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Abstract 

One of the most fundamental problems in mobile robotics is localization.  The solution to most 
problems requires that the robot first determine its location in the environment.  Even if the absolute 
position is not necessary, the robot must know where it is in relation to other objects.  Virtually all 
activities require this preliminary knowledge.  Another part of the localization problem is mapping, 
the robot’s position depends on its representation of the environment.  An object’s position cannot be 
known in isolation, but must be determined in relation to the other objects.  A map gives the robot’s 
understanding of the world around it, allowing localization to provide a position within that 
representation.  The quality of localization thus depends directly on the quality of mapping.  When a 
robot is moving in an unknown environment these problems must be solved simultaneously in a 
problem called SLAM (Simultaneous Localization and Mapping).  Some of the best current 
techniques for localization and SLAM are based on particle filters which approximate the belief state.  
Monte Carlo Localization (MCL) is a solution to basic localization, while FastSLAM is used to solve 
the SLAM problem.  Although these techniques are powerful, certain assumptions reduce their 
effectiveness.  In particular, both techniques assume an underlying static environment, as well as 
certain basic sensor models.  Also, MCL applies to the case where the map is entirely known while 
FastSLAM solves an entirely unknown map.  In the case of partial knowledge, MCL cannot succeed 
while FastSLAM must discard the additional information.  My research provides improvements to 
particle based localization and mapping which overcome some of the problems with these techniques,  
without reducing the original capabilities of the algorithms.  I also extend their application to 
additional situations and make them more robust to several types of error.  The improved solutions 
allow more accurate localization to be performed, so that robots can be used in additional situations. 
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Chapter 1 

Introduction 

In order for a mobile robot to accomplish virtually any useful task in an environment, it must know its 
own location relative to other locations in that environment.  Especially when a task requires 
performing actions at specific locations, it is vital that the robot be able to travel reliably between 
those positions.  The basic knowledge required for travel is the knowledge of position.  You must 
know where you are in order to determine how to get to a destination, or even to determine if you are 
already at a destination. 

Localization is the name given to the problem of determining a mobile robot’s position according 
to a map of its environment.  Solving the localization problem is a prerequisite for solving most other 
mobile robot problems.  Robots are equipped with various sensors that provide certain information 
about the environment, and localization requires that these readings be somehow converted into an 
estimate of the robot’s pose in the environment, according to a map.  The problem, however, is that 
robots do not commonly have sensors that are able to provide a direct estimate of pose.  Typical 
sensors might be cameras, range sensors and odometers and somehow these sensors must be used to 
provide the location estimate.   

The objective of localization is to use the known information of the sensors, controls and map to 
determine the unknown location.  Since localization is usually an ongoing, dynamic process, it 
usually also uses the knowledge of the robot’s position prior to the current timestep.  However, a 
companion problem to localization is global localization [Weiss et al. 1994; Borenstein et al. 1996], 
where the mobile robot’s prior position is unknown.  This is a much harder problem which also 
involves the same features as regular localization.  A further increase in complexity occurs if the map 
is unknown.  In order to properly estimate its position in this situation, a robot must simultaneously 
determine both the map and its position in that map.  These tasks, which humans perform so easily, 
are fundamental to most meaningful robot problems. 

Because it is such a fundamental problem, there have been many proposed solutions to localization.  
These techniques use a variety of methods from heuristic algorithms to complex mathematical 
derivations and have different sets of benefits and drawbacks.  Some algorithms are more efficient 
while some have greater theoretical foundations and proofs of convergence.  Also, many solutions 
assume prior knowledge of the map while others simultaneously generate the map and the robot’s 
location.  Other methods rely on offline processing after the robot has stopped to determine where it 
has been.  However, one common feature is the assumption that the environment is unchanging. 

There has always been a gulf between localization with a known map and localization that 
simultaneously generates the map and finds the robot’s position.  Localization is the name given to 
the problem of finding the robot’s position in an existing map while SLAM (Simultaneous 
Localization and Mapping) involves determining the robot’s location and also generating the map 
without initial knowledge of the configuration of the environment.  However, there is currently no 
solution to problems between these two extremes.  Localization assumes a completely known and 
static map while SLAM assumes an initially completely unknown one, which is also static.  Although 
localization algorithms are designed to handle some inaccuracies in the map there is no provision for 
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correcting these errors.  Similarly, SLAM solutions are designed to start with complete uncertainty 
and have no method for taking advantage of some minimal initial information, unless that information 
is encoded in the same form as the map generated by SLAM.  Both kinds of solutions also have the 
additional problem that they cannot handle environments which change over time, except by being 
robust to gradually increasing errors in the map. 

My research involves making improvements to certain powerful localization techniques, primarily 
Monte Carlo Localization (MCL) [Thrun 2000], so that it can gradually adapt to the environment.  I 
have developed various techniques to reduce the dependence on the static map assumption.  Without 
requiring a more detailed map originally, my methods allow a robot to improve its representation of 
the environment based on its own sensor observations.  Similarly, I have worked on allowing some 
initial information to be incorporated into a SLAM solution, providing a more successful technique 
which makes use of some additional information.  Although there are undoubtedly situations where 
localization with a static map is sufficient and other circumstances where no initial information is 
available to aid SLAM, many environments have features somewhere between these two extremes.  
Most real areas experience some changes in structure over time.  Similarly, a region where a robot is 
to be deployed, even if it has not been accurately mapped beforehand, often has some known features.  
Allowing a robot not just to ignore these factors, but to actually make use of them, can provide a 
significant benefit in many common situations.  My experiments have been performed using a two 
wheeled, differential drive near-holonomic robot operating in an indoor environment.  Since the robot 
can only travel on flat ground I use a two dimensional representation of the environment. 

1.1 Thesis Contributions 

1.1.1 Cluster MCL 

MCL often has problems localizing from complete uncertainty in environments with a significant 
amount of symmetry.  When sensor readings correspond to multiple locations the localization 
algorithm eventually converges to an area around a single one of them, often at random.  I have 
created a technique to use a higher level organization on the particle filter of MCL which allows it to 
consider the possibility of multiple locations for an indefinite number of timesteps.  Even once MCL 
chooses one of these locations as the actual robot’s position it still considers the less likely choices.  
Eventually, if more information is acquired to resolve the symmetry, the proper location can be 
identified.  The cluster MCL algorithm works by forcing a certain number of hypotheses to exist 
independently, regardless of each one’s overall probability. 

Cluster MCL also provides a solution to the kidnapped robot problem.  This is a problem in 
robotics where a robot that was properly localized is suddenly moved to a different location.  The 
problem occurs because handling a kidnapping requires global localization, but this automatically 
invalidates the current localization result.  If the robot has not been kidnapped, by far the most likely 
situation, this causes a localization failure while the robot is relocated.  Cluster MCL allows the 
kidnapping detection to be handled without affecting the current localization, unless a new location is 
detected that is more probable.  In that case, the new location is reported as the robot’s position while 
the old location is still maintained in case no kidnapping actually occurred.  By adding a second level 
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organization to MCL, cluster MCL is able to handle certain situations that ordinary MCL has trouble 
with. 

1.1.2 Dynamic Motion Models in MCL 

The success of MCL depends on its two models, the sensor model which gives the probability of the 
actual sensor readings and the motion model, which produces probable locations for the robot based 
on its starting position and reported motion.  The motion model depends on certain parameters which 
must usually be determined using exhaustive testing and experimentation.  Because these parameters 
are so difficult to discover, general values are often used which do not represent any specific situation 
particularly well.  It is often easier to use these general parameters rather than perform the 
experimentation necessary to determine optimal values for a particular case.  Also, simple motion 
models are used which depend on very few parameters that can be easily estimated.  However, my 
research has determined that the optimal parameters for the motion model can be determined 
automatically without requiring anything more than these basic parameters.  Thus, over time, the 
motion model improves to more accurate parameters.  Since the parameters are found automatically 
there is no additional experimentation required, but there is a significant improvement in the results.  
Also, because the parameters gradually improve, it is possible to use much more complex motion 
models without suffering the penalty of increased preliminary work by a skilled user.  The final 
benefit is that, by optimizing the parameters for different regions in the environment, the single 
motion model can adapt to changing local conditions, allowing a more accurate proposal for the 
robot’s location.  Using dynamic motion models allows MCL to improve its effectiveness over time, 
adapting to changing or local conditions and leaving greater tolerance for unanticipated sources of 
error. 

1.1.3 Dynamic Maps in MCL 

One of the primary limitations of MCL is the static map assumption.  The algorithm assumes that the 
features of the environment do not change.  Although certain implementations can handle moving 
objects, such as people, the underlying map is unchanging.  However, this does not correspond to 
most real environments.  An area that is actually being used will have many dynamic features.  Doors 
will open and close, furniture will move, and other objects can be added or removed.  Over time, the 
map becomes less accurate.  In Chapter 5, I describe a system whereby the map can be adapted 
automatically to the changes in the environment.  The result is that, over time, the robot’s map 
becomes more accurate, rather than losing accuracy.  With a more accurate map, MCL is more robust 
to other sources of error.  The dynamic map algorithm allows MCL to correct its own representation 
of the environment instead of requiring the map to be periodically rescanned by a skilled user.  Thus, 
a robot can be deployed for a much longer time without needing new data. 

1.1.4 Skeletal FastSLAM 

If the map of the environment is unknown, localization requires the generation of a map in a problem 
called simultaneous localization and mapping (SLAM).  One of the most powerful solutions to 
SLAM is FastSLAM, which is based on particle filters.  However, FastSLAM, and indeed all current 
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SLAM solutions, generate the map and localize with no prior information at all.  But, in many cases 
some information about the environment is available, even if it is not enough for MCL to work.  In 
Chapter 6, I describe a system to make use of very basic information about an environment to 
improve the behaviour of FastSLAM.  By using a skeleton map of the major corridors in the 
environment the algorithm can converge to the correct map much more easily.  A skeleton map can be 
easily generated if the topology of the environment is known, as is the case with most indoor 
environments, but the information is very helpful to SLAM.  Although requiring more initial 
information seems like a reduction in the power of FastSLAM, in many common situations a skeleton 
map is readily available and so there is no drawback to making use of it.  The ability to use some 
additional information if it is available adds to the versatility of the algorithm. 

All of my research described in Chapter 3 through Chapter 6 extends the power of particle filter 
based localization and mapping algorithms to better handle more situations.  Particle filtering 
techniques are very effective in robotics, but, because of the assumptions made by the current 
techniques of MCL and FastSLAM, there are some environments that are not well handled.  I have 
created new techniques to augment these algorithms to improve localization and mapping in various 
situations, while not affecting their original properties.  In most cases my techniques can be used 
without severely affecting the runtime of the underlying particle filter method.  Thus, my research 
improves the adaptability of MCL and FastSLAM by providing better behaviour in many common 
environments, without compromising the desirable properties that these solutions provide. 
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Chapter 2 

Background 

My research primarily involves ways of improving localization and mapping for indoor 
environments.  Currently, some of the best techniques for solving these problems are particle filter 
based approaches.  For localization, Monte Carlo Localization (MCL), is one of the most effective 
solutions.  MCL can also be used for the more complex problem of global localization.  In order to 
simultaneously generate a map, the particle filtering approach is called FastSLAM.  Both of these 
techniques can be used with occupancy grid maps, which are a common method for representing 
indoor environments.  My research has improved on these basic techniques to provide improved 
solutions in many situations. 

2.1 Occupancy Grid Mapping 

In order to perform localization and mapping it is necessary to define some representation of the 
environment.  Many probabilistic techniques for localization depend on the map being defined as a 
finite sized set of landmarks which the robot’s sensors observe, giving their relative displacement 
from the robot.  However, physical sensors do not usually detect landmarks unambiguously.  Instead, 
they report the distance to the nearest obstacle, or return an image of the environment.  In order to use 
a landmark based algorithm, the sensor readings must be pre-processed in a separate step to convert 
the raw sensor data into a set of detected landmarks, such as in [Leonard and Durrant-Whyte 1991].  
The additional step introduces more error into any algorithm, as well as discarding much of the sensor 
information which does not detect any landmark.   

One of the primary drawbacks of landmark based maps is the data association problem.  Because 
raw sensor data is not labelled with the correct landmark detected, the sensor processing must 
somehow determine exactly which landmark was observed.  If mistakes are made, the localization 
and mapping algorithms which depend on the sensor data will fail.  In order to compensate for the 
data association problem, many localization and SLAM algorithms include a method for determining 
the associations between the sensor data and the landmarks.  However, these techniques add 
significantly to the implementation complexity of the solutions.  Also, they do not solve the problem 
of actually finding landmarks in the raw sensor readings.  Two examples of these algorithms are 
GraphSLAM [Folkesson and Christensen 2004] and Sparse Extended Information Filters (SEIF) 
[Thrun et al. 2004], both of which can be implemented to handle data associations in a probabilistic 
way as described in [Thrun et al. 2005] (Sections 11.5, 12.8, 12.9).  Even with these integrated 
solutions, the data association problem requires additional processing and adds another source of 
error, even though the algorithms are effective in some problems. 

2.1.1 Artificial Beacons 

One effective technique to reduce the data association problem is to place artificial beacons which can 
easily be detected by the sensors throughout the environment.  For example, brightly coloured posts 
might be placed in an area and detected using vision sensors.  By choosing unusual colour patterns, it 
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can become trivial to uniquely identify the beacons.  Other robots have used special bar codes or 
reflectors.  The sensor data provided to localization in these cases is not the raw information, but 
instead a list of the angles and directions to the specific beacons.  Although this technique can be very 
effective, it relies on being able to extensively modify and control the robot’s operating environment, 
which may not be possible.   

2.1.2 Occupancy Grid Maps 

One common technique for map representation that does not suffer from data associations, is to use 
occupancy grid maps to approximate the environment.  An occupancy grid map represents the 
environment as a block of cells, each one either occupied, so that the robot senses an object at that 
location, or unoccupied, so that the robot senses no object.  Unless your environment is composed 
entirely of cubes, occupancy grid maps cannot be absolutely accurate, but by choosing a small enough 
cell size they can provide all the necessary data for the robot to successfully perform its task.  Any 
sensor will report the status of a set of grid cells that can be checked without reference to the rest of 
the map.  An early implementation of occupancy grid maps was used in [Moravec 1988] to 
automatically generate a map of the environment.  Sensor readings are compared to the map, altering 
the probability that observed cells are occupied.  For example, a sonar sensor returns the closest 
object within a cone, so the cells in the volume of the cone closer than the reading are probably 
unoccupied.  Moravec represents each cell as a probability of being unoccupied and initializes them 
to an unknown value.  He describes a probabilistic technique to update cells for various types of 
sensors and gives a technique to allow the map to be updated as the robot moves.  Unfortunately, this 
technique is not actually localization and does not help the robot know its own position.  The map is 
maintained relative to the robot, rather than in a global frame of reference.  In other words, the robot 
is assumed to be at a fixed location, while the map moves around it.  As the robot moves, the map is 
blurred according to the motion.  The robot’s sensors can correct the map in its immediate area, but 
unobserved portions of the map must blur into uselessness.  There is also no way to discover the 
robot’s location in reference to previously visited locations. 

Although the technique is problematic as a localization algorithm, it provides a very powerful way 
to represent the environment.  Using an occupancy grid map allows the raw sensor data to be used 
without trying to detect and identify landmarks.  Also, since raw data is used, no information is 
discarded because it does not correspond to a landmark.  The only problem is that there are a huge 
number of map features, one for each grid cell.  Algorithms which consider the relationship of the 
robot to a set of distinct landmarks cannot be applied when the number of features is so large.  Thus, 
using occupancy grid maps limits the type of localization techniques that can be used. 

2.1.3 Mapping Technique 

To create an occupancy grid map, it is necessary to determine the occupancy probability of each cell.  
In order to do this efficiently, the assumption is often made that map cells are independent and that 
sensor readings do not introduce any dependencies.  Although this is not strictly accurate, especially 
when considering adjacent cells representing the same physical object, it greatly simplifies the 
mapping algorithm without introducing any insoluble problems.  As a result, the probability of a 
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particular map, represented by the variable m, can be factored into the product of the individual 
probabilities of its cells conditioned by the variable xt representing the robot’s state at time t and the 
variable zt representing the sensor data at time t.  The notation at means the entire history of the 
variable a, at = {a0, ..., at}. 

∏=
n

tt
n

tt zxmpzxmp ),|(),|(  2-1 

The probability of a particular cell is easy to determine given the robot’s position and sensor 
readings, since it is determined by whether the robot observes the cell as unoccupied or occupied.  
Since the probability is determined by the robot’s entire history all these sensor readings must be 
taken into account.  The mapping algorithm usually builds the cell probabilities up iteratively, 
considering each pair {xt, zt} from time t = 0 to the most recent reading.  Although these readings 
could be considered in any order, the iterative processing makes the most sense, allowing additional 
readings to be added and leading eventually to simultaneous mapping and localization (SLAM) 
solutions such as described in section 2.3. 

With occupancy grid maps, the mapping step must determine the probability of each cell, as 
represented by equation (2-1).  Proceeding iteratively, the map cells are updated according to the 
position and sensor readings.  Of course, it would require significant processing to update the entire 
map on each step, but this is unnecessary.  Only the cells which are actually observed need to be 
updated.  Each cell that is perceived by the sensor, given the robot’s position, is updated depending on 
whether the sensor indicates it is occupied or unoccupied.  Although the map is defined by the 
occupancy probability, for simplicity the actual values for each cell, given by p(mn | xt, zt), are 
calculated in log odds form.  
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p(mn) is a constant prior occupancy probability which is included in the final term of equation (2-3) 
to convert the observations into changes from the prior.  The only part of equation (2-3) which is not 
already known is ),|( ttn zxmp , which is called the inverse sensor model.  Although a highly 

accurate inverse sensor model is difficult to determine, a simplified implementation that returns a 
high value if the sensors report an object in the cell, and a low value otherwise, is often acceptable.  
Occupancy grid mapping updates a map according to a sensor reading at a location so that, as 
evidence accumulates, the map becomes correct.  Of course, the success of the mapping algorithm 
depends on the location xt being correct, just as the success of localization depends on an accurate 
map. 

2.2 MCL 

Monte Carlo Localization uses models of various sensors, together with a recursive Bayes filter, to 
generate the belief state of a robot.  In fact, MCL is a specific instance of a POMDP (Partially 
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Observable Markov Decision Process).  A standard form of MCL uses a motion model to predict the 
robot’s motion, together with a sensor model to evaluate the probability of a sensor reading in a 
particular location.  The sensor model necessarily includes a static map of the environment.  The 
algorithm can be applied to virtually any robot with any sensor system, as long as these two models 
can be created.  One common implementation where MCL is very successful is on a wheeled robot 
using a range sensor ,such as a laser rangefinder.  A benefit of this combination is that the map and 
location used by the algorithm are in a human readable format.  Although I give the general algorithm 
in the following sections, which should be applicable to other robots, where application specific 
details are required, I assume the type of robot as described. 

Other localization algorithms than MCL exist, but they are currently more limited than MCL in 
terms of the environments in which they are effective, requiring specific environmental features in 
order to be effective.  Most other localization algorithms require that the map be composed of discrete 
landmarks and often they increase in runtime with the size of the map.  Extended Kalman Filter 
(EKF) localization [Leonard and Durrant-Whyte 1991] is an alternative technique that has both of 
these problems, which are exacerbated when landmarks cannot be identified exactly.  Even with 
various optimizations to reduce execution time, such as using the unscented transform (UKF 
localization) [Julier and Uhlmann 1997] or multi hypothesis tracking (MHT), the algorithm still 
applies primarily to feature based maps [Thrun et al. 2005] (Section 7).  Since a large, indoor 
environment is unlikely to have discrete, unambiguous features, these techniques are ineffective for 
the type of problem we are considering.  In order to apply them it is usually necessary to preprocess 
the map as in [Leonard and Durrant-Whyte 1991] to create an artificial landmark based map.  The 
map processing step introduces additional error and discards much of the information provided by the 

 

Figure 2-1: Graphical model of localization problem as a POMDP.   

Unshaded x nodes represent unknown robot pose, shaded nodes represent known values.  u are 

the controls given to the robot and z are the sensor readings received.  All readings are taken 

relative to time t, except the map, m, which is considered to be static. 

xt-1 xt xt+1 

ut-1 ut ut+1 

zt-1 zt zt+1 

m 
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original map.  Another serious problem is that these alternative techniques cannot handle multiple 
hypotheses of the robot’s location.  Each one maintains only a single Gaussian representation of 
position.  MCL, in contrast, can maintain multiple separate locations.  Markov localization using 
probabilities over a grid is also possible, however it increases in runtime with the size of the state 
space, unlike MCL which only increases in runtime with the dimensionality of the state space.  Since 
robots often operate in a large, real, dynamic environment, true Markov grid based localization 
requires such a large grid that it is usually impossible.  Because of these drawbacks, MCL is currently 
the most effective localization technique based on the number of environments it applies to and the 
most commonly used, especially for real robots operating in real environments. 

2.2.1 Recursive Bayes Filter  

MCL is an implementation of a recursive Bayes filter.  The posterior distribution of robot poses as 
conditioned by the sensor data is estimated as the robot’s belief state.  A key detail of the algorithm is 
the Markovian assumption that the past and future are conditionally independent given the present.  
For a robot this means that if its current location is known, the future locations do not depend on 
where the robot has been. 

To produce a recursive Bayes filter, we represent the belief state of the robot as the probability of 
the robot’s location conditioned by the sensor data, where sensors include odometry. 

  2-4 

xt represents the robot’s position at time t, zt the robot’s sensor readings at time t and ut is the 
motion data at time t.  To simplify the subsequent equations we use the notation at = at, …, a0. 
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While this equation is a good representation of the problem, it is not much use since it cannot be 
calculated as is.  By applying a series of probabilistic rules, together with the Markovian assumption, 
equation (2-4) is converted into a more usable form.  The first step is to use Bayes rule on equation 
(2-5) to provide a factorization.  

),,|()( 1 tt
ttt uzzxpxBel −=  2-6 

),|(
),|(),,|(

1

11

−

−−

=
tt

t

tt
t

tt
tt

zuzp
zuxpzuxzp

 2-7 

Because the denominator is a normalizer, constant relative to the variable xt, we can write equation 
(2-7) as  

),|(),,|()( 11 −−= tt
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where 11 ),|( −−= tt
t zuzpη  2-9 

Once again, we make use of the Markovian assumption.  In the case of the first probability term in 
equation (2-8) this means that since the robot’s current location, xt, is given, the current sensor 
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readings are independent of both the previous sensor readings, zt-1, and the actions taken to get to 
location xt, ut.  The result is that equation (2-8) simplifies to equation (2-10) 
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Next, we expand the rightmost term by integrating over the state at time t-1. 
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Once again, note that in the first term of the integral, the Markovian assumption makes xt 
independent of the past, ut-1 and zt-1, given the pose xt-1.  Also, we observe that the robot state at time 
t-1, xt-1, is not affected by the next motion ut.  Although the motion ut may in fact be affected by the 
location xt-1, since the robot will probably only move in certain ways, we make the independence 
assumption for simplicity. 
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Obviously, p(xt-1 | zt-1, ut-1) is Bel(xt-1) giving us the recursive equation necessary for a recursive 
Bayes filter.  η is a normalization constant that can be calculated by normalizing over the state space.  
p(zt | xt) is the sensor model, representing the probability of receiving a particular sensor reading given 
a robot’s location.  Finally, p(xt | xt-1, ut) is the motion model.  It is the probability that the robot 
arrives at location xt given that it started at location xt-1 and performed action ut.  The sensor and 
motion model are representations of the physical components of the robot and must be determined 
experimentally for each robot and sensor device.  The Bayes filter is examined in more detail in 
[Thrun et al. 2005] (Section 2.4). 

2.2.2 Particle Approximation 

It would appear that, given the two models, equation (2-12) is all that is necessary to perform 
localization with MCL.  Unfortunately, a problem occurs with the integral.  The equation requires 
integrating over the entire state space.  Although we can evaluate the models at any point in the space, 
there is no closed form to the integral.  Further, even a simple robot moves in a continuous, three 
dimensional state space with an x and y location together with an angle of rotation.  Calculating the 
integral over this space is impossible, especially for a real time algorithm.  In order to solve this 
problem, we approximate the continuous space with a finite number of weighted samples. 
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The integral over the space becomes a sum over the finite number of particles. 
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  Of course, approximating the space results in a certain amount of error when low probability 
locations are not represented.  If the robot is really at one of these locations it can never be localized.  
However, if the number of particles is well chosen, MCL works properly in most situations. 
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2.2.3 Resampling 

One problem with using a finite set of particles to represent an infinite space is that the weight of 
particles representing a low probability location will quickly decrease.  Assuming that these particles 
do not represent the location of the robot, their probability is unlikely to significantly increase.  Since 
in MCL each particle is used to track the robot, a particle which almost certainly does not represent 
the robot’s location will probably never be the correct location in the future.  Similarly, if there are 
too few particles representing a high probability location, they will disperse and eventually lose the 
robot’s position.  What is needed is a method for relocating low probability particles to high 
probability locations and recalculating their probability.  The method used in MCL is resampling.  
After the particles are weighted by the sensor model, they are resampled to represent the high 
probability locations.  N particles are chosen randomly from the list of N weighted particles, with 
probability according to their weight.  These particles are chosen with replacement, so that after a 
particle is chosen it remains in the original list and has the same probability of being sampled again.  
A high probability particle might be selected several times and so multiple copies might occur in the 
new list, while a low probability particle might never be chosen at all and its location would die out.  
The resampled list will thus have multiple particles in high probability locations and none in low 

probability ones.  Another effect of resampling is to set all the sample weights to 
N
1

.  Instead of 

having individual weights representing the probability of a location, the number of particles indicates 
the probability.  A high probability location will have many particles and thus, if the robot is present, 
it is likely to be tracked as it moves.  Of course, low probability locations will die out and be 
unrepresented, so localization will fail if the robot is truly at one of these positions.   

2.2.4 Bias 

Representing an infinite space with a finite number of samples necessarily introduces some error.  In 
order to accurately represent high probability locations, the particle filter discards lower probability 
regions as their low likelihood particles are not selected during the resampling process.  Bias is the 
name given to the problem that MCL tends to consider only the highest probability locations, letting 
others be removed.  The effect is that MCL is biased towards areas that have a large number of 
particles, tending to converge, over time, to a single cluster in the highest probability location.  In 
most situations the high probability location contains the robot and so the convergence provides the 
correct result. 

As an example, consider a situation with four particles evenly distributed between two separate 
locations A1 and A2.  Assume that all sensor information is identical between the locations so that all 
particles always have an identical possibility of being selected during resampling.  Also, in this 
example assume no motion occurs.  We know that since two of the four particles are in each region, 
each particle x1 through x4 has a probability of 0.5 of being resampled in a particular location.  Each 
of the four particles has two possible assignments (A1 or A2), leading to 16 possible configurations 
overall.  Six of these configurations are the same as the original with two particles in each region.  
Two of them are total failures with all four particles in a single region.  These are failures because 
there is no possible way for the correct, symmetrical configuration to be recovered from them.  The 
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remaining eight configurations have three particles in one region with only one particle in the other.  
As a result, the expected number of resamples until the two regions are not equally represented is: 
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80% of the time this unbalance will be caused by three particles being in a single region while the 
remaining 20% of the cases are a total failure where all four particles have migrated to a single 
region, making the probability of sampling the other region zero.  The expected number of resamples 
before total failure thus becomes: 
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Where E(Fail_2) is the expected number of resamples to cause an unbalanced setup to fail 
completely. 

From an unbalanced situation the same configurations are possible as before, however, the 
probability of selecting a particle from the region with one particle is only 0.25, while the other region 
has a probability of 0.75.   
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The expected number of resamples until the state changes to either failure or the equal distribution 
case becomes: 
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The expected time to failure for the unbalanced case can then be written in terms of the expected 
time to failure for the first case. 
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Subbing equation 2-21 back into 2-16 results in a solution to the overall number of resamples until 
failure from a balanced state. 
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From this equation we can see that on average, it will take less than four resamples before all of the 
particles are in a single region, even though the distribution should actually still be evenly split 
between them.  Because of the bias caused by the resampling of MCL’s particle filter, the particles 
will always converge to a single location, even though this may not be the correct representation. 

2.2.5 Algorithm 

As the robot moves, it reports its odometry and sensor data to the MCL algorithm.  After each 
reported move, every particle’s new position is estimated according to the random motion model, 
based on the motion actually reported by the robot’s dead reckoning.  The particles are then updated 
with a weight determined by the sensor model for the particle’s location.  Finally, the particles are 
resampled by repeatedly choosing samples randomly, with replacement, from the current set, 
according to the weights assigned by the sensor model. 

Table 2-1: MCL Algorithm 

1: Create a set {xt
[n], wt

[n]} from Xt-1 by repeating N times: 

1.1: 
 Choose a particle xt-1

[n] from Xt -1.  Because of the resampling step this particle may be 
selected either iteratively or randomly. 

Figure 2-2: Graphical representation of the behaviour of bias for a simple case. 

p(reset_2)=0.210937

p(unbalance)=0.5 

p(fail_2)= 0.3203125 

p(fail)= 0.125 
Fail 

Unbalance 

Same 
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1.2: 
 Next, draw a particle xt

[n] ~ p(xt | ut, xt-1
[n]).  This particle is the result of a random 

motion according to the motion model. 

1.3:  Set the weight of the particle using the sensor model: wt
[n] = p(zt | xt

[n]). 

2: 
Resample randomly according to weight from {xt

[n], wt
[n]} into Xt, which causes the particle 

weights to become uniform. 

The effect of resampling is to replace the weight of the individual particles with the number of 
particles at that location.  On the robot’s next move, the particles at a high probability location will 
spread out as they are moved randomly according to the motion model, with at least one probably 
landing in the robot’s new location.  Then, the resampling will cause more particles to appear at the 
correct location, while incorrect locations die out.  Assuming that the models and map are accurate, 
MCL will correctly track the robot’s changing location.  Various parameters can be tuned manually to 
adjust the rate at which particles collect around a single hypothesis and the behaviour of the models.  
Once the belief over the robot’s location is generated, a single location for the robot can be 
approximated as the mean of the particles. 

2.2.6 Sensor Model 

Corrections to the robot’s location as determined by dead reckoning are made according to the robot’s 
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Figure 2-3: Implementation of a standard laser rangefinder sensor model. 
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other sensors.  The sensors, usually some type of rangefinder device, determine the weight of each 
particle.  The weight is calculated according to p(zt | xt) which represents the sensor model, the 
probability of getting a particular sensor reading given a suggested robot location.  The sensor model 
depends heavily on the exact physical sensors installed on the robot, so there can be no general 
equation.  Since the model is not sampled, as is the motion model, it is often implemented as a large 
precalculated table, where any particular sensor probability can be quickly looked up.  A table 
implementation allows a more complex function to be used than could be calculated in real time.  One 
function that is sometimes used for a laser rangefinder device gives the probability of each possible 
returned range value, given each possible actual distance to a wall.  Such a function can be composed 
of a Gaussian distribution centered on the actual wall distance, since that distance is the most 
probable return value, together with other functions depending on the features of the physical device.  
Common additions are an exponential function multiplied by a linear one representing false negative 
values and another exponential function representing false positives.  Figure 2-3 gives a specific 
implementation of a sensor model.   

The sample represented in Figure 2-3 is an implementation of this common model for a standard 
type of laser rangefinder, the SICK LMS200.  For any specific laser reading and robot position the 
map is used to determine the expected distance to the wall.  Given the distance returned by the laser 
and the actual distance determined by the map, the table that is graphed in Figure 2-3 returns the 
likelihood of getting that reading given the distance.  Although the product of many such values is not 
a true probability, p(zt | xt) can be determined by normalizing the likelihoods over all particles.  It may 
look as if the function used in the figure is simply a standard Gaussian, however, the differences are 
visible on a closer examination as in Figure 2-4.  The probabilities for a specific actual distance must 
sum to 1.0, which accounts for the peak at the maximum sensor reading value.  This value is the 
probability that the laser does not observe any wall.  Even with a good quality laser, this may occur 
frequently, depending on the environment.  The close examination of a specific expected value in 
Figure 2-4 also reveals the effect of the false positive function, since the probability actually 
decreases, leading up to the peak around the expected distance.  That function compensates for the 
possibility of a moving object, such as a person, passing between the robot and the wall.  Although 
the effects of the additional function which are added to the model seem minor, they are sufficient to 
allow the particles to quickly congregate around the correct robot location in most situations, without 
requiring very many particles.  Of course, this particular implementation assumes that individual 
range values are independent and it also violates the cell independence assumption as defined in 
section 2.1.3.  However, that assumption was made specifically for the occupancy grid mapping 
algorithm and in order to provide a good sensor model we make different assumptions. 
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The exact composition of the range probability function is so heavily dependent on the type and 
even the specific brand of sensor used, that no generally applicable functions or parameters can be 
given.  Even another rangefinder device, a sonar, must have major modifications to the laser range 
probabilities in order to take into account multi-reflections, a common problem with sonars.  The 
overall probability of a laser reading, which is composed of multiple range values in different 
directions, is the product of the probability of each range value.  Given a robot position, the distance 
to the wall along each sensor ray can be determined from the map and the probability of the range 
value returned given that distance can be retrieved from the table.  These probabilities are then 
multiplied together to get p(zt | xt). 

2.2.7 Motion Model 

The motion model p(xt | xt-1, ut) is a critical part of MCL.  As it is defined, MCL uses the motion 
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Figure 2-4: Probability values for a specific expected distance from Figure 2-3 

Figure 2-5: Standard types of motion error 
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model as the proposal distribution which predicts the location of each particle after a move.  Although 
other proposal distributions are possible, as with SRL (section 2.2.10.4), the basic implementation is 
to determine the proposed location from the motion model.  Unlike the sensor model, which gives the 
probability of getting a specific sensor reading at a particular location, it is necessary to sample from 
the motion model to create the proposal.  Given a starting location and a reported motion (xt-1 and ut), 
MCL requires that we be able to choose a final location randomly according to the motion model.  
Furthermore, this real-time requirement precludes us from using any motion model that is very 
complex.  In fact, most motion models are a combination of simple Gaussian distributions.  For a 
near-holonomic wheeled robot the most common representation is with two kinds of motion leading 
to three kinds of error.  Each movement of the robot is represented as a linear movement followed by 
a stationary turn.  Although a particular robot probably does not follow these exact motions, if we 
break the robot’s motion into small increments we can use them as an approximation.   

Each translation of the robot is approximated by a Gaussian where the mean is the reported 
distance and the variance is the reported distance multiplied by a parameter.  This representation 
reflects the fact that the range error increases the further the robot travels.  Rotation is also 
represented by a Gaussian.  The mean is again the reported angle, but the variance is a parameter 
multiplied by the angle turned, added to another parameter times the distance moved.  The variance 
takes into account both turn error, which increases as the robot turns, and drift error.  Drift error is 
defined as the robot turning when it tries to go straight.  Obviously, it increases the further the robot 
has travelled.  Although it would seem that drift error should be minor, if it occurs at all, this is not in 
fact the case.  Many near holonomic wheeled robots use a system where the difference in motion 
between the drive wheels is used to turn the robot.  In such robots, moving forward is accomplished 
by turning both wheels the same amount, while turning is done by moving the wheels different 
amounts.  It is very likely that, while moving forward, the wheels turn at slightly different rates, 
causing the robot to rotate.  Figure 2-5 shows a graphical depiction of the three standard types of 
error.  The three parameters involved in the model are often given as kr for range error, kθ for turn 
error, and kd for drift error.  The actual values, r and θ are determined according to the estimated 
values from the encoders, r and θ. 

),(~ rkrNr r •  2-24 

),(~ rkkN d •+•θθθ θ  2-25 

These two Normal distributions together represent the motion model for many common robots.  
However, the algorithms described in this section should work for any model, provided it is possible 
to sample from it.  In general, some collection of Gaussians works well, since they are often good 
approximations to a physical system while at the same time being easy to sample from and optimize. 

For robot motion models, it is usually assumed that the mean of a distribution from a reported 
motion will be the reported motion itself.  Since the motion models are developed to represent the 
robot’s motion, this would seem to be a reasonable assumption.  If it was known that the mean of the 
robot’s motion was different than the odometry, it would be necessary to change the odometry, since 
it is supposed to report motion as accurately as possible given the physical sensors used.  There is no 
point in introducing additional parameters to alter the mean, because only one simple model is used to 
represent a robot’s motion. 
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2.2.8 Importance Factor 

In MCL, the weight of a particle is almost universally calculated based entirely on the sensor model.  
This weight, known as the importance factor of the sample, attempts to represent the difference 
between the proposal distribution generated by the motion model, and the target distribution Bel(xt).  
By using the ratio of distributions, we can derive the importance factor from first principles, allowing 
the possibility of using a different measure. 
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The target distribution is p(xt | zt, ut).  The proposal distribution is given by 
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Using Bayes’ rule the target distribution is expanded and the entire equation is simplified as follows. 
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The constant η can easily be ignored, since the importance weights are normalized in the re-
sampling step.  This leaves the term p(zt | xt

[n]), the sensor model, which is the importance factor 
usually used in MCL.   

 

Figure 2-6: Occupancy Grid Map Raytracing 
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2.2.9 Raytracing 

Calculation of the sensor model p(zt| xt) involves determining the probability of receiving a particular 
sensor reading given the location in the environment.  For a laser rangefinder, the readings are 
distance measurements.  A common map implementation for MCL is an occupancy grid map with 
each cell holding the probability that it is occupied.   Given a robot’s possible location in the map, the 
expected distance to the wall is usually determined by raytracing from the robot to the nearest wall.  
Figure 2-6 illustrates the raytrace of four separate laser scans in an occupancy grid map.  The shaded 
cells indicate all possible locations where the presence of an object might be detected by one of the 
scans.  Each line length is the expected value of a laser reading taken by a robot at the marked starting 
location in a specific direction.  The robot’s physical sensors determine its actual distance to the wall 
and, once the distance from the map and the distance from the world are known, the probability can 
be calculated either mathematically or by a table lookup. 

2.2.10 Additional Techniques 

The basic MCL algorithm is very effective for localization, however there are several modifications 
that can provide an effective improvement in various circumstances. 

2.2.10.1 Random Particles 

Once MCL is modified to handle global localization properly, there is actually a simple modification 
that can handle the kidnapped robot problem.  After the prediction step where the particles are moved 
according to the motion model, a small number of uniform random particles are added.  Formally, the 
motion model is altered to have a probability of producing a location from a uniform distribution, 
instead of always producing if from the model in section 2.2.7.  If the robot is accurately localized, 
these samples should have a low likelihood and will not be selected during resampling.  Even if some 
of them survive, they will be removed on a subsequent update.  However, if localization has failed, 
the new particles are just as likely to be high probability as any of the old ones.  In that case, some of 
the random particles will survive, gradually spreading the distribution over the map.  Since the 
particles are not clustered at a single high probability location, adaptive sampling will increase the 
number of particles while they are randomly scattered over the map.  Eventually, some samples will 
be taken from the neighbourhood of the correct location and the distribution will converge, causing 
the number of samples to decrease again to what is necessary for position tracking. 

Of course, the downside of random particles is that using them reduces the accuracy of ordinary 
MCL.  In the overwhelmingly more common situation that the robot has not been kidnapped, the 
random particles add additional, unnecessary uncertainty to the distribution.  It is even possible that 
the uncertainty caused by the random particles causes localization to fail when it would ordinarily 
succeed.  Implementing this technique involves a balance between the overall number of particles and 
the number of random particles added.  More random particles allow recovery from a kidnapping 
more quickly, while fewer such particles make the normal convergence more exact.  There is no exact 
answer to this tradeoff, since in different situations, even in the same environment, MCL might 
require either kidnapping recovery or greater convergence.  The designer must decide how much 
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accuracy can be traded for recovery from localization failures, based on the probability of kidnapping 
or localization failure. 

2.2.10.2 Adaptive Sample Set Size 

At first glance, it seems impossible for MCL to have a good set size.  For normal localization, a small 
number of particles is necessary in order to improve execution speed, while global localization 
requires a large number.  Similarly, a large number of samples helps with the kidnapped robot 
problem.  Although global localization and localization failures are usually rare, it would still be 
useful if MCL could solve these problems.  One possible solution is described in a paper by [Fox et 
al. 1999].  They propose a technique of adapting the sample size to the current conditions in 
localization.  Thus, MCL can start with many particles in a uniform distribution over the state space, 
but as the distribution converges to a single area the number of particles decreases to what is 
necessary to maintain regular localization.  If the robot becomes confused, for example because of 
traveling over rough terrain, the number of samples increases to cover the expanded belief.  [Fox et 
al. 1999] use the simple technique of examining the unnormalized sample weights in the MCL 
algorithm.  If the robot’s position is well represented by a compact cloud of particles, the weights, 
from the sensor model p(zt | xt), will be relatively large, while if the particles do not represent the 
correct location so well, their individual weights will be smaller.  When the set is resampled, particles 
are chosen until the sum of their unnormalized weights exceeds a constant, �.  Thus, the sample set 
size automatically increases with an increase in uncertainty and decreases as the robot becomes more 
confident of its position.  Adaptive sample set sizes handle the global localization problem well by 
decreasing the number of particles from the initial large number as the distribution converges.  It can 
also handle disturbances that temporarily decrease the localization confidence.  However, if the robot 
is kidnapped to a different location, adapting the sample set size will not help, since no samples will 
be drawn in the robot’s new location.  Using a technique as in section 2.2.10.1 may help with 
kidnapping when added to adaptive set size, but it might also cause larger sample sets to be created 
unnecessarily because of the low probability of the random particles. 

2.2.10.3 KLD Sampling 

We have seen that adapting the size of the sample set can improve the results of MCL, but the method 
used in [Fox et al. 1999] was only a heuristic technique.  They used the sum of the unnormalized 
importance factors to determine how many samples were needed.  The technique was effective, but in 
certain circumstances, for example with multiple equally likely hypotheses, it will not behave 
properly.  A more formally defined method would be preferable, especially if it provided some 
bounds on error.  One effective idea is called KLD-sampling and adapts the sample set size to 
effectively represent the current distribution.  As the possible locations for the robot increase, the size 
increases and when the distribution collapses to fewer locations, KLD-sampling reduces the number 
of samples.  The algorithm determines the number of samples that, with probability 1 - δ, make the 
error between the true posterior and the approximation less than ε. [Fox 2003].  The heart of KLD 
sampling is a measure between the true distribution and the sample based one that is called Kullback-
Leibner divergence (KL distance).  KL distance is a technique for measuring the distance between 
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two probability distributions which is combined with MCL to dynamically change the sample set 
size.  The measure is calculated between two distributions p(x) and q(x) using the formula: 
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If we assume that samples are drawn from a set of k bins, then we can assume the size of the bins is 
randomly distributed according to a multinomial distribution.  Fox [Fox 2003] showed with a set of 
standard derivations that this representation leads to the approximation for the number of particles 
necessary, n, in equation 2-31, based on the Wilson-Hilferty transformation.  In this equation, z1-δ is 
an unusual term which refers to the upper 1 - δ quantile of the standard normal distribution.  It cannot 
easily be calculated, but can be found for typical values of δ in statistical tables.  Since 1 - δ is a 
constant giving the probability of the KL error, it is easy to choose a standard value that provides the 
accuracy desired.  k is the number of bins with support, that is, the number of bins containing at least 
one sample.  Although particles are drawn from a continuous space, rather than from bins, it is easy to 
define a theoretical set of bins over the state space and identify which bin any particular sample is 
from.  Creating these bins should require minimal overhead, since very little new information is 
required. 

Now that the number of particles necessary to represent the belief has been defined, it has to be 
incorporated into the MCL algorithm.  The parameter needed is k, the number of bins that contain at 
least one particle.  However, k is defined from the distribution, which consists of the n particles.  
Fortunately, the number of bins with support can be checked during sampling, and the number of 
particles needed can be continually updated after each sample, until the size of the set reaches the 
required value.  The formula for n will usually increase with k, since the cubed term becomes 
unimportant as k increases.  The set size is determined dynamically during sampling, increasing until 
it adequately represents the entire distribution. 

Table 2-2: MCL with KLD Sampling 

1: M = 0, Mx = ∞, k = 0, α = 0 
2: Create a set {xt

[n], wt
[n]} from {xt-1

[n], wt-1
[n]} 

2.1:  Choose a particle xt-1
[n] from {xt-1

[n], wt-1
[n]} randomly according to weight. 

2.2:  Next, draw a particle xt
[n] ~ p(xt | ut, xt-1

[n]). 
2.3:  Set the weight of the particle using the sensor model: wt

[n] = p(zt | xt). 
2.4:  Add <xt

[n], wt
[n]> to the current set 

2.5:  if xt
[n] falls into empty bin b 

2.5.1:   k = k + 1 
2.5.2:   b = non-empty 
2.5.3:   if k > 1 

3

1)1(9
2

)1(9
2

1
2

1
	


	
�
�

	


	
�
�

−
+

−
−−≅ −δε

z
kk

k
n  2-31



 

 22 

2.5.3.1:    
3
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2.6:  M = M + 1 
3: Repeat while M < Mx (The number of particles created is less than the number needed) 

 

It is easy to see that there is very little overhead necessary to augment MCL with KLD-sampling.  
Tracking the bins should be simple and the calculation of Mx is a constant time operation.  The 
implementation uses the optimization of combining the resampling step of iteration t-1 with the 
particle selection of time t.  This optimization reduces the processing required for each step while still 
producing the same results.  However, at no particular stage does a set of unweighted samples exist.  
The weighted set can be used instead to determine the characteristics of the distribution, such as the 
mean, since the effects of the most recent motion are minimal.  The KLD algorithm has the effect of 
providing a moving target for the sample set size, increasing the number of samples based on the area 
that they have to represent.  Eventually, all new samples will occur in non-empty bins and the desired 
size of the set will stop increasing, while the number of samples continues to rise.  The experiments in 
[Fox et al. 1999] showed that adaptive set sizes were an improvement over static sizes and the results 
of [Fox 2003] reinforce that result.  KLD-sampling is very effective in global localization and when 
the localization error changes during execution, possibly because of temporary sensor failure or 
increased odometer noise.  If the sensors fail temporarily, the previous technique will not work, since 
sample weights cannot be calculated without the sensors.  The KLD-sampling technique provides a 
bound on the error which is introduced by the particle approximation, although various assumptions 
used mean the bound is not guaranteed for a real robot.  However, KLD-sampling provides an 
improvement in MCL both in efficiency and localization performance, especially in situations where 
the variance of the distribution changes during execution. 

2.2.10.4 SRL 

Adding random samples to the set of particles can be helpful for solving the kidnapped robot problem 
[Fox et al. 1999], however, in a large space it is difficult to randomly select the correct location 
according to a uniform distribution.  Also, the number of random samples must be kept small to avoid 
confusing ordinary position tracking, which is by far the most common circumstance.  Adding only a 
small number of samples, it may take many cycles until the correct location is represented and 
localization begins to recover.  In many environments, the robot is in danger if its localization fails.  If 
the robot does not know where it is, it may be unable to avoid some hazards which it cannot detect.  
One serious problem is with descending staircases, which often cannot be sensed reliably.  Further, in 
a time critical application such as robot soccer, the longer it takes to recover from kidnapping, the 
greater an advantage is given to the opposing team.  A more effective technique than uniform random 
samples can be used in certain environments.  Sensor Resetting Localization (SRL) is described by 
[Lenser and Veloso 2000] as a method for performing MCL with a step that draws some samples 
from the sensor distribution itself, instead of from the motion model applied to the previous state.  
SRL is more powerful than uniform random particles, since each new sample is guaranteed to be in a 
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high probability location.  The MCL distribution is not harmed since low likelihood particles are not 
added.   

SRL is implemented by adding additional steps into the MCL algorithm.  After the new particle set 
has been created and weighted, but before resampling, the total of the importance factors is examined.  
The sum is the same as is used in [Fox et al. 1999] to dynamically determine the size of the sample 
set.  If the sum of the weights is above a certain threshold, nothing more is done.  However, if the sum  
is too low, additional samples are added from the sensor distribution p(zt | xt) based on the weight 
sum.  The number of new samples to be introduced is calculated by dividing the average particle 
weight by the threshold and multiplying by the current number of samples.  The effect is to generate a 
percentage of samples based on the confidence of the current distribution.  Of course, the SRL 
algorithm depends on having a sensor model from which samples can be taken, instead of merely 
determining the probability of individual particles.  It is extremely difficult to sample from the 
distribution of a range sensor, since the distribution is likely to be both multimodal and discontinuous.  
However, if the localization is based on landmarks, it is easy to draw location samples from the 
sensor model.  [Lenser and Veloso 2000] designed their algorithm for a robotic dog operating in a 
rectangular soccer field marked with special visual markers.  Since the localization is based on vision 
of landmarks, it is easy to produce particles from the sensor model.  Another reason to use SRL in this 
environment is because the legged motion of the robotic dogs has far greater error than wheeled 
motion.  The error is especially pronounced when the robot collides with another robot or the 
boundaries of the arena.  It is also possible, based on the rules of RoboCup, that a human may move 
the robot without warning.  In this situation, it is critical that localization failures and kidnapping be 
resolved as quickly as possible.  The results in the paper demonstrate that SRL is much more effective 
than uniform random particles in these scenarios.   

Since SRL is very effective and also has a low overhead, it would be useful to incorporate it into 
MCL in many circumstances.  Unfortunately, there is a serious drawback to using a technique which 
samples from the sensor model.  If we must sample from the model, then the complexity of that 
model must be severely limited.  In the case of localization, the term sensor model also includes the 
map of the environment.  Using SRL thus requires that the sensor model, and by implication the map, 
be limited to a very low complexity.  In [Lenser and Veloso 2000] the entire model consists of six 
landmarks and a probability distribution describing the accuracy of camera observations of these 
landmarks.  Such a model easily lends itself to reversing the normal MCL process and drawing 
samples of state from the model itself, instead of just generating importance factors.  However, SRL 
using a rangefinder and occupancy grid map is so complex that it is almost impossible to do in real 
time without additional approximations and complex algorithms [Thrun et al. 2001].  Although SRL 
is more effective than random particles, it can only be used in circumstances where the sensor model 
is very simple.  In effect, it can only be used in landmark based maps.  However, in those situations it 
can be very effective. 
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2.3 FastSLAM 

2.3.1 SLAM Problem 

The problem of determining the map and robot position at the same time is called Simultaneous 
Localization and Mapping, (SLAM).  It involves finding the distribution over a state space which 
includes both robot position and the complete map.  The given data is the sensor and odometry 
information from the start until the current time.  Even the definition of SLAM results in two different 
problems.  Determining the map and location during operation of the robot requires finding the 
current location xt as well as the static map m.  This results in the problem of online SLAM, which is 
intended to localize the robot during operation while also creating the map.  Online SLAM is 
concerned with determining p(xt, m | zt, ut), which is the state at the current time.  Using new 
information to update old estimates is not part of online SLAM, even though new information could 
update the map so that past localization could be corrected.  Correcting past localization is often too 
computationally expensive for a real time solution.  The other SLAM problem is called the full 
SLAM problem, and it involves finding the complete pose history of the robot and the map.  The 
probabilistic formula is p(xt, m | zt, ut), since we want all of the robot’s states, instead of just the 
current one.  The difference is that full SLAM uses current data to correct past estimates.  Online 
SLAM is used to localize the robot dynamically while full SLAM is often an offline algorithm 
concerned with finding out what the robot has already done.  If the robot needs to make decisions 
based on its location, then it is necessary to use online SLAM.  If the objective is to determine where 
a robot controlled by some other method, for example a human driver, has been, then full SLAM is 
more powerful.  Both the problems have an application and the various solutions are similar, although 
not identical.  In fact, online SLAM is the result of removing the past poses from the full problem 
using integration. 
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 Although SLAM is technically the definition of a particular problem, it is also the name given 
to the current set of solutions to the problem.  These solutions all have several common elements 
which are shared by all effective solutions to both the online and full problems.  One of the most 
important factors of most of the SLAM solutions is correspondences.  Since SLAM considers the map 
as well as the robot pose, there must be some definition of a correct map.  In SLAM, maps are defined 
as sets of objects and a correct map is one that has each object in the correct location.  Of course, 
sensors do not report the location of specific objects, so it is necessary to find which object each 
sensor reading corresponds to.  Unfortunately, it may be difficult to determine exactly which object is 
being observed.  As we have seen, heuristic methods can be used to filter the raw sensor data into 
object locations, but any such technique will have a certain percentage of errors.  Some SLAM 
algorithms explicitly take correspondence probabilities into account, adding yet another term to the 
posteriors.  If we define ct to be the set of correspondences between sensor readings and objects at 
time t, the online SLAM problem becomes p(xt, m, ct | zt, ut), while the full problem is p(xt, m, ct | zt, 
ut).  In these two definitions we see that online SLAM only determines the current xt and ct at the 
current timestep, while full SLAM determines xt = {x0, ..., xt} and ct = {c0, ..., ct}, the entire history, at 
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each timestep.  Of course, increasing the size of the state space significantly increases the complexity 
of the problem and thus the run time of the solution.  Many SLAM algorithms can be proved to 
eventually converge to the correct map, but only if the objects can be identified correctly 
[Montemerlo et al. 2002; Folkesson and Christensen 2004; Thrun et al. 2005] (Thrun: Sections 10-
13).  If identification is not certain, the guarantee of convergence is lost.  The problem of determining 
which object is detected by a sensor reading is called the data association problem and it is the central 
drawback to many SLAM algorithms.  In effect, SLAM usually creates a landmark based map, rather 
than a pure occupancy grid map.  As we have seen, correctly identifying landmarks in localization is a 
difficult problem, which can be overcome by using raw sensor readings in the MCL algorithm.  The 
data association problem in SLAM can be solved using a corresponding solution, however, this 
suffers from additional problems. 

2.3.2 FastSLAM Derivation 

Simultaneous Localization and Mapping is divided into two slightly different domains.  The first, 
called online SLAM, is the problem of finding the robot's current pose xt and the map m, given the 
sensor readings zt and odometry ut.  The more complex problem is to find the robot's path 

{ }t
t xxx ,...,1=  given the same data.  Finding the complete path is called the full SLAM problem.  

Obviously, full SLAM is the more complete problem but online SLAM can be derived from full by 
integrating out the past poses, as shown in equation (2-32).   
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The reduced problem is called online SLAM because it is simplified enough to be solved in real 
time, whereas most full SLAM solutions require offline processing. 

One of the benefits of FastSLAM [Montemerlo et al. 2002] is that it simultaneously solves both the 
online and full SLAM problems.  Of course, any solution to the full SLAM problem also produces a 
solution to online SLAM, but FastSLAM, although it works in real time, solves for the entire path of 
the robot.  The key to the FastSLAM derivation is the assumption that if the robot's location is known, 
the locations of objects in the environment are independent.  Thus, the SLAM problem can be 
factored into localization and mapping problems.  

 2-35 

The first term is obviously a localization problem which requires finding the robot's path xt given 
its odometry and sensor data.  The second term is the mapping problem which finds a particular 
feature's position, mn, given the robot's path and sensor readings.  Equation (2-35) leads to an iterative 
algorithm for FastSLAM where the robot's position is calculated, and then the map is updated based 
on that position.  Unfortunately, it is unlikely that at every step a single location for the robot can be 
derived.  Nor can the algorithm rely on a probabilistic position, since the factoring is only valid given 
a fixed xt.  These requirements lend themselves to a technique that represents the robot's location as a 
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finite collection of exact states.  Fortunately, such a technique, Monte Carlo Localization (MCL), 
exists. 

2.3.3 Feature Based FastSLAM 

Since particle filters represent the robot’s belief as a set of discrete samples, each one corresponding 
to an exact location, the map features can be located in relation to the individual particles.  The 
FastSLAM algorithm uses particle filters and Gaussian distributions in a technique called Rao-
Blackwellized particle filters.  Each particle contains the robot pose and the Kalman filter over each 
map feature.  The correspondence decisions for the case of unknown correspondences are also made 
on a per particle basis.  The benefit is that for any particular particle, the robot’s location is known, so 
it should be easy to determine which landmark is observed by each sensor reading.  In order to 
estimate the correspondences, the data stored by each particle includes the number of landmarks 
observed as well as the probability of existence for each feature.  At each timestep, the algorithm 
updates each particle, first updating the robot state according to the reported motion, and then 
updating the observed features as determined by the estimated data associations.  Finally, a new set of 
particles is resampled to get the belief at the current timestep. 

Table 2-3: Feature Based FastSLAM Algorithm  

[Thrun et al. 2005] (Section 13.7) 

FastSLAM_1.0(zt, ut, Yt-1) 
1: for k = 1 to M do  // loop over all particles 
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14: for j = 1 to Nt
[k] do // update Kalman filters 

15:  if j = ĉ = 1 + Nt-1[k] then  // is new feature? 
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32:    if ij,t-1
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33:     discard feature j 
34:    endif 
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36:  endif 
37: endfor 
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39: endfor 
40: Yt = {}     // construct new particle set 
41: do M times    // resample 
42:  draw random index k with probability ∝ w[k] 
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44: enddo 
45: return Yt 

The basic algorithm can, as usual, be improved to be more efficient.  The main improvement 
involves the representation of the map.  Instead of copying the map into each sample, the samples 
contain only the changes from their parent particle.  By using a tree representation, the efficiency of 
the FastSLAM algorithm can be O(M log N), where M is the number of particles and N is the size of 
the map.  The optimization of only searching local features for correspondences can also be used to 
improve the unknown associations case.  A further improvement, known as FastSLAM 2.0, uses the 
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sensor readings to predict a better particle during the particle filter step.  When the motion of the 
robot does not correspond well to its model, or has a very high error, FastSLAM 2.0 can provide 
significant improvements in efficiency and accuracy.  In fact, the algorithm can succeed with very 
few particles, and even with only one in some situations [Montemerlo et al. 2003].  Using sensor 
readings to improve the prediction is only possible because the definition of the map as a set of 
independent Gaussian landmarks allows sampling from the sensor model.  In an occupancy grid map, 
that is usually not possible.  These optimizations make FastSLAM one of the most efficient solutions 
to the SLAM problem.  Experiments performed by [Montemerlo et al. 2002] successfully localized 
and created a map in a large environment using a small, fixed number of particles.  Since FastSLAM 
produces the entire path as well as the current position it is also unique in solving both online and full 
SLAM in real time. 

2.3.4 Occupancy Grid FastSLAM 

Unlike most SLAM algorithms, it is possible to use FastSLAM on an occupancy grid map directly, 
without first processing it for landmarks.  Since the algorithm updates the map with reference to a 
given robot position, the specific representation of the map as Gaussian landmarks is not required.  
Instead, an occupancy grid can be used and updated according to the standard techniques.  As in 
[Moravec 1988], observed cells are updated according to whether the sensors observed them as 
occupied or unoccupied.  However, since each particle represents an exact robot path, there is no need 
to blur past readings.  The grid cell implementation even overcomes the data association problem, 
since landmarks can no longer move, the cell being observed is exactly determined by the robot’s 
location.  One specific implementation of FastSLAM with occupancy grid maps, called DP-SLAM, 
[Eliazar and Parr 2004] was able to successfully localize and map a real environment including a 
large loop. 

The only serious problem with FastSLAM occurs with the difficult situation of loop closure.  In 
other algorithms when the robot re-enters known territory it becomes necessary to search a much 
larger set of landmarks for correspondences, possibly the entire set.  However, FastSLAM represents 
all possible robot positions in a finite set of samples.  When it closes a loop, it can only be successful 
if some particle has followed an approximately correct path.  The longer the loop, the greater the 
uncertainty of the robot’s position.  As uncertainty increases, the number of particles necessary to 
represent the belief also increases.  Eventually, there will not be enough particles to represent the 
distribution and the correct location may be lost.  FastSLAM alone suffers the problem, since all other 
SLAM solutions use the correlations to determine the position.  The problem with particle filters is 
that they only represent the highest probability region of a distribution, whereas the Gaussian 
distributions used by other techniques represent the entire distribution.  Of course, particles can 
represent much more complex and nonlinear distributions than is possible with Gaussians.  The 
drawback to using particle filters in FastSLAM is that the number of particles maintains the diversity 
of the robot’s position, and as soon as the uncertainty goes beyond the number of particles, the 
algorithm may fail.  Thus, the size of the particle set must be tuned to the environment, based on the 
size of the longest loop, and increasing the number of particles to this extent may make the algorithm 
inefficient. 
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Grid based FastSLAM is performed by combining the MCL particle filtering with the occupancy 
grid mapping algorithm using Rao-Blackwellized particle filters [Montemerlo et al. 2002; Thrun et al. 
2005] (Thrun: Section 13.10).  Each particle consists of both the robot's state and an occupancy grid 
map.  Of course, particle filtering could be used over the entire state space.  However, this would 
require a number of particles exponential in the number of state variables, in this case the number of 
cells in the map.  Instead, the factorization in equation (2-35) is used to separate the robot state from 
the map.  The particle filter is only used for the robot's state, often x, y and orientation (θ) for a 
terrestrial indoor robot.  The map for each particle is updated according to the occupancy grid 
mapping algorithm, with the position fixed at the position of the particle.  This separation allows the 
occupancy grid algorithm to work with a guaranteed position, while still allowing for uncertainty in 
the robot's pose.  By looking at the highest probability location we can determine the current best 
guess of the robot's position and the map.  At each step, the set of N particles, Xt-1, is updated to Xt 
according to the algorithm shown in Table 2-4 

Table 2-4: Occupancy Grid FastSLAM algorithm 

1: for k = 1 to N 
2:  xt

[k] ~ p(xt | xt-1
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5:  Xt' = Xt' ∪ <xt
[k], mt

[k], wt
[k]> 

6:  endfor 
7: for k = 1 to N 
8:  draw i from Xt' with probability α wt

[i] 
9:  Xt = Xt ∪ <xt

[i], mt
[i]> 

10: endfor 

In Table 2-4, line 2 updates the set of particles by randomly choosing a new location for each one 
based on the previous location of the particle and the motion model.  The sensor model is used to 
determine a weight for the new location based on the sensor readings in line 3.  The primary 
difference from MCL occurs in line 4 where the occupancy probability of the map attached to the 
particle is updated according to the sensor readings used at the particle's new location.  Of course, 
these maps are maintained via the log odds ratio as in section 2.1.3.  Finally, in the loop of lines 7 - 
10, the updated particles are resampled.  N new particles are chosen randomly according to the 
weights, with replacement, to make the new particle set.  Resampling has the effect of replacing the 
particle weight with the number of samples at a location.  Thus, low probability locations die out 
while high probability locations gather enough particles that, on the next update, the correct location 
will be selected by the motion model in line 2. 
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Chapter 3 

Cluster MCL 

3.1 Introduction  

Global localization is the problem of localizing a robot from a uniform posterior over the 
environment.  Although the robot has a pre-existing map, it has no idea as to its actual position.  With 
a reasonably accurate map of the environment, MCL has been shown to be effective in many 
situations.  However, MCL suffers an important limitation: when samples are generated according to 
their posterior probability (as is the case in MCL), they often too quickly converge to a single, high-
likelihood pose.  This might be undesirable in symmetric environments, where multiple distinct 
hypotheses have to be tracked for extended periods of time.  MCL often converges to one single 
location too quickly, ignoring the possibility that the robot might be somewhere else.  This problem 
leads to suboptimal behaviour if there are two or more equally likely poses.  In symmetric 
environments, it is desirable to maintain a higher diversity of the samples, despite the fact that 
likelihood-weighted sampling will favour a single robot pose.   

The approach we present in this chapter introduces the idea of clusters of particles and modifies the 
proposal distribution to take into account the probability of a cluster of similar poses.  Each cluster is 
considered to be a hypothesis of where the robot might be located and is independently developed 
using the MCL algorithm.  The update of the probability of each cluster is done using the same 
Bayesian formulation used in MCL, thus effectively leading to a particle filter that works at two 
levels, the particle level and the cluster level.  While each cluster possesses a probability that 
represents the belief of the robot being at that location, the cluster with the highest probability would 
be used to determine the robot’s location at that instant in time.   

The main benefit of using clusters is that it maintains diversity in the particle set while not reducing 
the rate at which a single location is found.  The enforced diversity allows MCL to handle additional 
situations, such as symmetric environments, without compromising its behaviour in ordinary 
circumstances.  The clusters also provide a mechanism to recover from kidnapping without the 
random samples affecting the localization quality. 

Multiple belief states can also be represented using multi-hypothesis Kalman filters.  This, 
however, inherits Kalman filters’ limitations in that it requires noise to be Gaussian.  Particle filters, 
on the other hand, can represent arbitrary distributions.  Since all objects must have Gaussian noise 
for Kalman filters to work it is common to require that maps consist of a number of discrete 
landmarks [Austin and Jensfelt 2000; Jensfelt and Kristensen 2001].  MCL provides the great benefit 
of using raw sensor data directly.  Other improvements to MCL, like dual-MCL, SRL and Mixture 
MCL (a technique for combining multiple proposal distributions) [Lenser and Veloso 2000; Thrun et 
al. 2000; Thrun et al. 2001], attempt to improve the proposal distribution, however they require that 
the distributions have certain specific features that are not often present.  None of these other 
techniques function in the general case that we consider here. 
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Experiments have been conducted with both simulated data as well as data obtained from a robot, 
using laser range finder data collected at multiple sites.  The environments are highly symmetric and 
the corresponding datasets possess only a very small number of distinguishing features that allow for 
global localization.  Thus, they are good testbeds for our proposed algorithm.  Results show that the 
Cluster-MCL algorithm is able to successfully determine the position of the robot in these datasets, 
while ordinary MCL often fails. 

3.2 Cluster-MCL  

3.2.1 Clustered Particle Filtering  

In MCL, p(zt | xt
[n]) is calculated as the importance factor wt

[n].  However, the analysis in section 2.2.8 
suggests that a much broader range of functions may be used as proposal distributions.  In particular, 
let ft(xt) be a positive function over the state space.  Then the following particle filter algorithm 
generates samples from a distribution ft(xt)p(xt | zt, ut).  Initially, samples are drawn from f0(x0).  New 
sample sets are then calculated via the following procedure:  

First, draw a random particle xt-1
[n] from Xt-1.  By assumption, this particle is distributed according 

to ft-1(xt-1)p(xt-1 | zt-1, ut-1) with the distributions being equal as N approaches infinity.   

Next, draw a state xt
[n] ~ p(xt | ut, xt-1

[n]).   

In this case the resulting importance factor is easily computed as:  
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The proposed clustering particle filter employs such a modified proposal distribution.  In particular, 
each particle is associated with one out of K clusters.  We will use the function c(xt) to denote the 
cluster number.  The function ft assigns to each particle in the same cluster the same value; but this 
value may differ among different clusters.  Moreover, ft is such that the cumulative weight over all the 
particles in each cluster is the same for each cluster.   

 3-2 
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Since the clusters are considered separately, and, more particularly, have their particle weights 
normalized independently of the other clusters, we see that equation 3-2 must be valid.  However, we 
need to define f(xt

[n]).  Since these are equal for all x such that c(x) = k, it is sufficient to 
define ( ) tk

n
t Bxf ,

][ =  where k = c(xt
[n]) and Bk,t is the probability, at time t, that cluster k contains the 

actual robot position.  We can estimate the Bk,t values using standard Bayes filters.  Here, we use k to 
represent a random variable over the clusters:  
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Since we use a finite number of samples to approximate the distribution, this becomes:  
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Now we note that, although the robot can move from one point to another, particles cannot change 
clusters.  That is, each particle starts in one cluster and remains in that cluster.  This being the case,  
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We also note that a cluster is composed of a set of points.  Therefore, p(zt | kt) is related to p(zt | xt) .  
In fact, the distribution of sensor readings for a cluster must be the sum of the distributions of sensor 
readings for all points in the cluster.  That is:  

 3-7 

Given equations (3-3) and (3-7) we can write  

 3-8 

where γ is a normalization factor.   

Having defined f(xt
[n]) = Bk,t, we maintain the condition stated in equation (3-2) by normalizing after 

each iteration.  Therefore, our modified proposal distribution is satisfies the requirements to be used 
as the proposal distribution in MCL.   

3.2.2 Algorithm 

Based on the mathematical derivation above, we have implemented an extension to MCL, called 
Cluster-MCL.  Cluster-MCL tracks multiple hypotheses organized in clusters.  The first task is to 
identify probable clusters.  By iterating several steps through ordinary MCL, with an initial uniform 
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distribution of a large number of points, clusters develop in several locations.  We then use a simple 
clustering algorithm to separate the points into different clusters.  We match each point with a cluster 
based on the distance, in all three dimensions, between that point and the source point of the cluster.  
If a particle does not match any cluster it becomes the source point for a new one.  The initial 
probability of a cluster is based on the number of points it contains.  There are more robust clustering 
algorithms, based on the Expectation Maximization (EM) algorithm.  However, these methods rely on 
an a priori knowledge of the number of clusters.  Our method generates an arbitrary number of 
clusters determined by the number of clusters in the environment, with each cluster having an 
arbitrary size.  The drawback is that several clusters may be created in almost the same location.  We 
solve this problem by occasionally checking for overlapping clusters and combining them.  Once 
clusters are generated, we select the most probable ones and discard the others.   

Each cluster is then independently evolved using ordinary MCL.  Thus, points selected for a 
particular cluster can only be drawn from that cluster.  The probability of each cluster is tracked by 
multiplying the prior probability of the cluster by the average of the likelihood of the points in that 
cluster.  These probabilities are kept normalized and correspond to the Bk,t values as defined above.   

There is the problem that, if there is an error in the map in the initial location, there may be no 
cluster generated at the correct location.  We solve this problem, and also the kidnapped robot 
problem, by taking advantage of the independence of our clusters.  The kidnapped robot problem is 
where the robot is moved by an outside force after being localized.  Since clusters do not interfere 
with each other, we can add a cluster in a new location without affecting our existing clusters.  After a 
predetermined number of steps, we restart a new instance of MCL with the particles uniformly 
distributed, with the purpose of finding the most likely cluster based on the current sensor data.  Once 
the new cluster has converged to a single location, we check whether this new location overlaps an 
existing cluster within some threshold.  If it does not, it covers a currently unrepresented point so we 
initialize it to have a small probability and begin tracking it.  Otherwise, the location is already 
represented and we discard the new cluster and repeat the process.  By doing this, we remain open to 
consideration of a completely new location for the robot based on the current sensor data.   

To limit the number of clusters from growing out of bounds and to remain computationally 
efficient, we limit the number of clusters to a maximum pre-defined value.  Additionally, by keeping 
the number of clusters fixed at all points in time, we prevent a cluster from gaining a high probability 
by competing with only few other clusters, which would tend to prevent that cluster from being 
overtaken when there are many other clusters.  When adding a new cluster, the least probable cluster 
is removed, in order to keep the size fixed.   

The robot’s estimate of its own location is based on the most likely cluster, and can be obtained 
using the mean or highest weight particles in that cluster as with ordinary MCL.  Since each cluster 
represents a distinct location, averaging across multiple clusters would produce a location between 
the clusters, in a region that where there is very little likelihood the robot is present.  Each cluster is 
based around a high probability area, but the regions between clusters are low probability. 
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3.2.3 Example 

If we refer back to the example given in section 2.2.4, we can see that resampling only within a 
cluster alters the transition probabilities between the states.  In particular, p(unbalance) and p(fail) are 
both zero, because it is impossible to change the total number of particles in an individual cluster.  
Then, the expected value from equation 2-15 is calculated as: 
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Which causes equation 2-16 to also be infinity, regardless of the characteristics of the unbalanced 
state, which is never reached. 
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Thus, no matter how many resampling steps are performed, the clusters retain equal particle mass.  
The additional value Bk,t that must be tracked is also updated on each step according to equation 3-8.  
However, because the sensor readings are the same for all particles in either region, according to the 
assumption in section 2.2.4: 
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And so: 

 3-12 

With the result that B1,t = B2,t, given that B1,0 = B2,0. which was another assumption.  Since cluster 
probabilities must be normalized to eliminate the unknown constant and there are only two clusters 
we can determine that Bk,t = 0.5 for all clusters.  The clustering algorithm completely solves the 
problem of bias in this example, maintaining two equally weighted clusters indefinitely. 

3.3 Experimental Evaluation  

The Cluster-MCL algorithm was implemented and tested in both simulated and real environments.  In 
these tests, we compare the performance of our Cluster-MCL algorithm with that of ordinary MCL.  
In all cases, we found that Cluster-MCL performed as well as ordinary MCL, and in several cases 
where ordinary MCL failed, Cluster-MCL succeeded.   

Cluster-MCL is designed to eliminate the problems caused by bias in symmetrical environments.  
In order to demonstrate the improvements we found several environments with symmetrical areas and 
performed global localization on them.  In completely symmetrical environments, the desired 
behaviour is for multiple locations to be represented when execution is complete, since there is no 
data available to resolve which of the symmetrical locations is correct.  Because there is no available 
information to distinguish the locations, localization should report the problem, rather than 
erroneously reporting a single position.  It is also common for environments to exhibit symmetry 
between certain regions with other unique areas.  In such situations, finding the correct location 
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during global localization requires maintaining multiple hypotheses within the symmetrical areas and 
then resolving them to the single, correct, location once the robot enters an asymmetrical area.  The 
data sets selected for the experiments demonstrate that Cluster-MCL correctly solves these situations, 
which are difficult for normal MCL.  Our algorithm correctly maintains multiple clusters in 
symmetrical areas and can still resolve the correct position when unique areas are observed. 

3.3.1 Simulated Data 

For simulated environments, we generated two highly symmetrical maps to test on.  Testing MCL 
and Cluster-MCL using these maps, we observed that Cluster-MCL correctly maintains all equally 
probable clusters, while ordinary MCL incorrectly and prematurely identifies a cluster around a single 
location.  In Figure 3-2, we display the results of Cluster-MCL using one of the maps, and we can 
clearly see that there are multiple distinct clusters.  Notice that Cluster-MCL maintains a posterior 
belief comprised of four distinctive poses, in contrast to conventional MCL, whose outcome is shown 
in Figure 3-1.  Moreover, the clusters in Figure 3-2 are all just about equally probable, as 
demonstrated by our observation of the constant trading off of which cluster is most probable.  We 
obtained similar results on the second map, which was a simple rectangle.  These perfectly 

 
(a)       (b)  

Figure 3-1: Global localization using ordinary MCL 

 
(a)       (b)  

Figure 3-2: Global localization using Cluster-MCL.   
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symmetrical maps demonstrate that our algorithm correctly solves the bias problem of section 2.2.4 in 
symmetrical environments, preventing MCL from localizing to only a single location.  

In Figure 3-2, the extra cluster (circled) is a randomly drawn cluster, used to make Cluster-MCL 
robust to the kidnapped robot problem. 

3.3.2 Real Data 

To demonstrate the workings of our algorithm in practice, additional tests were performed using data 
collected from two real world environments.  Our first environment consisted of a long corridor in 
Wean Hall at Carnegie Mellon University, with equally spaced doors and few distinguishing features, 
thus providing an environment with some symmetry.  Our second environment consists of a room in 
the Gates Building at Stanford University, with two entrances opposite each other, two benches 
symmetrically placed and a file cabinet in each corner of the room.  The datasets in both locations 
were collected using a robot equipped with a laser range finder.   

From these environments we collected nine datasets.  From Wean Hall, we collected four datasets.  
In each dataset, the robot was given a different path with different features of the environment 
observed.  Of the four cases, MCL was only able to correctly localize in three of them, while Cluster-
MCL correctly identified the robot’s position in all cases.  In Figure 3-3, a comparison is given 
between MCL and Cluster-MCL on a particular dataset, number 3, from Wean Hall.  On multiple 
executions over that particular dataset, ordinary MCL failed 100% of the time while Cluster-MCL 
had a 100% success rate.  We show that ordinary MCL converges to the wrong location, while 
Cluster-MCL correctly identifies the robot’s position.   

In the Gates Building environment, five datasets on two different maps were collected.  In all cases, 
Cluster-MCL performs at least as well as ordinary MCL.  In four of the datasets, MCL and Cluster-
MCL both correctly identify the robot’s location.  However, in the final dataset, MCL failed to 
consistently identify the correct location of the robot, while Cluster-MCL was able to localize to the 
correct position.  The difference between the Wean Hall and Gates datasets is in the level of 
symmetry.  To demonstrate the benefits of Cluster-MCL, we chose a more highly symmetrical 
environment in Gates and collected datasets which had two possible localizations until the final 
segment of them.  We ran MCL and Cluster-MCL several times on those datasets and the results 
show that MCL had 50% accuracy in determining the correct position, while Cluster-MCL had 100% 
accuracy.   

These data sets demonstrate that Cluster-MCL can correctly converge to the single correct location 
even as it maintains several high probability locations.  Although these environments are symmetrical 
around the initial position of the robot, it eventually travels to a unique area.  If the global localization 
algorithm converges to a single location within the symmetrical area there is a good chance that the 
location is incorrect.  However, Cluster-MCL can maintain multiple hypotheses across the 
symmetries and eventually apply data from the unique areas to determine the correct cluster.  These 
experiments demonstrate that the algorithm can determine a single correct location even as it 
maintains multiple clusters to handle symmetry. 
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 (a)        (b)  

Figure 3-3: Results of MCL and Cluster-MCL on Wean Hall dataset 3.   

MCL converges to an incorrect cluster in (a), while Cluster-MCL converges to the correct 

location in (b).  
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3.4 Conclusion 

In this chapter we introduced a cluster-based extension to MCL localization.  Ordinary MCL can fail 
if the map is symmetrical, however, we proposed a method that retains multiple hypotheses for the 
robot’s location, consistent with sensor data.  Our method involves clustering the points, and then 
tracking the clusters independently, so as to avoid discarding other possible locations in favour of the 
most probable cluster at the current time step.  By considering the probability of multiple clusters 
over a longer time, we are able to get a more accurate estimate of their likelihood.  We have shown 
that this method satisfies the derivation of MCL and that the additional information we take into 
account allows us to eliminate some of the problems in MCL, as described in section 2.2.4, and better 
approximate the true posterior.  Our experiments show that Cluster-MCL performs at least as well as 
ordinary MCL on several real datasets, and in cases where MCL fails, Cluster-MCL still finds the 
correct location.  Finally, we have shown that Cluster-MCL maintains all of the correct possible 
locations in symmetrical environments, while MCL converges to a single, often incorrect, cluster. 

Cluster-MCL might also provide benefits for planning in dangerous environments, since the 
planner could consider a set of high probability locations and avoid any actions that would be 
dangerous if the true location were any member of that set.  With ordinary MCL only a single 
location exists and the planner might not be aware of possible problems if the location is incorrect.  
The robot might also be able to decide to search for distinct features in an attempt to resolve the 
uncertainty between multiple clusters.  Allowing a planner to consider multiple possible locations 
could be beneficial in many situations. 

The primary benefit of Cluster-MCL is that it reduces the bias problem in MCL caused by the 
particle filter of the prior distribution not representing some possibilities.  By using multiple, 
independent clusters, the algorithm continues to consider lower probability locations, instead of 
relocating all the particles to the most likely region.  Although it requires more particles than standard 

(a)       (b)  

Figure 3-4: Results of MCL and Cluster-MCL on Gates data.   

Cluster-MCL tracks multiple possible clusters in (a) while ordinary MCL converges to a 

single, incorrect, cluster in (b). 
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MCL, Cluster-MCL allows particle filter based localization to be successful in many situations where 
standard MCL is infeasible, allowing robots to work in more areas.  Maintaining the lower probability 
clusters, while still providing a single high probability location, is a powerful addition to MCL. 
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Chapter 4 

Dynamic Motion Models in MCL 

4.1 Introduction 

Most of the time, Monte Carlo Localization works properly, finding the correct localization for the 
robot.  However, it is possible to correct various errors in the models to allow MCL to converge to a 
correct solution even more accurately.  Although improvements may be unnecessary when the 
algorithm is already working, by making corrections, the errors should not build up, and future 
situations may be easier to solve correctly.  Since minor errors in MCL can combine to produce 
problems, reducing minor errors when they have little impact prevents those same errors from 
combining with other errors to cause localization failures. 

One situation where reducing minor errors is critical is in the case of global localization.  In this 
case, the entire space must be searched and minor errors can easily cause global localization to fail.  If 
some of these minor errors can be removed during ordinary execution, then global localization in the 
future may be easier. 

In this chapter, I demonstrate that it is possible to update the parameters of the motion model 
during execution of MCL to provide a more accurate idea of how the robot moves through the 
environment.  In general, a single, simplified, motion model is created that reflects some idea about 
how a robot moves.  This model is necessarily a generalization because the robot’s motion is affected 
by various changing situations, such as the surface it moves on, and possibly the power of the 
batteries or the inflation and wear on the tires.  While all of these situations could be monitored and 
manually compensated for, it would require an enormous amount of work to create a motion model 
that reflected all of these different states.  It is also impossible to predict all possible circumstances, so 
such a complex model would be invalidated by any unanticipated change in conditions.  By 
automatically updating the motion model according to the observations, it is possible to optimize the 
model to any situation, even if that situation has not been predicted in advance.  As the model is 
updated, errors in MCL due to the motion model are reduced, leaving greater tolerance for errors 
caused by other factors. 

Once the motion model is updated automatically, it becomes possible to easily use a different 
model.  Ordinarily, a more complex model is impractical because every parameter must be manually 
adapted to each environment.  To simplify the work required to adapt MCL to a new situation, the 
simplest possible motion model is used with the minimum number of parameters to tune.  However, if 
we can update the parameters dynamically, a more complex model can be used.  Since the parameters 
do not have to be manually tuned, the additional complexity does not require additional user work.  
Increasing the complexity of the motion model allows it to more accurately represent various 
conditions which would be inefficient to model manually.  It also becomes possible to use a hardware 
specialized model.  Even though some implementations use a complex or specialized manually tuned 
model, such a model is too difficult to generate in most situations.  It is especially useful to increase 
the number of parameters in the motion model when they are determined separately for each region.  
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The regional algorithm benefits from being able to more closely adapt the representation to reality in 
each location. 

Similar work on automatically determining motion models has been done by [Eliazar and Parr 
2004; Kaboli et al. 2006], however, these techniques are not developed as real time dynamic 
algorithms.  They also do not consider determining separate parameters for different regions.  [Kaboli 
et al. 2006] use training data from a robot to calculate better parameters for MCL in an offline 
algorithm.  [Eliazar and Parr 2004] apply an Expectation Maximization algorithm to data from 
FastSLAM in order to update the model.  Although they consider using it during the execution of 
FastSLAM, their suggested technique is to detect changes in conditions and then use the EM 
algorithm on a small set of data, causing a temporary reduction in the performance of FastSLAM.  
My own algorithm, although it may not produce as accurate results as these algorithms, is unique in 
providing a real-time solution which can also be used to determine separate parameters for various 
regions. 

4.2 Dynamic Motion 

The MCL algorithm, as described in section 2.2, depends on certain static parameters that must be 
manually tuned for each implementation.  In particular, the sensor model relies on a static map of the 
environment, while the motion model, p(xt | xt-1, ut), requires parameters that reflect the specific 
robot’s motion in the particular environment.  Since most interesting problems occur in dynamic 
environments, or environments with different conditions in different areas, these static parameters are 
only a broad approximation.  Fortunately, MCL is robust to errors in the map and motion model and 
will successfully localize a robot as long as these parameters are a reasonable representation.  
However, the more error there is in the static parameters, the less tolerance the algorithm has for 
errors from other sources.  For example, if the environment changes so that the map becomes less 
accurate, perhaps because of furniture being moved, then an error in the motion model might put the 
robot in the wrong location.  If the changes in the map make an incorrect location look correct to 
MCL, then there is far less tolerance for the motion model to predict incorrect locations.  Either of 
these errors might be recoverable on their own, but both together could cause a localization failure.  If 
the motion model is correct, then the robot’s next location will be predicted correctly, and the fact that 
there is a similar location somewhere else won’t matter.  Similarly, if the map is accurate, then an 
incorrect prediction from the motion model will be low probability and will die out in favour of the 
correct location.  Over time, the errors caused by each static parameter add to the overall error, 
reducing MCL’s tolerance towards additional errors is reduced until it becomes necessary to manually 
correct the parameters. 

In the following subsections I give a description of the error in the motion model and define the 
necessary parameters for representing it.  I also describe some additional motion models that are 
effective with the dynamic motion model algorithm.  Finally, I explain how the MCL algorithm can 
be updated to implement dynamic motion models.  The last subsection details the methods for 
verifying the optimization algorithm being used. 
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4.2.1 Motion Model Error 

On each step of execution, MCL uses the motion model to predict a new location for the robot, and 
then uses the sensor model to correct that location.  Before the resampling step, the mean of the 
particles represents the location determined by the motion model.  After resampling, the mean 
represents the location of the robot according to the algorithm.  This means that a side effect of 
executing MCL is a list of errors in the motion model.  By recording these values, we can 
dynamically generate a set of errors that can be processed to correct the model.  Since each correction 
comes attached to a particular location, we can even record in what part of the environment the error 
occurred. 

Given a set of errors, it would be quite easy to determine the variance of a Gaussian distribution.  
However, with the Gaussian motion model we are using it is not quite so simple.  The key realization 
is that we are not trying to calculate the variance, we are trying to find a parameter of the variance.  
Remember that the motion model for a differential drive robot depends on three parameters, range 
error, turn error, and drift error, represented as (kr, kθ, kd).  If we let r be the distance travelled and θ 
be the distance turned, while r and θ are the estimations of these values returned by the motion model, 
then the distributions become: 

),(),,( rkkNrkrNr dr ×+×=×= θθθ θ  4-1 

which are both single valued Gaussians.  During the execution of MCL proposed values {r, θ} are 
produced by the motion model.  Then, the update and resampling steps produces a corrected location 
from which we determine the actual motion {r, θ}.  Thus, from MCL we are given a set of {r, θ, r, θ} 
values and we wish to optimise the models in the parameters {kr, kθ, kd}.   

4.2.2 Variance Parameters 

Because we wish to determine parameters to the variance, instead of the variance itself, no standard 
technique for estimating Normal distributions will work.  We cannot simply determine the mean and 
variance of the set of error values and use a single Gaussian distribution with those parameters.  In 
fact, the problem is no longer a single distribution, but rather a set of Normal distributions, one for 
each value of (r, θ).  Fortunately, the problem can be solved if we treat it as a general equation, 
instead of specifically as a probabilistic distribution.  The Gaussian equation for r is: 
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Since we want to have an accurate model, we want the value of kr that maximizes the probability.  
Given the set of data produced by MCL, we would like to maximize the probability obtained over that 
entire sample space. 
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Of course, (4-3) is a little unwieldy to calculate, but a standard trick is to notice that if we 
maximize log(p(r)) we also maximize p(r).  Thus we are left with: 
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which is quite straightforward to maximize.  A similar process for θ gives us a slightly more 
complicated equation which is just as easy to solve. 
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Using an efficient nonlinear optimisation algorithm, we can maximize these equations over the 
parameters kr, kθ, kd for sets of data obtained by MCL in real time.  Although the functions are not 
concave in these parameters, we have good starting parameters available, since MCL is already using 
a motion model.  The current parameters make a good starting point for the optimization.  The new 
parameters can be used immediately, while the data is still collected to further refine them. 

4.2.3 Expanded Motion Model 

Since the motion model will be optimized automatically, certain simplifications that were used to 
make finding the parameters easier are no longer necessary.  In particular, the assumption that the 
mean of the error in motion is zero can be discarded.  Although the robot’s odometry is designed so 
that the mean of the motion is the reported motion, in any particular situation there may be a 
difference.  Certain conditions affect the mean as much as they do the variance.  For example, 
different surfaces will cause the wheels to slip so that the robot moves only a percentage of its 
reported motion.  Similarly, traveling downhill might cause the robot to travel further than the 
odometry.  Although the odometry still reports mean values without systematic error when 
considering the entire history of the robot, in any subset of the robot’s motion there may be some 
systematic error.  Expanding the motion model to represent a consistent error results in two new 
parameters, lr, representing the percentage of the distance traveled and lθ, representing the percentage 
of the angle turned.  Revising the Gaussian distributions with these parameters gives us: 

),(),,( rkklNrkrlNr drr ×+××=××= θθθ θθ  4-6 

Of course, there are now two parameters to optimize for the range distribution, and three for the 
angular.  However, although added parameters make the derivation more difficult, the actual 
computation during MCL doesn’t change.  Using the same procedure as for the original motion 
model, we want to maximize the probability p(r) over the error samples. 
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In order to perform the maximization we take the product over the data set.  As usual, the 
maximization is performed over the logarithm in order to simplify the computations. 
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The equations for the angular probability are similar, resulting in a maximization function little 
changed from the previous motion model. 
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These equations are almost identical to those resulting from the original motion model, except for a 
single added parameter.  However, each distribution requires maximization over an additional 
parameter, bringing the angular error to three parameters and the overall motion model to five.  With 
this increased number of parameters to the optimization, it may be useful to use an optimization 
technique which takes into account the gradient and possibly even the Hessian of the optimization 
function.  Of course, there is no reason why such a technique could not have been used for the 
original problem as well.  Fortunately, these derivatives are easy to calculate in symbolic form and 
the resulting equations are also easy to instantiate for any particular values.  Of course, the size of the 
Hessian matrix increases with the square of the number of terms.  However, because of the 
duplication and the independence between range and angle, it is still manageable in this case. 

For the range distribution, there are two first order derivatives and three second order ones.  Since 
we are maximizing equation (4-9), that is the one we differentiate. 
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The derivatives for the angular distribution are derived in the same way, except there are three first 
derivatives and six second derivatives.  All the derivatives for both distributions are simple to 
calculate numerically for a set of error values and allow any gradient or Hessian based nonlinear 
optimization technique to be used. 

4.2.4 Specialized Motion Model 

So far, we have been using motion models that apply to virtually any near-holonomic ground based 
robot.  General motion models are common because they can be adapted easily to any type of robot.  
Changing the physical device only involves altering the parameters of the model.  Since a static 
model usually has general parameters there is minimal work involved in adapting it to different 
hardware.  However, using a more specific motion model that represents the specific platform 
involved requires completely redefining the model for each new robot.  A new static motion model 
also needs extensive experimentation in order to determine the parameters, since there is unlikely to 
be data on the parameters used for a similar robot.  With a general model the parameters used for 
other hardware can suggest approximate values for a new system.  However, if each model is specific 
to the underlying robot then there are no similar implementations to check.  Each instance requires 
independent experimentation to generate working parameters for the specialized motion model.  
Because of this added complexity, more general models are often used which can represent entire 
classes of robots.  Figure 4-1 shows the geometry of the motion model based on the physical 
configuration of the robot.  sL and sR represent the displacements of the left and right wheels.  Given 
the robot wheelbase b the two displacements produce the x and θ values necessary to calculate the 
robot’s motion. 

However, a motion model which reflects the physical construction of the robot may offer some 
benefits which, even if they do not outweigh the ease of using a general model, are still useful.  By 
representing the hardware directly we can create a specialized motion model which uses fewer 
parameters to provide the same abilities as a more complex, general model.  Our expanded model 
uses five parameters, {kr, kθ, kd, lr, lθ} to represent our two wheeled, differential drive, near-

 

Figure 4-1: The geometry of the specialized motion model.   
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holonomic robot.  However, with only two independent, motorized wheels a specialized model 
represents the same information with fewer parameters.  Each wheel can be modelled with a 
parameter on variance and another on the mean, resulting in four parameters overall.  Labelling these 
parameters with L and R for the left and right wheels we have {kR, kL, lR, lL}.  A basic model which 
assumes no systematic error would only require two parameters, {kR, kL}.  Examining Figure 4-1 we 
see that if we have the wheel displacement of the left and right wheels (sL and sR) we can determine 
the relative angle of motion θ, the displacement x, and the radius of the sector r using the equations: 
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Where b is the size of the robot’s wheelbase.  Rearranging these equations to solve for x, r and θ 
we get: 
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With these equations we can apply a motion model to the wheel displacements sR and sL and from 
the results obtain the actual motion of the robot in Cartesian space.  The motion model is defined by 
two independent Gaussian distributions of the same form.  We do not have the same problem as with 
the general model where the variance of one variable depends on the estimated value for the other.  In 
the models described previously, the error in the angular distance moved depends on the value for 
range, but in this model, the two wheels are completely independent. 

)ˆ,ˆ( RRRRR skslNs =           )ˆ,ˆ( LLLLL skslNs =  4-18 

With these equations, the specialized motion model that more accurately reflects the characteristics 
of the robot can be used in the dynamic motion model algorithm without causing any important 
changes.  The underlying MCL and dynamic motion systems do not change in any way.  When the 
robot moves, the sR and sL values are received from the wheels and are sampled from the motion 
model as defined in equation (4-18).  Then the relative angle change and displacement are calculated 
using (4-17).  Finally, the MCL update step is performed and the corrected sR and sL values are 
determined from the robot position using (4-16).  The behaviour of MCL is unchanged and the 
dynamic motion algorithm merely has to optimize the proper equations.  Also, no exhaustive 
experimentation is necessary to determine the parameters for the new model.  Instead, high variance 
parameters can be selected which work for long enough that the dynamic motion model algorithm can 
correct them.  Eventually, the model will be optimized further than any amount of testing for static 
parameters could accomplish, since it will be able to take into account transient conditions that static 
parameters could not represent.  For any particular physical robot, once a specialized motion model is 
defined, the dynamic algorithm can optimize the parameters, allowing the same algorithm to be used 
for multiple, different, highly specific implementations. 
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4.2.5 Updated MCL 

Once we have new motion model parameters it is necessary to use them in MCL.  However, if 
dynamically modifying the parameters violates the definition of MCL then it will be necessary to 
rederive it in order to prove that it is possible to use the parameters.  Remember that MCL was 
defined in equation (2-12) as: 

 4-19 

Altering the parameters or even redefining the motion model affects only the predictive part of the 
equation, which is p(xt | xt-1, ut).  Technically, using past data to update the motion model violates the 
Markovian assumption, but since the update does not occur inside equation (4-19) we continue to 
assume it.  Notice that any change to the motion model, even replacing it with entirely new equations, 
or replacing it with an infinite set of equations that change over time according to the results of MCL 
itself, does not alter the formal definition.  As long as the resulting location of a motion is determined 
by the motion ut and the prior location xt-1, equation (4-19) is unaffected.  MCL only needs to ask the 
motion model for a possible location, given a starting location and odometry, the actual mechanism 
by which the model fulfils that request is unimportant.  Thus, despite all the underlying functionality 
determining the parameters of the motion model dynamically, the derivation of MCL, including the 
motion model, remains constant.  It is only when MCL is implemented and the model must actually 
be calculated that the differences occur.  Since none of the parts of the MCL equation are changed by 
dynamic motion models, the theoretical foundation of MCL remains unchanged and all of its features 
apply equally to the dynamic algorithm. 

4.2.6 Algorithm 

Now that we have a method to update the motion model dynamically, we need to integrate it with 
MCL, hopefully without significantly affecting the runtime.  One of the benefits of MCL is that it is a 
fairly low cost algorithm, computationally, and it is important that we do not make changes that 
significantly increase the amount of time it takes to run.  Since MCL must run in real time, whatever 
processing is necessary to update the motion model must not delay localization.  With these 
requirements in mind, our dynamic motion model MCL algorithm provides a minor alteration that 
allows the parameters of the motion model to be recalculated and used. 

At each MCL update step, a {r, θ, r, θ} data point is recorded.  Because the estimated points r and 
θ are determined exclusively by the motion model, the only source of error between them and the true 
values must be caused by the motion model.  The true values r and θ are calculated by the MCL 
algorithm and, as long as the robot remains localized, they must be correct.  Thus, the error values 
used are caused only by the motion model and not by any other possible source of error.  When 
enough new data points are recorded to make it worthwhile to calculate new parameters, the equation 
is maximized in the background, using whatever processing power is available when localization is 
finished.  The actual number of data points needed for a successful update varies based on the 
complexity of the model and the optimization function used, but in practice MCL updates occur so 
frequently that there is no problem collecting the requisite number.  For the experiments described 
here, between 50 and 100 data points were sufficient to produce good values.  When the 
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maximization is complete, the new parameters are reported to the MCL algorithm.  In fact, MCL 
itself is unaware of the changing parameters, since it just runs normally. 

The logarithms of the equations for the systems of Gaussians, as defined in sections 4.2.2 and 4.2.3, 
are simply ordinary nonlinear functions that are maximized by finding the parameters which result in 
the greatest values.  Of course, it would be impossible to try to find these parameters by trying every 
possible combination of values, especially since they are real valued.  However, nonlinear 
optimization is a well studied area and many robust techniques exist for performing this operation.  
Any relatively efficient nonlinear optimizer should be effective and, although these algorithms can be 
complex, they are so commonly used that often an existing implementation can be found.  The major 
problem with nonlinear optimization is caused by local minima in the function, which can sometimes 
cause suboptimal values to be returned.  However, the best solution to this problem is to give the 
optimization algorithm initial values which are relatively close to the optimal ones.  In the case of the 
motion model, the existing parameters have already been effective in localization and are thus 
probably fairly close to the optimal ones.  Thus, by using these parameters as a starting point, most 
nonlinear optimizers should solve the maximization problem very quickly.  The technique we used 
was the simplex search method of [Lagarias et al. 1998], as implemented in the Matlab program, but 
any similar algorithm should succeed. 

In order to reduce the complexity of the calculation, only the most recent set of errors are used.  
When a predetermined number of corrections are recorded, each subsequent observation causes the 
oldest observation to be removed.  This creates an upper bound for the maximization routine and also 
allows the dynamic model to update to changing conditions.  For example, if the robot’s tires deflate, 
or water is spilled on the floor, the motion of the robot would change.  In that case, after a certain 
number of updates, all of the old data would be removed and the model would be calculated entirely 
based on the changed conditions. 

In order to accommodate different conditions in different areas, data points are not stored globally 
but are instead recorded by region.  Each region of the map has its own collection of data.  If there are 
insufficient points to calculate the parameters, then the previous parameters are used.  However, once 
the robot traverses an area enough that it can update the motion model, it calculates the parameters 
and stores them with the area.  When it subsequently enters the same region, it can load the specific 
parameters.  Any reasonable algorithm for defining regions can be used, smaller regions will be more 
accurate but will take longer to receive enough data, while larger regions will update sooner, but may 
represent multiple conditions.  We used a predefined set of regions determined by the peaks in a 
potential field over the map.  These regions tend to cover specific rooms or corridors where there is 
little change in the motion of the robot.  Although this is not guaranteed, it has been the case in the 
environments used for the experiments.  Since the motion data is recorded by region, the regions are 
kept distinct, with the robot traveling in only a single region at any time.  If the regional algorithm 
fails to adequately determine regions for a particular environment, a more accurate detection of 
regions should be used, or the dynamic motion model algorithm limited to the global implementation. 

The results of this dynamic motion model algorithm are a map annotated with the motion model 
parameters for different regions.  Aside from changing the motion model during execution, the map 
can also be used to provide additional data for planning or analysis.  For example, if a region causes a 
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high variance, then it might be better for the robot to avoid that region when path planning.  Also, a 
significant change in variance might indicate some kind of anomaly that should be dealt with.  A 
robot might also use the different parameters to identify different surfaces in the environment for 
another machine, perhaps planning a route that avoids certain kinds of surface.  If the expanded 
motion model is used, the additional parameters on the mean can be even more informative.  The lr 
value indicates how efficiently the robot can move on the surface while the lθ parameter gives a good 
indication of the robot’s manoeuvrability.  

Although creating dynamic motion models uses successful localization to correct errors in the 
model, it does not preclude using the same data to correct other errors.  Since the MCL algorithm 
compensates for many different sources of error to provide accurate results, reducing those errors 
does not invalidate other functions which depend on correct localization.  The various errors do not 
make localization less accurate.  Instead, they build up until localization fails completely.  If 
localization became less accurate, that would mean that the robot’s most probable location was being 
reported by MCL as offset from the correct position.  However, when this happens, particles will 
collect around the incorrect location.  Eventually, the bias problem from section 2.2.4 means that the 
correct location will be unrepresented.  At that point, the same error that identified the incorrect 
location would continue to offset the prediction, causing it to move at random.  Thus, if MCL is 
working, it provides an accurate location, regardless of the specific errors in its various models.  
Correcting some of these errors allows MCL to be more tolerant of other sources of error.  In 
particular, it is possible to dynamically update the map of the environment as in Chapter 5, while 
simultaneously dynamically updating the motion model.  There is no reason why other parameters 
could not also be dynamically updated at the same time.  Another problem is to determine whether 
MCL is actually working.  This can be determined easily by observation if the robot’s actual path is 
known, but for autonomous execution a simple heuristic can provide an estimate.  One technique, as 
described in [Thrun et al. 2005] (Section 8.3.5), uses the sum of the individual particle weights.  If 
these weights fall below some threshold then localization is considered to have failed. 

4.2.7 Nonlinear Optimization 

The primary calculations of the dynamic motion model algorithm are performed by the optimization 
step where the new parameters are determined.  Although nonlinear optimization is usually a 
straightforward operation, there can sometimes be problems in its execution.  These occur primarily 
when there are many local minima in the function being optimized.  As described in Section 4.2.6, we 
optimize using a simplex search algorithm [Lagarias et al. 1998] implemented by the Matlab 
fminsearch algorithm.  However, this algorithm updates the parameters to be closer to the nearest 
local minimum to the starting point and does not use any techniques for finding the overall global 
minimum.  If the dynamic motion model equations have local minima that are different from the 
global minimum, then simplex search may not find the optimal values for the parameters.  In order to 
avoid the problem, we need to use starting values which have the global minimum as the closest local 
minimum.  If that is not the case, then some form of optimization which searches beyond local 
minima is necessary.  These algorithms, however, are more complex and time consuming than basic 
local search. 
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The primary solution to local minima is to choose a starting value that is very close to the optimal 
value.  Unfortunately, the definition of close depends on the function being optimized.  Also, it is 
sometimes nontrivial to estimate good starting values that will result in the optimal parameters.  
Fortunately, in the case of dynamic motion models a good estimate is available without requiring any 
additional computation.  The prior motion model parameters have been effective in tracking the robot.  
Although they are probably not optimal, they should be a good approximation to the optimal 
parameters.  Local search should be able to quickly converge when the prior values are an effective 
approximation of the optimal values.  However, without knowing the actual function that relates the 
parameters to the error we cannot say for certain that there are no local minima in any interval, 
regardless of how small it is.  Without knowing the characteristics of the error function there is no 
way to determine the maximum allowable difference between the starting and optimal parameters.  
Further, although the priors provide good starting parameters, there is no clear method for improving 
the estimate if it turns out to be insufficiently accurate.  Although there is no way of knowing the 
error function in a closed form, we used the data from a run of the MCL algorithm to plot a surface of 
the range error parameters versus the error in the estimate.  In the experimental evaluation section 
(4.3) Figure 4-8 shows the entire surface over the possible parameter values while Figure 4-9 shows 
just the area around the global minimum.  From these graphs we can see that, at least in this case, the 
error versus parameters function is relatively smooth and there are no local minima to disrupt the 
optimization function.  Figure 4-8 also shows that the function is relatively flat for much of the kr 
dimension and it is possible that some sets of data could cause a variation here that would create a 
local minima, but on average these should be smoothed out over time, given the overall shape of the 
surface. 

In order to ensure that temporary conditions during the run of the dynamic motion model algorithm 
are not causing local minima which are not apparent in Figure 4-8 and Figure 4-9, we tried the 
algorithm with another optimization technique that is less affected by any local minima.  Instead of 
using the prior parameters as initial values we performed the optimization multiple times with random 
initial values.  The resulting parameters with the lowest error were used in the dynamic motion model 
algorithm.  Of course, randomly restarting the optimization requires significantly more processing, 
resulting in less frequent updates, but it should eliminate errors caused by local minima.  These 
results, shown by experiments J and K in Table 4-1 (page 62), indicate that the loss in processing time 
introduces more error than any gains based on local minima.  Figure 4-8 seems to indicate that there 
are no such local minima in the functions, while these experiments indicate that there are no practical 
effects.  Even if temporary local minima are being introduced by the reduced data sets being used for 
optimization, there is no evidence that these have any effect on the accuracy of the dynamic motion 
model algorithm.  The basic simplex search technique using the prior parameters as the starting value 
should be sufficient to optimize the motion model.  This is fortunate because using multiple random 
starting values for nonlinear optimization requires significant additional processing.  The number of 
restarts required to find the local minimum increases exponentially with each additional parameter, so 
that only the simplest motion models can be used for this technique.  As the number of parameters 
increases it becomes impossible to use the slower method, so it is fortunate that our experiments 
indicate that only a single search is necessary.  
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4.3 Experimental Evaluation 

The dynamic motion model algorithm was tested using a 2 wheeled Pioneer 3-DX differential drive 
near-holonomic robot equipped with a 180 degree SICK laser rangefinder.  Data gathered by the 
robot over a traversal of the environment shown in Figure 4-2 was processed by both the normal 
MCL algorithm and various implementations of the dynamic motion model MCL algorithm.  Since 
the environment is an actual building, various sources of localization error such as moving people, 
altered furniture, and opened or closed doors occur throughout.  The parameters of the motion model 
were calculated by maximizing the equations as described using Matlab’s fminsearch function.  The 
results of the experiments, as given by the average percent errors in the robot’s motion, show a 
marked improvement using dynamic motion models. 

The primary question is whether dynamically updating the motion model parameters as described 
in Section 4.2 provides a benefit to the accuracy of the prediction phase of MCL.  The experiments 
were selected to demonstrate the difference in error between the standard implementation of MCL 
and various dynamic techniques.  By demonstrating a decrease in the error of the prediction phase 
using dynamic parameters, I show the benefit of my algorithm in various implementations. 

 

Figure 4-2:  First environment used for experiments. 

The occupancy grid map of one of the environments used for the experiments.  The 

environment had concrete floors with no carpeting throughout. 
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The original MCL algorithm as described in section 2.2, with general parameters for the basic 
motion model, was used as a baseline for the tests, with results as described in experiment A (see 
Table 4-1).  A modification of the standard technique with parameters optimized offline was 
performed in experiment B.  The subsequent experiments C through F used the dynamic techniques, 
with experiments C and D using the basic motion model as described in Section 4.2.1.  Experiments E 
and F used the expanded model described in Section 4.2.3.  Finally, the motion model parameters 
were updated globally for experiments C and E and were updated separately for each region of the 
map in experiments D and F. 

In addition to the basic experiments some additional data was gathered to test other techniques.  
Experiments J and K test an optimization technique involving restarting the simplex search at 
multiple random points.  This was attempted using both the global (J) and regional (K) algorithms.  
Also, a motion model based on the particular hardware in the robot was tested in experiments G, H, 
and I.  G shows the results of static parameters while H and I are the global and regional algorithms, 
respectively. 

4.3.1 Static Motion Models 

 

Figure 4-3: Graph of distance travelled vs. range error for standard technique (Experiment 

A). 

Graph of the range error compared to the distance travelled for ordinary MCL.  Note the 

two extreme outliers which are particularly hazardous for localization. 
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At first, the original, standard MCL algorithm was used with some default parameters for this class 
of robot (Experiment A).  The default parameters and the standard, fixed motion model are the 
ordinary implementation of MCL.  Of course, the parameters are specified for the particular class of 
robot, but they have not been adapted to the environment or the details of the individual robot.  
Although these parameters work, they are general, high variance parameters that give fair results for 
any similar device.  With these parameters the average error was 1.7% for range and 4.5% for angle.  
Figure 4-3 shows the error in range versus distance moved for standard MCL.  As well as the average 
error, we can see some outliers that are particularly dangerous for localization.  A single motion with 
very high error is more likely to mislocalize the robot than several motions with more moderate error, 
since the location is corrected at each step.  Of course, any errors may combine with errors from other 
sources to cause a localization failure.  Because it is impossible to separate the angular error caused 
by turning from the angular error caused by range, any graph of angular error is not useful.  The 
purpose of this experiment was to provide a baseline for comparison with the dynamic algorithms.  
Obviously, dynamic motion models must show some improvement over standard MCL to be viable. 

Next, the dynamic motion model algorithm was used to calculate parameters based on the entire 

 

Figure 4-4: Graph of distance traveled vs. range error for optimal static technique (Experiment 

B). 

Graph of range error for the default technique using the optimal parameters.  Although some 

outliers have been removed, there is not much other improvement. 
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data set and MCL was run with these motion model parameters (Experiment B).  This method is 
called optimal because it uses the best static parameters that can be calculated.  The resulting error 
was 1.4% for range and 2.9% for angle.  Of course, in practice, this method is impossible, because it 
involves knowing the observations that will be made before they are actually recorded.  This method 
can be approximated by using a previous data set on the same environment to calculate the 
parameters, but it can never truly be implemented in real time.  Figure 4-4 shows these motion 
parameters in action.  Experiment B demonstrates the behaviour of the optimal parameters for a 
single, static motion model.  Dynamically modifying the parameters needs to show an improvement 
over this static technique in order to be a useful solution.  Otherwise, it would be simpler to determine 
the optimal parameters offline and never modify them.  An improvement over the results of this 
experiment proves that dynamic improvement of the parameters provides a benefit that cannot be 
reproduced with standard MCL.  Such an improvement would be based on compensating for various 
transient situations individually. 

4.3.2 Standard Motion Model 

The third test (Experiment C) involved dynamic motion models with global data.  The parameters 
were updated during execution according to the preceding localization corrections.  Motion error data 

 

Figure 4-5: Graph of distance traveled vs. range error for global dynamic technique 

(Experiment C). 

Graph of range error for the global dynamic technique.  The distribution becomes more 

compressed as the error decreases. 
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was collected globally, not separated by region, for this test.  With this method, 1.2% range error and 
2.6% angle error were recorded with characteristics as shown in Figure 4-5.  The improvement over 
experiments A and B demonstrates that a dynamic motion model provides a benefit over the standard 
technique, regardless of how good the static parameters are.  The ability to compensate for changing 
conditions is a successful addition to MCL. 

The full dynamic motion model algorithm was used next (Experiment D).  Each region of the map 
was updated with its own data and produced its own corrections.  This technique produced an error of 
1.4% for range and 2.8% for angle with characteristics as shown in Figure 4-6.  Although this 
experiment still provided an improvement over standard MCL, it did not improve over the results of 
altering the parameters globally.  The basic motion model was unable to represent regional conditions 
well enough to compensate for the slower rate of updates.  In the next section we can see that a more 
complex model allows the regional algorithm to provide an improvement, even in an environment 
without significant regional differences. 

 

Figure 4-6: Graph of distance traveled vs. range error for regional dynamic technique 

(Experiment D). 

Graph of range error for the regional dynamic technique.  Again a small improvement is 

apparent compared to previous techniques. 
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4.3.3 Expanded Motion Model 

All of these techniques were performed with the basic MCL motion model.  The final tests were 
made with the expanded model that included parameters on the mean.  These tests were only 
performed with the dynamic algorithms, since the static techniques would use parameters of 1.0, 
resulting in no change.  Interestingly, the global dynamic technique (Experiment E) performed worse 
with the expanded model using regions (Experiment F) with a range error of 1.4% and an angular 
error of 4.0%.  The reason for this is that the additional parameters in the model allow the algorithm 
to adapt better to highly local conditions, for example dirt or polish on the floor, or even the amount 
of wear caused by variable amounts of traffic.  Globally, these parameters will almost always be 1.0.  
However, if the model is being updated according to the preceding error samples, the mean 
parameters will never reflect the current area, instead adapting the model to the previous regions.  
Although the variance might remain constant globally, the systematic error is highly dependent on 

 

Figure 4-7: Graph of distance traveled vs. range error for regional dynamic technique with 

expanded motion model (Experiment F). 

Range error for the expanded motion model with the regional dynamic technique.  Not much 

improvement apparent, since the gains are mostly in angular error, which cannot be easily 

graphed. 
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region and adapting to a previous region will cause problems. 

However, the expanded model was very effective with the full, regional algorithm, improving its 
results beyond the global technique using the basic model.  The range error of 1.3% and angular error 
of 2.5% were slightly better than the standard technique (A), even though the environment had little 
variation in regional conditions and was more suited to the non-regional method.  The angular error, 
which is more important since it causes increasing error, is also improved from the optimal technique 
(B).  Figure 4-7 demonstrates this algorithm.  Comparing experiments E and F demonstrates that there 
are circumstances where the regional algorithm provides an improvement, even though experiments C 
and D show that sometimes the global algorithm is better.  The choice of algorithm depends on the 
specific model being used, as well as the composition of the environment. 

4.3.4 Comparison of Models 

As these results show, dynamic motion models are better able to represent the robot’s motion, and 
the prediction phase of localization becomes more accurate.  Table 4-1 shows a comparison of the 
various methods in the first environment section.  All of the dynamic methods give similar results and 
they all produce superior motion predictions to the static motion model method that is the base case 
(experiment A).  The particular method that is optimal in any given situation depends on the 
environment, although over the long run, the regional dynamic technique should produce the 
minimum error, especially if the expanded model is used.  However, this convergence may require a 
large number of traversals in order to get the necessary number of data points for each region.  Until 
execution reaches this point, the other techniques have a temporary advantage, since they require less 
data. 

Observing Figure 4-3 through Figure 4-7, we can compare a graphical representation of the error 
that in some ways is more useful than the error score.  Although all the graphs look similar, the 
outliers are reduced for the dynamic techniques.  It is especially obvious when comparing the default 
technique to the various dynamic techniques.  In localization, it is the outliers that are particularly 
dangerous since, regardless of the average error, if the predicted location is far enough from the actual 
location, localization may fail.  MCL suffers from bias caused by representing an infinite space with a 
finite sample set.  If a motion has enough error, there may be no particles at the correct location.  This 
would cause a localization failure.  The graphs show how the improved motion models reduce the 
greatest errors to improve localization more than is apparent from the percentage error. 

The technique of calculating the global optimum parameters provides very good results, especially 
in an environment like this with little change in surface.  Range error especially benefits from this 
technique, since it is relatively constant.  However, generating this model requires manual collection 
and processing of data before execution, which somewhat defeats the purpose of a dynamic 
algorithm.  The benefit is that offline processing can handle a larger number of data points, resulting 
in more accurate parameters.  Of course, any changes, such as tire pressure, will invalidate the model.  
Although this technique uses part of the dynamic algorithm, it is not truly dynamic nor is it usually a 
practical method.   

The choice between the two dynamic techniques depends on the circumstances.  If the environment 
has different surfaces then having the parameters change with the region provides a benefit.  If, on the 
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other hand, the surfaces are constant but the robot changes conditions, a globally dynamic technique 
will update more quickly, since the data points are all processed into the same model.  A situation 
where this is useful might be when the robot changes its behaviour as its battery drains.  The global 
technique could adapt faster to changing robot conditions, but it cannot recognize different surfaces.  
Note that the regional algorithm will eventually adapt to global conditions, but it will require more 
data since each region must be updated.  The choice depends strongly on the environment, although 
the regional method is more adaptable.  The regional technique also provides the opportunity to 
improve the motion model to more closely represent the actual conditions.  Increasing the complexity 
of the model can allow the variations between smaller regions to be represented, even though it takes 
more data to optimize the increased number of parameters. 

These results demonstrate that adding dynamic motion models to MCL provides a benefit to 
localization.  Although slightly different dynamic techniques provide different advantages, they are 
all superior to the static technique.  Aside from the tests described above, several other data sets in 
different environments were examined, with similar results.  One such test involved a similar robot in 
a different building where the floor was carpeted instead of concrete.  The map of the environment 
incorporated a serious error that caused localization to fail for most techniques.  One corridor was 
actually much shorter than it appears in the map, causing reported motion along part of that corridor 
to have a large systematic error.  Because of this, the range error in the dynamic techniques actually 
increases, as they increase the variance to handle the systematic error.  Only the regionally dynamic 
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Figure 4-8: Surface of the error for the range parameters. 

The surface shows how range error varies with the two range parameters for the data set 

collected by the dynamic motion algorithm 
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technique was able to successfully localize in this environment.  Adding the expanded model caused a 
further improvement, decreasing angular error while increasing the range error even more.  Adapting 
the parameters to give higher probability to motions which suffered from the mistake in the map 
caused motions not affected by the problem to have a higher error.  The variance in the model had to 
take into account both the normal motion of the robot and the discontinuous motion.  The result is an 
increase in the reported error in the prediction, since every motion had to be predicted in the correct 
location for both situations.  Naturally, the prediction that is incorrect increases the reported error, 
even though the robot is successfully tracked.  These results can be seen in the second environment 
section of Table 4-1. 

4.3.5 Random Restart Optimization 

Certain additional experiments were performed to test the behaviour of the dynamic motion model 
algorithm under other circumstances that do not necessarily compare to the results of A through F.  
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Figure 4-9: The global minimum in the error surface for the range parameters. 

A zoomed in view for the error axis of the global minimum from Figure 4-8.  Although there is 

not much change in error versus kr for much of the range this surface shows that a global 

minimum does exist.  
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Throughout these experiments we have used a standard local search technique for optimization, 
however this method may not be accurate.  As discussed in Section 4.2.7, various circumstances 
might require a global optimization technique.  Although the surface in Figure 4-8 indicates that there 
is only a single minima in our function, various local conditions might cause temporary local minima.  
Experiments J and K test the dynamic algorithm with multiple, random starting points for 
optimization which should eliminate the problems of local minima.  Of course, this type of 
optimization requires significantly more processing than local search, but it might be worth it if doing 
so solves a local minima problem.  However, we see from the results that instead using multiple 
starting points causes a significant reduction in the performance of the dynamic motion model 
algorithm.    The decrease in performance is caused because the increase in processing time for the 
optimization makes it impossible to have up to date parameters.  Much of the data must be discarded, 
or is so old that its relevance has passed.  This is especially obvious with the global technique (J) 
since that requires constant updates.  For the regional technique (K) there is less of an effect because 
the calculations can be performed for one region before the robot re-enters it.  However, some data is 
still lost because there is no longer time to develop parameters for all regions.  Updating the 
parameters dynamically according to circumstances that have changed a significant time previously 
actually harms the performance of the algorithm, making it worse than the default case (A).  Using 
multiple starting points results in 1.7% error for range and 14.7% error for angle using the global 
algorithm (J) and 1.3% range error with 5.3% error for the regional algorithm (K).  These experiments 
demonstrate that global optimization methods reduce the performance enough to offset any possible 
gains from avoiding local minima for the dynamic motion model algorithm and that local methods, 
such as the fminsearch function being used are sufficient. 

4.3.6 Hardware Specialized Model 

Finally, the basic dynamic motion model algorithm was tested with a model representing the 
specific hardware configuration of the robot.  Experiment G shows the results of MCL using static 
parameters for this model.  Because no experiments were performed to optimize the parameters, the 
error is relatively large with 1.6% range and 22.5% angular error.  However, the global dynamic 
algorithm (H) produced a large improvement resulting in 2.0% range and 6.7% angular error.  Finally, 
the regional technique resulted in 2.3% range error and 4.1% angular error.  This model is notable 
because it requires fewer parameters than the comparable general model to represent the same types 
of error.  Although we used the standard types of motion error to demonstrate this specialized model, 
the results are difficult to compare to the other algorithms because, for the specialized model, range 
and angular error are correlated.  The original models generate the two kinds of error separately but, 
by modelling the wheels, all types of position error are correlated.  Although the error is worse than 
the original model the dynamic algorithm produces significant improvements over the specialized 
model with default parameters.  It cannot produce improvements beyond the ability of the model to 
represent the robot.  We also notice that the range error actually increases with the dynamic 
algorithms.  However, the overall error is decreasing since the improvement in angular error is much 
greater than the increase in range error.  It is hard to say what the relative importance of range error 
versus angular error is, but because of the potential for path divergence based on angular error we 
know that the weight of range error is lower.  Because the specialized model represents the physical 
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robot, the slight differences between the model and the robot cause a certain minimum error.  The 
important point is that the dynamic algorithm can produce an improvement using a specialized 
motion model that was previously impractical in many situations.  The ordinary model can be applied 
to many different robots and corresponds to what is actually observed during motion.  This means it is 
possible to adapt an implementation of the standard model to almost any robot, while the specialized 
model must be developed separately, with uniquely determined parameters, for each separate robot.  
Thus, even though the specialized model may be simpler, there is no pre-existing source for 
determining the parameters.  The large angular error in the static experiment (G) is the result of not 
performing exhaustive experiments to optimize the model.  However, with dynamic models the 
parameters can quickly be optimized to provide an acceptable amount of error.  These experiments 
indicate that regardless of the actual motion model being used, the dynamic motion model algorithm 
can update the parameters from reasonable starting values.  This result allows the algorithm from this 
chapter to be applied to localization on almost any robot, removing the need for determining the 
parameters by exhaustive experimentation. 

 

Table 4-1 Experimental results of all motion model algorithms. 

 First environment Second environment 

 % range error % angle error % range error % angle error 

 
Standard 
deviation 

Standard 
deviation 

Standard 
deviation 

Standard 
deviation 

Standard (A) 1.6592 .0116 4.5311 .2614 7.2343 .0362 5.9671 .1810 

Global Static (B) 1.3586 .0042 2.9509 .0340 8.6733 .0559 1.3428 .0351 

Global Dynamic (C) 1.2418 .0063 2.6320 .0330 9.5313 .0512 1.4835 .0435 

Regional Dynamic (D) 1.3882 .0067 2.7878 .0342 10.9178 .0473 1.7166 .0393 

Expanded Global (E) 1.4043 .0045 4.0654 .1126 11.9911 .0443 3.4840 .0980 

Expanded Regional (F) 1.2988 .0075 2.5213 .2333 11.2261 .0445 1.3250 .0439 

Specialized Static (G) 1.6325 .0183 22.4845 .0427 4.0386 .0860 75.6111 .0575 

Specialized Global 
Dynamic (H) 

2.0350 .0085 6.7398 .0262 4.8643 .0351 63.2888 .0799 

Specialized Regional 
Dynamic (I) 

2.3196 .0132 4.1357 .0717 2.5378 .0498 64.2121 .0598 

Random Restart Global 
Dynamic (J) 

1.6555 .0112 14.6604 .5088 12.5248 .0443 12.1703 .0980 

Random Restart 
Regional Dynamic (K) 

1.2975 .0040 5.3045 .1040 11.7484 .0445 2.1998 .0439 
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4.4 Conclusion 

This chapter shows the derivation and implementation of a technique for dynamically calculating the 
parameters of the Monte Carlo Localization motion model during ordinary execution of the 
algorithm.  The technique requires very little overhead and provides a strong benefit over the ordinary 
technique of using a static model determined experimentally from a similar robot.  In fact, the most 
common current technique is to estimate the model and modify it using trial and error until 
localization is successful.  The problem is that performing experiments to determine the parameters is 
a difficult and time consuming process.  Since the parameters of a real environment change over time, 
it is usually not worthwhile to develop an accurate model when an approximate one will still allow 
MCL to function.  My dynamic motion model technique provides a viable alternative to both these 
methods, allowing an accurate model to be created and maintained without requiring skilled user 
input.  Since the frequency and size of the updates can be modified to suit the platform, there are 
many situations that might benefit from using a dynamic model.  Because MCL is running properly 
when the dynamic algorithm is active, there is no urgency in processing the error data into new 
parameters.  Thus, the additional run time required can be limited to what is available on the 
particular platform.  In fact, very good results can be obtained by using offline processing to 
determine a new model whenever conditions change.  Although the offline method does not provide 
all the benefits of the dynamic algorithm, it provides a great improvement over the default method. 

Another benefit of having dynamic motion models is that they can be used to automatically 
optimize a robot to different conditions in the environment.  This may be an important feature for a 
robot that runs autonomously between different areas.  It is impractical to perform laborious 
experiments to determine an optimal model for different regions, but a general model can be 
automatically refined into specific models for many different conditions.  Increasing the complexity 
of the motion model also helps with determining specializations for different regions, since the added 
complexity allows it to represent the true conditions more closely. 

By reducing the error due to the motion model in MCL, our technique provides localization with 
greater resilience to errors from other causes.  The more accurate the various models are, the more 
tolerance MCL has towards random events that might otherwise cause it to fail.  In some 
circumstances this may be a major benefit, but even if ordinary MCL is successful in an environment, 
a more accurate model cannot harm its execution. 

Dynamically optimizing the motion model parameters also makes it possible to use other motion 
models that might not be feasible normally.  Using a different model ordinarily requires so much 
work that, unless there is some clear benefit, it is not considered.  However, dynamic motion models 
allow virtually any model to be tested without additional experimentation.  Thus, models specialized 
to the specific hardware can be used as easily as a generally applicable motion model.  A localization 
implementation can thus apply easily to multiple robots while still being specifically adapted to each 
one.  Also, the underlying hardware can be changed without needing elaborate experimentation to 
alter the program, even with a hardware specific motion model. 

Since dynamic motion model MCL provides an annotated map which includes motion model 
parameters, it may be possible to use those parameters in order to determine information about the 
environment.  For example, by discovering the parameters caused by various types of surface, the 
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robot might be able to identify those same surfaces if it encountered them again.  Also, the motion 
models might be taken into account in path planning in order to give the robot a preference for stable 
surfaces.  Finally, a robot might detect a change in its parameters and use them to identify a 
malfunction, such as deflated tires.  These uses for dynamic motion models would provide additional 
benefits to the algorithm, above the improvements it makes to localization. 

The primary benefit of dynamic motion models is that it causes some sources of error to decrease 
over time instead of increasing.  One of the primary assumptions of MCL is that the underlying map 
is correct and does not change.  Changing the parameters of the motion model in response to new 
information essentially changes, or adds to, the map, allowing it to more accurately represent the 
environment.  Ordinarily, the error from the static map and parameters remains constant if the 
environment is static, or increases over time if the environment is dynamic.  Thus, over the long term, 
localization gathers more and more error.  Dynamically changing the motion model allows some of 
the error to be reduced over time, making MCL practical for longer periods.  This chapter also 
demonstrates that it is possible to violate the static map assumption while still retaining the power of 
Monte Carlo Localization.  Considering the evidence of dynamic motion models, it should be 
possible to alter other normally static parameters in order to further reduce sources of error that 
usually increase over time.  In Chapter 5 I describe a technique for dynamically modifying the actual 
map cells in this way. 
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Chapter 5 

Dynamic Maps in MCL 

5.1 Introduction 

One drawback to localization with MCL is that it requires a static map of the environment.  Sensor 
readings are compared with the expected values from the map and the comparison generates the 
probability of the robot’s location.  Errors in the map can be partially compensated for by increasing 
the error that is assumed for the sensors.  By increasing the error in the sensors we allow MCL to 
consider map errors to be caused by incorrect sensor observations.  Since the number of correct 
sensor readings will probably overrule incorrect ones, on average, observations are correct and are 
able to compensate for the occasional incorrect reading.  However, because MCL combines sensor 
error and map error, as map error increases, the allowable sensor error decreases until finally the 
algorithm fails and the map must be rescanned. Each error in the map is usually a minor matter for a 
localized robot, but the combination of minor errors can cause problems. 

A correctly localized robot rarely fails localization due to map errors, but this is not true of global 
localization, where the robot’s initial location is unknown.  Especially in symmetric environments, 
global localization can easily fail due to minor map errors that would be ignored by a localized robot. 

The approach described in this chapter is based on the idea that if a robot is localized it may 
reasonably expect its sensor data to reflect the environment.  If that is the case, then it should be 
possible to update the map according to the sensor data.  If a known error in the map is fixed, then the 
robot will have a greater ability to deal with any subsequent errors.  Since global localization may 
depend heavily on minor features, having an updated map can be a great benefit. 

Violating the static map assumption and detecting changes allows localization to be more accurate 
and more robust to error.  It also provides additional information that may be useful in planning the 
robot’s activities.  Detecting opening doors and moving objects makes path planning more reliable, 
because it will be based on a more accurate representation.  Further, when a new opening into an 
unexplored area is detected, the robot can add the new region to the map.  The dynamic map 
algorithm described here makes it far easier for a robot to be deployed long term in an environment 
where other agents, including humans, are present and making changes. 

Dynamic maps for MCL can be implemented by identifying binary objects, such as doors, and 
tracking their status using probabilistic methods [Avots et al. 2002].  There are several benefits of 
having explicit objects.  Since an object consists of multiple cells that have the same probability, each 
scan provides more information about the object, allowing its state to be altered more quickly.  Also, 
since most of the map is not dynamic, the probability of objects can be changed much more rapidly.  
Changes in the objects probably will not be able to change the map to make an invalid location match 
the sensors.  However, explicit objects need to be manually defined before execution, adding to the 
work of defining maps.  Since objects are binary, either present or absent, a moving object must be 
represented explicitly by creating a binary object at each possible location.  With the dynamic maps 
described here, an object can appear anywhere without external assistance.  Finally, the method in 
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[Avots et al. 2002] involves an importance factor, which increases the runtime logarithmically in the 
number of objects, making it unsuitable for having each map cell dynamic. 

Algorithms for simultaneous localization and mapping (SLAM) have the ability to localize the 
robot and generate the map simultaneously in real time [Montemerlo et al. 2002].  These algorithms 
are meant to dynamically alter the map in the same way as my dynamic map MCL.  Many of these 
methods use an algorithm which is guaranteed to converge to a correct solution.  However, they 
suffer from the data association problem.  On every sensor scan it must be possible to uniquely 
identify which feature of the map is responsible for each sensor reading.  If this is impossible, then 
the guarantee of correctness does not hold. SLAM does not discover and use cell correlations, so the 
rate of update is slower if the map changes, since each cell must be considered independently.  
Further, SLAM involves significantly more processing than MCL, using up computing power that 
may not be necessary, especially after the map is generated.  Dynamic map MCL was created 
specifically to provide an accurately changing map without incurring any significant overhead.  Since 
it is a constant time addition to MCL, the map can be updated without requiring any more computing 
power than ordinary localization.  Of course, the map cannot be generated from nothing as it can with 
SLAM, but once the map exists it can be kept up to date almost without cost.  SLAM also, in 
common with ordinary MCL, makes the assumption that the map is static.  Over time, the algorithm 
becomes more certain of the map and any changes will take longer to appear.  Dynamic MCL 
explicitly makes the assumption that the map will change. 

Algorithms that consider dynamic environments typically assume a static map with dynamic 
elements, such as people, which must be eliminated from consideration.  In effect, these algorithms 
assume a static map but allow an additional form of sensor noise in the form of moving people.  
[Hahnel et al. 2003] describes a method for creating a map, using standard EM SLAM techniques, 
which can discover the static map of the environment despite dynamic elements.  Similarly, [Fox et 
al. 1999] gives an algorithm for using MCL in an environment with many moving objects.  Although 
both these papers give a method for handling a dynamic environment, they both assume an 
underlying static map.  The benefit of dynamic MCL is that the static map assumption is no longer 
necessary.  As the algorithm runs, it changes the map to correspond to the environment.  Since 
dynamic MCL is implemented as an augmentation to ordinary MCL, there is no reason that other 
augmentations could not be used if warranted by the problem.  For example, the algorithm described 
in [Fox et al. 1999] to discard readings relating to dynamic objects during MCL can coexist with my 
algorithm for modifying the map in accordance with changes in the environment.  Dynamic MCL 
allows fundamental changes to be accounted for, as opposed to merely ephemeral objects that are 
only observed once. 

5.2 Dynamic Maps 

In order to alter the map, it needs to be added to the MCL formula.  Consider each cell of the map to 
be an independent object, which can be either present or absent.  Although independence is usually 
not entirely valid, it is an assumption that is often made.  Consider yt = {y1,t,…,yK,t} the set of 
individual cells in the map.  Since we are considering these cells to be independent, if the location is 
known, then p(yt | xt, zt) = ∏p(yk,t| xt, zt).   
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With this background, the new state equation is p(yt, xt | zt, ut).  Unfortunately, it turns out that this 
equation cannot be factored, since the map state is not fully determined with only the current location.  
However, notice that each sample in MCL represents not only a current location, but also the history 
of locations that lead to that location.  Since each particle is only moved according to the motion 
model, they may be considered as xt instead of xt with no change to the algorithm.  If we use the 
equation p(yt, xt | zt, ut) instead of p(yt, xt | zt, ut), we are left with an equivalent factorization and we 
can thus use the MCL algorithm without significant changes.  The factorization used is similar to the 
one in [Avots et al. 2002], which was used to add the state of doors into the MCL algorithm. 

5.2.1 Factoring 

The size of the state space of (yt, xt) is exponential in the size of yt, so we need some way of factoring 
the posterior in order to reduce the state space. 

First, Bayes rule and the Markovian property give us:  
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Now, consider the three parts of equation (5-1). 

Without any data we assume that all states are equally likely, and also that the probability of a 
random sensor scan is a constant.  Therefore: 
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Remembering that cells in the map change status independently in the model, and again using the 
Markovian assumption, we get: 
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Finally: 
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Recombining these three equations (5-2, 5-3, and 5-4) we can rewrite equation (5-1) as: 
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With the parts simplifying as: 
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The equality in equation 5-7 can be demonstrated using some basic probabilistic rules and 
assumptions about the correlations between the various random variables. 
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Thus, the original equation is: 
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Which contains the original MCL posterior and a new probability for the cells in the map.  See 
[Avots et al. 2002] for more details about the factorization. 

5.2.2 Binary Object Bayes Filtering 

Since the method for calculating p(xt | zt, ut) is already known for a given map in the MCL algorithm, 
the only new method needed is to calculate the probability of each cell in the map.  These cells are 
binary objects since they are either present or absent.  Each yk,t can be either 0 or 1 with the 
probability of each summing to 1.  Thus, the method for calculating the probabilities is the same as in 
[Avots et al. 2002].  Let πk,t = p(yk,t = 1 | xt, zt, ut).  Then 
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where  
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In equation (5-9) the only unknown probability is p(zt | xt, zt-1, ut) in the denominator.  Rather than 
trying to calculate it, we exploit the fact that yk,t is binary so (1 – πk,t) can be calculated in the same 
way as πk,t using yk,t = 0 instead of yk,t = 1.  The two equations are then divided to cancel the unknown 
quantities. 
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The result, equation (5-11), consists entirely of known quantities.  p(yk,t = 1) is the prior probability 
that a cell is occupied.  The various p(yk,t | yk,t-1) values are the transition probabilities for a cell, πk,t-1 
are, of course, the prior occupancy probabilities and finally, p(yk,t=1 | xt, zt) is the probability of 
occupancy given robot location and sensor data.  To get a useful value from the odds ratio, we use the 
equality πk,t = 1 – (1 + πk,t/(1 - πk,t))-1. 

The representation of πk,t is actually in closed form, so it requires only a constant time operation to 
calculate.  Since p(yk,t = 1 | xt, zt) involves sensor values and raytraces which are already used for 
MCL, little additional processing should be required.  It is possible to modify the importance factor, 
as in [Avots et al. 2002], to take into account the new map data, where each cell is not merely present 
or absent but has a probability of presence.  Using this data results in a runtime increase at least 
logarithmic in the number of binary objects.  The probability of a location becomes the sum of the 
probabilities of that location for both states of all visible objects, multiplied by the probability of the 
object states.  While that is acceptable if there are only a small number of objects, such as doors, if the 
objects are the cells of a map, the number becomes unmanageable.  However, most map data used for 
MCL is actually represented as probabilities in an occupancy grid map, but is thresholded to be either 
present or absent.  I decided to use the same simplification for my algorithm and consider each cell as 
either present or absent depending on a threshold value on its probability.  The processing time 
therefore remains unchanged, since the importance factor is calculated in the same way. 

5.2.3 Cell Correlations 

In order to perform the factorization, it is necessary to assume that map cells change independently of 
each other.  However, this assumption is not entirely accurate.  In fact, groups of adjacent cells that 
represent the same objects are likely to be completely dependent. To some extent ordinary MCL also 
assumes cells are independent, but it only becomes relevant when the cell probabilities are changed in 
dynamic MCL.  It is easy to model correlations by annotating the map with correlation probabilities 
between adjacent cells, however, using this information is more difficult.  Methods such as loopy 
belief propagation or variational methods [Jordan et al. 1999] can propagate belief through a 
connected graph, but they are time consuming and sometimes do not converge.  Since dynamic MCL 
must run in real time without being much slower than ordinary MCL, these techniques are not 
sufficient.  However, it should be noticed that the cell correlations in a map are of restricted types.  
Small groups of adjacent cells are highly correlated, while being uncorrelated with their neighbours.  
Because of the limited correlation, it is possible to use a modified variational technique in order to 
implement cell correlations.  When a cell is updated, the update is propagated to adjacent cells along 
the links, but the propagation is not permitted to flow back to a cell that has already been modified.  
Also, the flow stops when the accumulated correlation probability falls below a threshold.  It is 
necessary to bound the correlation probability to prevent too many updates, but in practice, only a few 
steps occur.  These few steps are enough to achieve a significant improvement in the results. 

The key to using cell correlations is to perform operations using two different and conflicting sets 
of assumptions.  Each set of assumptions reduces one part of the problem to a solvable operation but 
makes the other part intractable.  We have already seen that, by assuming cells to be independent, we 
can factor the belief as: 
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This factorization is used to update the individual cells according to the robot’s sensors.  However, 
once the update is performed we discard both the assumption and the resulting factorization.  Instead, 
we assume that each cell depends on its neighbours and is independent of the robot’s sensors and 
position.  According to this set of assumptions: 
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The determination of the robot’s position is unchanged, but the map cells now depend on their 
neighbours and not on the robot.  By making this assumption any changes made to the map can be 
propagated to the adjacent cells and the weight of the cell correlations adjusted.  Separating the 
algorithm into two phases with different assumptions allows the algorithm to consider additional 
dependencies without having to deal with the intractable problems caused by the interaction of the 
new dependencies with the old.  In effect, during the first phase of the algorithm, as represented by 
equation (5-12), we assume that the probability of a cell being occupied depends only on what the 
robot senses directly, with additional effects coming from some unknown source.  During the second 
phase, shown by equation (5-13), we assume that the probability of a cell being observed depends 
only on its neighbours, with other changes caused by external, unconsidered, forces.  Of course, two 
sets of contradictory assumptions cannot possibly be a reflection of reality, however, each assumption 
is a reasonable simplification and using both sets iteratively results in less simplification than either 
set exclusively. 

In dynamic MCL, it is necessary to modify the cell correlation probabilities dynamically on each 
cycle.   However, given the nature of the sensors used, it is unlikely that adjacent map cells will be 
observed on a single scan.  The solution to the problem is to cache observed changes to each cell until 
an adjacent cell has also been observed.  At that point, the difference in the changes of the cells can 
be used to adjust the correlation between them. 

Adding cell correlations significantly improves the dynamic MCL algorithm since a correlated 
group of cells can change together whenever any member of the group is observed.  The result is that 
although the update of individual cells must be slow to allow localization to work, if a group of cells 
change they will update very quickly, since each observation will correlate them, and as they become 
more correlated every observation of a member of the group will update the entire group.  Thus an 
object can appear or vanish more quickly than any single cell. 

5.3 Algorithm 

The preceding formulae can be used to augment an implementation of MCL in order to modify the 
map dynamically during processing.  The MCL algorithm must raytrace along all sensor paths to 
calculate the probability of a particle.  However, if the robot’s position is known with high 
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probability, then any differences between the sensor reading and the raytrace are more likely to be 
errors in the map than in the sensors.  In that case, the logical action is to correct the map. 

The method I used is to consider each cell of the map to be present with probability πk,t.  On each 
step of the MCL algorithm an augmented raytracer is used for the robot’s most likely location.  The 
augmented raytracer follows a ray normally, passing through each map cell along the ray.  However, 
at each cell along the path, the probability of that cell is altered according to equation (5-11).  
Although the augmented raytracer could be run on all samples, it is more productive to determine the 
most likely location and use the augmented raytracer only on it.  Some metric must be used to 
determine the probability that the most likely location is correct.  One such method is to compare the 
sum of the particle weights to some threshold as in [Thrun et al. 2005] (Section 8.3.5).  If the weights 
are below the threshold, the robot is assumed to be lost and the new raytracer is not used.  Another 
detail is that only the probabilities of observed cells are updated by the new raytracer.  Although the 
robot’s knowledge of unobserved cells gradually decreases over time, we make the assumption that 
the environment does not change except when it is observed.  This assumption prevents the map from 
decaying to a uniform field in locations the robot does not see. 

For calculating the sensor probability of each cell, the simplifying assumption that either that cell 
or the existing wall is correct is used.  The assumption is necessary because the normalizer for the 
sensor probabilities is not known, so some method must be used to normalize the values.  In practice, 
when a new cell becomes occupied, it exceeds the threshold before any other cell, and then the 
assumption becomes valid again.  The short period during which it is invalid for some cells does not 
affect the operation of the algorithm. 

In order to find the robot’s most likely location, the sample with the highest importance factor is 
used.  Other locations are possible, including the weighted average of all samples.  The algorithm 
cannot run if the robot’s location is unknown.  As described in section 4.2.6 for dynamic motion 
models, MCL usually either produces a correct location or fails completely.  As long as the overall 
error does not exceed MCL’s ability to compensate, the high probability location will probably be 
correct. 

These implementation details do not change the fundamental algorithm, which is an 
implementation of MCL together with the binary object formulae as described above.  The only 
simplification to equation (5-11) is in the calculation of p(yk,t = 1 | xt, zt), a value which is at best a 
numerical approximation to the error in a physical sensor device. 

The following pseudocode summarizes the algorithm for dynamic MCL. 

Table 5-1: Dynamic MCL algorithm 

1: Repeat N times 
2:  Draw a random particle 
3:  Move particle according to the motion model 
4:  Annotate particle with a weight from the sensor model 
5: Resample a new set of particles from the annotated set 
6: Find the most probable location (mean of particles) 
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7: For each sensor reading 
8:  Raytrace to the nearest occupied cell 
9:  For each cell on the path 
10:   Alter the occupancy probability of the cell 
11:   Alter the occupancy probability of neighbouring cells according to influence 
12:   Mark cell as observed 
13:   If neighbouring cell marked observed 
14:    Adjust influence between cells 
15:    Unmark cells as observed 

5.4 Experimental Evaluation 

The dynamic map algorithm was implemented and tested using real data collected in our building.  
The data was created using a Pioneer 2Dxe robot equipped with a laser rangefinder.  The objective of 
the tests was to show that the map could be updated correctly without introducing errors or causing 
localization to fail.  Since the algorithm has an almost constant runtime there is no tradeoff necessary 
between the time required to update the map and the benefit obtained by doing so.   

Dynamic map MCL is designed to gradually update the map of the environment used for 
localization.  Ordinarily, MCL uses a static map which, in a dynamic environment, gradually 
becomes less accurate as the environment continues to change from the time the map was produced.  
The experiments were selected to validate the dynamic algorithm by demonstrating that, over time, 
the map becomes a more accurate representation of the environment.  Accuracy was defined by 
comparing the additions to the map with the actual environment.  Localization and global localization 
will perform better on a more accurate map.  The experiments demonstrate that the map is updated 
correctly, the benefit obtained from this update depends on the specific problem.  



 

 73 

Figure 5-1 shows the map of the environment used to generate the test data.  Changes were made to 
the environment after the map was scanned by opening and closing doors and by placing boxes in the 
corridors.  After 1 pass through the changed environment the robot has mostly added the new features 
to the map and has correlated the changed objects, allowing them to be completed very quickly. 

After two passes, all changes have been completely added to the map.  The rate of update is slower 
than in [Avots et al. 2002] because each cell must be observed several times, instead of each object.  
However, without correlations it takes at least five passes to completely adapt the map.  Allowing 
cells to become correlated permits much faster updating without compromising localization.  In 
[Avots et al. 2002] the dynamic objects can be updated in a single pass because they are manually 
defined ahead of time and are known to be completely correlated.  Since dynamic MCL has no 
predefined objects or correlations, it is necessarily slower, but because it can discover the correlations 
it can still update very quickly. 

  

Figure 5-1: Before and after 2 passes through the environment 
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Another test, shown in Figure 5-2, was to use the same data but starting with a map consisting of 
the minimum possible information.  From a schematic map consisting of only the walls and 
partitions, the algorithm was able to adapt it with all the features that were missing.  Those portions of 
the map that were observed were corrected properly.  The benefit of being able to start with a limited 
map is that it may not be necessary to scan a map manually with a robot.  Instead, the map could be 
entered using blueprints of the environment and, as the robot passed through, it could correct the map 
until it was accurate.  Usually, MCL uses the most accurate map possible, since it will lose accuracy 
over time, but with a dynamic map the accuracy of the map increases as the robot traverses the 
environment.  Of course, portions of the environment that were insufficiently observed were not 
completely added to the map, so the result is not identical to the environment.  However, observed 
areas have become more accurate and the map will only become a better reflection of the 
environment as the robot traverses it over time. 

Another feature noticeable in Figure 5-2 is that some of the objects in the corridor are somewhat 
more diffuse than they appeared in Figure 5-1.  Because of the lack of features in the map, new 
objects cannot be added as accurately with reference to existing features.  As the map is corrected and 
more distinct objects are added, the location of the new objects becomes clearer.  After five passes, 
the objects are almost completely defined in the map, but some of them obviously require several 
more passes to fully correct them.  The benefit of dynamic MCL is that the robot can operate 
independently of this process.  As it performs its task, the map becomes more accurate.  All other data 
files tested exhibited similar behaviour, with the observed portions of objects being added to the map 
and no new errors introduced. 

 

Figure 5-2: Before and after 5 passes through the environment using a schematic map. 
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5.4.1 FastSLAM Comparison 

The dynamic MCL algorithm is very similar to FastSLAM, with the major difference being that 
FastSLAM keeps the map state separately for each particle, while dynamic MCL maintains a single 
global map.  The single map results in two significant changes in the behaviour of the algorithm.  
First, the run time over ordinary MCL is only increased by a constant in terms of the number of 
particles.  Regardless of how many particles are necessary for localization, dynamic map MCL 
requires the same amount of additional processing.  FastSLAM requires additional processing that is 
at least linear in the number of particles, disregarding the work necessary to continuously copy the 
maps.  Dynamic MCL thus requires significantly less processing power than FastSLAM. 

The per particle map is what allows FastSLAM to determine a map from nothing while localizing, 
since it can maintain multiple hypotheses until the robot observes a distinguishing feature.  However, 
these map hypotheses necessarily include some unlikely maps.  Even if FastSLAM was initialized to 
the starting map, it still predicts multiple different maps, and some of these would be unlikely.  When 
the environment is mostly known these borderline maps are unnecessary.  The basis of dynamic MCL 
is that the map is mostly known.  In this case, the robot’s position can be determined and the map can 
be altered based on the single correct position, instead of updating based on multiple hypothesized 
positions.  In the case with a pre-existing map, FastSLAM’s ability to update the map is provided by 
dynamic MCL without the drawback of having to consider maps based on multiple conflicting paths.  
Of course, if the map is unknown considering multiple paths is necessary for success, so dynamic 
MCL is in no way a replacement for FastSLAM, it merely uses similar ideas to apply to a situation 
that FastSLAM does not handle well.  If the map of the environment is mostly known in advance, 
dynamic MCL provides an efficient solution to handling dynamic elements and previously 
unobserved areas, without causing additional uncertainty. 

To discover if dynamic MCL provides appreciable efficiency gains over FastSLAM when the 
appropriate map is available, the FastSLAM algorithm was run on the same data set as in Figure 5-1.  
FastSLAM was able to generate a map, but it took 428 seconds and, of course, did not include the 
areas that were not visited.  In contrast, dynamic MCL completed the 2 passes in 68 seconds, an 84% 
improvement.  When only minor features need to be updated in a mostly complete map, it is 
unnecessary to incur the cost of FastSLAM, since in these cases dynamic MCL is far more efficient 
while providing the same result.  Dynamic MCL also allows previously visited areas to remain in the 
map, even if the robot has not observed them. 

5.5 Conclusion 

This chapter describes an augmentation to MCL which allows the map to be updated according to the 
sensor measurements of a localized robot without a serious increase in running time.  By considering 
each cell of the map to be an independent binary object and by making some simplifying 
assumptions, the static map required by MCL can be modified dynamically without requiring any 
human intervention.  Instead of becoming less accurate over time, the map becomes more accurate as 
the robot traverses the environment.  Experiments with real datasets show that the map can be 
updated properly without introducing errors.  A change in the environment can be reflected in the 
map after very few passes by the robot.  Since the map is not updated incorrectly and the running time 
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is minimal, dynamic map techniques provide a useful addition to ordinary MCL in many situations.  
The result of the algorithm, having an accurate map, will always benefit the accuracy of MCL. 

Dynamically correcting the map causes the largest source of error in MCL to decrease over time.  
Ordinarily, the best possible situation is for this error to remain constant, however in environments 
with dynamic elements, especially people, it is more likely that gradual changes occur.  As the 
physical environment changes, errors build up in MCL, reducing its ability to handle any additional 
error.  With dynamic updates the error is instead reduced over time, making localization more robust 
to other problems.  Also, recognizing changes in the map might allow certain circumstances to be 
detected and considered in planning.  For example, doors could be detected when they open and the 
robot could be sent to explore the new area.  Also, new routes could be discovered as objects are 
moved.  Removing the static map assumption greatly increases the power of MCL to handle real 
situations with dynamic elements.  Furthermore, recognizing changes in the environment allows 
further improvements to be made at higher levels of control. 
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Chapter 6 

Skeletal FastSLAM 

6.1 Introduction 

While FastSLAM is a good solution to localization and mapping, it suffers from some problems, 
notably the loop closure problem. As the robot travels around a loop in the environment, it has no way 
to incrementally correct its position.  Only once the robot arrives at the end of the loop can it realize 
that the correct path is the one that arrives in the right place so that the map joins up.  Because particle 
filtering only represents the highest probability locations, over a long loop the correct path may be 
lost.  Overcoming this problem requires a large number of particles relative to the size of loops in the 
map, which means the algorithm increases in runtime and memory with the size of the map. 

SLAM is normally defined as generating a map from total uncertainty about the environment.  
However, there is often some information available about the map, especially in an indoor 
environment.  Unless your robot is a bulldozer, it is constrained to follow certain paths indoors, 
corresponding to the building's corridors.  These corridors are relatively easy to describe based on a 
simple floor plan, or even by observing the environment.  In this chapter, I demonstrate how minimal 
information about the skeleton of the environment can be used to improve FastSLAM and reduce the 
loop closure problem, requiring only enough particles for the local areas of uncertainty.  Skeletal 
FastSLAM provides an intermediate step between pure localization with a static map and pure SLAM 
with total uncertainty about the environment.  Many problems with some preexisting knowledge 
might benefit from this approach.  

The primary contribution of skeletal FastSLAM is to allow some simple initial information to be 
used for SLAM that is much less than the total knowledge required by MCL and is easier to produce 
than a partial map of the same form as the calculated map that might be used as the initial state for 
SLAM.  Although these two algorithms are powerful, there are many situations that are somewhere 
between the two conditions.  For these problems, the choices are to accept the error caused by the 
uncertainty in MCL or to discard the initial information in SLAM.  The algorithm described in this 
chapter allows FastSLAM to take advantage of some initial information.  Similarly to the dynamic 
map MCL algorithm in Chapter 5, skeletal FastSLAM applies to problems with partial knowledge of 
the environment.  The difference is that skeletal FastSLAM requires much less information than 
dynamic MCL and maintains a separate map for each particle.  This allows it to successfully map 
unknown regions, where dynamic MCL requires enough map data to successfully localize at all times.  
The ability to use partial knowledge increases the usefulness of FastSLAM to situations that would 
ordinarily be much more difficult. 

6.2 Skeletal FastSLAM 

The key to using a skeleton map of the environment in FastSLAM is to realize that, especially in an 
indoor environment, the robot must follow certain paths.  Obviously, a particle whose path 
corresponds to one of these corridors in the environment is more likely than one traveling at a tangent 
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to the corridor.  Of course, this only applies if the particle is close enough to the corridor, but when 
one of the corridors affects the robot's path, it can act as a very useful indication of the correct path. 

6.2.1 Creating the skeleton map 

Of course, the first step in implementing this technique is to define what exactly is meant by a 
skeleton map.  The skeleton is defined by a series of line segments marked by their endpoints.  Each 
line segment marks a corridor that constrains the robot's direction of travel.  It is not necessary for 
every possible path to be represented, only those composing major loops in the environment.  The 
skeleton gives the direction and length of each corridor, including the structure of their intersections.  
Such a map is very easy to construct, especially in an indoor environment where a schematic diagram 
is often available.  Also, buildings are usually constructed with corridors at right angles, making it 
easy to determine the intersections of the skeletal map.  In such an environment, any user could easily 
define the necessary skeleton with minimal understanding of the underlying algorithm. 

6.2.2 Monte Carlo Localization with Paths 

Although MCL is originally defined to solve for only the robot's current position, as in section 2.2 and 
[Dellaert et al. 1999], it is trivial, by recording the past poses of each particle, to alter it to track the 
robot's entire path.  The derivation is similarly easy to alter, again using the Markovian assumption, 
producing models identical to ordinary MCL. 
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6.2.3 Derivation of FastSLAM with Skeleton 

In order to consider a topological map in FastSLAM, we need to add it to the equations in a form that 
can be easily calculated.  Let S be the skeletal map, then the FastSLAM factorization becomes: 

∏=
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We assume the map is independent of the skeleton given the robot’s path.  Thus, the occupancy grid 
mapping portion of FastSLAM is unchanged.  Only the localization needs to take S into account. 
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Note that, because the map is independent of the skeleton, the skeleton does not affect the sensor 
readings zt, which depend only on the robot's state, including the map. 

The new motion model for localization is p(xt | ut, xt-1, S).  However, it is not obvious how to 
sample from this model as required by MCL.  Fortunately, given that the distance between xt and xt-1 
is small, we can factor the model into our original model and an additional term representing the 
motion probability of the motion given the skeleton map. 
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Equation (6-5) can be greatly simplified using the Markovian assumption again.  Also, notice that 
the same operation as in equation (6-2) produces the ordinary motion model in the second term, while 
still leaving the entire path for use with the skeleton map. 
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Having factored the motion model from the skeleton, all that remains is to convert p(S | xt) into a 
form that can be calculated. 
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This simplification also uses the assumption that all paths are equally likely and thus p(xt) is a 
constant.  Putting equation (6-8) back into the localization formula of (6-4) results in localization 
which takes into account the skeleton map. 
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The final equation indicates that the modification to the motion model can be considered to alter 
the weight of each particle.  Thus, the localization step continues as normal while the probability of 
the particle's motion based on the skeleton map is multiplied with the sensor probability to determine 
the likelihood of the sample.  The result will be to make particles which travel according to the 
skeleton more likely to be resampled than those which conflict. 

6.2.4 Defining the skeleton model 

In order to actually implement skeletal FastSLAM as defined in equation (6-9), we need to create a 
method of calculating the model p(xt | S).  Fortunately, this model does not need to be sampled from 
as does the motion model, allowing more flexibility in its creation.  Since the objective is to more 
highly weight paths the closer they are to the corridor, some type of probability based on the 
difference in angle between the path and the skeleton is the obvious choice.  The model used is a 
Gaussian distribution centered at zero degrees mixed with a uniform distribution according to a gain 
value.  The smaller the difference between the angle of the robot's path and the angle of the line 
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segment of the map, the more probable the particle.  Of course, this only applies as the particle travels 
along the particular corridor.  If the robot turns away from the corridor it is probably exploring some 
area not represented by the skeleton.  In that case, the probability is a uniform distribution.  Also, the 
current segment of the skeleton map that the robot is following is determined by which segment is 
closest.  However, if the distance between the robot and the line is too great, then the probability is 
once again uniform, since a particle must be within a corridor to be affected by it.  The result is a 
model that increases the probability of particles traveling along the skeleton and decreases the 
probability of those traveling at a tangent to it, while leaving those that are not following the skeleton 
unchanged.  The model for particles within range of a skeleton line segment is illustrated in Figure 
6-1.  However, note that the actual values depend on the parameters selected for gain, variance, and 
threshold angle. 

 

Figure 6-1: Skeleton map probability model. 

6.2.5 Algorithm 

Given the derivation in section 6.2.3 and the model from 6.2.4, the actual implementation of skeletal 
FastSLAM is relatively straightforward.  In order to reduce errors caused by minor corrections in the 
robot's heading while it follows a corridor, linear regression is used to track the line which best fits 
the robot's path.  The regression is restarted every time the robot changes its current closest line 
segment.  Then, the difference between the robot's course and the direction of the skeletal line 
segment is simply the difference between the angle of two lines, a straightforward algebraic 
computation.  With that angle, the skeleton map model can be evaluated and the only change in the 
algorithm in Table 2-4 occurs on line 3, which becomes wt

[k] = p(zt | xt
[k], m) * p(xt

[k] | S). 

It is, of course, necessary to provide various parameters, notably the variance and gain of the 
skeleton model as well as the threshold distance for the robot to be within a corridor and the threshold 
angle for the model.  However, most of these parameters depend on the physical features of the 
environment and good values can be determined by examining its structure.  The threshold distance 
depends on the corridor width, while the threshold angle depends on the relative corridor angles.  
Finally, the gain depends on how well the environment is represented by the skeleton map.  These 
values probably do not need to change between different environments or robots, unless there are 
radical differences in the map.  Even then, producing the correct map will probably only require more 
particles.  Of course, if the skeleton is completely incorrect, skeletal FastSLAM can produce no 
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improvement, and will probably need significantly more particles to converge than ordinary 
FastSLAM.  The algorithm depends on having a reasonably accurate skeleton map. 

Compared to ordinary FastSLAM, using a skeletal map adds runtime that is linear in the number of 
line segments in the skeleton.  Since the topology of an indoor environment is usually fairly simple 
the increase in processing required is small.  If skeletal FastSLAM can reduce the number of particles 
required for determining the correct map in an environment then the gains in processing time will 
more than offset the increase required to implement the algorithm. 

6.2.6 Skeleton map parameters 

With a little more work the skeleton map can be defined using parameters.  By using the paths of all 
the particles, these parameters can be optimized to fit the skeleton to the data.  After a long enough 
sequence of robot motions, a background optimization algorithm can be used to minimize the error 
between the paths and the skeleton line segments.  Because the particle filter represents only the high 
probability paths, if the skeleton map lies along these paths, then it probably represents the data 
accurately.  Using parameters for x and y offset, rotation and horizontal and vertical scale requires as 
many particles as ordinary FastSLAM at first, but once the skeleton is fitted, the set could be reduced. 

Optimization is performed using a local simplex search algorithm [Lagarias et al. 1998], which is 
restarted at various parameter values to compensate for symmetry in the skeleton.  Equation (6-10) 
shows the actual error measure used, which gives a diminishing weight as distance increases, so that 
data from where the robot is not following the skeleton does not unduly distort the results.  The sum 
is over the distances between all past poses and the associated line segment. 

( )� +=
x

xxerror 22 1/  6-10 

6.3 Experimental Evaluation 

In order to validate skeletal FastSLAM with occupancy grid maps it was tested against data sets 
gathered using a real robot in an indoor environment, as well as with various simulated data sets.  The 
simulated data demonstrates the benefits of the algorithm in various situations, while the physical data 
sets show that it really does generate improvement in a real environment.   

Loop closure is one of the major problems with FastSLAM and the skeletal algorithm is designed 
to reduce the processing required for loops in certain environments.  The experiments were chosen to 
show the actual reduction provided by the skeleton in specific environments.  From the results 
presented here we can determine that skeletal FastSLAM will provide a benefit in a wide range of 
circumstances where the fundamental assumption of fixed corridors applies.  Since we cannot 
specifically test an algorithm’s loop closure ability, we rely on tests of the minimum processing 
required to develop a map with the correct structure as determined by a human observer.  Although 
this criteria is somewhat vague, there was no problem in making the decisions since the maps tended 
to either converge correctly or diverge to random nonsense.  The minimum number of particles 
necessary to generate a correct solution was used to determine the minimum run time for each 
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algorithm.  Since skeletal FastSLAM and ordinary FastSLAM require approximately the same 
amount of processing, the skeletal algorithm must converge on fewer particles to provide a benefit.  
Comparing the minimum run times for convergence proves the benefits of using the skeleton do not 
outweigh the extra processing required to compare particles to the skeleton map. 

6.3.1 Normal FastSLAM Implementation 

In order to evaluate the skeletal algorithm it was necessary to compare it to the behaviour of ordinary 
FastSLAM.  To avoid differences caused by varying implementations of FastSLAM the 
implementation used was identical to the skeletal algorithm, except the p(xt

[k] | S) values are never 
calculated.  Instead, a value of 1 is used which effectively reverses the change to line 3 of Table 2-4, 
re-establishing the original FastSLAM algorithm for occupancy grid maps.  The implementation is 
based on the algorithm described in section 2.3.4. 

At the beginning, a set of N particles is created, each one with a location of 0 for all location 
parameters (x, y, θ).  Each particle also contains a map consisting entirely of unoccupied cells.  As the 
robot moves it generates odometry readings ut and sensor readings zt.  When the distance moved has 
passed a threshold, these values are processed into a new set of particles.  A new position is drawn for 
each particle according to the motion model p(xt | xt-1, ut) using the odometry readings and the 
particle’s current location.  Then, the weight of each particle is determined from the sensor model 

( )tt xzp |  using that particle’s own map and the current sensor readings.  After calculating the weight, 
the sensor readings are then used to update the map separately for each particle according to the 
algorithm in section 2.1.3.  Finally, the particles are resampled randomly, with replacement, 
according to their weights to generate a new uniformly weighted set of particles representing the 
current belief.  This basic FastSLAM algorithm is used to provide comparison values for the skeletal 
algorithm.  It is also the underlying implementation for skeletal FastSLAM, with the modifications as 
described in section 6.2.5. 

6.3.2 Simulated data 

Data sets generated from simulated environments test the basic behaviours of the skeletal algorithm in 
standard situations.  One of the most basic environments is a wide, straight corridor.  A 40 meter long 
corridor is typically a very difficult situation for FastSLAM because there is no indication as to the 
correct direction.  A straight corridor gives almost exactly the same readings as one that curves 
slightly.  Since the robot does not turn as it traverses the corridor there is no way for FastSLAM to 
correct the readings.  Because of this it required a minimum of 210 particles for ordinary FastSLAM 
to produce the correct map using the data set.  Compared to that, a single corridor is a very easy 
environment for skeletal FastSLAM, which required only 100 particles to converge.  The run time for 
convergence of  skeletal FastSLAM was 156 seconds for this data set, an improvement of 45% over 
regular FastSLAM’s 283 seconds.  Skeletal FastSLAM provides a serious advantage when an 
environment provides little information about global orientation. 
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The next data set was a large loop around a 40 meter square.  Because the turns allow the robot to 
see back along its course, this environment was easier for FastSLAM to handle.  Ordinary FastSLAM 
required 100 particles to converge with the data, while the skeletal algorithm was successful with 30.  
The time for convergence of 181 seconds for skeletal FastSLAM was a 67% improvement over 
ordinary FastSLAM’s 558 seconds.  In Figure 6-2 we can see the results of this test.  The vertical 
lines represent the corners in the environment and the robot reenters an area it has already traversed 
after the fourth vertical line.  For normal FastSLAM the error drifts, generally increasing over time, 
until the final section where the loop is closed.  At that point, the error drops abruptly.  In contrast, 
skeletal FastSLAM tends to retain a relatively constant error, changing only at the corners of the map, 
marked by the vertical lines, where the skeleton algorithm does not apply.  The error is so much 
smaller when the loop is closed that it quickly decreases back to almost 0.  Normal FastSLAM only 
managed to converge by shifting the entire map, thus retaining a larger error.  By reducing the error 
increase in the corridors, skeletal FastSLAM is able to correct the position much more quickly when 
the loop is finally closed.  The simulated data indicates that the algorithm provides a major benefit in 
the situations where it applies and leaves more leeway for handling the remaining situations, such as 
the corners. 

6.3.3 Real data 
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Figure 6-2: Error in position over time for normal FastSLAM vs. skeletal in a simple loop. 
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Data from a 180 degree laser scanner mounted on a Pioneer 3Dxe differential drive near-holonomic 
robot was collected from two different real environments.  Since there was no way to get the ground 
truth of the robot's position, I instead observed the minimum number of particles necessary for the 
map to converge to a representation which corresponded to the correct map.  The primary observation 
about a correct map is that all of the loops are closed, connecting to the appropriate corridors.  In 
practice, it was easy to determine if the map was correct, since an incorrect map diverged radically 
from the correct representation, becoming reduced to nonsense. 

In the first environment in Figure 6-3, regular FastSLAM required at least 160 particles to succeed, 
while using the skeleton map only required 100.  The 60% larger set of particles for ordinary 
FastSLAM is necessary because the environment contains many long loops.  Without the skeleton, 
more particles are necessary to allow these loops to close properly.  The runtime of skeletal 
FastSLAM was a 58% improvement over the ordinary algorithm, converging in only 466 seconds 
compared to 737. 

The second environment only has a single corridor and the robot travels through two rooms.  
Although the path into the rooms is marked by the skeleton, the path between them is not.  The 
greater area that is not represented by the skeleton, coupled with fewer loops, results in less of an 
improvement.  Skeletal FastSLAM needed 110 particles to converge in this environment, while 

 

Figure 6-3: Two real environments with skeleton maps 
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ordinary FastSLAM needed 140, an increase of 27%.  There was also an improvement of 23% in the 
runtime, with skeletal FastSLAM reducing the necessary time from 511 seconds to 391. 

The improvements demonstrate that skeletal FastSLAM provides a significant improvement over 
ordinary FastSLAM, correctly converging with fewer particles, and thus less computation, using real 
data sets.  Coupled with the simulated data the results show that using a skeleton map is an effective 
addition to FastSLAM. 

Table 6-1: Experimental comparison of skeletal FastSLAM algorithm vs. original. 

 Original Skeletal % improvement 

 particles runtime particles runtime particles runtime 

Simulated corridor 210 283.672s 100 156.329s 52.4% 44.9% 

Simulated loop 100 558.078s 30 181.078s 60% 67.6% 

Real environment 1 160 737.016s 100 466.938s 37.5% 36.6% 

Real environment 2 140 511.047s 110 391.031s 21.4% 23.5% 

6.4 Conclusion 

FastSLAM is an effective solution to both the online and full simultaneous localization and mapping 
problem in indoor environments where individual features are hard to determine.  However, it suffers 
from problems in loop closure which require progressively more particles as the size of loops in the 
environment increase.  By adding an easily created skeletal map into the algorithm, it is possible to 
significantly obviate this problem, allowing the FastSLAM algorithm to solve local uncertainties 
while aiding it in closing loops.  A skeleton map indicates the direction that the robot must be taking 
so that, instead of wasting particles on multiple divergent trajectories, the algorithm can concentrate 
them around the correct path, significantly reducing the need for additional particles.  As the corridors 
increase in length, ordinary FastSLAM requires an increasing number of particles, while skeletal 
FastSLAM continues to require only enough for the local uncertainties, becoming independent of the 
overall size of the map. 

The experiments I have performed indicate that the skeleton map is highly effective in reducing the 
number of particles necessary to achieve convergence.  Using simulated data sets, we can observe the 
skeleton algorithm's behaviour in various fundamental situations.  These results demonstrate how 
skeletal FastSLAM improves on ordinary FastSLAM in simple corridors and loops.  By observing the 
results of real data sets, we can also see that the skeleton map provides a significant improvement in 
practice.  Using a skeletal map is a low cost improvement to FastSLAM that is very useful in indoor 
environments whose overall configuration is known, even though the exact map may not be. 

Skeletal FastSLAM, like dynamic map MCL, allows FastSLAM to handle situations with partial 
knowledge of the environment.  Since initial knowledge no longer needs to be discarded the 
behaviour of the algorithm is improved.  By allowing additional information to be applied in the 
FastSLAM algorithm I have created a technique that can be very effective in specific situations where 
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ordinary FastSLAM would require much more work.  These methods lead to localization and 
mapping techniques that can generate a map and path from any type of starting information. 
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Chapter 7 

Conclusion 

 One of the most important problems in robotics is localization, identifying a robot’s location 
in the environment.  It is necessary to solve localization before almost any useful task can be 
accomplished.  There are many different localization techniques, from heuristic methods to 
algorithms based on formal mathematical derivations.  These methods involve various tradeoffs 
between provable limits, processing required, accuracy, and the type of environment, robot, and 
sensors for which they will work.  Pure localization algorithms require a pre-existing map of the area, 
while solutions to the simultaneous localization and mapping problem (SLAM) can generate a map 
simultaneously with the position data.  One powerful technique that can be adapted for both 
localization and SLAM is called particle filtering.  Monte Carlo localization (MCL) is an 
implementation of particle filters for localization while FastSLAM is an implementation for SLAM.  
Both of these techniques are straightforward to implement and provide an efficient solution in many 
situations.  However, there are still drawbacks to using these techniques.  Both of them rely on the 
environment having an unchanging map, whether it is known in advance or not.  Also, the two 
techniques address the extremes of a completely known or completely unknown map, without being 
able to make use of partial information about the environment. 

My research involves using the information provided by MCL when the robot is properly localized 
to determine additional information about the environment.  Any additional information makes the 
map more accurate, allowing the behaviour of localization to improve.  By reversing the trend for the 
map to become less representational over time, I hope to provide a localization algorithm suitable for 
long term deployment.  Instead of requiring periodic modification by a skilled user, the robot itself 
will update its own information, eventually maintaining a representation of the environment more 
accurate than any human could define.  This map will gradually alter itself as the environment 
changes so that even dynamic environments, where objects are periodically moved, will not require 
either special techniques or periodic map redefinitions.  Making it possible for a robot to adapt to 
dynamic elements allows it to perform tasks with much less external input, permitting it to operate 
without requiring a teacher with special skills to manually modify its representation.  Dynamic 
mapping is an important step in making robots more useful in real environments and for long term 
tasks. 

A further benefit of dynamically improving a map is that localization can succeed even if some 
information about the environment is unknown.  Since the map improves over time it eventually 
comes to be a fully accurate representation.  All that is necessary is enough initial data so that 
localization can succeed at first.  The self correcting map will converge to the environment, 
permitting localization to handle more error.  This allows robots to be deployed in regions that are 
partially unknown, without requiring a SLAM solution to generate the map from uncertainty. 

The map is not the only information that can be updated over time based on observations.  It is also 
possible to update the parameters of the motion model to better correspond to the behaviour of the 
robot.  These parameters can be stored separately for different regions of the map, further conforming 
the map to the environment.  The better the convergence between the information in MCL and the 
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state of the world, the more leeway there is for handling errors.  Using dynamic motion models 
updates the map with additional data that makes it a better representation.  Usually, the map only 
represents the area in a form that is easy for humans to understand, but by automatically determining 
motion model parameters the map becomes a closer match to the world in terms of the robot’s 
interaction with it.  Improving the quality of the representation by adding new dimensions to the map 
allows MCL to operate with a better convergence even than using an optimal occupancy grid only 
map. 

Symmetrical maps are a serious problem in global localization with MCL because of the problem 
of bias.  Cluster MCL overcomes many of the problems of bias by forcing less probable locations to 
continue to exist, without compromising the highest probability location.  It also provides a solution 
to the kidnapped robot problem by allowing random particles to be added that do not interfere with 
localization until a new position is found.  The hierarchical technique of cluster MCL provides an 
improvement to MCL which allows it to better handle many problematic situations while still 
maintaining the underlying properties of the algorithm. 

Another area of my research is allowing FastSLAM to make use of additional information.  In 
many situations some data is available about the environment before localization begins.  If the 
structure of the map is available, my algorithms allow FastSLAM to make use of it, converging much 
more easily than normal.  Although MCL already handles the case where the environment is 
completely known, and FastSLAM handles the case where it is completely unknown, most situations 
are actually somewhere between the two.  Skeletal FastSLAM takes advantage of the partial 
knowledge that is often available to offset one of the main disadvantages of regular FastSLAM, the 
loop closure problem.  If skeletal information is available there is no reason not to use it, especially 
since there is little overhead to the algorithm.  The ability to use additional information about the 
environment makes FastSLAM more powerful in many common situations. 

My research has primarily been based on extending the effectiveness of particle filtering techniques 
for localization and SLAM in common situations.  Although many of these situations can be handled 
by the ordinary techniques of MCL and FastSLAM, there are additional features involved that can 
significantly improve the results.  The major insight in my research is that, although MCL requires 
the entire static map to be defined and FastSLAM uses no initial information at all, most localization 
problems provide something between these two extremes.  I have created two techniques that work 
with partial knowledge of the map, depending on whether it is mostly known or mostly unknown.  
Also, cluster MCL handles cases with high symmetry while dynamic motion models allows more 
optimal parameters to be determined.  All of these techniques provide significant improvements to the 
basic localization and mapping algorithms.  By accommodating additional starting information and 
changing conditions, as well as allowing previously unknown features to be discovered, I hope to 
provide localization and mapping that is more effective in real environments. 

7.1 Future Work 

I intend to continue developing improvements to MCL and FastSLAM so as to handle additional 
situations with varying amounts of initial data.  Also, I will perform research to improve the 
capability to dynamically alter parameters of the algorithms during operation, especially the map.  
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Eventually, I intend to produce a localization and mapping system that can operate efficiently with 
arbitrary amounts of starting data, from a full map to complete uncertainty.  By taking dynamic 
elements into account this system will be able to handle any changes in the environment without 
losing any confidence.  Allowing for different levels of starting data, this consolidated algorithm will 
be able to handle different levels of uncertainty in different areas, and so will be able to seamlessly 
travel between known regions and unexplored areas.  Merging localization with mapping and 
detecting dynamic elements will allow a robot to be deployed to an area long term, without requiring 
human intervention.  I hope to use this system to create an autonomous vending machine robot that 
will use dynamic elements of the map to detect and explore new regions while optimizing its 
distribution path.  Such a robot would be an effective validation of my research, proving its utility for 
further development. 
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Appendix A 

Standard Mathematical Definitions 

These are the standard definitions used throughout this document. 

Table A-1: Standard Mathematical Definitions 

Symbol Definition 

x Robot location 

(x, y, θ) A position given by two offsets and an orientation. 

u Robot odometry data 

z Robot sensor data at 

at Value of a taken at time = t 

at {a0, a1, … , at-1, at}  All values of a from time = 0 to time = t 

M, y Map data 

mn Map cell as identified by index n 

yk,t Map cell identified by index k at time = t 

Bel(xt) Belief state of the variable x at time = t 

η A normalization constant 

xt
i A specific particle representing a hypothesis for the variable x at time t. 

wt
i The importance weight of particle i 

N The total number of particles 

[n] The index of a random particle 

θ The robot’s orientation 

r The distance travelled 

a An estimate of the value of a. 

kr, kθ, kd Parameters of the standard motion model 

Σ Covariance matrix 

Xt A set of particles representing Bel(xt) 

 


