
 The Use of Plant Growth-Promoting 

Rhizobacteria (PGPR) and an Arbuscular 

Mycorrhizal Fungus (AMF) to Improve 

Plant Growth in Saline Soils for 

Phytoremediation 
 

by 

 

 

Pei-Chun Chang 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Biology 

 

 

Waterloo, Ontario, Canada, 2007 

 

©Pei-Chun Chang 2007 



 ii

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

 



 iii

ABSTRACT 

Upstream oil and gas production has caused soil salinity problems across western Canada. 

In this work we investigated the use of ACC (1-aminocyclopropane-1-carboxylate) 

deaminase-producing plant growth-promoting rhizobacteria (PGPR) and the arbuscular 

mycorrhizal fungus (AMF) Glomus intraradices to enhance the efficiency and feasibility of 

phytoremediation of saline soils. This work involved laboratory and field research for three 

sites in south east Saskatchewan, Canada. The three research sites were Cannington Manor 

South (CMS), Cannington Manor North (CMN) and Alameda (AL). CMS and AL were 

highly saline, while the CMN site had moderate salinity. 

Indigenous PGPR were isolated from these sites and tested in greenhouse experiments 

using authentic salt-contaminated soils taken from the research sites. Increased plant 

biomass by PGPR and/or AMF was observed. This growth promotion effect varied with 

plant species, soil salinity and soil fertility. The combination treatment of two previously 

isolated PGPR Pseudomonas putida UW3 and UW4 (noted as UW3+4) from farm soil in 

Ontario consistently promoted shoot growth of both barley and oats grown in saline soils by 

approximately 100%. The indigenous PGPR Pseudomonas corrugata (CMH3) and 

Acinetobacter haemolyticus (CMH2) also promoted plant growth on par with UW3+4. In 

addition, in one experiment where alfalfa was tested, UW3+4, CMH2 and CMH3 

treatments not only enhanced shoot biomass but also increased root nodulation. For AMF 

effects, G. intraradices enhanced biomass of oats and barley. Furthermore, the 

AMF+CMH3 was effective in promoting growth of Topgun ryegrass, while AMF+CMH2 

was beneficial for Inferno tall fescue growth in salt impacted soils. The concentration of 
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NaCl in the plants grown in salt-impacted soils ranged from 24 – 83 g/kg. There was no 

evidence of an increase in NaCl concentrations of plant tissue by PGPR and/or AMF 

treatments. In addition, to determine the importance of nutrient addition to research sites, 

liquid fertilizer was applied to 2-week old plants. Results demonstrated that fertilizer 

effectively increased biomass, and more importantly the biomass of PGPR treated plants 

supplied with fertilizer was approximately 20% higher than that of plants treated with 

fertilizer alone. Therefore, research sites were then amended with compost before planting 

of the 2007 field trial. 

Plant growth promotion by UW3+4 and CMH3 was tested in the summer of 2007 in the 

field. Prior to planting, soils were sampled from each site for soil salinity analysis. Barley, 

oats, tall fescue and ryegrass treated with and without PGPR were sown in plots. The plant 

coverage condition, NaCl concentrations and biomass of plant shoots were assessed to 

evaluate the PGPR effect. The results showed that PGPR promoted shoot dry weight by 30% 

- 175%. The NaCl concentrations of barley, oats and tall fescue averaged 53 g/kg, 66 g/kg 

and 35 g/kg, respectively. There was no evidence of an increase in NaCl concentrations of 

plant tissue by PGPR in the field. The salt removal of the CMN site was the highest among 

three sites due to the large amount of shoot biomass produced. The amount of salt 

accumulated in the shoots on the CMN site is estimated to be 1580 kg per hectare per year 

when both barley and ryegrass are planted together as a mix and treated with PGPR. Based 

on the field data, the estimated time required to remove 50% salt in the top 50 cm soil is 

seven years with PGPR treatments, while it takes fifteen years to do so without PGPR. In 

conclusion, PGPR-promoted phytoremediation was proven to be a feasible and effective 

remediation technique for soils with moderate salinity. 
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1. Introduction 

The amount of salt-affected land worldwide is estimated to be 900 million ha, 6% of the 

global total land mass (Flowers, 2004). Salinity can result from the intrinsic salt and limited 

rainfall; however, salinization also commonly occurs as a result of human activities. For 

example, upstream oil and gas production have been causing soil salinity problems across 

western Canada. 

Leaching salt downward in to the deeper layer with excess water is the most common method 

to lower soil salt content in the root zone (Qadir et al., 2003). However, soil leaching is not 

feasible for sites that are distant from water resources or for those with poor drainage. In such 

cases, more feasible in situ remediation techniques, such as phytoremediation, are in great need.  

Phytoremediation is defined as the use of plants to remove contaminants, such as salt. Plants 

that are tolerant to salinity can yield aboveground biomass that accumulates salt and can be 

removed from the site through harvesting. Phytoremediation is particularly useful for remote, 

semi-arid, large-scale sites because this technique can be carried out in situ and does not need 

large amounts of water required by the salt leaching technique. 

 The research topic of this thesis is the phytoremediation for salt contaminated soils. In 

particular, it examined the growth promotion effect of plant growth-promoting rhizobacteria 

(PGPR) and an arbuscular mycorrhizal fungus (AMF) on plants grown in salt-impacted soils. 
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1.1. Soil Salinity 

Soil salinity is defined as the concentration of dissolvable mineral salts extracted from soil by 

water (Richards, 1954). The extracted salts consist mostly of cations Na+ , Ca2+, Mg2+, and K+, 

as well as anions Cl-., SO4
2+, HCO3-, CO3

2- and NO3- (Tanji, 2002). The electrical conductivity 

(EC) of the soil extract is often used as an integrated parameter for quantifying its salinity. The 

EC of a soil sample is mostly reported as the EC measurement of the extract of a saturated soil 

paste (ECe). However, fixed-ratio extraction methods, e.g. EC1:2 or EC1:5, are often used due to 

its ease of measurement (Janzen, 1993). The EC value based on fixed-ratio extraction can be 

converted to the ECe
 with an empirically determined K factor by Equation 1. K values range 

between two and four, depending on soil properties (Richards, 1954).  

1:2 eEC K EC× =                                                 Equation 1  

In addition to EC, sodium adsorption ratio (SAR) is used to assess soil sodicity (Equation 2). 

It is an important determinant of soil properties and plant growth. SAR indicates the extent to 

which sodium contributes to the total salinity. SAR is defined by the following equation: 

SAR (sodium adsorption ratio) =
2 2

[ ]
([ ] [ ]) / 2

Na
Ca Mg

+

+ ++
                         Equation 2   

where the ionic concentrations are expressed in milliequivalents per liter in soil extract solution 

in equilibrium. 

 

This equation was developed empirically by inoculating soils with salt solutions containing a 

mixture of a monovalent cation and a divalent cation until equilibrium between the soil and 
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solution established. Direct measurement showed that the proportions of monovalent and 

divalent cations present on the cation exchange sites of soils (exchangeable cations) had a linear 

relationship with the outcome of Equation 2, where concentrations are soluble cations in the 

soil solution (Richards, 1954). With this relation, the molar ratio of Na+ to divalent cations 

(predominantly Ca2+ and Mg2+) on the soil exchangeable sites can be easily estimated by simply 

measuring the cations in the soil solution.  

Soils can be categorized into non-saline, saline, sodic and saline-sodic based on ECe, SAR 

and pH (Table 1.1). Soils with an ECe higher than 4 dS/m are consider saline (Richards, 1954). 

Soil with SAR more than 13 is defined as sodic soil. Sodic soils (SAR > 13) are inclined to 

have water infiltration problems due to the dispersion of clay particles in soil pore space that is 

previously available for drainage, resulting in a hard crust or soil cracking on the surface as the 

soil dries. This soil hardening can inhibit seedling emergence and growth. Consequently, soil 

leaching, a remediation approach for saline soils, is not suitable to sodic soils because excessive 

watering may further deteriorate soil properties and impede plant growth. This problem can be 

in part corrected by providing readily available source of calcium (Ca2+) such as gypsum 

(CaSO4·2H2O) or CaCl2, which can provide Ca2+ to replace excess Na+ on the cation exchange 

complex  of soil (Qadir et al., 1996; Qadir et al., 2003).  
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Table 1.1. Classification of salt-affected soils and distinguishing properties.  

Class ECe SAR pH
Nonsaline < 4 < 13 < 8.5

Saline > 4 < 13 < 8.5
Sodic < 4 > 13 > 8.5

Saline-sodic > 4 > 13 < 8.5
ECe: electroconductivity (dS/m) of extract of saturated soil paste
SAR: sodium adsorption ratio  
pH: pH of saturated soil paste 
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1.2. Salinity effects on plants and plant salt tolerance 

1.2.1. Plant responses to soil salinity 

Soil salinity inhibits plant growth and development with adverse effects such as osmotic 

stress, Na+ and Cl- toxicity, ethylene production, plasmolysis, nutrient imbalance, production of 

reactive oxygen species, and interference with photosynthesis (Sairam and Tyagi, 2004). The 

review herein focuses on the first three effects: 1) lower water potential of the root environment, 

2) toxicity of excess Na+ and Cl- ions and 3) stimulated ethylene production. It should be noted 

here that throughout this thesis, ‘salt’ and ‘NaCl’ are used interchangeably.  

Osmotic Stress 

Plants can respond to water stress in a few seconds, whereas it takes days for plants to show 

salt-specific effects. Munns (2002) summarized the sequence of physiological responses of a 

plant that is exposed to salinity. Cells first shrink in the first second or minutes. Over hours, 

cells restore their original shape but their elongation rates slow down. Over days, the changes in 

the ability for cell elongation and division then lead to a decrease in expansion rate and final 

size; leaf growth is usually more sensitive to salinity than roots. After weeks, plants that 

accumulate salt at a higher rate may start losing the old leaves.  

Early responses of plants to drought and salinity are very similar; both are attributed to water 

stress. Water stress-induced metabolic processes include a decrease in photosynthesis, the 

production of reactive oxygen species and generation of the plant hormone abscisic acid (ABA) 

(Bartels and Sunkar, 2005). When plants are exposed to high salinity, a decrease in growth rate 

is followed by a gradual recovery to a new reduced rate as the first response to the decrease in 
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water potential of soil rather than to the NaCl-specific toxicity (Verslues et al., 2006). This was 

supported by an experiment with polyethylene glycol (PEG) (Yeo et al., 1991) where PEG, a 

non-penetrating osmotic agent, caused a similar rapid decline of leaf growth as did salt. It was 

then further confirmed by Passioura and Munns (2000), who used a pressurization technique to 

maintain the water potential of plants while the soil was salinized. The results showed that the 

rapid growth inhibition was due to water stress rather than ion-specific toxicity.  

Toxicity of excess Na+ and Cl- ions 

Sodium is essential as a micronutrient for a limited number of C4 plants, but not for most C3 

plants (Hopkins and Hèuner, 2004). Sodium deficiency symptoms of the bladder salt-bush 

(Atriplex vesicaria) are chlorosis and necrosis. Plants respond to the Na+-specific effects with 

more intra-species variation than to osmotic effects (Munns, 2002; White and Broadley, 2001). 

Subbarao et al. (2003) argued that sodium should be categorized as a ‘functional nutrient’, 

defined as an requirement for maximum biomass growth for all plants (Subbarao et al., 2003). 

Na+ is generally assumed to compete with K+ for absorption by plant roots through a 

mechanism that does not discriminate K+ from Na+ and thus Na+ can inhibit the absorption of 

K+. In addition, this mechanism requires no energy and is thought to operate by diffusive force, 

which involves ion channels (Epstein, 1979).  

Once taken up, Na+ may be translocated. Species that take up and translocate Na+ freely to 

the shoot are ‘natrophiles’, while ‘natrophobes’ take up little Na+ and usually retain Na+ in the 

root with relatively insignificant tranlocation to the shoot (Smith et al., 1980). Natrophiles 

transport Na+ to shoots in the rapid moving transpiration stream in the xylem. Although Na+ can 



 

 7

also return to roots via the phloem, the downward moving stream is essentially irrelevant. As a 

consequence, leaves or shoots accumulate higher concentrations of Na+ than roots (Tester and 

Davenport, 2003). Most crops translocate little Na+ to the reproductive or storage structure such 

as seeds because they are fed mainly through phloem. On the contrary, vegetative tissues are 

supplied mainly by the xylem flow and tend to be higher in Na+ levels.  

The salt tolerance of natrophiles is related to their ability to compartmentalize Na+ in 

vacuoles because the cytoplasm can not tolerate high levels of Na+. For example, enzymes 

isolated from salt tolerant plants such as Atriplex and Salicornia are equally sensitive to Na+ 

(Greenway, 1972). The typical K+ concentration is about 100 mM, while Na+ rarely exceeds 20 

mM. The metabolic toxicity of Na+ is mainly attributed to the Na+ competition with K for 

binding sites essential for cellar function including enzyme activation and protein synthesis 

(Blaha et al., 2000; Tester and Davenport, 2003). 

Chlorine (Cl) is an essential micronutrient for higher plants. Chloride ion (Cl-) is involved in 

the oxygen-evolving reactions of photosynthesis, maintaining electrical neutrality across 

membranes, and adjusting the vacuolative osmotic condition. Deficiency symptoms include 

reduced growth and wilting, followed by chlorosis, bronzing and necrosis. However, because 

Cl-  is mobile and can be readily taken up by most plants, Cl- deficiency rarely occurs in the 

field (Hopkins and Hèuner, 2004).  

Root cells take up Cl- from soil solution through anion channels under saline conditions. Cl- 

then traversus the root by a symplastic pathway to reach the xylem. Chlorine accumulates to 

higher concentrations in older leaves than in the newly mature leaves. The critical tissue Cl- 
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concentration of leaves for toxicity is about 4-7 and 15-50 mg/g dry weight for Cl- -sensitive 

and Cl- -tolerant plants, respectively. Like Na+, floral tissues generally have lower Cl- levels 

than other shoot parts. Moreover, tissues that are fed predominantly through the phloem, e.g. 

fruits and seeds, tend to have the lowest Cl- concentrations (White and Broadley, 2001).  

To summarize, both Na+ and Cl- are taken up by plants primarily through passive symplastic 

pathways, driven by gradients and respiration fluxes. Plants translocate Na+ and Cl- mainly 

upwards in the xylem and accumulate in shoots or leaves although a small portion of these ions 

are in the phloem and can travel downward to the roots. Thus, tissues fed by phloem such as 

seeds and fruits tend to contain the lowest NaCl concentration. 

Stimulated ethylene production 

Salinity-induced stress on plants is in part the result of ethylene production (Blumwald, 2000; 

Cuartero and Fernandez-Munoz, 1999; O'Donnell et al., 1996; Shibli et al., 2007). For instance, 

ethylene production was stimulated by more than two-fold in tomato (Lycopersicon esculentum) 

and Arabidopsis that were exposed to salinity stress (Hall and Smith, 1995; Richard and El-Abd, 

1989). Kukreja et al. (2005) also observed the salinity-induced increase in ethylene evolution, 

ACC (1-aminocyclopropane-1-carboxylate) content and ACC oxidase activity in chickpea. The 

relationship between salinity stress and ethylene production was demonstrated by an 

experiment where aminoethoxyvinylglycine (AVG), an ethylene biosynthesis inhibitor, 

alleviated salinity-induced plant responses such as increased hook closure and thickness of 

seedlings (El Beltagy et al., 1979).  
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1.2.2. Salt tolerance of plants 

Salt resistant plants are categorized into two groups: salt-excluders and salt-includers. The 

former group of plants adapt to a saline environment by avoiding salt, whereas the includers 

take up salt and sequester it. Biochemical strategies to cope with salt stress include 1) selective 

accumulation or exclusion of ions, 2) control of ion uptake by roots and transport into leaves, 3) 

compartmentalization of ions at the cellular and whole-plant levels, 4) synthesis of compatible 

solutes, 5) alteration of membrane structure, 6) induction of antioxidative enzymes, and 7) 

induction of plant hormones (Khan and Rizvi, 1994; Parida and Das, 2005).  

The plant responses to various salinity levels are listed in Table 1.2. Salt tolerance is usually 

assessed as the percent biomass production in saline versus control conditions over a prolonged 

period of time. In Table 1.3, salt tolerance of crops, forages, vegetables and woody plants are 

listed. The salt tolerance of any one species, however, varies with growth phases, ionic 

constitution of the soil solution, and soil properties. For example, some crop species that are 

very salt tolerant during later stages may be sensitive to salinity during germination. Sugar 

beets are highly salt tolerant during late growth stages, but extremely sensitive during 

germination. Barley has high salt tolerance during all stages, although it is also more sensitive 

during germination (Richards, 1954). Similarly, Verslues (2006) pointed out that the 

germination rate of Arabidopsis under salt stress was not well correlated with salt tolerance 

later in development.  
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Table 1.2. Degree of salinity and plant responses (Manitoba Agriculture-Food and Rural 

Initiatives, 2007). 

ECe  
(dS/m) Degree of salinity Hazard for crop 

growth Plant response 

0-2 Non-saline Very low Negligible 
 

2-4 Slightly saline Low Restricted yield of sensitive crops 
 

4-8 Moderately saline Medium Restricted yield of many crops 
 

8-16 Severely saline High Only a few tolerant crops yield 
satisfactorily 
 

> 16 Very severely saline Very high Only a few salt tolerant forage species 
grow satisfactorily 
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Table 1.3. Salt tolerance of crops, forages, vegetables and woody plants (Alberta Government, 

2001; Richards, 1954). 

ECe
 (dS/m)a Field Crops Forages Vegetables Trees, Shrubs 

High 
16 

kochia 
sugar beets 

beardless wildrye 
fulks altai grass 
levonns alkaligrass 
alkali sucatan 
salt grass 
Nuttal alkaligrass 
Bermuda grass 
Rescue grass 
Canada wildrye 
western wheatgrass 
altai wildrye 
tall wheatgrass 
Russian wildrye 
slender wheat grass 
perennial ryegrass 
mountain brome 

 
 

Siberian salt tree 
sea buckthorn 
silver buffaloberry

     
8 6-row barley 

sunflower 
oats 
2-row barley 
fall rye 
winter wheat 
spring wheat 

birdsfoot trefoil 
sweetclover 
Dallis grass 
Sudan grass 
alfalfa 
tall fescue 
bromegrass 

garden beets
asparagus 
spinach 

hawthorn 
Russian olive 
American elm 
Siberian elm 
villosa lilac 
laurel leaf willow 

     
Moderate yellow mustard orchardgrass 

blue gramma 
crested wheatgrass 
intermediate wheatgrass 

tomatoes 
broccoli 

spreading juniper 
poplar 

     
 flax 

canola 
reed canary grass 
meadow fescue 
reed canarygrass 
big trefoil 
smooth brome 
milk vetch 

cabbage ponderosa pine 
apple 
mountain ash 

     
4 corn  sweet corn 

potatoes 
common lilac 
Siberian crab apple
Manitoba maple 

  
a the salinity range at which crops can be expected to yield 50% of normal yield. 
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1.3. Phytoremediation of saline soil 

Phytoremediation is a non-destructive in situ remediation technique that used plants to clean 

up contaminated soil, water or air (Willey, 2006). Phytoextraction, a phytoremediation 

technique, is the use of plants to take up contaminants from the environment into the plant 

biomass that can be removed from the site (Raskin and Ensley, 2000). Throughout this article, 

phytoremediation and phytoextraction are used interchangeably. Unlike chemical or physical 

soil remediation methods that might result in deterioration of soil properties, phytoextraction 

holds great promise as a non-destructive salt removal technique. The efficiency of salt 

phytoremediation is determined by the total amount of salt accumulated in plant tissues, which 

is the product of the concentration of salt in the plant tissue and the amount of harvestable 

biomass.  

Halophytes are plants that can grow well at high concentrations of salt in the rhizosphere. 

Some obligate halophytes’ growth rates are simulated when exposed to salinity as high as 50% 

seawater, equal to 31 dS/m (Parida and Das, 2005). However, many of them require specific 

growth conditions or grow slowly with little biomass. Moreover, high levels of NaCl 

accumulation is not always observed in halophytes because some halophytes are ‘salt-

excluders’. Thus, the usefulness of halophytes for phytoremediation is limited. 

In this study, the approach to increase salt phytoremediation efficiency is to use non-

halophyte (glycophyte) plants that produce high biomass. The total amount of salt extracted by 

high-yield salt-tolerant non-halophyte plants is likely to exceed the amount of salt taken up by 

halophytes that produce little biomass. Salt-tolerant crops include oats, barley, wheat, sunflower 
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and fall rye. Grasses that have high salt resistance include ryegrass, fescue, Canada wildrye, and 

wheatgrass (Table 1.3). Although grasses do not generate as much biomass as crops, they 

generally have higher drought resistance, better adaptation to various soil environments and 

have a longer canopy period. Nonetheless, high salinity can inhibit or completely impede plant 

germination and growth. Hence, it is critical to promote plant growth under saline conditions in 

order to achieve successful salt phytoremediation using salt tolerant glycophytes.  

Various methods have been developed to improve the salt tolerance of crops so that they can 

grow in highly saline areas, including traditional breeding (Colmer et al., 2006; Munns et al., 

2006), genetic engineering (Farwell et al., 2007; Grichko et al., 2000; Ma et al., 2004; Sergeeva 

et al., 2006; Stearns et al., 2005; Yamaguchi and Blumwald, 2005), and the use of growth 

regulators (Khan et al., 2004; Rabie, 2005). This study focuses on the inoculation of PGPR 

(Cheng et al., 2007b; Mayak et al., 2004b) and endophytic fungi (Sannazzaro et al., 2006; 

Waller et al., 2005) to promote plant growth in saline soils. This method requires less time than 

breeding or genetic modification of plant species. In addition, it is more economical than the 

application of plant growth regulators, especially in a large scale.  

1.4. Effects of PGPR on plant growth in saline soils 

Ethylene is required by many plants for seed germination but high levels of ethylene can 

impede plant growth. The PGPR tested in this study are able to inhibit ethylene production in 

plants by hydrolyzing  the ethylene precursor, ACC (Glick et al., 1998).  
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1.4.1. Ethylene and ACC deaminase  

PGPR promotes plant growth by either mitigating adverse effects in the environment or 

directly improving growth (Glick, 1999). A group of PGPR of particular interest produces the 

enzyme ACC deaminase. Glick et al. (1998) have postulated that a significant proportion of 

ACC produced by plants may be exuded from plant roots or seeds and then hydrolyzed by ACC 

deaminase produced by PGPR. As shown in Figure 1.1, the ACC deaminase-producing PGPR 

lowers the ethylene concentration and prevents the inhibition of root elongation by ethylene. 

ACC that is exuded from plant roots is taken up by the PGPR and hydrolyzed by the enzyme 

ACC deaminase to ammonia and α-ketobutyrate. This uptake and cleavage of ACC decreases 

the amount of ethylene inside the plant and thereby alleviates ethylene-induced stress. In this 

research, Pseudomonas putida UW3 and UW4 (hereinafter may be referred to as UW3 and 

UW4) are among the PGPR tested in this research. These two strains were isolated from farm 

soil in Ontario and have been tested for its growth promotion effect on plants in several 

laboratory experiments and field trials (Cheng et al., 2007a; Hontzeas et al., 2004a; Huang et al., 

2004a; Huang et al., 2004b; Patten and Glick, 2002). The characterization of ACC deaminase 

and its gene from UW4 is discussed in detail elsewhere (Hontzeas et al., 2004b; Li et al., 2001; 

Penrose, 2000) 

How exactly salinity regulates ethylene biosynthesis remains unclear, the pathway of 

ethylene biosynthesis itself is well defined. The ACC synthase converts S-adenosylmethionine 

(AdoMet) into ACC, which thereafter is converted to ethylene by ACC oxidase (Hall and Smith, 

1995). The ACC synthase and ACC oxidase are specific to the ethylene pathway, where the 
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ACC synthase is inducible and ACC oxidase may be constitutive or inducible (El Beltagy et al., 

1979).  

The ACC deaminase has been widely reported in numerous microbial species of gram 

negative and  gram positive bacteria, rhizobia, endophytes and fungi (Saleem et al., 2007). 

ACC deaminase-producing bacteria have been shown to be able to promote plant growth under 

various kinds of stress including salinity, drought, water logging, heavy metal and petroleum 

exposure. Penrose (2000) showed that the canola (Brassica napus)seedlings treated with the 

PGPR, Enterobacter cloacae CAL3, contained less ACC. It was suggested that the ACC was 

transported from plant root cells to PGPR and consumed in the PGPR.  

Consequently, the adverse effects of ethylene on the growth of plants were alleviated by 

PGPR inoculation, resulting in longer root length, shoot length, early seedling establishment or 

nodulation of legumes. Belimov et al. (2001) suggested that PGPR containing ACC deaminase 

are present in most soils and offer promise as a bacterial inoculum for improvement of plant 

growth, particularly under unfavorable environmental conditions. Arshad et al. (2007) reviewed 

how inoculation with ACC deaminase-producing bacteria may promote plant growth for a more 

effective phytoremediation for metals and organic contaminants.  

Burd et al. (1998; 2000) reported on the potential of the ACC deaminase-producing 

bacterium Kluyvera ascorbata SUD165 to protect canola (Brassica napus) and tomato 

(Lycopersicon esculentum) seeds from the heavy metal toxicity induced by high concentrations 

of nickel (Ni), lead (Pb) and zinc (Zn). Further studies have demonstrated that when exposed to 

high cadmium (Cd) contamination in soil, the growth of Indian mustard (Brassica juncea) and 
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rape (Brassica napus var. oleifera L.) was promoted  by ACC deaminase-producing PGPR from 

contaminated soils including Pseudomonas brassicacearum, Pseudomonas marginalis, 

Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, 

Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. (Belimov et al., 

2001). For organic contaminants, Huang et al. (2004a; 2004b) reported that the PGPR 

Pseudomonas putida alleviated toxic effects on tall fescue and enhanced root growth in 

creosote and PAH contaminated soils.  
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Figure 1.1. The ACC deaminase in PGPR degrades the ethylene precursor ACC. The ACC 

deaminase in PGPR lowers ethylene level in plants by degrading ACC to ammonia and α-

ketobutyrate. Lowering ethylene in plants can alleviate stress and thereby improve plant growth. 

Some PGPR can also produce plant regulator IAA and further stimulate plant growth (derived 

from Glick and Pasternak, 2003). 

seed

roots
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ACC ACC
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1.4.2. ACC deaminase-producing PGPR and salt stress 

In addition to metal and organic contaminants, growth inhibition caused by high salinity can 

also be alleviated by ACC deaminase-containing PGPR. Mayak et al. (2004a) isolated seven 

strains of PGPR that had high ACC deaminase activity from the Arava region of Northern 

Israel. The PGPR lowered ethylene production in tomato seedlings and increased the fresh and 

dry weight of tomato seedlings grown in the presence of up to 172 mM NaCl. Saravanakumar 

and Samiyappan (2007) reported that Pseudomonas fluorescens TDK1 possessing ACC 

deaminase activity enhanced the saline resistance of groundnuts and observed increase yields 

over the groundnuts treated by Pseudomonas spp. that lacked ACC deaminase activity. Cotton 

seedling growth was promoted by ACC deaminase-producing Klebsiella oxytoca Rs-5, with 

individual plant height and dry weight increasing by 14.9% and 26.9%, respectively. Nutrient 

analysis has exhibited the bacterium’s ability to increase the cotton's absorption of N, P, K, and 

Ca , while Na uptake by plants decreased (Yue et al., 2007).  

The ability of PGPR strains of P. putida to promote plant growth under saline conditions has 

been reported. Cheng et al. (2007a) found that P. putida UW4 significantly improved canola 

shoot dry weight by 5 fold at 20 ℃, whereas a mutant strain of UW4 lacking ACC deaminase 

activity (UW4/AcdS-) did not promote plant growth. The same result was also reported by Li et 

al. (2000) where the ACC deaminase minus mutant  (UW4/AcdS-) no longer promoted root 

elongation of canola roots. Earlier, Glick (1997) also found that another P. putida strain GR12-

2 promoted canola root and shoot growth in saline soils but the minus ACC deaminase mutant 

GR12-2/acd68 did not do so. These results are consistent with the proposed model that the 
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bacterial ACC deaminase activity of PGPR can lower the plant ethylene levels and hence 

promote plant growth. It should be noted that Cheng et al. (2007a) found that the Na 

concentrations in shoots were also increased by UW4 inoculation by 3 – 6 fold.  

ACC deaminase-producing rhizobia can also enhance nodulation and hence the nitrogen 

fixation efficiency. Ma et al. (2003a; 2003b) reviewed the existence of ACC deaminase in a 

number of rhizobial strains and found that the inhibitory effect of ethylene on plant root 

nodulation can be reduced by the activity of ACC deaminase. For example, the ACC 

deaminase-producing Sinorhizobium meliloti showed 35 to 40% greater efficiency in nodulating 

alfalfa, likely by lowering ethylene production in the host plants (Ma et al., 2004). Similarly, 

Rhizobium leguminosarum bv. viciae 128C53K enhanced the nodulation of pea, and the minus 

ACC deaminse mutants showed lower nodulation efficiency (Ma et al., 2003a).  

1.4.3. Auxin production by ACC deaminase-producing PGPR 

Some PGPR synthesize and secrete the plant growth regulator IAA (Indo-3-acetic acid), 

which can enter plant cells and stimulate root growth. Primary roots treated with wild-type 

strain P. putida GR12-2 were on average 35% to 50% longer than the root of canola seeds 

treated with an IAA-deficient PGPR strain (Patten and Glick, 2002).  

In addition to stimulating plant growth as plant growth regulator, IAA can also stimulate 

ACC synthase (Figure 1.1) to produce more ACC, which can be transformed into ethylene by 

ACC oxidase (Mayak et al., 1999). On the other hand, the simultaneously produced ACC 

deaminase can hydrolyze ACC and inhibit ethylene production. As a consequence, the final 

effect on ethylene production or root growth depends on the balance of the IAA and ACC 
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deaminase produced in concert by P. putida. Moreover, plants respond to IAA differently. The 

effect of the treatment on the root growth depends on their initial elongation rate; slow growing 

roots were inhibited by exogenous IAA and ABA at any concentrations used. Whereas for fast 

growing roots their elongation was promoted by these two hormones at low concentrations 

(Pilet and Saugy, 1987). In a recent study, Gravel et al. (2007) used P. putida to alleviated the 

detrimental effect of excess exogenous IAA on tomato seedlings, possibly through repressed 

ethylene production resulted from microbial degradation of IAA in the rhizosphere (and the 

resultant decrease in ACC) and/or by ACC deaminase activity present in both microorganisms. 

In conclusion, plant responses to IAA exuded from ACC deaminase-producing PGPR vary with 

plant species, root growth rates and its balance with ACC deaminase activity. 

Glick et al. (2007) proposed a model that explains how ethylene and IAA interact as a 

feedback loop. The decrease in ethylene levels by ACC deaminase not only down regulates the 

plant stress responses but also relieves the ethylene repressed auxin responses factor (ARF) 

synthesis, leading to plant growth promotion resulted from both stress alleviation and growth 

simulation. However, with the increase in ARF synthesis, ACC synthase is also simulated to 

produce more ACC and ethylene, which represses the ARF synthesis. In this way, ethylene 

limits its own production. 

1.5. Effects of AMF on plant growth in saline soils 

Arbuscular mycorrhizal fungi (AMF) are also known as vesicular-arbuscular mycorrhizae 

(VAM). The hyphae can enter into the plant cell walls and invaginate the cell membranes, 

forming structures that are either balloon-like (vesicles) or dichotomously-branching 

(arbuscules) invaginations. These structures increase the surface area for nutrient transfer 
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between the cell cytoplasm and hyphae. AMF can change mineral nutrient composition, 

hormonal balance, water use efficiency, and production of osmoregulators (Auge and Stodola, 

1990; Ruiz-Lozano and Azcon, 2000).  As well, some AMF can secrete a glycoprotein, 

glomalin, which contributes to soil aggregation stability and improved drainage, nutrient 

movement and aeration. These traits are potentially beneficial to plants grown in saline soils, 

especially soils with high SAR.  

AMF can enhance salt tolerance of plants. Waller et al. (2005) reported the potential of using 

the AMF Piriformospora indica to induce salt tolerance in barley. The beneficial effect was 

associated with an elevated antioxidative capacity and an overall increase in grain yield was 

observed. Ouziad et al. (2006) found colonization of tomato by AMF under salt stress resulted 

in a drastic increase of the mRNA of three aquaporin genes. Aquaporins are known to regulate 

water movement in plants and may facilitate water uptake in soil with high salinity. Copeman et 

al. (1996) found tomato plants inoculated with AMF had lower Cl- concentrations in roots than 

the non-AMF plants but the P level remained unchanged. In another study, the growth 

promotion effects of two isolated AMF on lettuce were tested. Both AMF strains protected the 

host plants against salt, but the symbiotic efficiencies differed. Glomus sp. protected plants 

from high salinity by stimulating root development, while G. deserticola treated planted has 

higher N and P in plant tissue (Ruiz-Lozano and Azcon, 2000). In addition to the increase in N 

and P levels in plants, Feng (2002) reported that AMF not only increased the shoot and root dry 

weight but also led to higher concentrations of chlorophyll, electrolytes and soluble sugars of 

maize (Zea mays) . The colonization of AMF can also affect Na+ and Cl- uptake. Indian 

sesbania (Sesbania aegyptiaca and Sesbania grandiflora ) treated with  G. macrocarpum had 
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lower Na in the tissue and significantly higher root and shoot biomass, chlorophyll, number of 

nodules and increases in the concentrations of N, P and Mg (Giri and Mukerji, 2004).  

The AMF Glomus intraradices has been tested for its growth promotion effect on plants 

under salt stress. In a study with sorghum, maize, cotton and Pennisetum sp, the G. intraradices 

inoculated 20-day old seedlings had higher fresh and dry shoot weight than the non-inoculated 

ones (Jalaluddin, 1993) when plants were grown in saline soil (16 dS/m). Acroca et al. (2007) 

found the hydraulic conductance of kidney bean (Phaseolus vulgaris) plants inoculated with G. 

intraradices was twice as high as that of untreated plants. G. intraradices was also beneficial to 

the halophyte Atriplex nummularia (saltbush); the phosphorus levels, dry shoot and root 

biomass were increased by the AMF (Plenchette and Duponnois, 2005). In Sannazzaro et al. 

(2006), G. intraradices developed an effective symbiosis with the tolerant genotype of Lotus 

glaber in saline soil, and enhanced the net growth, shoot/root and K+/Na+ ratios, chlorophyll 

levels and protein concentrations in plants. It was associated with prevention of Na+ 

accumulation in plants and enhancement of K+ concentrations in roots. Diouf et al. (2005) 

showed that the G. intraradices inoculation improved the growth of the salt-stressed Acacia 

species and recommended the concomitant inoculation of the AMF and rhizobia because of the 

increased foliar proline accumulation that resulted in better water retention of plants. An 

increase of proline upon AMF inoculation was also reported in Cho et al. (2006). However, 

Sannazzaro et al. (2007) later reported increased  amounts of total free polyamines in AMF-

inoculated plants, while proline levels remained unchanged.  
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1.6. Fertilization to improve plant growth in saline soils 

Soil salinity may cause nutrient imbalances and inhibition of plant growth. High soil Na+ 

levels lead to deficiency of other nutrients. For example, elevated Na+ disrupts transporters such 

as K+-selective and Ca2+ ion channels on the root cell membranes. Moreover, nitrate and 

ammonium uptake and assimilation are inhibited by salinity (Ullrich, 2002), and excess Na+ 

also interacts with various ions in soil solution, altering availability of cations to plants (Glenn 

et al., 1999; Hu and Schmidhalter, 2005).  

Therefore, change of soil nutrients can alter the effect of high salinity on plants. For example, 

calcium ameliorated Na+ toxicity in plants by changing the formation of ion channel proteins 

and decreasing Na+ influx through nonselective cation channels (Cramer, 2002; Subbarao et al., 

2003). In addition, Shabala (2006) reported that elevated external Ca2+ inhibited Na+-induced 

K+ efflux through outwardly directed K+-permeable channels. Phosphorus fertilizer also 

alleviated chloride toxicity in wheat, resulting in a significant yield increase. The lower Cl- 

concentrations in plants at higher P levels in the soil were attributed to a dilution effect that was 

caused by increased growth rate due to better P nutrient (Chauhan and Chauhan, 1985). 

Ward (1986) found that the presence of additional calcium enhanced the nitrate uptake and 

growth of barley seedlings under saline conditions, effectively promoting plant growth. Direct 

addition of nitrogen (N) alleviated salt-inhibited N uptake and improved plant health (Ullrich, 

2002). The alteration of N species also improves salt toxicity. It was found that alteration of the 

ratio of ammonium to nitrate in the nutrient solution had an ameliorating effect on tomato fruit 

yield under salinity (Ben-Oliel et al., 2004). Similarly, In Irshad et al. (2002), the mixed 

application of both ammonia and nitrate forms of N enhanced the total dry biomass (shoots and 
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roots together) of wheat more than did the single source. The application of gypsum, farmyard 

manure, Mg and NPK fertilizer in combination was the most effective way to enhance yields of 

rice and wheat that were irrigated with sodic ground water (Yaduvanshi and Swarup, 2005). 

A concern should be noted here that nitrate in the vicinity of roots may stimulate ACC 

oxidase activity and hence increase ethylene production, so the application of N fertilizer might 

decrease the efficiency of ACC deaminase-producing PGPR. In Shaharoona et al. (2006), the 

increases in plant height, root weight and total biomass of maize in response to ACC 

deaminase-producing P. fluorescens was higher in the absence of N-fertilizer application. 

However, the application of N-fertilizer with a lower ratio of ammonium-N to nitrate-N could 

lead to different results (Ben-Oliel et al., 2004). It is generally accepted that nutrient supply 

improves plant growth only when the nutrient is deficient in the soil and when the salt stress is 

not severe (Hu and Schmidhalter, 2005).  

1.7. Objectives 

Upstream oil and gas production has caused soil salinity problems across western Canada. 

The main objective in this study was to investigate the use of phytoremediation to remove 

excess salt from salt-contaminated soil. The efficiency of this method largely depends on the 

amount of harvestable biomass, especially shoots. However, plant growth can be severely 

inhibited at high salinity and result in unsuccessful remediation. From previous research, it is 

clear that salt tolerance can be increased by inoculation of PGPR and AMF. This study thus 

explored the effect of PGPR and AMF on growth and salt accumulation of plants grown in 

saline soil. The hypothesis was that PGPR and/or AMF can increase plant biomass, and hence 

increase total salt uptake from saline soils, resulting in more salt removal. The objectives of 
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this study are to 1) establish a reliable in-house soil salinity measurement procedure; 2) isolate 

indigenous ACC deaminase-producing PGPR; 3) examine the effect of PGPR and AMF on 

plant growth and salt accumulation under salt stress; 4) examine the effect of fertilization on 

plant growth, and 5) conduct phytoremediation field trials. 
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Table 1.4. Five objectives of this study. 

Objective Content 
1. Establishment of a reliable in-house soil 
salinity measurement procedure 

Soil salinity measurement 

  
2. Isolation of indigenous ACC deaminase-
producing PGPR 
 

PGPR isolation  
Strain identification 
Determination of inoculation efficiency  

3.Examination of the importance of nutrient 
addition 
 

Percent germination 
Biomass determination 
Salt accumulation in biomass 

  
4 Examination of the effect of PGPR and AMF 
on plant growth and salt accumulation under salt 
stress 

Root elongation pouch assay 
Plant species selection for PGPR tests 
Greenhouse tests  

Biomass determination 
Root colonization by AMF 
Salt accumulation in biomass 

  
5. Field test on salt contaminated sites Tests of PGPR effects in the salt-impacted sites 
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2. Material and Methods 

2.1. Research sites 

The high salinity of soil is contributed to upstream gas and oil production. In this research, 

these sites were named after the location. Soils for greenhouse tests were taken from the top 30 

cm soil from these sites. Table 3.2 contains details of each soil sample taken from these sites. 

2.1.1. Cannington Manor South site (CMS) and North sites (CMN) 

Both Cannington Manor South site (CMS) and North sites (CMN) are located in Cannington 

Manor, Saskatchewan. It is suspected that the leakage of a brine water storage tank was the 

contamination source. The leak may have occurred in winter and the brine water spread over a 

wide area on the frozen ground. Attempts have been made to re-establish vegetation over the 

past 40 years. The land has been treated with gypsum (CaSO4) and planted with several plant 

species, including foxtail and barley. Before the planting in May 2007, a 4-inch layer of 

compost was mixed into the top soil of both sites. The compost is manure from a feedlot in 

High River (Alberta, Canada) that was piled and allowed to heat to over 60 ℃ to cook all of the 

weed seeds.  

The CMS site is 107 m long and 15 m wide, approximately 0.16 hectare. The CMS site is on 

a lower ground level and often experiences flooding in summer. The North site (CMN) is 75 m 

long and 50 m wide, nearly 0.38 hectare. It is 400 m apart from the CMS site.  
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2.1.2. Alameda Site (AL) 

The Alameda site (AL) is located in Alameda, Saskatchewan. The history of the AL site and 

source of salt is unknown; however, it is inferred that the saline soil came from a flare pit years 

ago. The AL site is an irregularly-shaped 0.21 hectare area, approximate 85 m long and 25 m 

wide. A 4-inch layer of compost was mixed into the top soil of the site before planting in May 

2007. The compost is manure from a feedlot in High River, (Alberta, Canada) that was piled 

and allowed to heat to over 60 ℃ to cook all of the weed seeds  

2.2. Measurement of salinity and other soil parameters  

The measurement of ECe
 and EC1:2 was performed as follows (Janzen, 1993). For ECe, soil 

was air dried, ground and then sieved. An aliquot of 200g - 400 g of soil was mixed with 

sufficient deionized water to reach saturation when the soil paste glistened and slid cleanly from 

the spatula. The sample was allowed to stand for at least 4 h and was checked to ensure the 

saturation criteria were still met. If free water had accumulated on the surface, a known amount 

of soil was added and remixed. If the soil had stiffened or did not glisten, distilled water was 

added and mixed thoroughly. The paste was allowed to sit for another 4 h. It was then filtered 

through a Buchner funnel or centrifuged at 800 ×g. ECe of this soil extract or the supernatant 

was then measured using an electroconductivity meter (Oakton Instruments, IL). 

EC1:2 was measured in a 1:2 (w/w) ratio of soil to water.  Soil and deionized water were 

mixed in a 250 mL Erlenmeyer flask and shaken at 100 rpm for 30 min. This soil suspension 

was then centrifuged at 2000 rpm for 5 min. The electroconductivity and pH of the supernatant 

were then measured by the electroconductivity meter. Each measurement was carried out in 

triplicates. The K values were determined according to equation 1.  
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An aliquot of 400 g soil of selected samples was sent to ALS Laboratory (Waterloo, Ontario; 

hereinafter referred to as ALS) for cation exchange capacity (CEC), electroconductivity (EC1:2), 

sodium adsorption ratio (SAR), sodium (Na), chlorine (Cl), available boron (B-avail), calcium 

(Ca), potassium (K) and magnesium (Mg). The EC1:2 values reported by ALS (labeled as 

EC1:2
ALS) were primarily acquired to compare the data resulted from the in-house procedure. 

Agri-Food Laboratories (Guelph, Ontario; hereinafter referred to as Agri-Food) analyzed the 

pH, organic matter (OM) and soil texture. 

2.1. Isolation of indigenous ACC deaminase-producing PGPR 

The isolation of ACC deaminase-producing PGPR required four steps: 1) screening for 

indigenous bacteria using ACC as a sole nitrogen source, 2) quantifying ACC deaminase 

activity of individual isolates, 3) measuring the auxin production and 4) species identification. 

The formulae and methods for preparing DF minimal salt medium, Tris-HCl, Salkowski’s 

reagent, 0.5M ACC (1-aminocyclopropane-1-carboxylate) stock, 0.2% 2,4-DNP(dinitrophenyl-

hydrazine) and 2mg/mL L-trp (L-tryptophan) stock solution were described in the Error! 

Reference source not found.. 

2.1.1. Screening with ACC as a sole nitrogen source 

The detailed procedure is described in Shah et al. (1998).  An aliquot of 20 g of soil from 

each sample was transferred into sterile tryptic soy broth (TSB) rich medium and incubated. An 

aliquot of this culture was then washed and transferred into sterile DF minimum salt medium 

(Dworkin and Foster, 1958). After incubation, the pellet was spun down and resuspended in 1.0 

mL DF salt medium that contains no nitrogen. A loopful of this culture was streaked onto 1.5% 

agar DF minimum salt agar medium with 300 mM ACC (referred as ACC plates hereafter) and 
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incubated upside down for at least 3 days. The individual colonies were then randomly selected. 

The ACC deaminase activity of each isolate was then determined by the ACC deaminase 

activity assay. 

2.1.2. ACC deaminase activity assay 

The ACC deaminase activity assay is based on the method in Penrose and Glick (2000). 

Individual isolate was incubated in sterile TSB medium overnight. The culture was centrifuged 

at 1600 ×g for 10 min. The pellet was washed twice with 15 mL DF minimum salt medium 

without nitrogen. The final pellet was resuspended with DF minimum salt medium with ACC 

as the sole nitrogen source. The ACC deaminase activity was induced at this step. The culture 

was then centrifuged and the pellet was then washed twice with Tris-pH7.6. The pellet was then 

resuspended with Tris-pH8.0, followed by adding 300 µL toluene and vortexing. Two aliquots 

of 200 µL of the mixture were transferred into two microcentrifuge tubes. The remaining 230 

µL in the tube was used for the protein assay. An aliquot of 20 µL of 0.5M ACC was added into 

one of the tubes containing 200 µL mixture, and 20 µL milli-Q water were added into the other 

one. Both tubes were incubated at 30 °C in a water bath for 30 min, after which 0.56 M HCl 

was added to stop the enzymatic activity. After centrifugation for 5 min 6400 ×g, 1.0 mL 

supernatant was transferred into a glass tube, and 0.56 M HCl and 2,4-DNP were added. After 

incubation at 30 °C for 30 min in a water bath, 2 N NaOH was added. The true absorbance 

values were obtained by subtracting the absorbance reading of the cuvette without ACC from 

the absorbance reading of the cuvette with ACC. The total amount of cells of each culture 

varies, thus it is necessary to measure the total protein content of each culture to normalize the 
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ACC deaminase enzyme activity. In order to normalize the ACC deaminase activity based on 

protein levels, total protein content of each sample was measured.  

Two aliquots of 40 µL of the lysate were transferred into two new microcentrifuge tubes as 

duplicates. To each one, Tris-pH8.0, and 0.1 N NaOH were added, the tubes were then mixed 

using a vortex stirrer and incubated. Standard solutions were prepared in triplicate using 0.136 

µg/µL bovine serum albumin (BSA, BioRad™) stock. After cooling, the protein in the 

solutions was colorized by BioRad™ reagent and the optical density at 595 nm (OD595) was 

recorded.  

2.1.3. Auxin production assay 

The auxin production assay followed the procedure in Khalid et al. (2004). An aliquot of 20 

µL of isolate stock was pipetted into 10 mL sterile DF minimum salt medium [+(NH4)2SO4, 

+glucose] and incubated. Five sterile tubes with 8 mL of DF minimum salt medium 

[+(NH4)2SO4, +glucose] containing 500 µg/mL L-Trp were prepared. An aliquot of 20 µL of 

the 48 h-culture was transferred into the DF minimum salt with L-Trp, followed by incubation 

for another 48 h at room temperature. After incubation, the OD600 reading was recorded. The 

remaining solution was then transferred into a centrifuge tube and spun at 2000 ×g for 20 min. 

The pellet was discarded. IAA standard solutions were prepared from 0.1 mg/mL IAA stock. 

An aliquot of 0.5 mL of the supernatant of the sample and standards was transferred into tubes. 

Two milliliters of Salkowski’s reagent were added and the tube was incubated for 20 min. The 

OD535 was measured. The reported auxin production assay data were normalized to be in µg per 

mL per OD. 



 

 32

2.2. Root elongation pouch assay 

The root elongation pouch assay followed the procedure in Patten and Glick (2002). Growth 

pouches (Mega International, Minneapolis, Minnesota, USA) were soaked with 1% NaCl 

solution prior to autoclaving. For each treatment, ten pouches were prepared. For Ranger barley 

and common oats, six seeds were placed into each pouch, whereas ten seeds were placed into a 

pouch for Topgun ryegrass and Excalibur tall fescue. The pouches were incubated at room 

temperature ranging from 20℃ - 25 ℃. For the first 2 days, the seeds were kept in the dark by 

covering the pouches with aluminum foil. Germination, shoot and primary root length were 

then measured after three days for crop species and five days for grass species after germination. 

2.3. PGPR inoculation method and its efficiency  

Seeds were inoculated with PGPR with the following method developed by Aaron Khalid 

(2007). An aliquot of bacteria glycerol stock was added into 50 mL sterile TSB medium (30 g/L 

milli-Q water) contained in a 250 mL Erlenmeyer flask. This culture was grown at room 

temperature on a shaker table (80 rpm) for 20 – 22 h. The culture was then centrifuged at 800 

×g for 10 min, washed and resuspended with 0.1% (w/v) sodium pyrophosphate to remove 

secondary metabolites. The final pellet was re-suspended in 0.25% methylcellulose (adhesive 

reagent, Sigma, USA) to reach an OD600 of 2.0 – 3.0. The 0.25% methylcellulose was prepared 

as follows. Methylcellulose (Sigma, USA) 2.5 g was slowly dissolved in 1.0 L of milli-Q water 

with vigorous stirring until the polymer powder completely dissolved. The solution was then 

autoclaved for 30 min at 121 ℃, after which a gelatinous solid was formed. The gel then 

liquefied into a viscous solution upon cooling. A blue colorant (Color Coat Blue, Becker 

Underwood Canada, Saskatchewan) was then stirred into the bacteria-polymer slurry at a ratio 
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of 1.75 mL colorant to 100 mL slurry. The presence of colorant meets safety regulations 

requiring all treated seeds to be visibly colored to avoid use for animal consumption. An aliquot 

of 20 mL of this blue slurry was inoculated onto 600 mL of seeds using a seed treater (HEGE 

11, Wintersteiger Inc., Austria). The dried seeds were immediately transferred into sealed bags 

and stored at 4 °C. For seeds treated with the combination of two PGPR, a 10 mL aliquot of 

each bacterial slurry was applied. For PGPR combination treatment, such as UW3+4, seeds 

were inoculated with 5 mL of each bacterial slurry. It should be noted here that the label 

‘UW3+4’ means the combination of UW3 and UW4 as the PGPR treatment.  

After inoculation, the number of viable bacteria cells on seeds treated with UW4 was 

measured to ensure proper coating procedure. Twenty treated seeds for crop species or 0.2 g 

(~100 seeds) seeds for grass species were added into 20 mL sterile DF minimum salt medium 

and shaken for 1.5 h. The count of cfu/seed was determined by the spread count method on a 

DF minimum salt agar medium containing ACC as a sole nitrogen source at 30 °C for three 

days.  

2.4. Plant species selection for PGPR greenhouse experiments  

The goal was to select plant species that could germinate and produce reasonable amounts of 

aboveground biomass in highly saline conditions. Eight salt tolerant and/or native plant species 

were tested: common wheat (Triticum sativum), barley (Hordeum vulgare), oats (Avena sativa), 

Excalibur tall fescue (Festuca arundinace), Topgun ryegrass (Lolium perenne), blue gramma 

(Bouteloua gracilis), buffalo grass (Buchloe dactyloides) and creeping red fescue (Festuca 

rubra). Seeds of these plants were purchased from Ontario Seed Company (Waterloo, Ontario). 

Saline soil (ECe = 49.5 dS/m) was sieved through 0.25 inch mesh and homogenized before use. 
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Two-inch square hard plastic pots (0.25 inch × 0.5 inch) had a rectangular hole at each side of 

the bottom for drainage. Each pot was filled with approximately 80 – 100 cm3 sieved soil. Ten 

crop seeds or 0.2 g (~100 seeds) grass seeds were planted in each pot on July 15th, 2007. Plants 

were grown in the greenhouse with daily watering at 25 ℃ - 40 ℃ without supplemental 

lighting. The growth and germination were assessed after 30 days. Species that had higher 

percent germination and growth in saline soil were selected for further greenhouse tests with 

PGPR.  

2.5. The effects of fertilizer on plant growth in saline soil 

Two-week old barley and oats seedlings were fertilized with Plant-Prod 20-20-20 water 

soluble fertilizer (Plant Products, Brampton, Ontario). Plants were watered with 30 mL of the 

1g/L (200 mg/L total nitrogen) fertilizer solution and reverse osmosis water on alternate days 

for three weeks, followed by two weeks of watering without the fertilizer before the harvest. 

The fertilizer contains 20% total nitrogen, 20% phosphorus pentaoxide, 20% potassium oxide, 

0.02% boron, 0.05 chelated copper, 0.1% chelated iron, 0.05% chelated manganese, 0.0005% 

molybdenum, chelated zinc and 1% EDTA (ethylene diamine tetraacetate).  

2.6. Greenhouse experiment conditions   

The plants, PGPR, AMF, soil, watering, and the type of pots used varied in experiments, and 

the specifications were noted at the beginning of each experiment in Section 3. Methods, 

material and growth conditions that were constant throughout experiments are described here. 

Ten PGPR treated crop seeds (i.e. barley, wheat and oats) or 0.2 g of smaller seeds (i.e. fescue, 

ryegrass and alfalfa) were sown in the soils sampled directly from the contaminated sites. Pots 

were 80% filled with soil; the amount of soils varied with the size of the pot. An aliquot of 0.1 g 
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- 0.2 g of the granule product of the AMF, Glomus intraradices, (Myke-pro, PremierTech™, 

Rivière-du-Loup, Quebec) was applied in the soil alone or in combination with PGPR treated 

seeds. The fresh or dry weight of shoots and roots were measured after the growth period.  Each 

treatment included four replicates. For controls, seeds were sown in plots containing wet 

unsterile ProMixTM BX general purpose growth medium (Premier horticulture, Riviere-du-Loup, 

Quebec). ProMix™ BX contains sphagnum peatmoss (75% - 85% by volume), perlite, 

vermiculite, macronutrients (calcium, magnesium, nitrogen, phosphorus, potassium and 

sulphur), micronutrients (boron, copper, iron, manganese, molybdenum and zinc), dolomitic 

limestone, calcite limestone and a wetting agent. Plants were irrigated with reverse osmosis 

water at 25 ℃ - 40 ℃ in the greenhouse without supplemental lighting. Experiments were 

conducted during the period of May 2006 to September 2007.  Seeds of AC Ranger barley 

(referred as to Ranger barley hereinafter) were purchased from the Cribit Seeds (West Montrose, 

Ontario), and CDC Baler oats (referred to as Baler oats hereinafter) were from the Wagon 

Wheel Seed (Churchbridge, Saskatchewan). The rest of the seeds were purchased from Ontario 

Seed Company (Waterloo, Ontario). The local species in Saskatchewan, including alfalfa 

(Medicago sativa), red spring wheat (T. aestivum), Vivar barley (H. vulgare) and orchardgrass 

(Dactylis glomerata), were provided by a research partner. 

2.7. AMF colonization 

Roots were washed and chopped into 2 – 4 cm long fragments. One to two grams of cleaned 

root sample were autoclaved in 10% KOH (w/v) 125 mL in a 500 mL beaker by a liquid cycle 

for 20 min. After cooling, roots were rinsed with water and autoclaved in the Chlorazaol black 

E staining solution for 20 min. Excess stain was then removed by immerging roots in 50% 
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glycerol for 3 days. The images of vascules and arbuscules were taken by an electrical 

microscope. Root length colonized (RLC) is estimated by using the gridline intersection method 

(Brundrett et al., 1996). Stained root samples are dispersed on a dish with grid lines. 

Mycorrhizal colonization as RLC was then assessed under a dissection microscope by dividing 

counts of mycorrhizal roots by non-mycorrhizal roots. 

2.8. Measurement of concentrations of Na, Cl, B, K, P and Mg in plant tissues 

At the end of growth period, plant shoots were harvested and oven dried at 60 ℃ for 72 h. 

The concentrations of Na, B, K P and Mg in the dried plant shoot tissues were analyzed by 

method USEPA 6020, where plant tissue was completely decomposed in nitric acid and 

analyzed by ICP-MS (Inductively Coupled Plasma Mass Spectroscopy). Chlorine was analyzed 

by IC (Ion Chromatography) according to APHA method 4110B. The analysis was conducted in 

ALS Laboratory (Waterloo, ON).  

2.9. Identification of indigenous isolates 

In order to apply newly isolated indigenous bacteria in the field, identification was necessary. 

Two Year-2006 isolates, CMH2 and CMH3, were classified by the 16s rDNA sequences and 

BioLog™ assay. Total DNA extraction was conducted with the Wizard Genomic DNA 

Purification Kit (Cat. no.A120, Promega). The 16s rDNA then was amplified by PCR with the 

forward (1F, AGCGGCGGACGGGTGAGTAATG) and the reverse (R1509, 

AAGGAGGGGATCCAGCCGCA) primers (Young et al., 2004). The PCR product was 

extracted with QIAGEN Gel Extraction Kit (Cat no. 20021, Qiagen) and sequenced directly. 

The sequencing data were edited with BioEdit. The edited 16s rRNA gene sequences were 

submitted for comparison and identification to the GenBank database using BLAST 
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(http://130.14.29.110/BLAST/) and/or the Ribosomal Database Project II (RDP, 

http://rdp.cme.msu.edu/) and/or EMBL (www.ebi.ac.uk/fasta33/nucleotide).  

In addition, the biochemistry-based BioLog™ assay (GN2 MicroPlate™ , BioLog™) was 

also conducted for further verification (Biolog, 1999). Gram staining, oxidase tests and TSI 

(Triple Sugar Iron) slant were performed first for choosing the culture media and the type of 

MicroPlate™ . Each bacterial culture was then incubated for 16-24 h before resuspended in the 

inoculating fluid to reach certain turbidity and transferred into the MicroPlates. The plates were 

then incubated at 30℃ overnight before read by the Biolog MicroLog 3 (release 4.0). The 

bacterium was then identified according to the pattern of colorization of the wells. 

2.10. Field trials on salt contaminated sites 

Plant species and PGPR were then selected for the field trial. All three sites were tilled and 

mixed with a layer of 4-inch thick compost before seeding. The fields were divided into plots 

for each plant species and PGPR combination. Each plot was divided into two subsections on 

the Alameda (AL) site and three subsections on the Cannington Manor South (CMS) and North 

(CMN) site. From each subsection, three top soil samples (~ 20 cm) were randomly taken by an 

auger and mixed to form a composite sample for salinity analysis. The EC1:2 and ECe were 

measured for ten soil samples for each site for the determination of the KLAB. The KLAB was 

then used to calculate the ECe values from EC1:2
LAB

 for the rest of the samples. Seeds were 

sown at a density of three passes run by a Brilliant™ drop-spreader at a setting of 5 for crops 

and 6 for grasses at the CMS and CMN site. A portable seed dispenser was use in the AL site, 

and the seeds were harrowed into soil afterwards. After a growth period of two months, plant 
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tissue was sampled for analysis of concentrations of Na, Cl, B, Ca, K and Mg. The percent 

vegetation coverage of the contaminated sites was also recorded. To evaluate the PGPR effect 

in the field, biomass of plants on an area of 0.25 m2 with similar soil salinity and vegetation 

coverage (> 80%) was collected. 

2.11. Statistical analysis 

Root length data of the pouch test (n = 10) and biomass data (n = 4) of the greenhouse tests 

were analyzed by one-way analysis of variance (ANOVA) and the post-hoc Dunnet test (*P 

<0.01 versus -PGPR), where replicates were considered as random. The analysis of 

concentrations of elements in plant tissue was conducted using one-way analysis of variance 

(ANOVA). The software used for analysis was STATISTICA (StatSoft, Inc.). 
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3. Results and discussion 

The purpose of this study was to investigate the growth promotion effect of plant growth-

promoting rhizobacteria (PGPR) and an arbuscular mycorrhizal fungus (AMF) Glomus 

intraradices. Indigenous PGPR were isolated from soil of the research sites based on their ACC 

(1-aminocyclopropane-1-carboxylate) deaminase activity. Indigenous and non-indigenous 

PGPR were tested in the greenhouse and the field for their effect on plant biomass and NaCl 

levels in plant tissue. The AMF was tested in the greenhouse only. For assessment of soil 

salinity of the field samples, the in-house procedure for salinity measurement was developed. In 

addition to PGPR and AMF, the effect of fertilizer was also investigated. 

3.1. Establishment of a reliable in-house soil salinity measurement procedure 

Eight soil samples (Figure 3.1) were analyzed in the lab for both EC1:2 and ECe (referred to as 

the EC1:2
LAB and ECe

LAB) (Table 3.1). Each sample was also sent to ALS (Waterloo, ON) for 

EC1:2 measurement to verify the in-house EC1:2 measurement results.  

The EC1:2 values acquired by the in-house procedure (EC1:2
LAB) were consistently < 10% 

higher than the EC1:2 values reported by ALS (EC1:2
ALS) (Table 3.1). This result means that the 

in-house EC1:2 procedure was reliable and accurate. However, the EC1:2 measurement is 

affected to a great extent by the soil texture. For example, sandy soils tend to give higher EC1:2. 

Therefore, the ECe values are required to compare the salinity of different soils. 

The ECe of soil can be empirically determined (see Section 2.1) or calculated with a 

measured EC1:2 and the conversion factor K (equation 1). The K of these eight samples (KLAB), 
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were determined by the EC1:2 (EC1:2
LAB) and ECe (ECe

LAB) measured in the lab. The KLAB 

values of all these eight samples fell in  the common range (from two to four) of K values 

(Richards, 1954). The consistent EC1:2 and accurately ranged K values indicated that the in-

house procedure developed in the lab was reliable. The K value varies with soil properties such 

as particle size and the amount of organic matter. 

For field salinity assessment that requires a large number of samples, the EC1:2 method is 

particularly useful. The EC1:2 values can give a quick estimation of the spatial variation of 

salinity levels of the site. With the measurement of both ECe and EC1:2 of relatively small 

number of samples, the average K value can be determined and used to calculated the ECe 

values of the rest of the samples with presumably similar soil properties. Therefore, this method 

was adopted for field salinity assessment (Section 3.9). 
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a) Cannington Manor South site (CMS), 0.16 hectare 

 
 

b) Cannington Manor North site (CMN), 0.38 hectare 

 
 

c) Alameda site (AL), 0.21 hectare 

 
 

Figure 3.1. The maps of the sampling spots of each soil sample in this study. The detailed soil 

properties were listed in Table 3.2. Open circle: sampled in year 2006; solid circle: sampled in 

year 2007. 
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Table 3.1. EC1:2 and ECe values of soil samples. K is the conversion factor of EC1:2 to ECe. The lab 

analysis was done in triplicate.  

No. Soila Soil Texturec Electroconductivity (dS/m) 

Particle size O.M 
(%). ALSb LAB 

  
Sand Silt Clay EC1:2

ALS EC1:2
LAB ECe

LA

B KLAB

1 CMH 36 53 11 - 15.0 15.2 51.7 3.4 

2 CMM 49 44 7 - 15.0 16.0 52.8 3.3 

3 CML 34 36 30 - 2.7 2.6 9.3 3.6 
       

4 CMS-2007 48 37 15 14.6 4.3 4.5 9.0 2.0 

5 CMN-2007 44 31 25 10.2 2.8 3.1 7.8 2.5 
       

6 ALM 37 35 28 4.7 7.2 7.9 21.3 2.7 

7 ALL 28 38 34 2.7 3.9 4.3 11.2 2.6 
       

8 AL-2007 35 34 31 7.9 5.7 6.1 15.3 2.5 
aSee Table 3.2 for more details of each soil. 
bALS laboratory (Waterloo, Ontario) 
cThe soil texture and organic matter (O.M.) were analyzed by Agri-Food (Guelph, Ontario) 
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3.2. Properties of soils sampled from the CMS, CMN and AL site 

Detailed properties of the soils (Figure 3.1) used in this research were listed in Table 3.2, 

including the exchangeable cation capacity (CEC), electroconductivity (EC in dS/m), sodium 

adsorption ratio (SAR), sodium (Na), chlorine (Cl), available boron (B-avail), calcium (Ca), 

potassium (K) and magnesium (Mg). 

In general, soil with ECe of 4 dS/m is considered saline, and the yield of most crops 

dramatically declined at 16 dS/m (Table 1.2). The ECe values of soil samples are listed in Table 

3.2, where the ECe values are the products of EC1:2
ALS and KLAB. The CMM and CMH soils 

sampled from the CMS site in 2006 were extremely saline (ECe > 50 dS/m). Even after 

blending in compost and tilling in 2007, the CMS site was still highly saline, with an average 

ECe of 18 dS/m (Figure 3.28). ALM soil was both saline (19 dS/m) and sodic (SAR = 16). 

However, the other soil sample from the same site, ALL, not only had a much lower ECe (10.1 

dS/m) but also lower SAR (4). This implied that distribution of salinity might be uneven on the 

AL site. 

The soil samples taken from CMS site (CMH, CMM and CML) in 2006 are named according 

to the vegetation density. Soil sampled from spots of less vegetation cover was assumed to be 

higher in salinity. CMH, CMM and CML are soils taken from spots of CMS site with 

presumably high, medium and low salinity (Table 3.2). The analysis results partly supported 

this assumption. The ECe of the CML soil was much lower than that of the CMH and CMM soil 

(Table 3.1). However, CMH and CMM had similar ECe values, suggesting that the vegetation 

development was affected by other variables besides soil salinity.  
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The pH values showed that all soils were moderately alkaline (> 8.0); however, most plants 

prefer a soil pH between 5.5 and 7.5 and do best at the middle range. In addition, most bacteria 

proliferate at the pH range 6.3 – 6.8, hence the soil is too alkaline for both plants and the 

rhizosphere bacteria community.  Soil alkalinity also affects the availability of various nutrients 

including nitrogen (N) and phosphorus (P) (Ajouri et al., 2004; Ullrich, 2002). When soil pH > 

7, P may form less soluble minerals with Ca. Additionally, N is subject to greater losses at 

higher pH through volatization of NH3. Similarly, micronutrients such as manganese (Mn), iron 

(Fe), copper (Cu), zinc (Zn) and boron (B) tend to decrease as soil pH increases (Chaignon et 

al., 2003; Gallardo-Lara et al., 1999; Ministry of Agriculture and Food, 1991; Zheljazkov and 

Warman, 2004).  

The CEC is the capacity of a soil for ion exchange of positively charged ions between the soil 

and the soil solution. The CEC is determined prominently by the amount of negative charged 

clay and organic matter. The more clay or organic matter, the higher capacity the soil has to 

retain cations including Na+. The CEC of soil can range from less than 5 to 35 meq/100g for 

agricultural type soils.  

CMN-2007 soil contained more than 10% organic matter and CMS-2007 soil contained 15% 

organic matter. It should be pointed out that organic mater (OM) contributed around 90% of the 

total CEC for soils sampled from CMS site in 2006 (CMH, CMM and CML). Therefore, adding 

more organic matter (compost) into the soil might result in more sodium retention (less leaching 

out) in the top soil although adding OM can also improve soil drainage and dilute the soil 

salinity, and hence assist plant establishment.  
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Total concentrations of Na, Cl, Ca, K and Mg in plant shoot tissue were also listed. For B, the 

available fraction, rather than the total concentration, was listed because total B is an unreliable 

index for the bioavailability of B to plants (Adriano, 2001). Chlorine concentrations highly 

correlated (r2 = 0.99) with the soil ECe (Figure 3.2). Hence, Cl was a better indicator for soil 

salinity, but more data points in the range of 20 – 50 dS/m are needed to support this notion. 

The Cl and Na concentrations of the soils were not correlated. The calcium concentration of 

CMN-2007 soil was 2-6 times higher than soil from other sites. This result is was consistent 

with the fact that CMN site was treated with gypsum in the past years. 
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Table 3.2. Properties of soil samples taken from the research sites.  

Soil CMH CMM CML ALM ALL CMS-
2007 

CMN-
2007 

AL-
2007

Site CMS CMS CMS AL AL CMS CMN AL
Year 2006 2006 2006 2006 2006 2007 2007 2007

Month August August August October October May May May
     

pH 7.9 7.9 8.2 7.8 7.9 8.1 7.9 8.1
OM (%) 14.1 15.7 12.7 4.7 2.7 14.6 10.2 7.9

CEC 
(meq/100g) 26.3 23.3 36.8 20.8 21 21 24.8 22.8

Sand (%) 36 49 34 37 28 35 44 48
Silt (%) 53 44 36 35 38 34 31 37

Clay (%) 11 7 30 28 34 31 25 15

Texture Silt 
Loam Loam Clay 

Loam Loam Clay 
Loam Loam Loam Loam

     
EC1:2

ALS
 (dS/m) 15 15 2.6 7.2 3.9 4.3 2.8 5.7

KLAB 3.4 3.3 3.6 2.7 2.6 2.0 2.5 2.5
ECe (dS/m) 50.4 49.5 9.4 19.4 10.1 8.6 7 14.3

SAR 12 10 11 16 4 10 12 7
     

Na (mg/kg) 5090 4780 2580 3320 560 2710 2370 920
Cl (mg/kg) 15000 15400 1880 4950 2450 1400 1120 3710

B-avail (mg/kg) - - - 2.8 1.9 4.3 2.8 1.7
Ca (mg/kg) - - - 24800 32200 12900 72800 15400
K (mg/kg) - - - 4000 4530 1290 3270 3580

Mg (mg/kg) - - - 8550 9570 19000 21000 5710
CEC: Cation Exchange Capacity 
SAR: Sodium Adsorption Ratio 
ECe is the product of KLAB × EC1:2

ALS. 
KLAB was determined by the EC1:2 and ECe values produced in the lab. 
B-avail stands for the available B determined by hot-water extraction method (Richards, 1954). 
Na, Cl, Ca, K and Mg are total concentrations determined with the method US-EPA 3050B by ALS (Waterloo, 
Ontatio). 



 

 47

b)

Na (mg/kg)

0 1000 2000 3000 4000 5000 6000

C
l (

m
g/

kg
)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

a)

ECe

0 10 20 30 40 50 60

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Na
Cl

Na: r2 = 0.67

Cl: r2 = 0.99

 

Figure 3.2 The relations between Cl, Na and ECe of soil samples. Cl concentrations highly 

correlated (r2= 0.99) with the ECe (a). The Cl and Na concentrations (b) of soils were not 

correlated. Figures were derived from Table 3.2. Data were analyzed by linear regression of 

STATISTICA (StatSoft, Inc.).  
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3.3. The ACC deaminase activity and auxin production of isolated potential PGPR  

The ACC deaminase activity of isolates that were capable of utilizing ACC as the sole 

nitrogen source is listed in Table 3.3. The ACC deaminase activity was normalized on a per mg 

protein basis. UW3 (Huang et al., 2004a; Huang et al., 2004b) and UW4 (Huang et al., 2005) 

have successfully improved plant growth and hence enhanced the petroleum degradation in 

several greenhouse and field trails. 

From Year-2006 soil samples, i.e. CML, CMM and CMH, eighteen potential PGPR were 

isolated and tested for their ACC deaminase activity. Among them, CMH2 and CMH3 not only 

had the highest ACC deaminase activity but also had high salt tolerance since they were isolated 

from very saline soils (ECe = 50.4 dS/m). These two isolates would therefore be tested in soils 

sampled from the site of origin (CMS) in the greenhouse (Experiment #4 and #5) for their plant 

growth promotion effect, and the results would provide evaluation for the use of these potential 

PGPR in the Year-2007 field trials. 

From Year-2007 soil samples, CMS-2007 and AL-2007, fifteen more potential PGPR were 

isolated. Their ACC deaminase activity and auxin production were quantified (Table 3.3). 

Among them, CM6, CM7, CM8, AL1, AL2 and AL7 were selected for a greenhouse experiment 

(Experiment #6, page 101). Further greenhouse tests of these isolates are required in order to 

select more effective strains for the field trial in 2008.  

Figure 3.3 and Figure 3.4 indicate the ACC deaminase activity and the IAA-equivalents 

concentration of eight isolates that produced high ACC deaminase activity: CMH2, CMH3, 

CMR6, CMR7, CMR8, ALR1, ALR2 and ALR7. To avoid false results, controls were included. 
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The positive controls were UW3 and UW4, which are PGPR with high ACC deaminase activity. 

The negative control accD- was an ACC deaminase gene knockout mutant of UW4. 

UW3 had the highest ACC deaminase activity of all isolates, while the IAA-equivalents 

concentration of UW4 was the highest. Therefore, the combination of UW3 and UW4 would be 

applied as one combination PGPR treatment in the following greenhouse tests. Isolates that 

showed the highest ACC deaminase activity were CMH2, ALR1, ALR2 and UW4, of which 

UW4, CMH2 and ALR1 also had the highest IAA-equivalents concentrations. ALR2, however, 

produced relatively low IAA-equivalents. CMH3 was moderate in both ACC deaminase 

activity and IAA-equivalents production. The results indicated no correlation between the auxin 

production and ACC deaminase activity. 
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Table 3.3. ACC deaminase activity and IAA-equivalent concentrations of colonies that used 

ACC as the sole nitrogen source. UW3 and UW4 were positive controls, whereas accD- was the 

negative control. 
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Soil ECe 
(dS/m) Name ACC deaminase activity 

(µmoleα-KA/mg protein/h)
IAA- equivalents 

(μg/ml/OD600 unit) 
Gram 
Stain 

UW3 10.7±0.01 0.66±0.04 - 
UW4 6.12±0.03 3.35±0.09 - 
accD- 0.05±0.02 3.01±0.03 - 

     
 Year-2006 Isolates  

CMH 50.4 CMH1 1.00±0.02 2.10±0.21 - 
 CMH2 6.63±0.03 2.51±0.11 - 
 CMH3 4.22±0.01 1.50±0.03 - 
 CMH4 0.50±0.01 0.01±0.22 - 
 CMH5 0.30±0.02 0.51±0.11 - 
 CMH6 0.25±0.02 0.23±0.25 - 

CMM 49.5 CMM1 0.20±0.01 0.69±0.39 - 
 CMM2 0.10±0.00 0.19±0.11 - 
 CMM3 0.03±0.01 0.91±0.15 + 
 CMM4 0.02±0.01 1.01±0.94 - 
 CMM5 1.11±0.02 2.34±0.76 - 
 CMM6 1.50±0.06 1.51±0.31 - 

CML 9.4 CML1 0.11±0.01 0.99±0.12 - 
 CML2 1.21±0.01 0.54±0.05 - 
 CML3 2.44±0.02 0.22±0.01 - 
 CML4 1.01±0.03 0.32±0.07 - 
 CML5 0.78±0.03 0.11±0.06 - 
 CML6 0.81±0.02 0.07±0.04 - 

 
Year-2007 Isolates 

CMS-2007 8.6 CMR1 1.12±0.02 1.29±0.11 + 
 CMR2 0.96±0.22 0.71±0.01 - 
 CMR3 1.17±0.01 2.86±0.20 - 
 CMR4 0.87±0.11 0.91±0.04 - 
 CMR5 0.92±0.03 0.34±0.06 - 
 CMR6 3.76±0.62 0.33±0.12 - 
 CMR7 4.21±0.21 1.22±0.11 - 
 CMR8 3.42±0.87 1.09±0.06 - 

AL-2007 14.3 ALR1 8.50±0.94 3.21±0.14 - 
 ALR2 7.77±0.28 0.22±0.01 - 
 ALR3 1.51±0.11 0.39±0.12 - 
 ALR4 1.22±0.31 3.12±0.26 + 
 ALR5 0.83±0.11 1.77±0.12 - 
 ALR6 0.97±0.11 3.18±0.33 - 
 ALR7 2.70±0.95 2.93±0.17 - 

UW3 and UW4 are Pseudomonas putida as positive controls. 
The negative control accD- is an ACC deaminase gene knockout mutant of UW4 
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Figure 3.3. The ACC deaminase activity of selected isolates. UW3 and UW4 were positive 

controls, whereas accD- was the negative control. See Table 3.3 for detailed information. 
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Figure 3.4. The IAA-equivalents concentrations of isolates that had high ACC deaminase 

activity. The ACC deaminase gene knockout mutant accD- had similar IAA level as UW4. See 

Table 3.3 for detailed information. 
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3.4. Viable bacteria counts of the PGPR inoculated seeds 

Isolates with high ACC deaminase activity were coated onto the surface of seeds as the 

inoculation method. Prior to testing their plant promotion effect in the soil, the efficiency of 

inoculation was examined.  

The results of plate counts method indicated that the average number of viable PGPR of 

Pseudomonas putida UW4 on seeds was 108-109 cfu/seed for oats and barley, and 106-107
 

cfu/seeds for ryegrass and fescue. These inoculation rates approximated to those in Germida 

and Walley (1996) where pseudomonad Pseudomonas cepacia, P. aeruginosa, P. fluorescens 

and P. putida were inoculated on winter wheat at a rate of 107 - 108 cfu/seed and effectively 

enhanced plant growth and the yield.  Hence, all PGPR tested in this study was inoculated onto 

seeds with the same inoculation method.  

3.5. Root elongation pouch test 

Before testing the growth promotion effect of the Year-2006 isolates CMH2 and CMH3 in 

soil, a pouch assay was conducted to examine their root elongation effect in a more controlled 

environment. At 0% salt, no PGPR treatment enhanced root elongation (Figure 3.5). However, 

at 1% salt (Figure 3.6) improved root elongation was observed (P < 0.01). CMH3 enhanced the 

root length of barley, Topgun ryegrass and Excalibur tall fescue. The root length of barley and 

oats treated with UW3 and UW4 in combination (labeled as ‘UW3+4’ hereafter) were 

significantly longer than that of the untreated (-PGPR). CMH3 promoted the root length of 

barley, ryegrass and fescue. CMH2 enhanced root growth of Excalibur tall fescue. In 
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conclusion, PGPR enhanced root growth of plants under saline conditions but not under non-

saline conditions.  
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Figure 3.5. The root length of a) Ranger barley, b) Common oats, c) Topgun ryegrass and d) 

Excalibur tall fescue at 0% salt. No PGPR treatment enhanced root elongation. Root length was 

measured 3 days after germination for crops and 10 days after germination for grasses. The label 

‘UW3+4’ means the combination of UW3 and UW4 as the PGPR treatment. Results are 

expressed as means 1 SE of four replicates. Data were analyzed by one-way analysis of variance 

(ANOVA) and the Dunnet test (* P < 0.01 versus -PGPR). 
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Figure 3.6. The Root length of a) Ranger barley, b) Common oats, c) Topgun ryegrass and d) 

Excalibur tall fescue at 1% salt (17 dS/m). At 1% salt, the radicle emergence of both crops and 

grasses occurred 5 days later than the 1% salt treatment. Root length was measured 3 days after 

germination for crops and 10 days after germination for grasses. The label ‘UW3+4’ means the 

combination of UW3 and UW4 as the PGPR treatment. The results are expressed as means 1 

SE of four replicates. Data were analyzed by one-way analysis of variance (ANOVA) and the 

Dunnet test (* P < 0.01 versus -PGPR). 
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3.6. Plant selection for PGPR greenhouse tests  

Three crop and five grass species were tested for salt tolerance based on their percent 

germination and growth in 6 weeks. The goal was to select plants that are salt tolerant, capable 

of producing high biomass under local climatic conditions because the efficiency of salt 

phytoremediation (removal) largely depends on the shoot biomass. 

Barley, oats and wheat are common crops in western Canada. Barley is a salt-tolerant crop 

that was cultured as a substitute for wheat due to soil salinity in Mesopotamia centuries ago. 

Oats and wheat have moderate to high salt tolerance (Richards, 1954). Perennial cool season 

grasses such as fescue and ryegrass were chosen because they can overwinter and start to grow 

early in the year. Additionally, grasses also have more extensive and dense roots than crops so 

that they can be more resistant to osmotic stress (drought). Blue gramma and buffalo grasses 

were chosen because they are native species in western Canada and are moderately salt tolerant. 

It is common for land reclamation practices to grow annual crops together with perennial 

grasses in a mix in order to prolong the canopy period.  

Based on the results in Table 3.4, barley, oats, fescue and ryegrass were chosen for 

greenhouse tests with PGPR because of their superior germination condition and growth. The 

variety of oats and fescue used in the following greenhouse experiments may be different in 

part due to the availability of the seeds or the preference to local varieties.  

 It must be noted that the soil used was so saline (ECe = 49.5 dS/m) that these non-halophyte 

(glycophyte) plants would not have been able to produce such amounts of biomass, therefore 

salt leaching away from the soil caused by excessive watering was suspected. This issue will be 

further discussed in Section 1.1.1.    
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Table 3.4. Germination and growth of eight plants for the 

preliminary selection. Soil used was CMM (ECe =  49.5 dS/m). The 

experiment was conducted in four replicates. 

Performance Species 

Germination Biomass

Select

Common barley 
Hordeum vulgare 

(Annual) 

+++++ ++++ √

Common oats 
Avena sativa 

(Annual) 

+++++  +++++ √

Winter wheat 
Triticum sativum 

(Annual) 

++++ +++ √

Excalibur tall fescue 
Festuca arundinace 

(Perennial) 

++++ ++ √

Topgun ryegrass 
Lolium perenne 

(perennial) 

++++ ++ √

Blue gramma 
Bouteloua gracilis 

(perennial) 

- - -

Buffalo grass 
Buchloe dactyloides 

(perennial) 

++ + -

Creeping red fescue 
Festuca rubra 

(perennial) 

++ + -
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3.7. Greenhouse tests: Effects of PGPR and AMF on plant growth in saline soils 

Six greenhouse experiments were conducted. All these greenhouse experiments were carried 

out with soils sampled directly from the research sites to replicate the in situ rhizosphere 

condition and hence give better prediction of plant growth promotion effects of PGPR for the 

field trials. The soil used for each experiment varied, in part, due to the availability of soil. 

More importantly, by using different soils, the consistency of growth promotion effects of 

PGPR in soils with various salinities could be examined. Moreover, in Experiment #3 and #5 

the sampled soils were diluted with the general purpose potting soil Tri-Mix™ (Kengrove Inc., 

Ontario) for adjusting soil salinity to certain salinity levels. 

Experiment #1 examined the necessity of fertilizing the Alameda (AL) site. In Experiment #2, 

UW3+4 and AMF were tested with oats and wheat. Experiment #3 showed how plant growth 

was affected by a gradient of soil salinity, and the variation in salt tolerance between plant 

varieties. Experiment #4 included the indigenous isolate CMH2 and CMH3 as the PGPR 

treatment for selected crops and grasses, while local plant varieties were tested in Experiment 

#5. Finally, in Experiment #6, CMH2, CMH3 and the newly isolated Year-2007 isolates were 

tested.  

The percent germination rate, biomass and salt accumulation in plant tissue were measured to 

evaluate the phytoremediation efficiency. In addition, AMF colonization in Experiment #4 and 

nodulation of alfalfa in Experiment #5 were quantified. The brief description of the 

experimental purposes and conditions of these six experiments are listed in Table 3.5. For the 
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ease of referencing, specific experiment conditions are also listed at the beginning of each 

experiment. 
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Table 3.5. The purposes and experimental variables of six greenhouse experiments. 

Exp Soil 
(ECe in dS/m) 

Purpose Plant PGPR/AMF Measurement 

1 ALM (19.4) and 
ALL (10.1) 

Examination of the 
importance of nutrient 
addition 

Ranger barley, Baler oats UW3+4 Shoot dry weight          
Plant salt uptake 

  
2 CMH (50.4) Examination of PGPR 

and AMF effects on oats 
and wheat 

common oats, winter wheat UW3+4, AMF, 
UW3+4+AMF 

Shoot fresh weight 
Germination 

  
3 Diluted CMH 

(12.5, 17, 25, 50) 
Determination of the soil 
salinity range for plant 
growth 

Ranger barley, Baler oats, 
common oats, Inferno tall 
fescue, Tomcat tall fescue 

None Germination       
Root dry weight  
Shoot dry weight 

  
4 CML (9.4) 

 
Examination of PGPR 
and AMF effects 
(including Year-2006 
isolates) 

Common oats, Ranger 
barley, Excalibur tall 
fescue, Topgun ryegrass  

UW3+4, CMH2, CMH3, 
AMF, UW3+4+AMF 

Root dry weight  
Shoot dry weight  
AMF colonization  
Plant salt uptake  

  
5 Diluted CMM (13) 

 
Examination of PGPR 
effects on local varieties  

Alfalfa, red spring wheat, 
Vivar barley, Orchardgrass 

UW3+4,CMH2, CMH3 Root dry weight  
Shoot dry weight 
Nodulation 

  
6 AL-2007 (14.3) and 

CMS-2007 (8.6) 
Examination of PGPR 
effects on barley and oats 
(including Year-2007 
isolates) 

Ranger barley, Baler oats UW3+4, CMH3, ALR1, 
ALR2, ALR7, CMR6, 
CMR7, CMR8 

Shoot dry weight 

‘UW3+4’ means the combination of UW3 and UW4 
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3.7.1. Greenhouse experiment #1: The importance of additional nutrient supply 

The purpose of this experiment was to examine the importance of nutrient addition for 

alleviating salt stress. For this experiment, soils from the AL site, ALM (ECe = 19.4 dS/m, SAR 

= 16) and ALL (ECe = 10.1 dS/m, SAR = 4), were used. Baler oats and Ranger barley were the 

plant species tested. The inoculated PGPR was UW3+4. The growth period of this experiment 

was 45 days. 

The biomass of plants grown in the ALM soil was less than that in the ALL soil. This could 

be due to higher soil salinity of the ALM soil. In addition, for both soils chlorosis of mature 

leaves of oats and barley occurred in 2 weeks, while new leaves were green. The growth was 

stagnating as well (Figure 3.7, -PGPR, -Fertilizer). Therefore, liquid fertilizer (20-20-20) was 

applied in the third week as an amendment. The application of fertilizer alone increased shoot 

biomass of both barley and oats by up to 300% (Figure 3.8, -PGPR). More importantly, when 

fertilizer was applied to PGPR treated plants, plant shoot biomass was approximately 20% 

higher than that of plants treated with fertilizer alone (i.e. without PGPR) (Figure 3.8). In fact, 

the PGPR treated plants were taller and greener than the -PGPR plants regardless of the 

fertilizer application. Although fertilizer enhanced plant growth, some typical NaCl 

phytotoxicity symptoms remained when plants were not treated with PGPR. These symptoms 

included leaf tip burning, necrosis and less biomass. When plants were treated with both 

fertilizer and PGPR, those symptoms were less prominent (Figure 3.7).   

The concentrations of Na, Cl, B, Ca, K, P and Mg of shoot plant tissue were listed in Table 

3.6. The salt (NaCl) levels of plants with various treatments were fairly constant. That is, NaCl 
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concentrations in plant tissue (~ 62000±5000 mg/kg) were not greatly altered by PGPR or 

fertilizer treatments. Consequently, the total amount of salt accumulation in plant biomass, i.e. 

removable salt, is proportional to plant biomass. The symptoms of oats and barley growth 

resembled nitrogen or phosphorus deficiency. The barley plants lacked tillering and the stems 

were thin with red basal portions. The leaves were pale green and older leaves turned yellow 

with purple tints, followed by premature withering. For oats, the tiller number was low and 

stems were thin. As well, the leaf sheaths turned purple, which is a typical phosphorus 

deficiency symptom. Elemental analyses of plants also implied P deficiency (Table 3.6). The 

phosphorus concentrations in fertilized oats and barley were significantly higher than those in 

unfertilized plants (P < 0.05). The K and Ca concentrations also were moderately higher in the 

plant tissue. 

Saline soils sometimes also contain high levels of boron that can inhibit plant growth, and 

hence boron toxicity to plants was suspected. Soil with available boron more than 2 mg/kg 

might be toxic to plants (Richards, 1954). In Table 3.2, the available boron levels of two types 

of soil used in this experiment were 2.8 (ALM) and 1.9 mg/kg (ALL), which might be high 

enough to result in boron toxicity. Moreover, the boron levels in shoot tissue ranged from 24 to 

93 mg/kg with an average of 53 mg/kg (Table 3.6), approximating the level of boron at which 

plant toxicity symptoms start to appear for oats and barley (Adriano, 2001). Therefore, boron in 

the soil might have, in part, inhibited plant growth.  

In summary, UW3+4 inoculation was effective in promoting plant growth in soils regardless 

of fertilizer application. Moreover, the results here suggested the importance of supplying 

nutrients to soils in the field. Nonetheless, due to the impracticality of applying liquid fertilizer 
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in the field, the three research sites were amended with a layer of compost before planting seeds 

inoculated with PGPR for the year 2007 field trials. 
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Figure 3.7. Pictures of 45-day old a) Ranger barley and b) Baler oats grown in ALL soil with 

fertilizer supply. PGPR: UW3+4. 

b) Baler oats 
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+PGPR            -PGPR +PGPR            -PGPR 

a) Ranger barley 

          +Fertilizer                                                         -Fertilizer 

+PGPR                        -PGPR +PGPR            -PGPR 
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Figure 3.8. Shoot dry weight of a) Ranger barley and b) Baler oats in ALL and ALM soils 

in 45 days. The results are expressed as means 1 SE of four replicates. The 20-20-20 

fertilizer alone (-PGPR, + Fertilizer) effectively increased shoot biomass of both barley 

and oats by 150% to 300%.  
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Table 3.6. Concentrations of Na, Cl, B, Ca, K, P and Mg of 45-day old Ranger barley and Baler 

oats grown in ALL and ALM soils with fertilizer. The shoot biomass of four replicates was 

collected as one composite sample for analysis. Unit: mg/kg.  

 

Soil Fertilizer Species PGPR Na Cl NaCl B Ca K P Mg
ALL      

 - Fertilizer Barley -PGPR 12700 44200 56900 82 8560 21200  1320 17000 
   UW3+4 6640 38700 45340 63 5710 20400  1170 11400 
  Oats -PGPR 9300 35700 45000 57 5510 18600  1210 11500 
   UW3+4 8810 30400 39210 76 6640 21100  1210 10300 
 + Fertilizer Barley -PGPR 30100 47800 77900 93 9280 26700  5460 65000 
   UW3+4 18000 36900 54900 57 6040 33300  4540 8250 
  Oats -PGPR 13000 26100 39100 32 4720 18700  1830 7450 
   UW3+4 14700 33100 47800 51 7350 18100  1600 10400 

ALM      
 - Fertilizer Barley -PGPR 16500 30300 46800 25 5790 16900  2020 4980 
   UW3+4 26800 44800 71600 33 6620 16300  1970 5550 
  Oats -PGPR 36300 63800 100100 35 13000 9710  1210 6730 
   UW3+4 29600 52500 82100 24 9490 13500  1680 5020 
 + Fertilizer Barley -PGPR 30900 50900 81800 54 8640 28700  6190 6230 
   UW3+4 16900 40900 57800 68 8720 27500  3690 12200 
  Oats -PGPR 32300 49500 81800 53 11700 13200  2350 6870 
   UW3+4 30600 43400 74000 38 10600 15106  6555 6640 
      
   Mean 20822 41813 62634 53 8023 19939  2750 12220 
   SE 2460 2458 4681 5 597 1588  474  3611 
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3.7.2. Greenhouse experiment #2: PGPR and AMF effects on oats and wheat 

The purpose of this experiment was to examine the growth promotion effect of UW3+4 and 

AMF on plants grown in saline soil. For this experiment, soils from the CMS site, CMH (ECe = 

50.4 dS/m, SAR = 12) was used. Common oats and winter wheat were the plant species tested. 

The PGPR/AMF treatments included UW3+4, AMF and UW3+4+AMF. The growth period of 

this experiment was 35 days. 

As shown in Figure 3.9 and Figure 3.10, UW3+4 completely reverted the root and shoot 

growth inhibition caused by salinity. In fact, the shoot biomass of plants treated with UW3+4 

exceeded that of the control. Compared to -PGPR, UW3+4 improved the shoot and root fresh 

weight of oats by 100%. For wheat, the increase in fresh weight was 20% for roots and 80% for 

shoots. AMF enhanced root growth of both plants by 30%. The UW3+4 and AMF combination 

did not show an additive or synergistic effect. Although both oats and wheat growth were 

promoted by PGPR, oats are the better crop for phytoremediation than wheat because the 

biomass, especially shoot biomass, was 3 – 5 fold higher than that of wheat, regardless of the 

PGPR treatment.  

What has to be addressed here is the high salinity (ECe = 50.4 dS/m) of the soil used in this 

experiment. In such a highly saline soil, non-halophyte (glycophyte) plants such as oats and 

wheat are not supposed to produce such high amounts of biomass. Therefore, soil salt leaching 

was suspected. Since soil samples were discarded before this issue was noticed, the change of 

soil ECe could not be measured to verify it. Nevertheless, the germination kinetics supported 

this assumption. In Figure 3.11, for both oats and wheat, a surge of germination occurred after 
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about 15 days, regardless of the PGPR treatment. This observation can be explained by salt 

leaching resulted from excessive watering and large pot bottom holes. Consequently, soil 

salinity decreased to a level at which seeds were able to germinate and grow. In order to avoid 

the excess salt leaching, bigger or same size pots with smaller holes were used and watering 

was controlled in the rest of the greenhouse experiments, where soils of randomly selected pots 

were analyzed for their EC1:2 after each experiment and the decrease in soil salinity (EC1:2) was 

about 10% - 15%. 
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Figure 3.9. The fresh weight of a) roots and b) shoots of oats and wheat grown in saline 

soil (ECe = 50.4 dS/m) in 45 days. The results are expressed as means 1 SE of four 

replicates. Data were analyzed by one-way analysis of variance (ANOVA) and the Dunnet 

test (* P < 0.01 versus -PGPR). UW3+4 promoted the root and shoot growth under salt 

stress. UW3+4 enhanced shoot growth of oats by 100%. Control plants grown in 

ProMix™ served as a reference. 
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Figure 3.10. Pictures of a) common oats and b) winter wheat in experiment #2. 
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a) Common oats 
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Figure 3.11. Germination of a) oats and b) winter wheat with PGPR and AMF treatments over 

time. A surge of germination occurred in approximate 15 days for both oats and wheat that grew 

in saline soils regardless of the PGPR treatment. Control plants grown in ProMix™ served as a 

reference. 
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3.7.3. Greenhouse experiment #3: Soil ECe and plant growth 

The purpose of this experiment was to investigate how the increase in salinity affect plant 

growth. For this experiment, CMH soil (ECe = 50.4 dS/m, SAR = 12) was diluted with Tri-

Mix™ (Kengrove Inc., Ontario) at different ratios to obtain soils of salinity at 12, 17, 25 and 50 

dS/m. Ranger barley , Baler oats, Common oats,  Inferno tall fescue and Tomcat tall fescue were 

the plant species tested. No PGPR was inoculated on seeds. The growth period of this 

experiment was 35 days. 

The percent germination rate of all plants fell in the range of 70% – 95% when the ECe was 

lower than 25 dS/m. At 50 dS/m, only Baler oats was able to maintain a germination rate of 

80%. No germination of Ranger barley was observed (Figure 3.12). This unexpected result is 

not consistent with the notion that barley is a more salt tolerant crop. Nonetheless, research has 

shown great variation of salt resistance within plant species such as barley, wheat, rice and oats 

(Alamgir and Ali, 2006; Dehdari et al., 2005; Farooq and Azam, 2007; Katerji et al., 2005; 

Katerji et al., 2006; Pandya et al., 2004; Verma and Yadava, 1986). Therefore, some varieties of 

oats may be more salt tolerant than some barley varieties given the fact that both oats and 

barley are categorized as crops with high salt tolerance (Table 1.3). The root and shoot dry 

weight data are shown in Figure 3.13 and Figure 3.14. The result showed that when salinity was 

under 25 dS/m, the growth of Ranger barley was slightly better than two oats but at 50 dS/m, 

the growth of Baler oats exceeded two other crops.  

Based on these results, Ranger barley and Baler oats were selected as crops planted for the 

field trial. Other attributes of these two crops also suggested good growth in the field.  AC 
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Ranger barley (also referred to as Ranger barley) has good tolerance to drought and moderate 

tolerance to soil alkalinity, but poor tolerance to flooding. The forage quality, disease resistance 

and lodging resistance are very good. Furthermore, its forage maturity is late, i.e. a longer 

canopy period (Manitoba Forage Council Inc., 2006). Baler oats (also referred to as CDC Baler 

oats) had high disease resistance and wide large leaves that do not decay after becoming fully 

mature in the field (CSIDC, 2006). Holding green after maturity is a desirable trait because it 

implies less return of accumulated salt in shoot tissue into soil before harvesting, resulting in 

better salt removal efficiency. For the two tall fescues, Inferno generated more shoot and root 

biomass than Tomcat when salinity is high, so Inferno tall fescue was chosen as one of the grass 

species for the field test. 
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Figure 3.12. Percent germination of plants grown in soils of various salinities in 35 days. The 

results are expressed as means 1 SE of four replicates. The percent germination rate of three 

plants fell in the range of 70% – 95% when ECe was lower than 25 dS/m. At 50 dS/m, only Baler 

oats was able to maintain a germination rate of 80%. 
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Figure 3.13. Dry weight of roots of plants that grew in soils of various salinities in 35 days. The 

results are expressed as means 1 SE of four replicates. The root dry weight of grasses 

approximated that of crops. 
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Figure 3.14. Dry weight of shoots of plants grown in soils of various salinities in 35 days. The 

results are expressed as means 1 SE of four replicates. When salinity was under 25 dS/m, the 

growth of Ranger barley was slightly better than two oats but at 50 dS/m, the growth of Baler 

oats exceeded common oats and Ranger barley. The shoot growth of Inferno tall fescue was 

higher than that of Tomcat tall fescue. 
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3.7.4. Greenhouse experiment #4: PGPR and AMF effects (Year-2006 isolates) 

The purpose of this experiment was to examine the PGPR and AMF effect on plants. The 

PGPR tested included the newly isolated Year-2006 strains, CMH2 and CMH3. For this 

experiment, CML soil (EC = 9.4 dS/m, SAR = 11) was used. Common oats, Ranger barley, 

Excalibur tall fescue and Topgun ryegrass were the plant species tested. PGPR/AMF treatment 

were UW3+4, AMF, UW3+4+AMF, CMH2 and CMH3. The growth period of this experiment 

was 45 days. 

The effect on plant biomass 

The UW3+4 combination again showed the plant growth promotion effect. In Experiment #2, 

UW3+4 treatment enhanced oats shoot growth by 100% over the -PGPR, while in this 

experiment UW3+4 enhanced shoot growth of barley and oats by 90%. Additionally, UW3+4 

also enhanced the root growth of Ranger barley by 50% (Figure 3.15 and Figure 3.16). The 

UW3+4 treatment; however, was not the most effective treatment. The indigenous PGPR, 

CMH2 and CMH3, improved shoot growth of both crops more than UW3+4 (Figure 3.15) 

possibly because the indigenous isolates were more competitive than the non-indigenous 

bacteria (Bhattarai and Hess, 1993).  

For oats, the shoot and root biomass of plants treated with AMF alone or AMF together with 

UW3+4 was higher than that of plants treated with UW3+4 alone (Figure 3.15). This result 

implied that the shoot and root growth of oats treated with UW3+4+AMF were predominantly 

promoted by AMF rather than UW3+4. The root length colonization data in Table 3.7 indicated 

that the AMF application method was effective. Both barley and oats that were treated with 
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AMF alone or together with PGPR had higher root colonization by AMF. Nonetheless, neither 

the shoot nor root water content was increased by AMF colonization. Therefore, it was 

concluded that the growth promoted by AMF was not attributed to better water retention but 

other mechanisms such as production of aquaporin (Diouf et al., 2005; Ouziad et al., 2006), 

higher antioxidative activities (Waller et al., 2005), lowered Cl- uptake (Copeman et al., 1996), 

improved nitrogen or phosphorus uptake (Ruiz-Lozano and Azcon, 2000), electrolytes or 

soluble sugars (Feng et al., 2002). The arbuscule and hypha of mycorrhizal fungi colonized in 

roots of oats were shown in Figure 3.19. The roots were sampled from plants that grew in soils 

sampled from the research site, so the root might have been colonized by other local arbuscular 

or non-arbuscular mycorrhizal fungi. However, the morphology of the arbuscule and hypha 

observed resembles Glomus spp. (Brundrett et al., 1996). 

In conclusion, UW3+4+AMF was most effective for oats, whereas CMH2 was the most 

effective in promoting barley growth among all microbial treatments. Oats were also tested in 

Experiment #2 (page 69) with UW3+4 and AMF, so the results from both two experiments 

were compared to check the consistency of the growth promoting effects of these microbial 

treatments (Table 3.8). The results showed that the growth promotion effect of UW3+4 on 

shoots and that of UW3+4+AMF on roots were reproducible with a 100% increase in biomass, 

while the other treatments performed differently. It must be noted here that the experimental 

conditions of two experiments were different in soil salinity (50.4 dS/m and 9.4 dS/m in 

Experiment #2 and #4, respectively), greenhouse temperature and salt leaching. In Experiment 

#4, the temperature was cooler (in the range of 25 to 35 °C) and watering was controlled. 
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The growth of Topgun ryegrass and Excalibur tall fescue were promoted by different 

microbial treatments. For ryegrass, UW3+4+AMF and CMH3+AMF enhanced its shoot and 

root growth by 300%, whereas CMH2 and its combination with AMF were the most beneficial 

to the growth of fescue under salt stress (Figure 3.17 and Figure 3.18). In contrast to the PGPR 

effect on crops, the growth promotion effect of UW3+4 treatment on these two grasses was 

insignificant. It should be noted that neither UW3+4 nor AMF promoted shoot growth of 

ryegrass, but the combination (UW3+4+AMF) increased shoot and root biomass of ryegrass by 

three fold. This synergistic effect, however, did not occur to fescue. Moreover, although AMF 

treatment alone did not have positively effects on grasses, its combination with UW3+4 and 

CMH3 were the most effective in enhancing shoot growth of ryegrass, where fescue root 

growth was promoted the most by CHM3 and AMF in combination (Figure 3.17 and Figure 

3.18).  

The synergistic effect between PGPR and AMF was reported in Roesti et al. (2006), where a 

combined bio-inoculation of diacetyl-phloroglucinol producing PGPR strains and AMF 

synergistically improve the nutritional quality of the grain of spring wheat without negatively 

affecting mycorrhizal growth. In contrast, adverse effect of PGPR on AMF inoculation in plant 

roots were reported by Germida and Walley (1996). Five pseudomonad PGPR, including P. 

putida, enhanced spring wheat growth, but some of them adversely affected association between 

plants and indigenous AMF, resulting in a decrease in root colonization. The author suggested 

that the inhibition of AMF colonization could be a reason as to why spring wheat growth was not 

consistently enhanced by PGPR. Moreover, the interaction between a certain PGPR and AMF 

pair may change because the rhizobacterial community structure is highly dynamic and 
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influenced by different factors such as the maturity of plants, the fertilizer input and the type of 

bio-inoculants (Table 3.8) compared the growth results of oats that were treated with the same 

set of PGPR treatments in Experiment #2 and #4. Regardless of some differences in 

experimental conditions, such as soil salinity, pot size, watering condition, the growth promotion 

effect of UW3+4+AMF on roots and UW3+4 on shoots was consistent in both experiments. The 

effect of UW3+4 and AMF, however, varied. 

To summarize, UW3+4+AMF and CMH3+AMF consistently promoted the growth of crops 

and grasses respectively although other PGPR and/or AMF treatments might exceed the effect 

of UW3+4+AMF or CMH3+AMF on certain species as discussed above. 
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Figure 3.15. Dry weight of a) roots 

and b) shoots of Ranger barley and 

common oats in 45 days. The 

shoot biomass of oats was 

consistently higher than barley, 

regardless of the PGPR/AMF 

treatment. For root and shoot 

biomass of oats, the AMF and 

UW3+4+AMF treatments 

outperformed UW3+4 alone. For 

barley, all microbial treatments 

had a positive effect on plant 

growth except UW3+4. The 

results are expressed as means 1 

SE of four replicates. Data were 

analyzed by one-way analysis of 

variance (ANOVA) and the 

Dunnet test (* P < 0.01 versus -

PGPR of the same plant). Control 

plants grown in ProMix™ served 

as a reference. 
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Figure 3.16. Pictures of a) common oats and b) Ranger barley in 45 days. 
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Figure 3.17. Dry weight of a) roots 

and b) shoots of Topgun ryegrass 

and Excalibur tall fescue in 60 days. 

The results are expressed as means

1 SE of four replicates. For ryegrass, 

UW3+4+AMF and CMH3+AMF 

enhanced shoot and root growth of 

ryegrass by 300%. CMH2 and its 

combination with AMF were the 

most beneficial to the growth of 

fescue. Control plants grown in 

ProMix™ served as a reference. 
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Figure 3.18. Pictures of a) Topgun ryegrass and b) Excalibur tall fescue in 60 days. 
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Table 3.7. Root length colonized (%), shoot and root water content of common oats and Ranger 

barley in Experiment #4. The results are expressed as means 1 SE of four replicates. Data were 

analyzed by one-way analysis of variance (ANOVA) and the Dunnet test (* P < 0.01 versus -

PGPR). Both barley and oats treated with AMF alone or together with PGPR had higher root 

colonization. The water content did not change upon the application of AMF. 

  
Root length 

colonized 
(%)

Shoot 
Water 

content 
(%)

Root 
Water 

content 
(%) 

Oats -PGPR 10 8 18  
 UW3+4 5 16 15  
 CMH2 17 7 16  
 CMH3 10 10 11  
 AMF 77 * 18 16  
 UW3+4+AMF 64 * 12 17  
    

Barley -PGPR 14  7 22  
 UW3+4 17  8 20  
 CMH2 5  13 18  
 CMH3 12  12 17  
 AMF 58 * 12 22  
 UW3+4+AMF 65 * 11 21  

UW3+4: UW3+UW4; UW3+4+AMF: UW3+UW4+AMF 
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a) Ranger barely                                                     b) Common oats 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Arbuscular mycorrhizal fungi (AMF) colonization in roots of b) barley and b) oats. An arbuscule (A) locates in a root 

cortex cell with branch intercellular hyphae (H). Vesicules (V) were also observed.  
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Table 3.8. Comparison of the effects of microbial treatments on shoot biomass of oats in 

Experiment #2 and Experiment #4. The numbers are percentage increase in biomass when 

compared with controls. The growth promotion effect of UW3+4 on shoots and UW3+4+AMF 

on roots were reproducible with about 100% increase in biomass. 

 Percent increase in biomass  
 Experiment #2 Experiment #4 Reproducible 

Root  
UW3+4 113% -a No 

AMF 13% 106% No 
UW3+4+AMF 120% 110% Yes 

  
Shoot  

UW3+4 95% 110% Yes 
AMF - 120% No 

UW3+4+AMF - 120% No 
a:  “-“ means no significant difference from -PGPR. 
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The effect on NaCl accumulation 

The efficiency of salt removal in the phytoremediation system largely depends on two factors: 

1) biomass and 2) concentrations of salt in plant tissue, both of which determine the total 

amount of salt that can be removed from the contamination site. The results so far have shown 

that microbial treatments improved plant growth in saline soils; however, only if the salt 

concentrations in plants remain constant or increase, does the increase of biomass contribute to 

more efficient salt phytoremediation. Therefore, it is necessary to exam the salt concentrations 

in the plant tissue, especially the aboveground parts that can be easily harvested.  

The concentrations of Na and Cl were listed in Table 3.9 on a mg/kg dry weight basis. Due to 

costs, four replicates of each treatment were mixed as one composite sample for analysis. Only 

shoot tissue was analyzed since only the aboveground portion of the plants will be harvested as 

the salt removal step.  

Compared with controls (ProMix™, ECe = 1.7 dS/m), the salt concentrations of barley and 

oats grown in the saline soil (ECe = 9.4 dS/m) without any microbial treatment (-PGPR) were 

two times higher, and the biomass decreased by 75% (Figure 3.15, b). The PGPR/AMF 

treatments did not seem to affect salt accumulation though the shoot NaCl concentrations of 

both oats and barley seemed higher when they were treated with UW3+4 (Table 3.9). However, 

more replicate samples are required to verify this notion.  

When both the biomass and concentration were taken into account, the resultant salt 

accumulated in the shoot biomass of oats treated with UW3+4 was the highest, being 110 mg 

NaCl/pot (Figure 3.20). It is because UW3+4 not only increased the biomass but also the salt 
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concentration. In contrast, the total amount of salt accumulated in barley treated with UW3+4 

was not higher than the -PGPR because its shoot biomass (Figure 3.15) was not promoted by 

the PGPR treatment although its NaCl concentration was 25% higher than the control (Table 

3.9). On the other hand, although CMH2 and CMH3 did not promote higher salt concentrations, 

the amount of salt accumulated was the highest (Figure 3.20) on a mg NaCl/pot basis due to the 

higher biomass promoted by CMH2 and CMH3. Therefore, UW3+4 was the most effective 

microbial treatment for oats, while CMH2 or CMH3 was most effective for barley in terms of 

phytoremediation. 

The increase in NaCl concentrations was not as much as shoot biomass. The NaCl 

concentrations of treated plants were at most 30% higher than those of the -PGPR (Table 3.9), 

but certain PGPR and/or AMF treatments promoted plant shoot biomass by 100% (Figure 3.15). 

Moreover, one sample of barley that poorly grew (< 0.1 g dry weight of plants/pot) in highly 

saline soil (CMM soil, ECe = 49.5 dS/m with controlled watering) had 19500 mg Na/kg and 

52200 mg Cl/kg, similar to the Na and Cl concentrations of barley that grew in much lower 

salinity (Table 3.9, CML soil, ECe = 9.4 dS/m). This observation that the NaCl levels in barley 

tissue did not proportionally increase with the soil salinity was likely due to the salt exclusion 

(Ashraf, 2004). The poor growth and non-elevated NaCl concentrations of barley in this case 

further supported the idea that biomass was the more determinative factor for the efficiency of 

salt phytoremediation using tolerant crops. This constancy of NaCl concentrations of plants 

grown on sites with different salinity was also observed in the field trials (Section 3.9). 

It should be pointed out that AMF seemed to inhibit NaCl uptake. This might result from the 

retention of sodium and chloride in mycelia of the mycorrhiza. Both oats and barley treated 
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with UW3+4 had the highest NaCl concentrations, but plants treated with UW3+4 and AMF in 

combination on average had 20% - 30% lower NaCl concentrations (Table 3.9). In addition, 

barley treated with only AMF had the lowest NaCl concentrations. This retention of NaCl by 

AMF was reported in Giri and Mukerji (2004), where Indian sesbania (Sesbania aegyptiaca and 

S. grandiflora) treated with Glomus macrocarpum had lower Na  than the non-AMF plants. 

Copeman et al. (1996) also found tomato plants inoculated with AMF had lower Cl- 

concentrations in roots than the non-AMF plants.   
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 Table 3.9. Concentrations of Na and Cl of shoots of common oats and Ranger barley in 

Experiment #4. ECe = 9.4 dS/m. Replicates were collected and mixed as one composite sample 

for this analysis. The NaCl concentrations of oats and barley were similar, approximating 50000 

mg/kg. The Cl/Na ratio molar ratio remained constant among treatments, being around 1.4.  

Bioaccumulation 
factor (BF) Cl (mg/kg) Na (mg/kg) NaCl (mg/kg)

Cl/Na  
(molar  
ratio) Cl Na

Common oats   
Control 

(Promix) 20800 5300 26100 - - -

-PGPR 44400 18300 62700 1.6 24 7
UW3+4 57000 26100 83100 1.4 30 10

AMF 35400 17700 53100 1.4 21 7
UW3+4+AMF 38900 17400 56300 1.3 19 7

CMH2 38400 17700 56100 1.4 20 7
CMH3 36300 16500 52800 1.4 19 6

   
Ranger barley   

Control 
(Promix) 21100 3200 24300 - - -

-PGPR 33900 15900 49800 1.4 18 6
UW3+4 41100 21800 62900 1.2 22 8

AMF 29300 14700 44000 1.1 15 6
UW3+4+AMF 29200 17900 47100 1.3 16 7

CMH2 33700 15800 49500 1.4 18 6
CMH3 43200 18400 61600 1.5 23 7

Analyzed by ALS Environmental Inc (Waterloo, ON) 
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Figure 3.20. The amount 

of salt accumulation 

(mg/pot) in plant tissue of 

a) Ranger barley and b) 

common oats in 

Experiment #4. Data were 

derived from Figure 3.15 

and Table 3.9. The results 

are expressed as means±

1SE of four replicates. 

The highest amount of salt 

accumulated in the shoot 

biomass was 110 mg/pot 

for oats treated with 

UW3+4.  
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3.7.5. Greenhouse experiment #5: PGPR effects on local varieties 

The purpose of this experiment was to examine growth promotion effects of PGPR on local 

plant species or varieties. For this experiment, CMM soil (ECe = 49.5 dS/m, SAR = 10) was 

mixed with Tri-Mix™ (Kengrove Inc., ON) to reach salinity at ECe = 13 dS/m, in which soil, 

Alfalfa, red spring wheat, Vivar barley and Orchardgrass were tested for the plant growth 

promotion effect of PGPR treatments UW3+4, CMH2 and CMH3. The growth period of this 

experiment was 45 days. 

Four local species (varieties) were tested for the effect of PGPR on their growth in saline soil. 

Orchardgrass is a cool season perennial, moderately salt tolerant grass. Red spring wheat is a 

salt tolerant warm season crop. Vivar barley is a cool season crop that has strong straw that can 

tolerate intensive management. It has a very high forage yield potential, but does not perform 

well under drought conditions. (Manitoba Forage Council Inc., 2006). Alfalfa, a N-fixing plant, 

can increase the fertility of soil.  

These plants were tested separately but they can be planted together as a mix that contains 

salt tolerant crops, a cool season perennial grass and a nitrogen-fixing plant. Crops generally 

produce more biomass, while grasses have longer growth period. Once the grass establishes and 

overwinters in the first year, no seeding is required in the next year because new tillers 

(daughter plants) will start developing from stolons and rhizomes. In addition, grasses usually 

have extensive and dense root system that can improve soil properties such as draining and 

aggregation.  
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PGPR treatment promoted the growth of these local species. CMH3 promoted shoot growth 

of all four plants. CMH2 and UW3+4 also increased shoot biomass of all species (varieties) 

except wheat (Figure 3.21). For root biomass, UW3+4 showed growth promotion effect on 

orchardgrass and alfalfa. The root growth of alfalfa was also enhanced by CMH3 (Figure 3.22). 

Among four plants, Vivar barley produced the highest shoot biomass when treated with CMH2. 

Pictures of plant growth at the end of the growth period are shown in Figure 3.22.  

A noteworthy result is the effect of PGPR on alfalfa nodulation. The number of nodules of 

alfalfa treated with UW3+4, CMH2 and CMH3 were significantly higher than that of the 

untreated (-PGPR). The promotion of nodulation by PGPR was also reported elsewhere. For 

example, the ACC deaminase-producing Sinorhizobium meliloti showed 35 to 40% greater 

efficiency in nodulating alfalfa, likely by lowering ethylene production in the host plants (Ma et 

al., 2004). Similarly, Rhizobium leguminosarum bv. viciae 128C53K enhanced the nodulation 

of pea, and the minus ACC deaminse mutants showed lower nodulation efficiency (Ma et al., 

2003a). Belimov et al. (2001) suggested that ACC deaminase-producing PGPR are present in 

various soils and have potential as a bacterial inoculum for improving nodulation and plant 

growth, particularly under unfavorable environmental conditions. Arshad et al. (2007) also 

reviewed how inoculation with ACC deaminase-producing bacteria may promote 

phytoremediation for metals and organic contaminants.  
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Figure 3.21.  Shoot dry weight of a) Vivar barley, b) alfalfa, c) Red spring wheat and d) 

Orchardgrass in 30 days. The results are expressed as means 1 SE of four replicates. Data were 

analyzed by one-way analysis of variance (ANOVA) and the Dunnet test (* P < 0.01 versus -

PGPR). CMH3 promoted shoot growth of all four plants. Vivar barley produced the highest 

shoot biomass when treated with CMH2. 
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Figure 3.22. Root dry weight of a) Vivar barley, b) alfalfa, c) red spring wheat and d) 

Orchardgrass in 30 days. The results are expressed as means 1 SE of four replicates. Data were 

analyzed by one-way analysis of variance (ANOVA) and the Dunnet test (* P < 0.01 versus -

PGPR). UW3+4 showed growth promotion effect on orchardgrass and alfalfa. The root growth 

of alfalfa was also enhanced by CMH3.  
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Figure 3.23. Pictures of a) Vivar barley, b) alfalfa, c) Red spring wheat and d) Orchardgrass in 

30 days.
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Figure 3.24. Nodulation of alfalfa roots treated with PGPR. The results 

are expressed as means 1 SE of four replicates. Data were analyzed by 

one-way analysis of variance (ANOVA) and the Dunnet test (* P < 0.01 

versus -PGPR). All PGPR tested promoted root nodulation of alfalfa. 
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3.7.6. Greenhouse experiment #6: PGPR effects of Year-2007 isolates 

The purpose of the experiment was to test the newly isolated indigenous PGPR in soils 

sampled from the field in 2007. The soils used were AL-2007 (ECe = 14.3 dS/m, SAR = 7) and 

CMS-2007 (ECe = 8.6 dS/m, SAR = 10). Plants tested were Baler oats and Ranger barley. The 

PGPR tested were UW3+4, CMH3, ALR1, ALR2, ALR7, CMR6, CMR7 and CMR8. Plants 

were grown in two-inch square pots with controlled watering (no excess salt leaching) for 30 

days. 

Year-2007 isolates were tested for potential field trials in year 2008. ALR1, ALR2, ALR7, 

CMR6, CMR7 and CMR8 were isolated from soil of the AL and CMS sites after the sites were 

amended with compost in May 2007. The PGPR effect varied with soils and plant species. In 

general, the most effective PGPR were UW3+4, CMH3, ALR1 and CMR6 for AL-2007 soil, 

and UW3+4, CMH3, and ALR2 for CMS-2007 soil. UW3+4 and CMH3 were consistently 

effective in promoting plant growth regardless of soils and plant species. The growth promotion 

effect by UW3+4 and CMH3 were again observed in this experiment. The magnitude of 

promotion, being 50% - 100%, was slightly lower or similar to that in Experiment #4 (CML soil, 

ECe = 9.4 dS/m). The results also showed that not all ACC deaminase-producing rhizobacteria 

promoted plant growth. For instance, plants treated with CMR7 and CMR8 had less biomass 

than the untreated plants grown in CMS-2007 soil (Figure 3.25, B). 

Based on the biomass results, CMR6, ALR1 and ALR2 were new isolates recommended for 

further testing as candidates for the year 2008 field trial. Additionally, it would be worthwhile 

to search for PGPR that are less susceptible to environmental changes.                                                                  
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Figure 3.25. Shoot dry weight of 30-day old Ranger barley and Baler oats treated with various 

indigenous PGPR in AL-2007 (ECe = 14.3 dS/m) and CMS-2007 (ECe = 8.6 dS/m) soils. In AL-

2007 soil, the most effective PGPR was CMR6 for barley, while CMH3 and UW3+4 were the 

most effective in promoting shoot growth of both barley and oats in the CMS-2007 soil. The 

results are expressed as means 1 SE of four replicates. 
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3.8. Identifications of PGPR isolates 

In order to be able to test the Year-2006 indigenous PGPR CMH2 and CMH3 in the year 

2007 field trials, the identification of these two indigenous ACC deaminase-producing isolates 

was necessary. Species of the isolated indigenous PGPR were identified primarily by the 

genetic (16s rRNA gene) method and complemented by the carbon metabolism method 

(BioLog MicroPlate™ ). 

3.8.1. 16s rRNA gene sequencing 

Based on the 16s rRNA gene sequences (Figure 3.26 and Figure 3.27), CMH2 was identified 

as Acinetobacter sp. (100% identity) and CMH3 as Pseudomonas sp. (100% identity).  The 

BioLog MicroPlate™ assay was then conducted to further resolve the strains among the 

candidate species (> 97%). 

3.8.2. The BioLog MicroPlate™ assay 

The metabolism pattern of wells was analysed by the Biolog MicroLog3 (release 4.0). CMH2 

was identified with 100% probability as the Gram-negative oxidase-negative Acinetobacter 

haemolyticus/genospecies 4. CMH3 was identified as Gram-negative oxidase-positive 

Pseudomonas corrugata with 100% probability. The identification generated by BioLog 

MicroPlate™ matched with the result of sequencing.  

P. corrugata was reported as a strong antagonist of certain phytopathogenic bacteria and a 

broad spectrum of phytopathogenic fungi (Chun, 2000; Pandey and Palni, 1998) although it 

also caused pith necrosis disease of tomatoes and a few cultivars of pepper. Chun (2000) used P. 

corrugata as a bio-control agent and increased potatoes yield by 17%. It is categorized to be in 

the biosafety level 1 group (http://www.atcc.org/). The biosafety 1 organisms are the well-
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characterized agents not known to consistently cause disease in healthy adult humans and of 

minimal potential hazard to laboratory personnel and the environment. 

A. haemolyticus was occasionally found in clinical samples (Pantophlet et al., 1999) though 

Acinetobacter species are generally considered nonpathogenic to healthy individuals. Therefore, 

based on the precautionary principle, CMH2 would not be applied in the field trial due to its 

potential hazard to the environment (biosafety level 2) despite the high ACC deaminase activity. 
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Figure 3.26. Bands of 16s rRNA gene of isolates. M: marker (GeneRuler™ 100bp Plus, 

Fermentas). Lane 1 to 8 are CMH2, CMH3, CMR6, CMR7, CMR8, ALR1, ALR2 and ALR7. 

The bands were then cut out and the DNA was extracted for sequencing. 

 

1500 bp 
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a) CMH2 (1343 bp) 
TTCCGAAGGGATGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGNATCACTTGTGACCTTGCGCTAATAGATGAGCCTA
AGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGTCTGAGAGGATGATCCGCCACACTGG
GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGGAACCCTGATCCAGCCATGCCG
CGTGTGTGAAGAAGGCCTTATGGTTGTAAAGCACTTTAAGCGAGGAGGAGGCTACTCTGGTTAATACCCAGAGATAGTGGACGT
TACTCGCAGAATAAGCACCGGCTAACTCTGTKCCAGCRGCCGCGGTAATACAGAGGGTGCGAGCGTTAATCGGATTTACTGGGC
GTAAAGCGTGCGTAGGTGGCTAATTAAGTCAAATGTGAAATCCCCGAGCTTAACTTGGGAATTGCATTCGATACTGGTTAGCTA
GAGTATGGGAGAGGATGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCC
ATCTGGCCTAATACTGACACTGAGGTACGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGA
TGTCTACTAGCCGTTGGGGTCTTTGAGACTTTAGTGGCGCAGCTAACGCGATAAGTAGACCGCCTGGGGAGTACGGTCGCAAGA
CTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTG
GGCCTTGACATAGTAGAAACTTTCCAGAGATGGATTGGTGCCTTCGGGAATCTACATACAGGTGCTGCATGGCTGTCGTCAGCT
CGTGTCGTGAGAWKTTGGGTTAAGTCCCGCMACGAGCGCAACCCTTTTCCTTATTTGCCAGCGAGTAATGTCGGGAACTTTAAG
GATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTGCTA
CAATGGTCGGTACAAAGGGTTGCTACCTAGCGATAGGATGCTAATCTCAAAAAGCCGATCGTAGTCCGGATTGGAGTCTGCAAC
TCGACTCCATGAAGTCGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC
GTCACACCATGGGAGTTTGTTGCACCAGAAGTAGCTAGCCTAACTGCAAAGAGGGCGGTTACCACGGTGTGGCCGATGACTGGG
TGAA 

b) CMH3 (1245 bp) 

CTAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACA
CGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAA
GAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCATTAACCTAATACGTTAGTGTTTTGACGTTACCGACAGAA
TAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCG
CGTAGGTGGTTCGTTAAGTTGGATGTTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCAAAACTGTCGAGCTAGAGTATGGT
AGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAAGGCGACCACCTGGAC
TGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACT
AGCCGTTGGGAGCCTTGAGCTCTTAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTGGGGAAGTACGGCCGCAAGGTTAAAAC
TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGCCTTG
ACATCCAATGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACATTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCG
TGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTATGGTGGGCACTCTAAGGAGACTG
CCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCTGGGCTACACACGTGCTACAATGGT
CGGTACAGAGGGTTGCCAAGCCGCGAGGTGGAGCTAATCCCACAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACT
GCGTGAAGTCGGAATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACA
CCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTCTAACCTTCGGGAGGACGGTTACCACGGTGTGATCATGACTGGGG 

 

 
Figure 3.27. The 16s rRNA gene sequences of a) CMH2 (Acinetobacter haemolyticus) and b) 

CMH3 (Pseudomonas corrugata).  



 

 107

3.9. Field tests on salt contaminated sites  

The description of the three research sites were in Section 2.1. Soil properties of CMS, CMN 

and AL sites are listed in Table 3.2. Based on the results of greenhouse tests, UW3+4 and 

CMH3 were selected for their more reproducible growth promotion effect throughout the 

greenhouse experiments. Plants, including Ranger barley, Baler oats, Inferno tall fescue and 

Topgun ryegrass, were treated with PGPR approximately two weeks prior to planting and 

shipped to the research sites.  

3.9.1. Soil salinity 

The soil salinity (ECe) in dS/m of each subsection was shown in Figure 3.28, Figure 3.31 and 

Figure 3.33. The CMS and AL site were highly saline, with an average ECe of 18 and 23 dS/m, 

respectively. In contrast, the ECe values of the CMN site were low, mostly under 10 dS/m, with 

some areas where ECe rose above 20 dS/m. It should be noted here that soil flooding and 

cracking occurred on sites of high salinity (Figure 3.30), especially CMS, and likely inhibited 

seed germination. On the CMS site (SAR = 10), areas with severe cracking had less or none 

vegetation coverage (Figure 3.29 and Figure 3.30). Soil with higher salinity and SAR (saline-

sodic soil) tend to have flooding problems due to the dispersion of clay particles into pore space 

that is otherwise available for drainage. As soil dries, soil crusting or cracking might occur 

(Richards, 1954). 

3.9.2. Plant growth and the PGPR effect 

The plants and PGPR combination for each site were listed in Table 3.10. The percent 

vegetation coverage was determined by visual estimation of the percentage of the subsection 

covered with plant establishment. Areas covered with weeds were not included. In order to 
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distinguish the PGPR effect, plant growth on areas of similar plant coverage (> 80%) was 

compared. 

In general, the plant coverage increased with the decrease in soil salinity. The sites with high 

salinity (CMS and AL) had uneven and low vegetation cover, while CMN had almost 100% 

coverage throughout the entire site. The percent vegetation coverage of CMS and AL site after 

a two-month long growing period was shown in Figure 3.29 and Figure 3.34. According to 

Figure 3.12 (Greenhouse Experiment #3), 80% germination rate of oats was expected at areas 

with salinity less than 25 dS/m, but the vegetation coverage and plant growth was poor on CMS 

and AL site (Figure 3.35, a and b), likely due to flooding and soil cracking. For instance, areas 

with severe cracking of the CMS site generally had poor or no plant coverage (Figure 3.29). In 

addition to germination, soil salinity also affected the following plant growth. In general, the 

crop grew taller (30 - 40 cm) and went fully mature on the CMN site, while the plants were 

shorter (< 20 cm) and withered before becoming mature on the CMS and AL site.  

When fescue and oats were planted as a mix on sites where the plant vegetation was patchy, 

tall fescue generally covered the same or relatively more areas than did oats (Figure 3.29 and 

Figure 3.34). At areas where both the crop and grass grew, the crop overshadowed the grass at 

first but the grass was able to continue growing after the crop withered in five months (Yu, 

2007). Because both ryegrass and tall fescues are cool-season perennial species, planting the 

mixture of a crop and a grass resulted in prolonged plant growth (Figure 3.32, c) and hence 

more uptake of salt by plants. For example, the co-growth of ryegrass with barley on the CMN 

site enhanced the amount of salt accumulated in plant biomass by 15% due to the longer growth 

period of the grass (see the detailed calculation on page 111).  
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At plots of the CMN site where ryegrass was planted alone, weeds overshadowed the 

ryegrass at some spots, leading us to conclude that ryegrass alone might not be an optimal 

candidate for sites of lower salinity (ECe < 10 dS/m) because the local plants may be more 

competitive (Figure 3.32, b). Nonetheless, these weeds could be good candidates for salt 

remediation if they accumulate high levels of salt and generate sufficient biomass.  

After a five-month growth period, plant shoot biomass on areas (50 cm × 50 cm) (Figure 3.36) 

with similar vegetation coverage (> 80%) and soil salinity (ECe) were compared to determine 

the PGPR effect. The PGPR treated plants were taller and had longer roots than the untreated 

plants (Yu, 2007) in the field. In fact, the shoot biomass of plants treated with PGPR was 30% - 

175% higher than the untreated ones (Table 3.11 and Figure 3.37) across the three sites. For 

example, UW3+4 treatment increased the shoot biomass of barley on CMN site by 153%, from 

300 to 760 g/m2. On the same site, the shoot biomass of ryegrass was enhanced by UW3+4 by 

67%, from 180 to 300 g/m2. For the CMS site, the indigenous PGPR CMH3 increased the shoot 

biomass of oats by 28% (Wu, 2007). An increase in shoot dry weight was also observed on the 

AL site.   

3.9.3. NaCl accumulation in plant shoot tissues 

The NaCl concentrations of the leaves, straws and spikes varied. As shown in Table 3.12, for 

the untreated barley most of the Na and Cl were accumulated in leaves and straws, while the Na 

and Cl concentrations in the spikes were only 15% of the concentrations in the straws or leaves. 

This result suggests that not only is the total shoot biomass critical to the salt phytoremediation 

efficiency, but also the parts of plant tissue that contribute to the total mass. Therefore, the 
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factors including fertilizer, microorganisms, plant species or harvest time should be carefully 

chosen in order to maximize the salt removal efficiency. In addition to the lower concentrations 

of NaCl, the grains can contribute to more than 50% of the total dry weight of mature plant 

samples (Table 3.12), and hence the NaCl concentration analysis can be largely skewed by the 

various amounts of grains of each sample. Therefore, for the rest of the samples, only the straws 

and leaves were collected for analysis of NaCl concentrations (Table 3.13).  

The higher NaCl concentrations in leaves and straws have been discussed elsewhere. Both 

Na+ and Cl- were taken up by plants predominantly through passive symplastic pathways, 

driven by gradients and respiration fluxes (Tester and Davenport, 2003; White and Broadley, 

2001). Na+ and Cl- translocate mainly upwards in xylem and accumulate in shoots or leaves 

although a small portion of them are in phloem and can travel downward to roots (Smith et al., 

1980). As a consequence, leaves or shoots accumulate Na to higher concentrations than roots 

(Tester and Davenport, 2003). Flora tissues generally had lower Cl- than other shoot parts. 

Moreover, tissues that are fed predominantly through the phloem, e.g. fruits and seeds, tend to 

have the lowest Cl- . 

The Na, Cl, Ca, K and Mg concentrations of shoot tissues of PGPR treated samples were 

listed in Table 3.13. NaCl concentrations in barley and oats were similar. However, oats had 

higher concentrations of Na, Cl as well as K and Mg than Inferno tall fescue on both CMS and 

AL site. The NaCl concentrations in plants ranged from about 30000 to 70000 mg/kg, which 

was also the range of NaCl concentrations of plants grown in the sampled soil in the greenhouse 

(Table 3.9 and Table 3.6).  
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There was no significant difference of NaCl accumulation in shoot biomass among PGPR 

treatments. In addition, the salt accumulation in shoot tissue (Table 3.13) did not differ much 

among three sites although the soil salinity levels varied greatly among them. Similar result was 

also reported by Cheng et al.(2007a), where Na concentrations of canola plants remained to be 

around 60 mg/g despite the increase in NaCl input into soil. 

3.9.4. Estimation of time required for salt remediation of the CMN site 

A rough estimation of the time required to remove 50% of the salt from the top 50cm soil of 

the CMN (about 0.38 hectare in size) site is approximately seven years when barley and 

ryegrass are planted as a mix and treated with UW3+4. The calculation is as follows. 

Approximate numbers are used for clear demonstration, and all concentrations used here are on 

a dry weight basis. 

The volume of the top 50 cm of soil of CMN site is 1900 m3 (3800 m2 × 0.5 m). The soil was 

assumed to have a density of 1.5 g/cm3 and water content of 20%. With these assumptions, the 

dry weight of this amount of soil is 2.3 × 106 kg (1900 m3 × (1.5 × 103 kg/m3) × 80%). The 

average salinity of the CMN site is around 7 dS/m (Figure 3.31) and the NaCl concentration of 

soil with this level of salinity is 3.5 g/kg (Table 3.2). Thus, the total amount of salt of the top 50 

cm of soil of the CMN site is 8050 kg (2.3 × 106 kg × 3.5 g/kg).  

The amount of forage yield of barley that was treated with PGPR was 1.4 kg dry mass/m2 

( Figure 3.10), equal to 14000 kg/hectare. According to the growth on the site in 2007, it is 

feasible to mow barley twice per season, so the yield is 28000 kg/hectare per year. Based on 

Table 3.13, the NaCl concentration of barley plants is about 50 g/kg. Therefore, barley treated 
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with PGPR can take up 1400 kg NaCl/hectare every season (14000 kg/hectare × 2 mowings × 

50 g/kg). Based on the same calculation, barley not treated with PGPR can take up 600 kg 

NaCl/hectare every season. 

The amount of forage yield of ryegrass is estimated as 0.3 kg dry mass/m2 (Table 3.11), equal 

to 3000 kg/hectare. Based on the growth in 2007, it is possible to mow the ryegrass twice per 

season; the first mowing can take place when the barley matures and the grass continues to 

grow for another two months for the second mowing. Thus, the annual yield is 6000 kg/hectare. 

Based on Table 3.13, the NaCl concentration of ryegrass is estimated to be 30 g/kg. Therefore, 

ryegrass treated with PGPR can take up 180 kg NaCl/hectare every season (3000 kg/hectare × 2 

mowings × 30 g/kg). Based on the same calculation, ryegrass not treated with PGPR can take 

up 108 kg NaCl/hectare every season. 

To sum up, the time to remove 50% of the salt (4025 kg) of the top 50 cm soil of the CMN 

site (0.38 hectare) is estimated to be 6.7 years (4025/[(1400+180)*0.38)]) when PGPR is 

applied. In comparison, it takes 15 years (4025/[(600+108)*0.38)]) to do so if plants are not 

treated with PGPR.  

3.9.5. Conclusions and suggestions for field trials 

The PGPR UW3+4 and CMH3 treatment promoted plant growth of both grasses and crops. 

The salt removal efficiency is the highest when the mix of a crop and a grass was used. The co-

growth of ryegrass increased the amount of salt accumulated in plants by 15% due to its longer 

growth period. Salt removal by phytoextraction was most effective for sites with moderate 

salinity, such as the CMN site, where plants can produce satisfactory amount of biomass. For 
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AL and CMS, the NaCl concentrations of shoots were similar to those grown in the CMN site 

but the biomass was only 10% of the CMN site. Thus, it will take much longer time to lower 

the salinity to an acceptable level. For AL site, N and P fertilizer is recommended based on the 

results of Section 3.7.1, where the application of fertilizer enhanced shoot biomass of barley 

and oats by up to 300% without lowering the NaCl concentrations in plant tissue. For CMS site, 

the flooding problem should be solved first. Surface or tile drainage is recommended. For CMN 

site, the growth of barley was satisfactory. However, other cool season grasses that can produce 

more biomass than ryegrass are recommended. One suggestion is wheatgrass, which has been 

used extensively in reclamation of moderately-alkaline soils with a pH as high as 10 (Richards, 

1954).  
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 Table 3.10. The planting plan of the CMS, CMN and AL site. The plant species, 
PGPR, and plot numbers for each site are listed. “Mix” is a mixture of the crop and 
grass at 1:1 ratio (v/v). 

Site PGPR Plant 
CMS Baler oats Inferno tall fescue Mix (oats + tall fescue) 

 -PGPR 1, 12 7, 16 9 
 UW3+UW4 2 5, 14 8, 11 
 CMH3 4, 13 3, 6, 15 10 
  
  

CMN Ranger barley Topgun ryegrass Mix (barley + ryegrass) 
 -PGPR 2, 8 4, 10 6, 13 
 UW3+UW4 1, 9 3, 11 5, 7, 12, 14 
  
  

AL Baler oats Inferno tall fescue Mix (oats + tall fescue) 
 -PGPR 2, 8 4, 10 6, 12 
 UW3+UW4 1, 7 3, 9 5, 11 
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Figure 3.28. The soil salinity (ECe in dS/m) of the Cannington Manor South (CMS) site. The ECe AVG is the average ECe of each plot. 

The ECe values of the site ranged from 5 to 38, with an average of 18 dS/m. The soil of Plot 1-6 was less saline. 
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Figure 3.29. The percent (%) coverage by Baler oats and Inferno tall fescue of each subsection of the Cannington Manor South (CMS) 

site. At pots where oats (O) and fescue (F) were planted as a mix (M), the coverage of both plants was indicated. For example, “F-15” 

means Inferno tall fescue covered 15% of the subsection. The average ECe of each plot was listed as ECe AVG.  Soil cracking is 

indicated as . The plant coverage on the areas with severe cracking was generally low. UW: UW3+UW4; CM: CMH3.  
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Figure 3.30. Plant growth at the Cannington Manor South (CMS) site. Flooding (a) and soil 

cracking (b) occurred. The PGPR effect on oats was observed after 2 months (c). The plant 

growth was poorer (d) in soil with higher salinity (Figure 3.8).  

 

 

 

 

 

 

 

Flooding 

Plot          1                   2 

a) 1 month 

N

High salt 

Low salt 
-PGPR                           UW3+4 

d) 1 month 

c) 2 months 

b) 2 months 
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Figure 3.31. The soil salinity (ECe in dS/m) and plant-PGPR combinations of the Cannington Manor North site (CMN). The ECe 

values of the CMN site were mostly under 10 dS/m, with a small area of high salinity (> 20 dS/m). B: Ranger barley; T: Topgun 

ryegrass; M: mix of barley and ryegrass; UW: UW3+UW4.  
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Figure 3.32. Plant growth at the Cannington Manor North (CMN) site. The PGPR effect was 

observed after 2 months (a). Weeds (with yellow flower) also established in some areas (b). 

Where ryegrass and barley as a mix, the ryegrass continued growing after the co-planted barley 

turned fully mature and withered (c). The plant that remained green is ryegrass (d). 

d) 5 months c) 5 months 

a) 2 months b) 2 months 

 

UW3+4                             -PGPR

Plot           14                 13 
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Figure 3.33. The soil salinity (ECe in dS/m) of the Alameda (AL) site. The average ECe of each plot was listed as ECe AVG. The ECe 

values of the site ranges from 11 to 34, with an average of 23 dS/m.
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Figure 3.34. The percent (%) coverage by Baler oats and Inferno tall fescue of each subsection of the Alameda (AL) site. At pots 

where oats (O) and fescue (F) were planted as a mix (M), the coverage of both plants was indicated. For example, “O-5” means oats 

covered 5% of the entire subsection. The average ECe of each plot was listed as ECeAVG. UW: UW3+UW4. 
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Figure 3.35. Plant growth at the Alameda (AL) site. Plant germination and growth was uneven 

(a). The plant coverage pattern did not change greatly after 1.5 month. Areas without plant 

growth remained unvegetated until harvest (b). The PGPR effect was observed after 2 months (c). 

Plant withered after 5 months (d). 

 

 

 

 

a) 1 month b) 5 months

d) 5 months
c) 2 months 

Plot       2                         1 

- PGPR               UW3+4 
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Figure 3.36. The frame used for sampling plant biomass in the field. 

50 cm 

50 cm 
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Table 3.11. The dry weight of aboveground tissue of 5-month old plants treated with and without 

PGPR in the field. Dry biomass of plants in an area (50 cm × 50 cm) with similar vegetation 

coverage (> 80%) and soil salinity was collected. PGPR treatment promoted plant growth by 

28% - 175%.  

Site Plant ECe (dS/m) PGPR Dry weight 
(g) per m2 Increase  

CMS Baler oats 6 - PGPR 360  

 6 CMH3 460 28% 

   

CMN Ranger barley 4 -PGPR 600  

 4 UW3+4 1400 133% 

 Topgun ryegrass 3 -PGPR 180  

 4 UW3+4 300 67% 

 Mix 3 -PGPR 300  

 4 UW3+4 760 153% 

   

AL Baler oats 23 -PGPR 160  

 24 UW3+4 440 175% 

 Inferno tall fescue 23 -PGPR 80  

 21 UW3+4 120 150% 

Mix: mixture of barley and Topgun ryegrass at 1:1 ratio (v:v) 
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Figure 3.37. Ryegrass (a and b) and barley (c, 

d and e) sampled for biomass measurement 

(Table 3.11) at the Cannington Manor North 

site after 5 months of growth. The growth 

promotion effect was observed.

4 dS/m c) -PGPR 3 dS/m d) UW3+4

b) UW3+4 4 dS/ma) -PGPR 3 dS/m

-PGPR                       UW3+4 
600 g/m2                    1400 g/m2 

e)  
Barley 
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Table 3.12. Distribution of Na, Cl, B, Ca, K and Mg of an untreated (-PGPR) barley sample 

taken from the CMN site. Unite for element concentrations: mg/kg. 

 Dry weight (g) Na Cl B Ca K Mg 
Leaf 1.5 10300 27000 14 5060 28600 2560 

Straw 4.8 21500 39600 2 860 22000 1170 
Spike (grain) 8.2 1100 3270 2 680 7630 1530 
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Table 3.13. Concentrations of Na, Cl, B, Ca, K and Mg in plant tissues sampled from the 2007 field trials. (Unit: mg/kg) 

Site ECe (dS/m) Plot PGPR Plant Na Cl NaCl Cl/Na B Ca K Mg
19 7 -PGPR INF 5660 27600 33260 3.2 26 4920 35800 2790
20 8 UW3+4 INF 5860 32400 38260 3.6 22 6980 36600 3740
15 6 CMH3 INF 4820 26400 31220 3.6 28 4180 42600 2980
20 9 -PGPR OT 13900 43500 57400 2.0 12 6000 25000 4390
22 11 UW3+4 OT 17300 50000 67300 1.9 11 6820 27500 4980

CMS

22 10 CMH3 OT 13000 35900 48900 1.8 25 7260 23400 4880

  Average  46057 

9 6-2 -PGPR BL 18801 36564 55365 1.3 5 1872 23590 1505
3 7-2 UW3+4 BL 18100 32200 50300 1.2 5 2550 28600 2270

21 6-1 -PGPR BL 8530 22600 31130 1.7 8 2760 21900 2450
CMN

25 7-1 UW3+4 BL 17700 55900 73600 2.0 5 3350 39900 3460

  Average  50892 

22 4 -PGPR INF 4120 31900 36020 5.0 9 2870 51400 2390
18 3 UW3+4 INF 2430 35400 37830 9.4 8 2900 60600 2570
22 4 -PGPR OT 18000 78700 96700 2.8 9 9200 65900 4980

AL

18 3 UW3+4 OT 11000 50600 61600 3.0 7 2590 64800 1820

  Average  59440 

INF: Inferno tall fescue; OT: Baler oats; BL: Ranger barley 
Cl/Na: molar ratio 
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3.10. Conclusions 

Several ACC (1-amicocyclopropane-1-carboxylate) deaminase-producing PGPR and the 

arbuscular mycorrhizal fungus (AMF) Glomus intraradices improved plant growth in saline 

soils. This promotion effect, however, varied with plant species, soil salinity and soil 

fertility. The indigenous PGPR CMH3 and the combination of UW3 and UW4 (UW3+4) 

consistently promoted shoot growth of both barley and oats grown in soils by approximately 

100%. Oats and barley treated with AMF had higher root length colonized (RLC) and 

biomass than the non-AMF plants in soils. For grasses, AMF+CMH3 and AMF+CMH2 

were the most effective for Topgun ryegrass and Inferno tall fescue, respectively. The 

concentrations of NaCl in the plants grown in salt-impacted soils ranged from 24300 – 

83100 mg/kg. For Year-2007 isolates, CM6, ALR2 and ALR1 were effective in promoting 

plant growth. For alfalfa, PGPR UW3+4, CMH2 and CMH3 not only enhanced shoot 

biomass but also increased its root nodulation. Results demonstrated that fertilizer 

effectively increased biomass, and more importantly the biomass of PGPR treated plants 

that were supplied with fertilizer was approximately 20% higher than that of plants treated 

with fertilizer alone. Therefore, research sites were amended with compost before planting 

of the 2007 field trial. Liquid fertilizer was not used due to its high cost and constraints in 

the field.   

For field trials, germination was poor and uneven on the highly saline sites, CMS and AL 

(ECe > 20 dS/m). In contrast, the plant coverage was dense on the CMN site, where salinity 

was mostly under 10 dS/m. After five months, shoot biomass on a 0.25 m2 area with similar 

soil salinity and plant coverage (> 80%) was collected from one treated (+PGPR) and one 
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untreated (-PGPP) plot to determine the PGPR effect. The results showed that PGPR 

promoted shoot dry weight by 30% - 175% across the three sites. The NaCl concentrations of 

barley, oats and tall fescue averaged 53 g/kg, 66 g/kg and 35 g/kg, respectively. The sodium 

content of barley and oats were similar but significantly higher than that of Inferno tall fescue 

regardless of soil salinity. The salt removal of the CMN site was the most effective among 

three sites due to the large amount of shoot biomass produced. The amount of salt 

accumulated in the shoots on the CMN site was estimated to be 1580 kg per hectare per year 

when both barley and ryegrass were planted together as a mix and mowed twice. The time 

required to remove 50% salt in the top 50cm soil of this moderately saline site was therefore 

estimated to be seven years. In conclusion, PGPR-promoted phytoremediation was proven to 

be a feasible and effective remediation technique for soils with moderate salinity. 
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APPENDIX 

1. DF salt minimal medium (based on Dworkin and Foster, 1958) 
Trace-1 stock   
H3BO3 10mg 
MnSO4·H2O 11.2mg 
ZnSO4·7H2O 124.6mg 
CuSO4·5H2O 78.2mg 
MoO3 10mg 

Dissolve one by one slowly in 100mL sterile 
MiniQ water. The solution can be fridged up to 
7 months.  

   
Trace-Fe stock   
FeSO4·7H2O 100mg Dissolve in 10mL sterile MiniQ.  
   
ACC stock   
ACC 0.5M 5.055g 

(0.05mole)
Dissolve in 100mL, filtered through 0.2µm 
filter, aliquot 300µl in centrifuge tubes and 
freeze at -20C. 

 
2. DF minimum salt medium [+(NH4)2SO4, +glucose] (per liter) 
KH2PO4 4.0g 
Na2HPO4·7H2O 11.3g 
MgSO4·7H2O 0.2g 
Gluconic acid 2.0g 
Citric acid·2H2O 2.3g Dissolved in 800mL sterile MiniQ 
(NH4)2SO4 2.0g (nitrogen source ) 
Glucose 2.0g (carbon source) 
Trace-1 stock  0.1mL add 
Trace-Fe stock 0.1mL add  
  Bring the volume to 1 liter 
  Autoclave for less than 20min 
   
3. DF minimum salt medium [-(NH4)2SO4, +glucose] with ACC (per liter) 
KH2PO4 4.0g 
Na2HPO4·7H2O 11.3g 
MgSO4·7H2O 0.2g 
Gluconic acid 2.0g 
Citric acid·2H2O 2.3g Dissolved in 800mL sterile MiniQ 
Glucose 2.0g (carbon source) 
Trace-1 stock  0.1mL add 
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Trace-Fe stock 0.1mL add  
  Bring the volume to 1 liter 
  Autoclave for less than 20min,  
ACC 0.5M stock 6.0mLl Thaw, pour in when still cold (nitrogen source) 
 
4. DF minimum salt medium [-(NH4)2SO4, +glucose] with ACC (5 agar plates) 
DF [-(NH4)2SO4, +glucose] 100 mL  
Bacto-Agar 1g add 
  Autoclave for 20min, cool to 45℃, pour plates 

(20mL/each plate) 
ACC 0.5M stock 60µl/plate Thawed, spread on plates 
   
 
5. Salkowski’s reagent (based on Khalid et al., 2004) 
Concentrated sulphuric acid 150 mL  
Distilled H2O 250mL  
0.5M FeCl3·6H2O 7.5mL (1.35 g/10mL H2O) 
   
6. 2 mg/mL L-trp 
L-trp 0.1g Dissolve in 50mL warm H2O 
  Filter through 0.2μm membrane. 
7. 0.2% 2,4-DNP  
Concentrated HCl 17mL  
Distilled H2O 100mL  
2,4-DNP 0.2g  
  Add HCl into H2O in a dark brown bottle. 

Dissolve 2,4-DNP and store at 4℃ 
   
8. 0.1M Tris-HCl 
pH 7.6    
Trizma HCl 6.06g  
Trizma base 1.39g  
 Dissolve in 500mL distilled H2O 
pH 8.0   
Trizma HCl 4.44g  
Trizma base 2.65g  
 Dissolve in 500mL distilled H2O 
 


