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Abstract

Flow-induced structural vibration is experienced in many engineering applications, such

as aerospace industry and civil engineering infrastructures. One of the main mechanisms

of flow-induced vibration is instability which can be triggered by parametric excitations

or fluid-elastic forces. Experiments show that turbulence has a significant impact on the

stability of structures. The objective of this research is to bridge the gap between flow-

induced vibration and stochastic stability of structures.

The flow-induced vibration of a spring-supported circular cylinder is studied in this

research. The equations of motion for the cylinder placed in a cross-flow are set up,

in which the vortex force is modeled by a bounded noise because of its narrow-band

characteristics. Since the vibration in the lift direction is more prominent in the lock-

in region, the system is reduced to one degree-of-freedom, i.e., only the vibration of the

cylinder in the lift direction is considered. The equation of motion for the cylinder can be

generalized as a two-dimensional system excited by a bounded noise. Stochastic analysis

is used to determine the moment Lyapunov exponents and Lyapunov exponents for the

generalized system. The results are then applied to study the parametric instability of a

cylinder in the lock-in region.

Fluidelastic instability can occur when the cylinder is placed in a shear flow. The equations

of motion are established by using the quasi-steady theory to model the fluid-elastic forces.

To study the turbulence effect on the stability of the cylinder, a real noise or an Ornstein-

Uhlenbeck process is used to model the grid-generated turbulence. The equations of motion

are randomized resulting in a four-dimensional system excited by a real noise. The stability

of the stochastic system is studied by determining the moment Lyapunov exponents and

Lyapunov exponents. Parameters of the system and the noise are varied to investigate their

effects on the stability. It is found that the grid-generated turbulence can stabilize the system

when the parameters take certain values, which agrees with the experimental observations.

Many flow-induced vibration problems can be modeled by a two degrees-of-freedom

system parametrically excited by a narrow-band process modeled by a bounded noise. The

system can be in subharmonic resonance, combination (additive or differential) resonance,

or both if the central frequency of the bounded noise takes an appropriate value. The
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method for a single degree-of-freedom system is extended to study the stochastic stability

of the two degrees-of-freedom system. The moment Lyapunov exponents and Lyapunov

exponents for the three cases are obtained using a perturbation method. The effect of noise

on various types of parametric resonance, such as subharmonic resonance, combination

additive resonance, and combined subharmonic and combination additive resonance, is

investigated.

The main contributions of this thesis are stochastic stability analysis of one-degree-

of-freedom systems and two-degree-of-freedom systems. Stability analysis for systems

under the excitation of real noise and bounded noise is carried out by determining the

moment Lyapunov exponents and Lyapunov exponents. Good agreement is obtained

between analytical results and those obtained from Monte Carlo simulations. In the two

degrees-of-freedom case, the effect of free stream turbulence on cylinder vibration and its

stability is examined.
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1C H A P T E R

Introduction

Flow-induced structural vibration is experienced in numerous fields, including the aerospace

industry, power generation or transmission (turbine blades, heat exchanger tubes, nu-

clear reactor components), civil engineering infrastructures (bridges, tall buildings, smoke

stacks), and undersea technology (marine cables). Thus, flow-induced vibration problems

are commonplace and their study has become an important area of research.

1.1 Flow-Induced Vibration of Circular Cylinders

Flow-induced vibration of cylinder arrays is an important issue to be considered in the

design of heat exchangers since it may cause the failure of heat exchanger tube bundles. Sev-

eral mechanisms may result in the failure, including vortex shedding resonance, fluidelastic

instability and turbulence buffeting. Because of the resulting large vibration amplitudes of

the structures, fluidelastic instability is an extremely destructive excitation mechanism. It is

of great practical importance to avoid or to alleviate in any case. It has been demonstrated

experimentally that the large galloping motions of an elastic cylinder in a cross-flow result-

ing from fluidelastic instability can be stabilized by additional grid-generated turbulence.

Hence, stochastic stabilization of structural vibration has attracted the interest of many

researchers.
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1.1 flow-induced vibration of circular cylinders 2

1.1.1 Introduction of Excitation Mechanisms

For arrays of circular cylinders subject to cross-flow, which can be seen in Figure 1.1,

possibilities exist for structural vibrations induced by the flowing fluid via one or more of

the following mechanisms:

y

xU

z

Figure 1.1 A group of cylinders in cross-flow

• Turbulent Excitation. In a cylinder array, there exist random noises, including turbu-

lent pressure fluctuations and far-field flow noises. These randomly varying pressures

on the surfaces of the cylinders generally produce relatively low-amplitude vibrations.

Unlike vortex-induced vibration or fluidelastic instability, which can be eliminated or

whose effects minimized by design, turbulence-induced vibration cannot be avoided

in virtually all industrial applications. In industrial applications, flow channels are

often designed to generate turbulence in order to improve the heat or mass transfer

efficiencies or to suppress the vortex shedding or other instability phenomena. A very

good review for turbulence-induced vibration can be found in Blevins [16].

• Vortex-Induced Vibration. These vibrations are induced by periodic vortex shedding

from cylinders. The vortices exert a fluctuating excitation force on the cylinder. For

one cylinder in cross-flow, the component of this force in the lift direction (perpen-

dicular to the flow direction) has a frequency equal to vortex-shedding frequency fs,



1.1 flow-induced vibration of circular cylinders 3

while that in the drag direction (direction of flow) has a frequency equal to 2 fs. The

vortex shedding frequency can be written as

fs = SU

D
, (1.1.1)

where S is the Strouhal number, U is the free stream velocity, and D is the diameter of

the cylinder.

In general, the force component in the drag direction is much smaller than the force

component in the lift direction. When the cylinder is flexible with characteristic

natural frequencies which are close to those of vortex shedding, a phenomenon called

lock-in resonance may happen. When one of the structural modal frequencies is close

to fs or 2 fs, the vortex-shedding frequency fs (or 2 fs) may actually shift from its value

for a stationary cylinder to the nearest natural frequency of the cylinder, resulting in

large amplitude, resonant vibration. Lock-in resonance can occur in either the lift or

the drag direction. The resulting structural response will then change its form from

forced vibration to resonant vibration, with larger vibration amplitudes. While vortex

shedding initiates cylinder vibration, the vortex shedding process can be modified

by cylinder motions and synchronized with cylinder vibrations. More details can be

found in [15], [89], [93] and [74].

• Fluidelastic Instability. When a bundle of cylinders is subjected to cross-flow with

increasing velocity, it will come to a point at which the responses of the cylinders

suddenly and rapidly increase without bound, until cylinder-to-cylinder impacting or

other non-linear effects limit the cylinder vibrations. This phenomena is known as

fluidelastic instability. The velocity at which the vibration amplitudes of the cylinders

suddenly increase is called the critical velocity. Unlike vortex shedding, the amplitudes

of a fluidelastic unstable cylinder bundle will continue to increase even when the

critical velocity is exceeded. The motions of the cylinders in the bundle become

correlated and have definite phase relationship to one another. The dominant fluid

forces are the motion-dependent fluid forces. Fluidelastic instability appears in two

different mechanisms, i.e. damping-controlled (galloping), in which a negative non-

conservative fluid damping force is generated when the fluid force has a component

in-phase with the cylinder vibration velocity, and stiffness-controlled, which results
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from the coupling effects of several cylinders in an array by the fluid. The subject

of fluidelastic instability in an array of cylinders has been reviewed in detail by, for

example, Price [66] and Weaver and Fitzpatrick [87].

These mechanisms, which are generally investigated separately, influence each other.

Particularly the intensity of the turbulence can have a significant influence on the onset of

instability. Figure 1.2 illustrates the experimental determination of the stability threshold

for a cylinder within a bundle. Here, the amplitude â related to the cylinder diameter d is

plotted as a function of the reduced gap velocity Vr (Figure 1.2a). To represent the stability

behavior, the Connors diagram (Figure 1.2b) shows the stability boundaries as a function of

mass-damping parameter δr =µδ/(ρd2) and the reduced gap velocity Vr =u/( f1d), where

µ is the mass per unit length, δ is the logarithmic decrement of damping, ρ is the fluid

density, u is the velocity in the gap between the cylinders, and f1 is the fundamental natural

frequency of the cylinder.

Mathematically, the equations of motion for cylinders in a cross-flow can be described by

a general equation

(Ms + M f )q̈ + (Cs + C f )q̇ + (Ks + K f )q = F, (1.1.2)

where q, q̇, and q̈ are the generalized structure displacement, velocity, and acceleration, re-

spectively, and F represents excitation forces, such as vortex shedding and turbulence. Mass

matrices include structural mass Ms and added mass Mf , damping matrices include struc-

tural damping Cs and fluid damping Cf , and stiffness matrices include structural stiffness

Ks and fluid stiffness Kf . Fluidelastic instability can be one of the fluid-damping-controlled

instability (galloping), fluid-stiffness-controlled instability, and parametric resonances de-

pending on the dominant terms in equation (1.1.2). Moreover, it is possible that a combi-

nation of three effects occurs. The coefficients in equation (1.1.2), such as Cf and Kf , can

be random due to the influence of turbulence. For more details, see Weaver et al. [88].

1.1.2 Mathematical Models for Vortex Shedding

Much effort has been made to investigate the underlying mechanism of the fluid-structure

interaction resulting from vortex-induced cylinder vibration. The investigations include ex-

perimental, numerical, empirical and theoretical studies. In the latest review by Gabbai and

Benaroya [30], the mathematical models for vortex shedding are classified into four groups:
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Figure 1.2 Experimental determination of the stability boundary of a flexible tube in a bundle

subjected to cross-flow, a) amplitude behaviour, b) Connors diagram (Popp and Romberg [64])

wake oscillator model, single degree-of-freedom model, force decomposition model, and

other approaches. A similar classification can be found in Wang et al. [85]. For the present

study, a force decomposition model [85] is used for modeling the vortex-induced vibration.

Sarpkaya [72] introduced the concept of force decomposition and used it to analyze

vortex-induced vibration of an elastically supported rigid cylinder. The fluid force was

decomposed into two components, a fluid inertia force and a fluid damping force related

to the cylinder displacement and velocity, respectively. Griffin and Koopmann [33] and

Griffin [34] divided the fluid force into an excitation part and a reaction part, the latter

included all motion-dependent fluid forces. Chen et al. [23] presented an unsteady flow

theory to model vortex-induced vibration of a cylinder in cross-flow. The fluid force was

assumed to be dependent on the displacement, velocity, and acceleration of the cylinder.

The force was expressed as a linear combination of the motion-dependent components. In

all these models, data measured from experiments was used to determine the fluid force
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coefficients and they were shown to be dependent on the reduced velocity Ur =UD/ f

and Y (dimensionless displacement in the lift direction). When the model was used to

predict X and Y , Sarpkaya [72] suggested an iteration technique, thus allowing the fluid-

structure interaction effects to be accounted for, at least partially. In Wang et al. [85], the

models were classified into two groups under (1) wake oscillator models, and (2) force

decomposition models. The single degree-of-freedom models reviewed in Gabbai and

Benaroya [30] were considered as simplified wake oscillator models. The nonlinear fluid

force model proposed by Wang et al. [85] can also be regarded as a simplified wake oscillator

model rather than a force decomposition model, where a novel model of fluid-structure

interaction was proposed. Interestingly, the analytical expression of this model, which can

be obtained only when a linear approximation of the fluid-structure interaction is invoked,

appears similar to the force decomposition model proposed by Sarpkaya [72]. This suggests

that wake oscillator models and force decomposition models are essentially equivalent.

For a stationary cylinder in cross-flow, vortex-induced forces are assumed to be sinusoidal

at the vortex shedding frequency fs and at 2 fs in the drag and lift directions, respectively.

Hence, they can be expressed as

cD(t) = 1

2
ρU 2DCD + 1

2
ρU 2DC′

D sin(�Dt + φD),

cL(t) = 1

2
ρU 2DCL + 1

2
ρU 2DC′

L sin(�Lt + φL),

(1.1.3)

where CD (CL) is the steady drag (lift) coefficient, C′
D (C′

L) is the fluctuating flow excitation

in the drag (lift) direction, φD (φL) is the corresponding phase angle with respect to a

particular fluid-force component.

When the cylinder is vibrating, the fluid-structure interaction is taken into account by

following the approach proposed by Wang et al. [85]. The basic idea is that the velocity of

cylinder vibration changes the angle at which the incoming flow attacks the cylinder, as seen

in Figure 1.3, thus the fluid forces applied to the cylinder are expressed as

cX(t) = cD(t) · cos θ + cL(t) · sin θ ,

cY (t) = cL(t) · cos θ − cD(t) · sin θ ,

(1.1.4)
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U

y

x

D

L

θ

U−X

Y

Figure 1.3 Drag and lift force components acting on a cylinder

where θ is the angle between the x-axis and the instantaneous velocity vector of the cylinder

motion and is given by

θ = tan−1
{ Ẏ(t)

U − Ẋ(t)

}

.

Since the cylinder vibrations will change the flow field and the fluid forces applied on the

cylinder, an iteration process can be used to determine the vortex-induced forces applied

on the cylinder. More details can be found in Reference [85].

1.1.3 Theoretical Models for Fluidelastic Instability

Several theoretical models for fluidelastic instability are briefly introduced here [88].

Quasi-Static Flow Theory

Only fluid-stiffness forces are considered. At any instant in time, the flow-induced forces

of vibrating cylinders in a cross-flow are considered to be the same as those of the corre-

sponding stationary cylinders with the same configuration. The fluid forces depend on the

change from a reference of steady state, i.e., the fluid forces on a cylinder depend only on its

displacements relative to other displacements of other cylinders, but not the velocities and

accelerations of other cylinders. In this case, the fluid forces are determined uniquely by

the cylinder array configuration only. However, these models are not applicable for fluid-

damping-controlled instability. This is the approach used by Connors [25] and Blevins [15].

The change in steady fluid force per unit length on the jth cylinder in the x- and y-

directions (F
j

x , F
j

y ) can be written as a function of the jth cylinder displacements (xj, yj)
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relative to the displacements of the neighboring ( j+1)th and ( j−1)th cylinders:

F
j

x = ρU 2gx(xj+1−xj, xj −xj−1, yj+1−yj, yj −yj−1)/4,

F
j

y = ρU 2gy(xj+1−xj, xj −xj−1, yj+1−yj, yj −yj−1)/4,
(1.1.5)

where ρ is fluid density and U is the flow velocity. The functions gx and gy have units of

1/length and express the change of fluid forces on a cylinder due to its relative motion to

adjacent cylinders. The analytical expressions for gx and gy can be determined based on

potential flow theory (see, e.g., Païdoussis et al. [58]) or measured experimentally (see, e.g.,

Connors [25]).

Quasi-Steady Flow Theory

In the quasi-steady theory, both fluid-damping and fluid-stiffness forces are included. At any

instant in time, the flow-induced forces of vibrating cylinders in a cross-flow are considered

to be the same as those cylinders moving with constant velocities equal to the actual

instantaneous values. The fluid forces depend on the configuration of cylinders and are

proportional to the motion. This is reflected by the changes of amplitude and phase of the

fluid force with respect to cylinder motion. The fluid-stiffness force coefficients are constant

and the fluid-damping force coefficients are a function of the reduced flow velocity. This

approach has been used by Price and Païdoussis [65] and Granger and Païdoussis [32]. The

fluid forces can be written as

FX
j = 1

2
ρU 2LD

[

CD

(

1 − 2D

U a
Ẋj

)

+ CL

D

U a
Ẏ j

]

,

FY
j = 1

2
ρU 2LD

[

CL

(

1 − 2D

U a
Ẋ j

)

+ CD

D

U a
Ẏ j

]

,

(1.1.6)

where CL and CD are the lift and drag coefficients, respectively, X j and Y j are the non-

dimensional form of the cylinder motions, i.e.,

X j =
x j

D
, Y j =

y j

D
, a= T

T − 1
2 D
.

Unsteady Flow Theory

The unsteady fluid forces acting on a cylinder are considered to be the same as those acting

on a cylinder which is undergoing periodic movements. The flow-induced forces are a linear

combination of the displacements, velocities, and accelerations of cylinders. This approach
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was used by Tanaka and Takahara [83], Lever and Weaver [43], and Chen [24]. The fluid

forces applied on the jth cylinder can be written as

f X
j = −

n
∑

k=1

{

[

ᾱjk

∂2Xk

∂t2
+ ᾱ′

jk

∂Xk

∂t
+ ᾱ′′

jkXk

]

+
[

σ̄jk

∂2Yk

∂t2
+ σ̄ ′

jk

∂Yk

∂t
+ σ̄ ′′

jkYk

]

}

,

f Y
j = −

n
∑

k=1

{

[

τ̄jk

∂2Xk

∂t2
+ τ̄ ′

jk

∂Xk

∂t
+ τ̄ ′′

jkXk

]

+
[

β̄jk

∂2Yk

∂t2
+ β̄ ′

jk

∂Yk

∂t
+ β̄ ′′

jkYk

]

}

.

(1.1.7)

Experimental results have shown that the fluid-damping and fluid-stiffness coefficients

are functions of the reduced flow velocity [82]. Using the following dimensionless force

coefficients

ᾱjk = 1
4 ρπD2αjk, ᾱ′

jk = −ρU 2

ω
α′

jk, ᾱ′′
jk = −ρU 2α′′

jk,

σ̄jk = 1
4 ρπD2σjk, σ̄ ′

jk = −ρU 2

ω
σ ′

jk, σ̄ ′′
jk = −ρU 2σ ′′

jk,

τ̄jk = ρπR2τjk, τ̄ ′
jk = −ρU 2

ω
τ ′

jk, τ̄ ′′
jk = −ρU 2τ ′′

jk,

β̄jk = ρπR2βjk, β̄ ′
jk = −ρU 2

ω
β ′

jk, β̄ ′′
jk = −ρU 2β ′′

jk,

equations (1.1.7) can be written as

f X
j = − 1

4 ρπD2
n

∑

k=1

(

αjk

∂2Xk

∂t2
+ σjk

∂2Yk

∂t2

)

+ ρU 2

ω

n
∑

k=1

(

α′
jk

∂Xk

∂t
+ σ ′

jk

∂Yk

∂t

)

+ ρU 2
n

∑

k=1

(

α′′
jkXk + σ ′′

jkYk

)

,

f Y
j = − 1

4 ρπD2
n

∑

k=1

(

τjk

∂2Xk

∂t2
+ βjk

∂2Yk

∂t2

)

+ ρU 2

ω

n
∑

k=1

(

τ ′
jk

∂Xk

∂t
+ β ′

jk

∂Yk

∂t

)

+ ρU 2
n

∑

k=1

(

τ ′′
jkXk + β ′′

jkYk

)

,

(1.1.8)

where ρ is fluid density, D is the cylinder diameter, t is time, ω is the circular frequency of

cylinder vibrations, αjk, σjk, τjk, and βjk are added mass coefficients, α′
jk, σ ′

jk, τ ′
jk, and β ′

jk are

fluid damping coefficients, and α′′
jk,σ ′′

jk, τ ′′
jk,β ′′

jk are fluid stiffness coefficients.

The various coefficients in equation (1.1.8) generally depend on structural displacement,

velocity, acceleration, and flow velocity. Fluid force coefficients can be determined by
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measuring the fluid forces acting on the cylinders due to vibrations of a particular cylinder

([23] and [22]).

The added-mass coefficients αjk and τjk can be calculated from the potential flow the-

ory [24]; they can also be measured from the excitation of the cylinder in stationary fluid.

The added damping and stiffness coefficients can be obtained experimentally or numeri-

cally.

Motion-dependent fluid force coefficients are traditionally obtained analytically or ex-

perimentally. However, they can also be calculated using a computational fluid dynamics

(CFD) method, based on the unsteady flow theory [90]. The CFD calculation procedure

follows the steps in the experimental method [105]. The CFD results agree qualitatively with

experimental data. This method is cost-effective and has more flexibility.

From the measured data, some general characteristics of motion-dependent force coeffi-

cients are observed as follows.

• High Reduced Flow Velocity. When the reduced flow velocity Ur is high, e.g., Ur>20

and sometimes even Ur>10, all motion-dependent force coefficients are approxi-

mately independent of reduced flow velocity. This shows that when the flow velocity

is high relative to cylinder velocity, the fluid forces resulting from the cylinder motion

can be measured at a specific velocity and the measured data can be applied to other

flow velocities.

• Reynolds Number. At low reduced flow velocities, motion-dependent force coeffi-

cients depend on the reduced flow velocity, Reynolds number, and excitation ampli-

tude. The peak values decrease with the flow velocity and are shifted toward larger Ur .

Similar characteristics have been observed for a single cylinder in a cross-flow [23].

At lower reduced flow velocities, motion-dependent force coefficients are much more

complicated. In general, motion-dependent force coefficients are highly nonlinear and

extensive experiments have to be done to measure them.

More details about the theoretical models for fluidelastic instability can be found in

the comprehensive review paper by Price [66]. Despite significant differences among the

theoretical models, the general conclusions obtained from the various models agree to some

extent. Price showed that the most important factor for predicting fluidelastic instability
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in cylinder arrays was the unsteady nature of the flow, specifically the phase lag between

cylinder motion and the flow-induced forces.

1.1.4 Turbulence Buffeting Force

To take the turbulence buffeting force into account, the model of Pettigrew and Gorman [9]

is used. Based on experimental measurements, the power spectral density of the random,

homogeneous field of turbulence per unit cylinder length, GF , is assumed to be propor-

tional to the square of the flow dynamic head expressed in terms of the pitch velocity,

UP =UT/(T −D), i.e.

GF =
[

1
2 Cr( f )ρDU 2

P

]2
, (1.1.9)

where ρ is the fluid density, D is the cylinder diameter, and T is the cylinder pitch. The

random lift coefficient, Cr( f ), defines the shape of the turbulence spectrum. The random lift

coefficient is a function of the frequency, and also depends on the position of the cylinder.

An approximation to the random lift coefficient is given by







Cr = 0.025, 0< f <40 Hz,

Cr = 0.108 × 10−0.0159 f , f > 40 Hz.

The general shapes of the power spectral density curves for drag and lift forces are quali-

tatively the same [24]. Equation (1.1.9) may be used, via inverse Fourier transformation, to

generate the turbulence excitation force on the jth cylinder

f X
Tj (t) =

(

∫ +∞

0
GF · e2π f t df

)
1
2 = 1

2ρDU 2
P

(

∫ +∞

0
C2

r · e2π f t df
)

1
2 = 1

2ρDU 2
PCTj,

f Y
Tj (t) =

(

∫ +∞

0
GF · e2π f t df

)
1
2 = 1

2ρDU 2
P

(

∫ +∞

0
C2

r · e2π f t df
)

1
2 = 1

2ρDU 2
PCTj,

(1.1.10)

where

CTj =
(

∫ +∞

0
C2

r · e2π f t df
)

1
2
.

Otherwise, the turbulence buffeting force can also be modeled as a Gaussian colored

noise [67].
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Figure 1.4 Experimental set-up for increasing the turbulence at the inlet of the tube bundle

(Rottmann and Popp [69])

1.1.5 Stochastic Influences on Flow-Induced Vibration

Popp and Romberg [64] presented some interesting stability results from carefully carried

out experiments on flow-induced vibrations of a flexibly mounted cylinder in an otherwise

fixed cylinder array. The experiment set-up is shown in Figure 1.4. They considered both

fluidelastic instability and turbulent buffeting, and showed that large galloping motion

can be stabilized by grid-generated turbulence, as seen in Figures 1.5 and 1.6. In one

of their experiments, Popp and Romberg [64] considered a cylinder with a very small

structural damping. The damping measured in the flow direction is high, and the cylinder

undergoes a galloping motion in the cross-flow (lift) direction at certain reduced velocity

Vr,cr. Naturally, turbulence occurs in cylinder bundles during cross-flow due to upstream

cylinder bundles acting as turbulence generators. Additional turbulence was generated in

this experiment by placing a turbulence grid in front of the cylinder at a distinct distance. It

was observed that as the turbulence was increased in the flow, a significant stabilization took

place and the galloping instability did not occur for reduced velocity values substantially

higher than Vr,cr.

The stabilizing effect of turbulence has also been reported in the literature for bridge

structures under turbulent winds (e.g., Bucher and Lin [19]). An intuitive explanation has

been given which says that turbulence may help to feed energy from the least stable mode
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Figure 1.5 Measured reduced amplitudes as a function of Vr and δr for one single flexibly

mounted tube in the third row of an otherwise fixed array with ideal geometry (Popp and

Romberg [64])

to the more stable modes. Therefore, coupled modes have to be considered in the stability

analysis. In the study of stochastic dynamical systems, stabilizing a system by noise is an

important topic (e.g., Arnold et al. [3] and Arnold [8]). For linear systems it is found that

stabilization by white noise is possible if and only if the trace of the system matrix, i.e. the

sum of the eigenvalues, is negative. Pandey and Ariaratnam [59] analyzed the stability of

wind-induced torsional motion of slender bridges under stochastic wind turbulence. They

used a periodic excitation with random phase modulation to model the turbulence in wind

velocity. They found that the turbulence had small stabilizing effect on the bridge stability,

although an increase in the bandwidth of the excitation process tends to stabilize the bridge

motion.

Rzentkowski and Lever [71] used a nonlinear model to study the turbulence effect on

fluidelastic instability in tube arrays and found that turbulence either reduced or had

negligible effect on the stability boundary depending on the vibration pattern. Poirel

and Price [62] also found that turbulence could lower the speed of flutter speed of a two-

dimensional airfoil. They used the Dryden model to represent the longitudinal turbulence.

The stability boundary is determined by obtaining the largest Lyapunov exponent via
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Monte Carlo simulation. Namachchivaya and Vedula [55] theoretically proved that a four-

dimensional system could be stabilized by a real noise. They used a second order filter to

model the noise and examined the moment stability and sample stability of the system by

obtaining the moment Lyapunov exponent and Lyapunov exponent. However, they did not

validate the analytical results by comparing with numerical results obtained by Monte Carlo

simulation. The noise is very narrow-banded, which seems to be unrealistic for practical

turbulence. For more information, Ibrahim [36] gave a detailed review about the noise

effects, such as stabilization by multiplicative noise and noise-enhanced stability (NES),

noise-induced transition, and stochastic resonance, on the stability of dynamical systems.

Figure 1.6 Measured reduced amplitudes as a function of Vr and δr for one single flexibly

mounted tube in the third row of an otherwise fixed array with increased turbulence (Popp and

Romberg [64])

Corless and Parkinson ([26] and [27]) used a combined mathematical model to study

the interactions of vortex-induced vibration and galloping of a cylinder of square cross-

section in cross-flow. The Hartlen-Currie model and the quasi-steady model of Parkinson

and Smith were used for vortex-induced vibration and galloping, respectively. The result-

ing nonlinear equations were solved by the method of multiple scales. Rzentkowski and

Lever [71] studied the effect of turbulence on fluidelastic instability in tube bundles. A
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simplified, nonlinear model was applied to model the fluidelastic forces for a single flexible

tube surrounded by rigid neighbors and constrained to move transverse to the mean flow.

The turbulence excitation was expressed as a flat power spectral density function. Rüdinger

and Krenk [70] used a nonlinear stochastic single degree-of-freedom system to model the

vortex-induced vibration of a structural element. Across-wind turbulence and along-wind

turbulence are assumed to be white noise processes and incorporated into the equation of

motion as an additive excitation and a parametric excitation term, respectively.

1.2 General Introduction of Stochastic Stability

1.2.1 Stochastic Differential Equations

Many physical processes can be approximated as a Markov process. The simplest example

for a Markov process is perhaps the Wiener process or Brownian motion process. The

Wiener process can be used as a building block in the stochastic modeling of physical

phenomena in science and engineering.

Wiener Process

A Wiener process, denoted as W(t), is defined by

1. W(t) is a Gaussian process;

2. W(t) has mean zero, i.e. E
[

W(t)
]

=0;

3. E
[

W(t)W(s)
]

=R(t, s)=σ 2min(t, s) =







σ 2 t, if t< s,

σ 2 s, if t>s.

If σ =1 , W(t)=σW̃(t) and E
[
∣

∣dW̃(t)
∣

∣

2]=dt. W̃(t) is called the unit or standard

Wiener process.

Itô’s Stochastic Differential Equations

An arbitrary scalar Markov diffusion process can be generated from the stochastic differen-

tial equation

dX(t) = m(X, t) dt + σ(X, t) dW(t), 06 t 6T , (1.2.1a)
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or the equivalent integral equation

X(t) = x0 +
∫ t

0
m(X, t) dt +

∫ t

0
σ(X, t) dW(t), (1.2.1b)

if m(X, t) and σ(X, t) satisfy the Lipschitz and linear growth conditions in X, i.e., there

exists a constant C>0 such that the following inequalities hold for all 06 t 6T and X, Y ∈R:

∣

∣m(X, t)− m(Y , t)
∣

∣6C
∣

∣X − Y
∣

∣,
∣

∣σ(X, t)− σ(Y , t)
∣

∣6C
∣

∣X − Y
∣

∣,

∣

∣m(X, t)
∣

∣

2
6C

(

1 +
∣

∣X
∣

∣

2)
,

∣

∣σ(X, t)
∣

∣

2
6C

(

1 +
∣

∣X
∣

∣

2)
,

and m(X, t) and σ(X, t) are continuous functions. a= m(X, t) and b= σ 2(X, t) are

called the drift and diffusion coefficients, respectively.

The transition probability density q
(

ξ , t
∣

∣ ξ0, t0

)

of X(t) satisfies the equations:

( ∂

∂t0

+ L ξ0

)

q(ξ , t
∣

∣ ξ0, t0) = 0, Backward Kolmogorov equation,

(

− ∂

∂t
+ L

∗
ξ

)

q(ξ , t
∣

∣ ξ0, t0) = 0,
Forward Kolmogorov equation

or Fokker-Planck equation,

(1.2.2)

where

L ξ0
(·) = m(ξ0, t0)

∂(·)
∂ξ0

+ 1

2
σ 2(ξ0, t0)

∂2(·)
∂ξ 2

0

,

L
∗
ξ (·) = − ∂

∂ξ

[

m(ξ , t)(·)
]

+ 1

2

∂2

∂ξ 2

[

σ 2(ξ , t)(·)
]

.

Equation (1.2.1) can be extended to the vector case. More details about the stochastic

differential equations can be found in [76] and [39].

Ornstein-Uhlenbeck Process

An Ornstein-Uhlenbeck process X(t) is defined by the one-dimensional Itô stochastic

differential equation

dX(t) = −α X(t) dt + σ dW(t), X(t0) = X0. (1.2.3)

For the given initial condition X(t0)=X0 at time t0, the transition probability denoted

as q(X, t
∣

∣ X0, t0) is the solution of the forward Kolmogorov equation or the Fokker-Planck
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equation (1.2.2), i.e. for the initial condition t0 and X0 fixed,

[

∂

∂t
− σ 2

2

∂2

∂X2
+ ∂

∂X
(−αX)

]

q(X, t
∣

∣ X0, t0) = 0, t > t0,

q(X, t0

∣

∣ X0, t0) = lim
t↓t0

q(X, t
∣

∣ X0, t0) = δ(X−X0).

(1.2.4)

Applying the Fourier transformation

Q(k, t
∣

∣ X0, t0) =
∫ ∞

−∞
e−i kX q(X, t

∣

∣ X0, t0) dX.

to equation (1.2.4) leads to

∂Q

∂t
+ αk

∂Q

∂k
= −σ

2k2

2
Q, Q(k, t0

∣

∣ X0, t0) = e−i kX0 . (1.2.5)

Equation (1.2.5) can be solved using the method of characteristics to give

Q(k, t
∣

∣ X0, t0) = exp

{

−i kX0e−α(t−t0) + σ 2

4α
k2

[

e−2α(t−t0) − 1
]

}

. (1.2.6)

Applying the inverse Fourier transformation

q(X, t
∣

∣ X0, t0) = 1

2π

∫ ∞

−∞
ei kX

Q(k, t
∣

∣ X0, t0) dk,

to equation (1.2.6) leads to

q(X, t
∣

∣ X0, t0) = 1√
2π σX(t)

exp

{

−
[

X − µX(t)

]2

2 σ 2
X(t)

}

, (1.2.7)

with µX(t) and σX(t) given by

µX(t) = X0 e−α(t−t0), σ 2
X(t) =

σ 2
[

1 − e−2α(t−t0)
]

2α
. (1.2.8)

Equation (1.2.7) implies that X(t), for given X0 =X(t0), is normally distributed with

mean µX(t) and standard deviation σX(t).

For arbitrary initial condition X0,

E
[

X(t)
]

→ 0, Var
[

X(t)
]

→ σ 2

2α
, as t → ∞,

i.e. the distribution of X(t) approaches N
(

0, σ 2/(2α)
)

as t →∞.
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If the initial condition X0 is normal with mean 0 and variance σ 2/(2α), i.e. X0 ∼
N

(

0, σ 2/(2α)
)

, then X(t) is a stationary Gaussian process with mean zero, E
[

X(t)
]

=0,

and the correlation function is

R(τ ) = E
[

X(t)X(t+τ)
]

= σ 2

2α
e−α|τ |. (1.2.9)

The power spectral density function is given by

S(ω) =
∫ +∞

−∞
R(τ ) e−iωτdτ = σ 2

2α

∫ +∞

−∞
e−α|τ | e−iωτdτ

= σ 2

α2+ω2
= σ 2

α2

1

1+
( ω

α

)2
.

(1.2.10)
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Figure 1.7 Power spectral density function of an Ornstein-Uhlenbeck process.

From equation (1.2.10), it is seen that the parameter α characterizes the bandwidth of

the process and (σ/α)2 is proportional to the spectral density of the process. Typical plots

of the power spectral density S(ω) are shown in Figure 1.7 for σ =1 and various values of

α. When α is increased, S(ω) becomes flat in a wide frequency range. For the special case

when σ =α
√

S0 →∞, the Ornstein-Uhlenbeck process X(t) approaches Gaussian white

noise process with constant spectral density S(ω)=S0, i.e. the Ornstein-Uhlenbeck process
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X(t)=
√

S0 ξ(t), where ξ(t) is a unit Gaussian white noise process. In summary, Ornstein-

Uhlenbeck process is a simple, Gaussian, explicitly representable stationary process that

is often used to model a realizable noise process. As a result, it is also called a real noise

process. Ornstein-Uhlenbeck process is widely used in the engineering applications (see,

e.g., Moshchuk et al. [50]).

Bounded Noise Process

Since an Ornstein-Uhlenbeck process defined by equation (1.2.3) is a normally distributed

random variable, it is not bounded and may take arbitrarily large values with small proba-

bilities. As a result, it may not be a realistic model of noise in many engineering applications.

To overcome this problem, a bounded noise process defined as follows is often used to model

noise

ζ(t) = cos
[

νt + σW(t)+ θ
]

, (1.2.11)

in which θ is a uniformly distributed random number in (0, 2π) and is independent of

W(t). The inclusion of the phase angle θ in equation (1.2.11) makes ζ(t) a stationary

process. Equation (1.2.11) can be written as






ζ(t) = cos η(t),

dη(t) = ν dt + σ dW(t),
(1.2.12)

where the initial condition of η(t) is η(0)=θ . The correlation function of ζ(t) is given by

R(τ ) = E
[

ζ(t)ζ(t+τ)
]

= 1

2
cos ντ exp

(

− σ 2

2
|τ |

)

. (1.2.13)

The spectral density function of ζ(t) is

S(ω) =
σ 2

(

ω2+ν2+ 1
4 σ

4
)

2
[

(ω−ν)2+ 1
4 σ

4
][

(ω+ν)2+ 1
4 σ

4
] . (1.2.14)

It may be noted that the mean-square value of the bounded noise process ζ(t) is fixed at

E
[

ζ 2(t)
]

= R(0) = 1

2
.

Typical plots of the power spectral density function S(ω) are shown in Figure 1.8 for

various values of the parameters σ and ν. The spectral density function can be used

to approximate the well-known Dryden and von Karman spectra of wind turbulence by

adjusting the values of the parameters ν and σ . In a recent paper, Wang et al. [86] applied
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Figure 1.8 Power spectral density function of a bounded noise process.

the bounded noise to model the vortex-induce force of a spring-mounted cylinder in a

cross-flow.

When σ is small, from Figure 1.8, it can be seen that the bounded noise can be used

to model a narrow band process with the central frequency ν. If σ approaches zero,

the bounded noise becomes a deterministic sinusoidal function. When σ is increased,

the power spectral density curve becomes flat. For large values of σ , the bounded noise

approximates a white noise process. However, since the mean-square value is fixed at 1
2 , the

spectral density level of the white noise goes to zero when σ→∞.

The bounded noise process (1.2.11) was first employed by Stratonovich [81] and has

since been used to model many engineering problems ([2], [29], [44], and [92]). For more

information about modeling of bounded stochastic processes, refer to Cai and Wu [20].
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1.2.2 Definitions of Stochastic Stability

In this section, the almost-sure stability (or stability with probability 1) and the moment

stability of a stochastic dynamical system are defined [99].

Consider the n-dimensional stochastic system of the form

ẋ = f
(

x, t, ξ(t)
)

, (1.2.15)

where the initial condition is x(0)=x0, with probability 1 (w.p.1), and ξ(t) is an m-

dimensional vector of stochastic processes.

Without the loss of generality, one may take x(0)=0 and f
(

0, t, ξ(t)
)

=0 so that, w.p.1,

x(t)≡0 is a solution.

Almost-Sure (a.s.) Stability or Stability with Probability 1 (w.p.1)

The solution x(t)=0 is stable almost-surely if, for any ε>0 and ρ>0, one can find

δ(ε, ρ)>0 such that

P

{

sup
t>0

∥

∥x(t)
∥

∥>ε
}

<ρ, (1.2.16)

whenever
∥

∥x(0)
∥

∥<δ.

Almost-Sure Asymptotic Stability

If condition for almost-sure stability is satisfied and if

P

{

lim
t→∞

∥

∥x(t)
∥

∥ = 0
}

= 1, (1.2.17)

then the trivial solution x(t)=0 is asymptotically stable almost-surely.

Moment Stability

The trivial solution is stable in the pth moment if, given ε>0, there exists δ>0 such that

E
[∥

∥x(t)
∥

∥

p]
<ε, for all t >0 and

∥

∥x(0)
∥

∥<δ. (1.2.18)

From Jensen’s inequality, it can be concluded that higher moment stability implies lower

moment stability. Furthermore, mean square stability ( p=2) implies almost-sure stability,

which can be concluded from Chebyshev’s inequality (see, e.g., Xie [99]).
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1.3 Lyapunov Exponent and Moment Lyapunov Exponent

Lyapunov Exponent

Lyapunov exponents were first introduced by Lyapunov [47] for investigating the stability

of dynamical systems described by nonlinear ordinary differential equations. The theory

of Lyapunov exponents was further advanced by Oseledec [57] in the well-known Multi-

plicative Ergodic Theorem. Oseledec showed that for continuous dynamical systems, both

deterministic and stochastic, there exist deterministic, real numbers characterizing the av-

erage exponential rates of growth or decay of the solution for large time and called them

Lyapunov exponents. Since then, Lyapunov exponents have been applied in a variety of

branches of science and engineering.

Consider the following stochastic system

ẋ(t) = A
(

ξ(t)
)

x(t), x(0) = x0 ∈ R
n\{0}, (1.3.1)

where A : M→R
(n,n) is an analytic function from a compact connected smooth manifold

M into the space R
(n,n), and ξ(t) is a stationary ergodic diffusion process on M described by

the stochastic differential equation

dξ(t) = X0(ξ)dt +
d

∑

l=1

Xl(ξ)dWl(t).

By assuming that ξ(t) is strongly elliptic and satisfies other non-degenerate conditions, one

has, for any x0 6=0,

λ = lim
t→∞

1

t
log

∥

∥x(t; x0)
∥

∥, almost surely, (1.3.2)

where λ is deterministic and equal to the largest Lyapunov exponent from the Multiplicative

Ergodic Theorem. The Lyapunov exponent λ characterizes the exponential rate of growth

or decay of the solutions of system (1.3.1). If the Lyapunov exponent λ is negative, the

solutions of system (1.3.1) decay exponentially as t →∞ and the system is stable almost-

surely or with probability 1; otherwise, the system is unstable w.p.1.

Moment Lyapunov Exponent

For certain values of system parameters, the solution of a stochastic system may be stable

with probability 1, but its second moment may grow exponentially. The connection between



1.3 lyapunov exponent and moment lyapunov exponent 23

moment stability and almost-sure stability for an undamped linear two-dimensional system

under real noise excitation was established by Molchanov [49]. These results were extended

for an arbitrary n-dimensional linear stochastic system by Arnold [7], in which a formula

connecting moment and sample stability was established. A systematic study of moment

Lyapunov exponents is presented in [6] for linear Itô systems and in [5] for linear stochastic

systems under real noise excitations.

Analogous to the Lyapunov exponents, define the pth moment Lyapunov exponent of

solutions of the system (1.3.1) as

3(p) = lim
t→∞

1

t
log E

[
∥

∥x(t)
∥

∥

p]
. (1.3.3)

The pth moment Lyapunov exponent 3(p) characterizes the exponential rate of growth or

decay of the pth moment E
[
∥

∥x(t)
∥

∥

p]
. If 3(p)<0, then the pth moment is asymptotically

stable, i.e. E
[
∥

∥x(t)
∥

∥

p]→0 as t →∞.

The moment Lyapunov exponent 3(p) possesses the following properties:

1. 3
(

p, x(0)
)

=3(p), for all initial conditions x(0) in the n-dimensional vector space

excluding the origin.

2. For all real values of p, 3(p) is real, analytic, and convex.

3. 3(p)/p is increasing and 3(p) passes the origin, 3(0)=0, and

λ = 3′(0) = lim
p→0

3(p)

p
, (1.3.4)

i.e. the slope of 3(p) at the origin is equal to the Lyapunov exponent given by equation

(1.3.2).

4. The pth moment Lyapunov exponent 3(p) is the principal eigenvalue of the differen-

tial eigenvalue problem

L (p)T(p) = 3(p)T(p), (1.3.5)

with non-negative eigenfunction T(p).

Equation (1.3.4) is the most concise relationship between the almost-sure stability and

the moment stability of linear system (1.3.1). L (p) in equation (1.3.5) can be derived from

equation (1.3.1) by making use of the Khasminskii’s transformation (see, e.g., Arnold et

al. [5] and [6]). The operator L can also be obtained in a more straight-forward way which

was first used by Wedig [91].
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In general, the eigenvalue problem (1.3.5) is very complicated and therefore it is difficult

to find the explicit solution to (1.3.5). Alternatively, there are two approximate methods

which can yield satisfactory results. One method is Monte Carlo simulation which is briefly

introduced in next subsection. The other is the perturbation method which has been used

successfully by many researchers (see, e.g., Xie [99]). The two methods are usually used

together to validate each other.

For a small noise excitation, Arnold, Doyle, and Namachchivaya [4] obtained an ex-

pansion of moment Lyapunov exponent for two dimensional systems with p near zero.

Khasminskii and Moshchuk [38] considered the two dimensional linear stochastic system

and obtained the asymptotic expansions for the moment Lyapunov exponent and stability

index for the oscillator. Namachchivaya et al. [52] used a similar perturbation approach

to obtain the small-noise expansions of moment Lyapunov exponent for two coupled os-

cillators with noncommensurable natural frequencies driven by real noise. However, the

limitation of small p restricts the utility of the results. Namachchivaya and Roessel [53]

improved the method to obtain an asymptotic expansion of moment Lyapunov exponent

for finite p. They also used the stochastic averaging method to derive the L operator and

found that it was identical to the one obtained by the perturbation method. In a recent

paper, Nachchivaya and Roessel [54] applied both the perturbation method and stochastic

averaging method to two coupled oscillators in resonance, i.e., with commensurable natural

frequencies.

1.4 Monte Carlo Simulation

For problems involving random variables and random processes with known probability

distributions, Monte Carlo simulation can be used. In each simulation, a particular set

of values of the random variables and realizations of the random processes generated in

accordance with the corresponding probabilistic properties are used. By repeating the

process, samples of solutions, each corresponding to a different set of values of the random

variables and realizations of random processes, are obtained.

A sample from a Monte Carlo simulation is similar to a sample of experimental ob-

servations. Therefore, the results of Monte Carlo simulations may be treated statistically.

Monte Carlo simulation is a sampling technique, and the results are subject to sampling
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errors. Generally, Monte Carlo simulation requires a sufficiently large sample size to yield

satisfactory results.

1.4.1 Simulation of the Standard Wiener Process W(t)

In order to simulate W(t) for 06 t 6T , discretize the time interval into K segments:

t0 =0, t1, t2, . . . , tK =T , where 1tk = tk −tk−1, k=1, 2, . . . , K . From the definition of

Wiener process, it is well known that dW is Gaussian with E
[

dW
]

=0 and E
[

(dW)2
]

=dt.

The random variable 1W k =W(tk)−W(tk−1) is then normally distributed with mean zero

and variance 1tk, i.e. 1W k =N(0,1tk). Then 1W k can be generated as

1W k = nk
√

1tk, (1.4.1)

where nk is a standard normally distributed random number. Hence, for a given initial

condition W 0 =W(0), a realization of the standard Wiener process W(t) at time tk is

given by

W k = W k−1 +1W k, k = 1, 2, . . . , K . (1.4.2)

1.4.2 Simulation of the Stochastic Differential Equations

Consider the dynamic responses of a stochastic system governed by an N-dimensional

system of autonomous Itô stochastic differential equations of the form

dYj = mj(Y) dt +
d

∑

l=1

σjl(Y) dWl, j = 1, 2, . . . , N , (1.4.3)

where Y=
{

Y1, Y2, . . . , YN

}T
.

The time parameter t is discretized as t0 =0, t1, t2, . . . , of equal time step 1, i.e.

tk −tk−1 =1.

1.4.2.1 Strong Approximation Schemes

A time discrete approximation Y1 is said to converge strongly with order γ >0 to Y at

time T if there exists a constant C>0, which is independent of 1, and 10>0 such that

the error of approximation

ǫ(1) = E
[
∥

∥Y(T)−Y1(T)
∥

∥

]

6 C1γ ,

for each 0<1<10.
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The Euler Scheme

The Euler scheme is strongly convergent with γ =0.5. Equations (1.4.3) yield

Y k
j = Y k−1

j + mk−1
j ·1+

d
∑

l=1

σ k−1
jl ·1W k−1

l , j = 1, 2, . . . , N , (1.4.4)

where the superscript k denotes that the quantity is evaluated at time tk.

1.4.2.2 Weak Approximation Schemes

In certain applications, it is not necessary to obtain path-wise approximation of the solution

of the stochastic differential equations (1.4.3). For example, one may be interested in the

pth moment of the solution at time T , i.e. E
[
∥

∥Y(T)
∥

∥

p]
. In these cases, only a much weaker

form of convergence in probability distribution is required.

A time discrete approximation Y1 is said to converge weakly with order γ >0 to Y at

time T if there exists a constant C>0, which is independent of 1, and 10>0 such that

the error of approximation, for each 0<1<10,

ǫ(1) =
∣

∣

∣
E
[

g
{

Y(T)
}]

− E
[

g
{

Y1(T)
}]

∣

∣

∣
6 C1γ ,

where g is any function that is at least 2(γ+1) times continuously differentiable.

The Euler Scheme

The Euler scheme given by equations (1.4.4) has the order of weak convergence γ =1.0 if

the drift and diffusion coefficients are four times continuously differentiable.

There exist other discretization schemes, such as Milstein scheme and Taylor scheme,

which have their own advantages and disadvantages. A detailed source of numerical solu-

tions of stochastic differential equations is given in [39].

1.4.3 Simulation of Moment Lyapunov Exponent

The determination of the pth moment Lyapunov exponent is in general very difficult. For

most practical engineering structures, numerical approaches have to be applied. The Monte

Carlo simulation method presented in this Section is a condensed version of that in Xie [99].
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Consider an N-dimensional system of linear autonomouse Itô stochastic differential

equations

dY = MYdt +
d

∑

l=1

σ l YdWl, (1.4.5)

where M and σ l (l =1, 2, . . . , d) are N ×N matrixes, Y=
{

Y1, Y2, . . . , YN

}T
, in which

Yj = Xj, for j=1, 2, . . . , n. Vector X and the vector containing the first n elements of vector

Y are interchangeable for the easy of presentation.

Since the moment Lyapunov exponent is related to the exponential rate of growth or

decay of the pth moment, only the numerical approximation of the pth moment of the

solution of system (1.4.5) is of interest in the Monte Carlo simulation. As a result, path-

wise approximations of the solutions of the stochastic differential equations (1.4.5) are not

necessary. Only a much weaker form of convergence in probability distribution is required.

For the numerical solutions of the stochastic differential equations (1.4.5), weak Taylor

approximations, such as the order 2.0 weak Taylor scheme, may be applied. To evaluate the

pth moment E
[
∥

∥X
∥

∥

p]
, S samples of the solutions of equations (1.4.5) are generated. The

sample size S must be a large number since the evaluation of expectation depends on it.

Generally, the solution of equations (1.4.5) grows or decays exponentially in time,

periodic normalization of the solution must be applied in order to avoid numerical overflow

or underflow and to correctly determine the moment Lyapunov exponent.

Take the initial condition of X(0) such that
∥

∥X(0)
∥

∥=1. Note that Yj =Xj, for j=1, 2,

. . . , n. Normalization of the first n elements of the state vector Y is applied after every time

period (K1). Note that the value of K should be chosen judiciously. A small value of K is

not necessary and numerically inefficient, since in a small period of time (K1), the system

does not show appreciable growth or decay.

At the time instance t in the mth period, m=1, 2, . . . , M, the solution can be normalized

as

Xm(t) =
X

(

(m−1)(K1)+t, X0

)

∥

∥X
(

(m−1)(K1), X0

)
∥

∥

, for m=1, 2, . . . , M, (1.4.6)

with the initial value given by

Xm(0) =
X

(

(m−1)(K1), X0

)

∥

∥X
(

(m−1)(K1), X0

)
∥

∥

.
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After the normalization, numerical solution of the stochastic differential equations is con-

tinued.

From equation (1.4.6), it can be easily shown that

∥

∥X
(

M(K1)
)
∥

∥ =
∥

∥X
(

M(K1), X0

)
∥

∥

=
M
∏

m=1

∥

∥X
(

m(K1)
)
∥

∥

∥

∥X
(

(m−1)(K1)
)
∥

∥

=
M
∏

m=1

∥

∥Xm(K1)
∥

∥. (1.4.7)

Using equations (1.3.3) and (1.4.7), the pth moment Lyapunov exponent is given by, for all

values of p of interest,

3X(p) = 1

M(K1)
log E

[

M
∏

m=1

∥

∥Xm(K1)
∥

∥

p
]

. (1.4.8)

More details about the approximation of expectation can be found in Xie and Huang [95].

The Monte Carlo simulation presented in this Section can be easily applied to higher

dimensional systems and any noise excitations, even for those with only time series available.

1.5 Organization of the Thesis

It is quite obvious, from the review above, that there has been a large amount of research

done in both flow-induced vibration of cylinders in cross-flow and dynamic stability of

stochastic systems. However, it seems that the research in these two areas has been conducted

separately. Flow-induced vibration has been studied mainly using deterministic tools. On

the other hand, the investigations of dynamic stability of stochastic systems are mainly for

structures under externally applied loads. For a limited number of publications on stability

of structures under fluid-dynamic loads, only considerably simplified structure models and

fluid dynamic force models, such as white noise process, have been used.

The present research bridges the gaps between these two important engineering disci-

plines. The spring-supported cylinder in a cross-flow or a shear flow is considered, which

vibrates in both the drag and lift directions. In the lock-in region, the flow-induced vibration

of a cylinder is a combination of forced vibration and instability. The vortex-induced force

is modeled by a bounded noise due to its narrow-band characteristics. Thus, the equations

of motion are established and the stability of the cylinder is investigated by determining

the moment Lyapunov exponent and Lyapunov exponent. For a cylinder in a shear flow,
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the large-amplitude vibration in the region of high reduced velocity mainly results from the

fluidelastic instability especially when the cylinder is placed in a light fluid such as air. A

quasi-steady model is used to model the flow-induced force in this case. Since turbulent flow

occurs in cylinder arrays in a cross-flow with the upstream cylinders acting as turbulence

generators and additional turbulence is generated to stabilize the flow-induced vibration,

the flow field can be described satisfactorily only in probabilistic terms. Thus an appropriate

stochastic model for turbulence has to be applied to account for the influence of turbulence

on the stability of the system. The equations of motion of the cylinder is established with

both the flow and cylinder modeled as close to reality as possible. The resulting equations

of motion are of the form of parametrically excited stochastic differential equations. The

Lyapunov exponents and pth moment Lyapunov exponents of the system are evaluated to

determine the dynamic stability of the cylinder.

In Chapter 1, the three main mechanisms of fluid-induced vibration of circular cylinders

in a cross-flow are introduced. The experimental observations of stabilizing effect of

turbulence are reviewed. On the other hand, a brief introduction of stochastic stability

is presented. Since Lyapunov exponent and moment Lyapunov exponent are extremely

important in stochastic stability, the concepts and their simulation methods are briefed.

Real noise and bounded noise are two common types of stochastic processes, which have

wide applications in engineering practices. Hence, they are also briefly introduced here.

Chapter 2 introduces a force decomposition model, in which the motion-dependent

forces are included, for the flow-induced vibration of a cylinder in a cross-flow. The model

for a spring-mounted cylinder placed in a cross-flow is established and the vortex-induced

force is modeled by a bounded noise due to its narrow-band characteristics. In the lock-in

region, the vibration of the cylinder in the drag direction is relatively small and can be

neglected. Thus, the model is reduced to a single degree-of-freedom system under bounded

noise excitation. Then, the model is extended to be applicable to a cylinder placed in a

shear flow. In the region of high reduced velocity, the cylinder in a shear flow can be

subjected to fluidelastic instability. To capture the instability, a quasi steady model is used

to model the flow-induced forces. For the grid-generated turbulence, the flow velocity can

be decomposed into a mean component and a fluctuating component. The latter can be

modeled as a real noise since the grid-generated turbulence is nearly Gaussian and has
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zero mean. After considering the influence of turbulence, the vortex-induced forces and

motion-dependent forces include stochastic terms. Hence, the equations of motion become

a four dimensional stochastic differential equations.

Parametric instability of a single cylinder in the lock-in range is introduced in Chapter 3.

The model developed in Chapter 2 for a cylinder in a cross-flow can be generalized to repre-

sent a class of two-dimensional dynamic systems subjected to parametric excitations in the

damping term, which is described by a narrow-band bounded noise process. The dynamic

stability of the system is studied by determining the moment Lyapunov exponents and the

Lyapunov exponents. Based on the stability analysis results of a two-dimensional general

dynamic system, an example is given to demonstrate the role of parametric instability in

vortex-induced vibration of a single cylinder in a cross-flow. The effects on the stability of

some crucial parameters, such as the mass ratio and fluid damping coefficient, are studied.

In Chapter 4, the fluidelastic instability of a single cylinder in shear flow is considered. The

grid-generated turbulence is modeled as an Ornstein-Uhlenbeck process, which is included

in the equations of motion as a perturbation when the turbulence intensity is small. The

stability of the deterministic system is studied by varying the critical parameter (frequency

ratio k). It is shown that fluidelastic instability can be stabilized by the turbulence under

certain conditions. Parametric studies are performed to demonstrate the significant effects

of noise parameters α and σ , on the stability of the cylinder. Analytical results and those

obtained from numerical simulations are compared to validate the approach.

The method presented in Chapter 3 is extended and applied to the case for a two degrees-

of-freedom system in Chapter 5. For a two degrees-of-freedom system excited by a bounded

noise process, the system can be in subharmonic resonance, combination (additive or

differential) resonance, or in both, depending on the excitation frequency. The effect of

noise on various parametric resonances is investigated. The effects of parameters on the

stability are studied. Similarly, analytical results agree well with the numerical results.

Chapter 6 discusses some of the open questions in the current research and makes some

suggestions for future research.
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Modeling of Flow-Induced Vibration
of a Cylinder

Three mechanisms are usually considered to be responsible for flow-induced vibration

and/or instability of a cylinder in a cross-flow; they are vortex-induced lock-in resonance,

fluidelastic instability, and turbulence-induced buffeting. According to Naudascher and

Rockwell [56], these three mechanisms represent three general sources of excitation: the

(flow) instability-induced excitation (IIE), the movement-induced excitation (MIE), and

the extraneously-excited excitation (EIE), respectively. The total flow-induced force can

then be expressed as

F = FV + FM + FT , (2.0.1)

where the subscripts V , M, and T represent vortex-induced, motion-dependent, and

turbulence-induced buffeting forces, respectively. When the cylinder is rigid and fixed,

it becomes stationary even though there is a cross-flow. In this case, the total flow-induced

force becomes

F0 = FV 0 + FT0. (2.0.2)

The three mechanisms may coexist in any flow-induced vibration problem. When that

happens, the dynamic behavior of the fluid-structure system becomes very complex. The

task of a theoretical modeling study is thus to formulate the problem in a general way, to

simplify the formulation by identifying key mechanism(s), and to demonstrate the main

features for specific cases through dynamic analyzes.

31
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For a single circular cylinder in a uniform flow, the main mechanism of unstable motion

is considered to be vortex-induced lock-in resonance (Sarpkaya [72] and [74]). In a recent

theoretical modeling study, Zhu et al. [104] modeled the vortex-induced force as a bounded

noise and showed that this lock-in resonance is accompanied by a parametric instability

due to the bounded noise excitation. On the other hand, Yu et al. [100] showed that a

single cylinder could undergo fluidelastic instability if the approach flow is not uniform,

e.g., a shear flow. Such instability occurs at very large values of reduced velocity (Ur>100),

where the vortex-induced force has no appreciable influence on cylinder vibration. The

main mechanism responsible for this type of instability could be attributed to changes of

the mean lift and mean drag forces relevant to cylinder motion. Fluidelastic instability may

also occur when the single cylinder is in the wake of another cylinder (Bokaian and Geoola

[18]), or in cylinder arrays (Price and Paidoussis [65], Chen [24]). It is considered that

the motion-dependent fluid force, in the form of fluid-damping force and/or fluid-stiffness

force, is responsible for fluidelastic instability in these cases.

Since fluidelastic instability could occur under many different circumstances, its sup-

pression is thus of importance to a variety of engineering applications. In most practical

engineering problems, the flow is quite often turbulent. According to So and Savkar [79],

under certain flow conditions, free stream turbulence could act to substantially increase the

fluctuating vortex-induced forces. Their measurements were carried out on a rigid cylin-

der. The increased fluctuating forces could, in turn, influence fluidelastic instability of the

fluid-structure system. Romberg and Popp [68] presented some interesting stability results

from carefully carried out experiments on flow-induced vibrations of a flexibly-mounted

cylinder in an otherwise fixed cylinder array. They considered both fluidelastic instabil-

ity and turbulent buffeting, and showed that large galloping motion can be stabilized by

grid-generated turbulence. In one of their experiments, Romberg and Popp [68] consid-

ered a cylinder with a very small structural damping. The damping measured in the flow

direction is high, and the cylinder undergoes a galloping motion in the cross-flow (lift)

direction at certain reduced velocity Ur,cr. Naturally, turbulence occurs in cylinder bundles

in cross-flow due to upstream cylinder bundles acting as turbulence generators. Additional

turbulence was generated in this experiment by placing a turbulence grid in front of the

cylinder at a distinct distance. It was observed that as the turbulence was increased in the
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flow, a significant stabilization took place and the galloping instability did not occur for

reduced velocity values substantially higher than Ur,cr. The experiment also showed that

the turbulence intensity is a significant factor influencing the stability. Similar effects are

observed in the experiments of a parallel triangular tube bundle performed by Rottmann

and Popp [69].

In this chapter, a spring-supported cylinder in a cross-flow and a shear flow is considered,

respectively. The equations of motion for the two cases are set up and simplified for further

analytical analysis.

2.1 A Single Cylinder in Cross-Flow

In view of its fundamental importance, vortex-induced vibrations have been studied ex-

tensively, using experimental, numerical, and theoretical modeling methods. A number of

review articles are available on this subject, e.g., Anagnostopoulos [1], Gabbai and Benaroya

[30], and Sarpkaya [73], [74]. Since the present study is concerned with the theoretical

modeling of vortex-induced vibrations, only relevant work is reviewed and discussed.

Due to the complex nature of fluid-structure interaction in vortex-induced vibration,

theoretical modeling is usually carried out in a semi-analytical and semi-empirical way.

The developed models can be classified into two groups; one is the force decomposition

model, and the other is the wake oscillator model.

In the force decomposition model, the force acting on the cylinder is decomposed into

several components representing the forces due to vortex shedding and arising from fluid-

structure interaction. This type of model was first proposed by Sarpkaya [72], who divided

the total force into a fluid inertia and a fluid damping component. Griffin and Koopmann

[33] and Griffin [34] decomposed the total force into a fluid excitation component and

a fluid reaction component, the latter representing the force arising from fluid-structure

interaction. It was found that fluid damping decreased dramatically in the lock-in range.

This implies that fluid damping plays a crucial role in vortex-induced vibration. Based

on unsteady flow theory, Chen et al. [23] represented the force arising from the fluid-

structure interaction by three linear motion-dependent components, i.e., a fluid inertia, a

fluid damping, and a fluid stiffness component. They were combined with a vortex-induced

excitation force to give the total force, and Chen et al. [23] concluded that vortex-induced
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vibration is made up of instability and forced vibration. However, they did not point out

explicitly which component is the source that leads to instability.

In the wake oscillator model, a van der Pol oscillator was invoked to represent the dynam-

ics of the lift force due to vortex shedding. It was combined with the equation of motion

of the cylinder to form the governing equations for the fluid-structure system. Certain

terms related to cylinder motion were assumed in the wake oscillator to represent the effect

of structural motion on the lift force, thereby taking the fluid-structure interaction into

account. Hartlen and Currie [35] were the first to propose the wake-oscillator model. The

model was later modified by a number of researchers, e.g., Skop and Griffin [75], Landl [41],

Berger [12], and Balasubramanian and Skop [10], in order to obtain a better agreement with

experimental measurements and to replicate experimental observations.

Wang et al. [85] proposed a model for vortex-induced vibration in both cross-flow and

stream-wise directions. In the model, the quasi-steady flow theory was invoked to ac-

count for fluid-structure interactions. This model avoids using the assumed fluid-structure

interaction terms as in the wake-oscillator model, but is limited to weak fluid-structure in-

teraction cases only. This is because the condition for the quasi-steady flow theory to hold is

that the velocity of structural vibration is small compared to the free-stream velocity of the

approach flow. If the fluid-structure interaction is strong, the induced structural vibration

becomes significant, and the velocity of structural vibration is large, thus the quasi-steady

flow theory might not be applicable. An analytical expression of vortex-induced force could

be obtained when a linear approximation of fluid-structure interaction was made. This

model requires only the parameters for a stationary cylinder compared with the wake-

oscillator model, thus avoiding the use of the assumed fluid-structure interaction terms

whose coefficients are to be determined from free or forced vibration tests. Using this

model, an analytical expression of vortex-induced force could be deduced using a linear

approximation of fluid-structure interaction. The expression is similar to that proposed by

Sarpkaya [72], but additional nonlinear terms arising from fluid-structure interaction were

present. In the Wang et al. [85] model, vortex-induced lift and drag forces acting on the sta-

tionary cylinder were represented by sinusoidal functions. The model was modified using

the bounded noise process to represent vortex-induced lift and drag forces acting on the

stationary cylinder (Wang et al. [86]) and based on the narrow-band characteristic of the
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vortex-induced force shown by Vickery and Basu [84]. The modified model was validated

against experimental measurements in the literature. The predicted power spectra of the

flow-induced force and the cylinder vibration are very similar to experimental results.

In the present study, the model developed by Wang et al. [86] is further extended to

include the motion-dependent fluid forces, in an attempt to investigate whether they could

induce instability which coexists with vortex-induced vibration and to identify the source

of instability. The motion-dependent forces are taken into account using a linear model

proposed by Chen et al. [23], and the vortex shedding forces are modeled by a bounded

noise. The stability of the resultant model will be studied by the determination of Lya-

punov exponents and moment Lyapunov exponents which are presented in Chapter 3 for

stochastically excited systems.

In previous models of vortex-induced vibration, vortex-induced forces are usually repre-

sented by sinusoidal functions. However, the shape of the narrow-banded spectrum is very

similar to that of a bounded noise (see, e.g., Vickery and Basu [84]). Therefore, a bounded

noise would be a more appropriate model. In this model, vortex-induced lift and drag forces

are modeled by bounded noise processes, while the fluid-structure interaction is accounted

for using a quasi-steady flow theory. As a result, the interaction between the drag and lift

directions is taken into account.

2.1.1 Equations of Motion for a Cylinder in Cross-Flow

Consider an elastically supported rigid cylinder in a cross-flow. The approaching flow is

assumed to be uniform and two-dimensional. The equations of motion of the cylinder are

Ẍ(t)+ 2ζsω0Ẋ(t)+ ω2
0X(t) = FX(t)

M
,

Ÿ(t)+ 2ζsω0Ẏ(t)+ ω2
0Y(t) = FY (t)

M
,

(2.1.1)

where X(t) and Y(t) are cylinder displacements in the stream-wise and the cross-flow

directions, respectively,ω0 is the natural frequency, ζs is the structural damping coefficient,

and M is the mass per unit length of the cylinder.

In equations (2.1.1), FX(t) and FY (t) are flow-induced forces per unit length acting on

the cylinder in the stream-wise and the cross-flow directions, respectively. For the present

case, flow-induced forces may be divided into two components: one arising from vortex
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shedding, and the other due to the feedback effect of cylinder motion. Hence, they can be

written as

FX(t) = FX
V (t)+ FX

M(t),

FY (t) = FY
V (t)+ FY

M(t),
(2.1.2)

where the subscripts “V ” and “M” represent “vortex-induced” and “motion-dependent”,

respectively.

When the cylinder is stationary, the motion-dependent fluid forces, FX
M(t) and FY

M(t), are

absent, and only vortex-induced forces are applied to the cylinder. These are denoted as

FX
V0
(t) and FY

V0
(t) in order to differentiate them from their counterparts when the cylinder

is in motion. Once the cylinder is vibrating under the action of vortex-induced forces, its

motion can alter vortex shedding, thus changing vortex-induced forces not only in their

magnitudes but also in their dominant frequencies.

In addition to vortex-induced excitation, fluid flow will also affect the dynamics of the

cylinder in the form of added mass, fluid damping, etc. They are all included into the

motion-dependent forces, FX
M(t) and FY

M(t), in the present formulation.

In general, both vortex-induced and motion-dependent forces are nonlinear and de-

pendent on a number of parameters, such as the Reynolds number, the reduced velocity,

structural damping, and their expressions are complex. In order to carry out a theoretical

analysis, approximate modeling is necessary.

2.1.1.1 Modeling of Vortex-Induced Forces

In the present study, a model proposed by Wang et al. [86] is invoked for vortex-induced

forces. In the model, vortex-induced forces acting on a vibrating cylinder are modeled

based on the quasi-steady flow theory, and the basic idea is illustrated in Figure 2.1. When

the velocity of cylinder vibration is small compared with the flow velocity, the quasi-steady

theory is valid. Vortex-induced forces acting on a vibrating cylinder are equal to those

acting on the same but stationary cylinder at the instantaneous position, with the direction

of the approach flow changed by the velocity of cylinder vibration. Vortex-induced forces

are thus expressed as

FX
V (t) = FX

V0
(t) · cosθ(t)+ FY

V0
(t) · sinθ(t),

FY
V (t) = FY

V0
(t) · cosθ(t)− FX

V0
(t) · sinθ(t),

(2.1.3)
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where θ is the angle between the x-axis and the instantaneous velocity vector of cylinder

vibration given by

θ(t) = tan−1 Ẏ

U − Ẋ
. (2.1.4)

In equations (2.1.3), FX
V0
(t) and FY

V0
(t) are the drag and lift forces acting on the stationary

cylinder subjected to a cross-flow of free-stream velocity V(t)=
√

(U −Ẋ)2+Ẏ 2 at the

angle θ . When the cylinder velocity is much smaller than the flow velocity, i.e., Ẋ(t)≪U

and Ẏ(t)≪U ,

V(t)=
√

(

U −Ẋ
)2 + Ẏ 2 ≈ U . (2.1.5)

Therefore, the lift and drag forces acting on the stationary cylinder can be used to de-

duce vortex-induced forces applied to the vibrating cylinder. In the literature, the lift and

drag forces are usually represented by sinusoidal functions at the Strouhal and the double

Strouhal frequencies, respectively. However, Vickery and Basu [84] have shown that the

spectrum of vortex-induced force is of narrow-band, even though the approaching flow is

uniform. Wang et al. [86] showed that the bounded noise process has similar spectral dis-

tribution to that of the vortex-induced force, and is thus appropriate for the force modeling.

Using the bounded noise process, the drag and lift forces acting on the stationary cylinder

can be expressed as

FX
V0
(t) = FD(t) = 1

2ρU 2DC̄D + 1
2ρU 2DCD cos

[

νDt + σDW(t)+ φD

]

,

FY
V0
(t) = FL(t) = 1

2ρU 2DCL cos
[

νLt + σLW(t)+ φL

]

,
(2.1.6)

where ρ is the density of the fluid, C̄D is the mean drag coefficient, CD (CL) is the amplitude

of the fluctuating drag (lift) coefficients, νD (νL) and σD (σL) are the frequencies and

bandwidths of the vortex-induced force in the drag(lift) direction, respectively, W(t) is the

standard Wiener process, and φD and φL are uniformly distributed random numbers to

make the bounded noise processes stationary.

In general, an iteration process is needed to obtain the expressions of vortex-induced

forces using equations (2.1.3) since the flow-induced forces and the cylinder vibrations have

an interactive relationship through the angle θ , which is nonlinearly related to cylinder

motion. For small amplitude vibration, however, a linear approximation can be invoked in
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Figure 2.1 Illustration of the quasi-steady flow theory. (a) a cylinder subjected to a cross-flow; (b)

vortex-induced forces acting on the vibrating cylinder according to the quasi-steady flow theory.

the present study, i.e.,

sinθ(t) = Ẏ(t)
√

[U −Ẋ(t)]2 + Ẏ 2(t)
≈ Ẏ(t)

U
,

cosθ(t) = U − Ẋ(t)
√

[U −Ẋ(t)]2 + Ẏ 2(t)
≈ 1.

(2.1.7)
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It follows then that the vortex-induced forces can be expressed as

FX
V (t) = FD(t)+ FL(t) · Ẏ(t)

U
,

FY
V (t) = FL(t)− FD(t) · Ẏ(t)

U
.

(2.1.8)

Substituting equations (2.1.8) into equations (2.1.1), the equations of motion are written as

Ẍ(t)+ 2ζsω0Ẋ(t)+ ω2
0X(t) = 1

M

[

FD(t)+ FL(t)
Ẏ(t)

U
+ FX

M(t)
]

,

Ÿ(t)+ 2ζsω0Ẏ(t)+ ω2
0Y(t) = 1

M

[

FL(t)− FD(t)
Ẏ(t)

U
+ FY

M(t)
]

.

(2.1.9)

Since the present study is focused on the cylinder vibration in the cross-flow direction, only

equation (2.1.9) is retained and rewritten as

Ÿ(t)+
[

2ζsω0 + 1

M

FD(t)

U

]

Ẏ(t)+ ω2
0Y(t) = 1

M

[

FL(t)+ FY
M(t)

]

. (2.1.10)

2.1.1.2 Modeling of Motion-Dependent Forces

Cylinder vibration also induces other fluid forces, such as the inertia force due to added

mass and the fluid damping force, which are not considered in the above model. In the

present study, they are included in the motion-dependent fluid force as

FY
M = −ρπD2

4
cmŸ + ρU 2

ω̄0

cdẎ + ρU 2ckY , (2.1.11)

where cm, cd , and ck are the added mass, the fluid damping, and the fluid stiffness coefficients,

respectively, and ω̄0 is the natural frequency of the system, whose expression is given in

subsection 2.1.1.3. In general, cm =1 since the added mass is considered to be equal to the

mass of fluid displaced by the vibrating cylinder. As a first approximation, the fluid damping

force is assumed to be proportional to the velocity of cylinder vibration. The fluid stiffness

term affects only the natural frequency of the fluid-structure system.

2.1.1.3 Model for Vortex-Induced Vibration

Substituting equation (2.1.11) into equation (2.1.10) yields

Ÿ(t)+
[

2ζsω0 + 1

M

FD(t)

U

]

Ẏ(t)+ω2
0Y(t) = 1

M

[

FL(t)−
ρπD2

4
cmŸ + ρU 2

ω̄0

cdẎ +ρU 2ckY
]

.

(2.1.12)
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After some manipulation, equation (2.1.12) can be written as

(

M + ρπD2

4

)

Ÿ(t)+
[

2ζsω0M + FD(t)

U
− ρU 2

ω̄0

cd

]

Ẏ(t)+
(

Mω2
0 − ρU 2ck

)

Y(t) = FL(t).

(2.1.13)

Using equations (2.1.6), equation (2.1.13) can be simplified as

Ÿ(t)+
{

2ζ̄sω̄0+
U

[

C̄D + CD cosηD(t)
]

2DMr

− U 2

ω̄0D2Mr

cd

}

Ẏ(t)+ω̄2
0Y(t) = U 2

2DMr

CL cosηL(t),

(2.1.14)

where

M̄ = M + ρπD2

4
, Mr = M̄

ρD2
,

ω̄0 =

√

Mω2
0 − ρU 2ck

M̄
, ζ̄s = ω0M

ω̄0M̄
ζs,

ηD(t) = νDt + σDW(t)+ φD, ηL(t) = νLt + σLW(t)+ φL.

Non-dimensionalizing equation (2.1.14) with respect to U and D, and applying the time

scaling τ= ω̄0t, the equation becomes

Y ′′(τ )+
[

2ζ̄s + Ūr0

2π

C̄D + CD cosη̃D(τ )

2Mr

− Ū 2
r0

4π2

cd

Mr

]

Y ′(τ )+ Y(τ ) = Ū 2
r0

4π2

CL

Mr

cosη̃L(τ ),

(2.1.15)

where

Ūr0 = 2πU

ω̄0D
= the reduced velocity,

η̃D(t) = ν̃Dt + σ̃DW(t)+ φD, ν̃D = νD

ω̄0

, σ̃D = σD
√

ω̄0

,

η̃L(t) = ν̃Lt + σ̃LW(t)+ φL, ν̃L = νL

ω̄0

, σ̃L = σL
√

ω̄0

.

Letting

β = 2ζ̄s + Ūr0

2π

C̄D

2Mr

− Ū 2
r0

4π2

cd

Mr

, µD = Ūr0

2π

CD

Mr

, µL = Ū 2
r0

4π2

CL

Mr

, (2.1.16)

equation (2.1.15) can be written as

Y ′′(τ )+
[

β + µD cosη̃D(τ )
]

Y ′(τ )+ Y(τ ) = µL cosη̃L(τ ). (2.1.17)
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From equation (2.1.17), one can see that two sources are responsible for cylinder vibration:

µL cosη̃L(τ ), which may lead to the main resonance if ν̃L =νL/ω̄0 =1, and β+µD cosη̃D(τ ),

which may give rise to a negative-damping-induced instability or a parametric instability

depending on the relationship between β, µD, and η̃D(τ ). This is studied in detail in the

following chapter.

2.2 A Spring-Supported Cylinder in Shear Flow

In the present study, a single circular cylinder in a shear flow with free stream turbulence

is considered and it is hoped that through the investigation the mechanisms that contribute

to fluid-structure instability could be identified and the stabilizing effect of free stream

turbulence could be analyzed in detail.

In the present study, the model developed in Zhu et al. [104] is extended to take the effects

of shear flow and free stream turbulence into account. A general model is first proposed. It

is then reduced to a simplified one for dynamic analysis of a single cylinder in a turbulent

shear flow at large Ur values.

2.2.1 Deterministic Modeling

Consider an elastically supported rigid cylinder in a cross-flow. The approaching flow is

assumed to be a linear shear flow and two-dimensional. The equations of motion of the

cylinder can be written as

ẍ(t)+ 2ζsωx ẋ(t)+ ω2
x x(t) = FX(t)

M
,

ÿ(t)+ 2ζsωy ẏ(t)+ ω2
y y(t) = FY (t)

M
,

(2.2.1)

where x(t) and y(t) are cylinder displacements in the stream-wise and the cross-flow

directions, respectively, ωx and ωy are the natural frequencies, ζs is the nondimensional

structural damping coefficient, and M is the mass per unit length of the cylinder. FX(t) and

FY (t) are flow-induced forces per unit length acting on the cylinder in the stream-wise and

the cross-flow directions, respectively, and they are defined in equations (2.1.2)
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2.2.1.1 Modeling of Motion-Dependent Forces

Cylinder vibration induces fluid forces, such as the added mass and the fluid damping force.

In the present study, they are approximated in a linear combination as
{

FX
M

FY
M

}

= − ρπD2

4

[

cx
m c

xy
m

c
yx
m c

y
m

] {

ẍ

ÿ

}

+ ρU 2

ω0

[

cx
d c

xy

d

c
yx

d c
y

d

] {

ẋ

ẏ

}

+ ρU 2

[

cx
k c

xy

k

c
yx

k c
y

k

] {

x

y

}

, (2.2.2)

where cm, cd , and ck are the added mass, the fluid damping, and the fluid stiffness coefficients,

respectively. In general, the added mass is considered to be equal to the mass of fluid pushed

by the vibrating cylinder. In light fluids such as air, the added mass is usually negligible. As

a first approximation, the fluid damping force is assumed to be proportional to the velocity

of cylinder vibration. The fluid stiffness term affects only the natural frequency of the

fluid-structure system.

2.2.1.2 Modeling of Vortex-Induced Forces

The model developed by Zhu et al. [104] is extended to represent vortex-induced forces

acting on a vibrating cylinder in shear flow. The basic idea of this model is illustrated

in Figure 2.2. According to the model, when the velocity of cylinder vibration is small

compared with the flow velocity, it is considered that the unsteady vortex-induced forces

acting on a vibrating cylinder are equal to the vortex-induced forces acting on the same but

stationary cylinder at the instantaneous position, but with the direction of the approach

flow changed by the velocity of cylinder vibration. For the stationary cylinder as at its initial

position, vortex-induced forces are steady-state and can be represented by the bounded

noise processes. Vortex-induced forces are thus expressed as

FX(t) = FX
V0
(t) · cosθ(t)+ FY

V0
(t) · sinθ(t),

FY (t) = FY
V0
(t) · cosθ(t)− FX

V0
(t) · sinθ(t),

(2.2.3)

where FX
V0
(t) and FY

V0
(t) are the drag and lift forces acting on the stationary cylinder,θ is the

angle between the x-axis and the instantaneous velocity vector of cylinder vibration given

by

θ(t) = tan−1 Ẏ

U − ẋ
.
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Figure 2.2 Illustration of the flow-induced forces. (a) a cylinder subjected to a shear flow; (b)

drag and lift forcesacting on the vibrating cylinder.

In a shear flow, the force coefficients can be expanded in terms of small displacements of

the cylinder, x and y, from its original position (0, 0), i.e.,

FX
V0
(t) = 1

2ρV 2D
[

CD(0, 0, t)+ ∂CD(0, 0, t)

∂x
x + ∂CD(0, 0, t)

∂y
y
]

,

FY
V0
(t) = 1

2ρV 2D
[

CL(0, 0, t)+ ∂CL(0, 0, t)

∂x
x + ∂CL(0, 0, t)

∂y
y
]

,

where V is the relative velocity.

Since the local velocity is also a function of the coordinate y, i.e., U =U0+G y, where G is

the flow velocity gradient, the derivatives with respect to x are zero, i.e.,∂CD/∂x =∂CL/∂x =0,

in the expressions above. When the cylinder velocity is much smaller than the flow velocity,

i.e., ẋ(t)≪U and ẏ(t)≪U , the relative velocity can be approximated as

V 2(t)=
(

U0 + G y − ẋ
)2 + ẏ2 ≈ U 2

0

(

1 + 2
G y − ẋ

U0

)

.
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For small amplitude vibration, however, a linear approximation can be invoked in the

present study, i.e.,

sinθ(t) = ẏ(t)
√

[

U0 + G y − ẋ(t)
]2 + ẏ2(t)

≈ ẏ(t)

U0

,

cosθ(t) = U0 + G y − ẋ(t)
√

[

U0 + G y − ẋ(t)
]2 + ẏ2(t)

≈ 1.

Hence, the vortex forces can be approximated as

FX
V = 1

2ρU 2
0 D

(

CD + ∂CD

∂y
y + 2

G y − ẋ

U0

CD + ẏ

U0

CL

)

,

FY
V = 1

2ρU 2
0 D

(

CL + ∂CL

∂y
y + 2

G y − ẋ

U0

CL − ẏ

U0

CD

)

.

(2.2.4)

2.2.2 Description and Effect of Turbulence

The effects of turbulence are considered in two aspects: one is the effect on the free-stream

velocity of the incoming flow, and the other is the effect on the flow-induced forces applied

to the cylinder. The latter effect exists even though the incoming flow is smooth in cylinder

arrays, because the upstream cylinders act as the turbulence generators. For the description

of a turbulent flow field statistical methods are commonly used.

2.2.2.1 Statistical Description of Turbulence

For the case of one dimensional flow, the flow velocity can be written as the sum of the mean

value Ū(x) and the fluctuating part Ũ(t).

U(x, t) = Ū(x)+ Ũ (x, t) = Ū(x)
[

1 + ξ (t)
]

, (2.2.5)

where ξ(t) is a random process of mean zero.

A common assumption for the flow field is that the velocity is a normally distributed

stationary random process. Then the velocity distribution is well-defined by the mean value

Ū and the standard deviation σ . If the velocity is further assumed as an ergodic process, the

ensemble mean value and the standard deviation can be obtained from a sufficiently long

averaging in time,

Ū (x) = lim
T→∞

1

T

∫ T

0
U(x, t)dt,
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σ 2(x) = lim
T→∞

1

T

∫ T

0

[

U(x, t)− Ū(x)
]2

dt.

Combining these two values for a flow with the main flow direction x, the turbulence

intensity Tu can be defined

Tu = σ

Ū
. (2.2.6)

Furthermore, the flow states are correlated in space and time, which can be described by

the space-time covariance function

R(x, t,1x, τ) = lim
T→∞

1

T

∫ T

0
Ũ(x, t)Ũ(x+1x, t+τ)dt, (2.2.7)

where 1x is the offset distance and τ is the offset time. From the space-time covariance

function the length scale of turbulence, which describes the average length of a turbulence

eddy,

Lx = 1

R(x, t, 0, 0)

∫ +∞

0
R(x, t, y, 0)dy (2.2.8)

can be calculated as the spatial character of the flow field. If the flow field is homogeneous,

the covariance function is even and the length scale is independent of the position x. Then

Lx can be determined at any position x0 by

Lx = 1

σ 2(x0)

∫ +∞

0
R(x0, t, y, 0)dy. (2.2.9)

More details on the statistical description of turbulence can be found in [40] and [69].

2.2.2.2 Stochastic Model of Turbulence

Turbulence can be modeled as a stochastic process. Depending on the characteristics of the

power spectral density functions of the turbulent flow, various random processes may be

used to model the turbulence. A wind turbulence model was presented by Lin and Li [45] to

account for the fluctuating stream-wise velocity of the incoming turbulent flow. The model

is essentially a bounded noise process whose spectrum fits experimental measurement of

wind velocity spectrum well. The model was used for stability analysis of bridge deck in

turbulent flow. The same idea was employed by Namachchivaya and Vedula [55] to explain

the stabilizing effect of turbulence on two cylinders. In Namachchivaya and Vedula [55], the

quasi-steady flow theory was used to derive the fluid forces, and a real noise process was

applied to model the turbulent flow. Moshchuk et al. [50] modeled the Gaussian random
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sea waves as the output of a shaping filter. They used different shaping filters and compared

the results. Solari and Piccardo [77] reviewed the turbulence modeling and proposed a

three dimensional turbulence model tailored to determine the gust buffeting response of

structures. The parameters in their turbulence model were derived from the experimental

measurements.

2.2.2.3 Modeling of Grid-Generated Turbulence

One of the objectives in this study is to develop the proper models of grid-generated

turbulence in cross-flow to account for the effects of turbulence on the fluid forces, which is

discussed as follows.

The effect of free stream turbulence is considered as the disturbance to the main flow

velocity of the incoming flow, which furthermore affects the fluid forces applied to the cylin-

der. Due to the random behavior of turbulence, statistical methods are commonly used to

describe the turbulence. Grid-generated turbulence is approximately stationary, homoge-

neous, and isotropic (see, e.g., Batchelor [11]), which can be modeled by a stochastic process.

To simplify the problem, only the turbulence in the main flow direction is considered.

For the case of one dimensional flow, the flow velocity can be written as the sum of the

mean value Ū and the fluctuating part Ũ

U(t) = Ū + Ũ = Ū + η(t),

where η(t) is a random process of mean zero.

Experiments have shown that the space correlation function f (r) has the form

f (r) = f (0) exp(−r/Lx),

where r is the distance between two correlated points in the x direction, and Lx is the length

scale of turbulence defined by equation (2.2.9).

If the field of fluctuating velocity is superimposed upon a mean flow of velocity Ū in the

x-direction, and if the turbulence is small compared with the mean flow, the turbulence can

be thought of being convected by the mean velocity Ū without evolution, which is known

as Taylor’s hypothesis. Thus, it is possible to interchange time and space variables. The

correlation function in time is related to the correlation function in space by replacing the

time τ by r/Ū , i.e.

E
[

Ũ(t)Ũ(t+τ)
]

= R(τ ) = f (τU), (2.2.10)
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where R(τ ) is the correlation function in time.

Hence, the corresponding time correlation function is given by

R(τ ) = f (τU) = R(0) exp
(

−|τ |Ū/Lx

)

. (2.2.11)

Since R(0)= f (0)=σ 2
x , the time correlation function (2.2.11) at some fixed point in the flow

field can be described by

R(τ ) = σ 2
x exp

(

−|τ |Ū/Lx

)

. (2.2.12)

Based on the experimental observations of grid-generated turbulence, the fluctuating

velocity Ũ can be modeled by an Ornstein-Uhlenbeck process (see, e.g., Pope [63]). An

Ornstein-Uhlenbeck process η(t) is defined by the one-dimensional Itô stochastic differ-

ential equation

dη(t) = −α η(t) dt + σ dW(t), η(t0) = η0.

The probability density function f (η, t) evolves by the Fokker-Planck equation

∂f

∂t
= σ 2

2

∂2f

∂η2
+ α

∂( f η)

∂η
. (2.2.13)

If the initial condition η0 is normal with mean 0 and variance σ 2/(2α), i.e., η0 ∼
N

(

0, σ 2/(2α)
)

, then η(t) is a stationary Gaussian process with mean zero, E
[

η(t)
]

=0,

and the correlation function is given by

R(τ ) = E
[

η(t) η(t+τ)
]

= σ 2

2α
e−α|τ |. (2.2.14)

A limitation of an Ornstein-Uhlenbeck process is that η(t) is nowhere differentiable,

which is incorrect in reality. For further details, refer to the book by Pope [63].

Comparing the correlation function of the grid-generated turbulence with that of the

Ornstein-Uhlenbeck process, from equations (2.2.12) and (2.2.14), one obtains

σ 2
x = σ 2

2α
,

Ū

Lx

= α. (2.2.15)

Simplifying equations (2.2.15) yields

σ =

√

2Ū

Lx

σx, α = Ū

Lx

.

For the following analysis of perturbation, let

η(t) = σ0ξ(t),
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where σ0 is a small parameter.

By following Itô’s formula, one can obtain the governing stochastic differential equation

for ξ(t)

dξ(t) = −α ξ(t) dt + σξ dW(t), ξ(t0) = ξ0,

where σξ =σ/σ0.

2.2.3 Randomizing Equations of Motion for a Cylinder in Shear
Flow

Since the fluctuating velocity is small compared to the mean velocity Ū =U0, one has the

following approximation:

U 2 = U 2
0

[

1 + σ0

U0

ξ(t)
]2

≈ U 2
0

[

1 + 2µξ(t)
]

.

whereµ=σ0/U0 is the noise intensity.

Substituting the above approximate expression into equations (2.2.4), one obtains

FX
VT = 1

2ρU 2
0 D

[

1 + 2µξ(t)
]

(

CD + ∂CD

∂y
y
)

+ 1
2ρU0D

[

1 + µξ(t)
][

2(G y − ẋ)CD + ẏCL

]

,

FY
VT = 1

2ρU 2
0 D

[

1 + 2µξ(t)
]

(

CL + ∂CL

∂y
y
)

+ 1
2ρU0D

[

1 + µξ(t)
][

2(G y − ẋ)CL − ẏCD

]

.

(2.2.16)

Similarly, the randomized motion-dependent force is given by

{

FX
M

FY
M

}

= − ρπD2

4

[

cx
m c

xy
m

c
yx
m c

y
m

] {

ẍ

ÿ

}

+
ρU 2

0

[

1 + 2µξ(t)
]

ω0

[

cx
d c

xy

d

c
yx

d c
y

d

] {

ẋ

ẏ

}

+ ρU 2
0

[

1 + 2µξ(t)
]

[

cx
k c

xy

k

c
yx

k c
y

k

] {

x

y

}

. (2.2.17)

Substituting equations (2.2.16) and (2.2.17) into equation (2.2.1), one can obtain the

equations of motion for a cylinder in turbulent shear flow, which includes vortex-induced

force, motion-dependent force, and turbulence. When the effects of free-stream turbulence

and shear flow are removed, this general model is reduced to the model of Zhu et al. [104]

for a cylinder in uniform cross-flow. Zhu et al. [104] showed that parametric resonance

could occur due to the interaction between x- and y-directions at lock-in range. Both

motion-dependent force and vortex shedding play a significant role in the vibration.
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Yu et al. [100] found experimentally that the fluidelastic instability would occur at high

reduced velocity (Ur>100) from Re=8 to 120. At this range of high Ur , the experimental

results of Chen et al. [21] showed that the motion-dependent damping and stiffness forces

approached zero for a single cylinder in the cross-flow, which can be neglected. Thus, the

model is reduced to that of Yu et al. [100]. Non-dimensionalizing the equations of motion

with respect to U0 and D, and applying the time scaling τ=ωxt, the equations of motion

become

X ′′ +
{

2ζ +
Ur

[

1 + µξ(τ)
]

CD

Mr

}

X ′ + X −
{U 2

r

[

1 + 2µξ(τ)
]

2Mr

∂CD

∂Y

+
U 2

r

[

1 + 2µξ(τ)
]

KCD

Mr

}

Y −
Ur

[

1 + µξ(τ)
]

CL

2Mr

Y ′ =
U 2

r

[

1 + 2µξ(τ)
]

CD

2Mr

, (2.2.18a)

Y ′′ + k
{

2ζ +
Ur

[

1 + µξ(τ)
]

CD

2Mr

}

Y ′ + k2
{

1 −
U 2

r

[

1 + 2µξ(τ)
]

2Mr

∂CL

∂Y

−
U 2

r

[

1 + 2µξ(τ)
]

KCL

Mr

}

Y +
kUr

[

1 + 2µξ(τ)
]

CL

Mr

X ′ =
k2U 2

r

[

1 + 2µξ(τ)
]

CL

2Mr

,

(2.2.18b)

where

Mr = M

ρD2
, K = GD

U0

, Ur = U0

ωxD
, k =

ωy

ωx

, X = x

D
, Y = y

D
.

At this range of Reynolds number, the vortex shedding frequency varies slightly between

0.13 and 0.2 (Kang, [37]), which is far away from the natural frequency of the cylinder.

Besides, the mass ratio in this study is chosen to be quite high (Mr =5112). Hence, the

forced vibration due to vortex shedding is negligible. Furthermore, additive noise does not

affect the stability of the system although additive noise could increase the random vibration

and delay the exit time of system response to an unstable region (Ibrahim, [36]). For the

analysis of fluidelastic instability, one can neglect the right-hand-side forces in equation

(2.2.18) yielding, in the “state-space” form,

Z′ = ÃZ + µξ(τ)B̃Z, (2.2.19)
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where Z=[X, Y , X ′, Y ′],

Ã =























0 0 1 0

0 0 0 1

−1
U 2

r

2Mr

∂CD

∂Y
+ U 2

r KCD

Mr

−
(

2ζ+ UrCD

Mr

) UrCL

2Mr

0 k2
(

−1+ U 2
r

2M

∂CL

∂Y
+ U 2

r KCL

Mr

)

−kUrCL

Mr

−k
(

2ζ+ UrCD

2Mr

)























,

B̃ =























0 0 0 0

0 0 0 0

0 2
( U 2

r

2Mr

∂CD

∂Y
+ U 2

r KCD

Mr

)

−UrCD

Mr

UrCL

2Mr

0 2k2
( U 2

r

2Mr

∂CL

∂Y
+ U 2

r KCL

Mr

)

−kUrCL

Mr

−kUrCD

2Mr























.

If there is no turbulence in the approach flow, the stability of (2.2.19) is determined by

the eigenvalues of system matrix Ã. If the real part of an eigenvalue is positive, the system is

unstable. When upstream turbulence is significant, the stability of (2.2.19) depends on Ã,

B̃, and the characteristics of noise term ξ(t). Thus, a stochastic method has to be applied to

explore the stability of the system, which is introduced in Chapter 4.

2.3 Conclusion

In this Chapter, a model previously proposed to study vortex-induced vibration of a single

cylinder in a cross-flow is extended to include motion-dependent fluid forces, in an attempt

to understand its dynamic behavior, especially in the lock-in region. The equations of

motion for the cylinder placed in a uniform cross-flow are set up, in which the vortex

force is modeled by a bounded noise because of its narrow-band characteristics. Since

the vibration in the lift direction is more prominent in the lock-in region, the system is

reduced to one degree-of-freedom, i.e., only the vibration of the cylinder in the lift direction

is considered. The resulting equation of motion indicates that the system can be in main

resonance or undergo parametric instability due to the bounded noise; the latter case is

studied in Chapter 3 using the theory of stochastic dynamic stability.

For a cylinder in a shear flow, the shear effect has to be taken into account to explain

the fluidelastic instability of the cylinder when the reduced velocity is high. A quasi-steady
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model is used to model the vortex-induced forces, while the motion- dependent forces are

neglected since they are quite small for high reduced velocity. To investigate the effects

of turbulence on the stability, the grid-generated turbulence is modeled by an Ornstein-

Uhlenbeck process with Gaussian distribution and zero mean. Thus, the equations of

motion are randomized, resulting in a four-dimensional system excited by a real noise. The

stability of the four-dimensional stochastic system is studied in Chapter 4.



3C H A P T E R

Flow-Induced Instability
under Bounded Noise Excitation
in Cross-Flow

The equation of motion for many problems of flow-induced vibration is of the general form

(see, e.g., equation (2.1.17) in Chapter 2)

q′′(τ )+
[

2ε0β + ε0µζ(τ)
]

q′(τ )+ ω2
0 q(τ )+ f

(

q, q′, ε0ζ(τ )
)

= 0, (3.0.1)

where the prime denotes differentiation with respect to the time variable τ , q is the gen-

eralized coordinate, β the damping constant, ω0 the circular natural frequency, ε0 a small

fluctuation parameter, f
(

q, q′, ε0ζ(τ )
)

a nonlinear function, and ζ(τ ) a stochastic process

describing the random property of the flow.

It is natural to ask how the parametric random fluctuation ζ(τ ) can influence the dynamic

stability of system (3.0.1). The dynamical stability of the trivial solution of system (3.0.1) is

governed by the stability of the trivial solution of the linearized equation

q′′(τ )+
[

2ε0β + ε0µζ(τ)
]

q′(τ )+ ω2
0 q(τ ) = 0. (3.0.2)

Systems excited by stochastic processes in the damping term or stiffness term could

become unstable through parametric resonance. Bobryk and Chrzeszczyk [17] determined

the mean square stability of a harmonic oscillator which is under parametric resonance

induced by a colored Gaussian noise. Xie [97] studied the parametric stability of a two-

dimensional system under real noise excitation. In this chapter, the Lyapunov exponent and

52
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moment Lyapunov exponent of the system under bounded noise excitation in the damping

term are determined. Analytical results and numerical results are compared to validate the

approach.

In Section 3.2, the results obtained in Section 3.1 are used to explore the stability of a

cylinder in a cross-flow. It is shown that parametric instability could occur, other than the

large-amplitude forced vibration, in the lock-in range, which gives more insight into the

mechanism of the lock-in phenomenon.

3.1 Stability of a Two-Dimensional System under
Stochastic Parametric Excitation

For a single degree-of-freedom system described by (2.1.17)

Y ′′(τ )+
[

β + µD cosη̃D(τ )
]

Y ′(τ )+ Y(τ ) = µL cosη̃L(τ ),

there exist two types of excitations: the forcing excitationµL cosη̃L(τ ) on the right-hand-sid

of the equation and the parametric excitation β+µD cosη̃D(τ ) on the left-hand-side of the

equation. The forcing excitation induces main resonance when its frequency is close to

the natural frequency of the system, at which point large amplitude vibration occurs when

the system damping is small. In particular, if the system is undamped, the amplitude of

response grows linearly with time.

The parametric excitation occurs in the damping of the system, β+µD cosη̃D(τ ); the

system damping consists of a constant component and a time-dependent component ex-

pressed in the form of a bounded noise. When the constant system damping β is negative,

the system becomes unstable regardless of the value of µD cosη̃(τ ). It can be seen that β

is related to three quantities: the structural damping ζs, the mean drag coefficient C̄D, and

the motion-dependent fluid damping cd . Both ζs and C̄D are positive and their effect is to

increase the system damping, thus would not induce unstable motion of the system. The

one which may induce negative system damping is the fluid damping coefficient cd . The

condition for β<0 is given by

cd>
4π2Mr

U 2
r

(

2ζ̄s + Ūr0

2π

C̄D

2Mr

)

. (3.1.1)

Equation (3.1.1) shows that once cd is large enough, the system becomes unstable. Such

instability can be termed as a constant-fluid-damping-induced instability.
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When β is positive and its value is larger than µD (β>µD), the system is stable. In

this case, the main resonance due to the forcing excitation plays a dominant role in the

response. When β is positive and its value is smaller than µD (β<µD), the stability of the

system depends on the time-dependent fluid-damping component µD cosη̃(τ ). Whatever

value β might have, the time-dependent fluid-damping component µD cosη̃(τ ) always

tends to destabilize the system provided that its dominant frequency is in the vicinity of

twice of the natural frequency of the system. When parametric instability is induced,

the amplitude of cylinder vibration grows exponentially even when β 6=0. In this case,

parametric resonance becomes much more pronounced than the main resonance. The

theory of stochastic instability has to be applied to investigate the parametric stability of the

system, as presented in the following. Since the forcing term does not affect the parametric

instability, it is dropped in the following stability analysis.

3.1.1 Formulation

Consider the dynamic behaviour of the following parametrically excited, two-dimensional

system

d2q(τ )

dτ 2
+

[

2ε0β + ε0µ cosη(τ)
]dq(τ )

dτ
+ ω2

0 q(τ ) = 0,

η(τ) = ν0τ + σ0W(τ )+ θ , (3.1.2)

in which cosη(τ) is a bounded noise, and θ is a uniformly distributed random number in

(0, 2π) that makes cosη(τ) a stationary process.

For the two-dimensional system (3.1.2), the damping term can be removed by the trans-

formation q(τ )=x(τ )e−ε0βτ and further simplified using the time scaling t =ωτ , where

ω2 =ω2
0 −ε2

0β
2, to yield

d2x(t)

dt2
+ εµ cosη̃(t)

dx(t)

dt
+

[

1 − ε2µβ cosη̃(t)
]

x(t) = 0,

dη̃(t) = νdt + σ dW(t),

(3.1.3)

where ε=ε0/ω, ν=ν0/ω, and σ =σ0/
√
ω. The Lyapunov exponents and the moment

Lyapunov exponents of systems (3.1.2) and (3.1.3) are related by

λq(τ ) = −ε0β + ωλx(t), 3q(τ )(p) = − p · ε0β + ω3x(t)(p).
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In the absence of noise, i.e. when σ =0, the bounded noise reduces to a sinusoidal

function and system (3.1.3) is in primary parametric resonance when ν is in the vicinity

of 2 (see, e.g., Xie [99]). In order to have an understanding of the effect of noise on the

parametric resonance, it is important and interesting to study the dynamic stability of

system (3.1.3) under the excitation of a narrow-band process about ν=2, which can be

achieved with the bounded noise for small values of σ .

Hence, the following two-dimensional system under bounded noise excitation is consid-

ered
d2y(t)

dt2
+ εµ cosη(t)

d y(t)

dt
+

[

1 − ε2µβ cosη(t)
]

y(t) = 0,

dη(t) = νdt + ε1/2σ dW(t).

(3.1.4)

The introduction of the scaling parameter ε1/2 in the noise fluctuation term σ dW(t)

renders the bounded noise a narrow-band process for ε=o(1) and σ =O(1).

The eigenvalue problem governing the moment Lyapunov exponent of system (3.1.4)

can be set up using Wedig’s approach [91]. System (3.1.4) can be rewritten as a three-

dimensional system

d











y1

y2

η











=











y2

−
(

1 − ε2µβ cosη
)

y1 − εµ cosηy2

ν











dt +











0

0

ε1/2σ











dW .

Khasminskii’s transformation

cosϕ = y1

a
, sinϕ = y2

a
, a =

∥

∥y
∥

∥ =
(

y2
1 + y2

2

)1/2
,

can be applied to transform the Cartesian coordinates (y1, y2) to the polar coordinates

(a,ϕ), and the pth norm of y ={y1, y2}T is defined as P =a p. The Itô equations for P and

ϕ can be derived using Itô’s Lemma

dP = pP sinϕ cosη(−εµ sinϕ + ε2βµ cosϕ)dt,

dϕ = (−1 − εµ sinϕ cosϕ cosη + ε2µβ cos2ϕ cosη)dt.

Applying a linear stochastic transformation

S = T(η,ϕ)P, P = T−1(η,ϕ)S, −∞<η<+∞, 06ϕ<π ,
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the Itô equation for the transformed pth norm process S can also be derived using Itô’s

Lemma

dS =
[

1
2 εσ

2 Tηη + νTη −
(

1 + εµ sinϕ cosϕ cosη − ε2µβ cos2ϕ cosη
)

Tϕ

+ pP sinϕ cosη
(

− εµ sinϕ + ε2βµ cosϕ
)

T
]

P dt + ε1/2σTηP dW . (3.1.5)

For bounded and non-singular transformation T(η,ϕ), both processes P and S are ex-

pected to have the same stability behaviour. Therefore, T(η,ϕ) is chosen so that the drift

term of the Itô differential equation (3.1.5) is independent of the noise process η(t) and the

phase process ϕ so that

dS = 3Sdt + ε1/2σTηT−1SdW . (3.1.6)

Comparing equations (3.1.6) and (3.1.5), it is seen that such a transformation T(η,ϕ) is

given by the following equation

1
2 εσ

2 Tηη + νTη −
(

1 + εµ sinϕ cosϕ cosη − ε2µβ cos2ϕ cosη
)

Tϕ

+ pP sinϕ cosη
(

− εµ sinϕ + ε2βµ cosϕ
)

T = 3T , −∞<η< + ∞, 06ϕ<π ,

(3.1.7)

in which T(η,ϕ) is a periodic function in ϕ of period π and is bounded when η→±∞.

Equation (3.1.7) defines an eigenvalue problem of a second-order differential operator with

3 being the eigenvalue and T(η,ϕ) the associated eigenfunction. From equation (3.1.6),

the eigenvalue 3 is seen to be the Lyapunov exponent of the pth moment of system (3.1.4),

i.e. 3=3y(t)(p).

3.1.2 Weak Noise Expansions of the Moment Lyapunov Exponent

3.1.2.1 Perturbation Expansion

For weak noise excitation, i.e. for 0<ε≪1, perturbation methods can be applied to solve

the partial differential eigenvalue problem (3.1.7) for the perturbative expansions of the

moment Lyapunov exponent 3y(t)(p). Since the small parameter ε appears as a coefficient

of the term Tηη , a method of singular perturbation (see, e.g., Zauderer [101]) must be

applied.
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Define ν=ν0+ε∆, where ν0 =2 corresponds to the primary parametric resonance in

the absence of noise and ∆ is the detuning parameter. Applying the transformation

η = ε1/2ξ − ν0ϕ, ξ = ε−1/2(η + ν0ϕ),

equation (3.1.7) becomes

σ 2

2
Tξξ −Tϕ+ε1/2∆Tξ +µ cosϕ cos(ε1/2ξ−2ϕ)

(

−ε sinϕ+ε2β cosϕ
)(

Tϕ+2ε−1/2 Tξ
)

+ µp sinϕ cos(ε1/2ξ−2ϕ)
(

−ε sinϕ + ε2β cosϕ
)

T = 3T , (3.1.8)

in which the eigenfunction T is treated as a function of ξ , ϕ, and ε. Denoting z =ε1/2ξ ,

the eigenfunction T(ξ ,ϕ, ε) becomes Y(ξ , z,ϕ, ε). It can be shown that

Tξ = Yξ + ε1/2 Yz , Tξξ = Yξξ + 2ε1/2 Yξz + εYzz. (3.1.9)

Substituting equation (3.1.9) into equation (3.1.8) leads to

L (p)Y = 3y(t)(p)Y , L (p)Y = L 0Y + ε1/2
L 1Y + εL 2Y + ε3/2

L 3Y + ε2
L 4Y ,

(3.1.10)

where

L 0Y = 1
2σ

2 Yξξ − Yϕ ,

L 1Y = σ 2 Yξz +
[

∆− 2µ cos(z−2ϕ) sinϕ cosϕ
]

Yξ ,

L 2Y = 1
2σ

2 Yzz +∆Yz − µ cos(z−2ϕ) sinϕ cosϕ(2Yz +Yϕ)− µp cos(z−2ϕ) sin2ϕY
]

,

L 3Y = 2µβ cos(z−2ϕ) cos2ϕYξ ,

L 4Y = µ cosϕ cos(z−2ϕ)
[

β cosϕ(2Yz +Yϕ)+ p sinϕY
]

.

The eigenvalue 3y(t)(p) and the eigenfunction Y(ξ , z,ϕ) can be expanded in powers

series of ε1/2 as

3y(t)(p) =
∞
∑

n=0

εn/23n, Y(ξ , z,ϕ) =
∞
∑

n=0

εn/2 Yn(ξ , z,ϕ), (3.1.11)
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where Yn(ξ , z,ϕ) are periodic functions in ϕ of period π . Substituting equations (3.1.11)

into (3.1.10) yields the following sequence of equations

O(1) : L 0Y0 = 30Y0,

O

(

ε1/2
)

: L 0Y1 + L 1Y0 = 30Y1 +31Y0,

O

(

ε1
)

: L 0Y2 + L 1Y1 + L 2Y0 =
2

∑

i=0

3iYn−i,

O

(

ε3/2
)

: L 0Y3 + L 1Y2 + L 2Y1 + L 3Y0 =
3

∑

i=0

3iYn−i,

O

(

εn/2
)

: L 0Yn + L 1Yn−1 + L 2Yn−2 + L 3Yn−3 + L 4Yn−4 =
n

∑

i=0

3iYn−i,

n=4, 5, . . . .
(3.1.12)

3.1.2.2 Zeroth-order perturbation

The zeroth-order perturbation equation is L 0Y0 =30Y0, or

σ 2

2

∂2Y0

∂ξ 2
− ∂Y0

∂ϕ
= 30Y0. (3.1.13)

Since the moment Lyapunov exponent 3y(t)(p) passes through the origin, i.e.

3y(t)(0) = 30(0)+ ε1/231(0)+ ε32(0)+ · · · = 0,

one obtains 30(0)=31(0)=32(0)= · · · =0. Because equation (3.1.13) does not contain

p explicitly, 30(0)=0 implies 30(p)=0. Applying the method of separation of variables

and letting Y0(ξ , z,ϕ)=X0(ξ)Z0(z)80(ϕ), equation (3.1.13) becomes

σ 2

2

Ẍ0

X0

= 8′
0

80

= κ.

Solving the 80(ϕ) equation yields 80(ϕ)=Ceκϕ . For 80(ϕ) to be a periodic function

of period π , the constant κ=0 and hence 80(ϕ)=C. The X0(ξ) equation results in

X0(ξ)=D0+D1ξ . For X0(ξ) to be a bounded function as ξ→±∞, it is required that

D1 =0 and hence X0(ξ)=D0. The zeroth-order perturbation of the eigenfunction is there-

fore Y0(ξ , z,ϕ)=Z0(z), where Z0(z) is an arbitrary function of z.

The adjoint equation of (3.1.13) is

σ 2

2

∂2Y∗
0

∂ξ 2
+ ∂Y∗

0

∂ϕ
= 30Y∗

0 . (5.2.7′)
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Employing the method of separation of variables with Y∗
0 (ξ , z,ϕ)=X∗

0 (ξ)Z
∗
0 (z)8

∗
0(ϕ), it is

easy to show that

8∗
0(ϕ) = 1

π
, 06ϕ<π ,

X∗
0 (ξ) = constant, −∞<ξ<+∞,

Y∗
0 (ξ , z,ϕ) = Z∗

0 (z),

(3.1.14)

where Z∗
0 (z) is an arbitrary function of z.

3.1.2.3 First-order perturbation

Since 30 =0, the first-order perturbation equation becomes

L 0Y1 = 31Y0 − L 1Y0. (3.1.15)

From the Fredholm Alternative (see Appendix A.1), for equation (3.1.15) to have a non-zero

solution, it is required that
(

31Y0 − L 1Y0, Y∗
0

)

= 0, (3.1.16)

where ( f , g) denotes the inner product of functions f (ξ , z,ϕ) and g(ξ , z,ϕ) defined as

( f , g) =
∫ +∞

z=−∞

∫ +∞

ξ=−∞

∫ π

ϕ=0
f (ξ , z,ϕ) g(ξ , z,ϕ)dϕdξ dz.

Since Y0(ξ , z,ϕ)=Z0(z), which leads to L 1Y0 =0, equation (3.1.16) results in31(p)=0.

Equation (3.1.15) then becomes L 0Y1 =0. Following the same procedure as in Section

3.1.2.2, it is easy to show that Y1(ξ , z,ϕ)=Z1(z).

3.1.2.4 Second-order perturbation

Since 30 =31 =0, L 1Y1 =0, the second-order perturbation equation becomes

L 0Y2 = 32Y0 − L 2Y0. (3.1.17)

From the Fredholm Alternative, for equation (3.1.17) to have non-trivial solutions, it is

required that
(

32Y0−L 2Y0, Y∗
0

)

= 0,

which can be reduced to

∫ +∞

z=−∞
Z∗

0 (z)

{ ∫ π

ϕ=0

{

σ 2

2
Z̈0(z)+

[

∆− 2µ sinϕ cosϕ cos(z−2ϕ)
]

Ż0(z)
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+
[

− µp sin2ϕ cos(z−2ϕ)−32

]

Z0(z)

}

dϕ

}

dz = 0. (3.1.18)

Since equation (3.1.18) holds for arbitrary Z∗
0 (z), it results in

∫ π

ϕ=0

{

σ 2

2
Z̈0(z)+

[

∆− 2µ sinϕ cosϕ cos(z−2ϕ)
]

Ż0(z)

+
[

− µp sin2ϕ cos(z−2ϕ)−32

]

Z0(z)

}

dϕ = 0,

which, after performing the integration, leads to

1
2σ

2 Z̈0(z)+
(

∆− 1
2µ sinz

)

Ż0(z)+
(

1
4µp cosz −32

)

Z0(z) = 0. (3.1.19)

This is a second-order ordinary differential eigenvalue problem; 32 is the eigenvalue

and Z0(z) is the corresponding eigenfunction. Equation (3.1.19) can be solved using the

Fourier series

Z0(z) = C0 +
N

∑

n=1

(

Cn cosnz + Sn sinnz
)

, (3.1.20)

where C0, Cn, Sn, n=1, 2, . . . , N , are constant coefficients to be determined. For the

calculation efficiency, the Fourier series is truncated to include N sine and cosine terms.

Substituting equation (3.1.20) into (3.1.19), multiplying the resulting equation by cosnz

and sinnz, for n=0, 1, . . . , N , respectively, lead to a set of 2N +1 homogeneous linear

algebraic equations for C0, Cn, Sn, n=1, 2, . . . , N . These equations can be written in the

matrix form
[

A −3
(N)
2 B

]

X = 0, (3.1.21)

where the superscript “(N)” signifies that the Fourier series is truncated to include N

harmonic terms, X =
{

C0; C1, S1; C2, S2; . . . ; CN , SN

}T
, and A, B are matrices of dimension

(2N +1)×(2N +1).

For system (3.1.21) to have non-trivial solutions, the determinant of the coefficient matrix

must be zero, i.e.
∣

∣A −3
(N)
2 B

∣

∣ = 0,

which leads to a polynomial equation for 32 of degree 2N +1

[

3
(N)
2

]2N+1 + d
(N)
2N

[

3
(N)
2

]2N + d
(N)
2N−1

[

3
(N)
2

]2N−1 + · · ·+ d
(N)
1 3

(N)
2 + d

(N)
0 = 0. (3.1.22)



3.1 stability of a two-dimensional system under stochastic parametric excitation 61

Solving equation (3.1.22), one can obtain an approximation of 3
(N)
2 . As a result, the

moment Lyapunov exponent can be approximated by

3y(t)(p) ≈ ε3
(N)
2 . (3.1.23)

Using equation (1.3.4), an approximation of the Lyapunov exponent can be easily obtained

λy(t) ≈ ελ
(N)
2 , λ

(N)
2 = lim

p→0

3
(N)
2

p
. (3.1.24)

equation (3.1.24) implies that 3
(N)
2 =O(p) as p→0, and hence

[

3
(N)
2

]n =o(p), for n>2.

From equation (3.1.22), one obtains

λ
(N)
2 = − lim

p→0

d
(N)
0

d
(N)
1 p

. (3.1.25)

Three dimensional plots of 3
(12)
2 are shown in Figure 3.1 for σ =1.0. It is clearly seen

that, for small noise fluctuation parameter σ , i.e. when the bounded noise is a narrow-band

process, the effect of parametric resonance is very significant. When the value of σ is

increased, the bandwidth of the bounded noise process η(t) increases, resulting in a less

prominent effect of the parametric resonance.

3.1.2.5 Monte Carlo Simulation

Equation (3.1.4) can be discretized using the Euler scheme, for iterations k=0, 1, 2, . . . ,

yk
1 = yk−1

1 + yk−1
2 ·1t,

yk
2 = yk−1

2 −
[

(

1 − ε2µβ cosηk−1
)

yk−1
1 + εµ cosηk−1 yk−1

2

]

·1t,

ηk = ηk−1 + ν ·1t + ε1/2σ ·1W k−1.

These equations can be simulated iteratively and the numerical algorithm for determining

the Lyapunov exponents (Wolf et al. [94]) can be applied to evaluate λy(t). In the Monte

Carlo simulation, the time step is chosen as 1t =0.0005, and the number of iterations is

109. A comparison of the Lyapunov exponents λy(t) obtained using equations (3.1.24)–

(3.1.25) and Monte Carlo simulation as shown in Figure 3.2 reveals that there is an excellent

agreement between the two results.

A three-dimensional plot of the second-order perturbation of the Lyapunov exponent

λ
(16)
2 as obtained using equation (3.1.25) is shown in Figure 3.3. The significant effect of

the parametric resonance can be clearly seen for small values of σ .



3.1 stability of a two-dimensional system under stochastic parametric excitation 62

–0.1 

–0.05 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

–3 
–2.5 

–2 
–1.5 

0.5 
1 

1.5 
2 

2.5 
3 

–4 

–3 

–2 

–1 

1 

2 

Λ

p ∆

(12)
2

 

Figure 3.1 Second-order perturbation of the moment Lyapunov exponent 3(12)
2 (σ =1.0).

According to the presented results, the stability of system (3.1.2) depends on the values of

the damping β and parameters of bounded noise—the amplitude µ, the central frequency

ν0, the detuning parameter ∆, and the parameter σ that determines the bandwidth of the

bounded noise. The system is unstable if the dampingβ is negative, which means that energy

is fed into the system. The inclusion of the bounded noise makes the system more unstable.

If the damping β is positive, the stability of the system depends on the characteristics of

bounded noise. The main concern here is the primary parametric instability, namely when ν

is in the vicinity of 2. According to the stability analysis, the primary parametric instability

may occur when µ and σ take certain values. The parametric instability becomes more

significant for largerµ or smaller σ . The Lyapunov exponents can be used to determine the

range of the primary parametric instability.

In the following, the results of this section is applied to a single cylinder in cross-flow to

study its stability in the lock-in region.
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Figure 3.2 Comparison of the Lyapunov exponent λy(t) for ε=0.1, β=0.5, and µ=1.0.

3.2 Flow-induced instability of a single cylinder in a
cross-flow

Stability analysis of the system (2.1.17) shows that vortex-induced vibration of a cylinder is

a combination of main resonance and parametric instability in the lock-in region. While

the lock-in is associated with main resonance, the parametric instability may occur when

the parameters of the time-dependent damping component take certain values and become

more significant.

In this section, an example is presented to demonstrate the behavior of parametric

instability. In the example, a rigid cylinder supported by elastic springs and viscous dampers

in cross-flow is considered. Reynolds number is set at Re=2760, where data for motion-

dependent force coefficients are available in the literature (Chen et al. [21]). Fluid inertia

coefficients are calculated based on potential flow theory and are approximately unity for
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Figure 3.3 Second-order perturbation of the Lyapunov exponent λ(16)
2 .

all Ūr0 values investigated. Motion-dependent fluid damping and stiffness coefficients are

plotted in Figures 3.4 and 3.5, respectively.

According to So et al. [78], the Strouhal number for a stationary cylinder at Re=2500

is St=0.2052, and the r.m.s. lift coefficient is C′
L =0.68. These values are assumed for the

present case. The mean and r.m.s. drag coefficients can be found in Zdravkovich [102],

being C̄D =1.0 and C′
D =0.07, respectively. It is assumed that the bandwidths of both the

lift and drag coefficients are equal, being σ̃L = σ̃D =0.01. The reduced velocity is varied in

the usual lock-in range of Ūr0 =5.0 to 6.6, where it is assumed that ν̃L ≈1 and ν̃D =2ν̃L ≈2.

The parameters are chosen so that the vibration level is similar to that reported by Chen et

al. [21]. In the present case, the structural damping factor is ζs =0.02, and the mass ratio is

varied from Mr =15 to 18 in order to study its effect on the stability.
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Figure 3.4 Fluid damping coefficient cd for Re=2760 and d =1.2 mm (Chen et al. [21]).

For Mr =18, the values of β and µD as a function of Ūr0 are calculated and plotted in

Figure 3.6. It can be seen that β is positive in the range of Ūr0 concerned, hence constant-

fluid-damping-induced instability is not present. However,µD>β in the range of Ūr0 =5.6

to 6.2, so it is possible for parametric instability to occur. In order to study this possibility,

the Lyapunov exponents are obtained following the procedure in Section 3.1, and the results

are shown in Figure 3.7.

The Lyapunov exponents for system (2.1.17) can also be obtained by Monte Carlo simu-

lation. In the simulation, the number of iterations is 2×109 and the time step is1t =10−6.

The two results shown in Figure 3.7 agree with each other quite well.

It can be seen that parametric instability occurs in the range of Ūr0 =5.85 to 6.05. Noting

that the usual lock-in range is Ūr0 =4.0 to 6.0, it can be seen that parametric instability may

co-exist with the main resonance due to lock-in.

When the mass ratio is decreased to Mr =17, the values of β and µD as a function

of Ūr0 are plotted in Figure 3.8. It can be seen that this case covers all three situations

discussed in Section 3.1, namely, β<0, 0<β<µD, and β>µD. It is seen that β<0 for

Ūr0 =5.72 to 6.15, suggesting that constant-fluid-damping-induced instability occurs in this

range. The Lyapunov exponents are calculated and plotted in Figure 3.9, from which the
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Figure 3.5 Fluid stiffness coefficient ck for Re=2760 and d =1.2 mm (Chen et al. [21]).

range of instability is determined to be Ūr0 =5.6 to 6.22. This means that the parametric

resonance enlarges the range of instability. Again, this range overlaps the usual lock-in

range. Besides the enlarged instability range, the Lyapunov exponent is larger than that

given by only constant-fluid-damping-induced instability alone. It is clearly shown that the

time-dependent fluid-damping component µD cosη̃(τ ) tends to destabilize the system by

enlarging the instability range and enabling the response to increase faster (larger Lyapunov

exponent).

In Section 3.1, it has been shown that the fluid damping coefficient, cd , is a crucial

parameter. In this example, its effect on parametric instability is studied by varying cd by

±10% from its original value as reported by Chen et al. [21]. The ranges of instability, as

determined by the Lyapunov exponents, for the case Mr =17 and a series of cd values are

shown in Figure 3.10. It is seen that the range of instability increases with the increase of

cd , but decreases when cd is decreased. It even diminishes as cd is decreased by 5% or more

(the system becomes stable in the whole range of Ūr0 considered). This is expected since

decreasing cd will increase β, which leads the system towards stable behavior. When the

mass ratio is reduced further to Mr =15, however, the system is always unstable in a certain
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Figure 3.6 Values of β and µD in the lock-in range for Mr =18, ζs =0.02, C̄D =1.0, and CD =0.1.

range of Ūr0 regardless of the variation of cd as shown in Figure 3.11. In fact, the effect of

decreasing Mr is to destabilize the system, which is clearly shown in Figure 3.12.

This range overlaps partially with the usual lock-in range of Ur from 4.0 to 6.0, suggesting

that the large-amplitude vibration of the cylinder observed in the lock-in region could

include the contribution of parametric instability. It should be noted that the one-cylinder

case is a limiting case of multiple cylinders when the distance between adjacent cylinders is

large enough. Hence, it is expected that parametric instability might also play a significant

role in flow-induced vibration of multiple cylinders. Therefore, a study of instability of

multiple cylinders in a cross-flow is in order.

3.3 Conclusion

In this Chapter, possible instability of a cylinder in a cross-flow is discussed based on the

extended model developed in Chapter 2. It is found that, apart from the usual vortex-

induced large-amplitude vibration in the lock-in region and the instability induced by
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Figure 3.7 Lyapunov exponents for Re=2760, σ =0.01, ν=2, and Mr =18.

constant fluid-damping force, for which a condition for its occurrence is given, a parametric

instability is also possible if the parameters of the system are appropriately selected.

The developed model in Chapter 2 can be generalized to represent a class of two-

dimensional dynamic systems subjected to parametric excitations in the damping term,

which is described by a narrow-band bounded noise process. The dynamic stability of

the system is studied by determining the moment Lyapunov exponents and the Lyapunov

exponents. The partial differential eigenvalue problem governing the moment Lyapunov

exponent is established using the theory of stochastic dynamical system. For weak noise

excitations, a singular perturbation method is employed to obtain second-order expansions

of the moment Lyapunov exponents. Lyapunov exponents are then obtained using the

relationship between the moment Lyapunov exponent and the Lyapunov exponent. The

accuracy of the approximate analytical results are validated and assessed by comparing with

numerical results. It is observed that there is an excellent agreement between the analytical

results and the numerical results.

Based on the stability analysis results of a two-dimensional general dynamic system, an

example is given to demonstrate the role of parametric instability in vortex-induced vibra-
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Figure 3.8 Values of β and µD in the lock-in range for Mr =17, ζs =0.02, C̄D =1.0, and CD =0.1.

tion of a single cylinder in a cross-flow. When appropriate values of the system parameters

are taken, it is shown that the vibration of the cylinder is made up of main resonance due to

the lock-in forcing, parametric instability due to time-variant fluid damping, and constant-

fluid-damping-induced instability in the usual lock-in range. In particular, the primary

parametric resonance enlarges the range of instability. The effects of some crucial parame-

ters, such as the mass ratio and the fluid damping coefficient, are studied. It is shown that

decreasing the mass ratio or increasing the constant fluid damping has a positive influence

on the instability of the system.

As indicated in Chapter 2, fluidelastic instability can occur due to the interaction between

the motions in the drag and lift directions at the high reduced velocity region if the cylinder

is placed in a shear flow. To study the effect of turbulence on the stability of the cylinder, the

grid-generated turbulence is modeled as a real noise and incorporated into the equations of

motion. The stability of the resulting random system is studied in Chapter 4.
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Figure 3.10 Stability range with variation of cd and Mr =17.
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4C H A P T E R

Turbulence Effects
on Fluidelastic Instability
of a Cylinder in Shear Flow

In this chapter, fluidelastic instability of a single circular cylinder in a shear flow is consid-

ered, and the suppression of such instability by free stream turbulence in the approach flow

is demonstrated through a stability analysis.

In Section 4.1, the dynamic stability of a four-dimensional system under real noise

excitation is studied through the determination of the pth moment Lyapunov exponent

and the Lyapunov exponent. The partial differential eigenvalue problem governing the

moment Lyapunov exponent is established. For small amplitudes of noise, a method of

regular perturbation is applied to determine analytical expansions of the moment Lyapunov

exponents and Lyapunov exponents. Thus, both the sample stability and moment stability

are studied.

In Section 4.2, the stability of the deterministic system is studied by varying the critical

parameter (natural frequency ratio k). The analytical results obtained in Section 4.1 are used

to explore the stochastic stability of a cylinder in a shear flow. It is shown that fluidelastic

instability can be stabilized by the turbulence under certain conditions. Parametric studies

are performed to demonstrate the significant effects of noise parameters α and σ , on the

stability of the cylinder. Analytical results and numerical simulations are compared to

validate the approach.

72
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4.1 Stability of a Four Dimensional System Excited by a
Real Noise

4.1.1 Formulation

Consider a linear stochastic system governed by the following equations of motion

˙̃x = Ãx̃ + εξ(t)B̃x̃, x̃ ∈ R
4, (4.1.1)

where ξ(t) is an an Ornstein-Uhlenbeck process defined by equation (1.2.3), and ε is a small

number.

Assume that system (4.1.1) has one critical mode and one stable mode. Let x =Tx̃, where

the matrix of transformation T is constructed from the eigenvectors of Ã. Specifically, if the

eigenvalues consist of two complex-conjugate pairs λ1,2 = − ε2δ1 ± iω1 and λ3,4 = − δ2 ±
iω2, and if the eigenvectors associated with the eigenvalues are V1R+iV1I and V2R+iV2I ,

respectively, T can be chosen as T = [V1R V1I V2R V2I ]. The transformation yields

ẋ = Ax + εξ(t)Bx, x ∈ R
4,

where

A =















−ε2δ1 ω1 0 0

−ω1 −ε2δ1 0 0

0 0 −δ2 ω2

0 0 −ω2 −δ2















, B =















K11 K12 M11 M12

K21 K22 M21 M22

N11 N12 L11 L12

N21 N22 L21 L22















.

The quantities ε2δ1 and δ2 represent the real parts of the eigenvalues of the critical mode

and stable mode, respectively.

Applying the transformation

x1 = eρ cosφ1 cosθ , x3 = eρ cosφ2 sinθ ,

x2 = −eρ sinφ1 cosθ , x4 = −eρ sinφ2 sinθ ,

one can obtain the following set of equations for the amplitude ρ, phase variables (φ1,φ2, θ),

and noise process ξ :

ρ̇ =
2

∑

j=0

ε jq j(ξ ,φ1,φ2, θ), θ̇ =
2

∑

j=0

ε js j(ξ ,φ1,φ2, θ),
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φ̇i =
2

∑

j=0

ε jhi j(ξ ,φ1,φ2, θ), dξ = −αξdt + σdW(t). (4.1.2)

In above expressions, the phase angles φ1 and φ2 are in (0, 2π), θ is in (0, π/2), and the

coefficients q j, s j, and hi j are given by

q0(ξ ,φ1,φ2, θ) = − δ2 sin2θ , q2(ξ ,φ1,φ2, θ) = −δ1 cos2θ ,

q1(ξ ,φ1,φ2, θ) =
{

1
4 sin 2θ

[

(M11+N11)( cosφ++ cosφ−)−(M22+N22)( cosφ+− cosφ−)

− (M21+N12)( sinφ++ sinφ−)− (M12+N21)( sinφ+− sinφ−)
]

+ sin2θ
[

L11 cos2φ2 + L22 sin2φ2 − 1
2 (L12+L21) sin2φ2

]

+ cos2θ
[

K11 cos2φ1 + K22 sin2φ1 − 1
2 (K12+K21) sin2φ1

]

}

ξ(t),

h10(ξ ,φ1,φ2, θ) = ω1, h12(ξ ,φ1,φ2, θ) = 0,

h11(ξ ,φ1,φ2, θ) =
{

K12 sin2φ1 − K21 cos2φ1 − 1
2 (K11−K22) sin 2φ1

− 1
2 tan θ

[

M21( cosφ++ cosφ−)+ M12( cosφ+− cosφ−)

+ M11( sinφ++ sinφ−)− M22( sinφ+− sinφ−)
]

}

ξ(t),

h20(ξ ,φ1,φ2, θ) = ω2, h22(ξ ,φ1,φ2, θ) = 0,

h21(ξ ,φ1,φ2, θ) =
{

L12 sin2φ2 − L21 cos2φ2 − 1
2 (L11−L22) sin 2φ2

− 1
2 cot θ

[

N21( cosφ++ cosφ−)+ N12( cosφ+− cosφ−)

− N22( sinφ++ sinφ−)+ N11( sinφ+− sinφ−)
]

}

ξ(t),

s0(ξ ,φ1,φ2, θ) = − 1
2 δ2 sin 2θ , s2(ξ ,φ1,φ2, θ) = 1

2 δ1 sin 2θ ,

s1(ξ ,φ1,φ2, θ) =
{

1
4 sin 2θ

[

2L11 cos2φ2 + 2L22 sin2φ2 − (L12+L21) sin 2φ2

− 2K11 cos2φ1 − 2K22 sin2φ1 + (K12+K21) sin 2φ1

]

− 1
2 sin2θ

[

M11( cosφ++ cosφ−)− M22( cosφ+− cosφ−)

− M12( sinφ+− sinφ−)− M21( sinφ++ sinφ−)
]

+ 1
2 cos2θ

[

N11( cosφ++ cosφ−)− N22( cosφ+− cosφ−)
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− N12( sinφ++ sinφ−)− N21( sinφ+− sinφ−)
]

}

ξ(t),

where φ± =φ1 ±φ2.

Since the processes (ξ ,φ1,φ2, θ) do not depend on ρ, the processes alone (ξ ,φ1,φ2, θ)

form a Markov diffusion process and the associated generator is given by

L = L0 + εL1 + ε2L2,

where

L0 = σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ
+

2
∑

i=1

ωi

∂

∂φi
+ s0(φ1,φ2, θ , ξ)

∂

∂θ
,

L1 = s1(φ1,φ2, θ , ξ)
∂

∂θ
+

2
∑

i=1

hi1(φ1,φ2, θ , ξ)
∂

∂φi

,

L2 = s2(φ1,φ2, θ , ξ)
∂

∂θ
+

2
∑

i=1

hi2(φ1,φ2, θ , ξ)
∂

∂φi

.

Arnold et al. [5] and [6] proved that 3(p) is an isolated simple eigenvalue of L (p) with

non-negative eigenfunction T(ξ ,φ1,φ2, θ), i.e.

L (p)T =3(p)T , for all real p, (4.1.4)

where

L (p)=L 0(p)+ εL 1(p)+ ε2
L 2(p),

and

L 0(p)=L0 + pq0, L 1(p)=L1 + pq1, L 2(p)=L2 + pq2.

4.1.2 Weak Noise Expansions of the Moment Lyapunov Exponent

A method of regular perturbation is applied to obtain a weak noise expansion of the moment

Lyapunov exponent. Both the eigenvalue 3(p) and the eigenfunction T(ξ ,φ1,φ2, θ) are

expanded in powers of ε:

3(p) =
∞
∑

n=0

εn3n(p), T(ξ ,φ1,φ2, θ) =
∞
∑

n=0

εn Tn(ξ ,φ1,φ2, θ).

Substituting the above expansions into equation (4.1.4), one obtains the following equations:

[

L 0(p)−30(p)
]

T0 =0, (4.1.5)
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[

L 0(p)−30(p)
]

T1 =31(p)T0 − L 1(p)T0, (4.1.6)

[

L 0(p)−30(p)
]

T2 =32(p)T0 +31(p)T1 − L 2(p)T0 − L 1(p)T1, (4.1.7)

· · · · · ·

4.1.2.1 Zeroth-Order Perturbation

For zeroth-order perturbation, one has a deterministic system from equation (4.1.2)

ρ̇ = −δ2 sin2θ , θ̇ = − 1
2 δ2 sin 2θ , φ̇i = ωi. (4.1.8)

Solving equation (4.1.8), one obtains

ρ = −δ2

∫ t

0
sin2θ(s)ds + ρ0, θ = tan−1

(

θ0e−δ2t
)

, (4.1.9)

where ρ0 and θ0 are two constants which can be determined by the initial conditions.

It follows from the definition of 3(p)

30(p) = lim
t→∞

1

t
log E

∥

∥x(t; x0)
∥

∥

p
, since the zero-order system is deterministic

= lim
t→∞

1

t
p log ‖x(t; x0)‖ = pλ0, (4.1.10)

where ‖x‖=eρ and

λ0 = lim
t→∞

ρ(t)

t
= −δ2 lim

t→∞
1

t

∫ t

0
sin2θ(s)ds

= −δ2 lim
t→∞

1

t

∫ t

0

tan2 θ(s)

1 + tan2 θ(s)
ds

= −δ2 lim
t→∞

1

t

∫ t

0

θ2
0 e−2δ2s

1 + θ2
0 e−2δ2s

ds = 0.

Thus,30(p) ≡ 0 for all possible p. Equation (4.1.5) reduces to

(

L0 + pq0

)

T0 = 0,

where

L0 = σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ
+ ω1

∂

∂φ1

+ ω2

∂

∂φ2

− 1
2 δ2 sin 2θ

∂

∂θ
.

Applying the method of separation of variables and letting

T0(ξ ,φ1,φ2, θ)=Z0(ξ)H1(φ1)H2(φ2)F(θ)
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result in
H ′

1

H1

= a1, (4.1.11a)

H ′
2

H2

= a2, (4.1.11b)

σ 2

2

Z̈0

Z0

− αζ
Ż0

Z0

− 1
2 δ2 sin 2θ

Fθ
F

− pδ2 sin2θ = −(a1 + a2). (4.1.11c)

Solving equation for H1(φ1) yields H1(φ1)=Aea1φ1 . For H1(φ1) to be a period function, it is

required that a1 =0 and hence H1(φ1) can be chosen as 1. Similarly, a2 =0 and H2(φ2)=1.

Hence, equation (4.1.11c) reduces to

σ 2

2

Z̈0

Z0

− αζ
Ż0

Z0

= a, (4.1.12a)

1
2 δ2 sin 2θ

Fθ
F

+ pδ2 sin2θ = a. (4.1.12b)

Equation (4.1.12a) is an eigenvalue problem with the eigenvalues a=0, −α, −2α, · · · (see,

e.g., Gardiner [31], page 134). However, the left-hand-side of equation (4.1.12b) goes to 0

since θ approaches 0 when t →∞. Thus, the constant a in equation (4.1.12) should be be

taken as 0. The equation for Z0(ξ) becomes

1
2σ

2Z̈0 − αξ Ż0 = 0. (4.1.13)

Equation (4.1.13) can be easily solved to yield

Z0(ξ) = C1

∫

exp
( α

σ 2
ξ 2

)

dξ + C2, −∞<ξ<∞.

For Z0(ξ) to be bounded, it is required that C1 =0 and hence Z0(ξ) can be taken as 1.

The equation for F(θ) becomes

dF

dθ
= (−p tan θ)F.

The solution to this equation is F(θ)=( cosθ)p. Therefore

30(p) = 0, T0(ξ ,φ1,φ2, θ) = T0(θ) = ( cosθ)p. (4.1.14)

Since 30(p)=0, the associated adjoint differential equation of (4.1.5) is

L
∗

0 T∗
0 = σ 2

2

∂2T∗
0

∂ξ 2
+ αξ

∂T∗
0

∂ξ
+ αT∗

0 − ω1

∂T∗
0

∂φ1

− ω2

∂T∗
0

∂φ2
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+ 1
2 δ2 sin 2θ

∂T∗
0

∂θ
+

(

δ2 cos 2θ − pδ2 sin2θ
)

T∗
0 = 0. (4.1.15)

Applying the method of separation of variables and letting

T∗
0 (φ1,φ2, θ , ξ)=Z∗

0 (ξ)H
∗
1 (φ1)H

∗
2 (φ2)F

∗(θ)

lead to
(H∗

1 )φ1

H∗
1

= b1, (4.1.16a)

(H∗
2 )φ2

H∗
2

= b2, (4.1.16b)

σ 2

2

Z̈∗
0

Z∗
0

+αζ Ż∗
0

Z∗
0

+α+ 1
2 δ2 sin 2θ

(F∗)θ
F∗ +

(

δ2 cos 2θ − pδ2 sin2θ
)

= −(b1 + b2). (4.1.16c)

The equation for H∗
1 yields H∗

1 (φ1)=Be−b1φ1 . For H∗
1 (φ1) to be a period function, b1 =0

and H∗
1 (φ1) can be taken as

H∗
1 (φ1) = 1

2π
, 06φ1< 2π.

Similarly, one has

H∗
2 (φ2) = 1

2π
, 06φ2< 2π.

The above equations show that φ1 and φ2 are uniformly distributed between 0 and 2π .

Hence, equation (4.1.16c) is reduced to

σ 2

2

Z̈∗
0

Z∗
0

+ αζ
Ż∗

0

Z∗
0

+ α = b, (4.1.17a)

− 1
2 δ2 sin 2θ

(F∗)θ
F∗ −

(

δ2 cos 2θ − pδ2 sin2θ
)

= b. (4.1.17b)

Based on the same reasoning as mentioned above, b should be taken as 0. The equation for

Z∗
0 becomes

1
2σ

2Z̈∗
0 + αξ Ż∗

0 + αZ∗
0 = 0, (4.1.18)

which is the Fokker-Planck equation for the stationary transition probability density of the

Ornstein-Uhlenbeck process ξ(t) as defined in equation (1.2.3). Equation (4.1.18) may be

written as
d

dξ

(

dZ∗
0

dξ
+ 2α

σ 2
ζZ∗

0

)

= 0,
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or
dZ∗

0

dξ
+ 2α

σ 2
ξ Z∗

0 = C3 = probability current. (4.1.18′)

Since the stationary probability density Z∗
0 (ξ) and the probability current vanishes when

ξ→±∞, the constant of integration C3 =0. Equation (4.1.18′) can be easily solved to give

Z∗
0 (ξ) = C4 exp

(

− α

σ 2
ξ 2

)

.

Since Z∗
0 (ξ) is the stationary probability density, normalizing it yields

Z∗
0 (ξ) = 1√

2πσz

exp

(

− ξ 2

2σ 2
z

)

, (4.1.19)

i.e. the Ornstein-Uhlenbeck process ξ(t) is a normally distributed random variable with

mean µξ =0 and standard deviation σz =σξ/
√

2α.

The equation for F∗(θ) becomes

1
2 sin 2θ

dF∗

dθ
=

(

cos 2θ − p sin2θ
)

F∗. (4.1.20)

The solution to equation (4.1.20) is not unique due to the singularities at θ=0 and π/2.

Since θ=0 is a stable equilibrium point of system (4.1.8), by following Pardoux and Wihstutz

[61] the solution can be chosen as

F∗(θ) = δ(θ−0),

where δ(θ−0) is the Dirac delta function at 0.

Hence, the solution to equation (4.1.15) is obtained as

T∗
0 (ξ ,φ1,φ2, θ)= Z∗

0 (ξ)δ(θ−0)

4π2
.

4.1.2.2 Solution of L 0T = f (ξ)g(φ1, φ2, θ)

Consider the partial differential equation L 0T = f (ξ)g(φ1,φ2, θ), or

(

σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ
+ ω1

∂

∂φ1

+ ω2

∂

∂φ2

− 1
2 δ2 sin 2θ

∂

∂θ
− pδ2 sin2θ

)

T(ξ ,φ1,φ2, θ)

= f (ξ)g(φ1,φ2, θ). (4.1.21)

Introducing an auxiliary time t to equation (4.1.21) leads to
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(

∂

∂t
+ σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ
+ ω1

∂

∂φ1

+ ω2

∂

∂φ2

− 1
2 δ2 sin 2θ

∂

∂θ

− pδ2 sin2θ

)

9(t, ξ ,φ1,φ2, θ) = f (ξ)g(φ1,φ2, θ). (4.1.22)

Applying the following transformation

t̃ = t

4
+ φ1

4ω1

+ φ2

4ω2

− ln(tan θ)

4δ2

, s̃ = t

4
− φ1

4ω1

− φ2

4ω2

− ln(tan θ)

4δ2

,

γ1 = ω2φ1 − ω1φ2, γ2 = 2ω1ω2t − ω2φ1 − ω1φ2,

with the inverse transformation given by

t = t̃ − s̃ + γ2

2ω1ω2

, θ = tan−1
{

exp
[

δ2

( γ2

2ω1ω2

− t̃ − 3s̃
)]}

,

φ1 = ω1(t̃ − s̃)+ γ1

2ω2

, φ2 = ω2(t̃ − s̃)− γ1

2ω1

,

equation (4.1.22) becomes
(

∂

∂ t̃
+ σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ
− pδ2 sin2θ

)

9̃(t̃, s̃, γ1, γ2, ξ) = f (ξ)g̃(t̃, s̃, γ1, γ2), (4.1.23)

where

9̃(t̃, s̃, γ1, γ2, ξ) = 9(t, ξ ,φ1,φ2, θ), g̃(t̃, s̃, γ1, γ2) = g(φ1,φ2, θ).

In order to remove the sin2θ term, introduce the function W defined by

ϒ(t̃, s̃, γ1, γ2, ξ) = 9̃ exp
{

−
∫ t̃

pδ2 sin2θ(r)dr
}

, (4.1.24)

Hence equation (4.1.23) becomes
(

∂

∂ t̃
+ σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ

)

ϒ(t̃, s̃, γ1, γ2, ξ) = f (ξ)g̃(t̃, s̃, γ1, γ2)Rϒ(t̃, s̃, γ1, γ2), (4.1.25)

where

Rϒ(t̃, s̃, γ1, γ2) = exp
{

−
∫ t̃

pδ2 sin2θ(r)dr
}

=
{

1 + exp
[

2δ2

( γ2

2ω1ω2

− t̃ − 3s̃
)

]}

p
2
.

Applying Duhamel’s Principle (see, e.g., Zauderer [101]), the solution ϒ(t̃, s̃, γ1, γ2, ξ) to

equation (4.1.25) is given by

ϒ(t̃, s̃, γ1, γ2, ξ) =
∫ t̃

0
V(t̃, s̃, γ1, γ2, ξ ; r)dr, (4.1.26)
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where V(t̃, s̃, γ1, γ2, ξ ; r) is the solution of the homogeneous equation

(

∂

∂ t̃
+ σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ

)

V(t̃, s̃, γ1, γ2, ξ ; r) = 0, for t̃>r,

V(r, s̃, γ1, γ2, ξ ; r) = f (ξ)g̃(r, s̃, γ1, γ2)Rϒ(r, s̃, γ1, γ2), for t̃ =r.

(4.1.27)

To solve equation (4.1.27), consider the equation

(

∂

∂ t̃
+ σ 2

2

∂2

∂ξ 2
− αξ

∂

∂ξ

)

P(t̃, ξ ; τ , z) = 0, t̃<τ ,

P(τ , ξ ; τ , z) = lim
t̃↑τ

P(t̃, ξ ; τ , z) = δ(z−ξ).
(4.1.28)

Equation (4.1.28) is the backward Kolmogorov equation for the transition probability func-

tion P(t̃, ξ ; τ , z). It is known that the transition probability P(t̃, ξ ; τ , z) is also the solution

of the forward Kolmogorov or Fokker-Planck equation, i.e. for the initial condition t̃ and ξ

fixed,

[

∂

∂τ
− σ 2

2

∂2

∂z2
+ ∂

∂z
(−αz)

]

P(t̃, ξ ; τ , z) = 0, τ > t̃,

P(t̃, ξ ; t̃, z) = lim
τ↓t̃

P(t̃, ξ ; τ , z) = δ(z−ξ).
(4.1.29)

The solution of equation (4.1.29) is given by,

P(t̃, ξ ; τ , z) = 1√
2πσz(τ )

exp

{

−
[

z − µz(τ )

]2

2σ 2
z(τ )

}

, (4.1.30)

where

µz(τ ) = ξe−α(τ−t̃), σ 2
z(τ ) =

σ 2
[

1−e−2α(τ−t̃)
]

2α
.

For the initial condition ξ(t̃) fixed, z(τ ) is a normally distributed random variable with

mean µz(τ ) and standard deviation σz(τ ).

From equations (4.1.27) and (4.1.28), the solution V(t̃, s̃, γ1, γ2, ξ ; r) to (4.1.27) is given

by

V(t̃, s̃, γ1, γ2, ξ ; r) = g̃(r, s̃, γ1, γ2)Rϒ(r, s̃, γ1, γ2)

∫ ∞

−∞
f (z)P(t̃, ξ ; r, z)dr, (4.1.31)

where

E
[

f
(

z(r)
)]

=
∫ ∞

−∞
f (z)P(t̃, ξ ; r, z)dz
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is the expected value of the random variable f
(

z(r)
)

with z(r) being the normally dis-

tributed random variable as defined in (4.1.30).

Combining equations (4.1.26) and (4.1.31), the solution to equation (4.1.23) is given by

ϒ(t̃, s̃, γ1, γ2, ξ) =
∫ t̃

0
g̃(r, s̃, γ1, γ2)Rϒ(r, s̃, γ1, γ2)E

[

f
(

z(r)
)]

dr. (4.1.32)

Hence, from equation (4.1.24), one has

9̃(t̃, s̃, γ1, γ2, ξ) = ϒ

Rϒ
. (4.1.33)

The solution T(ξ ,φ1,φ2, θ) to equation (4.1.21) is obtained by using the inverse trans-

formation and passing the limit t̃ →−∞,

4.1.2.3 First-Order Perturbation

Substituting the above expression for T0(θ) into equation (4.1.6) results in

L 0T1 = −s1(ξ ,φ1,φ2, θ)
dT0

dθ
+

[

31(p)− pq1(ξ ,φ1,φ2, θ)
]

T0. (4.1.34)

From the Fredholm Alternative, for equation (4.1.34) to have a nontrivial solution it is

required that
(

− s1T ′
0 +

[

31(p)− pq1

]

T0, T∗
0

)

=0,

i.e.

31(p) =
(

s1T ′
0 + pq1T0, T∗

0

)

= 1

16π2

(

ξg(φ1,φ2, θ), Z∗
0 (ξ)δ(θ−0)

)

=0, (4.1.35)

where
(

(·), (··)
)

is the inner product defined by

(·, ··)=
∫ π/2

0

∫ +∞

−∞

∫ 2π

0

∫ 2π

0
(·)(··)dφ1dφ2dξdθ ,

g(φ1,φ2, θ) =p( cosθ)p
{

K22 sin2φ1 + K11 cos2φ1 − 1
2 (K12+K21) sin 2φ1

+ 1
2 tan θ

[

M11( cosφ++ cosφ−)− M22( cosφ+− cosφ−)

− M12( sinφ+− sinφ−)− M21( sinφ++ sinφ−)
]

}

.

The equality in equation (4.1.35) results from the fact that q1 and s1 is periodic in φ1 and

φ2, and ξ is a zero mean process. Hence, equation (4.1.34) reduces to

L 0T1 = − ξg(φ1,φ2, θ). (4.1.36)



4.1 stability of a four dimensional system excited by a real noise 83

Equation (4.1.36) can be solved by applying Duhamel’s Principle and making use of the

solution of the Fokker-Planck equation (1.2.7).

Since, from Section 4.1.2.2, E
[

z(r)
]

=µz(r)=ξe−α(r−t̃), the solution of equation (4.1.36)

is obtained as

ϒ(t̃, s̃, γ1, γ2, ξ) =
∫ t̃

0
g̃(r, s̃, γ1, γ2)Rϒ(r, s̃, γ1, γ2)e

−α(r−t̃)dr · ξ. (4.1.37)

and

9̃1(t̃, s̃, γ1, γ2, ξ) = ϒ

Rϒ
. (4.1.38)

or

T1(ξ ,φ1,φ2, θ) = − 1
2 p( cosθ)p

{

K11

[

G(2φ1)− 1

α

]

− K22

[

G(2φ1)+ 1

α

]

− (K12+K21)H(2φ1)+ tan θ
{

M11

[

G(φ+)+G(φ−)
]

− M22

[

G(φ+)−G(φ−)
]

− M12

[

H(φ+)−H(φ−)
]

− M21

[

H(φ+)+ H(φ−)
]}

}

ξ(t),

where

G(2φ1) = lim
t̃→−∞

∫ t̃

0
e−α(r−t̃) cos2φ1(r)dr = 2ω1 sin2φ1 − α cos2φ1

α2 + 4ω2
1

,

H(2φ1) = lim
t̃→−∞

∫ t̃

0
e−α(r−t̃) sin2φ1(r)dr = −2ω1 cos2φ1 + α sin2φ1

α2 + 4ω2
1

,

G(φ−) = lim
t̃→−∞

∫ t̃

0
e−α(r−t̃) cos

[

φ1(r)−φ2(r)
]

tan θ(r)dr

= −
tan θ

[

(ω2−ω1) sinφ− + (δ2+α) cosφ−]

δ2
2 + 2 δ2α + α2 + ω2

1 − 2ω1ω2 + ω2
2

,

G(φ+) = lim
t̃→−∞

∫ t̃

0
e−α(r−t̃) cos

[

φ1(r)+φ2(r)
]

tan θ(r)dr

=
tan θ

[

(ω1+ω2) sinφ+ − (δ2+α) cosφ+]

δ2
2 + 2 δ2α + α2 + ω2

1 + 2ω1ω2 + ω2
2

,

H(φ−) = lim
t̃→−∞

∫ t̃

0
e−α(r−t̃) sin

[

φ1(r)−φ2(r)
]

tan θ(r)dr

= −
tan θ

[

(ω1−ω2) cosφ− + (δ2+α) sinφ−]

δ2
2 + 2 δ2α + α2 + ω2

1 − 2ω1ω2 + ω2
2

,



4.1 stability of a four dimensional system excited by a real noise 84

H(φ+) = lim
t̃→−∞

∫ t̃

0
e−α(r−t̃) sin

[

φ1(r)+φ2(r)
]

tan θ(r)dr

= −
tan θ

[

(ω1+ω2) cosφ+ + (δ2+α) sinφ+]

δ2
2 + 2 δ2α + α2 + ω2

1 + 2ω1ω2 + ω2
2

.

4.1.2.4 Second-order perturbation

The equation for the second-order perturbation is

L 0T2 =
[

32(p)− L 2

]

T0 − L 1T1. (4.1.39)

From the Fredholm Alternative, for equation (4.1.39) to have a nontrivial solution it is

required that
([

32(p)− L 2

]

T0 − L 1T1, T∗
0

)

=0,

i.e.

32(p) =
(

L 2T0 + L 1T1, T∗
0

)

=
(

(

s2

∂

∂θ
+ pq2

)

T0 +
(

s1

∂

∂θ
+ h11

∂

∂φ1

+ h21

∂

∂φ2

+ pq1

)

T1, T∗
0

)

.

After performing the integration, one obtains

32(p) =
[

−8δ1 +
(

κ2F0 + κ3F1 + κ4F2 + κ5F3 + κ6F4

)] p

8
+

(

κ2F0 + 2κ1

α

) p2

16
, (4.1.40)

where

κ1 = (K11+K22)
2, κ2 = (K12+K21)

2 + (K11−K22)
2,

κ3 = (N12+N21)(M11−M22)− (N11−N22)(M12+M21),

κ4 = (N12+N21)(M12+M21)+ (N11−N22)(M11−M22),

κ5 = (N11+N22)(M12−M21)+ (N12−N21)(M11+M22),

κ6 = (N11+N22)(M11+M22)− (N12−N21)(M12−M21),

and

F0 = σ 2

α2 + 4ω2
1

,

F1 = σ 2(ω1+ω2)

α[(δ2+α)2 + (ω1+ω2)
2] , F2 = σ 2(δ2+α)

α[(δ2+α)2 + (ω1+ω2)
2] ,
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F3 = σ 2(ω1−ω2)

α[(δ2+α)2 + (ω1−ω2)
2] , F4 = σ 2(δ2+α)

α[(δ2+α)2 + (ω1−ω2)
2] .

The largest Lyapunov exponent can be calculated by equation (1.3.4) as

λ = lim
p→0

3(p)

p
= ε2

[

−δ1 + 1

8

(

κ2F0 + κ3F1 + κ4F2 + κ5F3 + κ6F4

)

]

. (4.1.41)

From the above expressions, κ1 and κ2 are always positive. κ3, κ4, κ5, and κ6 could take

positive and negative values depending on the values of the elements of matrix B. Similarly,

the parameters F0, F1, F2, and F4 are always positive. However, the parameter F3 could take

positive and negative values depending on the difference between two modal frequencies.

From equation (4.1.41), one can see that the stabilization is possible if the total contribution

of the turbulence is negative.

If only the motion in the x-direction is considered, the previous equations are reduced to

include only κ2 =1 and F0, i.e.,

3(p) = ε2
[

−δ1 p + p(p+2)σ 2

16(α2 + 4ω2
1)

]

+ o(ε2), (4.1.42)

λ = ε2
[

−δ1 + σ 2

8(α2 + 4ω2
1)

]

+ o(ε2). (4.1.43)

Equations (4.1.42) and (4.1.43) agree with the results of Xie [97]. Equations (4.1.42) and

(4.1.43) also show that the real noise destabilizes the one degree-of-freedom system.

Note that all Fi (i =0, 1, · · · , 4) include the term σ 2/α, which represents the noise inten-

sity. Thus, increasing the noise intensity can assist the stabilizing or destabilizing effect of

noise.

4.2 Study of Stabilization

4.2.1 Deterministic System

Uniform Flow

As presented in Chapter 2, the model will be reduced to that of Zhu et al. [104] at lock-in

range when the flow is uniform and laminar

Y ′′(τ )+
[

2ζ̄s + Ūr0

2π

C̄D + CD cosη̃D(τ )

2Mr

− Ū 2
r0

4π2

cd

Mr

]

Y ′(τ )+ Y(τ ) = Ū 2
r0

4π2

CL

Mr

cosη̃L(τ ).
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At lock-in range, it is shown that the vibration of the cylinder is made up of main resonance

due to the lock-in forcing, parametric instability due to time-variant fluid damping, and

constant-fluid-damping-induced instability in the usual lock-in range. The critical param-

eters are the motion-dependent damping coefficient and the bandwidth of vortex shedding.

At high reduced velocities (Ur>20), motion-dependent force coefficients approach zero

and can be neglected (Chen et al. [21]). Furthermore, the vortex shedding frequency is far

away from the natural frequency of the cylinder, which eliminates the forced vibration due

to vortex shedding. Hence, the system is expected to be stable.

Shear Flow

At high reduced velocity, motion-dependent forces are assumed to be negligible. The

equations of motion are thus reduced to those of Yu et al. [100]

X ′′ +
(

2ζ + UrCD

Mr

)

X ′ + X −
( U 2

r

2Mr

CD

∂Y
+ U 2

r KCD

Mr

)

Y − UrCL

2Mr

Y ′ = U 2
r

2Mr

CD, (4.2.1a)

Y ′′ + k
(

2ζ + UrCD

2Mr

)

Y ′ + k2
(

1 − U 2
r

2Mr

CL

∂Y
− U 2

r KCL

Mr

)

Y + kUrCL

Mr

X ′ = k2U 2
r

2Mr

CL.

(4.2.1b)

The equations of motion (4.2.1) have similar forms as those for wake galloping in which

the derivative ∂CL/∂x is a critical parameter that determines the instability (Blevins, [15]).

Similarly, the lift coefficient CL and its derivative ∂CL/∂y are expected to play a significant

role in the stability of a cylinder in a shear flow.

For a cylinder in a shear flow, the drag and lift force coefficients (CD and CL) are functions

of Reynolds number (Re=UD/ν, where ν is the kinematic viscosity of the fluid) and shear

parameter (K =GD/U). Since U =U0+G y is a function of only y, the derivatives of CD

and CL with respect to x are zero. The derivatives of CD and CL with respect to y can be

evaluated as

∂CD

∂y
= ∂CD

∂Re

∂Re

∂y
+ ∂CD

∂K

∂K

∂y
, (4.2.2a)

∂CL

∂y
= ∂CL

∂Re

∂Re

∂y
+ ∂CL

∂K

∂K

∂y
. (4.2.2b)

The derivatives with respect to y in equation (4.2.2) can be evaluated as

∂Re

∂y
= ∂U

∂y
· D

ν
= GD

ν
= 1

D
· UD

ν
· GD

U
= ReK

D
, (4.2.3a)
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∂K

∂y
= ∂

∂U

(GD

U

)

· ∂U

∂y
= −GD

U 2
G = − 1

D

G2D2

U 2
= −K2

D
. (4.2.3b)

Substituting equations (4.2.3) into equations (4.2.2) and normalizing them with respect to

D yield

∂CD

∂Y
= ∂CD

∂Re
Re K − ∂CD

∂K
K2, (4.2.4a)

∂CL

∂Y
= ∂CL

∂Re
Re K − ∂CL

∂K
K2. (4.2.4b)

If extensive data of CD(Re, K) and CL(Re, K) are known, their derivatives with respect to Y

can be calculated by equations (4.2.4).

In order to demonstrate the fluidelastic instability of the system described by equations

(4.2.1), consider an example with the parameters Re=100, Mr =5112, and ζ =0.007. At this

Reynolds number, the drag and lift coefficients are available (Lei et al. [42]) for calculating

their derivatives, which are given by

CD = 1.486,
∂CD

∂K
= −0.32,

∂CD

∂Re
= −0.0016,

CL = −0.126,
∂CL

∂K
= −1.0,

∂CL

∂Re
= 0.0005.

The stability depends on the eigenvalues of the system matrix A. If the real parts of the

eigenvalues are negative, the system is stable. When the reduced velocity increases to a

critical value, the largest real part of the eigenvalues become positive, i.e., the cylinder

becomes unstable. Increasing the shear parameter also tends to destabilize the cylinder.

For example, the critical velocity for k=ωy/ωx =1.0 is Ur,cr =256 at K =0.1 and decreases

to about Ur,cr =112 at K =0.2. The stability boundary for a cylinder with Mr =5112 is

determined experimentally by Yu et al. [100] as UrK1.44/2π=5 approximately, which yields

Ur,cr =865 at K =0.1. The present result does not agree quantitatively with the stability

boundary obtained by Yu et al. [100] since Reynolds number changed from 8 to 120 in

the experiment while the present result is obtained at Re=100. The lift and drag force

coefficients are dependent on the Reynolds number at this range. However, the effects of

Ur and K on the stability are qualitatively the same as the experimental observations which

shows that increasing Ur or K can destabilize the cylinder. On the contrary, increasing Mr ,

decreasing Ur , or decreasing K would weaken the effect of CL, which makes the system more

stable.
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Similarly as wake galloping, the fluidelastic instability for a cylinder in a shear flow turns

out to be sensitive to the ratio of natural frequencies in the two coordinate directions.

Small changes of frequency can significantly shift the critical velocity, which is shown in

Figure 4.1. The minimum critical reduced velocity occurs at about k=0.95, and then the

critical reduced velocity will increase rapidly with larger detuning in the frequencies. This

phenomenon is also observed in the flutter of a two-dimensional linear airfoil by Poirel and

Price [62].

4.2.2 Stochastic System

Uniform Flow

Recent experimental results (So et al. [80]) showed that the effect of free stream turbulence

on a single cylinder in a cross-flow is to increase the amplitude of cylinder vibration in the

Ur range of 1.45 – 12.08. This is accomplished by increasing the vortex-induced force in the

Ur range of 1.45 – 7.25 while increasing the fluid damping force in the Ur range of 8.21 –

12.08. However, the cylinder is still stable even though the Ur investigated straddles across

the lock-in range. When Ur is increased to very large values as considered in the present

study, it is expected that the cylinder would still remain stable.

Shear Flow

When grid-generated turbulence is added in front of the cylinder in a shear flow, the gov-

erning equations of motion (2.2.18) are random differential equations . The Lyapunov

exponent and moment Lyapunov exponent of the system can be determined using the ana-

lytical method developed in Section 4.1. The critical reduced velocity for the deterministic

and stochastic systems are obtained and shown in Figure 4.1. From Figure 4.1(a), one can

see that turbulence can shift the critical reduced velocity to a higher value and hence sta-

bilize the system. Figure 4.1(b) gives the stabilized percentage rUr,cr
of the critical reduced

velocity, which is defined as

rUr,cr
=

U T
r,cr − Ur,cr

Ur,cr

,

where Ur,cr and U T
r,cr are the critical velocities in the uniform flow and turbulent flow,

respectively. Figure 4.1(b) also shows that the stabilizing effect becomes smaller when α,

which characterizes the bandwidth of the real noise, increases from 0.3 to 0.6. In both cases,
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Figure 4.1 The critical reduced velocity for different k.
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the amplitude of the noiseµ changes withα from 1.0 to
√

2 to make the turbulence intensity

fixed. This result indicates that the length scale of turbulence Lx is a key parameter for the

stabilization since α is related to Lx. The effect of µ on the stability is shown in Figure 4.2.

When µ increases, the critical reduced velocity at which the Lyapunov exponent is zero is

shifted to a higher value. Since α is fixed and σξ is chosen to be 0.5 for all cases, this means

that higher turbulence intensity can achieve a better stabilizing effect.
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Figure 4.2 Stability boundary for k =0.9.

It is also found that the stabilizing effect of turbulence is sensitive to the ratio of fre-

quencies k, as shown in Figure 4.1. Comparison of the critical velocities for different cases

(k=0.85 to 1.15) in Figure 4.1 shows that the stabilizing effect is more significant with

larger detuning in frequencies. When there is no detuning (k=1), the turbulence increases

the critical reduced velocity slightly from Ur,cr =256 to 261. When k decreases or increases

from 1, the critical reduced velocity increases significantly. For example, the critical reduced
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velocity increases from Ur,cr =243 to 283 for k=0.9. To illustrate the influence of k, two

cases (k=1 and k=0.9) are considered here. For a cylinder in a shear flow with k=1.0 and

Ur =280, the system matrix A and B are given by

A =















0.00215 0.97696 0 0

−0.97696 0.00215 0 0

0 0 −0.07719 1.06005

0 0 −1.06005 −0.07719















,

B =















−0.00610 −0.01270 −0.05120 0.00657

0.04164 0.05830 −0.01271 0.08690

0.04965 0.05741 −0.16954 0.15978

−0.01000 −0.01749 −0.04129 −0.00474















.

The Lyapunov exponents can be calculated from equation (4.1.41) for different α and µ

and are shown in Figure 4.3. It can be seen that Lyapunov exponents are decreased slightly

when α is decreased or µ is increased. However, the stabilizing effect is quite small and not

enough to stabilize the system. This is due to the weak interaction between the two modes,

which can be seen from matrix B. The elements Mij and Nij in the upper right submatrix

and lower left submatrix are relatively small. Thus, the sum of the product of κi+2 and Fi

(i =0, 1, · · · , 4) in equation (4.1.41) is small and not enough to make the largest Lyapunov

exponent negative.

When k=0.9 and Ur =260, the system matrix A and B are given by

A =















0.00267 0.91588 0 0

−0.91588 0.00267 0 0

0 0 −0.07076 1.01278

0 0 −1.01278 −0.07076















,

B =















0.07601 0.02414 0.06375 −0.01045

0.01608 0.00607 −0.02520 −0.00767

−0.31696 −0.10233 −0.19893 0.05301

−0.05759 −0.01817 −0.05297 0.00725















.
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Figure 4.3 Lyapunov exponent for k =1.0 and Ur =280.

These two cases have similar matrix A. However, N11 and N12 in matrix B for k=0.9 are

relatively large compared to those for k=1, which means that stronger interactions between

two modes exist when the difference of frequencies increases. Thus, the energy can be

transmitted from the critical mode to the stable mode via the turbulence, which results

in the stabilization. Rottmann and Popp [69] also reported an experimental observation

that the rocking mode of vibration switched from stable to unstable at high turbulence

intensities in the fully flexible bundle while the translational mode was stabilized. This

partially explained the energy transfer between two coupling modes.

The Lyapunov exponents for k=0.9 is shown in Figure 4.4. The stabilizing effect increases

with the decrease of α or increase of the amplitude of noise µ. The same conclusion can be

drawn from moment Lyapunov exponents shown in Figures 4.5 and 4.6. It can be seen that

the slope at p=0 for µ=0.1 is positive, which means that the system is unstable. When µ

increases, the slope at p=0 becomes negative and the system becomes stable. Furthermore,
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the moment Lyapunov exponents are negative between p=0 and 0.8 for µ=1, which

indicates the moment stability of the system. From these figures, it is found that the system

is stabilized in the sense of both sample stability and moment stability.
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Figure 4.4 Lyapunov exponent for k =0.9 and Ur =260.

The Lyapunov exponents and moment Lyapunov exponents can also be obtained by

Monte Carlo simulation (see, e.g., Xie [99]). In the simulation, the system can be discretized

using the Euler scheme and the time step is 1t =10−6. 5000 sample paths are simulated

to calculate the moment Lyapunov exponents. As shown in Figures 4.4–4.8, the numerical

results agree well with the analytical results for larger α. One exception is Figure 4.3 which

shows significant discrepancies even when α is large. This is because all the elements of

matrix B are small compared to the value of µ, which impairs the results of perturbation

method. For all the cases, the discrepancy grows with the decrease of α. Figures 4.5 and

4.6 for moment Lyapunov exponents also show that the perturbation results are better with
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relatively large α. The power spectrum of real noise is more narrow-banded with smaller

α. Numerical results show that turbulence can destabilize the system when α<0.1. One

possible explanation is that the destabilization is due to the parametric resonance. When α

is small, the energy of the real noise is located at lower frequency range. Since the difference

between ω1 and ω2 is small, the parametric resonance corresponding to a combination

difference type could occur (Poirel and Price [62]).
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Figure 4.5 Moment Lyapunov exponent for α=0.3, k =0.9, and Ur =260.

As mentioned in Section 4.1, the stabilizing effect is more significant with decreasing α

or increasingµ. Noting

σ = σ0σξ , µ = σ0

U0

,

the turbulence intensity defined by equation (2.2.6) is given by

Tu = σ/
√

2α

U0

= σ0

U0

·
σξ√
2α

=
µσξ√

2α
. (4.2.5)
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Figure 4.6 Moment Lyapunov exponent for α=0.2, k =0.9, and Ur =260.

Thus, the stabilizing effect is proportional to the turbulence intensity, which agrees with

the experimental observations by Rottmann and Popp [69]. Experiments by Romberg and

Popp [68] show that stabilization can be observed when the turbulence intensity Tu is larger

than 13%. In the present study, stabilization could occur at Tu =6.5% (µ=0.1 and α=0.3)

for the cylinder with k=0.9 (see Figure 4.2). However, the effect of turbulence on the fluid

force coefficients is not taken into account. In the above study, it is assumed that the drag and

lift force coefficients do not change for different cases due to the lack of experimental data

for a cylinder in a shear flow. In fact, the coefficients can be influenced by the turbulence

intensity and Reynolds number (So and Savkar [79], and Blackburn and Melbourne [13],

[14]). Further experimental investigation on the effect of turbulence needs to be conducted

in future research.
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Figure 4.7 Lyapunov exponent for α=0.3, k =0.95, and Ur =240.

4.3 Conclusion

In this chapter, the effect of real noise on the stability of a parametrically excited four-

dimensional system is considered. The dynamic stability of the system is studied by de-

termining the moment Lyapunov exponents and the Lyapunov exponents. For weak noise

excitations, a regular perturbation method is employed to obtain second-order expansions

of the moment Lyapunov exponents. The Lyapunov exponent is then obtained using the

relationship between the moment Lyapunov exponent and the Lyapunov exponent. The cor-

rectness and the accuracy of the approximate analytical results are validated and assessed

by comparing with numerical simulations.

The analytical method is applied to a circular cylinder in a shear flow, which is subjected

to fluidelastic instability. The analysis demonstrates that the cylinder can be stabilized by

the real noise with proper parameters in the sense of both sample stability and moment
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Figure 4.8 Moment Lyapunov exponent for α=0.3, k =0.95, and Ur =240.

stability. It is found that the stabilization is sensitive to the frequency ratio k. Larger

detuning can result in a better stabilizing effect due to stronger coupling between the two

modes. Furthermore, the stabilizing effect is proportional to the turbulence intensity, which

agrees with the experimental observations.

However, noise can also destabilize a system. A two degrees-of-freedom system excited by

a bounded noise can undergo parametric instability if the central frequency of the bounded

noise is close to one of the natural frequencies of the system or the sum or difference of two

natural frequencies. The stochastic stability of such a system is studied in the next chapter.



5C H A P T E R

Parametric Resonance
of a Two Degrees-of-Freedom System
Induced by Bounded Noise

The equations of motion for many engineering problems are of the general form:

q̈i(t)+ 2βi q̇i(t)+ ω2
i qi(t)+ ζ(t)ωi

2
∑

j=1

kij qj(t) = 0, i = 1, 2, (5.0.1)

where qi’s are the generalized coordinates, βi and ωi are the ith damping constant and

circular natural frequency, respectively, and ζ(t) is a stochastic process describing the

excitation.

Equations (5.0.1) represent a number of practical flow-induced vibration problems en-

countered in aerospace, power, and structural engineering. Namachchivaya and Vedula [55]

used a similar set of equations to study the stability of a downstream cylinder in the wake

of upstream cylinder arrays. The two degrees-of-freedom represent the cylinder motions

in the lift and the drag directions, respectively. Their interaction would induce unstable

motions at certain reduced velocities which are related toωi and kij. Moreover, when the ap-

proach flow is turbulent, the coefficients of interaction were modeled by real noise processes,

and the stabilizing effect observed experimentally was explained. For a civil engineering

structure, such as a bridge deck, the two degrees-of-freedom usually represent the bending

motion and the torsional motion (Li and Lin, [45] and [46]). Again, the aerodynamic in-

teraction between the two motions gives rise to unstable motion under certain conditions.
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The effect of flow turbulence was also addressed, and it was shown that the turbulence

has a stabilizing or destabilizing effect, depending on whether it increases or decreases the

mean critical wind velocity. Similar aeroelastic coupling between the translational mode

and the tortional mode can also be found in the flutter of an airfoil (Poirel and Price [62]).

The flutter speed was found to be decreased by flow turbulence, especially its longitudinal

component, and this change of flutter point is mainly due to fluid stiffness.

Xie obtained weak noise expansions of the moment Lyapunov exponent, the Lyapunov

exponent, and the stability index of a two-dimensional system under real noise excita-

tion [96] and bounded noise excitation [98] in terms of the small fluctuation parameter. In

Chapter 3 (see also Zhu et al. [104]), the vortex shedding force of a cylinder in a cross-flow

is modeled as a bounded noise process and it is found that parametric instability occurred

in the lock-in region.

For a two degrees-of-freedom system, Namachchivaya and Vedula [55] obtained an

asymptotic approximation of the moment Lyapunov exponent and the Lyapunov exponent

with one critical mode and another asymptotically stable mode driven by a real noise of

small intensity. They showed that the system can be stabilized by real noise. Namachchivaya

and Roessel [53] studied two coupled oscillators driven by real noise. They set up the eigen-

value problem using the perturbation and stochastic averaging method, respectively, and

obtained an approximation for the moment Lyapunov exponents of the two degrees-of-

freedom system. Furthermore, Namachchivaya and Roessel [54] determined the moment

Lyapunov exponent of two coupled oscillators with commensurable frequencies excited by

a real noise using a perturbation method. Li and Lin [46] studied a two degrees-of-freedom

system excited by the bounded noise process. They used the stochastic averaging method

to determine the Lyapunov exponent of the system and thus determined the boundary of

stability of the system.

In this chapter, a two degrees-of-freedom system under bounded noise excitation is

considered. Depending on the central frequency of the bounded noise, various types of

parametric resonance may occur in the system. The partial differential eigenvalue problem

governing the moment Lyapunov exponent is established. For weak noise excitations,

a singular perturbation method is employed to obtain second-order expansions of the

moment Lyapunov exponents. The effects of the bounded noise and the detuning frequency
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on the resonance are investigated. This chapter explores the moment stability as well as

sample stability of the system and can be considered as an extension of Li and Lin [46],

which studied the sample stability of the two degrees-of-freedom system through stochastic

averaging method. Stochastic stability of the system, which is in subharmonic resonance,

combination additive resonance, and combined resonance, respectively, when the excitation

is a harmonic function, is studied. Numerical results for both the Lyapunov exponents and

moment Lyapunov exponents are obtained by Monte Carlo simulation and compared with

the analytical results to validate the analytical approach.

5.1 Formulation

Consider the following two degrees-of-freedom system

q̈1 + 2εβ1 q̇1 + ω2
1 q1 + εω1(k11 q1 + k12 q2)ζ(t) = 0, (5.1.1a)

q̈2 + 2εβ2 q̇2 + ω2
2 q2 + εω2(k21 q1 + k22 q2)ζ(t) = 0, (5.1.1b)

where ζ(t) is the excitation process, and ε is a small parameter introduced to make the

analytical analysis more convenient.

5.1.1 Deterministic Excitation

If the excitation ζ(t) is deterministic and harmonic, e.g., ζ(t)= cosνt, system (5.1.1) could

be in parametric resonance depending on the frequency ν. When the central frequency ν

is not in the vicinities of 2ωi or
∣

∣ω1 ±ω2

∣

∣, the system is stable and there is no resonance.

If ν=2ωi, the system is in subharmonic resonance in the ith mode. The dynamic stability

behavior of the system is the same as that of a single degree-of-freedom system in the

first-order approximation. If the excitation frequency ν is in the vicinities of the linear

combinations of two natural frequencies, i.e., ν=
∣

∣ω1 ±ω2

∣

∣, both modes are excited and the

system is in combination resonance. See, e.g., Xie [99], for details on parametric resonance

in multiple degrees-of-freedom systems.

5.1.2 Stochastic Excitation

In most practical applications, the excitation ζ(t) has to be described by a random process

and in many cases a narrow-band process. To consider the effect of noise on parametric
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resonance, consider the excitation ζ(t) as a narrow-band process, modeled by a bounded

noise,

ζ(t) = cosη(t) = cos
[

νt + ε1/2σW(t)+ ψ
]

,

in which W(t) is the standard Wiener process, and ψ is a uniformly distributed random

number in (0, 2π) that makes ζ(t) a stationary process.

Using the transformation q1 =x1 , q̇1 =ω1x2 , q2 =x3 , and q̇2 =ω2x4 , equations (5.1.1)

can be written as

ẋ = Ax + εζ(t)Bx, x ∈ R
4, (5.1.2)

where

A =















0 ω1 0 0

−ω1 −2εβ1 0 0

0 0 0 ω2

0 0 −ω2 −2εβ2















, B =















0 0 0 0

−k11 0 −k12 0

0 0 0 0

−k21 0 −k22 0















.

Applying the transformation

x1 = eρ cosφ1 cosθ , x3 = eρ cosφ2 sinθ ,

x2 = −eρ sinφ1 cosθ , x4 = −eρ sinφ2 sinθ ,
(5.1.3)

one can obtain the following set of equations for the logarithm of amplitude ρ= log
∥

∥x
∥

∥,

phase variables (φ1,φ2, θ), and noise process η:

ρ̇ =
1

∑

j=0

ε jq j(φ1,φ2, θ , η) = mρ , θ̇ =
1

∑

j=0

ε js j(φ1,φ2, θ , η) = mθ ,

φ̇i =
1

∑

j=0

ε jhi j(φ1,φ2, θ , η) = mφi
, dη = νdt + ε1/2σdW (t),

(5.1.4)

where

q0(η,φ1,φ2, θ) = 0,

q1(η,φ1,φ2, θ) = 1
4

{

(k11 sin2φ1+k22 sin2φ2)+ (k11 sin2φ1−k22 sin2φ2) cos2θ

+
[

(k12+k21) sinφ+ + (k12−k21) sinφ−]

sin2θ
}

cosη(t)

− 1
2

[

β1(1− cos2φ1)+ β2(1− cos2φ2)
]
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− 1
2

[

β1(1− cos2φ1)− β2(1− cos2φ2)
]

cos2θ ,

h10(η,φ1,φ2, θ) = ω1,

h11(η,φ1,φ2, θ) = 1
2

[

k11(1+ cos2φ1)+ k12( cosφ++ cosφ−) tan θ
]

cosη(t)− β1 sin2φ1,

h20(η,φ1,φ2, θ) = ω2,

h21(η,φ1,φ2, θ) = 1
2

[

k22(1+ cos2φ2)+ k21( cosφ++ cosφ−) cot θ
]

cosη(t)− β2 sin2φ2,

s0(η,φ1,φ2, θ) = 0,

s1(η,φ1,φ2, θ) = 1
4

{

(k21−k12) sinφ+ − (k12+k21) sinφ−

+ (k22 sin2φ2−k11 sin2φ1) sin2θ

+
[

(k12+k21) sinφ+ + (k12−k21) sinφ−]

cos2θ
}

cosη(t)

+ 1
2

[

β1(1− cos2φ1)− β2(1− cos2φ2)
]

sin2θ.

In the above expressions,φ± =φ1 ±φ2.

The pth norm of x can be written as P =
∥

∥x
∥

∥

p =(eρ)p =e pρ . The Itô equation for P can

be derived using the Itô’s Lemma

dP =
(

mρ

∂

∂ρ
+ mφ1

∂

∂φ1

+ mφ2

∂

∂φ2

+ mθ

∂

∂θ

)

Pdt = pmρPdt. (5.1.5)

Applying a linear stochastic transformation

S = T(η,φ1,φ2, θ)P, P = T−1(η,φ1,φ2, θ)S,

−∞<η<+∞, 06φ1,2<2π , 06θ<
π

2
,

the Itô equation for the transformed pth norm process S can also be derived using Itô’s

Lemma,

dS =
(

1
2 εσ

2 Tηη+νTη+mφ1
Tφ1

+mφ2
Tφ2

+mθ Tθ+mP T
)

P dt +ε1/2σTηP dW . (5.1.6)

For bounded and non-singular transformation T(η,φ1,φ2, θ), both processes P and S are

expected to have the same stability behavior. Therefore, T(η,φ1,φ2, θ) is chosen so that the

drift term of the Itô differential equation (5.1.6) is independent of the noise process η(t) ,
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the phase processes φ1 , φ2 , and θ so that

dS = 3Sdt + ε1/2σTηT−1SdW . (5.1.7)

Comparing equations (5.1.6) and (5.1.7), it is seen that such a transformation T(η,φ1,φ2, θ)

is given by the following equation

1
2 εσ

2 Tηη + νTη + mφ1
Tφ1

+ mφ2
Tφ2

+ mθ Tθ + mP T = 3T ,

−∞<η<+∞, 06φ1,2<2π , 06θ<
π

2
, (5.1.8)

in which T(η,φ1,φ2, θ) is a periodic function in φ1 and φ2 of period 2π and is bounded

when η→±∞. Equation (5.1.8) defines an eigenvalue problem of a second-order differen-

tial operator with 3 being the eigenvalue and T(η,φ1,φ2, θ) the associated eigenfunction.

From equation (5.1.7), the eigenvalue 3 is seen to be the Lyapunov exponent of the pth

moment of system (5.1.2) or system (5.1.1), i.e. 3=3x(t)(p)=3q(t)(p).

5.2 Weak Noise Expansions of the Moment Lyapunov
Exponent

5.2.1 Singular Perturbation Expansion

For weak noise excitation, i.e. ε=o(1), perturbation methods can be applied to solve

the partial differential eigenvalue problem (5.1.8) for the perturbative expansions of the

moment Lyapunov exponent 3x(t)(p). Since the small parameter ε appears as a coefficient

of the term Tηη , a method of singular perturbation (see, e.g., [101]) must be applied.

Denote the frequency ν=ν0+ε∆, where ν0 is the central frequency and ∆ is the detun-

ing parameter. Applying the stretching transformation

η = ε1/2ξ + (α1φ1 + α2φ2), ξ = ε−1/2
[

η − (α1φ1 + α2φ2)
]

,

in which α1 and α2 are constants, one has

∂T

∂η
= ∂T

∂ξ

∂ξ

∂η
= ε−1/2Tξ ,

∂2T

∂η2
= ε−1Tξξ ,

∂T

∂φ1

= ∂T

∂φ1

+ ∂T

∂ξ

∂ξ

∂φ1

= Tφ1
− ε−1/2α1Tξ ,

∂T

∂φ2

= ∂T

∂φ2

+ ∂T

∂ξ

∂ξ

∂φ2

= Tφ2
− ε−1/2α2Tξ .
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Thus, equation (5.1.8) becomes

1
2σ

2 Tξξ + ω1Tφ1
+ ω2Tφ2

+ ε−1/2
[

ν0 − (α1ω1+α2ω2)
]

Tξ + ε1/2(∆−α1h̄11−α2h̄21)Tξ

+ ε(h̄11 Tφ1
+ h̄21 Tφ2

+ s̄1 Tθ + pq̄1 T ) = 3T ,

−∞<ξ<+∞, 06φ1,2<2π , 06θ<
π

2
, (5.2.1)

where

q̄1(ξ ,φ1,φ2, θ)

= 1
4

{

(k11 sin2φ1+k22 sin2φ2)+ (k11 sin2φ1−k22 sin2φ2) cos2θ

+
[

(k12+k21) sinφ+ + (k12−k21) sinφ−]

sin2θ
}

cos(ε1/2ξ+α1φ1+α2φ2)

− 1
2

[

β1(1− cos2φ1)+ β2(1− cos2φ2)
]

− 1
2

[

β1(1− cos2φ1)− β2(1− cos2φ2)
]

cos2θ ,

h̄11(ξ ,φ1,φ2, θ)

= 1
2

[

k11(1+ cos2φ1)+ k12( cosφ++ cosφ−) tan θ
]

× cos(ε1/2ξ+α1φ1+α2φ2)− β1 sin2φ1,

h̄21(ξ ,φ1,φ2, θ)

= 1
2

[

k22(1+ cos2φ2)+ k21( cosφ++ cosφ−) cot θ
]

× cos(ε1/2ξ+α1φ1+α2φ2)− β2 sin2φ2,

s̄1(ξ ,φ1,φ2, θ)

= 1
4

{

(k21−k12) sinφ+ − (k12+k21) sinφ− + (k22 sin2φ2−k11 sin2φ1) sin2θ

+
[

(k12+k21) sinφ+ + (k12−k21) sinφ−]

cos2θ
}

cos(ε1/2ξ+α1φ1+α2φ2)

+ 1
2

[

β1(1− cos2φ1)− β2(1− cos2φ2)
]

sin2θ.

If ν0 =α1ω1 + α2ω2, equation (5.2.1) can be reduced to

1
2σ

2 Tξξ + ω1Tφ1
+ ω2Tφ2

+ ε1/2
(

∆− α1h̄11 − α2h̄21

)

Tξ
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+ ε
(

h̄11 Tφ1
+ h̄21 Tφ2

+ s̄1 Tθ + pq̄1 T
)

= 3x(t)T ,

−∞<ξ<+∞, 06φ1,2<2π , 06θ<
π

2
, (5.2.2)

in which the eigenfunction T is treated as a function of ξ , φ1, φ2, θ , and ε. Denoting

z =ε1/2ξ , the eigenfunction T(ξ ,φ1,φ2, θ , ε) becomes Y(ξ , z,φ1,φ2, θ). It can be shown

that

Tξ = Yξ + ε1/2 Yz , Tξξ = Yξξ + 2ε1/2 Yξz + εYzz. (5.2.3)

Substituting equation (5.2.3) into equation (5.2.2) leads to

L (p)Y = 3x(t)(p)Y , L (p)Y = L 0Y + ε1/2
L 1Y + εL 2Y , (5.2.4)

where

L 0Y = 1
2σ

2 Yξξ + ω1Yφ1
+ ω2Yφ2

,

L 1Y = σ 2 Yξz +
(

∆− α1h̄11 − α2h̄21

)

Yξ ,

L 2Y = 1
2σ

2 Yzz +
(

∆− α1h̄11 − α2h̄21

)

Yz +
(

h̄11 Yφ1
+ h̄21 Yφ2

+ s̄1 Yθ + pq̄1 Y
)

.

Expand the eigenvalue 3x(t)(p) and the eigenfunction Y(ξ , z,φ1,φ2, θ) as

3x(t)(p) =
∞
∑

n=0

εn/23n(p), Y(ξ , z,φ1,φ2, θ) =
∞
∑

n=0

εn/2 Yn(ξ , z,φ1,φ2, θ), (5.2.5)

where Yn(ξ , z,φ1,φ2, θ) are periodic functions in φ1 and φ2 of period 2π . Substituting

equations (5.2.5) into (5.2.4), expanding, and equating terms of the same orders of ε1/2

yields

O(1) : L 0Y0 = 30Y0,

O

(

ε1/2
)

: L 0Y1 + L 1Y0 = 30Y1 +31Y0,

O

(

ε1
)

: L 0Y2 + L 1Y1 + L 2Y0 =
2

∑

i=0

3iYn−i,

O

(

εn/2
)

: L 0Yn + L 1Yn−1 + L 2Yn−2 =
n

∑

i=0

3iYn−i, n=3, 4, . . . .

(5.2.6)

5.2.2 Zeroth-Order Perturbation

The zeroth-order perturbation equation is L 0Y0 =30Y0, or

σ 2

2

∂2Y0

∂ξ 2
+ ω1

∂Y0

∂φ1

+ ω2

∂Y0

∂φ2

= 30Y0. (5.2.7)



5.2 weak noise expansions of the moment lyapunov exponent 106

Since the moment Lyapunov exponent 3x(t)(p) passes through the origin, i.e.

3x(t)(0) = 30(0)+ ε1/231(0)+ ε32(0)+ · · · = 0,

one obtains 30(0)=31(0)=32(0)= · · · =0. Because equation (5.2.7) does not contain

p explicitly, 30(0)=0 implies 30(p)=0. Applying the method of separation of variables

and letting

Y0(ξ , z,φ1,φ2, θ) = X0(ξ)Z0(z, θ)801(φ1)802(φ2),

equation (5.2.7) becomes
8′

01

801

= a1,

8′
02

802

= a2,

σ 2

2

Ẍ0

X0

= −(a1 + a2) = κ.

Solving the 801(φ1) equation yields 801(φ1)=Cea1φ1 . For 801(φ1) to be a periodic

function of period 2π , the constant a1 =0 and hence 801(φ1)=C1. Similarly, a2 =0

and 802(φ2)=C2. The X0(ξ) equation results in X0(ξ)=D0+D1ξ . For X0(ξ) to be a

bounded function as ξ→±∞, it is required that D1 =0 and hence X0(ξ)=D0, which

can be chosen as 1. The zeroth-order perturbation of the eigenfunction is therefore

Y0(ξ , z,φ1,φ2, θ)=Z0(z, θ), where Z0(z, θ) is a function to be determined.

The adjoint equation of (5.2.7) is

σ 2

2

∂2Y∗
0

∂ξ 2
− ω1

∂Y∗
0

∂φ1

− ω2

∂Y∗
0

∂φ2

= 0. (5.2.7′)

Employing the method of separation of variables with

Y∗
0 (ξ , z,φ1,φ2, θ)=X∗

0 (ξ)Z
∗
0 (z, θ)8∗

01(φ1)8
∗
02(φ2),

it is easy to show that

8∗
01(φ1) = 1

2π
, 06φ1<2π ,

8∗
02(φ2) = 1

2π
, 06φ2<2π ,

X∗
0 (ξ) = 1, −∞<ξ<+∞,

Y∗
0 (ξ , z,φ1,φ2, θ) = Z∗

0 (z, θ).

(5.2.8)
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5.2.3 First-Order Perturbation

Since 30 =0, the first-order perturbation equation becomes

L 0Y1 = 31Y0 − L 1Y0. (5.2.9)

From the Fredholm Alternative, for equation (5.2.9) to have nontrivial solutions, it is

required that
(

31Y0 − L 1Y0, Y∗
0

)

= 0, (5.2.10)

where Y∗
0 (ξ , z,φ1,φ2, θ) is the solution (5.2.8) of the adjoint equation (5.2.7′) of the first-

order perturbation equation, and ( f , g) denotes the inner product of functions f (·) and

g(··) defined as

( f , g) =
∫ +∞

z=−∞

∫ +∞

ξ=−∞

∫ 2π

φ1=0

∫ 2π

φ2=0

∫ π
2

θ=0
f (·) g(··)dθ dφ2 dφ1 dξ dz.

Since Y0(ξ , z,φ1,φ2, θ)=Z0(z, θ), which leads to L 1Y0 =0, equation (5.2.10) results in

31(p)=0. Equation (5.2.9) then becomes L 0Y1 =0. Following the same procedure as in

Section 5.2.2, it is easy to show that Y1(ξ , z,φ1,φ2, θ)=Z1(z, θ).

5.2.4 Second-Order Perturbation

Since 30 =31 =0, L 1Y1 =0, the second-order perturbation equation becomes

L 0Y2 = 32Y0 − L 2Y0. (5.2.11)

From the Fredholm Alternative, for equation (5.2.11) to have nontrivial solutions, it is

required that
(

32Y0−L 2Y0, Y∗
0

)

= 0,

which can be written as

∫ +∞

z=−∞

∫ π
2

θ=0
Z∗

0 (z, θ)

{ ∫ 2π

φ1=0

∫ 2π

φ2=0

[

σ 2

2

∂2Z0

∂z2
+

(

∆− α1ĥ11 − α2ĥ21

) ∂Z0

∂z

+ ŝ1

∂Z0

∂θ
+

(

pq̂1 −32

)

Z0

]

dφ2dφ1

}

dθdz = 0. (5.2.12)

Because equation (5.2.12) is valid for an arbitrary function Z∗
0 (z, θ), it results in

∫ 2π

φ1=0

∫ 2π

φ2=0

[

σ 2

2

∂2Z0

∂z2
+

(

∆−α1ĥ11 −α2ĥ21

) ∂Z0

∂z
+ ŝ1

∂Z0

∂θ
+

(

pq̂1 −32

)

Z0

]

dφ2dφ1 = 0,
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which, after performing the integration, leads to

L(p)Z0 = 32Z0, (5.2.13)

where

L(p)Z0 = σ 2

2

∂2Z0

∂z2
+

(

∆− α1ĥ11 − α2ĥ21

) ∂Z0

∂z
+ ŝ1

∂Z0

∂θ
+ pq̂1 Z0,

ĥ11 =
∫ 2π

φ1=0

∫ 2π

φ2=0
h̄11dφ2dφ1, ĥ21 =

∫ 2π

φ1=0

∫ 2π

φ2=0
h̄21dφ2dφ1,

ŝ1 =
∫ 2π

φ1=0

∫ 2π

φ2=0
s̄1dφ2dφ1, p̂1 =

∫ 2π

φ1=0

∫ 2π

φ2=0
p̄1dφ2dφ1.

Hence, the second-order perturbation of the moment Lyapunov exponent 32 is the

eigenvalue of a second-order partial differential eigenvalue problem (5.2.13) with function

Z0(z, θ) being the associated eigenfunction.

Equation (5.2.13) can be solved using a double Fourier series. Since θ is defined on the

interval [0,π/2), the Fourier series for θ should include cos4nθ and sin4nθ which come

from the extension of the interval from [0,π/2) to [0, 2π) (see, e.g., Myint-U and Debnath

[51]). Hence, the eigenfunction Z0(z, θ) can be expressed as

Z0(z, θ) = CC00 +
K

∑

n=1

CC0n cos4nθ +
K

∑

n=0

K
∑

m=1

(

CCmn cosmz + SCmn sinmz
)

cos4nθ

+
K

∑

n=1

CS0n sin4nθ +
K

∑

n=1

K
∑

m=1

(

CSmn cosmz + SSmn sinmz
)

sin4nθ ,

(5.2.14)

or, more concisely,

Z0(z, θ) =
K

∑

n=0

K
∑

m=0

[(

CCmn cosmz + SCmn sinmz
)

cos4nθ

+
(

CSmn cosmz + SSmn sinmz
)

sin4nθ
]

, (5.2.14′)

in which SC0n =CSm0 =SSm0 =SS0n =0, for all values of m and n, all the other CCmn, SCmn,

CSmn, and SSmn are constant coefficients to be determined. The Fourier series is truncated

to include K sine and cosine terms for the purpose of numerical analysis; when K →∞, the

exact result is obtained.
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Substituting equation (5.2.14′) into (5.2.13), multiplying it by cosrz cos4sθ , sinrz cos4sθ ,

cosrz sin4sθ , or sinrz sin4sθ , respectively, and integrating with respect to z from 0 to 2π

and with respect to θ from 0 to π/2 yield a set of equations:

K
∑

m=0

K
∑

n=0















LCCCC
mnrs LSCCC

mnrs LCSCC
mnrs LSSCC

mnrs

LCCSC
mnrs LSCSC

mnrs LCSSC
mnrs LSSSC

mnrs

LCCCS
mnrs LSCCS

mnrs LCSCS
mnrs LSSCS

mnrs

LCCSS
mnrs LSCSS

mnrs LCSSS
mnrs LSSSS

mnrs









































CCmn

SCmn

CSmn

SSmn



























= 32



























CCrs

SCrs

CSrs

SSrs



























,

r, s = 0, 1, · · · , K , (5.2.15)

where

LCCCC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz cos4nθ)× cosrz cos4sθ dzdθ ,

LSCCC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz cos4nθ)× cosrz cos4sθ dzdθ ,

LCSCC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz sin4nθ)× cosrz cos4sθ dzdθ ,

LSSCC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz sin4nθ)× cosrz cos4sθ dzdθ ,

LCCSC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz cos4nθ)× sinrz cos4sθ dzdθ ,

LSCSC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz cos4nθ)× sinrz cos4sθ dzdθ ,

LCSSC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz sin4nθ)× sinrz cos4sθ dzdθ ,

LSSSC
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz sin4nθ)× sinrz cos4sθ dzdθ ,

LCCCS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz cos4nθ)× cosrz sin4sθ dzdθ ,

LSCCS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz cos4nθ)× cosrz sin4sθ dzdθ ,

LCSCS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz sin4nθ)× cosrz sin4sθ dzdθ ,
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LSSCS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz sin4nθ)× cosrz sin4sθ dzdθ ,

LCCSS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz cos4nθ)× sinrz sin4sθ dzdθ ,

LSCSS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz cos4nθ)× sinrz sin4sθ dzdθ ,

LCSSS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( cosmz sin4nθ)× sinrz sin4sθ dzdθ ,

LSSSS
mnrs =

∫ π
2

θ=0

∫ 2π

z=0
L(p)( sinmz sin4nθ)× sinrz sin4sθ dzdθ.

Equations (5.2.15) can be further cast into a generalized linear algebraic eigenvalue

problem of the form
[

A −3
(K)
2 B

]

X = 0, (5.2.16)

where the superscript “(K)” signifies that the Fourier series is truncated to include K

harmonic terms, A, B are matrices of dimension (2K +1)2×(2K +1)2, and

X =
{

CC00, CC01, · · · , CC0K ; CC10, CC11, · · · , CC1K , · · · ; CCK0, CCK1, · · · , CCKK ;

SC10, SC11, · · · , SC1K , · · · ; SCK0, SCK1, · · · , SCKK ;

CS01, CS02, · · · , CS0K ; CS11, CS12, · · · , CS1K ; · · · ; CSK1, CSK2, · · · , CSKK ;

SS11, SS12, · · · , SS1K ; · · · ; SSK1, SSK2, · · · , SSKK

}T
.

For system (5.2.16) to have non-trivial solutions, the determinant of the coefficient matrix

must be zero, i.e.
∣

∣A −3
(K)
2 B

∣

∣ = 0.

By solving this generalized eigenvalue problem, the moment Lyapunov exponent can be

determined.

Having obtained an approximate result of the second-order perturbation 3
(K)
2 of the

moment Lyapunov exponent, an approximation of the moment Lyapunov exponent is

given by

3x(t)(p) ≈ ε3
(K)
2 . (5.2.17)
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Using equation (1.3.4), an approximation of the Lyapunov exponent can be easily obtained

λx(t) ≈ ελ
(K)
2 , λ

(K)
2 = lim

p→0

3
(K)
2

p
. (5.2.18)

5.3 Parametric Resonances

5.3.1 Subharmonic Resonance

To study the subharmonic resonance in the first mode, the central frequency of the bounded

noise is taken as ν0 =2ω1. Assuming ω1 6=ω2 and 2ω1 6=ω2, the coefficients in equation

(5.2.13) are given by

ĥ11 = 1
4 k11 cosz, ĥ21 = 0,

ŝ1 = 1
8 k11 sin2θ sinz + 1

2 (β1−β2) sin2θ ,

q̂1 = − 1
8 k11(1 + cos2θ) sinz − 1

2

[

(β1+β2)+ (β1−β2) cos2θ
]

.

In fact, this is the singular case in which θ approaches zero as time goes to infinity since

only one mode of the system is excited. Thus, the coefficients are

ĥ11 = 1
4 k11 cosz, ĥ21 = 0, q̂1 = − 1

4 k11 sinz − β1, ŝ1 = 0.

Hence, the eigenvalue problem is reduced to that of a single degree-of-freedom problem

studied by Xie [98]. The eigenvalue problem can be solved using the Fourier series

Z0(z) = C0 +
N

∑

k=1

(Ck coskz + Sk sinkz), (5.3.1)

where C0, Ck, Sk, k=1, 2, . . . , N , are constant coefficients to be determined. Following the

same procedure shown in the previous section, the moment Lyapunov exponent can be

determined. Hence, the Lyapunov exponent can be evaluated from equation (1.3.4), which

is shown in Figure 5.1.

For numerical simulation, the original equation can be discretized using the Euler scheme

for iterations n=0, 1, 2, . . . ,

xn+1
1 = xn

1 + ω1xn
2 ·1t,

xn+1
2 = xn

2 +
[

− ω1xn
1 − 2εβ1xn

2 − ε cosηn
(

k11xn
1 + k12xn

3

)

]

·1t,
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Figure 5.1 Lyapunov exponent for β1 =β2 =0 and ν0 =2ω1.

xn+1
3 = xn

3 + ω2xn
4 ·1t,

xn+1
4 = xn

4 +
[

− ω2xn
3 − 2εβ2xn

4 − ε cosηn
(

k21xn
1 + k22xn

3

)

]

·1t,

ηn+1 = ηn + ν ·1t + ε1/2σ ·1W n.

These equations can be simulated iteratively and the numerical algorithm for determining

the Lyapunov exponents (Wolf et al. [94]) can be applied to evaluate λx(t). In the Monte

Carlo simulation, the time step is chosen as 1t =10−6, the frequencies areω1 =1 andω2 =4,

and the number of iterations is 2×109. A comparison of the Lyapunov exponents λx(t)

obtained by perturbation and Monte Carlo simulation as shown in Figure 5.1 reveals that

there is an excellent agreement between the two results. The moment Lyapunov exponents

3x(t) are shown in Figure 5.2 for σ =1.0.
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Figure 5.2 Moment Lyapunov exponent for β1 =β2 =0, and ν0 =2ω1 (K =12).

5.3.2 Combination Additive Resonance

To study the combination additive resonance, the central frequency of the bounded noise is

taken as ν0 =ω1+ω2. Assuming ω1 6=ω2, the coefficients in equation (5.2.13) are given by

ĥ11 = 1
4 k12 cosz tan θ , ĥ21 = 1

4 k21 cosz cot θ ,

ŝ1 = − 1
8

[

(k21−k12)+ (k12+k21) cos2θ
]

sinz + 1
2 (β1−β2) sin2θ ,

q̂1 = − 1
8 (k12+k21) sin2θ sinz − 1

2

[

(β1+β2)+ (β1−β2) cos2θ
]

. (5.3.2)

Note that k11 and k22 do not appear in the above coefficients, which means that they have

no influence on the stability of the system in combination additive resonance. However,

their influences have to be taken into account if ω1 andω2 are close, i.e.,ω1+ω2 ≈2ω1. By a

suitable scaling of coordinates, it is always possible to take k12 = ± k21 =k>0 without loss

of generality. Hence, assume k12 =k21 =1 in the following analysis.
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Substituting equation (5.3.2) into equation (5.2.13) and performing some calculations

yield

σ 2

2

∂2Z0

∂z2
+

(

∆− k12

2 sin2θ
cosz

)

∂Z0

∂z
+

[

− 1
4 k12 cos2θ sinz + 1

2 (β1−β2) sin2θ
] ∂Z0

∂θ

+ p
{

− 1
4 k12 sin2θ sinz − 1

2

[

(β1+β2)+ (β1−β2) cos2θ
]}

Z0 = 32Z0. (5.3.3)

To eliminate the singularities at θ=0 or π/2 in equation (5.3.3), multiplying equation

(5.3.3) by sin2θ results in

σ 2

2
sin2θ

∂2Z0

∂z2
+

(

∆ sin2θ − 1
2 k12 cosz

) ∂Z0

∂z

+
[

− 1
4 k12 sin2θ cos2θ sinz + 1

2 (β1−β2) sin22θ
] ∂Z0

∂θ

+ p
{

− 1
4 k12 sin22θ sinz − 1

2

[

(β1+β2) sin2θ + (β1−β2) sin2θ cos2θ
]}

Z0 = 32 sin2θZ0,

(5.3.4)

or, after the simplification,

σ 2

2
sin2θ

∂2Z0

∂z2
+

(

∆ sin2θ − 1
2 k12 cosz

) ∂Z0

∂z

+
[

− 1
8 k12 sin4θ sinz + 1

4 (β1−β2)− 1
4 (β1−β2) cos4θ

] ∂Z0

∂θ

+ p
[

1
8 k12(1− cos4θ) sinz − 1

2 (β1+β2) sin2θ − 1
4 (β1−β2) sin4θ

]

Z0 = 32 sin2θZ0,

(5.3.5)

Following the same procedure as in the previous section, the moment Lyapunov expo-

nents and Lyapunov exponents can be determined and are shown in Figures 5.3–5.9.

The Lyapunov exponents obtained by perturbation and Monte Carlo simulation are

shown in Figure 5.3. The frequencies of the system are taken as ω1 =1 and ω2 =4, and

the central frequency of the bounded noise is taken as ν0 =ω1+ω2 =5. From Figure 5.3,

one can clearly see that the parametric resonance occurs when the frequency detuning ∆

is small (∆<0.5). Figure 5.4 shows the moment Lyapunov exponents for the undamped

system. When the system is undamped, the pth moment Lyapunov exponent is positive

for all p>0 . It is seen that when the frequency detuning ∆ is increased the effect of

combination resonance is reduced, which is similar to the results of one degree-of-freedom

system obtained in Xie [98].
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Figure 5.3 Lyapunov exponent for β1 =β2 =0, and ν0 =ω1+ω2.

The numerical results of the moment Lyapunov exponents given by equation (5.2.17)

converge when K is sufficiently large. In this study, K =20 yields satisfactory results and

is used to calculate the moment Lyapunov exponents for the undamped system. For the

damped system, a larger value of K is needed for satisfactory results as shown in Figures 5.5

and 5.6. It is seen that the rate of convergence varies for different system parameters.

The Monte Carlo simulation procedure proposed by Xie and Huang [95] is applied to

determine the pth moment Lyapunov exponents of system (5.1.2). Numerical results are

presented in Figures 5.8 and 5.9 for β1 =0.1 and 0.2, respectively, with various values of σ .

In the simulation, the sample size is chosen as S=5000, time step is1t =10−5, the number

of iterations is 2×108, the total time of simulation is 2000, and the state vector is normalized

after every time period of t =20. Approximate analytical results of 3(p) are also plotted

for comparison. The number of harmonic terms in the double Fourier series expansion is
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Figure 5.4 Moment Lyapunov exponent for β1 =β2 =0 and ν0 =ω1+ω2 (K =20).

chosen as K =40. It is seen that the approximate analytical results agree quite well with the

numerical results.

By increasing the value of σ , the bandwidth of the narrow-band excitation modeled by

the bounded noise process increases, and the effect of combination resonance is reduced, as

reflected in the decrease of the Lyapunov exponent and the moment Lyapunov exponents,

and the increase of the stability index as seen in Figures 5.7–5.9. Figure 5.7 shows that

Lyapunov exponent becomes negative for all values of∆whenσ is increased to 0.8, meaning

that the system is stable almost surely. Furthermore, the system is unstable in the pth

moment, p>0, for small values of σ as shown in Figures 5.8 and 5.9. For instance, Figure

5.9 shows that, when σ =1.5, the system is unstable in the pth moment only if p>7. The

effect of damping can be seen from the comparison of Figure 5.8 and 5.9. At σ =1.5, the

stability index is about p=2 for β1 =β2 =0.1 (Figure 5.8). If β1 is increased to 0.2, the
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Figure 5.5 Moment Lyapunov exponent for β1 =0.2, β2 =0.1, and ν0 =ω1+ω2.

stability index is about p=7. As expected, increasing the damping always stabilizes the

system.

By varying the central frequency ν0 to |ω1−ω2| and following the same procedure, one

can easily obtain the moment Lyapunov exponents for combination differential resonance.

5.3.3 Subharmonic and Combination Additive Resonance

Assuming ω1 ≈ω2, one has 2ω1 ≈2ω2 ≈ω1+ω2. The central frequency of the bounded

noise is taken as ν0 =ω1+ω2. Here, the parameters of the system areω1 =ω2 =1 and ν0 =2.

Thus, the coefficients in equation (5.2.13) are given by

ĥ11 = 1
4

(

k11+k12 tan θ
)

cosz, ĥ21 = 1
4

(

k22+k21 cot θ
)

cosz,

ŝ1 = − 1
8

[

(k21−k12)+ (k22−k11) sin2θ + (k12+k21) cos2θ
]

sinz + 1
2 (β1−β2) sin2θ ,

q̂1 = − 1
8

[

(k11+k22)+ (k11−k22) cos2θ + (k12+k21) sin2θ
]

sinz
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Figure 5.6 Moment Lyapunov exponent for β1 =0.2, β2 =0.1, and ν0 =ω1+ω2.

− 1
2

[

(β1+β2)+ (β1−β2) cos2θ
]

. (5.3.6)

Substituting equation (5.3.6) into equation (5.2.13) and performing some calculations yield

σ 2

2

∂2Z0

∂z2
+

[

∆− 1
4 (k11+k22) cosz − k12

2 sin2θ
cosz

]

∂Z0

∂z

+
[

1
8 (k11−k22) sin2θ sinz − 1

4 k12 cos2θ sinz + 1
2 (β1−β2) sin2θ

] ∂Z0

∂θ

+ p
{

− 1
8

[

(k11+k22)+ (k11−k22) cos2θ + 2k12 sin2θ
]

sinz

− 1
2

[

(β1+β2)+ (β1−β2) cos2θ
]}

Z0 = 32Z0. (5.3.7)

Similarly, multiplying equation (5.3.7) by sin2θ results in

σ 2

2
sin2θ

∂2Z0

∂z2
+

[

∆ sin2θ − 1
4 (k11+k22) sin2θ cosz − 1

2 k12 cosz
] ∂Z0

∂z

+
[

1
8 (k11−k22) sin22θ sinz − 1

4 k12 sin2θ cos2θ sinz + 1
2 (β1−β2) sin22θ

] ∂Z0

∂θ
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Figure 5.7 Lyapunov exponent for β1 =0.2, β2 =0.1, and ν0 =ω1+ω2.

+ p
{

− 1
8

[

(k11+k22) sin2θ + (k11−k22) sin2θ cos2θ + 2k12 sin22θ
]

sinz

− 1
2

[

(β1+β2) sin2θ + (β1−β2) sin2θ cos2θ
]}

Z0 = 32 sin2θZ0, (5.3.8)

or, after the simplification,

σ 2

2
sin2θ

∂2Z0

∂z2
+

[

∆ sin2θ − 1
4 (k11+k22) sin2θ cosz − 1

2 k12 cosz
] ∂Z0

∂z

+
[

1
16(k11−k22) sinz − 1

16(k11−k22) cos4θ sinz − 1
8 k12 sin4θ sinz

+ 1
4 (β1−β2)− 1

4 (β1−β2) cos4θ
] ∂Z0

∂θ

+ p
{

− 1
16

[

2(k11+k22) sin2θ − (k11−k22) sin4θ − 2k12(1 − cos4θ)
]

sinz

− 1
4

[

2(β1+β2) sin2θ + (β1−β2) sin4θ
]}

Z0 = 32 sin2θZ0, (5.3.9)
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Figure 5.8 Moment Lyapunov exponent for β1 =β2 =0.1, and ν0 =ω1+ω2.

These expressions show that the coefficients are linear combinations of the coefficients

for subharmonic and combination additive resonances. Thus, all kij’s contribute to the

resonance of the system. Similarly, increasing the value of σ results in a more stable

system, which can be seen from Figures 5.10 and 5.11. One can also draw the conclusion

that larger values of k22 yields more significant resonances since larger k22 means larger

amplitude of the bounded noise. Figure 5.12 shows that damping can reduce the resonance

significantly, and can even stabilize the system when the value of σ is relatively large. For

example, the Lyapunov exponents for σ =1.5 are nearly all negative except those close to

the central frequency. The moment Lyapunov exponents for the undamped system with

σ =1 and various detuning parameters∆ are shown in Figure 5.13. The stabilizing effect of

damping can also be observed in Figure 5.15 in terms of the moment Lyapunov exponents.

Consistently, larger values of σ also make the system more stable in the pth moments for

p>0.
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Figure 5.9 Moment Lyapunov exponent for β1 =0.2, β2 =0.1, and ν0 =ω1+ω2.

Comparison of Figures 5.1, 5.3, and 5.11 indicates that the combined effect of subhar-

monic and combination additive resonances results in not only more significant resonance

in terms of larger Lyapunov exponent than either case separately, but also wider resonance

region in terms of frequency detuning ∆. This means that parametric resonance can be

triggered more easily. For example, the resonance region for subharmonic resonance is

around
∣

∣∆
∣

∣<0.5 from Figure 5.1, while the region is expanded to
∣

∣∆
∣

∣<1.0 from Figure

5.11 when the effects of subharmonic resonance and combination additive resonance are

combined.

As shown above, the coefficients for subharmonic resonance are associated with k11 or

k22 only, while the coefficients for combination additive resonance include only k12 and k21,

which represents the coupling between the two degrees-of-freedom. When the subharmonic

resonance and combination additive resonance occur simultaneously, the resonance results

have contributions from all kij. Depending on the values of the coefficients, the convergent
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Figure 5.10 Lyapunov exponent for β1 =β2 =0, ω1 =ω2, and ν0 =2ω1.

rates of the Fourier series are different. For subharmonic resonance, K =12 is sufficient

to obtain satisfactory results. However, a relatively large K (K =40) is needed for the

combination additive resonance with damping. Meanwhile, other parameters such as the

damping coefficients β1,2, noise intensity σ , and frequency detuning ∆ also influence the

rates of convergence (see, e.g., Figures 5.5 and 5.6).

Larger values of kij yield more significant resonance since they are the amplitudes of the

bounded noise. Decreasing the value of σ has the same effect on the stability because the

power spectrum of the bounded noise is more narrow-banded and the effect of parametric

resonance is more prominent. The frequency detuning parameter∆ is also a key parameter

to the stability of the system. When the central frequency of the bounded noise is offset

from the resonance frequencies, the effect of parametric resonance is significantly reduced.

The damping always has a stabilizing effect.
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Figure 5.11 Lyapunov exponent for β1 =β2 =0, ω1 =ω2, and ν0 =2ω1.

5.4 Conclusion

The dynamic stability of a two degrees-of-freedom system subjected to bounded noise

excitation is studied by determining the moment Lyapunov exponents. The partial differ-

ential eigenvalue problem governing the moment Lyapunov exponent is established using

the theory of stochastic dynamical system. For weak noise excitations, a singular pertur-

bation method is employed to obtain second-order expansions of the moment Lyapunov

exponents. A double Fourier series is used to solve the eigenvalue problem. The Lyapunov

exponent is then obtained using the relationship between the moment Lyapunov exponent

and the Lyapunov exponent. The accuracy of the approximate analytical results is vali-

dated and assessed by comparing with those obtained using Monte Carlo simulation. It

is observed that there is an excellent agreement between the analytical results and the nu-

merical results. The effect of noise on various parametric resonances, such as subharmonic

resonance, combination additive resonance, and combined subharmonic and combination
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Figure 5.12 Lyapunov exponent for β1 =β2 =0.2, ω1 =ω2, and ν0 =2ω1.

additive resonance, is investigated. The effects of system parameters on the stability are

studied.
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Figure 5.13 Moment Lyapunov exponent for β1 =β2 =0, ω1 =ω2, and ν0 =2ω1 (K =20).
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Figure 5.14 Moment Lyapunov exponent for β1 =β2 =0, σ =2.0, and ν0 =2ω1 (K =20).
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Figure 5.15 Moment Lyapunov exponent for β1 =β2 =0.2, ω1 =ω2, and ν0 =2ω1.



6C H A P T E R

Conclusions and Future Work

Flow-induced vibration and dynamic stability of stochastic systems are two important

research areas. There is extensive research done in either area. The research in this thesis fills

the gap between the two areas and successfully apply the stochastic theory to flow-induced

vibration and instability. The effects of noise on flow-induced vibration are investigated.

6.1 Conclusions

Flow-induced vibration of a cylinder in a cross-flow

A spring-supported cylinder is considered in this research. The equations of motion for the

cylinder placed in a cross-flow are set up in which the vortex force is modeled by a bounded

noise because of its narrow-band characteristics and the motion-dependent forces are also

included. Since the vibration of the cylinder in the lift direction is more prominent in the

lock-in region, the system is reduced to one degree-of-freedom, i.e., only the vibration of the

cylinder in the lift direction is considered. Hence, a general two-dimensional system excited

by a bounded noise is considered. The partial differential eigenvalue problem governing

the moment Lyapunov exponents is established and a singular perturbation is applied to

obtain the second-order expansions of the moment Lyapunov exponents for small noise

excitations. The Lyapunov exponents are determined from the relationship between the

moment Lyapunov exponents and Lyapunov exponents.

It is found that parametric instability occurs in vortex-induced vibration of a single

cylinder in a cross-flow at the lock-in range. When appropriate values of the system

128
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parameters are taken, the vibration of the cylinder is made up of main resonance due to

the lock-in forcing, parametric instability due to time-variant fluid damping, and constant-

fluid-damping-induced instability in the usual lock-in range. In particular, the primary

parametric resonance enlarges the range of instability in terms of the reduced flow velocity.

The effects of some crucial parameters, such as the mass ratio and the fluid damping

coefficient, are studied. Specifically, decreasing the mass ratio or increasing the constant

fluid damping has a positive influence on the instability of the system. The analytical results

agree very well with those obtained by Monte Carlo simulations.

Fluidealstic instability of a cylinder in a shear flow

Experimental results show that fluidelastic instability can occur at high reduced velocity for

a cylinder placed in a shear flow. To study the stability of such a system, the model for a

cylinder in a cross-flow is extended to incorporate the influence of the shear flow. A quasi-

steady model is used to model the vortex-induced forces while the motion-dependent forces

are neglected since they are quite small at the region of high reduced velocity. For such a

deterministic system, its stability depends on the eigenvalues of the system matrix A. If the

real parts of the eigenvalues are negative, the system is stable. When the reduced velocity

Ur increases to a critical value, the largest real part of the eigenvalues become positive, i.e.,

the cylinder becomes unstable. Increasing the values of the reduced velocity Ur or the shear

parameter K can destabilize the cylinder. On the contrary, increasing the mass ratio Mr ,

decreasing Ur , or decreasing K would make the system more stable.

To investigate the effects of turbulence on stability, the grid-generated turbulence is mod-

eled by a real noise with Gaussian distribution and zero mean. Thus, the equations of

motion for the cylinder are randomized resulting in a four-dimensional system excited by a

real noise. The system has one critical mode and one stable mode. The effect of real noise

on the stability of such a parametrically excited four-dimensional system is considered. The

dynamic stability of the system is studied by determining the moment Lyapunov exponents

and the Lyapunov exponents. For weak noise excitations, a regular perturbation method is

employed to obtain second-order expansions of the moment Lyapunov exponents. and the

Lyapunov exponent. The analytical method is applied to study the effects of grid-generated

turbulence on the stability of a circular cylinder in a shear flow, which is subjected to fluide-
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lastic instability. The correctness and the accuracy of the approximate analytical results are

validated and assessed by comparing with those obtained by Monte Carlo simulations.

The analysis demonstrates that the cylinder can be stabilized by the real noise with proper

parameters in the sense of both sample stability and moment stability. It is shown that grid-

generated turbulence can shift the critical reduced velocity to a higher value and hence

stabilize the cylinder. The stabilizing effect becomes smaller when α, which characterizes

the bandwidth of the real noise, increases. This result indicates that the length scale of

turbulence Lx is a key parameter for the stabilization since α is related to Lx. Furthermore,

the analytical results show that the stabilizing effect of turbulence is proportional to the

turbulence intensity, which agrees with the experimental observations.

It is also found that the stabilization is sensitive to the frequency ratio k between the two

natural frequencies of the cylinder in the x-direction and y-direction. When the difference

between the two natural frequencies becomes larger, a better stabilizing effect is observed

due to stronger coupling between the critical mode and the stable mode.

Parametric resonances of a two degrees-of-freedom system induced by a bounded

noise

A two degrees-of-freedom system under bounded noise excitation is considered. Depend-

ing on the central frequency of the bounded noise, various types of parametric resonance

may occur in the system. The partial differential eigenvalue problem governing the mo-

ment Lyapunov exponent is established. For weak noise excitations, a singular perturbation

method is employed to obtain second-order expansions of the moment Lyapunov expo-

nents. A double Fourier series is used to solve the eigenvalue problem. The effects of the

bounded noise and the detuning frequency∆ on the resonance are investigated. Stochastic

stability of the system, which is in subharmonic resonance, combination additive resonance,

and combined resonance when the excitation is a harmonic function, respectively, is studied.

Numerical results for both the Lyapunov exponents and moment Lyapunov exponents are

obtained by Monte Carlo simulation and compared with the analytical results to validate

the analytical approach. The effect of noise on various types of parametric resonance, such

as subharmonic resonance, combination additive resonance, and combined subharmonic
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and combination additive resonance, is investigated. The effects of system parameters, such

as the damping βi and the amplitudes of bounded noise kij, on the stability are also studied.

It is shown that subharmonic resonance is associated with k11 or k22 only, while combi-

nation additive resonance is only influenced by k12 and k21, which represents the coupling

between the two degrees-of-freedom. When the subharmonic resonance and combination

additive resonance occur simultaneously, the resonance results have contributions from all

kij’s. Larger amplitudes of the bounded noise, which are characterized by larger values of

kij’s, yield more significant resonance. Decreasing the bandwidth of the bounded noise σ

has the same effect on the stability because the power spectrum of the bounded noise is

more narrow-banded and the effect of parametric resonance is more prominent. The fre-

quency detuning parameter∆ is also a key parameter on the stability of the system. When

the central frequency of the bounded noise is offset from the resonance frequencies, the ef-

fect of parametric resonance is significantly reduced. The damping always has a stabilizing

effect. It is also found that the combined effect of subharmonic and combination additive

resonances results in not only more significant resonance in terms of larger Lyapunov ex-

ponent than either case separately, but also wider resonance region in terms of frequency

detuning. This means that parametric resonance can be triggered more easily.

The accuracy of the approximate analytical results is validated and assessed by comparing

with those obtained using Monte Carlo simulation. It is observed that there is an excellent

agreement between the analytical results and the numerical results.

6.2 Future Work

The present research considers only one cylinder in a cross-flow. In practical industrial

applications, cylinders or tubes are usually placed in an array. The motion of each cylinder

will change the fluid field and thus the cylinder interacts with the adjacent cylinders. The

interactions among cylinders have to be taken into account for determining the stability

boundary of an array of cylinders. This results in a lot of difficulties. There are no general

theoretical models which can predict the fluid forces applied on an arbitrary cylinder in

an array. The fluid forces have to be measured experimentally, which is generally difficult

and time-consuming. One possible solution is to consider a cell in an array such as two
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side-by-side cylinders instead of the whole array. However, the study of stochastic stability

of high-dimensional systems is still a challenging problem.

In the present study, the fluid-structure interaction is approximated linearly based on

the quasi-steady theory for the convenience of analytical analysis. However, flow-induced

vibration of cylinders in a cross-flow is essentially a nonlinear phenomenon. Chaotic

vibration can occur in the flow-induced instabilities with strong nonlinearities. Modeling

the nonlinearities correctly is important for determining the critical velocity and the limit

cycle amplitudes of the vibrating cylinders. The turbulence effects on the stability of the

nonlinear systems can be studied by stochastic bifurcation theory, which has attracted the

interest of many researchers.

In addition to the urgent needs of theoretical modeling, experimental efforts are also

indispensable. The fluid force coefficients depend on the Reynolds number, the reduced

velocity, turbulence intensity, and the position of the cylinder in an array. Extensive ex-

periments have to be conducted to measure the fluid force coefficients under different

conditions. Experimental results can provide the information for theoretical modeling and

validate the predictions from the mathematical models. With the development of com-

putational fluid dynamics (CFD), some of the experimental work can be substituted by

numerical simulations.

In summary, large gaps still remain in the flow-induced vibration of cylinders despite

the fact that many efforts have been made in the experimental, theoretical, and numerical

methods. Stochastic analysis is a useful tool for the study of flow-induced vibration and the

mechanism of the fluid-structural interaction can be understood better with the help of the

theory of stochastic systems.



AA P P E N D I X

A.1 The Fredholm Alternative

When the method of perturbation is applied to obtain weak noise expansions of the pth

moment Lyapunov exponents, the Fredholm Alternative is used.

Consider the following elliptic partial differential equation in a smooth, bounded domain

� ⊂ R
n,

L u = f , in�, (A.1.1a)

where L is the uniformly elliptic operator

L (u) =
n

∑

i=1

n
∑

j=1

aij(x)
∂2u

∂xi∂xj

+
n

∑

i=1

bi(x)
∂u

∂xi

+ c(x)u (A.1.1b)

with smooth coefficients aij, bi, and c satisfying uniform ellipticity:

n
∑

i=1

n
∑

j=1

aij(x)ξiξj > M
∥

∥ξ
∥

∥

2
, for all x ∈ � and ξ ∈ R

n (M>0). (A.1.1c)

The adjoint operator L
∗ is given by

L
∗(u) =

n
∑

i=1

n
∑

j=1

∂2
(

aij(x)u
)

∂xi∂xj

−
n

∑

i=1

∂
(

bi(x)u
)

∂xi

+ c(x)u. (A.1.1d)

The Fredholm Alternative can be stated as follows.

Theorem: Suppose the operator L : X=H2(�)∩ H1
0 (�)→L2(�) as in equation (A.1.1b)

is uniformly elliptic with smooth coefficients. The homogeneous equations

L y = 0, (A.1.2)

133
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L
∗z∗ = 0, (A.1.3)

have the same finite number of linearly independent solutions y1, y2, . . . , yk and z∗
1 , z∗

2 , . . . ,

z∗
k , respectively, in X=H2(�) ∩ H1

0 (�). Moreover,

1. For f ∈ L2(�), the nonhomogeneous partial differential equation

L u = f (A.1.4)

can be solved if and only if f is orthogonal to the k solutions z∗
1 , z∗

2 , . . . , z∗
k of equation

(A.1.3), i.e.
(

f , z∗
i

)

= 0, i = 1, 2, . . . , k, (A.1.5)

where (φ,ψ) denotes the inner product of functions φ and ψ , which are defined and

integrable over the region �,

(φ,ψ) =
∫

�

φψ dx. (A.1.6)

2. For g ∈ L2(�), the nonhomogeneous partial differential equation

L
∗v = g , (A.1.7)

can be solved if and only if g is orthogonal to the k solutions y1, y2, . . . , yk of equation

(A.1.2), i.e.
(

g , yi

)

= 0, i = 1, 2, . . . , k. (A.1.8)

For more details about the Fredholm Alternative, one can refer to [48] and [103]. Although

the Fredholm Alternative is proved only for functions f and u in bounded domains � of

independent variables, the theorem often applies to singular problems such as one or more

of the independent variables goes to infinity (see, e.g., Davis and Thomson [28]).

In the perturbation analysis of stochastic equations, the elliptic operator in equation

(A.1.1b) is usually the infinitesimal generator of a diffusion process. If the diffusion process

satisfies a strong ergodicity condition, the Fredholm Alternative can be proved for both

bounded and unbounded domains from the ergodic theory. Specifically, if the transition

probability function satisfies the Doeblin’s condition, the transition probabilities converge

geometrically fast to the stationary probability. The Poisson’s equation (A.1.4) can be solved

if and only if
(

f , P̄
)

= 0, (A.1.9)
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where P̄ is the stationary probability which is the solution of equation (A.1.3). Furthermore,

the solution of equation (A.1.4) is unique and can be expressed in terms of the recurrent

potential kernel (or Green’s function) for the operator L . For more details, refer to

Papanicolaou [60].

It can be shown that the diffusion processes used in this thesis satisfy the above assump-

tions. Hence, the Fredholm Alternative is applicable.
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