answer to what is a record in relational systems. Most of us

would typically think of records as tuples or rows in a database table. Unfortunately

from the examples above we can see that this perspective on a record is not only very

limited but also not universally applicable. Any row in a table can be meaningless

unless we associate a context with it. Similarly while one person may consider a

row to be a meaningful record, another might only consider the contents of the

whole table to be meaningful. To mediate such differences in interpretation, we

define a record in the most simple and elegant terms, as data presented such that it

holds meaning in a user’s context. In essence it is the well formed and meaningful

questions (queries) posed to a database system whose results are considered to be

records. Each user may have different questions whose results they consider valuable

records. Since the number of queries that can be posed to a database system is

infinite, it follows that the number of potential records that can be generated using

a database system is also infinite. Of course the result of all queries on a database

system may not be meaningful from a business perspective, but there is no algorithm

to determine which queries produce meaningful records. It is only the users of a

database system who can decide what is a record generating query. Conversely,

there can also be an infinite number of physical records that are not derived from a

database system. Figure 2.1 summarizes this relationship between physical records

and database queries.

The problem of identifying the particular queries and the results that are mean-

ingful enough to be considered a business record leads to an interesting legal dilemma.

12

The assertion that the printed (or stored) result of every query can legally consti-

tute a record is rather far-fetched. On the other hand, claiming that databases

store data and not records, as a defense for not complying with legislated records

retention policies, is also not a convincing argument. Our initial research has led

to the conclusion that most organizations consider only documents that are visi-

bly generated from database systems, such as invoices and sales reports as business

records. On the other hand, recent court rulings related to legal and forensic anal-

ysis of computer equipment (as in the case of Enron) have considered every piece of

available data as fair game for prosecutor examination. Interestingly, most OLAP

tools and report creation wizards have the ability to create an overwhelmingly large

number of reports and documents through complex manipulations of data. Whether

businesses should be aware of (or liable for) the wide array of undiscovered potential

records that can be created from their database systems is still unclear in the law.

Unfortunately, our examination recent work related to privacy in database systems

(presented in Section 6.1) has revealed that most experts think of databases as a

collection of rows. However as soon as we go beyond this definition of record and

include the fact that these rows can be combined and manipulated in hundreds of

ways to obtain other interesting records, we run into very complex problems for

data retention purposes.

2.1.1 Proposed Definition

Definition 2.1. A relational record is a logical view specified by a relational expres-

sion over a fixed physical schema.

Informally a relational record is the data presented as the result of an arbitrary

SQL query. Note that unlike physical (static) records, the data presented in the

record can change, but the record definition always stays the same. Also note that

the above definition does not restrict the expressiveness of the language used to

specify individual records in any way. However the advantages of doing so will duly

be pointed out throughout this thesis. As an example consider record definitions to

be restricted to conjunctive queries. Since conjunctive queries are well understood,

we can leverage known results from database theory to help in statically analyzing

different properties of records. The less restrictive the language used to specify

relational records the more difficult all our management tasks will become.

Note that this definition is inherently flexible as it allows us to define a record

as we wish. For example we can still take the basic approach to records being

13

Figure 2.2: A simplified overview of Emmerson’s Records Lifecycle [Emm89, UB04]

rows and attributes, and at the same time add as much complexity in operations

on relational data as we wish for defining a record. Finally, it is important to

emphasize the equivalence of relational records and logical views over the physical

schema. Since it is only the presentation of data that makes a record, views are the

ideal abstraction for data manipulated in a meaningful fashion (We discuss this point

further in the light of some real world examples in Section 2.3). From this point

onwards we will use the terms relational record, view and query interchangeably, as

they are equivalent for our purposes.

2.2 Temporal Records

Records have a lifecycle consisting of at least three stages, namely creation, activity

and destruction (or archival). For a broad ranging discussion of various proposed

models of records lifecycle the reader is directed to [YC00]. This thesis asserts that,

barring certain exceptions, such as temporary data which is created and deleted

within the same transaction, records in relational databases have a similar lifecycle

(see Figure 2.2). Unfortunately, such lifecycle models cannot explicitly specify the

conditions under which a record moves between individual stages nor specify stages

where a record may be protected (or subject to destruction). Depending on the

sensitivity of the data, some records may achieve protective status from the moment

they are created, whereas others may have long retention periods which may require

them to be deleted after they have been archived into warehouses1. Our survey

of a wide array of records retention requirements legally mandated on businesses

(Sarbanes-Oxley, HIPAA etc) leads to the conclusion that a majority of these policies

are defined with time-driven conditions.

Consequently, a temporal function needs to be introduced in the language used

to express records, through which users can represent the current time in record

1This problem is discussed in greater detail in Chapter 6.

14

definitions and policies. This temporal function will be denoted as NOW. Using

NOW, users can define records as a function of time, such as “invoices created more

than six years ago.” Although the use of NOW adds significant expressive power

to the record definition language, there are certain complications and challenges

with the use of this temporal construct. Temporally defined records are not easy

to understand due to the fluid nature of time. A record that may be empty at

one instance of time may contain information at the next. The opposite, of course,

can also happen. Even though a database may not have changed state in any way,

simply the passage of time may trigger changes in a record. Note that we are

not proposing to extend the relational model to support temporal data. Instead

NOW will only be used to define records and policies over traditional relational

schemas and stored data such as timestamps/date-time attributes. If the existing

data model (schema) cannot support the storage of temporal information and is

unable to answer temporal queries then we will not be able to support retention

on such records. This limitation is a direct consequence of the fact that only data

which is stored physically can be retained and that the physical design must be able

to accommodate data retention requirements.

2.3 Physical Documents as Sets of Views

A set of relational records can be considered a direct mapping of a traditional record

onto a database schema. When considering traditional records such as invoices and

sales reports in their physical form, it can be observed that many of these records

have a structure, or a template, that can be directly translated onto the relational

world. For example, invoices are typically structured as having uniquely identifi-

able information followed by the details of individual line items concluded with a

summary of the invoice. Similarly, in the case of phone bills, customer information

is typically followed by a list of entries signifying the calls placed/received. From

a database programmer’s perspective the significant difference between two phone

bills is not the information contained in those records, but rather the parameters,

such as customer ID and billing period, that are used to generate those records.

Consider a simplified schema for a phone company defined, where it is assumed

that a customer may have more than one phone number with the company:

Customer (Customer ID, Street Address, City, ...)

Phones (Customer ID, Phone Number)

Calls (Call ID, Origin, Destination, Duration, DateTime, ...)

15

In this schema the physical phone bill (or the data that goes therein) for the number

519-123-4567 for the month of July 2007, can be specified as a combination of two

relational expressions:

Example 2.1

Bill5191234567 = {R1, R2}
where R1 = SELECT * FROM Customer, Phones

WHERE Phone Number = ‘5191234567’

AND Customer.Customer ID = Phones.Customer ID

and R2 = SELECT * FROM Calls

WHERE Origin = ‘5191234567’

AND DateTime >= ‘July 01, 2007’ AND DateTime <= ‘July 31, 2007’

or alternatively as a single expression:

Example 2.2

Bill5191234567 = {R1}
where R1 = SELECT * FROM Customer, Phones, Calls

WHERE Phone Number = ‘5191234567’

AND DateTime >= ‘July 01, 2007’ AND DateTime <= ‘July 31, 2007’

AND Origin = Phone Number

AND Customer.Customer ID = Phones.Customer ID

Note that both of the above definitions for a phone bill capture and identify the

same data using conjunctive queries, but they are expressed differently. A document

(physical record) can have the result of several queries embedded in it, therefore a

document can be described as a collection of relational records. It can also be argued

that since the first definition clearly separates entities (customer and calls placed)

into different relational records, it mirrors a physical record more accurately than

the second definition. There are several advantages of mapping physical documents

into multiple relational records which are their visible equivalents in the physical

world. These are discussed in Section 5.2.

Going further with our examples of relational records, we can also capture multi-

ple physical records (or a whole category of physical records) together by eliminating

parameters from record definitions. The following relational record which is very

similar to the previous one, captures the information contained in all telephone bills

issued for the month of July 2007:

Example 2.3

16

BillsJuly2007 = {R1}
where R1 = SELECT * FROM Customer, Phones, Calls

WHERE Origin = Phone Number

AND DateTime >= ‘July 01, 2007’ AND DateTime <= ‘July 31, 2007’

AND Customer.Customer ID = Phones.Customer ID

Although it is unlikely that there will ever be a single physical document cap-

turing the data contained in all telephone bills for the month of July 2007, records

managers still should be able to declaratively define such records for the purposes

of retention policy enforcement. Finally, the following is an example of a temporal

record definition, which captures all the phones bills issued between three and six

years ago. This record is of course non-traditional in nature (a continuously sliding

window) and does not have a physical equivalent.

Example 2.4

BillsV eryOld = {R1}
where R1 = SELECT * FROM Customer, Phones, Calls

WHERE Origin = Phone Number

AND Years (NOW - DateTime) <= 6

AND Years (NOW - DateTime) >= 3

AND Customer.Customer ID = Phones.Customer ID

An important observation is that record definitions are not limited in any way.

The complexity of the record is only limited by the expressions used to specify the

record. For example, if the marketing department of the phone company wants a

report listing customers that have placed at least two calls that lasted for more than

60 minutes, from Toronto to London in a one month period, they are free to do so

using their choice of declarative query language. Similarly, if government legislation

requires phone companies to retain records of international calls placed to certain

countries for at least 10 years, the particular records that they require can be defined

using this mechanism.

Note that the examples of records given above are all in SQL syntax. The reason

for choosing such presentation is only simplicity and because it makes the above

examples easy to understand for the typical records manager. Any other language

capable of querying a relational database, such as datalog or relational algebra,

would also suffice for defining records as views. However, it is very likely that the

eventual goal of any records retention system for relational databases would be to

define and implement policies over records expressed using the full expressiveness

17

of SQL. Consequently discussing examples in the light of actual SQL queries is a

suitable approach.

Defining a record gives us a handle on the data that we want to protect or destroy

when the correct conditions are met. Consequently, we have chosen a very broad

and flexible definition of a relational record, which can allow records managers to

capture all possible records that can be generated through a database system. This

definition is in stark contrast to the traditional row-based approach of looking at

records and is far more expressive in the type of records it allows us to express for

policy enforcement. Note that, even within the small schema used as an example,

countless critical records that may have complex retention obligations on them can

be easily generated. With more complex schemas such as those in large corporate

databases, emergence of an unmanageable web of interrelated and derived records is

a certainty. Simple questions of whether information contained in a particular record

can be deleted without damaging other records or compromising the integrity of the

database need to be addressed. More importantly, what does it mean to delete

a record and how can users specify the conditions necessary for proper retention

and deletion of arbitrary relational expressions? The next two chapters define the

notion of obligations on records and how these obligations can be met throughout

a record’s lifecycle.

18

Chapter 3

Protecting Relational Records

3.1 Requirements

The foremost obligation in the lifecycle of records is that of guaranteeing minimum

retention. In a typical record’s lifecycle, after creation and subject to certain con-

ditions being met, it may be necessary to preserve it until some other pre-defined

conditions are met. In most business situations, determining whether a record

should be protected involves checking simple temporal conditions defined on the

record (see Figure 3.1 for an overview).

As in the case with physical records, there are several levels of protection that

need to be offered to relational records (previously defined as logical views). For

example, protecting a physical sales invoice on which tax has been collected for the

relevant period may imply that the business has to ensure that:

• The invoice is not destroyed (deletion).

• The invoice is not modified (update).

• No new details are added to the invoice or no pre-dated invoices are created

(insertion).

Additionally, there need to be mechanisms through which users are able to spec-

ify the period of time in which a record is to be protected and the conditions under

which the record should be deleted. This chapter deals with the problem of specify-

ing protective retention policies and presents an outline of how such functionality can

19

Figure 3.1: The retention timeline of a typical record. Note that not all data inserted

in a database may lead to the creation of logical records as defined by the users.

Furthermore not all records may have mandatory protection periods and retention

limits.

be implemented in a typical off-the-shelf relational database management system.

Our framework adopts an approach for protective policy specification that allows

multiple retention policies to be specified for each record. Consequently users are

first required to define meaningful records and then instantiate protective retention

policies on them.

3.2 Protective Policy Specification

Before discussing how users are able to specify individual protective retention poli-

cies, the notions of retention conditions and protection levels need to be introduced.

We remind the reader that individual records should now be considered to be user

defined views over the physical schema.

Definition 3.1. A retention condition is an optional boolean formula applied to

every tuple of a record for the purposes of policy enforcement.

In the context of a protective retention policy, if the retention condition holds

for a tuple in the view specified by the record definition, then that tuple should be

protected as per policy specifications. If a retention condition is not specified then it

is considered to be always true. Each protective policy may only have one retention

condition associated with it. The purpose of a retention condition is essentially

to separate the critical tuples that warrant protection in the view specified by the

record. A retention condition may be temporal through the use of the variable

NOW, which was introduced earlier. Therefore temporal retention conditions can

be used to specify minimum retention periods in the context of protective retention

policies.

20

Protective requirements for relational records are captured using two distinct

protection levels, namely update protection and append protection.

Definition 3.2. A relational record under update protection is one in which any

modification to the database is rejected if it leads to a modification (or a deletion)

of a tuple in the record for which the retention condition holds true.

Intuitively a view being update-protected contains some tuples that can not

be updated or deleted. These tuples are exactly those for which the retention

condition holds true. However for tuples where the retention condition is false, all

modifications to the base data that lead to the modifications of such tuples are legal.

Definition 3.3. A relational record under append protection is one in which any

modification to the database is rejected if it leads to a new tuple becoming part of

the record where the retention condition on that new tuple would be true.

Intuitively a record which is append-protected does not allow the record to in-

crease in size subject to the retention condition. To summarize, update protection

disallows modifications (deletions and updates) of protected tuples in the record,

whereas append protection disallows new tuples from becoming part of the record.

When combined together, these two levels of protection capture all functional re-

quirements of protecting records as discussed in Section 3.1.

3.3 Syntax and Examples

Let us now examine a simplified scenario that will illustrate the notion of temporal

records and policies and demonstrate how both levels of record protection can be

used to accomplish various retention requirements. The following two relations will

be used to depict the schema of a typical invoicing system:

Invoice (INV ID, Date, Approved, Paid, ...)

InvoiceLineItem (ILI ID, INV ID, Description, Amount, Tax, ...)

Let us also define two different records as follows:

Example 3.1

OldUnpaidInvoices = {R1}
where R1 = SELECT INV ID, ILI ID, Description, Amount, Tax

21

FROM Invoice, InvoiceLineItem

WHERE Years (NOW - DateTime) > 5

AND Paid = ‘False’

AND Invoice.Inv ID = InvoiceLineItem.Inv ID

Example 3.2

Invoices2006 = {R2}
where R2 = SELECT *

FROM Invoice, InvoiceLineItem

WHERE Date < ‘Jan 01, 2007’

AND Date >= ‘Jan 01, 2006’

AND Invoice.Inv ID = InvoiceLineItem.Inv ID

We begin by introducing a formal syntax for defining record protection policies.

As stated earlier, a protective retention policy must be specified on pre-defined

records. Note that the proposed syntax offers two forms of update protection, one

where all columns of a record are protected, and the other where only selected

columns are protected against updates.

Syntax 3.1

DEFINE <Policy Name> AS

PROTECT<Record Name>

FROM <UPDATE <column list> | APPEND | ANYCHANGE>
WHILE <retention condition>

3.3.1 Protection Levels

To differentiate between UPDATE and APPEND protection consider the follow-

ing two protective retention constraints declared on the record type Invoices2006

defined above:

Example 3.3

DEFINE Constraint A AS

PROTECTInvoices 2006

FROM UPDATE *

WHILE Paid = ‘True’

Example 3.4

DEFINE Constraint B AS

PROTECTInvoices 2006

22

FROM APPEND

Constraint A simply specifies that all invoices marked paid along with all their

line items should not be updatable (or deletable). As far as the underlying data is

concerned, Constraint A will effectively abort all transactions that lead to modifi-

cations of any tuple in the Invoices2006 view if the tuple had the paid attribute set

to true.

While Constraint A prevents updating of tuples that are protected, it does allow

new tuples to become part of the record. Without Constraint B users are free

to create invoices for the year 2006 and mark them as paid today, giving them

immediate protective status. Consequently append protection as demonstrated in

constraint B is used to manage the conditions under which a new tuple can be

inserted into the record. The ANYCHANGE protection level is simply a simpler

way of enforcing UPDATE * and APPEND at the same time. Using variations of

update and append level protective constraints with a variety of temporal retention

conditions, many flexible policies can be implemented on pre-defined records.

3.3.2 Temporal Records and Protection Levels

Although database systems have the ability to abort statements and transactions

that attempt to modify protected views, it is impossible to abort the passage of

time. Consequently, the definition of append level protection must be clarified to

state that it will only protect records against user initiated modifications of the

underlying data.

As an example consider the temporal record OldUnpaidInvoices (Example 3.1)

defined above and the following append level protective constraint:

Example 3.5

DEFINE Constraint X AS

PROTECTOldUnpaidInvoices

FROM APPEND

The retention condition in Constraint X (none present) is always true which

may mislead us to believe that any increase in the size of the record should be

rejected. However as invoices become older than five years and remain unpaid, they

will automatically become part of the record and thus violate this constraint. Since

we are unable to stop temporal violations of retention policies, we take this as valid

behavior.

23

3.4 Framework for Implementation

3.4.1 Non-Temporal views

We note that protective retention policies on views simply disallow updates and

insertions and resemble access control features on views. Implementation of such

features is not a significant challenge and there are several approaches that can

be taken including relying on access control (on base relations) or piggy backing

protective retention policies over integrity constraints. However, the overall task of

monitoring views and critical rows is equivalent to that of efficient view maintenance.

We now discuss the details of how the problem of implementing protective re-

tention constraints can be reduced to that of view maintenance. In essence we use

the previously established definitions of a retention condition and record to define a

protected view. This view, which is formed by adding the retention condition into

the record definition, will be denoted as a critical view.

Definition 3.4. For a record specified by expression Q and a retention condition

on Q specified by C(Ret), the critical view for the associated policy is denoted as Vc

and specified by σC(Ret)(Q).

In short, implementing update protection policies can be reduced to monitoring

a critical view and rejecting all updates to the database that cause updates in the

critical view. Similarly, append protection can be implemented by monitoring the

relevant critical view and disallowing all updates to the database that add a new

tuple to the critical view. The problem of detecting whether a particular update

will impact a view has been well studied in the context of relevant and irrelevant

updates to views.

Definition 3.5 (Blakely et al.[BCL89]). For a given database D, a view definition

V and an update U which takes D from instance d to instance d ′, U is considered

to be irrelevant to V if V(d) = V(d ′) for all instances d.

If an update cannot impact a view regardless of the database state then it is

considered irrelevant. Blakeley et al. also define irrelevant insertions and irrelevant

deletions with a similar meaning to that of update. Detecting irrelevant updates is

fundamental for the efficient maintenance of a large collection of materialized views.

24

In the special case where the view definition language is restricted to conjunctive

queries we can efficiently detect irrelevant updates [BCL89, BLT86]. Furthermore,

it was shown that in the absence of the negation operator O(n3) runtime in the

number of predicates is possible for detecting irrelevant updates of conjunctive views.

Essentially for any arbitrary conjunctive view specified as σC(Y)(R1×R2× ...×Rn)

and a tuple t :< a1, a2, ...ap > in Ri where 1 ≤ i ≤ n, whether that t plays a role in

the view can be determined by substituting t in C(Y) for the relevant predicates and

solving the satisfiability problem. If the expression is unsatisfiable, we are certain

that t is irrelevant to the view.

This result is of extreme importance in our case. Firstly we argue that con-

junctive queries are ‘good enough’ to describe a large number of business records.

Most physical documents are designed to be straightforward, consequently the lan-

guage used to describe them does not require significant expressiveness. We have

examined several examples of physical documents such as sales reports, invoices,

telephone bills, and all can be specified with relative ease using a combination of

conjunctive queries. Furthermore, we point out that this result is not weak in any

way. As noted by Cohen [Coh06], this result can be trivially extended to aggregates

and a broad class of user defined functions. The observation is that for relevancy,

a view V with an aggregated attribute is essentially equivalent to a view V ′ with

the same attribute without aggregation. If an update is irrelevant to V ′ it is also

irrelevant to V . New insertions in V ′ that are ‘neutral’ in the context of aggregation

(for example 0 has no affect for summation) are also irrelevant for V . Note that

similar arguments could be made for many operations performed on data specified

through the use of conjunctive queries.

While detecting irrelevant updates can significantly improve the performance of

concurrently maintaining a large number of views, we gain nothing if we learn that a

particular update is relevant. A relevant update has the potential to affect a critical

view, but the actual database state needs to be examined to conclude whether the

view will actually require changes. From an implementation perspective, protecting

tuples that satisfy the criteria of being in a critical view does not require full ma-

terialization of the critical view. The cost of checking individual tuples which are

being updated against all critical relevant view definitions is significant, but we will

shortly demonstrate that in practical scenarios it will rarely be incurred.

To summarize, conditionally protecting non-temporal records can be done through

direct monitoring of the critical views that they specify. This functionality is already

present in most off-the-shelf systems and can also be modeled using mechanisms such

as access control or integrity constraints. For conjunctive queries, which are suffi-

25

ciently expressive for our scenario, many worst case costs can be easily avoided by

leveraging techniques presented in the literature for incremental view maintenance.

3.4.2 Temporal Views

In the context of data retention we do not require temporal views in their full gen-

erality since we do not model database histories. Instead we and are only interested

in implementing and enforcing policies on the current state of the database. Conse-

quently the class of temporal views that we need to support is very limited. In our

model temporal views only result from the use of the temporal function NOW in

the selection predicate of queries. Such views can also be considered to be sliding

windows with respect to the system clock. The key issue with such views is that

they may require maintenance at every clock tick. In other words they may need

to be refreshed before every query can be processed, even if that query does not

affect the state of the database. The notion of detecting relevant updates in this

case needs to consider the passage of time as well as modifications to base data.

Bækgaard and Mark [BM95] performed a comprehensive analysis of such views.

Their work relied on the fact that since NOW is a monotonically increasing function,

we can pre-determine which tuples will eventually become part of a temporal view

and similarly pinpoint which tuples will no longer be part of the view as time pro-

gresses. By keeping an ordered list of such tuples in a view denoted as a “superview”,

which itself is maintained incrementally, we can greatly reduce the need to recom-

pute temporal views from scratch. This idea is a special case of deferred/scheduled

maintenance of views where we are able to prepare in advance for the actual main-

tenance. Analysis shows that the efficiency of this technique directly depends on

the additional space available for superviews [BM95]. If a superview cannot hold all

tuples that will eventually become part of the primary view, then additional costs

may arise to maintain the superview. For example, consider a view listing all flights

that have departed from a particular airport in the last 24 hours. If the future

superview is limited in space such that it can only accommodate flights departing

from the airport in the next three days, we need to recompute the superview itself

within the three day period so that it too can remain consistent to serve the primary

view. However if a superview is “large enough”, efficiency is not a major concern as

the window to recompute it will be large, providing an adequate safety margin for

the re-computation of the superview.

26

3.4.3 Expected Performance

Although we have not implemented and tested a protective retention framework for

records, we envision that the performance penalty incurred by such a system will

be minimal. There are several reasons for this claim, and we conclude this chapter

by presenting a brief summary of our findings that support our hypothesis.

In the context of non-temporal views, it is generally accepted that as the com-

plexity of the view (expressiveness of the associated language) increases, so does

the cost of maintaining it. Over the past two decades significant progress has been

made in reducing overheads associated with view maintenance. We believe that the

majority of transactional business documents can be described as a collection of

queries expressed in a limited query language and that such queries will be feasible

to monitor as views. Our examination of physical business records on which legal re-

tention obligations are specified has concluded that, it is very unlikely that features

such as multiple levels of nesting and recursion will be required to describe such

documents. Furthermore it is also anticipated that typical databases will already

be maintaining materialized copies of views that are actively used to generate busi-

ness records. Therefore piggy-backing on existing infrastructure for views should

not significantly impact the monitoring of non-temporal views.

Although dealing with temporality may seem like a daunting challenge, in the

realm of legal retention policies that is simply not the case. There are many issues

with regard to time and physical business records that make management of tem-

poral records much easier than the overall problem of temporal view maintenance.

Firstly we note that retention policies are usually specified on the order of days

and often months. For example, an invoice created precisely on July 22nd 2006

at 14:12:32.122 is typically treated to be created on July 22nd and the retention

policies specified on the record use the granularity of days if not weeks and months

to specify how long after an event it should be protected. Thus the window of

time available to prepare for record protection and destruction is large and actions

on the record do not require arbitrary temporal precision. In light of the previous

discussion of temporal views (and superviews) this implies that maintenance of the

relevant critical temporal views can be done lazily and at times when the database

system is under low load conditions.

Secondly, in the context of views, we had noted that relevant updates had the

potential to impact multiple views and that in the worst case we may need to check

the contents of each view and the underlying relations to check for policy violations.

However we can use temporal properties of business records to our benefit and

27

Figure 3.2: The number of modifications to a record typically declines with the

passage of time. The majority of the updates happen on active and newly created

information. It is also unlikely that there will be a large number of attempts to

modify protected records.

almost completely eliminate this problem. In many business scenarios, as records get

older they achieve temporal stability and are less likely to be modified. Intuitively

we do not expect organizations to regularly modify old records such as invoices

issued in prior years (Figure 3.2). Consequently it may be beneficial to identify

individual tuples in relations that are current and have no retention obligations on

them (complement of tuples participating in the critical view), and then check if

the update operations impact any non-active tuple.

Finally we note that other heuristics for efficient monitoring of temporal views

can also be developed using the above mentioned temporal stability property of

records. One important property of physical business records is that they are typ-

ically referenced monotonically with respect to time. For example, if Invoice #500

was created on Jan 01, 2006 and Invoice #1355 was created on Dec 31, 2006 it

is very likely that the entire range of invoices numbered between these two will

also have been created in the year 2006. In such situations simple maintenance of

pointers provides us with virtual indexes for very efficient checking of temporal con-

ditions. However mechanisms for automatic inference of such correlations must be

implemented or users should be able to specify them, such that the implementation

framework is able to benefit from this knowledge about records.

28

Chapter 4

Timely Destruction of Relational

Records

In this chapter we take a closer look at how individual business records modeled as

sets of relational records can be removed from a database system when they have

persisted beyond their specified maximum retention period. Our primary goal is to

formalize the notion of deletion for arbitrary relational expressions and examine im-

plications of our definition of deletion in the light of typical retention requirements.

The natural equivalent of destroying a physical record in the relational space is

that of deleting data which led to the creation of the particular record. However

because of several properties of relational databases such as functional dependencies

and other integrity constraints, data in arbitrarily defined views cannot simply be

deleted. We begin by proposing semantics of how users can specify record deletion

policies and the features that should be available to them in any view based record

retention system. We then examine restrictions that must be placed on record

removal policies and demonstrate how they can be efficiently checked statically

(and dynamically where necessary) to determine if they violate database integrity

constraints. Finally we conclude this chapter by discussing how aspects of record and

database design can significantly affect the scope of enforceable retention policies.

4.1 Requirements

The motivation for destruction policies comes from organizations wishing to absolve

themselves of the liability associated with records derivable from its data. There are

29

two natural ways to “destroy records”: users can either delete all data comprising the

record or modify certain parts of it such that it becomes safe to preserve indefinitely.

Selective modification of records is often done to anonymize private and personal

records such as hospital records. Anonymity ensures that data retains its business

value, in terms of statistics, and at the same time poses no storage liability. In a

view based organization of data this implies that users should be able to specify

when tuples need to be deleted or, when and how certain attributes need to be

modified. To do this we reuse the notion of a retention condition to specify a logical

condition which when satisfied by a tuple, implies that it should be removed from

the view or appropriately modified. Note that we still rely on the notion of critical

views but they are now treated in a new way. The new objective is to ensure that

critical views for destructive policies are always empty. As tuples in a record become

part of the critical view, they begin to satisfy the destruction condition and should

be disposed immediately.

A significant limitation of our proposed approach to records removal is that for

complex views involving multiple relations, the meaning of deletion or modifica-

tion (update) must be well defined for policy enforcement purposes. But before

we discuss updates on views in the light of business records, we must separate the

objectives of monitoring and enforcement. It is important to note that in many

situations organizations may only be interested in continuous monitoring of records

for policy violations. Once a policy violation is detected, the system administrator

may be notified to resolve the issue. The remedial actions such as deletion of critical

data in such situations can be performed on a case by case basis, by the adminis-

trator. However, an ad-hoc management of retention violations is only feasible if

the number of violations occurring is small and there exist good business work-flow

processes. We also mentioned earlier that there is often significant flexibility in

the window of time available to delete critical data. Organizations that adopt the

ad-hoc approach to dealing with records retention policies must also have adequate

time for administrator action, or they must design policies in a pre-emptive fashion.

For example, if a legal retention limit for a record is one year, organizations going

with such a strategy could be expected to enforce a retention policy that is stricter

and informs administrators regarding imminent policy violations after 11 months.

Ad-hoc enforcement of retention policies is trivially accomplished by coupling user

alerting mechanisms, such as triggers, with the monitoring of critical views. The

difficulty lies in ensuring that meaningful human intervention actually takes place

and compliance is achieved. Consequently we will focus on automated enforcement

and the complications associated with balancing flexibility in actions that can be

30

performed to destroy records and the compliance guarantees that can be offered.

The most flexibility in automated enforcement can be offered if on every policy

violation a user specified program (such as a stored procedure) is executed. This

user programmed procedure could be arbitrarily complex, may examine any part of

the database, and then perform any appropriate actions (updates) to deal with the

violation. A more restrictive approach is that of only allowing modifications to the

view through the record definition itself. Such modifications may include setting

individual attributes in the critical view to null or deleting tuples in specific base

relations. Although it may seem illogical to reduce flexibility in actions that can be

performed on records on policy violations, we will shortly demonstrate that doing

so can have significant advantages. Restricting modifications through views leads to

several questions such as what kind of views can be supported and how updates can

be specified or inferred. There has been significant work done on detecting ambiguity

in updates for views [BS81], automatically inferring correct updates [Kel85], and

helping users visually map updates on views to base data [Kel86]. We argue that the

framework used for updating views is orthogonal to our problem of enforcement. As

long as the specified enforcement actions are not ambiguous for the record definition,

we can fully enforce all actions that the records manager specifies. We believe that

any records management system on views must be flexible and be able to provide

conclusive guarantees regarding enforcement. Consequently we support both these

paradigms in our framework. Users should be able to write special procedures for

handling non-empty critical views or be able to directly make modifications to the

view (if possible). Before we discuss the benefits of both approaches we present

what we envision as a simple syntax for defining destruction policies. Note that in

the syntax given below, records managers have the ability to specify actions such as

deletion from specific base relations and simple overwriting of data in the view, in

addition to the execution of their own custom built procedure:

Syntax 4.1

DEFINE <Policy Name> ON <Record Name>

DO DELETE FROM <relation> |
SET <assignment list> |
EXEC PROCEDURE <proc name>

WHEN <retention condition>

31

4.2 Flexibility and Proof of Compliance

One general benefit of records retention policies is that businesses can use them as

defense in civil litigation scenarios [MS02]. However to satisfy courts and govern-

ment agencies that the relevant data has been destroyed, two independent conditions

need to be met. Firstly, outdated data should physically not exist within the orga-

nizational database, for if it is found in an audit, we have failed to abide by given

requirements. More importantly with the introduction of legislation such as the

Sarbanes-Oxley Act, businesses need to prove beyond a reasonable doubt that there

exist policy mechanisms, manual or automated, within the organization by which

the relevant data must have been destroyed. The combination of compliance and

providing proof of compliance has been one of the strong selling points of mod-

ern ECM systems. They allow businesses not only to demonstrate transparently

the non-existence of outdated data but also to offer a proof of it being destroyed

according to a policy.

Such ‘proofs’ of compliance given by businesses typically rely on simple and on

best efforts arguments. For example, consider a scenario where an organization’s

internal emails are part of a subpoena and it only offers the past two years’ emails

as evidence. A proof of compliance in this case could simply be the use of suitable

records management suite such as Microsoft Exchange Server or OpenText’s Email

Management System, with the relevant policy rule of deleting emails older than

two years. Strictly speaking a formal “proof of compliance” can never be given

because of uncertainties such as emails persisting on paper and in disconnected nodes

(more on these issues in Section 6.2.3). However, the audited use of ECM systems

offers a certain level of confidence and a potential guarantee to external observers.

The value of such proofs can be witnessed from the fact that many ECM systems,

especially for email management, are now being branded as capable of offering

“Department of Defense (DoD) compliance” and “Environmental Protection Agency

(EPA) compliance.” Government agencies such as the United States DoD naturally

do not want their records to be floating around in their sub-contractors’ computer

systems. In these cases, an organization (or a contractor) communicating with the

Department of Defense through email, must demonstrate compliance through the

use of retention-aware email management systems. Thus it becomes obvious why

ECM vendors have jumped on the opportunity to capitalize on this requirement of

a meta proof of compliance.

We believe that any data retention framework for relational databases systems

must also be able to provide a proof of compliance. As awareness of data retention

32

encompasses relational systems, providing proofs of deletion (or similar actions such

as overwriting with nulls) of data will become a necessity. However, these proofs

must be better than best-effort (reasons discussed in Section 5.2), and if offered

must formally hold in all instances of the database. We argue that if a proof of

compliance is required, retention policies and actions must be treated as first class

citizens similar to integrity constraints. Analogous to the fact that no user (not

even the administrator) is able to violate fundamental rules such as primary key

and foreign key constraints, no user should be able to bypass and violate retention

policies. Assuming that retention policies are correctly formed, required actions

are timely executed without any possible chance of exception, and the closed world

assumption holds for the database, then a proof of compliance is easily derivable.

Note that we can still entertain the notion of flexibility in policy enforcement, but

it cannot be interchanged with the correctness of a proof of compliance. For example,

if a user programmed stored procedure is proven (through formal verification) to

delete all outdated records in all possible instances of a database without exception,

and this programmed procedure is executed weekly, then we certainly have enough

evidence to prove that our database is retention compliant up to a weekly basis. We

will refer back to this all-encompassing user programmed procedure to examine what

are its fundamental requirements if it is to provide a formal proof of compliance.

This procedure/oracle is the only benchmark for existing solutions and is the closest

mechanism that can be compared to our proposed framework

Sadly, verification of user programmed procedure containing arbitrarily defined

policy rules is non-trivial and is essentially equivalent to the problem of verification

of arbitrary C programs. Depending on the data structures used by this procedure

and its complexity, the solution may simply be infeasible. Furthermore creating

and maintaining such procedure(s) in itself is a daunting task. Fortunately, by

reducing the flexibility in enforcement actions we can make the problem of creating

and reasoning about policy actions much more manageable.

4.3 Correct Enforcement

Let us assume that we are given a procedure (oracle) to delete outdated records when

a policy violation is detected. The first critical requirement for proving correctness

of this procedure is to prove that for all database instances and for all policy viola-

tions, the actions taken as a response by the oracle have a ‘remedial effect.’ More

specifically, whenever a critical view becomes non-empty, the actions taken by the

33

oracle must eliminate the newly added tuples from the view. Yet another way to

look at it is that for every policy violation the oracle must be notified only once and

it should always resolve the violation successfully. We formalize these requirements

using two correctness criteria as defined below:

Definition 4.1 (Weak Correctness). A destruction policy P is weakly correct if on

any tuple becoming part of the critical view Vc the actions specified by the policy

denoted by α(R) will ensure that Vc will be empty.

Definition 4.2 (Non-Invasive Policies). A destruction policy P is non-invasive with

respect to another policy P ′ if the actions specified by P denoted as α(R) never af-

fect the critical view of P ′. P is called invasive with respect to P ′ if α(R) has the

potential to change the contents of the critical view of P ′.

Definition 4.3 (Strong Correctness). A destruction policy P is strongly correct if

it is weakly correct and

i) P is non-invasive with respect to all other destruction policies in the database or

ii) P can only delete tuples from all other destructive critical views

Weak correctness implies that actions specified by the policy must be meaningful

for the record itself and that the critical tuples will be promptly removed from the

view by applying α(R). Weak correctness by itself does not provide any guarantees

for termination of policy actions. This is because actions of a particular destruction

policy may introduce tuples in critical views of other destruction policies. Conse-

quently the notion of non-invasive policy actions is presented so that we can reason

about policy triggering patterns. Note that the scope of invasive policy actions is

not restricted in any way by the definition. Actions could themselves directly im-

pact other views or indirectly do so, for example as a side affect of several integrity

constraints such as cascading-deletes of foreign key references.

Lemma 4.1. A set of destruction policies P = {P1, P2, ..., Pn} is guaranteed to be

terminating, if the directed graph constructed with edges from Pi to Pj when Pi is

invasive with respect to Pj, has no cycles.

The above lemma specifies a strong condition that needs to be met to avoid

circular enforcement of retention destructive actions. Note that this result is very

34

similar to the solutions presented to the classical problem of determining trigger ter-

mination and cyclic execution of rules [vdVS93, AWH92]. This result is also known

to be strictly stronger than what is minimally required for guaranteed termination

[LL99], since cyclic execution can also be shown to terminate if the execution depth

is bounded. However in our case, the likelihood of having bounded recursive depen-

dencies between business records is unlikely, therefore we adopt the simpler graph

theoretic approach to verify termination properties of destructive policy actions.

4.4 Weak Correctness

For arbitrarily defined views and enforcement actions statically determining if they

satisfy the above stated correctness criteria is undecideable. However if we consider

the class of updatable views specified by conjunctive queries, with actions limited

to deletion from specific base relations or overwriting with statically determined

values, we can efficiently show whether a policy is correct.

Lemma 4.2. For a record R specified as an updatable conjunctive view, a de-

structive retention policy P leading to critical view Vc with conditions Critical(Rp),

and a simple remedial action specified by α(R), P is weakly correct if and only if

Critical(Rp) ∧ αp(R) is unsatisfiable, where αp(R) is the post-condition of α(R).

When dealing with conjunctive views and simple actions as defined above, this

lemma states that we can easily check statically whether our policy actions are cor-

rect. In short we need to solve the satisfiability problem for the formula Critical(Rp)∧
αp(R) and can then be certain that enforcement is guaranteed if and only if this

formula is unsatisfiable. As an example of this, consider a simple record derived to

track credit card transactions over the following schema:

Transaction (TxnID, CstID, CardNumber, TxnDate, ...)

Customer (CstID, Name, ...)

Using the above hypothetical database we define the following record and destruc-

tion policy.

Example 4.1

OldCreditCardTransactions = {R1}
where R1 = SELECT TxnID, CstID, CardNumber, TxnDate, ...

35

FROM Transaction, Customer

WHERE Transaction.CstID = Customer.CstID

AND CardNumber IS NOT NULL

Example 4.2

DEFINE Obscure CardNumbers ON OldCreditCardTransactions

SET CardNumber = null

WHEN Days (NOW - TxnDate) > 365

In this scenario an organization is attempting to destroy credit card numbers

for transactions that took place more than a year ago. To accomplish this, on de-

tection of a non-empty critical view the specified action will set the CardNumber

attribute of the violating tuple to null. Note that in this case the logical condi-

tion for a tuple to be in the critical view, Critical(Rp), is (Transaction.CstID =

Customer.CstID) ∧ (CardNumber 6= null) ∧ (Days(NOW − TxnDate) > 365).

Thus the proof of compliance can simply be generated by solving the satisfiabil-

ity problem which combines the constraints of the critical view and the reme-

dial action, that is (Transaction.CstID = Customer.CstID) ∧ (CardNumber 6=
null)∧ (Days(NOW −TxnDate) > 365)∧ (CardNumber = null). Since we have a

contradiction on the attribute CardNumber, this formula is unsatisfiable implying

that there can not exist a tuple which can satisfy both Critical(Rp) and αp(R) at

the same time. Therefore we have effectively proven that the action α(R) when

applied to any tuple in the critical view will cause it to no longer persist in the

critical view. The reverse implication for this lemma is also trivially provable, for

if Critical(Rp) ∧ αp(R) is satisfiable, there can exist at least one tuple on which

performing the remedial action will not remove it from the relevant critical view,

and thus our policy action may fail to have any effect in that case.

This simple check allows us to be certain that the record lifecycle will always

terminate in destruction (defined as removal from the critical view) and more im-

portantly we can formally prove this by solving a problem which is at worst NP

complete. The fundamental observation to make is that, while we can not reason

about arbitrarily complex views and user programmed procedures, we can be cer-

tain about policy execution on a restricted set of views and actions. For updatable

conjunctive views and simple actions, we can determine statically at policy-creation

time whether there can exist a situation where our enforcement actions can fail to

provide the remedial effect. Consequently for a restricted class of relational records

we can now work objectively towards offering a formal proof of compliance.

36

4.5 Integrity Preservation

It was mentioned earlier that to reason formally about retention policies and their

effect, we have to treat them as first class citizens in a database system. However,

actions performed by retention policies to rectify a policy violation should never

compromise the integrity of the database. In this section we will further refine our

notion of offering a proof of compliance to include integrity preservation.

Definition 4.4 (Integrity Preservation). A destructive policy P is integrity preserv-

ing if the suggested actions α(R) when applied to any valid instances of the database

d will also lead to a valid instance of the database with respect to all specified integrity

constraints.

Recall that one of the requirements for provable automated enforcement is that

the user programmed actions for enforcement should always (without exception)

terminate successfully. Note that this requirement is independent of the previously

discussed requirement of correctness and the actions having a remedial effect. For

example the actions taken in response to a policy violation may simply do nothing

and always terminate in the same valid database state as the one which has a

retention policy violation. We need to consider the word “exception” in a sense

similar to that used in programming environments, where it is quite often used

interchangeably with the notion of an error. One aspect of proving that enforcement

actions are always error-free is that of proving that they will never violate integrity

constraints. For example, let us assume that a user programmed procedure in

response to a policy violation attempts to delete a tuple in a relation that contains a

foreign key reference. There could be many reasons why this could happen, including

badly formed record definitions and poorly programmed actions. But unless we can

be certain that we will never encounter such a state, where user specified actions

cannot proceed without administrator intervention, we can not fully prove that our

policies are automatable.

Once again, offering such guarantees for arbitrarily defined views and actions

on them is impossible. It should also come as no surprise that the previously dis-

cussed restricted class of records specified by updatable conjunctive views and simple

actions on them can be restricted further to be made integrity preserving. We ex-

amine several types of integrity constraint and specify the restrictions that need to

be placed on simple actions for guaranteed integrity preservation. We will assume

that the database catalog is available to us so that we can make decisions regarding

37

the legality of the user specified actions. Our aim is to pinpoint actions that can

cause integrity violations and detect them statically.

4.5.1 Primary Key and Uniqueness

One of the most significant problems (in terms of physical design related issues) in

data retention, is of a primary key constraint. In short all data contained in a tuple

cannot exist without the primary key uniquely identifying that data. Consequently

potential modifications such as setting primary key values of attributes to null or

other static values have to be rejected straightaway. To get rid of a primary key

value, the only option users have, is to delete the tuple from the base relation. It

follows that a uniqueness constraint on a tuple can also not be checked statically.

We can never be certain that a modification to an attribute that is specified in

the schema to be unique can always be legally done. Checks always need to be

performed on the particular instance of the database to ensure that the updated

value is unique and no universal guarantees that the actions will always complete

can be given for all instances of the database. Consequently users requiring a formal

proof of compliance must choose deletion of data in such situations.

4.5.2 Foreign Keys

Modifying foreign key attributes can often serve as a simple mechanism for data

destruction and simultaneous preservation of vital database statistics. To motivate

the application of modifying foreign key attributes and the associated intricacies,

consider the following database schema storing data about traffic violations:

Drivers:(LicenseNumber, FirstName, LastName)

Violations:(OffenseNumber, OffenseDescription)

Committed(LicenseNumber, OffenseNumber, OffenseDate, ...)

The interesting relation in the above example with foreign key references is one

which relates drivers with the traffic violations they committed. Let us further

assume that we have a legal retention requirement such that traffic violations are

removed from an individual’s driving record after 12 years from the OffenseDate.

However the statistics related to offenses should be maintained forever. When ob-

scuring or overwriting a foreign key value, there are two possible courses of action.

38

If the foreign key attribute is nullable then it can always be set to null. However

there can be many cases where null is not suitable. The other option is that of

overwriting the foreign key value with a different but valid one. In the above scenario

we could introduce a privacy preserving entity in the drivers relation to accomplish

this. A privacy preserving entity can be informally described as an entity that does

not exist in the real world and its associated data is there only for obfuscation and

compliance with the existing schematic/integrity constraints. For example, a tuple

in the Drivers relation such as (“A1234-567890”,“Unknown”, “Person”) could be

used to refer to a driver that does not exist in the real world, but is there to support

anonymous storage (in the given design) of all traffic violations committed more

than 12 years ago. As soon as 12 years have past after a particular offense being

committed by a real driver, the LicenseNumber of that driver related to the offense

will be simply overwritten with “A1234-567890”. The following record definition

and constraint serve the scenario well:

Example 4.3

CommittedV iolations = {R1}
where R1 = SELECT * FROM Committed

Example 4.4

DEFINE ObscureOldViolations ON CommittedViolations

SET LicenseNumber = A1234-567890

WHEN Years (NOW - OffenseDate) > 12

AND LicenseNumber 6= A1234-567890

Note that “A1234-567890” is a statically determined value embedded in the

policy, and such static assignments of foreign key attributes have two major conse-

quences. Firstly we must ensure that “A1234-567890” should exist in the primary

relation at the time of policy instantiation, and secondly the system must mandate

that the statically used primary key of the privacy preserving entity (in our case

“A1234-567890”) will itself never be modified or deleted, thus ensuring that the

policy remains valid throughout its lifetime. In short, static assignment of foreign

key values in policy must introduce an implicit protective retention policy for the

primary key, in our case the entity identified by “A1234-567890” in the Drivers rela-

tion. This implicit constraint, which itself can be modeled as a protective retention

policy (See Chapter 3), ensures that the privacy preserving entities persist as long

as the referencing destruction policies are active.

39

4.5.3 Other Issues in Integrity Preservation

Although in theory a set of delete/update actions can be shown to be error-free and

correct, it is significantly harder to make general claims in a typical database system.

One interesting complication in modern day database systems is the use of mecha-

nisms such as triggers and check-constraints to enforce complex user programmed

integrity constraints. With these additional procedures of arbitrary complexity in

place, it becomes harder to determine statically the consequence of actions taken

in response to policy violations. For example, if our attempts to remove outdated

records are rejected by a user programmed trigger, we will be unable to offer com-

pliance guarantees unless the trigger is removed (or suspended) and the remedial

actions repeated.

There is no easy way to resolve this issue. A tedious approach would be to

verify each user programmed trigger and check-constraint for sources of possible

interference with the data removal actions specified by retention policies. If the

number of user defined triggers is small and they are each of reasonable complexity,

this task can be done manually. However if we have to deal with a complicated web of

interrelated trigger-oriented events that can have side effects on the underlying data,

the task of proving that our retention actions will always work will be extremely

difficult. Trigger analysis and the verification of their properties such as termination

has been long studied in the database literature [Wid96, DKM86]. However, even

with the use of automated verification tools, proving strong properties for a large

number of complex triggers, with all policy actions can be a significant challenge.

Another approach is to circumvent the problem by arguing that not only are

retention policies first class citizens but they also have special privileges that allow

them to bypass the invocation of triggers. What this means is that the monitoring of

triggers and user programmed integrity constraints will be temporarily suspended

when actions specified by a retention policy are being executed. Thus user pro-

grammed integrity constraints could be demoted to second class citizens in such

scenarios. However the burden of being kind to user programmed integrity con-

straints will then be placed on retention policy actions. We also note that due to

the complexities associated with triggers such as non-standard semantics and be-

haviour among database vendors, execution ordering, recursive execution, lack of a

guarantee of termination, and resource consumption issues, they are often avoided

by database programmers [SD95, CCW00]. Consequently this approach may be

favorable in situations where the number of triggers present in a database system is

limited.

40

While on the one hand disregarding triggers can instantly solve our problem of

provably enforcing retention, on the other hand it may lead to unexpected results if

the retention actions are badly designed. For example, if retention policies violate

user programmed integrity constraints, user applications may be misled to make

incorrect assumptions about the data. The core conflict here is between database

administrators and records managers to determine which comes first, non-essential

integrity or proof of compliance. Of course, if a formal proof and immediate deletion

of outdated records are not critical requirements, conflicts between integrity and

retention policy actions can always be resolved in favor of maintaining integrity. If

the window of compliance is sufficiently large, we can always revert to the ad-hoc

approach of conflict resolution where the violation is reported to a human arbitrator

for review, who can then decide how to proceed further.

4.6 Schema and Policy Set Evolution

It is important to remind the reader that implementations of retention policies using

views as abstraction for records are only interpretations of the legal data retention

requirements for a given storage schema. If a change in the schema invalidates the

previous interpretations (view definitions), it does not absolve the business from its

records management obligations. Simply consulting the corporate privacy enforce-

ment officer to reinterpret the affected records retention policies for the new schema

is the recommended approach. However some transformative actions or policies may

not allow the flexibility of a change in the storage of records. Similarly when new

policies are being introduced, privacy administrators may not want to enforce new

policies retroactively.

In such cases there may arise the need to maintain two parallel versions of the

storage schema in order to fulfill obligations on the older schema as time progresses.

The older snapshot of the database would not be used for actively inserting new

business records, but rather only for fulfilling records management obligations on

the records it contained at the time of the schema change. The deprecated schema

and the data therein can only be safely discarded when all obligations as specified

by relevant policy actions have been met. In situations where these requirements

cannot be ported to the new schema, there is no choice but to maintain records

until all of them have completed their lifecycle and no more policy actions will be

required to fulfill retention obligations.

41

Chapter 5

Making it Work

In this chapter we further develop our notion of proof of compliance to include

detection of inter-policy conflicts. We examine a procedure to detect overlapping

and conflicting policies statically for simple records defined as conjunctive queries.

A discussion of the various sources of conflicts is also presented which highlights

how they can be avoided through the use of good physical design combined with

precise and meaningful record definitions. We also present the results of our tests

conducted that demonstrate that the overhead of our proposed records retention

framework can easily be minimized in a typical business situation. We conclude

this chapter by comparing our presented solution to data retention with existing

approaches in the realm of ECM and privacy aware information systems.

5.1 Inter-Policy Conflicts

5.1.1 Detecting Conflicts

The final requirement for proving correctness for a set of policies that we examine is

to show that they are consistent and conflict free. Inter-policy conflicts are basically

caused by expired data that is to be removed or modified according to a destruction

policy and is also at the same time protected under a protection policy. We call

these delete-protect conflicts between policies and define them using the previously

developed notion of invasive policies.

Definition 5.1 (Conflict Free Policies). A destruction policy D is conflict free with

respect to a protection policy P if D is non-invasive with respect to P.

43

In other words if the actions specified by a destructive policy can not impact

the critical view of a protective policy then the two policies are guaranteed not to

conflict with each other. In the context of database theory, the problem is reduced to

that of determining whether a given update (destruction policy action) is irrelevant

to a given relational expression (protected critical view). Note that our definition

of invasive policies, in the context of cyclic execution of destruction events and

conflicting policy actions, is essentially a specialization of Blakely’s definition of

irrelevant updates [BCL89]. If an update is irrelevant to a critical view defined by a

policy, then that update can not impact the contents of the critical view regardless

of the database state.

We can thus safely claim that detection of delete-protect conflicts is equivalent to

determining whether modifications caused by destruction policies are irrelevant to

critical views of protective policies. Furthermore detecting conflicts among simple

select-project-join view based records is only NP-hard whereas in the general case

detecting conflicts is undecideable. To prove total correctness we have to show that

all pairs {P,D}, where P is a protection policy and D is a destruction policy, are

conflict free. We point out that testing for policy conflicts is a one-time and offline

cost incurred at policy instantiating time.

5.1.2 Source of Conflicts

There are two major reasons why conflicting policies can be introduced in any data

retention framework. Firstly, retention requirements as stated may inherently be

conflicting among themselves. To distinguish these conflicts from other types of

conflicts, we call them direct policy conflicts. Trivially we can see that direct policy

conflicts will always lead to delete-protect conflicts. Such conflicts are more likely

to occur if policies written independently by various governing bodies are to be

implemented on the same database. However for most small-medium businesses

that are subject to laws from one country/authority direct policy conflicts will be

relatively rare.

The primary source of delete-protect conflicts is the translation from policies

stated in natural language to the implementation mechanism that we proposed in

this thesis. Recall that in our discussion of ECM systems, the definition of a record

was very simple and already given to us. In ECM systems a record is basically a self-

contained file residing on a disk. Whether the file represents an email, a document or

a spreadsheet is irrelevant because the notion of record in that scenario is very well

44

defined. Most importantly a record (file) is atomic and its data can not overlap with

another record in the system. Consequently conflicts arising through the shared use

of data between multiple records do not exist in ECM systems. The only source

of conflicts in ECM systems is cross-classification at the level of complete objects,

for example a spreadsheet could be shared between two different departments of

an organization that have two different retention policies for their spreadsheets.

Similarly the only destruction action that ECM systems support is simple and self-

contained deletion of the entire record and these deletions do not have any side

effects such as cascading deletes of other records.

In relational database systems neither pre-defined mapping between records and

data nor pre-defined destruction policy actions exist. There is a wide variety of

options available through which protection/destruction of sensitive data can be ac-

complished. Consequently the task of choosing the best possible record definitions

and destructive actions is significantly more challenging than in ECM systems.

5.2 Conflict Avoidance

A database administrator must first identify all records on which policies are to

be enforced. More specifically, given a physical schema the administrator has to

enumerate all queries that generate records that need to be protected/destroyed

according to a retention policy. In a way this task is similar to that of organizational

work-flow management, and all aspects of good record design used for business

documents can also be used by the database administrator. For example, it would be

inefficient to design a spreadsheet such that two different departments of a business

work with totally disjoint parts of the spreadsheet. Just as it would make sense to

split the single sheet into two separate and independently lock-able parts, it would

also make sense that the database administrator enumerate queries defining records

such that they have minimal overlapping data between them.

Based on our discussion in previous chapters, we argue that the single most

important factor in determining the number of policy conflicts is the precision of

record definitions. Direct translation of policies from an ECM system to our re-

lational framework will lead to very broad record definitions and thus should be

avoided. For example, if a telecommunications company is required to keep track

of destinations of the calls placed by its subscribers, it would be unwise to take the

ECM approach and enforce retention policies on queries that specify entire telephone

bills. For such physical records the administrator has to identify very precisely parts

45

Figure 5.1: An ideal scenario where a set of policies is translated into record defini-

tions and policy actions programmed by a single administrator. Even if conflicting

policies are present, the same administrator can always re-interpret the set of given

policies to resolve conflicts.

of each document that can contain sensitive data and the queries that minimally

capture that data over all similar records. This means accessing only the required

relations in record definitions and having as selective predicates on policy actions

as possible. Typically the ability to accomplish this will directly depend upon the

quality of the physical design of the database. For example the ability to reduce the

number of joins in record definitions to a minimum directly depends on the given

normal form of a schema and a well normalized schema can substantially reduce the

number of overlapping records definitions.

In an ideal scenario (depicted in Figure 5.1) a single policy maker will consoli-

date various policies into one database. However for large multinational businesses

encompassing various federated databases, it is unlikely that there will be a sin-

gle expert that will translate all retention requirements into record definitions and

protection/destruction actions. In such situations (depicted in Figure 5.2 on Page

47) the likelihood of conflicts increases significantly and all conflicts have to be

ultimately resolved/mediated between the respective policy administrators.

Conflicts in policies need not arise directly because of data shared among records.

In our examples we have largely discussed the use of select-project-join based views

to define records. The elegance of these simple records can be misleading and it may

give the illusion of making records management very easy. For more complex records,

such as those that use operators such as intersection and union, understanding the

data which they encapsulate becomes significantly harder. As an example consider

46

F
ig

u
re

5.
2:

T
h
e

fi
gu

re
sh

ow
s

a
sc

en
ar

io
w

h
er

e
d
iff

er
en

t
in

te
rp

re
ta

ti
on

s
of

p
ol

ic
ie

s
ca

n
le

ad
to

th
e

sa
m

e
u
n
d
er

ly
in

g

d
at

a
b

ei
n
g

su
b

je
ct

to
se

ve
ra

l
an

d
p

os
si

b
ly

co
n
fl
ic

ti
n
g

re
te

n
ti

on
p

ol
ic

ie
s.

N
ot

e
th

at
th

e
re

co
rd

d
efi

n
it

io
n
s

cr
ea

te
d

b
y

ex
p

er
ts

A
an

d
B

sh
ar

e
th

e
sa

m
e

d
at

a
w

h
ic

h
co

u
ld

b
ec

om
e

a
so

u
rc

e
of

co
n
fl
ic

t.
A

lt
h
ou

gh
re

co
rd

s
d
efi

n
ed

b
y

ex
p

er
ts

A
an

d
C

d
o

n
ot

sh
ar

e
an

y
d
at

a,
th

er
e

co
u
ld

b
e

fu
n
ct

io
n
al

d
ep

en
d
en

ci
es

in
R

el
at

io
n

3
th

at
li
m

it
th

e
sc

op
e

of
w

h
at

d
es

tr
u
ct

io
n
/p

ro
te

ct
io

n
ac

ti
on

s
ca

n
b

e
ta

ke
n

on
re

co
rd

s
d
efi

n
ed

b
y

A
an

d
C

in
or

d
er

to
av

oi
d

co
n
fl
ic

ts
.

47

the use of the negation operator between two relations X1 and X2, each with a single

attribute called id and two record definitions, R1 which selects all id’s in X1 that

are not in X2, and R2 which selects all id’s in X2 that are not in X1. Note that

by definition R1 and R2 are always disjoint (R1 ∩ R2 = ∅) but the data/definitions

of R1 and R2 are inseparable. Performing actions (insertions and deletions) on any

of these records will most certainly have a direct impact on the other. We have

repeatedly stressed the need to keep record definition “simple”; unfortunately we

claim that it is impossible to formally define the notion of simplicity for arbitrary

queries. This is because any definition of a simple query language may disallow

certain policies to be enforceable. Simplicity of record definitions and policies is

largely an abstract concept and a function of a database administrator’s confidence

in the meaning of each relational expression used to identify records for policy

enforcement. Adopting a conservative approach and keeping to conjunctive queries

only may not be a feasible approach for all situations. The only critical requirement

that needs to be met for good record/policy design, is that administrators need to

fully understand record definitions and the actions of their policies.

5.3 Implementation

Our framework for continuous records monitoring can best be summarized as a

proposal for active integrity constraints and actions on views. We assert that the

task of periodically monitoring destructive critical views and purging records will

not be a significant source of performance degradation in our model. This is because

of the temporal flexibility available in destructive data retention requirements and

the fact that stricter versions of destructive policies can usually be enforced. For

example, this flexibility allows us to execute daily or weekly batch jobs that enforce

destructive retention policies without interfering with the online operation of the

database system.

However if a record is accidentally deleted when it is supposed to be protected by

an organization, the consequences are more serious. Naturally, there is no flexibility

in protecting records and every modification to a database has to be checked against

the relevant policies to ensure compliance. Consequently the cost of computing

the effect of updates on protected records will be the most significant source of

overhead. In light of this fact, the aim of our experiments is twofold: first, to

measure the overhead of continuous record protection precisely for a broad mix of

protective policies in a high-update and heavily regulated business scenario; second,

48

Policy # Critical Row Coverage Type

1 .08% C

2 1.8% C

3 6% S

4 2.8% C

5 6.6% S

6 2.6% S

7 5% C

8 5.3% C

9 .6% C

10 13.3% A

11 2% A

12 100% A

Figure 5.3: A summary of the policies. The critical row coverage represents the

proportion of order and lineitem tuples that were relevant to a specific policy. The

type denotes the complexity of the critical view being denoted as simple/on a sin-

gle relation (S), conjunctive/involving multiple base relations (C) or involving an

aggregate value (A).

to determine and recommend means of minimizing this overhead using features

already present in existing database systems.

There are two widely used mechanisms to detect events specified by arbitrary

relational expressions (such as a tuple becoming critical) in database systems: incre-

mental computation or total re-computation. More specifically, to detect changes

in the contents of a critical view, we can either materialize the view completely and

implement triggers on the materialized view (a feature present in some commercial

systems such as Oracle) or implement triggers on base relations that detect (pos-

sibly after execution of an additional query) whether the relevant critical view will

be impacted by a triggering statement [CW91]. A detailed examination of imple-

menting triggers on views, including an algorithm for mapping triggers on views to

an equivalent set of triggers on base relations, has been presented in the literature

[SNS06].

We note that for monitoring views and the effect of every update on views, there

are two well known optimizations that can be exploited to reduce the associated

overhead. First, we can benefit from the observation that certain policies and event

49

detection on the associated views naturally favor a particular mechanism. For ex-

ample using triggers to monitor a view with an aggregate value is ill-advised, given

that this value will not be preserved after the trigger invocation and will require

total re-computation at every relevant update. Therefore it would be prudent to

selectively decide on materialization or re-computation for policies such that the

relative overhead for each policy is minimized. Generally, the decision to materi-

alize or re-compute depends on the average cost incurred per relevant update, and

most database optimizers can quite easily assess the cost of a typical update and re-

computation query, to give a reasonable estimate of which technique will be better

than the other. Second, we can use to our benefit the fact that several policies can

quite often be clustered around a small number of related tables. Instead of instan-

tiating a large number triggers on base relations, the approach of trigger grouping

[HCH+99, SNS06] can be used to reduce the number of triggers per table and to

exploit the fact that multiple policies on similar predicates can be checked in a sin-

gle trigger invocation. The result of these optimizations can lead to a significant

reduction in the cost of view monitoring. Instead of incurring worst case costs of

each monitoring mechanism (views and triggers), we can combine these into a hy-

brid critical view monitoring technique which attempts to take advantages of the

positive aspects of both approaches.

5.4 Experimental Evaluation

For our tests we relied on the TPC-H (Transaction Processing Council- Benchmark

H) schema depicting a business scenario involving the sale of parts to customers

worldwide. We developed 12 different protective data retention policies and trans-

lated them into relevant views that would need to be monitored. These policies

were directly derived from real-world records retention requirements imposed on

TPC-H like businesses by various security, export and taxation agencies. Examples

of such policies include protecting purchase orders involving the sale of special parts

like uranium fuel rods, protecting order details with suspiciously large monetary

sums, and protecting sales tax totals for specific countries. A detailed list of these

policies, the synthetic parameters and the relevant views is given in Appendix A.

Our policy set consisted of 3 simple policies on single relations, 6 policies leading to

the monitoring of conjunctive views and 3 policies which involved protection of an

aggregate amount. Although the majority of these policies individually had a low

tuple coverage, defined as the number of tuples subject to protection/monitoring

50

0

5

10

15

2 0

2 5

1 2 3 4 5 6 7 8 9 10 11 12

M aterialized V iews

T riggers

1825

R
es

po
ns

e
Ti

m
e

(m
s)

Policy #

Figure 5.4: Average completion (commit) time for an update to a single tuple in a

base relation protected under a single policy implemented using triggers over base

relations and using the incremental maintenance approach. The horizontal line

represents the cost of an update without any monitoring mechanisms in place.

in base relations, all tuples were protected against modifications from at least one

policy (Figure 5.3).

Due to the nature of the TPC-H schema, most of the policies were clustered

around the two largest tables in the schema (Orders and Lineitem). We believe that

this will be a standard observation in databases used by highly regulated businesses,

as these regulations can be expected to be uni-faceted and will certainly be based

on the primary function of the business. For example, compared to a database

maintained by a large stock-broker, a medical database used by a hospital will

likely be subject to more retention obligations for patient and treatment records

than for the financial records of the hospital. Therefore it is natural to expect that

a large number of policies will be clustered around relatively few tables and, as we

describe shortly, several avenues of optimization arise because of this observation.

Our tests were conducted using a 1GB dataset on ab Intel Core 2 Duo (1.8Ghz)

machine with 1.5GB of RAM. All tests were performed on a warm database using

DB2 v9.5 and involved issuing several thousand (typically 5000 or more) individual

update statements on base relations that impact critical views defined by protective

retention policies. The standard error in measured wall-clock response times in our

tests was usually less than 5% of the average time to commit for an update.

Figure 5.4 summarizes the results of the overhead incurred by each of the 12

protection policies when they are individually implemented as a set of triggers and

51

0

10
20

30
40

50

60
70

1 2 3 4 5 6 7 8 9 10 11 12

R
es

po
ns

e
Ti

m
e

(m
s)

Materialized Views

Triggers

Figure 5.5: The scalability of incremental and total re-computation in detecting

changes in the contents of critical views. The values on the x-axis represent the

total number of protective policies being enforced on the database. For example at

7, Policies 1 through 7 are all being enforced at the same time.

as a materialized view. All updates were performed randomly over the dataset (each

tuple was equally likely to be modified). Policies involving aggregated information

(for example, policies 10, 11 and 12) clearly favor incremental computation, whereas

for other policies the maintenance overhead caused by materialization is far greater

than simple checking of updates for relevance.

The reason for triggers individually performing better than materialized views

for event detection is largely due to the TPC-H schema and specifications. For

example a purchase order in the TPC-H schema is related to only one customer,

nation and region. Furthermore, the data contained in any purchase order includes

at most seven line items. Consequently the majority of the simple policy decisions

on updates pertaining to individual purchase orders can be made by examining a

small number of tuples. It is only when repetitive re-computation of aggregates

takes place that triggers pay a heavy price.

Figure 5.5 demonstrates how both the incremental and total re-computation

approaches scale independently as more and more policies are implemented. Ma-

terialization suffers from the overhead of view maintenance whereas triggers have

scalability issues arising from one policy on a view being translated into multiple

triggers on base tables. For maintaining efficiency in transaction processing most

commercial database systems limit the number of triggers that can be instantiated

on a relation (typically fewer than 64). Consequently it is very unlikely that, when

52

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

R
es

po
ns

e
Ti

m
e

(m
s)

Hybrid

Hybrid (w/Trigger Grouping)

No Monitoring

Figure 5.6: The scalability of the hybrid approaches to event detection on views.

The values on the x-axis represent the total number of protective policies being

enforced on the database. For example at 7, Policies 1 through 7 are all being

enforced at the same time.

dealing with a large number of policies, triggers would be able to accommodate

the monitoring of all protective views. Note that the policies where triggers incur

a high overhead are deliberately introduced as the last three policies in the mix.

Thus the figure seems to favor the use of triggers for record monitoring. However

the total cost associated with monitoring all policies using triggers is far greater

than that of using materialized views. This is simply because of the high cost of

repetitive re-computation of aggregates over a large amount of data. The addition

of a single policy (Policy 12), which is intended to protect the aggregated total of

all orders as long as the total remains under a certain maximum, makes the use

of triggers for view monitoring infeasible. We deliberately delayed introducing this

policy in the mix to ensure meaningful presentation of results. Had this policy been

introduced as the first policy in the mix, the results would have been very differ-

ent. The more important observation is that, neither triggers nor incremental view

maintenance, can in general work well for monitoring a broad variety of views. The

overhead incurred for monitoring all policies at the same time was a factor of 30

using incremental computation approach and roughly a factor of 1350 for triggers

when compared against no monitoring of updates.

The results in Figure 5.6 demonstrate that simply choosing the correct and more

suited event monitoring mechanism for each policy can substantially reduce the cost

associated with monitoring critical views. The plain hybrid strategy, which simply

chooses between triggers or materialization, performs better than either technique

53

alone. However it still suffers from having to instantiate a large of number triggers

which greatly reduces its scalability. Since the TPC-H schema is relatively compact,

and the fact that a large number of our policies revolve around the order and lineitem

tables, trigger grouping provides a much more significant improvement in response

times by minimizing the number of trigger invocations per update on a base table.

We note that there are bound to be differences between our tests and real world

scenarios. However we claim that these differences will not degrade performance

in a large number of cases. The foremost difference will be that of a non-random

model for updates where all protected tuples are not equally likely to be modified.

As noted earlier many businesses do not actively modify temporally stable records

(for example very old purchase orders). Consequently the use of temporal/range

based indexing and partitioning may substantially reduce monitoring costs. Second

we note that our tests were done using unrealistically high record coverage and while

certain database applications such as those keeping track of medical histories will be

highly regulated, typical coverage can be expected to be lower than what we tested

against.

In practice we recommend that the decision to use a particular strategy for

monitoring views be made by the query optimizer after considering the expected

number of policy violations, expected number of relevant updates, level of temporal

stability exhibited by records and types of views to be monitored. Given a particular

workload, modern database systems are able to recommend materializations of views

that can improve query performance. Much of the infrastructure to measure the

cost and benefit of incremental computation of views versus re-computation costs

of queries already exists. Therefore we believe that by using these existing features

a “retention policy advisor” can be built such that given a set of record definitions,

protective policies on records and an expected workload profile, the best monitoring

mechanism can be easily determined. We acknowledge that as the expressiveness of

critical views and the complexity of actions specified (perhaps as stored procedures)

increases, so will the overhead of having a view/tuple protective data retention

framework. The work done by Blakely et al. in the area of views attempted to

detect irrelevant updates statically by only examining the view definition and a

given update. However more than two decades’ research into views has made modern

database systems capable of exploiting a large range of available information, such

as functional dependencies and materialized views, for detecting irrelevant updates.

Although there is the remote possibility of encountering the worst case cost of re-

computation of a critical view at every modification to the database, we argue

that no other existing mechanism in relational databases (such as triggers or access

54

control features) will in general be able to avoid such costs.

Finally there is the cost of static analysis of policies. We believe that tasks

such as detection of conflicts, and proving termination properties for destructive

actions can largely be mechanized. Even though the run time of most algorithms to

accomplish this will be exponential, and human intervention may still be required,

these costs will be one-time only. Laws pertaining to retention do not change very

often, thus when a stable set of record definitions and policies are created, they will

rarely require re-verification.

55

Chapter 6

The Broader Picture in Records

Retention

We conclude this thesis by comparing our proposed framework to existing solutions

and then examining several broad-ranging issues related to data retention in and

beyond the scope of relational databases. We examine various problems pertaining

to retention of distributed and offline data. Possible remedial steps that can be

taken to mitigate these problems are then discussed.

6.1 Existing Solutions

There are several software based ECM management solutions that manage a wide

variety of records such as emails and documents. Unfortunately, we have not seen

a similar solution for records management in relational database management sys-

tems. There are several storage management solutions such as Tivoli (IBM) and

StorageWorks (HP) that can make regular backups of entire databases and sub-

sequently delete them at specified periods of time. However to the best of our

knowledge there exists no published solution nor a comprehensive examination of

issues pertaining to records management in relational database systems.

It is evident that industry and academia are well aware of the problems in the

store-everything approach with databases. However databases are very much still

treated as coarse structures similar to files. Several papers published in technical

conferences have stressed the need for proper frameworks for data retention, but

none have gone beyond the surface to explain how their vision will be implemented.

57

Privacy policy specification languages such as P3P [AHKS02] and EPAL [And06]

also have support for retention tags for data, but they do not address fundamental

issues such as how these tags will be used in various situations.

More closely related, but equally vague, descriptions of how retention features in

database systems can be implemented are briefly mentioned in the work of Agarwal

et al. [AKSX02, ABG+05]. Unfortunately not much is described in these papers

other than IBM’s long term vision for Hippocratic/Privacy-aware databases. HP’s

vision for management of privacy and data retention related obligations is described

in the academic literature [MT06b, MT05, MT06a]. However the solution that they

outline is an attempt to monitor privacy obligations enterprise-wide using an elabo-

rate central obligation monitoring system. It can best be described as a systematic

way of scheduling events throughout all corporate data repositories such that the

execution of these events will ensure compliance with all privacy obligations. Such

a technique is rather näıve and more importantly it is very inefficient. It fails to rec-

ognize that checking of policy violations can be best done at the source of the data,

and at the same time as updates are applied to the data. Consequently we believe

that an external one-size-fits-all solution to enterprise wide privacy obligation mon-

itoring along with storage of the different what-if scenarios to deal with situations,

will not scale up for high performance database systems. Although we propose a

database oriented record monitoring system, our work is also somewhat orthogonal

in the sense that it does not assume existence of pre-defined mechanisms/procedures

in a database that are guaranteed to be correct and lead to a privacy friendly state

after their execution.

It seems that prior work has generally failed to address the question of what is

a record in relational database systems, acknowledge that retention requirements

can be both protective and destructive, and observe there are several issues specific

to database systems, such as dependencies among data and their retention require-

ments, that need to be considered. From our review of the literature we believe

that there is a common misconception that attaching a timestamp to every piece of

data in a system denoting its expiry will solve all problems. Stated differently, this

is very much the ECM approach to classifying data into different categories based

on the retention obligations. Unfortunately such a solution is clearly infeasible for

large-scale relational databases.

Firstly we note that the granularity of data at which a timestamp oriented tech-

nique can be applied can not be universally specified. Records retention policies are

typically defined by authorities without considering any specific database schema.

Consequently the foremost shortcoming of this metadata approach is that it does

58

Figure 6.1: Simply associating an expiry timestamp with every piece of data can

increase the storage requirements by a large factor.

not answer the question of where these timestamps will come from and how they

will be specified. Our framework on the other hand addresses these question di-

rectly. Secondly we note that attaching a retention timestamp to every tuple, or

even worse to every attribute of every tuple, is a very space inefficient method of

keeping track of retention obligations (See Figure 6.1). Such an approach is only

workable for simple and well defined objects, such as files, and in situations where

storing a timestamp has a relatively insignificant cost compared to the storage of the

record. Our proposed solution on the other hand implicitly stores these timestamps

as a policy expressed over the structure of records.

Not only does the timestamp approach ignore functional dependencies among

individual pieces of data, but it is also blind to the fact that retention obligations

may themselves be related to each other. If the time at which a record is to be

deleted is dependent on factors such as the last time the record itself was updated,

then we run into the additional problems of maintaining and keeping up-to-date the

particular retention timestamp in question. Furthermore timestamps themselves

do not provide adequate expressiveness for typical temporal retention conditions.

Lastly, the motivation for most published work in this area comes from providing

enhanced privacy guarantees to customers and external observers. Most research

into privacy aims to improve the state of the art in privacy enhancing technolo-

gies for the greater good of the public and not the corporate records management

team. Therefore the end goal is not compliance with minimum retention periods but

rather to ensure that private information is protected and not retained indefinitely

in organizational databases. Consequently the problem of managing and enforc-

59

Email Management Our Framework

Records Emails with Attachments Tuples in the view “R” defined

by the expression σ(email ./

attachment)

Protected

Records

Emails that have to be retained

until some condition is met

Tuples in a critical view of a pro-

tection policy on R

Expired

Records

Emails that have delete as soon

as possible

Tuples in a critical view of a de-

struction policy on R

Policy En-

forcement

Monitoring all emails that are

created or destroyed against all

policies

Maintenance of critical views

and detecting relevant updates

Figure 6.2: A comparison of how records management is accomplished in a typi-

cal central email storage/monitoring system against how it would be done in our

framework.

ing minimum retention periods for internal operational business records is largely

ignored in the literature.

Our proposed framework suffers no such shortcomings. We recognize that unlike

ECM systems, which manage files and data objects like email messages, there are no

boundaries for records in databases that can be used in all situations. Consequently

we have introduced a novel way to tackle the problem such that users can themselves

define records and enforce policy actions that they deem fit. Although our proposed

framework shares the same fundamental objectives with modern ECM systems (see

Figure 6.2 for a comparison) it is much more flexible than any existing mechanism

for managed records retention.

6.2 Guaranteed Destruction of Records

6.2.1 Backups and Offline Databases

The problem of indefinite retention of backed up data was first discussed up by

Boneh and Lipton [BL96]. They observed that even with the use of a privacy

aware systems that delete all expired data, offline backups (for example on tapes)

can lead to sensitive information persisting indefinitely. In order to avoid the cost

of physically mounting backups and deleting expired records, they proposed that

60

all sensitive information be encrypted before being backed up. When the data

expires, simply deleting the encryption key (which itself is not stored alongside the

backup) will effectively make the data irrecoverable for all intents and purposes. An

examination of the problem of hierarchical key management was presented in their

work, and they concluded that this technique can be repeatedly applied, even to

backup keys themselves. However the most recent encryption key must be preserved

with care. Their solution suggested that this master key must either be physically

written down or protected through escrow, and then subsequently destroyed when

another key replaces it. Although this technique is very practical, it is unlikely

that the problem associated with making backups of the current master key can

be resolved. If in a disaster situation the master key is lost, we effectively lose all

backups of our data. On the other hand keeping copies of the master key induces

risk of accidental retention of that key itself.

6.2.2 Distributed Systems

Data retention issues in distributed environments are far more complex than those

for stand-alone systems. We define the retention problem in distributed systems as

the problem of provably deleting a particular identifiable piece of data throughout

a distributed system. The aim is to offer a reasonable probabilistic guarantee that

records that may be replicated and/or partitioned over an arbitrary network are

deleted when the necessary conditions are met. There are numerous models under

which this problem can be studied. For example, in networks where nodes join

and leave intermittently, the ability to guarantee with reasonable certainty that a

particular delete request will propagate to all nodes has been examined [BCK+06].

Changing various parameters of the network and properties of nodes, such as assign-

ing owners of data, introducing trust models for data exchange, and even including

adversaries with limited storage in the network, can all lead to interesting reten-

tion scenarios. Unfortunately much of this work is spread across various aspects of

computing research. Different research communities have published their results in

separate contexts, such as in peer-to-peer data management systems [DHA03], dis-

tributed file systems [BCK+06], and of course in distributed database management

systems [DGH+87]. As much as we would like to direct the reader of this report

to a survey of such papers, there exists no comprehensive review of the literature

that unifies work done in distributed data management for enforcing mechanisms

for limited data retention.

61

6.2.3 Unwarranted Data Retention

Several issues in data retention arise simply because the concept of deleting data

has a different meaning in different contexts. For example environments such as

file systems that support “undeletion” provide a very vague explanation to users of

what deletion means. It is a well known fact that deletion in file systems implies

nothing more than simple removal of pointers to give the illusion of deletion and

available free space. In order to avoid the overhead of writing zeroes to disk, most

file systems leave files recoverable, through physical examination of sectors on disks.

We believe that similar forensic examination of deletion in various storage systems

will reveal equally interesting results.

Most of these cases of unwarranted data retention arise because of the mismatch

between user perception and system actions. Furthermore, it is interesting that the

problem of unwarranted data retention goes beyond the realm of software and even

storage systems. For example, modern day fax machines have convenience features

that allow users the ability to re-send faxes that were sent earlier, by retaining them

in large storage buffers. Whether users are aware of such features (their presence

or their being activated) is rarely a significant issue in the design of user interfaces.

While designing user oriented systems, whether they are web browsers or operating

systems, convenience and performance have traditionally trumped privacy. The fact

that traditional mechanisms for improving performance such as buffering, caching

and replication were all designed without considering privacy related issues has very

disturbing implications. Consequently we anticipate that a top down examination

of various data oriented systems will reveal that unwarranted retention of data is a

much bigger problem than it seems. In the context of forensic analysis of database

systems, a comprehensive examination of issues was presented very recently by

Stahlberg et al. [SML07]. They observed that database systems are notoriously

misleading when it comes to deletion of data. The use of deletion bits instead of

overwriting with zeroes and persistence of data in transaction logs and indexes are

a few of the many problems associated with unexpected data retention in relational

database systems.

6.3 Future Work

Apart from examining various problems in distributed systems and sources of inad-

vertent data retention, there is a wide array of topics in the field of records manage-

ment that can be explored in the future. Instead of briefly touching on divergent

62

issues such as XML databases and support for retention in other areas, we suggest

one critical problem in computer science that desperately needs more attention from

database researchers.

A problem which has generally been ignored in relational database systems is the

issue of ownership of data and rights over it. Several interesting problems emerge

when data from multiple sources/owners is integrated into one database system,

especially if these owners want to ensure different (retention) policies on their data.

Database systems assume that all data contained within them is owned by one single

authority. Typically a system administrator represents that authority and he/she

can grant various users rights over data. In situations involving Electronic Data

Interchange (EDI) or data import/export between organizations, a database system

has no functionality of respecting the policies and rules on it that the original owner

wished to enforce.

In the context of privacy preserving systems, this inseparability of data and

policies on it is widely known as the sticky policy paradigm. The problem is sim-

ilar to that of Digital Rights Management in the realm of anti music/file sharing

technologies. No storage system that we are aware of has adequate support for en-

forcing privacy policies and supporting interchange of data and policy at the same

time. However as people become more aware of the privacy implications of data

interchange between large scale database systems, providing a mechanism for sup-

porting ownership and portability of policies in databases will become of extreme

importance. Organizations such as the United States Department of Defense have

already started taking data exchange issues very seriously and perform regular audits

of their sub-contractors’ computer systems. Therefore research into this area from

a database perspective certainly has value. Once again it is questionable whether

attaching an ownership/policy tag to every piece of data will be a workable solu-

tion for high performance database systems. Consequently we believe that a better

approach would be to develop a framework similar in nature to ours, where records

and ownership are defined using a flexible granularity, as the basis for a database

system that truly supports the sticky policy paradigm. However there are numerous

other issues that arise in EDI, such as ensuring that the set of policies among data

exchanging parties are non-conflicting and determining whether policies enforced

by one party are stronger or weaker than the other. Even more complications can

occur when records are built on top of data jointly owned by different parties.

63

6.4 Summary of Contributions

In this thesis we examined the problem of managed records retention in relational

database systems. We recognized that no definition of a record will be universally

applicable over relational data, and näıve solutions of expiry-tagging will be far too

inefficient to scale up for high performance database systems. Consequently we pro-

posed a novel way of looking at records as relational expressions, which subsequently

allowed us to reduce challenges associated with policy enforcement to several well

studied problems in database theory. We believe that our methodology of looking

at policies beyond the level of rows and attributes makes the task of specifying

and controlling policies over complex records much simpler for the average records

manager. A framework for monitoring and enforcing data retention policies on view

based records was presented, along with a comprehensive discussion of formal prop-

erties such as conflicts and termination can be verified. Our framework has the

benefit of being not only space efficient but it is also capable of leveraging well

known results in database theory to improve performance of records management

tasks. From our analysis of a wide range of features in relational systems such

as triggers, access control and view maintenance, we believe that our view based

framework of policy enforcement is indeed the most practical solution for managed

records retention.

64

Appendix A

Policy Descriptions and View

Definitions (DB2)

A.1 Policy 1

Parts 500-525, 999 and 1001 are parts used for nuclear weapons and fuel enrichment.

All orders with line items which include the sale of the above parts must never be

updated. Other line items in these orders must also be protected.

A.1.1 View Definition

CREATE TABLE P1 AS

(

SELECT L2.L ORDERKEY AS L2OKEY,

L2.L LINENUMBER L2LNUM,

L1.L ORDERKEY L1OKEY,

L1.L LINENUMBER L1LNUM,

O ORDERKEY,

L2.L COMMENT,

O COMMENT,

O TOTALPRICE

FROM

LINEITEM L1,

LINEITEM L2,

65

ORDERS

WHERE L2.L ORDERKEY = O ORDERKEY

AND O ORDERKEY = L1.L ORDERKEY

AND

(

L1.L PARTKEY = 999

OR L1.L PARTKEY = 1001

OR (L1.L PARTKEY >= 500 AND L1.L PARTKEY <= 525)

)

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P1;

A.1.2 Trigger on Orders

CREATE TRIGGER NUCLEAR PARTS

BEFOREUPDATE OFO COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROWNEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM LINEITEM

WHERE L ORDERKEY = OLD ROW.O ORDERKEY

AND (L PARTKEY = 999

OR L PARTKEY = 1001

OR (L PARTKEY >= 500 AND L PARTKEY <= 525))

)

THEN

ELSE

END IF ;

END

A.1.3 Trigger on Lineitem

CREATE TRIGGER NUCLEAR PARTS LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

66

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

WHEN

(OLD ROW.L PARTKEY = 999

OR OLD ROW.L PARTKEY = 1001

OR (OLD ROW.L PARTKEY >= 500 AND OLD ROW.L PARTKEY <=

525))

BEGIN ATOMIC

END

A.2 Policy 2

Protect all orders from Kenya with total price more than 150000.

A.2.1 View Definition

CREATE TABLE P2 AS

(

SELECT

O COMMENT,

O ORDERKEY,

O TOTALPRICE,

C CUSTKEY,

N NATIONKEY

FROM

ORDERS, CUSTOMER, NATION

WHERE

C CUSTKEY = O CUSTKEY

AND C NATIONKEY = N NATIONKEY

AND N NATIONKEY = 14

AND O TOTALPRICE > 150000

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P2;

67

A.2.2 Trigger on Orders

CREATE TRIGGER KENY AN ORDERS

BEFORE UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM CUSTOMER, NATION

WHERE C CUSTKEY = OLD ROW.O CUSTKEY

AND C NATIONKEY = N NATIONKEY

AND N NATIONKEY = 14

AND OLD ROW.O TOTALPRICE > 150000

)

THEN

ELSE

END IF ;

END

A.2.3 Trigger on Lineitem

CREATETRIGGER KENY AN ORDERS LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM CUSTOMER, NATION,ORDERS

WHERE C CUSTKEY = O CUSTKEY AND C NATIONKEY = N NATIONKEY

AND N NATIONKEY = 14

AND O TOTALPRICE > 150000

AND OLD ROW.L ORDERKEY = O ORDERKEY

)

THEN

68

ELSE

END IF ;

END

A.3 Policy 3

Protect orders beyond a large total price of (300,000). Note that this policy implies

that we are doubly protecting the Kenyan orders and all large orders

A.3.1 View Definition

CREATE TABLE P3 AS

(

SELECT

O ORDERKEY,

O COMMENT,

L COMMENT,

L ORDERKEY,

L LINENUMBER

FROM

ORDERS, LINEITEM

WHERE

O TOTALPRICE >= 300000 AND O ORDERKEY = L ORDERKEY

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P3;

A.3.2 Trigger on Orders

CREATE TRIGGER LARGE ORDERS

BEFORE UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

69

WHEN (OLD ROW.O TOTALPRICE > 30000)

BEGIN ATOMIC

END

A.3.3 Trigger on Lineitem

CREATE TRIGGER LARGE ORDERS LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM ORDERS

WHERE OLD ROW.L ORDERKEY = O ORDERKEY

AND O TOTALPRICE > 300000

)

THEN

ELSE

END IF ;

END

A.4 Policy 4

Parts 3000-10000 are fertilizers that can be used to make explosives. Any order

which contains a line item with quantity greater than 10 units of these part should

be protected along with the lineitems.

A.4.1 View Definition

CREATE TABLE P4 AS

(

SELECT

70

O COMMENT,

O ORDERKEY,

L ORDERKEY,

O TOTALPRICE,

L LINENUMBER

FROM

ORDERS, LINEITEM

WHERE

O ORDERKEY = L ORDERKEY

AND L PARTKEY >= 3000

AND L PARTKEY <= 10000

AND L QUANTITY > 10

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P4;

A.4.2 Trigger on Orders

CREATE TRIGGER TNT ORDERS

BEFORE UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM LINEITEM

WHERE L ORDERKEY = OLD ROW.O ORDERKEY

AND L PARTKEY >= 3000 AND L PARTKEY <= 10000)

THEN

ELSE

END IF ;

END

71

A.4.3 Trigger on Lineitem

CREATE TRIGGER TNT ORDERS LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

WHEN (

OLD ROW.L PARTKEY >= 3000

AND OLD ROW.L PARTKEY <= 10000

AND OLD ROW.L QUANTITY > 10)

BEGIN ATOMIC

END

A.5 Policy 5

Protect a new category of orders called “ULTRA URGENT”. Execute the following

query to set a fair number of orders to this priority:

UPDATE ORDERS

SET O ORDERPRIORITY = “− 1− ULTRA URGENT”

WHERE O ORDERPRIORITY = “1− URGENT”

AND MOD(O ORDERKEY, 5) = 0

A.5.1 View Definition

CREATE TABLE P5 AS

(

SELECT

O ORDERKEY,

O COMMENT,

L COMMENT,

L ORDERKEY,

O TOTALPRICE,

L LINENUMBER

FROM

ORDERS, LINEITEM

72

WHERE

O ORDERPRIORITY = “− 1− ULTRA URGENT”

AND O ORDERKEY = L ORDERKEY

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P5;

A.5.2 Trigger on Orders

CREATE TRIGGER URGENT ORDERS

BEFORE UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

WHEN (OLD ROW.O ORDERPRIORITY = “− 1− ULTRA URGENT”)

BEGIN ATOMIC

END

A.5.3 Trigger on Lineitem

CREATE TRIGGER URGENT ORDERS LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM ORDERS

WHERE OLD ROW.L ORDERKEY = O ORDERKEY

AND O ORDERPRIORITY = “− 1− ULTRA URGENT”

)

THEN

ELSE

END IF ;

END

73

A.6 Policy 6

Protect orders with orderstatus “P”.

A.6.1 View Definition

CREATE TABLE P6 AS

(

SELECT

O ORDERKEY,

O COMMENT,

L COMMENT,

L ORDERKEY,

O TOTALPRICE,

L LINENUMBER

FROM

ORDERS, LINEITEM

WHERE

O ORDERSTATUS = “P”

AND O ORDERKEY = L ORDERKEY

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P6;

A.6.2 Trigger on Orders

CREATE TRIGGER P ORDERS

AFTER UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

WHEN (OLD ROW.O ORDERSTATUS = “P”)

BEGIN ATOMIC

END

74

A.6.3 Trigger on Lineitem

CREATE TRIGGER P ORDERS LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM ORDERS

WHERE OLD ROW.L ORDERKEY = O ORDERKEY

AND O ORDERSTATUS = “P”

)

THEN

ELSE

END IF ;

END

A.7 Policy 7

Create a new Lineitem status “P”. Assign this status to every 20th lineitem, then

protect all orders which contain such a lineitem: UPDATE LINEITEM

SET L LINESTATUS = “P”

WHERE MOD(L ORDERKEY, 20) = 0

A.7.1 View Definition

CREATE TABLE P7 AS

(

SELECT

O ORDERKEY,

O COMMENT,

L COMMENT,

L ORDERKEY,

O TOTALPRICE,

75

L LINENUMBER

FROM

ORDERS, LINEITEM

WHERE

L LINESTATUS = “P” AND O ORDERKEY = L ORDERKEY

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P7;

A.7.2 Trigger on Orders

CREATE TRIGGER P LINEITEMS

AFTER UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM LINEITEM

WHERE L ORDERKEY = OLD ROW.O ORDERKEY

AND L LINESTATUS = “P”

)

THEN

ELSE

END IF ;

END

A.7.3 Trigger on Lineitem

CREATE TRIGGER LINEITEM STATUS P LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

WHEN (OLD ROW.L LINESTATUS = “P”)

BEGIN ATOMIC

76

END

A.8 Policy 8

Protect lineitems with tax amount greater than 4500.

A.8.1 View Definition

CREATE TABLE P8 AS

(

SELECT

L COMMENT,

L ORDERKEY,

L LINENUMBER,

O ORDERKEY,

O TOTALPRICE

FROM

LINEITEM,ORDERS

WHERE L ORDERKEY = O ORDERKEY

AND L TAX ∗ L EXTENDEDPRICE > 4500

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P8;

A.8.2 Trigger on Orders

CREATE TRIGGER HIGH TAX

BEFORE UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

77

SELECT ∗ FROM LINEITEM

WHERE L ORDERKEY = OLD ROW.O ORDERKEY

AND L TAX ∗ L EXTENDEDPRICE > 4500

)

THEN

ELSE

END IF ;

END

A.8.3 Trigger on Lineitem

CREATE TRIGGER HIGH TAX LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

WHEN (OLD ROW.L TAX ∗ OLD ROW.L EXTENDEDPRICE > 4500)

BEGIN ATOMIC

END

A.9 Policy 9

All orders from customers from nation 10 (Iran) which total more than 250000 have

to be protected for at least 2 years. This policy overlaps with policy #3.

A.9.1 View Definition

CREATE TABLE P9 AS

(

SELECT

O COMMENT,

O ORDERKEY,

O TOTALPRICE,

C CUSTKEY,

78

N NATIONKEY

FROM

ORDERS, CUSTOMER, NATION

WHERE

C CUSTKEY = O CUSTKEY

AND C NATIONKEY = N NATIONKEY

AND N NATIONKEY = 10

AND O TOTALPRICE > 250000

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

REFRESH TABLE P9;

A.9.2 Trigger on Orders

CREATE TRIGGER IRANIAN ORDERS

BEFORE UPDATE OF O COMMENT ,O TOTALPRICE ON ORDERS

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM CUSTOMER, NATION

WHERE C CUSTKEY = OLD ROW.O CUSTKEY

AND C NATIONKEY = N NATIONKEY

AND N NATIONKEY = 10

AND OLD ROW.O TOTALPRICE > 250000

)

THEN

ELSE

END IF ;

END

A.9.3 Trigger on Lineitem

CREATE TRIGGER IRANIAN ORDERS LI

BEFORE UPDATE OF L COMMENT ,L EXTENDEDPRICE ON LINEITEM

79

REFERENCING OLD AS OLD ROW NEW AS NEW ROW

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

IF EXISTS

(

SELECT ∗ FROM CUSTOMER, NATION,ORDERS

WHERE C CUSTKEY = O CUSTKEY

AND C NATIONKEY = N NATIONKEY

AND N NATIONKEY = 10

AND O TOTALPRICE > 250000

AND OLD ROW.L ORDERKEY = O ORDERKEY

)

THEN

ELSE

END IF ;

END

A.10 Policy 10

Policies 10-12 involve views with aggregated values. Triggers must incur the cost

of executing the specific query at every relevant update. Policy 10 describes a view

for an abstract policy where a manager may want to protect the average value of

urgent orders.

A.10.1 View Definition

CREATE TABLE P10 AS

(

SELECT

COUNT (∗) AS CNT,

SUM(O TOTALPRICE) AS S,

O ORDERPRIORITY

FROM ORDERS

WHERE O ORDERPRIORITY = “1− URGENT”

GROUP BY O ORDERPRIORITY

80

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P10;

A.11 Policy 11

Another policy involving an aggregate that makes the use of triggers infeasible. The

policy designer may want to ensure that the sum of total prices that are below a cer-

tain limit from certain customers is protected. A trigger would have to re-compute

this query at every relevant update. Active recomputation would only require a

lookup on SUM(totalprice) in this materialized view. The special customers in this

case are those whose ID is divisible by 50.

A.11.1 View Definition

CREATE TABLE P11 AS

(

SELECT COUNT (∗) AS CNT,

SUM(O TOTALPRICE) AS S,

O CUSTKEY

FROM ORDERS

WHERE MOD(O CUSTKEY, 50) = 0

GROUP BY O CUSTKEY

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P11;

A.12 Policy 12

An aggregate over all possible orders.

81

A.12.1 View Definition

CREATE TABLE P12 AS

(

SELECT COUNT (∗) AS CNT,

SUM(O TOTALPRICE) AS S,

O ORDERSTATUS

FROM ORDERS

GROUP BY O ORDERSTATUS

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE P12;

82

References

[ABG+05] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and W. Rjaibi.

Extending relational database systems to automatically enforce privacy

policies. In ICDE 2005: Proceedings. 21st International Conference

on Data Engineering, pages 1013–1022, Los Alamitos, CA, USA, 2005.

IEEE Computer Society Press. 58

[AHKS02] P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P privacy policies

and privacy authorization. In WPES ’02: Proceedings of the 2002 ACM

Workshop on Privacy in the Electronic Society, pages 103–109, New

York, NY, USA, 2002. ACM Press. 58

[AKSX02] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases.

In VLDB, pages 143–154, 2002. 58

[And06] A. Anderson. A comparison of two privacy policy languages: EPAL and

XACML. In SWS ’06: Proceedings of the 3rd ACM Workshop on Secure

Web Services, pages 53–60, New York, NY, USA, 2006. ACM Press. 58

[AWH92] Alexander Aiken, Jennifer Widom, and Joseph M. Hellerstein. Behavior

of database production rules: Termination, confluence, and observable

determinism. In SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD

International Conference on Management of Data, pages 59–68, New

York, NY, USA, 1992. ACM. 35

[BCK+06] Gal Badishi, Germano Caronni, Idit Keidar, Raphael Rom, and Glenn

Scott. Deleting files in the Celeste peer-to-peer storage system. In SRDS

’06: Proceedings of the 25th IEEE Symposium on Reliable Distributed

Systems (SRDS’06), pages 29–38, Washington, DC, USA, 2006. IEEE

Computer Society. 61

83

[BCL89] José A. Blakeley, Neil Coburn, and Per-Åke Larson. Updating derived

relations: Detecting irrelevant and autonomously computable updates.

ACM Trans. Database Syst., 14(3):369–400, 1989. 24, 25, 44

[Bet02] C. Bettini. Obligation monitoring in policy management. In Third In-

ternational Workshop on Policies for Distributed Systems and Networks,

pages 2–12, 2002.

[BJ98] Jean-Franois Blanchette and Deborah Johnson. Data retention and the

panoptic society: The social benefits of forgetfulness. ACM Policy Con-

ference 1998, 1998. 6

[BL96] D. Boneh and R. Lipton. A revocable backup system. Proceedings of the

6th USENIX Security Conference, pages 91–96, 1996. 60

[BLT86] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently

updating materialized views. SIGMOD Record, 15(2):61–71, 1986. 25

[BM95] Lars Bækgaard and Leo Mark. Incremental computation of time-varying

query expressions. IEEE Transactions on Knowledge and Data Engineer-

ing, 7(4):583–590, 1995. 26

[BS81] F. Bancilhon and N. Spyratos. Update semantics of relational views.

ACM Transactions on Database Systems, 6(4):557–575, 1981. 31

[CCW00] S. Ceri, R. Cochrane, and J. Widom. Practical applications of triggers

and constraints: Success and lingering issues (10-year award). In VLDB

2000: Proceedings of the 26th International Conference on Very Large

Data Bases, pages 254–262, San Francisco, CA, USA, 2000. Morgan

Kaufmann Publishers Inc. 40

[Coh06] Sara Cohen. User-defined aggregate functions: Bridging theory and prac-

tice. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD Inter-

national Conference on Management of Data, pages 49–60, New York,

NY, USA, 2006. ACM Press. 25

[CW91] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incre-

mental View Maintenance. In VLDB, 1991. 49

[DFK06] H. Drinan, N. Fontaine, and B. Kesler. News briefs. IEEE Security and

Privacy Magazine, 4(1):14–16, January-February 2006. 3

84

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic

algorithms for replicated database maintenance. In PODC ’87: Proceed-

ings of the sixth annual ACM Symposium on Principles of distributed

computing, pages 1–12, New York, NY, USA, 1987. ACM. 61

[DHA03] Anwitaman Datta, Manfred Hauswirth, and Karl Aberer. Updates in

highly unreliable, replicated peer-to-peer systems. In ICDCS ’03: Pro-

ceedings of the 23rd International Conference on Distributed Computing

Systems, page 76, Washington, DC, USA, 2003. IEEE Computer Society.

61

[DKM86] Klaus R. Dittrich, Angelika M. Kotz, and Jutta A. Mülle. An

event/trigger mechanism to enforce complex consistency constraints in

design databases. SIGMOD Record, 15(3):22–36, 1986. 40

[Eid06] Thomas Eid. Records retention requirements. Market Share: Enterprise

Content Management Software, Worldwide, 2003-2005, 2006. 7

[Elk89] C. Elkan. A decision procedure for conjunctive query disjointness. In

PODS ’89: Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 134–139, New

York, NY, USA, 1989. ACM Press.

[Emm89] Peter Emmerson. How to Manage Your Records: A Guide to Effective

Practice). Hemel Hempstead, UK: ICSA Publishing Limted, 1989. 14

[Etz93] O. Etzion. PARDES: a data-driven oriented active database model.

SIGMOD Record, 22(1):7–14, 1993.

[GF05] P. Gama and P. Ferreira. Obligation policies: An enforcement platform.

Sixth IEEE International Workshop on Policies for Distributed Systems

and Networks POLICY’05, 00:203–212, 2005.

[GW76] Patricia P. Griffiths and Bradford W. Wade. An authorization mecha-

nism for a relational database system. ACM Transactions on Database

Systems, 1(3):242–255, 1976.

[HCH+99] Eric N. Hanson, Chris Carnes, Lan Huang, Mohan Konyala, Lloyd

Noronha, Sashi Parthasarathy, J. B. Park, and Albert Vernon. Scal-

able Trigger Processing. In ICDE, 1999. 50

85

[HN99] Eric N. Hanson and Lloyd X. Noronha. Timer-driven database triggers

and alerters: semantics and a challenge. SIGMOD Record, 28(4):11–16,

1999.

[Kel85] Arthur M. Keller. Algorithms for translating view updates to database

updates for views involving selections, projections, and joins. In PODS

’85: Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, pages 154–163, New York, NY, USA,

1985. ACM. 31

[Kel86] Arthur M. Keller. Choosing a view update translator by dialog at view

definition time. In VLDB ’86: Proceedings of the 12th International

Conference on Very Large Data Bases, pages 467–474, San Francisco,

CA, USA, 1986. Morgan Kaufmann Publishers Inc. 31

[KHS94] G. Knolmayer, H. Herbst, and M. Schlesinger. Enforcing business rules

by the application of trigger concepts. In Proceedings of the Priority

Programme Informatics Confrence, pages 24–30. Swiss National Foun-

dation, 1994.

[KRS04] Orly Kalfus, Boaz Ronen, and Israel Spiegler. A selective data retention

approach in massive databases. International Journal of Management

Science, 32(32):87–95, 2004.

[KS02] G. Karjoth and M. Schunter. A privacy policy model for enterprises. In

15th Computer Security Foundations Workshop, pages 271–281, 2002.

[KSW03] G. Karjoth, M. Schunter, and M. Waidner. Platform for enterprise pri-

vacy practices: Privacy-enabled management of customer data. Lecture

Notes in Computer Science, 2482(5):69–84, August 2003.

[LL99] S. Y. Lee and T. W. Ling. Unrolling cycle to decide trigger termination.

In Proceedings of the 25th International Conference on Very Large Data

Bases, pages 483–493, 1999. 35

[LS99] C. Lupu and M. Sloman. Conflicts in policy-based distributed systems

management. IEEE Transactions on Software Engineering, 25(6):852–

869, 1999.

[ML85] N. Minsky and A. Lockman. Ensuring integrity by adding obligations to

privileges. In ICSE ’85: Proceedings of the 8th international conference

86

on Software engineering, pages 92–102, Los Alamitos, CA, USA, 1985.

IEEE Computer Society Press.

[ML03] Stephen Moore and Lovelace. Records retention requirements. 2003. 5

[MS02] R. Middleton and H. Smith. Data retention policies after enron - damned

if you do, damned if you don’t? a look at data retention policies in the

aftermath of enron. Computer Law and Security Report, 18(5):333–337,

October 2002. 3, 32

[MT85] Claudia Bauzer Medeiros and Frank Wm. Tompa. Understanding the

implications of view update policies. In VLDB ’1985: Proceedings of the

11th International Conference on Very Large Data Bases, pages 316–323.

VLDB Endowment, 1985.

[MT05] M. Mont and R. Thyne. A system to handle privacy obligations in

enterprises. In Hewlett-Packard Internal Technical Report (HPL-2005-

180), 2005. 58

[MT06a] M. Mont and R. Thyne. Privacy policy enforcement in enterprises with

identity management solutions. In Hewlett-Packard Internal Technical

Report (HPL-2006-72), 2006. 58

[MT06b] M. Mont and R. Thyne. A systemic approach to automate privacy pol-

icy enforcementin enterprises. In PET 2006: 6th Workshop on Privacy

Enhancing Technologies, 2006. 58

[SD95] Eric Simon and Angelika Kotz Dittrich. Promises and realities of active

database systems. In VLDB ’95: Proceedings of the 21th International

Conference on Very Large Data Bases, pages 642–653, San Francisco,

CA, USA, 1995. Morgan Kaufmann Publishers Inc. 40

[SML07] Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine. Threats to

privacy in the forensic analysis of database systems. In SIGMOD ’07:

Proceedings of the 2007 ACM SIGMOD International Conference on

Management of Data, pages 91–102, New York, NY, USA, 2007. ACM.

62

[SNS06] Feng Shao, Antal Novak, and Jayavel Shanmugasundaram. Triggers over

nested views of relational data. ACM Transactions on Database Systems,

2006. 49, 50

87

[Swe02] Latanya Sweeney. k-anonymity: a model for protecting privacy. Interna-

tional Journal of Uncertainty, Fuzziness and Knowledge Based Systems,

10(5):557–570, 2002. 5

[UB04] Ekweozor Ugonwa and Theodoulidis Babis. Review of retention man-

agement software systems. Records Management Journal, 14(2):65–77,

2004. 14

[vdVS93] Leonie van der Voort and Arno Siebes. Termination and confluence of

rule execution. In CIKM ’93: Proceedings of the Second International

Conference on Information and Knowledge Management, pages 245–255,

New York, NY, USA, 1993. ACM. 35

[Wid96] J. Widom. The starburst active database rule system. IEEE Transac-

tions on Knowledge and Data Engineering, 8(4):583–595, 1996. 40

[YC00] Zawiyah M. Yusof and Robert W. Chell. The records life cycle: An inad-

equate concept for technology-generated records. Journal of Information

Development, 16(3):135–141, 2000. 14

[YW98] Jun Yang and Jennifer Widom. Maintaining temporal views over non-

temporal information sources for data warehousing. In EDBT ’98:

Proceedings of the 6th International Conference on Extending Database

Technology, pages 389–403, London, UK, 1998. Springer-Verlag.

88

	Introduction
	Records Management
	Records Retention

	Policy Management
	Identification and Classification
	Policy Conflicts

	Legal Requirements and Implications
	State of the Art in Records Retention
	Problem Statement

	Records in Relational Database Systems
	Practical Implications
	Proposed Definition

	Temporal Records
	Physical Documents as Sets of Views

	Protecting Relational Records
	Requirements
	Protective Policy Specification
	Syntax and Examples
	Protection Levels
	Temporal Records and Protection Levels

	Framework for Implementation
	Non-Temporal views
	Temporal Views
	Expected Performance

	Timely Destruction of Relational Records
	Requirements
	Flexibility and Proof of Compliance
	Correct Enforcement
	Weak Correctness
	Integrity Preservation
	Primary Key and Uniqueness
	Foreign Keys
	Other Issues in Integrity Preservation

	Schema and Policy Set Evolution

	Making it Work
	Inter-Policy Conflicts
	Detecting Conflicts
	Source of Conflicts

	Conflict Avoidance
	Implementation
	Experimental Evaluation

	The Broader Picture in Records Retention
	Existing Solutions
	Guaranteed Destruction of Records
	Backups and Offline Databases
	Distributed Systems
	Unwarranted Data Retention

	Future Work
	Summary of Contributions

	Policy Descriptions and View Definitions (DB2)
	Policy 1
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 2
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 3
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 4
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 5
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 6
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 7
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 8
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 9
	View Definition
	Trigger on Orders
	Trigger on Lineitem

	Policy 10
	View Definition

	Policy 11
	View Definition

	Policy 12
	View Definition

	References

