
Simulation-based Performance

Evaluation of MANET Backbone

Formation Algorithms

by

Khalid Almahrog

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2007

c© Khalid Almahrog 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

As a result of the recent advances in the computation and communications indus-

tries, wireless communications-enabled computing devices are ubiquitous nowadays.

Even though these devices are introduced to satisfy the user’s mobile computing

needs, they are still unable to provide for the full mobile computing functionality

as they confine the user mobility to be within certain regions in order to benefit

from services provided by fixed network access points.

Mobile ad hoc networks (MANETs) are introduced as the technology that po-

tentially will make the nowadays illusion of mobile computing a tangible reality.

MANETs are created by the mobile computing devices on an ad hoc basis, without

any support or administration provided by a fixed or pre-installed communications

infrastructure.

Along with their appealing autonomy and fast deployment properties, MANETs

exhibit some other properties that make their realization a very challenging task.

Topology dynamism and bandwidth limitations of the communication channel ad-

versely affect the performance of routing protocols designed for MANETs, especially

with the increase in the number of mobile hosts and/or mobility rates.

The Connected Dominating Set (CDS), a.k.a. virtual backbone or Spine, is

proposed to facilitate routing, broadcasting, and establishing a dynamic infrastruc-

ture for distributed location databases. Minimizing the CDS produces a simpler

abstracted topology of the MANET and allows for using shorter routes between

any pair of hosts. Since it is NP-complete to find the minimum connected domi-

nating set, MCDS, researchers resorted to approximation algorithms and heuristics

to tackle this problem.

The literature is rich of many CDS approximation algorithms that compete in

terms of CDS size, running time, and signaling overhead. It has been reported

that localized CDS creation algorithms are the fastest and the lightest in terms of

signaling overhead among all other techniques. Examples of these localized CDS

algorithms are Wu and Li algorithm and its Stojmenovic variant, the MPR al-

gorithm, and Alzoubi algorithm. The designers of each of these algorithms claim

that their algorithm exhibits the highest degree of localization and hence incurs the

iii

lowest cost in the CDS creation phase. However, these claims are not supported

by any physical or at least simulation-based evidence. Moreover, the cost of main-

taining the CDS (in terms of the change in CDS size, running time, and signaling

overhead), in the presence of unpredictable and frequent topology changes, is an

important factor that has to be taken into account -a cost that is overlooked most

of the time.

A simulation-based comparative study between the performance of these algo-

rithms will be conducted using the ns2 network simulator. This study will focus

on the total costs incurred by these algorithms in terms of CDS size, running time,

and signaling overhead generated during the CDS creation and maintenance phases.

Moreover, the effects of mobility rates, network size, and mobility models on the

performance of each algorithm will be investigated. Conclusions regarding the pros

and cons of each algorithm will be drawn, and directions for future research work

will be recommended.

iv

Acknowledgements

First, all thanks and praise are due to the Almighty Allah for giving me guidance

and strength to finish this thesis.

I would like to express my thanks and deep appreciation to my supervisor Pro-

fessor Otman Basir for giving me the honor of being one of his students and for

providing all the assistance and guidance I needed during my research. I would

like also to thank my thesis readers: Professor Eihab Abdel-Rahman and Professor

Sagar Naik, for their invaluable remarks and comments.

I would like to express my deep feelings of gratitude and appreciation to my

father, my mother, my grandmother, and my siblings for their unlimited support

and encouragement, and to my uncles, aunts, and all my relatives for their sincere

wishes.

My deepest thanks and appreciation to Dr. Ismail Elabib, Dr. Elmahdi Bouseta,

Dr. Rajab Farj, Dr. Samir Albouni, Dr. Belgasim Shalouf, Dr. Ramadan Alabani,

Mr. Almahdi Annajah, Mr. Mohammed Annajah, Mr. Mohammed Khoualid and

Mr. Hossein Annajah for their help throughout my study.

Special thanks to my wife, Sumia, for her patience, support, and sincere prayers

during the time of my research.

Thanks to my brother Abdulrahman and to my friends: Akrem Alghazal, Ab-

duljaleel Alnetfa, Naji Alamrouni, Assadg Abdallah, Abdulmunaim Beela, Bel-

gasim Alarabi, Atef Abdrabu, Rami Alangar, Zeyad Albasir, Imhemed Ben Yousef,

Walid Elgherwi, Adel Salama, Nabil Drawil, Dr. Idris Alfgi, Ahmed Alghdamsi,

Abdulmajeed Zinghina, and Abdulghafar Ashareef for their support and encour-

agement.

v

Dedication

To my parents.

vi

Contents

1 Introduction 1

1.1 Advantages of MANETs . 1

1.2 Challenges of MANETs . 2

1.3 Routing in MANETs . 2

1.4 Thesis Organization . 4

2 Routing 6

2.1 Proactive routing protocols . 6

2.1.1 Destination-Sequenced Distance-Vector protocol (DSDV)

protocol . 7

2.1.2 The Wireless Routing Protocol (WRP) 7

2.1.3 Global State Routing (GSR) protocol 9

2.1.4 Fisheye State Routing (FSR) protocol 9

2.1.5 Source-Tree Adaptive Routing (STAR) protocol 10

2.1.6 Distance Routing Effect Algorithm for Mobility

(DREAM) . 11

2.1.7 Multimedia support in Mobile Wireless Networks

(MMWN) protocol . 12

2.1.8 Cluster-head Gateway Switch Routing (CGSR) protocol . . 14

2.1.9 Hierarchal State Routing (HSR) protocol 15

2.1.10 Optimized Link State Routing (OLSR) protocol 17

2.1.11 Topology Broadcast Reverse Path Forwarding (TBRPF)

protocol . 18

vii

2.1.12 Characteristics of the proactive routing protocols 19

2.2 Reactive routing protocols . 19

2.2.1 Dynamic Source Routing (DSR) protocol 19

2.2.2 Ad hoc On-demand Distance Vector (AODV)

protocol . 20

2.2.3 Routing On-demand Acyclic Multi-path (ROAM)

protocol . 21

2.2.4 Light-weight Mobile Routing (LMR) protocol 22

2.2.5 Temporally Ordered Routing Algorithm (TORA) 23

2.2.6 Associativity-Based Routing (ABR) protocol 26

2.2.7 Signal Stability Adaptive routing (SSA) protocol 28

2.2.8 Relative Distance Micro-discovery Ad hoc Routing (RDMAR)

protocol . 29

2.2.9 Location-Aided Routing (LAR) protocol 30

2.2.10 Ant colony based Routing Algorithm (ARA) 32

2.2.11 Flow Oriented Routing Protocol (FORP) 34

2.2.12 Cluster-Based Routing Protocol (CBRP) 35

2.2.13 Characteristics of the reactive routing protocols 36

2.3 Hybrid routing protocols . 36

2.3.1 Zone Routing Protocol (ZRP) 36

2.3.2 Zone-based Hierarchical Link State (ZHLS) protocol 37

2.3.3 Scalable Location Update Routing Protocol (SLURP) 38

2.3.4 Distributed Spanning Trees based routing protocol (DST) . 40

2.3.5 Distributed Dynamic Routing (DDR) protocol 41

2.3.6 Characteristics of the hybrid routing protocols 43

2.4 Summary . 44

3 Clustering 45

3.1 previous work . 45

3.1.1 Clustering using independent dominating sets 48

viii

3.1.2 Clustering using dominating sets 50

3.1.3 Clustering using connected dominating sets 51

3.1.4 Clustering using weakly connected dominating sets 60

3.1.5 Clustering using other heuristics 62

4 Details of the Studied Algorithms 63

4.1 Introduction . 63

4.1.1 The rationale behind our selection 63

4.1.2 The aspects of comparison 64

4.2 Details of the algorithms . 64

4.2.1 Wu and Li clustering algorithm 65

4.2.2 Stojmenovic clustering algorithm 66

4.2.3 The MPR clustering algorithm 67

4.2.4 Alzoubi clustering algorithm 69

4.3 General Remarks . 83

5 Simulation Setup and Results 84

5.1 Simulation setup . 84

5.2 Simulation results . 86

5.2.1 Simulations based on the Random Waypoint mobility model 86

5.2.2 Simulations based on the Freeway mobility model 103

6 Conclusions and Future Work 120

6.1 Conclusions . 120

6.2 Future Work . 121

ix

List of Tables

2.1 Layered view of HARP and DDR 42

4.1 Message and time complexity of Wu and Li , Stojmenovic, and Al-

zoubi algorithms. 64

x

List of Figures

2.1 scope of fisheye . 10

2.2 The hierarchal structure of MMWN 13

2.3 The location table update due to node movement 13

2.4 The CGSR hierarchal structure and routing mechanism 15

2.5 HSR hierarchal structure and addressing mechanism 16

2.6 The MPR set . 18

2.7 LMR route construction . 24

2.8 LMR route reconstruction . 24

2.9 TORA route construction . 27

2.10 Failure that triggers no repair . 27

2.11 Repairing a failed route . 27

2.12 Network partitioning discovery and invalid route erasing. 28

2.13 The expected zone and the request zone concept 31

2.14 FANT propagation toward the destination. 33

2.15 BANT propagation toward the source. 33

2.16 Network before tree creation (left), after tree creation (right). . . . 42

3.1 clustering using cluster heads. 46

3.2 clustering using no cluster heads. 46

3.3 DS. 47

3.4 CDS. 47

3.5 WCDS. 47

xi

3.6 Weakly Induced Graph. 47

3.7 The markup process of the second variant of Alzoubi algorithm. . . 57

4.1 CDS created using Wu and Li Algorithm. 66

4.2 Reducing the CDS size. 66

5.1 CDS size at speed range 15-20 m/s. 87

5.2 CDS size at speed range 20-25 m/s. 87

5.3 CDS size at speed range 25-30 m/s. 87

5.4 CDS establishment time at speed range 15-20 m/s. 88

5.5 CDS establishment time at speed range 20-25 m/s. 88

5.6 CDS establishment time at speed range 25-30 m/s. 89

5.7 The total running time at speed range 15-20 m/s. 89

5.8 The total running time at speed range 20-25 m/s. 90

5.9 The total running time at speed range 25-30 m/s. 90

5.10 The total number of bytes transmitted at speed range 15-20 m/s. . 91

5.11 The total number of bytes transmitted at speed range 20-25 m/s. . 91

5.12 The total number of bytes transmitted at speed range 25-30 m/s. . 91

5.13 The total number of bytes broadcasted at speed range 15-20 m/s. . 92

5.14 The total number of bytes broadcasted at speed range 20-25 m/s. . 92

5.15 The total number of bytes broadcasted at speed range 25-30 m/s. . 93

5.16 The total number of bytes unicasted at speed range 15-20 m/s. . . . 93

5.17 The total number of bytes unicasted at speed range 20-25 m/s. . . . 94

5.18 The total number of bytes unicasted at speed range 25-30 m/s. . . . 94

5.19 Deviation in CDS size at speed range 15-20 m/s. 96

5.20 Deviation in CDS size at speed range 20-25 m/s. 96

5.21 Deviation in CDS size at speed range 25-30 m/s. 96

5.22 Deviation in CDS establishment time at speed range 15-20 m/s. . . 97

5.23 Deviation in CDS establishment time at speed range 20-25 m/s. . . 97

5.24 Deviation in CDS establishment time at speed range 25-30 m/s. . . 97

xii

5.25 The deviation in the total running time at speed range 15-20 m/s. . 98

5.26 The deviation in the total running time at speed range 20-25 m/s. . 98

5.27 The deviation in the total running time at speed range 25-30 m/s. . 99

5.28 The deviation in the number of transmitted bytes at 15-20 m/s. . . 99

5.29 The deviation in the number of transmitted bytes at 20-25 m/s. . . 100

5.30 The deviation in the number of transmitted bytes at 25-30 m/s. . . 100

5.31 The deviation in the number of bytes broadcasted at 15-20 m/s. . . 101

5.32 The deviation in the number of bytes broadcasted at 20-25 m/s. . . 101

5.33 The deviation in the number of bytes broadcasted at 25-30 m/s. . . 101

5.34 The deviation in the number of bytes unicasted at 15-20 m/s. . . . 102

5.35 The deviation in the number of bytes unicasted at 20-25 m/s. . . . 102

5.36 The deviation in the number of bytes unicasted at 25-30 m/s. . . . 102

5.37 CDS size at speed range 15-20 m/s. 104

5.38 CDS size at speed range 20-25 m/s. 104

5.39 CDS size at speed range 25-30 m/s. 104

5.40 CDS establishment time at speed range 15-20 m/s. 105

5.41 CDS establishment time at speed range 20-25 m/s. 105

5.42 CDS establishment time at speed range 25-30 m/s. 105

5.43 The total running time at speed range 15-20 m/s. 106

5.44 The total running time at speed range 20-25 m/s. 106

5.45 The total running time at speed range 25-30 m/s. 107

5.46 The total number of bytes transmitted at speed range 15-20 m/s. . 107

5.47 The total number of bytes transmitted at speed range 20-25 m/s. . 108

5.48 The total number of bytes transmitted at speed range 25-30 m/s. . 108

5.49 The total number of bytes broadcasted at speed range 15-20 m/s. . 109

5.50 The total number of bytes broadcasted at speed range 20-25 m/s. . 109

5.51 The total number of bytes broadcasted at speed range 25-30 m/s. . 109

5.52 The total number of bytes unicasted at speed range 15-20 m/s. . . . 110

xiii

5.53 The total number of bytes unicasted at speed range 20-25 m/s. . . . 110

5.54 The total number of bytes unicasted at speed range 25-30 m/s. . . . 111

5.55 Deviation in CDS size at speed range 15-20 m/s. 112

5.56 Deviation in CDS size at speed range 20-25 m/s. 112

5.57 Deviation in CDS size at speed range 25-30 m/s. 112

5.58 Deviation in CDS establishment time at speed range 15-20 m/s. . . 113

5.59 Deviation in CDS establishment time at speed range 20-25 m/s. . . 113

5.60 Deviation in CDS establishment time at speed range 25-30 m/s. . . 114

5.61 The deviation in the total running time at speed range 15-20 m/s. . 114

5.62 The deviation in the total running time at speed range 20-25 m/s. . 115

5.63 The deviation in the total running time at speed range 25-30 m/s. . 115

5.64 The deviation in the number of transmitted bytes at 15-20 m/s. . . 116

5.65 The deviation in the number of transmitted bytes at 20-25 m/s. . . 116

5.66 The deviation in the number of transmitted bytes at 25-30 m/s. . . 116

5.67 The deviation in the number of bytes broadcasted at 15-20 m/s. . . 117

5.68 The deviation in the number of bytes broadcasted at 20-25 m/s. . . 117

5.69 The deviation in the number of bytes broadcasted at 25-30 m/s. . . 117

5.70 The deviation in the number of bytes unicasted at 15-20 m/s. . . . 118

5.71 The deviation in the number of bytes unicasted at 20-25 m/s. . . . 118

5.72 The deviation in the number of bytes unicasted at 25-30 m/s. . . . 119

xiv

Chapter 1

Introduction

Due to recent advances in the computation and communication industries, portable

computing devices that are capable of wireless communications are ubiquitous

nowadays. Even though these devices are introduced to satisfy the user’s mobile

computation needs, they are still unable to provide fully mobile computing since

they confine the user mobility within certain regions to benefit from services pro-

vided by fixed network access points. This limitation becomes apparent day after

day as we witness increasing dependence on networking services.

To make the nowadays illusion of mobile computing a tangible reality, a net-

working technology that allows for instantaneous creation of temporary and recon-

figurable networks has to come to existence. The multi-hop radio packet networks,

also known as mobile ad hoc networks or MANETs, are prescribed by re-

searchers as the required technology that will bridge that gap between illusion and

reality. As its name implies, MANETs are created by the mobile computing devices

on an ad hoc basis without any support or administration provided by any fixed or

pre-installed communications infrastructure.

1.1 Advantages of MANETs

The self-control, self-organization, and ad hoc properties of MANETs are suit-

able for many applications in both civilian and military sectors. These applications

range from providing temporary and instantly deployable communications networks

in conference rooms, class rooms, and exhibitions to providing reliable communica-

tions networks in rural areas, devastated areas, and battle fields [78].

1

1.2 Challenges of MANETs

Along with their attractive properties, MANETs exhibit some other properties that

make their realization a challenging task. Due to the mobile nature and the limited

transmission ranges of MANETs’ nodes, communication links between nodes are

established and torn down in unpredictable fashion, as such MANETs are char-

acterized by dynamic topologies. The self control property, a powerful feature of

MANETs, puts additional burden on the nodes that they have to perform rout-

ing and other network administrative tasks cooperatively. For traditional routing

protocols to discover and maintain valid routes in such dynamic topologies, a huge

amount of overhead traffic is necessary; taking into account the limited bandwidth

of the wireless channel used by MANETs, all traditional routing protocols are non-

feasible solutions for MANETs routing.

1.3 Routing in MANETs

A routing protocol that exhibits fast and localized reactions to topology changes,

keeps the control overhead generated during route search and route maintenance

to a minimum, and scales satisfactorily to the increase in the rate of topology

change, node density, and communications demand is eagerly sought by researchers.

There have been a number of protocols proposed to address the routing problem in

MANETs. These routing protocols can be classified based on the following criteria:

• Based on which nodes are allowed to take part in routing:

1. Flat routing protocols: in this class, all nodes of the network take

part in route search and packet forwarding.

2. Hierarchal routing protocols: in this class, nodes are grouped into

clusters that are controlled by nodes that are elected as clusterheads ;

clusterheads are connected to each other by nodes called gateways ; the

chain of clusterheads and gateways constitute a virtual backbone that

can reach any node in the network. Only clusterheads and gateways are

allowed to participate in route search and packet forwarding.

2

• Based on When and How routes are determined:

1. Proactive routing protocols. In this class, every node looks for and

maintains a route to each destination even if it is not currently engaged

in any communication activity with that destination. The main advan-

tage of this approach is that a route to any destination is immediately

available when needed. On the other hand, the bandwidth and storage

requirements are very high.

2. Reactive routing protocols. In this class, nodes attempt to minimize

the bandwidth and storage requirements by looking for and maintaining

routes only when they are needed. Even though protocols of this class

succeed in conserving bandwidth and storage, they exhibit some delay

because of the route discovery process that is performed before any data

transmission can take place.

3. Hybrid routing protocols. In this class, nodes incorporate the advan-

tages of the previous two classes by using proactive routing to find and

maintain routes to nodes located in nearby regions and using reactive

routing to find routes to nodes in distant regions.

Generally speaking, none of the reviewed protocols exhibits all the required

properties; however, some of these protocols show promising performance and give

good insight regarding the design methodology that should be employed in the

design of the sought after optimal routing protocol.

It has been observed that flat routing protocols have poor scalability due to the

massive amount of overhead generated in route search and maintenance [1, 51, 83].

On the other hand, hierarchal , a.k.a. cluster-based, routing protocols have demon-

strated more scalability potential. The self-organizing control structure introduced

by hierarchal protocols succeeds in localizing the reactions to topology changes by

abstracting the MANET topology and presenting it as a graph of interconnected

clusters. Hierarichal routing protocols incur an additional cost during the establish-

ment and maintenace of clusters and in keeping track of node affiliation with the

clusters; this additional cost is the main drawback of these protocols [1]. However,

some protocols in this category use the notion of graph domination to build a con-

nected dominating set (CDS)that functions as a virtual backbone for the MANET

[6, 89, 92]. These protocols do not keep track of node affiliation and focus on node

coverage 1; hence, they eliminate the overhead associated with tracking of node af-

1 node γ is covered if it can be reached through at least one clusterhead

3

filiation. Minimizing the cardinality of the CDS produces a simpler backbone and

allows for shorter routes. Since it is NP-complete to find the minimum connected

dominating set (MCDS) in general graphs [50], researchers resort to approximation

algorithms and heuristics to tackle this problem. Among the most renowned algo-

rithms proposed for this problem are: Wu and Li algorithm [92] and its variant

proposed by Stojmenovic [85], Alzoubi algorithm [6], and the MPR algorithm

[2]. These algorithms compete in terms of the size of the produced CDS, and the

time spent and the overhead genenrated in establishing and maintaining the CDS

in face of topology and node density changes. Even though some theoritical perfor-

mance evaluation of some of these algorithms have been reported [7], to the best

of our knowledge, no simulation based copmarison of these algorithms has been

conducted so far. The design and the theoritical performance evaluation of these

algorithms were based on the assumption that all messages broadcasted by a given

node are correctly received by its neighbors in a finite period of time; however, this

assumption is not always valid since some of the broadcasted messages get lost

due to collisions resulting from the contention-based channel access schemes used

in MANETs; therefor, the theoritcal performance measures may not be able to

expose the actual performance and applicability potentails of these algorithms.

1.4 Thesis Organization

The main objective of this research is to investigate the ability of Wu and Li

algorithm [92] and its variant proposed by Stojmenovic [85], Alzoubi algorithm

[6], and the MPR algorithm [2] to function in a real environment where nodes

compete to get access to the shared communication channel and where packets get

lost due to collisions. Another goal of this research is to study the effects of the

rate of mobility, network size, and mobility models on the CDS size, algorithm’s

running time, and the signaling overhead produced by each algorithm. The rest of

this thesis is organized as follows:

Chapter 2 presents a comprehensive review of MANETs routing algorithms. In

this chapter routing algorithms are classified into three categories based on when

and how routs are constructed and maintained. The advantages and the disadvan-

tages of each routing category are highlighted.

Chapter 3 presents a thorough review of MANET’s clustering algorithms. These

algorithms are classified based on the graph domination principle employed in each

algorithm. The pros and cons of each class are summarized.

4

In chapter 4, the implementation details of the selected algorithms are presented.

Chapter 5 explains the experimental set up and results. The conclusion and the

future directions of this research work are presented in Chapter 6.

5

Chapter 2

Routing

Routing is one of MANETs’ challenges that has been a topic of extensive research

since MANETs were anticipated. Node mobility and the limited capacity of the

shared communication channel make all routing protocols employed in wired net-

works inapplicable in MANETs. These routing protocols have to be modified or

redesigned to be applicable in MANETs.

Inspired by the design principles of the wired networks routing protocols, re-

searchers have proposed many routing protocols for MANETs. Generally speaking,

the proposed protocols make use of distance tables, links state information, flood-

ing, and hierarchal organization of the network to achieve routing.

The reviewed protocols can be classified into different categories based on several

criteria. Presenting these protocols in a classified manner allows us to grasp the

main advantages and disadvantages of the design principle common to all protocols

of each category and facilitates the study of these protocols. In this chapter, the

reviewed protocols are classified into Proactive routing, Reactive routing, and

Hybrid routing depending on when and how routs are computed.

In the following sections, a summary of the most widely renowned protocols of

each class are presented along with the main advantages and disadvantages of each

class.

2.1 Proactive routing protocols

As mentioned earlier, in these protocols every node maintains routing information

to every other node in the network even if there is no need for any of these routes at

6

the moment, anticipating that a need for a route will arise at any time in the future.

The routing information is kept in a number of different tables that are updated

periodically or after topological changes. The algorithms of this group differ in

the number of tables used, the type of information stored, and the mechanism of

detecting topology changes and updating tables.

2.1.1 Destination-Sequenced Distance-Vector protocol (DSDV)

protocol

This protocol is based on the traditional DBF, (distributed Bellman-Ford shortest

path algorithm). In the DSDV protocol [79], each node keeps a table that contains

an entry for every destination specifying the next node on the route to that desti-

nation and the number of hops to be traversed to reach it. Moreover, every destina-

tion’s entry contains a sequence number issued by the destination itself to facilitate

the detection and replacement of old routes with more recent ones. Neighboring

nodes exchange their routing tables with each other periodically. After receiving

routing information from its neighbors, every node updates its routing table based

on the information received from neighbors, increments its sequence number and

keeps its updated table ready for the next broadcast. For a given destination, the

route with the most recent sequence number is always used. If two routes happen

to have the same sequence number, the shorter route is used. When a node υ loses

a link to a neighbor µ, υ adjusts the fields of µ’s entry in the following way: it

sets the number of hops to µ to infinity, and it increments the sequence number

associated with µ. υ will consider µ unreachable until it receives a route to it with

a finite number of hops and a larger sequence number.

In addition to the slow convergence drawback inherited from DBF protocol, the

main disadvantage of the DSDV protocol is the large amount of traffic it intro-

duces by the periodic update messages and therefore it is not able to scale to large

networks.

2.1.2 The Wireless Routing Protocol (WRP)

WRP [72] is a table-based routing protocol that aims at providing the shortest route

from a source to a destination. At every node, the routing information is stored

in four different tables that are updated by exchanging update messages between

neighbors. The names of these tables and their contents are as follows:

7

1. The distance table: the distance table of node υ is a matrix containing the

number of hops from node υ to any other node µ through each neighbor node

γ, along with the identifier of the predecessor of µ as reported by γ.

2. The routing table: the routing table of node υ is a matrix with an entry for

every destination µ that stores the number of hops to µ, the predecessor on

the shortest path to µ, the successor on the shortest path to µ, and a tag that

indicates whether the route specified by the successor and predecessor is free

of loops or not.

3. The link cost table: the link cost table of node υ provides the cost of sending

information through every link connected to υ and the time elapsed since the

last error-free message received over that link.

4. The message retransmission list: the retransmission list of node υ contains an

entry for every update message that is still waiting for acknowledgment from

some or all of the neighbors of υ. Each entry contains the sequence number

of the message, an acknowledge required flag for each neighbor indicating

whether that neighbor has acknowledged the update message or not yet, a

retransmission counter that is decremented every time node υ sends a new

update message, and a copy of the message itself. Node υ retransmits the

update message if its retransmission counter reaches zero and yet some nodes

have not acknowledged it. When all the neighbors acknowledge the update

message that message will be deleted from the retransmission list.

The update messages exchanged between neighbor nodes carry the following

information:

1. The identifier of the sending node.

2. The sequence number of the update message.

3. Update field of zero or more length that specifies the destination node, the

offered distance to the destination node, and the predecessor on the new route.

4. Acknowledgment field of zero or more length that carry the sequence number

of the message being acknowledged.

To insure connectivity, neighbors exchange empty update messages called Hello

messages when there has been no data transmission between them for a specified

8

period of time. Nodes update their routing tables either after receiving update

messages from neighbors or when detecting a link failure. When node υ receives

an update message from neighbor µ regarding node γ, node υ first checks whether

the path offered by node µ dose not include υ as a predecessor, and whether this

is the shortest path offered to node γ by all neighbors or not. If the path fulfills

these two requirements, node υ updates its routing table. Node υ also updates the

distance of other paths offered by neighbors other than node µ if these paths to

node γ use node µ as predecessor.

The advantage of WRP is that it provides loop-free routes and it avoids tempo-

rary routing loops by using the predecessor information. On the other hand, it has

significant memory requirements since it requires each node to store four routing

tables; thus, WRP is unable to scale as the size of the network increases. Moreover,

since nodes are exchanging hello messages, they are required to stay active all the

time, i.e., they can not enter sleep mode to save power.

2.1.3 Global State Routing (GSR) protocol

The GSR protocol [24] is based on the same principle of the link state routing

protocol, (LS), used in wired computer networks. In LS, every router maintains a

map of the network topology and uses that topology map to compute the shortest

routes to all destinations. Routers build their views of the network topology by

getting each router to flood the link state information of all links connected to it

and the identities of the routers at the other ends of those links, i.e., its neighbors.

Also, routers flood any changes in link states immediately. The only improvement

that GSR introduced to the traditional LS protocol is that GSR does not flood

the link state packets. Instead, every node in GSR maintains a link state table

based on the up-to-date information received from neighbor nodes, and periodically

exchanges it with its neighbors only. Nodes attach sequence numbers to every

broadcast to facilitate the usage of recent topology information. Exchanging link

state tables only with neighbors reduces routing overhead; however, it slows down

convergence. Moreover, as the number of nodes increases, the size of the link state

tables increases; therefore, the amount of bandwidth consumed increases.

2.1.4 Fisheye State Routing (FSR) protocol

The FSR protocol [76] can be considered as an improved version of the GSR pro-

tocol; the improvement introduced by FSR is that link state table entries that

9

Figure 2.1: scope of fisheye

correspond to closer nodes are exchanged with neighbors, i.e., updated, more fre-

quently than those correspond to far away nodes. This reduces the size of the

exchanged link state tables and improves the utilization of the channel bandwidth.

Even though less frequent exchange of link state information regarding far away

nodes degrades the accuracy of routes leading to those nodes, the route accuracy

increases as packets get closer to destinations. However, when the mobility of far

away nodes increases, the routes to those destinations become less accurate. This

difficulty can be overcome by making the exchange frequency of link state informa-

tion with remote nodes proportional to the rate of mobility. Figure 2.1 illustrates

the operations of FSR in an ad hoc network containing three fisheye scopes with

respect to node 11. These scopes are shown as different shades of the gray.

2.1.5 Source-Tree Adaptive Routing (STAR) protocol

In the STAR [47] protocol, every node exchanges with its neighbors the prosperities

of links it uses to reach other nodes. The set of links along the preferred paths used

by a node to reach other nodes is called the source tree of that node. Using the

source trees reported by its neighbors and the link state information of the adjacent

links, every node can build partial topology graph. This graph is used to create

the source tree of that node. Since the source tree contains only a subset of the

links in the network, the amount of overhead information exchanged between nodes

is significantly reduced. Moreover, the exchange of the routing information takes

place in an event driven manner, i.e., it is not periodic. A node ϑ reports changes

in its source tree to its neighbors in one of the following cases:

1. ϑ discovers a new neighbor.

10

2. ϑ loses all its routes to some destination.

3. The change in the cost of a path exceeds a predefined threshold.

4. The possibility of permanent loop formation.

Even though the STAR protocol reduces the consumption of channel bandwidth,

it may require significant memory and processing overhead in large and highly

mobile networks.

2.1.6 Distance Routing Effect Algorithm for Mobility

(DREAM)

The DREAM [14] algorithm introduces new ideas to the field of routing in Ad hoc

networks. As in all proactive protocols, in DREAM every node collects routing

information about other nodes even if there is no need for it; and it uses this infor-

mation to trigger a directed flood to deliver messages to the intended destinations.

The direction of the flood is calculated in an on-demand basis using the stored

information, i.e., this algorithm exhibits some reactive features. The novelty of this

algorithm is in the type of information it collects and how often this information is

updated. Every node utilizes a GPS system to determine its location information

and it disseminate this information to all other nodes that store it in location ta-

bles. Location information can be sent in smaller packets than those used to carry

distance information; therefore, DREAM is more efficient in terms of bandwidth uti-

lization. The designers of DREAM have noticed that location information of nodes

that are far away from each other seems to change in a rate that is slower than the

actual one. Thus, they make the rate of location-information update proportional

to the distance between nodes. That is every node sends location-information up-

dates to nearby nodes more frequently. This is accomplished by including lifetime

information in the update message. Lifetime, or time to live (TTL), is expressed

in terms of the number of traversed hops. Messages with short TTL are sent more

frequently. Moreover, the frequency of location-information update is proportional

to nodes mobility, i.e., highly mobile nodes disseminate their location information

more frequently. Based on the location-information of the destination, the source

node can determine the direction of the flood process used to deliver messages to

that destination.

11

2.1.7 Multimedia support in Mobile Wireless Networks

(MMWN) protocol

The MMWN protocol [62] is a hierarchal link-state routing protocol that takes

the QoS requirements into consideration in the process of route establishment. In

the MMWN protocol, nodes are classified into endpoints and switches. Endpoints

organize themselves in cells, called level-0 clusters, around switches called cell-

heads. Every endpoint belongs to only one cell-head switch and it is in direct

contact with that switch. Switches organize themselves in clusters and they elect

one of them to become the cluster leader; cluster leaders organize themselves in

higher-level clusters and elect leaders for these clusters. The number of members

allowed for each cluster controls the number of hierarchal levels. Figure 2.2 explains

the hierarchal structure of the network according to the MMWN protocol. Every

level-n cluster, n > 0, is a parent cluster of some level-(n-1) clusters and grandparent

of some level-(n-2) clusters; for example in Figure 2.2 cluster B is the parent of

clusters E and F while cluster U is their grandparent.

Switches are classified into border switches, i.e., switches that are in contact

with endpoints from other clusters that belong to the same hierarchal level, and

interior switches that include all other switches of the cluster; for example, in Figure

2.2, switches X and S are border switches of cluster E; and all other switches of

that cluster are interior ones. Neighbor clusters of the same level communicate

through virtual gateways, VGs, which are pairs of peer border switches that are in

contact with each other. A virtual link, VL, connects two non-neighboring clusters

of the same level through the virtual gateways of a third cluster that is a common

neighbor to both of them; in Figure 2.2, switches X and Z are border switches that

form a virtual gateway between clusters E and D, and the link between switches Y,

X and Z is a virtual link that connects clusters F and D. Every endpoint and every

switch has a globally unique identifier known as the endpoint-id and the switch-id,

respectively. Moreover, every level-n cluster, n > 0, has a unique ID among its

siblings. The ID of any level-0 cluster is the ID of its cell-head switch. The address

of any level-n cluster is its local ID prefixed by the IDs of all its parents; for example

the address of cluster E in Figure 2.2 is U.B.E, and the address of any endpoint is the

same as that of its cell-head switch, i.e., its level-0 cluster. Moreover, every cluster

has a switch known as the location manager, LM, and it is the only member of the

cluster that keeps track of the locations of other endpoints. Also, every cluster has

a QoS manager that is responsible of generating the link state information of all

links within the cluster and between clusters of the same level. In level-0 clusters,

12

Figure 2.2: The hierarchal structure of MMWN

Figure 2.3: The location table update due to node movement

13

the switch acts as the cluster’s QoS manager. The QoS characteristics of the cluster

links are included in its link state information. The leader of level-n cluster sends

the link state information to the leaders of its sibling clusters and the leaders of its

children clusters. Based on the received link state information, the leaders of level-

0 clusters can build a topology map of the network and can select routes based

on the QoS requirements. Whenever an endpoint wants to start a session with

other endpoint, it provides the destination ID to its cell-head switch that consults

its location manager about the location of the destination and then determines

the route that satisfies the QoS requirements. This algorithm tries to mimic the

cellular phone system by selecting nodes that has low relative mobility to function

as switches for nodes in their proximity and as a result limits the number of nodes

needed to keep track of link state and location information and hence reduces the

routing overhead. The main disadvantage of this algorithm is that whenever an

endpoint moves from a cluster to an other, all the location managers of the clusters

within which the movement occurred have to be updated and this might lead to

inconsistency in the location tables due to propagation delays. Figure 2.3 shows an

example of node movement and the location tables’ updates that have to be done.

2.1.8 Cluster-head Gateway Switch Routing (CGSR) pro-

tocol

The CGSR protocol [30] is another hierarchal routing protocol in which nodes are

grouped into clusters. Each cluster has a cluster-head elected from its members.

Nodes that are in the communication range of more than one cluster-head are called

gateways. The CGSR protocol differs from the MMWN protocol in that:

1. There is only one level of clustering.

2. Cluster-heads use distance information to select routes (in fact it uses the

DSDV to route messages among cluster-heads through gateways).

In the CGSR protocol, every cluster-head maintains two tables; one is used

to store the affiliation information and it has an entry for each node that stores

the node ID along with the ID of the cluster-head of that node stamped with

a sequence number to facilitate the identification of stale affiliation information.

Cluster-heads exchange these affiliation tables periodically through gateways. The

other table, (also maintained by gateways), is used to store routing information and

it has an entry for each cluster-head stamped with a sequence number generated by

14

Figure 2.4: The CGSR hierarchal structure and routing mechanism

the cluster-head itself along with the ID of the gateway (cluster-head in the tables

maintained by gateways), on the shortest bath to that cluster-head. Cluster-heads

and gateways exchange their routing tables periodically. Whenever a node has a

message to send to another node, it first sends it to its cluster-head that finds the

destination’s cluster-head by looking into its affiliation table; the cluster-head of

the source node then uses its routing table to identify the gateway that provides the

shortest path. This gateway uses its routing table to identify the next cluster-head

on the shortest path and so on. Figure 2.4 depicts the hierarchal structure imposed

by CGSR and the mechanism of message delivery.

This algorithm tries to reduce the routing overhead by allowing only cluster-

heads and gateways to maintain and exchange routing information. The major

disadvantage of the CGSR protocol is that cluster heads and gateways are heavily

loaded so that they consume more power than other nodes; moreover, in highly

mobile networks, there might be significant overhead associated with maintaining

clusters.

2.1.9 Hierarchal State Routing (HSR) protocol

The HSR protocol [77] is a hierarchal link state routing protocol that resembles to a

great extent the MMWN protocol, except in the location management aspect which

is considered a drawback of the MMWN protocol. In the HSR protocol nodes are

grouped in clusters and the nodes of every cluster select a cluster head; the cluster

heads are grouped in higher level clusters that have cluster heads. There are three

types of nodes in every level-0 cluster, namely: cluster head nodes, gateway nodes,

and internal nodes; for example, in Figure 2.5, nodes 1, 4, and 6 are cluster heads;

nodes 3 and 7 are internal nodes; while nodes 2 and 5 are gateways. The cluster

15

Figure 2.5: HSR hierarchal structure and addressing mechanism

heads of higher level clusters are called virtual nodes and the links between these

nodes are called virtual links.

In addition to its unique ID (its MAC address), every node has a hierarchal

physical address known as the HID address and it is composed of the node ID

prefixed by the IDs of all its parent clusters; for example, in Figure 2.5, the HID of

node 3 is < 1, 1, 3 >. Nodes of the same cluster, at all levels, exchange link state

information about links belonging to the same level; moreover, they exchange a

summary of the link state information of the lower levels. Higher level cluster heads

flood down the information of the network connectivity at their levels to the nodes

of the lower levels so that level-0 nodes can have a prospective about the network

topology. Using the HID address, a packet can be delivered to any destination from

any source; for example, to send a packet form node 3 whose HID is < 1, 1, 3 > to

node 7 whose HID is < 6, 6, 7 >, the packet first is delivered to node 1 which is the

cluster head of node 3; using the HID address of the destination, node 1 realizes

that its job is to deliver the massage to node 6 which is the cluster head of node 7.

Using the level-1 link state information, node 1 finds a logical link to node 6; this

link passes through nodes 2-4-5. HSR provides a remedy to the problem of location

management of mobile nodes by introducing the concept of logical subnet which is

a group of nodes that have common characteristics (e.g., professionals belonging to

16

the same company, students of the same class, etc.), who are not necessarily close to

each other in terms of the physical distance. In addition to the HID address every

node has a logical address in the form of < subnet − host >. Each subnet has a

home agent that is responsible of keeping track of the HIDs of its members. Home

agents advertise their HIDs to the higher level cluster heads, so that cluster heads

know the HID of every home agent at all times. Every node updates its home agent

about its HID either periodically or on event-driven basis. When a node moves to

a new cluster, only its home agent is updated, so that the communication overhead

is reduced and the inconsistency problem that arises from updating many agents

is avoided. Whenever a node wants to communicate with any other node, first it

extracts the subnet information from the destination’s logical address and consults

it cluster head to get the HID of the destination’s home agent; it then uses this HID

to query the home agent about the destination’s HID. Once the source knows the

HID of the destination, the communication takes place without involving the home

agents. HSR reduces the routing and control overhead significantly. However, as

for all hierarchal protocols, it involves overhead related to clusters formation and

maintenance.

2.1.10 Optimized Link State Routing (OLSR) protocol

The OLSR protocol [56] is an optimized version of the traditional link state algo-

rithm. This protocol minimizes the size of the update message by allowing nodes

to include the link state information of only a subset of their neighbors, which are

called the node’s multi point relay selectors. Moreover, it introduces a mechanism

to control the flooding process by allowing only a subset of node’s neighbors to re-

transmit its update massages; these nodes are called the multi point relays (MPR).

Neighboring nodes, other than the MPRs, receive and process the link state pack-

ets; however, they are not allowed to retransmit them. Every node constructs its

MPR set by periodically exchanging its one hop neighborhood information with

its neighbors. The exchange of such information allows every node to discover its

two hop neighborhood and to find the minimum number of one hop neighbors that

allows it to reach any node in its two hop neighborhood; for example, in Figure 2.6,

the MPR set of node A consists of nodes B, C, K, and N. In this example node A

is called the MPR selector of nodes B, C, K, and N.

Every node sends a Hello message to its neighbors; Hello messages contain the

IDs of its MPRs; so that the MPRs become aware of their MPR selectors and

hence retransmit any link state packets received form these selectors. The OLSR

17

Figure 2.6: The MPR set

protocol depends on the MPRs to deliver messages between any source-destination

pairs. To achieve this mechanism every MPR node informs its neighbors about its

MPR selectors; MPRs of the announcer node retransmit the received information to

their MPRs until the entire network is covered. Network nodes use this information

to build topology tables that represent the topology map of the network. These

topology tables are used to compute routing tables. In addition to the routing

tables and topology tables, every node N in the OLSR protocol maintains two

other tables, namely:

1. Neighbors Table: this table contains an entry for each neighbor wherein

it stores the neighbor ID, the status of the link to that neighbor: (uni-

directional, bi-directional, or MPR which is the case if that neighbor is a

MPR node).

2. MPR selectors Table: this table contains an entry for every neighbor that has

selected node N as a MPR node.

2.1.11 Topology Broadcast Reverse Path Forwarding (TBRPF)

protocol

The TBRPF protocol [18] is a link state routing protocol in which a reduction in

the routing overhead is achieved by making every node broadcasts differential link

state information, i.e., only changes that happened after the last transmission are

reported. Moreover, nodes send only parts of their source trees to their neighbors;

18

these parts include only links to nodes that the sender anticipates one of its neigh-

bors may use as part of its shortest path to other nodes. Furthermore, this protocol

uses the reverse path forwarding mechanism (RPF) to limit the flood process. RPF

allows node ϑ to retransmit packets from source node µ if and only if these packets

arrived on the link that ϑ would use as part of its shortest path to µ.

2.1.12 Characteristics of the proactive routing protocols

• In general, flat routing algorithms are not scalable due to the large routing

over head they introduce to the network.

• The OLSR and DREAM protocols are the most scalable flat routing algo-

rithms.

• Hierarchal routing algorithms are more scalable than the flat ones. However,

in highly mobile networks they introduce extra processing overhead related

to cluster formation and maintenance.

2.2 Reactive routing protocols

As mentioned earlier, reactive protocols, also known as on-demand protocols, look

for and maintain routes only when they are needed. The on-demand nature of these

algorithms frees nodes from keeping track of changes in link states and distances

when there is no communication activity taking place. This approach results in

significant optimization of the channel use; however, it results in some delay due to

the route discovery stage.

2.2.1 Dynamic Source Routing (DSR) protocol

The DSR protocol [61] is considered as an ideal example of on-demand routing

protocols. In this protocol, every node maintains a route cache wherein it caches

routes for destinations with which it has communicated recently or it has learned

of by listening to the communication activities tacking place around it. Whenever

a node has data packet to send to any other node, it checks its cache to see if it

has a fresh enough route for that destination. If so, it embeds that route in every

data packet to be sent. Otherwise, the source node starts a route discovery process

by creating query packet that contains the destination address, the source address,

19

and a unique sequence number and floods it to the entire network. Upon the re-

ception of the query packet, any intermediate node that does not have a cached

route for the destination attaches its addresses to the query packet and retrans-

mits it. Intermediate nodes retransmit the query packet if it was not seen before;

otherwise, they ignore it. This process continues until the query packet reaches

the destination node or an intermediate node that has a route to the destination.

When the destination node receives the query packet, it sends a route reply packet

to the source node; the route reply packet uses the route embedded in the query

packet to reach the source packet or it uses another route if the communication

links are not bidirectional (this route can be found in the route cache or by an-

other route discovery process). On the other hand, if the reply is generated by an

intermediate node, that node concatenates its cached route to the destination to

the addresses of the nodes traversed by the query packet during the search process.

The disadvantage of the DSR protocol is that since data packets have to carry the

entire routing information, the size of data packets increases with the increase of

the network diameter

2.2.2 Ad hoc On-demand Distance Vector (AODV)

protocol

The AODV protocol [38] can be thought of as a combination of the DSDV and

DSR protocols. It takes the sequence numbers and the periodic Hello messages of

the DSDV protocol and the route discovery mechanism of the DSR protocol. The

difference between the AODV and DSR protocols is that in the AODV protocol

data packets carry only the address of the destination; every node on the path

knows the ID of the next node on the route to the destination. In the AODV

protocol every node maintains two monotonically increasing numbers :

1. The broadcast id that is incremented every time the node initiates a route

discovery process.

2. The node sequence no that indicates freshness of the routing information

related to a particular node.

Whenever a node wants to send a message to any other node for which it has

no valid route, it starts a route discovery process by creating RREQ packet that

carries: the source’s ID, the source’s broadcast id, the destination’s ID, the latest

20

sequence number of the destination that the source has heard of, and a hop count;

then it floods this RREQ to the network. Any intermediate node, γ, that satisfies

the following two conditions:

1. It does not have a fresh enough route to the destination, i.e., route with a

sequence number that is larger than or equal to that indicated in the RREQ

packet.

2. It has not seen this RREQ packet before.

proceeds as follows:

1. γ increments the hop count field of the RREQ packet and retransmit it to all

its neighbors.

2. γ stores the address of the node from witch it received the RREQ packet to

use it later to forward the route reply packet to the source node.

When the RREQ packet reaches the destination node or an intermediate node

that has fresh enough route to the destination, a route reply packet, RREP, is

generated and sent back to the source node. During the propagation of the RREP

packet toward the source node, every node that receives a copy of the RREP packet

sets an entry in its routing table that contains the source’s ID, the destination’s ID,

the destination’s Sequence No, the ID of the next hope node toward the destination,

and the number of hops traversed so far. Nodes ignore any other copies of the RREP

packet unless they contain a higher sequence number for the destination or provide

routes with less hop count. When the RREP packets reach the source, the route

traversing the smallest number of hops is selected. Even though the AODV protocol

can adapt to highly dynamic networks, nodes may experience long delays during

the route discovery phase.

2.2.3 Routing On-demand Acyclic Multi-path (ROAM)

protocol

The ROAM protocol [82] is a reactive routing protocol that provides loop-free mul-

tiple paths to destinations using internodal coordination operation called diffusing

computations. The main problem that ROAM solves is the searching-to-infinity

problem in which a source node continues to search for a given destination by

21

flooding the network with query packets even if that destination is unreachable.

The solution introduced by ROAM is the use of routing tables that mark a desti-

nation as unreachable if there is no route that leads to it. Thus, the node will not

participate in any search process for that destination in the near future. Moreover,

ROAM allows all nodes that participate in the search process to benefit from it by

either getting a finite distance route to the destination or by marking the desti-

nation as unreachable. ROAM is not pure on-demand protocol because nodes use

distance tables and routing tables that might contain entries for routes that are not

used at the moment. The flood process is reduced by storing multiple paths to the

same destination that are ranked by their distance. Routes that are shorter than

a given length, known as the feasible distance (the distance of previous shortest

path), are kept for future use if the shortest one (the one stored in the routing

table) fails or its cost, i.e., length, increases. If there is no alternative route or if all

alternatives become invalid, the source uses the flood process to find other set of

routes. The result of this flood process is made common to all nodes participated

in the flood. Another novelty of ROAM is that, every time a node detects a change

in the cost of one of its links that exceeds a predefined threshold, that node informs

its neighbors so that they update their routing tables based on the new changes.

Although ROAM achieves better network connectivity, in highly mobile networks

where changes in link costs are frequent, it may prevent nodes from entering sleep

mode and hence it increases the power consumption.

2.2.4 Light-weight Mobile Routing (LMR) protocol

The LMR protocol [34] is one of the on-demand routing protocols that use the

link reversal approach to establish a directed acyclic graph, DAG, rooted at the

destination. This graph offers loop-free multiple paths to the destination. Nodes

maintain routes only to their neighbors; whenever a node wants to send data to a

non-neighbor node, it creates a query packet that contains a sequence number, the

source ID, the destination ID, and the ID of the transmitting node. Intermediate

nodes keep track of query packets they have seen and retransmit any query one time

only. Also they keep the IDs of the transmitting node and the destination node.

When the query reaches the destination node or an intermediate node that has a

route to the destination, a reply packet that includes the source ID is generated

and sent back to the node from which the first copy of the query was received. This

reply packet propagates through the network until it reaches the source node. The

directions of the links over which the reply propagated are directed in the opposite

22

direction of the reply propagation. Links that are directed into a node are called

upstream links, and those directed out of a node are called downstream links. LMR

offers multiple paths to the same destination so that when a path fails, there will be

other paths to replace it. Figure 2.7 shows an example of LMR route construction.

LMR reduces the routing overhead through limiting and localizing the effects of link

failure by prohibiting nodes from announcing link failures unless a node loses all its

downstream links; in this case, this node informs all its upstream neighbors using

failure query packets (FQ) that contains the identifiers of the generating node and

the destination node. Upon the reception of the FQ packets, the upstream nodes

erase the routes that go through the failed link; any upstream node that has an

alternative route to the destination informs the FQ generating node using reply

message; otherwise, it propagates the FQ packet to its upstream neighbors. Figure

2.8 shows an example of route maintenance in LMR.

The drawback of LMR is that it can result in temporary invalid routes in case

of network partition. Even though it has been shown that these invalid routes will

eventually be erased, there is no finite bound for the time required to get rid of

these invalid routes.

2.2.5 Temporally Ordered Routing Algorithm (TORA)

The TORA algorithm [35] is a source initiated routing algorithm based on the link

reversal protocol proposed for wireless mobile networks; TORA aims at providing

loop-free multiple paths between any source/destination pair and it is considered

to be a descendant of the LMR protocol due to the fact that TORA uses the

same directed acyclic graph (DAG) creation procedure used by LMR. However,

the advantage of TORA over its ancestors ([34, 45]) is that TORA can detect a

network partitioning and erase all routes to the unreachable destinations in a finite

time. By localizing the effect of link failure to the neighborhood in which the

failure took place TORA reduces the routing overhead in highly mobile ad hoc

networks; however, this may lead to the use of non-optimal routes after the failure

of the optimal ones. The main idea of TORA can be explained by the flow of

water in a network of pipes toward a sink, i.e., a destination. In this analogy, pipes

represent links and junctions between pipes represent nodes. Every node, except

the destination, has a relative height with respect to a reference level defined by

some neighbor. The definition of the reference level contains information about

the time at which the reference level was defined, and that is the reason behind

the name Temporally Ordered. The height metric of a node, γ, is expressed as

23

Figure 2.7: LMR route construction

Figure 2.8: LMR route reconstruction

24

a quintuple comprising two parts: a reference level (the first three components),

and the offset from that level (the last two components). The components of the

quintuple are:

1. The logical time of the link failure,

2. The ID of the node defining the reference level,

3. A reflection indicator bit.

4. The offset from the reference level,

5. The ID of node γ.

Heights are assigned in lexicographical order, i.e., node i = (i1, i2, .., i5) is consid-

ered higher than node j = (j1, j2, .., j5) if and only if i1 > j1, or i1 = j1 and i2 > j2,

etc. Links are directed from higher nodes toward lower nodes. The destination

, ϑ, is always assigned the lowest height, namely its height is always represented

by the following quintuple (0, 0, 0, 0, ϑ’s ID). Route discovery is accomplished

using the same query-reply mechanism used in LMR with the exception that query

packets always reach the immediate neighbors of the destination. Whenever a node

has a data to send to some destination, it creates a query packet containing the

destination ID and floods it to the network. Usually, the route discovery process

results in the creation of multiple loop-free paths; Figure 2.9 shows an example of

the route discovery process. Whenever the last outgoing links of a given node fails,

that node starts a maintenance process by defining a new reference such that its

new height will be greater than the heights of all its neighbors; moreover, it informs

its neighbors about its new height so that they adjust the directions of their links

according to the current heights. The definition of new reference level may lead

to the reversal of one or more links to become outgoing links and hence it creates

new route to the destination; however, link reversal does not create new routes in

all cases. If the reversal process due to link failure causes any neighbor to lose all

of its outgoing links, that neighbor reacts by creating another reference level that

has the reflection indicator bit set to 1 to distinguish between references resulted

from link failure and those resulted from link reversal (known as reflected levels).

If all neighbors of a given node, ϑ, have height quintuples with reflection indicator

set to 1, the loss of all outgoing links of ϑ leads it to conclude that the network is

partitioned and hence the destination is unreachable. ϑ informs its neighbors about

the network partitioning so that they erase all invalid route. The fast discovery of

25

network partitioning is the main advantage of TORA over LMR. Figures 2.10 and

2.11 show an example of TORA route maintenance while Figure 2.12 shows the

erasing of invalid routes due to network partitioning. Although routes ultimately

converge, they may suffer from temporary oscillations before convergence.

2.2.6 Associativity-Based Routing (ABR) protocol

The ABR protocol [87] is a reactive routing protocol in which routes are established

using the same Query-Reply approach as that used in DSR [61]. The novelty of the

ABR protocol is that routes are selected based on the temporal stability of their

links. In the ABR protocol, nodes use Hello messages to discover their neighbor-

hood. Every node keeps a list of neighbors wherein it stores the associativity degree

of each neighbor based on the number of consecutive Hello messages received from

it. The higher the number of consecutive Hello messages received over a link the

better is the temporal stability of that link. Whenever the connectivity with a

neighbor is lost, the associativity degree with that neighbor is reset. When the first

copy of the RREQ packet is received by an intermediate node, that node adds its

ID and the connectivity degree of the link over which the packet was received to the

RREQ packet and transmits it to its neighbors. A route reply packet (RREP) is

generated by the destination node or any intermediate node that has a valid route

to the destination. A RREP is not generated immediately after the reception of the

first RREQ; instead, the node generating the RREP waits for a while anticipating

that other RREQs will arrive over more stable links. The sum of the associativity

degrees of the links of a given route represents the overall stability of that route.

Routes are selected based on their overall stability; if two routes have the same

overall stability, the shorter one is selected. The ABR protocol tries to minimize

the overhead of route recovery by localizing the recovery process to the neighbor-

hood of the failed link. Whenever a link failure happens, the node (γ) immediately

upstream of the failed link generates a short living, localized query packet (LQ)

and sends it to its neighbors, the time-to-live of the LQ is set to one or two hops.

If there is no replay after LQ-timeout period, a notification is sent to the upstream

neighbor of γ that will try to repair the failure by sending another LQ packet. If

the upstream nodes up to the middle of the path were not able to repair the route,

a notification message is sent to the source node to initiate another route discov-

ery process. Although routes offered by the ABR protocol are not necessarily the

shortest ones available, they tend to last longer. The main disadvantages of ABR is

that it forces all nodes to stay active all the time discovering their neighborhood ;

26

Figure 2.9: TORA route construction

Figure 2.10: Failure that triggers no repair

Figure 2.11: Repairing a failed route

27

Figure 2.12: Network partitioning discovery and invalid route erasing.

hence, it may result in high power consumption. Moreover, the ABR protocol does

not maintain multiple routes to the same destination, i.e., a route repair is needed

every time a route failure occurs.

2.2.7 Signal Stability Adaptive routing (SSA) protocol

The SSA protocol [40] can be considered as a descendant of the ABR protocol

because it employs the same principle of selecting routes by destinations based

on route stability. Using stable routes, that are not necessarily the shortest ones,

reduces the rate of route failure and hence improves the efficiency of bandwidth

use. The SSA protocol differs from the ABR protocol in that the SSA protocol

uses more sophisticated stability measure based on signal strength and location

stability. Neighbors periodically exchange Hello messages with each other. Every

node maintains two tables:

1. The signal stability table (SST) in which the average signal strength of Hello

messages received from each neighbor is stored.

2. The routing table (RT) in which the next hop on the path to every destination

is stored.

At anytime, the number of consecutive Hello messages received with certain

signal strength from each neighbor is used as a measure of the location stability

28

of that neighbor. Once the location stability of a given neighbor exceeds a certain

threshold, that neighbor is considered a strongly connected neighbor and an entry

for it is added to the routing table. The reception of a Hello message of weak

signal strength from a given neighbor resets its location stability to zero, marks it

a weakly connected neighbor, and deletes it from the routing table. When a node

needs a route to a particular destination, it sends a RREQ packet to its neighbors.

An intermediate node that receives a RREQ packet from a strongly connected

neighbor retransmits the RREQ packet to its neighbors. Only the destination is

allowed to generate route reply. Preference is given to strongly connected routes for

their tendency to live longer. If there is no strongly connected chain of links between

the source and the destination, no RREP will be generated; hence, the RREQ will

time out and the source will initiate another RREQ with relaxed signal strength

requirements. A route failure triggers the transmission of an error message to the

source node to erase the invalid route and initiate new route discovery process.

Although the SSA protocol produces longer living routes, it introduces long delay

due to the fact that only destinations are allowed to create route replies. Moreover,

allowing only source nodes to repair routs incurs more delay by spending extra time

in informing source nodes about route failures.

2.2.8 Relative Distance Micro-discovery Ad hoc Routing

(RDMAR) protocol

The RDMAR protocol [3] is a loop-free routing protocol especially designed for

large ad hoc networks that exhibit moderate rate of topological changes. RDMAR

tries to minimize the routing overhead by localizing the query flooding used for

route discovery and by localizing the reactions to link failures to small regions of

the network geographical span. This is achieved by exploiting the information of

the relative distance between the source and the destination expressed in terms

of number of hops. Every node maintains a routing table with an entry for every

reachable destination; this entry stores the destination ID, the nest hop on the path

to the destination, the relative distance to the destination in terms of number of

hops, the time of the last update of the relative distance, and the remaining time

before route expiration. Whenever a node, γ, wants to send a packet to another

node, µ, for which it has no valid route, it sends a RREQ packet to all its neighbors

asking for a route to µ. If there was no previous communications between γ and

µ, the RREQ flood will cover the entire network; however, if γ has communicated

with µ previously, γ uses its information about the previous relative distance and

29

the time elapsed since the last update of the relative distance to compute a new

relative distance. The new relative distance is used as the time-to-live (TTL) of

the RREQ. In the computation of the new relative distance, an average speed

and average transmission range are used. Upon the reception of the RREQ by an

intermediate node, this node sets the next hop node on the route to the source to be

the node from which the first RREQ copy was received; and then it retransmits the

RREQ to its neighbors. All subsequent copies of the same RREQ are discarded. In

order to avoid using stale information provided by intermediate nodes that might

lead to routing loops, only the destination node is allowed to generate route reply

packet (RREP). Whenever an intermediate node receives a RREP, it compares the

hop count of the offered route with that of the route stored in its routing table (if

any); the route with the smallest hop count is stored in the routing table. If all

attempts made by an intermediate node, ϑ, to forward a packet fail due to link

failure, this node proceeds as follows:

- If the failure is closer to the destination node, ϑ initiates a route discovery

process to find a new route.

- If the failure is closer to the source node, ϑ sends a failure notification packet

(NF) to neighbors that use it to reach the destination whose route has failed.

These neighbors are stored in a list called the dependent list. Upon the re-

ception of the NF packet, every node in the dependent list removes the entry

associated with that destination from its routing table; moreover, if it has no

alternative route to the destination, it forwards a copy of the NF packet to

all members of its own dependent list. To guarantee the delivery of the NF

packet, any node that receives the NF packet uses its cached route to the

source to deliver this error message.

Although the RDMAR protocol conserves a significant portion of the channel

bandwidth without using any special equipments like GPS, when there is no pre-

vious communication between the end points, it acts in a pure flooding fashion.

2.2.9 Location-Aided Routing (LAR) protocol

The LAR protocol [63] is an on demand routing protocol that exploits the location

information of the nodes to confine the flood process to a limited region of the

network geographical span and hence reduces the routing overhead. While the

RDMAR protocol specifies the region of the search process in terms of the number

30

Figure 2.13: The expected zone and the request zone concept

of hops separating the session’s end nodes, the LAR protocol uses the location

coordinates of the end nodes provided by GPS system to achieve the same goal.

In the LAR protocol, if the source node knows the location information, l, of the

destination node at time, t0; then it can estimate the location of the destination

node at any later time t1. Because the source uses the average speed, v, of the

destination; the location estimate is a zone called the expected zone. In general,

the expected zone is a circle with radius equal to v∗(t1−t0) centered at l. The more

information available about node movement, the narrower is the expected zone; for

example, if the direction of movement of the destination is available, the expected

zone will be of a semi-circular shape. Another term introduced by the designers of

the LAR protocol is the request zone, which is the smallest rectangular region

that contains the source node and the entire expected zone. Figure 2.13 explains

the concepts of expected zone and request zone.

Only nodes located in the request zone can participate in the flooding process.

For a given route search, every node must be able to know whether it is inside or

outside of the request zone in order to decide whether to take part in the route

search or not. Two different schemes are used to specify the request zone:

- The first scheme: in this scheme the source node embeds the coordinates

of the four corners of the request zone in the RREQ packet, so that inter-

mediate nodes are able to determine whether they are inside or outside this

zone.

- The second scheme: in this scheme the source node embeds in the RREQ

packet the destination coordinates, which might be out dated, and its distance

31

to this destination. Every intermediate node compares its own distance to the

destination with that embedded in the RREQ packet; if its own distance to the

destination is less than that embedded in the RREQ packet, the intermediate

node modifies the RREQ packet by replacing the old distance with its own

distance and retransmits the RREQ packet to its neighbors.

In both schemes, only the destination is allowed to generate the RREP packets.

The set up of forward routes (during the RREQ propagation) and backward routes

(during the RREP propagation) is done the same way as in the AODV protocol

[38]. Although the LAR protocol reduces the routing overhead and, in most cases,

discovers the shortest routes to destinations, it assumes the availability of GPS

equipped nodes which is not always a valid assumption. Moreover, if the location

information is not available; for example, in the first communication session, or

when that information is not valid due to high rates of mobility or to long time

periods of no communication, wide request zones that may cover the whole network

are used, i.e., pure flooding is employed.

2.2.10 Ant colony based Routing Algorithm (ARA)

The ARA algorithm [52] is based on the ant colony meta heuristic technique, which

is a multi-agent system of simple agents called ants. The individual ants; i.e.,

agents, are so simple that they can only achieve simple tasks; however, their col-

laboration results in a very powerful problem solving tool. The most fascinating

property of this technique is that no direct communications take place between the

agents during the solution development phase; agents communicate indirectly by

modifying some conditions of the local environment; this kind of communication

is called stigmergy. Ants modify the environment, and hence communicate, by

laying a substance called pheromone on the routes they use from their nest to the

food source. It was found that ants select routes based on the level of pheromone

concentration on these routes. Routes that have higher pheromone level are more

desired and will be used by more ants; therefore, their pheromone level will increase.

On the other hand, the pheromone level of routes that are rarely used gradually

decreases and eventually vanishes due to evaporation. It has been shown that se-

lecting routes based on the pheromone level results in the selection of shortest routes

[39]. The indirect communication mechanism used by ant systems makes them a

potential solution for MANET routing problem since they can offer the shortest

paths while keeping the routing overhead to a minimum. In the ARA algorithm,

32

the artificial ants are small size packets that contain the source ID, the destina-

tion ID, a sequence number, the ID of the transmitting node, and the number of

hops traversed so far. When a node requires a route to a particular destination, it

creates forward ant (FANT) which is basically a RREQ packet and transmits it to

its neighbors. When an intermediate node receives a FANT, it adds a triple of the

following format: (destination ID, next hop, pheromone value) to its routing table;

here, the destination ID is the ID of the source node contained in the FANT, the

next hop is the ID of the neighbor delivered this FANT, and the pheromone value

is the number of hops traversed so far. Based on the source ID, destination ID, and

the sequence number of the FANT, intermediate nodes can realize the reception

of the first copy of a particular FANT. When an intermediate node receives the

first copy of a FANT, it increments the FANT’s hop count field, sets the FANT’s

transmitting ID field to its own ID, and retransmits it to all of its neighbors. The

effect of sending a FANT is that all nodes will have multiple paths to the source

node. When the destination node receives a FANT, it extracts its contents and

destroys it; moreover, the destination generates a backward ant (BANT) which has

the same structure and propagates by the same mechanism as the FANT; however,

the BANT propagates toward the source and results in the creation of multiple

routes to the destination. Figures 2.14 and 2.15 explain the propagation of FANT

and BANT packets through the network.

Figure 2.14: FANT propagation toward the destination.

Figure 2.15: BANT propagation toward the source.

33

Once the route to the destination is established using FANT and BANT packets,

data packets are used to maintain this route by incrementing the pheromone values

of the links used by data packets during their trip to the destination. When a node

discovers a link failure, it rests the pheromone level of that link to zero and looks for

alternative route in its routing table; if there is no alternative route, this node sends

a ROUTE ERROR message along with the data packet to its neighbors expecting

that they can relay it to the destination. If all neighbors do not have a valid route;

they relay the packet backward toward the source node. If the backtracking process

reaches the source node, the source initiates a new route discovery process.

Although the ARA algorithm is able to produce multiple routes to the desti-

nation, the route discovery phase uses two flooding processes (FANT and BANT

flooding) and this might degrade the scalability potential of ARA in large networks

that have heavy traffic.

2.2.11 Flow Oriented Routing Protocol (FORP)

The FORP protocol [86] is an on-demand routing protocol designed to minimize

disruptions that result from route failures during communication sessions. The

disruption minimization is achieved by employing a mechanism to predict route

failures ahead in time so that alternative routes can be found and used before

the occurrence of failures. The FORP protocol is well suited for real time traffic;

however, it can be used with non real-time traffic. It is assumed that nodes are able

to predict the link expiration time (LET) of links connecting them to their neighbors

by knowing the mobility characteristics of those neighbors; i.e., the speed and the

direction of movement. The minimum link expiration time of the links of a given

route is called the route expiration time (RET). When a node needs a route to a

given destination node, it initiates a route discovery process using a FOLW REQ

packet. The route discovery process used by the FORP protocol is very similar to

that used by the DSR protocol [61]; however, the FORP protocol introduces the

following modifications:

- Before retransmitting the FLOW REQ packet, intermediate nodes embed the

LET of the link over which the FLOW REQ packet was received into this

packet.

- Intermediate nodes retransmit the FLOW REQ packet if it is the first copy

or it includes a route that has a better RET than that of the FLOW REQ

packet retransmitted most recently.

34

Routes are selected by destinations based on the RET characteristics: the route

with the largest RET is preferred. If there are more than one route with the same

RET, the one with the minimum number of hops is selected. After selecting a route,

the destination node sends a FLOW SETUP packet to the source node using the

selected route; all nodes located on the selected route maintain routing information

for this route. During data transmission, intermediate nodes embed the LET of the

used links into data packets so that the destination is updated about the RET of

the selected route. When the selected route is up to expire, the destination creates

a FLOW HANDOFF packet destined to the source and floods it to the network;

the function and the propagation mechanism of the FLOW HANDOFF packet are

the same as those of the FLOW REQ packet. When the source receives the FLOW

HANDOFF packet, it selects the best route to the destination and sends a FLOW

SETUP packet to the destination so that nodes along the selected route maintain

routing information for it. The main disadvantage of FORP is that it used flooding

for route discovery which may result it lack of scalability.

2.2.12 Cluster-Based Routing Protocol (CBRP)

The CBRP protocol [58] is an on-demand routing protocol in which nodes are

grouped into clusters to control the flooding process used in route discovery phase.

Every node can be in one of three possible states: cluster head, cluster member, or

undecided, i.e., not affiliated. When a node joins the network it has the undecided

state. To affiliate with a cluster, a node in the undecided state, ϑ, broadcasts a

Hello message and waits for a reply from a cluster head; if a positive reply is received

within predefined time period, ϑ changes its state to cluster member. Otherwise, if

it has at least one bidirectional link with other cluster members, ϑ changes it state

to cluster head. Every node maintains a neighbor table in which it stores the ID,

state, and link statues (bidirectional or unidirectional) for each neighbor. Neighbor

nodes exchange their neighbor tables with each other. The exchange of neighbor

tables allows nodes to discover their two-hop neighborhood. Moreover this enables

cluster heads to identify member nodes that can be used to reach nodes in other

clusters; these nodes are called gateway nodes. The route discovery approach used

by the CBRP protocol is the same as that used by the DSR protocol except that the

CBRP protocol allows only cluster heads and gateways to participate in the route

discovery flood. The CBRP protocol uses the source routing approach in which

data packets include a routing header that contains the complete path from source

to destination. To avoid using flood process for route repair and to minimize the

35

delay associated with repairs, the CBRP protocol uses local repair mechanism in

which the intermediate node whose link fails try to bypass it by using its two-hop

topological information. In addition to the cost incurred by cluster formation and

maintenance, the inclusion of the whole path in every data packet consumes a large

portion of the packet and increases the routing overhead.

2.2.13 Characteristics of the reactive routing protocols

• The main drawback of reactive protocols is the latency associated with route

discovery phase.

• Most of the reactive protocols, except CBRP, use pure flooding and hence

incur the same cost during the first communication session between any two

nodes.

2.3 Hybrid routing protocols

The protocols of this category use a combination of the proactive and reactive

routing strategies depending on the destination being sought anticipating that the

combination will attain the advantages of both strategies while alleviate their draw-

backs. Hybrid routing protocols use proactive routing technique to find routes to

nodes located in nearby regions and use reactive routing technique to find routes

to nodes in distant regions. Generally speaking, hybrid routing protocols are more

scalable than protocols of the proactive and reactive categories.

2.3.1 Zone Routing Protocol (ZRP)

The ZRP protocol [53] introduces the notion of node’s routing zone which is the

set of nodes within a predefined distance measured in terms of hops; this distance

is called the zone radius (rzone) and it plays an important role in the mechanics of

the ZRP protocol. Every node maintains routes to all members of its routing zone

using any proactive routing protocol. When a node needs a route to another node

that is not a member of its routing zone, it initiates a route discovery process by

sending a RREQ packet to the furthest nodes in its routing zone (these nodes are

known as the peripheral nodes); i.e., routes to remote nodes are created reactively.

The RREQ packet contains the source ID, the destination ID, and the maximum

36

number of hops it is allowed to traverse. Since nodes know all members of their

routing zones, If the RREQ packet was received by a node that is not a member of

the destination’s routing zone, that node appends its ID to the RREQ packet, decre-

ments the maximum hop count, and retransmits the packet to its peripheral nodes.

When the maximum number of hops reaches zero, the RREQ packet is discarded.

On the other hand, when the RREQ packet reaches a node that is a member of the

destination’s routing zone, a RREP packet is generated and sent back to the source

using the reverse path of that used by the RREQ packet. Besides the reduction in

routing overhead achieved by allowing only peripheral nodes to participate in the

route discovery process, the route discovery process provides multiple routes which

allows for reduction in route reconstructions. The performance of the ZRP protocol

is strongly affected by the value of the rzone parameter. If rzone is set to a small

value, the ZRP’s performance is similar to that of pure flooding; on the other hand,

if rzone is set to large value, the ZRP protocol exhibits more proactive behavior.

2.3.2 Zone-based Hierarchical Link State (ZHLS) protocol

The ZHLS protocol [59] is global positioning system-based routing protocol in which

nodes are grouped into non-overlapping clusters called zones. Every zone covers a

specific geographical region and has a unique ID assigned during design time. Nodes

are associated with zones based on their positions. Every node sends periodic link

request packets to its neighbors who in turn send back link reply packets of the

form (Node ID, Zone ID). Upon the reception of the link replies from all neighbors,

each node recognizes all of its immediate neighbors. Nodes that have neighbors

belonging to adjacent zones are called gateway nodes. In the ZHLS protocol, Nodes

exchange two types of link state packets:

- Node level link state packets (node LSPs): Each node creates a node

LSP in which it stores the IDs of neighbors belonging to its own zone, and

only the zone ID of neighbors belonging to adjacent zones. Node level link

state packets are exchanged by nodes of the same zone; nodes discard packets

arriving form other zones. Each node creates intra-zone routing table based

on the contents of the LSPs received from neighbors.

- Zone level link state packets (zone LSPs): These packets are created based

on the information contained in the node level LSPs of gateway nodes; namely

from the IDs of the adjacent zones that can be reached through gateway nodes.

Upon the reception of node LSPs form all members of its own zone, each node

37

of that zone ends up with the same zone LSP packet. These packets propagate

through the whole network via the gateway nodes. The exchange of zone level

LSPs allows all nodes to create inter-zone routing table.

Data packets forwarding inside the same zone is accomplished through the use

of intra-zone routing tables. Forwarding messages between nodes of different zones

is achieved by specifying the destination’s node ID and zone ID and making use

of the inter-zone and intra-zone routing tables. To determine the zone ID of the

destination node, the source node, ϑ, sends a location-request packet that has the

following structure: (Source-Node-ID, Source-Zone-ID, Destination-Node-ID, X),

where X implies that this packet has to be sent to all zones using the shortest

paths according to the inter-zone routing table; upon the reception of this mes-

sage, each gateway looks for the destination into its intra-zone routing table; if the

destination is not a member of the zone, i.e., it is not included in the intra-zone

routing table, the request is forwarded to other zones; otherwise, a location reply

of the following format: (Destination-Node-ID, Destination-Zone-ID, Source-Node-

ID, Source-Zone-ID) is sent back to the source node. The location request process

incurs much less overhead than that results form flooding process used by most

reactive protocols. The main drawback of the ZHLR protocol is that it requires a

static map to assign nodes to zones based on their positions; this map is not always

available especially when the network boundaries change dynamically.

2.3.3 Scalable Location Update Routing Protocol (SLURP)

The SLURP protocol [90] is another routing protocol that uses location information

to accomplish the routing task; however, the SLURP protocol needs only approx-

imate location information to deliver messages. The SLURP protocol is based on

a combination of two procedures: the geographic location management procedure

and the Most Forward with fixed Radius without backward progression (MFR)

geographic routing procedure [54]. In the MFR procedure, based on the location

information of the destination, a neighbor is chosen as the next hop to the desti-

nation if and only if it is the farthest neighbor in the direction of the destination.

The originality of the SLURP protocol resides in its location discovery mechanism.

In this mechanism, the network geographical span is divided into non-overlapping

rectangular sub-regions. Each sub-region is completely identified by the coordinates

of its bottom left and upper right corners. A static mapping function is used to

assign each node, ϑ, to a sub-region based on ϑ′s ID, this region is known as ϑ′s

38

home-region. The mapping function is designed such that nodes are assigned evenly

to home-regions. Any node present at a given sub-region, which is not necessarily

its home-region, is responsible for storing the location information of all nodes as-

signed to that home-region. Every node updates nodes present at its home-region

about the current sub-region it is located in. A location update is triggered ev-

ery time a node moves form one sub-region into another one. Movements inside

the same sub-region trigger no location update. Nodes maintain location caches

in which they store the node ID, location coordinates, current sub-region ID, and

the neighbor to be used as a next hop to that node. When a node needs to send

a message to any destination, it first needs to find the current sub-region of that

destination; If this information is not available in the source’s location cache, the

source initiates a location discovery process by sending a location-discovery packet

composed of the source ID, the source’s current sub-region, the destination ID, a se-

quence number, and a search level field (the default search level is 1). The sequence

number is used to realize queries that were seen before, and the search level is used

to specify whether only nodes present in the destination’s home-region are allowed

to reply (search level=1) or even nodes in the sub-regions that are adjacent to

the destination’s home-region are allowed to reply when the later is empty (search

level=2). The source node sends the location-discovery packet to all its neighbors.

The source’s neighbors use the location-discovery packet to update the source’s

location information in their caches; only one neighbor (according to the MFR pro-

cedure) is allowed to retransmit the location discovery packet. The same process of

receive-update-retransmit is repeated until the destination’s home-region, or an ad-

jacent sub-region if the later is empty, is reached. In the destination’s home-region,

the first node to receive the location-discovery packet generates a route reply packet

and sends it back to the source node. Once the destination’s current sub-region

becomes available to the source node, data packets are forwarded in the direction

of the destination’s current sub-region using the MFR procedure. Upon the arrival

of data packets at the destination’s current sub-region, any source routing protocol

can be used to deliver the packets to the destination. The designers of the SLURP

protocol used the DSR protocol for intra sub-region routing purposes. The main

disadvantage of SLURP is its use of static sub-region location information which

might not be available at design time.

39

2.3.4 Distributed Spanning Trees based routing protocol

(DST)

The DST protocol [81] exploits the fact that even highly dynamic ad hoc networks

exhibit some topological stability at different times or at different regions at the

same time; this fact is exploited by using spanning trees in regions that exhibit

some topological stability and employing controlled flooding in regions that show

rapid topological changes. Moreover, DST introduces the concept of connectivity

through time to deliver messages between end points that might not be connected

at any time; in such cases, message delivery is achieved by having the intermediate

nodes to store data packets sent by the source node expecting that these nodes

might be connected to the destination node soon; if no route is offered during

specified period of time, intermediate nodes drop the stored data packets. DST

organizes the network nodes into a set of dynamically created trees. Every tree is

identified and controlled by its root node. Every node in the tree keeps track of its

parent’s ID, its children IDs, and the ID of the root node (to prevent the creation of

cycles). Neighboring nodes that belong to different trees are called contact nodes.

When two trees come in contact with each other, they try to merge together into

one tree and one of the roots of the original trees gives up its role and becomes

an ordinary node. In cases where the neighboring tree is likely to move out of the

communication range shortly, no attempt is made to merge with this tree. A bridge

is established between the contact nodes of the neighboring trees. At any time, the

DST protocol considers the whole network as a forest of spanning trees. Nodes

of the same tree know the IDs of each other and maintain routes to each other in

proactive manner. Routing between nodes of different trees is achieved reactively

using one of two mechanisms:

- Hybrid Tree-Flooding (HTF): packets are sent to all neighbors in the tree

and to all bridges leading to neighboring trees. In addition to retransmitting

the received packet, every node stores a copy of the packet for a holding

time period. If a bridge to a new neighboring tree is established during the

holding time, the buffered packet will be forwarded to the new neighboring

tree. Otherwise, the buffered packet will be dropped.

- Distributed Spanning Tree Shuttling (DST): packets are sent by the

source node to all nodes and bridges down the tree. When a packet reaches a

leaf node, i.e., a node that has no children, it is sent up the tree to a certain

height called the shuttling height. After reaching the shuttling height, the

40

packet is retransmitted to all nodes and bridges down the tree.

The reliance of the DST protocol on root nodes to control the trees makes it

less robust since root nodes become potential points of failure.

2.3.5 Distributed Dynamic Routing (DDR) protocol

In the DDR protocol [74], nodes are grouped into dynamically created trees, i.e.,

zones. Theses trees differ from those used in the DST protocol in that they do not

have root nodes; therefore, the DDR protoco is more robust than the DST protocol.

Each node is a member of only one tree; hence, the ad hoc network can be thought

of as a set of non-overlapping trees, i.e., zones. The number of neighbors of a given

node is known as the node’s degree. Every node declares one of its neighbors as

a preferred neighbor. The neighbor with the highest degree is selected as preferred

neighbor; if there is more than one neighbor with the same degree, the one with the

larger ID is selected as the preferred neighbor. Every node has only one preferred

neighbor; however, the same node can be selected as a preferred neighbor by many

nodes. Nodes of the same neighborhood know the IDs and the degrees of each

other through the exchange of periodic beacon messages that contain five fields:

the node’s ID, the ID of the tree to which the node is belonging, the node’s degree,

a flag field, and the ID of the preferred neighbor. The frequency of beacon messages

depends on the rate of node mobility. The flag field is used to distinguish between

two types of beacon messages:

- Preferred neighbor declaration message. In this message, the preferred

neighbor field contains the ID of the neighbor selected as the preferred one.

The flag field is set to 1 in this type of beacon messages.

- Neighborhood change notification message. In this message, the pre-

ferred neighbor field contains the ID(s) of new or missed neighborhood mem-

bers. The flag field is set to 0 in this type of beacon messages.

Once the preferred neighbor is selected, it is declared to all neighbors by sending

a beacon message of the first type. Only the preferred neighbor has the privilege to

retransmit this message. Trees are created by connecting each node to its preferred

neighbor. Neighboring nodes that belong to different trees are called gateway nodes.

Figure 2.16 illustrates the selection of preferred neighbors and the creation of trees.

41

Figure 2.16: Network before tree creation (left), after tree creation (right).

Application

HARP

DDR

Network

Table 2.1: Layered view of HARP and DDR

Using the information contained in the beacon messages, every node of the

network creates two tables:

- Intra-zone table: this table contains an entry for every neighbor wherein

the neighbor’s ID along with the IDs of all nodes that are reachable trough

that neighbor are stored.

- Inter-zone table: this table contains an entry for each neighboring zone;

this entry stores the zone ID, the ID of the gateway node to this zone, and

the stability of the connection with this zone.

Routing within the same zone is accomplished by consulting the intra-zone

routing table to find the next hope toward the destination. Inter-zone routing was

not discussed in detail in [74]. The designers of the DDR protocol introduced the

HARP protocol [73] as an extension that uses the inter-zone tables produced by

the DDR protocol to perform the inter-zone routing task. Table 2.1 illustrates the

proposed integration of the HARP and the DDR protocols.

The HARP protocol performs the inter-zone routing reactively by initiating

route discovery process through the generation and transmission of route request

42

packet (RREQ) every time a route to another zone is needed. The source node

uses its intra-zone routing table to forward the RREQ packet to the gateway nodes

of its tree, i.e., zone. The RREQ packet contains a field that shows the stability

of the path traversed so far. This field is initiated to infinity by the source node.

Upon the reception of the RREQ, each gateway compares the value of the RREQ’s

stability field with that of its connection with the neighboring zone; the smaller

of these two values is assigned to the stability field of the RREQ. After updating

the stability field, gateway nodes forward the RREQ to their neighboring zones.

Any other copy of the same RREQ is ignored unless it contains a higher stability.

This process is repeated by all intermediate zones until the destination zone is

reached. Within the destination zone, the RREQ packet is forwarded using the

intra-zone routing table. After receiving the RREQ packet, the destination node

creates a route reply packet (RREP) and sends it back to the source node using

the same route traversed by the RREQ packet. If multiple RREQ packets were

received by the destination, i.e., multiple routes are available, the most stable route

is selected. Once the RREP packet reaches the source node, data transmission

can be started immediately using the discovered path. If a route failure occurs

during an active session, an error message is sent to the source urging it to start a

new route discovery process. Route discovery is performed periodically during the

life time of an active session to find a more stable route, if any, even if the used

route is still valid. This proactive route maintenance process aims at avoiding route

recovery operations and at reducing the associated delay. The DDR and the HARP

protocols reduce the routing overhead by minimizing the number of nodes involved

in the route discovery process thanks to the intra-zone routing tables. However,

the preferred nodes used in the intra-zone routing mechanism are potential points

of failure especially if a node is selected by many others as their preferred neighbor.

2.3.6 Characteristics of the hybrid routing protocols

• Hybrid routing protocols have higher scalability potentials than pure reactive

and proactive protocols due to the fact that they use some sort of control

structures (zones, clusters, or trees) that can accommodate large number of

nodes.

• Hybrid routing protocols find routes faster than reactive protocols using less

overhead compared to that of proactive protocols, i.e., they strike a balance

between delay and routing overhead.

43

• Hybrid routing protocols are more robust in the sense that topology changes

are handled transparently within the affected zone in a localized manner with-

out affecting routes in other zones.

2.4 Summary

This chapter surveyed the most widely renowned routing protocols and highlighted

their advantages and disadvantages. It is apparent that routing protocols in which

all nodes take part in routing at all times, a.k.a. flat routing protocols, have

very poor scalability potential. On the other hand, routing protocols in which nodes

are grouped into clusters and a small set of nodes from each cluster are elected to

perform and supervise routing, a.k.a. hierarchal routing protocols, have more

scalability potential that results from their use of topology abstraction and from

the localization of the effects of route failures.

The literature is rich of protocols proposed for MANETs clustering. Most of

these protocols are based on some kind of graph domination. The next chapter

provides a review of the most cited MANETs’ clustering protocols.

44

Chapter 3

Clustering

Clustering in MANETs’ is the process of partitioning mobile nodes are partitioned

into groups in which only few elected nodes known as cluster-heads or cluster-

leaders are allowed to participate in routing. However, not all MANETs’ clustering

algorithms use cluster-heads. Some clustering algorithms, the ones proposed in

[88] and [68] for example, partition mobile nodes into clusters in which members

of the same cluster maintain single hop or multi hop routes to each other and use

gateway nodes, i.e., nodes that have links to members of neighboring clusters, to

forward messages to those clusters, Figure 3.1 shows an example of clusters with

cluster-heads and Figure 3.2 shows clusters with no cluster-heads.

In addition to increasing MANETs’ scalability by reducing the number of nodes

generating and storing routing information, clustering allows for spatial reuse of

resources among different clusters[65], makes a large MANET seem smaller by rep-

resenting it as a set of interconnected clusters, and makes a highly dynamic MANET

seem less dynamic by increasing cluster stability[42]. On the other hand, clustering

has its own overhead associated with cluster formation and maintenance. In order

to get the most out of clustering, the last two decades have seen massive amount

of research work aiming at devising fast, light (in terms of signaling overhead),

and stable clustering algorithms [15]. The following section gives a review of the

previous research work in this field.

3.1 previous work

The main task in clustering is to affiliate every node ϑ with at least one cluster.

This affiliation guarantees coverage for all nodes. In cluster-head based clustering,

45

Figure 3.1: clustering using cluster heads.

Figure 3.2: clustering using no cluster heads.

46

node ϑ belonging to cluster C is said to be dominated by the head of cluster C;

hence, the notion of graph domination or one of its variants is the basis of the

majority of MANETs clustering algorithms [27]. MANETs’ topology is treated as

undirected graph, G = (V, E), where the set of vertices V represents the set of

mobile nodes, and the set of edges E represents the wireless links.

A set S ⊂ V is called a distance-k dominating set of a graph G = (V, E) iff

∀ υ ∈ V ⇒ ∃ γ ∈ S such that υ ∈ [γ]k; where [γ]k is the k-hop neighborhood of γ.

A vertex ϑ ∈ S is said to dominate all its k-hop neighbors in V − S. An edge is

dominated if at least one of its end points is in S; otherwise; it is free.

A dominating set S is an independent dominating set iff ∀ υ, γ ∈ S ⇒
υ and γ are not adjacent to each other. If the induced subgraph 〈S〉 of a dominating

set S is connected, S is called a connected dominating set, CDS. On the other hand,

if the subgraph weakly induced 1 by S is connected, S is called a weakly-connected

dominating set, WCDS. Figures 3.3, 3.4, 3.5, and 3.6 show examples of the DS,

CDS, WCDS, and the weakly induced graph, respectively.

Figure 3.3: DS. Figure 3.4: CDS.

Figure 3.5: WCDS. Figure 3.6: Weakly Induced Graph.

1A subgraph induced by a set of vertices S is weakly induced subgraph , 〈S〉w, if it contains
all vertices in S, their neighbors, and all the dominated edges.

47

Minimizing the cardinality of the dominating set produces a simpler abstracted

topology of the MANET and allows for using shorter routes in the clustered topol-

ogy. Since its NP-complete to find the minimum connected dominating set (MCDS),

researchers resorted to approximation algorithms and heuristics to tackle this prob-

lem [89]. The following subsections give a description of graph domination-based

MANET clustering algorithms.

3.1.1 Clustering using independent dominating sets

Algorithms based on independent dominating sets prohibit adjacency between cluster-

heads. The linked cluster algorithm (LCA), the earliest clustering algorithm pro-

posed in the literature, falls in this category [12]. In the LCA algorithm, the

selection of cluster-heads is based on node IDs, a node ϑ is elected as a cluster-head

if it has the highest ID in its neighborhood. Nodes that are adjacent to more than

one cluster-head are called gateways, the rest are ordinary nodes. In [49], Gerla

and Tsai presented two clustering algorithms that produce independent dominating

sets. One algorithm elects the node with the smallest ID in its neighborhood for

the role of cluster-head. In the other algorithm, the notion of node degree which

refers to the number of node’s neighbors is used to elect cluster-heads. The node

that has the highest degree, i.e., the largest number of neighbors, is elected as the

cluster-head; in a case of tie, the one with the smaller ID is elected. Based on

the performance evaluation presented in [31], the highest degree algorithm has a

lower stability compared to the lowest ID algorithm; the reason for the low sta-

bility of the highest degree algorithm is the sensitivity of node degree to topology

changes. Lian and Hass used the k-hop degree to elect cluster-heads [64]. In [23],

The lowestID and highest degree of Gerla and Tsai are generalized by Chen et al.

to the K-lowestID and k-CONID in which cluster-heads are elected among nodes

of k-hop neighborhoods based on the ID in the first and on the connectivity (with

resorting to the ID for tie breaking) in the second. In [15], Basagni proposed that

cluster-heads can be elected based on weights that are assigned to nodes according

to any meaningful measure. For example, weights can be assigned according to

node ID, node degree, or a mobility related parameters. A node is elected as a

cluster-head if it has the largest (or smallest) weight in its neighborhood. In [16],

the signal strength of any two consecutive hello messages received from a given

neighbor node is used to evaluate the relative mobility with respect to this neigh-

bor. Every node computes the mean of the squares, i.e., the variance with respect

to zero, of its relative mobilities with respect to its neighbors and advertise this

48

value as its weight. The node that has the smallest weight among its neighbors is

elected as a cluster-head. Er and Seah [42], used a similar concept to build 2-hop

clusters. A group of 2-hop clusters can merge to form D-hop clusters if they exhibit

similar mobility behavior. In [10], Beongku and Papavassiliou proposed a clustering

algorithm that assigns weights based on node mobility and node ID. Mobility in-

formation is assumed to be available through the location positioning system GPS.

Every node exchanges its velocity information with its neighbors. Nodes whose

aggregate mobility with respect to their neighbors are less than a certain limit are

considered a cluster-head candidates. The candidate that has the smallest ID be-

comes the cluster-head. If two cluster-heads with a comparable mobility come into

communication range of each other, their clusters are merged in one. The Clusters

produced by this algorithm are not necessarily of the same size. In [32], Based on

the knowledge of neighbors’ velocities, every node uses fuzzy inference to predict

the number of neighbors that stay within its transmission range for a certain period

of time δ and advertises this number to its neighbors as its δ−degree. The neighbor

with the largest δ−degree is elected as a cluster-head. In [21], Chatterjee et al. used

the weighted sum of four parameters to assign weights to nodes. These parameters

are: the absolute difference between the node’s degree and an optimal degree (∆v),

the sum of distances between the node and its neighbors (Dv), node’s speed (Mv),

and the length of the time period during which the node served as a cluster-head

(Pv). The node that has the smallest weight among its neighbors is elected for

the cluster-head role. The Passive clustering algorithm [95] attempts to eliminate

clustering overhead by using the on going data traffic to establish and maintain

the clustered architecture in an on-demand basis. The First-Declaring-Wins rule

is used to elect cluster heads. A node that is not affiliated with a cluster is said to

be in the undecided state. Initially, all nodes are undecided. A node that has data

to send and has no cluster-head neighbor, declares itself a cluster-head. Once a

cluster-head is declared, no neighbor is eligible to claim the cluster-head role until

the current cluster-head resigns or moves out of sight. All neighbors of the declared

cluster-head become cluster members. Initially, all cluster members are allowed to

rebroadcast messages received from the cluster-head, and eventually only gateways

and cluster-heads are allowed to retransmit. A node that receives data messages

only from cluster member neighbors and has no cluster-head neighbors claims the

cluster-head role and the cluster member neighbor that delivered the first data mes-

sage from his cluster-head to the recently declared cluster-head becomes a gateway

node between the two clusters. This process continues until the message reaches

its destination.

49

The main disadvantage of clustering algorithms based on independent dominat-

ing sets is that when two cluster-heads move into the transmission range of each

other, one of them relinquishes its role and reclustering is performed to maintain

the clustered architecture; this reclustering effect may spread throughout the whole

network in a chain reaction-like process [48].

3.1.2 Clustering using dominating sets

As a part of the CEDAR routing protocol [84], Sivakumar et al. proposed a simple

heuristic to approximate the MDS of a MANET. The nodes in the MDS consti-

tute the cluster-heads of the clustered architecture. Every node u computes its

degree (d(u)) and its effective degree (d∗(u)) which is equal to the number of nodes

dominated by u, and advertises these values to its neighbors in the form of the

pair < d∗(u), d(u) >. The pairs received from neighbors are ranked in lexicograph-

ical order. The node with the largest pair in u’s neighborhood is elected as u’s

Dominator, ties are broken using node ID. Each dominator sets its effective degree

to the number of its Dominatees and declares itself a cluster-head. Initially, all

nodes have zero effective degree; hence, at the beginning, the node with the highest

degree is elected as cluster-head; after that, the clusters stability is improved by

giving cluster-heads more chance to be re-elected since they have higher effective

degrees than ordinary nodes. Increasing the cluster span, i.e., the maximum num-

ber of hops separating a cluster-head and a cluster member, reduces the number

of clusters and improves the network scalability; however, it increases the cluster-

heads loading. The Max-Min clustering algorithm [9] is designed to strike a balance

between cluster span and cluster-head loading. In this algorithm, every node elects

the node with the largest ID in its d-hop neighborhood for the cluster-head role.

Once informed about its election, the elected node assumes its cluster-head role

even if its ID is not the largest in its own d-hop neighborhood. By permitting

more nodes within the same neighborhood to be cluster-heads, Max-Min produces

stable d-hop clusters that have almost the same number of nodes. As a result, The

Max-Min clustering algorithm allows for load balancing; however, it incurs high

communication overhead [60]. Belding-Royer proposed two clustering algorithms

in which the principle of First-Declaring-Wins is used to elect cluster-heads. The

first algorithm (the ARC algorithm) builds a one-level clustering hierarchy while

the second algorithm (The ARCH algorithm) generalizes the method of the ARC

algorithm to produce a multi-level hierarchy in which the number of levels adapts

50

to network density and nodes’ mobility behavior [17]. To reduce the number of role

switching and hence reduce the cluster maintenance overhead, the ARC and ARCH

algorithms force any cluster-head to relinquish its role only if its entire cluster be-

comes a subset of another cluster. Jia et al. [57] used randomization to speed up

the running time of the clustering algorithm presented in [64]. They called the new

algorithm the Local Randomized Greedy algorithm LRG. While the deterministic

version of this algorithm (presented in [64]) runs in linear time that is a function of

the number of nodes, the LRG algorithm runs in a polylogarithmic time with high

probability. However, the LRG algorithm exhibits higher message complexity and

in some cases produces dominating sets of larger sizes compared to those produced

by its deterministic version. The LRG algorithm proceeds in rounds each of which

contains the following steps:

• Every node v calculates its span (d(v)), a.k.a. node coverage (c(v)), which

is equal to the number of its uncovered neighbors including itself if it is

not covered; then, every node declares its rounded span which is equal to

blog
d(v)
b c, where b is a constant.

• A node, v, considers itself as a candidate if its rounded span is equal to largest

rounded span in its 2-hop neighborhood.

• Every uncovered node u reports to its neighbors the number of candidates

adjacent to it, this number is called the node support s(u).

• A candidate, v, is added to the dominating set with a probability

P (v) =
1

med(v)

where med(v) is the median support of the nodes in c(v).

Clustering algorithms based on dominating sets produce more stable clusters,

generate less cluster maintenance overhead, and eliminate the chain reaction effect.

However, because they allow cluster-heads to be adjacent to each other, they are

not suitable for spatial resource reuse.

3.1.3 Clustering using connected dominating sets

In ad hoc networks, a connected dominating set provides for the creation of a vir-

tual backbone, a.k.a. spine, that can be used for routing and control purposes [43].

51

Constructing the minimum connected dominating set (MCDS) in general graphs is

known to be NP-complete problem. Khular and Guha [50] proposed two central-

ized approximation algorithms for the MCDS problem. The first algorithm starts

by adding the node with he highest degree to the CDS and proceeds iteratively

by adding a node or two nodes (whichever leads to the maximum increase in the

number of dominated nodes) in each iteration. The second algorithm starts by

creating a dominating set and then proceeds by adding nodes to connect the dom-

inating set. An other centralized algorithm with a constant approximation factor

for approximating the connected dominating set in a unit disk graph (UDG) is

presented by Marathe et al. [66]. This algorithm starts by creating a breadth-first

spanning tree, T, rooted at an arbitrarily selected node v. Nodes are assigned to

groups according to their hop distance from the root v; every group has a level

value that is equal to its distance from the root. Initially, the root of T is the only

member of the CDS. The other members of the CDS are selected as follows:

- Set L to the depth of T , Let Sk represent the group of nodes at level K

- For K = 1 to L Do

- Remove all nodes u ∈ Sk that are dominated by nodes in Sk−1.

- Construct a maximal independent set MISk from the remaining nodes

in Sk and add all members of MISk to the CDS.

- Add to the CDS all nodes in Sk−1 that have children in MISk.

In [37], Das et al. proposed a distributed version of Khular and Guha algo-

rithms. Being of a distributed nature, Das’s implementation of Khular and Guha

algorithms is suitable for ad hoc networks paradigm; however, it is characterized

by high message and time complexities due to its use of global knowledge about

node degrees and also because of its sequential nature. Moreover, the algorithms

in [37] do not provide any mechanism by which nodes recognize the completion of

one phase of the algorithm and the beginning of the next one. Wu and Li [92] tried

to reduce message and time complexities by relying only on knowledge of 2-hop

neighborhood. Starting with an empty CDS, a node ϑ is added to the CDS if it has

at least two non-adjacent neighbors. Wu and Li call CDS’ members Gateway Hosts.

In [92] Wu and Li prove the correctness of this simple algorithm; However, they

admit that in some cases their algorithm produces trivial CDS that includes all the

vertices of the network. in [15], Basagni et. al reported that the CDS created by

this algorithm has a large size compared to those produced by other approximation

52

algorithms [15]. In [85], Stojmenovic et al. presented a modified version of Wu

and Li algorithm. According to [15], Stojmenovic variant is faster and generates

less overhead than the original Wu and Li algorithm; moreover, the CDS produced

by Stojmonovic version is smaller in size, and denser; however, it is less robust.

Wu and Li algorithm and its Stojmonevic variant are studied in more detail in the

next chapter. In the Span algorithm [22], CDS members, called coordinators in this

algorithm, are elected using a similar principle to that used by Wu and Li algo-

rithm [92], i.e., node v is eligible for declaring itself a coordinator iff it has at least

two neighbors u and w that are not connected through one or two coordinators.

To avoid contentions that arise when more than one eligible node can connect the

same pair(s) of unconnected neighbors (u,w), eligible node v delays its declaration

for a back-off time that is directly proportional to v’s remaining energy (expressed

as a fraction of its maximum value) and the number of pairs that are connected

through v. During the back-off time, if no node declares itself as a coordinator,

v sends its declaration; otherwise, v has to reevaluate its eligibility based on the

new conditions. In [80], Qayyum et al. used the concept of Multipoint Relays to

design an efficient broadcasting algorithm that reduces the number of retransmit-

ting nodes while guaranteeing the delivery of broadcast messages to all network

nodes. In [2], Adjih et al. modified the work presented in [80] in such a way that

the new algorithm produces a source-independent MPR called the MPR-CDS. The

authors of [2] the correctness of this algorithm. However, the approximation factor

of this algorithm is inferior to that of Wu and Li algorithm. In [91], Wu modified

the work presented in [2] and in [80] in such a way that reduces the size of the

produced MPR-CDS and hence improves its approximation factor. According to

[15] the modified MPR-CDS is faster than Wu and Li algorithm. In [93], Wu et al.

used the complete 2-hop neighborhood information to reduce the size of the CDS

produced by the algorithm presented in [91]. The authors of [93] call the new algo-

rithm EEMPR to emphasize the fact that it is an extension to the enhanced MPR

presented in [91]. The MPR-CDS and the its variant presented in [91] are studied

in more detail in the next chapter. In [41], Dubashi et al. proposed two distributed

algorithms that produce a connected dominating set with a running time that is

polylogarithmic in the number of nodes. Both algorithms start by creating a dom-

inating set S; the LRG algorithm [57] is used for this task. Once the dominating

set S is created, a connected subgraph (H) that spans G3[S] is used to connect

S, where G3[S] is the third power of G 2. Since the length of a path connecting

2The power of a graph: Given a graph G = (V,E), the ith power of G, Gi, is a graph in which
there is an edge e = (u, v) between any pair of nodes (u, v) iff dG(u, v) ≤ i

53

any two members u, v ∈ S is at most three hops, every edge e = (u, v) ∈ H adds

at most two new nodes w, z to S; therefore, minimizing the number of edges in H

minimizes the size of the created CDS. Inspired by the following graph theoretic

lemma 3:

A simple undirected graph on n vertices has at most n1+ 2
g−1 + n edges, where g

is the length of the smallest circle in the graph.

in the two algorithms presented in [41], all cycles of length up to b1 + 2 log |S|c
are destroyed by deleting an edge of every such circle. The edges to be deleted are

selected randomly in one algorithm and deterministically in the other one. The au-

thors of [41] proved that both algorithms produce a CDS in polylogarithmic time.

Alzoubi et al. proposed many distributed approximation algorithms to produce a

connected dominating set for a unit disk graph [5, 7]. All these algorithms start by

creating a maximal independent set (MIS) and then nodes are added to connect

the MIS. In [7], The MIS creation phase starts by a ranking stage in which every

node v is assigned a unique rank. Ranks are based on node level and node ID.

The rank of node v is given by (Level(v), ID(v)). To determine the node level,

an arbitrary spanning tree (T) is constructed. The root of T is elected using the

leader election algorithm presented in [33]. The level of node v is set to the number

of hops in T form the root to v. After completing the ranking stage, the MIS

creation proceeds as follows:

- Initially all nodes are colored White.

- A node v declares itself a Dominator and changes its color to Black iff it

has the lowest rank among all its neighbors. All neighbors of v change their

colors to Gray and declare themselves as Dominitee nodes.

- If all lower-rank neighbors of a white node u have declared themselves domi-

natees, node u declares itself a Dominator and changes its color to Black.

The MIS creation phase terminates when all nodes are colored either Gray or

Black. The MIS is composed of all the black nodes. It is proven in [7] that the

MIS created by this algorithm satisfies the following property:

Any set U ⊂ MIS is 2-hops away from its complement set V = MIS − U

3Lemma 15.3.2 [67]

54

In the final phase of the algorithm a tree that spans all the black nodes is

constructed, the authors of [7] call it the Dominating Tree. Initially, the Dominating

Tree is empty. The root of T is the first black node to be added to the Dominating

Tree. Whenever a black node v is added to the Dominating Tree, v sends an

invitation message to all its neighboring black nodes that are at most two hops away.

Whenever a black node that is not a member of the Dominating Tree receives an

invitation message for the first time, it sends a join message to the gray node from

which the first invitation message was received. Whenever a gray node receives a

join message addressed to it from one of its children in T , the gray node changes

its color to black and it is added to the CDS. Eventually the black nodes of the

Dominating Tree will form a CDS. The authors of [7] proved that the approximation

factor of this algorithm is constant and it is equal to 8. Four variants of this

algorithm are proposed in [5, 6, 89]. The first variant is composed of three phases:

leader election phase, MIS construction phase, and Dominating Tree creation phase.

In the leader election phase a leader is elected using the algorithm in [33]. Once

the leader is elected, the ranking stage of the MIS construction phase starts. In

this variant, ranks are based on node ID; a node’s rank is equal to its ID. The rest

of this phase is exactly the same as in the original algorithm. However, as a result

of the ranking scheme adopted by this variant, the resulting MIS differs from that

produced by the original algorithm is that:

Any set U ⊂ MIS is at most 3-hops away from set V = MIS − U .

This means that the MIS produced in this variant is sparser than that of the

original algorithm; hence, the gray nodes that are needed to connect the MIS

are more than those added in the original algorithm. After completing the MIS

construction phase, the leader elected in the first phase starts the final phase by

electing a root for the Dominating Tree. If the leader is a black node, the leader

will declare itself as the root of the Dominating Tree; Otherwise, the leader selects

one of its black neighbors to be the root of the Dominating Tree. Once the root is

declared, it starts the Dominating Tree creation procedure that is very similar to the

one used in the original algorithm; the only difference between the two procedures

is that the invitation messages used in this variant can reach all nodes in the 3-hop

neighborhood, while in the old variant invitation messages can only reach nodes in

the 2-hop neighborhood. The authors of [5] proved the correctness of this variant

in showed that it has a constant approximation factor that is equal to 12; therefore,

in terms of performance, the original algorithm outperforms this new variant since

it has 8-approximation factor with the same time and message complexities. The

55

second variant is presented in [5] and it is composed of three phases: leader election

phase, ranking phase, and color markup phase. The leader election and the ranking

phases are exactly the same as those used in the original algorithm presented in [7].

The color markup phase is as follows:

- Initially all nodes are colored White.

- A node, v, declares itself a Dominator and changes its color to Black iff it

has the lowest rank among all its neighbors. All neighbors of v change their

colors to Gray and declare themselves Dominitee nodes.

- If all lower-rank neighbors of a white node, u, have declared themselves dom-

inatees, u declares itself a Dominator and changes its color to Black.

- A Dominitee node, w, changes its color from Gray to Black iff one of its

children in (T) declared itself as a Dominator provided that this child has

never declared itself as a Dominitee in the past.

Figure 3.7 shows the details of the marking process of this variant. The approxi-

mation factor and the time and message complexities of this variant are exactly the

same as those of the variant presented in [7]. The third variant of this algorithm

is presented in [89] and it is composed of three phases: leader election phase, MIS

construction phase, and Dominating Tree creation phase. The first two phases are

exactly the same as in the original algorithm; however, the third phase is slightly

different. The leader elected in the first phase starts the creation of the Dominating

Tree (T ∗) by electing its gray neighbor who has the largest number of black neigh-

bors to become the root of T ∗. Initially T ∗ is empty and eventually all black nodes

and all gray nodes will join T ∗. However, only few members of T ∗ known as the

internal nodes are members of the CDS. The Dominating Tree creation proceeds

as follows:

- The root elected by the leader broadcasts INVITE2 message to all of its

neighbors; then, the root joins T ∗ .

- Whenever a black node receives INVITE2 message for the first time, it sends

JOIN message to the sender of the INVITE2 message, broadcasts INVITE1

message to all of its neighbors, and joins T ∗.

- Whenever a gray node receives INVITE1 message for the first time, it sends

JOIN message to the sender of the INVITE1 message, broadcasts INVITE2

message to all of its neighbors, and joins T ∗.

56

Figure 3.7: The markup process of the second variant of Alzoubi algorithm.

- Whenever a node, v, receives JOIN message addressed to itself, it becomes

an internal node of T ∗, i.e., a member of the CDS.

As shown in [89] this variant has the same time and message complexities as

the other variants; however, it outperforms them in terms of the CDS size. The

variant of Alzoubi et al. algorithm that is presented in [6] differs form all other

variants in that it does not use any spanning tree. As a result, this variant has

lower communication overhead than all other variants; however, its approximation

factor is inferior to other variants and its equal to 192. In this variant, the CDS is

created in two phases: In the first phase, a MIS set is created using the ID-based

ranking scheme. Once the MIS is created any node, v, is either a Dominator if it is

a member of the MIS or a Dominatee if it has at least one neighbor the is a member

of the MIS. In the second phase of this variant, every Dominator, v, selects a path,

p, to all its 2-hop and 3-hop Dominator neighbors that has smaller IDs than its

own ID. The intermediate nodes of each path p, at most 3 Dominatees, are added

to the set of Connectors C. The CDS is composed of all nodes u ∈ MIS ∪C. Two

randomized distributed algorithms for constructing a CDS in a unit disk graph

are presented by Parthasarathy and Gandhi in [75]. Both of these algorithms

use a maximal independent set MIS to construct the CDS; hence, they have a

constant approximation ratio. These algorithms are faster than Alzoubi algorithm

and its variants; however, they are inferior in terms of message complexity. An

advantage of these algorithms is that they are designed in such a way that prevents

collisions 4 during the MIS and CDS construction phases; hence, their theoretical

performance measures reflect the practical ones much more accuratly than other

4a collision at node v occurs when two of its neighbors u,w try to transmit messages to v at
the same time.

57

algorithms. On the other hand, these algorithms assume that good estimates of the

maximum node degree (∆) and the number of nodes (n) are available to all nodes

of the network, which is an unrealistic assumption. The first algorithm presented

in [75] is composed of three phases. In the first phase a D2-coloring 5of the nodes is

performed. A maximal independent set MIS is constructed in the second phase and

it is connected in the third phase. The second phase is guaranteed to be completed

within C time steps, where C is the number of colors used in the first phase. At

every time step, only nodes of a given Color Class c are eligible to be added to the

MIS; a node v ∈ c is added to the MIS iff no one of its neighbors is a member of the

MIS. The fact that nodes are added to the MIS based on their D2-colors rather than

on their IDs is the reason for the short running time of this algorithm since a node

v does not have to wait for all its neighbors with smaller IDs to make their decision

before it can decide for its own. In the third phase, every node v ∈ MIS selects

a path, p, to any member u ∈ N3(v) iff id(u) > id(v). The intermediate nodes

of each path p along with the members of the MIS constitute a CDS. The second

algorithm of [75] is similar to the first one in that first a MIS set is created then it is

connected into CDS. However, in this algorithm there is no D2-coloring phase. To

avoid collisions between messages broadcasted during the MIS and CDS creation

phases, the collision-free broadcasting algorithm presented in [46] is used. In this

algorithm, every node is assumed to know its 2-hop topology, i.e., the nodes in its

2-hop neighborhood and the edges between these nodes. During the MIS creation

phase, any node, v, can be in one of three possible states (in, out, unsure); v is in

the in state if it is a member of the MIS, the out state if one of its neighbors is a

member of the MIS; otherwise, it is in the unsure state. Initially all nodes are in the

unsure state and the MIS is empty; subsequently, nodes are added to the MIS in

rounds that show high degree of parallelism. In every round only unsure nodes can

compete to join the MIS. In any round, i, any unsure node, v, decides to compete

for joining the MIS with a probability p = 1
2(Ni(v)+1)

, where Ni(v) is the number of

unsure neighbors of v in round i. Once v decided to take place in the competition,

it informs its neighbors about its decision. If v experiences a collision or receives

a message form other neighbor who intends to join the MIS, v stays in the unsure

state and repeat its attempt in the next round; otherwise, it changes its state to the

in state and all its neighbors change their states to the out state. This phase ends

when every node is either in the in state or the out state. The CDS creation phase

is exactly the same as that of the first algorithm. Butenk et al. presented a heuristic

5D2-coloring is the process in which every node v is assigned a color c that is different from
the color assigned to any node in its 2-hop neighborhood

58

algorithm that has a constant approximation ratio of 8 [19]. This algorithm has two

phases: a MIS set is created in the first phase and its connected in the second phase.

It is assumed that a Leader node ϑ already exists in the MANET (otherwise, it has

to be elected). Initially, all nodes are White colored. The Leader node ϑ starts the

MIS creation phase by changing its color to Black and broadcasting a Dominator

message. Any White node that receives a Dominator message, changes its color

to Gray and broadcasts a Dominatee message. Any White node γ that receives

a Dominatee message becomes an active node and broadcasts a Degree message.

This message contains γ’s id along with the number of γ’s white neighbors (d∗).

The active node that has the largest (d∗, id) changes its color to Black. The Gray

node that has no White neighbors sends a NumberOfBlackNeighbors message to

report the number of its black neighbors. When the Leader node ϑ receives a

NumberOfBlackNeighbors message from all its neighbors; ϑ ends the first phase. In

the second phase, the Black node that is not dominated by any other node is called

active node, initially all black nodes are active. The Gray node that has at least

one active neighbor is called an effective node. The Leader node ϑ starts the second

phase by sending an exploration message (M) to its Gray neighbor γ that has the

largest number of black neighbors. Upon the reception of M , γ changes its color

to Black, broadcasts a Parent message declaring ϑ as its Dominator, and sends

exploration message, (M), to any one of its active neighbors. When an active node

ω receives an exploration message, M , from a Gray node γ, it sets its Dominator

to γ, broadcasts a Parent message, and sends exploration message to the Gray

neighbor that has the largest number of black neighbors. Once the Dominator of a

Black node is set, that node is considered inactive. Upon the reception of a Parent

message, a Gray node υ broadcasts a NumberOfBlackNeighbors message to report

the number of its active neighbors, if this number is zero, υ is considered ineffective.

Any effective node that has no active neighbors (or active node that has no effective

neighbors) sends Done message to its Dominator. The second phase ends when the

Leader node receives Done messages from all its neighbors. The CDS consists of all

black nodes. A very similar algorithm is presented by Cheng and Du in [29]. In [20],

Butenk et al. presented a heuristic algorithm that creates a feasible CDS at any

time of its execution. Two versions of this algorithm are presented: a centralized

version and a distributed one. Both versions of the algorithm start by including all

nodes of the MANET in the CDS set D. All members of the initial CDS are called

Non-fixed CDS members. The centralized version of the algorithm proceeds in the

following iterative manner:

1. Select the node υ ∈ D that has the lowest degree in the subgraph induced by

59

the D, G[D].

2. Remove υ form D iff the subgraph induced by D−υ is connected. Otherwise,

υ is considered a fixed CDS member.

3. If υ is removed from D and υ has no neighbor that is a fixed member of D,

select υ’s Non-fixed neighbor that has highest degree and fix it.

In the distributed version, it is assumed that a node, γ, that has the smallest

degree among all nodes is elected as a Leader. At any time, only one node is selected

to run the algorithm. at the beginning, the leader node γ is selected to start the

algorithm. The selected node, ϑ, tests the connectivity of D − ϑ. If removing ϑ

disconnects D, ϑ fixes itself as a new dominator by sending a NEWDOM message to

its neighbors and selects its lowest degree neighbor to run the algorithm by sending

TRY-DISCONNECT message to this neighbor. Otherwise, ϑ removes itself from

D by sending DISCONNECTED message to its neighbors; if none of ϑ’s neighbors

is fixed, ϑ fixes its highest degree neighbor, υ, by sending SET-DOMINATOR

message to υ. After receiving the SET-DOMINATOR message, υ starts running

the algorithm.

3.1.4 Clustering using weakly connected dominating sets

The use of weakly connected dominating sets (WCDS) for clustering MANETs

was introduced by Chen and Liestman in [28]. In this work, Chen and Liestman

proposed two centralized algorithms along with their distributed versions. Both of

these algorithms are based on the second algorithm of Guha and Khuller [50]. In

the first algorithm, every node has one of three possible colors: Black, Gray, and

White. Initially, all nodes are White colored. The term White Piece refers to a

White node, and the term Black piece refers to the maximum set of Black nodes

that induce a weakly connected subgraph and the Gray nodes that have at least

one neighbor from these Black nodes. The algorithm proceeds in iterative manner.

In every iteration the White or Gray node that achieves the maximum reduction

in the number of White Pieces is colored Black while all its White neighbors are

colored Gray. The algorithm ends when all nodes are colored either Black or Gray.

The distributed version of this algorithm starts by building a spanning tree for the

MANET. Once the tree is built, every iteration the root of the tree sends a query

asking for the node that can achieve the maximum reduction in the number of

pieces. Once the optimal node is determined, it is added to the WCDS and a new

60

iteration is initiated. The algorithm ends when all nodes of the MANET are either

Black or Gray. In the second algorithm, initially all nodes are White colored and

the WCDS is empty. The algorithm proceeds in iterations. Every iteration a White

or Gray node, γ, is colored Black and all its neighbors are colored Gray ; then γ and

its neighbors join the WCDS. In the first iteration, γ is selected randomly and in the

subsequent iterations any White node that has at least one neighbor in the WCDS

or any Gray node is a candidate. The candidate that covers the maximum number

of White nodes is selected. The algorithm ends when all nodes are either Gray or

Black. In the distributed implementation of this algorithm, the spanning tree is

constructed iterativly. The first node added to the WCDS functions as the root of

the spanning tree and all its neighbors function as tree leafs. In every iteration,

the root node sends a query to the tree leafs looking for the optimal node among

the leafs and their White neighbors. Once the optimal node is determined, it is

added to the WCDS and all its neighbors are added to the tree leafs. The algorithm

ends when there is no White node in the MANET. It is apparent that these two

algorithms are not localized since they need global knowledge of the improvement

achieved by every candidate node in order to decide which node to be added in every

iteration. An algorithm that is more localized than all the algorithms presented

in [28] is introduced in [25]. In this algorithm, the MANET is partitioned into

a set of non-overlapping zones. To partition the MANET, a spanning forest is

constructed in the first phase. Every tree of the spanning forest represents a zone.

A WCDS is constructed in every zone using the distributed version of the first

algorithm presented in [28]. The WCDS of every zone is connected to the WCDS

sets of the neighboring zones using boundary nodes, i.e., nodes that have contact

with members of more than on zone. In [26], Chen and Liestman addressed the

maintenance of the WCDS constructed by the their algorithm presented in [25].

The fact that the MIS set S in which the shortest bath between any subset

V and its complement set MIS − V is exactly 2 hops is a WCDS that has an

approximation factor of 5 is proved by Alzoubi et. al in [8]. Based on this fact,

Alzoubi et. al proposed the use of their MIS creation algorithm presented in [7] to

construct a WCDS 6. although this algorithm has good approximation factor, the

fact that it starts by creating a spanning tree makes it inapplicable in highly mobile

environments. Another algorithm that is more suitable to MANETs is presented

in [8]. This algorithm has an approximation factor of 122.5. Even though the

previous algorithm has better approximation ratio, this algorithm is better in terms

of messaging overhead [8]. In the first phase of this algorithm a MIS set is created

6The details of this algorithm were explained in the previous section

61

using the same algorithm employed in [6] 7. At the end of the first phase, the WCDS

consists of all members of the MIS. In the second phase, every pair of MIS members

that are 3 hops apart select one intermediate node and add it to the WCDS.

3.1.5 Clustering using other heuristics

Clusters that have no clusterheads are proposed by Vaidya et al. In [88]. In this

algorithm every group of nodes that induces a complete graph, known as clique,

represents a cluster. Nodes that belong to more than one clique are known as

boundary nodes and they are used to relay messages between clusters. McDonald

and Znati proposed a clustering scheme in which path availability is employed to

build dynamic clusters [68]. In this algorithm, a (α, t)-Path is a chain of links that

is available for time ≥ t with a probability ≥ α. Nodes that can reach each other

over (α, t)-Paths form a (α, t)-Cluster. Mcdonald and Znati proposed a set of path

selection techniques in [70, 71]; moreover, they presented a model for path stability

in [69].

7The details of this MIS creation algorithm were given in the previous section

62

Chapter 4

Details of the Studied Algorithms

4.1 Introduction

This chapter gives a detailed description of the CDS-based clustering algorithms to

be studied experimentally in this thesis, namely Wu and Li algorithm, Stojmenovic

algorithm, the MPR-CDS algorithm, and Alzoubi algorithm.

4.1.1 The rationale behind our selection

A question arises naturally at this point pertaining to the rationale behind choosing

these specific algorithms in this comparative study. The answer to this question is

the following: due to their short running time, light computational burden, and low

messaging overhead, Wu and Li algorithm, its variant presented by Stojmenovic,

and the MPR-CDS algorithm are attractive candidates for clustering MANETs. No

simulation-based comparison of their performance in clustering MANETs is avail-

able in the literature. To the best of our knowledge, the only simulation-based

comparison of the performance of these algorithms was conducted in the context of

clustering sensor networks [15]. The maintenance costs incurred by each of these al-

gorithms represent an important factor that has not been evaluated and has always

been overlooked. As a matter of fact, some researchers have anticipated that the

messaging overhead incurred by Wu and Li algorithm in maintaining the CDS might

be so heavy to the extent that makes Wu and Li algorithm an infeasible solution

for MANETs clustering; however, this is not supported by any simulation-based

evidence [96]. The fourth algorithm investigated in this thesis is that presented by

Alzoubi et al. in [6]. The designers of this algorithm claim that it outperforms

63

Algorithm Wu and Li Stojmenovic Alzoubi et al.

Approximation Factor n
2

n, n
2

192

Message Complexity Θ(m) O(n) O(n)

Time Complexity O(∆3) Ω(n) O(n)

Table 4.1: Message and time complexity of Wu and Li , Stojmenovic, and Alzoubi

algorithms.

Wu and Li algorithm and its Stojmenovic variant in terms of speed and messaging

overhead. A theoretical comparison among the performance metrics of Wu and Li

algorithm, its variant presented by Stojmenovic, and Alzoubi algorithm is given

in Table 4.1. As proven in [6], the time complexity of Alzoubi algorithm is O(n)

where n is the number of mobile nodes whereas the time complexity of Wu and

Li algorithm is shown to be O(∆3) where ∆ is the maximum node degree. The

message complexity of Alzoubi algorithm is shown to be O(n) while that of Wu

and Li algorithm is Θ(m) where m is the number of edges in the network. In

dense networks, ∆ can be equal to n, and m can be equal to n2, i.e., the time

and message complexities of Wu and Li algorithm in dense networks can be equal

to O(n3) and Θ(n2), respectivly [89]. The design and the performance analysis of

these algorithms is based on the assumption that all packets broadcasted by a given

node are successfully received by all its neighbors. The fact that this assumption is

far away from reality, since broadcasting in MANETs leads to loss of packets due

to collisions, imposes thick shadows of doubt about the significance of theoretical

performance analysis, moreover, it emphasizes the importance of simulation-based

performance analysis.

4.1.2 The aspects of comparison

The time spent, the messaging overhead generated in CDS creation and mainte-

nance phases, and the size of the resulting CDS are the comparison aspects that

are used in this thesis. Moreover, the effect of MANET size, node mobility model,

and node speed on these metrics is investigated.

4.2 Details of the algorithms

This section gives a detailed description of the CDS creation and maintenance

phases of each algorithm.

64

4.2.1 Wu and Li clustering algorithm

Wu and Li [92] clustering algorithm is a simple, fast and localized algorithm in

which every node ϑ uses the knowledge of its 2-hop neighborhood to determine

whether it belongs to the CDS or not. The algorithm is implemented as follows:

1. Initially all nodes are marked white, i.e. the CDS is empty.

2. Every node exchanges information about its 1-hop neighborhood with its

neighbors.

3. After receiving this information from all of its neighbors, node ϑ decides about

its tentative color. The tentative color of ϑ is black and ϑ is a CDS member

if it has two neighbors u and w such that u and w are not neighbors of each

other, (CDS members are called gateways in [92]). Otherwise, ϑ’s tentative

color is white and it is a regular node. ϑ announces its tentative color to its

neighbors.

4. After receiving the tentative colors of all its neighbors, A black node ϑ with-

draws form the CDS by remarking itself white, and announces its final color

to its neighbors if any of the following two conditions is satisfied:

• ϑ has a neighbor u such that N[v]⊆ N[u] and id(v) < id(u), where N[v] is

the closed 1-hop neighborhood of node v.

• ϑ has two neighbors u and w such that u and w are neighbors of each

other and N[v]⊆ N[u]∪ N[w] and id(v)= min(id(v), id(u), id(w)).

Step 4 of this algorithm is called the pruning step and its objective is to reduce

the size of the resulting CDS by pruning the redundant gateways. Examples of ap-

plying these simple rules to create a CDS and to reduce its size are given in Figure

4.1 and Figure 4.2 respectively. In [36], Dei and Wu generalized the pruning rule as

follows: Let C = {u1, u2, ..., uk} be a set of gateways that induces a complete graph

G[C]; a gateway v is pruned iff N(v) ⊆
⋃

u∈C N(u) and id(v) < min(id(u) : u ∈ C).

The maintenance of the CDS in face of node mobility is achieved as follows:

1. A moving node ϑ exchanges information about its 1-hop neighborhood with

its neighbors every τ time units.

65

Figure 4.1: CDS created using Wu and Li Algorithm.

Figure 4.2: Reducing the CDS size.

2. Every node u ∈ ϑ
⋃

N(ϑ) updates its role according to the connectivity of

its current 2-hop neighborhood by applying steps 2, 3, and 4 of the original

algorithm.

3. A gateway node w that has a broken link to ϑ exchanges information about

its 1-hop neighborhood with its neighbors, w withdraws from the CDS if all

the members of its current 1-hop neighborhood are neighbors of each other.

4.2.2 Stojmenovic clustering algorithm

A modified version of Wu and Li algorithm that has a better approximation factor

and lower messaging overhead is presented by Stojmenovic et al. in [85]. This

version of the algorithm works as follows:

1. Initially all nodes are marked white, i.e. the CDS is empty.

2. Every node, ϑ, informs its neighbors about its 1-hop neighborhood and about

its weight expressed as < ϑ′s degree, ϑ′s ID >.

66

3. After receiving the weight and neighborhood information from all of its neigh-

bors, node ϑ ranks its neighbors according to their weights in lexicographic

order.

4. Node ϑ marks itself black and becomes a member of the CDS if at least

two of its neighbors are not adjacent to each other and its neighborhood is

not covered by a higher rank neighbor or by a connected set of higher rank

neighbors.

5. Every node informs its neighbors about its last decision regarding the CDS

membership.

Notice that Stojmenovic version of Wu and Li algorithm spares nodes the trans-

mission of the tentative color messages. Stojmenovic algorithm use the maintenance

procedure of Wu and Li algorithm.

4.2.3 The MPR clustering algorithm

In [80], Qayyum et al. used the concept of Multi point Relays to design an efficient

broadcasting algorithm that reduces the number of transmitting nodes while guar-

anteeing the delivery of broadcast messages to all network nodes. In this algorithm,

every node v uses the knowledge of its 2-hop neighborhood to elect a set S of its

immediate neighbors to cover all of its 2-hop neighbors. The members of S are

called the Multi point Relays, MPR, of v. It is obvious that the set S produced

by this algorithm is source-dependent MPR. A node v constructs its MPR set as

follows:

• step 1 : Node u ∈ N1(v) is added to S iff u is the only 1-hop neighbor of v

that covers some of v’s 2-hop neighbors.

• step 2 : Node w ∈ N1(v) is added to S iff w covers the largest number of yet

uncovered 2-hop neighbors of v. This step is repeated until all members of

N2(v) are covered.

• step 3 : Node v informs all members of S that they have been added to v’s

MPR.

Adjih et al. [2] modified the work in [80] in such a way that the new algorithm

produces source-independent MPR called the MPR-CDS. The algorithm starts by

67

having every node v calculate its source-dependent MPR as in [80]; after that,

every node v decides whether it belongs to the MPR-CDS or not according to the

following simple rules:

• Rule 1 : Node v ∈ MPR-CDS iff v has the smallest ID in its 1-hop neighbor-

hood.

• Rule 2 : Node v ∈ MPR-CDS iff v ∈ w’s MPR where w’s ID is the smallest

in v’s 1-hop neighborhood.

The proof of correctness of this simple localized algorithm is given in [2]. In [91],

Wu has noticed that in many occasions nodes added by Rule 1 of the MPR-CDS al-

gorithm are useless ; moreover, the algorithm used to calculate the source-dependent

MPR does not benefit from Rule 2 of the MPR-CDS algorithm. In [91] Wu modi-

fied Rule 1 as follows:

Node v ∈ MPR-CDS iff v has the smallest ID in its 1-hop neighborhood and v

has at least two unconnected neighbors.

Moreover, Wu modified the MPR calculation algorithm introduced in [80] by hav-

ing every node v start by adding all its free neighbors to its MPR set. A node u is

a free neighbor of node v iff u ∈ N1(v) and v is not the smallest ID neighbor of u.

As reported by Wu [91], these modifications reduce the size of the resulting MPR-

CDS and hence improve its approximation factor. We will use the name extended

MPR-CDS to refer to this algorithm. According to [15] the extended MPR-CDS

outperforms Wu and Li algorithm in terms of speed and messaging overhead.

The designers of this algorithm do not provide any maintenance mechanism

to deal with topology changes that affect the domination and/or the connectivity

properties of the CDS. However, the maintenance approach used in this study is as

follows:

• Every node ϑ keeps track of and informs its neighbors about changes in its

1-hop neighborhood.

• Node ϑ invokes the CDS creation algorithm in any of the following cases:

- A change in ϑ’s 1-hop neighborhood leads to a change in its 2-hop neigh-

borhood.

- ϑ losses a member of its MPR set.

68

4.2.4 Alzoubi clustering algorithm

In [6], Alzoubi et al. proposed a distributed approximation algorithm for the con-

struction of a connected dominating set in unit disk graphs. The designers of this

algorithm claim that their algorithm is the only one that has a constant approxima-

tion factor (it is equal to 192), preserves its approximation factor after maintenance

operations, and is faster and generates less overhead in dense networks than Wu

and Li algorithm and its Stojmenovic variant. A detailed description of the CDS

construction and maintenance phases is given in the sequel.

The CDS construction phase

This phase consists of two stages. In the first stage a maximal independent set MIS

is created, then nodes are added to connect the MIS in the second stage. The MIS

is created as follows:

• Initially all nodes are colored White.

• A node v declares itself a Dominator and changes its color to Black iff it

has the smallest ID among all its neighbors. All neighbors of v change their

colors to Gray and declare themselves Dominatee nodes.

• If all neighbors with smaller IDs of a white node u are Dominatees, node u

declares itself a Dominator and changes its color to Black

The MIS creation stage terminates when all nodes are colored either Gray or

Black. The MIS is composed of all the Black nodes. It is proven in [7, 4] that the

MIS created by this algorithm satisfies the following property:

Any set U ⊂ MIS is at most 3-hops away from its complement V = MIS − U .

In the second stage, every Dominator v selects a path P to every 2-hop and

3-hop Dominator neighbor that has a larger ID than that of v. The intermediate

nodes of each path P , at most 2 Dominatees, are added to the set of Connectors

C. The CDS is composed of all nodes u ∈ MIS ∪ C.

69

Implementation details

Any node V can be in one of four possible states: Candidate, Dominator, Dom-

inatee, or Connector ; node V enter the Connector state only from the Dominatee

state.

A. Local Variables and Data Structures

This section gives a description of the variables and data structures main-

tained in every node depending on its state.

1. Every node V , regardless of its state, maintains the following variables

and data structures:

• A list, nlist, of which every entry contains the ID of a neighbor node

along with its state.

• A counter, x1, that stores the number of Candidate neighbors.

• A counter, x2, that stores the number of neighbors that have smaller

IDs.

2. Every Dominatee node, E, maintains the following additional variables

and data structures:

• A list, list1, of which every entry stores the ID of a Dominator

neighbor.

• A list, list2, of which every entry stores the ID of a 2-hop Dominator,

υ, along with the IDs of the Dominatees that are common neighbors

of E and υ; these Dominatees neighbors are called the reporting

neighbors set, rns, of υ.

• A counter, y, that stores the number of Dominatee neighbors that

have reported their list1 and list2 lists.

3. Every Dominator node, R, maintains the following additional variables

and data structures:

• A counter, z, that counts the number of Dominatee neighbors that

have not reported their list1 and list2 lists yet.

• A list, 2Hlist, of which every entry contains the ID of a 2-hop Dom-

inator neighbor, υ, along with the IDs of υ’s rns.

• A list, 3Hlist, of which every entry contains the ID of a Dominator

neighbor, ν, whose ID is larger than that of R and that can be

reached only via 3-hop paths along with the IDs of R neighbors

these paths; these neighbors are called υ’s rns.

70

• A list, 3Hlist2, of which every entry contains the ID of a Dominator,

υ, whose ID is larger than that of R and that can be reached via

2-hop and 3-hop paths along with the IDs of R’s neighbors that offer

the 3-hop paths to υ, these neighbors are called υ’s rns.

• A list, SClist, that keeps information about the Connector neighbors

that R uses to reach other Dominators. Every entry in this list

contains the following:

- The ID of a selected connector k.

- The set of 2-hop Dominator neighbors that can be reached

through k; these Dominators are known as the 2-hop target

set ts2.

- The set of 3-hop Dominators that can be reached via k; these

Dominators are known as the 3-hop target set ts3.

• A list, AClist, that keeps information about all Connector neighbors.

Every entry in this list contains the following:

- The ID of a Connector neighbor k.

- The IDs of the 2-hop Dominators that are adjacent to k.

- The IDs of the 3-hop Dominators that can be reached via k.

4. In addition to the variables and data structures maintained by Domina-

tee nodes, every Connector node, C, maintains the following variables

and data structures:

• A list, Rlist1, of which every entry stores the ID of an adjacent

Dominator u that uses C to connect to other Dominators that are

1-hop away from C along with the IDs of these Dominators ; the set

of these Dominators is known as the 1hds set.

• A list, Rlist2, of which every entry stores the ID of an adjacent

Dominator u that uses C to connect to other Dominators that are

2-hop away from C along with the IDs of these Dominators ; the set

of these Dominators is known as the 2hds set.

• A list, Aclist1, of which every entry stores the ID of an adjacent

Connector w, the set of Dominators that are adjacent to w and

that use w as a connector, this set is called the set of selectors ss,

and the set of Dominators that are adjacent to C and are connected

to the members of w’ss through the pair (w,C); the later set is

called the associated target dominators set atds.

71

• A list, Aclist2, of which every entry stores the ID of an adjacent

Connector w, the set of Dominators that are adjacent to C and use

it as a connector ss, and the set of Dominators that are adjacent

to w and are connected to the members of C ′ss through the pair

(C, w), this later set is w’s atds.

B. Messages and Actions

Initially all nodes are in the candidate state and are colored White; nodes

change their colors and states and take actions based on their current states

and on the type of messages received from their neighbors. The rules that

govern node behavior are as follows:

• A candidate node ν that has the lowest ID among all its neighbors

changes its state to Dominator state, marks itself Black, and broad-

casts a Dominator message. Moreover, ν sets the value of counter z to

twice the number of its neighbors.

• Upon the reception of a Dominator message, a candidate node υ updates

the sender’s state in its nlist, inserts the sender’s ID in its list1, changes

its state to Dominatee state, marks itself Gray, broadcasts a Dominatee

message, decrements the value of counter x1 by one, and if the new value

of x1 is zero, υ broadcasts a LST1 message that contains υ’s ID and its

list1 list.

• Upon the reception of a Dominator message, a Dominatee node ω up-

dates the sender’s state in its nlist, inserts the sender’s ID in the list1,

decrements the value of counter x1 by one, and if the new value of x1

is zero, ω broadcasts a LST1 message that contains ω′s ID and its list1

list.

• Upon the reception of a Dominatee message, a candidate node υ updates

the sender’s state in its nlist, decrements the value of its counter x1 by

one; if the sender’s ID is lower than its own, υ decrements the value of

its counter x2 by one, if the new value of x2 is zero, υ changes its state

to the Dominator state, marks itself Black, sets the value of counter z to

twice the number of its neighbors, and broadcasts a Dominator message.

• Upon the reception of a Dominatee message, a Dominatee node ω up-

dates the sender’s state in its nlist, decrements the value of its counter

x1 by one; if the new value of x1 is zero, ω broadcasts a LST1 message

that contains ω’s ID and its list1 list.

72

• Upon the reception of a LST1 message, a Dominator node υ decrements

the value of its counter z by one, for every entry of LST1 that contains

a Dominator ω whose ID is larger than that of υ and is not included in

υ’s 2Hlist, υ inserts ω in its 2Hlist and adds the sender’s ID to the rns

associated with ω, if ω is already included in the 2Hlist, υ just adds the

sender’s ID to ω’s rns.

• Upon the reception of a LST1 message by a Dominatee node ν, for each

Dominator υ that is included in the LST1 message and not included

in ν’s list2, ν adds an entry to its list2 in which it stores υ’s ID and

adds the sender’s ID to υ’s rns; for all the Dominators that are already

included in ν’s list2, ν adds the sender’s ID to the (rns) associated with

each Dominator. Moreover, ν increments the value of its counter y by

one, if the value of x1 is equal to zero and the new value of y is equal

to the number of Dominatee neighbors, ν broadcasts a LST2 message.

This message is composed of ν’s ID and the IDs of all Dominators in ν’s

list2 list.

• Upon the reception of a LST2 message by a Dominator node υ, for each

Dominator ω that is included in LST2 message and not included in υ’s

2Hlist, 3Hlist, and 3Hlist2 lists and whose ID is larger than υ’s ID, υ

adds an entry to its 3Hlist in which it ω’s ID and adds the sender’s ID

to the rns associated with ω; if ω is already included in υ’s 2Hlist, υ

adds an entry to its 3Hlist2 and in which it inserts ω’s ID and adds

the sender’s ID to the rns associated with ω; if ω is already included

either in υ’s 3Hlist or its 3Hlist2, υ just adds the sender’s ID to the

rns associated with ω in that list. Moreover, υ decrements the value of

counter z by one; if the new value of z is zero, υ proceeds as follows:

- Based on the information included in its 2Hlist and 3Hlist lists,

υ selects some of its Dominatee neighbors to connect itself to all

Dominators included in its 2Hlist and 3Hlist lists.

- For every selected Dominatee, ω, an entry is added to υ’s SClist ; this

entry contains ω’s ID along with the IDs of the set of Dominators,

Γ, that are reached by υ through ω. The same entry is added to

υ’s AClist if ω is not included in this list; if it is already included,

υ updates the set of Dominators that can be reached through ω to

include the members of Γ.

- υ unicasts a Select1 message to every Dominatee neighbor it has

selected as a Connector in the previous step. This message contains

73

υ’s ID and a copy of its SClist.

- If υ has the smallest ID among all its 2-hop and 3-hop Dominator

neighbors, υ broadcasts a Complete message.

• Whenever a Dominatee node receives a Select1 message addressed to

itself, it changes its state to Connector, marks itself Black and inserts

a new entry in its Rlist1 (respectively, Rlist2) in which it stores the

sender’s ID along with the ts2 (respectively, ts3) set associated with its

ID in the SClist of the received Select1 message.

• Once it receives Select1 messages, not necessarily addressed to itself,

from all its Dominator neighbors except the one with the largest ID, a

Connector node ν whose Rlist2 is not empty, chooses a set, Γ, of its

Dominatee and Connector neighbors that cover all members of the 2hds

sets listed in its Rlist2. For every υ ∈ Γ, ν inserts an entry in its Aclist2

in which it stores υ’s ID, the selectors set, ss, that ν connects to other

Dominators through υ, and the set of Dominators that can be reached

by ss through the pair of connectors (ν, υ) ; these Dominators are known

as the associated target dominators set (atds). After that, ν unicasts a

Connect1 message that contains ν’s ID, a copy of ν’s Rlist1, and a copy

of its Aclist2 to every Dominators included in the 1hds sets of ν’s Rlist1,

and every Dominatees included in its Aclist2.

• Whenever a Dominator ϑ receives a Connect1 message addressed to itself

from a neighboring Connector ω, it inserts a new entry in its AClist in

which it stores the ID of ω and adds to the ts2 associated with this

entry the ID of every Dominator υ that is included in the Rlist1 of

the received message and that uses ω to connect to ϑ. However, If ω

is already included in ϑ’s AClist, ϑ just adds the ID of υ to the ts2

associated with ω.

• Upon the reception of a Connect1 message addressed to itself, a Domi-

natee or a Connector ν proceeds as follows:

- If ν is a Dominatee, it changes its state to Connector and marks

itself Black.

- Node ν inserts a new entry in its Aclist1 in which it stores the

sender’s ID along with the ss and atds sets associated ν’s ID in the

Aclis2 of the received Connect1 message.

- A new entry is inserted in ν’s Rlist2 for every Dominator ω included

in the atds set associated with ν’s ID in the Aclis2 of the received

74

Connect1 message; this entry stores ω’s ID and the 2hds of this

entry is set to the ss set associated with ν’s ID in the Aclis2 of

the received Connect1 message. If ω’s ID is already included in ν’s

Rlist2, the ss set is added to the 2hds associated with ω.

- Node ν unicasts a Connect2 message to every Dominator included

in the atds set associated with ν’s ID in the Aclis2 of the received

Connect1 message. This message is composed of ν’s ID, the ss

and atds sets associated with ν’s ID in the Aclis2 of the received

Connect-1 message.

• Whenever a Dominator node υ receives a Connect2 message addressed

to itself from a Connector neighbor ω, υ inserts a new entry in its AClist

in which it stores ω’s ID and it sets the 3hds of this entry to the ss set

of the received Connect2 message; if ω is already included in υ’s AClist,

the ss set is added to the 3hds associated with ω.

• Whenever a Dominator node υ has selected Connectors to all Domina-

tors that have larger IDs and are at most 3-hop away and it is reached

by all Dominators that have smaller IDs and are at most 3-hop away, ϑ

broadcasts a Complete message.

The CDS maintenance phase

In this algorithm, the approach used to maintain the CDS after any topological

change that renders the current CDS invalid is to first maintain the MIS and then

to make sure that all pairs of MIS members that are 3-hop away (at most) are

connected through Connector nodes. A detailed description of the maintenance

procedures of Alzoubi algorithm is given below.

Maintenance Due to Dominator Movement

• Whenever a Dominatee node ϑ discovers the disappearance of a Dominator

neighbor ω it proceeds as follows:

- ϑ removes ω from its list1 and nlist lists.

- If ϑ’s list1 becomes empty, it changes its state to Candidate and clears

all variables associated with its previous state. Otherwise, ϑ keeps its

Dominatee state.

75

- ϑ reports the loss of ω by broadcasting a Warning1 message that con-

tains its own ID, its current state, and the ID of ω.

• Whenever a Connector node ϑ discovers the disappearance of a Dominator

neighbor ω, it proceeds as follows:

- ϑ removes ω from its list1, and nlist lists. If list1 becomes empty, ϑ

changes its state to Candidate and clears all variables associated with

its previous state.

- If ϑ has other Dominators, i.e., its list1 is not empty, it removes ω from

the 1hds of each entry in its Rlist1; if the 1hds of that entry becomes

empty, the whole entry will be removed form Rlist1. Moreover, if ω

appears as the first parameter of any entry in ϑ’s Rlist1 or Rlist2, i.e.,

ω is a Selector of ϑ, that entry is removed. If both of Rlist1 and Rlist2

become empty, ϑ changes its state to Dominatee and clears all variables

associated with its previous state.

- If ϑ’s Rlist1 or Rlist2 or both are not empty, i.e., ϑ is still selected as

Connector, it removes ω form the atds (respectively, ss) of every entry

in its Aclist1 (respectively, Aclist2); if that atds (ss) becomes empty,

the whole entry will be removed.

- ϑ reports the loss of ω by broadcasting a Warning1 message that con-

tains its own ID, its current state, and the ID of ω.

• Upon the reception of a Warning1 message form a neighbor ϑ reporting that

ϑ changed its state from a Connector to a Dominatee or to a Candidate due

to the loss of connection with a Dominator neighbor ω, a Connector node ν

proceeds as follows:

- If ϑ is included in ν’s Aclist1, the entry corresponding to ϑ is removed.

- If ϑ is listed in ν’s Aclist2 and ω is listed in the atds associated with ϑ in

this list, and if ω is still listed in ν’s list2, ν selects a new node from the

rns associated with ω in its list2 to connect itself to ω and applies the

CDS algorithm locally starting at the MIS connecting phase. Moreover,

ν removes ϑ from its Aclist2.

• Upon the reception of a Warning1 message form a Connector ϑ reporting

the loss of connection with a neighboring Dominator ω, a Connector node ν

proceeds as follows:

76

- If ϑ is listed in ν’s Aclist1 list and ω belongs to the ss associated with

ϑ in this list, ν removes ω from ss and if it becomes empty, ν removes

the entire entry of ϑ from its Aclist1.

- If ϑ is listed in ν’s Aclist2 and ω belongs to the atds associated with

ϑ in this list, ν removes ω from the atds, and if it becomes empty, ν

removes the whole entry of ϑ from its Aclist2. Moreover, ν removes

ϑ form the rns associated with ω in its list2, and if this rns becomes

empty, ν removes ω from its list2 and from the 2hds of each entry of its

Rlist2 and if any 2hds becomes empty, the whole entry will be removed

from ν’s Rlist2; if ν’s Rlist2 becomes empty and its Rlist1 is empty, ν

changes its state to Dominatee. However, if the rns associated with ω

in ν’s list2 is not empty after the removal of ϑ, ν selects a node from the

rns associated with ω in its list2 to connect itself to ω, and applies the

CDS algorithm locally starting at the MIS connecting phase.

- Regardless of whether ν has changed its state or not, if ω is removed from

ν’s list2, ν reports the loss of ω by broadcasting a Warning2 message

that is composed of ν’s ID, ν’s current state, and ω’s ID.

- If ω is still listed in ν’s list2, and ν has not sent a Warning1 message,

it broadcasts a Response message that contains its ID, its current state,

and ω’s ID.

• Whenever a Dominator ϑ receives a Warning1 message form a neighbor ν

reporting the loss of connection with a Dominator ω, it proceeds as follows:

- ϑ removes ν from the rns set associated with ω in its 2Hlist ; if the rns

becomes empty, ϑ removes the whole entry of ω from its 2Hlist, and If

ω is listed in any entry of ϑ’s 3Hlist2, this entry will be moved to the

3Hlist.

- If ν is the Connector that is used by ϑ to reach ω, i.e., ω belongs to the

ts2 (2hds) associated with ν in ϑ’s SClist (AClist), ϑ removes ω from

this ts2 (2hds) and if the ts2 (2hds) becomes empty, and the ts3 (3hds)

of this entry is also empty, the whole entry is removed from ϑ’s SClist

(AClist). However, if ω is still listed in ϑ’s 2Hlist or 3Hlist, ϑ selects

a node from the rns associated with ω in its 2Hlist or 3Hlist lists and

applies the CDS algorithm locally starting at the MIS connecting phase.

• Whenever a Dominator ϑ receives a Warning2 message form a neighbor ν

reporting the loss of a Dominator ω, it proceeds as follows:

77

- ϑ removes ν from the rns set associated with ω in its 3Hlist ; if the rns

becomes empty, ϑ removes the whole entry of ω from its 3Hlist. ϑ applies

the same rule to its 3Hlist2 if ω is listed in ϑ’s 3Hlist2.

- If ν is the Connector that is used by ϑ to reach ω, i.e., ω belongs to the

ts3 (3hds) associated with ν in ϑ’s SClist (AClist), ϑ removes ω from

this ts3 (3hds) and if the ts3 (3hds) becomes empty, and the ts2 (2hds)

is also empty, the whole entry of ν is removed from ϑ’s SClist (AClist).

However, if ω is still listed in ϑ’s 3Hlist, ϑ selects one of the rns nodes

associated with ω in its 3Hlist list and applies the CDS algorithm locally

starting at the MIS connecting phase.

• Whenever a Candidate node ϑ receives a Warning1 or Response message form

each neighbor that is either a Dominatee or a Connector, it invokes the CDS

algorithm starting from the MIS construction phase.

• When a Dominator ϑ joins a new neighborhood, it proceeds as follows:

- If the new neighborhood has at least one Dominator, ϑ changes its state

to Dominatee, updates its variables, and broadcasts a Dominatee mes-

sage, followed by LST1 message. Whenever a Dominatee or a Connector

node υ receives a Dominatee message from the new neighbor ϑ, υ broad-

casts a LST1 message; and when υ receives LST1 message from the new

neighbor ϑ, it updates its list2 and broadcasts LST2 message. When ϑ

receives LST1 message from each Dominatee and Connector neighbor,

it updates its list2 and broadcasts LST2 message.

- On the other hand, if all members of the new neighborhood are in Non-

Dominator state, ϑ maintains its state as a Dominator, updates its vari-

ables, and broadcasts a Dominator message. Upon the reception of ϑ’s

Dominator message, each member of ϑ’s neighborhood adds it to its

list1 and then sends LST1 message followed by LST2 message. After

receiving LST1 and LST2 messages from all its neighbors, ϑ updates its

variables and executes the CDS algorithm locally starting at the MIS

connecting phase.

Note: In both of the above cases, when a Dominatee or a Connector

node υ receives LST1 message from a Dominatee or a Connector neigh-

bor ν that is not a new neighbor, υ recalculates its list2 and broadcasts

LST2 message if the new list2 is different from old one.

78

Maintenance Due to Dominatee or Candidate node Movement

• Whenever a Connector or a Dominatee node ω discovers the disappearance

of a Dominatee neighbor υ, it removes υ from its nlist and from the rns

associated with each entry in its list2. If the rns of any entry becomes empty,

that entry will be removed from ω’s list2 and ω broadcasts a Lost2 message,

which contains its own ID, and the IDs of the Dominators removed from its

list2; these Dominators are called the Lost-Dominators. When a Dominator

ϑ receives the Lost2 message from ω, it removes ω from the rns sets associated

with the Lost-Dominators listed in its 3Hlist and 3Hlist2. If any of the rns

sets becomes empty, ϑ removes the whole entry associated with that rns.

• The actions taken by a Dominator ϑ upon the reception of a Lost2 message

depend on the state of the sender ω; if ω is a Dominatee, ϑ removes ω from the

rns associated each Lost-Dominator ν that is listed in its 3Hlist (respectively,

3Hlist2), and if the rns becomes empty, the entire entry corresponding to ν

is removed. On the other hand, if ω is a Connector that is used by ϑ to

reach any 3-hop Dominator, i.e., ω is listed in ϑ’s SClist (AClist), ϑ removes

every Lost-Dominator ν from the ts3 (3hds) associated with ω in its SClist

(AClist), if any ts3 (3hds) set becomes empty, the whole entry is removed. If

ν is still listed in ϑ’s 3Hlist, ϑ selects another node among the rns associated

with ν in its 3Hlist to connect itself to ν, and it applies the CDS locally

starting at the MIS connecting phase.

• When a Dominator node υ discovers the absence of a Dominatee neighbor ω,

it removes ω from its nlist, and from the rns set of each entry in its 2Hlist,

3Hlist and 3Hlist2. If any of the rns sets becomes empty, υ removes the

whole entry of the Dominator associated with that empty rns set. If ν, the

Dominator associated with the removed entry, belongs to υ’s 2Hlist and it is

still included in υ’s 3Hlist2, υ moves the entire entry of ν to its 3Hlist list.

• When a Dominatee node ϑ joins a new neighborhood, it proceeds as follows:

- If the new neighborhood has at least one Dominator, ϑ updates its nlist

and broadcasts a Dominatee message followed by LST1 message.

- If all members of the new neighborhood are in Non-Dominator state, ϑ

changes its state to Dominator, and broadcasts Dominator message.

- In both cases ϑ and its neighbors apply the CDS algorithm locally start-

ing at the MIS connecting phase.

79

• Whenever a new node υ joins the network, it starts in the Candidate state.

If any of υ’s neighbors is a Dominator, υ changes its state to Dominatee,

and broadcasts a Dominatee message followed by LST1 message; otherwise,

υ changes its state to Dominator, and broadcasts a Dominator message. If

the new state of υ is Dominatee, υ and its neighbors proceed as follows:

- Upon the reception of a Dominatee message from υ, every Dominatee or

Connector neighbor ω broadcasts LST1 message.

- After receiving LST1 message from υ, each Non-Dominator neighbor

updates its list2 and broadcasts LST2 message.

- Upon receiving LST1 message from each Non-Dominator neighbor, υ

updates its list2 and broadcasts LST2 message.

- After receiving LST1 and LST2 messages from each neighbor, a Domi-

nator node ϑ updates its variables.

- υ and its neighbors apply the CDS algorithm starting at the MIS con-

necting phase.

On the other hand, If the new state of υ is Dominator, υ and its neighbors

proceed as follows:

- Each Dominatee and connector neighbor ω adds υ to its list1 and broad-

casts LST1 message followed by LST2 message.

- Whenever a Dominatee or a Connector receives LST1, it updates its list2

and it broadcasts LST2 message if the update process has introduced any

changes to its list2.

- After receiving LST1 and LST2 messages form all its neighbors, υ and

its neighbors apply the CDS algorithm starting at the MIS connecting

phase.

Maintenance Due to Connector node Movement

• The actions taken by a node υ due to the absence of a Connector neighbor ϑ

depend on its state. If υ is a Dominatee, υ removes ϑ from its nlist, and from

the rns associated with each Dominator in its list2. If the rns of any entry

becomes empty, υ removes that entry from its list2 and broadcasts a Lost2

message that is composed of its ID, and the IDs of the Dominators whose

80

entries are removed from its list2, these Dominators are called the Lost-

Dominators. However, If υ is a Connector, it takes the additional actions

listed below:

- If ϑ uses υ to reach any 2-hop Dominator, i.e., ϑ is listed in υ’s Aclist1,

ϑ will be removed from υ’s Aclist1.

- If υ uses ϑ to reach any 2-hop Dominator ω, i.e., there is an entry for

ϑ in υ’s Aclist2 and ω belongs to the atds associated with that entry,

and if ω is still listed in υ’s list2, υ selects a new neighbor from the rns

associated with ω to connect itself to ω, and it applies the CDS algorithm

locally starting at the MIS connecting phase. On the other hand, if ω

is not listed in υ’s list2, then υ removes ω from the 2hds associated

with each entry in its Rlist2, and if that entry becomes empty, then it

will be removed. If υ’s Rlist1 is empty and its Rlist2 becomes empty,

υ changes its state to Dominatee, updates its variables, and broadcasts

S-Dominatee message.

On the other hand, if υ is a Dominator, in addition to removing ϑ from its

nlist, υ takes the following actions:

- υ removes ϑ from the rns of each entry listed in its 2Hlist, 3Hlist and

3Hlist2 lists. If any rns set of any entry of these lists becomes empty,

the whole entry will be removed. If the removed entry belongs to υ’s

2Hlist and ω is still listed in υ’s 3Hlist2, then the entry of ω will be

moved to υ’s 3Hlist.

- If υ uses ϑ to reach other Dominators, i.e., ϑ is listed in υ’s SClist and

AClist, υ removes ϑ’s entry from these lists, then for each Dominator ν

that belongs to the ts2 (2hds) or ts3 (3hds) of the removed entry and

if ν is still listed in any of υ’s 2Hlist, 3Hlist, or 3Hlist2, υ selects a new

connector to connect itself to ν by applying the CDS locally starting at

the MIS connecting phase.

• Whenever a node ϑ receives a S-Dominatee message from a Connector neigh-

bor ω, it updates the state of ω in its nlist to Dominatee. Moreover, if ϑ

is a Dominator that uses ω to reach other Dominators, i.e., ω is listed in

ϑ’s SClist (respectively, AClist) list, ω’s entry is removed from this list and

proceeds as if it lost a Connector neighbor.

81

• Whenever a Connector node ϑ moves to a new vicinity, it takes the following

actions:

- If the new neighborhood still contains some Dominators that use ϑ to

reach each other, ϑ keeps its Connector state, updates its variables, and

broadcasts a Connector message followed by LST1 message. Whenever

a neighboring node receives the LST1 message, it applies the CDS algo-

rithm locally starting at the MIS connecting phase.

- If the new neighborhood contains no Dominators, ϑ becomes a Domi-

nator, broadcasts Dominator message, and applies the CDS algorithm

locally starting at the MIS connecting phase.

- If no Dominator in the new neighborhood use ϑ to reach other Domina-

tors, ϑ changes to Dominatee, broadcasts a Dominatee message followed

by LST1 message.

Some remarks about Alzoubi algorithm

Even though it is the only well documented algorithm among its rivals, the

designers of Alzoubi algorithm do not specify the exact criteria by which a Dom-

inator node ϑ selects nodes from its 1-hop neighbors to work as Connectors. The

selection approach used in this thesis is based on node degree: the Connector node

ν that offers paths to the maximum number of 2-hop and 3-hop Dominators is

selected. Another remark is about the case in which two Dominators come into the

communication range of each other. According to [4]:

When a dominator node u joins a neighborhood, if the new set of

neighbors has at least one dominator, u becomes a dominatee, updates

its lists and sets, and sends a DOMINATEE message, followed by an

list1 message. Otherwise, u maintains its state as a dominator, updates

its lists and sets, and sends a DOMINATOR message.

However, the fact that all nodes are mobile makes it difficult for any two nodes who

recently come in contact with each other to decide which node is the one who joined

the neighborhood of the other. In this thesis, this conflict is resolved as follows:

When two Dominators or more come in contact with each other, the one with the

smallest ID keeps its role as a Dominator and the other one becomes a Domina-

tee, updates its lists and sets, and sends a Dominatee message, followed by list1

message.

82

4.3 General Remarks

The following remarks apply to the implementation of all algorithms studied in this

research.

• Neighbors discover each other by exchanging Hello messages, every Hello

massage contains the sender’s ID .

• To reduce the effect of transient connections, node ϑ adds node υ to its list

of neighbors after the reception of the third consecutive Hello messages from

υ. In the same manner, node ϑ removes node υ from its neighbors list if it

does not hear from it for four consecutive Hello message periods.

• To reduce the effect of collisions ; after sending any message, node ϑ expects

to receive a confirmation message from every intended recipient, if ϑ does not

receive the confirmation within certain time, it retransmits the same message

again. ϑ retransmits the unconfirmed message for up to three times.

83

Chapter 5

Simulation Setup and Results

This chapter describes the simulations conducted and gives the specifications of

the environment in which they were conducted, explains the methodology used to

process the results gathered from these simulations, presents the outcome of the

processed results, and discusses these results.

5.1 Simulation setup

The simulator used in this research is the ns-2 network simulator [44]; a widely used

discrete event simulator targeted at network research. The fact that ns-2 offers

realistic models for signal propagation time, signal power attenuation, and realistic

medium access protocols adds to the creditability of the simulations conducted

using it. Many versions of the ns-2 simulator are in use nowadays, the version

used in this research is the ns-2.30 installed on Fedora Core 5 running on Toshiba

Satellite A100 laptop.

Two medium access control protocols, MAC protocols, were used in the simula-

tions: the ideal MAC protocol, and the IEEE 802.11 MAC protocol [55]. While the

ideal MAC protocol adheres to the design assumption made by the designers of the

studied algorithms regarding the guaranteed delivery of broadcasted packets, the

IEEE 802.11 MAC violates this assumption since broadcasted packets may not be

correctly delivered due to packet collisions. Even though no real-world MAC pro-

tocol is ideal, the use of a virtual ideal MAC gives us the ability to investigate how

the real-world performance of these algorithms deviate from their ideal-conditions

counterparts.

84

To investigate the effect of the mobility model on the performance of each al-

gorithm, two different mobility models were used with each MAC protocol: the

Random Waypoint mobility model [61], and the Freeway mobility model [11]. In

the Random Waypoint model, every node, ϑ, has an initial position Pi = (xi, yi)

at which it stays for a given period of time called the Pause Time; at the end of

this period, ϑ moves toward a randomly chosen destination Pd = (xd, yd) with a

constant speed V . ϑ stays at Pd for another pause time at the end of which it

moves to another destination and so on. Both of the speed and the pause time

are uniformly distributed in the intervals [Vmin, Vmax] and [Tmin, Tmax] respectively.

The simulations based on this model were run over a square field of 2000 m ×
2000 m. The number of nodes used ranges from 50 to 150 with increments of 10.

For every number of nodes, three different ranges of speed were employed: 15-20,

20-25, 25-30 meter per second. For every speed and number of nodes, six different

movement scenarios are generated, and every scenario is used in one simulation, the

average of the results of these six simulations is calculated and used to represent

the algorithm’s behavior under the given speed and number of nodes.

The Freeway mobility model emulates the mobility behavior of vehicles on free-

ways. In this model, the direction of node movement is controlled by the direction

of the lane on which it moves; however, the speed of node movement is controlled

by the following relations:

|Si (t + 1)| = |Si (t)|+ random () ∗ |ai (t)| (5.1)

if node jf node j is in front of node i

∀t Di,j (t) ≤ SD ⇒ |Si (t)| ≤ |Sj (t)| (5.2)

Where Si (t) and ai (t) are the speed and the acceleration of node i at time t, Di,j (t)

is the distance between nodes i and j at time t, and SD is the safety distance. The

simulations based on this model were run over an field of 3000 m by 1000 m divided

into ten parallel lanes. The number of nodes used in these simulations ranges from

50 to 175 with increments of 25. For every number of nodes, three different ranges

of speed were employed : 15-20, 20-25, 25-30 m/s. For every speed and number of

nodes, three different movement scenarios are generated, and every scenario is used

in one simulation, the average of the results of the three simulations is calculated

and used to represent the algorithm’s behavior under the given speed and number

of nodes. In all the simulations conducted in this research, every simulation runs

for 300 seconds, the radio transmission range of every node is set to 250 meters and

the Hello period is set to 1 second.

85

5.2 Simulation results

This section presents the results of the simulations conducted in this research.

These results are presented according to the mobility model employed.

5.2.1 Simulations based on the Random Waypoint mobility

model

The results of the simulations based on this mobility model are divided into two

groups. The first group includes the results obtained using a virtual ideal MAC

protocol and the second presents the results obtained using a real MAC protocol:

the IEEE802.11 MAC.

- Results obtained using ideal MAC

The following figures compare the performance of the studied algorithms in

terms of CDS size, CDS establishment time 1, the total running time 2, the average

number of bytes transmitted by every node, the average number of bytes broad-

casted, and the average number of bytes unicasted by every node. Moreover, they

show the effect of the speed of movement on the performance of each algorithm.

• The CDS size

The average size of the CDS produced by each algorithm as a function of the

number of nodes are given in figures 5.1, 5.2, and 5.3 for the three ranges of speed.

The most important remark about these figures is that Alzoubi algorithm consis-

tently produces the smallest CDS; moreover, Alzoubi algorithm is the best in terms

of scalability and the MPR is the worst. In fact, the number of nodes that can be

accommodated by the MPR algorithm depends on the speed of movement, as the

speed increases, the number of nodes decreases. Another remark is that the size of

the CDS produced of the studied algorithms increases linearly with the number of

nodes; however, the rates of increase are different. Finally, it can be noticed that

the increase in the speed of movement is associated with CDS size decrease. This

decrease in the CDS size results from the fact that fast moving nodes encounter

more frequent topology changes, these changes force many CDS members to go

back and forth in and out of the CDS; therefore, the average number of stable CDS

members, i.e. CDS size, gets smaller.

1This is the time at which every node knows whether it is a CDS member or not.
2Time spent during CDS creation and maintenance phases.

86

Figure 5.1: CDS size at speed range 15-20 m/s.

Figure 5.2: CDS size at speed range 20-25 m/s.

Figure 5.3: CDS size at speed range 25-30 m/s.

87

• The CDS establishment time

Figures 5.4, 5.5, and 5.6 show the average CDS establishment time for each

algorithm as a function of the number of nodes, for three ranges of speed. It can be

noticed from these figures that Stojmenovic algorithm is the fastest algorithm in

constructing the CDS and the MPR algorithm is the slowest. The fact that there

is an internodal dependency in all of the studied algorithms except for Stojmenovic

algorithm is the reason behind their long CDS establishment times.

Figure 5.4: CDS establishment time at speed range 15-20 m/s.

Figure 5.5: CDS establishment time at speed range 20-25 m/s.

88

Figure 5.6: CDS establishment time at speed range 25-30 m/s.

Figure 5.7: The total running time at speed range 15-20 m/s.

• The total running time

The average total time of each algorithm as a function of the number of nodes

for each of the three speed ranges are given in figures 5.7, 5.8, and 5.9. Based on

these figures, it can be concluded that Alzoubi algorithm produces the most stable

CDS among the studied algorithms; this conclusion is based on the fact that even

though Alzoubi algorithm is not the fastest in the CDS construction phase, its to-

tal running time is the shortest compared to its rivals. It can also be concluded

that although Stojmenovic variant of Wu and Li algorithm improves on the origi-

nal algorithm, this improvement is minimal (less than 4% of the total running time).

89

Figure 5.8: The total running time at speed range 20-25 m/s.

Figure 5.9: The total running time at speed range 25-30 m/s.

• The total number of transmitted bytes

Figures 5.10, 5.11, and 5.12 show the average total number of bytes transmitted

either broadcasting or by unicasting during the CDS creation and maintenance

phases of each algorithm as a function of the number of nodes and for three ranges

of speed. The important remark to be made here is about the fast growth of

the total number of bytes transmitted by Alzoubi algorithm with the increase in

the number of nodes. The other remark that can be made is that the average total

numbers of bytes transmitted by Stojmenovic, Wu and Li, and the MPR algorithms

are almost the same. Finally, while the total number of transmitted bytes is not

sensitive to the mobility rate, i.e., speed range, for Stojmenovic, Wu and Li, and

the MPR algorithms, it decreases as the speed increase for Alzoubi algorithm.

90

Figure 5.10: The total number of bytes transmitted at speed range 15-20 m/s.

Figure 5.11: The total number of bytes transmitted at speed range 20-25 m/s.

Figure 5.12: The total number of bytes transmitted at speed range 25-30 m/s.

91

• The total number of broadcasted bytes

In MANETs, messages sent by broadcasting face higher risk of collision than

those sent by unicast. The tendency of any algorithm to use message broadcast is

directly related to its applicability in MANETs, the more the broadcasting tendency

the less is the applicability potential. Figures 5.13, 5.14, and 5.15 show the average

total number of bytes broadcasted during the CDS creation and maintenance phases

of each algorithm as a function of the number of nodes for three ranges of speed.

Based on these figures, one can conclude that Alzoubi algorithm is the most suitable

among all the studied algorithms for MANETs applications, since the total number

of bytes broadcasted in this algorithm is much smaller than those broadcasted by

other algorithms.

Figure 5.13: The total number of bytes broadcasted at speed range 15-20 m/s.

Figure 5.14: The total number of bytes broadcasted at speed range 20-25 m/s.

92

Figure 5.15: The total number of bytes broadcasted at speed range 25-30 m/s.

Figure 5.16: The total number of bytes unicasted at speed range 15-20 m/s.

93

• The total number of unicasted bytes

Figures 5.16, 5.17, and 5.18 show the average total number of bytes unicasted

during the CDS creation and maintenance phases of each algorithm as a function

of the number of nodes, for three ranges of speed. It is clear that the average total

number of bytes unicasted by Alzoubi algorithm is the largest among all the studied

algorithms.

Figure 5.17: The total number of bytes unicasted at speed range 20-25 m/s.

Figure 5.18: The total number of bytes unicasted at speed range 25-30 m/s.

94

- Results obtained using the IEEE 802.11 MAC

Due to the fact that the IEEE 802.11 MAC protocol [55] does not offer any

mechanism that guarantees the delivery of messages sent by broadcast, all of the

CDS creation algorithms that rely on broadcasting to establish and maintain the

CDS, namely: Wu and Li algorithm, Stojmenovic algorithm, and the MPR algo-

rithm, are not able to function properly using this MAC, i.e., they are not applicable

in the real world. On the other hand, the moderate use of broadcasting and the use

of unicasting are the reasons behind the ability of Alzoubi algorithm to function

using the IEEE 802.11 MAC protocol with some qualifications. In addition to the

loss of messages due collisions, the fact that the IEEE 802.11 MAC protocol forces

all nodes that are located in the transmission range of any currently transmitting

or receiving node to delay transmission and to buffer any packet that is ready

for transmission, and because of the limited-capacity of the transmission buffers,

messages are lost due to the overflow of these buffers. As a result of these message

losses, Alzoubi algorithm fails in keeping track of topology changes and in updating

nodes’ roles in response to these topology changes. Therefore, the performance of

Alzoubi algorithm based on the use of the IEEE 802.11 MAC protocol deviates sig-

nificantly from its performance based on the use of the virtual ideal MAC protocol.

The following figures show the deviation in the performance of Alzoubi algorithm

based on the use of the IEEE 802.11 MAC protocol from that based on the use of

the ideal MAC protocol for three ranges of speed.

• Deviation in CDS size

The average size of the CDS produced by Alzoubi algorithm based on the use of

the IEEE 802.11 MAC protocol and the corresponding average CDS size produced

by the virtual ideal MAC protocol as a function of the number of nodes, and the

effect of the speed of movement on these CDS sizes are shown in figures 5.19, 5.20,

and 5.21. The important remark that can be made about these figures is that the

deviation in the CDS size increases with the increase in the number of nodes; the

reason is that the increase in the number of nodes leads to an increase in the rate of

packet loss; consequently, the inability of nodes to keep track of topology changes

and to update their roles accordingly becomes more apparent.

• Deviation in CDS establishment time

Figures 5.22, 5.23, and 5.24 show how the CDS establishment time of Alzoubi

algorithm based on the IEEE 802 MAC deviates from that based on the virtual

ideal MAC. Here too, the deviation increases with the increase in the MANET size.

95

Figure 5.19: Deviation in CDS size at speed range 15-20 m/s.

Figure 5.20: Deviation in CDS size at speed range 20-25 m/s.

Figure 5.21: Deviation in CDS size at speed range 25-30 m/s.

96

Figure 5.22: Deviation in CDS establishment time at speed range 15-20 m/s.

Figure 5.23: Deviation in CDS establishment time at speed range 20-25 m/s.

Figure 5.24: Deviation in CDS establishment time at speed range 25-30 m/s.

97

• Deviation in the total running time

The deviation in the total running time as a function of the number of nodes

for each of the three ranges of speed is given in figures 5.25, 5.26, and 5.27. It

is obvious that the total running time based on the use of the IEEE 802.11 MAC

protocol is longer than that based on the use of the virtual ideal MAC. Since the

CDS establishment time based on the use of the IEEE 802.11 MAC is shorter

than that based on the use of the virtual ideal MAC, one can conclude that the

CDS maintenance time based on the use of the IEEE 802.11 MAC is longer than

that based on the use of the virtual ideal MAC. The need of neighboring nodes to

exchange messages with each other in order to maintain the CDS, and the fact that

there might be a need to transmit the same message many times to compensate

for message losses due to collisions, are the reasons behind the longer time spent in

maintaining the CDS based on the use of the IEEE 802.11 MAC protocol.

Figure 5.25: The deviation in the total running time at speed range 15-20 m/s.

Figure 5.26: The deviation in the total running time at speed range 20-25 m/s.

98

Figure 5.27: The deviation in the total running time at speed range 25-30 m/s.

Figure 5.28: The deviation in the number of transmitted bytes at 15-20 m/s.

• Deviation in the total number of transmitted bytes

Figures 5.28, 5.29, and 5.30 show the deviation in the total number of transmit-

ted bytes as a function of the number of nodes for each of the three ranges of speed.

This large deviation represents the difference between the bandwidth required by

Alzoubi algorithm and the bandwidth that can be granted by the wireless com-

munication channel. This is the underlying reason for the deterioration of Alzoubi

algorithm performance under real-world conditions.

• Deviation in the total number of broadcasted bytes

The deviation in the total number of broadcasted bytes as a function of the

number of nodes for each of the three ranges of speed is shown in figures 5.31, 5.32,

and 5.33. It can be noticed that the wireless communication channel saturates at

99

Figure 5.29: The deviation in the number of transmitted bytes at 20-25 m/s.

Figure 5.30: The deviation in the number of transmitted bytes at 25-30 m/s.

1.4 KB. As a result, it fails to satisfy the broadcast demands of Alzoubi algorithm,

which exceeds 1.7 KB for all of the considered cases.

• Deviation in the total number of unicasted bytes

Figures 5.34, 5.35, and 5.36 show the deviation in the total number of unicasted

bytes as a function of the number of nodes for each of the three ranges of speed.

Due to the fact that Alzoubi algorithm uses unicasting more than broadcasting, it

can be noticed that the deviation in the total number of unicasted bytes is larger

than the deviation in total number of broadcasted bytes.

100

Figure 5.31: The deviation in the number of bytes broadcasted at 15-20 m/s.

Figure 5.32: The deviation in the number of bytes broadcasted at 20-25 m/s.

Figure 5.33: The deviation in the number of bytes broadcasted at 25-30 m/s.

101

Figure 5.34: The deviation in the number of bytes unicasted at 15-20 m/s.

Figure 5.35: The deviation in the number of bytes unicasted at 20-25 m/s.

Figure 5.36: The deviation in the number of bytes unicasted at 25-30 m/s.

102

5.2.2 Simulations based on the Freeway mobility model

The results of the simulations based on this mobility model are divided into two

groups. The first group includes the results obtained using a virtual ideal MAC

protocol and the second presents the results obtained using the IEEE802.11 MAC.

- Results obtained using ideal MAC

The following figures compare the performance of the studied algorithms in

terms of CDS size, CDS establishment time, the total running time, the average

total number of bytes transmitted, the average number of bytes broadcasted, and

the average number of bytes unicasted by every node. Moreover, they show the

effect of the speed of movement on the performance of each algorithm.

• The CDS size

The average size of the CDS produced by each algorithm as a function of the

number of nodes for the three ranges of speed are shown in figures 5.37, 5.38, and

5.39. The same remarks as those made about the CDS size of the Random Waypoint

mobility model can be made here. It is obvious that most of the time Alzoubi

algorithm produces the smallest CDS and it is the best in terms of scalability. It can

be noticed that the number of nodes accommodated by the MPR algorithm depends

on the speed of movement, as the speed increases the number of nodes decreases.

Moreover, it can be noticed that the increase in the speed of movement is associated

with CDS size decrease for the other algorithms. This CDS size decrease results

from the fact that fast moving nodes encounter more frequent topology changes,

these changes force many CDS members to go back and forth in and out of the

CDS; therefore, the average number of stable CDS members, i.e. CDS size, gets

smaller.

• The CDS establishment time

Figures 5.40, 5.41, and 5.42 show the average CDS establishment time for each

algorithm as a function of the number of nodes for three ranges of speed. Here too,

as in the Random Waypoint mobility model, Stojmenovic algorithm is the fastest

algorithm in constructing the CDS and the MPR algorithm is the slowest. As men-

tioned earlier, the fact that there is an internodal dependency in all of the studied

algorithms except for Stojmenovic algorithm is the reason behind their longer CDS

establishment times.

• The total running time

The average total time of each algorithm as a function of the number of nodes

103

Figure 5.37: CDS size at speed range 15-20 m/s.

Figure 5.38: CDS size at speed range 20-25 m/s.

Figure 5.39: CDS size at speed range 25-30 m/s.

104

Figure 5.40: CDS establishment time at speed range 15-20 m/s.

Figure 5.41: CDS establishment time at speed range 20-25 m/s.

Figure 5.42: CDS establishment time at speed range 25-30 m/s.

105

for each of the three ranges of speed are given in figures 5.43, 5.44, and 5.45. The

worthwhile remark to be made here is that the ranking of the studied algorithms

according to their total running time is exactly the same as their ranking based on

the total running time under the Random Waypoint mobility model. In both cases,

Alzoubi algorithm has the shortest total running time, Stojmenovic algorithm has

the second rank, Wu and Li algorithm comes third, and the MPR algorithm has

the longest total running time. Therefore, one can conclude that Alzoubi algorithm

produces the most stable CDS; this conclusion is based on the fact that even though

Alzoubi algorithm is not the fastest in the CDS construction phase, its total running

time is the shortest compared to its rivals.

Figure 5.43: The total running time at speed range 15-20 m/s.

Figure 5.44: The total running time at speed range 20-25 m/s.

106

Figure 5.45: The total running time at speed range 25-30 m/s.

Figure 5.46: The total number of bytes transmitted at speed range 15-20 m/s.

• The total number of transmitted bytes

Figures 5.46, 5.47, and 5.48 show the average total number of bytes transmitted

either broadcasting or unicasting during the CDS creation and maintenance phases

of each algorithm as a function of the number of nodes for three ranges of speed.

It is important to note the fast growth of the total number of bytes transmitted by

Alzoubi algorithm with the increase in the number of nodes. The other remark that

can be made is that the average total number of bytes transmitted by Stojmenovic

algorithm and Wu and Li algorithm is almost the same. Note that these are the

same remarks made about the total number of transmitted bytes under the Random

Waypoint mobility model.

107

Figure 5.47: The total number of bytes transmitted at speed range 20-25 m/s.

Figure 5.48: The total number of bytes transmitted at speed range 25-30 m/s.

• The total number of broadcasted bytes

Figures 5.49, 5.50, and 5.51 show the average total number of bytes broadcasted

during the CDS creation and maintenance phases of each algorithm as a function

of the number of nodes for three ranges of speed. It can be noticed here that,

as in the simulations based on the Random Waypoint mobility model, the average

total number of bytes broadcasted by Alzoubi algorithm is much smaller than those

broadcasted by any of the other studied algorithms.

• The total number of unicasted bytes

Figures 5.52, 5.53, and 5.54 show the average total number of bytes unicasted

during the CDS creation and maintenance phases of each algorithm as a function

of the number of nodes for three ranges of speed. It can be noticed that the average

108

Figure 5.49: The total number of bytes broadcasted at speed range 15-20 m/s.

Figure 5.50: The total number of bytes broadcasted at speed range 20-25 m/s.

Figure 5.51: The total number of bytes broadcasted at speed range 25-30 m/s.

109

total number of bytes unicasted by Alzoubi algorithm is the largest among all the

studied algorithms.

Figure 5.52: The total number of bytes unicasted at speed range 15-20 m/s.

Figure 5.53: The total number of bytes unicasted at speed range 20-25 m/s.

110

Figure 5.54: The total number of bytes unicasted at speed range 25-30 m/s.

- Results obtained using the IEEE 802.11 MAC

Here too, Wu and Li algorithm, Stojmenovic Algorithm, and the MPR algorithm

were not able to function properly using the IEEE 802.11 MAC while Alzoubi

algorithm show some ability to function under this MAC protocol; however, the

performance of Alzoubi algorithm based on the IEEE 802.11 MAC protocol deviates

significantly from its performance based on the virtual ideal MAC protocol. The

following figures show this performance deviation and the effect of the speed of

node movement on it.

• Deviation in CDS size

The average size of the CDS produced by Alzoubi algorithm based on the use of

the IEEE 802.11 MAC protocol and the corresponding average CDS size produced

by the virtual ideal MAC protocol as a function of the number of nodes for three

ranges of speed are shown in figures 5.55, 5.56, and 5.57. The important remark to

be made about these figures is that the use of the IEEE 802.11 MAC protocol under

the Freeway mobility model affects the CDS size in the same way it did under the

Random Waypoint mobility model, i.e., it leads to an increase in the CDS size and

this size increase becomes more apparent with the increase in the number of nodes.

111

Figure 5.55: Deviation in CDS size at speed range 15-20 m/s.

Figure 5.56: Deviation in CDS size at speed range 20-25 m/s.

Figure 5.57: Deviation in CDS size at speed range 25-30 m/s.

112

• Deviation in CDS establishment time

Figures 5.58, 5.59, and 5.60 show the effect of the IEEE 802.11 MAC protocol

on the CDS establishment time of Alzoubi algorithm. It is apparent in these fig-

ures that the CDS establishment time based under the IEEE 802 MAC deviates

significantly from that achieved under the virtual ideal MAC protocol. Here too,

the deviation increases with the increase in the number of nodes.

Figure 5.58: Deviation in CDS establishment time at speed range 15-20 m/s.

Figure 5.59: Deviation in CDS establishment time at speed range 20-25 m/s.

113

Figure 5.60: Deviation in CDS establishment time at speed range 25-30 m/s.

Figure 5.61: The deviation in the total running time at speed range 15-20 m/s.

• Deviation in the total running time

The deviation in the total running time as a function of the number of nodes

for three ranges of speed are given in figures 5.61, 5.62, and 5.63. It is obvious that

the use of IEEE 802.11 MAC protocol leads to longer total running time. Since the

CDS establishment time based on the use of the IEEE 802.11 MAC is shorter than

that based on the use of the virtual ideal MAC, one can make the same conclusion

as that made under the Random Waypoint mobility model, i.e., the CDS mainte-

nance time under the IEEE 802.11 MAC is longer than that under the virtual ideal

MAC.

114

Figure 5.62: The deviation in the total running time at speed range 20-25 m/s.

Figure 5.63: The deviation in the total running time at speed range 25-30 m/s.

• Deviation in the total number of transmitted bytes

Figures 5.64, 5.65, and 5.66 show the deviation in the total number of trans-

mitted bytes as a function of the number of nodes for three ranges of speed. It is

apparent that the bandwidth requirements of Alzoubi algorithm exceeds the band-

width offered by the wireless communication channel regardless of the mobility

model used.

• Deviation in the total number of broadcasted bytes

The deviation in the total number of broadcasted bytes is shown in figures 5.67,

5.68, and 5.69. The light use of broadcasting in Alzoubi algorithm is the cause of

this small deviation compared to the deviation in the number of transmitted bytes.

115

Figure 5.64: The deviation in the number of transmitted bytes at 15-20 m/s.

Figure 5.65: The deviation in the number of transmitted bytes at 20-25 m/s.

Figure 5.66: The deviation in the number of transmitted bytes at 25-30 m/s.

116

Figure 5.67: The deviation in the number of bytes broadcasted at 15-20 m/s.

Figure 5.68: The deviation in the number of bytes broadcasted at 20-25 m/s.

Figure 5.69: The deviation in the number of bytes broadcasted at 25-30 m/s.

117

• Deviation in the total number of unicasted bytes

Figures 5.70, 5.71, and 5.72 show the deviation in the total number of unicasted

bytes as a function of the number of nodes for three ranges of speed. Due to the

heavy use of unicasting in Alzoubi algorithm, it can be noticed that the deviation

in the total number of unicasted bytes is much larger than the deviation in total

number of broadcasted bytes.

Figure 5.70: The deviation in the number of bytes unicasted at 15-20 m/s.

Figure 5.71: The deviation in the number of bytes unicasted at 20-25 m/s.

118

Figure 5.72: The deviation in the number of bytes unicasted at 25-30 m/s.

119

Chapter 6

Conclusions and Future Work

In this thesis, the performance of some of the most renowned virtual backbone for-

mation algorithms, namely: Alzoubi algorithm, Wu and Li algorithm, Stojmenovic

algorithm, and the MPR algorithm, is evaluated in a simulation-based experiment.

This chapter presents the conclusions drawn from the outcomes of the evaluation

of the aforementioned algorithms.

6.1 Conclusions

Based on the results presented in the previous chapter and under the same condi-

tions pertaining to the number of nodes and the speed of movement as those used

in the simulations described in this thesis, the following conclusions regarding the

real life behavior of the studied algorithms are drawn:

• The narrow bandwidth of the wireless communications channel renders all

of the algorithms studied in this thesis, except Alzoubi algorithm, useless

since they fail in constructing virtual backbones using the IEEE 802.11 MAC

protocol.

• Among the algorithms studied in this thesis, Alzoubi algorithm is the only

algorithm that showed some ability to cope with the restrictions imposed

by the bandwidth limitations; however, the number of nodes that can be

accommodated by this algorithm has an upper limit of 50 nodes.

• The mobility models used in the simulations described in this thesis, namely:

the Randomway Point mobility model and the Freeway mobility model, have

120

no impact on the ranking of the studied algorithms based on any of the

performance measures employed.

However, ignoring the restrictions imposed by the channel bandwidth and grant-

ing the design assumptions of the studied algorithms of guaranteed delivery of all

messages lead to the following conclusions:

• Alzoubi algorithm is the most scalable algorithm and the MPR algorithm is

the least. The scalability of Wu and Li algorithm and Stojmenovic algorithm

are the same.

• The fastest algorithm in the CDS creation phase is Stojmenovic algorithm

while the MPR algorithm is the slowest. The CDS creation time of Alzoubi

algorithm and Wu and Li algorithm are comparable.

• In general, Alzoubi algorithm is the fastest algorithm in CDS maintenance;

however, in MANETs that have 70 nodes or less, Stojmenovic algorithm out-

performs Alzoubi algorithm in this regard.

item Alzoubi algorithm has the highest signalling overhead among all the

studied algorithms; however, most of this overhead is sent by unicasting and

the portion sent by broadcasting is the lowest compared to others. As a result,

Alzoubi algorithm does not suffer from sever message loss due to collisions,

whereas almost all of the signalling overhead of other algorithms is sent by

broadcasting.

6.2 Future Work

Virtual backbone is proposed as a solution to the problem of routing in MANETs.

This thesis dealt with the quality of the virtual backbones themselves, and the next

step should investigate the ability of these virtual backbones to solve the problem

of routing in MANETs.

Another possible extension to this thesis is to go a further step in the direc-

tion of testing the quality of the virtual backbones and to evaluate their routing

performance. Even though the simulation-based performance evaluation provides

121

a good insight about the real life performance of the studied algorithms, it does

not eliminate the need for the real life testing for these algorithms. The real life

implementation and testing of the algorithms studied in this thesis is another rec-

ommended future step.

122

List of References

[1] M. Abolhasan, T. Wysocki, and E. Dutkiewicz. : A review of routing protocols

for mobile ad hoc networks. Ad hoc Networks, 2(1):1–22, 2004. 3

[2] C. Adjih, P. Jacquet, and L. Viennot. : Computing connected dominated sets

with multipoint relays. 4, 53, 67, 68

[3] G. Aggelou and R. Tafazolli. : A bandwidth-efficient routing protocol for

mobile ad hoc networks. pages 26–33, 1999. in: ACM International Workshop

on Wireless Mobile Multimedia (WoWMoM). 29

[4] K. M. Alzoubi. Virtual Backbones in Wireless Ad Hoc Networks. PhD thesis,

Illinois Institute of Technology, 2002. 69, 82

[5] K. M. Alzoubi, P.-J. Wan, and O. Frieder. : Distributed heuristics for con-

nected dominating sets in wireless ad hoc networks. Journal of Communica-

tions and Networks, 4(1):22–29, 2002. 54, 55, 56

[6] K. M. Alzoubi, P.-J. Wan, and O. Frieder. : Message-optimal connected-

dominating-set construction for routing in mobile ad hoc networks. 2002. in 3rd

ACM International Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc02). 3, 4, 55, 57, 62, 63, 64, 69

[7] K. M. Alzoubi, P.-J. Wan, and O. Frieder. : New distributed algorithm for con-

nected dominating set in wireless ad hoc networks. Jannuary 2002. HICSS35.

4, 54, 55, 56, 61, 69

[8] Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Weakly-connected

dominating sets and sparse spanners in wireless ad hoc networks. In ICDCS,

pages 96–104, 2003. 61

[9] A. Amis, R. Prakash, T. Vuong, and D. Huynh. : Max-min d-cluster formation

in wireless ad hoc networks. Tel Aviv, March 2000. in Proceedings of in

Proceedings of IEEE INFOCOM. 50

123

[10] B. An and S. Papavassiliou. : A mobility-based clustering approach to support

mobility management and multicast routing in mobile ad hoc wireless net-

works. International Journal of Network Management, pages 387–395, 2001.

49

[11] F. Bai, S. Narayanan, and A. Helmy. : Important: A framework to systemat-

ically analyze the impact of mobility on performance of routing protocols for

ad hoc networks. pages 825–835, San Francisco., April 2003. IEEE INFOCOM

(The 22nd Annual Joint Conference of the IEEE Computer and Communica-

tions Societies). 85

[12] D.J. Baker and A. Ephremides. : The architectural organization of a mobile

radio network via a distributed algorithm. IEEE Transactions on Communi-

cations, 29(11):1694–1701, November 1981. 48

[13] S. Basagni. : Distributed clustering for ad hoc networks. pages 310–315, 1999.

in Proceedings of ISPAN’99 Int. Symp. on Parallel Architectures, Algorithms,

and Networks.

[14] S. Basagni, I. Chlamtac, V.R. Syrotivk, and B.A. Woodward. : A distance

effect algorithm for mobility (dream). Dallas, TX, 1998. in: Proceedings of the

Fourth Annual ACM/IEEE International Conference on Mobile Computing

and Networking Mobicom 98. 11

[15] S. Basagni, M. Mastrogiovanni, A. Panconesi, and C. Petrioli. : Localized

protocols for ad hoc clustering and backbone formation: A performance com-

parison. IEEE Trans. Parallel Distrib. Syst, 17(4):292–306, 2006. 45, 48, 52,

53, 63, 68

[16] P. Basu, N. Khan, , and T. D. C. Little. : A mobility based metric for clustering

in mobile ad hoc networks. pages 413–418, April 2001. in Proceedings IEEE

ICDCSW01. 48

[17] E. M. Belding-Royer. : Multi-level hierarchies for scalable ad hoc routing.

Wireless Networks, 9:461–478, 2003. 51

[18] B. Bellur, R. G. Ogier, and F. L. Templin. : topology broadcast based on

reverse-path forwarding routing protocol (tbrpf). 2003. in : Internet Draft,

draft-ietf-manet-tbrpf-06.txt, work in progress. 18

[19] S. Butenko, X. Cheng, D.-Z. Du, and P.M. Pardalos. Cooperative Control:

Models, Applications and Algorithms, chapter On The Construction of Virtual

124

Backbone for Ad Hoc Wireless Networks, pages 43–54. Kluwer Academic

Publishers, 2003. 59

[20] S. Butenko, X. Cheng, C. Oliveira, and P.M. Pardalos. Recent Developments

in Cooperative Control and Optimization, chapter A New Heuristic for The

Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks,

pages 61–73. Kluwer Academic Publishers, 2004. 59

[21] M. Chatterjee, S.K. Das, and D. Turgut. : Wca: A weighted clustering al-

gorithm for mobile ad hoc networks. Cluster Computing, 5(2):193–204, 2002.

49

[22] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. : An energy-effecient

coordination algorithm for topology maintenance in ad hoc wireless networks.

pages 85–96. ACM Press, 2001. In Proceedings of the 7th annual international

conference on Mobile computing and networking. 53

[23] G. Chen, F. Nocetti, J. Gonzalez, and I. Stojmenovic. : Connectivity-based

k-hop clustering in wireless networks. January 2002. in Proceedings of the

35th Hawaii International Conference on System Sciences (HICSS-35). 48

[24] T. W. Chen and M. Gerla. : Global state routing: A new routing scheme for

ad hoc wireless networks. 1998. in Proceedings of the the IEEE ICC. 9

[25] Y. P. Chen and A. L. Liestman. : A zonal algorithm for clustering ad hoc net-

works. International Journal of Foundations of Computer Science, 14(2):305–

322, 2003. 61

[26] Y. P. Chen and A. L. Liestman. : Maintaining weakly-connected dominating

sets for clustering ad hoc networks. Ad Hoc Networks, 3(5):629–642, September

2005. 61

[27] Y. P. Chen, A. L. Liestman, and J. Liu. Ad Hoc and Sensor Networks, chapter

Clustering Algorithms for Ad Hoc Wireless Networks, pages 400–416. Nova

Science Publishers, 2004. 47

[28] Yuanzhu Peter Chen and Arthur L. Liestman. Approximating minimum size

weakly-connected dominating sets for clustering mobile ad hoc networks. In

MobiHoc, pages 165–172, 2002. 60, 61

[29] Xiuzhen Cheng and Ding-Zhu Du. : Virtual backbone-based routing in multi-

hop ad hoc wireless networks. University of Minnesota, June 2002. Technical

Report 002. 59

125

[30] C. C. Chiang. : routing in clustered multihop mobile wireless networks with

fading channel. pages 197–211, April 1997. in: Proceedings of IEEE SICON.

14

[31] C. C. Chiang, H. K. Wu, W. Liu, and M. Gerla. : Routing in clustered

multihop mobile wireless networks with fading channel. pages 197–211, April

1997. IEEE Singapore International Conference on Networks(SICON). 48

[32] Z. Chun-xiao and W. Guang-xing. : Fuzzy-control-based clustering strategy

in manets. volume 2, pages 1456–1460, September 2000. in Proceedings of the

fifth world congress on Intelligent control and automation. WCICA. 49

[33] I. Cidon and O. Mokryn. : Propagation and leader election in multihop broad-

cast environment. pages 104–119, September 1998. in Proceedings of 12th Int.

Symp. Distr. Computing. 54, 55

[34] M. S. Corson and A. Ephremides. : A distributed routing algorithm for mobile

wireless networks. ACM Journal on Wireless Networks, 1:61–81, Feb. 1995.

22, 23

[35] V. D. and M. S. Corson Park. : A highly adaptive distributed routing algorithm

for mobile wireless networks. pages 522–527, April 1997. in: Proceedings of

INFOCOM. 23

[36] F. Dai and J. Wu. : An extended localized algorithm for connected dominating

set formation in ad hoc wireless networks. IEEE Trans. Parallel and Distributed

Systems, 15(10):908–920, 2004. 65

[37] B. Das and V. Bharghavan. : Routing in ad hoc networks using minimum

connected dominating sets. Montreal, Canada, June 1997. International Con-

ference on Communications. 52

[38] S. Das, C. Perkins, and E. Royer. : ad hoc on demand distance vector (aodv)

routing. 2002. in : Internet Draft, draft-ietf-manetaodv- 1.txt, work in

progress. 20, 32

[39] M. Dorigo and G. Di Caro. : The ant colony optimization meta-heuristic. 1999.

In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,

pages 11-32. McGraw-Hill, London. 32

[40] R. Dube, C. Rais, K. Wang, and S. Tripathi. : Signal stability based adaptive

routing (ssa) for ad hoc mobile networks. IEEE Transactions on Communica-

tions, 4(1):36–45, 1997. 28

126

[41] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. :

Fast distributed algorithms for (weakly) connected dominating sets and linear-

size skeletons. pages 717–724, 2003. in Proc. ACM- SIAM Symposium on

Discrete Algorithms (SODA). 53, 54

[42] I. I. Er and K. G. Winston Seah. : Mobility-based d-hop clustering algorithm

for mobile ad hoc networks. Atlanta, Georgia, USA, March 21-25, 2004. Pro-

ceedings of IEEE Wireless Communications and Networking Conference. 45,

49

[43] J. eremy, B. M. Ding, A. Thaeler, and X. Cheng. Handbook of Combinato-

rial Optimization, chapter Connected Dominating Set in Sensor Networks and

MANETs, pages 329–369. Kluwer Academic Publishers, 2004. 51

[44] K. Fall and K. Varadhan. The ns Manual (formerly ns Notes and Documen-

tation). The VINT Project. 84

[45] E. Gafni and D. Bertsekas. : Distributed algorithms for generating loop-free

routes in networks with frequently changing topology. IEEE Transactions on

Communications, 29(1):11–18, January 1981. 23

[46] R. Gandhi, S. Parthasarathy, and A. Mishra. : Minimizing broadcast latency

and redundancy in ad hoc networks. pages 222–232. ACM Press, 2003. In

Proceedings of the fourth ACM international symposium on Mobile ad hoc

networking and computing. 58

[47] J.J. Garcia-Luna-Aceves and C. Marcelo Spohn. : Source-tree routing in wire-

less networks. New Orleans, 1999. in: Proceedings of the Seventh Annual

International Conference on Network Protocols Proceedings of Wireless Com-

munications and Networking. 10

[48] M. Gerla, T. J. Kwon, and G. Pei. : On demand routing in large ad hoc

wireless networks with passive clustering. September 2000. in Proceedings of

IEEE WCNC. 50

[49] M. Gerla and J. T. Tsai. : Multiuser, mobile, multimedia radio network.

Wireless Networks, 1:255–65, October 1995. 48

[50] S. Guha and S. Khuller. : Approximation algorithms for connected dominating

sets. Algorithmica, 20:374–387, 1998. 4, 52, 60

127

[51] P. Gupta, R. Gray, and P. Kumar. : An experimental scaling law for ad hoc

networks. 3

[52] M. Guunes, U. Sorges, and I. Bouazizi. : Ara the ant-colony based routing

algorithm for manets. pages 79–85, August 2002. in: ICPP workshop on Ad

Hoc Networks (IWAHN 2002). 32

[53] Z. J. Hass and R. Pearlman. : zone routing protocol for ad hoc networks. 1999.

in : Internet Draft, draft-ietf-manet-zrp-02.txt, work in progress. 36

[54] T. C. Hou and V. O. K. Li. : Transmission range control in multihop packet

radio networks. IEEE Transactions on Communications, 34(1), January 1986.

38

[55] http://grouper.ieee.org/groups/802/11/main.html. 84, 95

[56] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vien-

not. : Optimized link state routing protocol for ad hoc networks. Pakistan,

2001. IEEE INMIC. 17

[57] L. Jia, R. Rajaraman, and T. Suel. : An effecient distributed algorithm for

constructing small dominating sets. 2001. in Proceedings of the 20th ACM

Symposium on Principles of Distributed Computing (PODC’01). 51, 53

[58] M. Jiang, J. Ji, and Y. C. Tay. : cluster based routing protocol. 1999. in :

Internet Draft, draft-ietf-manet-cbrp-spec-01.txt, work in progress. 35

[59] M. Joa-Ng and I. T. Lu. : A peer-to-peer zone-based two-level link state

routing for mobile ad hoc networks. IEEE Journal on Selected Areas in Com-

munications, 17(8):1415–1425, 1999. 37

[60] T. Johansson and L. Carr-Motyckova. : Bandwidth-constrained clustering in

ad hoc networks. 50

[61] D. Johnson, D. Maltz, and J. Jetcheva. : the dynamic source routing protocol

for mobile ad hoc networks. 2002. in : Internet Draft, draft-ietf-manet-dsr-

07.txt, work in progress. 19, 26, 34, 85

[62] K.K. Kasera and R. Ramanathan. : A location management protocol for

hierarchically organised multihop mobile wireless networks. pages 158–162,

San Diego, CA, October 1997. in: Proceedings of the IEEE ICUPC 97. 12

128

[63] Y. B. Ko and N. H. Vaidya. : Location-aided routing (lar) in mobile ad hoc

networks. Dallas, XT, 1998. in: Proceedings of the Fourth Annual ACM/IEEE

International Conference on Mobile Computing and Networking (Mobicom 98).

30

[64] B. Liang and Z. J. Haas. : Virtual backbone generation and maintenance in

ad hoc network mobility management. pages 1293–1302, 2000. in INFOCOM.

48, 51

[65] C. R. Lin and M. Gerla. : Adaptive clustering for mobile wireless networks.

IEEE Journal on Selected Areas in Communications, 15(7):1265–1275, 1997.

45

[66] M. V. Marathe, H. Breu, H. B. Hunt, S. S. Ravi, and D. J. Rosenkrantz. :

Simple heuristics for unit disk graphs. Networks, 25:59–68, 1995. 52

[67] J. Matousek. Lectures on Discrete Geometry. Graduate Texts in Mathematics.

Springer, New York, 2002. 54

[68] A. B. McDonald and T. Znati. : A mobility based framework for adaptive

clustering in wireless ad-hoc networks. IEEE Journal on Selected Areas in

Communications, 17(8):1466–1487, August 1999. 45, 62

[69] A. B. McDonald and T. Znati. : Predicting node proximity in ad-hoc networks:

A least overhead adaptive model for selecting stable routes. volume 17, pages

1466–1487, August 1999. 62

[70] A. B. McDonald and T. Znati. : Statistical estimation of link availability and

its impact on routing in wireless ad hoc networks. Wireless Communications

and Mobile Computing, 4(4):331–349, June 2004. 62

[71] A. B. McDonald and T. Znati. : A path availability model for wireless ad-

hoc networks. New Orleans, LA, Septmber 1999. in Proceedings of the IEEE

Wireless Communications and Networking Conference 1999 (WCNC’99). 62

[72] S. Murthy and J. J. Garcia-Luna-Aceves. : A routing protocol for packet radio

networks. pages 86–95, Berkeley, CA, 1995. in Proceedings of the First Annual

ACM International Conference on Mobile Computing and Networking. 7

[73] N. Nikaein, C. Bonnet, and N. Nikaein. : Harp: Hbrid ad hoc routing proto-

col. Tehran, Iran, September 1-3 2001. in: Proceedings of IST: International

Symposium on Telecommunications. 42

129

[74] N. Nikaein, H. Laboid, and C. Bonnet. :distributed dynamic routing algorithm

(ddr) for mobile ad hoc networks. 2000. in: Proceedings of the MobiHOC 2000:

First Annual Workshop on Mobile Ad Hoc Networking and Computing. 41,

42

[75] S. Parthasarathy and R. Gandhi. : Fast distributed well connected domi-

nating sets for ad hoc networks. University of Maryland, Computer Science

Department, 2004. Technical Report CS-TR-4559. 57, 58

[76] G. Pei, M. Gerla, and T. W. Chen. : Fisheye state routing: A routing scheme

for wireless ad hoc networks. New Orleans, LA, june 2000. Proc ICC 2000. 9

[77] G. Pei, M. Gerla, X. Hong, and C. Chiang. : A wireless hierarchical routing

protocol with group mobility. pages 158–162, New Orleans, 1999. in: Proceed-

ings of Wireless Communications and Networking. 15

[78] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001. 1

[79] C. E. Perkins and T.J. Watson. : Highly dynamic destination sequenced dis-

tance vector routing dsdv for mobile computers. London, UK, 1994. ACM SIG-

COMM 94 Conference on Communications Architectures. 7

[80] A. Qayyum, L. Viennot, and A. Laouiti. : Multipoint relaying for flooding

broadcast message in mobile wireless networks. pages 3898–3907, January

2002. in Proc. of 35th Hawaii Intl Conf. on System Sciences (HICSS-35). 53,

67, 68

[81] S. Radhakrishnan, N. S. V Rao, G. Racherla, C. N. Sekharan, and S. G.

Batsell. :dst a routing protocol for ad hoc networks using distributed spanning

trees. New Orleans, 1999. in: IEEE Wireless Communications and Networking

Conference. 40

[82] Raju and J. Garcia-Luna-Aceves. : a new approach to on demand loop-free

multipath routing. pages 522–527, Boston, MA, October 1999. in: Proceedings

of the 8th Annual IEEE International Conference on Computer Communica-

tions and Networks (ICCCN). 21

[83] C. Santivanez, R. Ramanathan, and L. Stavrakakis. : Making link-state rout-

ing scale for ad hoc networks). Long Beach, California, October 2001. in: 2001

ACM International Symposium on Mobile Ad Hoc Networking and Comput-

ing, MobiHOC 2001. 3

130

[84] R. Sivakumar, P. Sinha, and V. Bharghavan. : Cedar: A core-extraction

distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in

Communications, 17(8):1454–1465, Augaust 1999. 50

[85] I. Stojmenovic, M. Seddigh, and J. Zunic. : Dominating sets and neighbor

elimination-based broadcasting algorithms in wireless networks. IEEE Trans.

Parallel and Distributed Systems, 13:14–25, 2002. 4, 53, 66

[86] W. Su and M. Gerla. : Ipv6 flow handoff in ad hoc wireless networks using

mobility prediction. pages 271–275, Rio de Janeiro, Brazil, December 1999.

in: IEEE Global Communications Conference. 34

[87] C. Toh. : A novel distributed routing protocol to support ad hoc mobile

computing. pages 480–486, 1996. in: IEEE 15th Annual International Phoenix

Conf. 26

[88] N. H. Vaidya, P. Krishna, M. Chatterjee, and D. K. Pradhan. : A cluster-based

approach for routing in dynamic networks. ACM Computer Communications

Review, 27(2), 1997. 45, 62

[89] P. Wan, K. Alzoubi, and O. Frieder. : distributed construction of connected

dominating set in wireless ad hoc networks. Mobile Networks and Applications,

9(2):141–149, April 2004. 3, 48, 55, 56, 57, 64

[90] S. C. Woo and S. Singh. : scalable routing protocol for ad hoc networks.

Wireless Networks, 7(5):513–529, 2001. 38

[91] J. Wu. : An enhanced approach to determine a small forward node set based

on multipoint relays. volume 4, pages 2774–2777, September 2003. in Proc. of

IEEE VTC 2003 fall. 53, 68

[92] J. Wu and H. Li. : On calculating connected dominating set for effeicient

routing in ad hoc wireless networks. pages 7–14, Seattle, 1999. in DIAL M’99.

3, 4, 52, 53, 65

[93] J. Wu, W. Lou, and F. Dai. : Extended multipoint relays to determine con-

nected dominating sets in manet. IEEE Trans. on Computers, 55(10):334–347,

March 2006. 53

[94] X. Y. Xu and M. Gerla. : Scalable routing protocols for mobile ad hoc net-

works. IEEE Network, 16(4):11–21, July-Aug. 2002.

131

[95] Y. Yi, M. Gerla, and T. Kwon. : Efficient flooding in ad hoc networks using

on-demand (passive) cluster formation. in MOBIHOC 2002 Poster Session. 49

[96] J. Y. YU and P. H. J. CHONG. : A survey of clustering schemes for mobile

ad hoc networks. IEEE Communications Surveys and Tutorials, 7(1):32–48,

First Quarter 2005. 63

132

	Introduction
	Advantages of MANETs
	Challenges of MANETs
	Routing in MANETs
	Thesis Organization

	Routing
	Proactive routing protocols
	Destination-Sequenced Distance-Vector protocol (DSDV) protocol
	The Wireless Routing Protocol (WRP)
	Global State Routing (GSR) protocol
	Fisheye State Routing (FSR) protocol
	Source-Tree Adaptive Routing (STAR) protocol
	Distance Routing Effect Algorithm for Mobility (DREAM)
	Multimedia support in Mobile Wireless Networks (MMWN) protocol
	Cluster-head Gateway Switch Routing (CGSR) protocol
	Hierarchal State Routing (HSR) protocol
	Optimized Link State Routing (OLSR) protocol
	Topology Broadcast Reverse Path Forwarding (TBRPF) protocol
	Characteristics of the proactive routing protocols

	Reactive routing protocols
	Dynamic Source Routing (DSR) protocol
	Ad hoc On-demand Distance Vector (AODV) protocol
	Routing On-demand Acyclic Multi-path (ROAM) protocol
	Light-weight Mobile Routing (LMR) protocol
	Temporally Ordered Routing Algorithm (TORA)
	Associativity-Based Routing (ABR) protocol
	Signal Stability Adaptive routing (SSA) protocol
	Relative Distance Micro-discovery Ad hoc Routing (RDMAR) protocol
	Location-Aided Routing (LAR) protocol
	Ant colony based Routing Algorithm (ARA)
	Flow Oriented Routing Protocol (FORP)
	Cluster-Based Routing Protocol (CBRP)
	Characteristics of the reactive routing protocols

	Hybrid routing protocols
	Zone Routing Protocol (ZRP)
	Zone-based Hierarchical Link State (ZHLS) protocol
	Scalable Location Update Routing Protocol (SLURP)
	Distributed Spanning Trees based routing protocol (DST)
	Distributed Dynamic Routing (DDR) protocol
	Characteristics of the hybrid routing protocols

	Summary

	Clustering
	previous work
	Clustering using independent dominating sets
	Clustering using dominating sets
	Clustering using connected dominating sets
	Clustering using weakly connected dominating sets
	Clustering using other heuristics

	Details of the Studied Algorithms
	Introduction
	The rationale behind our selection
	The aspects of comparison

	Details of the algorithms
	Wu and Li clustering algorithm
	Stojmenovic clustering algorithm
	The MPR clustering algorithm
	 Alzoubi clustering algorithm

	General Remarks

	Simulation Setup and Results
	Simulation setup
	Simulation results
	Simulations based on the Random Waypoint mobility model
	Simulations based on the Freeway mobility model

	Conclusions and Future Work
	Conclusions
	Future Work

