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Abstract

Indexing data for efficient search capabilities is a core problem in many do-
mains of computer science. As applications centered around semantic data
sources become more common, the need for more sophisticated indexing and
querying capabilities arises. In particular, the need to search for specific in-
formation in the presence of a terminology or ontology (i.e. a set of logic
based rules that describe concepts and their relations) becomes of particular
importance, as the information a user seeks may exists as an entailment of
the explicit data by means of the terminology. This variant on traditional
indexing and search problems forms the foundation of a range of possible
technologies for semantic data.

In this work, we propose an ordering language for specifying partial orders
over semantic data items modeled as descriptions in a description logic. We
then show how these orderings can be used as the basis of a search tree index
for processing concept searches in the presence of a terminology. We study in
detail the properties of the orderings and the associated index structure, and
also explore a relationship between ordering descriptions called order refine-
ment. A sound and complete procedure for deciding refinement is given. We
also empirically evaluate a prototype implementation of our index structure,
validating its potential efficacy in semantic query problems.
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Chapter 1

Introduction

The problem of managing and retrieving information efficiently is paramount
in any data centric application. Recent advances in the development of stan-
dards and support technologies for semantic data models have enabled new
possibilities for knowledge based applications with logical reasoning support.
These advances include the Resource Description Framework (RDF) [25],
the Web Ontology Language (OWL) [36], the Semantic Web Rule Language
(SWRL) [33], and the RDF query language SPARQL [28].

An increasing number of applications are harnessing these technologies1,
including biological data exploration applications [34, 40], semantic web
agents [15], and semantic data repositories [9, 10, 18, 20, 37]. These ap-
plications often involve large complex data sources and ontologies that need
to be integrated and searched. The YAGO ontology [32], dbpedia [11], and
freebase [13] are some prominent examples of such semantic data sets. Also,
existing problems are finding new approaches with semantic data models,
such as the semantic search variant of the classic information retrieval prob-
lem [16].

A common factor in all of these application areas is the need to search
for specific information in the presence of a terminology (or ontol-
ogy). This complicates traditional indexing and search methods as termi-
nologies encode general information from which new data, or properties of
existing data, can be inferred. The information encoded by a system (i.e.,
the data instances and a terminology) is often represented with expressive
logics, usually variants of description logics (DLs), and require reasoning to

1 Use case studies of some of these problems and others can be found at
http://www.w3.org/2001/sw/sweo/public/UseCases/.
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2 CHAPTER 1. INTRODUCTION

support querying over logically entailed data.
To support efficient retrieval of semantic data, the need for more sophisti-

cated indexing and search capabilities arises. In particular, the potential for
data management systems to take advantage of a knowledge representation
language with inference capabilities becomes relevant, and an improvement
of the accuracy of information retrieved during search (and potentially an
expansion of the expressiveness of the query language) becomes possible as
a result.

For example, consider an application in which publication data is to be
modeled in such a way as to allow searching in the presence of a terminology.
In particular, suppose the terminology contains the following axiom, where
ITEM is a primitive concept denoting a publication item, and subject and
price are concrete features. The axiom states that no item with subject
“C.S.” can have a price over $10.00.

ITEM u (subject = "C.S.") v (price ≤ 10.00)

Now consider a search for all items less than $12.99. We know that all items
with subject “C.S.” will be part of the query result, even though they may
not explicitly encode a value for the price attribute. Similarly, consider a
search over an ordered data structure, ordered by price, for all items with a
price of $15.00. We can conclude, independent of whether or not a data item
encodes a value for price, that any item with subject “C.S.” will be ordered
before any item with a price of $15.00. This knowledge enables pruning
during search as a result of information inferred from a terminology.

1.1 Contributions

In this work, we propose an ordering language for semantic information mod-
eled as statements in a description logic. We then show how these orderings
can be used as the basis of a tree index for searching in the presence of a
terminology. This work is relevant to semantic data oriented systems, such
as intelligent web agents and semantic search engines, that have the common
problem of needing to search among semantic data with the possibility of
inferring relevant search information from a terminology.
The contributions of this work are as follows:

• A language for specifying ordering descriptions which describe partial
orders over concept descriptions in a description logic is proposed.
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• An order refinement relationship is defined which characterizes a spe-
cialization relationship between a pair of ordering descriptions based on
the orderings they impose over a particular space of concept descrip-
tions. We also present a complete procedure for deciding refinement.

• An index structure based on ordering descriptions, called a description
index, is detailed and analysed in the context of its index and search
properties.

• A proof-of-concept experimental evaluation is presented to validate the
potential efficacy in using descriptions indices for real word knowledge
management problems.

1.2 Related Work

In the following section we survey relevant related work. To the best of our
knowledge, description indices are the first terminology aware ordered index
structure for semantic data, and were initially proposed by Pound et al. in
[21] (with an associated technical report [22]).

1.2.1 Indexing and Ordering

Our description index incorporates the basic notion of a binary search tree,
and thus has the obvious similarities with the extensive amount of research
on search trees. However, there are some particular domains of tree indexing
that have a stronger relationship to our proposal.

Hellerstein et al. [19] have proposed a generalized tree structure (GiST),
with Aref and Ilyas [1] extending the work to efficient generalized search
trees for indexing based on spatial partitioning (SP-GiST). This notion is
similar to our partition ordering construct, in which indexing can be done
by partitioning based on inferring concept description membership, rather
than spatial relationships. While their work does not incorporate logical
inference, it is possible that one could extend their notion of key consistency
to incorporate our ordering formalism (which in turn rests on DL inference).
This would extend both the SP-GiST structure and our work to terminology
aware, disk efficient space partition indexing with unbalanced trees. Other
spatial index structures, such as quad trees [26] and R-trees [17] (as well as
the many R-tree variants) share the same type of similarities.
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Paparizos and Jagadish [30] proposed an extended semantics for XQuery
processing in XML which incorporates an order specification. This allows for
reasoning about order optimization and duplicate elimination while retaining
query imposed ordering or document order requirements on the results. Their
formalism also allows for incomplete data items by explicitly stating the order
of incomplete items as being before or after the complete items.

Stanchev and Weddell explored how DL reasoners can be used to infer
redundant orderings of indices [29], and used their notion of an extended
index to address the index selection problem for embedded control applica-
tions. This notion can be modeled by our ordering language and refinement
relationship, and as such can be seen as a precursor to our approach.

1.2.2 Semantic Query Processing

Databases

A database centered around storing and querying descriptions of data with
inference capabilities was initially proposed by Borgida et al. with the CLAS-
SIC data model [6]. Their approach aimed for data representation with
polynomial time inference capabilities, and allowed for incomplete data de-
scriptions with an open world assumption. Our data model is similar to that
of Borgida et al., in that we model data as concept descriptions with an open
world assumption, however the focus of our work is a specialized index struc-
ture which was beyond the scope of the CLASSIC proposal. Our proposal is
also independent of a particular DL dialect (see Section 1.4).

RDF Stores

Current work on semantic data storage and query processing is largely driven
by the semantic web community. Many different approaches and systems
have been developed, such as Jena [10], Sesame [9], OWLIM [20], 3Store
[18], and others. The base form for data representation is RDF triples,
and storage is done either using a pluggable back-end storage device [9, 20]
(often a relational database [10, 18]), or by storing the triples in a native
graph representation [37]. The common component in all of these systems
is the method for supporting inference. Inference capabilities for semantic
web engines are generally characterized by which constructs in RDFS [24] or
OWL [36] are supported. OWL comes in three variants, OWL-Lite, OWL-
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DL, and OWL-Full. While none of these systems support the full expresivity
of OWL-DL, they do support inference in RDFS [9, 18], a fragment of OWL-
Lite [37], or all of OWL-Lite [10, 20]. Entailed information is computed either
by a forward chaining algorithm which preprocesses the data, expanding it
by exhaustively applying the axioms in the terminology, or by a backward
chaining algorithm, in which a query is rewritten using the axioms in the
terminology to query the union of every possible query that may contain a
result of the initial query.

In the case of forward chaining, the resulting growth of the data set can
be significant, at two to six times the original data size on average for some
typical examples [31]. Additionally, maintaining the entailed data set can
be non-trivial if axioms in the terminology are changed or added [35]. How-
ever, with all of the data materialized, query processing can be very efficient.
Backward chaining remedies the data inflation problem, but can suffer from
degraded performance as the unions of many queries can be expensive to
compute. Many existing systems use a combination of forward and back-
ward chaining to try and minimize data inflation while maximizing query
evaluation times. A discussion of time/space trade-offs in RDFS reasoning
can be found in [31].

Our system differs from these RDF stores in a few ways. For inference
support, we make use of a DL reasoner during query evaluation. The benefit
is that applications can use very expressive DL languages for knowledge rep-
resentation (such as OWL-DL), and still be able to process queries that take
advantage of entailed information. Also, our system need not inflate the data
set, and could even compress the data by removing any explicit information
that is also entailed by the terminology (intuitively, a reversal of the afore-
mentioned forward chaining expansion). The clear downside of our proposal
is that potentially expensive DL reasoning tasks are being performed during
query evaluation, which could have a significant impact on performance.

Despite these differences, our proposal is not necessarily a competing
model for RDF or OWL stores. In fact, our description indices could con-
ceivably be employed in an RDF or OWL store for graph matching queries
such as SPARQL queries. The description index would be used for retrieving
individuals satisfying some concept description as part of a larger query. For
example, one could use a description index to find all bindings of a head vari-
able in a SPARQL query (based on the description encoded in the predicate
of the query), then compute values for the remaining variables in the usual
way. The availability of a DL reasoner to the RDF/OWL engines could also
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ease the transition to query processing with data models in more expressive
logics. (The Jena RDF store lists integration with external reasoners as a
target goal, but currently does not have support for it.) These suggestions
however, are beyond the scope of this work. Note also that, although per-
sistence is a straightforward extension of our work, we do not address that
issue and thus our proposal is not for a data store, but rather a technology
that could be used in, or as the basis of, a semantic data store.

Semantic Search

Semantic search engines, such as ESTER [4], integrate semantic querying
with text retrieval as a semantic variant of traditional information retrieval.
Concept descriptions are extracted from natural language or keyword queries,
and the results of the semantic concept search are integrated with the results
from the keyword search. Currently, these systems use approaches similar
to the previously discussed forward chaining expansion, in which all entailed
data is materialized to allow very efficient hash indexing for search. As such,
our proposed description index could play a significant role in efficient concept
searching in the presence of a terminology, or in situations when forward
chaining expansions are not possible or are infeasible due to the resulting
data size. Description indices could also allow efficient processing of various
types of range queries, such as nearest neighbor or multidimensional ranges,
as part of a semantic search predicate.

1.3 Overview

The remainder of this work is organized as follows: the remaining section
of this chapter discusses description logics and their role in our notion of a
database. Chapter 2 formalizes our notion of an ordering description and
description index, and defines a refinement relationship between ordering
descriptions. In Chapter 3 a thorough analysis of ordering descriptions and
description indices is given, including the properties and performance under
varying assumptions about the concept descriptions being indexed and the
queries being processed. Chapter 4 then presents a sound and complete
procedure for deciding refinement. Chapter 5 presents our proof-of-concept
experimental evaluation, and Chapter 6 concludes with a discussion of some
possible extensions to ordering descriptions and future work.
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1.4 Description Logics

Description logics evolved from the development of formal languages for
knowledge representation, such as KL-ONE [8] and CLASSIC [7]. There
are many dialects of DLs, given by the logical constructs available in the
sub-language (e.g. boolean connectives such as conjunction, and relations
such as roles). The general idea is to allow one to construct concept de-
scriptions which are logical statements describing some conceptual class of
entities in an abstract domain. The interpretation of a concept description
is the set of all individuals in the domain that are described by the concept
description. For example, consider the abstract domain of publication items.
A concept description may describe a particular publication, with a title and
price among other features, and may also relate the description of that item
to other concept descriptions, such as a hasAuthor relation to a concept de-
scription of an author who wrote the publication item. The interpretation of
this description would be a singleton set, consisting of the actual publication
item (or a reference to it).

Description logics are a class of terminological logics, in which general
statements about concepts and their relations can be made. A collection of
such statements is called a terminology. This terminology serves as a type
of schema for database applications of DLs, defining the rules of a particular
system. To continue the publication example, a terminology might express
that every publication item has at least one hasAuthor relation. This would
be expressed as a subsumption relationship. Intuitively, this means that the
set of all things which are publication items is a subset of the set of all
things which have at least one author. A subsumption expression in the
terminology is generally referred to as an axiom or inclusion dependency. A
thorough overview of description logics can be found in [3].

1.4.1 The Description Logic ALCQ(D)

We choose the description logic dialect ALCQ(D) as an illustrative example
DL for this work. It should be noted however, that our results on order-
ings and indexing apply to any DL dialect with a linearly ordered concrete
domain. Figure 1.1 summarizes the syntax and semantics for constructs in
ALCQ(D), a formal definition is given below.
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Definition 1 (Description Logic ALCQ(D)) Let {C, C1, . . .} be a set of
primitive concepts, {R,S, . . .} a set of roles, {f, g, . . .} a set of concrete
features, and {k, k1, . . .} a set of constants. A concept description is defined
by the grammar:

D, E ::= f < g | f < k | C | D u E | ¬D | ∃R.D | (≥ n R D).

An inclusion dependency is a subsumption expression of the form D v E.
A terminology T is a finite set of inclusion dependencies.

An interpretation I is a 3-tuple 〈∆I , ∆C , ·I〉 where ∆I is an arbitrary
abstract domain, ∆C a linearly ordered concrete domain, and ·I an interpre-
tation function that maps:

• each primitive concept C to a set CI ⊆ ∆I ,

• each role R to a relation RI ⊆ (∆I ×∆I),

• each concrete feature f to a total function over the abstract domain
fI : ∆I → ∆C,

• each constant k to a constant in ∆C, and

• the < symbol to the binary relation for the linear order on ∆C.

• f < k to the set {e ∈ ∆I : (f)I(e) < (k)I}

• f < g to the set {e ∈ ∆I : (f)I(e) < (g)I(e)}

• D1 uD2 to the set (D1)
I ∩ (D2)

I

• ¬D to the set ∆I \(D)I

• ∃R.D to the set {e ∈ ∆I : (e, e′) ∈ (R)I and e′ ∈ (D)I}

• (≥ n R D) to the set {e ∈ ∆I : |{e′ : (e, e′) ∈ (R)I and e′ ∈ (D)I}| ≥
n}

An interpretation I satisfies an inclusion dependency D v E if (D)I ⊆
(E)I. A terminology T entails a subsumption relationship between concept
descriptions D and E, written T |= D v E, if (D)I ⊆ (E)I for all interpre-
tations I that satisfy all inclusion dependencies in T .
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Syntax: Semantics (Definition of (D)I):

D, E ::= f < k {e ∈ ∆I : (f)I(e) < (k)I}
| f < g {e ∈ ∆I : (f)I(e) < (g)I(e)}
| C (C)I ⊆ ∆I

| D1 uD2 (D1)
I ∩ (D2)

I

| ¬D ∆I \(D)I

| ∃R.D {e ∈ ∆I : (e, e′) ∈ (R)I and e′ ∈ (D)I}
| (≥ n R D) {e ∈ ∆I : |{e′ : (e, e′) ∈ (R)I and e′ ∈ (D)I}| ≥ n}

Figure 1.1: Syntax and Semantics of Concept Descriptions.

For the remainder of the paper, we also use the following derived constructs:

D t E ≡ ¬(¬D u ¬E)

∀R.D ≡ ¬∃R.¬D

> ≡ C t ¬C

⊥ ≡ ¬>

as well as the following derived comparisons on the concrete domain:

f ≥ g ≡ ¬(f < g)

f = g ≡ (f ≥ g) u (g ≥ f)

f > g ≡ ¬(f = g) u (f ≥ g)

f ≤ g ≡ ¬(f > g)

Consider a concept description of a publication data item as previously
discussed. We introduce the primitive concept ITEM to denote a publication
item, use italics for role names, and typed font for concrete features. The
following concept description encodes a publication item released on Jan-
uary 1st, 1995. The item is related to two authors with name and address
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information, a publisher, and also includes a title and price feature.

(ITEM u (title = "A Brief History of Thyme") u (price = 10.99)

u ∃hasAuthor.((name = "John Smith") u (email = "john@smith.net")

u ∃hasMailingAddress.(name of state = "New York"))
u ∃hasAuthor.((name = "Joe Smith") u (email = "joe@domain.net")

u ∃hasMailingAddress.(name of state = "Alaska"))
u ∃hasPublisher.((name = "Publisher House")

u ∃hasMailingAddress.(name of state = "New York"))
u (release date = 1995-01-01))

The sample description above encodes a small amount of data for the pub-
lication item and each concept that it is related to by a role. In general, a
single concept descriptions may encode a large amount of information and
have non-trivial subsumption relationships to other concept descriptions.

Now consider the rule that every publication item must have at least
one author. This would be formalized as the following inclusion dependency,
which states that all items must have a hasAuthor role relating it to something
in the abstract domain.

ITEM v ∃hasAuthor.(>)

A general restriction for an arbitrary number of n authors could be captured
using a numeric restriction on the role as follows:

ITEM v (≥ n hasAuthor >)

The example of a price constraint given in the introductory section of this
chapter is also an example of an inclusion dependency. In this case the
interpretation of the inclusion dependency states that the set of all things
that are items having a feature value equivalence of the concrete feature
subject to the constant “C.S”, is a subset of the set of all things that have
a price less than or equal to $10.00.

1.4.2 Databases and Queries

In this work, our notion of a database is simply a set of concept descrip-
tions D = {D1, D2, ..., Dn}. For simplicity, we use syntactic equivalence as
the equality comparison for set membership. The idea is that each concept
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description in the database denotes an entity from the abstract domain ∆I ,
such as the example publication item description previously discussed.

We consider queries composed of two basic operations, selection and sort.
Our selection operator consists of a concept description, the result of which
is all descriptions in the database that are subsumed by the query concept
description. Our sort operator consists of an ordering requirement given by
the mechanisms presented in Chapter 2. We give a formal definition of a
query in Section 2.3.1. As an example selection condition, for which the
previously discussed publication item description would qualify as a result is
given below.

(ITEM u (price < 12.00))

The query concept description finds all descriptions in the database that
denote items with a price feature less than $12.00. Note that the information
required to deduce that a data description qualifies as a query result may
be inferred from a terminology, as descriptions in the database may not
explicitly encode all relevant information.



Chapter 2

Ordering Descriptions

An ordering description specifies a partial order over a set of concept de-
scriptions in description logic. The ordering can be specified in terms of the
linear order on the underlying concrete domain, or as a partitioning based on
a subsumption relationship to an arbitrary concept description called a par-
titioning description. For example, an ordering of all publication items with
the concrete feature subject equal to “C.S.” ordered by title, followed by
all other publications ordered by release date could be captured as follows:

D(title : Un, release date : Un)

where D is the partitioning description (ITEM u (subject = "C.S.")).
In this chapter we formalize our ordering language (Section 2.1). We then

explore a relationship between orderings that characterizes a specialization
relationship (Section 2.2). Lastly, we show how the orderings can be used
as the basis of a search tree index and define the types of queries we will
consider over these index structures (Section 2.3).

2.1 Ordering Description

We now formalize our language for specifying partial orders over DL con-
cept descriptions, initially presented in [21]. Our language is extensible in
the same way as a description logic, in that new ordering capabilities can
be enabled by adding additional ordering constructors. We discuss a few
extensions in Section 6.1. We start with a notational definition to simplify
the explanation of the ordering semantics.

12
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Notation 1 We write D∗ to denote a description obtained from D by re-
placing all features f by f ∗, roles R by R∗, and concepts C by C∗, and
extend this notation in the natural way to apply to inclusion dependencies
and terminologies.

Conceptually, our copy notation allows us to create a unique instance of a
given description or terminology. This provides a simple way to, for example,
compare concrete feature values while still appealing to inference from a ter-
minology. For example, consider a terminology with the following inclusion
dependency.

CHEAP ITEM v ITEM u (price < 5.00)

Now consider the following two descriptions of publication items.

• D ≡ CHEAP ITEM

• E ≡ ITEM u (price = 20.00)

We can compare the above two concept descriptions on their price feature
with use of the terminology by posing the following subsumption test.

(T ∪ T ∗) |= (D u E∗) v (price < price∗)

The subsumption test holds if the set of all things which are both a D and
an E∗ is a subset of the set of all things that have a price feature less
than their price∗ feature. Since T ∗, E∗ and price∗ have no influence over
T , D and price (they contain unique labels), we know that every price

feature that is inferred will be a consequence of T and D. Likewise, every
price∗ feature that is inferred will be a consequence of T ∗ and E∗. Thus, the
subsumption will hold since (price < 5.00) is ordered before price = 20.00
on the underlying concrete domain.

Definition 2 (Ordering Description) Let D be an ALCQ(D) concept de-
scription, and f a concrete feature. An ordering description is defined by the
following grammar:

Od ::= Un | f : Od | D(Od, Od).

The constructors are called the undefined ordering, feature value ordering,
and partition ordering respectively.



14 CHAPTER 2. ORDERING DESCRIPTIONS

For a given terminology T and concept descriptions D and E, we say
that D is ordered before E by ordering description Od with respect to T ,
denoted (Od)T (D, E), if T 2 D v ⊥, T 2 E v ⊥, and at least one of the
following conditions holds:

• Od = “f : Od1” and (T ∪ T ∗) |= (D u E∗) v (f < f∗),

• Od = “f : Od1”, (Od1)T (D, E) and (T ∪ T ∗) |= (D u E∗) v (f = f ∗),

• Od = “D′(Od1, Od2)”, T |= D v D′ and T |= E v ¬D′,

• Od = “D′(Od1, Od2)”, (Od1)T (D, E) and T |= (D t E) v D′, or

• Od = “D′(Od1, Od2)”, (Od2)T (D, E) and T |= (D t E) v ¬D′.

Two descriptions D and E are said to be incomparable with respect to an
ordering Od and terminology T if ¬(Od)T (D, E) and ¬(Od)T (E, D).

We use the undefined ordering to capture situations in which no (possibly
residual) ordering between descriptions is known or needed. The feature
value ordering provides an endogenous ordering capability, in which concrete
feature values encoded by descriptions form the basis of the ordering. The
partition ordering provides an exogenous ordering capability, in which the
ordering is based on a subsumption relationship to a partitioning concept,
rather than the specific data values encoded by the concept description.

2.2 Order Refinement

Reasoning about the consistency of orderings has many applications, for
example, in the index selection problem [29] and in query optimization [27].
In this section we explore a relationship between ordering descriptions called
order refinement. In Chapter 4, we present a sound and complete procedure
for deciding refinement.

The refinement relationship is a generalization of equality of orderings.
It characterizes when the ordering imposed by one ordering description is
implied by the ordering imposed by a second ordering description. However,
we are not always interested in whether this implication holds over the space
of all concept descriptions. In many scenarios, such as order optimization,
it is sufficient to deduce that the refinement holds over a particular space
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of concept descriptions, the space of query results in the order optimization
example. Thus, we consider refinement with respect to a concept description
in the given DL, as well as a terminology.

Definition 3 (Order Refinement) Let T be a terminology, D a concept
description, and Od1 and Od2 ordering descriptions. Then Od1 refines Od2

with respect to T and D, written Od1 ≺T ,D Od2, if, for all concept descrip-
tions E1 and E2 such that T |= (E1 t E2) v D:

(Od2)T (E1, E2) implies (Od1)T (E1, E2).

Od1 is equivalent to Od2 with respect to T and D, written Od1 ≈T ,D Od2,
if Od1 ≺T ,D Od2 and Od2 ≺T ,D Od1.

Intuitively, if a refinement relationship holds between Od1 and Od2, then
the ordering imposed by Od1 is equal to or more specific than the ordering
imposed by Od2 over all possible descriptions that are subsumed by the pa-
rameter concept description. The following example illustrates an application
of refinement to the order optimization problem.

Example 1 Consider an application where descriptions of publication data
are to be indexed using a description tree ordered by the ordering description
“subject : date : Un” with respect to some terminology T . Specifically, the
tree is ordered by a major sort on the concrete feature “subject” and a minor
sort of the concrete feature “date”.

Now consider a query that retrieves all of the concept descriptions of all
publications in the sorted order defined by the ordering description “subject :
Un”. We know that sorting the descriptions is unnecessary as an in-order
traversal of the tree will satisfy the required ordering. In particular, the fol-
lowing refinement relationship holds.

(subject : date : Un) ≺T ,> (subject : Un)

Now consider another query for all concept descriptions subsumed by a
query concept description D, such that T |= D v (subject = “physics”),
and ordered again by “date”. We can again avoid sorting the query result
because the following refinement relationship holds with respect to D.

(subject : date : Un) ≺T ,D (date : Un)
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Example 1 shows how refinement can be used in deciding order optimization.
However, the example makes some simplifying assumptions, namely that for
every data description D, it can be inferred that T |= D v (subject = k) for
some value of k in ∆C . Section 3.2 explores the assumptions that need to be
made in order to guarantee various properties of description indices.

2.3 Description Index

In this section we propose constructs which allow a database consisting of
a set of concept descriptions (or data descriptions) to be indexed, enabling
efficient concept driven search capabilities. The basis of our index structure is
a partially ordered binary tree, with order given by some ordering description.
Below we formalize this tree structure.

Definition 4 (Description Tree) Let D be an ALCQ(D) concept descrip-
tion. A description tree is an ordered rooted binary tree conforming to the
grammar:

Tr ::= 〈〉 | 〈D,Tr ,Tr〉.

The first construct denotes an empty tree, while the second construct denotes
a tree with the root node labelled by D. We write 〈D, L, R〉 ∈ Tr if 〈D, L, R〉
is a subtree (node) occurring in Tr, and call any tree of the form 〈D, 〈〉, 〈〉〉
a leaf node.

Let Tr be a description tree, Od an ordering description, and T a ter-
minology. Then Tr is well formed with respect to Od and T if, for all
〈D, L, R〉 ∈ Tr,

• T 2 D v ⊥,

• ¬(Od)T (D, D′) for all 〈D′, L′, R′〉 ∈ L, and

• ¬(Od)T (D′, D) for all 〈D′, L′, R′〉 ∈ R.

When Od and T are clear from context, we say simply that Tr is well formed.

With respect to an ordering description Od, the conditions for a description
tree to be well formed provide the invariants for insertions of new nodes. For
example, when inserting a new node for description D′ in the description tree
〈D, L, R〉 where (Od)T (D′, D), then a new leaf node 〈D′, 〈〉, 〈〉〉 is added in
subtree L.
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Definition 5 (Description Index) Let T be a terminology, Od an order-
ing description, and Tr a well formed description tree with respect to Od and
T . A description index is a 3-tuple 〈Tr , Od, T 〉.

2.3.1 Queries

We consider two query operators over description indices. The first being a
selection operator called a concept search, an exhaustive search for descrip-
tions in a description index. The second is a sort operation, consisting of an
ordering requirement for the result given by an ordering description.

Definition 6 (Concept Search) Let DQ be a concept description and
〈Tr , Od, T 〉 a description index. A concept search for description DQ in
description tree Tr is an exhaustive search for concept descriptions in Tr
such that:

• For all descriptions Di in the result, T |= Di v DQ; and

• For all descriptions Di excluded from the result, T 2 Di v DQ.

Intuitively, the result of a concept search is the exhaustive set of descrip-
tions in the data set that are subsumed by the search concept. As such, a
concept search can be though of as a data retrieval problem with certain an-
swer semantics given an open-world assumption. A query adds an ordering
requirement to the concept search problem

Definition 7 (Query) Let DQ be a concept description, OdQ an ordering
description, and I = 〈Tr , Od, T 〉 a description index. A query is a two
tuple 〈DQ, OdQ〉. The result of a query is the result of a concept search for
DQ in I with the following condition:

For all Di, Ei in the result such that Di appears before Ei,
¬(OdQ)T (Ei, Di).



Chapter 3

Ordering and Indexing Analysis

The performance guarantees that can be made for description indices depend
on the fragment of the ordering language used to order the index, and the
properties of the concept descriptions being indexed. In this chapter we ex-
plore some properties of description indices in the context of the functionality
they enable for indexing. We then define restrictions that can be enforced on
the indexed concept descriptions based on a notion of sufficiency, and analyse
the properties and performance of description indices in this context.

3.1 Properties of Ordering Descriptions

To provide a thorough analysis of ordering descriptions and their behaviour
in the presence of different classes of data descriptions, we present some
properties of ordering descriptions that identify the functionality they enable
for indexing purposes. This creates a framework for general discussion of
orderings and their properties.

Partial Ordering

To begin, the following property states that an ordering description is ir-
reflexive, asymmetric, and transitive. An ordering description satisfying this
property would therefore define a strict partial order over concept descrip-
tions.

18
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Property 1 (Partial Order) An ordering description Od has the partial
order property if, for any terminology T and concept descriptions D1, D2

and D3:

1. ¬(Od)T (D1, D1);

2. If (Od)T (D1, D2), then ¬(Od)T (D2, D1);

3. If (Od)T (D1, D2) and (Od)T (D2, D3); then (Od)T (D1, D3).

Disjointness

The following Property does not have a direct impact on the performance of
description indices, but can be a useful property if one wishes to extend the
query capabilities to include a count aggregate (that is, a count of objects
denoted by descriptions in a query result). The following property guarantees
disjointness between orderable descriptions.

Property 2 (Disjointness) An ordering description Od has the disjoint-
ness property if, for any terminology T and concept descriptions D1 and D2:

(Od)T (D1, D2) implies T |= (D1 uD2) v ⊥.

Pruning

The following two properties describe an important feature of ordering de-
scriptions that enables pruning in description indices during a concept search.
While all constructs in the current ordering language support both of these
properties (see Section 3.2), it is possible to add constructs to an ordering
language which may satisfy only one of the pruning conditions. Thus, we
present the substitution properties individually for left and right substitu-
tion. We discuss some possible extensions to the ordering language that
require this distinction in Section 6.2.

Property 3 (Left Substitution) An ordering description Od has the left
substitution property if, for any terminology T and concept descriptions D1,
D2 and D3:

If (Od)T (D1, D2), T |= D3 v D2 and T 2 D3 v ⊥, then (Od)T (D1, D3).
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Property 4 (Right Substitution) An ordering description Od has the right
substitution property if, for any terminology T and concept descriptions D1,
D2 and D3:

If (Od)T (D1, D2), T |= D3 v D1 and T 2 D3 v ⊥, then (Od)T (D3, D2).

3.2 Properties of Description Indices

The properties that a description index will have depend on the underlying
properties that the ordering description (used to order the index) has, in
combination with the ability to maintain a well formed description tree. The
following section explores the properties of description indices based on the
functionality enabled for indexing. We start with some observations about
properties of arbitrary ordering descriptions. The following lemma states
that all possible ordering descriptions will define strict partial orders over
the space of possible concept descriptions.

Lemma 1 Let Od be an arbitrary ordering description. Then Od satisfies
Property 1.

Proof: (See Appendix A.1.) 2

The following lemma which extends the pruning (substitution) properties
of ordering descriptions to description indices by the nature of well formed
trees.

Lemma 2 (Pruning) Let 〈Tr , Od, T 〉 be a description index over suffi-
ciently descriptive descriptions, 〈D, L, R〉 a node in Tr, and E a sufficiently
descriptive concept description.

1. If Od satisfies Property 3 then (Od)T (D, E) implies T 6|= D′ v E for
any node 〈D′, L′, R′〉 ∈ L, and

2. If Od satisfies Property 4 then (Od)T (E, D) implies T 6|= D′ v E for
any node 〈D′, L′, R′〉 ∈ R.

Proof: (See Appendix A.2.) 2
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Rotations

In order to guarantee efficient search capabilities, description indices need to
be able to have rotations performed to ensure a balanced tree is maintained
after insertions. The following property states that both left and right tree
rotations can be performed on description indices without violating the well
formedness property of the tree.

Property 5 (Tree Rotation) A description tree Tr, well formed with re-
spect to an ordering description Od, has the tree rotation property if, for any
terminology T , concept descriptions D1 and D2, and description trees Tr 1,
Tr 2, and Tr 3 that are well formed,

〈D1, 〈D2,Tr 1,Tr 2〉,Tr 3〉 is well formed if and only if
〈D2,Tr 1, 〈D1,Tr 2,Tr 3〉〉 is well formed.

Order Optimization

The last property of description indices that we are interested in, order op-
timization, is the ability to avoid sorting a query result when the order in
which the indexed descriptions are retrieved is already consistent with the
order specified by the query.

Property 6 (Order Optimization) A description tree Tr, well formed
with respect to an ordering description Od, has the order optimization prop-
erty if, for all subsequences of nodes

〈D1,Tr ′1,Tr ′′1〉, 〈D2,Tr ′2,Tr ′′2〉, ..., 〈Dn,Tr ′n,Tr ′′n〉

given by and in-order traversal of Tr :

¬(Od)T (Dj, Di) for all 1 ≤ i < j ≤ n.

The properties of description indices that can be guaranteed may depend on
the concept descriptions being indexed. To help illustrate why this is the
case, consider the following examples.

Example 2 Consider a description index 〈Tr , f : Un, ∅〉 in which Tr is the
description tree illustrated in Figure 3.1. Tr is well formed with respect to
f : Un since each description is satisfiable (not subsumed by ⊥) and since the
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〈(f > 3) u (f ≤ 5), 〈 〉, 〈 〉〉 〈(f ≥ 1) u (f ≤ 3), 〈 〉, 〈 〉〉

Figure 3.1: A well formed description tree with respect to the
ordering description “f : Un”.

root node is incomparable to both of the child nodes. Now consider a concept
search for >, i.e. a search that retrieves all of the concept descriptions in
Tr. The descriptions will be retrieved in an order (by an in-order traversal)
that is not consistent with f : Un since the right child compares left of the
left child with respect to f : Un.

Example 3 Consider a description index 〈Tr , f : Un, ∅〉 in which Tr is the
description tree illustrated in Figure 3.1. Now consider a left or right rotation
which may be necessary to maintain balance after the insertion of a new node
to the right or left respectively. In the case of a right rotation, the current left
child becomes the root and the current right child becomes a right descendant
of the new root. This produces a tree which is not well formed since the new
root compares right of a node in its right subtree. A left rotation produces an
analogous problem with the root being ordered to the left of a node in its left
subtree.

We see from Example 2 that a description tree does not necessarily have
the order optimization property in all cases. Example 3 illustrates a similar
problem with performing rotations of description trees. One way to remedy
this situation is to introduce limitations on the types of concept descriptions
being indexed. This can be used to ensure, for example, that exact values
can be inferred for concrete features involved in feature value orderings, and
that the concept descriptions are partitionable by the partition orderings.

Definition 8 (Descriptive Sufficiency) A concept description D is suffi-
ciently descriptive with respect to ordering description Od and terminology
T , written SDT (D, Od), if at least one of the following conditions hold:
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• Od = “Un”,

• Od = “f : Od1”, SDT (D, Od1), and T |= D v (f = k),

• Od = “D′(Od1, Od2)”, SDT (D, Od1), and T |= D v D′,

• Od = “D′(Od1, Od2)”, SDT (D, Od2), and T |= D v ¬D′,

for some k ∈ ∆C. When Od and T are clear from context, we say simply
that D is sufficiently descriptive.

With the notion of descriptive sufficiency, we can now guarantee sound ro-
tations for description trees and order optimization.

Lemma 3 (Rotation) Let Od be an ordering description, T a terminology,
and D1 and D2 sufficiently descriptive concept descriptions. For any descrip-
tion trees Tr 1, Tr 2, and Tr 3 that are well formed, 〈D1, 〈D2,Tr 1,Tr 2〉,Tr 3〉
is well formed if and only if 〈D2,Tr 1, 〈D1,Tr 2,Tr 3〉〉 is well formed.

Proof: (See Appendix A.3.) 2

Lemma 4 (Order Optimization) Let T be a terminology, Od an ordering
description and Tr a description tree well formed with respect to Od such
that for all 〈D,Tr 1,Tr 2〉 ∈ Tr, SDT (D, Od). Then for all subsequences of
nodes 〈D1,Tr ′1,Tr ′′1〉, 〈D2,Tr ′2,Tr ′′2〉, ..., 〈Dn,Tr ′n,Tr ′′n〉 given by and in-order
traversal of Tr:

¬(Od)T (Dj, Di) for all 1 ≤ i < j ≤ n.

Proof: The proof of this lemma is a direct consequence of the definition of
a well formed tree. Indeed, an in-order traversal will visit descriptions in an
order such that a violation of the ordering given by Od would be a violation
of the well formedness property which is a contradiction. 2

Table 3.1 summarizes the properties of ordering descriptions as they per-
tain to the functionality they enable for indexing purposes. (Note that the
“−” symbol represents a non-applicable field for the Un ordering constructor
as it is, by definition, always false.) While not enforcing descriptive suffi-
ciency allows us to index a larger class of concept descriptions, it comes at
the cost of rotations and order optimization. This clearly has an effect on
the performance guarantees for concept search as we can not guarantee a
balanced tree. We explore this issue further in the next section.
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In Absence of Descriptive Sufficiency
Disjoint Prune Left Prune Right Rotate Order Opt.

Un − − − X X
f : Od X X X × ×
D(Od1, Od2) X X X × ×

With Descriptive Sufficiency
Disjoint Prune Left Prune Right Rotate Order Opt.

Un − − − X X
f : Od X X X X X
D(Od1, Od2) X X X X X

Table 3.1: Properties of Description Indices

3.3 Performance of Query Evaluation

With the indexing properties of description indices established, we can now
explore the guarantees that can be made for concept searches and general
query evaluation, that is, the evaluation of a query of the form 〈D, Od〉
by performing a concept search for D and returning the resulting concept
descriptions in an order consistent with Od. Below we characterize a class of
query concept descriptions for which performance guarantees can be made.

Definition 9 (Sufficiently Selective) A description D is sufficiently se-
lective for ordering description Od with respect to terminology T , denoted
SST (D, Od), if at least one of the following conditions hold:

• T |= > v D,

• Od = “f : Od1”, SST (D, Od1) and T |= D ≡ (f = k),

• Od = “f : Od1” and T |= D ≡ (f < k),

• Od = “f : Od1” and T |= D ≡ ¬(f < k),

• Od = “f : Od1” and T |= D ≡ (¬(f < k) u (f < k′)),

• Od = “D′(Od1, Od2)” and T |= D ≡ D′,
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Concept Search
Descriptive Sufficiency: Without With

Un O(n) O(n)
f : Od O(n) O(k + u · lg(n))
D(Od1, Od2) O(n) O(k + u · lg(n))

Supported Query Evaluation
Descriptive Sufficiency: Without With

Un O(n) O(n)
f : Od O(n · log(n)) O(k + u · lg(n))
D(Od1, Od2) O(n · log(n)) O(k + u · lg(n))

Table 3.2: Performance Bounds for Description Indices With and
Without Descriptive Sufficiency

• Od = “D′(Od1, Od2)”, SST (D, Od1) and T |= D v D′,

• Od = “D′(Od1, Od2)”, SST (D, Od2) and T |= D v ¬D′,

• T |= D ≡ (E t E ′), SST (E, Od) and SST (E ′, Od),

for some constants k and k′ in ∆C and descriptions E and E ′.

Intuitively, the class of sufficiently selective query concept descriptions in-
cludes disjunctive components of point and range queries on concrete fea-
tures, and queries for partitions. Additionally query concept descriptions
must be partitionable by occurrences of a partition ordering in the ordering
description.

By pairing the refinement relationship discussed in Section 2.2 with the
notion of sufficient selectivity, we can now define a wide range of queries that
can be efficiently supported by a description index.

Definition 10 (Supported Query) Let T be a terminology, Q = 〈DQ, OdQ〉
a query, and Od an ordering description. Then Q is supported by Od with
respect to T if DQ is sufficiently selective and Od ≺T ,DQ

OdQ.

Table 3.2 summarizes the concept search and query evaluation bounds
for description indices over arbitrary and sufficiently descriptive concept de-
scriptions, where n is the number of nodes in the index, k is the size of the
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search/query result, u is the number of disjunctive components in the query,
and lg is a base two logarithm. In the absence of descriptive sufficiency,
the worst case query evaluation degrades to a full tree scan followed by a
sort operation. However, in the presence of descriptive sufficiency, we can
guarantee efficient search and there is no cost increase for supporting order-
ing operations for supported queries. The following theorem formalizes the
guarantees that can be made for supported queries.

Theorem 5 Let 〈Tr , Od, T 〉 be a description index over sufficiently descrip-
tive descriptions, and Q a supported query with u disjunctive components.
Then Q can be evaluated in O(k + u · lg(n))subsumption tests of ALCQ(D),
where n is the number of nodes in Tr and k is the number of descriptions in
the result.

Proof: (See Appendix A.4.) 2



Chapter 4

Deciding Order Refinement

Computing refinement poses some interesting challenges, for example con-
sider the following refinement equivalence of ordering descriptions with re-
spect to any arbitrary query description (i.e., >) and some constant k.

f : D(Od, Od′) ≈T ,> D(f : Od, f : Od′) iff T |= D ≡ (f < k)

The interaction between partition orderings and feature value orderings takes
place because the partitioning description involves the same feature as the
feature value ordering. Intuitively, a linear order on the concrete feature f
followed by a partition is equivalent to a partition on the feature f followed
by independent linear orderings. Partition orderings can also have complex
relationships with other partition orderings depending on the relationship of
the partitioning descriptions. For example, consider the following refinement
equivalence, again independent of the particular query description.

(D2(Od1, D1(Od2, Od3))) ≈T ,> (D1(D2(Od1, Od2), Od3)) iff T |= D2 v D1.

It is worthwhile to note that these types of relationships can allow rewriting of
ordering descriptions to maintain balance in the ordering description itself.
This could be useful for reducing the number of subsumption tests when
evaluating orderings in large ordering descriptions.

4.1 Deciding Order Refinement

We now present a procedure for deciding refinement and prove its complete-
ness. Our approach rests on the idea of enumerating all possible partitionings,

27
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Part(T , D, “Un”, K) = ∅

Part(T , D, “f : Od1”, K) =
⋃

I,J∈int(K)
I before J

{〈D u f ∈ I, D u f ∈ J〉} ∪⋃
I∈int(K) Part(T , D u f ∈ I, Od1, K)

Part(T , D, “D1(Od1, Od2)”, K) = {〈D uD1, D u ¬D1〉} ∪
Part(T , D uD1, Od1, K) ∪ Part(T , D u ¬D1, Od2, K)

Figure 4.1: An Ordered Partitioning Procedure

with respect to an ordering description, that any concept description could
be part of by means of a subsumption relationship. In theory, there can be
an infinite number of partitions, for example, by enumerating a partition for
feature equivalence to each constant in the concrete domain ∆C for a partic-
ular concrete feature. However, in practice, the number of partitions needed
to characterize an ordering is bounded by the size of the (finite) terminology.
We can thus enumerate a set of possible partitions, and further enumerate
all possible orderings of the partitions that must hold by the definition of the
ordering description. This gives us a canonical representation of the ordering
which we call an ordered partitioning.

Because some of the partitions will be expressed as a range over a con-
crete feature, we introduce the following notational convention for expressing
concrete feature ranges derived from a set of constants.

Notation 2 Let K be a set of constants. Then

int(K) ::= {(a, b), [a, b), (a, b], [a, b] | a, b ∈ K ∪ {−∞,∞}, a ≤ b}

denotes the ranges defined by K. We say a range I is before a range J if the
linear order on the concrete domain of the constants in K orders all elements
of the range I before all elements of the range J .

For a range I ∈ int(K), we use f ∈ I to denote the concept description
constraining the concrete feature f to the range I. For example, f ∈ [a, b)
denotes the concept description (f ≥ a) u (f < b).

Figure 4.1 defines a procedure for computing an ordered partitioning for
an ordering description Od with respect to a terminology T , concept descrip-
tion D, and set of constants K. The result of this procedure is a set of pairs
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of concept descriptions that denote an ordering over a subspace of concept
descriptions subsumed by D. For each pair 〈D, E〉 in an ordered partitioning,
any concept descriptions D′ and E ′ such that T |= D′ v D and T |= E ′ v E
are ordered as D′ before E ′ by the partitioning. The following lemma estab-
lishes that the order described by the ordered partitioning is equivalent to
the order described by the associated ordering description with respect to the
constants appearing in the given descriptions and terminology. Determining
the set of constants to use is dependent on the underlying concrete domain.
In the case of the rational numbers for example, it is sufficient to simply enu-
merate all constants appearing in the terminology, ordering descriptions, and
parameter concept description. For an integer concrete domain, the neigh-
borhoods of each constant with size proportional to the number of concrete
features must also be added. We use the following notation to denote this
set of constants.

Notation 3 Let T be a terminology, D a concept description, and Od1 and
Od2 ordering descriptions. Then findK(T , Od1, Od2, D) denotes the set of
all constants appearing in T , Od1, Od2, and D, expanded by neighborhoods
on order of the number of concrete features in T if required by the concrete
domain.

Lemma 6 Let T be a terminology, D a concept description, Od an ordering
description, and D1 and D2 concept descriptions such that T |= D1tD2 v D.
Then (Od)T (D1, D2) if and only if T |= D1 v E1 and T |= D2 v E2 for some
〈E1, E2〉 ∈ Part(T , D,Od, findK(T , Od, D tD1 tD2)).

Proof: Soundness of the above lemma follows from the fact that the partition
labels themselves are ordered by Od by construction. We can then apply
Property 3 and Property 4 to show that the ordering holds between D1 and
D2.

Completeness follows from the definition of the Part function by case anal-
ysis. For Od determined by a partition ordering constructor D(Od1, Od2),
the partition by D and ¬D results in a pair in the ordered partition, along
with any residual orderings covering the third case of the definition. In the
case of the feature value ordering constructor, possible ranges that D1 and
D2 can be partitioned by exist, since all constants that can be form such a
partitioning are included in findK(T , Od, D tD1 tD2). 2
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With the canonical representation of the ordering given by the ordered par-
titioning, we can now easily deduce if an ordered partitioning is contained by
another ordered partitioning by testing if the first ordered partitioning can
be mapped into the second. The semantics for such a mapping are defined
below.

Definition 11 (Mapping Function) Let T be a terminology, D a concept
description, Od1 and Od2 ordering descriptions, K a set of constants, and
m : Part(T , D,Od1, K) → Part(T , D,Od2, K) a function. Then m is a
mapping function if m : 〈D1, D2〉 7→ 〈E1, E2〉 implies T |= D1 v E1 and
T |= D2 v E2.

The existence of a mapping function implies that every pair in an ordered
partitioning obtained from some ordering description, is contained via sub-
sumption by a pair in an ordered partitioning obtained from a second order-
ing description. However, the partitions that exist in an ordered partitioning
depend on the constants appearing in the terminology, ordering description,
and parameter concept description. Thus the existence of a mapping function
only implies a refinement relationship holds for concept descriptions that can
be expressed using only these constants. In order to ensure that orderings
will be consistent when ordering arbitrary concept descriptions (potentially
with new constants) we prove the following lemma which ensures the addi-
tion of constants to an ordered partitioning does not affect the existence of
a mapping function.

Lemma 7 Let T be a terminology, D a concept description, Od1 and Od2

ordering descriptions, and K = findK(T , Od1, Od2, D). Then, for any finite
set of constants K ′ ⊆ ∆C, there exists a mapping function

m : Part(T , D,Od2, K ∪K ′) 7→ Part(T , D,Od1, K ∪K ′)

if there exists a mapping function

m′ : Part(T , D,Od2, K) 7→ Part(T , D,Od1, K).

Proof: Consider adding a single new constant k to the set of constants K.
This may create new sets of pairs on both sides of the mapping by splitting
ranges in existing pairs. However, as k does not play a role in inferences
using T , the original mapping function extends to the new pairs in a natural
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way. For a finite set of constants, the lemma follows by repeating the above
construction. 2

With the extension of ordered partitionings to arbitrary (finite) sets of con-
cept descriptions without an affect on the existence of a mapping function,
we can now be sure that the containment of one mapping by another is not
affected by considering the orderings of a (finite) set of arbitrary concept
descriptions. This allows us to formalize necessary and sufficient conditions
for computing refinement.

Theorem 8 Let T be a terminology, D a concept description, Od1 and Od2

ordering descriptions, and K = findK(T , Od1, Od2, D). Then Od1 ≺T ,D

Od2 if and only if there exists a mapping function:

m : Part(T , D,Od2, K) 7→ Part(T , D,Od1, K).

Proof: To show soundness, assume ¬(Od1 ≺T ,D Od2) yet a mapping function
m exists. Then ¬(Od1 ≺T ,D Od2) implies that there exists two descriptions
D and E such that (Od2)T (D, E) and ¬(Od1)T (D, E). (Od2)T (D, E) implies
that there exists an ordered partitioning containing a pair 〈D2, E2〉 such that
T |= D v D2 and T |= E v E2 by Lemma 6. Since a mapping function
m exists by our assumption, there must exist a pair 〈D′, E ′〉 in the ordered
partitioning of Od1 such that T |= D2 v D′ and T |= E2 v E ′. Thus
(Od1)T (D′, E ′) by Lemma 6. Hence T |= D v D2 and T |= D2 v D′,
yielding T |= D v D′. Similarly, T |= E v E ′. Therefore (Od1)T (D, E) by
Property 3 and Property 4, a contradiction.

To show completeness, assume a mapping function m does not exist yet
Od1 ≺T ,D Od2. Then there must be a pair in 〈D1, D2〉 in the ordered par-
titioning of Od2 such that for all pairs 〈E1, E2〉 in the ordered partitioning
of Od1, T 2 D1 v E1 or T 2 D2 v E2. Thus we have (Od2)T (D1, D2) by
Lemma 6, which implies (Od1)T (D1, D2) by the assumption of a refinement
relationship existing. However, this means that there is a pair 〈D′

1, D
′
2〉 in the

ordered partitioning of Od1 such that T |= D1 v D′
1 and T |= D2 v D′

2 by
Lemma 6, which implies that there exists a mapping of 〈D1, D2〉 to 〈D′

1, D
′
2〉

(since the subsumptions relationships hold) which leads to a contradiction.
2

Intuitively, if everything ordered by an ordering description Od2 falls into
pairs of partitions which are equivalent or more specific than the pairs of
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partitions obtained from another ordering description Od1, then the ordering
imposed by Od2 is implied by the ordering imposed by Od1. This is because
any description D subsumed by a partition description E of the ordered
partitioning of Od2, will also be subsumed by something more general than E
(i.e. the mapped partition from Od1), and thus will be ordered the same way
by the mapped partition. This is, by definition, a refinement relationship.
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Experimental Evaluation

To validate the potential efficacy of description indices, we conducted a set
of proof-of-concept experiments. The goal of these experiments was to assess
the capabilities of our tree-based index structure as compared to traditional
tree-based index structures. The main differing components being the more
expressive ordering language of our ordering descriptions for building indices,
and the subsumption checking as part of ordering decisions and for query
result validation. Although it is these subsumption tests that allow us to
index data by inferring information from a terminology, there does not exist
an alternative tree-based indexing system that can exploit logical inference in
the way our system does, meaning we have no baseline measure to compare
with. As such, we apply our approach to XML indexing, a simpler problem
with no complex statements existing in the terminology.

As the basis of our experiments, we used the data-centric single docu-
ment benchmark from the XBench XML benchmark suite [2]. This data is a
synthetic document containing publication data. We map XML data to a set
of concept descriptions of a chosen entity to be indexed. We then map the
XQueries to a concept description and ordering description pair, such that the
concept description describes the entities being sought in an analogous way
to the XQuery, and the ordering description captures any order requirement
of the XQuery. The set of concept descriptions (extracted from the XML)
that are subsumed by a query concept description therefore corresponds to
the set of XML entities that are the result of the associated XQuery. Fig-
ure 5.1 shows a sample XQuery and its concept description translation. The
query finds all item entities released during a given time period that have
either an author or publisher from New York. (Note that long XML paths
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XQuery
for $item in /catalog/item

where ($item/author/mailing address/name of state ="New York"

or $item/publisher/mailing address/name of state="New York" )

and $item/release date gt "1995-01-01"

and $item/release date lt "2005-01-01"

return $item

Concept Description
ITEM u (release date > 1995-01-01) u (release date < 2005-01-01)
u (∃hasAuthor.(∃hasMailingAddress.(name of state = "New York"))

t ∃hasPublisher.(∃hasMailingAddress.(name of state = "New York")))

Figure 5.1: Example XQuery and Associated Concept Description

have been shortened for illustrative purposes.) In the concept description,
ITEM is a primitive concept denoting a publication item, roles are italicized
and concrete features written in a typed font. Entities from the XML data
are encoded in an analogous way. This framework allows us to compare
the performance of our description indices to XQuery indexing on equivalent
problems. We note however, that our design is capable of indexing data ex-
pressed in much richer logics than are needed to encode the XML example.
As such, the applicability of our model extends to domains with richer data
models. Conversely, our simplistic query model is not capable of handling
constructive queries like joins, and we can therefore only evaluate our system
on those queries that can be encoded as a concept description and ordering
pair. Our query model can not express projections either, so the result of a
query is always the top level entity being indexed.

Our prototype implementation of description indices uses off-the-shelf
open-source software with a small java core to link all of the components.
We use the FaCT++ DL reasoner [12] for subsumption testing, the DIG
interface [5] for concept description representation, and the Xerces XML
parsing library [39]. Communication with FaCT++ is over a self-hosted
HTTP connection.
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5.1 Experimental Setup

We ran the experiments on a 1.66 GHz dual-core linux based machine with
1GB of main memory. We generated data sets in three different sizes: 10MB
(2,500 items), 55MB (13,750 items), and 100 MB (25,000 items). Eight of
the queries from the benchmark that are expressible as concept descriptions
were selected from the XBench DC/SD benchmark as well as two additional
queries of our own that illustrate some advantages of our system. The first
query, labeled as Q21 in the experiments, is supported by a description in-
dex which takes advantage of the partition orderings. The second additional
query, labeled as Q22 and shown in Figure 5.1, is not supported by an in-
dex, but is the only query containing a disjunction. This query illustrates
the differences between navigating XML trees to find values for predicate
evaluation and subsumption checking in the presence of non-determinism
during query evaluation. The workload along with the schema can be found
in Appendix B.

Our system and the X-Hive system [38] preprocess and index the data
before query processing. In both cases, we create the appropriate indices to
optimize query evaluation for each query in the benchmark. (Note that there
is not necessarily an index or set of indices that can aid evaluation in every
case.) In situations where there was not an obvious choice of indices to maxi-
mize query performance, index selection was done based on experimentation.
The Qexo [23] and Galax [14] systems are file streaming XQuery processors
and consequently do not make use of preprocessing or indexing strategies.
Because the the query is processed during file loading, there is no straight-
forward way to measure only the query processing times. As such, we report
a total time and an adjusted time for these systems. The adjusted time dis-
counts the total measured time by a constant factor representing the average
file loading time for the benchmark files as determined by experimentation.

5.2 Results

Table 5.1 summarizes the query processing times for the 2,500 item data
set. Note that the query labels correspond to the numbering used by the
XBench benchmark, with Q21 and Q22 being our contributed queries. It
is evident from these results that our system is comparable to X-Hive, our
representative indexing XML query engine. On queries 6, 8, and 14, our
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Our System X-Hive Qexo Galax
Query Time Query Time Total Adj. Time Total Adj. Time

Q1 7 4 2652 1680 4373 3401
Q2 1164 1006 2009 1037 3740 2768
Q5 8 9 1664 692 3591 2619
Q6 22 915 2012 1040 3907 2935
Q8 3 422 1668 696 3580 2608
Q9 2 4 1664 692 3603 2631
Q12 2 69 1672 700 3550 2578
Q14 7 701 1720 748 3612 2640

Q21 439 9332 3910 2938 9367 8395
Q22 121 522 3160 2188 N/A N/A

Table 5.1: Query processing run times (msec)

system outperforms the others by a significant margin. These three queries
correspond to situations in which we are able to use a description index
to evaluate the queries, while the other systems are forced to perform linear
scans as they can not express orderings for an index to support these queries.

Query Q2 forces all systems to perform a linear scan of the data as no
indexing is possible to aid in evaluating this query. Our system performs
comparably to the other systems which is a promising result since a full
linear scan of the data implies a subsumption test for every data item to
determine if it is a query result.

For the remaining XBench queries, Q1, Q5, Q9, Q12, our system performs
similarly to the other systems. These queries correspond to situations in
which our description index is roughly equivalent to a traditional index used
by X-Hive, i.e. a simple feature value ordering. The difference being that our
system still requires subsumption checking to validate that a retrieved item
qualifies as a query result (note that a simple optimization could remove this
subsumption check in the case where the query consists only of a feature value
equivalence, however, in the general case, subsumption checking is necessary
as other components of the query could disqualify a data item as a result).

The final two rows of Table 5.1 show our two contributed queries, Q21 and
Q22. Q21 is a query that forces a partitioning of the data with independent
sorts on each partition. Since this situation can be captured by a description
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Number of Items 2500 13750 25000

Our System (Q1) 7 11 120
X-Hive (Q1) 4 10 330
Qexo (Q1) 1680 4348 6357
Galax (Q1) 3401 34712 97095

Our System (Q6) 22 117 198
X-Hive (Q6) 915 3838 7001
Qexo (Q6) 1040 4111 5597
Galax (Q6) 2935 33126 94976

Table 5.2: Comparison times for all three data sets (msec)

index, in particular by utilizing a partition ordering with different residual
orders, our system is able to efficiently evaluate this supported query. Q22

on the other hand is not supported by an index in our system or X-Hive.
This query is also the only query that contains a disjunction. Thus the
difference between our system and X-Hive is that X-Hive must navigate the
XML tree to find the relevant values to determine if the disjunctive predicate
is satisfied, while our system delegates the task to the subsumption test in
FaCT++. We attribute the performance of our system on this query to the
efficient reasoning procedures of FaCT++.

One rather surprising observation from Table 5.1 is that our system per-
forms better on Q22 than on Q2. Both queries require a full scan of the
data (meaning n subsumption tests) but Q22 contains a disjunction while
Q2 is entirely conjunctive! This discrepancy in performance is likely due to
the efficient order of rule application in the tableaux reasoning procedure
of FaCT++. Q22 contains a top-level range query over a concrete feature
in addition to the disjunctive existential component (see Figure 5.1). Thus,
by first evaluating the simple feature value range, the reasoner only needs
to consider the disjunctive component for data items which first satisfy the
concrete feature range.

To evaluate scalability, we considered the four systems over all three data
sets. Table 5.2 shows the results for two representative queries across the
data sets. Q1 is taken as a representative query for which both our system
and the X-Hive system use an index. Q6 is an example of a query for which
our system can exploit a description index using the partition ordering, while
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X-Hive does not have an index to support the query. We see that our system
scales similarly to X-Hive for Q1, this suggests that our feature value ordering
and subsumption based result verification are scalable methods. In the case
of Q6, our system still scales well even with the potentially more expensive
search over a partition ordering (involving more subsumption tests).

5.3 Summary

Our experiments suggest the potential efficacy of using description indices
for real-world semantic data indexing applications. When applied to known
XML indexing problems, our prototype system performed comparably to
existing systems, and was able to efficiently support queries from a standard
benchmark that existing systems could not.

While our experimental design exercises only a small part of the logi-
cal inference capabilities of our system design, the results are none-the-less
promising. We see that subsumption testing of concept descriptions during
query evaluation does not have a significant effect on performance, even in
the presence of large data descriptions and disjunctive statements. We ac-
knowledge that the presence of a complex terminology and more complex
data descriptions may make subsumption testing more expensive for richer
data sets. However, one gains the full inference capabilities on the underlying
knowledge base during indexing and query processing, which can be argued
as a reasonable trade-off.



Chapter 6

Conclusions

In the following chapter, we explore some possible extensions to our ordering
theory, discuss some potential directions for future work, and summarize our
results.

6.1 Extensions

From our experience in considering description indices for practical appli-
cations, we have found that the ability to index nested structure could be
very efficacious. In our model, indexing nested structure amounts to index-
ing entities based on their role relations to other entities. For example, one
may want to index item concepts based on properties of the authors nested
in the item descriptions. In some cases, when the role can be deduced to
be functional, nested indexing can be achieved with a top level index as the
nested content is restricted to have a single value. However, this is not the
case in general.

Ideally, one would want to independently index the nested content, and
somehow preserve a mapping back to the original entities being indexed. This
is analogous to how the relational model would index one table, then map
matching tuples back to another table using a foreign key constraint. How-
ever, the rules that can be expressed in a terminology makes this approach
highly non-trivial in our model. Instead, we consider some simple constructs
which enable an exogenous and endogenous nested indexing capability, as
well as a constructor which appeals directly to subsumption testing in a DL
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with following grammar.

Od ::= ... | D(Od, Od] | R.f : Od | v

The first new construct is a weaker variant of our partition ordering. It
allows a order to be defined without explicitly deducing that the concept
descriptions being ordered are contained in the partition or the complement
of the partition. This allows one to, for example, partition on the existence
of a role relation to a particular concept. The second ordering allows explicit
access to features nested under roles. (We consider a single level of nesting
for simplicity, though an extension to arbitrary levels is straightforward).
The last operator one may be interested in appeals directly to subsumption
testing in a description logic. To capture the intended semantics, one would
need to append the following alternative conditions to Definition 2.

• Od = “D1(Od1, Od2]” and T |= D v D1 and T 2 E v D1,

• Od = “D1(Od1, Od2]”, (Od1)T (D, E) and T |= (D t E) v D1,

• Od = “D1(Od1, Od2]”, (Od2)T (D, E), T 2 D v D1, and T 2 E v D1,

• Od = “R.f : Od1” and there exists k such that T |= D v ∃R.(f ≤
k) u ∀R.(f ≤ k) and T |= E v ∀R.(f > k),

• Od = “R.f : Od1”, (Od1)T (D, E), and there exists k such that T |=
D v ∀R.(f = k) and T |= E v ∀R.(f = k),

• Od = “ v ”, T |= D v E and T 2 E v D.

Table 6.1 shows the properties for the extended ordering constructs without
any notion of descriptive sufficiency. We see here that left pruning is not
possible, though right pruning is with the weak partition ordering or the role
nested ordering. Conversely, rotations and order optimization are possible
without enforcing any constraints on the concept descriptions being indexed.
To gain full properties of the role nested ordering, one could impose a suffi-
ciency condition that forces the role to be functional, however, this greatly
limits the use of the operator in practical indexing situations, as roles are not
likely to always contain such restrictive conditions. It is also worth noting
that no level of descriptive sufficiency will ever allow left pruning or disjoint-
ness in the weak partition ordering or the subsumption ordering. This is
because an “overlap” in ordered descriptions is always possible.
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Disjoint Prune Left Prune Right Rotate Order Opt.

D(Od1, Od2] × × X X X
R.f : Od X × × × ×
v × × X X X

Table 6.1: Properties of Ordering Description Extensions

6.2 Future Work

Some possible avenues for future work include a full deployable implementa-
tion, which would then open possibilities in evaluating description indices un-
der various applications scenarios, such as A-box querying, semantic search,
and SPARQL querying. More extensive experiments with richer DL dialects
and complex terminologies would also help evaluate the applicability and
performance of description indices. A procedure for enabling general nested
indexing capabilities would be very beneficial. Lastly, an extension of the
ordering language (such as is suggested in Section 6.1) could enable new
possibilities for indexing. The current theory, including the refinement pro-
cedure, would need to be extended to accommodate new ordering constructs.



Appendix A

Proofs

The following proofs are based on those originally found in a technical report
on ordering descriptions [22]. We note that the purpose of the “∗” nota-
tion described in Notation 1 is to obtain a unique copy of the description.
Consequently, we allow a description to be “copied” to arbitrary levels (e.g.
D∗∗∗). In the following proposition, we use a superscript integer to denote
the number of “∗” symbols appearing after a description (or terminology).
The following are some simple properties regarding the consistency of using
the “∗” notation.

Proposition 1

1. If T |= D v ⊥ and T ∗ |= E∗ v ⊥, then (T ∪ T ∗) |= (D u E∗) v ⊥

2. (T i∪T j) |= (DiuEj) v (f i < f j) ≡ (T k∪T l) |= (DkuEl) v (fk < f l)
where i 6= j and k 6= l.

A.1 Proof of Lemma 1

Proof: The following proofs are a structural induction on the ordering de-
scription Od. Note that we use Proposition 1 to keep the “∗” notation con-
sistent.

Consider the property (Od)T (D1, D2) implies ¬(Od)T (D2, D1).
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• Base Case: Od = “Un”
(Od)T (D1, D2) is false by the definition of an ordering description,
thus the implication trivially holds.

• Inductive Hypothesis: Assume (Od0)T (D1, D2) implies ¬(Od0)T (D2, D1)
for some arbitrary ordering description Od0.

• Inductive Step: Consider an ordering description Od, if ¬(Od)T (D1, D2),
the implication trivially holds. Consider (Od)T (D1, D2). There are two
possible cases for the structure of Od:

1. Case Od = “f : Od1”
Since (Od)T (D1, D2), there are two possible cases:

(a) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f = f ∗) and (Od1)T (D1, D2).

(Od1)T (D1, D2) implies ¬(Od)T (D2, D1) by the inductive hy-
pothesis.

(b) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f < f∗).

Assume (Od)T (D2, D1) for a proof by contradiction. This im-
plies that (T ∗ ∪T ) |= (D∗

2 uD1) v (f ∗ < f). Thus (D∗
2 uD1)

is subsumed by both (f < f∗) and (f ∗ < f) which is only pos-
sible if T |= D1 t D2 v ⊥. However, (Od)T (D1, D2) implies
that T 2 D1 v ⊥ and T 2 D2 v ⊥ by the definition of an
ordering description, which yields a contradiction. Thus the
assumption (Od)T (D2, D1) does not hold and consequently
(Od)T (D1, D2) implies ¬(Od)T (D2, D1).

2. Case Od = “D′(Od1, Od2)”
Since (Od)T (D1, D2), there are three possible cases:

(a) Case T |= (D1 tD2) v D′ and (Od1)T (D1, D2).
(Od1)T (D1, D2) implies ¬(Od1)T (D2, D1) by the inductive hy-
pothesis.

(b) Case T |= (D1 tD2) v ¬D′ and (Od2)T (D1, D2).
(Od2)T (D1, D2) implies ¬(Od2)T (D2, D1) by the inductive hy-
pothesis.

(c) Case T |= D1 v D′, and T |= D2 v ¬D′.
Assume (Od)T (D2, D1) for a proof by contradiction. (Od)T (D1, D2)
implies that T 2 D1 v ⊥ and T 2 D2 v ⊥ from the
definition of an ordering description. Additionally consider-
ing the conditions for this case yields, T 2 D1 t D2 v D′
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and T 2 D1 t D2 v ¬D′, thus it must be the case that
T |= D2 v D′, and T |= D1 v ¬D′ because of (Od)T (D2, D1).
However we know that T |= D1 v D′ and T |= D2 v ¬D′

from the conditions for this case, which yields a contradic-
tion. Thus the assumption (Od)T (D2, D1) does not hold and
consequently (Od)T (D1, D2) implies ¬(Od)T (D2, D1).

Consider the property (Od)T (D1, D2) and (Od)T (D2, D3) implies (Od)T (D1, D3).

• Base Case: Od = “Un”
(Od)T (D1, D2) and (Od)T (D2, D3) are false by the definition of an
ordering description, thus the implication trivially holds.

• Inductive Hypothesis: Assume (Od0)T (D1, D2) and (Od0)T (D2, D3)
imply (Od0)T (D1, D3) for some arbitrary ordering description Od0.

• Inductive Step: Consider an ordering description Od, if ¬(Od)T (D1, D2)
or ¬(Od)T (D2, D3), the implication trivially holds. Consider (Od)T (D1, D2)
and (Od)T (D2, D3). There are two possible cases for the structure of
Od:

1. Case Od = “f : Od1”
Since (Od)T (D1, D2) and (Od)T (D2, D3), there are four possible
cases:

(a) Case (T ∪ T ∗) |= (D1 u D∗
2) v (f = f ∗), (Od1)T (D1, D2),

(T ∗ ∪ T ∗∗) |= (D∗
2 uD∗∗

3 ) v (f ∗ = f ∗∗), and (Od1)T (D2, D3).
(Od1)T (D1, D2) and (Od1)T (D2, D3) imply (Od1)T (D1, D3)
by the inductive hypothesis. Thus, (Od)T (D1, D2) and (Od)T (D2, D3)
imply (Od)T (D1, D3).

(b) Case (T ∪T ∗) |= (D1 uD∗
2) v (f = f ∗), (Od1)T (D1, D2), and

(T ∗ ∪ T ∗∗) |= (D∗
2 uD∗∗

3 ) v (f ∗ < f ∗∗).
Assume ¬(Od)T (D1, D3) for a proof by contradiction. This
implies that (T ∪ T ∗∗) 2 (D1 u D∗∗

3 ) v (f < f ∗∗). Con-
sider e ∈ (D1 u D∗

2 u D∗∗
3 )I . Because e ∈ (D∗

2 u D∗∗
3 )I ,

(f ∗)I(e) < (f ∗∗)I(e). Also, because e ∈ (D1uD∗
2)

I , (f)I(e) =
(f ∗)I(e), which implies that (f)I(e) < (f ∗∗)I(e). However,
because e ∈ (D1 u D∗∗

3 )I , (f)I(e) ≥ (f ∗∗)I(e) which is a
contradiction. Thus the assumption of ¬(Od)T (D1, D3) fails
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and consequently (Od)T (D1, D2) and (Od)T (D2, D3) imply
(Od)T (D1, D3).

(c) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f < f∗),

(T ∗ ∪ T ∗∗) |= (D∗
2 uD∗∗

3 ) v (f ∗ = f ∗∗), and (Od1)T (D2, D3).
Assume ¬(Od)T (D1, D3) for a proof by contradiction. This
implies that (T ∪ T ∗∗) 2 (D1 u D∗∗

3 ) v (f < f ∗∗). Con-
sider e ∈ (D1 u D∗

2 u D∗∗
3 )I . Because e ∈ (D∗

2 u D∗∗
3 )I ,

(f ∗)I(e) = (f ∗∗)I(e). Also, because e ∈ (D1uD∗
2)

I , (f)I(e) <
(f ∗)I(e), which implies that (f)I(e) < (f ∗∗)I(e). However,
because e ∈ (D1 u D∗∗

3 )I , (f)I(e) ≥ (f ∗∗)I(e) which is a
contradiction. Thus the assumption of ¬(Od)T (D1, D3) fails
and consequently (Od)T (D1, D2) and (Od)T (D2, D3) imply
(Od)T (D1, D3).

(d) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f < f∗) and

(T ∗ ∪ T ∗∗) |= (D∗
2 uD∗∗

3 ) v (f ∗ < f ∗∗).
Assume ¬(Od)T (D1, D3) for a proof by contradiction. This
implies that (T ∪ T ∗∗) 2 (D1 u D∗∗

3 ) v (f < f ∗∗). Con-
sider e ∈ (D1 u D∗

2 u D∗∗
3 )I . Because e ∈ (D∗

2 u D∗∗
3 )I ,

(f ∗)I(e) < (f ∗∗)I(e). Also, because e ∈ (D1uD∗
2)

I , (f)I(e) <
(f ∗)I(e), which implies that (f)I(e) < (f ∗∗)I(e). However,
because e ∈ (D1 u D∗∗

3 )I , (f)I(e) ≥ (f ∗∗)I(e) which is a
contradiction. Thus the assumption of ¬(Od)T (D1, D3) fails
and consequently (Od)T (D1, D2) and (Od)T (D2, D3) imply
(Od)T (D1, D3).

2. Case Od = “D′(Od1, Od2)”
Since (Od)T (D1, D2) and (Od)T (D2, D3), there are four possible
cases:

(a) Case T |= (D1tD2tD3) v D′, (Od1)T (D1, D2), and (Od1)T (D2, D3).
(Od1)T (D1, D2), and (Od1)T (D2, D3) imply (Od1)T (D1, D3)
by the inductive hypothesis. Thus, (Od)T (D1, D2), and (Od)T (D2, D3)
imply (Od)T (D1, D3) since T |= D1 tD3 v D′.

(b) Case T |= (D1tD2) v D′, T |= D3 v ¬D′, and (Od1)T (D1, D2).
(Od)T (D1, D3) by the definition of an ordering description
considering T |= D1 v D′ and T |= D3 v ¬D′. Thus,
(Od)T (D1, D2), and (Od)T (D2, D3) imply (Od)T (D1, D3).

(c) Case T |= (D1 t D2 t D3) v ¬D′, (Od2)T (D1, D2), and
(Od2)T (D2, D3).
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(Od2)T (D1, D2), and (Od2)T (D2, D3) imply (Od2)T (D1, D3)
by the inductive hypothesis. Thus, (Od)T (D1, D2), and (Od)T (D2, D3)
imply (Od)T (D1, D3) since T |= D1 tD3 v ¬D′.

(d) Case T |= D1 v D′, T |= (D2tD3) v ¬D′, and (Od2)T (D2, D3).
(Od)T (D1, D3) by the definition of an ordering description
considering T |= D1 v D′ and T |= D3 v ¬D′. Thus,
(Od)T (D1, D2), and (Od)T (D2, D3) imply (Od)T (D1, D3).

Consider the property (Od)T (D1, D2) implies T |= (D1 uD2) v ⊥.

• Base Case: Od = “Un”.
(Od)T (D1, D2) is false by the definition of an ordering description,
thus the implication trivially holds.

• Inductive Hypothesis: Assume (Od0)T (D1, D2) implies T |= (D1 u
D2) v ⊥ for some arbitrary ordering description Od0.

• Inductive Step: Consider an ordering description Od, if ¬(Od)T (D1, D2),
the implication trivially holds. Consider (Od)T (D1, D2). There are two
possible cases for the structure of Od:

1. Case Od = “f : Od1”
Since (Od)T (D1, D2), there are two possible cases:

(a) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f = f ∗) and (Od1)T (D1, D2).

(Od1)T (D1, D2) implies T |= (D1 uD2) v ⊥ by the inductive
hypothesis.

(b) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f < f∗).

Assume T 2 (D1 u D2) v ⊥ for a proof by contradiction.
Consider e ∈ (D1 u D2)

I , because e ∈ (D2)
I , it implies that

e ∈ (D∗
2)

I . We can conclude that (f)I(e) = (f ∗)I(e) because
it is also the case that e ∈ (D1)

I . Because e ∈ (D1 u D∗
2)

I ,
(T ∪T ∗) 2 (D1uD∗

2) v (f < f∗) which is a contradiction and
the assumption T 2 (D1uD2) v ⊥ does not hold. Therefore,
(Od)T (D1, D2) implies T |= (D1 uD2) v ⊥.

2. Case Od = “D′(Od1, Od2)”
Since (Od)T (D1, D2), there are three possible cases:
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(a) Case T |= (D1 tD2) v D′ and (Od1)T (D1, D2).
(Od1)T (D1, D2) implies T |= (D1 uD2) v ⊥ by the inductive
hypothesis.

(b) Case T |= (D1 tD2) v ¬D′ and (Od2)T (D1, D2).
(Od2)T (D1, D2) implies T |= (D1 uD2) v ⊥ by the inductive
hypothesis.

(c) Case T |= D1 v D′, and T |= D2 v ¬D′.
T |= D1 uD2 v D′ since T |= D1 v D′.
T |= D1 uD2 v ¬D′ since T |= D2 v ¬D′.
T |= D1 uD2 v D′ u ¬D′, which is equivalent to T |= D1 u
D2 v ⊥. Thus (Od)T (D1, D2) implies T |= (D1 uD2) v ⊥

Consider the property (Od)T (D1, D2), T |= D3 v D1 and T 2 D3 v ⊥
implies (Od)T (D3, D2).

• Base Case: Od = “Un”.
(Od)T (D1, D2) is false by the definition of an ordering description,
thus the implication trivially holds.

• Inductive Hypothesis: Assume (Od0)T (D1, D2), T |= D3 v D1 and T 2
D3 v ⊥ implies (Od0)T (D3, D2) for some arbitrary ordering description
Od0.

• Inductive Step: Consider an ordering description Od and concept de-
scription D3 such that T |= D3 v D1 and T 2 D3 v ⊥, if ¬(Od)T (D1, D2),
the implication trivially holds. Consider (Od)T (D1, D2). There are two
possible cases for the structure of Od:

1. Case Od = “f : Od1”
Since (Od)T (D1, D2), there are two possible cases:

(a) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f = f ∗) and (Od1)T (D1, D2).

Because T |= D3 v D1 and (T ∪T ∗) |= (D1uD∗
2) v (f = f ∗),

(T ∪ T ∗) |= (D3 u D∗
2) v (f = f ∗). Also, (Od1)T (D1, D2),

T |= D3 v D1 and T 2 D3 v ⊥ implies (Od1)T (D3, D2) by
the inductive hypothesis. Thus, (Od)T (D3, D2).

(b) Case (T ∪ T ∗) |= (D1 uD∗
2) v (f < f∗).

Because T |= D3 v D1 and (T ∪T ∗) |= (D1uD∗
2) v (f < f∗),

(T ∪ T ∗) |= (D3 u D∗
2) v (f < f ∗). Thus (Od)T (D3, D2) by

the definition of an ordering description.



48 APPENDIX A. PROOFS

2. Case Od = “D′(Od1, Od2)”
Since (Od)T (D1, D2), there are three possible cases:

(a) Case T |= (D1 tD2) v D′ and (Od1)T (D1, D2).
Because T |= D3 v D1 and T |= D1 v D′, T |= D3 v
D′. (Od1)T (D1, D2), T |= D3 v D1 and T 2 D3 v ⊥
implies (Od1)T (D3, D2) by the inductive hypothesis. Thus,
(Od)T (D3, D2).

(b) Case T |= (D1 tD2) v ¬D′ and (Od2)T (D1, D2).
Because T |= D3 v D1 and T |= D1 v ¬D′, T |= D3 v
¬D′. (Od2)T (D1, D2), T |= D3 v D1 and T 2 D3 v ⊥
implies (Od2)T (D3, D2) by the inductive hypothesis. Thus,
(Od)T (D3, D2).

(c) Case T |= D1 v D′, and T |= D2 v ¬D′.
Because T |= D3 v D1 and T |= D1 v D′, T |= D3 v D′.
Since T |= D2 v ¬D′, (Od)T (D3, D2) by the definition of an
ordering description.

Consider the property (Od)T (D1, D2), T |= D3 v D2 and T 2 D3 v ⊥
implies (Od)T (D1, D3). The proof is analogous to the previous case and is
omitted.

2

A.2 Proof of Lemma 2

Proof: Consider the first property (Od)T (E, D) implies T 6|= D′ v E for
any node 〈D′, L′, R′〉 ∈ R. Assume there exists a node 〈D′, L′, R′〉 ∈ R such
that T |= D′ v E for a proof by contradiction. Using (Od)T (E, D) with
Lemma 1 yields (Od)T (D′, D) since T |= D′ v E. However, because Tr is
well formed by the definition of an index, and 〈D′, L′, R′〉 ∈ R, we know that
¬(Od)T (D′, D) which is a contradiction.

Consider the second property (Od)T (D, E) implies T 6|= D′ v E for any
node 〈D′, L′, R′〉 ∈ L. Assume there exists a node 〈D′, L′, R′〉 ∈ L such
that T |= D′ v E for a proof by contradiction. Using (Od)T (D, E) with
Lemma 1 yields (Od)T (D, D′) since T |= D′ v E. However, because Tr is
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well formed by the definition of an index, and 〈D′, L′, R′〉 ∈ L, we know that
¬(Od)T (D, D′) which is a contradiction. 2

A.3 Proof of Lemma 3

Proof: For notational convenience, let A denote 〈D1, 〈D2, T r1, T r2〉, T r3〉,
and B denote 〈D2, T r1, 〈D1, T r2, T r3〉〉. We will first consider the forward
direction of the proof, A being well formed implies B is well formed. Assume
B is not well formed for a proof by contradiction. Since, Tr1, Tr2, and Tr3

are well formed, there are five possible situations in which B can violate the
well formedness property:

1. ∃〈D′, L,R〉 ∈ Tr1 such that (Od)T (D2, D
′).

Because A is well formed, ¬(Od)T (D2, D
′) for all 〈D′, L,R〉 ∈ Tr1

which is a contradiction. Thus, it is not the case that ∃〈D′, L,R〉 ∈ Tr1

such that (Od)T (D2, D
′).

2. ∃〈D′, L,R〉 ∈ Tr2 such that (Od)T (D1, D
′).

Because A is well formed, ¬(Od)T (D1, D
′) for all 〈D′, L,R〉 ∈ Tr2

which is a contradiction. Thus, it is not the case that ∃〈D′, L,R〉 ∈ Tr2

such that (Od)T (D1, D
′).

3. ∃〈D′, L,R〉 ∈ Tr2 such that (Od)T (D′, D2).
Because A is well formed, ¬(Od)T (D′, D2) for all 〈D′, L,R〉 ∈ Tr2

which is a contradiction. Thus, it is not the case that ∃〈D′, L,R〉 ∈ Tr2

such that (Od)T (D′, D2).

4. ∃〈D′, L,R〉 ∈ Tr3 such that (Od)T (D′, D1).
Because A is well formed, ¬(Od)T (D′, D1) for all 〈D′, L,R〉 ∈ Tr3

which is a contradiction. Thus, it is not the case that ∃〈D′, L,R〉 ∈ Tr3

such that (Od)T (D′, D1).

5. ∃〈D′, L,R〉 ∈ Tr3 such that (Od)T (D′, D2).
Because A is well formed, ¬(Od)T (D′, D1) for all 〈D′, L,R〉 ∈ Tr3 and
¬(Od)T (D1, D2) which yields four possibilities:

(a) ¬(Od)T (D2, D1) and (Od)T (D1, D
′). Given that D1 and D2 are

sufficiently descriptive and incomparable, we get (Od)T (D2, D
′)

from Lemma 1 using (Od)T (D1, D
′), which is a contradiction.
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(b) ¬(Od)T (D2, D1) and ¬(Od)T (D1, D
′). Given that D1 and D′ are

sufficiently descriptive and incomparable, we get (Od)T (D1, D2)
from Lemma 1 using (Od)T (D′, D2), which is a contradiction with
¬(Od)T (D1, D2) from A being well formed.

(c) (Od)T (D2, D1) and (Od)T (D1, D
′). Using the transitivity prop-

erty of Lemma 1 with (Od)T (D′, D2) and (Od)T (D2, D1), we get
(Od)T (D′, D1) which is a contradiction with the conditions for this
case.

(d) (Od)T (D2, D1) and ¬(Od)T (D1, D
′). Given that D1 and D′ are

sufficiently descriptive and incomparable, we get (Od)T (D2, D
′)

from Lemma 1 using (Od)T (D2, D1), which is a contradiction with
the initial assumption.

Thus, it is not the case that ∃〈D′, L,R〉 ∈ Tr3 such that (Od)T (D′, D2).

From this we can conclude that if A is well formed, than B is well formed.
The proof of the reverse direction is analogous and is omitted.

2

A.4 Proof of Theorem 5

Proof: Because Q is supported by the order preserving index, we know that
Od ≺T ,DQ

OdQ and thus no sort is required. Also, because Tr is a balanced
binary tree, we can traverse a path from the root node of the tree to any
leaf node with a base two logarithmic number of nodes on the path. We now
show that any conjunctive component of the query description will have a
result which is a range of an in-order traversal of the description tree Tr.
Disjunctive components are then a union of the ranges obtained from each of
the u conjunctive components. This yields u logarithmic traversals of the tree
(u · log(n)), in addition to the size of the ranges corresponding to the query
result (k) as the number of nodes, and thus subsumption tests, considered
when evaluating a query.

Consider an arbitrary conjunctive component of the query description D, the
set of descriptions subsumed by D are a range if the following two properties
hold:
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1. ∀〈D′, T r1, T r2〉 ∈ Tr such that T |= D′ v D, ¬(Od)T (D′, D1) and
¬(Od)T (D2, D

′).

2. ∀〈D′, T r1, T r2〉 ∈ Tr such that T 2 D′ v D, ¬(Od)T (D1, D
′) or

¬(Od)T (D′, D2).

where D1 is the left-most description in Tr, and D2 is the right-most descrip-
tion in Tr, such that D1 and D2 are in the set of descriptions subsumed by
D.

To prove the first property, assume that there exists a node 〈D′, T r1, T r2〉 in
Tr such that T |= D′ v D, and either (Od)T (D′, D1) or (Od)T (D2, D

′) for a
proof by contradiction.

If (Od)T (D′, D1), then we have a description D′ which is left of D1 in Tr
(since Tr is well formed) and subsumed by D. This is a contradiction
with D1 being the left-most description in Tr subsumed by D. Similarly,
if (Od)T (D2, D

′), then D′ is right of D2 in Tr and subsumed by D. How-
ever, this is a contradiction with D2 being the right-most description in Tr
subsumed by D. Thus the assumption that a node subsumed by D exists
outside of the range fails.

To prove the second property we consider a structural induction on the or-
dering description Od.

• Base Case: Od = “Un”.
Both ¬(Od)T (D1, D

′) and ¬(Od)T (D′, D2) hold by the definition of an
ordering.

• Inductive Hypothesis: Assume that ∀〈D′, T r1, T r2〉 ∈ Tr such that
T 2 D′ v D, ¬(Od0)T (D1, D

′) or ¬(Od0)T (D′, D2) for some arbitrary
ordering description Od0.

• Inductive Step: Consider an arbitrary ordering description Od. Assume
that there exists a node 〈D′, T r1, T r2〉 in Tr such that T 2 D′ v D,
(Od)T (D1, D

′) and (Od)T (D′, D2) for a proof by contradiction. Be-
cause D has no disjunctions, there are eight possibilities for D being
sufficiently selective:

1. Case: T |= > v D.
Trivially, T |= D′ v >, thus T |= D′ v D which is a contradiction.



52 APPENDIX A. PROOFS

2. Case: Od = “f : Od1”, SST (E, Od1) and T |= D ≡ ((f = k)uE).
Because T |= D1 uD2 v D, we get T |= D1 uD2 v ((f = k)uE)
for some constant k and description E. Because D′ is sufficiently
descriptive, we know that T |= D′ v (f = k2) for some constant
k2. Additionally, because (Od)T (D1, D

′), we can conclude that k2

is greater than k, or they are equal and (Od1)T (D1, D
′). Also,

because (Od)T (D′, D2), k2 is less than k, or they are equal and
(Od1)T (D′, D2). In the case where k and k2 are equal, we know
that ¬(Od1)T (D1, D

′) and ¬(Od1)T (D′, D2) by the inductive hy-
pothesis which yields a contradiction. In the case where k and k2

are not equal, we have k being both less than and greater than k2

which is also a contradiction.

3. Case: Od = “f : Od1” and T |= D ≡ (f < k).
Because T |= D2 v D and D2 is sufficiently descriptive, we know
that T |= D2 v (f = k1) for some constant k1. Because T |=
D ≡ (f < k), we can conclude that k1 is less than k. Because
D′ is sufficiently descriptive, we know that T |= D′ v (f = k2)
for some constant k2. Because T 2 D′ v D, k2 is greater than or
equal to k. Thus, k1 is less than k2 which is a contradiction with
the assumption (Od)T (D′, D2).

4. Case: Od = “f : Od1” and T |= D ≡ ¬(f < k).
Because T |= D1 v D and D1 is sufficiently descriptive, we know
that T |= D1 v (f = k1) for some constant k1. Because T |= D ≡
¬(f < k), we can conclude that k1 is greater than or equal to k.
Because D′ is sufficiently descriptive, we know that T |= D′ v
(f = k2) for some constant k2. Because T 2 D′ v D, k2 is less
than k. Thus, k1 is greater than k2 which is a contradiction with
the assumption (Od)T (D1, D

′).

5. Case: Od = “f : Od1” and T |= D ≡ (¬(f < k) u (f < k′)).
Because D′ is sufficiently descriptive, we know that T |= D′ v
(f = k1) for some constant k1. Also, because T 2 D′ v D, k1 is
either less than k, or greater than or equal to k′. In either case
the reasoning from the previous two cases apply in the exact same
manner.

6. Case: Od = “D0(Od1, Od2)”, SST (E, Od1) and T |= D ≡ (D0 u
E).
Because T |= D1uD2 v D, and T |= D v D0, we know that T |=
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D1 uD2 v D0. Because (Od)T (D′, D2), it must be the case that
T |= D′ v D0. Thus (Od1)T (D1, D

′) and (Od1)T (D′, D2) because
of the initial assumption of (Od)T (D1, D

′) and (Od)T (D′, D2).
However, ¬(Od1)T (D1, D

′) and ¬(Od1)T (D′, D2) by the inductive
hypothesis which is a contradiction.

7. Case: Od = “D0(Od1, Od2)”, SST (E, Od2) and T |= D ≡ (¬D0 u
E).
Because T |= D1 u D2 v D, and T |= D v ¬D0, we know
that T |= D1 u D2 v ¬D0. Because (Od)T (D1, D

′), it must
be the case that T |= D′ v ¬D0. Thus (Od2)T (D1, D

′) and
(Od2)T (D′, D2) because of the initial assumption of (Od)T (D1, D

′)
and (Od)T (D′, D2). However, ¬(Od2)T (D1, D

′) and ¬(Od2)T (D′, D2)
by the inductive hypothesis which is a contradiction.

By induction, the assumption of a description which is not subsumed
by D existing in the range fails.

Thus, the total number of comparisons (and thus subsumption tests) is O(k+
u · lg(n)). 2



Appendix B

Experimental Data

B.1 Workload

The following XQueries labeled Q1 to Q14 are from the DC/SD XBench
benchmark [2]. Q21 and Q22 are contributed by the author.

Q1
for $item in input()/catalog/:item[@id="I1"]

return $item

Q2
for $item in input()/catalog/:item

where $item/authors/author/name/first name = "Ben"

return $item/title

Q5
for $a in input()/catalog/:item[@id="I3"]

return $a/authors/author[1]

Q6
for $item in input()/catalog/:item

where some $auth in

$item/authors/author/contact information/mailing address

satisfies $auth/name of country = "Canada"

return $item

54
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Q8
for $a in input()/catalog/*[@id="I4"]

return $a/publisher

Q9
for $a in input()/catalog/:item

where $a/@id="I5"

return $a//ISBN/text()

Q12
for $a in input()/catalog/:item[@id="I6"]

return

〈Output〉
$a/authors/author[1]/contact information/mailing address

〈/Output〉

Q14
for $a in input()/catalog/:item

where $a/date of release gt "1990-01-01" and

$a/date of release lt "1991-01-01" and

empty($a/publisher/contact information/FAX number)

return

〈Output〉 $a/publisher/name

〈/Output〉

Q21
〈RESULTS〉 {
for $item in /catalog/item

where $item/pricing/when is available lt "1990-01-01"

order by $item/pricing/suggested retail price

return $item,

for $item in /catalog/item

where $item/pricing/when is available gt "1990-01-01"

order by $item/pricing/cost

return $item }
〈RESULTS〉
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Q22
for $item in /catalog/item

where ($item/author/mailing address/name of state ="New York"

or $item/publisher/mailing address/name of state="New York" )

and $item/release date gt "1995-01-01"

and $item/release date lt "2005-01-01"

return $item
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B.2 Schema

The XBench [2] DC/SD schema.

〈?xml version="1.0" encoding="UTF-8"?〉
〈!ELEMENT FAX number (#PCDATA)〉
〈!ELEMENT ISBN (#PCDATA)〉
〈!ELEMENT attributes (ISBN, number of pages, type of book, size of book)〉
〈!ELEMENT author (name, date of birth, biography, contact information)〉
〈!ELEMENT authors (author+)〉
〈!ELEMENT biography (#PCDATA)〉
〈!ELEMENT catalog (item+)〉
〈!ATTLIST catalog

xmlns:xsi CDATA #REQUIRED

xsi:noNamespaceSchemaLocation CDATA #REQUIRED 〉
〈!ELEMENT contact information (mailing address, FAX number?,

phone number, email address?, web site?)〉
〈!ELEMENT cost (#PCDATA)〉
〈!ATTLIST cost

currency CDATA #REQUIRED 〉
〈!ELEMENT country (name, exchange rate, currency)〉
〈!ELEMENT currency (#PCDATA)〉
〈!ELEMENT data (#PCDATA)〉
〈!ELEMENT date of birth (#PCDATA)〉
〈!ELEMENT date of release (#PCDATA)〉
〈!ELEMENT description (#PCDATA)〉
〈!ELEMENT email address (#PCDATA)〉
〈!ELEMENT web site (#PCDATA)〉
〈!ELEMENT exchange rate (#PCDATA)〉
〈!ELEMENT first name (#PCDATA)〉
〈!ELEMENT height (#PCDATA)〉
〈!ATTLIST height

unit CDATA #REQUIRED 〉
〈!ELEMENT image (data)〉
〈!ELEMENT item (title, authors, date of release, publisher,

subject, description, related items, media, pricing, attributes)〉
〈!ATTLIST item

id ID #REQUIRED 〉
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〈!ELEMENT item id (#PCDATA)〉
〈!ELEMENT last name (#PCDATA)〉
〈!ELEMENT length (#PCDATA)〉
〈!ATTLIST length

unit CDATA #REQUIRED 〉
〈!ELEMENT mailing address (street information, name of city,

name of state, zip code, name of country?, country?)〉
〈!ELEMENT media (thumbnail, image)〉
〈!ELEMENT middle name (#PCDATA)〉
〈!ELEMENT name (#PCDATA | first name | middle name | last name)*〉
〈!ELEMENT name of city (#PCDATA)〉
〈!ELEMENT name of country (#PCDATA)〉
〈!ELEMENT name of state (#PCDATA)〉
〈!ELEMENT number of pages (#PCDATA)〉
〈!ELEMENT phone number (#PCDATA)〉
〈!ELEMENT pricing (suggested retail price, cost, when is available,

quantity in stock)〉
〈!ELEMENT publisher (name, contact information)〉
〈!ELEMENT quantity in stock (#PCDATA)〉
〈!ELEMENT related item (item id)〉
〈!ELEMENT related items (related item+)〉
〈!ELEMENT size of book (length, width, height)〉
〈!ELEMENT street address (#PCDATA)〉
〈!ELEMENT street information (street address+)〉
〈!ELEMENT subject (#PCDATA)〉
〈!ELEMENT suggested retail price (#PCDATA)〉
〈!ATTLIST suggested retail price

currency CDATA #REQUIRED 〉
〈!ELEMENT thumbnail (data)〉
〈!ELEMENT title (#PCDATA)〉
〈!ELEMENT type of book (#PCDATA)〉
〈!ELEMENT when is available (#PCDATA)〉
〈!ELEMENT width (#PCDATA)〉
〈!ATTLIST width

unit CDATA #REQUIRED 〉
〈!ELEMENT zip code (#PCDATA)〉
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