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ABSTRACT 

 
Water quality and nonpoint source (NPS) pollution are important issues in many areas 

of the world, including the Greater Toronto Area where urban development is 

changing formerly rural watersheds into impervious surfaces. Impervious surfaces 

(i.e. roads, sidewalks, parking lots, strip malls, building rooftops, etc.) made out of 

impenetrable materials directly impact hydrological attributes of a watershed. 

Therefore, understanding the degree and spatial distribution of impervious surfaces in 

a watershed is an important component of overall watershed management. 

 

According to Environment Canada’s estimates, road salts, also considered nonpoint 

source pollutants, represent the largest chemical loading to Canadian surface waters. 

The main objective of this study is to verify the often assumed correlation between 

impervious surfaces and chlorides that result from the application of road salts, 

focusing on a case study in the selected six major watersheds within the Greater 

Toronto Area.   

 

In this study, Landsat-5 TM images from 1990, 1995, 2000, and 2005 were used in 

mapping urban impervious surface changes within the study area. Pixel-based 

unsupervised classification technique was utilized in estimation of percentage 

impervious surface coverage for each watershed. Chloride concentrations collected at 

Water Quality Monitoring Stations within the watersheds were then mapped against 

impervious surface estimates and their spatiotemporal distribution was assessed. In a 

GIS environment, remotely sensed impervious surface maps and chloride maps were 

overlaid for the investigation of their potential correlation.  
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The main findings of this research demonstrate an average of 12.9% increase in 

impervious surface areas as well as a three-fold increase in chloride concentrations 

between 1990 and 2005. Water quality monitoring stations exhibiting the highest 

amounts of chloride concentrations correspond with the most impervious parts of the 

watersheds. The results also show a correlation (coefficient of determination of 0.82) 

between impervious surfaces and chloride concentrations. The findings demonstrate 

that the increase in imperviousness do generate higher chloride concentrations. 

Correspondingly, the higher levels of chloride can potentially degrade quality of 

surface waters in the region. Through an innovative integrated remote sensing 

approach, the study was successful in identifying areas most vulnerable to surface 

water quality degradation by road salts.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivations for the Study 

The phenomenon of urbanization of rural lands is an important problem in growing 

cities. Growing cities often signify a strong economy, however, as they expand, the 

stress exerted on natural environments and resources becomes greater (Weng, 2001). 

Urbanization has substantial influence on different aspects of the quality of life and 

has brought the extensive attention of researchers, urban planners, ecologists, policy-

makers and politicians.  

 

During the past 30 years, the Greater Toronto Area (GTA), Ontario has been 

identified as one of the fastest growing industrial areas of the Great Lakes Basin. As 

North America’s fifth most populated city, serious questions are being raised 

regarding the environmental sustainability of the urban growth around the GTA.  

With this urbanization comes a major increase in the amount of impervious surfaces.  

 

Impervious surfaces are defined as any material covering the ground that prohibits the 

infiltration of water into the soil. Most of these surfaces are man-made surfaces made 

out of materials such as asphalt and concrete; however, there are some that are natural 

surfaces that are so heavily compacted that function as impervious.  Examples of 

these are compacted soil in construction areas, dirt roads, and bedrock close to the 

surface (Arnold and Gibbons, 1996; Schueler, 1994). In this study, impervious surface 

is defined as human structures that have the potential to prevent infiltration of water  
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into the soil. These include building rooftops and patios; transportation-related 

impervious surface such as highways and roads, strip malls, parking lots and 

sidewalks; as well as recreational surface such as swimming pools and tennis courts.   

 

Over time, the rapid and uncontrolled conversion of agricultural and rural lands will 

have a profound impact on the physical and hydrological cycle as well as the chemical 

and biological quality of water resources (Howard and Maier, 2006). Impervious 

surfaces influence hydrology in a number of ways. Impervious surfaces prevent 

precipitation and melt water from infiltrating soils and are likely to generate more 

runoff during wet seasons and less groundwater discharges to streams during dry 

seasons (Bowen and Hinton, 1998; Barnes et al., 2001; Shuster et al., 2005). The 

reduced stream flow and more extreme stream temperatures will stress aquatic 

ecosystems, therefore disrupting and degrading aquatic habitats (Krause et al., 2004). 

The increased runoff rate presents a greater potential for degrading stream channels 

and banks and damaging vegetation around it. As stream banks erode, more 

sediments, toxic contaminants, and nonpoint source pollutants are carried into the 

streams from surrounding lands (Herlihy et al., 1998; Booth and Reinfelt, 1993; 

Shuster et al., 2005; Gibson et al., 2005). All these changes have an adverse impact on 

the chemical water quality. It has been well-documented that the amount of urban 

runoff and its impact on surface water quality are strongly correlated to the percentage 

of impervious surfaces within a watershed (Schueler, 1994; Arnold and Gibbons, 

1996; Clausen et al., 2003). 
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In the GTA, chloride concentrations have been rising across a majority of urbanized 

watersheds over the past three decades. The rise in chloride levels is attributed mainly 

to the increase in road salt applications. Growing sprawl of the urban areas along with 

the decline in the use of winter tires with the promotion of all-season tires has all led 

to ever increasing dumping of salts onto our highways, roads, parking lots and 

sidewalks. Road salts, particularly sodium chloride (NaCl), represent the largest 

chemical loading to the Canadian surface waters (Environment Canada, 2001). 

According to an assessment by Environment Canada, an estimated 6.8 million tones 

of road salts were sold for highway deicing in 2003. There are field and laboratory 

data showing rapid decline in rainbow trout population after a week’s exposure to 

concentrations of above 1,000 mg/L of chloride as well as damage to vegetations as 

far as 50 meters from roadways treated with road salts (Environment Canada, 2001). 

The trouble is, once the salt dissolves, it washes into streams, enters the drainage 

system or underlying soil and is forgotten (Kaushal et al., 2005).   

 

This study is mainly motivated by the following:  

Firstly, it is evident that high levels of impervious covers will have greater nonpoint 

source pollutant loads available for transport directly into receiving waters (Todd et 

al., 1989; Stocker et al., 1999; Snodgrass and D’Andrea, 1993). Surface water quality 

degradation by road salt is a major concern as there is little evidence that salt loadings 

can be significantly reduced, and there are no cost effective alternatives to these salts 

for large scale use at the moment (Howard and Maier, 2006). Recognizing this is 

crucial to effectively monitor and protect water resources. Therefore, fully 

understanding the urban growth in the GTA along with its associated increase in 
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chloride levels would enhance future decision-making and the protection of surface 

water quality in the study area.  

 

There are a number of standard physical and chemical parameters used in water 

quality assessment, such as dissolved oxygen, turbidity, total suspended solids, pH, 

fecal coliform bacteria, phosphorus, nitrogen and chloride (Hurd and Civco, 2004; 

Boyer et al., 2002). Selection of chloride as a water quality indicator was a challenge. 

Among these conventional parameters, chloride is most attributed to urbanization and 

the consequent increase in imperviousness and therefore is selected to be examined in 

this study. Also, in 2001, concerns over contamination of surface waters by road salts 

and its effects on freshwater organisms lead to the inclusion of “road salts” on the 

second Priority Substances List under the Canadian Environmental Protection Act 

(CEPA). A detailed report by Environment Canada concluded that road de-icing 

chemicals containing inorganic chloride salts have serious adverse impacts on the 

aquatic environment and are therefore toxic (Environment Canada, 2001). One of the 

most important implications of being classified as “CEPA Toxic” is the need to 

develop and implement measures that will reduce the impact of road salts on the 

environment. Accurate and up-to-date information on impervious surface covers and 

chloride concentrations can help to quantify the current chloride contamination in 

surface water resources and predict future water quality trends.  

 

Secondly, despite accumulating evidence in recent years of the irreversible damage 

caused to surface waters by road salts, many case studies focused mainly on 

estimating groundwater contamination (Pilon and Howard, 1987; Bowen and Hinton, 

1998; Williams et al., 2000), while most of the research efforts on the remote sensing 
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side are put towards addressing the technical land use and land cover (LULC) 

classification deficiencies (Wang et al., 2000; Flanagan and Civco, 2001; Wu and 

Murray, 2003). This study is an attempt to fill in this gap in literature through 

development of an integrated methodology combining remote sensing and 

Geographical Information Systems (GIS) with hydrological studies. 

 
 

Accordingly, the ultimate goal of this study is to make use of digital satellite remote 

sensing data and geographic information systems (GIS) to develop a fast and reliable 

solution to estimate the amount of imperviousness with acceptable level of 

consistency and accuracy, to confirm the connection between chloride and impervious 

surfaces, and to predict areas most vulnerable to water quality degradation in the 

future.  

 

1.2 Objectives of the Study 

This study contributes to the field of hydrology and water resource management by 

extending the literature on the potential correlation between increased chloride 

concentrations as a result of increased impervious surfaces and potential water quality 

impacts in the GTA using satellite remote sensing techniques.  

 

The primary objectives of the study are to map out chloride concentrations at the 

selected Provincial Stream Water Quality Monitoring Network Stations within six 

watersheds in the GTA during a 15-year period (1990, 1995, 2000 and 2005), to 

generate improved and consistent impervious surface estimates for the four separate 

dates of image data, and to identify the relationship between increased watershed-

based impervious surfaces and decreased water quality over time.  
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Overall, this study provides a spatiotemporal measure of an important environmental 

indicator of a rapidly expanding region in Canada by adopting an integrated remote 

sensing and GIS approach, which may then be applied to other regions as a 

preliminary step in water quality monitoring and protection.  

 

The following specific tasks are conducted on this study: 

 

1) Generate impervious surface maps using multitemporal Landsat-5 TM data by 

means of a post-classification approach for four separate dates spanning a 15 

year period (1990, 1995, 2000, and 2005).  

2) Identify the two land cover types of “green” and “impervious” and to calculate 

the amount of impervious and to determine areas of increased impervious 

surfaces through comparison of classified land cover maps in different dates. 

3) Relate historical chloride information for selected water quality monitoring 

stations across study area watersheds to the four date impervious surface 

estimates to determine, preliminarily, if a relationship between increased 

impervious surfaces and increased chloride contamination can be identified 

over time.  

4) Integrate maps of chloride concentrations and impervious surfaces in a GIS 

environment to validate further the adverse effect of impervious surfaces on 

water quality.  
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1.3   Organization of the Thesis 

 

The rest of this thesis is organized as follows: 

Chapter 2 examines the current literature in the fields of remote sensing of impervious 

surfaces and advantages of using satellite remote sensing in water quality monitoring 

and assessment of surface water chloride contamination. It also addresses the current 

gap in literature that exists in fields of remote sensing and hydrology.   

 

Chapter 3 describes physiological characteristics of the six watersheds in the study 

area and the data sets used. Then, a comparison of different remote sensing data 

sources is presented. A detailed explanation of the ISODATA unsupervised 

classification method used in impervious surface estimation is presented and 

parameter setting for the test of object-oriented classification approach is also 

described.  

 

Chapter 4 presents the impervious surface estimation results derived from Landsat 

TM image classification and its strong correlation with increased chloride 

concentrations. Accuracy assessment results for unsupervised classification, 

estimation of correlation coefficient between the two variables, and the results of the 

integration of remote sensing data with chloride maps in a GIS environment are given 

and discussed.  

 

Finally, Chapter 5 provides a summary of the study findings including the strong 

correlation between imperviousness and chloride concentrations. The implications of 

study’s major findings as well as directions for future research are provided.  
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CHAPTER 2 

 

IMPERVIOUS SURFACE ESTIMATION AND WATER QUALITY 
EVALUATION: AN OVERVIEW 
 

This chapter begins with an overview of the hydrological impacts caused by increased 

urbanization and impervious surfaces in Section 2.1. Section 2.2 discusses the 

importance of impervious surface estimation, techniques used in impervious surface 

estimation including conventional remote sensing techniques. A brief overview of 

road salt contamination in Canada is presented in Section 2.3, followed by the current 

state of research on surface water contamination by chloride salts. Finally, Section 2.4 

discusses gaps found in the literature: lack of attention to surface water contamination 

by salts, and hardly any study combining remote sensing and surface water quality.  

 
2.1 Introduction 
 

Urban water systems are in a period of stress and vulnerability, and will experience 

rapid and significant changes in the coming decades. Increased impervious surfaces 

due to urban sprawl negatively impact water quality and can lead to impaired human 

health and socio-economic decline. Recent studies on the effects of impervious 

surfaces on surface water quality have concluded that the percent of impervious 

surface in an urban watershed is a good environmental indicator of potential water 

quality impacts (Arnold and Gibbons, 1996). Many scientists have identified a 

positive correlation among percentage of urban land and select water quality 

parameters (Brabec et al., 2002; Clausen et al., 2003; Roy et al., 2003; Hurd and 

Civco, 2004). Thus understanding the location and spatial distribution of impervious 

surfaces is fundamental for urban watershed planning and management. 
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Although many scientific discoveries have dramatically advanced our understanding 

of the ecosystem processes, predicting it with an acceptable degree of certainty is still 

a challenge (Lunetta and Elvidge, 1998). GIS and satellite remote sensing 

technologies are valuable tools for understanding change and planning strategies. 

Multispectral and multitemporal Landsat TM satellite images have been shown to 

provide accurate, reliable and detailed information of urban environments in terms of 

spatial coverage and revisit capability (Lillesand et al., 2004). This chapter 

summarizes the remote sensing techniques used for impervious surface estimation and 

the advantages of using remotely sensed impervious surfaces in water quality 

monitoring and assessment of surface water chloride contamination.  

 

2.2 Importance of Impervious Surface Estimation  

2.2.1  Hydrologic Impacts of Impervious Surfaces 

 

Impervious surfaces influence hydrology of a region by preventing infiltration, 

interception and evapotraspiration. An increase in imperviousness is directly related 

to increase in the volume and intensity of stormwater runoff (Booth and Reinfelt, 

1993). The strong relationship between urban runoff and imperviousness implies 

impervious surfaces are an important indicator of water quality.  

 

Also, with more impervious surfaces comes a corresponding increase in nonpoint 

source pollution generation. The nonpoint source pollutants are contaminants of 

surface and subsurface soils and waters (e.g., fertilizers, pesticides, and salts) that are 

generally the direct result of human activities. They depend on the routes of the 
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hydrological cycle to transport them into the receiving water bodies such as streams 

and lakes. Another important attribute of nonpoint source pollutants is that they are 

diffuse in nature (Todd et al., 1989; Arnold and Gibbons, 1996; Corwin and Wagenet, 

1996). 

 

Increases in imperviousness and runoff results in more impermeable surfaces and less 

area for water to drain into soil, thus leading to direct transport of elevated amounts of 

nonpoint source pollutants including pathogens, nutrients, toxic contaminants, and 

sediment into receiving waters (Snodgrass and D’Andrea, 1993; D’Andrea and 

Anderton, 1996; Boyer et al., 2002). The hydrological impacts of impervious surfaces 

are illustrated in Figure 2.1.  

 

Figure 2.1 Hydrologic impact of urbanization. Gray boxes identify direct impacts of 
impervious surfaces (Source: Hall, 1984). 
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Nonpoint source pollutants cannot be correlated to a single point location and this 

makes it difficult to monitor, estimate, map or model them. Direct point-based 

measurement methods of estimating nonpoint source pollutants are limited in that due 

to cost and logistical considerations, only a portion of the total nonpoint source load 

could be effectively monitored (Loague et al., 1998). With the launch of medium to 

high-resolution satellites and the availability of multi-spectral and multi-temporal land 

cover data sets, our understanding of the intricate relationships between land cover 

and nonpoint source pollution as well as the effects of land management on water 

quality has tremendously increased.   

 

Impervious surface maps are useful in monitoring urban sprawl which is an indication 

of increases in conversion of rural and agricultural lands for development 

construction. This phenomenon is of growing concern to citizens, those who are 

responsible for sustainable management of land resources, urban planners, as well as 

water quality monitoring agencies. Urban growth needs to be monitored regularly 

since the accumulation of irregular environmental change and the accompanying loss 

of agricultural lands, forests and wetlands can lead to pollution issues and degrade the 

overall quality of life (Bauer et al., 2002; Forsythe and Du, 2006).  

 

Satellite remote sensing has the advantage of indirectly measuring continuous real-

time environmental impacts of nonpoint source pollutants over large geographic areas 

in a cost effective and timely manner. PC-based GIS software packages are also 

needed to efficiently manipulate, store, recover, view, and display the vast volumes of 

spatial data. 
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Accurate maps of impervious surfaces can depict which areas are affected, or will 

potentially be affected by polluted storm water runoffs so that preventative measures 

can be put in place. Therefore, understanding the degree of imperviousness and 

quantifying the spatial coverage of these surfaces provides urban and watershed 

planners with a crucial component of overall management and gives them a better 

understanding of how precipitation runoff over these surfaces directly impact regional 

water quality. 

 
 
2.2.2 Remote Sensing of Impervious Surfaces  

 

For many years, interpretations from aerial photographs have been an important 

source for land use-land cover mapping. Although accurate for impervious surface 

delineation, the cost of aerial photography acquisition and interpretation is extremely 

expensive for large geographic regions. Also, this process is very time-consuming, 

requires expensive equipment, and expertise of a professional photogrammetrist 

(Stocker, 1998). Past change detection efforts have been hindered by inconsistent 

methods and outdated or unavailable data. Today, these expensive and lengthy 

procedures are being replaced with faster and more economical methods of remote 

sensing technology capable of automatically and accurately mapping urban 

environments from digital satellite imagery such as the Landsat Thematic Mapper 

(TM) or Enhanced Thematic Mapper Plus (ETM+).  

 

With the launch of medium to high-resolution satellites and the availability of multi-

spectral and multi-temporal land cover data sets, our understanding of the intricate 
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relationships between land cover and nonpoint source pollution as well as the effects 

of land management on water quality has tremendously increased.   

 

Despite recent advances in algorithms and methodologies developed for 

quantification of impervious surfaces (i.e. spectral mixture analysis, artificial neural 

networks, advanced machine learning algorithms, etc.), the conventional classification 

techniques have proven effective at estimating impervious surfaces with acceptable 

accuracy (Jensen, 2005; Campbell, 2002). These pixel-based classification techniques 

include supervised and unsupervised classifications. Figure 2.2 shows the supervised 

and unsupervised classification procedures.  

 

Figure 2.2 Flow chart showing supervised vs. unsupervised classification 
methodology. 
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work and collection of ground samples, use of aerial photographs or other 

independent sources of information.  Therefore, training areas are used to “train” the 

classification algorithm and distinguish land cover classes according to their spectral 

signature. After selection of training areas for each of the land cover classes, statistics 

are calculated for them, image pixels are assigned to a land cover class, and the 

accuracy of the classification is assessed.  Factors that can influence the training 

signature of the land cover classes include soil type variations, soil moisture levels, 

and vegetation health among other environmental factors. Since these factors are very 

difficult to satisfy for a priori ground sampling, the reverse method of unsupervised 

classification has gained notice (Mokken, 1995).  

 

In unsupervised classification each individual pixel is compared to each discrete 

cluster or natural grouping to see which one it is most likely to belong to (Lillesand et 

al., 2004). This map is then interpreted manually by the user to assign the proper 

meaning to corresponding classes that are actually present in the real world scene; this 

requires some knowledge of the scene’s features from general experience or personal 

familiarity with the area.  

 

The algorithms used in classification of multispectral satellite imagery are pixel-based 

classifiers which classify the image based on spectral information, such as clustering, 

parallelepiped, minimum distance, ISODATA, maximum likelihood and Baysian 

(Jensen, 2005; Campbell, 2002). With both supervised and unsupervised classification 

techniques, the conventional practice has been based on standard statistical methods: 

Supervised classification can be based on linear analyses, using standard 

distributional assumptions (i.e. normal distribution), Bayesian a posteriori 
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distribution, or standard maximum likelihood methods, while unsupervised 

classification can be based on various methods of cluster analysis with similar 

assumptions (Mokken, 1995).  

 

2.3 Surface Water Contamination by Road Salts 

 

2.3.1 History of Road Salt Contamination  

Road salts, mainly sodium chloride (NaCl), are any salt applied to transportation 

related surfaces mainly as anti-icing chemicals and have been used in Canada since 

the 1940’s (Perchanok et al., 1991).  Organic salts are not used in Canada or are used 

in specific circumstances, such as airport runways (Mayer et al., 1999), and are not 

considered in this study. Sodium chloride is composed of 40% sodium and 60% 

chloride and is released to the environment both naturally and through anthropogenic 

causes. Natural sources of chloride include rock and soil erosion, atmospheric 

precipitation, and groundwater discharge (Mayer, 1999).  Anthropogenic sources of 

inorganic chloride salts include direct applications of salt to urban and rural roadways, 

household waste (Sonzogni et al., 1983), and effluent from the chemical and 

petrochemical industry (Johnson and Kauss, 1991).  

 

According to Environment Canada’s estimates about 4.9 million tonnes of road salts 

were released to the environment every year during the late 90’s, accounting for over 

3.0 million tonnes of chloride, to make city driving and pedestrian walking conditions 

safe. Salting generally begins in mid November and ends in late March. The highest 

annual loadings of road salt are recorded in the provinces of Ontario and Quebec 

(Environment Canada, 2001). In the past, the general assumption has been that most 
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of the applied salt is flushed into drainage ditches through overland flow and that the 

environmental impact is minimal. We now know that chloride circulates in the 

hydrologic system and pass readily though soil, enter groundwater and eventually 

drain into surface waters.  

 

Road salts can enter the hydrologic system via three sources: release of salt from 

snow storage areas, snow disposal sites for salt-contaminated snow, and salt applied 

to roadways and pavements as a de-icing agent. However, salt applied to roadways 

represents by far the largest and most damaging source of anthropogenic salt 

contamination (Perchanok et al., 1991). The circulation of inorganic sodium chloride 

road salt through the water pathways is due mostly to its persistence and very high 

solubility in water. Because chloride ions are persistent in the hydrological cycle, all 

chloride applied to roadways as road salts or released from snow disposal sites can be 

expected to be ultimately found in surface waters (Mayer et al.,1999; Environment 

Canada, 2001). Once salts reach surface waters, there are no major mechanisms (i.e. 

biodegradation, evaporation, oxidation, etc.) to remove them from surface waters. 

 

In Canada, natural chloride concentrations in non-bedrock aquifers are generally no 

more than a few milligrams per liter, with some local or regional exceptions of higher 

natural salinity. Higher chloride levels are typically associated with road salt 

applications; for example, chloride concentrations over 18,000 mg/L were observed in 

runoff from roads and up to 82,000 mg/L in runoff from uncovered salt piles in a 

storage yard. Adjacent to storage yards, chloride concentrations have been measured 

as high as 2800 mg/L in groundwater, 4000 mg/L in ponds and wetlands, 4300 mg/L 

in watercourses, 2000-5000 mg/L in urban lakes and 150-300 mg/L in rural lakes 
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(Environment Canada, 2001). The highest concentrations are often associated with 

winter or spring thaws, although high concentrations can also be seen in the summer, 

as a result of the travel time to surface waters and the reduced water overland flows in 

the summer. 

 

2.3.2 Surface Water Contamination by Salts 

 

Throughout North America, even within the GTA alone, there are numerous studies 

of groundwater contamination (Pilon and Howard, 1987; Pollock, 1992; Howard and 

Haynes, 1993; Snodgrass and D’Andrea, 1993; Gerber and Howard, 1997; Williams 

et al., 2000; Howard and Livingstone, 2000; Howard and Maier, 2006) with only a 

few case studies in surface water contamination by road salts. This gap in the 

literature is further discussed in Section 2.4.  

 

In one of the earliest studies in Canada, Sibul et al. (1977) discovered that one third of 

groundwater samples collected in the Duffins Creek and Rouge River drainage basins, 

in the Eastern GTA, contained total dissolved solids in excess of the 500 mg/L 

drinking water quality guidelines. Later, Paine (1979) performed a chloride mass 

balance on the Don River watershed in Toronto, Ontario, and discovered that only 

nearly half of the salt applied to the watershed was being removed by surface water 

flow, with the rest infiltrating in groundwater. Frost et al (1981) estimated that 20% of 

the highway de-icing salts applied in Massachusetts re-entered surface waters through 

the groundwater system. In a more recent study by Environment Canada (2001), it has 

been estimated that 10% to 60% of the salt applied to roads infiltrates the 

groundwater.  
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A local study within the GTA, detected chloride levels as high as 14,000 mg/L in 

shallow groundwater next to a salted highway in Toronto. Also evident from this 

study was the appearance of road salt contamination even at distances up to 100m 

from major urban roads (Pilon and Howard, 1987). In another case study, Locat and 

Gelinas (1989) observed chloride concentrations of over 800 mg/L in a salt lens that 

had formed beneath a highway near Trois-Rivieres-Ouest, Quebec as a result of road 

de-icing application. Later, a survey of 23 springs in the GTA demonstrated chloride 

concentrations exceeding 1,200 mg/L as a result of road salt applications (Williams et 

al., 2000). 

 
 
A comprehensive U.S. study by Kaushal et al. (2005) documented increased chloride 

concentrations in seven streams and rivers in Maryland, New York, and New 

Hampshire. The long-term nature of their dataset is important as they analyzed 

chloride concentrations for a period of 20-40 years showing a steady increase over 

time. Their results suggested that if salinity were to increase at its present rate, many 

rural streams in the Northeast would have salt levels of above 250 mg/L, which is the 

accepted threshold for drinking water and a tolerance level at which chronic toxicity 

occurs for many freshwater species. Similarly, in Canada, this federally recognized 

threshold is set at 200 mg sodium/L and 250 mg chloride/L (Canadian Council of 

Ministers of Environment, 1998). According to estimates by Kaushal et al., surface 

waters in the Northeastern U.S. could become detrimental to human consumption as 

well as to quality of freshwater life in the next century.  

 

Another important aspect of Kaushal et al. (2005) study is their intensive focus on 

streams in the greater Baltimore area, a rapidly urbanizing region. Based on their 
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observations, the mean annual chloride concentrations in the urbanized streams 

increased in relation to the level of impervious surface coverage in the watershed. At 

above 15% impervious cover, chloride concentrations were strong enough to damage 

some plants, and, above 40%, the streams surpassed the threshold of 250 mg/L 

chloride. Not surprisingly, the data of Kaushal et al. showed strong seasonal effects, 

with the highest concentrations in winter (i.e. reaching over 4,600 mg/L). More 

surprisingly however, chloride concentrations in the rural streams did not return to 

baseline levels during summer months, even when no salt was being applied. One 

reason explained was that salt concentrations build up over many years and remain 

high in the soil and groundwater (Kaushal et al., 2005). 

 

2.4   Challenging Issues with Existing Studies 
 
 
There are some issues facing urban remote sensing studies as well as water quality 

related studies which are addressed here: 

 

(1) With urbanization and subsequent increases in imperviousness, water that would 

previously infiltrate into the soil and eventually reach the groundwater table now 

flows over concrete land and quickly reaches other receiving bodies of water 

including larger streams and lakes that directly or indirectly sustain our lives 

(D’Andrea and Anderton, 1996; Mayer et al., 1999). Review of the existing literature 

in this field showed that in recent years much research has focused on the impacts of 

road salts on groundwater systems. This study fills in the gap in the surface water 

literature that has received much less attention.  
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(2) Many urban remote sensing studies tend to focus on technical issues in data 

assembly and physical image classification rather than on the use of the mapped by-

products in the spatiotemporal analysis of urban regions. In this regard, this research 

focuses on a comprehensive understanding of the relationship between regional 

impervious surface coverage and water quality impacts by analyzing the data 

generated with proven remote sensing classification methods such as conventional 

pixel-based unsupervised classification technique.  

 

Today, there are continued research efforts focusing on improved impervious surface 

estimation using advanced algorithms and techniques (Wang et al., 2000; Flanagan 

and Civco, 2001; Wu and Murray, 2003). Although the impact that the location of 

impervious surfaces has on the water quality of the region will be analyzed as one of 

the main objectives of this study, improving classification algorithm and accuracy is 

beyond its scope; this research is using remote sensing as a tool and is aiming at 

showing the suitability and applicability of this tool to be integrated with other 

disciplines (i.e. hydrological studies, nonpoint source pollutant impact assessment, 

watershed planning, watershed management, etc.). 

 

2.5 Chapter Summary 

 
Economic development and growth in the GTA continues with each passing year and 

is characterized by the transformation of rural and agricultural lands into residential 

and commercial centers. One of the more serious consequences of this growth has 

been reduced stream water quality and loss of aquatic habitat caused by application of 

road salts on these paved surfaces.  
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GIS and satellite remote sensing technologies are valuable tools in mapping and 

determining the extent of impervious surfaces within urban watersheds. Through the 

interpretation and analysis of impervious surfaces derived from digital satellite 

imagery, the potential impact of road salts on surface waters can be indirectly 

assessed. Land use-land cover (LULC) map, including impervious surface map, is one 

of the most important end-products of image interpretation which is obtained from 

digital image classification process. The process of satellite image classification is 

described in detail in Chapter 3. The following chapter also presents the designed 

research methodology and the advantages of using simple but proven remote sensing 

techniques in preliminary water quality assessment.  
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CHAPTER 3 

 

A Satellite-based Approach for Impervious Surface Estimation towards Water 
Quality Assessment  
 

Based on the previous literature review, it has been recognized that impervious 

surfaces are a key indicator that reflects a number of environmental factors. Increased 

imperviousness and the consequent increase in chloride levels is an indicator of 

habitat loss which influences surface water quality. Therefore, setting up a simple, 

applicable and feasible approach to identify these two indicators is of high 

importance.  

 

This chapter provides a conceptual framework adopted in this study. Section 3.1 

provides a brief overview of the study area. A concrete description of the study area’s 

major watersheds is given in Section 3.2. Section 3.3 describes the required data 

sources and how they were selected. Section 3.4 presents the research methodology 

flow chart and detailed explanation of classification, mapping and data integration 

techniques. Section 3.5 is the summary of this chapter.  

 

3.1 Study Area 

The GTA in southern Ontario is Canada’s largest metropolitan area, with a population 

of over 5 million (City of Toronto, 2007). In this study, the investigation of chloride 

levels in relation to impervious surfaces has focused on six watersheds in total: five of 

which are administered by the Credit Valley Conservation (CVC) and one (Don 

River) managed by Toronto and Region Conservation Authority (TRCA). The CVC 
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watersheds are Credit River, Etobicoke Creek, Mimico Creek, West Humber River, 

and Main Humber River.  

 

These watersheds are located in a hydrologically sensitive area, bordering the Oak 

Ridges Moraine (ORM) and the Niagara Escarpment from the north and Lake Ontario 

from the south (see Figure 3.1). The Regional Municipality of Peel, the second-largest 

municipality in Ontario after Toronto, occupies the majority of the study area. With 

an area of approximately 1,242 km², it encompasses the City of Mississauga, the City 

of Brampton, and the Town of Caledon. The study area watersheds include a diversity 

of land cover classes and reflect a range of land use, geology and soils settings. High 

density urban development characterizes the southern half, while several rural land 

uses, including agricultural fields, wetlands and forests are dispersed across the upper 

(north) portion of the region. It is estimated that over 80% of the population lives in 

the lower (south) half of this region. In 2001 the population of the Peel Region was 

988,948. The population increased at a rate of 17.2% between 2001 and 2006 (1.16 

million) with much growth occurring in the cities of Mississauga and Brampton 

(Region of Peel, 2007).  

 

Watersheds selected for this research are unique in that some fall entirely in urbanized 

landscapes whereas the majority of other watersheds are located in rural lands. 

Therefore, the effects of varying perviousness on how nonpoint source pollutants will 

be transported can be clearly analyzed (Clausen et al., 2003; Coulter et al., 2004). The 

diversity of land cover types, combined with the urbanization of the GTA, makes it a 

near ideal area to evaluate the potential of Landsat TM data for monitoring land 

change dynamics with respect to water quality. 

http://en.wikipedia.org/wiki/List_of_Ontario_municipalities
http://en.wikipedia.org/wiki/Toronto
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Although the topography of the region is not remarkably hilly, elevation differences 

ranging from 75m above-sea-level at the Lake Ontario shore to 270m above mean sea 

level (MSL) in the region’s north end can be found. The average elevation at 

Toronto’s Lester B. Pearson International Airport is 170m above MSL (Environment 

Canada, 2004).  

 

      Figure 3.1 Selected watersheds in the study area. 
 

The local climate in the study area is highly influenced by the Oak Ridges Moraine 

from the north and Lake Ontario in the south. An examination of the seasonal 

distribution of rain storm events in the GTA has shown that the highest amounts of 

seasonal rain precipitation takes place between the months of May and November 

(Figure 3.2). From Figure 3.2 it is evident that the maximum number of monthly rain 

events generally does not exceed three, with September scoring the highest number of 

rain events. Observations from the Ontario Chapter of the Soil and Water 
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Conservation Society also indicate that one or two rain events each year are 

responsible for generating over 90 % of the annual pollutant load to Lake Ontario.  

Seaonal Distribution of Rain Events

0

1

2

3

4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

N
um

be
r 

of
 E

ve
nt

s

 

Figure 3.2 Seasonal distribution of rain events in the GTA, Ontario, Canada 
(Source: Soil and Water Conservation Society, 2007). 

 
 
 
3.2 Physical Characteristics of Selected Watersheds  

At a basic level, five variables control stream hydrology and function: climate, 

geology, soils, land use, and vegetation (Brabec et al., 2002). The shape of the land, 

determined by geology and weather, greatly influences vegetation and drainage 

patterns. Soil types and structures are also dependent on the underlying geologic 

formations. Soil texture determines moisture holding capacity and that coupled with 

local topography determine the vulnerability of land to erosion. The following 

sections briefly describe these physical characteristics within the study area 

watersheds. 

 
 
 
3.2.1 Humber River Watershed 
 
The Humber River Watershed occupies the northeast corner of the Peel Region 

(Figure 3.3). Approximately 27% of the watershed consists of urban land use, with 

40% in rural use and 32% under natural covers (i.e. forest, wetlands) (TRCA, 2007).  



 26

 
Figure 3.3 Humber River watershed. 

 

The major physiographic formations in the Humber watershed include Niagara 

Escarpment, Oak Ridges Moraine, South Slope, and Peel Plain. The bedrock in most 

of the Humber watershed is made up of shale of the Georgian Bay Formation Shale. 

Limestone bedrock, which can store large amounts of ground water, is only found in 

the upper reaches of the Main Humber subwatershed above the Niagara Escarpment. 

In the Oak Ridges Moraine, soils are mostly characterized by sand and gravel, 

whereas silty clay soils are found in the Peel Plain (Humber River Watershed Plan, 

2007).  

 

 

Of the four subwatersheds across the Humber River watershed, the Main Humber and 

West Humber subwatersheds are the only two that fall within the boundary of the Peel 

Region. Most people live in the highly developed areas of the West Humber in the 

City of Brampton and in northern parts of the City of Mississauga.  
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The head waters of the West Humber are located in the South Slope, with the rest of 

the subwatershed lying in the Peel Plain. The lower reaches of streams in the West 

Humber with its clay soils, lower groundwater discharges and urbanized landscape 

exhibit the poorest overall water quality in the Humber river watershed. The upper 

half of the Main Humber subwatershed within the Town of Caledon remains largely 

agricultural, with significant natural covers. 

 

3.2.2 Credit River Watershed 

The majority of the Peel Region is occupied by the Credit River watershed. This 

watershed is naturally divided into three distinct zones: the upper, middle (also known 

as the Niagara Escarpment) and lower watersheds (see Figure 3.4). 

 

Figure 3.4 Credit River watershed. 
 
 

 



 28

The upper watershed lies above the Niagara Escarpment and has soils that are more 

coarse-grained and permeable than elsewhere in the watershed. Because of the 

elevation and the soils, there is significant infiltration of water into the ground. With 

vegetation cover types such as forests, wetlands and open space areas, Caledon West 

contains the majority of natural areas in the upper watershed. These natural covers 

play a vital role in promoting evapotranspiration and groundwater recharge in the 

lower reaches of the Credit River (CVC, 2005). Unmanaged open space areas that are 

available in the upper watershed zone can be targeted for future restoration and 

rehabilitation activities.  

 

Portions of the Oak Ridges Moraine and Niagara Escarpment are located in the 

middle zone of the Credit River watershed. The Oak Ridges Moraine is characterized 

by hummocky hills of fine grained sand. Thin soils, steep slope and large areas of 

rock outcrops characterize the Niagara Escarpment. This topography leads to 

relatively high runoff volumes and velocities; however, the high percentage of forest 

cover tends to act against this influence by slowing runoff and increasing infiltration 

of water into the ground (CVC, 2005).  

 

The lower watershed is comprised of two primary formations, Peel Plain and Iroquois 

Plain. In comparison to the upper watershed, both of these formations are 

characterized by low infiltration and relatively flat topography, leading to longer 

runoff times. The lower watershed includes portions of the City of Brampton and the 

City of Mississauga. The lower watershed is predominantly made up of urbanized 

areas with a high level of imperviousness, resulting in higher peak flows. 
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3.2.3 Etobicoke and Mimico Creek Watersheds 
 
 
The Etobicoke and Mimico Creek watersheds are situated in the southern half of the 

Peel Region and include portions of the City of Toronto, City of Mississauga, City of 

Brampton and the Town of Caledon within their boundaries (Figure 3.5). Toronto’s 

Lester B. Pearson International Airport is the largest single land use lies in the centre 

of the two watersheds. 

 

The Etobicoke and Mimico Creek watersheds are two of the most highly urbanized 

watersheds in Ontario. A report by Toronto and Region Conservation Authority 

(2006) revealed that impervious areas have increased from 10% in 1947 to 66% in 

2006.  While Environment Canada’s target for riparian cover within a watershed is 

75%, currently less than 20% of Etobicoke Creek and only 16% of Mimico Creek is 

forest cover (TRCA, 2006). 

 
 

Figure 3.5 Etobicoke and Mimico Creek watersheds. 
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Both subwatersheds are similar in surface geology, geomorphology and climatic 

conditions. Typically the difference between the southern and northern regions of the 

watersheds is a slightly longer growing season, more precipitation, and warmer 

summers in the southern areas. The presence of Lake Ontario and the greater extent of 

urbanization have moderated the climate in the lower portions of the watersheds.  

 

Similar to the Credit River watershed, the major landforms within the Etobicoke and 

Mimico Creek watersheds include the south slope, Peel Plain and the Iroquois Plain. 

These plains are characterized by flat to gently sloping topography. Fine clay soils are 

found on the Peel Plain. As a result, the infiltration is low and groundwater supply is 

limited as more precipitation runs on the surface, or is lost through evaporation.  The 

South Slope and Iroquois Plain are mainly characterized by sands, gravels, and clay 

soils. The large deposits of sand and gravel associated with ancient Lake Iroquois are 

highly permeable and may contribute baseflow to steams flowing through the area 

(TRCA, 2006). However, impermeable surfaces such as asphalt and concrete have 

hindered infiltration and reduced baseflow discharges.  

 

3.2.4 Don River Watershed 

 

The Don River is formed from two rivers (East Don and West Don) that meet 7km 

north of Lake Ontario and similar to other major streams flows southward into Lake 

Ontario. Figure 3.6 shows the boundaries of the Don River watershed. This river 

drains a large part of the GTA covering two regions, Toronto and York, as well as 

eight local municipalities within these regions: Toronto, East York, North York, 

York, Scarborough, Markham, Vaughan, and Richmond Hill.  
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The eastern most part of the East Don River originates from the Oak Ridges Moraine, 

flowing south-east through ravine forests in municipality of Richmond Hill. The 

headwaters area of the East Don in the City of Vaughan are still undeveloped, 

however, the greater part of the Don River watershed is paved over for residential and 

commercial use. Flowing through the heart of City of Toronto, the Don River is one 

of Canada's most polluted urban rivers. Its 360 km2 of land is over 80% urbanized and 

houses over 800,000 people (TRCA, 2006).  

 

 

Figure 3.6 Don River watershed. 
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3.3       Datasets Used in the Study 

 

3.3.1 Satellite Image Data  

The selection of sensible and practical data sources is important to ensure the proper 

execution of the study objectives. The following sections briefly describe different 

data sources available for impervious surface estimation along with their advantages 

and disadvantages.  

 

Comparison of Different Remote Sensing Data Sources 

Early impervious surface estimation using remotely sensed data were mainly 

conducted through the interpretation of aerial photographs. This procedure is very 

time consuming and costly when applied over large areas. In addition, aerial 

photographs were collected on different dates and at varying scales, therefore the 

adjustment, correction and digitization of the images were generally required.  Later, 

digital satellite imagery began to provide a synoptic view of the Earth’s surface by 

producing fast and repeatable digital maps. With the advent of new remote sensing 

techniques, the amount of labor necessary for impervious surface estimation was 

significantly reduced; therefore results comparable to aerial photo interpretation could 

be obtained in considerably less time and with significant reduction in costs (Donnay 

et al., 2001).   

 

The year of 1972 marks the launch of the world’s first Earth Resources Technology 

Satellite (ERTS-1), later called Landsat-1, by NASA. Since then, the spatial 

resolution of satellites have continuously improved from coarse spatial resolution 

Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper (TM), to medium 
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resolution Enhanced Thematic Mapper Plus (ETM+) series, SPOT High Resolution 

Visible (HRV) series, and to high-resolution IKONOS and QuickBird commercial 

satellites.  

 

Landsat satellites have been operational for environmental and natural resources 

mapping since the early 1980s. A big advantage of Landsat images is that satellite 

sensors have spectral bands that match the spectral reflectance of certain land covers 

(Lillesand et al., 2004). Whereas colour and colour-infrared aerial photography is 

limited to three spectral bands, and black and white photographs have only one band 

which provides even less information. The Landsat TM sensor records the visible 

(band 1, 2, 3), near-IR (band 4 and 5), mid-IR (band 7) and thermal (band 6) part of 

the electromagnetic spectrum in seven bands of data as opposed to the four bands of 

data collected from the Landsat MSS sensor.  

 

In addition to having three more bands, the TM data can be viewed at a much higher 

resolution compared with MSS. Bands 1-5 and 7 each have a spectral resolution of 

30m while the MSS is only offered in 79m and 82m resolutions. Band 6 (thermal IR) 

has a maximum spatial resolution of 120m. Of all satellites of the Landsat program, 

today, only Landsat-5 (launched in March 1, 1984) and Landsat-7 (launched in April 

15, 1999) are still functioning, both of which operate in a sun-synchronous orbit that 

visits the same location on the Earth every 16 days. Landsat 7 ETM+ data are 

essentially the same as Landsat 5 TM data, except it has a new panchromatic band at 

15 m and a thermal IR band (band 6) with an increased resolution of 60m from 

previous 120m (Satellite Imaging Corporation, 2007).  
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The French Earth Observation System SPOT is another provider of medium-to-high 

resolution satellite imagery. The first SPOT imaging satellite was launched in early 

1986 and there have been five SPOT satellites launched, providing image data of the 

earth’s surface over the visible (green and red) to near infrared portion of the 

electromagnetic spectrum (CRISP, 2007). SPOT has several advantages over Landsat:  

it has higher spatial resolution, a valuable aid in classification since smaller features 

can be better identified by shape characteristics. SPOT also has off-nadir capabilities 

and has the ability to produce stero pair for DEM generation and is able to revisit the 

same area every 5 days. However, SPOT scene sizes are smaller than Landsat (60km 

vs. 185 km). Landsat has more spectral bands and produces larger images. In fact, 

Landsat 7 ETM + provides nine times the coverage of a 10m panchromatic SPOT 

scene.  

 

There are, however, some limitations in using Landsat TM imagery: The image 

resolution is low when compared to large scale aerial photography. Users of aerial 

photography are accustomed to very high resolution (VHR) images with typical 

ground sample sizes of 15-20cm, which satellite imagery cannot match at present. 

However, availability and access to recent aerial photographs is often limited and new 

aerial surveys are time consuming, costly and difficult to arrange. Although Landsat 

TM’s ability to provide fine detailed maps is limited, its resolution is fine enough to 

differentiate land-cover properties with differing levels of imperviousness. 

 

In September 1999, the world’s first VHR commercial imaging satellite, IKONOS-2, 

was launched. With a swath width of 11km at nadir, IKONOS sensor records 4 

channels of multispectral data at 4m resolution and one panchromatic channel with 
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1m resolution. Another new generation of high-resolution commercial imaging 

satellite, QuickBird, was later launched in October 2001. QuickBird offers 0.6m 

resolution panchromatic and 2.4m multispectral imagery. At 0.6m resolution, 

impervious surfaces such as houses, buildings, roads, bridges, etc. become clearly 

visible. This is currently the highest spatial and radiometric (11 bit) available in a 

commercial imaging satellite (GeoCommunity, 2007). While spatial resolution of a 

sensor refers to the size of the smallest possible feature that can be detected, the 

radiometric resolution describes its ability to discriminate very slight differences in 

energy (see Table 3.1). The drawback in using VHR satellite imagery such as 

IKONOS and Quickbird is no longer the spatial resolution but is the cost, especially 

for mapping large regional areas.  

 

Table 3.1 Characteristics of satellite image. 
Sensor 

 
 

Spectral 
resolution 

(μm) 
 

Spatial 
resolution 

(m) 
 

Temporal 
resolution 
(day) 

Radiometric 
resolution  

(bit) 

Coverage/ 
swath  
(km2) 

Landsat (1-
4) MSS 

1) 0.45-0.52 
2) 0.52-0.60 
3) 0.63-0.69 
4) 0.76-0.90 

79 16 6 (64 gray 
levels) 

185 x 185 

Landsat-4/5 
TM 

1) 0.45-0.52 
2) 0.52-0.60 
3) 0.63-0.69 
4) 0.76-0.90 
5) 1.55-1.75 
6) 10.4-12.5 
7) 2.08-2.35 
Pan) 0.52-0.90 

30 
 
 
 
 

120(band 6) 

16 8 (256 gray 
levels) 

185 x 185 

Landsat-7 
ETM+ 

1) 0.45-0.52 
2) 0.52-0.60 
3) 0.63-0.69 
4) 0.76-0.90 
5) 1.55-1.75 
6) 10.4-12.5 
7) 2.08-2.35 
Pan) 0.52-0.90 

30/15 (pan) 
 
 

60 
 

120(band 6) 

16 8 (256 gray 
levels) 

185 x 185 

SPOT 1-4 1) 0.50-0.59 20/10 (pan) 26 (nadir) 8 (256 gray) 60 x 60 
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2) 0.61-0.68 
3) 0.79-0.89 
4) 1.58-1.73 
(SPOT 4) 

1-3 (off 
nadir) 

levels) 

SPOT 5 1) 0.50-0.59 
2) 0.61-0.68 
3) 0.78-0.89 
4) 1.58-1.75 
pan) 0.48-0.71 

10/5 (pan) 5 8 (256 gray 
levels) 

60 x 60 

IKONOS 1) 0.45-0.52 
2) 0.52-0.60 
3) 0.63-0.69 
4) 0.76-0.90 
Pan) 0.45-0.90 

4/1 (pan) 3 11 (2048 gray 
levels) 

11 x 11 

QuickBird 1) 0.45-0.52 
2) 0.52-0.60 
3) 0.63-0.69 
4) 0.76-0.90 
Pan) 0.45-0.90 

2.44/0.61 
(pan) 

           3 8 & 16 
(multispectral

) 
 

11 bit (pan) 
 

16 x 16 

 
 
 
 
Table 3.2 Summary of the approximate cost per 120km2 area using different remote 
sensing data sources.  

Data Source Product Resolution Product Type Unit Cost 
US$/120 km2 

Aerial Photo 
(non-rectified) 

9-inch 1m Colour 4-5,000 

Aerial Photo 
(orthorectified) 

9-inch 1m Colour 10-15,000 

Landsat-5 TM 
 

Georeferenced 30m MS 1.6 

Landsat-7 
ETM+ 

Georeferenced 30/15 (pan) MS & 
Pan 

2.5 

SPOT-5 Georeferenced 10/5 (pan) MS & 
Pan 

0.70 

Reference 1m MS & 
Pan 

5,300 IKONOS 
 
 Precision 

Orthorectified 
1m MS & 

Pan 
10,000 

Standard 0.61m MS &  
Pan 

3,600 QuickBird 
 
 
 

Orthorectified 0.61m MS & 
Pan 

7,800 
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Aside from data quality and availability, the cost of data acquisition plays a major part 

in urban change detection applications. Remote sensing data acquisition costs vary 

dramatically on a per unit basis. Table 3.2 presents a cost comparison of different 

remotely sensed data sources. Generally speaking, the older the data, the lower the per 

unit cost of acquisition will be (Lunetta, 1999). The cost estimates are for simple 

general comparisons.  

 

Although the exact costs for remote sensing data acquisitions have fluctuated over the 

past decades, some relative cost relationships have remained consistent. Generally, 

higher resolution more detailed images cost more to purchase per unit area of 

coverage. Aerial photographs and ground survey involve more manpower, 

consequently costing more than digital satellite data.  

 

Today, Landsat-5 TM, Landsat-7 ETM+ and SPOT-5 satellites are the major 

providers of remote sensing imagery used in urban change detection and impervious 

surface mapping. Taking into account data spatial resolution, availability and cost 

factors, the medium resolution satellite data are the most suitable for regional scale 

urban land cover due to their low cost, long-term data series and timely update 

availability. Therefore, four cloud-free Landsat-5 TM images covering the GTA were 

selected and used in this study (see Table 3.3). 

 
Table 3.3 Selected Landsat TM images used in this study. 
Sensor Date Georeference Resolution Bands 
Landsat-5 TM August 5, 1990 UTM, zone 18, WGS84 30m 1-5, 7 
Landsat-5 TM July 19, 1995 UTM, zone 18, WGS84 30m 1-5, 7 
Landsat-5 TM August 20, 2000 UTM, zone 18, WGS84 30m 1-5, 7 
Landsat-5 TM September 3, 2005 UTM, zone 18, WGS84 30m 1-5, 7 
 



 38

These Landsat images were acquired in late summer and early fall, when the land is 

fully covered by vegetation, as this is the preferred season for land use and land cover 

analysis. In order to avoid radiometric differences, the attempt was made to select the 

acquisition dates as close to each other as possible. The goal is to distinguish the 

change in two major land cover features, namely “green” and “impervious”, and, 

thereafter, to derive a correlation between “impervious” areas and chloride levels as 

an indicator of water quality degradation by means of integration in a GIS 

environment. 

 

3.3.2 Surface Water Quality Data  

 
Surface water quality data in Ontario are collected by individual conservation 

authorities. These data however are the property of Ontario Ministry of Environment 

that is responsible for testing, analyzing and monitoring data. Water samples and 

readings of water quality at the monitoring stations are taken using portable, hand-

held equipment. At each Provincial Water Quality Monitoring Network (PWQMN) 

station a standard set of water quality indicators are collected once a month on the 

major tributaries of watersheds. These indicators include chloride, nutrients, 

suspended solids, trace metals and other general chemistry parameters (Ontario 

Ministry of Environment, 2007). Basically, data from near the mouth of each 

watershed are used to provide estimates of the concentration for the entire watershed. 

This information provides the core data for surface water quality assessments, 

determines the location and causes of water quality degradation, and measures the 

effectiveness of water management programs (TRCA, 1998). 
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Figure 3.7 shows the location of water quality monitoring stations within the Peel and 

Toronto Region while Table 3.4 lists their site specific attributes. The amount of data 

is varied, ranging from many stations with monthly sampling interval to some 

watersheds with only intermittent samples. In each watershed only a hand full of 

WQMS (Water Quality Monitoring Stations) contained continuous historic data. 

These particular stations (Figure 3.7) were chosen because they have long periods of 

continuous records required for this study.  

 

 

Figure 3.7 Water quality monitoring stations in the GTA. 
 

 
Table 3.4 Attributes of selected water quality monitoring stations within the GTA 
watersheds. 

Station No Station Name Address Authority Longitude Latitude 
6006800102 Sheridan Creek Rattray Marsh, Meadow 

Wood Rd, Clarkson 
Credit -79.61543248170 43.51593351370 

6007600602 Credit River Hwy 10, dwnstrm 
Orangeville, 1st crossing 

Credit -80.06325348210 43.90965438900 

6007601002 Credit River Heritage Rd and King St. Credit -79.93099773200 43.72381351390 
6007601502 West Credit Winston Churchill Blvd, Credit -80.03480098210 43.78373676390 
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River dwnstrm Erin 
6007601602 Fletchers 

Creek 
Steeles Ave W, 
Brampton 

Credit -79.74145535680 43.65858538880 

6007601702 Credit River Old Derry Rd, W of Hwy 
10 

Credit -79.73326498180 43.62214888880 

6008501402 Don River Pottery Rd., Toronto Toronto -79.36213573150 43.68847163880 
6008500102 Don River Lakeshore Rd., DVP Toronto -79.34726573150 43.65075276380 
6008000202 Etobicoke 

Creek West 
Derry Rd, E of Dixie Rd, 
Mississauga 

Toronto -79.67343810680 43.67603001380 

6008301802 Humber River Old Church Rd, dwnstrm 
Albion Hills CA 

Toronto -79.80458748190 43.92582576400 

6008200202 Mimico Creek Eglinton Ave W Toronto -79.56929498170 43.67286488880 
6008300202 
6008300102 

Humber West 
Humber River 

Claireville dam outlet 
Lakehore Blvd, South 
Kingsway 

Toronto 
Toronto 

-79.62831823170 
-79.47329635660 

43.73686613890 
43.63304563880 
 

 

 

3.4        Research Methodology 

The objective of this part of the study is to distinguish changes of two land cover 

types, namely “impervious” and “green”, and, thereafter, to assess the quality of water 

at select monitoring stations by means of integration with GIS techniques. The 

methodology scheme adopted in this study is outlined in the following sections. 

 

3.4.1  Impervious Surface Estimation Method 

The pixel-based unsupervised classification method was employed to detect urban 

land cover changes during the last 15 years (1990-2005) using 30m resolution 

multitemporal Landsat-5 TM data. Unsupervised classification is a method which 

examines a large number of unknown pixels by dividing them into a number of 

classes based on spectral similarities. The basic principle behind this technique is that 

values within a given land cover type should have similar gray levels, whereas data in 

different classes should have comparatively different gray levels (Lillesand and 

Kiefer, 2000). 
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In the PC-based environment of PCI Geomatica V10.0.3, all four multitemporal 

Landsat-5 TM images were classified using unsupervised approach known as 

ISODATA (Iterative Self-Organizing Data Analysis Technique) clustering to generate 

impervious surface estimates. The ISODAT classifier utilizes the minimum distance 

method to identify similar spectral clusters according to the number of clusters 

specified (Jensen, 2005). The ISODATA technique has proven to be one of the most 

efficient and accurate approach to identifying spectral clusters of an image (Qiu et al., 

2003). 

 

Parameter Setting 

To achieve more accurate results, the parameter setting was changed to: 25 classes, 25 

maximum iterations, and 0.95 convergence threshold. The threshold specifies that as 

soon as 95% or more of the pixels stay in the same cluster between iterations, the 

utility should stop processing. This threshold prevents the ISODATA utility from 

running indefinitely. The classification scheme of 25 classes is based on the study’s 

interest which focuses on the identification of built-up (urban) and non-built land 

features. Following the creation of 25 spectral clusters, each class was labeled into 

general categories of urban, agriculture, forest, water, wetland, and barren and then 

aggregated into two major classes labeled as “green” and “impervious” for long-term 

impervious surface change analysis. Later, the classification accuracy is evaluated 

through visual comparison of corresponding classified maps with reference data. The 

percentage of imperviousness for each map is then calculated based on statistics 

provided in the classification report generated by the classification process.  
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Accuracy Assessment 

The purpose of classification accuracy assessment is to determine the agreement 

between the selected reference data and the classified data. The “stratified random” 

function of PCI Geomatica is used to create sample points for all classified images. 

For this purpose 50 random pixels in each watershed are selected and their agreement 

with reference data is analyzed. The evaluation results are presented in two reports: 

the classification error matrix (also called confusion matrix) and the accuracy report 

(see Chapter 4). The error matrix simply compares the reference points to the 

classified points in an n x n matrix, where n is the number of classes. The accuracy 

report calculates statistics of the percentages of accuracy, based upon the results of the 

error matrix. 

The Kappa statistics measures the difference between the actual agreement between 

reference data and an automated classifier as well as the change agreement between 

the reference data and a random classifier.  Thus, it indicates the extent to which the 

percentage correct values of an error matrix are due to the “true” agreement versus the 

“change” agreement. For instance, a Kappa value of 0.80 implies that the 

classification is 80% better than results based on chance (Lillesand et al., 2004). 

 

Examination of Object-Oriented Classification  

The classical unsupervised classification method was chosen in this study because it is 

a simple automated method that produces extremely fast results and requires little in 

the nature of operational parameters. This procedure can provide a remarkably rapid 

means of producing quality land cover data on a continuing basis that also meets map 

accuracy standards.  
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However, throughout the course of the study, a new and promising classification 

approach called “object-oriented” was also tested on a number of images using the 

trial version of the eCognition software. Object-oriented image analysis is divided 

into three general steps: segmentation, creation of general classes, and classification 

rules. Segmentation is the first and most important phase of the object-oriented 

classification. The aim of segmentation is to create meaningful image objects. 

Through a “trial and error” process, segmentation parameters were defined and image 

segments were calculated. The scale parameter is an abstract value to determine the 

maximum possible change of heterogeneity cause by fusing several objects. Colour is 

the pixel value, while shape includes compactness and smoothness (the two geometric 

features that can be used as “evidence”). Smoothness describes the similarity between 

the image object borders, whereas compactness explains the “closeness” of pixels 

clustered in an object (Oruc et al., 2004; Qian et al., 2007).  

Originally, the scale parameter was set to 300 and three big segments were created. 

The scale parameter was then reduced to 40 for each of these big segments in order to 

separate them into smaller more precise segments.  Shape factor was set to 0.1, colour 

to 0.9, and compactness and smoothness to 0.5. After defining these parameters, 

eCognition produced a new image with the new groupings of pixels. The next step 

included creating and defining classes. Six classes were created and given different 

colour schemes to represent various land covers. In order to define the six classes, 

training sites of known areas from the image could be selected.  After the training 

sites were selected, the image could be classified by the classes defined using the 

standard nearest neighbor classifier.  

 



 44

3.4.2  Chloride Concentration Mapping 

 
The mean and median total chloride concentrations of samples collected from May to 

October (dry season) as well as November to April (wet season) at monitoring 

stations in the Peel and Toronto Region watersheds are compiled for years 1990, 

1995, 2000 and 2005. The chloride values are added as layers in the ArcGIS V9.2 

environment. The chloride layers are georeferenced using World Geodetic System 

1984 (WGS84) projection so they can later be overlaid on top of impervious surface 

maps for further investigation of the correlation between the two variables. Different 

colour schemes are applied to years 1990 (pink), 1995 (yellow), 2000 (green) and 

2005 (red) to differentiate between separate dates. The “graduated symbols” are 

chosen to show a more visually enhanced map of chloride quantities in watersheds. 

 

3.4.3 Integration of Remote Sensed Impervious Surfaces and Chloride Data 

 
The interrelationship between impervious surface estimates and water quality 

degradation is widely recognized and has been the focus of many studies (Arnold and 

Gibbons, 1996; Bowen and Hinton, 1998; Boyd, 1999; Mayer et al., 1999; Howard 

and Livingstone, 2000; Clausen et al., 2003; Roy et al., 2003; Groffman et al., 2004; 

Shuster et al., 2005). However, hardly any study looked at the integration of remotely 

sensed data with chloride concentrations in assessing regional water quality as it 

relates to chloride contamination. Overlay of impervious surface estimates with water 

quality indicator data (i.e. chloride levels) can provide a simple, quick and 

inexpensive overview of areas more prone to water quality degradation in a regional 

level over time. The data overlay puts variables in context by giving the audience a 

quantitative measure that is also enhanced visually.  
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The integration of the impervious surface estimates with maps of chloride 

concentrations in a GIS environment is the final step in the methodology and is 

performed in the environment of ArcMap V9.2. The flow chart of proposed 

methodology used in this study is shown in Figure 3.8.  

 

 

 

Figure 3.8 Overall research methodology. 
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3.5 Chapter Summary 

 

Based on the literature review and following the objectives of the study, an integrated 

remote sensing and GIS solution will be presented in the following chapter in order to 

obtain reliable and accurate impervious surface estimates. The impervious surfaces 

and their changes over time extracted from Landsat-5 TM images are then combined 

with chloride concentrations in a GIS environment for preliminary assessment of 

current and future surface water contamination due to increased imperviousness. The 

experimental results obtained using the designed methodology will be presented and 

discussed in Chapter 4.  
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CHAPTER 4  

CHLORIDE AND IMPERVIOUS SURFACE TREND ANALYSIS: RESULTS 

AND DISCUSSION 

The designed study framework is implemented in the following six major watersheds: 

Credit River, Main Humber, West Humber, Etobicoke Creek, Mimico Creek, and Don 

River. The corresponding results obtained from the analysis of these watersheds are 

presented in this chapter. Section 4.1 introduces the subset of the area of interest, 

illustrates the layout of the classified impervious surface maps and depicts the 

impervious surface change detection over a 15-year period, respectively. Accuracy 

assessment of classification is given in Section 4.2. The results of chloride 

concentration maps including spatial and temporal variations in addition to the role of 

weather conditions in chloride levels are presented in Sections 4.3. The results by 

integrating impervious surface maps with chloride maps and the corresponding 

statistical analyses are illustrated in Sections 4.4 and 4.5. A summary of this chapter is 

included in Section 4.6.  

 

4.1 Impervious Surface Maps 

4.1.1 Introduction 

The Landsat-5 TM images, acquired in 1990, 1995, 2000, and 2005, of the study area 

watersheds in true-colour (band 3, 2, 1) are shown in Figure 4.1. From these images, 

the urban sprawl, particularly in the cities of Mississauga and Brampton, for each 5-

year time interval can visually be identified.  
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Figure 4.1 Landsat-5 TM images covering the entire study area: (A) 1990, (B) 1995, (C) 

2000, and (D) 2005.  
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4.1.2 Impervious Surface Classification Results 

 
As mentioned in Chapter 3, Object-oriented classification, a new and promising 

classification approach, was tested in this research. At the time of this study only the 

trial version of eCognition software was available for the object-oriented 

classification test. Therefore, final accuracy assessment could not be performed.  

 

Despite this limitation, according to the preliminary results, proper segmentation of 

image objects on medium resolution imagery (i.e. Landsat TM) proved to be very 

difficult and rather inaccurate. Therefore, the utilization of object-oriented 

classification technique on medium resolution Landsat TM imagery resulted in 

overestimation of impervious surfaces compared to conventional pixel-based 

unsupervised classification technique.  

 

The preliminary results indicated that the object-oriented approach appears to work 

best on high-resolution imagery (i.e. QuickBird, IKONOS) where image objects can 

be easily recognized and segmented. For this reason, further application of this 

technique in impervious surface estimation using Landsat imagery was disregarded.  

 

Therefore, the ISODATA (Iterative Self-Organizing Data Analysis Technique) 

classifier, an unsupervised classification approach available with the commercial PCI 

Geomatica Version 10.0.3 software package, is used for classification of impervious 

surfaces. According to reference data (61cm digital orthophotos) and visual 

interpretation of spectral properties of true-colour images, 25 classified spectral 

clusters for each image are assigned to appropriate land cover classes, such as 

agricultural lands, golf courses, residential areas, industrial zones, road networks, 
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wetlands, and alike. These classes are then grouped into two composite classes 

referred to as impervious and pervious for long-term urban change analysis. 

 
Figures 4.2 through 4.7 display the classified impervious surface maps of the six 

study area watersheds between 1990 and 2005 with a 5-year time interval, 

respectively. The gray area represents impervious surfaces while yellow represents 

pervious areas including vegetation, soil, agricultural lands, open space, etc. The 

classified impervious surface maps reflect the overall urban-related land uses within 

the study area which has markedly changed during the 15-year period (see Figure 

4.8).  
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Figure 4.2 Impervious surface map of Credit River watershed. 
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Figure 4.3 Impervious surface map of Etobicoke Creek watershed. 
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Figure 4.4 Impervious map of Main Humber watershed. 
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Figure 4.5 Impervious surface map of Mimico Creek watershed. 
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Figure 4.6 Impervious surface map of West Humber watershed. 
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Figure 4.7 Impervious surface map of Don River watershed.  
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Figure 4.8 Impervious surface map of the entire study area watersheds.  
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For each watershed, the percentage of impervious surfaces in 1990 is estimated and is 

compared to what was measured in the area 15 years later (5 year interval). The 

percentage of impervious surface growth in each watershed over time is listed in 

Table 4.1, while Figure 4.9 illustrates this growth visually in a graph. Through 

unsupervised classification, the substantial growth of impervious surfaces within the 

study area is even further distinguishable.  

 

 
Table 4.1 Overall impervious surfaces in each watershed between 1990 and 2005. 

 
Watersheds 1990 

(%) 
1995 
(%)        

2000 
(%) 

2005 
(%) 

Growth between 
1990 and 2005 (%) 

West Humber 12.06  17.86  19.47  23.95 11.89 
Credit River 17.18  21.94  23.96  27.61 10.43 
Main Humber 26.22  27.76  33.21  36.59  10.37 
Etobicoke Creek 40.32  48.52  52.67  56.95  16.36 
Mimico Creek 66.44  70.77  76.36 80.95  14.51 
Don River 69.56  73.46  77.76 83.57  14.01 
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Figure 4.9 Overall impervious surface changes between 1990 and 2005.  
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4.1.3   Impervious Surface Growth Analysis 

The results from Table 4.1 and Figure 4.9 show steady growth rates throughout the 

different periods from 1990 to 2005. In West Humber watershed, the highest rate of 

urban growth occurred between 1990 and 1995, with a nearly 6% increase in 

impervious surfaces. Most development took place in the lower half in the watershed. 

During this period, similar growth rates were seen in Credit River, Mimico and Don 

River watersheds. The Etobicoke Creek watershed, however, faced the highest 

amount of impervious surface growth of over 8% during this initial 5-year period, 

while the lowest increase, 1.5%, occurred in Main Humber watershed. During the 

second 5-year period, between 1995 and 2000, Main Humber and Mimico Creek 

watersheds had the highest rate of impervious surfaces while the speed of new urban 

development slowed down in all the other watersheds. Different results were seen 

during the last 5-year period. Between 2000 and 2005, the highest impervious surface 

growth occurred in Don River watershed followed by a 4.50% increase in Mimico 

Creek watershed. 

 
Overall, the results demonstrated an average of 12.92% increase in impervious 

surface coverage during a 15-year period in the entire study area. The highest overall 

growth occurs in the Etobicoke Creek Watershed. This increase, though small in 

number, is statistically a significant amount of developed land in an already densely 

populated area. The fastest urbanization areas are northward from the City of 

Brampton, west of the City of Mississauga as well as the Lower Zone of the Credit 

River watershed.  The visual inspection of the region reveals that the entire lower half 

of the study area watersheds consists of impervious surfaces by 2005.  
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4.2 Accuracy Assessment of Classification 

For the 15-year land cover change analysis, the accuracy of the classified results was 

evaluated in terms of Landsat TM images. The classification accuracy of each 

watershed was evaluated using a stratified random sampling procedure where 50 

samples were randomly selected and tested in each watershed for accuracy 

assessment. The results are presented in Table 4.2. The tables below report the 

producer’s accuracy, the user’s accuracy as well as the Kappa statistics for each 

watershed.  

 

The producer’s accuracy indicates how well training set pixels of the given cover type 

are classified. The user’s accuracy is a measure of commission (inclusion) error and 

indicates the probability that a pixel classified into a given category actually 

represents that category on the ground. The Kappa Coefficient of Agreement on the 

other hand accounts for random chance in the accuracy assessment (Lillesand et al., 

2004). An overall classification accuracy of over 91% and a kappa statistics over 0.88 

are achieved, respectively.  

 

 

Table 4.2 Accuracy Assessment Report. 
1990 Classified Map- Credit River 

Reference data Classified Map Classified data 
Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 30 4 34 96 88 
Impervious 1 15 16 87 93 
Total 31 19 50 Overall accuracy = 90% Kappa = 0.89 

1995 Classified Map- Credit River 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
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Green 27 4 31 100 90 
Impervious 0 19 19 86 98 
Totals 27 23 50 Overall accuracy = 94% Kappa = 0.87 

2000 Classified Map- Credit River 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 26 7 33 91 92 
Impervious 1 16 17 90 89 
Total 27 23 50 Overall accuracy = 90% Kappa = 0.92 

2005 Classified Map- Credit River 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 27 6 33 96 90 
Impervious 1 16 17 86 89 
Total 28 22 50 Overall accuracy = 92% Kappa = 0.89 

 
 
 
 

1990 Classified Map- Etobicoke Creek 
Reference data Classified Map Classified data 

Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 
(%) 

Green 28 5 33 92 89 
Impervious 1 16 17 88 92 
Total 29 21 50 Overall accuracy = 95% Kappa = 0.90 

1995 Classified Map- Etobicoke Creek 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 26 2 28 98 90 
Impervious 1 21 22 86 98 
Total 27 23 50 Overall accuracy = 95% Kappa = 0.90 

2000 Classified Map- Etobicoke Creek 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 27 7 34 90 92 
Impervious 1 15 16 91 89 
Total 28 22 50 Overall accuracy = 90% Kappa = 0.91 

2005 Classified Map- Etobicoke Creek 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
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Green 24 6 30 96 90 
Impervious 1 19 20 86 89 
Total 25 25 50 Overall accuracy = 92% Kappa =0.89 

 
 

1990 Classified Map- Main Humber 
Reference data Classified Map Classified data 

Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 
(%) 

Green 27 4 31 100 87 
Impervious 0 19 19 82 100 
Total 27 23 50 Overall accuracy = 92% Kappa = 0.83 

1995 Classified Map- Main Humber 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 28 2 30 98 90 
Impervious 2 18 20 88 98 
Total 30 20 50 Overall accuracy = 95% Kappa = 0.90 

2000 Classified Map- Main Humber 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 29 4 33 89 92 
Impervious 2 15 17 91 89 
Total 31 19 50 Overall accuracy = 91% Kappa = 0.89 

2005 Classified Map- Main Humber 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 28 3 31 96 90 
Impervious 0 19 19 86 89 
Total 28 22 50 Overall accuracy = 92% Kappa= 0.90 

 
 
 
 
 
 

1990 Classified Map- Mimico Creek 
Reference data Classified Map Classified data 

Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 
(%) 

Green 17 3 20 91 89 
Impervious 0 27 27 89 92 
Total 17 33 50 Overall accuracy = 91% Kappa = 0.89 
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1995 Classified Map- Mimico Creek 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 20 3 23 95 87 
Impervious 3 24 27 82 98 
Total 23 27 50 Overall accuracy = 93% Kappa = 0.87 

2000 Classified Map- Mimico Creek 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 17 2 19 90 92 
Impervious 1 30 31 91 89 
Total 18 32 50 Overall accuracy = 90% Kappa = 0.92 

2005 Classified Map- Mimico Creek 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 19 3 22 96 90 
Impervious 2 26 28 86 89 
Total 21 29 50 Overall accuracy = 92% Kappa = 0.89 

 
 
 
 

1990 Classified Map- West Humber 
Reference data Classified Map Classified data 

Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 
(%) 

Green 28 4 32 95 92 
Impervious 0 18 18 89 97 
Total 28 22 50 Overall accuracy = 95% Kappa = 0.91 

1995 Classified Map- West Humber 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 25 2 27 97 86 
Impervious 2 21 23 82 98 
Total 27 23 50 Overall accuracy = 94% Kappa = 0.88 

2000 Classified Map- West Humber 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 27 2 29 90 92 
Impervious 1 20 21 91 90 
Total 28 22 50 Overall accuracy = 90% Kappa = 0.92 
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2005 Classified Map- West Humber 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 26 0 26 96 87 
Impervious 2 22 24 86 90 
Total 28 22 50 Overall accuracy = 89% Kappa = 0.89 

 
 
 
 
 

1990 Classified Map- Don River 
Reference data Classified Map Classified data 

Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 
(%) 

Green 15 4 19 88 88 
Impervious 1 30 31 89 87 
Total 16 34 50 Overall accuracy = 89% Kappa = 0.89 

1995 Classified Map- Don River 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 20 3 23 97 87 
Impervious 3 24 27 82 98 
Total 23 27 50 Overall accuracy = 94% Kappa = 0.87 

2000 Classified Map- Don River 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 16 0 16 90 89 
Impervious 2 32 34 91 89 
Total 18 32 50 Overall accuracy = 90% Kappa = 0.88 

2005 Classified Map- Don River 

             Reference data             Classified Map 
Classified data Pervious Impervious Totals Producer’s accuracy (%) User’s accuracy 

(%) 
Green 21 0 21 83 81 
Impervious 5 24 29 82 83 
Total 26 24 50 Overall accuracy = 83% Kappa = 0.81 
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4.3      Mapping of Chloride Concentrations  
 
 
4.3.1 Spatial and Temporal Variations 

 

The total average and median chloride concentrations of samples collected from May 

to October (dry season) in 1990, 1995, 2000, and 2005, respectively, are illustrated in 

Figure 4.10, while Figure 4.11 shows the average and median chloride concentrations 

from samples collected between November and April (wet season). In mathematics 

and statistics, the total average is the sum of all the numbers divided by the number of 

samples in question, while a median (or middle value) is described as the number 

separating the higher half of a sample from the lower half (Witte, 1989).  

 
Most water quality monitoring stations showed a gradual increase in chloride 

concentrations over the years. The most obvious increase between 1990 and 2005 was 

a three-fold increase in chloride concentrations which was observed in dry-season 

samples. A synthesis of scientific studies suggests a value of approximately 250 mg/L 

as a reasonable target for the protection of aquatic life. The 250 mg/L is also a federal 

threshold chosen by the government of Canada (Mayer et al., 1999). The results of 

dry-season chloride values demonstrated how this federal target was reached in 2000 

and frequently exceeded in 2005. The wet-season values, however, show how this 

threshold was reached as early as in 1990.

 
In Sheridan Creek, a highly developed urban creek located in the Lower Zone of the 

Credit River watershed and bordering Lake Ontario, results showed average wet 

chloride concentrations increasing from 470 mg/L in 1990 to over 870 mg/L by 2005. 

In the Don River in Toronto, concentrations of chloride increased to more than 860 

mg/L in winter with increases appearing to correspond with winter thaws. The dry 
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season baseline chloride values in the Don River were 360 mg/L in 2005, while the 

same baseline values back in 1990 were 140 mg/L. Similar baseline concentrations of 

chloride (120 mg/L) were seen in Etobicoke Creek, another highly urbanized 

watershed in the Peel Region. Chloride concentrations 3 times higher than baseline 

values were measured during the winter months in this creek.  

 

In the Mimico Creek watershed, with over 80% impervious surface cover, average 

chloride concentrations exceeding 1102 mg/L were observed during winter months of 

January and Febuary with median concentrations of approximately 998 mg/L; lagging 

behind average values by only a few units. In general, a similar trend was found 

between average and median values in both wet and dry seasons, with median 

concentrations often being slightly lower than average concentrations.   

 

Examination of the spatial distribution of chloride concentrations in surface waters 

within the study area watersheds also reflects the distribution of transportation related 

surfaces. In their 2006 study, Howard and Maier observed serious water quality 

degradation in the Don and Humber Rivers as they passed through the City of Toronto 

on their journey from headwaters in the Oak Ridges Moraine to Lake Ontario 

(Howard and Maier, 2006). Similar results were seen in this study.  

 

Concentrations of chlorides in stations located in predominantly rural lands, i.e. 

Station Numbers 6008301802 and 6007601502, ranged from 25 to 50 mg/L whereas 

the more urbanized watersheds, such as the Mimico Creek and Don River, 

experienced higher chloride concentrations mainly due to the denser and more heavily 

used highways and road networks. Polluted runoff from major highways such as the 
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Hwy 427 and Gardiner Expressways has the potential to influence the spatial pattern 

of chloride concentrations in the study area.  

 

This further supports the importance of land use characteristics in the watersheds. 

Land use properties in each watershed are important in investigating correlation 

between water quality impacts and impervious surfaces because not only the degree of 

imperviousness but also the combination of the impervious surfaces and the type of 

land use upon which those impervious surfaces rest upon that can influence surface 

water quality. For example, it is possible to observe higher chloride concentrations in 

watersheds with higher amounts of industry, commercial enterprises, traffic 

congestion and primary roads. 

 

With regards to temporal variations, research has shown that nonpoint source 

pollutant concentrations during wet weather are generally higher than during dry 

weather. Concentrations are often highest in the wet winter months since that is the 

time when de-icing salts are applied to roads and highways. During summer and fall 

months, the concentrations are reduced as most of the winter road salts had been 

washed off of surfaces by precipitation (TRCA, 1998; Snodgrass and D’Andrea, 

1993).  

 

The temporal variations between wet and dry weather chloride concentrations reflect 

differences in the source of flow during these two seasons. During dry summer 

months, the flows are generally small in volume and originate primarily from 

groundwater, which has already been filtered by riparian vegetation and soil. Summer 

base-flows are typically less contaminated than surface runoffs. By contrast, the 



 70

majority of wet weather flows are larger in size and more polluted since they originate 

from impervious surfaces (Snodgrass and D’Andrea, 1993; Meyer, 2005).  

 

Similar to previous research findings (Snodgrass and D’Andrea, 1993; Rose and 

Peters, 2001; Brandes et al., 2005; Howard and Maier, 2006), results obtained in this 

study show a strong seasonal variation. Aside from an obvious increase in chloride 

levels over time for each water quality monitoring station, Figures 4.12 and 4.13 

demonstrate this marked temporal variation in chloride concentrations between base-

flow and wet weather conditions, with wet season concentrations being noticeably 

higher (i.e. reaching over 1000 mg/L) indicating peak inputs of road salts in winter. 
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Figure 4.10 Average and median dry season chloride concentrations (mg/L) in the 
study area between 1990 and 2005. 
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Figure 4.11 Average and median wet season chloride concentrations (mg/L) in the 
study area between 1990 and 2005.  
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Figure 4.12 Temporal variations in chloride concentrations between base-flow and 
dry season conditions at each monitoring station. 
 
 

Wet Season Chloride Levels - All Years

0

250

500

750

1000

06
00

83
01

80
2

06
00

76
01

50
2

06
00

76
01

00
2

06
00

76
01

70
2

06
00

83
00

20
2

06
00

76
01

60
2

60
08

00
02

02

06
00

76
00

60
2

06
00

85
00

10
2

06
00

85
01

40
2

06
00

68
00

10
2

06
00

82
00

20
2

06
00

83
00

10
2

Water Quality Monitoring Stations

C
hl

or
id

e 
(m

g/
L) 1990_MED_WET

1995_MED_WET

2000_MED_WET

2005_MED_WET

 
Figure 4.13 Temporal variations in chloride concentrations between base-flow and 
wet season conditions at each monitoring station.  
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4.3.2 The Role of Weather Conditions and Salt Usage on Chloride 
Concentrations 

 
 
This section addresses the role of snow fall amounts as well as municipality practices 

of salt usage on chloride concentrations in surface water. Table 4.3 shows the total 

salt usage per city in the study area, while Table 4.4 lists the total amounts of snow 

falls over the years. The limited data below indicates that from the period of 1990 

through 2005 there has been a steady increase in the total amount of snowfall in the 

study area. However, there is no correlation between salt usage and snowfall in 

particular. This apparent inconsistency can be explained in several ways. First, this is 

based on very limited time scale data. Second, this data only reflects public’s usage of 

salt and does not account for private residential and commercial usages. Third, the 

amount of snow is not the only factor in determining the salt usage. Other factors that 

can increase the salt usage include the frequency of freeze/thaw frost, snow, and 

freezing rain events. Sometimes a mild winter with few "big" events can actually lead 

to more salt usage (C. Marshall, personal communication, Oct 31, 2007). 

 

Table 4.3 Total salt usage of cities. (Source: C. Morton and D. Morris, personal 
communication, Nov 2, 2007) 

 
City Year Salt Usage (tonnes) 

1990 N/A 
1995 46,799 
2000 68,195 

Mississauga 

2005 65,666 
1990 N/A 
1995 N/A 
2000 N/A 

Brampton 

2005 N/A 
1990 6,219            *1,433  
1995 7,274            *2,298 
2000 6,920            * N/A 

Caledon 

2005 5,600            *N/A 
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1990 N/A 
1995 N/A 
2000 N/A 

Toronto 

2005 N/A 
*Chloride deriving from calcium chloride1  
 
 
 
Table 4.4 Total amount of snow fall in 1990, 1995, 2000 and 2005. (Source: 
Environment Canada, 2007)  

Total Snow 
(cm) 

1990 1995 2000 2005 

November 2 27 1 12 
December 28 30 63 41 
January  12 24 17 33 
February  26 14 39 33 
March  4 8 8 25 
April  2 5 8 16 
Sum  76 110 135 162 

 
 
4.4    Results of Integrating Impervious Surface Estimates with Chloride Data 
 

For the purpose of data integration, “median-dry” chloride concentrations are chosen 

to be overlaid on top of impervious surface estimates, mainly for two reasons:  “dry” 

season values are selected to be relatively consistent with the Landsat-5 TM data 

acquisition dates; and “median” values are selected to have a conservative estimate of 

the adverse effects of chloride concentrations in the study area watersheds.  

   

When the two sets of maps are overlaid (see Figure 4.14), a corresponding trend was 

apparent over the years: the highest chloride concentrations occurred in areas with 

highest percentage of impervious surface area. In other words, the watersheds with 

moderate to low levels of development had the lowest chloride concentrations 

whereas the watersheds that were highly urbanized (i.e., Etobicoke, Mimico Creek 

                                                 
1 Calcium chloride is being used in Caledon as a dust suppressant.  
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and Don River) exhibited the highest chloride levels. The results of integrating 

remotely sensed data with chloride data successfully demonstrated a strong 

association between water quality as represented by chloride and urbanization that 

represents the percentage area occupied by impermeable surfaces.  

 

The integrated maps demonstrated that concentrations tend to increase towards the 

river-lake boundary. Monitoring stations closest to the Lake Ontario exhibited the 

highest chloride concentration as the majority of salt applied during the winter months 

had not infiltrated into the soil, remained on the impervious surfaces, and eventually 

emptied into the lake via surface runoff. The surface water flow generally reflects the 

surface topography. In the study area watersheds, the overall direction of water flow 

is a south east direction moving towards the Lake Ontario.  

 

Also, approximately three-quarters of the people who live in Ontario rely on water 

that is drawn from surface sources such as the Great Lakes (TRCA, 2007). As Lake 

Ontario becomes polluted, a primary source of drinking water for the region is 

potentially at risk. This can have adverse socio-economic impacts.  

 

Again, the results here are consistent with the TRCA’s study in 1998 where 

considerable water quality degradation had been observed in the Etobicoke Creek and 

Humber River watersheds as they passed through the Cities of Brampton and 

Mississauga on their journey from headwater springs in the Oak Ridges Moraine to 

Lake Ontario (TRCA, 1998). As a primary source of drinking water for the region 

should this trend continue over time, the resulting change can significantly stress the 

area.  
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Figure 4.14 Chloride concentrations overlaid on impervious surface map of 1990, 
1995, 2000 and 2005. 
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Broadly speaking, a stressor (i.e. increased imperviousness) is defined as change that 

results in a response which disturbs the natural balance of an ecosystem. An indicator 

(increased chloride levels) is a characteristic of an ecosystem that provides clues as to 

when something is changing (Schmidt, 2004). Long-term study of indicators allows 

for a better understanding of the balance of natural environments as well as 

recognition of when this balance is disturbed by stressors such as urbanization 

(Jackson and Jobbagy, 2005). Land use change is one of the challenging issues that 

has the potential to significantly alter the ecosystem’s health; particularly, the shift 

from a “green” to “impervious” landscape.  

 

In the absence of human activity and anthropogenic sources, salt concentrations in 

surface waters are mainly related to the chemistry of the bedrock and watershed 

geology. In 2001, the Priority Substances List Assessment Report for Road Salts was 

released, indicating that the background salt concentrations of surface waters vary 

within the range <1–5 mg/L (Environment Canada, 2001). However, chloride 

concentrations seen in this study were considerably higher than those reported 

background concentrations, reflecting the effects of urban sprawl and the consequent 

increase in the amount of constructed lands and therefore of road salt usage in this 

region.  Impacts of high use of road salts were evident from the data, particularly in 

highly urbanized areas. Chloride concentrations of rural areas were among the lowest 

in the study area while a marked increase in chloride concentrations was noticeable in 

highly urbanized Mimico Creek and Don River watersheds.  
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4.5   Statistical Analysis 
 
 
In this section, the impervious surface estimates obtained in Section 4.1 and the 

chloride concentrations presented in Section 4.3 are combined and statistically tested 

for their degree of correlation. The best approach to validate the often-assumed 

adverse effects of impervious surfaces on water quality is by means of statistical 

examination. To investigate this assumption, linear regression lines of median dry 

season chloride concentrations are plotted against the impervious surface estimates for 

each date to determine if a pattern existed between chloride concentrations and 

amounts of impervious surfaces in the watersheds. These plots are presented in Figure 

4.15. Also, the linear regression plot of chloride as a function of impervious surface 

for all four dates combined is presented in Figure 4.16. The coefficients of 

determination were calculated between percent impervious surfaces and chloride 

levels. The results are presented in Table 4.5. 

 
While it is well recognized that impervious surface is associated with water quality 

impact (Moffett and Hasse, 2006), the study relied solely on impervious surface 

estimates as an indicator of water quality. 

 
Another consideration is that comparison of chloride concentrations as a measure of 

water quality with percent impervious surfaces produces only a descriptive measure 

and not a predictive, causative measure. Accordingly, relationship discovered does 

not explain how, or even if, impervious surfaces adversely affect water quality, but 

rather that there is some quantifiable association between the two variables. 
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2005

y = 6.255x - 10.716
R2 = 0.7795
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Figure 4.15 Linear regressions of chloride concentrations and impervious surfaces 
between 1990 and 2005. 

 
 

 
 

According to statistical analyses based on individual dates, a correlation exists 

between impervious surfaces and chloride concentrations over the years. The findings 

demonstrate that urbanization and the resultant increase in imperviousness do 

generate higher chloride concentrations. Correspondingly, the higher levels of 

chloride can potentially degrade quality of surface waters in the study area. However, 

when all dates were combined, the correlation was no longer linear (Figure 4.16). This 

can be explained by an uneven increase in chloride concentrations with respect to 

impervious surface growth. While impervious surfaces are increasing steadily over 
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the years, there is an uneven increase in chloride concentrations in some watersheds, 

depending on the characteristics of the watershed as well as climatic conditions, 

resulting in a non-linear correlation between chloride and imperviousness.  
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Figure 4.16 Linear regression plot of chloride as a function of impervious surfaces for 
all four dates combined. 
 
 
 
Table 4.5 Linear regressions between chloride (dry season) and impervious surfaces 
by year.  

% Impervious Surfaces  
 

1990 1995 2000 2005 All dates combined

Water Quality Measure 

R2 R2 R2 R2 R2 
Median Dry Chloride 0.92 0.90 0.76 0.77 0.60 

 

 

Figure 4.17, below, further illustrates the degree of association between the two 

variables, representing impervious growth of each watershed as it relates to increases 

in chloride concentrations from 1990 to 2005.  Overall, as the amount of impervious 

surfaces increase in each watershed over the years, chloride concentrations also 

increase, with the exception of Don River watershed where chloride concentrations 

slightly decrease with increasing impervious surfaces.   
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Also, while impervious surfaces increase at a relatively constant rate over the years, 

there is a dramatic increase (i.e. three fold increase) in chloride concentrations in 

Mimico Creek and Don River watersheds particularly in 2000 and 2005.  
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Figure 4.17 Non-linear correlation between chloride (dry season) and impervious 
surfaces in six selected watersheds by year. 
 

4.6    Chapter Summary  

Overall, the integration of remotely sensed impervious surfaces with surface water 

chloride concentrations revealed how closely these two variables are correlated. The 

value of this correlation is that both chloride concentrations and the degree of 

imperviousness in a watershed may serve as a preliminary indicator parameter in 

environmental monitoring programs. Therefore, very fast, simple and inexpensive 

outlined map of surface water chloride concentrations in conjunction with impervious 

surface areas using remote sensing techniques could indicate the relative degradation 

of different stream segments or document long-term watershed degradation related to 

gradual urban sprawl.  
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CHAPTER 5 
 
 
CONCLUTIONS AND RECOMMENDATIONS 
 
 
This chapter begins by a brief overview of the main study objective and how 

successful the research was in meeting this objective. Section 5.1 draws the 

conclusions of the major achievements and findings. This is followed by summary of 

the limiting factors found in the results (Section 5.2). In Section 5.3 several 

recommendations are made on how the study can help municipalities as well as local 

and regional water resource planners to make informed decisions. Finally, suggestions 

for future research are provided in Section 5.4.  

 

 
5.1 Conclusions 

In this research, spatial as well as temporal analysis of chloride levels as a function of 

impervious surfaces was carried out in the selected GTA watersheds. The main 

objective of this study was to relate the percentage of impervious surfaces to chloride 

which is a nonpoint source pollutant as well as a water quality indicator. This 

objective came from the knowledge that water bodies around the GTA are impaired as 

a result of nonpoint source pollution, and that developed lands contribute to that 

pollution.  

 

With urbanization, the amount of impervious surfaces and in particular transportation 

related surfaces such as roads, highways, sidewalks, and parking spaces increase. Due 

to the region’s cold climate and heavy snow precipitation in winter, road maintenance 

practices require the usage of salt in order to ensure roads are free of ice and snow. 

This is required to provide safe transportation conditions. Thus, as cities and 
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municipalities expand and the area covered by impervious surfaces expands, the area 

on which the salt is applied also increases. Impervious surfaces prohibit the 

infiltration of water. When the salt covered snow melts during winter and spring thaw, 

polluted runoff is transported into receiving surface waters which eventually reach the 

Lake Ontario. 

 

The results demonstrated an average of 12.9% increase in impervious surfaces and a 

corresponding three-fold increase in chloride levels from 1990 to 2005.  The Mimico 

Creek and Don River watersheds, two of the most urbanized watersheds in the GTA, 

exhibited the highest amounts of chloride concentrations. Overall, through an 

innovative integrated remote sensing approach, the empirical evidence collected in 

this study was successful in demonstrating a strong relationship between increases in 

impervious surface areas and chloride levels over time as well as identifying areas 

most vulnerable to surface water quality degradation by road salts.  

 

With the direct correlation between imperviousness and chloride, an obvious benefit 

of remotely sensed impervious surfaces is that this type of data alone can provide 

clues as to which areas are more prone to water quality degradation. In areas where 

up-to-date and accurate chloride data is unavailable, continuous spatially explicit 

remotely sensed impervious data may provide equally beneficial coverage of areas 

under stress. 

 

5.2 Limitations of the Study 
 
Due to cost and availability restrictions associated with Landsat-5 TM images, the 

study only examined the relationship between chloride and impervious surfaces in a 
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five year interval between 1990 and 2005. Instead of a five year interval, the annual 

classification of impervious surfaces could provide officials with more detailed 

information on the patterns of urban sprawl and could offer more constructive 

recommendations to urban planners for their future practices in the region.  Also, to 

get a better understanding of the cumulative results of chloride salts, a detailed annual 

investigation of salt usage, private (residential and commercial) usages, as well as 

frequency of extreme storm events could provide more definitive correlations. 

 
This study found a steady increase in the amount of impervious surfaces over the 

years as well as a steady increase in chloride levels in surface waters over the years. 

For this reason it was expected that there would also be an increase in salt usage by 

the municipalities. However no such correlation was observed. This lack of 

correlation is primarily attributed to the lack of comprehensive public salt usage data. 

Gathering salt usage data from the municipality officials proved very challenging 

mainly because they were not responsive to the request of information. Their 

unwillingness to share data proved a serious challenge to obtaining comprehensive 

data sets. This was an insurmountable obstacle because the municipalities were the 

sole proprietors of public salt usage data. In addition to their reluctance in sharing 

data the City of Brampton and the City of Mississauga did not retain historical data on 

salt purchases for more than seven years.    

 

Chloride, by nature, persists in the environment and thus has residual impacts. 

Therefore, it was difficult to establish whether the increase in surface water chloride 

concentrations were exclusively attributed to annual usage of salt as a function of new 

developments or whether it is attributed to the persistent nature of the chloride and the 

residual effect of chloride from previous years.  
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At last, the major issue that limited the scope of this research is that although the 

results presented in this study indicate a correlation does exist between the level of 

imperviousness and chloride levels, due to lack of funding, steady historic chloride 

data were missing for a significant number of monitoring stations within the study 

area watersheds. Not to mention the uneven distribution of water quality monitoring 

stations. Therefore, not enough sample sites could be included in the investigation to 

provide a truly quantitative and statistically robust analysis. The relationships reported 

here are strictly qualitative, they warrant further investigation and quantification. 

 

5.3 Recommendations for Water Resource Planners 
 

Urban nonpoint source pollution represents one of the most complex environmental 

challenges facing the Great Lakes Basin. Watershed and urban planners constantly 

look for ways to reduce nonpoint source pollution. One way to reduce nonpoint 

source pollution is to reduce imperviousness. In recent years, impervious surfaces 

have emerged as a water quality indicator. Understanding the spatial and temporal 

relationship between imperviousness and water quality would allow for informed land 

use management decisions (Clausen et al., 2003; Moore and Palmer, 2005).  

 

Use of imperviousness as a water quality indicator is valuable for a number of 

reasons. First, although impervious surfaces do not generate pollution directly, they 

are a key component of the land-uses that do generate pollution. Impervious covers 

prohibit natural interception and filtration of pollutants by soil and vegetation, serve 

as a system transporting pollutants into the waterways, and therefore are a critical 

contributor to the hydrologic changes that pollute water resources (Arnold and 

Gibbons, 1996).  It is not surprising, then, that research from the past two decades 
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consistently shows a strong correlation between the imperviousness of a watershed 

and the quality of its streams and rivers.  

 

The second reason that makes imperviousness such an ideal factor to be used in 

regional water resource planning is that it is quantifiable. For this reason, it has an 

enhanced ability to be utilized in planning and policy applications. Estimate of the 

degrees of imperviousness enables city officials and municipalities to look into the 

future of their cities, and indirectly to the health of their local water resources.  

 

The long-term nature of this study suggests an increasing trend in both chloride levels 

and impervious surfaces in the coming years. The next step would be for the urban 

planners and decision makers in the Peel Region and City of Toronto to reverse the 

adverse effects caused by impervious surfaces and road salts. Minimizing the negative 

effects of chloride on the environment can be achieved through regulatory 

approaches, utilization of Best Management Practices (BMP), public education, and 

more importantly, considerable reduction in use of inorganic salts through use of 

alternative product. These are briefly discussed in the following paragraphs. 

 

Recent studies show that Scandinavian countries are currently studying alternatives to 

traditional road salts, including mixing it with sand or sugar and replacing it with 

other chemicals, such as potassium (Jackson and Jobbagy, 2005). While there is 

ongoing research into the use of alternatives, salt continues to be the most cost-

effective and widely used de-icing agent across Canada. 

 



 
89

In April 2004, Environment Canada released a Code of Practice for the 

Environmental Management of Road Salts. Since then, the Municipality of 

Metropolitan Toronto as well as the Regional Municipality of Peel have developed a 

Salt Management Plan to minimize the amount of salt entering the environment by 

including best salt handling practices, and using new technologies.  The Code of 

Practice is a voluntary pollution control tool for road authorities using more than 500 

tonnes of road salts per year. It is proposed that unless mandatory requirements are 

put in place by regulatory authorities, no effective method of salt management, 

storage, application or disposal could be achieved and no major reduction in usage 

could be implemented (Hounsell et al., 2006).  

  
As well as Salt Management Plans, other urban Best Management Practices can be 

implemented to decrease the urban impacts by road salts. These practices include:  

grassed waterways, porous pavement, green roofs, nutrient and chemical 

management, detention basins, infiltration facilities, catch basins, wetlands, and buffer 

strips (Brabec et al., 2002; Groffman et al., 2004, VanWoert et al., 2005). It is 

important to note that these practices have limitations, therefore the effectiveness of 

these BMPs in the study area watersheds grants further examination. Within the 

Greater Toronto Area, one region that has always been the focus of local and regional 

planners is the ORM. A study by Bowen and Hinton (1998) revealed that upstream 

areas within the ORM dilute chloride concentrations (and other nonpoint source 

pollutants) in downstream urban areas (Bowen and Hinton, 1998). Proper 

management and conservation of ORM should be continued to ensure a healthy 

environment in the region.  
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5.4 Directions for Future Research 

 

This study was an exploratory study and it enabled the identification of other issues 

that merit examination. Some directions for future research are provided below: 

While the results presented in this study provide a consistent set of impervious surface 

estimates over a 15-year period, continued examination of object-oriented 

classification as well as other classification approaches such as pixel-based 

classification might serve to increase classification accuracy results. 

 

Chloride was the only water quality parameter that was tested in relation to the degree 

of imperviousness in this study. Another area that can be explored in the future is the 

comparison of other water quality parameters such as total suspended solids, pH level, 

nitrogen, phosphorus, calcium, sodium, and carbon with impervious surfaces.  

 

To represent the study in a more comprehensive and statistically strong manner, one 

possible future scenario to examine would be to monitor the effects of chloride on a 

large number of streams with watersheds that contain a variety of impervious 

surfaces. This would allow for a better assessment of the impact of impervious 

surfaces on stream health over a broader range of impervious surface levels as well as 

varying land-use types. Therefore, it is important to recognize that some impervious 

areas are completely surrounded by pervious areas and therefore have less of an 

impact on water resources. On this note, it would be interesting to examine the quality 

of watersheds without headwaters in the Oak Ridges Moraine compared to the ones 

surrounded by large areas covered by riparian forest.  
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As demonstrated in the results, water quality degradation is attributed to the amount 

of impervious surface coverage, but more than likely it is a combination of the 

impervious surface coverage and the land use upon which those impervious surfaces 

rest that affect water quality. Thus, it is important to include land use information 

such as the amount of industry, commercial enterprises, traffic congestion and roads 

(primary and secondary) in future studies.  

 

In this study, the entire watershed from the location of the monitoring station was 

included in the calculation of percent impervious surface assuming that any nonpoint 

source pollutant would eventually reach the monitoring station’s location. However, it 

is important to test the impact of impervious surfaces that are far from the water 

quality monitoring station versus those that are close. It is possible to see different 

results when taking into consideration far-range effects of impervious surfaces 

compared to near-range effects of imperviousness.   

 
The advantage of impervious surfaces as an environmental indicator is that it 

primarily signifies the direct impact of road salts (chloride) on surface water quality. 

It also can provide some indirect measure of other effects that are not directly related 

to road salts but are often associated with imperviousness, such as population density 

or urban climate change. Future studies can demonstrate whether imperviousness 

could serve as an indicator for effects related to agricultural and rural practices that 

can also significantly affect stream water quality. Therefore, impervious surfaces 

cannot serve as a universal indicator of surface water health but may serve as one of 

many indicators that could be used in environmental and ecological monitoring.  
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