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Abstract

The problem of shape control of composite laminated smart structures with piezoelectric

patches placed at optimal location is considered in this thesis. Laminated plate structures

with piezoelectric patches for shape control applications are modeled using a shear de-

formable plate formulation by including the piezoelectric layers into the plate substrate. A

composite plate finite element model is also developed for composite plates with self-sensing

actuators. Non-linear hysteresis models for piezoelectric materials are presented and dis-

cussed. Numerical simulation of composite plate structures with piezoelectric actuators

is conducted and presented. The optimization problem of finding the optimal location of

actuators using a linear quadratic control algorithm is done and the results are discussed.

Static shape control strategies are also discussed.
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Chapter 1

Introduction

In recent years development of self-sensing and self-correcting high-performance structures

has been motivated by the various needs of modern aeronautical, automobile and space

industries. A structure with embedded actuation unit, sensor unit and a control system

that changes its shape and dynamic behavior in response to any change in the external

environment can be termed as smart or intelligent structure. Such structures use special

materials called smart materials as actuating and sensing elements. Materials with special

properties such as changing shape when heated or electrified, producing electricity when

compressed or heated, and changing their physical states when subject to a magnetic or

electric field are called smart materials. Some of these properties can be manipulated

and used effectively in the actuation and sensing. Bonding or embedding these smart

materials into structures gives the inherent self-sensing and self-correcting ability without

any separate sensing or actuation unit.

One of the materials that can be used as an actuator and sensor is piezoelectric material.

Piezoelectric materials generate an electric charge when subjected to mechanical deforma-

tion (direct piezoelectricity), and conversely produce mechanical strain under an applied
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electric field (converse piezoelectricity). The use of piezoelectric materials as actuators and

sensors has been successfully demonstrated by many researchers during the last decade.

The coupled electromechanical properties of the piezoelectric materials, high strain rates,

simple mechanism of actuation, and their availability in different shapes and in synthetic

forms has made it possible to use them as one of the important actuation and sensing ele-

ments in structural control applications. Magnetostrictive material, shape-memory alloys,

and magnetoreheological fluids are some of the other smart materials in use today.

In addition, modern space, automotive and aircraft structures need to be strong but light

weight. Composites, in which two or more different materials with different material prop-

erties and/or chemical properties are put together in some particular fashion and tailored

to meet the required engineering properties, are promising for such applications. Due to

their high stiffness to weight ratio, strength to weight ratio and ability to withstand high

temperatures, composite materials are very attractive for modern structural needs. By

embedding piezoelectric elements into composite material structures, there are possibili-

ties of creating high-performance flexible structures with high strength, high stiffness and

light weight with self-sensing and self-correcting ability. Two different ways of embedding

piezoelectric elements into the structures have been employed in the past for the structural

control, (1) placing the piezoelectric elements over the entire structure, and (2) placing

them at selected locations. The selective placement method has been proven to be more

economical and effective [38].

Smart structures are used in several shape and vibration control applications. Micro-

positioning, satellite antenna shape control, space structure shape correction, and auto-

matic flow control valves are some of the practical examples of shape control applications.

Active vibration suppression in aircraft and active suspension systems for vehicles are some

of the vibration control applications. There are several concerns in these applications: (1)
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What material should be used in base structure? (2) What type of actuators should be

used? (3) Where to place the actuators and how many? (4) How to control the system

and what is the accuracy? (5) How to model and analyze, What is the required model

accuracy? and (6) Issues related to the experimental verification of the model. All of these

remain as open questions and many researchers are involved in finding answers to these

questions.

Advanced computer modelling techniques allow us to simulate the aforementioned smart

structures, compute the optimal placement of the actuating elements, and examine the

system performance. A sophisticated and accurate structural model is needed for the

optimization algorithms and control system simulations. Finite element techniques are

used extensively to model and analyze such structures.

The goal of the thesis is to study the shape control of composite smart structures with

optimally placed self-sensing piezoelectric patches. Shape control is a process of driving

the system to a desired or initial shape with piezoelectric actuators and sensors from the

current or the disturbed shape. In order to achieve the goal, the following studies will be

conducted: (1) Development of a comprehensive finite element model for composite plate

structures embedded with self-sensing piezoelectric patches considering geometrical non-

linearities and electro-mechanical hysteresis, (2) Optimization to find optimal locations of

piezoelectric patches. This thesis presents the background information and work done to

achieve the proposed goals on finite element modelling, and control and optimization with

their numerical simulations.

Finite element modelling:

A finite element model is developed to study the layered composite plates with piezoelectric

patches. Geometric non-linearities and shear deformations are considered to achieve higher

accuracy and to account for moderately thick plate substrates. One of the problems in
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shape control and micro-positioning is the loss of accuracy due to the electromechanical

hysteresis of piezoelectric materials. Self-sensing actuator concept, in which a single piece

of piezoelectric element is used as actuator and sensor, is also incorporated in the developed

finite element. Comparison results to validate the finite element and numerical simulations

of composite plate structures with linear piezoelectric actuator models are conducted and

presented.

Control and optimization

A linear quadratic regulator based optimization algorithm is used for finding the optimal

location of one actuator on a beam. Dynamic behavior of the beam with the actuator

placed at the optimal location is presented. Numerical simulations for optimal locations

of the actuator are presented for the static shape control applications.

In Chapter 2, basic theories used in the modelling of composite plates are discussed. Special

mention is given to thick plate modelling with shear deformation theory. A finite element

model developed to model composite plates is given at the end of the chapter. Some of the

fundamentals about piezoelectric materials and their use as actuator, and a finite element

model for composite plates with linear piezoelectric patches based on the element developed

in the previous chapter is given in Chapter 3. Hysteresis models and self-sensing techniques

are discussed at the end of Chapter 3. Different control objectives used in constructing the

cost function for optimizing patch locations are given in Chapter 4 with a few optimization

algorithms for static and dynamic shape control application. Summary and discussions are

given in the last chapter.
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Chapter 2

Plate Theory and Finite Element

Modelling

Modern automotive, aerospace and space industries require new materials with unique

characteristics such as high weight to strength ratio, high tensile strength in some specific

directions etc. Plate structures with much smaller dimension in one direction than the

other two, are one of the main structural elements in these applications. Layered composite

plate structures have the special properties required in these applications and hence are

used most widely. Composite plate structures are modeled using plate theories. Classical

plate theories give good results for thin plates. When the aspect ratio of the plate increases,

the transverse shear effects should be considered in the model for better results. Since the

composite plates are used as the base structure in this work, this chapter reviews the basic

theories for plate structures with more focus on the higher order theories for modelling

thick layered composite plates.

The finite element method (FEM), used to solve the differential equations governing struc-

tural behavior, is also reviewed in this context. Its development and numerical solution
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of layered composite plate structures are explained along with the element formulation.

Linear and nonlinear results are given with validation and comparison.

2.1 First order shear deformation plate theory

Plate structures which are three dimensional structural members frequently encountered

in engineering applications. Due to the smaller dimension in the thickness direction when

compared to the other dimensions, plate problems can be solved using plane stress as-

sumptions. In the plane stress assumptions: (1) the displacement variation in thickness

direction is assumed to be zero, (2) the stresses in the thickness direction are negligible

(very small magnitude). Figure 2.1 explains the plane state of stress on a cross-section of

a thin slab.

Figure 2.1: Plane state of stress

The basic theory for plate problems, classical plate theory or Kirchhoff’s theory is based on

the Kirchhoff’s hypothesis : (1) straight lines perpendicular to the mid-surface (i.e. trans-

verse normals) remain straight before and after deformation and their in-extensibility, (2)

transverse normals rotate to remain perpendicular to the mid-surface. Thus the defor-

mation is assumed to be entirely due to bending and in-plane stretching. The effect of
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Figure 2.2: Deformed and un-deformed shape with classical plate theory

transverse shear and transverse normals are neglected. Figure 2.2 displays the classical

plate theory; it shows that the transverse normals remain perpendicular to the mid-surface

before and after deformation.

When the thickness of the plate increases, the transverse shear strains should be included

in the theory. The first-order shear deformation theory accounts for the transverse shear

strain by assuming that it is constant with respect to the thickness coordinate [50]. It is

not assumed that the transverse normals remain perpendicular to the mid-surface after

deformation. First order shear deformation theory gives better results for thick plates

(plates with higher aspect ratio) while the classical plate theory is sufficient to predict

deformations for thin plates. Third and higher order theories were also proposed by relaxing

all the constraints imposed by Kirchhoff’s hypothesis. However, for very large thicknesses

three-dimensional elasticity yields better results than these higher-order plate theories [50].

In this thesis layered composite plates with moderate thickness with geometric non-linearity

are used, and so the nonlinear first-order shear deformation theory [50] is explained here.
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Figure 2.3: Deformed and un-deformed shape with first order theory

The deformed and un-deformed shape of a plate and the notations used are explained

in Figure 2.3, based on the first order shear deformation theory assumptions . The dis-

placements (u, v, w) in the x, y and z directions respectively are expressed as functions of

mid-plane translations (u0, v0, w0) and independent normal rotations (φx, φy) as:

u(x, y, z, t) = u0(x, y) + zφx(x, y, t)

v(x, y, z, t) = v0(x, y) + zφy(x, y, t) (2.1)

w(x, y, z, t) = w0(x, y)

where, φx, and φy are the rotations of the normal with respect to the un-deformed mid-

plane in the xz and yz planes, respectively. These normals are not necessarily perpendicular

to the mid-plane after deformation, according to the first order theory assumptions, and

consequently shear deformation is permitted. The nonlinear strains associated with the
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displacement field can be written from the general Green strain expression for the three

dimensional state of stress. With the assumptions of small strains (the squares and prod-

ucts of strains are negligible) and moderate rotations, the geometric nonlinear strains (von

Karman) can be written as:

εxx =
∂u0

∂x
+

1

2

(
∂w0

∂x

)2

− z∂φx
∂x

εyy =
∂v0

∂y
+

1

2

(
∂w0

∂y

)2

− z∂φy
∂y

εxy =

(
∂u0

∂y
+
∂v0

∂x

)
+

(
∂w0

∂x

∂w0

∂y

)
− z

(
∂φx
∂y

+
∂φy
∂x

)
(2.2)

εyz =
∂w0

∂y
+ φx

εxz =
∂w0

∂x
+ φy.

By collecting the in-plane strains, linear (εp) and nonlinear (εnlp ), bending strain (εb), and

shear strain (εs) terms, the total strain can be written in a compact form as follows:

{ε} =


 εp

0

+

 −zεbεs


+

 εnlp

0

 (2.3)

=
{
{εl}+ {εnl}

}
where,

εp =


∂u0

∂x

∂v0
∂y

∂u0

∂y
+ ∂v0

∂x

 εb =


∂φx

∂x

∂φy

∂y

∂φx

∂y
+ ∂φy

∂x


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εs =

 ∂w0

∂y
+ φx

∂w0

∂x
+ φy

 εnlp =


1
2

(
∂w0

∂x

)2

1
2

(
∂w0

∂y

)2(
∂w0

∂x
∂w0

∂y

)


here the superscripts l denotes the linear strain and nl denotes the nonlinear strains.

2.2 Layered Composite Plates

Composite materials are made by combining two or more materials to achieve the desired

properties such as stiffness, strength, weight reduction, thermal properties for the structure.

Usually the reinforcing material is called fiber and the medium or the base material is called

matrix which may be metallic or nonmetallic. The stiffness and strength of the composite

materials come from the fiber which are usually stronger than the matrix materials. A

composite material layer called lamina (or ply) is a sheet of composite material, which is

usually made of two or more constituents and considered generally as orthotropic.

Layered composite plates are made by stacking a number of composite laminas in a de-

sired sequence, called a lamination scheme. Usually the lamination scheme is represented

with the ply angles of all the layers, for example a three layer orthotropic composite plate

may be represented as (0◦/90◦/0◦). A unidirectional fiber-reinforced lamina is formed by

embedding the continuous fiber materials in the matrix materials in one particular direc-

tion. They exhibit high strength in the direction of the fiber and are weak in the direction

perpendicular to the fiber. Composite plates are custom made to the requirements by

stacking many layers in different sequence to adjust the resulting properties. With the

assumptions of lamina as a continuum and an elastic material, the generalized Hooke’s law

for a composite lamina can be written as
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Figure 2.4: Lamina with materials and problem coordinates

{σij} = [Q] {εij} (2.4)

where {σij} are the stress components and {εij} are the strain components and [Q] are

material coefficients. The uni-directional fiber-reinforced composite lamina is considered

as an orthotropic material with its material coordinate axis x1 be taken parallel to the

fiber direction and axis x2 to be perpendicular to the fiber direction and the axis x3 is

perpendicular to the plane of the lamina. Often, the material coordinates (x1, x2, x3) and

the problem coordinates (x, y, z) will not be the same. Also, composite plates may have

many different layers with different stacking sequence. Figure 2.4 shows such a lamina. The

material coefficients should then be transformed to the problem coordinates using the ply

angle α for each lamina. The transformation details are in Appendix A. The constitutive

equation of an orthotropic layer transformed to the problem coordinate is given as:

{σij} =
[
Qij

]
{εij} (2.5)

where Qij are transformed material coefficients of the layer in the problem coordinates as

given in Appendix A, σij and εij are stresses and strains respectively for the lamina.
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Figure 2.5: Plate with distributed load

Figure 2.6: Stress distribution in the plate element

The three dimensional plate is usually idealized to the mid-surface and the bending of that

mid-surface is studied. Consider an element (dx× dy× h) of the loaded plate (distributed

load, q(x, y)) with thickness h for the idealization. The stress distributions across the

thickness in such an element is shown in Figure 2.6. The positive force and moment

resultants per unit length transferred to the mid-plane of the element due to the distribution

of stresses across the thickness are shown in the Figure 2.7. The governing equations of

motion based on first order shear deformation theory can be derived from the principle of

virtual work, which may be stated as:
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Figure 2.7: Positive resultants and load on a plate element

0 =

∫ T

0

(δU + δV − δK)dt (2.6)

where δU is the virtual strain energy, δV is the virtual work done by the applied forces

and δK is the virtual kinetic energy. By substituting the expressions for virtual energies

in terms of stresses and strains we obtain the equations of motion. The in-plane force

resultants {N}, moment resultants {M}, the transverse force resultants {T} and the mass

moment of inertias (I0, I1, I2) can be written as:

{N} =


Nxx

Nyy

Nxy

 =

∫ h/2

−h/2


σxx

σyy

σxy

 dz {M} =


Mxx

Myy

Mxy

 =

∫ h/2

−h/2


σxx

σyy

σxy

 zdz

{T} =

 Tx

Ty

 = s

∫ h/2

−h/2

 σxz

σyz

 dz


I0

I1

I2

 =

∫ h/2

−h/2


1

z

z2

 ρdz (2.7)

where s is the shear correction factor which usually takes the value of 5/6 [50] and ρ is
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the density of the material. The Euler-Lagrange equations are obtained by setting the

coefficients of the virtual displacements in the virtual work to zero independently:

δu0 :
∂Nxx

∂x
+
∂Nxy

∂y
= I0

∂2u0

∂t2
+ I1

∂2φx
∂t2

,

δv0 :
∂Nyy

∂y
+
∂Nxy

∂x
= I0

∂2v0

∂t2
+ I1

∂2φy
∂t2

,

δw0 :
∂Tx
∂x

+
∂Ty
∂y

+N (w0) + q(x, y) = I0
∂2w0

∂t2
,

δφx :
∂Mxx

∂x
+
∂Mxy

∂y
− Tx = I2

∂2φx
∂t2

+ I1
∂2u0

∂t2
,

δφy :
∂Myy

∂y
+
∂Mxy

∂x
− Ty = I2

∂2φy
∂t2

+ I1
∂2v0

∂t2
. (2.8)

In the equations q(x, y) is the distributed load applied to the plate and the term N (w0)

can be written as:

N (w0) =
∂

∂x

(
Nxx

∂w0

∂x
+Nxy

∂w0

∂y

)
+

∂

∂y

(
Nyy

∂w0

∂y
+Nxy

∂w0

∂x

)
.

For a general composite laminated plate, consisting of n layers having different material

properties, stresses vary through the thickness because of the change in material coeffi-

cients. Therefore the integration through the thickness should be done layer by layer. The

in-plane force resultants {N}, moment resultants {M} and the transverse force resultants

{T} for a general laminated composite plate become:

{N} =


Nxx

Nyy

Nxy

 =
n∑
k=1

∫ zk+1

zk


σxx

σyy

σxy

 dz
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{M} =


Mxx

Myy

Mxy

 =
n∑
k=1

∫ zk+1

zk


σxx

σyy

σxy

 zdz

{T} =

 Tx

Ty

 = s
n∑
k=1

∫ zk+1

zk

 σxz

σyz

 dz. (2.9)

By substituting the constitutive equation (2.5) into equation (2.9) and using equations

(2.2) and (2.3), the resultants can be written as follows:
{N}

{M}

{T}

 =


[Aij] [Bij] 0

[Bij] [Dij] 0

0 0 s[S]




εp

εb

εs

 (2.10)

where [Aij], [Bij] and [Dij] matrices are defined as:

[Aij] =
n∑
k=1

∫ zk+1

zk

Q̄k
ijzdz (2.11)

[Bij] =
n∑
k=1

∫ zk+1

zk

Q̄k
ijzdz (2.12)

[Dij] =
n∑
k=1

∫ zk+1

zk

Q̄k
ijz

2dz (2.13)

and,

[S] =

 A44 A45

A45 A55

 (2.14)
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where the extensional stiffness are defined as:

A44 =
n∑
k=1

∫ zk+1

zk

Q̄k
44dz

A45 =
n∑
k=1

∫ zk+1

zk

Q̄k
45dz

A55 =
n∑
k=1

∫ zk+1

zk

Q̄k
55dz

where Q̄k
ij are transformed material coefficients of layer k. By substituting the resultant

equations into the equation of motion (2.8) they can be written in terms of the displace-

ments.

2.3 Finite element modeling

A typical element with four nodes on the corner in actual (x, y, z) and natural coordinate

systems (r, s, t) are shown in Figure 2.8 . Each node is assumed to have five degrees of

freedom. Thus, the nodal displacement vector {u}e of an element is represented as:

{u}e =
[
ui vi wi φxi φyi

]
i=1...4

(2.15)

where ui, vi and wi are the translational degrees of freedom in x, y and z directions of

node i respectively. The components φxi and φyi are the rotational degrees of freedom

about x and y axes of the same node. Isoparametric formulation is used in the element

modeling; that is the geometry and the variation of nodal displacements within the element

are written using the same shape functions. The location of any point inside the element

(x, y) may be represented in terms of the nodal coordinates (xi, yi) of that element using
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Figure 2.8: Finite element description

the shape functions. Shape functions Hi should take the value 1 at the node i and 0 at

the other nodes. They should be continuous inside the element and across the boundaries.

The Lagrange shape functions used here take the form,

Hi =
1

4
(1 + rri)(1 + ssi) (2.16)

for node i, where ri and si are natural coordinates. The coordinate of any point inside an

element in terms of nodal coordinates can be written as:

x =
4∑
i=1

Hixi y =
4∑
i=1

Hiyi. (2.17)
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Figure 2.9: Finite Element discretization

The displacements inside the elements also may be represented in terms of their nodal

values using the same shape functions used to represent the geometry as:

u =
4∑
i=1

Hiui, v =
4∑
i=1

Hivi, w =
4∑
i=1

Hiwi,

φx =
4∑
i=1

Hiφxi, φy =
4∑
i=1

Hiφyi.

Strain displacement relations were derived from the stress-strain relations (equation (2.2))

using the shape functions. Details are in Appendix B. Equations of motion of an element

can be derived from the virtual work principle applied to an elemental area Ωe as in Figure

2.9.

The virtual work statement (equation (2.6)) can be written as follows after discretization,

0 =
ne∑
1

∫ T

0

(δU e + δV e − δKe)dt (2.18)

where ne is the total number of elements in the discretization. The potential energy, the

external work done and the kinetic energy due to virtual displacements on the elemental

volume are shown by δU e, δV e and δKe respectively . They can be written as:

δU e =

∫
V

σijδεijdV (2.19)
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δV e = −
(∫

V

qδudV +

∫
Γe

tδuds

)
(2.20)

δKe =

∫
V

ρ
∂2u

∂t2
δudV (2.21)

where V is elemental volume, Γe is the length of the boundary at which the traction t is

applied, q is the nodal forces and δu is the virtual displacement. The dynamic equation

for an element can be obtained by substituting the strain displacement relations into the

virtual work statement,

[M ]e {ü}e + [K]e {u}e = {F}e (2.22)

where [M ]e , [K]e and {F}e are mass matrix, stiffness matrix and force vector for an ele-

ment. Global dynamic equation after assembly becomes:

[M ] {ü}+ [K] {u} = {F} (2.23)

where [M ] , [K] and {F} are global mass matrix, stiffness matrix and force vector respec-

tively. Structural damping is introduced in the model using Rayleigh damping, i.e. the

damping matrix is proportional to the mass and stiffness matrices. The dynamic equation

is then

[M ] {ü}+ [C] {u̇}+ [K] {u} = {F} , (2.24)

where

[C] = η [M ] + δ [K] (2.25)

with damping coefficients η and δ. The matrices and external load vector formulations are

given in Appendix B.
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Figure 2.10: Validation of finite element

2.4 Verification

A Matlab code was written based on the finite element model presented earlier for nu-

merical validation. A moderately thick square (a × a and a/h = 10) simply supported

cross-ply laminated plate is analyzed for two different constructions, 2 ply (0/90) and

4 ply (0◦/90◦/0◦/90◦), where a is the side and h is the thickness. A transverse uni-

formly distributed mechanical load (w) is applied. Material properties used are Y11/Y22 =

25, G12/Y22 = 0.5, G13/Y22 = G23/Y22 = 0.2, ν12 = 0.25. The following dimensionless quan-

tities are considered, central deflection (w/h) and load (qa4/Y22h
4). The load-deflection

curve is plotted and compared with the analytical solution results given in [45]. Figure 2.10

shows that the developed finite element model is in good agreement with the analytical

solution results. Also, we can notice here that for the same side to thickness ratio (a/h),

4 ply composite plate has less deflection than that of 2 ply plate.

In order to verify the finite element model for the static mechanical loading case, an all-

clamped four ply (0◦/90◦/90◦/0◦) square plate having dimensions a = b = 12 in, h = 0.096
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Figure 2.11: Static deflection with distributed load

in, with a uniformly distributed load q0 was modeled. The maximum center deflection is

shown in Figure 2.11 against the increasing load and its comparison with classical laminated

plate theory (CLPT) [53] and first-order shear deformation theory (FSDT)[12]. The finite

element results were in very good agreement with the theoretical results. The material

properties used here are: Y11= 1.8282 x 106 psi, Y22= 1.8315 x 106 psi, G12 = G13 = G23 =

0.3125 x 106 psi, and Poisson’s ratio= 0.23949.

21



Chapter 3

Composite Plates with Piezoelectric

Patches

Structures which can sense and react according to the action of their surroundings are

called smart structures. In general, smart structures consist of a sensing unit, which

sense the action, and an actuation unit to generate response, and finally a control unit

to monitor and control the entire process. The actuation and sensing are often achieved

by employing materials with special properties called smart materials. Smart materials

have the ability to convert one form of energy into another that can be eventually used in

sensing or in actuation. Different types of materials have been tested and used successfully

in smart sensing and actuation, depending upon the applications. Piezoelectric materials,

shape memory alloys, magnetorheological fluids and magnetostrictive materials are among

these materials. Piezoelectric materials are widely used in structural applications such as

shape control, vibration control, and micro-positioning due to their direct coupling between

electrical and mechanical fields, high stiffness, and fast frequency response and their very

high achievable strain rate when compared to other materials.
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Figure 3.1: Schematic representation of piezoelectric effect

This chapter briefly discusses the fundamentals of piezoelectric materials, their constitutive

relations and modeling of piezoelectric patches in composite plates with the finite element

procedure. Review of the hysteresis models for piezoelectric materials and their implemen-

tation is also addressed in this chapter. The self-sensing actuator concept, used to achieve

truly collocated actuator/sensor pairs is discussed at the end.

3.1 Fundamentals of piezoelectricity and piezoelectric

materials

The piezoelectric effect can be seen as a direct coupling between electrical and mechanical

fields. This is of two types, one is the direct piezoelectric effect and the other is the converse

piezoelectric effect. Piezoelectric crystal produces mechanical displacement (strain) under

an electrical field. This property is termed the converse effect. The production of electric

field due to mechanical strain is termed the direct effect. Figure 3.1 shows the converse

effect schematically. The direct piezoelectric effect was observed by Curie brothers (Pierre

Curie, Jacques Curie) in 1880 in some natural crystals like cane sugar, and in Rochelle salt

[39]. They also verified the inverse piezoelectric effect in 1881. Some of its applications such

as sonar, ultrasonic, microphone and transducers came to use during the first and second
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world wars [39]. For a material to exhibit anisotropic properties such as piezoelectricity,

its crystal structure must have no center of symmetry [8]. Among the naturally available

crystals, 21 classes of crystals out of 32 are non-centro symmetric. Out of them, 20 classes of

crystals show piezoelectric effect. The different modes of piezoelectric effects seen in natural

crystals are the longitudinal, transverse, longitudinal shear and the transverse shear. Three

possible electric fields and six possible strains make the piezoelectric coefficient matrix

dh,k of size 3x6. The non-zero components in the piezoelectric coefficient matrix and the

direction of applied electric field decide the mode of deformation.

The transverse mode is the most common mode of actuation in structural applications

such as surface bonded or embedded actuators/sensors. These actuators when polarized

in the thickness direction produce a deformation along the axis of the substrate; the re-

sultant is a couple about the center-line of the substrate. In the sensor case the reverse is

true. The materials used in this work are such that they have dominant d31 coefficients,

and if they are applied with electric potential in thickness direction(3) they deform more

in longitudinal direction(1) and is used in bending applications. The longitudinal effect

is used in point actuators, where the extension takes place in the longitudinal direction.

The shear effect also has been occasionally used in strain actuation applications [5]. The

piezoelectric effect exhibited by natural crystals such as quartz, Rochelle salt etc, is very

small, costly and their availability in the desired size and shape is very limited [13]. Hence,

synthetically-developed piezo-ceramics and piezo-polymers have been widely used in smart

structure applications in recent years [13]. PZT (lead-zirconate titanate), a ceramic, and

PVDF (polyvinylidene fluoride), a polymer, are very popular among them. Poling is a

process that aligns the random domains along the polarization direction; it is achieved by

applying a strong DC voltage in one direction on the heated PZT. During poling the ma-

terial permanently increases dimensionally along the poling direction and reduces in other
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Figure 3.2: Dipoles in PZT before and after poling

Figure 3.3: Unit cell of PZT before and after polling

direction (Figure 3.2b). The atomic structure of PZT is given in Figure 3.3, before and

after poling along with the poling direction. PZT ceramics have anisotropic structure after

poling below the Curie temperature above which they loose their piezoelectric properties.

The dipole behavior of this material is due to the charge separation between the positive

and negative ions. The Weiss domains (ferroelectric domains), a group of dipoles with

parallel orientation, are randomly oriented in the PZT before poling (Figure 3.2a).

The use of piezoelectric actuators as elements of intelligent structures was successfully

demonstrated by Crawley and Louis in [13]. They presented analytical and experimental

development of structures with distributed actuators and sensors. They demonstrated
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with beam-like structures having surface bonded or embedded actuators. Large flexible

structures such as antennas, mirror, and aircraft wings etc are generally made of composite

materials and their shape and vibration control problems were studied by many researchers

by using the piezoelectric material layers or patches as the actuating and sensing elements

[9, 12, 14, 20]. The next sections discuss the constitutive relations for a piezoelectric lamina

for which actuator and sensor equations are derived. The finite element model developed in

the previous chapter for composite plates is modified to include the piezoelectric material

layers and piezoelectric patches.

3.2 Modelling of piezoelectric lamina

A piezoelectric lamina is a layer of piezoelectric martial. Its linear constitutive equations

coupling the elastic and electric fields can be written for a plane stress reduced condition

as [50]

{σ} = ¯[Q]{ε} − [ē]T{E}

{D} = [ē]{ε}+ [p̄]{E} (3.1)

with

[ē] = ¯[Q]{d̄}

where {σ} = [σxx, σyy, σxy, τyz, τxz]
T is the elastic stress vector and {ε} = [εxx, εyy, εxy, γyz, γxz]

T

is the elastic strain vector, {E} is the electric field vector, {D} is the electric displacement

vector (a measurable quantity equal to the charge per unit area of an electrode), ¯[Q] is the

transformed elastic constitutive matrix and ¯[e] is the transformed piezoelectric stress coef-

ficients matrix, [p] is the transformed dielectric constants matrix and [d] is the transformed
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Figure 3.4: Piezoelectric lamina with surface electrode

piezoelectric strain coefficient matrix in the local coordinate system (x, y, z) of the lamina

using the ply angle of the lamina α (see Figure 2.4). The transformation of vectors and

matrices from the material axes system (x1, x2, x3) to local system (x, y, z) of the lamina

and the coefficient matrices are given in Appendix A. The first equation of (3.1) represents

the converse effect and hence it is used in actuator designs. The second one governs the

direct effect and is used in sensor designs.

Piezoelectric actuators are available in different shapes, such as rod, plate etc. The rod type

actuators, polarized in the longitudinal direction, are used as stacked actuators in point

actuation. The plate type actuators polarized in thickness direction are used in distributed

actuation on plate and shell-like structures. They have electrodes on both sides, Figure

3.4. The electric field vector {E} is the negative gradient of the applied electric potential

V , the voltage applied in the thickness direction. i.e.,

{E} = −5 V (3.2)

where

{E} = {0, 0, Ez}T
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and

Ez = −V/hp

where hp is the thickness of the piezoelectric layer. The actuator equation is derived from

the induced strain actuation definition of equation (3.1) with no applied stress in the

piezoelectric layer. From equation (3.1), stresses due to the applied electric field, {σp}, in

the piezoelectric layer is

{σp} = [ē]T{E}

where {σp} can be related to the the strain in the piezoelectric layer {εp} as

{σp} = [Q̄]{εp}.

Therefore the strain can be related to the electric field using the above two relations as

{εp} = [Q̄]
−1

[ē]T{E}. (3.3)

By using equation (3.3) and the general strain definition (2.3) the total strain vector {ε}tot
for electro-elasticity can can be written as

{ε}tot =

 {ε}

{εp}

 =

 {ε}l + {ε}nl

{εp}

 (3.4)

where {ε} is the elastic strain given by the equation (2.3). This expression for strain is

used in the general nonlinear constitutive model of the smart structures with actuators.

The sensor equation can be derived from the second equation of the electro-elastic rela-

tion of a piezoelectric lamina (equation (3.1)). The electric displacement in the thickness
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direction can be written as

Dz = e31{ε}

where e31 is the dominant piezoelectric constant. The total charge q(t) developed on the

sensor surface is the spatial summation of all the point charges and can be calculated by

integrating the electric displacement over the sensor surface area as

q(t) =

∫
S

DzdS (3.5)

where S is the surface area of the sensor. The open circuit sensor voltage output from the

sensors can be written as:

φs(t) = Gci(t) (3.6)

where Gc is the gain of the current amplifier. The current i(t) on the sensor is the time

derivative of the total charge and can be written as

i(t) =
dq(t)

dt
(3.7)

where q(t) is the total charge given by equation (3.5).

3.3 Finite element implementation of piezoelectric patches

A piezoelectric patch is either surface bonded or embedded into the substrate composite

plate to form piezolaminated composites. The bond between the layers is assumed to be

perfect so that the displacement remains continuous across the bond. The layered com-

posite plate with piezoelectric layer modeled in [45], is modified to include the transverse

piezoelectric force resultant. Piezoelectric force, moment and transverse force resultants
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per unit length are denoted by {Np}, {Mp} and {T p}, respectively. They can be written

as:

{Np} =


Np
xx

Np
yy

Np
xy

 =

np∑
k=1

∫ zk+1

zk

[ē]k {E}k dz,

{Mp} =


Mp

xx

Mp
yy

Mp
xy

 =

np∑
k=1

∫ zk+1

zk

[ē]k {E}k zdz, (3.8)

{T p} =

 T px

T py

 = s

np∑
k=1

∫ zk+1

zk

 ē14 ē24 0

ē15 ē25 0

k {E}kdz,
where np represents the number of piezoelectric layers. The addition of piezoelectric ma-

terial into the composite (substrate) changes the force and moment resultants (equation

(2.10)) as follows
{N}

{M}

{T}

 =


[Aij] [Bij] 0

[Bij] [Dij] 0

0 0 s[S]



{εp}

{εb}

{εs}

−

{Np}

{Mp}

{T p}


where matrices [A], [B], [D] and [S] are as given in equation (2.10).

Finite element modelling of piezoelectric materials and layered composites with piezo-

electric layers were presented in the literature over the years. A three-dimensional finite

element was developed and presented in [20, 57] for the analysis of piezoelectric continuum.

Laminated plate elements with piezoelectric layers using classical plate theory is presented

in [14, 24, 32]. Nonlinear finite element modeling of laminated plates were presented in
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[51, 55], they follow the same formulation presented in [46] for isotropic plates. Nonlin-

ear finite element analysis of laminated composites with piezoelectric actuators/sensors is

one area which is less reported in the literature. A 20 node brick element for modelling

piezoelectric continuum is presented in [61]. Solid elements are not efficient for modeling

plate structures due to the shear locking (a phenomenon characterized by a severe un-

derestimation of the displacements [50]) when used to model the plate structures. Also a

large number of elements are required to get reasonable results. Another non-linear finite

element based on classical laminate theory for piezoelectric laminated plate is presented in

[41]. Recently, other methods such as an element-free Galerkin method [37] are used in the

analysis of these structures. Commercially available finite-element analysis packages such

as ANSYS, ABAQUS have piezoelectric capabilities in their finite elements solid and plate

elements. They are useful for modeling the piezoelectric transducers (piezoelectric struc-

tures) rather than modeling structures with integrated piezoelectric patches. Non-linear

electro-mechanical capabilities are not considered in their modeling as such but an user

written sub-routines can be used to include the non-linearity. Layered composite plate ele-

ments with piezoelectric capabilities are not available in their element library. In this thesis

an efficient finite element plate model with shear deformation is presented for modeling

thick layered composite plates with bonded piezoelectric actuators, including self-sensing

capabilities and nonlinear electro-mechanical effects.

In order to model the piezoelectric patches, the element developed in Section 2.3 is used

with one electrical degree of freedom per layer added to the five displacement degrees of

freedom. The electric potential is assumed to be constant over an element and varying

linearly through the thickness [32]. The total strain given in equation (3.4) is used in

deriving the element matrices. A special numbering scheme is used to denote the elements

with piezoelectric patches. Elements with piezoelectric patches are denoted with 1 and
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others have 0 for the identification during the assembly process. The finite element equation

(equation (2.23)) developed for a layered composite plate from the energy principles is

modified to include the piezoelectric resultants as: Muu 0

0 0

 {ü}0
+

 Kuu Kuφ

Kφu Kφφ

 {u}{φ}
 =

 {F}0

 , (3.9)

where [Kuu] is the elastic stiffness matrix, [Kφφ] is the electric stiffness matrix and [Kφu], [Kuφ]

are the coupling matrices. Actuator and sensor equations can then be written as:

{u} = [Kuu]
−1({F} − [Kuφ]{φA} (3.10)

{φS} = −[Kφφ]−1[Kφu]{u} (3.11)

where {φA} and {φS} are electric displacement vectors of actuation and sensing.

The global dynamic equation after assembly becomes,

[M ]{ü}+ ([Kuu]− [Kuφ][Kφφ][Kφu]){u} = {F} − [Kuφ]{φA}.

The stiffness matrix definitions are given in Appendix B.

3.4 Hysteresis modeling in piezoelectric materials

In ferroelectric materials during poling (Section 3.1) the dipoles which are aligned to the

applied field grow and others shrink, so that there is no net strain, but with sufficiently

large field some dipoles switch directions and there is now a net piezoelectric effect. As a

result, domain walls (an imaginary wall separating neighboring domains with differently
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Figure 3.5: Typical hysteresis loop for piezoelectric material

oriented dipoles) will move. The domain walls are said to move corresponding to the

applied electric field, however the material dislocation defects interact with the dipoles

and obstruct the domain wall movement by pinning [23]. The unrecoverable energy loss

occurring in the applied field to overcome domain wall pinning is believed to be the primary

source of hysteresis in ferroelectric materials [23]. Hysteresis in piezoelectric materials is a

concern in shape control and micro-positioning applications where accuracy plays a major

role. Hysteresis is due to the ferroelectric nature of piezoelectric elements. For piezoelectric

materials, the hysteresis increases when the peak voltage is increased. Figure 3.5 shows a

typical hysteresis loop [27].

One of the very popular hysteresis models is the Preisach model and it is widely used for

magnetic materials. Ge and Jouaneh [18] and Hughes et al [23] used a Preisach model

to study the hysteretic behavior of piezoelectric actuators, this model was earlier used

for magnetic materials by Doong and Mayergoyz [15]. The results were verified with an

experiment conducted on stacked actuators with periodic sinusoidal and triangular input

voltages. Another approach given by Ralph C. Smith [56], the homogenized energy model,
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is a flexible and efficient macroscopic model for ferroelectric materials. Other notable

models for piezoelectric hysteresis available in the literature are the Jiles-Atherton model

[17], a macroscopic theory given by Chen and Mongomery [11] and an implicit algorithm

for predicting the hysteresis behavior of piezoelectric actuators presented by Leigh and

Zimmerman [34].

3.4.1 Energy model for piezoelectric materials

In the homogenized macroscopic polarization model [56], the polarization is expressed as

[P (E)](t) =

∫ ∞
0

∫ ∞
−∞

ν1(Ec)ν2(EI)[P (E + EI ; Ec, ξ)](t)dEIdEc (3.12)

where ξ denotes the initial distribution of dipoles. E is the electric field and Ec is coercive

field which reduces the polarization to zero and is given by

Ec = η(PR − PI)

where PR is reversible and PI is irreversible polarizations. EI denotes the interaction field

due to neighboring dipoles as well as certain electromechanical interactions. The functions

ν1(Ec) and ν2(EI) denotes general densities. A priori choice for densities is[56]

ν1(Ec) = c1e
−[ln(Ec/Ēc)/2c]2

ν2(EI) = c2e
− E2

I
2b2

where c1 · c2 = C, and the approximate value 〈Ec〉 = Ēc are used to obtain the initial pa-

rameter estimates. This formulation requires the identification of five parameters η, Ēc, c, b
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and c1 · c2 = C. All of these coefficients can be qualitatively interpreted [56]. The local

average polarization P is obtained through the minimization of the Gibbs energy

G(E,P, T ) = ψ(P, T )− EP

where ψ(P, T ) represents the Helmholtz energy. The kernel resulting from the the Helmholtz

energy expression has the form

P (E) =
1

η
E + PRδ

where δ = −1 for negatively oriented dipoles and δ = 1 for those with positive orientation.

A discretized version of this model for numerical implementation, based on Gaussian-

Legendre quadrature rule, is also presented in [56].

3.4.2 Implementation in FEM

The implementation of the hysteresis model into a finite element model is important as

finite element models are widely used in the study of smart structures. The literature on

the inclusion of hysteresis into finite element models is limited. Marc Kamalah et al [31]

discussed a macroscopic constitutive law for ferroelectric and ferroelastic hysteresis effect

of piezo-ceramics and their implementation in finite element modelling. An elastically

linear beam finite element model was developed by Paul et al [44] to model the optical

beams with bending actuators. This model includes the hysteresis effect by adding the

polarization term into the constitutive equation (3.1) as

{σ} = [Q]{ε} − [e]T{E}
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{D} = [e]{ε}+ [p]{E} − α1P (3.13)

where P is the polarization. The electric field change due to a unit polarization is denoted

by α1. Ralph C. Smith [56] has given a numerical implementation of homogenized energy

model into a finite element model. The constitutive relation for one-dimensional case was

obtained from the polynomial energy expression as:

σ = Y P ε− a1P − a2P
2 (3.14)

where the Young’s modulus at constant polarization is denoted by Y P , a1 and a2 are

positive coupling coefficients and P is the polarization obtained by the homogenized energy

model [56]. In order to implement this model in the finite element developed here (Section

3.3), the constitutive equation (3.14) is used to calculate the piezoelectric force and moment

resultants. Equation (3.8) is re-written as,

{Np} =

np∑
k=1

∫ zk+1

zk

([ē]k {E}k − α1P
k)dz

{Mp} =

np∑
k=1

∫ zk+1

zk

([ē]k {E}k − α1P
k)zdz

{T p} = s

np∑
k=1

∫ zk+1

zk


 ē14 ē24 0

ē15 ē25 0

k {E}k − α1P
k

 dz

in order to include the polarization. P k was calculated by using the discretized macroscopic

model (Equation (3.12)) for each piezoelectric layer k. This model needs to be added and

tested in the developed finite element code in this thesis.
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Figure 3.6: Schematic diagram of self-sensing actuator

3.5 Self-sensing actuators

Self-sensing actuation is a technique which uses a single piece of piezoelectric material for

sensing and actuation concurrently in a closed loop system [16]. Figure 3.6 represents the

schematic of self sensing actuator functions. Self-sensing actuators are truly collocated

and hence the resulting control system has all the desirable properties of collocated control

systems such as symmetric transfer functions, and this has been shown to provide greater

advantages in stability, passivity, robustness and in implementation [4]. In the case of

separate actuators and sensors, the maximum benefit can be achieved by having them

placed in close proximity. Self-sensing eliminates the possible closed loop control problems

arising from the capacitive coupling between the sensors and actuators [16]. Another

advantage in using self-sensing is the reduced number of piezoelectric elements required for

any application.

Dosch et al [16] developed a theoretical basis for self-sensing actuators in terms of the

electro-mechanical constitutive equations for piezoelectric material. Yellin and Shen [63]

used the self-sensing actuator in active constrained layer damping treatment of a beam.

Finite element implementation of self-sensing actuator concept into a first order theory
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based plate element is discussed by Chang-Qing et al [10]. The sensor equation (3.11) can

be written as:

{φS} = −β[Kφφ]−1[Kφu]{φA} (3.15)

where β is a constant obtained from the bridge circuit, [Kφφ] and [Kφu] are stiffness ma-

trices and {φA} is actuator voltages . The equivalent piezoelectric sensor’s capacitance

used to separate the sensor voltage is an unknown and its matching is a major problem.

Pourboghrat et al [47] presented an adaptive method for the on-line estimation of the

equivalent capacitance for layered self-sensing actuator. They have also used a simple PID

controller for the vibration reduction and motion control applications of a cantilever beam.

Implementation of self-sensing actuator for vibration control of structures with adaptive

mechanisms is reported in [33, 36]. The main difficulty in using self-sensing actuators is

obtaining a clean self-sensing signal due to the input voltage dependent piezoelectric ca-

pacitance. Linear piezoelectric capacitance relation is used to model the dependency [26].

Recently an extrinsic Fabry-Perot interferometer is used with piezoceramic[PZT] to ob-

tain a self-sensing mechanism to avoid the difficulties caused by the nonlinear piezoelectric

capacitance and phase error [9].

3.6 Numerical simulation

Numerical simulations using the developed finite element model are done on composite

plates with linear piezoelectric patches on them. First, static shape control applica-

tion is done in order to verify the piezoelectric modelling in the code. A simply sup-

ported four layer composite (T300/976 unidirectional graphite/epoxy composite) plate

with two additional actuator layers (PZT G1195N) at the top and bottom of the plate

[P/ − 30◦/30◦/30◦/ − 30◦/P ] is modeled with a uniformly distributed load of 50 N/m2,
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Table 3.1: Materials properties
PZT G-1195 T300/976

Y11 GPa 63 150
Y22 GPa 63 9

ν 0.29 0.3
G12 GPa 24.8 7.1
G13 GPa - 7.1
G23 GPa - 2.5

Density kg/m3 7600 1600
d31 pm/V -166 -
d32 pm/V -166 -

Figure 3.7: Plate geometry

with different electric potential. The plate dimensions considered are: a = b = 400 mm

and total thickness h = 0.8 mm and the thickness of piezoelectric layers is 0.1 mm. The

material properties considered are in Table 3.1 . Figure 3.7 shows the plate considered here

with the dimensions and boundary conditions. It is assumed that all the elements have a

piezoelectric material layer. The center line (line-AB in Figure 3.7) deformation obtained

is given in Figure 3.8 for various input electric potentials.

In order to show the efficiency of the plate finite element the present code is compared

with commercial finite element software. ANSYS, ABAQUS and NASTRON are some

of the commercially available software that have electro-mechanical analysis capabilities.

ABAQUS is selected among them for the comparison because of its ease of use with input
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Figure 3.8: Static shape control of composite plate

files and strong multi-physics capabilities. For this comparison an annular aluminum plate

with selectively bonded piezoelectric patches as shown in Figure 3.9 is considered and it is

modeled with the Matlab code devoleped here and also with solid elements in ABAQUS.

The plate is clamped along the inner edge and a 55V electric potential is applied.

The plate model is meshed with three different number of elements using the Matlab code

developed. The total number of element (NEM) and the total number of nodes (NNM)

in the mesh along with the results are summarized in the Table 3.2 for the three models.

Figure 3.10 shows the meshing used in the Matlab code with 180 elements. The un-

deformed and deformed shape of the plate obtained from the Matlab code is shown in

Figure 3.11 . A convergence study is performed using the code with increasing number

of elements and the results are tabulated (Table 3.2) and the deflection along the line-

AB(Figure 3.9) is given in Figure 3.12. From the figure it is clear that increasing the

number of plate elements does not make significant change to the converged results. The
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Figure 3.9: Clamped annular plate with piezoelectric patches - geometry

Table 3.2: Convergence with plate element
Model NEM NNM End deflection(m) (point-B)
MP1 180 216 4.47× 10−4

MP2 720 792 4.38× 10−4

MP3 2880 3024 4.37× 10−4
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Figure 3.10: Clamped annular plate with piezoelectric patches - mesh

CPU time taken to run the model (with 180 elements) using Matlab code on an AMD

Athlon 64x2 processor workstation was reported as 8.4063 sec, this was calculated utilizing

the ’cputime’ function in Matlab.

Similar convergence study is performed using four different model with increasing number

of solid elements in ABAQUS and the results obtained are tabulated (Table 3.3). Figure

3.13 shows the deflection along line-AB. From Figure 3.13 and Table 3.3 it is clear that a

large number of solid elements are required to obtain convergence. The CPU time taken

to run a model (with 1970 elments) using solid elements in ABAQUS on an AMD Athlon

64x2 processor workstation was reported as 15.2011 sec. The comparison of the converged

results from the Matlab code and ABAQUS is given in Figure 3.14. This result validates

the developed finite element code and also shows the efficiency of it over the commercial

software.
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Table 3.3: Convergence with solid element in ABAQUS
Model NEM NNM End deflection(m) (point-B)
MS1 1970 4684 3.61× 10−4

MS2 2884 5984 3.98× 10−4

MS3 15430 31260 4.378× 10−4

MS4 35058 70716 4.37× 10−4

43



Figure 3.11: Plate code results-undeformed and deformed shape of the plate
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Figure 3.12: Convergence with plate elements
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Figure 3.13: Convergence with solid element in ABAQUS
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Figure 3.14: Comparison of code and ABAQUS results
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Chapter 4

Optimal locations of actuators/sensors

Active structures can be controlled effectively, that is, a desired shape can be achieved by

using segmented piezoelectric actuators/sensors (piezoelectric patches) rather than having

actuators/sensors distributed over the structure[13]. Segmented actuators/sensors give

more flexibility than the actuators distributed all over the structure in operation because

the voltage applied to individual actuators can be controlled. They can be placed where

they can be most effective. Placement of actuators and sensors at appropriate locations

is an important factor in smart structure design in order to achieve the desired shape

statically or dynamically and also for vibration control of structures. In this chapter all

studies are based on piezo actuators with linear model and no hysteresis

4.1 Dynamic shape control

In dynamic shape control, poorly placed actuators and sensors may cause lack of observ-

ability and controllability or poor system performance [2]. Finding optimal placement of

actuators and sensors together with optimal control parameters, such as controller gain,
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is approached in different ways in the literature. In this chapter, different strategies used

to form the objective functions used for this problem are discussed. The use of different

objective functions to find the optimal location of an actuator is also discussed and nu-

merical examples are given. A finite element model is used to find an optimal location for

linear-quadratic control on a beam.

4.1.1 Strategies for optimal location

The placement of actuators/sensors is done mainly based on two different criteria, (1) con-

trollability and observability measures and (2) linear quadratic controller design. Place-

ment based on controllability will be discussed first. The basic concept here is to consider

this optimization problem as a minimum control energy problem. Consider a second order

system,

Mq̈ + Cq̇ +Kq = Fu (4.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F is the

force vector, q is the vector of displacement and u is the input vector. This system can be

written as a linear state-space model

ẋ = Ax+ Bu

y = Cx
(4.2)

where x = {q, q̇}T is the state vector, u is the input and y is the output vectors respectively.

The system matrices A and B are defined as follows:
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A =

 0 I

−[M ]−1[K] −[M ]−1[C]


B =

 0

[M ]−1[F ]

 (4.3)

and C is the observation matrix.

System (4.3) is controllable if for any initial condition x0, final condition xf , and time

tf > 0, there exists a piecewise continuous input u so that x(tf ) = xf [42]. The actuators

could be placed at some desired locations in order to bring the system to the final state

x(tf ) = xf with minimal control energy. This can be achieved by considering the following

minimum energy problem [30],

J = min
u

∫ tf

0

uT (t)u(t)dt (4.4)

subject to the the system dynamics (equation (4.2)) with given initial and final conditions.

This linear quadratic optimal control problem with fixed final time and state has an optimal

solution [28]

u0(t) = −BT eA(tf−t)W−1(t)(eAtfx0 − xtF ) (4.5)

where W (t) is the controllability grammian of the system, defined by

W (t) =

∫ t

0

eAτBBT eA
T τdτ. (4.6)

Using the control law (equation (4.5)) the control energy can be written as,

J0 = (eAtfx0 − xtf )TW (t)−1(eAtfx0 − xtf ). (4.7)
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This energy depends on W−1(t) that is, if any eigenvalue of W (t) is small, then there

will be at least one structural mode that is difficult to control. The minimal energy

expression (4.7), depends on the matrix B and in turn depends on the actuator locations.

Hence the desired locations of actuators can be found by minimizing some measure of the

matrix W−1(t). Different scalar quantitative measures of controllability are used, such as

maximizing the trace of the grammian, and maximizing the grammian eigenvalues in order

to obtain the optimal locations for the actuator. The controllability grammian matrix

satisfies [40]

Ẇ (t) = AW (t) +W (t)AT + BBT .

When A is an asymptotically stable matrix, W (t) reaches a steady state Wc as t→∞ that

is the solution of the Lyapunov equation

AWc +WcA
T + BBT = 0. (4.8)

Controllability based placement of actuators was first used by Ami Arbel [3] to find the

actuator locations in large space structures. Hac and Liu [21] extended this approach for

finding sensor locations also by solving the dual problem. Sadri et al [54], Leleu et al [35]

and Bruant et al [6],[7] have also used this method for optimal location problems.

In most of the structural dynamic cases a reduced system is considered for the analysis.

This is achieved by transforming the system into modal coordinates and including only

the first few modes. The displacement vector {q} is chosen to be the modal basis of the

conservative eigenmodes as,

{q} = [φ]{η}

where [φ] is the modal matrix of [M ] and [K] and {η} is the modal coordinate vector. The
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second-order system (equation (4.1)) can be written using modal coordinates as

[M̃ ]{η̈}+ [C̃]{η̇}+ [K̃]{η} = {F̃}{u}

where,
[M̃ ] = [φ]T [M ][φ]

[K̃] = [φ]T [K][φ]

[C̃] = [φ]T [C][φ]

[F̃ ] = [φ]T [F ]

and they can be written in state space form as,

{ż} = [Ã]{z}+ [B̃]{u}

{x} = [C̃]{z}
(4.9)

where {z} = { q q̇ }T is the transformed state vector. The matrices [Ã] and [B̃] are

defined as in equation (4.3). This transformed system can now be solved for the optimal

locations of actuator by minimizing the input energy (in this case modal cost function)

based on a measure of modal controllability of the desired number of modes [2],[60],[54],

and [22]. The most popular measure of modal controllability is the one that exploits the

properties of the angle between the left eigenvector of [Ã] of equation (4.9) and columns of

matrix [B̃], proposed by Hamdan and Nayfeh [22]. Assume that [Ã] has a set of distinct

eigenvalues {λi i = 1, · · · , n} with a set of right eigenvectors and corresponding set of left

eigenvectors {[Ã]qi = λiqi i = 1, · · · , n}, that are normalized so that qTi pi = δij. Let LT be

an n × n matrix whose ith row is qTi . If ith entry in LT B̃ is zero, that is qTi bj = 0 where

bj is the jth column of B̃, then the ith mode is not controllable from all inputs [22]. This

shows that the magnitude of
∣∣qTi bj∣∣is an indication of the controllability of the ith mode
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from the jth input. It depends on the magnitudes of qi and bj and cos θij where θijis the

angle between the two subspaces spanned by each of the vectors. Thus, a measure of modal

controllability of the ith mode from jth actuator input of the system is cos θij, where θij

is the angle between bjand qi as follows

cos θij =

∣∣qTi bj∣∣
‖qi‖ ‖bj‖

The norm of the vector fi, where fTi = qTi [B̃]/ ‖qi‖, is a gross measure of modal controlla-

bility of the ith mode from all inputs and this is widely used in the literature for vibrating

systems [7, 22]. A variation of the above proposition was given by Choi et al [25] to reflect

the magnitude of each element of the input matrix.

The second common type of criterion for actuator location uses a linear quadratic controller

design method to find the optimal locations for actuators as well as the feedback gain [60].

The objective in the optimal control problem is to find the control u(t) defined on t ∈ [t0, tf ]

that takes the system from a given initial state x(t0) to the desired final state x(tf ) in such

a way that the performance function is minimized. The quadratic performance function is,

J = min
u

1

2

∫ ∞
0

(xT [Q]x+ uT [R]u)dt (4.10)

subject to dynamics

ẋ = Ax+ Bu ; x(0) = x0

0 < t < tf .

The matrix [Q] is a positive semi-definite weighing matrix and the matrix [R] is a positive

definite weighting matrix. It is assumed that the pair (A, B) is stabilizable. ( The pair
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(A,B) is stabilizable if there exists K such that A− BK is Hurwitz [42].) The state feedback

control law,

u(t) = −Kx(t)

solves the linear quadratic problem (4.10), where

K = R−1BTS

where S is the unique positive semi-definite solution of the algebraic Riccati equation,

ATS + SA− SBR−1BTS + Q = 0.

The optimal cost is

Jopt =
1

2
xT (t0)Sx(t0). (4.11)

The LQR method is used to find the optimal gain and the placement of actuators for the

desired number of modes of excitation in [19, 59].

4.1.2 Optimization procedures

After choosing the objective function the problem in hand is a constrained nonlinear op-

timization. One of the optimization procedures used in this area is a technique proposed

by Geromel [19]. Consider a discrete version of the system by a discretization of the

domain, in which an optimal location needs to be found for the actuator, into N prede-

fined points, which yields the set of input matrices {Bj = B(pj) j = 1 · · ·N}. A vector

π = [π1, · · · , πN ]T can be assigned with the values πi = 1 if there exists an actuator at
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position pi, and πi = 0 otherwise. A set Φ can be defined as

Φ = {π ∈ RN s.t. π ∈ {0, 1};
N∑
j=1

πj ≤M},

where M is the number of actuators. The control design problem of finding locations to

optimize a linear-quadratic criterion can be written as,

J = min
π∈Φ

min
u∈L2

1

2

∫ tf

0

{yTQy +
N∑
j=1

πju
T
j Rjuj}dt (4.12)

subject to

ẋ = Ax+ Buj x(0) = ξ (4.13)

where R and B are defined as:

R = block diagonals{π1R1, · · · , πNRN}

B =
N∑
j=1

πjBj = [π1B1, · · · , πNBN ]

where Q,Rj > 0 j = 1 · · ·N , and Bj is a set of input matrices. The optimization problem

can now be considered as a problem of finding π ∈ Φ such that Jopt will be minimized:

Jopt = min
π∈Φ

1

2
xT (t0)S(tf )x(t0).

In order to minimize J with respect to π ∈ Φ, it is necessary to choose a measure σ(.) such

as 1
2
trace{S(π)Ξ}, associated with S and minimize it over Φ. The control design problem
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can be written as a projection of equations (4.12) and (4.13) in to π−space as:

min {σ(π); π ∈ Φ}. (4.14)

It may be noted from equation (4.14) that the variable π has been isolated from the control

u that is the minimization problem now only depends on the location.

An important property, convexity, is proved by Geromel [19]. Define a convex set Φc, where

Φ ⊂ Φc as

Φc = {π ∈ RN s.t. π ≥ 0}

and choose a measure associated with S, σo(π) : Φc 7→ R, where

σo(π) =
1

2
trace{S(π)Ξ}

and Ξ =
∑N

j=1 x(0)jx
T (0)j. For any π0 ∈ Φc, define the matrices Lj , BjR

−1
j BTj , j =

1, · · · , N and

S(π0) , −1

2

∫ tf

0

S(π0, t)Ψ(π0, t)ΞΨ(π0, t)
TS(π0, t)dt

where Ψ is the transition matrix, and then with µ(π0) , [µ1(π0), · · · , µN(π0)] and µj(π0) =

trace{LjS(π0)}, σ0(π) : Φc 7→ R is convex for Ψ, µ(π0) ∈ ∂σ0(π0). The convexity of

the measure σ0 ensures the global solution of equation (4.14). The global solution of the

problem can be obtained using the following procedure:

Step 1: Let the initial guess of the optimal location be π0 ∈ Φ. Solution of the Riccati

equation will give σ(π0).Calculate µ0 = µ(π0) ∈ ∂σ(π0), set k = 0 and choose ε > 0

sufficiently small, for instance 0.001.

Master problem: It is linear 0-1 mixed program, and µi = µi(πi) 5 0 and d(πi) = σ(πi)−
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〈µi, πi〉 = 0 for all i = 0, . . . , k. Solution for a special case when M = 1 and φ∞ = Φ is

θk+1 = min
1≤j≤N

max
0≤i≤k

{d(πi) + µj(π
j)}.

If j∗ is the optimal index, then πk+1
j = 1 for j = j∗ and πk+1

j = 0 for j 6= j∗.

Step 2: Solve the relaxed master problem

min
θ,π∈Φ

{θ : θ = σ(πi) +
〈
µi, π − πi

〉
i = 1 · · · k}.

Let θk+1, πk+1 be the optimal solution.

Step 3: Solve the Riccati equation and obtain σ(πk+1). if σ(πk+1) − θk+1 5 ε, terminate.

Otherwise determine µk+1, increase k by one and return to step 2.

This procedure will generate a feasible sequence πk which converges to the global solution

of joint actuator location and control problem because of the convexity. The convergence

is assured in finite number of cycles that depends upon the accuracy ε. This procedure

is used in finding the optimal location of a sensor, by directly minimizing a measure of

observability of a reduced model of a vibrating system [52]. This procedure is well suited

to use with finite elements as the integer π can be easily constructed with element-wise

consideration if one whole element is considered as one piezoelectric patch.

Finding the global minimum is not guaranteed if the problem is nonconvex. The selection

of a particular method is problem dependent and there is no universal algorithm for all

the problems. The nonlinear constrained optimization problem can be solved using stan-

dard nonlinear programming techniques. Either direct-search or descent methods can be

employed. The latter can be used for problems with a large number of variables [49] but

it requires the calculation of the gradient of the performance function. The constrained
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Figure 4.1: Flowchart of DFP algorithm

nonlinear problem can be mathematically written as unconstrained problem as long as the

subspace of the problem is a polygon or other well-defined geometries. One robust gradient

based unconstrained optimization technique, the Davidon-Fletcher-Powell algorithm [49],

used in finding optimal location of actuators, sensors and optimal gain by Xu et al [60]

is outlined in the flow chart (Figure 4.1) . Analytical expressions were derived in [60] for

the gradients of the performance function with respect to actuator placement matrix B

and control gain K in order to avoid the numerical difficulties encountered when finite

differences were used in gradient calculations. The basic parameters for each iteration i

are the vector of optimization variables Xi, an approximate inverse of the Hessian matrix

Hi, and a search direction vector Si. After finding the search direction, the one-dimensional
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minimization is used find the local minimum. An accelerated step-size algorithm is used to

determine an interval in the direction of search that contains at least one local minimum.

4.1.3 Numerical simulation and results

A beam made of aluminum, having a pair of linear actuators placed on either side is con-

sidered to illustrate the optimization procedures with different objective functions. The

dynamic equation of the beam is solved using finite elements. This beam finite element

code treats the beam and piezoelectric materials as linear elastic materials and uses linear

electro-mechanical relationship for stress and strain. Each element has two nodes and has

two degrees of freedom per node, and one electric degree of freedom per piezoelectric layer.

Each element is considered as having no patch or being fully covered with piezoelectric ma-

terial inducing equal and opposite piezoelectric moments at the nodes [13]. Shear strains

are not considered in this analysis as the objective is to verify the optimization algorithm.

The thickness of the bonding layer is omitted for simplicity. The optimal location obtained

from the procedure is used to find the optimal shape, again using the finite element proce-

dure. Simply supported and fixed-free boundary conditions were used in the analysis. The

properties of aluminum beam are summarized in Table 4.1.

Table 4.1: Material properties of beam
Property Aluminum PZT

Young’s Modulus GPa 79 63
Cross-Section mXm 0.05X0.01 0.05X0.0002

Length m 0.5 m 0.05 m
Density kg/m3 2500 7600

Piezoelectric Constant d31 m/V - −254× 10−12

A cantilever beam is modeled with 10 beam elements as shown in Figure 4.2-a . The best
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Figure 4.2: FE idealization of beam with actuator

location of one piezoelectric actuator is found using the LQR based algorithm [19] to be

location 6 with seven iterations with Q = CTC where C = [ I 0 ] and R = 1. The dynamic

simulation of the beam with uniformly distributed load of 5 sin tN/m applied through out

the beam and a voltage of 100 sin tV is applied to the actuators placed at optimal location is

done for 10 sec using the Matlab lsim function. An optimal feedback controller is designed

using the gain obtained from Matlab’s lqr function and the controlled system is compared

with uncontrolled one in Figure 4.3.Controlled response of the beam when the actuator is

placed at different location, position 3, is also given in the same figure. Step response and

impulse response for the system is given in Figure 4.4.
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Figure 4.3: Dynamic response of cantilever beam
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A simply supported beam is modeled with 10 beam elements as shown in Figure 4.2-b.

The best location of the piezoelectric actuator is found using the LQR based algorithm

[19] to be location 3 with five iterations with Q = CTC where C = [ I 0 ] and R = 1.

Dynamic simulation of the beam with 5 sin t N/m distributed load and 100 sin tV applied

to the actuators placed at the optimal location is done for 10 sec, and compared with an

optimal controlled model in Figure 4.5. Controlled response of the beam when the actuator

is placed at different location, position 7, is also given in the same figure.
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Figure 4.5: Dynamic behavior of simply supported beam

In order to verify the controllability measures, the rank test on controllability matrices was

carried out for cantilever beam case. The controllability matrices had full rank for reduced

systems with order up to 5 and have lower rank for the higher order systems. This shows

that controllability matrices are not useful for actuator placement problems of higher order

systems.
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In order to find the optimal location of an actuator on a plate the following example is

considered. A square (0.4×0.4m) four layer (0◦/30◦/0◦/30◦) composite plate with boundary

conditions as shown in Figure 4.6 and with material properties as in Table 4.2 having a

single piezoelectric patch is modelled.

Figure 4.6: Optimal location of actuator on a plate - geometry

Table 4.2: Materials properties of plate for optimal location
PZT G-1195 T300/976

Y11 GPa 63 150
Y12 GPa 63 9

ν 0.29 0.3
G12 GPa 24.8 7.1
G13 GPa - 7.1
G23 GPa - 2.5

Density kg/m3 7600 1600
d31 pm/V -166 -
d32 pm/V -166 -
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Figure 4.7 shows the FE meshing, initial location of actuator (location-1) and the optimal

location (location-33) obtained from the LQR based algorithm.

Figure 4.7: Optimal location of actuator on plate

4.2 Static shape control

The cost function used for static shape control by some authors [1, 29, 58, 62] involves the

squared difference between the actual and desired shape of the structure, i.e.

J =

∫ L

0

[y(x)− yd(x)]2dx
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where y(x) is the actual shape achieved by the input and yd(x) is the desired shape. Some

constraints are obtained from the limits of the geometry

0 ≤ xi ≤ L (i = 1, 2 · · ·n)

and the voltage input should lie within the limit

Vmin ≤ Vi ≤ Vmax.

In [48], analytical gradient expressions were developed using laminated composite plate

theory to avoid the numerical estimation of gradient, during the optimization procedure.

A gradient free optimal distribution utilizing the finite element disctretization for static

shape control based on the residual voltages is presented in [43]. The objective here is

to minimize the quadratic measure of the residual deviation of the current deformations

of the structure from its desired state. The main advantage of this idea is to use the

discretization of the domain, hence implementing it in finite element model is convenient.

The steps involved in this are:

1. Discretize the structure (use FE mesh).

2. Calculate the sensor voltage Vs in each element under applied load using finite element

solution.

3. Begin the shape design by assuming actuators in all the elements and then by killing

the undesired actuators. The initial guess of the undesired actuators are defined by

the physical boundaries of the structure. The actuators that surrounds the front are

candidates for state change, a front is the set of elements which has no actuators

resulting after the killing.
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4. The structure is analyzed based on the current actuator configuration under unit

voltage, and the required actuation voltages developed due to current actuator con-

figuration Va are calculated.

5. The voltages Vs and Va are normalized with respect to their maximum values as

V̄s = Vs

(Vs)max
, V̄a = Va

(Va)max
. Then the residual voltages Vr for the candidate elements

are determined as Vr = V̄s − V̄a. The elements that have negative residuals are

potential actuators to be removed.

6. The quadratic measure of the global residual deviation in deformation is calculated

as α =
∑ndof

i=1 (δi − δ0).

7. Repeat steps 4-6 until α is acceptably small.
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Chapter 5

Conclusions

A summary of this thesis and conclusions arrived from the work are discussed in this

chapter.

5.1 Summary and Conclusions

Optimal placement of piezoelectric actuators for the shape control of flexible structures and

their modeling using finite element method is discussed in this thesis. Elastic composite

plates were considered as the base structure. Modeling of composite plates with higher

order plate theory were adopted from the literature [50] and finite element formulation was

done and a finite element program using MATLAB was developed.

Smart structures (plate structures) with piezoelectric actuators and sensors with linear

model and no hysteresis for shape control applications were modeled in Chapter 3. The

plate formulation discussed earlier was modified to include the added piezoelectric layers

to the plate substrate. The finite element program was modified to include piezoelectric

layers in order to model smart structures. A special assembly procedure was used to
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account for the piezoelectric actuator patches instead of complete layers of piezoelectric

material throughout the structures. Numerical simulation of composite plate structures

with linear piezoelectric actuators was done and the results were discussed. The importance

of piezoelectric patches and their optimal placement were also discussed with different

patch configurations and the results were given. The nonlinear electro-mechanical behavior

(hysteresis) of the piezoelectric materials plays a role in shape-control applications and its

inclusion in the fundamental equation was also discussed. In order to achieve a truly co-

located behavior of actuators and sensors, the the self sensing actuator concept proposed

by Dosch et al [16] was used. Implementation of self sensing actuator concept in finite

element was also discussed.

A review of different methods used to construct the cost function for the optimization prob-

lem of finding the actuator/sensor locations in smart structures was discussed in Chapter

4. LQR-based methods were considered for further use. An optimization algorithm, pro-

posed by Geromel [19] was discussed. This method is used with the finite element program

developed herein to find an optimal location of one actuator on beam and plate structures

and the results were given in Chapter 4. Static shape control strategies were also discussed.

5.2 Further study

Further study in this area may mainly focus on (i) experimental verification of the model

(ii) extension of the optimization procedure used for the plate structures with multiple ac-

tuators, (iii) investigating possible problems in LQ control when considering non-linearities

and hysteresis (iv) investigating the possibilities of other objective functions for optimal

actuator location.

In the experimental part, the objective is to verify the modeling and optimization results.
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Experimental setup consisting of a composite plate with self-sensing piezoelectric actuator

patches located at the optimal locations found from the modeling, a precision position

measuring device and a control system is required for further study. Figure 5.1 shows the

schematic of such an experimental setup. A similar setup with SSA-Bridge and controller

Figure 5.1: Schematic of proposed experimental setup

can be used for shape control or vibration control applications with accelerometer. The

calibration of the experiment may need optical methods of displacement measurement.

Implementation and testing of the hysteresis model need to be done in-order to examine

the nonlinear electro-mechanical effects.
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Appendix A

Transformations

Coordinate, stresses, strains and material coefficients are transformed form material co-

ordinates (x1, x2, x3) to problem coordinates (x, y, z) using transformation matrices based

on particular transformation, rotation about a transverse normal to the lamina, refer to

Figure 2.4. The transformed elastic coefficients given in equation (2.5) have the form,

Q =



Q11 Q12 Q16 0 0

Q12 Q22 Q26 0 0

Q16 Q26 Q66 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55


where

Q11 = Q11 cos4 α + 2(Q12 + 2Q66) sin2 α cos2 α

Q12 = (Q11 +Q22 − 4Q66) sin2 α cos2 α +Q12(sin4 α + cos4 α)
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Q22 = Q11 sin4 α + 2(Q12 + 2Q66) sin2 α cos2 α +Q22 cos4 α

Q16 = (Q11 −Q12 − 2Q66) sinα cos3 α + (Q12 −Q22 + 2Q66) sin3 α cosα

Q26 = (Q11 −Q12 − 2Q66) sin3 α cosα + (Q12 −Q22 + 2Q66) sinα cos3 α

Q66 = (Q11 +Q12 − 2Q12 − 2Q66) sin2 α cos2 α +Q66(sin4 α + cos4 α)

Q44 = Q44 cos2 α +Q55 sin2 α

Q45 = (Q55 −Q44) sinα cosα

Q55 = Q44 sin2 α +Q55 cos2 α

with

Q11 = Y11/(1− ν12ν21)

Q12 = ν12Y12/(1− ν12ν21)

Q22 = Y2/(1− ν12ν21)

Q66 = G12

Q44 = G23

Q55 = G13

where Y11and Y22are Young’s Moduli and G12, G13 and G23 are shear moduli in materials

axis.

The piezoelectric stress coefficient matrix [e]given in equation (3.1) have the form,

[e] =


0 0 0 e14 e15

0 0 0 e24 e25

e31 e32 e36 0 0


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where

e31 = e31 cos2 α + e32 sin2 α

e32 = e31 sin2 α + e32 cos2 α

e36 = (e31 − e32) sinα cosα

e14 = (e15 − e24) sinα cosα

e24 = e24 cos2 α + e15 sin2 α

e15 = e15 cos2 α + e24 sin2 α

e25 = (e15 − e24) sinα cosα

where [eij] are piezoelectric stress coefficients.
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Appendix B

Strain Displacement Relation and

Element matrices

Total elastic strain is given in equation (2.3). Using the shape function definition given in

equation (2.16), the linear strain displacement matrix [Bl] for elements can be derived and

the elemental strain can be written in terms of nodal displacements {ae} as

{εe} = [B]{ae}

Strain displacement matrix for linear in-plane strain components εpis

[BlP ] =



∂Hi/∂x 0 0 0 0

0 ∂Hi/∂y 0 0 0

∂Hi/∂y ∂Hi/∂x 0 0 0

0 0 0 0 0

0 0 0 0 0


i=1...4
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and for linear bending strain components εb is

[Blb] =



0 0 0 ∂Hi/∂x 0

0 0 0 0 ∂Hi/∂y

0 0 0 ∂Hi/∂y ∂H/∂x

0 0 0 0 0

0 0 0 0 0


i=1...4

and for linear shear strain compo nets εs

[Bls] =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 ∂Hi/∂y 0 Hi

0 0 ∂Hi/∂x Hi 0


i=1...4

where i is node number. Nonlinear strain displacement matrix can be derived from the

strain definition (equation (2.3)). The nonlinear strain components can be written as,

εnlp =


1
2

(
∂w0

∂x

)2

1
2

(
∂w0

∂y

)2(
∂w0

∂x
∂w0

∂y

)
 =

1

2


∂w0

∂x
0

0 ∂w0

∂y

∂w0

∂y
∂w0

∂x


 ∂w0

∂x

∂w0

∂y

 =
1

2
[A][φ]
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where {φ}T =
{

∂w0

∂x
∂w0

∂y

}
is displacement gradient with respect to lateral displacement

w0 They can be written in terms of nodal displacements using shape functions as,

{φ} =

 0 0 ∂Hi/∂x 0 0

0 0 ∂H/∂y 0 0

 {ae} = [G] {ae} .

In order to derive the strain displacement relation, if we take the derivative of non-liner

strain εnlp ,

d
{
εnlp
}

=
1

2
d[A] {φ}+

1

2
[A]d {φ} = [A]d {φ} = [A][G]d {ae}

therefore, [Bnl] = [A][G].

The Electric field E can be written in terms of electric potential as

{E} = [ 0 0 1/tk 0 0 ]TV = [Bφ]V

because it is assumed that the electric potential is constant over an element and varies

linearly through the thickness. Using the the total strain definition 3.4 and the strain

displacement matrices, the linear stiffness matrices of the system (equation (3.9)) can be

written as:

Kuu = Σn
k=1

∫
A

∫
z

[Bl]T [Q][Bl]dzdA,

Kuφ = Σn
k=1

∫
A

∫
z

[Bl]T [Q][Bφ]dzdA,

Kφu = Σn
k=1

∫
A

∫
z

[Bφ]T [Q][Bl]dzdA,

Kφφ = Σn
k=1

∫
A

∫
z

[Bφ]T [Q][Bφ]dzdA,

the first integration is over the area of an element.
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Appendix C

Matlab Code

This appendix is the Matlab source code developed in this work. The file name is code.pdf.

Read the instruction in the code.pdf on how to run the program in Matlab.

If you accessed this thesis from a source other than the University of Waterloo, you

may not have access to this file. You may access it by searching for this thesis at

http://uwspace.uwaterloo.ca
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