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Abstract

Shadows contribute significantly to the perceived realism of an image, and pro-
vide an important depth cue. Rendering high quality, antialiased shadows efficiently
is a difficult problem. To antialias shadows, it is necessary to compute partial visi-
bilities, but computing these visibilities using existing approaches is often too slow
for interactive applications.

Shadow maps are a widely used technique for real-time shadow rendering. One
major drawback of shadow maps is aliasing, because the shadow map data cannot
be filtered in the same way as colour textures.

In this thesis, I present variance shadow maps (VSMs). Variance shadow maps
use a linear representation of the depth distributions in the shadow map, which
enables the use of standard linear texture filtering algorithms. Thus VSMs can
address the problem of shadow aliasing using the same highly-tuned mechanisms
that are available for colour images. Given the mean and variance of the depth
distribution, Chebyshev’s inequality provides an upper bound on the fraction of a
shaded fragment that is occluded, and I show that this bound often provides a good
approximation to the true partial occlusion.

For more difficult cases, I show that warping the depth distribution can produce
multiple bounds, some tighter than others. Based on this insight, I present layered
variance shadow maps, a scalable generalization of variance shadow maps that
partitions the depth distribution into multiple segments. This reduces or eliminates
an artifact — “light bleeding” — that can appear when using the simpler version
of variance shadow maps. Additionally, I demonstrate exponential variance shadow
maps, which combine moments computed from two exponentially-warped depth
distributions. Using this approach, high quality results are produced at a fraction
of the storage cost of layered variance shadow maps.

These algorithms are easy to implement on current graphics hardware and pro-
vide efficient, scalable solutions to the problem of shadow map aliasing.
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Chapter 1

Introduction

Rendering is the process of sampling a scene over a rectilinear grid of pixels. Raster-
ization performs this sampling by projecting the scene primitives (usually triangles)
onto the viewing plane and drawing them directly, using a depth buffer to cull hid-
den pixels. These primitives are lit and shaded, and then written to the framebuffer
for display on the screen. Lighting and shadows are important effects to capture
for realistic rendering. This thesis will concentrate on shadows.

Rendering high-quality shadows at interactive rates is a difficult problem in
computer graphics. While tracing rays can produce physically correct shadows,
the algorithm is currently too slow for real-time applications like games. This is
particularly true for soft-edged shadows, which require many shadow rays.

Conversely, current real-time shadow algorithms have significant quality, storage
and usability issues. Shadow volumes [3] construct and rasterize explicit silhouette
geometry to enclose the shadowed regions and thus are inefficient when dealing
with complex, animated 3D models such as characters. It is also difficult to use
shadow volumes to represent non-polygonal data such as tree leaves, which are often
modelled using texture-based transparency (alpha) masks. Furthermore, because
shadow volumes are rasterized in screen space, they cannot be queried arbitrarily,
making them incompatible with techniques like per-pixel displacement mapping.

Shadow maps [19] have recently become popular for real-time shadow rendering.
Being an image-space algorithm, shadow maps do not suffer from the issues faced
by shadow volumes. In particular, shadow maps can be used with anything that can
be rasterized into a depth map (including alpha-tested or displaced geometry) and
are much less sensitive to the geometric complexity of the scene. They can also be
queried arbitrarily, just like standard textures. Unfortunately, shadow maps suffer
from aliasing artifacts due to mismatches in sampling rate between the shadow map
and the framebuffer.

Magnification aliasing occurs in shadow maps due to oversampling, i.e., when the
shadow map texels (pixels in the texture holding the shadow data) are spread over
a large region in screen space. Using the obvious light space projection, the shadow
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map resolution in camera space can be arbitrarily bad (as with any projective
texturing technique). Single texels in the shadow map can be enlarged into huge
blocks as they are projected into camera space. The edges of these blocks then flicker
and crawl as the shadows move, which is distracting and unnatural. Addressing
this form of aliasing involves improving the shadow map projection relative to the
camera.

There has been a large amount of recent work in the area of light projection opti-
mization. Perspective shadow maps [18], light space perspective shadow maps [21],
trapezoidal shadow maps [15] and logarithmic shadow maps [12] all aim to eliminate
magnification artifacts by adjusting the shadow projection so that its resolution is
more uniform in camera space. Adaptive shadow maps [8] and resolution-matched
shadow maps [11] attack the problem more directly by detecting oversampling in
screen space and dynamically generating more shadow map resolution where nec-
essary. Parallel-split shadow maps [22] partition the camera frustum into different
regions and render a shadow map for each one, allocating more resolution to areas
closer to the camera. For a discussion of the various tradeoffs between warping
and partitioning algorithms, please refer to Lloyd et al.’s summary paper [13]. The
techniques described in this thesis are complementary to projection and resolution
management and can be used in conjunction with any of these techniques.

Shadow maps also suffer from minification aliasing due to undersampling, i.e.,
when adjacent pixels in screen space map to widely separated shadow map tex-
els. In regions where one framebuffer pixel covers multiple pixels in the shadow
map, a single texture sample is insufficient and produces aliasing, as with stan-
dard texture mapping. Several techniques are available to address this problem
for linear colour textures, but all of these techniques depend on linear filtering. In
linear filtering algorithms, a weighted average is computed over the entire region
covered by each rendered pixel, suppressing the high frequency content that causes
minification aliasing. Normally the performance of linear filtering is enhanced with
preprocessed representations, such as image pyramids [20] or summed-area tables
[4], that also depend on linearity. Unfortunately, the assumption of linearity is
broken by the standard shadow map algorithm, which requires a depth comparison
(a step function) per texture sample.

Percentage closer filtering (PCF) [16] provides a way to filter shadow maps by
observing that we should average the results of many depth comparisons over a filter
region, rather than the depth values themselves. This algorithm does not support
prefiltering, and so for large filter sizes it is expensive. Additionally, PCF does
not consider the receiver geometry within the filter region, which causes significant
biasing and self-shadowing problems.

Deep shadow maps [14] store a distribution of depths for each shadow map
texel. This representation requires a variable amount of storage per pixel, making
deep shadow maps unsuitable for implementation on current graphics hardware.
Furthermore averaging two distributions is nontrivial, which complicates the use of
prefiltering approaches.

2



Convolution shadow maps [1] (CSMs) represent the visibility function with re-
spect to a basis to allow linear prefiltering. CSMs are limited in their ability to
represent discontinuities in the visibility function, and thus suffer from light bleed-
ing near all occluders. Properly rendering any reasonably sized scene requires a
huge number of coefficients, which makes CSMs impractical for real-time rendering
of complex scenes. Furthermore, convolution shadow maps need to process all of
the basis coefficients for a given shadow map texel on every access, which scales
poorly as the number of coefficients increases.

In this thesis I present variance shadow maps (VSMs), an alternative, linear rep-
resentation of shadow map data that allows minification aliasing to be addressed
with standard texture prefiltering techniques. Projection optimization and reso-
lution management are fully compatible and can be used simultaneously with the
techniques presented in this thesis to address both types of shadow map aliasing.

VSMs represent the depth distribution over arbitrary filter regions using mo-
ments, which can be filtered and averaged freely. Chebyshev’s inequality provides
an upper bound on the visibility of a given fragment over an arbitrary filter region,
which is used to estimate the partial visibility during rendering. This upper bound
is relatively tight in most cases, but occasionally provides a bad approximation,
producing light bleeding artifacts. I discuss the source of these artifacts and ways
to combat them by warping the depth function. Warping the depth function en-
ables the use of multiple estimators, and I present two strategies based on these
multiple estimators: layered and exponential warps. Layering preserves constant
access time independent of the number of estimators while allowing the bounds to
be scalably improved by using more layers. Exponential warps improve the bounds
so significantly that in many cases only two estimators need to be combined to
eliminate most light bleeding, even in difficult scenes.

In summary, the techniques in this thesis achieve high-quality shadows with
excellent performance, making these algorithms suitable for inclusion in modern
games and other real-time rendering applications.
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Chapter 2

Background

In this chapter I review the shadow mapping algorithm, which is the basis for the
work in this thesis. I also discuss percentage closer filtering, which is currently the
most common method used to filter shadow maps.

2.1 Shadow Maps

Shadow maps were introduced by Lance Williams in 1978 [19], and remain one of
the most popular techniques for rendering real-time shadows. The algorithm works
as follows:

1. Render the scene from the point of view of the light to generate a depth buffer
(colour data is not needed).

2. Render the scene from the camera’s point of view. While shading, project
fragments into light space and compare the depth of the fragment (in light
space) to the depth stored in the shadow map. If the fragment depth is greater
than the stored depth, the fragment is shadowed. Otherwise, it is lit.

Figure 2.1 shows a visual representation of the shadow mapping algorithm. This
example shows a directional light with parallel rays (vertical dashed lines). The
solid points on these lines represent the occluder depths that are rasterized into the
shadow map in Step 1. Two example eye rays are shown (diagonal dotted lines),
resulting in fragments generated at the open circles. In Step 2, the left fragment
would be considered to be lit since the fragment depth in light space (open circle)
is equal to the shadow map depth (solid point). Conversely, the right fragment is
unlit, because the fragment depth is greater than the shadow map depth.

In practice, fragments will not fall exactly on the light view sample locations,
and a continuous version of the depth map needs to be reconstructed. Due to lack
of linearity, linear interpolation does not work well, so usually a nearest neighbour
lookup is performed.
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Figure 2.1: An illustration of the shadow mapping algorithm.
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As discussed in Chapter 1, shadow maps are prone to aliasing from a variety of
sources. For instance, a rendering of Figure 2.1 will have minification artifacts if the
example eye rays are adjacent in the framebuffer. The two shadow rays (vertical
dashed lines) between the shaded fragaments (open circles) are completely ignored
by the shadow mapping algorithm, leading to the usual aliasing problems of point-
sampled textures.

For example, in a static scene the shadows of thin objects may include periodic
gaps. When the view is animated the problem is much worse, as the shadow cast
by a small object may flash on and off repeatedly as the gaps in the sampling
pattern sweep through the shadow map. Such flashing artifacts are distracting for
the viewer and destroy the illusion of reality. Unfortunately, shadow volumes and
ray sampling (when using a single ray per pixel) have the same problem.

Figure 2.2 shows an example of this artifact in practice. All of the shadow
aliasing in this image is due to undersampling, and thus shadow volumes or single-
sample ray-traced shadows would look the same as the top image. In contrast, the
bottom image is rendered using the techniques described in this thesis, resulting in
properly antialiased shadows.

2.2 Texture Filtering

Shadow maps are a form of projective texturing, wherein the depths of occluders
in light space are projected onto the scene and compared to the depths of potential
receivers. As with other projective texture mapping techniques, this process is
prone to aliasing if the texture is not filtered properly.

Heckbert describes the problem as one of resampling the texture image onto
the grid of framebuffer pixels [9]. If simple, nearest-neighbour resampling is used,
undersampled frequencies in the texture will produce aliasing, as can be seen in
Figure 2.3. This problem can be resolved by prefiltering the texture to produce
band-limited versions that can be selected appropriately while shading to match
the framebuffer sampling frequency.

To give a simple example, consider a texture mapped onto on a surface parallel
to the viewing plane. If this plane is at a distance that produces a one-to-one
mapping of texture pixels to framebuffer pixels then no resampling is necessary
and the texture will be reproduced without aliasing. However, if the camera is
pulled back so that the entire texture occupies only one framebuffer pixel, that
pixel should be coloured using the average colour of the entire texture (i.e., all
frequencies except the lowest have been removed) rather than choosing any one
pixel from the texture.

Mipmapping [20] is one technique that efficiently addresses this problem by
precomputing several “levels” of detail, with data that corresponds to averages
over square regions in the texture. Modern graphics cards provide a hardware
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Figure 2.2: Minification aliasing with standard shadow maps (top) is solved by
properly filtering the shadow map (bottom), as described in this thesis.
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Figure 2.3: Nearest-neighbour sampling of a checkerboard-like texture warped by
a fisheye projection produces significant aliasing artifacts due to undersampling
(left). Properly filtering the texture produces an antialiased image (right).

implementation of mipmapping. By using forward differencing to compute the
derivatives of the texture coordinates, the hardware can approximate the filter
region in texture space that needs to be averaged. From the dimensions of this
footprint, a mipmap level is selected and sampled appropriately.

It would be convenient to use these standard and optimized techniques to an-
tialias shadow maps. However, because the shadow mapping algorithm requires a
nonlinear depth comparison for each texture sample (Step 2), texture prefiltering
cannot be used. Fundamentally, applying the depth test to an averaged value over
some region of the texture will not produce the same result as applying the depth
test to each of the samples in the region individually, and then averaging those
results.

2.3 Percentage Closer Filtering

Applying linear filtering approaches to the depth samples used in shadow maps
does not work. Percentage closer filtering [16] (PCF) provides a solution to the
problem of shadow map filtering, based on the key insight that we actually want to
average the results of the depth comparisons, rather than the samples themselves.
The standard PCF algorithm does this directly using super-sampling.

The algorithm proceeds as follows: first, determine the filter region by projecting
the current screen-space pixel extents onto the shadow map (similar to standard
texture filtering). Then by taking many samples over the entire filter region and
comparing each sampled depth to the reference depth, compute the percentage of
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samples that pass the depth test using numerical integration. This provides the
necessary information to attenuate the light reaching the pixel that is currently
being shaded.

The visual results of percentage closer filtering are quite good, producing shad-
ows similar to those seen at the bottom of Figure 2.2. Unfortunately, many samples
are required to achieve these results: the scene in Figure 2.2 runs at less than 10
frames/second when using PCF compared to over 100 frames/second using the al-
gorithms from this thesis. This poor performance is largely due to the impossibility
of using prefiltered mipmaps [20] or summed-area tables [4] to accelerate percentage
closer filtering. Consequently, in the worst case, we have to compare every individ-
ual texel in the shadow map to the fragment depth to compute the light attenuation
for a single framebuffer pixel, which is too slow for interactive applications.

PCF can also be used to soften the edges of shadows, simply by increasing the
size of the filter [16]. By clamping the minimum filter size, we can get arbitrarily
soft edges while still avoiding minification aliasing. Unfortunately, this also puts a
minimum bound on the cost of shading a pixel that increases with the desired edge
softness.
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Chapter 3

Variance Shadow Maps

To address the problem of efficiently filtering shadow maps, note that each texel of
a standard shadow map can only represent the depth of a single point. Variance
shadow maps (VSMs) improve on this scheme by representing a distribution of
depths at each texel. To approximate such a distribution using a small amount of
data, we store its first and second moments: the mean depth and the mean squared
depth. One major advantage of this approach is that we can compute the average
of two distributions by averaging the two moments, so this representation of the
depth distribution is linear.

As noted earlier, one approach to filtering shadows is to compute the percent-
age of texture samples that are in shadow over the footprint of a framebuffer pixel.
Percentage closer filtering does this exactly, but is expensive. Instead, when query-
ing the variance shadow map, VSMs use the moments to compute a bound on the
fraction of the distribution that is more distant than the surface being shaded. I
show that this bound provides a good approximation for the amount of light reach-
ing any given surface, and therefore can be used for rendering correctly antialiased
shadows.

Because these moments can be interpolated and averaged, we can make use of
the wide range of filtering techniques and hardware that are available to address
aliasing in color textures.

In summary, variance shadow mapping

• reduces shadow map aliasing by enabling the use of filtering techniques such
as mipmapping and anisotropic filtering,

• allows shadow maps to be prefiltered to compute an approximation of per-
centage closer filtering, and

• can be implemented on current graphics hardware at a cost comparable to
that of ordinary shadow maps.

11



3.1 Algorithm Overview

As with conventional shadow mapping, we first render the scene from the light’s
point of view. For shadow mapping, we would render the depth as seen from the
light; for variance shadow maps we render into a two-channel buffer, rendering
both the depth and the square of the depth. Although in regular shadow mapping
we would not want to use any type of antialiasing when rendering from the light’s
point of view, multisample antialiasing (MSAA) is actually a benefit when rendering
variance shadow maps.

Once we have created the variance shadow map, we can preproces the texture
to facilitate filtering. This preprocessing can include generating mipmaps [20] or
computing summed area tables [4]. To further reduce aliasing and soften shadow
edges we can also blur the variance shadow map.

Since we have rendered depth and squared depth in the texture, filtering the
shadow texture recovers the expectation of these values, called the moments M1

and M2 over that filter region. These moments are defined as follows, where f(x)
is the probability density function of the depth distribution over the filter region:

M1 = E[x] =

∫ ∞
−∞

xf(x)dx

M2 = E[x2] =

∫ ∞
−∞

x2f(x)dx (3.1)

From these we can compute the mean µ and variance σ2 of the distribution:

µ = E[x] = M1

σ2 = E[x2]− E[x]2 = M2 −M2
1 (3.2)

The variance can be interpreted as a quantitative measure of the width of a dis-
tribution. As a result, it places a bound on how much of the distribution can extend
away from the mean. This bound is stated precisely by Chebyshev’s inequality:

Theorem 1 (Chebychev’s inequality, one-tailed version). Let X be a random vari-
able drawn from a distribution with mean µ and variance σ2. Then for t > µ

P (X ≥ t) ≤ pmax(t) ≡ σ2

σ2 + (t− µ)2
(3.3)

P (X ≥ t) in Equation 3.3 is exactly the quantity that percentage closer filtering
computes, since it represents the fraction of pixels over a filter region that will fail
the depth comparison with a fixed depth t.

Equation 3.3 is only an upper bound; there is no guarantee that it will allow us
to compute the true value P (X ≥ t). Nevertheless it can provide a good approx-
imation, as I show in the following example. Later in this thesis I will show how
to improve on this bound by warping the depths and using multiple distributions,
although in this chapter I will focus on a single distribution.
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3.2 Planar Occluders and Receivers

Consider the case of a single planar occluder at depth d1, casting a shadow onto a
planar surface at depth d2. Suppose we have a fixed filter region in the variance
shadow map, where p is the percentage of the filter that is unoccluded. Then we
have:

µ = E(x) = pd2 + (1− p)d1

E(x2) = pd2
2 + (1− p)d2

1

σ2 = pd2
2 + (1− p)d2

1 − (pd2 + (1− p)d1)2

= (p− p2)(d2 − d1)2

Using these values, we can compute pmax according to Equation 3.3:

pmax(d2) =
σ2

σ2 + (µ− d2)2

=
(p− p2)(d2 − d1)2

(p− p2)(d2 − d1)2 + (pd2 + (1− p)d1 − d2)2

=
(p− p2)(d2 − d1)2

(p− p2)(d2 − d1)2 + (1− p)2(d2 − d1)2

=
p− p2

1− p
= p

Thus in this simple situation, we see that Chebyshev’s inequality is an equality,
and gives the exact result of percentage closer filtering.

Although this is a special situation, it provides a reasonable approximation to
a common situation in many real scenes. In the case of a single occluder and single
receiver, we can take a small neighbourhood in which the depth of the occluder and
receiver are approximately constant. If the depths vary over the filter region due
to the slope of the occluder and receiver, Equation 3.3 will not provide an exact
value, but will still give a close approximation. Therefore it is practical to use pmax

in rendering as an approximation to the true value p, and high visual quality can
be obtained.

3.3 Results

Now that we have chosen a linearly filterable representation of the depth informa-
tion needed for shadow mapping, many techniques that deal with linear data are
available to us. In particular, Figure 3.1 shows the result of simply using texture
filtering mechanisms such as mipmapping, trilinear and anisotropic filtering on the
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Figure 3.1: Comparison of standard shadow maps (top) with variance shadow maps
using mipmapping and anisotropic filtering (bottom).

Figure 3.2: Left to right: standard shadow mapping, 5×5 percentage closer filter-
ing, 5x5 bilinear percentage closer filtering, and variance shadow maps with 5×5
separable Gaussian blur.
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Figure 3.3: Relative frame rendering times of PCF and VSM for a simple scene
(lower is better). Performance results were measured on a GeForce 8800 GTX in
Direct3D 10 at 1600×1200 with 4×MSAA, using a 512×512 shadow map. VSM
with shadow map MSAA produces the best shadows, while the other techniques
have comparable quality.

variance shadow map. As the figure demonstrates, the quality of the shadows is
greatly improved and aliasing is effectively eliminated.

We can also apply a separable blur to the variance shadow map to achieve inex-
pensive edge softening. Blurring the VSM is equivalent to clamping the minimum
filter region size. Figure 3.2 shows a side-by-side comparison of the results of us-
ing a prefiltered variance shadow map and an equivalent percentage closer filter.
As the figure demonstrates, the outputs of these two methods are almost identi-
cal, and vastly superior to simple shadow mapping and standard nearest neighbor
percentage closer filtering.

Variance shadow maps are also fast on modern hardware. Figure 3.3 compares
the relative performance of PCF (with hardware acceleration [7]) to VSMs (with
and without shadow multisampling). Because both of these algorithms operate in
image space, I used a simple scene (approximately ten thousand polygons) to avoid
equalizing bottlenecks due to scene complexity.

As the results demonstrate, variance shadow maps are faster than percentage
closer filtering, even with shadow multisampling (which is inapplicable to PCF).
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Additionally, PCF scales quadratically with the filter size, whereas VSMs scale
linearly since a separable two-pass prefilter can be used.

3.4 Light Bleeding

Variance shadow maps are simple and efficient, but unfortunately they suffer from a
visual artifact: light bleeding. While Chebyshev’s inequality gives an upper bound
on P (X ≥ t), there is no guarantee that the upper bound is a good approximation.
As an example, consider the situation shown in Figure 3.4.

Let objects A, B and C be at depths a, b and c respectively. Note that only
objects A and B will be represented in the filter region since object C is not visible
from the light. Thus if we are shading a fragment at the center of the outlined
region, we will recover the following moments from Equation 3.1:

M1 =
a+ b

2

M2 =
a2 + b2

2

Then from Equation 3.2, we compute:

µ =
b+ a

2

σ2 =
(b− a)2

4

Now consider shading the fragment on the surface of object C.

In terms of ∆x = b − a and ∆y = c − b (shown in Figure 3.4), Equation 3.3
yields the visibility function:

p(∆y) =
1
4
∆x2

1
4
∆x2 + (∆y + 1

2
∆x)2

=
1
4
∆x2

1
2
∆x2 + ∆x∆y + ∆y2 (3.4)

Therefore for a given ∆x, p(∆y) falls off like O( 1
∆y2 ).

The correct visibility function equals zero for all ∆y > 0, since everything further
from the light than object B is fully occluded by it. This discrepancy causes light
bleeding: the O( 1

∆y2 ) “tail” of Chebyshev’s inequality means that unwanted light
can show up in regions that should be in shadow.

This is not a problem with the inequality itself. We simply have not kept
enough information about the depth distribution to disambiguate more complex
combinations of occluders and receivers.
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Figure 3.4: A simple situation in which light bleeding occurs. Object A casts a
proper shadow onto object B. Object C should be fully occluded by object B, but
some of the penumbra from object A’s shadow bleeds through incorrectly.
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Figure 3.5: Light bleeding artifacts: the penumbra of the tree shadow is improperly
bleeding through the bench.

Figure 3.5 shows an example of the visual effect of light bleeding in practice. In
this example, object A is a tree, object B is the bench and object C is the ground.
Note that the ratio of ∆x (tree to bench) to ∆y (bench to ground) is high, leading
to significant artifacts.

An easy way to reduce these artifacts is to clamp out light that falls below
some minimum intensity [10]. While simple and often effective in practice, this
over-darkening of the shadow penumbrae can reduce shadow detail, and even rein-
troduce aliasing if the intensity function is clamped too aggresively. For scenes with
significant light bleeding, there is no way to fully eliminate the artifacts without
the shadows degenerating into hard-edged, formless blobs.

To eliminate light bleeding without over-darkening, we need to store more infor-
mation. Using more moments is undesirable as higher-order moments are numeri-
cally unstable and deriving suitable inequalities is extremely difficult. Instead, note
that whether or not an object is in shadow is not dependent on the exact depth of
an occluder, but only if it is closer to the light than the occluder. In other words,
shadows are a function of the order of objects, not of their exact depths. We can
therefore apply any monotonic warp we want to the depths before computing the
moments, and we can even combine multiple warps. Both of these techniques can
be used to acheive tighter bounds without giving up the advantages of linearity. I
explore these ideas in more detail in the next chapter.
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Chapter 4

Warped Variance Shadow Maps

Recall that we are trying to approximate P (X ≥ t). This probability does not
depend on the actual depth values stored in the VSM, but only on their ordering.
On the other hand, Chebyshev’s inequality does depend on the actual depth values,
but is guaranteed to provide an upper bound regardless. Thus by using different
monotonic warps of the depth values we can obtain different upper bounds for
P (X ≥ t), some tighter than others. We can then choose a warp that gives a good
bound, or combine multiple warps to get a tighter overall bound.

Consider for example the following “step function” warp ϕc, again using the
example from Figure 3.4 (recall that c is the depth of object C):

ϕc(t) =

{
0 if t <c
1 if t ≥c

(4.1)

Proceeding as before:

M1 =
ϕc(a) + ϕc(b)

2
= 0

M2 =
ϕc(a)2 + ϕc(b)

2

2
= 0

µ = 0

σ2 = 0

Now when we evaluate p(t) for objects B and C:

p(ϕc(b)) = p(0) = 1

p(ϕc(c)) = p(1) =
σ2

σ2 + (1− µ)2
= 0

This time the visibility for object C is correct. Although the value for object B
is no longer correct (it should be 1

2
), it still provides an upper bound, albeit a

trivial one. The function ϕc(t) is an example of a “perfect” warp for evaluating the
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shadowing of an object at depth c. Such a function warps ∆x to 0 so that all light
bleeding is eliminated as per Equation 3.4.

Of course this is a crude warp, and as discussed it actually makes the bound
worse elsewhere (for example at object B). In the next section, I describe how
to choose warps that result in an approximation that is at least good as standard
VSMs, but can also be scaled up to reduce light bleeding as much as desired.

4.1 Layered Variance Shadow Maps

While any monotonic warp function is potentially useful, roughly linear ones have
several desirable characteristics. First, assuming that the original depth metric has
a good distribution of precision along the depth range, linear warps will maintain
that distribution.

Second, since we do not know the points and filter regions at which we will need
to evaluate the visibility function when rendering the shadow map, we need to be
able to reconstruct the function over the entire depth range with good accuracy.
To this end, I split the scene into multiple depth layers (in light space) and define
a warp function for each layer that can be used to approximate the visibility for
fragments that fall into the layer’s depth range.

Thus for each layer Li covering an interval of depths [pi, qi], I define the following
linear warp:

ϕi(t) =


0 if t ≤ pi

t−pi

qi−pi
if pi < t < qi

1 if qi ≤ t

(4.2)

This new warp has light bleeding reduction properties similar to the ϕc(t) function
defined in the previous section. Specifically, if all occluders have depths at most pi

and the receiver has depth greater than pi, the visibility function will be computed
exactly. Additionally, occlusion within a single layer is resolved in the same manner
as with variance shadow mapping.

For a geometric interpretation of what is happening, consider the silhouette cast
by some set of occluders onto some receiver. Imagine flattening this silhouette onto
a plane sitting above the receiver, turning the occluders into a simple occlusion
“cutout”. The shadow cast on the receiver will be identical, assuming a point
source, but will be easier to compute since we have transformed the problem into
one of a single occluder and receiver, which VSMs handle perfectly.

When shading a surface, we could theoretically sample all of the layers, compute
Chebyshev’s inequality and take the minimum value over all layers. However with
the layered warp functions we only need to sample a single layer: the layer Lj that
contains the receiver surface that we are shading (at depth t).

For all layers closer to the light (i < j), the visibility function will be at least as
high (lit) since as we move closer to the light, occluders will be removed which can
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only increase the light reaching the surface in question. Conversely for all layers
further from the light (i > j), the layer warp will clamp the surface depth to zero.
Because µ ≥ 0, the probability p(ϕi(t)) = 1, which is naturally not a useful upper
bound. Therefore, for a given depth we only need to sample a single layer.

Another advantage of the layered approach is that each of the layers requires less
numerical precision, since they each cover a smaller depth range. This allows layered
variance shadow maps (LVSMs) to run on a wider range of graphics hardware than
VSMs since high precision texture filtering is not required.

In summary, instead of building the entire visibility function using only two
moments, I use a piecewise function that is exact at the interval boundaries, with
each interval being reconstructed independently. When only one layer is used, the
technique reduces to standard VSMs.

4.1.1 Layer Overlaps

My analysis thus far has focused on the simple case shown in Figure 3.4. Never-
theless, with a few additional details the arguments generalize to different occluder
and receiver distributions.

One problem that must be handled is layer splits that cut through receiver
distributions. If this occurs in shadowed regions the minimum variance clamp can
cause a small, lit gradient while approaching the layer edge. Conversely, lit regions
can have small shadow gradients due to bilinear filtering. Both of these artifacts
can be seen in Figure 4.1.

Fortunately these problems can be avoided by allowing a small overlap between
adjacent layers. For N layers with split locations si, i = 0 . . . N , I widen the layer
intervals by ±δ:

L1 = [s0, s1 + δ]

L2 = [s1 − δ, s2 + δ]

L3 = [s2 − δ, s3 + δ]

...

LN = [sN−1 − δ, sN ]

The only remaining question is how to choose the split locations si, which is the
topic of the next section.

4.1.2 Placing Layers

The strategy used to partition the depth range depends on application goals. If the
goal is to achieve the best numeric precision over the entire depth range, a simple
uniform split scheme is ideal. If the goal is to eliminate light bleeding on a specific
receiver surface, one or more split points can be placed near the surface.
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Figure 4.1: Artifacts visible at layer edges (left). These can be completely elimi-
nated by employing small overlaps between layers (right). Note that the filter sizes
have been exaggerated to demonstrate the artifact more clearly.

For arbitrary scenes, a more automated approach is desirable. I describe one
such algorithm in this section. Ideally we want to place layers between the second
and third objects in a light bleeding situation. Generally we do not know where
light bleeding is going to occur, so in practice we want to find depth discontinuities
that may be susceptible to this artifact and place a layer boundary to avoid it.

Note that even if we cannot place a layer “perfectly” between the second and
third objects, if we place a layer between the first and second we will still reduce
any light bleeding. Placing such a layer clamps the magnitude of ∆x, and thus
reduces the relative intensity of the light bleeding (see Equation 3.4).

I will now present an iterative algorithm based on Lloyd’s relaxation algorithm
[6] that attempts to place the split points as intelligently as possible without any
specific knowledge of the scene.

Lloyd’s Relaxation Algorithm

Light bleeding happens at depth discontinuities in the shadow map, that is, at
shadow edges. My approach treats the problem of placing layer splits as a 1-
dimensional weighted k-means clustering problem, where the “means” are the sec-
ond occluder depths and the weights are chosen based on the likelihood of light
bleeding. By applying Lloyd’s relaxation algorithm using these definitions, we can
place k layer boundaries at peaks in the second occluder depth histogram.

Lloyd’s algorithm [6] is a popular iterative refinement algorithm used to solve
the k-means clustering problem. Given a partitioning of the input values into k
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sets, Lloyd’s algorithm computes the mean of each set and repartitions the data,
assigning values to the nearest mean cluster. By iterating this relaxation step, the
algorithm will converge towards a locally optimal placement of the k means. I use a
weighted variant of this algorithm that replaces the computation of the mean with
a weighted mean.

To find potentially problematic discontinuities in the depth distribution, con-
sider small neighbourhood filter regions in the unwarped variance shadow map.
For each of these regions, we can estimate the second occluder depth and compute
suitable weights using the first two moments of the depth distribution.

A useful weight is the variance (σ2) over some neighbourhood in the unwarped
VSM, optionally clamping low or high variances. This has the benefit of more
strongly weighting discontinuities that could produce severe light bleeding due to
high variance. While I have found this weight to work quite well in practice,
application-specific knowledge could potentially produce even better choices.

To recover the second occluder depth, consider the case of only two discrete
depths a and b in a given filter with coverages α and 1− α respectively:

µ = αa+ (1− α)b

σ2 = M2 −M2
1

= αa2 + (1− α)b2 − (αa+ (1− α)b)2

= α(1− α)(a2 − 2ab+ b2)

= α(1− α)(a− b)2

When the filter is centered over the depth discontinuity (α = 1
2
), σ2 is maximized.

In this situation:

µ+ σ =
a+ b

2
+

√
(a− b)2

4

=
a+ b

2
+
|a− b|

2
= max{a, b}

Thus when α = 1
2

we can recover the second occluder depth simply by computing
µ+σ. For other values of α we will not get an exact answer, but α = 1

2
is the most

important case, since it will be weighted the most highly by the variance weight.

The real benefit of this approach is that it will still produce something reasonable
even with large filters and complicated distributions that may not be bimodal. The
same cannot be said for assuming a bimodal distribution and attempting to solve
for a or b directly.

With these “means” and weights, we can perform an iterative Lloyd relaxation
entirely on the graphics hardware (the implementation is described in the next
section). The result of the algorithm is to move the layer split points toward the
peaks in the weighted “second occluder” histogram that we have computed.
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4.1.3 Implementation

I have implemented layered variance shadow maps in Direct3D 10 [2]. Although the
algorithm is fully compatible with previous APIs and graphics hardware, several
features of Direct3D 10 are beneficial for LVSMs. Specifically, I make use of texture
arrays to hold the layer data.

Generating the layered variance shadow map is straightforward. Geometry is
rendered from the light’s perspective as usual, and some depth metric is computed
for each fragment. My implementation uses the normalized Euclidean distance to
the light point or plane. For each layer, the depth is warped using Equation 4.2,
and the resulting warped depth and warped depth squared are output to a layer
render target. Since only two components per layer are needed, I pack two layers
into each four-component data texture.

I currently use multiple render targets (MRTs) to output all of the layer data
in one pass. Alternatively all of the layer data could be computed in a post-process
from a single unwarped depth texture (using a fast z-only pass). Using the latter
approach, the additional cost of layered variance shadow maps over standard or
variance shadow maps is independent of the scene complexity, since all of the warp
functions are computed entirely in image space. Moreover the latter approach does
not require MRTs, which may not be supported efficiently on some platforms.

I generally use 16-bit per component fixed-point (normalized) textures to store
the layer data as they provide sufficient precision when used with even a small
number of layers. A different texture format may be desirable depending on the
filtering capabilities of the target hardware.

After rendering the LVSM, I optionally blur all of the layers and generate
mipmaps. I store the layer data in a texture array, but the data can be packed
into a single texture atlas if texture arrays are unavailable.

While rendering the scene, I determine which layer the current fragment falls
into and sample the associated shadow map using hardware anisotropic filtering.
The relevant layer index can be computed directly for the uniform split scheme,
or it can be determined in the general case by searching the monotonic split point
sequence. After retrieving the two warped moments, I warp the fragment depth
using the same layer warp function. I then evaluate Chebyshev’s inequality (Equa-
tion 3.3) and the resulting visibility value is used to attenuate the light reaching
the surface.

To avoid any discontinuities at layer boundaries in light bleeding regions, I also
use a small transition region, in which the visibility functions of two adjacent layers
are blended (recall that we already needed a small overlap between layers). This
step can often be skipped with minimal quality loss to avoid the additional sampling
and computation.

Lloyd’s relaxation algorithm is implemented by rendering a low precision (16-
bit fixed point) unwarped VSM in addition to the warped layers. Subsequently
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Figure 4.2: Light bleeding artifacts are not present in an image rendered with
LVSMs (left). The layers are visualized using different colors in the right image.

I choose two split points to update and generate the K-means clustering data by
taking bilinearly filtered samples from the unwarped VSM, positioned in between
the texel locations, resulting in a simple 2x2 filter region. I compute the K-means
value (µ+σ) and determine whether it falls into either (or both) of the split clusters
that are being updating (i.e., the given split point is the nearest split point to the
sample). If so, I assign a sample weight based on the variance and write out the
weighted sample values and the weights for both splits to a four component render
target.

At this point it is necessary to compute the weighted mean of all of the data in
the new render target. I do this by generating a mipmap pyramid for the texture and
reading back the coarsest mipmap level. Dividing the resulting average weighted
values by the average weight produces the desired result. In my implementation
I defer reading back the results to the CPU (and updating the splits) for a few
frames to avoid stalling the graphics pipeline. Alternatively if the split point data
is not required on the CPU it can simply be left on the GPU.

If convergence latency is an issue, more splits can be updated per frame (even
all of them). In my experience convergence is fast (less than a second), even when
only updating two split points per frame.

To avoid the algorithm getting stuck in local optima, I also use a simple split
“teleportation” heuristic: if the average weight in a cluster is zero (i.e., the layer
has no objects in it), I merge the two adjacent layers and split whatever layer has
the highest weight. This simple heuristic greatly improves the quality of the final
solutions.

4.1.4 Results

All of the pictures and performance numbers in this section were generated on an
Intel Core 2 Duo machine with a single NVIDIA GeForce 8800 GTX using Direct3D
10. Unless otherwise stated, all of the layer positions were determined automatically
using the modified relaxation algorithm.
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Figure 4.3: Comparison of regular VSMs (left) with LVSMs (right). The scene
demonstrates a difficult case for shadow filtering algorithms.

Figure 4.4: High quality shadow filtering using layered variance shadow maps.
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Figure 4.2 shows the same scene as in Figure 3.5, except now rendered with a
4-layer LVSM. Note that the light bleeding has been completely eliminated by a
single well-positioned layer boundary. Figure 4.3 shows an example from a large
scene with many overlapping shadows (Figure 4.4). This scene was designed as a
worst-case scenario for VSM-based techniques due to the extreme depth ratios of
the overlapping shadows. Artifacts are less pronounced in more typical scenes.

Figure 4.5 compares convolution shadow maps [1] to layered variance shadow
maps, with both uniform and Lloyd’s relaxation-driven layer positions.

Both CSM and LVSM are scalable and can increase the shadow quality at the
cost of additional storage. Each row in the table repesents an equal amount of
storage; note that CSM can use twice as many coefficients (as denoted by M in [1])
as LVSM can use layers because CSM can store the coefficients in 8-bit textures
while LVSM requires 16-bit textures when few layers are used. It should also be
noted that both techniques can fully eliminate the artifacts present in this example
by using even more storage.

As the figure demonstrates:

• LVSMs are usable with less storage than CSMs particularly when Lloyd’s
relaxation algorithm is used. The quality of both techniques scales similarly
with increased storage.

• LVSMs and CSMs both have light bleeding in similar areas, but LVSMs only
have a problem with overlapping occluders while CSMs have a problem with
all occluders.

• As the amount of storage increases, LVSMs outperform CSMs since they
require only a single texture sample per shaded fragment. CSMs must sample
all of the coefficients for every fragment.

Figure 4.6 shows a performance comparison of LVSMs using different numbers of
layers with standard VSMs. An entire 1920×1200, 4×MSAA framebuffer is covered
and shaded, and every LVSM layer is visible onscreen. Since both algorithms
operate in image space, I used a simple scene to eliminate equalizing bottlenecks
(Figure 4.1 with textures). Complex scenes impose an equal performance cost on
all image-space shadow map algorithms, including layered variance shadow maps.

The scene is fully dynamic and all of the shadow data is recomputed every frame.
My LVSM implementation is full-featured: it employs Lloyd’s relaxation algorithm
in real-time, layer transition regions, trilinear and 16× anisotropic filtering, and
operates on 16-bit per component fixed-point textures.

Performance data demonstrates that LVSMs are well-suited for use in real-time
applications. Even with a 14-layer 1024×1024 LVSM performance remains high,
dipping to just under 100 frames per second at 1920×1200 with 4×MSAA. This
good performance scaling is largely due to the layer parameterization, which allows
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Uniform LVSM-2 (132fps) Lloyd LVSM-2 (109fps) CSM, M=4 (119fps)

Uniform LVSM-4 (112fps) Lloyd LVSM-4 (84fps) CSM, M=8 (79fps)

Uniform LVSM-6 (94fps) Lloyd LVSM-6 (73fps) CSM, M=12 (65fps)

Uniform LVSM-8 (82fps) Lloyd LVSM-8 (63fps) CSM, M=16 (49fps)

Figure 4.5: Comparison between convolution shadow maps and layered variance
shadow maps. LVSM-N indicates LVSM with N layers. Each row of the grid
uses an equal amount of storage. Performance numbers were taken at 1920×1200,
4×MSAA with a 1024×1024 shadow map.
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with a framebuffer resolution of 1920×1200 with 4×MSAA.
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us to sample a single layer per shaded fragment. For more complex scenes the
difference in performance between VSMs and LVSMs is even less pronounced.

For instance, a 2-layer, 16-bit per component, uniform LVSM uses the same
amount of memory as a standard VSM and provides similar performance. Indeed
using a 2-layer LVSM can be conceptualized as a simple way of distributing data
precision into multiple components, with the additional benefits of reduced light
bleeding and improved texture filtering performance.

4.2 Exponential Variance Shadow Maps

While layered variance shadow maps have several good scaling characteristics, they
require a nontrivial amount of storage to fully eliminate light bleeding. Thus it is
interesting to consider some other ways to warp the depth function.

As discussed in Section 3.4, light bleeding artifacts increase in severity as the
ratio of ∆x to ∆y grows. LVSMs address this by attempting to clamp ∆x to zero.
There are also other monotonic warps that decrease this ratio.

For instance, it is interesting to consider the exponential warp function ecx

(where c is a constant) as suggested by Salvi [17], but still using a second moment
and Chebyshev’s inequality. This warp has the effect of relatively moving object
B toward object A which reduces the above ratio. The resulting exponential vari-
ance shadow map (EVSM) has greatly reduced VSM-like light bleeding while still
avoiding any bleeding near occluders.

As c is increased, light bleeding is more aggressively eliminated. However, Salvi
notes that large c values produce artifacts on nonplanar or multiple receivers [17].
With EVSMs, this problem can be avoided by using the positive ecx warp in conjunc-
tion with its negative counterpart, −e−cx, in other words, by using multiple warps.
This negative exponential warps object B toward object C, making the shadows
on B smooth (as they are on C) and thus avoiding the nonplanarity problem with
exponential shadow maps (ESMs) [17]. These two warps can be used together:
since they both provide upper bounds on the visibility function (via Chebyshev’s
Inequality), taking the minimum of the two bounds gives a good approximation to
the visibility function in most cases. Artifacts will only occur in places where both
VSMs and ESMs have artifacts, and increasing c will reduce those instances.

Figure 4.7 shows the result of this exponential warp compared to the algorithms
in Figure 4.5. EVSMs not only produce better-looking shadows than both CSMs
and LVSMs, but they are faster and require only a single, four-component 32-bit
float texture (two moments each for the positive and negative warps). Figure 4.8
demonstrates how EVSMs can render efficient, shadows without artifacts in a scene
with many overlapping shadows.

While these results are preliminary, they suggest that there are many interesting
warps that can be used in conjunction with variance shadow maps. Exponential
warps in particular appear to be a promising direction for future research.
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Figure 4.7: Exponentially-warped variance shadow maps show promising results
with good performance (140fps).

Figure 4.8: A windmill with many overlapping shadows is rendered artifact-free
with exponential variance shadow maps.
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Chapter 5

Conclusions and Future Work

I have described variance shadow maps as a way to render high-quality, antialiased
shadows in real-time applications. By using a linear representation of the distri-
bution of depths in a shadow map, VSM make possible the direct application of a
wide variety of efficient texture filtering, prefiltering and antialiasing algorithms.

To remove the visual artifacts of standard variance shadow maps, I have ex-
tended the technique to combine the results from multiple warped distributions. I
have applied this approach in two ways: layered variance shadow maps and expo-
nential variance shadow maps.

Layered variance shadow maps provide a scalable method to reduce or elimi-
nate the light bleeding artifacts associated with VSMs. In particular, they can be
accessed in constant time, independent of the number of layers used. Moreover, I
have presented a useful algorithm for automatically placing layer boundaries using
a relaxation algorithm that can be implemented at interactive rates. Further im-
proving layer placement is a potentially fruitful research area. One approach would
be to perform the relaxation in view space, so that the layer boundary positions are
computed based on the size of potential light bleeding regions as seen on-screen,
rather than on regions that may be completely hidden.

Secondly, I have demonstrated that exponential variance shadow maps, which
combine the results from only two exponentially warped distributions, are able to
produce shadows with fewer artifacts and using much less storage than even layered
variance shadow maps. Investigating other warps is another promising direction for
future research.

In conclusion, I have presented a family of shadow map representation and
filtering techniques that produce good quality shadows while maintaining high per-
formance. They are quite suitable for use in games and other real-time graphics
applications that require high quality shadow filtering.
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