
Progressive Lossless Image

Compression Using

Image Decomposition and

Context Quantization

by

Hui Zha

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c© Hui Zha 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144142586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Hui Zha

ii

Abstract

Lossless image compression has many applications, for example, in medical imag-

ing, space photograph and film industry. In this thesis, we propose an efficient

lossless image compression scheme for both binary images and gray-scale images.

The scheme first decomposes images into a set of progressively refined binary se-

quences and then uses the context-based, adaptive arithmetic coding algorithm

to encode these sequences. In order to deal with the context dilution problem in

arithmetic coding, we propose a Lloyd-like iterative algorithm to quantize contexts.

Fixing the set of input contexts and the number of quantized contexts, our context

quantization algorithm iteratively finds the optimum context mapping in the sense

of minimizing the compression rate. Experimental results show that by combining

image decomposition and context quantization, our scheme can achieve competi-

tive lossless compression performance compared to the JBIG algorithm for binary

images, and the CALIC algorithm for gray-scale images. In contrast to CALIC,

our scheme provides the additional feature of allowing progressive transmission of

gray-scale images, which is very appealing in applications such as web browsing.

iii

Acknowledgments

I would like to thank my supervisor and mentor Professor En-hui Yang for his

academic guidance, financial support, and patience throughout my study in the

University of Waterloo.

I would like to thank Professor En-hui Yang, Professor Weihua Zhuang, Profes-

sor Amir K. Khandani and Professor Xuemin Shen for offering me excellent courses

at the University of Waterloo.

I would like to thank Dr. Dake He for his advices and discussions on my research

and thesis.

I would like to thank Professor Liang-liang Xie, Professor Zhou Wang for being

my thesis readers, and for their suggestions on my thesis.

I would like to thank my friends and colleagues in the Multimedia Communi-

cation laboratory at the University of Waterloo. They are Dr. Guixing Wu, Dr.

Haiquan Wang, Dr. Xiang Yu, Dr. Xudong Ma, Lin Zheng, Jiao Wang, Jin Meng,

Yuhan Zhou, Abir Mukherjee, and Jingming Xu.

I would like to thank my friends Jing Wang and Guixing Wu, Jing Jiang and

Chao Yan for their warm helps anytime I need.

Finally, I would like to thank Zhenmei Gu and Dake He for their sincere support.

I would like to my parents, my parents-in-law, and my wife Daan for their deep

love to me all the time.

iv

Contents

1 Introduction 1

1.1 Digital Images . 1

1.2 Motivations . 2

1.3 Performance Measure . 4

1.4 Organization . 6

2 Preliminaries and Literature Review 8

2.1 Preliminaries . 8

2.1.1 Information Sources . 9

2.1.2 Shannon Entropy and Entropy Rate 11

2.1.3 Relative Entropy . 12

2.2 Literature Review . 13

3 Context Quantization 17

3.1 General Context Models . 17

3.2 K-pixel Template Context Model 18

3.3 Problem Formulation . 21

3.4 A Lloyd-like Context Quantizer Design Algorithm 24

3.5 Implementation Issues . 27

3.5.1 Initial Codebook Design . 28

3.5.2 Empty cell problem . 28

v

4 Image Decomposition 30

4.1 Introduction . 30

4.2 Image Decomposition using Color Splitting 31

4.2.1 Binary Tree Color Splitting 31

4.2.2 Algorithm Description . 33

4.3 Combining Image Decomposition with Context Quantization 34

5 Experimental Results 36

5.1 Image Sets . 36

5.2 Compression Results of Binary Images 37

5.3 Compression Results of Gray-Scale Images 39

6 Conclusions and Future Research 42

6.1 Conclusions . 42

6.2 Future Research . 43

vi

List of Tables

5.1 CCITT Images (bpp) . 38

5.2 Binary Images Converted from PDF files (bpp) 38

5.3 Binary Images Converted from Natural Images (bpp) 39

5.4 HDTV frames (bpp) . 40

5.5 Gray-scale images from USC database (bpp) 40

5.6 Gray-scale images from USC database (bpp) 41

vii

List of Figures

3.1 A 12-pixel context template . 19

4.1 A noncausal Template . 35

5.1 The causal template used in experiments (use only 1-15) 37

5.2 The non-causal template used in experiments (use only 1-15) 39

viii

Acronyms

CALIC Context-based, Adaptive, Lossless Image Codec.

GAP Gradient-Adjusted Prediction.

HDTV High-Definition Television.

JBIG Joint Bi-level Image Experts Group.

JPEG Joint Photographic Experts Group.

JPEG-LS JPEG-Lossless.

MCECQ Minimum Conditional Entropy Context Quantizer.

MED Median Edge Detector.

MSE Mean-Squared-Error.

PSNR Peak-Signal-To-Noise-Ratio.

WWW World Wide Web.

ix

Chapter 1

Introduction

1.1 Digital Images

A two-dimensional (2-D) digital image consists of a finite number of rows and

columns of pixels (short for picture elements). Let H denote the height or number

of rows and W denote the width or number of columns of an image. A 2-D digital

image can be represented by a two-dimensional matrix:

I = {I(i, j)} =




I(0, 0) I(0, 1) · · · I(0,W − 1)

I(1, 0) I(1, 1) · · · I(1,W − 1)
...

...
. . .

...

I(H − 1, 0) I(H − 1, 1) · · · I(H − 1,W − 1)




, (1.1)

where the first coordinate i (0 ≤ i < H) denotes the row index along the vertical

direction, the second coordinate j (0 ≤ j < W) denotes the column index along

the horizontal direction, and I(i, j) denotes the value of the pixel located in row i

and column j, or more concisely, at position (i, j). As a convention, we use term

“image I” to denote the image with pixel value matrix I, and use the regular I to

denote the pixel values of image I.

By using raster scanning order, an image I of size H ×W can be transformed

into a discrete one-dimensional sequence

X = {Xk}n
k=1 = {X1, X2, · · · , Xn}, (1.2)

where n = H×W is the number of pixels of image I and 1 ≤ k ≤ n. The conversion

between the one-dimensional coordinate k and the two-dimensional coordinate (i, j)

is given by

k = i×W + j + 1 (1.3)

1

and

i = the quotient of
k − 1

W
(1.4a)

j = the remainder of
k − 1

W
. (1.4b)

The number of bits used to represent a single pixel is called bit depth or color depth.

If an image is b bits per pixel (bpp), it is also called a b-bit image. A b-bit image can

represent 2b different gray levels or colors. Three typical types of images involved

in this thesis are:

1. 1-bit bi-level images. A bi-level image contains two different colors which

are usually black and white. A bi-level image is called in the standard form

in this thesis if the image uses bit 0 to represent one of the two colors and

uses bit 1 to represent the other color. Since bi-level images in other forms

can be converted into the standard form, we only consider the bi-level images

in their standard form. Bi-level images are also referred to as binary images

or black and white images in the literature.

2. 8-bit gray-scale1 images. An 8-bit gray-scale image contains up to 256 dif-

ferent shades of gray with values from 0 to 255. Sometimes one can interpret

the pixel values of gray-scale images as indices to colors in a color palette. In

this thesis, pixel values of gray-scale images are regarded as shades of gray

from black to white.

3. 24-bit true color images. A 24-bit true color image in RGB color space

consists of three gray-scale components of red, green and blue, each of which

is represented by 8 bits. An image in RGB space can be converted into

other color spaces such as YCbCr and YUV [1, 2]. In YCbCr or YUV space,

luminance (brightness) information is stored as a single component Y , and

chrominance (color) information is stored as two different components: Cb

and Cr for YCbCr space; U and V for YUV space.

1.2 Motivations

Uncompressed images normally require a large amount of storage capacity and

transmission bandwidth. For example, a 24-bit true color high-definition television

1Gray-scale is also referred to as grayscale, gray scale, or gray-level in the literatures.

2

(HDTV) image with size 1920×1080 needs approximately 6 megabytes (6M bytes)

of storage space. On the other hand, various types of redundancy exist in images,

such as temporal redundancy, spatial redundancy (or interpixel redundancy), cod-

ing redundancy, spectral redundancy and psychovisual redundancy. The primary

goal of image compression is to minimize the number of bits required to represent

the original images by reducing the redundancy in images, while still meeting the

user-defined quality requirements. The core issue in image compression is to design

efficient and effective compression schemes.

In terms of reconstruction ability, image compression schemes can be broadly

classified into two major categories: lossless image compression and lossy image

compression. Lossless image compression refers to the compression in which the

original image can be fully reconstructed from the compressed image, i. e., no loss of

any information during the compressing. Lossy image compression, on the contrary,

allows some kind of difference or distortion between the reconstructed image and

the original image, and the original image can not be fully recovered.

Lossless image compression has many applications such as medical imaging,

space photograph, and film industry. In practice, medical images must be repre-

sented flawlessly for medical professionals to make clinical diagnosis with accuracy.

Any minor distortion or errors introduced by lossy compression may lead to seri-

ous consequences to patients. In space exploration, astronomical images obtained

by the satellites are often compressed and transmitted back to the earth for later

processing such as object identification and feature extraction. These processing

procedures may “amplify” the distortion caused by lossy compression and thus

produce false results due to the distortion. In such cases, lossy compression is not

appropriate because original astronomical images are very difficult and expensive

to be obtained again. Finally, in film industry, lossless compression also has a huge

market in archiving the films in order to save storage and meanwhile maintain the

original high quality for future editing and re-compressing.

Recently, progressive image compression or progressive image transmission [3,

4, 5, 6, 7] has received significant attention due to the popularity of applications

such as web browsing. When one views a large set of images on the World Wide

Web (WWW) over relatively slow network links, he/she would like to quickly get a

coarse recognition of what an image will be, and then choose to continue or stop the

transmission of that image according to his/her interest. This goal can be achieved

by progressive image compression which allows gradually enhancing an image via a

finite number of sequences. When the first sequence or the first few sequences, which

are supposed to take very little space, are transmitted to the decoder, the decoder

3

can rapidly build up an approximate image with lower quality or smaller size, and

then progressively refine the image with more details by decoding the rest of the

sequences. The process continues until lossless recovery is accomplished. Kieffer

and Yang [8] generalized such kind of coding as “refinement source coding”. Image

refinement can take many different fashions, for example, pixel value refinement,

image size refinement, spatial resolution refinement, and image objects or layers

refinement. Main progressive image compression schemes include down-sampling,

vector quantization, wavelet transform coding and pyramid coding, etc. Due to its

appealing viewing on-the-fly feature, progressive image compression is included as

a part of recent image compression standards such as JPEG (Joint Bi-level Image

Experts Group) [9], JBIG2 [10, 11], JPEG (Joint Photographic Experts Group)

[12, 13] and JPEG 2000 [14, 15, 16].

In recent years, there have been many research efforts in lossless compression

of bi-level images [9, 10] and gray-scale images [17, 18, 19, 20, 21, 22, 23, 24, 25].

However, existing gray-scale image compression schemes either do not provide the

progressive image transmission feature, or with this feature, but the compression

performance is not as good as CALIC (Context-based, Adaptive, Lossless Image

Codec) [17], which is widely accepted as the state-of-the-art scheme for gray-scale

image compression. In addition, existing gray-scale image compression schemes

usually do not perform well in compressing bi-level images. Therefore, this thesis

will emphasize on the development of an efficient scheme for both lossless compres-

sion of bi-level images and progressive lossless compression of gray-scale images.

We employ two methods to achieve our objective: context quantization and image

decomposition, which will be discussed in Chapter 3 and Chapter 4, respectively.

Roughly speaking, context quantization is to reduce the number of contexts in or-

der to deal with the context dilution problem existed in context-based arithmetic

coding; image decomposition is to provide the progressive feature. By elegantly

combining these two methods in the same scheme, we obtain competitive lossless

compression performance, compared to JBIG [9] for binary images, and to CALIC

for gray-scale images. Moreover, we offer the progressive image transmission feature

in contrast to CALIC.

1.3 Performance Measure

Appropriate performance metrics are required to evaluate the performance of a

specific image compression scheme. An image compression algorithm can be evalu-

4

ated in many different ways according to different requirements. Major compression

metrics include compression ratio, compression speed, computing complexity, mem-

ory and storage complexity, objective and subjective quality of the reconstructed

image, etc.

The most common metric of performance measure of an image compression

scheme is the compression ratio, which is defined by

compression ratio =
original image size in bits

compressed image size in bits
, (1.5)

i. e., the ratio of the number of bits to represent the original image data to the

number of bits to represent the compressed image data.

The original image size used in this thesis does not include any image format

overhead or byte alignment overhead. For an image of size W ×H and bit depth

b, the original image size is simply calculated by the following formula

original image size in bits = W ×H × b, (1.6)

On the contrary, the compressed image size counts all header or tail overhead needed

to reconstruct the original image. For example, if an image of size 512 × 512 with

8 bits per pixel is compressed to 8192 bytes, the compression ratio will be 32 : 1 or

32.

Another way to evaluate image compression performance is to use compression

rate in the unit of bits per sample or bits per pixel (bpp), which is defined as the

average number of bits used to represent a single sample (pixel). The compression

rate is given by

compression rate =
compressed image size in bits

number of pixels
. (1.7)

In the above example, we say that the original rate is 8 bpp and the compression

rate is 8192×8
512×512

= 0.25 bpp.

We note that a larger value of compression ratio or a smaller value of compression

rate indicates better compression performance of a compression scheme.

Although reconstruction quality is irrelevant to the lossless compression schemes,

it is important to lossy compression. For lossy image compression, we can not justify

a scheme by considering the compression ratio or compression rate alone, because

the scheme which gives higher compression ratio may result in worse reconstruction

5

quality. The most widely used objective quality metric for lossy image compression

is the peak-signal-to-noise-ratio (PSNR) , which is given by

PSNR(dB) = 10 log10

(
φ2

max

MSE

)
, (1.8)

where φmax is the peak (maximum) pixel value of the image. For 8-bit gray-scale

images, we have φmax = 255. The mean-squared-error (MSE) denotes the mean-

squared-error which is defined by

MSE =
1

WH

H−1∑
i=1

W−1∑
j=1

[I(i, j)− Î(i, j)]2, (1.9)

where I(i, j) and Î(i, j) refer to the pixel values of the original image and the

reconstructed image, respectively, both at position (i, j).

In this thesis, we will use compression rate as the major measure of lossless

compression performance.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we briefly review the

information theory preliminaries and major lossless image compression schemes in

the literature.

In Chapter 3, we propose a Lloyd-like iterative algorithm for context quantiza-

tion in order to address the context dilution problem in context-based arithmetic

coding. Fixing the set of input contexts and the size of quantized contexts, the pro-

posed context quantization algorithm iteratively finds the optimum context map-

ping in the sense of minimizing the compression rate. We also discuss two algorithm

implementation problems: the initial codebook generation problem and the empty

cell problem.

In Chapter 4, we propose an image decomposition method based on color split-

ting. The method decomposes an image into a set of binary sequences which are

suitable for context quantization and arithmetic coding. Meanwhile, the decomposi-

tion enables the progressive transmission feature in our proposed image compression

scheme.

In Chapter 5, we present the experimental results of our proposed scheme and

other representative schemes on the compression of binary images and gray-scale

6

images. We show that the proposed scheme achieves competitive lossless compres-

sion performance on both binary and gray-scale images compared to those widely

accepted state-of-the-art compression schemes.

Finally, in Chapter 6, we summarize the thesis and suggest the future work.

7

Chapter 2

Preliminaries and Literature

Review

In this chapter, we will first review some basic information theory concepts which

will be used for later chapters. The second part of this chapter includes the litera-

ture review of several representative lossless image compression schemes.

2.1 Preliminaries

From the information theory point of view, image compression belongs to the area

of source coding which is originated to Claude E. Shannon in his fundamental paper

“A mathematical theory of communication” in 1948 [26]. In this section, we will

briefly review the information theory preliminaries to please our discussion on the

image compression.

Throughout this thesis, we shall use the following notation. Let A be a finite

alphabet1 and let |A| stand for the cardinality of A. We consider only the non-

trivial cases where |A| ≥ 2. A sequence from A is called an A-sequence. For any

A-sequence x, |x| denotes the length of x. Let An denote the set of all sequences

of length n from A. For brevity, an A-sequence XmXm+1 · · ·Xn ∈ An−m+1 may be

written as Xn
m, where m and n are positive integers satisfying m < n. Besides, all

logarithms are to the base 2 unless otherwise specified.

1In this thesis, we are concerned only with sources with finite alphabets because digital images
are generally with finite alphabets.

8

2.1.1 Information Sources

In the source coding theory, data sequences to be encoded are generally assumed

to be emitted from some information source.

Definition 2.1 (Information Source). A (discrete) alphabet A information source

is defined as a discrete time random process X = {Xi}∞i=1 = {X1, X2, · · · } associ-

ated with a probability space (A∞, F, PX), where F is called a σ-field and PX is a

probability measure on (A∞,F) [27].

An alphabet A source X = {Xi}n
i=1 of a finite length n is totally characterized

by the joint distribution

PX(Xn
1 = xn

1) = Pr(X1 = x1, X2 = x2, · · · , Xn = xn) = p(xn
1), (2.1)

where xn
1 ∈ An. Note that we denote PX(X = x) by the probability mass function

p(x) for convenience.

Definition 2.2 (Stationary Source). An alphabetA source is said to be a stationary

source if the joint distribution of any subset of the random sequence X = {Xi}∞i=1

satisfies

Pr{Xn
1 = xn

1} = Pr{Xn+m
1+m = xn

1} (2.2)

for all positive integers m and all xn
1 ∈ An.

Definition 2.3 (I.I.D. Source). An alphabet A source is said to be an independent

and identically distributed (i.i.d.) source if

Pr{Xn = xn|Xn−1
1 = xn−1

1 } = p(xn) (2.3)

for all n ≥ 1, where the probability mass function p : A → [0, 1] satisfies
∑

a∈A p(a) =

1, and the initial symbol X0 = x0 ∈ A is assumed known.

Definition 2.4 (Markov Source). Let k be a positive integer. An alphabet A
source is said to be a kth-order Markov source if

Pr{Xn = xn|Xn−1
1 = xn−1

1 } = p(xn|xn−1
n−k) (2.4)

for all n > k, where the transition probability function p : Ak ×A → [0, 1] satisfies∑
ak+1∈A p(ak+1|ak

1) = 1 for all ak
1 ∈ Ak, and the initial symbol X0 = x0 ∈ A is

assumed known.

9

Definition 2.5 (Finite-State Source). Let C = {c1, c2, · · · , c|C|} be a finite set of

size |C| = m where each element c ∈ C is called a state. Let S = {Si}n
i=1 =

{S1, S2, · · · , Sn} be a random sequence which takes values in C and corresponds to

an alphabet A source X = {Xi}n
i=1. Source X is said to be a finite-state source

with m states

Pr{Xn
1 = xn

1 , S
n
1 = sn

1} =
n∏

i=1

p(xi, si|si−1) (2.5)

for all n ≥ 1 and all xn
1 ∈ An, where the transition probability function p : C ×

(A× C) → [0, 1] satisfies
∑

a∈A
∑

c∈C p(a, c|c′) = 1 for all c′ ∈ C, and the initial

state S0 = s0 ∈ C is assumed known.

Remark 2.1. It is easy to verify that i.i.d. sources are special cases of Markov sources

and finite-state sources.

Remark 2.2. For the finite alphabet case, finite-state sources are more general than

kth-order Markov sources in the sense as follows.

1. A kth-order Markov source with a finite alphabet belongs to the class of

finite-state sources.

2. A kth-order Markov source takes the prefix sequence xi−1
i−k of xi as its state

s′i at time instant i, while the state si of a finite-state source is an abstract

state which can be any function of the prefix sequence xi−1
1 at time instant i

and the previous state si−1:

si = f(xi−1
1 , si−1), i = 1, 2, · · · , n, (2.6)

where the initial state s0 ∈ C is assumed known and the state function f is

defined as the mapping

f : Ai−1 × C → C. (2.7)

In that sense, the abstract state si of a finite-state source takes the state

s′i = xi−1
i−k as a special case.

Markov sources and finite-state sources are widely adopted to model data sources

in data compression. In such cases, the prefix sequences (given a specific sequence

scanning order) or states are often called contexts . In this thesis, we will use finite-

state sources to characterize images due to the generality of finite-state sources for

most situations in practice.

10

2.1.2 Shannon Entropy and Entropy Rate

Let X and Y be two discrete random variables with alphabet A and B, respectively.

Definition 2.6 (Shannon Entropy). The Shannon entropy or simply entropy H(X)

of X is defined by

H(X) = −
∑
x∈A

p(x) log p(x). (2.8)

The unit of entropy is bits per symbol if we take the logarithm to the base 2.

Definition 2.7 (Joint Entropy). The joint entropy H(X, Y) of two discrete random

variables (X,Y) with a joint probability distribution p(x, y) is defined as

H(X,Y) = −
∑
x∈A

∑
y∈B

p(x, y) log p(x, y). (2.9)

Definition 2.8 (Conditional Entropy). For two discrete random variables (X,Y)

with joint distribution p(x, y), the conditional entropy H(X|Y) is defined as

H(X|Y) = −
∑
y∈B

p(y)H(X|Y = y) (2.10)

= −
∑
y∈B

p(y)
∑
x∈A

p(x|y) log p(x|y) (2.11)

= −
∑
y∈B

∑
x∈A

p(x, y) log p(x|y). (2.12)

An important result about conditional entropy is given by the following theorem

[28].

Theorem 2.1 (Conditioning reduces entropy, Theorem 2.6.5 in [28]). For any two

random variables X and Y , we have

H(X|Y) ≤ H(X) (2.13)

with equality if and only if X and Y are independent.

Remark 2.3. Theorem 2.1 implies that if a source can be modeled as a Markov

source or a finite-state source, we can reduce the source entropy by conditioning on

some states or contexts correlated with the source. However, in practice, too many

states or contexts will affects the compression efficiency due to the storage problem

and context dilution problem [29, 17].

11

Definition 2.9 (Entropy Rate). The entropy rate of a source X = {Xi}∞i=1 is

defined as

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (2.14)

when the limit exists.

Remark 2.4. In the data compression scenario, the entropy rate is the theoretical

data compression limit.

For a stationary source X, we have [28],

lim
n→∞

1

n
H(X1, X2, . . . , Xn) = lim

n→∞
H(Xn|Xn−1

1), (2.15)

where H(Xn|Xn−1
1) is the conditional entropy of Xn given Xn−1

1 and we use the

convention that H(X1|X0) = H(X1).

In light of the chain rule for entropy [28]

H(X1, X2, . . . , Xn) = H(X1) + H(X2|X1) + · · ·+ H(Xn|Xn−1
1), (2.16)

we have

H(X) = lim
n→∞

1

n
(H(X1) + H(X2|X1) + · · ·+ H(Xn|Xn−1

1))

= lim
n→∞

1

n

n∑
i=1

H(Xi|X i−1
1) (2.17)

= lim
n→∞

1

n

n∑
i=1

− log p(xi|xi−1
1). (2.18)

Remark 2.5. The significance of Equation (2.17) lies in that we can use the time

average of the conditional entropies given all the past sequences to asymptomat-

ically achieve the entropy rate of a stationary source. Thus, to encode an A-

sequence X = {X1, X2, · · · }, from Equation (2.18) we shall assign a codeword with

length − log p(xi|xi−1
1) to encode the sample Xi. The (average) compression rate

r = − 1
n

log
∏n

i=1 p(xi|xi−1
1) in bits per symbol can be achieved by using an adaptive

arithmetic coding algorithm when n is large enough.

2.1.3 Relative Entropy

Definition 2.10. The relative entropy or Kullback Leibler distance (K-L distance)

between two probability mass functions p(x) and q(x) is defined as [28]

D(p‖q) =
∑
x∈A

p(x) log
p(x)

q(x)
. (2.19)

12

Remark 2.6. We see that D(p‖q) is a measure of the distance or the “distortion”

between two distributions p and q.

If X ∼ p(x), from Equation (2.19), we have

D(p‖q) = −
∑
x∈A

p(x) log q(x)−
(
−

∑
x∈A

p(x) log p(x)

)

= Hq(X)−Hp(X), (2.20)

where Hp(X) is the entropy of X and Hq(X) = −∑
x∈A p(x) log q(x) is the average

codeword length if we assign a codeword of − log q(x) bits to represent symbol x.

Remark 2.7. From Equation (2.20), we see that if the true distribution of a random

variable X is p and we construct a code for distribution q instead, we would need

D(p‖q) more bits on the average to represent X.

2.2 Literature Review

Most image compression schemes are based on the framework of predictive coding

and context modeling followed by entropy coding [30]. Some heuristic prediction

methods have been developed for gray-scale images, for example, the median edge

detector (MED) used in JPEG-LS standard [31] standardized by the JPEG [13], the

gradient-adjusted prediction (GAP) used in CALIC algorithm [17], etc. Recently,

context modeling for image compression has been received more and more attention

[17]. Combined with prediction, context modeling for the predictive residuals (or

errors) is performed based on selected context templates of causal pixels. Finally

arithmetic coding [32, 33] or huffman coding [34] is used to encode those predictive

residuals conditioned on the constructed contexts.

From the information theory point of view, prediction is essentially a context

modeling technique. A challenging issue for image compression is how to perform

context modeling efficiently and effectively. On one hand, theoretically conditioning

on more information will reduce the source entropy if the conditioned information

has correlations to the sequence to be encoded (see Theorem 2.6.5 in [28]). Thus

we tend to use as many contexts as possible. On the other hand, too many contexts

will cause two main problems [29]: the storage problem and the context dilution

problem. The first problem is that a large number of contexts requires a large

amount of memory/disk storage. The second problem is that the conditional prob-

abilities can hardly be accurately estimated during the model learning process when

13

statistics are spread over too many contexts [35]: in practice available sample pixels

are insufficient to build a high order context model with reasonably steady statis-

tic states. The two problems, also referred as to the “modeling cost”, limit the

practical use of high order context models.

There are two approaches to reduce the modeling cost for image compression.

The first approach is predictive coding which predicts the current encoding pixel

value based on neighboring pixels in a linear or non-linear manner. Normally the

prediction utilizes some a priori knowledge of images such as the smooth struc-

ture in certain areas of images; thus the modeling cost associated with the model

learning process is reduced. The prediction parameters can be chosen empirically

or obtained by optimization processes in some defined sense, e. g., minimizing the

MSE of prediction values.

Another approach is context quantization [36] which is similar to the vector

quantization [37, 38] in signal processing and lossy data compression to some degree.

The principle of context quantization is to group the original contexts into a smaller

number of context sets and thus to reduce the number of contexts handled by

entropy coders such as arithmetic coders. A heuristic context quantizer is used in

[17], where several local pixel values and their linear combinations are formed as a

vector c = {a0, a1, · · · , aK−1} (K ≥ 1) for the current pixel to be encoded. Each of

ai (i = 0, 1, · · · , K − 1) takes values from [0, 255] for 8-bit gray-scale images, which

makes the total number of possible contexts very large. In [17], each ai is compared

to the prediction value of the current pixel. According to the comparison result, a

binary value is assigned to the corresponding component of the vector c to form a

binary vector b = {b0, b1, · · · , bK−1}, where bj = 0 or 1 for all j = 0, 1, · · · , K − 1.

In this way, the number of possible contexts is reduced from 256K to 2K .

These heuristic quantization methods have yielded some good lossless compres-

sion results; however, these methods are not necessarily optimal in the sense of

minimizing the compression rate. Recently, Wu et al. [36] present a minimum con-

ditional entropy context quantizer (MCECQ) to minimize the conditional entropy

given the conditional probability density function of the sources. They further pro-

pose to use dynamic programming to solve the optimization problem for sources

with binary alphabets. In MCECQ, the problem is formulated without taking

the modeling cost into account explicitly. In addition, the conditional probability

density functions are assumed known, which is not the case in practice.

In the following, we briefly review several important lossless image compression

schemes in binary image compression and gray-scale image compression.

14

Bi-level Image Compression Main image compression standards for bi-

level images are JBIG [9] and JBIG2 [10] which achieve highly efficient results for

facsimile documents compression.

Bi-level images usually have a lot of local structure. In some local part of the

document, if most pixels in the neighborhood of the current pixel to be encoded

are white, we can guess that the current pixel is also white. JBIG and JBIG2 both

employ the local structure or patterns in the neighborhood of the current pixel and

construct different contexts to skew the probability distribution, which is suitable

for the context-based arithmetic coding. To adapt to different local structure, JBIG

uses several different causal context templates to construct contexts.

For a document containing various type of areas such as symbol regions, halftone

regions and generic regions, JBIG usually has worse compression performance com-

pared to documents containing only text. To further improve the compression

performance for that type of documents, the JBIG2 standard allows the encoder

to select the compression technique that would provide the best performance for

the type of data. This is a simple way of using a priori knowledge of the image

to improve the compression performance. In addition, JBIG2 provides lossy image

compression of bi-level images.

Gray-Scale Image compression Two major types of lossless gray-scale

image compression methods are statistical modeling (or context modeling) based

entropy coding method and string matching based (or grammar-based) entropy

coding method. Among all the entropy coding algorithms, the context-based arith-

metic coding is the most widely used algorithm in current major lossless image

compression schemes due to its coding efficiency and affordable computing com-

plexity.

The process of estimating the source statistics through statistical (or context)

models is called context modeling. The models could be known in advance or be

constructed during the encoding process. Arithmetic coding algorithms are very

suitable to use the statistical models and yields good compression performance.

The main problem is how to determine the contexts to be used. If we use a small

number of contexts, we may not capture the “true” statistics of the source such that

the compression performance is not good; while if we use a large number of contexts,

we are encountering memory/storgage and context dilution problems. Two possible

ways to deal with the problem are predictive coding and context quantization.

Two representative methods are JPEG-LS (JPEG-Lossless) algorithm and CALIC

algorithm which use both prediction and context quantization in a heuristic way.

15

The idea of grammar-based coding, in short, is to transform the data sequence

into grammars by string matching mechanism and then use arithmetic coding to

encode a set of generated grammars. The grammar-based coding is actually a very

broad class of compression algorithms. For example, block codes and Lempel-Ziv

codes are special cases of grammar-based codes. Grammar-based codes can be

divided into two types: context-free and context-dependent [39]. Well designed

context-free and context-dependent grammar-based codes can achieve very high

compression performance with affordable computation complexity and storage com-

plexity. Although grammar-based codes are developed for universal coding, they

can also be applied on image compression and achieve comparable compression per-

formance compared to the algorithms designed specifically for the images sources.

16

Chapter 3

Context Quantization

In general, images can be assumed to be emitted by some information sources. In

this chapter, we first introduce a general context model for information sources. For

image compression purpose, we then assume that the Markov type property holds

for image sources to some degree, and from that assumption, we will introduce a

K-pixel template context model. Based on that model, we will propose a Lloyd-like

iterative context quantization algorithm to deal with the context storage problem

and dilution problem existed in the arithmetic coding which utilizes a large number

of contexts.

3.1 General Context Models

In this section, we introduce a general context model [39] for information sources.

Definition 3.1 (General Context Model). Let X = {Xi}n
i=1 be an alphabet A

source. Let C = {c1, c2, · · · , c|C|} be a finite context set1 of size |C| = M where

each element c ∈ C is called a context . Let S = {Si}n
i=1 = {S1, S2, · · · , Sn} be a

sequence which takes values in C and corresponds to the source X. S is called the

accompanying context sequence of X. Each Si is called an accompanying context

or simply context of symbol Xi. A set of context generating functions f = {fi}n
i=1

corresponding to the sequence {Xi}n
i=1 are defined as the mapping

fi : Ai−1 × C → C, (3.1)

which is written as

Si = fi(x
i−1
1 , S0) (3.2)

1In this thesis, we consider finite context sets only.

17

where i = 1, 2, · · · , n and S0 = s0 ∈ C is called an initial context and assumed

known. The 4-tuple < A, C, f, S > is called a general context model for the source

X.

In a general context model, the accompanying context sequence S of a source

X can be built by learning on the past sequences (given a specific scanning order)

through Equation (3.2), or determined by utilizing some a priori knowledge about

the source, or by both. For example, for a text sequence X = {Xi}n
i=1, one way to

build the context model is to use an adaptive arithmetic coder to encode each Xi

conditioning on X i−1
1 . For image compression, it is widely believed that there are

strong correlations among the pixels close to the pixel to be encoded, which can be

taken as a priori knowledge to improve the compression performance.

3.2 K-pixel Template Context Model

For our image compression purpose, we define a K-pixel template context model in

this section. Through the rest of this thesis, we may sometimes call the pixel to be

encoded as the current pixel .

Definition 3.2 (K-pixel Template). A K-pixel (context) template or simply a

template T of an image I is defined as a 2-D pattern consisting of K geometric

locations of pixels. A template for the current pixel xk is denoted as Txk
. Each

member pixel vj (j = 1, 2, · · · , K) belonging to Txk
(denoted as vj ∈̃Txk

) is called

a context pixel for xk. The number of pixels K in the template is called the order

of the template.

Remark 3.1. The member pixels vj ∈̃Txk
usually consists of those pixels geometri-

cally close to the current pixel. In that sense, we sometimes call the pixels belonging

to the template Txk
as neighboring pixels of the pixel xk.

Remark 3.2. At the edge areas of an image, some locations in a given template

may lie outside an image. In such case, we assume that there are “virtual” pixels

at those locations, and the values of those “virtual” pixels are fixed.

Figure 3.1 shows an example of a 12-pixel template. The current pixel is labeled

by “?”. The template consists of 12 locations labeled by number 1 to 12 according to

their 2-norm distance to the pixel “?”. The corresponding pixels Ii (i = 1, 2, · · · , 12)

are context pixels for the pixel “?”.

18

1 2 43 65 1098711 12?
Figure 3.1: A 12-pixel context template

Note that in Figure 3.1, not all pixels surrounding the current pixel “?” are

available when we encode the pixel “?” given a specific scanning order. If the

raster scanning order is used, we can convert the image from a 2-D matrix to a 1-D

sequence, and the mappings between the 2-D pixel indices and 1-D pixel indices

are given by Equation (1.3) and Equation (1.4). To encode a pixel Xk with the

1-D pixel index k, all pixels with indices k′ < k are available to both the encoder

and decoder, and all pixels with indices k′′ > k are available to the encoder but

not available to the decoder yet. The context template consists of only pixels with

indices k′ < k is called a causal context template for pixel Xk; the context template

includes at least one of the pixels with indices k′′ > k is called a non-causal context

template. Traditional image compression schemes which use a raster scanning order

and encode pixel by pixel can only use causal templates.

For a K-pixel template, the K-pixel template context is defined as follows.

Definition 3.3 (K-pixel Template Context). Let A denote the image alphabet.

Let T denote a template. Let vi ∈ A (i = 1, 2, · · · , K) denote the K context pixels

belonging to T . A K-pixel template context ck for the current pixel Xk is defined

as the vector

ck = {v1, v2, · · · , vK}, ck ∈ AK . (3.3)

for a given scanning order of the context pixels.

For the example shown in Figure 3.1, We can form the vector c = {I1, I2, · · · , I12

as the context for the pixel “?”, where Ii (i = 1, 2 · · · , 12) denote the pixel values

at corresponding locations.

19

Remark 3.3. In the image compression, the alphabet A is generally an integer set.

For example, for 8-bit gray-scale images, the alphabet is A = {0, 1 · · · , 255}. Thus,

a context c ∈ AK is often assigned an index from the index set J = {1, 2, · · · , N},
where N is a positive integer greater or equal to 2. A simple way to define the

one-to-one mapping

g : AK → J (3.4)

is to concatenate the values of each component in c = {v1, v2, · · · , vK} to form a

integer and take this integer as the index for the context c.

Now we are ready to define a K-pixel template context model for image com-

pression.

Definition 3.4 (K-pixel Template Context Model). Let TK be a K-pixel template.

A context model given by Definition 3.1 which takes the K-pixel template contexts

as the accompanying context sequence S is called a K-pixel template context model .

K is called the order of the context model.

Definition 3.5 (K-pixel Template Image Source). Let X = {Xk}n
k=1 be an al-

phabet A image source, where n is the total pixel number of the image. Given a

K-pixel template context model with a finite context set

C = {c1, c2, · · · , c|C|}, cj ∈ AK for all j = 1, 2 · · · , |C|, (3.5)

and an accompanying context sequence

S = {Sk}n
k=1, Sk ∈ C, (3.6)

X is called a K-pixel template image source if

Pr{Xk = xk|Xk−1
1 = xk−1

1 } = p(xk|sk) (3.7)

for a given scanning order and for all k ≥ 1, where the transition probability

function p : AK ×A → [0, 1] satisfies
∑

ak+1∈A p(ak+1|sk) = 1 for any Sk = sk ∈ C,

and Sk = f(xk−1, Sk−1).

Remark 3.4. In fact, Equation (3.7) describes a Markov type property of image

sources, i. e., for a given scanning order and a K-pixel template, the conditional

probability of a sample Xk given all the past samples X1, X2, · · · , Xk−1, is equal

to the conditional probability of that sample Xk, given only the samples in the

template TXk
. Equation (3.7) characterizes local correlations between the current

pixel and its neighboring pixels.

20

Remark 3.5. It is easy to verify that, if the image alphabet A and the order of the

template K are both finite, a K-pixel template image source is a finite-state source.

In this thesis, we assume that images have the Markov type property given by

Equation (3.7) and as a result, we assume images are emitted by K-pixel template

image sources defined by Definition 3.5.

3.3 Problem Formulation

As we mentioned before, high order context models pose difficulties in practical

image compression. For a K-pixel template image source drawn from an alphabet

A, the cardinality of the context set C is |C| = |A|K , i. e., the number of contexts

increases exponentially in the order of the template. For example, if we choose

K = 12 for an 8-bit gray-scale image with an alphabetA = {0, 1, · · · , 255}, the total

number of possible contexts in the context set is 25612. Practically, we can not afford

to store and process such a huge number of context statistics. Besides, we need

sufficient samples to obtain a reasonably steady statistical state for each context.

Supposing that we have a training set consisting of 100 gray-scale images of size

512×512, we then have a total of 512×512×100 = 26, 214, 400 pixel samples. For

a 3-pixel template which has 2563 = 16, 777, 216 possible contexts in total, on the

average we have only less than 2 samples per context. In this case, the estimation

of the conditional probabilities is not accurate and the compression performance

will be negatively affected. This is the so-called context dilution problem. In a

word, the context storage problem and context dilution problem restrict the use of

a large number of contexts directly. To improve the compression performance, we

need to quantize a large number of original contexts into a relatively small number

of quantized contexts.

Before we formulate our problem, we first define a context quantizer as follows.

Definition 3.6 (Context Quantizer). Let X be an alphabet A source. A context

quantizer Q of dimension K and (codebook) size N is defined as a mapping from

a finite set C containing M = |A|K original contexts , into a finite set C̃ containing

N quantized contexts

Q : C → C̃, (3.8)

where C = {c1, c2 · · · , c|A|K} is called the original context set , C̃ = {c̃1, c̃2 . . . , c̃N}
is called the quantized context set or codebook , and ci ∈ AK for each i ∈ I =

21

{1, 2, · · · , |A|K}. Associated with each quantized context is a partition of the K-

dimensional Euclidean space AK into N regions or cells . The mth cell is defined

by

Pm = {c ∈ AK : Q(c) = c̃m} (3.9)

where m ∈ J = {1, 2, . . . , N} and

N⋃
i=1

Pi = C and Pi

⋂
Pj = ∅, for i 6= j (3.10)

To design an optimal context quantizer in the sense of minimizing the image

compression rate, we need to optimize over the following two variables:

1. The codebook size N (1 ≤ N ≤ |A|K) of the quantizer.

2. The context mapping Q given N .

Let r(X) denote the total code length in bits resulted from encoding the se-

quence X. Let r(x) denote the compression rate in bits per symbol resulted from

encoding X. The relationship between r(X) and r(x) is simply given by

r(x) =
1

n
r(X), (3.11)

where n is the sequence length of X. We have the following problem formulation.

Problem 1 (Context Quantization Problem 1). Let X be an alphabet A source

with an original context set C. Let C denote the alphabet C context random variable

which is joint distributed with X. We wish to find the optimal codebook size N∗

and the optimal mapping Q∗ given N∗, such that r(x|Q(C)) is minimized, i. e.,

min
N, Q(C)

r(x|Q(C)). (3.12)

By using context-based arithmetic coding algorithms, the quantity r(X|Q(C))

can be written as

r(X|Q(C)) = r̃(X|Q(C)) + ψ. (3.13)

In Equation (3.13), the first part r̃(X|Q(C)) is given by

r̃(X|Q(C)) = − log
n∏

i=1

p(xi|Q(C)), (3.14)

22

which denotes the ideal code length assigned by the context-based arithmetic coding

algorithms with the transition probability function p(·|·), conditioned on the context

Q(C).

The second part ψ of Equation (3.13) denotes the total modeling cost in bits

by using the context-based, adaptive arithmetic coding algorithms. One method to

derive ψ is as follows. Fix N contexts. The original sequence X is separated into

N i.i.d. sub-sequences, each of which is encoded by one of the N arithmetic coders.

Let ni denote the length of the sub-sequence encoded by the ith arithmetic coder,

where
∑N

i=1 ni = n. The extra bits, besides the ideal code length, resulted by using

the ith arithmetic coder is given by 1
2
log(ni +1). Thus the total modeling cost over

N arithmetic coders can be approximated by

ψ ,
N∑

i=1

1

2
log(ni + 1) (3.15)

≤ N

2
log

N∑
i=1

ni + 1

N
(3.16)

=
N

2
log

(n

N
+ 1

)
(3.17)

where (3.16) follows from the Jensen’s inequality since log(t) is a concave function

of t.

Plugging Equation (3.14) and (3.17) into Equation (3.13), we have

r(X|Q(C)) ≈ − log
n∏

i=1

p(xi|Q(C)) +
N

2
log

(n

N
+ 1

)
. (3.18)

Thus, the original Problem 1 can be approximated by the following problem.

Problem 2 (Context Quantization Problem 2).

min
N, Q(C)

1

n

[
− log

n∏
i=1

p(xi|Q(C)) +
N

2
log

(n

N
+ 1

)]
. (3.19)

In this thesis, we are more interested in how the compression performance can

be improved by finding the optimal context mapping. For this reason we further

simplify the Problem 2 by fixing the quantization codebook size N to optimize over

Q only. The jointly optimization of N and Q is still interesting and will be left for

future works at this time. To make the problem more trackable, we approximate

the quantity − 1
n

log
∏n

i=1 p(xi|Q(C)) by the conditional entropy H(X|Q(C)). The

simplified problem is as follows.

23

Problem 3 (Context Quantization Problem 3). Fix the quantization codebook

size N . Find an optimal context mapping Q such that the conditional entropy

H(X|Q(C)) is minimized, i. e.,

min
Q(C)

H(X|Q(C)). (3.20)

It should be noted that we still can refine N by repeating (3.20) for a set of

empirical chosen codebook sizes N during an off-line training process. Therefore,

the Problem 3, which is a subset of Problem 2, still has its theoretical and practical

importance. The problem formulation (3.20) is also considered in references [36]

and [40], which use dynamic programming to solve the problem in binary cases.

In the following section, we will present a Lloyd-like context quantizer design

algorithm to address the Problem 3. The algorithm does not assume any alphabets

of sources.

3.4 A Lloyd-like Context Quantizer Design Algo-

rithm

Let X be a K-pixel template image source with an alphabet A. Let C and C̃ denote

the original context set and the quantized context set, respectively. Let M = |C|
and N = |C̃| denote the size of C and C̃, respectively. Let C (C ∈ C) denote

the context random variable which is jointly distributed with X according to the

jointly distribution function Pr{X = x, C = c} = p(x, c). Let Q : C → C̃ denote

the context mapping and we have

Q(C) = C̃, C ∈ C, C̃ ∈ C̃. (3.21)

The theoretical limit to compress X given C is the conditional entropy H(X|C).

We wish to minimize H(X|Q(C)) for a fixed N . Let RQ denote the difference

between the two quantities H(X|Q(C)) and H(X|C). We have

RQ = H(X|Q(C))−H(X|C) (3.22)

= H(X|Q(C))−H(X|C, Q(C)) (3.23)

= I(X; C|Q(C)) (3.24)

≥ 0 (3.25)

24

where (3.23) follows from Theorem 2.1, and we have equality in (3.25) if and only if

X and C are conditionally independent given Q(C). The quantity RQ is the extra

bits (on the average) we use to encode X conditioned on the quantized context Q(C)

instead of the original context C, i. e., it is a measure of inefficiency of the context

quantizer Q. Apparently, to minimize H(X|Q(C)), it is equivalent to minimize RQ.

Let Pm (m = 1, 2, · · · , N) denote the mth cell given by Equation (3.9), and Pm

satisfies the properties given by Equation (3.10). We have:

H(X|C) =
∑
cj∈C

p(cj)H(X|C = cj)

= −
∑
cj∈C

p(cj)
∑

x

p(x|cj) log p(x|cj)

= −
N∑

m=1

∑
cj∈Pm

p(cj)
∑

x

p(x|cj) log p(x|cj) (3.26)

and

H(X|Q(C)) = H(X|C̃) (3.27)

=
∑

c̃m∈C̃

p(c̃m)H(X|C̃ = c̃m)

= −
∑

c̃m∈C̃

p(c̃m)
∑

x

p(x|c̃m) log p(x|c̃m)

= −
N∑

m=1

p(c̃m)
∑

x

p(x|c̃m) log p(x|c̃m), (3.28)

where

p(c̃m) =
∑

cj∈C̃m

p(cj). (3.29)

Since for all i 6= j, ci 6= cj, we have

p(x, c̃m) =
∑

cj∈Pm

p(x, cj) (3.30)

Thus, we have

p(x|c̃m) =
p(x, c̃m)

p(c̃m)

=

∑
cj∈Pm

p(x, cj)∑
cj∈Pm

p(cj)

=

∑
cj∈Pm

p(cj)p(x|cj)∑
cj∈Pm

p(cj)
, (3.31)

25

i. e., the conditional probability p(x|c̃m) is the “centroid” of set {p(x|cj) : cj ∈ Pm}.
Plugging (3.26) and (3.28) into (3.22), we have

RQ = H(X|Q(C))−H(X|C) (3.32)

= −
N∑

m=1

p(c̃m)
∑

x

p(x|c̃m) log p(x|c̃m)

+
N∑

m=1

∑
cj∈Pm

p(cj)
∑

x

p(x|cj) log p(x|cj) (3.33)

= −
N∑

m=1

p(c̃m)
∑

x

∑
cj∈Pm

p(cj)p(x|cj)∑
cj∈Pm

p(cj)
log p(x|c̃m)

+
N∑

m=1

∑
cj∈Pm

p(cj)
∑

x

p(x|cj) log p(x|cj) (3.34)

= −
N∑

m=1

∑
x

∑
cj∈Pm

p(cj)p(x|cj) log p(x|c̃m)

+
N∑

m=1

∑
cj∈Pm

p(cj)
∑

x

p(x|cj) log p(x|cj) (3.35)

= −
N∑

m=1

∑
cj∈Pm

p(cj)
∑

x

p(x|cj) log p(x|c̃m)

+
N∑

m=1

∑
cj∈Pm

p(cj)
∑

x

p(x|cj) log p(x|cj) (3.36)

=
N∑

m=1

∑
cj∈Pm

p(cj)
∑

x

p(x|cj) log
p(x|cj)

p(x|c̃m)
(3.37)

Define the quantity δ(cj, c̃m) as

δ(cj, c̃m) ,
∑

x

p(x|cj) log
p(x|cj)

p(x|c̃m)
(3.38)

We see that δ(cj, c̃m) is the relative entropy or Kullback Leibler distance [28] between

the two probability mass function p(x|cj) and p(x|c̃m), i. e.,

δ(cj, c̃m) = D(p(x|cj) ‖ p(x|c̃m)) (3.39)

= D(p(x|cj) ‖ Q(p(x|cj)) (3.40)

In view of (3.40), we regard δ(cj, c̃m) as the “distortion” between p(x|cj) and

p(x|c̃m), which is similar as the distortion measure between the original variable

26

and its reproduction codeword in the traditional vector quantization problem [38].

Therefore, we can use Lloyd-like iterative algorithm to design a context quantizer

such that RQ is minimized. The Lloyd-like iterative algorithm is described as

follows.

Algorithm 1 Lloyd-like context quantization algorithm

1. Set i = 0, R
(0)
Q = Rmax. Set the maximal iteration number Nmax and a small

threshold ε.

2. Form an initial partition G(i) of the original context set C into N cells P(i)
m

(m = 1, 2, · · · , N).

3. Calculate the centroid p(x|c̃m) for each P(i)
m to get an initial codebook C̃(0),

where p(x|c̃m) is given by (3.31).

4. Set i + 1 → i, and update the partition. For each context cj ∈ C, calculate

m′ = arg min
m

∑
x

p(x|cj) log
p(x|cj)

p(x|c̃m)
(3.41)

and assign cj to the cell Pm′ to form the new partition G(i)

5. Calculate the new R
(i)
Q given by (3.37). If

R
(i−1)
Q −R

(i)
Q

R
(i−1)
Q

> ε and i < Nmax, go to

Step 3.

6. Stop. The final partition G(i) contains an optimal context mapping Q∗.

It is easy to verify that R
(i)
Q (i = 1, 2...) are non-increasing in the above algo-

rithm. Since R
(i)
Q ≥ 0 for all i, the algorithm will converge to a stationary point

and then stop after a finite number of iterations. Same as the generalized Lloyd

algorithm for traditional vector quantization, there is no guarantee that Algorithm

1 finds the global optimal mapping Q in the sense that H(X|Q(C)) is minimized.

3.5 Implementation Issues

In this section, we will discuss some important algorithm implementation issues.

27

3.5.1 Initial Codebook Design

To perform the Lloyd-like algorithm, we have to begin with an initial codebook

or partition. There are many ways to generate an initial codebook [38]. In this

section, we will discuss two of them.

Random mapping: The simplest method to generate an initial context quan-

tization codebook is to randomly map the original contexts into N cells numbered

from 1 to N . This technique has often been used in pattern recognition. Although

Random mapping is quite simple, it may form a bad initial partition in the sense

that we can not get a good final mapping after we use the Lloyd-like algorithm.

Nevertheless, we can always generate a set of initial codebooks by random map-

ping, apply the Lloyd-like algorithm, and select the final mapping which gives us

the best performance.

Splitting: Linde et al. introduced a technique called the splitting method for

the traditional vector quantization codebook design [38]. A similar method can be

applied to design an initial codebook for context quantization. First, we select the

centroid of the conditional probabilities of the whole training set as the resolution 0

codeword, say p(x|c̃0). Then we split this codeword into two codewords, say p(x|c̃0),

and p(x|c̃′0) which is a small disturbance on p(x|c̃0). Now we have a two-codeword

codebook and then apply the Lloyd-like algorithm to improve it to generate the

final resolution 1 codebook. The reason we include the codeword generated at

the last step into the new codebook design process is to guarantee that the new

codebook will not be worse the old one. In this manner, we can always generate a

resolution r + 1 codebook from the resolution r codebook. Finally, we can design

a codebook for context quantization from a training set. Another way to do the

splitting is to employ a tree structure. The method is to make a disturbance on

the initial codebook p(x|c̃0) to make two codewords, p(x|c̃′0) and p(x|c̃′0). Each

time we increase the codebook size, we make a disturbance on every codeword in

the old codebook to generate two new codewords from each of the old codewords.

Although the above two methods are not optimal, they generally produce a good

context quantization codebook when the training set is large enough.

3.5.2 Empty cell problem

The Lloyd-like iterative algorithm assumes that the partition is nodegenerate in

the sense that each cell of the quantizer has nonzero probability of containing a

context, i.e., p(c̃m) 6= 0 for all m = {1, 2, . . . , N}. For a cell which contains no

28

context, p(c̃m) = 0, the centroid of the cell is undefined. This is called the empty

cell problem for context quantization. Apparently, a quantizer with one or more

empty cells will not be optimal because we can remove those empty cells and split

other cells with nonzero probabilities into two cells, and keep the codebook size

unchanged while reducing the conditional entropy given the quantized contexts.

In practice, the empty cell problem must be considered in the context quantizer

design.

In practice, the number of original contexts could be much larger than the

number of quantized contexts. We declare a cell as an “empty” cell if it contains

3 or less original contexts. All the empty cells have to be removed and the same

number of new substituted cells have to be added in. We can select some of the

non-empty cells to further splitting. We propose two heuristic criterion to select

the candidate cells for further splitting. One criterion is to select the cell with

the largest number of contexts. Another criterion would be selecting the cell with

the maximal contribution to the conditional entropy. The two criterion can both

produce good initial codebooks.

29

Chapter 4

Image Decomposition

Our objective is to design an efficient and effective progressive lossless image com-

pression scheme. In the last chapter, we use context quantization to address the

context dilution problem in order to improve image compression performance. In

this chapter, we will use image decomposition to obtain the progressive image trans-

mission feature. Furthermore, our compression scheme elegantly combines image

decomposition with context quantization.

4.1 Introduction

In general, image decomposition means separating images into components. In

progressive image compression, we decompose an image into a series of progressively

refined sequences and compress them dependently. Kieffer and Yang generalized

progressive lossless compression schemes in the framework of “refinement source

coding” [8]. To compress an image X, a progressive compression scheme generates

a finite sequence Y from X

Y = {y1, y2, · · · , yL}, (4.1)

where L > 1 denotes the total number of decomposition levels and yL = X. The

sequence Y is called the progressive data sequence of X. Each yl (1 ≤ l < L) is

obtained through processing of yl+1, and regarded as a coarsened version of yl+1.

Equivalently, yi+1 is regarded as a refined version of yl. In refinement source coding,

the encoder compresses X by encoding y1 dependently, and then encoding each yl

conditioned on yl−1 for l = 2, 3 · · · , L, i. e., the encoder will generate a series of

30

encoded sequence

{vl}L
l=1 = {v1(y

1), v2(y
2|y1), v3(y

3|y2), · · · , , vL(yL|yL−1)}, (4.2)

and send {vl}L
l=1 to the decoder sequentially. If each vl (l = 1, 3 · · · , L) is con-

structed losslessly, X will be losslessly compressed. The decoder can fully recover

the sequence X by decoding v1 to get y1, and then decoding vl conditioned on yl−1

for l = 2, 3 · · · , L to get yl, where yL = X.

There are many ways to generate the progressive data sequence Y . In this thesis,

we will use a generalized version of the color splitting method used in [21], which

is essentially an entropy-constrained vector quantization [41] based decomposition

method with a binary tree structure.

4.2 Image Decomposition using Color Splitting

The color splitting method splits a representative color into several colors based on

some criterion such as minimizing the distortion. To reduce the complexity, a tree

structure, especially a binary-tree structure, is usually preferred [42].

The binary tree structure yields binary tree color splitting methods. Initially,

we represent the whole image with one representative color node, and map all

image pixels into it. In the next step, we split this root color node into two child

color nodes, each of which is assigned by a representative color, and map the pixels

belonging to its father color node into the two child color nodes. When we have

n leaf color nodes in the tree by splitting, we add one leaf color node by selecting

one of the existing n leaf color nodes and split that color node into two. Thus the

tree grows from n leaf nodes to n + 1 leaf nodes and the total number of colors

represented by the tree is n + 1. The process continues until each color in the

original image is represented by one leaf node.

4.2.1 Binary Tree Color Splitting

Assume that a gray-scale image has a color (gray-level) set S = {s0, s1, . . . , sL−1},
where L is the total number of distinct colors (gray levels). Let f(si) (i = 1, 2, · · · , L)

denote the occurrence number of the color si in the image. Let f(S) denote the oc-

currence number of all the colors of the set S in the image, i. e., f(S) =
∑

si∈S f(si).

Let T0 denote the initial tree with only one root node. Let Tl (l = 1, 2 · · · , L − 1)

denote the binary tree at the lth level splitting.

31

For each leaf node St of the binary tree, we define the representative color qSt

as the centroid of all color occurrences in node St,

qSt =

∑
sj∈St

f(sj)sj

f(St)
. (4.3)

At level l, we use the representative colors associated with each leaf node of

Tl to reconstruct the image ITl
, the distortion associated with each leaf node St is

thus,

dSt =
∑
sj∈St

f(sj)d(sj, qSt), (4.4)

where d(sj, qSt) = (sj − qSt)
2 for gray-scale images.

The total distortion associated with Tl is,

DTl
=

LTl
−1∑

t=0

d(St), (4.5)

where LTl
denotes the number of leaf node of Tl.

When we split a leaf node S into two child node S ′ and S ′′ at level l to build

the level l + 1 tree Tl+1, the distortion reduction is calculated as,

∆Dl = Dl −Dl+1 (4.6)

=
∑
sj∈S

f(sj)d(sj, qS)−
∑

sj∈S′
f(sj)d(sj, qS′)−

∑

sj∈S′′
f(sj)d(sj, qS′′). (4.7)

On the other hand, we need more bits to indicate which child node, S ′ or S ′′ a pixel

in S belongs to. The increased rate for the splitting is calculated as,

∆Rl = Rl+1 −Rl (4.8)

= −f(S ′) log
f(S ′)
f(S)

− f(S ′′) log
f(S ′′)
f(S)

, (4.9)

where Rl and Rl+1 are the rate corresponding to the Tl and Tl+1.

Each time we split a leaf node, we will get a distortion D and a rate R. We

define a Lagrangian cost function

J = D + λR (4.10)

as the criterion to determine the node to be split at each level: we choose the node

which produces the minimum cost J to split at each level. Here, the parameter λ

is empirically chosen. By fixing λ, we can use an iterative algorithm to minimize J

to refine the pixel mapping when we split a leaf node into two child nodes.

32

4.2.2 Algorithm Description

The binary tree color splitting algorithm is described as follows.

Algorithm 2 Binary tree color splitting algorithm

1. Set l = 0. Initially, all the colors belong to the root node S0 = S of the binary

tree T0. Set R0 = 0 and D0 = σ2, where σ2 is the variance of S0. Set the

maximum number of iteration loops Nmax and a small threshold ε.

2. Find the minimum achievable cost for splitting each leaf node of Tl. For each

leaf node St of Tl, we tentatively split each leaf node as follows.

Step 2.1: Set Jold = Dl + λRl .

Step 2.2: Make an initial splitting. For each color sj ∈ St, if sj ≤ qSt , assign

sj to S ′t. Otherwise, assign sj to S ′′t .

Step 2.3: Calculate qS′t and qS′′t . For each color sj ∈ St, if

d(sj, qS′t)− λf(S ′t) log
f(S ′t)
f(St)

≤ d(sj, qS′′t)− λf(S ′′t) log
f(S ′′t)

f(St)
, (4.11)

we assign sj to S ′ and generate a binary value 0. Otherwise, we assign sj

to S ′′ and generate a binary value 1. We concatenate these binary values to

generate a binary sequence γl.

Step 2.4: Calculate ∆Dl and ∆Rl. We have

J (j)
new = (Dl −∆Dl) + λ(Rl + ∆Rl) (4.12)

If |Jold−Jnew|
Jold

≤ ε, or the number of iteration loops is greater than Nmax, we

stop. Otherwise, we continue Step 2.3 and 2.4.

3. Find

j = arg min
sj∈St

J (j)
new. (4.13)

Split node j by the same process as Step 2.1 to 2.4.

Algorithm 2 is essentially a generalized Lloyd algorithm for entropy-constrained

vector quantization [41]. The algorithm will converge to a stationary point after a

finite number of iterations. By using Algorithm 2, we grow the binary tree with l

leaf nodes to the binary tree with l+1 nodes. The process continues until we have L

leaf nodes, where L denotes the total number of distinct colors of the image. Each

33

time we split a leaf node into two child nodes, we use a binary sequence indicating

which child node a pixel belongs to.

4.3 Combining Image Decomposition with Con-

text Quantization

Through the above image decomposition algorithm, we decompose the image into a

series of objects . At level l, each object consists of three components with respect

to the leaf node S to be split in the tree Tl−1: the representative color of the node S,

the representative colors of its two child nodes S ′ and S ′′, and the binary sequence

γl. For the three representative colors, we do not encode and send them directly

to the decoder. For the binary sequences {γl}L−1
l=1 , we use context-based, adaptive

arithmetic coding algorithm to encode them.

In order to efficiently encode the sequences {γl}L−1
l=1 , we need to perform con-

text quantization. Note that, after decomposition the original gray-scale image is

transformed into a series of binary sequence. Therefore, the complexity of context

quantization and arithmetic coding is reduced. Moreover, the image decomposition

not only provides the feature of progressive image transmission, but also offers an

opportunity to use non-causal templates which help to further improve the com-

pression performance.

Figure 4.1 shows a non-causal template. Usually, we can only use the past pixels

labeled by “c” to form a causal template. However, with image decomposition, at

level l > 1, we already have some partial information of the non-causal pixel values.

Thus, we can use both the past pixels labeled by “c” and the “future” pixels labeled

by “x” to form a non-causal template for level l > 1. This is an advantage that

image decomposition brings out.

Suppose we decompose an image into a series of binary sequence {Bl}L
l=1 =

{B1, B2, · · · , BL} with L levels. At the level l = 1, we have only two colors, i. e.,

B1 represents a binary image. For B1, we can only use a causal template because

we do not have any information about the future pixels right now. At the levels

l > 1, we can use a non-causal template because we not only know all the past

pixels at level l, but also know all the future pixels up to level l + 1. Therefore,

to encode sequences at level l > 1, we shall use a non-causal template instead of a

causal template.

34

c xxc ccxc xc xx? cx
Figure 4.1: A noncausal Template

To get a good compression performance, we shall combine the image decompo-

sition with the context quantization. We do the context quantization level by level

in an off-line training process. For each level, we first choose the Kl-pixel template

Tl and the codebook size Nl for level l. Note that T1 is a causal template and all

Tl (l = 2, 3, · · · , L − 1) are non-causal templates. For each level l, we refine the

context mapping

Ql : AKl
l → C̃l (4.14)

by using the context quantization algorithm (Algorithm 1) in Chapter 3, where

Al denotes the alphabet at level l and |Al| = l + 1, and C̃l denotes the quantized

context set at level l.

35

Chapter 5

Experimental Results

To evaluate the compression performance of our proposed algorithm, we compare

the proposed algorithm in this thesis with other representative lossless image com-

pression schemes in the literature. The comparison consists of two parts: compari-

son of bi-level image compression and comparison of gray-scale image compression.

For bi-level images, we compare the proposed algorithm with JBIG. For gray-scale

images, we compare the proposed algorithm with CALIC. The main performance

metric is compression rate in bits per pixel (bpp).

5.1 Image Sets

The images used for compression are classified into two major types: bi-level im-

ages and gray-scale images. Bi-level images are from two sources. The first source

contains eight ccitt facsimile images and the second source contains ten binary im-

ages converted from scientific papers in PDF format downloaded from the Internet.

Gray-scale images are also from two sources. The first source consists of 15 images

from the miscellaneous categories of USC-SIPI Image Database [43], which include

several “standard” images for image compression. Since the images provided in the

database are 24-bit color images, we use Matlab to convert them into YCbCr color

space and use Y-component images as the image set. The image sizes are 256×256

and 512 × 512. The second source consists of 20 images extracted from 4 HDTV

sequences in YUV format. Again we take only Y-component images as our image

set. The sizes of HDTV frames are 1920× 1024.

We divide all the 60 images into two sets, the training set and the testing set.

We select 20 images from our whole image set to form the training set. The rest

36

1

2 43

6

5

10

98

7

13

15

11

1216

18

X

14

17

19

212023 24

22

Figure 5.1: The causal template used in experiments (use only 1-15)

images are put into the testing set. The training images include both binary images

and gray-scale images with different types. Then we use the image decomposition

method in Chapter 4 and the context quantization algorithm in Chapter 3 to de-

compose those training images and design context quantizers for each level from

them. Finally, we apply the obtained quantizers on the images in the testing set.

The results we get in the following section are from the same quantizers.

In order to make a fair comparison with JBIG, we fix the codebook size for the

binary images as N1 = 210, i. e., we use the same number of contexts in the arith-

metic coders as JBIG. For gray-scale images, we perform the context quantization

up to level l = 180. As samples available in the following levels are less and less,

we do not get much gain from context quantization. The codebook sizes at each

level are empirically chosen based on the training set. The maximal codebook size

is 212.

5.2 Compression Results of Binary Images

To test our context quantization algorithm, we use eight CCITT fax image and five

PDF pages as the training set. We choose a 15-pixel context template which has a

total of 215 original contexts which is shown in Figure 5.1. We set the quantization

codebook size as N1 = 210 which is the same as the JBIG standard.

Table 5.1 shows the compression rates in bits per pixel (bpp) for the eight

37

CCITT fax images.

Table 5.1: CCITT Images (bpp)

Image Proposed JBIG

ccitt1 0.029 0.030

ccitt2 0.016 0.018

ccitt3 0.042 0.044

ccitt4 0.107 0.107

ccitt5 0.050 0.051

ccitt6 0.024 0.025

ccitt7 0.103 0.111

ccitt8 0.027 0.029

From Table 5.1, we see that, by using a large context template and context

quantization, we slightly improve the compression performance over the JBIG.

Table 5.2: Binary Images Converted from PDF files (bpp)

Image Proposed JBIG Improvement

PDFpage6 0.0588 0.0610 3.6%

PDFpage7 0.094 0.1776 47.0%

PDFpage8 0.432 0.588 26.5%

PDFpage9 0.0967 0.107 9.6%

PDFpage10 0.1163 0.1051 −9.6%

average 0.1596 0.2077 23%

Table 5.2 shows the compression rates for the 5 binary images converted from

PDF pages of scientific papers. From Table 5.2, we see that 4 images in the testing

set have smaller compression rates than JBIG, while only one of them is worse than

JBIG.

Table 5.3 shows the compression rates for the binary images converted from

“standard” images. We see that for those images, our proposed method is still

better than JBIG by an average of 6.5%.

38

Table 5.3: Binary Images Converted from Natural Images (bpp)

Image Proposed JBIG Improvement

Lena 0.148 0.157 5.7%

Elaine 0.187 0.205 8.7%

airport 0.288 0.302 4.6%

peppers 0.108 0.118 8.4%

average 0.1828 0.1955 6.5%

1 3

4

2 65

9 11

8 7

1014

12

13

X

15

16

17

18

22

2319

20

24

21

25

32

3130

28

29

27

26

3336

37

35

38

40

39

34 42

44 41

47

45 46

4348

Figure 5.2: The non-causal template used in experiments (use only 1-15)

5.3 Compression Results of Gray-Scale Images

In this section, we present the gray-scale image compression results obtained by

our proposed scheme and CALIC. Table 5.4 shows the compression rates for the

HDTV frames extracted from four HDTV sequences. For gray-scale images, we

use a 15-pixel template shown in 5.1 to encode the first level binary image. For

the rest of levels, since we already have all the surrounding pixels available, we use

non-causal context templates shown in Figure 5.2. The maximal pixel number in

the non-causal templates are 15.

Table 5.5 shows the compression performance for part of the images taken from

USC image database [43]. The image titles are the same as the original USC images.

We observe that the proposed method has competitive compression performance

as CALIC. CALIC is very efficient for those images with human faces and images

with more continuous changes. The reason is that the CALIC’s GAP prediction

39

Table 5.4: HDTV frames (bpp)

Image Proposed CALIC

bankrun Frame1 5.26 5.31

bankrun Frame125 5.13 5.18

boat Frame100 4.48 4.46

boat Frame175 4.17 4.24

boat Frame225 4.14 4.15

city Frame1 4.29 4.25

city Frame125 4.32 4.30

manfraseco Frame200 4.18 4.10

manfraseco Frame250 3.91 3.89

average 4.44 4.43

and context modeling are specially designed for those images. On the average, the

proposed method has a better performance for a more various types of images than

CALIC. It should be noted that the proposed method has the progressive feature

which is not included in CALIC.

Table 5.5: Gray-scale images from USC database (bpp)

Image Proposed CALIC

m 7.1.03 3.98 4.72

m 7.1.08 3.60 4.37

m elaine 4.98 4.81

m 4.1.01 1.14 1.00

m 4.2.08 4.36 4.20

lena 4.39 4.12

m 5.2.10 3.68 5.37

average 3.73 4.08

For the purpose of completeness, we will show that the partial “future” infor-

mation resulted from image decomposition is helpful to improve the compression

performance. Recall that to compress gray-scale images, our scheme uses a causal

template at the first level and uses non-causal templates at the following levels.

We call this scheme as the “non-causal template” version. For our purpose, we

modify the “non-causal template” version to use only causal templates, yielding a

40

“causal template” version. For the causal template version, we redesign the context

quantizers with the causal templates by our proposed Lloyd-like algorithm. The

results are shown in Table 5.6. We see that using non-causal templates is superior

Table 5.6: Gray-scale images from USC database (bpp)

Image Non-causal template Causal template

m 7.1.03 3.98 4.12

m 7.1.08 3.60 3.77

m elaine 4.98 5.11

m 4.1.01 1.14 1.16

m 4.2.08 4.36 4.51

lena 4.39 4.50

m 5.2.10 3.68 3.86

average 3.73 3.86

to using causal templates in our scheme.

In short, our proposed scheme achieves competitive lossless compression per-

formance for both bi-level images and gray-scale images compared to JBIG and

CALIC, respectively. Moreover, we offer progressive image transmission feature for

gray-scale image compression which is not provided by CALIC.

41

Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, an efficient lossless image compression algorithm for both the bi-

nary images and gray-scale images is developed. Lossless image compression has

extensive application in medical imaging, space photographing and film industry

to archive and transmit images. To efficiently compress images, we first decompose

images into a set of binary images to reduce encoding symbols. The benefits lie

in four aspects. First, the progressive image transmission is achieved by image

decomposition. Second, the encoding alphabet is reduced to the binary alphabet

which is suitable for context quantization and adaptive arithmetic coding. Third,

decomposition provides an opportunity to use those partial “future” information of

non-causal pixels to help encoding. Finally, the decomposition provides a straight-

forward way to encode bi-level images, considering that current gray-scale image

compression algorithms usually have bad performance on bi-level images. To deal

with the well-know context dilution problem, we propose a Lloyd-like context quan-

tization algorithm which refines the context mapping to minimize the compression

rate. By combining image decomposition and context quantization, we design an

efficient lossless image compression scheme for both bi-level images and gray-scale

images. Experimental results show that our scheme has competitive compression

performance on both bi-level images and gray-scale images compared to JBIG and

CALIC, respectively. Our scheme provides an interesting progressive transmission

feature for gray-scale image compression as well.

42

6.2 Future Research

Currently, our method uses an off-line training process to obtain the source statis-

tics. Although the compression performance on images outside the training set is

attractive, we have to maintain a context mapping table along with the coding

program. In the future work we want to design some heuristic context quantization

methods based our current learning results. We expect that the method can adap-

tively do the context quantization without maintaining a preset context mapping

table. The second work is to reduce the computing complexity. The process to

decompose images into multi-levels and then encode the image level by level makes

the complexity of the proposed scheme higher than JBIG and CALIC. There is

still much space to improve the code efficiency and reduce the computing and stor-

age complexity. Finally, extending the work to the video compression is also very

interesting.

43

List of References

[1] C. Poynton. (1997) Frequently asked questions about color. [Online].

Available: http://www.poynton.com/PDFs/ColorFAQ.pdf

[2] A. Ford and A. Roberts. (1998, Aug.) Colour space conversions. [Online].

Available: http://www.poynton.com/PDFs/coloureq.pdf

[3] K. R. Sloan, Jr. and S. L. Tanimoto, “Progressive refinement of raster images,”

IEEE Trans. Comput., vol. C-28, no. 11, pp. 871–874, Nov. 1979.

[4] K. Knowlton, “Progressive transmission of grey-scale and binary pictures by

simple, efficient, and lossless encoding schemes,” Proc. IEEE, vol. 68, no. 7,

pp. 885–896, Jul. 1980.

[5] K.-H. Tzou, “Progressive image transmission: a review and comparison of

techniques,” Optical Engineering, vol. 26, no. 7, pp. 581–589, Jul. 1987.

[6] P. H. Westerink, J. Biemond, and D. E. Boekee, “Progressive transmission of

images using subband coding,” in Proc. International Conference on Acoustics,

Speech, and Signal Processing (ICASSP’89), vol. 3, Glasgow, UK, May 1989,

pp. 1811–1814.

[7] A. Said and W. A. Pearlman, “An image multiresolution representation for

lossless and lossy compression,” IEEE Trans. Image Process., vol. 5, no. 9, pp.

1303–1310, Sep. 1996.

[8] J. C. Kieffer and E.-H. Yang, “Grammar-based lossless universal refinement

source coding,” IEEE Trans. Inf. Theory, vol. 50, no. 7, pp. 1415–1424, Jul.

2004.

[9] Coded Representation of Picture and Audio Information—Progressive Bi-level

Image Compression, ITU-T Recommendation T.82 and ISO/IEC International

Standard 11 544, 1993.

44

[10] Information Technology—Coded Representation of Picture and Audio

Information—Lossy/Lossless Coding of Bi-Level Images, ITU-T Recommen-

dation T.88 and ISO/IEC International Standard 14 492, 2000/2001.

[11] P. G. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W. J. Ruck-

lidge, “The emerging JBIG2 standard,” IEEE Trans. Circuits Syst. Video

Technol., vol. 8, no. 7, pp. 838–848, Nov. 1998.

[12] Information Technology—Digital Compression and Coding of Continuous-

Tone Still Images—Requirements and Guidelines, ITU-T Recommendation

T.81 and ISO/IEC International Standard 10 918-1, 1992/1993.

[13] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans.

Consum. Electron., vol. 38, no. 1, pp. xviii–xxxiv, Feb. 1992.

[14] Information technology—JPEG 2000 image coding system: Core coding sys-

tem, ITU-T Recommendation T.800 and ISO/IEC International Standard

15 444-1, 2000.

[15] Information technology—JPEG 2000 image coding system: Extensions, ITU-T

Recommendation T.801 and ISO/IEC International Standard 15 444-2, 2000.

[16] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression Funda-

mentals, Standards and Practice, 1st ed. Norwell, MA, USA: Kluwer Academic

Publishers, 2002.

[17] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE

Trans. Commun., vol. 45, no. 4, pp. 437–444, Apr. 1997.

[18] P. G. Howard and J. S. Vitter, “Fast and efficient lossless image compres-

sion,” in Proc. IEEE Data Compression Conference (DCC’93), Snowbird, UT,

Mar./Apr. 1993, pp. 351–360.

[19] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The loco-i lossless

image compression algorithm: Principles and standardization into jpeg-

ls,” Hewlett-Packard Laboratories and Department of Electrical and

Computer Engineering, University of Minnesota, Minneapolis, MN, HP

Laboratories Tech. Report HPL-98-193R1, Oct. 1999. [Online]. Available:

http://www.hpl.hp.com/loco/HPL-98-193R1.pdf

[20] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based

on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video

Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

45

[21] X. Chen, S. Kwong, and J.-F. Feng, “A new compression scheme for color-

quantized images,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 10,

pp. 755–777, Oct. 2002.

[22] İ. Avcibaş, N. Memon, B. Sankur, and K. Sayood, “A progressive lossless/near-

lossless image compression algorithm,” IEEE Signal Process. Lett., vol. 9,

no. 10, pp. 312–314, Oct. 2002.

[23] A. J. Pinho and A. J. R. Neves, “A context adaptation model for the compres-

sion of images with a reduced number of colors,” in Proc. IEEE International

Conference on Image Processing (ICIP’05), vol. 2, Genova, Italy, Sep. 2005,

pp. 738–741.

[24] T. Acharya and P.-S. Tsai, JPEG2000 Standard for Image Compression: Con-

cepts, Algorithms and VLSI Architectures, 1st ed. Hoboken, NJ, USA: John

Wiley & Sons, Inc., Oct. 2004.

[25] K. Sayood, Introduction to Data Compression, 3rd ed., ser. The Morgan Kauf-

mann Series in Multimedia Information and Systems. San Francisco, CA:

Morgan Kaufmann, Dec. 2005.

[26] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal, vol. 27, pp. 379–423, 1948.

[27] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 3rd ed.

New York: Oxford University Press, Jul. 2001.

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.

John Wiley & Sons, Inc., Jun. 2006.

[29] P. E. Tischer, R. T. Worley, A. J. Maeder, and M. Goodwin, “Context-based

lossless image compression,” The Computer Journal, vol. 36, no. 1, pp. 68–77,

Jan. 1993.

[30] J. Rissanen, “Universal coding, information, prediction, and estimation,”

IEEE Trans. Inf. Theory, vol. 30, no. 4, pp. 629–636, Jul. 1984.

[31] Information Technology—Lossless and Near-Lossless Compression of

Continuous-Tone Still Images: Baseline, ITU-T Recommendation T.87

and ISO/IEC International Standard 14 495-1, 1999.

[32] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data com-

pression,” Communications of the ACM, vol. 30, no. 6, pp. 520–540, Jun. 1987.

46

[33] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,” ACM

Transactions on Information Systems (TOIS), vol. 16, no. 3, pp. 256–294, Jul.

1998.

[34] D. A. Huffman, “A method for the construction of minimum-redundancy

codes,” in Proc. of the IRE, vol. 40, no. 9, Sep. 1952, pp. 1098–1101.

[35] M. J. Weinberger, J. J. Rissanen, and R. B. Arps, “Applications of universal

context modeling to lossless compression of gray-scale images,” IEEE Trans.

Image Process., vol. 5, no. 4, pp. 575–586, Apr. 1996.

[36] X. Wu, P. A. Chou, and X. Xue, “Minimum conditional entropy context

quantization,” in Proc. IEEE International Symposium on Information Theory

(ISIT’00), Sorrento, Italy, Jun. 2000, p. 43.

[37] R. M. Gray, “Vector quantization,” IEEE ASSP Mag., [see also IEEE Signal

Process. Mag.], vol. 1, no. 2, pp. 4–29, Apr. 1984.

[38] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,

1st ed. Norwell, MA, USA: Kluwer Academic Publishers, Nov. 1991.

[39] D.-K. He, “Grammar-based codes: from context-free to context-dependent,”

Ph.D. dissertation, University of Waterloo, Department of Electrical and Com-

puter Engineering, Waterloo, Ontario, Canada, Jun. 2003.

[40] S. Forchhammer, X. Wu, and J. D. Andersen, “Optimal context quantization

in lossless compression of image data sequences,” IEEE Trans. Image Process.,

vol. 13, no. 4, pp. 509–517, Apr. 2004.

[41] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained vector

quantization,” IEEE Trans. Acoust., Speech, Signal Process. [see also IEEE

Trans. Signal Process.], vol. 37, no. 1, pp. 31–42, Jan. 1989.

[42] P. C. Cosman, K. L. Oehler, E. A. Riskin, and R. M. Gray, “Using vector

quantization for image processing,” Proc. IEEE, vol. 81, no. 9, pp. 1326–1341,

Sep. 1993.

[43] The USC-SIPI Image Database. University of Southern California. [Online].

Available: http://sipi.usc.edu/database/

47

Index

Symbols

σ-field, 9

A

accompanying context, 17

accompanying context sequence, 17

arithmetic coding, 13

B

bi-level image, 2

standard form, 2

binary image, see bi-level image

bits per pixel, 5

bits per sample, 5

black and white image, see bi-level image

C

codebook, 21

color depth, 2

color space, 2

compression

lossless, 3

lossy, 3

rate, 5

ratio, 5

conditional entropy, 11

context, 17

K-pixel template, 19

dilution, 11, 13

index, 20

model

K-pixel template, 20

order, 20

original, 21

original context set, 21

pixel, 18

quantization, 14, 17

quantized, 21

quantized context set, 21

quantizer, 21

cell, 22

region, 22

set, 17

template, 18

causal, 19

non-causal, 19

order, 18

context generating functions, 17

contexts, 10

current pixel, 18

E

entropy, 11

conditional, 11

joint, 11

relative, 12

entropy rate, 12

F

finite-state source, 10

G

general context model, 18

gray-scale image, 2, 15

48

H

huffman coding, 13

I

image

bi-level, 2

black and white, 2

gray-scale, 2, 15

true color, 2

index set, 20

information source, see source

initial context, 18

J

joint entropy, 11

K

K-L distance, 12

Kullback Leibler distance, 12

M

Markov source, 9

mean-squared-error, 6

N

neighboring pixel, 18

P

peak-signal-to-noise-ratio, PSNR, 6

probability measure, 9

progressive

image compression, 3

image transmission, 3

R

refinement, 4

source coding, 4

relative entropy, 12

S

Shannon entropy, see entropy

source

finite-state, 10

i.i.d., 9

Markov, 9

stationary, 9

state, 10

T

template, 18

49

