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Abstract

Multiobjective optimization is a branch of mathematical programming for modelling

problems with multiple conflicting objectives. Multiobjective optimization problems can

be solved using Pareto optimization techniques including evolutionary multiobjective op-

timization algorithms. Many real world applications involve multiple objective functions

and can be addressed within a multiobjective optimization framework. Multiobjective op-

timization methods allow exploration of the attainable values of the objective functions

and trade-offs between objective functions without soliciting preference information from

the decision maker(s) before potential solutions are presented. In order to be sufficiently

representative of the possibilities and trade-offs, the results of multiobjective optimization

may be too numerous or complex in shape for decision makers to reasonably consider.

Previous approaches to this problem have aimed to reduce the solution set to a smaller

representative set.

The methodology developed and evaluated in this thesis employs hierarchical cluster

analysis to organize the solutions from multiobjective optimiation into a tree structure

based on their objective function values. Unlike previous approaches none of the solutions

are removed from consideration before being presented to the decision makers. A hierarchi-

cal cluster structure is desirable since it presents a nested organization of the plans which

can be used in decision making as shown in an example decision. The resulting dendrogram

is a tree of clusters that can be used to see the attainable trade-offs on the Pareto front.

As well, it can be used to interactively reduce the set of solutions under consideration or

consider several subsets of solutions that lie in different regions of the Pareto front.

A land use change problem in an urban fringe area in Southern Ontario, Canada is used

as motivation and as an example application to evaluate the proposed methodology. Rele-

vant literature in planning support systems is reviewed in order to focus the methodology

on the application. The multiobjective optimization problem for this application was for-

mulated and analyzed by Roberts (2003); the optimization algorithm used to generate the

approximation of the optimal solutions is the Non-dominated Sorting Genetic Algorithm

II, NSGA-II, developed by Deb et al. (2002). Future work will link the resulting objective

function-based tree to map visualizations of the landscape under consideration. Decision
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makers will be able to use the tree structure to explore different potential land use plans

based on their performance on the objective functions representing the quality of those

plans for natural and human uses.

This approach is applicable to multiobjective problems with more than three objective

functions and discrete decision variables or hierarchically clustered Pareto optimal sets.

The suitability for reuse with other datasets or other applications is discussed as well as

the potential for inclusion in a decision support system (DSS).
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Chapter 1

Introduction

Multiobjective optimization is a branch of mathematical programming for modelling prob-

lems with multiple conflicting objectives. Multiobjective optimization is now applied to a

variety of fields. Sufficient computational power now exists to generate very large sets of

non-dominated solutions for these problems. Within a non-dominated set no solution can

be said to be better than another solution without additional value judgment regarding the

importance of the objective functions. It is undesirable to make this judgment and choose

a single solution without first considering the trade-offs and potential solutions available,

i.e., the shape of the Pareto front. To be sufficiently representative of the possibilities

and trade-offs, a non-dominated set may be too large or complex in shape for decision

makers to reasonably consider; some means of reducing or organizing the non-dominated

set is needed (Benson and Sayin 1997). Several researchers including Rosenman and Gero

(1985), Morse (1980), and Taboada et al. (2007) have dealt with this issue using cluster

analysis or filtering to reduce the set of solutions under consideration.

This thesis presents a hierarchical cluster analysis-based methodology to organize and

present the elements of an approximation of the Pareto front. The goal of clustering is

to create an “efficient representation that characterizes the population being sampled”

(Jain and Dubes 1988, p.55). This representation allows a decision maker to further un-

derstand the decision by making available the attainable limits for each objective, key

decisions and their consequences, and the most relevant variables; this presentation would

be an improvement on a list of potential solutions and their associated objective function

1
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values. As stated by Benson and Sayin (1997), “generating manageable global representa-

tions of efficient sets” is a “worthy goal”. Cluster analysis allows the decision emphasis to

be shifted from the importance of objectives to the selection of interesting subsets of attain-

able solutions. A hierarchical algorithm is desirable since it presents a nested partitioning

of the solutions which could be used in decision making after characterizing the partitions.

Unlike previous approaches none of the non-dominated solutions are removed from consid-

eration before being presented to the decision makers. The resulting dendrogram is a tree

of clusters that can be used to see the attainable trade-offs on the Pareto front. As well, it

can be used to interactively reduce the set of solutions under consideration or to identify

subsets of solutions that lie in different regions of the Pareto front.

1.1 Case Study Problem

The proposed methodology was applied to a case study of post-Pareto analysis of the

results of evolutionary multiobjective optimization of a landscape ecology focused land use

change problem. Work by Roberts (Roberts 2003) was taken as a starting point and this

thesis analyzes and organizes the results of that work. Future work will link the resulting

objective function based tree to map visualizations of the landscape under consideration.

Decision makers will be able to use the tree structure to explore different potentials for the

landscape design based on their performance on the objective functions representing the

quality of the landscape function.

The problem considered is the assessment of land use in an urban fringe area in Southern

Ontario, Canada. A total of 171 unique potential landscape configurations are generated

using the Non-dominated Sorting Genetic Algorithm II, NSGA-II, (Deb et al. 2002) with

eight candidate sites for land use change. Each site can taken one of four uses: unchanged,

agricultural, urban, and natural. Eight landscape ecology based objectives, as detailed in

section 3.1, define the trade-off surface for this problem.
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1.2 Thesis Organization

This thesis begins with this short introduction in chapter 1. Chapter 2 contains a literature

review with background in multiobjective optimization, cluster analysis, and the land

use configuration problem. The literature review also establishes the current state of

the literature in multiobjective post-optimization analysis and planning decision support.

Chapter 4 describes the proposed cluster analysis methodology including preparation of

the data and selection of a relevant algorithm as well as also detailing the evaluation

methodology for the proposed analysis as well as three alternate data organization methods

for comparison. Chapter 5 applies the methodology described in section 4.1 and the three

comparable methods, considers the validity of the results, and gives an example of using the

results for a land use decision. Chapter 6 discusses these results and the suitability of the

proposed method for handling multiobjective optimization results. Chapter 7 summarizes

the results and discussion, delineates the implications and limitations of the proposed

methodology, and gives directions for future work.





Chapter 2

Literature Review and Background

This chapter reviews the relevant literature for this thesis including multiobjective op-

timization, land use planning, and cluster analysis. The methodology and assessment

methods are outlined in chapter 4. The remainder of this thesis applies the cluster analy-

sis methodology developed in chapter 4 and assesses it using the landscape configuration

optimization problem described in section 3.

This literature review begins with concepts and definitions from multiobjective opti-

mization. Solution schemes for multiobjective optimization problems with discussion of

their shortcomings follow. The Pareto optimization framework is described and previous

work in improving the output of Pareto optimization is discussed in section 2.2; this post-

Pareto analysis literature is the most relevant literature to the methodology described in

this thesis. The following section describes the landscape configuration optimization prob-

lem as formulated and solved by Roberts (2003) including two modifications. Material on

decision making in spatial problems is reviewed. A description of relevant cluster analysis

methods follows. This chapter concludes with a statement of the objective of this thesis.

2.1 Multiobjective Optimization

According to Rardin (1998): “When goals cannot be reduced to a common scale of cost

or benefit, trade-offs have [to] be addressed. Only a model with multiple objective func-

tions is satisfactory . . . ”. A multiobjective optimization problem is composed of a set of

5
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decision variables whose values are to be determined, a set of objective functions of those

variables to be maximized or minimized, and a set of constraints on the values of those

variables. Without loss of generality assume that all objective functions are to be maxi-

mized. Mathematically a multiobjective problem can be written as shown in problem 2.1.

Problem 2.1 Multiobjective Optimization Problem

Maximize f(x) = (f1(x), f2(x), . . . , fm(x))

Subject to x = (x1, x2, . . . , xn) ∈ X

where X is the set of feasible solutions. Often X is described by a set of constraints.

The objective functions f1(x), f2(x), . . . , fm(x) are often conflicting therefore it is un-

likely that a single solution x ∈ X maximizes all of the objective functions simultaneously.

The efficient set, E, is the set of feasible solutions x ∈ X for which no other feasible solu-

tion is as good as x with respect to all objective functions and strictly better than x in at

least one objective function. Formally, the efficient set is defined as in equation 2.1.

E ={x ∈ X : fi(x) ≥ fi(y) ∀y ∈ X, i ∈ I, and

fi(x) > fi(y) for some i ∈ I where I = {1, . . . , m}}
(2.1)

The solutions in E are said to be Pareto optimal or globally non-dominated (Coello 2001).

The Pareto front is the mapping of the efficient set to the space defined by the objective

functions, i.e., {f(x) : x ∈ E}. A non-dominated set is a set that is efficient with respect to

its own elements, i.e., satisfying equation 2.1 with E = X. No solution in a non-dominated

set dominates or is dominated by any other solution in the set. A non-dominated set may

arise by generating a set of feasible solutions to a multiobjective optimization problem and

discarding those solutions that are dominated by other solutions in the set.

2.1.1 Multiobjective Optimization Solution Methodologies

Three approaches exist for solving a multiobjective problem (Benson and Sayin 1997).

These three approaches are differentiated by stage of the decision process at which the

decision maker must specify preference information regarding the relative importance of
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the objective functions differentiates. The first approach requires preferences to be spec-

ified a priori and entails reformulating the problem as a single objective problem. For

this approach preference information is required from the decision makers, e.g., relative

importance or weights of the objective functions, goal levels for the objective functions, or

values functions combining the objective functions. The second approach elicits preferences

throughout the optimization and requires that the decision makers interact with the opti-

mization procedure, typically by specifying preferences between presented solutions. The

third approach, known as Pareto optimization, finds a representative set of non-dominated

solutions approximating the Pareto front before requiring preference information from the

decision makers. Pareto optimization methods, such as evolutionary multiobjective opti-

mization algorithms, allow decision makers to investigate the candidate solutions without

a priori judgments regarding the relative importance of objective functions.

Each of the three approaches to solving multiobjective optimization problems has short-

comings. The first approach returns a single solution based on the decision maker input.

The solution returned by the single objective approach can be highly dependent on the

weights and the responses to changes in weights or goals may be unpredictable (Coello

2001). Multiobjective optimization problems can be reformulated as single objective prob-

lems by combining the objective functions into a single function or by converting the

objective functions into constraints. For non-convex problems certain solutions will not be

attainable using the most common single objective technique of using a weighted sum

of the objective functions (Miettinen 2001). Converting objective functions into con-

straints, such as using the normal constraint method, requires many reformulations to

obtain a representative set of Pareto optimal solutions. The number of reformulations

and thus the computational effort increases with the number of objective function since

multiple values for each objective function must be used to generate solutions in the non-

convex regions of the Pareto front. The landscape configuration problem considered in

this thesis is a multiobjective combinatorial optimization problem; for this type of prob-

lem the weighted sum approach typically cannot return most of the Pareto optimal solu-

tions (Ehrgott and Gandibleux 2000). The landscape configuration problem is a non-linear

combinatorial problem which is difficult to solve even when reformulated as a single ob-

jective optimization problem. As well, the criteria may conflict or be non-commensurate
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making it difficult to make value judgments in choosing weights or goals for the criteria

(Greenwood et al. 1997). Even if these value judgments can be made the resulting math-

ematical formulation may be inconsistent or difficult to optimize (Miettinen 2001). The

second approach considers only a small set of non-dominated solutions due to the effort

required on the part of the decision makers (Benson and Sayin 1997). The third approach,

Pareto optimization, results in a potentially large number of solutions that must be con-

sidered. Selecting a single solution from a large non-dominated set is likely to be difficult

for decision makers. In addition, Pareto optimization approaches are typically more com-

putationally expensive than the first two approaches but they do not make the demands

on the decision maker required in the interactive approach.

Benson and Sayin (1997) proposed that an ideal solution procedure for multiobjective

optimization is to provide the decision maker(s) with a globally representative subset of the

non-dominated set that is sufficiently small so as to be tractable. We aim to approach that

ideal by accepting the computational effort required to generate a large non-dominated set

and subsequently organizing it using its own structure to allow decision makers to find and

consider interesting subsets without deleting any of the candidate solutions.

2.1.2 Evolutionary Multiobjective Algorithms

Evolutionary multiobjective algorithms are a subset of Pareto optimization methods that

apply biologically inspired evolutionary processes as heuristics to generate non-dominated

sets of solutions. A set of operators is applied to a population of solutions to generate

new solutions subject to evolutionary pressure to improve. It should be noted that these

solutions may not be Pareto optimal but the algorithms are designed to evolve solutions

that approach the Pareto front and that are sufficiently diverse to capture the spread of

solutions existing on the Pareto front. These methods are robust to the shape of the Pareto

front (Coello 2001).

The Non-dominated Sorting Genetic Algorithm (NSGA) used by Roberts (2003) to

solve the case study problem is replaced here with NSGA-II. Compared to NSGA, NSGA-

II has lower computation complexity, removes the need for a sharing parameter, and im-

plements elitism (Deb et al. 2002). The cluster analysis methodology presented in this

thesis can be employed with any Pareto optimization method if the resulting distribution
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of solutions is appropriate for hierarchical clustering. NSGA-II is used since it is known

to perform well with non-convex, disconnected, and non-uniform Pareto fronts (Deb et al.

2002). The results returned by NSGA-II are typically not a non-dominated set but are

composed of several non-domination fronts close to the true Pareto front. The use of this

heuristic algorithm allows for efficient searching of a large solution space based on several

discontinuous non-convex objective functions.

NSGA-II is a genetic algorithm (GA). GAs operate on a population of solutions and

employ selection, crossover, and mutation operators, among others, in order to generate

successive improved populations based on a fitness function. At each generation a set of

potential parents is generated, subsets of the parents are combined to create offspring, and

the fittest offspring are included in the next generation (Falkenauer 1998). NSGA-II differs

from single objective GAs in two respects: it aims to maintain diversity in the population

instead of converging to a single solution and it uses non-domination to assess the fitness of

individuals. These differences affect the generation of the set of parents and the selection of

the next generation. The fitness function used by NSGA-II is an artificial fitness; instead

of using the objective functions directly the fitness function is based on the dominance

relationships in the current population. Better fitness values are assigned to members of

the population that are dominated by fewer other members of the population.

At each generation, given a current population, Pt, with N members, the operations

of selection, crossover, and mutation are applied to create an offspring population, Qt,

with N members. The members of the population are represented by the chromosome

strings encoding the decision variables such as the scheme described in section 3. Elitism

is implemented in NSGA-II by allowing the members of the next generation to be drawn

from either the offspring, Qt, or the parents, Pt. Denoting the potential members of the

next generation as Rt, this implies that Rt = Pt∪Qt. The next population, Pt+1, is created

by sorting the potential members, Rt, according to non-domination and crowding distance

then using binary tournament selection based on this order favouring the better members.

The non-domination and crowding distance sorting can be summarized as preferring

the dominating solution if two solutions are on different fronts and preferring the solution

with the lower crowding distance if the solutions are on the same front. This sorting is

shown as pseudo-code in table 2.1. The non-domination and crowding distance sorting
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Partition Rt into fronts F1, F2, . . . Fk such that x ∈ Fi is not dominated by y ∈
Rt \ {F1, F2, . . . Fi−1}

Pt+1 ← {F1 ∪ F2 ∪ . . . ∪ Fj−1} such that |Pt+1| ≤ N

If |Pt+1 = N | Stop

Else sort Fj based on crowding distance:

For each objective function, b:

Sort Fj in descending order of the values of objective function b

CDISTkb ←
(

xb
k+1 − xb

k−1

)

∀ xk ∈ Fj where xb
k denotes the value of objec-

tive function b for xk

For each xk ∈ Fj :

CDISTk ← average
(

CDIST b
k

)

Sort Fj in descending order of CDISTk

Pt+1 ← {Pt+1 ∪ x1 ∪ x2 ∪ . . .xj} such that |Pt+1| = N

Table 2.1: Non-Domination and Crowding Distance Sorting

is performed by first sorting the members of Rt based on non-dominance such that the

first front of solutions, F1, contains the solutions not dominated by any other members of

Rt and such the ith front, Fi, contains the solutions dominated only by the solutions in

the preceding fronts, F1, F2, . . . , and Fi−1. Beginning with F1 the best fronts are added

to Pt+1 until adding the next front, Fk, would increase the size of Pt+1 to more than N .

Members of Fk may be added to complete Pt+1 but they cannot be differentiated on the

basis of non-domination. The members of Fk are then sorted by crowding distance. The

crowding distance of a solution, x, is calculated by sorting the members of Fk according to

each objective function and computing the distance between the solution preceding x and

the solution following x for that objective function. The crowding distance is taken as the

average such distance for x over the objective functions.
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Figure 2.1: Example of Pareto ranking and crowding distance for NSGA-II with population

for next generation encircled by solid line

An example of the Pareto ranking and crowding distance calculations for a two objective

function maximization problem is shown in figure 2.1. In this example N = 6 so there are

12 solutions in Rt = Pt ∪ Qt. Six of these solutions are included in the next population,

Pt+1. First, the Pareto fronts are identified: front 1 contains the non-dominated solutions,

front 2 contains the solutions dominated only by front 1, and front 3 contains the solutions

dominated by fronts 2 and 3. The next population, Pt+1, is formed by taking the 3 solutions

in the front 1 and the three least crowded solutions in front 2. The endpoints are always

among the least crowded solutions since they have an infinite crowding distance in one

objective function. Pt+1 is shown within the boundary in figure 2.1.

Given Pt+1 the process is repeated for the next generation. Binary tournament selection

is used to select the parents for the next generation based on the same non-domination and

crowding distance preference structure used to generate Pt+1. It is therefore necessary to

compute the crowding distance for all solutions, not just those in the last front included in

Pt+1. Binary tournament selection is performed by randomly choosing two solutions and
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including the higher ranked solution with a fixed probability typically between 0.5 and 1

(Goldberg and Deb 1991). The crossover operation used is single point crossover and the

mutation employed is site-wise mutation.

While the capability is not used in this thesis, NSGA-II can be modified to accom-

modate constraints on the decision variables. The constraint handling is performed by

extending the binary tournament selection operator to consider constraint violation in ad-

dition to dominance and crowding distance. Feasible solutions are most preferred, followed

by solutions with smaller constraint violation. Constraint violation can be measured by

normalizing the constraint function values and taking the sum of the violation magnitudes

for each constraint (Deb 2000). If both solutions selected for the binary tournament are

feasible then the selection is unchanged from that made by NSGA-II without constraint

handling.

2.2 Post-Pareto Analysis

Post-Pareto analysis concentrates on aiding the decision makers in choosing a final sin-

gle solution from the potentially large set generated by a Pareto optimization method.

Approaches taken include pruning the non-dominated set to the ‘most interesting’ solu-

tions and partitioning the non-dominated set into subsets of similar solutions. Several

researchers have applied clustering methods and distance-based methods to aid decision

makers in considering Pareto optimization results.

Most of these methods rely on considering the similarity of the elements of the non-

dominated set based on their objective function values and removing elements that are

deemed too similar to other elements. In this thesis a tree data structure is used to

organize the non-dominated set to allow decision makers to consider tractable subsets of

the non-dominated solutions without removing any of the elements.

Mattson et al. (2004) detailed a ‘smart Pareto filter’ to obtain a sufficiently small rep-

resentative subset of a non-dominated set. This method does not use cluster analysis.

The smart Pareto filtering approach defines regions of ‘practically insignificant trade-offs’

around points. Each point is considered successively and all points in its region of ‘prac-

tically insignificant trade-off’ are removed on the assumption that those points are not
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sufficiently distinguishable from the point under consideration. The representativeness re-

lies on retaining more elements of the non-dominated set to represent areas with steeper

trade-offs, commonly known as ‘knees’, and fewer elements to represent areas where the

elements are not highly distinguishable. Extremal solutions or solutions of high trade-off

are preserved as the non-dominated set is pruned. The smart Pareto filter requires the

specification of the dimensions of the regions of ‘practically insignificant trade-offs’ which

may differ for each objective function (Mattson et al. 2004). This specification requires the

decision makers to make a value judgment regarding what they perceive as similar without

first considering the potential values for each objective function and the magnitudes of the

trade-offs between the objective functions.

Greenwood et al. (1997) used a priori preferences from the decision makers to bias the

search of a GA. The preferences form part of the fitness function, in addition to the domi-

nance relation and the diversity mechanism. Fuzzy preferences are used to avoid aggregat-

ing non-commensurate objectives. Instead of approximating the entire Pareto front only

the subset of the Pareto front reflecting the preferences is approximated. Greenwood et al.

(1997) assumed that the preferences are consistent and do not vary across the solution

space; in other words, that the importance of a change in the value of an objective func-

tion does not depend on its current value or on the values of the other objective functions.

The shortcomings of specifying the preferences a priori apply; the decision makers are

not informed regarding the relationships between criteria or the attainable limits prior to

making value judgments.

Morse (1980) detailed one of the first applications of cluster analysis to a non-dominated

set. The multiobjective programs considered were linear programs. An element was re-

moved from the non-dominated set if there was another member of the non-dominated

set that was judged to be indistinguishable. Thresholds modelling the resolution of the

judgment of the decision maker were used to assess which solutions were indistinguishable.

Morse (1980) applied eight types of hierarchical clustering plus direct clustering, a naive

form of bi-clustering that groups both the solutions and the criteria defining the clusters, to

a problem with five objective functions and eight constraints. The hierarchical clustering

methods evaluated were single linkage, complete linkage, group average linkage, median

method, centroid method, Ward’s method, and McQuitty’s similarity analysis. Hierar-



14 Clustering Multiobjective Programming for Land Use Planning

chical clustering outperformed block clustering. In particular, Ward’s method, the group

average method, and the centroid method performed very well. The other five hierarchi-

cal clustering methods considered all exhibited an undesirable behaviour called chaining

which reduced the usefulness of the cluster structure obtained. Ward’s method was pre-

ferred since the clusters at the same level of the hierarchy were of similar size and shape.

Rosenman and Gero (1985) noted that the preference of Ward’s method by Morse (1980)

was based only on slightly better performance than centroid and group average methods

and that Ward’s method had other known shortcomings.

Rosenman and Gero (1985) applied complete linkage hierarchical clustering to ‘reduce

the size of the Pareto optimal set whilst retaining its shape’. Rosenman and Gero (1985)

noted that solutions whose vectors of objective function values are similar by an appro-

priate measure of proximity may have decision variable vectors that are similar or very

different; this idea was noted but not further explored. The aggregation of criteria implicit

in applying proximity measures to the objective function vectors of the elements of the

non-dominated set was avoided by considering the objective functions successively. The

complete linkage method was used since it allowed control of the diameter of the resulting

clusters. This method began by first clustering the elements of the non-dominated set

using a single criterion. Elements within the same cluster were then assumed to be indis-

tinguishable on this criterion. If a solution within a cluster dominated another solution

in that cluster on all criteria except the clustering criterion the dominated solution was

eliminated from consideration. The process was repeated for all criteria until the decision

makers decided that the non-dominated set was sufficiently small.

Taboada et al. (2007) used partitional (k-means) clustering for combinatorial multiob-

jective problems. Either the most interesting cluster, i.e., the ‘knee’ cluster, was considered

in detail by discarding the solutions in other clusters, or one solution from each of the k

clusters was considered to form a representative subset of the non-dominated set.

The Strength Pareto Evolutionary Algorithm (SPEA) proposed by Zitzler and Thiele

(1999) incorporates a clustering method in the optimization procedure. Unlike NSGA-II,

SPEA maintains an external elite population consisting of the best solutions found by the

algorithm so far. If this external population grows too large then it is pruned using cluster

analysis. Controlling the size of the external population is important for good algorithm
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performance in SPEA. The clustering algorithm employed is the average linkage method.

By retaining the centroid solutions in each cluster and removing some of the other solutions

in the clusters the cardinality of the external population can be reduced while retaining

its shape. The improvements to SPEA developed by Zitzler et al. (2001) and proposed as

SPEA2 include improving this pruning method to preserve extremal solutions.

This thesis differs from the above by considering hierarchical clustering and not reducing

the size of the non-dominated set under consideration before the solutions are presented to

the decision makers. As discussed in section 2.3, the complex and multi-participant nature

of land use decisions makes the presentation of similarly performing solutions desirable.

The hierarchical tree structure for the solutions allows the decision makers to tractably

consider the solutions using a sequence of decisions to reduce the set of solutions under

consideration. If a hierarchical structure is not suspected in the data or if the structure is

not to be used in the decision process then the methodology presented by Taboada et al.

(2007) may be more suitable.

2.3 Planning Decision Support

Landscape-scale land use decisions, such as the landscape configuration design problem

developed by Roberts (2003) and described in section 3.1, typically take place within a

planning context. Alexander (1986) defines planning as “[. . . ] the deliberate social or or-

ganizational activity of developing an optimal strategy of future action to achieve a desired

set of goals, for solving novel problems in complex contexts, and attended by the power and

intention to commit resources and to act as necessary to implement the chosen strategy”.

Planning tasks are inherently complex and thus support tools including models and aids for

generating plans have the potential to be very beneficial (Geertman 2006). Since planning

problems tend to be addressed within organizations such as municipal governments and

have large potential impacts, advanced analytical tools may be appropriate for assisting

with decision making (Jankowski et al. 2001). Bojórquez-Tapia et al. (2001) found that

the transparency of decision making processes to the decision makers was important in

order to gain their cooperation with the process and agreement with the rationality of the

final outcome. Without the support of all of the decision makers, the final decision was
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unlikely to be implemented.

The implications of the planning context affect the design of the methodology developed

in this thesis. Roberts (2003, p. 7) noted “the relationship of configuration to function

is not necessarily a one-to-one mapping, i.e., more than one configuration may achieve

similar functions in a landscape, thus in principle allowing more than one configuration

to provide optimal functioning”. Similarly, Harris and Batty (1993) have described plan-

ning problems as inherently complex and necessarily containing unknown criteria. These

unknown criteria imply that multiple land use configurations with similar performance on

the objective functions should be considered. In this application the pruning of the non-

dominated set based on objective function value similarity is undesirable since it would

remove similarly performing landscape configurations even if the configurations differed

significantly. The hierarchical clustering methodology developed in this thesis generates

a tractable representation of the non-dominated set while retaining all of the potential

solutions that have been generated.

According to Geertman and Stillwell (2004), Planning Support Systems (PSS) should

be broadly applicable systems containing components to assist with planning tasks within

planning processes. Some of the requirements for models in planning include having a

planning support focus (built for an advisory or information gathering role), being designed

for use within a decision making process, being based on solid mathematical and urban

theory, being easy to use and understand, having limitations and assumptions clearly

stated along with any results, and being oriented to a specific planning task. A paradigm

for models in planning is as a ‘tool’ in the ‘toolbox’ of planning support, in other words,

models should be modular components that can be employed in decision making as desired

but not purport to ‘solve’ problems. PSSs should be part of every stage of the planning

process but their components, i.e., the tools within the toolbox, must be developed with

specific tasks in mind (Geertman and Stillwell 2004).

Alexander (1986) discussed the use of models in planning: “The introduction of system-

atic design methods into planning and policy making offers perhaps the greatest potential

for enhancing the quality and range of alternatives. [. . . ] [D]esign methods, intelligently

applied, can generate a broader and more innovative array of alternative solutions than

unaided intuition or tradition-bound expertise. [. . . ] Unfortunately, their diffusion and
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adoption in planning contexts is very limited, and examples of systematic design applica-

tions to policy problems are rare.”

Jankowski et al. (1997) discussed Spatial Decision Support Systems, SDSSs, which are

similar to PSSs, for multi-criteria group decision making. The problems addressed are not

multiobjective optimization problems but multi-criteria decisions; the alternatives and per-

formance scores for each alternative for each criteria are generated by the decision makers.

The criteria are similar to the objectives in the multiobjective optimization framework.

A framework and guidelines for multi-criteria spatial decision making with multiple de-

cision makers are given. This framework could be used to integrate the methodology in

this thesis with other decision support tools to progress toward a comprehensive decision

support system. The use of visualizations of alternatives and criteria, particularly using

maps, are emphasized in order to aid the decision makers to understand the problem, the

possible alternatives, and the relationships between the criteria. Jankowski et al. (1997)

noted that, in addition to visualization capabilities, SDSS should include analytical capa-

bilities for both representing the problem, such as the model-based approach in Roberts

(2003), and for considering the results, such as the cluster analysis methodology proposed

in this thesis.

Jankowski et al. (2001) applied a data mining technique similar to cluster analysis to

aid decision makers in a spatial decision support context. They concluded that the use

of data mining in spatial decision support is promising and merits further attention. As

in Jankowski et al. (1997), the use of maps and other visualizations is emphasized; ideally

decisions are guided by the use of maps representing the criteria and the alternatives. The

visualizations displayed the relationships between the criteria; this salient presentation

of the relationships between the criteria attempts to avoid the decision makers assuming

independence of the criteria as in most real world problems the criteria are not independent.

The data mining technique applied is the C4.5 Classification Tree algorithm developed by

Quinlan (Quinlan 1993). It returns a decision tree with the most informational criteria

defining the branchings higher in the tree. The informativeness of criteria is calculated

based on correspondence with a priori class labels for the items being clustered. Using

the default tests results in monothetic trees, i.e., trees where each branching is defined

in terms of a single criterion. Jankowski et al. (2001) also noted that in the multi-criteria
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framework non-dominated solutions should be emphasized to the decision makers, possibly

through alternative visualization.

Balling (2004) used a multiobjective optimization algorithm to consider city and re-

gional level land use and transportation planning. Like this thesis and Roberts (2003), the

goal of using multiobjective optimization was to improve on traditional planning methods.

In most planning decisions the alternative plans are formulated based on the experience

and preferences of planners then presented to the public and the decision makers. This

small set of plans cannot adequately capture the complexity of the planning problem and

is inherently subjective (Balling 2004). As previously noted, planning problems have many

potential solutions and multiple competing objectives. These types of problems are well

addressed by multiobjective optimization methods.

The work by Roberts (2003) and this thesis differ from Balling (2004) in that only land

use is considered, allowing the effects of development on natural land use and functions

to be emphasized. Balling (2004) considered integrated land use and transportation using

two objective functions, minimization of traffic congestion and minimization of change from

land use status quo, as well as three constraints enforcing the requirements for housing,

employment, and green space. A coarse version of the model was applied at the regional

level and then again at a finer granularity for each city within the region. It was necessary

to reduce the solution space by specifying the acceptable land uses for each zone in each

city.

To evaluate their approach, Balling (2004) presented the results of the analysis to

local city, state, and environmental planners and local politicians. Everyone approved

of this approach and encouraged continued work although a final plan was not chosen.

Motivating the work in this thesis, Balling (2004) believes that one reason that a plan was

not chosen from the 100 proposed plans resulting from the multiobjective optimization is

the difficulty of considering such a large number of plans. The other reason given is the

novelty of this approach and lack of familiarity for the participants. According to Balling

(2004) the number of plans to be considered must be objectively reduced to a set of plans

representing “distinct conceptual ideas”. Even without reducing the number of plans for

consideration key aspects of the problem were noted by planners and used in the selection

of a final plan.
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2.4 Clustering Methods

The methodology proposed in this thesis for organizing multiobjective optimization results

used a hierarchical clustering algorithm to construct a tree of the solutions returned by

NSGA-II. This section discusses the relevant background material on clustering including

alternative approaches to which the proposed methodology will be compared. Cluster

analysis involves the use of algorithms and techniques to examine the internal organization

in a data set in an objective way; it can be used to describe the data concisely and to

uncover patterns and relationships that may not be readily apparent (Dubes 1993). The

aim is to group objects that are similar in some way.

Clustering methods are often separated into two categories: partitional methods which

provide a single partition of the solutions and hierarchical methods which provide a series

of nested partitions. A partition is an assignment of the elements to a set of clusters.

Typically each element is assigned to a single cluster. A significant element in the choice of a

clustering method is whether the nested structure from a hierarchical algorithm is useful or

desirable; such a structure cannot be derived from a partitional algorithm (Dubes and Jain

1979). An additional advantage of using a hierarchical clustering method is that the number

of clusters need not be known a priori (Ward 1963).

Many clustering methods assume an underlying model for the clusters (Halkidi et al.

2001), often hyperellipsoidal cluster shape or generation by a Gaussian distribution. Thus

different clustering algorithms are appropriate for different data sets (Jain et al. 1999).

It should be noted that although the choice of a clustering method is important there

remains significant freedom within a method to deliver varied results (Jain et al. 1999).

For example, data normalization and the selection of a similarity measure can significantly

affect the clustering results. The input of a subject matter expert in the application domain

is desirable; domain knowledge can be applied in clustering when representing the data,

selecting an appropriate measure of similarity, choosing a clustering method, and assessing

the validity of the results (Jain et al. 1999).
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2.4.1 Partitional Clustering Algorithms

Partitional clustering methods, such as k-means clustering, make certain assumptions

about cluster properties (Karypis et al. 1999). These methods typically construct clus-

ters by minimizing a squared error criterion. Most often these methods assume that the

clusters are hyper ellipsoidal and sometimes assume underlying statistical processes, typ-

ically mixed Gaussian distributions. Mixed Gaussians exist when the data elements to

be clustered are generated from several different Gaussian distributions. Mixed Gaussians

can also be used when approximating non-Gaussian distributions. In cluster analysis the

data elements from each generation process are assumed to lie in different clusters. These

methods require the user to specify the number of clusters, k, a priori.

The most commonly applied partitional clustering algorithm is the k-means algorithm.

The k-means algorithm begins with k randomly chosen points as the representative centres

of k clusters (Jain et al. 1999). The clusters are formed by allocating each of the remaining

patterns to the nearest cluster. The cluster membership is re-evaluated by assigning each

point to the nearest cluster centroid and the locations of the centroids is recomputed.

This process is repeated iteratively until a stopping criterion is met. A typical stopping

criterion is no change in the allocation from the last iteration (Jain et al. 1999). K-means

is sensitive to the initial cluster centres, not guaranteed to attain the true globally optimal

partitional clustering, and has difficulty dealing with outliers due to the assumed hyper

ellipsoidal cluster model (Xu and Wunsch 2005).

Since partitional clustering algorithms cannot return the nested partition structure

required for the methodology developed in this thesis they are not considered further.

2.4.2 Hierarchical Clustering Algorithms

The tree structure of a hierarchical clustering algorithm can be useful for guiding decision

processes when many alternatives must be considered. The tree of the cluster hierarchy

is often represented in a dendrogram where the top element in the tree, the root, is a

cluster containing all of the elements and the bottom elements, i.e., the leaves, represent

individual elements. The dendrogram displays the merging (or dividing) of clusters from

the leaves to the root (or the root to the leaves) and the distance or dissimilarity between the
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Figure 2.2: Example dendrogram

merged (or split) clusters. An example dendrogram is shown in figure 2.2. This structure

gives decision makers an objective structure that can be used to discuss and consider the

clustered elements. Hierarchical clustering methods may be agglomerative or divisive.

The most common hierarchical clustering methods are agglomerative. Agglomerative

algorithms create the tree by beginning at the leaves. At each iteration the algorithm uses

a linkage method to identify and merge the two closest clusters. This merging is repeated

until the root is reached. Divisive algorithms create the tree by progressing in the opposite

direction, by beginning at the root. At each iteration the clusters at the current level of

the hierarchy are each split into two maximally different sub-clusters. This splitting is

repeated until each solution is a singleton leaf cluster. Divisive methods must consider

all possible divisions of each cluster into two sub-clusters; due to the resultant additional

computational complexity they are seldom used in practice (Xu and Wunsch 2005).

The most common agglomerative linkage methods are single linkage, complete link-

age, group average linkage, centroid linkage, median linkage, and Ward’s criterion. These

linkage methods differ in the computation of the similarity or distance between clusters.

An extensive discussion of hierarchical clustering methods given in Everitt et al. (2001) is
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summarized here. The single linkage computes the distance between clusters as the dis-

tance between the closest pair of elements with one element in each cluster, i.e., the nearest

neighbour distance. The complete linkage computes the distance between clusters as the

distance between the further elements with one element in each cluster, i.e., the furthest

neighbour distance. The group average linkage computes the distance between clusters as

the mean distance between all pairs with one element in the first cluster and one element

in the second cluster. The group average linkage may be weighted or unweighted; the

weighted group average linkage counts all pairs of elements including duplicate elements

whereas unweighted group average linkage considers only unique elements. Centroid link-

age computes the distance between clusters as the distance between the mean vectors of

the elements in each cluster. Median linkage computes the distance between clusters as

the distance between their mean vectors but weights the cluster based on the number of

elements in each cluster to avoid giving more implicit weight to larger clusters. Ward’s

method (Ward 1963) merges the clusters that minimize the within-cluster variance.

Hierarchical clustering linkage methods, like all clustering methods, often make as-

sumptions about the sizes and shapes of clusters (Jain et al. 1999). Each linkage tends to

find clusters with certain characteristics. The characteristics and assumptions of linkages

should be considered and compared with the data to be clustered in order to choose the

most appropriate approach. Single linkage can find clusters of varying sizes and shapes

but tends to produce long ‘chained’ clusters and can be sensitive to outliers as well as

the inclusion or deletion of single points (Karypis et al. 1999). Complete linkage tends to

generate compact clusters of the same size, i.e., balanced clusters. Group average linkage

allows clusters to vary in size and shape. Centroid linkage and median linkage assume

convex clusters of the same size and shape (Karypis et al. 1999). Centroid and median

linkages are subject to reversals; clusters may be joined with a smaller inter-cluster dis-

tance than the sub-clusters that were joined to create those clusters (Everitt et al. 2001).

A reversal creates a non-monotonic dendrogram and reduces the interpretability of the

cluster tree structure. Ward’s method is sensitive to outliers, tends to form clusters of the

same size, and tends to perform poorly if the clusters contain different numbers of elements

(Everitt et al. 2001).
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2.4.3 Other Clustering Algorithms

To assess the quality of the results returned by the proposed methodology several alterna-

tive clustering methods will be applied to the NSGA-II output data. These methods are

described in this section.

Chameleon

Chameleon, developed by Karypis et al. (1999), is an agglomerative hierarchical clustering

algorithm using a different means of measuring cluster similarity than the linkage methods.

This method was proposed to overcome the shortcoming of most clustering methods; it

avoids making assumptions regarding the cluster sizes, shapes, or densities by dynamically

modelling the clusters. It uses measures of connectivity and proximity in order to determine

which clusters to merge at each branching.

The tree of the hierarchical clustering resulting from Chameleon does not have individ-

ual solutions as leaves since the dynamic modelling requires a critical mass of elements in

each cluster considered for merging. There are three steps to the Chameleon algorithm.

First, Chameleon creates the k-nearest neighbour graph of the elements to be clustered.

In the k-nearest neighbour graph the elements to be clustered are the nodes and an edge

exists between two nodes if one of the nodes is one of the k most similar nodes to the other

node. Second, a graph partitioning algorithm partitions the k-nearest neighbour graph

into many small clusters. Third, Chameleon merges these small clusters based on two

criteria to generate a hierarchical clustering structure. The two merging criteria are the

relative interconnectivity and the relative closeness of the clusters (Karypis et al. 1999).

The relative interconnectivity, RI, measures the edge-cut between the clusters relative to

the minimal bisecting edge-cut within the clusters as per equation 2.2. The edge-cut is the

sum of the weights of the edges connecting the clusters defining a split of a larger cluster.

|EC(Ci, Cj)| represents the absolute value of the edge-cut between cluster Ci and cluster

Cj. |EC(Ci)| and |EC(Cj)| represent absolute values of the minimal edge-cuts resulting

from splitting Ci and Cj into two subclusters, respectively. The relative interconnectivity

takes values greater than or equal to zero:

RI(Ci, Cj) =
|EC(Ci, Cj)|

(

|EC(Ci)|+|EC(Cj)|

2

) (2.2)
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The relative closeness, RC, is also a measure of the closeness between the clusters relative

to the minimal closeness for splitting each of the two individual clusters to be merged. The

closeness measure is the average edge weight of the edges in the edge-cut as per equation 2.3

(Karypis et al. 1999). SEC(Ci, Cj), represents the average edge weight between cluster Ci

and cluster Cj . SEC(Ci) and SEC(Cj) represent the average edge weight in the minimal

edge-cut splits of Ci and Cj into two subclusters, respectively. |Ci| and |Cj| are the numbers

of elements in clusters i and j, respectively. Since the edge weights are non-negative, the

relative closeness takes values greater than or equal to zero:

RC(Ci, Cj) =
SEC(Ci, Cj)

|Ci|
|Ci|+|Cj |

SEC(Ci) +
|Cj |

|Ci|+|Cj |
SEC(Cj)

(2.3)

These relative measures allow the cluster models to vary across the space of the elements

to be clustered. To combine the connectivity and closeness measures, the user can either

specify thresholds or a function-defined optimization can be performed using the product

of the relative interconnectivity and the relative closeness to the power of a weighting

parameter α. α greater than one emphasizes the relative closeness while αless than one

emphasizes the relative interconnectivity. The function-defined optimization combines the

relative interconnectivity and the relative closeness as shown in equation 2.4:

RI(Ci, Cj)× RC(Ci, Cj)
α (2.4)

DBSCAN

Another class of clustering algorithms that can generate clusterings are density-based meth-

ods such as DBSCAN developed by Ester et al. (1996). These methods find dense areas

of points in the embedded space with the elements to be clustered represented as points.

DBSCAN requires a user-defined neighbourhood size, Eps, and assumes all clusters to be of

the same density. The density-based approach allows DBSCAN to find clusters of varying

shapes and sizes. DBSCAN was developed for large-scale spatial databases and so includes

a stopping criterion to avoid generating the entire dendrogram tree structure. DBSCAN

generates clusters by considering the k-nearest neighbour graphs of points in sufficiently

dense regions. Any points within the Eps-neighbourhood of a sufficiently dense point and

within the same dense region are placed in the same cluster as well as k-nearest neighbours

of each of the points within the sufficiently dense region.
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Decision Tree Classifiers

Like hierarchical clustering methods, decision tree classifiers construct hierarchical struc-

tures of the elements to be considered (Friedl and Brodley 1997). Decision tree classifiers

are similar to divisive hierarchical clustering algorithms as they begin by considering all of

the elements to be classified and successively splitting the elements into nested classes. This

approach differs from hierarchical clustering algorithms in the tests used to generate the

branchings. As classifiers, i.e., supervised learning algorithms in contrast to unsupervised

learning in clustering algorithms, decision tree classifiers use known classes for the objects

being clustered to determine the branchings. Basak and Krishnapuram (2005) proposed

a decision tree motivated clustering method that uses branching rules that do not require

class labels. Decision tree classifiers may be monothetic or polythetic. Monothetic classi-

fiers have branchings based on a single data feature. Most often the branching is binary

and splits the elements using a single objective function into two classes where one has

values greater than a threshold value and the other contains the elements with values less

than the threshold. The threshold value is selected to maximize a discriminant measure

such as the information gain. The resulting partitions of the feature space are separated by

hyperplanes that are parallel to the feature axes. Polythetic decision tree classifiers allow

the branchings to be based on tests of multiple features. Typically the tests are linear sums

of the features. The resulting feature space boundaries are hyperplanes but may not be

orthogonal to the feature axes. The additional complexity in determining the coefficients of

the features in polythetic decision trees makes them more sensitive to algorithmic choices

but often results in more compact trees than monothetic decision trees. Both of these types

of decision tree classifiers assume that the clusters are clearly separated by hyperplanes.

The complexities of Chameleon and DBSCAN make them unsuitable for use in practical

spatial decision support applications. However, these more complex methods make different

assumptions regarding the characteristics of the clusters; these methods are used to assess

the validity of the results returned using the proposed average linkage hierarchical clustering

methodology. If the simpler proposed method returns a similar or better cluster structure

than the more complex methods are not required for this application. If the results are

similar the cluster structure is more likely to be valid as it is robust to the assumptions

regarding the cluster characteristics. If the results differ than they must be compared
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to determine which cluster structure is a more accurate representation of the solutions.

Decision tree classifiers make more restrictive assumptions regarding the tree branchings

than the hierarchical clustering algorithms and are expected to result in less informative

or less compact decision trees.

This chapter detailed the background necessary to develop the greenlands design prob-

lem of interest in this thesis. The literature reviewed includes multiobjective optimization,

decision support for planning problems, and cluster analysis methods. Chapter 3 describes

the problem of interest including previous work by Roberts (2003) and concludes with a

statement of the problem addressed in this thesis. Chapter 4 then describes the proposed

cluster analysis methodology, the alternative approaches, and the evaluation framework.

The remaining chapters apply these methods then present and discuss the results.



Chapter 3

Problem Statement

This chapter begins with a description of the greenlands problem formulated by Roberts

(2003) including the multiobjective optimization model. A description of the methodol-

ogy used to generate the potential solutions follows. This methodology is similar to the

methodology used in Roberts (2003) but uses the updated Non-dominated Sorting Ge-

netic Algorithm II (NSGA-II) in place of the Non-dominated Sorting Genetic Algorithm

(NSGA). The results of Roberts (2003) are described and the chapter concludes with a

statement of the problem addressed in this thesis.

The greenlands design problem detailed by Roberts (2003) concerns an urban fringe

area west of Toronto in Southern Ontario, Canada. In this region single family residential

housing and aggregate extraction (hereafter referred to collectively as urban), agriculture,

and natural areas co-exist. The analysis aims to inform land use decision making concerning

the effects of land use, in particular potential habitat loss and fragmentation represented

by reduction in the area and connectedness of natural land. The model takes into account

the existing landscape features and the existing land use. Currently abandoned fields could

potentially be used to allow for urban growth, re-seeded or allowed to regenerate as natural

areas to contribute to habitats, or restored as agricultural land. The configuration of the

landscape features is important in the evaluation of the land use.

27
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3.1 Problem Description and Model Formulation

The problem was formulated as a multiobjective configuration optimization problem. Since

most of the objective functions are non-commensurate a multiobjective optimization frame-

work is appropriate. Configuration optimization is a class of combinatorial optimization

that manipulates geometric and topological properties of a system in order to optimize the

system performance (Roberts 2003).

The greenlands design problem discussed in this section employs eight objective func-

tions based on landscape ecology principles to obtain a set of optimal trade-off configura-

tions. The configurations were generated by assigning to each candidate site for land use

change one of four land use categories. Landscape ecology relates the configuration of the

landscape to its function for various purposes such as supporting habitats.

The study area is the small study area discussed in Roberts (2003). The union of four

input vector polygon layers generated the polygons used to determine the candidate sites.

These input data layers are vector polygon Geographical Information System (GIS) data

layers for an Ecological Land Classification (ELC) data set, a property parcel land use data

set from the provincial property assessment database, soils data, and groundwater recharge

areas. The latter two data sets were primarily used in pre-processing while the ELC data

was used to create the generalized land use classifications and the property assessment data

was used to denote urban areas. The initial candidate sites for land use change are all of

the abandoned fields in the study area. The selection of these candidate sites reflects that

the landscape design is constrained by the existing natural and man made features of the

landscape; existing features of the landscape cannot be displaced. Prior to optimization the

initial candidate sites were pre-processed to address important considerations in landscape

design. Groundwater recharge areas were protected by enforcing natural land use for any

initial candidate sites in those areas. Similarly, any candidate sites in bottom land soil

areas as found along water courses were assigned natural land use. As well, candidate sites

in areas currently having ‘muck’ or ‘organic’ soil were set aside for wetlands. These pre-

processing steps allowed specific localized concerns to be addressed and reduced the size of

the optimization search space. Following pre-processing there remained 12 candidate sites

for land use change.

Unlike in Roberts (2003) sliver polygons on the edge of the study area resulting from
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small differences in the input data source polygons were removed (cf. Roberts and Calamai

(2007)). This step reduced the number of candidate sites to eight. The landscape config-

uration problem is combinatorial since it involves selecting one of four land use codes for

each of the candidate sites. This combinatorial structure results in significant additional

effort required to process each additional candidate site, therefore it is desirable to remove

sliver polygons. To remove sliver polygons they can be merged with one of their bordering

polygons on the edge of the study area. This merging can be done by users generating the

input data although it is more difficult than keeping the sliver polygons. Since the slivers

have little area this merging does not significantly affect the objective functions measuring

the percentage of the area assigned to each land use area. If the sliver is on the edge of the

study area then it is unlikely that this merging will affect the connectivity of the natural

areas or the joins between natural or natural and urban sites, particularly since most of

the slivers border only one other polygon. No objective functions are significantly affected

by the removal of sliver polygons at the edge of the study area. If the sliver is in the

centre of the study area then merging it into one of its bordering polygons could change

the adjacency relationships between its bordering polygons and affect all of the objective

functions except the land use area objective functions. For example, a sliver polygon may

be required to connect two core natural areas to form a large contiguous natural area.

A third possibility exists in addition to merging the slivers and keeping the slivers. An

alternative representation of the polygon boundaries, e.g., fuzzy boundaries, can be used to

avoid changing the adjacency relationships while reducing the number of candidate sites.

This approach requires additional processing of the input data to transform it into the

alternative representation; the user will not be able to directly use their GIS data as input.

The candidate sites are represented by polygons on the landscape; these polygons were

created by overlaying the input source data maps to create a partition of the landscape

into polygons of land with known attributes. These candidate sites are shown in gray on

the study area map in figure 3.1.

Once the candidate sites and their boundaries were defined, the generalized land use

classes were modelled using categorical decision variables. The categories were aggre-
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Figure 3.1: The eight candidate sites for land use change
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gated from 28 total land use classes in the source data. The site codings were repre-

sented by a quaternary chromosome where 1 indicates ‘unchanged’, 2 indicates ‘natu-

ral’, 3 indicates ‘agricultural’, and 4 indicates ‘urban’. For example, the chromosome

s = {1, 2, 1, 4, 3, 2, 2, 1} encodes the uses for 8 candidate sites. The first, third, and eight

sites are unchanged; the second, sixth, and seventh sites are natural; the fifth site is agri-

cultural; and the fourth site is urban. Each unique chromosome corresponds to a different

configuration of the landscape with different land uses for the candidate sites.

This representation is amenable to use with the chromosome data structure used for

members of the population in a genetic algorithm. The resultant search space contains

48 = 65, 536 potential solutions representing different landscape configurations.

Based on landscape ecology principles, Roberts formulated eight objective functions.

Some of these objective functions are conflicting since they compete for the available land

while other sets of objective functions are correlated. Many of the objective function

evaluations used operations on planar and dual graph data structures generated from the

polygons in the land use source data files and the adjacency relationships of those polygons.

Each objective function was formulated for maximization. Natural land use implicitly has

the highest priority, as reflected by its emphasis in the majority of the objective functions.

The remaining objective functions emphasize that areas for human land uses are also

important although these land uses are less sensitive to their locations than natural land

uses. A description of each objective function follows; see Roberts (2003) for details and

derivations from landscape ecology principles.

GA1 Area Weighted Mean Shape: Compact natural areas are more desirable than elon-

gated natural areas. This principle is modeled by maximizing the mean area to

perimeter ratio of the n largest sets of connected natural polygons. In this study

n = 5.

GA1a Area of Natural Features: More natural area is better. This objective is imple-

mented by maximizing the ratio of the area of the candidate sites coded ‘natural’

and the total area of the candidate sites.

GA2 Natural Feature Connectivity: Connected natural sites are preferable to the same

natural sites scattered across the landscape. This objective maximizes the mean
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number of connected natural sites in the n largest connected sets of natural sites.

GA3 Stepping Stones of Natural Features on Shortest Paths: Paths of natural sites

through the landscape allow for flora and fauna mobility. The number of natural

sites along (n)(n−1)
2

‘stepping stone’ shortest paths between the n largest natural

areas is maximized.

GA4 Patches of Natural Features Within Urban Areas: Patches of natural area within

urban areas are desirable. This objective maximizes the number of links between

urban sites and natural sites within urban areas based on spatial autocorrelation join

counts.

GA5 Agricultural Area: In contrast to objective GA1a, the area of the candidate areas

assigned to agriculture is maximized. This objective is implemented as the ratio of

the area of the candidate sites coded ‘agricultural’ and the total area of the candidate

sites.

GA6 Clustered Development: More compact urban areas are more desirable. Similar to

objective GA4 this objective maximizes the number of urban to urban adjacencies

and is implemented based on spatial autocorrelation.

GA7 Urban Area: Similar to objectives GA1a and GA5 this objective competes for land

use. It is implemented as the maximization of the ratio of the area of the candidate

sites coded ‘urban’ and the total area of the candidate sites.

All objective functions except GA4 and GA6 are formulated such that their values always

lie in the range [0, 1]. GA4 and GA6 are implemented as normalized spatial auto-correlation

join counts: their values measure the deviation from the expected number of joins normal-

ized by the join count standard deviation. The land use area objective functions, GA1a,

GA5, and GA7, not only lie in the range [0, 1] but can attain the limits of that range

within the solution space. Since these objective functions are in conflict the Pareto opti-

mization procedure should return a range of values for each of these objective functions

spanning most of [0, 1]. The exact endpoints may be missed but whether the solutions

approximately span [0, 1] for each of these objectives can give some notion of the quality
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of the approximation to the true Pareto front. This observation was used in determining

an appropriate population size and number of generations for NSGA-II.

In Roberts (2003) and in this thesis all potential solutions represented by the chro-

mosomal encoding were assumed to be feasible. In other words, any candidate site could

feasibly be assigned any of the four land use categories. The feasibility of the solutions

returned by the optimization procedure could be assessed after examining the solutions or,

in future implementations, could be explicitly modelled as constraints in the optimization

model. As noted in section 2.1.2, NSGA-II can be applied to constrained multiobjective

optimization problems (Deb et al. 2002) although that capability was not used in this the-

sis as information regarding the suitability of each site for each land use was unavailable.

As well, it is more informative to consider all possibilities since it may be possible to con-

vert unsuitable sites for certain land uses to suitable sites. In a real world decision process,

the capability of NSGA-II to handle constraints would be used to represent the suitable

land uses for each site based on information from the stakeholders.

3.2 Solution Methodology

The multiobjective landscape configuration design problem was solved using an evolu-

tionary multiobjective optimization algorithm. In the context of Pareto optimization

‘solved’ denotes the generation of a range of solutions approximating the true Pareto front

(Miettinen 2001). Landscape configurations whose objective function values approached

the Pareto front were evolved using the Non-dominated Sorting Genetic Algorithm II

(NSGA-II) developed by Deb et al. (2002). NSGA-II is described in section 2.1.2. The set

of solutions returned must be further examined by the decision makers in order to select

a solution; this process may involve considering additional constraints or objective func-

tions not included in this model but can be completed after the decision makers have been

informed about the attainable limits and the trade-offs between the objective functions.



34 Clustering Multiobjective Programming for Land Use Planning

3.3 Results and Conclusions

Roberts (2003) found the multiobjective optimization approach described above tended

to produce landscape configurations that reflected the importance of the natural features

while maintaining some diversity in the population of solutions. The small study area

restricted the impact of some objective functions. For example, even if all candidate sites

were allocated to natural land use the two largest pre-existing natural areas could not

be joined. While this may have been evident from the area map it was clearly shown in

the optimization results and in the two larger study areas considered in Roberts (2003)

such constraints may not be at all obvious. As well, the small study area contains few

urban areas and few candidate sites adjacent to these urban areas. Thus the clustered

development objective function, GA6, could be only marginally improved.

In the small population used due to computational limitations and the goals of the

study in Roberts (2003), most of the final solutions were very similar. The methodology

proposed in this thesis requires a larger and more varied population of solutions as it aims

to consider an approximation of the entire spectrum of optimal trade-off solutions instead

of finding a set of good designs taking into account the implicit land use priorities.

3.4 Problem Statement

The aim of this thesis is to consider a hierarchical clustering approach to post-Pareto

analysis for discrete non-linear multiobjective optimization problems in order to obtain a

tractable representation of the non-dominated set under consideration. Pareto optimization

is desirable for many multiobjective problems since it allows the decision makers to consider

the possible objective function trade-offs before making value judgments. Unfortunately

the number of solutions returned for consideration from Pareto optimization can be too

large to be tractably considered by the decision makers. Previous post-Pareto methods

entail eliminating some of the elements of the non-dominated set before presenting the

set to decision makers. This approach is unnecessary and inappropriate if the distribution

of the elements of the Pareto front is non-uniform. The landscape configuration problem

formulated by Roberts (2003) described in section 3.1 is used as an example of such a
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problem. The use of this problem implies that concerns particular to spatial decision

making in a planning context must be considered.

The work presented in this thesis does not consider preferences, goals, or constraints al-

though these problem aspects could be included at the alternative generation stage instead

of using unconstrained NSGA-II. It is expected that in a real world decision context the

problem would be iteratively refined to align with the decision makers’ mental constructs

of the problem and to reflect the available data. This refinement could include goal levels

or constraints limiting the objective function values and reducing the size of the solution

space.

Chapter 4 outlines the proposed cluster analysis methodology, alternative approaches,

and the evaluation framework. Chapter 5 applies the methods and presents the results.

Subsequent chapters discuss and assess these results.



Chapter 4

Methodology

This chapter begins by developing the proposed cluster analysis methodology using a de-

scription of the input data, then discussing data scaling, proximity calculation, and selec-

tion and application of a clustering algorithm to a problem. Methodologies for applying

three comparable clustering methods discussed in the literature review for comparison

to the proposed methodology follow as well as the validity assessment methodology for

evaluation of the proposed methodology.

4.1 Proposed Methodology

Cluster analysis is a sub-field of exploratory data analysis, in contrast to traditional sta-

tistical methods for confirming or rejecting hypotheses about data. No a priori expected

model for the data is necessary for cluster analysis (Dubes 1993). Before applying a clus-

tering algorithm the data must be prepared to remove the potential for biases due to the

scale and representation of the data. As well, a proximity measure must be chosen to

quantify the differences between the elements to be clustered, in this case the different

objective function vectors of the landscape configurations returned by the optimization.

36
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4.1.1 Input Data

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002) was used to

generate the input data for the proposed hierarchical cluster analysis methodology. Crowd-

ing in NSGA-II and other diversity preservation strategies such as niching in other multi-

objective GAs work to avoid premature convergence to a single solution (Zitzler and Thiele

1999). However, even with these strategies, after a large number of generations conver-

gence to a single solution may still occur. For the problem being considered the diversity of

the solutions on the three land use objective functions was used to determine a population

size and number of generations for NSGA-II that result in a diverse set of solutions. A

population size of 200 solutions evolved over 50 generations was sufficient to achieve a set

of solutions with well-spread performance on the three land use area objective functions.

NSGA-II requires three parameters in addition to the number of generations and the pop-

ulation size. These parameters control for the selection, mating, and mutation processes

performed at each generation in NSGA-II. For this study the values of the these param-

eters were 0.75 for the binary tournament selection threshold, 0.9 for the crossover rate,

and 0.01 for the mutation rate. These parameter values were held constant to establish the

population size and number of generations necessary to give a well-spread set of solutions

with respect to the three land use area objective functions. Since adequate performance

was achieved other parameter values were not considered.

The NSGA-II results contained 171 unique solutions from the 48 different possible land

use configurations. All of these solutions had unique objective function vectors. The

duplicate chromosome vectors were omitted from the analysis. The objective function

values are displayed as boxplots in figure 4.1. Figure 4.2 shows the objective function values

for the 6561 solutions on the fully enumerated Pareto front for the land use configuration

problem. The objective functions labels used in these two figures are defined in section 3.1.

These figures are very similar but a few differences are notable. None of the percentage land

use area objective functions, GA1a, GA5, and GA7, attained a value of 1 in the NSGA-

II results. The natural and urban land use areas exceeded 0.8 and the agricultural area

exceeded 0.95. Solutions in which these objective functions attain their maximal value of

1 are extremal solutions and are likely not politically acceptable, as noted in the decision

scenario in section 5.3. As well, there were proportionally fewer solutions in the upper
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Figure 4.1: Boxplots of objective function values for NSGA-II results
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Figure 4.2: Boxplots of objective function values for full enumeration of the true Pareto front
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portions of the ranges for the natural and agricultural land use objective functions, GA1a

and GA5, respectively. The mean value for the urban land use objective function, GA7,

was higher in the NSGA-II results than in the enumeration of the true Pareto front. While

the ranges of new area for each land use were well represented in the NSGA-II results,

there is a bias toward urban land use and away from natural and agricultural land use.

The mean for GA2, the connectivity of natural area, was near the bottom of the range in

the NSGA-II results and near the top of the range in the Pareto front enumeration. There

were proportionally more solutions near the top and bottom of the range for GA6, clustered

development, in the NSGA-II results than the Pareto front enumeration. Objective GA4,

patches of natural features in urban areas, took only a single value in all of these results

due to the small problem size and the existing land use configuration, therefore it was

excluded from further analysis.

The input data was represented as a matrix, X, containing the data features for each

element to be clustered. In this case these features were the objective function values

for each Pareto optimal landscape configuration. The n rows of X represented the n

landscape configurations represented by the chromosome vectors returned by NSGA-II.

The p columns of X represented the objective function values. Thus entry xij of X was

the jth objective function value for proposed landscape configuration i. The elements to

be clustered can be envisioned as n points embedded in a p-dimensional space.

Since the decision variables were categorical, the true Pareto front and the approxima-

tions returned by NSGA-II were discrete sets of solutions. Due to this discreteness and

the non-linearity of some of the objective functions the density of the solutions was not

homogeneous across the Pareto front. This variation in solution density implies that a

hierarchical clustering structure may exist.

4.1.2 Clustering Tendency, Data Preparation, and Scaling

Cluster analysis should begin by checking the data for clustering tendency. If no such

tendency is found then any clustering of the data should not be considered valid, although

a dissection of the data using a clustering methodology may be useful (Dubes and Jain

1979). A visual inspection of the scatter plots of each pair of objective functions shown in

figure 4.3 was considered to establish the existence of hierarchical clustering in the NSGA-II
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results.

Data normalization or scaling is often necessary for clustering (Milligan and Cooper

1988). Without scaling the relative values of the objective functions may act as implicit

weightings. This weighting is undesirable since Pareto optimization is used to generate an

unbiased set of optimal trade-off solutions without considering the relative importances of

the objective functions.

Several different methods may be used to normalize the data including zero-mean shift-

ing, z-score normalization, and range scaling (Dubes and Jain 1976). Zero-mean shifting

is accomplished by subtracting the mean value for each objective function from all of the

measures of that objective function. Zero-mean normalization does not affect the relative

scale of the data features and is not considered further. Z-score normalization involves

subtracting the objective function mean values and then dividing by the objective func-

tion standard deviation. Z-score transformations assume an underlying Gaussian processes

(Dubes and Jain 1976). Since the distribution of the objective function values is not a mix-

ture of Gaussian distributions this assumption is not satisfied and this approach is also

dismissed from further consideration. Range scaling maps the objective function values to

the range [0, 1] by subtracting the minimal objective function value and dividing by the

objective function value range.

Milligan and Cooper (1988) considered seven methods for normalizing data in hier-

archical cluster analysis. The normalization methods tested were z-score normalization,

division by the standard deviation, division by the maximal value, division by the range of

values, range scaling to map to [0, 1], division by the sum of the observations, and conver-

sion to a ranking. Range scaling performed better for recovering cluster structures than

raw data and all of the other normalization methods. In particular, range scaling signifi-

cantly outperformed z-score normalization, division by standard deviation, and conversion

to ranks. Similarly, Gnanadesikan et al. (1995) found range scaling to result in fewer

misclassifications for known cluster structures than standard deviation normalization or

unscaled data. An empirical study by Schaffer and Green (1996) aimed to complement the

Milligan and Cooper (1988) Monte Carlo study to form a comprehensive understanding

of the impacts of data normalization on clustering. Schaffer and Green (1996) consid-

ered the effects of six normalization methods on the clustering of real world data sets
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using k-means clustering. The normalization procedures were the same as those used by

Milligan and Cooper (1988) with a trimmed range method included and the division by

standard deviation excluded. The trimmed range method is similar to the range scaling

method but excludes the top and bottom 5% of the variable values when calculating the

range. The clustering results with normalization were compared to the k-means results

on the raw data and to several background attributes not included in the analysis. This

step is similar to typical tests of external cluster validity as discussed in section 4.1.6. In

contrast to Milligan and Cooper (1988), Schaffer and Green (1996) found that clustering

based on the raw data performed best. This difference may be a result of using the k-

means partitional clustering algorithm or indicate a lack of noise in the data, since the raw

data performed well in Milligan and Cooper (1988) other than when significant noise was

present. As in Milligan and Cooper (1988) other elements of a clustering study were seen

to be more significant than the effects of normalization, particularly the choice of clustering

method and the type and amount of noise in the raw data.

In addition to the scaling of the results there may be scaling issues implicit in the

Pareto optimization algorithm. In order to calculate the crowding distance in NSGA-II

the side lengths of cuboids each containing only a single solution must be computed. These

values are used in conjunction with the Pareto ranks in the crowded-comparison operator.

Deb et al. (2002) notes that each objective function must be normalized before computing

the crowding distance. This normalization uses linear range scaling to the range of values

for the objective function in the current generation. NSGA uses a sharing mechanism

instead of crowding that also included an implicit combination of objective functions;

the sharing parameter defined a neighbourhood around each solution and the fitness of a

solution was shared with any other solution in its neighbourhood. This neighbourhood can

be defined using any distance measure but has the same width along all of the objective

functions.

Range scaling was employed in this thesis to remove the implicit relative weights of

the objective functions in the NSGA-II results. All but one of the objective functions

were formulated to range [0, 1]. Only the spatial autocorrelation objective functions, GA4

and GA6, were not formulated to lie in this range. As noted above, since GA4 took only

a single value it was excluded from further analysis. Objective function GA6, clustered
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development, was rescaled to lie in the range [0, 1] by mapping the lowest value occurring

in the NSGA-II results to 0 and the highest value occurring to 1 and linearly adjusting all

other values accordingly. Theoretically each objective function could have attained a value

of 1 within the solution space although the existing landscape configuration limited some

objective functions to a narrow range of values as seen in figure 4.1. The scaling within

NSGA-II was not considered and the Euclidean distance was used in the crowding distance

calculation; although it could have been modified to use the known limits for the objective

functions, the algorithm was applied as described in Deb et al. (2002).

4.1.3 Proximity

For most clustering methods part of preparing for cluster analysis, in addition to data

normalization, is obtaining a representative proximity measure (Jain and Dubes 1988).

The most common measures are symmetric and real-valued; in particular the Euclidean

distance is frequently used (Cormack 1971). Some reasons for the common use of the

Euclidean distance include ease of interpretability, particularly when using visualizations,

and invariance to rotations and translations. Many other metrics are possible, depending

on the type of data and the application.

Similarity measures include the Minkowski norms (which include the Euclidean and

rectilinear distances), the angular separation (or cosine metric), the correlation, the Can-

berra metric, and the Jaccard and simple matching metrics for binary categorical data

(Cormack 1971). Some metrics cannot easily accommodate correlated variables. The

Mahalanobis distance adjusts for the correlation between variables by incorporating the

covariance matrix (Cormack 1971). The Mahalanobis distance between two vectors x and

y with covariance matrix S is given by dM(x, y) =
√

(x− y)TS−1(x− y). If the covariance

matrix is the identity matrix, i.e., the variables are independent, then the Mahalanobis

distance reduces to the Euclidean distance (Cormack 1971). The Mahalanobis distance

imposes a single model for all clusters; it assumes a single covariance matrix S over the

entire domain of the elements to be clustered (Mimmack et al. 2001). This assumption

is inappropriate if the correlation between the variables varies between clusters, i.e., if

the clusters have different shapes. The Mahalanobis can adapt to different correlations

in different regions if local covariance matrices are available. For the land configuration
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problem described in section 3 there is no obvious underlying statistical generation process

resulting in clusters of a consistent shape or size. Since the clusters are unknown prior

to the analysis the shape of each cluster cannot be known and thus the clusters cannot

be modelled with localized Mahalanobis distances using the cluster covariance matrices

(Cormack 1971).

The methodology employed in this thesis used the Euclidean distance since it is a

common interpretable distance measure and the differing cluster shapes cannot be mod-

elled. Since the Euclidean distance is sensitive to scaling (Xu and Wunsch 2005) care was

taken to normalize the data as discussed above. This normalization may not remove all

of the implicit weighting due to the distance measure since it cannot guarantee that the

assumption of the Euclidean distance that each unit change for each objective function

is of the same importance is satisfied. The objective functions were formulated to reflect

the decision problem and the focus on preserving the natural function of the study area

while permitting urban development, preferably in a small number of compact areas, and

agriculture. The additional implicit weight due to the correlation of the objective functions

was acceptable as it reflects the conflict between, for example, the land use area objective

functions, GA1a, GA5, and GA7, and the priority of the natural land use represented by

the majority of the objective functions.

4.1.4 Choice of Clustering Algorithm(s)

As discussed in section 2.2, some clustering of multiobjective optimization results has been

performed as post-Pareto analysis. Within this framework Morse (1980) found Ward’s

method, the group average method, and the centroid method best suited to the task

and Rosenman and Gero (1985) found complete linkage appropriate for their application.

These four methods were considered as candidates for the hierarchical clustering analysis.

The weighted version of the group average method was used since it gives equivalent weight

to those solutions with different land use configurations but identical performance on the

criteria. Although different land use configuration with identical performance can exist

there were no such solutions returned by NSGA-II; here the weighted and unweighted group

average linkage methods are equivalent. Solutions with identical land use configurations

were removed from consideration before clustering since no additional information can
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be derived from these duplicates. Dendrograms of clustering results using the centroid

method, Ward’s method, the complete linkage method, and the weighted group average

method are given in figure 4.4.

Reversals occur when clusters are merged with a smaller inter-cluster distance than

the sub-clusters that were joined to create those clusters (Everitt et al. 2001). Reversals

create a non-monotonic sequence of clusters since the sub-clusters of one of the clusters

being merged were created by merging at a larger distance than the merging giving the

current cluster. In a dendrogram, a non-reversal merging is shown as two vertical lines up

from the sub-clusters to the merging distance joined by a horizontal line at the merging

distance as in all of the mergings in figure 4.4d. Since a merging with a reversal occurs

at a smaller distance than the merging of the sub-clusters, it is shown in the dendrogram

as vertical lines down from one or both of the sub-clusters to the horizontal line at the

merging distance. Reversals make the dendrogram difficult to interpret as a tree structure

(Everitt et al. 2001). For this data set the centroid method gave reversals as highlighted

in figure 4.4a and was therefore inappropriate.

At many divisions in the weighted group average dendrogram, see figure 4.4d, one of

the clusters was much larger than the other cluster. The preference for Ward’s method by

Morse (1980) was based on the resulting balanced clusters. This property would imply that

preferring one branch over another at a given node should reduce the number of solution

to be considered by approximately half. After traveling down the dendrogram through

several nodes the number of solutions remaining to be considered should be significantly

reduced. While this property is desirable it did not correspond to the distribution of

the elements of this non-dominated set. For example, consider the maximum number

of solutions remaining after three branchings. If the clusters were balanced each cluster

after three branchings should contain 21.375 elements. For the weighted group average

linkage there may have been either only 2 solutions or as many as 72 solutions remaining.

Applying Ward’s method resulted in 6 to 49 elements per cluster after 3 branchings. Since

Ward’s method performs well only for balanced spherical clusters (Everitt et al. 2001) it

was unsuitable for this data set. Complete linkage was also designed for spherical balanced

clusters but may perform reasonably well in other cases.

The methodology proposed in this thesis used the weighted group average hierarchical
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clustering. Agreement with the complete linkage method was taken as an indicator of

cluster validity.

4.1.5 Application of Clustering Algorithm(s)

The weighted group average hierarchical clustering algorithm was applied to the normalized

data using the Euclidean proximity measure. The results of the hierarchical clustering

method were reported using a dendrogram to represent the hierarchy and parallel axis

plots or plotmatrices of the objective function values of the solutions in each cluster.

The hierarchical clustering algorithm was applied by using the Statistical Toolbox for

MATLAB to apply the algorithm shown in table 4.1. After reading in the NSGA-II results

as a matrix and removing solutions with identical land use configurations, the pdist func-

tion was used to compute the Euclidean distance between the objective function vectors

represented as the rows of the input data matrix in step 1. Then the linkage function

was used to merge the closest clusters in steps 2 and 3 and compute the distance between

clusters using the ’weighted’ method for the weighted average linkage and the ’complete’

method for the complete linkage in step 4. Finally the dendrogram function was used

to generate the dendrogram figures to display the results in step 5. Step 6 repeats the

merging process until all of the clusters have been merged into a single large cluster.

4.1.6 Validation

Since clustering methods will find clusters even in random data the validation of clustering

results is difficult. No absolute measure of cluster validity exists although validity indices

may be used to assist in assessing cluster validity (Halkidi et al. 2001). The structure found

must be assessed to determine whether the clustering is truly representative of the data,

including whether the data has any structure whatsoever (Gordon 1987). The final use of

the results should be considered; a comprehensive statistical assessment is not necessary if

the cluster results are to be simply a convenient summarization of the data. While measures

and tests of cluster validity can provide some indication of the validity of the output, the

best measure of cluster validity may be to consider the results in terms of expert knowledge

of the application (Jain et al. 1999). In any case, some objective assessment of the cluster
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1. Compute the Euclidean distance between each pair of solutions, xi and xj

d(xi, xj) =
√

(xi − xj)(xi − xj)′

2. Let each solution xi be a cluster

3. Merge clusters a and b with the smallest value d(a, b) to create cluster c

4. Use a linkage measure to compute d(c, d) from the new cluster c to all other

clusters d:

Weighted group average linkage:

d(c, d) = 1
|c||d|

∑|c|
i=1

∑|d|
j=1 d(xi, xj)

Complete linkage:

dist(c, d) = max {d(xi, xj) : xi ∈ c, xj ∈ d}

5. If only one cluster remains, generate dendrogram and stop

6. Else, go to 3

Table 4.1: Hierarchical Linkage Clustering Algorithm

analysis results should also be performed since human experts may be capable of finding

a rationalizing explanation of any cluster structure (Gordon 1987).

Clustering tendency is discussed in section 4.1.2. There are three aspects of cluster

validation: internal validity, external validity, and relative validity (Halkidi et al. 2001).

Internal validity evaluates how well the clustering corresponds to the input data. Exter-

nal validity compares the clustering to real world knowledge of the application or of the

structure of the data. Relative validity compares the clustering results to those obtained

using different clustering methods or the same method with different input parameters.

The remainder of this section details the methods used to assess each of these aspects of

validity.

Two approaches to internal validity of clustering results were used in this thesis. The
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first approach was to consider the fit of a cluster hierarchy to the proximity matrix. The

cophenetic correlation coefficient (CCPC) is the most common measure of cluster hierarchy

fit (Dubes and Jain 1979). The CCPC measures the correlation of the distances between

the input data points and the cophenetic matrix derived from the dendrogram using the

product-moment correlation. Each entry, ci,j, of the cophenetic matrix is the level of the

hierarchy at which elements i and y are first in the same cluster, i.e., the birth height

of the cluster containing i and j. The CCPC is calculated using equation 4.1 where n is

the number of elements to be clustered, dij is the entry corresponding to elements i and

j in the proximity matrix, and cij is the entry corresponding to elements i and j in the

cophenetic matrix (Dubes and Jain 1979).

CCPC =
(1/N)

∑

dijcij − dc

[(1/N)
∑

d2
ij − d

2
]
1

2 [(1/N)
∑

c2
ij − c2]

1

2

(4.1)

where, N = n(n − 1)/2, d = (1/N)
∑

dij , and c = (1/N)
∑

cij . All summations are over

all values of i and j where i < j. Dubes and Jain (1979) noted that a CCPC greater than

0.8 indicates a high degree of agreement between the proximity and cophenetic matrices

although the exact value lacks interpretability since it is influenced by the choice of clus-

tering algorithm, proximity measure, and the whether the proximity matrix is ultrametric.

A proximity matrix is ultrametric if it satisfies equation 4.2 (Dubes and Jain 1979).

dij ≤ max(dik, dkj) ∀(i, j, k) (4.2)

The second approach used to assess interval validity is data perturbation or stability

testing. This approach entails modifying the input data in some way and comparing the

results to the original clustering (Gordon 1987). The cluster structure should be robust

to reasonably small changes. Three stability tests are employed; in each case the data

was modified and the cluster analysis was repeated. Each test was repeated 5 times for

each set of input parameters. The first stability test was performed by adding random

perturbation terms to the objective function values. These random perturbations were

uniformly distributed with a mean of 0.5 and a width of 0.05, 0.10, and 0.25, corresponding

to 5%, 10%, and 25% of the potential range for the objective function values. The second

stability test was performed by removing some of the NSGA-II results from the objective
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function matrix. 5%, 10%, and 25% of the data points were removed and the cluster

analysis was repeated. The third stability test was performed by dividing the data set into

approximately two halves by randomly assigning each member to one of two subsets.

The external validity was assessed by comparing the cluster structure to the landscape

configurations. This external validation is similar to having a subject matter expert assess

the results in terms of their applicability to the decision. The most significant component

of the decision is the trade-off between the natural, agricultural, and urban land uses; the

cluster structure should reflect that trade-off and it should be clear from the landscape

configurations for the solutions in each cluster that this trade-off has implications for

the landscape designs. The landscape configurations corresponding to clusters were also

considered to determine whether the cluster analysis makes clear the effects of candidate

sites for particular objective functions.

Relative validity was also considered. Dubes and Jain (1979) recommended applying

multiple clustering algorithms and taking agreement in the results as an indicator of a

valid cluster structure. Parts of the structure that are similar with different clustering

methods likely indicate true structure in the data since the cluster models in the different

clustering algorithms will differ. Since the underlying models and assumptions for the

group average and complete linkage methods are significantly different, their agreement,

where it exists, was taken as an indicator of a valid cluster structure. As well, in this

thesis the dendrograms resulting from alternate clustering algorithms were compared to

the chosen clustering method to assess the robustness of the uncovered structure to the

clustering algorithm selection.

4.2 Comparable Methods

The alternative methods applied for comparison to the proposed methodology are described

in section 2.4.3. These methods were Chameleon, DBSCAN, and a binary monothetic

decision tree method. In spatial decision support overly complex analysis methodologies

are akin to black boxes; the understanding of the methodology by the decision makers

is essential to their cooperation during the analysis and the implementation of the final

results.
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Chameleon is an example of a more complex clustering algorithm using the k-nearest

neighbour graph and dynamic cluster models. Chameleon was implemented using the

hMetis package (http://glaros.dtc.umn.edu/gkhome/) and Matlab based on Karypis et al.

(1999) and to partition the k-nearest neighbour graph and to find the optimal edge cuts in

the computations of the relative interconnectivity and closeness. Chameleon was applied

using a value of k = 15 for the k-nearest neighbour graph. The k value was increased from

10 used in Karypis et al. (1999) in order to obtain a connected k-nearest neighbour graph.

The connectivity of the k-nearest neighbour graph is necessary to obtain a single tree

structure when merging the partitions. The edge weights of the k-nearest neighbour graph

were computed as 1 − normalized Euclidean distance. The k-nearest neighbour graph is

partitioned into 16 subgraphs. A value of 2 was used for α, as in Karypis et al. (1999), to

emphasize the relative closeness over the relative interconnectivity.

DBSCAN represents an entirely different approach to clustering than the hierarchical

clustering methods; instead of considering the proximity of the elements to be clusters

DBSCAN uncovers clusters that are dense regions in the solution space. The Matlab code

for DBSCAN was obtained from http://www.chemometria.us.edu.pl/ (Daszykowski et al.

2001; 2002). In order to construct a hierarchical clustering DBSCAN was applied iter-

atively: first on the root, then on the resulting subclusters, and so on. DBSCAN uses

two parameters, k, the number of other elements that must be in the neighbourhood of

the current point to consider it a dense area, and Eps, the distance defining the neigh-

bourhood around a point. Eps was approximated using equation 4.3 where x is the data

matrix containing the objective function values, Γ is the gamma function, n is the num-

ber of objective function, i.e., columns in the data matrix, and k is as is described above

(Ester et al. 1996).

Eps =

[∏

(max(x)−min(x)) k Γ(0.5n + 1)

m
√

πn

]
1

n

(4.3)

DBSCAN was applied with Eps determined by the formula unless only a single cluster

resulted and k = 3. If only a single cluster resulted the value of Eps was changed to return

two clusters. If more than two clusters resulted using the automated value for Eps then

the branching split the current node into the resulting number of clusters. k values greater

than 4 require more computation and do not significantly improve the quality of the results
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(Ester et al. 1996). (Ester et al. 1996) used a value of k = 4 for all of the two-dimensional

data sets considered. This thesis used a value of k = 3 since it was desirable to classify all

of the solutions in a cluster; k = 4 resulted in some solutions being labelled as outliers.

The unsupervised decision tree method was implemented in Matlab. The unsupervised

monothetic decision tree method (Basak and Krishnapuram 2005) partitions the elements

to be clustered based on the values of a single objective function at each branching. The

objective function to define the branching is chosen as the objective function with the

maximal homogeneity. The measure of homogeneity used is defined in terms of similarity.

The similarity between data items xi and xj is denoted as µij and is defined as in equation

4.4 where dij is the Euclidean distance between xi and xj , dmax is the maximum distance

between the current data items, and g is as shown in equation 4.5. For a single objective

function, a, the similarity with respect to that objective function is denoted µa
ij. The

homogeneity for objective function a was computed using equation 4.6. After selecting

the objective function with the largest value of Ha the threshold value of that objective

function to split the data items was determined. The division was performed by plotting

the histogram of the values of each objective function and splitting in the steepest valley.

The valleys were evaluated using equation 4.7 and choosing the maximal value. The

interpretability of the resulting decision tree was compared to the dendrogram resulting

from the proposed methodology. The dendrogram was expected to more clearly present

the relationships between the objectives functions by making trade-offs between objectives

more salient.

µij = g

(

1− dij

dmax

)

(4.4)

where g(x) =







x for 0 ≤ x ≤ 1

0 otherwise
(4.5)

Ha = −
(

∑

i,j

µij(1− µa
ij) + µa

ij(1− µij)

)

(4.6)

ei =
min{qi − vi, qi+1 − vi}

1 + λvi

(4.7)
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4.3 Evaluation Methodology

After applying the cluster analysis methodology described in section 4.1.4 and the methods

for comparison, the results of these clustering methods, average linkage hierarchical clus-

tering described in section 4.1.5, Chameleon, DBSCAN, and the unsupervised decision tree

method described in section 4.2, were considered and evaluated. The proposed hierarchical

clustering method was considered based on cluster validity as described in section 4.1.6.

While it is not the focus of this thesis, the methodology and evaluation presented

employed visualization of the cluster hierarchy, individual clusters, and the relationships

between the objective functions. Clusters were visualized using a parallel axis plot (or value

path plot) as in Jankowski et al. (2001), matrices of scatter plots are used to visualize

objective function relationships, and dendrograms represent the cluster hierarchies. In

future work, these plots will be linked with maps to allow the decision makers to explore

the solution space as recommended by Jankowski et al. (2001).

The most important measure of success of the cluster analysis is the relevance and

correspondence with the application, in this case the land use configuration design prob-

lem. To assess this usefulness each branching in the hierarchy was considered to determine

whether the trade-off represented by choosing one of the resulting clusters over the other

cluster is reasonable. For illustrative purposes, and to consider the use of the structure in

a land use decision process, an example decision is presented in section 5.3. The example

decision begins with a case study decision context giving the decision makers concerns

and priorities and follows through the use of the hierarchical cluster tree until only a few

potential land use configurations remain under consideration. Since other aspects of the

decision may not have been modelled, the tree is not used to select a single solution for

implementation but rather a set of good solutions for further consideration. This exam-

ple decision and the consideration of the dendrogram branchings and the corresponding

landscape configurations encompass the external validity assessment.

The cophenetic correlation coefficient, perturbation testing, and subset clustering were

used to assess the internal validity of the structure resulting from the proposed method-

ology. The cophenetic correlation coefficient measures how closely the dendrogram tree

structure reflects the proximity matrix. In this thesis this measure relates to how well

the summary structure of the data used in the decision process reflects the trade-offs and
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relationships of the objective functions measuring the performance of the landscape con-

figuration. As well, the NSGA-II results were modified by adding random perturbation

factors to assess the stability of the dendrogram; the size of the perturbations required to

significantly change the upper levels of the dendrogram is determined as a measure of the

robustness of the cluster structure. As a third test of the internal validity, the NSGA-II

results were randomly split into two subsets and the resulting dendrograms were compared

to the initial dendrogram using all of the NSGA-II results.

To assess the relative validity the results of a second hierarchical clustering linkage

method were compared to the results of the proposed hierarchical clustering methodology.

If the underlying cluster models differ then agreement in the dendrogram structure indicates

true cluster structure in the data. The second hierarchical clustering linkage method

applied was the complete linkage method as discussed in section 4.1.4. The alternative

comparable methods listed in section 4.2 were also compared to the proposed methodology

to determine whether these methods provide a better summary structure of the data.

Chapter 5 reports the results of applying the methods presented in this chapter. Chap-

ter 6 discusses those results and chapter 7 gives conclusions and items for future work.





Chapter 5

Results

The methodology described in chapter 4 was applied to the 171 landscape configurations

in the NSGA-II results. This chapter details the results, following the outline in the last

chapter, beginning with establishing a clustering tendency and includes the application

of the hierarchical clustering method and cluster validation. Following the application of

the proposed methodology an example decision for the land use configuration problem is

outlined to demonstrate how the cluster analysis results can be used in decision-making. At

the end of this chapter the results of the comparable methods, Chameleon, DBSCAN, and

an unsupervised decision tree algorithm, are presented. Chapter 6 discusses the results

presented in this chapter and chapter 7 presents conclusions and recommendations for

future work.

5.1 Results of Cluster Analysis

This section includes the results of the cluster analysis as described in chapter 4. It

begins by establishing the existence of a hierarchical clustering tendency and discusses the

preparation for the cluster analysis. The results of applying the weighted group average

linkage hierarchical clustering algorithm are reported. Section 5.2 discusses the validity of

these results.

57
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5.1.1 Clustering Tendency

The input to the cluster analysis, i.e., the NSGA-II results, were first considered to estab-

lish that a clustering tendency exists. If no clustering tendency existed then any cluster

structure uncovered by a clustering algorithm would have been an artifact of the clustering

algorithm and not a feature of the input data. Figure 5.1 shows the objective function

values of the NSGA-II results. Each objective function was plotted against each other

objective function. For ease of interpretation and consistency with later results, objective

function GA4 was omitted since it takes only a single value in the NSGA-II results. Ob-

jective functions GA1, GA2, and GA3 displayed little variability due to the constraints

of the existing land use in the study area. The clustered development objective function,

GA6, has more variability and is uncorrelated with the other objective functions with the

exception of the urban land use area objective function, GA7 (Roberts and Calamai 2007).

Trade-offs between two objective functions can be observed in the two-dimensional

data projections in the plotmatrix figure but trade-offs between three or more objective

functions are not obvious. For example, in the projection where GA1a, natural land use

area, is plotted against GA5, agricultural land use area, these objective functions do not

take high values simultaneously. Similar relationships can be seen between GA1a and GA7,

urban land use area, as well as GA5 and GA7. From the problem definition, it is known

that the three land use area objectives, GA1a, GA5, and GA7, compete for the available

land; there is a simultaneous trade-off between these three objective functions that is not

easily seen in figure 5.1.

Considering GA1a plotted against GA5 three large clusters are apparent: one cluster

with low values of GA1a and GA5, one cluster with high values of GA1a and low values

of GA5, and one cluster with low values of GA1a and high values of GA5 . In figured

5.1 these clusters are outlined in grey. These same three major clusters can also be seen

in the plots of GA1a against GA7 and of GA5 against GA7. The attribution of land to

the differing land uses is an important characteristic of this decision and the presence of

these major clusters should be detected by any successful clustering algorithm. Within the

major clusters several smaller subclusters can be seen, confirming the expected hierarchical

cluster structure. For example, in the cluster where both GA1a and GA5 take low values

there are five well-separated dense regions. The true structure may not correspond directly
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to the obvious clusters in the scatter plots since relationships between multiple objective

functions that are not easily visualized may be important. For example, all three of the land

use percentage objective functions must be considered in order to understand the trade-off

for the percentage of land allocated to each land use. The proposed clustering methodology

considers these simultaneous interactions between multiple objective functions.

5.1.2 Data Preparation, Proximity, and Choice of Clustering Al-

gorithm(s)

After establishing the likely existence of a hierarchical clustering tendency, the data was

prepared for the application of the clustering algorithm. Linear range scaling was applied

to objective function GA6 prior to clustering such that the values were in the range [0, 1].

All other objective functions were formulated such that their values lie in the range [0, 1].

This process attempted to remove the implicit weights on the objective functions due to

their varying ranges.

As per section 4.1.3, the Euclidean distance was selected as an appropriate similarity

measure for the cluster analysis. As discussed in section 4.1.4, weighted group average

hierarchical clustering was selected for the cluster analysis and the complete linkage method

was used for validation.

5.1.3 Application of Clustering Algorithm

This section presents the results of applying the cluster analysis using the weighted group

average linkage method to the NSGA-II results prepared as per the last section. Figure

5.2 displays the resulting dendrogram and appendix A contains plotmatrices showing the

subclusters resulting at each branching. Beginning at the root each split of the dendrogram

into two sub-clusters can be qualified in terms of the differences between the sub-clusters.

The branchings for the clusterings are denoted as, for example, C(2,1,1) for a cluster

derived by choosing the second cluster at the first branching, the first cluster at the second

branching, and the first cluster at the third branching.

Two features are important to the success of this cluster analysis. First, the method

must detect obvious clusters such as the three clusters seen in the plots of pairs of the land
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use area objective functions. Second, the method must segment clusters where no obvious

clusters exist by reflecting the structure of the data.

The three obvious majors clusters were detected by this method. Figure 5.3 shows

the two clusters resulting from taking the first branching at the root of the dendrogram.

The trade-off in land area for the different land uses is evident: cluster C(1) contained

the solutions with high values of objective function GA7, urban land use area, which

only coincided with solutions with low values of GA1a, natural land use area, and low

to moderate values of GA5, agricultural land use area. Figure 5.4 shows the objective

function values resulting from branching cluster C(2). The result is a trade-off between

GA1a and GA5, the natural and agricultural land use area objective functions. C(2,1)

had high values of GA1a and low values of GA7 while C(2,2) had low values of GA1a and

high values of GA7. The three major clusters were identified in the first two branchings

as C(1), C(2,1), and C(2,2).

In cluster C(2,1) shown in figure 5.5 there was no obvious branching into two subclus-

ters. The clustering algorithm branched the cluster into two subclusters such that the
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solutions in cluster C(2,1,1) were preferable to those in cluster C(2,1,2) on objective func-

tion GA6, clustered development on which they all attained the maximal value. As well,

no solution in cluster C(2,1,1) took the minimal value for objective function GA5, agricul-

tural land use area. The solutions in cluster C(2,1,2) attained similar or better values of

objective function GA1a, natural land use area, than the solutions in cluster C(2,1,1) and

similar or worse values of objective function GA5, agricultural land use area. None of the

solutions in cluster C(2,1,2) took a value of zero for objective function GA7, urban land

use area, and no solution in cluster C(2,1,1) included any new urban land use area. These

subclusters were clearly different and reflected trade-offs between the objective functions.

After using the clustering structure to select one or more clusters at this level as poten-

tial solutions, other elements of the decision that were not modelled should be considered,

such as political issues or costs of obtaining or transforming certain land parcels. The

following section presents the results of cluster validation for these results. Section 5.3 de-

scribes a hypothetical decision scenario and demonstrates how the structure and trade-off

information returned by the clustering methodology can be used to aid in the selection of

good land use configurations for further investigation. At the end of the decision process

using the clustering structure, the land use codings for the selected candidate sites are

considered.

5.2 Validation of Cluster Analysis Results

This section presents the results of three types of validation for the cluster analysis. Inter-

nal, external, and relative validity, as described in section 4.1.6, are considered.

5.2.1 Internal Validity

The cophenetic correlation coefficient, as described in section 4.1.6, was 0.9247 for the

weighted group average linkage method and 0.9124 for the complete linkage method. Both

of these values were sufficiently high to indicate that the dendrograms are good fits to the

data but the higher value for the weighted group average linkage method cannot be used

as an indicator of a better fit since the cophenetic correlation coefficient value depends on

the linkage method.
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Three test of stability, described in section 4.1.6, were used to examine the internal

validity of the clustering results. Dendrograms of the results of these tests are given in

appendix F. The first of these tests was the addition of a uniformly distributed error term

to the objective function value matrix. Five tests were performed for each of 5%, 10%, and

25% error magnitude. In all cases the dendrograms representing the clustering structure

remained similar to the original cluster structure indicating that the original structure was

robust to this type of error. The existence of three major clusters was clear in all cases

with 5% and 10% error perturbation as well as three of the five 25% error perturbation

tests. In the first 25% error perturbation test the three major clusters existed but were

less clear and in the second 25% error test there appeared to be either two or four major

clusters.

The most significant difference occurring in the error perturbation tests is that at the

first branching one of the three major clusters was sometimes located in the first cluster

instead of the second cluster. The switch of the smallest of the major clusters between

sides of the first branching occurred in two of the 5% error tests, one of the 10% error tests,

and two of the 25% error perturbation tests, including the first test where the structure

was less clear. Some differences resulted in the lower branchings of the error perturbed

dendrograms although in many cases the dendrograms were very similar. The larger error

terms gave less similar dendrograms although in three of the 25% error perturbation tests

the first three branchings were very similar to the original clustering results.

The second test of internal validity was the data deletion test. In this test 5%, 10%,

or 25% of the potential land use configurations returned by NSGA-II were removed from

consideration and the cluster analysis was repeated. All but two of the data deletion tests

clearly identified three major clusters and organized them in the same structure as the

original cluster analysis. In the third 5% deletion test and the fourth 10% deletion test

the three major clusters were clearly identified but the smallest cluster was placed in the

other half of the first branching.

The third test of internal validity was the data split test. In this test the set of NSGA-

II results was randomly split into two subsets and the cluster analysis was repeated for

each subset. In all of the five tests the three major clusters were identified in both of the

subsets and the dendrograms from the two subsets were very similar. In some of the pairs
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of subsets some of the branching heights differed between the two subsets. In the first

half of the second test one of the major clusters was placed on the other side of the first

branching.

The switching of a major cluster between the two halves, in all three types of validity

tests, indicated that the order of the first two branchings is not robust to error in the

data. The dendrograms represent this element of the cluster structure by the heights of

the branchings representing the inconsistency measures for branchings. Branchings that

occur at approximately the same height have small inconsistency values. Highly differ-

entiating branchings exist where a significant height difference exists between successive

branchings. While this feature of the dendrogram does reflect the similar importance of

the first branching and the second branching of the cluster containing two of the major

clusters, a three-way branching in a tree may be more interpretable (e.g., cf. the structure

for DBSCAN in figure 5.21).

In most of the tests some of the structure of the lower clusters remained similar to

the original clustering results although the clustering structures were only highly similar

to two branchings. This variation may be due to less clear clustering in the lower, and

therefore smaller, clusters since fewer elements existed to define the clusters. As well, the

hierarchical cluster structure was a more accurate representation at the higher levels of the

dendrogram.

In summary, based on the value cophenetic correlation coefficient and the stability tests,

the internal validity, of the weighted group average linkage method results was satisfactory.

The cophenetic correlation coefficient was sufficiently large to indicate a good fit of the

dendrogram to the data. All three types of stability tests: error perturbation, data deletion,

and data split, indicated that the three major clusters that were detected are a valid

structure. Which of the three major clusters are defined at the first and second branchings

was less definite but that was reflected in the similar heights in the original dendrogram.

The clusters due to branchings resulting lower in the dendrogram were less robust than

the clusters from branchings higher in the dendrogram. This reduced robustness reflected

that those clusters are less differentiated and in many cases they were not the result of an

obvious cluster structure.



68 Clustering Multiobjective Programming for Land Use Planning

5.2.2 External Validity

The objective functions measure the performance of the landscape configuration. The set

of landscape configurations in each cluster was considered to determine whether the group-

ing of those configurations was reasonable and whether it corresponded to the objective

function values as expected. This consideration of the landscape configurations is similar

to consulting a subject matter expert in order to validate the cluster analysis in terms of

the real world aspects of the decision. The site codings occurring in the clusters are shown

in figures A.8 through A.14 in appendix A. The candidate site numbers correspond to

the map shown in figure 3.1. The objective functions were formulated in order to favour

landscape designs with large connected natural areas as well as compact natural core areas

(Roberts and Calamai 2007). As a verification of external validity, the resulting clusters

should correspond to differing sets of landscape designs with these characteristics.

Objective functions GA1a, GA5, and GA7 compute the additional natural, agricultural,

and urban area, respectively, resulting from the allocation of the candidate sites to each

of these land use categories. These land area objective functions should compete for the

larger sites. Site 4 is the largest candidate site. Sites 1 and 5 are large and sites 3, 7,

and 8 are small. In the NSGA-II results most of the candidate sites took every land use

code at least once; the exceptions are that site three is never agricultural, site four is never

unchanged, and site five is never urban.

Roberts and Calamai (2007) considered the same landscape configuration design prob-

lem for the same study area without eliminating small ‘sliver’ polygons. Objective function

GA2 measures the connectivity of the natural areas. Roberts and Calamai (2007) noted

that the two large existing natural areas cannot be connected by coding candidate sites

as natural. That limitation of the landscape remained true when the sliver polygons were

removed. Roberts and Calamai (2007) also noted that coding the candidate sites num-

bered one and two in this thesis as natural allows a small two polygon natural area to

be connected to the largest natural area. The largest natural area is increased in area by

coding any of the candidate sites three, four, five, seven, and eight as natural. Coding

candidate site six as natural increases the area of the second natural core area. As in

Roberts and Calamai (2007), one natural polygon located in the upper centre of the study

area could not be joined to any of the other natural areas. There are no candidate sites
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Figure 5.6: Land use code values of clusters C(1) and C(2) from weighted group average

linkage method

that reduce the connectivity of the natural areas as measured by GA2 if coded as natural.

Cluster C(1) contained the landscape designs emphasizing urban land use. This em-

phasis is clear when considering the objective functions as well as the land use codings in

figure 5.6a. In cluster C(1) the largest site, site four, was urban in all solutions. Site four

was not urban in any of the solutions in cluster C(2). As well, site one was not urban in

any of the solutions in cluster C(2).

The land use codings for clusters C(2,1) and C(2,2) are shown in figure 5.7. Cluster

C(2,1) was the major cluster with significant natural land use. In all of the landscape

designs in cluster C(2,1) site four was natural. In cluster C(2,2) all of the landscape

designs had site four coded as agricultural. The three major clusters, C(1), C(2,1), and

C(2,2), were differentiated on the basis of the land use of the largest candidate site, site

four.

Objective function GA1 measures the area weighted shape of the natural areas reflecting

the desirability of disc-shaped natural areas. Like GA2, the natural area connectivity, there

is a small range of values possible for this objective function. The available candidate sites

cannot significantly change the shapes of the core natural areas. Similarly, the natural

shortest paths measured by objective function GA3 are affected only slightly by the land

use of the candidate sites. In the first three branchings the cluster analysis never separates
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Figure 5.7: Land use code values of clusters C(2,1) and C(2,2) from weighted group average

linkage method

the different values of GA1, GA2, and GA3 that occur in the results. Not discriminating

on these objective functions reflects the existing limitations of the landscape.

Objective function GA6 measures the clustering of urban development. No candidate

sites are adjacent to any existing urban area, other than currently urban candidate sites.

Coding candidate sites as urban decreases the urban clustering. Cluster C(1,1) contained

the landscape designs where, as in cluster C(1,2), site four was urban but, unlike cluster

C(1,2), no other candidate sites were agricultural. The land use codings for clusters C(1,1)

and C(1,2) are shown in figure 5.8. In terms of the objective functions these clusters were

most clearly differentiated on GA6, clustered development, where all of the solutions in

cluster C(1,1) outperformed all of the solutions in cluster C(1,2).

In terms of objective functions clusters C(1,1,1) and C(1,1,2) were only clearly differ-

entiated in terms of objective function GA5, urban area. The branching based on the

objective functions gives a good segmentation when considering the landscape designs. As

seen in figure 5.9, cluster C(1,1,1) allowed agricultural development in only the small sites

2, 6, and 6. In each landscape design in cluster C(1,1,2) at least one of the medium sites,

sites 1 and 5, was agricultural.

Landscape designs in cluster C(2,1,1) took high values of objective function GA6 and

those in cluster C(2,1,2) took moderate values. Again it is clear from the land use codings,
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Figure 5.8: Land use code values of clusters C(1,1) and C(1,2) from weighted group average

linkage method
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Figure 5.9: Land use code values of clusters C(1,1,1) and C(1,1,2) from weighted group

average linkage method
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Figure 5.10: Land use code values of clusters C(2,1,1) and C(2,1,2) from weighted group

average linkage method

shown in figure 5.10, that the best clustered development occurred when no new urban

area was alloted; none of the landscape designs in cluster C(2,1,1) included any new urban

area. In cluster C(2,1,2) one or more of sites two, six, seven, and eight, were urban in each

landscape design. These additional urban areas were unconnected to the existing urban

areas and to each other, with the exception of sites two and eight, and thus degraded the

clustered development objective function, GA6, when coded as urban. This degradation

was not the worst case since the larger sites, which have many adjacent polygons increasing

the join count metric used in objective function GA6, are not urban. Clusters C(2,2,1) and

C(2,2,2) shown in figure 5.11 are similar. Cluster C(2,2,1) contained the solutions with the

best performance on objective function GA6, the clustered development, and had no urban

candidate sites in any of the landscape designs. Cluster C(2,2,2) had a range of inferior

values for GA6 and allowed the small sites to be urban with at least one urban candidate

site in each landscape design.

The cluster structure generated using the proposed methodology corresponded to the

landscape designs. After three branchings the largest site, site four, was always limited

to a single land use coding in each cluster. Clusters C(2,1,1) and C(2,2,1) constricted the

land use codings for the candidate sites in addition to the restriction on site four from the

major clusters. In cluster C(2,1,1) sites three, four, five, six, and eight each took only a
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Figure 5.11: Land use code values of clusters C(2,2,1) and C(2,2,2) from weighted group

average linkage method

single land use coding. In cluster C(2,2,1) sites three and four each took only a single land

use coding. Cluster C(1,1,1) also limited the land use codings; sites ones, four, and five

each took a single land use coding.

The cluster analysis results reflected the ‘real world’ aspects of the landscape configu-

ration problem indicating good external validity. The clusters of landscape designs were

differentiated in terms of the land use codings for the candidate sites.

5.2.3 Relative Validity

The agreement of the weighted group average linkage method and the complete linkage

method was used to assess the relative validity of the clustering structure. Figure 5.12

displays the dendrograms for the weighted group average linkage method and the complete

linkage method. Table 5.1 displays the number of element in the clusters in the upper parts

of the dendrograms generated by the weighted group average linkage method, denoted

WGA, and the complete linkage method.

The results of the group average and complete linkage methods agreed on the first

division at the root, giving clusters C(1) and C(2), as well as the sub-division of cluster

C(2) giving clusters C(2,1) and C(2,2). However, the results of these methods did not
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Cluster WGA Complete Similarity

C(1) 121 121 C(1)WGA = C(1)complete

C(2) 50 50 C(2)WGA = C(2)complete

C(1,1) 23 58 C(1, 1)WGA ⊂ C(1, 2)complete

C(1,2) 98 63 C(1, 1)complete ⊂ C(1, 2)wga

C(2,1) 12 12 C(2, 1)WGA = C(2, 1)complete

C(2,2) 36 38 C(2, 2)WGA = C(2, 2)complete

C(1,1,1) 4 16 C(1, 1, 1)WGA ⊂ C(1, 2, 2)complete

C(1,1,2) 19 42 C(1, 1, 2)WGA ⊂ C(1, 2, 1)complete

C(1,2,1) 72 31 C(1, 2, 1)WGA =⊂ C(1, 1, 2)complete+ ⊂ C(1, 2, 1)complete

+ ⊂ C(1, 2, 2)complete

C(1,2,2) 26 32 C(1, 2, 2)WGA = C(1, 1, 1)complete+ ⊂ C(1, 1, 2)complete

C(2,1,1) 2 6 C(2, 1, 1)WGA ⊂ C(2, 1, 2)complete

C(2,1,2) 10 6 C(2, 1, 2)WGA = C(2, 1, 1)complete+ ⊂ C(2, 1, 2)complete

C(2,2,1) 6 19 C(2, 2, 1)WGA =⊂ +C(2, 2, 1)complete+ ⊂ C(2, 2, 2)complete

C(2,2,2) 32 19 C(2, 2, 2)WGA =⊂ +C(2, 2, 1)complete+ ⊂ C(2, 2, 2)complete

Table 5.1: Number of elements in clusters of weighted group average and complete linkage

methods
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agree at the division of cluster C(1) giving clusters C(1,1) and C(1,2) and at each division

following from that branching. The weighted group average linkage method split cluster

C(1) into two well separated groups that differed in their values of objective function GA6,

clustered development. The complete linkage method gave a more balanced branching

at a narrower separation in the values of objective function GA6. The weighted group

average linkage method placed all of the solutions with higher values of GA1a, natural

land area, in cluster C(1,2), along with some solutions with lower values of GA1a, while

the complete linkage method placed some of these solutions in each cluster. This splitting

by the weighted group average linkage method resulted in cluster C(1,1) having a very

little variability in objective function GA1a while both of the subclusters of C(1) in the

complete linkage method had a range that is similar to C(1).

The complete linkage method may force the clusters to be balanced even if the un-

derlying structure does not include balanced clusters. The group average method makes

no such assumption. At a branching, the assumption of balanced clusters should lead

to two subclusters containing approximately the same number of solutions. The number

of solutions in each cluster for the weighted group average and complete linkage meth-

ods is given in table 5.1. For example, the two clusters, C(1,1) and C(1,2), that result

from branching cluster C(1), are unbalanced in the weighted group average method re-

sults; cluster C(1,1) contains 23 solutions while cluster C(1,2) contains 98 solutions. In

contrast, these same clusters in the complete linkage results are balanced; cluster C(1,1)

contains 58 solutions while cluster C(1,2) contains 63 solutions. Similar behaviour is seen

when branching C(1,2), C(2,1), and C(2,2). Since this behaviour of the complete linkage

method corresponds to a known assumption of that method, it is likely that the actual

structure contains unbalanced clusters. Considering these same clusters in the complete

linkage method results, the complete linkage method segmented the larger cluster found

by the group average method and thus occluded the smaller cluster. The balanced clusters

in the complete linkage method, relative to the weighted group average linkage method,

can be seen in figure 5.12.

The weighted group average linkage method results tended to agree with the complete

linkage method indicating good relative validity. The discrepancies in the results from

these methods can be attributed to known assumptions of the complete linkage method;
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the weighted group average results were more valid where these discrepancies existed.

The internal, external, and relative validity assessments of the weighted group average

method results indicated that these results are a good representation of the input data and

the problem being modelled. These assessments confirmed that there were three major

clusters in the data and that the general dendrogram structure was valid although the

clusters lower in the dendrogram were less robust.

5.3 Example Decision Process

This section gives an example of the use of the hierarchical clustering structure developed

in this thesis in the land use decision described in section 3. The hypothetical decision

scenario reflects the emphasis on the objective functions. The local human population

requires land to work, live, and grow food, i.e., urban and agricultural land. Land at

the fringes of the currently developed areas is desirable for these purposes but this land

currently serves natural functions. For example, water recharge area and animal habitats

may exist within the natural area. In this thesis and previous work (Roberts 2003) the

natural functions that require specific land parcels, such as water recharge, were dealt

with by pre-processing and the natural functions that may not be specific to particular

land parcels, such as animal habitats, are dealt with using the multiobjective optimization

model for the landscape configuration problem. In this scenario there are several current

candidate sites whose land use can be changed. There is pressure for new land for urban

and agricultural uses as well as pressure to allocate some of the available land to the

natural systems in order to preserve the existing function of the landscape. None of the

stakeholders advocating each of the three types of land use is willing to accept that there

be no new area of that type. As is reflected by the number of related objective functions,

the most significant concern of the decision makers is the loss of natural land. New natural

land is most important in this area. The potential loss of natural land functions is related

to the first four objective functions and GA6 which measures the clustering of urban

development. The clustering of urban development is also desirable for human use of the

land, for example, services such as public transit and waste collection can be implemented

more efficiently in compact urban areas.
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In the remainder of this section branchings in the dendrogram are considered and

the resulting decisions are provided. The example begins by considering the branching

into clusters C(1) and C(2), and then proceeds to the chosen cluster and considers that

branching. This process is repeated until there is a small set of landscape designs for

further consideration.

First branching.

Observations: Figure 5.13 shows the two clusters resulting from taking the first branch-

ing at the root of the dendrogram. The trade-off in land area for the different land uses

is evident when considering individual solutions: cluster C(1) contains the solutions with

high values of objective function GA7, urban land use area, which only coincide with so-

lutions with low values of GA1a, natural land use area, and low to moderate values of

GA5, agricultural land use area. The solutions in C(1) achieve a wide spread of values for

objective function GA6 ranging from approximately 0 to 0.8. Cluster C(2) contains the

solutions with low values of GA7, urban land use area. Cluster C(2) does not restrict the

values of objective functions GA1a, natural land use area, and GA5, agricultural land use

area. Similar to cluster C(1), the solutions in cluster C(2) take a wide range of values for

GA6, clustered development, since more configurations are available with more sites coded

urban, but in cluster C(2) the values for GA6 range from approximately 0.2 to 1.

Decision: Choose cluster C(2) since there is little new natural in cluster C(1) and C(2)

contains solutions that have significant new natural or agricultural area, although at the

expense of significant new urban area.

Second branching.

Observations: Figure 5.14 shows the objective function values resulting from branching

cluster C(2). The result is a trade-off between GA1a and GA5, the natural and agricultural

land use area objective functions, respectively. C(2,1) has high values of GA1a and lower

values of GA7 while C(2,2) has low values of GA1a and higher values of GA7.
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Figure 5.13: Objective function values of clusters C(1) and C(2) from weighted group

average linkage method
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Figure 5.14: Objective function values of clusters C(2,1) and C(2,2) from weighted group

average linkage method
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Figure 5.15: Objective function values of clusters C(2,1,1) and C(2,1,2) from weighted

group average linkage method

Decision: Choose cluster C(2,1) since the natural land use is the highest priority in this

decision scenario.

Third branching.

Observations: Figure 5.15 shows the clusters resulting from branching cluster C(2,1).

The solutions in cluster C(2,1,1) are preferable to those in cluster C(2,1,2) on objective

function GA6, clustered development on which they all attain the maximal value. As

well, no solution in cluster C(2,1,1) takes the minimal value for objective function GA5,

agricultural land use area. The solutions in cluster C(2,1,2) attain equivalent or better

values of objective function GA1a, natural land use area, than the solutions in cluster

C(2,1,1) and equivalent or worse values of objective function GA5, agricultural land use

area. Some of the solutions in cluster C(2,1,2) do not take a value of zero for objective

function GA7, urban land use area, but no solution in cluster C(2,1,1) includes any new

urban land use area.
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Figure 5.16: Land use code values of clusters C(2,1,1) and C(2,1,2) from weighted group

average linkage method

Decision: Choose C(2,1,1) in this scenario with the understanding that none of the new

land is allocated for urban use. Consider also choosing C(2,1,2) for further consideration

since it has a small quantity of new urban land while noting that the amount of new

agricultural land may be reduced and that allowing any new urban land will degrade the

clustering of the urban development.

Once a set of solutions has been selected for further consideration using the cluster

structure, other aspects of the problem should be considered. The land use codings of the

candidate sites for each solution in the selected clusters for the example decision, C(2,1,1)

and C(2,1,2), are shown in figure 5.16. Cluster C(2,1,1) contains only two landscape

configurations and cluster C(2,1,2) contains ten landscape configurations. Figures 5.17

and 5.18 show the maps for the solutions in clusters C(2,1,1) and C(2,1,2), respectively.

In agreement with the emphasis on natural land use the largest candidate site, site four,

is natural in all of these plans. Within cluster C(2,1,1) sites three and six are also always

natural and site five is always agricultural. Within cluster C(2,1,2) site one is unchanged

or agricultural and at least one of the small sites is urban. While the solutions in both of

these clusters are very similar the superior performance of cluster C(2,1,1) on the clustered

development objective function corresponds to the lack of new urban land. Within the

clusters the land use of the larger sites is consistent and the plans are mostly differentiated
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on the land use of the smaller sites. For objective function GA1, the area weighted shape

of natural area, none of the solutions in clusters C(2,1,1) or C(2,1,2) take the lowest values

attained for this objective function; in all of these solutions having site four as natural

land improves the shape of the largest natural area. Within cluster C(2,1,1) and for five

of the solutions in cluster C(2,1,2) the smaller natural area above the center of the study

area has an improved area weighted shape due to the natural land use of site 6. In one

of the solutions in cluster C(2,1,2) the natural area weighted shape for the largest natural

area is improved by having site five as natural. Within cluster C(2,1,1) and C(2,1,2)

the natural area stepping stone shortest paths measured by objective function GA3 also

always outperforms the worst attainable value. Like the natural area weighted shape this

improvement is due to the additional natural areas.

At this point in the decision process unmodelled aspects of the decision, such as the

suitability of the candidate sites for agriculture, should be considered. Addressing these

aspects at this point, in contrast with including them in the model, allows the decision

makers to consider the effects of the limitations on the land uses. For example, the effects

of seeding a candidate site as a natural area can be contrasted with leaving the land

unchanged in terms of the objective functions relating to the function of the landscape

configuration. If consensus is not attainable at a branching then both clusters could be

investigated and the set of solutions under consideration in each cluster reduced. The

result would be two smaller sets of solutions for further investigation.

5.4 Results of Comparable Methods

This section reports the results of alternative approaches for this cluster analysis. In-

stead of the weighted group average linkage hierarchical clustering algorithm, three other

approaches are taken. The Chameleon algorithm is a more complex clustering method

employing dynamic modelling of clusters. It combines closeness and interconnectivity in

its definition of a cluster. DBSCAN models clusters as dense regions in the solution space.

The unsupervised decision tree creates a decision tree without a priori class labels. It is

a binary monothetic method, i.e., at each branching the current cluster is split into two

subclusters based on a single objective function. A description of these methods is given
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Figure 5.17: Land use maps of solutions in cluster C(2,1,1)
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Figure 5.18: Land use maps of solutions 1 and 2 in cluster C(2,1,2)
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Figure 5.18: Land use maps of solutions 3 and 4 in cluster C(2,1,2)
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Figure 5.18: Land use maps of solutions 5 and 6 in cluster C(2,1,2)
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Figure 5.18: Land use maps of solutions 7 and 8 in cluster C(2,1,2)
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Figure 5.18: Land use maps of solutions 9 and 10 in cluster C(2,1,2)
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in section 2.4.3.

5.4.1 Chameleon

Chameleon merges the 16 partitions of the k-nearest neighbour graph into the tree shown

in figure 5.19. The results of Chameleon are shown as plotmatrices in appendix C. These

partitions are numbered P1 through P16. This tree differs from the results of the hierar-

chical clustering algorithms and the other comparable methods in that the leaves are not

individual solutions; the solutions cannot be partitioned more finely than the partitioning

of the k-nearest neighbour graph. For example cluster C(1,1) is partition P1. There are 13

solutions in this cluster which cannot be further divided in these results. Five of the leaves

occur after only three or fewer branchings; these are clusters C(1,1), C(1,2,1), C(1,2,2),

C(2,1,1), and C(2,1,2).

Chameleon does not detect the three major clusters even after three branchings. Cluster

C(2,2,2), shown in figure 5.20, contains solutions from each of the three major clusters.

The trade-off for area between the three land uses is not detected by Chameleon even

though it is a significant part of the landscape design problem.

One strength of the hierarchical linkage method is that it provides clearly differentiated

clusterings even where there is no discernible cluster structure. In the lower parts of the

dendrograms the solutions are highly similar but the algorithm is always able to provide

a clearly interpretable branching. Chameleon has two weaknesses in this regard. First, it

cannot branch the solutions any more finely than the k-nearest neighbour graph partition-

ing. Second, some of the branchings lack interpretability in the plotmatrix and value path

plots. For example, clusters C(2,2,1) and C(2,2,2) appear to overlap in all of the objective

function plots in figure 5.20.

Even if the results of Chameleon were as good as the weighted group average hierarchical

linkage results, the complexity of Chameleon makes it undesirable for this application for

two reasons. First, the many interacting parameters require fine-tuning in order to obtain

good results. It is unlikely that Chameleon could be automated and included in a decision

support system without requiring in depth knowledge of the algorithm by an analyst using

the system. Second, decision makers in land use planning require an understanding of the

analysis in order to be accountable and responsible. Increased complexity makes it the
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Figure 5.19: Chameleon cluster hierarchy
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Figure 5.20: Plotmatrix showing clusters C(2,2,1) 4 and C(2,2,2) 5 from Chameleon
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system more likely to be a ‘black box’ to the end users.

5.4.2 DBSCAN

Figure 5.21 is a tree showing the clustering hierarchy resulting from using DBSCAN. If

at a branching it was necessary to adjust the value of Eps, the distance defining the

neighbourhood around a point, from the automated calculation the final value is shown

within the node being branched. It is also necessary to specify k, the number of points

required to define a dense region. The appropriate value of k depends on the data set

characteristics such as the dimensionality and densities. The manual adjustment of Eps

is an additional complication necessary in DBSCAN compared to the hierarchical linkage

clustering methods and is required in five of the ten branchings performed. At the root the

automated value of Eps resulted in three nodes, C(1), C(2), and C(3); with the default

setting DBSCAN detected the three major clusters as seen in figure 5.22. Unlike the

hierarchical linkage clustering methods no indication of the relative importance of the

branchings, e.g., the dendrogram heights, is available but three-way branchings can occur

where two consecutive branchings are of nearly the same importance. At node C(1,1),

where Eps = 0.02, three clusters resulted after adjusting Eps to obtain more than a

single cluster. Cluster C(3,1) contains only two solutions and cannot be branched using

DBSCAN since there must be more than one solution in each dense region defining a

subcluster. Appendix D contains plotmatrices of each branching shown in figure 5.21.

In some cases it is difficult to find a value of Eps that results in more than a single

cluster. Unlike the hierarchical linkage clustering methods DBSCAN did not easily adapt

to the smaller and more compact clusters resulting after several branchings; the three

major clusters are easily detected but it is necessary to manually adjust the value of Eps

in some cases where no obvious subcluster structure exists.

The clustering structure resulting from DBSCAN can be assessed based on the decision

example scenario in section 5.3. At the first branching the three major clusters are obvious.

Cluster C(1) is the most desirable since it contains the solutions with high values of the

natural land use area objective function, GA1a. This selection eliminates all solutions with

high values of urban area, GA7, from consideration.

Within cluster C(3), shown in figure 5.23, there are two subclusters. These subclusters
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Figure 5.21: DBSCAN cluster hierarchy
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Figure 5.22: Plotmatrix showing clusters C(1) 4, C(2) 5, and C(3) © from DBSCAN
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Figure 5.23: Plotmatrix showing clusters C(3,1) 4 and C(3,2) 5 from DBSCAN
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Figure 5.24: Plotmatrix showing clusters C(3,2,1) 4 and C(3,2,2) 5 from DBSCAN
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are differentiated on objective function GA6, clustered development. Cluster C(3,1) takes

the lower values of clustered development and cluster C(3,2) takes the higher values. The

maximal values of GA1a, natural land area, and GA2, natural connectivity, occur only in

cluster C(3,2). Cluster C(3,2) is preferable according to the decision scenario.

As in cluster C(3), the subclusters of cluster C(3,2), shown in figure 5.24, differ primarily

in objective function GA6, clustered development. The highest value for objective function

GA1a, natural land area, trades off with the highest value for objective function GA6,

clustered development. Clusters C(3,2,1) and C(3,2,2) are the same as cluster C(2,1,1)

and C(2,1,2) from the weighted group average linkage method as shown in figure 5.5.

DBSCAN allows branchings resulting in more than two clusters which may more ac-

curately depict certain cluster structures, for example, the three major clusters in the

landscape configuration problem. Like Chameleon, DBSCAN is more complicated than

the hierarchical linkage clustering algorithms. DBSCAN requires the specification of a

parameter, Eps. While there is a formula available to calculate a default value of Eps for

each branching at some branchings it is necessary to manually adjust Eps to obtain more

than one subcluster. Although it is a more complicated method for the example decision

DBSCAN selects the same solutions for further consider as the proposed methodology.

5.4.3 Unsupervised Decision Tree

Figure 5.25 shows the unsupervised decision tree for the NSGA-II results. Each branching

is labeled with the test based on a single objective function to define that branching. The

existence of three major clusters is unclear from this tree. At the first branching two of the

major clusters are contained in cluster C(1) and the other major cluster is cluster C(2).

Even though the two major clusters in cluster C(1) can be differentiated based on a single

objective function, GA1a, the unsupervised decision tree algorithm does not split them at

the next branching. Clusters C(1,1) and C(1,2), as well as C(1,1,1), C(1,1,2), C(1,2,1), and

C(1,2,2), contain elements from two of the major clusters. These two of the three major

clusters are not uncovered even after three branchings.

The objective function used at the first branching is GA5, agricultural land area. From

figure 5.26 it can be seen that cluster C(2) contains only sites with low values for the

natural land use objective functions. Thus, based on the scenario in the example decision
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Figure 5.25: Unsupervised decision tree
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Figure 5.26: Plotmatrix showing clusters C(1) 4 and C(2) 5 from unsupervised decision tree
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Figure 5.27: Plotmatrix showing clusters C(1,1) 4 and C(1,2) 5 from unsupervised decision tree
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Figure 5.28: Plotmatrix showing clusters C(1,2,1) 4 and C(1,2,2) 5 from unsupervised decision tree
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in section 5.3, none of the solutions in cluster C(2) are desirable. While these solutions

contains significant new natural area, the new agricultural area is less than 50% of the

total area of the candidate sites.

The decision at the second branching as shown in figure 5.27 is whether GA6, clustered

development, should be greater than 0.65. Since, based on the decision scenario described,

it is desirable to increase this objective function and neither of the subclusters limit the

attainable values of the other objective functions,, the higher value of GA6 would be chosen.

That choice leads to cluster C(1,2) and the third branching decision: whether GA2,

natural connectivity, should be greater than 0.3. The values of GA2 differ little within

cluster C(1,2) but it is selected for branching even though much more significant variability

exists within GA1a, natural area. Again there is no obvious relationships between the

branching objective function and the other objective functions within the cluster, as seen

in figure 5.28. The higher values of GA2 are more desirable so cluster C(1,2,2) should be

selected.

After three branchings the landscape designs under consideration contained wide ranges

of values for the land use area objective functions, GA1a, GA5, and GA7, as well as for

clustered development, GA6. Some of the solutions selected for further consideration using

the unsupervised decision tree are in cluster C(2,1,1) selected for further consideration in

the proposed methodology shown in figure 5.5. The set of solutions selected for further

consideration also contains some solutions that different significantly from those in the

weighted group average cluster C(2,1,1) in terms of objective functions GA1a, GA6, and

GA7, the natural land area, the clustered development, and urban land area.

The structure resulting from the unsupervised decision tree approach did not address

the aim of identifying the three major clusters; after three branchings the solutions chosen

for further consideration still contained solutions in two of the major clusters. These

solutions vary significantly in two objective functions known to conflict, GA1a and GA7,

the natural and urban land areas, respectively.

This chapter presented the results of the proposed cluster analysis methodology as well

as tests of internal, external, and relative validity. The results of the proposed methodology

are sufficiently valid. It also detailed an example decision using the results of the proposed
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methodology leading to the selection of a small set of solutions for further consideration.

The results of three comparable methods were also presented. Two of the comparable

methods, Chameleon and the unsupervised decision tree method, do not yield a suitable

representation of the NSGA-II results. The remaining comparable method, DBSCAN,

gives similar results to the proposed methodology although it allows three-way branchings.

DBSCAN is more complex and requires the manual adjustment of a parameter to ensure

good performance; thus it is less suitable than the proposed methodology. Chapter 6 dis-

cusses the results presented in this chapter including potential reuse for other applications

and inclusion in a decision support system. The last chapter presents conclusions and

recommendations for future work.





Chapter 6

Discussion

This chapter begins with a discussion of the proposed cluster analysis methodology in

terms of the quality and usefulness of the resulting structure for the landscape configu-

ration problem. It then addresses the suitability of the proposed methodology for other

applications, both for reusing the methodology with other data sets or applications and

employing the methodology as part of a decision support system (DSS) for multiobjective

optimization problems.

The weighted group average linkage hierarchical clustering method was largely success-

ful for this application. There are three primary aims for the proposed methodology. First,

it should create a tractable presentation of the NSGA-II results for the landscape configu-

ration problem. As noted in section 5.1.3, visually obvious clusters should be detected and

a useful structure should be provided even where no obvious structure exists. The validity

of the resulting structure is also important. This aim is discussed in section 6.1. Second,

it should be adaptable to other problems suited to a multiobjective optimization frame-

work using Pareto front enumeration or approximation methods. This second requirement

includes being extendable to include other model aspects such as constraints, preferences,

and weights. This aim is discussed in section 6.2.1. Third, it should be amenable to future

inclusion in a decision support system (DSS). This aim is discussed in section 6.2.2.

105
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6.1 Discussion of Results and Validity

The proposed methodology successfully detects the three major clusters as clusters C(1),

C(2,1), and C(2,2). Two branchings are required to detect the three major clusters since

the weighted group average hierarchical linkage method allows only two subclusters to exist

at a branching. As per section 5.2, the results are a reasonable representation of the input

data with respect to internal, external, and relative validity.

Some sets of consecutive branchings in the dendrogram occur at similar heights. In such

cases the branchings could be merged without significantly changing the interpretation

and potentially increasing the clarity of the presentation of the cluster structure. In the

landscape configuration problem merging the first two branchings would give one three-

way branching at the top of the dendrogram; at the root three clusters would be presented

instead of two, i.e., clusters C(1), C(2), and C(3) would be the three major clusters instead

of clusters C(1), C(2,1), and C(2,2). This structure would more accurately reflect the

trade-off between the land use objective functions. As well, allowing three-way or n-way

branchings in the tree could result in a more compact tree, since the number of branchings

would be reduced, but doing so would force the decision makers to consider more than

two alternatives at once. Further investigation is needed to assess whether this type of

structure would be desirable for some applications or whether the dendrogram should be

accompanied by a note emphasizing the meaning of the heights more clearly.

In the first few branchings of the dendrogram the clusters correspond to those noted in

the visual inspection for clustering tendency. The branchings lower in the dendrogram do

not correspond to visually obvious clusters since no obvious clusters exist. These branchings

segment the obvious clusters into sub-clusters that are differentiated but not significantly

separated. The use of a hierarchical linkage clustering algorithm allows the method to deal

with these branchings where there may be no cluster structure and return usable results.

As discussed in section 5.4, Chameleon is unable to adapt to these regions and DBSCAN

requires fine-tuning to return the desired results.

In the first three branchings the resulting clusters are not differentiated on objective

functions GA1, the area weighted mean shape of the core natural areas, GA2, the natural

features connectivity, and GA3, the stepping stones of natural features on shortest paths.

This behaviour occurs due to the small range of values taken by each of these objective
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functions. The Euclidean distance measure embedded in the average linkage hierarchical

clustering method emphasizes larger distances. If these objective functions are key com-

ponents of the decision then this behaviour is undesirable and the structure returned by

the unsupervised decision tree is preferable. This behaviour could be changed by rescaling

these objective functions to reflect their importance. This rescaling was not done as the

objective functions could potentially have values ranging from 0 to 1. The limitations of

the existing landscape prevent most of that range from being attainable. This rescaling

would add an additional step to the proposed methodology where the relative ranges of the

objective functions must be considered and linearly rescaled in order to reflect their rela-

tive importance. Since it is undesirable to make such value judgments before exploring the

possibilities existing on the Pareto front, this step should be used after the methodology

has been applied and the cluster analysis should be repeated. A difficulty that may result

is achieving consensus from the decision makers regarding the appropriate selection and

scaling of the objective functions but this methodology is proposed as a tool to tractably

consider the efficient solutions; it does not determine whether one objective function is

more important than any other objective function but uses them in a simple manner in or-

der to organize the results. If an objective function is clearly very important than it should

be employed by the cluster analysis. Alternatively, this behaviour could be changed by

using a different distance measure but this approach may complicate the method and in-

volves more explicitly considering the relationships between the objective functions. The

initial results of the cluster analysis will inform later formulations of the problem making

this approach more desirable than a priori value judgments such as specifying weights or

goals for objective functions.

The binary branching structure in the dendrogram allows the set of solutions to be

considered based on their objective function values. Potentially interesting subsets of

solutions for further consideration can be found by reducing the set under consideration

by descending in the tree from the root until a sufficiently small set of solutions with

sufficiently similar objective function values remains. Using the dendrogram resulting

from the weighted group average linkage method the set under consideration can be made

arbitrarily small. Since the tree is not balanced the decrease in the number of solutions

under consideration resulting from each branching is not predictable and many branchings
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may need to be taken in order to obtain a sufficiently small set. If that were the case

then another hierarchical linkage method, such as the complete linkage method, could be

employed to return a dendrogram that is more balanced but less indicative of the trade-off

surface structure.

The proposed methodology provides a tractable representation of the multiobjective

optimization results. While the effects of the relative ranges of the objective functions

may complicate the use of this methodology or implicitly convey additional importance

to a particular objective function, currently available methods do not consider multiple

objective functions simultaneously without some consideration of the relative importance

of the objective functions or other a priori value judgments. NSGA, NSGA-II, and other

multiobjective optimization algorithms may give good results for problems with objective

functions of different scales but they often include an implicit rescaling or assumption

that the objective functions are similarly scaled. For example, within NSGA the sharing

parameter defines a hypersphere in the objective function space within which solutions

are deemed ‘close’ and thus have their fitness values degraded. This hypersphere has

the same radius along each objective function. In NSGA-II the sharing parameter is

replaced by the crowding distance calculation. In the crowding distance each objective

function is linearly rescaled by mapping the current sample range to [0, 1]. The rescaled

objective function values are used to calculate the largest cuboid containing each solution

that contains no other solutions. The solutions are then ranked according to the dimensions

of their cuboids. In addition to this implicit assumption regarding the scales of the objective

functions, in this thesis the cluster structure emphasizes those objective functions that

clearly differentiate the clusters occurring higher in the dendrogram.

6.2 Suitability for Reuse and Extension

There are two aspects to the generalizability of the proposed methodology. First, whether

this cluster analysis methodology could be adapted for other multiobjective problems.

This aspect includes applying it to other datasets resulting from Pareto front enumeration

or approximation methods as well as extending it to include other modelling tools such

as constraints, preferences, or weights. Second, the suitability of this methodology for
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inclusion in decision support systems (DSS), particularly spatial DSS (SDSS) and planning

support systems (PSS).

6.2.1 Suitability for Reuse

The steps involved in the cluster analysis methodology are acquiring the input data, es-

tablishing a clustering tendency, data preparation and scaling, selection of a proximity

measure, choice of a clustering algorithm, application of the clustering algorithm, and val-

idation. This section discusses the requirements for each of these steps in order to apply

this methodology to a different data set or application. It also notes the limitations of the

methodology imposed by each step.

The characteristics of the input data are important to the use and success of this

methodology. The proposed methodology is most easily applied where the input data

is the result of a Pareto front enumeration or approximation algorithm and a clustering

tendency can clearly be seen in two-dimensional visualizations. If the decision variables in

the multiobjective optimization problem are continuous, as opposed to discrete as in the

landscape configuration problem, the input to the clustering algorithm must be a discrete

approximation of the Pareto front. A multiobjective programming solution algorithm that

returns functions approximating the Pareto front could be used only if the functions were

sampled to generate a discrete approximation.

If the problem has only two or three objective functions, and in particular if those

functions are well-behaved, there is little benefit to using the proposed methodology. If a

simple two or three dimensional visualization of the Pareto front or a good approximation

thereof is available the proposed methodology cannot lead to additional insight. The

proposed methodology is particularly useful where there are more than three objective

functions but not so many objective functions that it becomes difficult to select one of the

clusters at a branching.

One potential application is engineering design. In these problems there are often

many parameters to be specified. These parameters can be specified a priori or modelled

with objective functions, e.g., minimizing the weight of an airplane wing and the cost of

material while maximizing the lift and the rigidity. In a single objective framework, one

or more of these parameters would be combined to form the objective function. Goal
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values or ranges would be specified for the other parameters to model them as constraints.

Using multiobjective optimization and the methodology developed in this thesis, the range

of different Pareto optimal designs and the interaction between the parameters can be

considered before formulating the specifications for the wing.

A second potential application is portfolio selection in financial optimization. Portfolio

selection problems consider a set of criteria in order to select a good portfolio, where the

meaning of good depends on the criteria chosen. For example, the variance, as a measure of

risk, and the expected return are commonly used. Considering additional criteria, such as

Value-at-Risk (VaR) and expected shortfall, would provide additional information about

the quality of the portfolios. These criteria can be modelled as multiple objective and the

methodology presented in this thesis used to consider the possible values and interactions.

The proposed methodology is best applied where there is a clustering tendency in

the input data. If the decision variables of the multiobjective optimization problem are

continuous then the concept of density across the Pareto front has no meaning. If the

decision variables are continuous then the input data to the proposed methodology should

sample the Pareto front uniformly. A non-uniform sample could be used but the resulting

cluster structure would reflect the varying sample density across the trade-off surface. If

the decision variables are discrete the Pareto front, which will then be discrete as well, may

have a constant density. Again, care should be taken to ensure that this constant density

is reflected in the input data to the clustering algorithm. In this case, as with continuous

decision variables, unless there are several components to the Pareto front in different

regions of the objective function space there will be no cluster structure. In either case, even

if there are segments of the Pareto front in different regions of the objective function space

resulting in a set of clusters it is unlikely that there will be sets of segments within each of

those regions and subsets of segments within those sets leading to a hierarchical clustering

structure. Again it is important to consider a two- or three-dimensional projection of the

input data to consider its structure. If the decision variables are continuous or discrete with

a constant density and a good approximation of the Pareto front is easily obtained then

the approach taken by Mattson et al. (2004) described in section 2.2 to find ‘interesting’

regions of the Pareto front may be more suitable. Applying the methodology proposed in

this thesis may still yield insight for these problems, particularly if it is difficult to obtain
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a good approximation of the Pareto front. If no clustering tendency exists it should be

acknowledged that any structure resulting from the application of a clustering algorithm

will be an artifact of that clustering algorithm. Nonetheless, a clustering algorithm could

be used to objectively construct a tractable representation using a dendrogram.

Data preparation, in particularly scaling of the objective functions to remove implicit

bias toward the objective functions with larger ranges, must be repeated for any new data

set or any other application. The linear range scaling used in this thesis performs well

for recovering clustering structure without imposing additional assumptions regarding the

processes generating the data, as noted in section 4.1.2. If the data is known to have been

generated from a statistical process, such as a mixture of Gaussian processes, and good esti-

mates of the shapes of the clusters are available then scaling using the variance or standard

deviation may be suitable. If the data is known to follow a statistical distribution then an

alternate clustering method should be used that takes advantage of that knowledge. The

methodology described in the thesis may yield useful results in those cases but additional

insight may be available by taking all the known information, including the distributions or

generation processes, into account. The methodology developed in this thesis is primarily

concerned with discrete data points resulting from multiobjective optimization without an

obvious generating process.

The selection of a suitable proximity measure may change with the input data. As

discussed in section 4.1.3, the Euclidean distance is a robust measure that is easily inter-

preted. It is commonly used and suitable for many data sets. A major shortcoming of the

Euclidean distance is a sensitivity to the relative scales of the objective functions which

must be address as described in the previous paragraph.

Section 4.1.4 begins by considering the centroid method, Ward’s method, the complete

linkage method, and the weighted group average method as candidate hierarchical cluster-

ing methods for use in this methodology. Each of these methods were found to work well in

similar studies. The centroid method is found to give reversals, reducing the interpretabil-

ity of the results. It should not be used due to this possibility. Ward’s method assumes

spherical balanced clusters and the complete linkage method assumes balanced clusters.

The weighted group average linkage method selected makes the fewest assumptions about

the characteristics of the clusters. If when considering the clustering tendency the clusters
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are seen to be spherical or balanced then Ward’s method or the complete linkage method

may be considered although the weighted average linkage method may perform as well. The

weighted average linkage method should be used if there is no obvious reason to employ

another hierarchical linkage method.

The application of the selected clustering algorithm, likely the weighted average hi-

erarchical linkage method, can be performed by a number of software packages or can

be coded based on the material in section 2.4.2. Some software packages implementing

clustering algorithms include SPSS, Matlab (with the Statistical Toolbox), and the open

source packages Cluster and R (with the Stats Package). Seo and Shneiderman (2002) dis-

cusses several hierarchical clustering software packages used in genomics with an emphasis

on visualization. Hierarchical linkage-based cluster algorithms do not require any input

parameters. A dendrogram is the typical output visualizations and individual branchings

can be considered using other visualization such as value path plots or plotmatrices. The

suitability of the proposed methodology within a decision support system is described in

the next section.

6.2.2 Suitability for Decision Support Systems

The proposed method aims to inform decision making in discrete multiobjective optimiza-

tion.

The dendrogram representing the cluster structure can be used as in the example de-

cision in section 5.3. An alternative approach is to consider the dendrogram as a binary

tree and at each branching to consider whether either of the two branches can be pruned.

Pruning a branch removes the solutions in that cluster from consideration. Once a branch

has been pruned the branchings deeper in that cluster need not be considered. The result

of this process may be a single cluster of interest that remains after pruning is complete

or a reduced binary tree where fewer of the branchings remain than were initially under

consideration. If a reduced tree is obtained then there are several clusters of solutions that

merit further consideration and the tree shows how these clusters are related.

Once a hierarchical clustering structure is obtained, the dendrogram can be used in de-

cision support systems. The dendrogram may be enhanced by simultaneous display with

other visualizations. Seo and Shneiderman (2002) present uses for dendrograms in explor-
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Figure 6.1: Example of a dendrogram enhanced with a colour grid with a column of colour

blocks below each solution representing the decision variables for that solution

ing high dimensional hierarchical cluster structures in the context of genomic microarray

analysis. One approach to visualization using a dendrogram is to display the dendrogram

and use columns of colour blocks below each leaf to display information relevant to that

leaf. An example of this visualization is shown in figure 6.1. In the landscape configu-

ration example this visualization could be used to display the land use codings for each

solution from NSGA-II. The dendrogram provides an order for the solutions that allows

the differences and similarities in the land use codings to be seen relative to similarities in

the objective functions represented by the dendrogram. Using this enhanced dendrogram

would give insight into key sites contributing to objective functions and allow the user to

verify that aspects of the problem are properly modelled. For example, in the landscape

configuration problem the connectivity of the core natural areas is important. A small

number of sites may determine this feature of the landscape design. Using a dendrogram

enhanced with a colour block view of the candidate site land use codings would allow users

to see whether particular sites tend to be similar within clusters and different between clus-

ters. Since the aim of the methodology is to inform decision making by enabling insight

into the problem of interest, visualizations that support this function should be used.
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A possible different use of the dendrogram for visualization in the landscape config-

uration problem is to use it as an input interface in order to allow users to display the

full maps of the study area. Choosing a cluster would overlay the land use codings in the

NSGA-II solution allowing the user to see the solutions of interest as a whole landscape

design. Seo and Shneiderman (2002) call these types of uses of dendrograms coordinated

displays. In place of the land use codings the dendrogram could also be used to select

subsets of solutions to display in two or three dimensional projections.

Seo and Shneiderman (2002) includes a discussion of several visualization software

packages for hierarchical clustering in the context of bioinformatics. Several of these soft-

ware packages allow users to consider subsets of the results by selecting the root of a

subtree. The abilities of these software packages range from static displays to interactive

manipulation of the dendrogram, color block displays, scatterplots, and bar charts. These

visualization capabilities can be extended to other hierarchical clustering problems, such

as the landscape visualization problem, in order to better convey the results.

The proposed methodology is expected to be used in an iterative decision process

where the problem is reformulated based on the output of earlier iterations. Objective

functions and constraints on the decision variables can be added, removed, or changed

and the analysis repeated. This iterative process is necessary to ensure that the model

accurately represents the problem and can be used to further explore the problem to

obtain additional insight. For example, objective functions can be considered for the

clusters where no obvious subclusters exist. The additional objective functions, which may

have been expensive to compute for all of the solutions or may be less important than

the objective functions considered, may differentiate the otherwise similar solutions into

subclusters. Another use of the iterative process is to properly allocate available resources

to investigating potential solutions. At the first iteration the proposed methodology is

applied to a small sample of all feasible solutions. The resulting cluster structure is used to

select regions of the trade-off surface for more detailed analysis. The proposed methodology

can be applied to each of these interesting regions in turn by constraining the decision

variables or placing limits on the objective function values.



Chapter 7

Conclusions and Future Work

Pareto optimization methods allow the use of multiobjective optimization models with-

out soliciting preference information from the decision maker(s) before potential solutions

are presented. This approach allows the decision maker(s) to consider the possibilities

and trade-offs between objectives before selecting a solution for implementation. These

methods suffer from the shortcoming of requiring the decision maker(s) to consider many

possible solutions forming an approximation of the Pareto optimal set provided by the

optimization procedure. This thesis developed and evaluated a cluster analysis methodol-

ogy to address this issue. A land use planning problem was used as motivation and as an

example application to evaluate the proposed methodology.

The proposed methodology uses cluster analysis to group similar solutions in the ap-

proximation of the Pareto front returned by a multiobjective optimization. A hierarchical

cluster structure was formed using the weighted group average hierarchical clustering algo-

rithm. The weighted group average linkage used in this algorithm to evaluate the similarity

of clusters could be replaced with another similarity measure, such as the complete link-

age, Ward’s method, or the centroid linkage, if these measures are more appropriate for a

particular data set. Three other hierarchical clustering algorithms, DBSCAN, Chameleon,

and an unsupervised decision tree method, were applied to the same data set; these meth-

ods did not perform as well as the weighted group average clustering. The steps of the

analysis are as follows:

1. Define decision variables, feasible set, and objective functions.

115



116 Clustering Multiobjective Programming for Land Use Planning

2. Choose and apply a Pareto optimization algorithm, e.g., NSGA-II.

3. Cluster Analysis:

(a) Clustering tendency: By visual inspection or data projections verify that a

hierarchical cluster structure is a reasonable model for the data.

(b) Data scaling: Remove implicit variable weightings due to relative scales using

range scaling.

(c) Proximity: Select and apply an appropriate similarity measure for the data.

(d) Choice of algorithm(s): Consider the assumptions and characteristics of clus-

tering algorithms and select the most suitable algorithm for the application.

Consider selecting additional algorithms for validation of the results.

(e) Application of algorithm: Apply the selected algorithm and obtain dendrogram.

(f) Validation: Assess the internal, external, and relative validity of the results to

determine the stability of the cluster structure and the validity of the results

relative to the problem being addressed.

4. Represent and use the clusters and structure: If the clustering is reasonable and

valid examine the divisions in the hierarchy for trade-offs and other information to

aid decision making.

Previous work in multiobjective optimization in land use planning called for a method

to objectively reduce to a set of plans representing “distinct conceptual ideas” (Balling

2004). Balling (2004) found that decision makers in land use decisions preferred objec-

tive approaches considering larger numbers of plans were preferred to the current ad hoc

methods employed. The methodology presented in this thesis addresses the limitations of

considering only a few plans and allows the objective consideration of many good plans with

different characteristics as represented by the objective function values. Building on the

work by Balling (2004) this methodology allows the decision makers to tractably consider

the many solutions on the Pareto front using an objective structure without eliminating

any of the solutions from consideration before presenting them to the decision makers.
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Although multiple good plans can be generated more quickly using the evolutionary multi-

objective optimization framework than the current ad hoc approaches, the generation and

evaluation of multiple good plans remains computationally expensive. It is undesirable to

expend the effort required to generate a large number of solutions and then eliminate many

for consideration before presenting the solutions to the decision makers.

Previous methods to address the difficulty in considering the large number of solu-

tions in a Pareto front involved eliminating some of the Pareto optimal solutions before

presenting them to the decision maker(s). The proposed methodology allows the entire

non-dominated set to be retained for presentation to the decision maker(s) while provid-

ing a tractable organization of the results. The main outcome of the methodology is a

dendrogram representing the hierarchical cluster structure. This structure is generated

based on the similarity of the objective function values of the multiobjective optimization

solutions. By considering the branchings in the dendrogram arbritrarily small subsets of

solutions can be identified for further consideration. The goal of ‘generating manageable

global representations of efficient sets’ expressed by Benson and Sayin (1997) is addressed

without reducing the size of the non-dominated set. This methodology will continue to

be applicable as computational power increases and better Pareto optimization algorithms

are developed leading to the generation of larger non-dominated sets.

7.1 Limitations

This approach is applicable to multiobjective problems with discrete decision variables

or having hierarchically clustered non-dominated sets. Multiobjective configuration opti-

mization problems and the more general class of combinatorial multiobjective optimization

problems have discrete Pareto fronts. It may also be applicable to problems containing

highly discontinuous Pareto fronts. For those problems the smallest clusters found, i.e.,

leaves of the dendrogram, would be the continuous components of the discontinuous Pareto

front and the clusters higher in the tree would be sets of similar discontinuous components.

Any clustering of results from a sampling of a continuous surface is an artifact of the sam-

pling method. A cluster structure may result in the sample if the sampling method used

is not uniform across the Pareto front. If a hierarchical structure is not suspected in the
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data or if the structure is not to be used in the decision process but a clustering tendency

exists in the data then the methodology presented by Taboada et al. (2007) may be more

suitable.

This methodology is particularly useful if similarly performing solutions based on the

objective function values may be distinguishable to the decision maker(s) based on the

importance of the decision variable values or unmodelled aspects of the problem. Previous

approaches to this issue would have eliminated similarly performing solutions from con-

sideration. This methodology is unnecessary if there are two or three objective functions

since a simple visualization could be used to explore the Pareto front.

7.2 Directions for Future Work

Future work will revisit the issues in cluster analysis including scaling, proximity measures,

selection of algorithms, and validity. As well, this work could be extended to consider the

proximity of the solutions based on their decision variable values, e.g., in the land use

application the similarity of the landscape configurations. Shape space measures (Small

1996) may be a suitable approach modeling the landscape configurations as attributed

graphs of the candidate site land use codings.

The correspondence between the objective function values and other aspects of the

decision will be investigated. For example, the relationships between the decision variable

values, the land uses for each site in the land use configuration problem, and the objec-

tive function values may be informative for the decision makers. It may be desirable in

some applications to highlight clusters containing similarly performing solutions with very

different decision variable values; these solutions could denote unmodelled aspects of a

problem which should be reformulated or possible freedom in the decision. This design

freedom would indicate that the decision makers are indifferent to the values of the deci-

sion variables, e.g., the land uses of particular sites. In some applications it may also be

desirable to determine which, if any, of the solutions have similar decision variables, e.g.,

similar land use plans, with significantly different performance on the objective functions;

in other words, to find similar solutions that are in the different clusters. These solutions

may indicate key decisions. For example, a single site whose land use differs between the
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two solutions may be a key factor driving the values of some of the objective functions.

Both of these considerations of the relationships between the decision variables and the

objective function values are types of sensitivity analysis that may aid in informing the

land use decision.

For land use planning applications improved visualization of the clusters will be de-

veloped. The dendrogram will be linked to maps of the study area allowing the decision

maker(s) to see the impact of selecting a cluster in terms of both the objective function

values and the candidate site land use codings. A method to display the multiple land use

codings occurring for a single candidate site within a cluster will be needed.

Further evaluation of this methodology is needed using larger study areas and different

applications in order to generalize the methodology and obtain a better understanding of

its capabilities and limitations.
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Figure A.1: Plotmatrix showing clusters C(1) 4 and C(2) 5 from weighted group average linkage method
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Figure A.3: Plotmatrix showing clusters C(2,1) 4 and C(2,2) 5 from weighted group average linkage

method
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Figure A.4: Plotmatrix showing clusters C(1,1,1) 4 and C(1,1,2) 5 from weighted group average linkage

method
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Figure A.5: Plotmatrix showing clusters C(1,2,1) 4 and C(1,2,2) 5 from weighted group average linkage

method
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Figure A.6: Plotmatrix showing clusters C(2,1,1) 4 and C(2,1,2) 5 from weighted group average linkage

method
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Figure A.7: Plotmatrix showing clusters C(2,2,1) 4 and C(2,2,2) 5 from weighted group average linkage

method
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Figure A.8: Land use code values of clusters C(1) and C(2) from weighted group average

linkage method
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Figure A.9: Land use code values of clusters C(1,1) and C(1,2) from weighted group average

linkage method
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Figure A.10: Land use code values of clusters C(2,1) and C(2,2) from weighted group

average linkage method
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Figure A.11: Land use code values of clusters C(1,1,1) and C(1,1,2) from weighted group

average linkage method
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Figure A.12: Land use code values of clusters C(1,2,1) and C(1,2,2) from weighted group

average linkage method
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Figure A.13: Land use code values of clusters C(2,1,1) and C(2,1,2) from weighted group

average linkage method
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Figure A.14: Land use code values of clusters C(2,2,1) and C(2,2,2) from weighted group
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Figure B.1: Plotmatrix showing clusters C(1) 4 and C(2) 5 from complete linkage method
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Figure B.2: Plotmatrix showing clusters C(1,1) 4 and C(1,2) 5 from complete linkage method
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Figure B.3: Plotmatrix showing clusters C(2,1) 4 and C(2,2) 5 from complete linkage method
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Figure B.4: Plotmatrix showing clusters C(1,1,1) 4 and C(1,1,2) 5 from complete linkage method
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Figure B.5: Plotmatrix showing clusters C(1,2,1) 4 and C(1,2,2) 5 from complete linkage method
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Figure B.6: Plotmatrix showing clusters C(2,1,1) 4 and C(2,1,2) 5 from complete linkage method
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Figure B.7: Plotmatrix showing clusters C(2,2,1) 4 and C(2,2,2) 5 from complete linkage method
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Figure C.1: Plotmatrix showing clusters C(1) 4 and C(2) 5 from Chameleon
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Figure C.2: Plotmatrix showing clusters C(1,1) 4 and C(1,2) 5 from Chameleon
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Figure C.3: Plotmatrix showing clusters C(2,1) 4 and C(2,2) 5 from Chameleon
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Figure C.4: Plotmatrix showing clusters C(1,2,1) 4 and C(1,2,2) 5 from Chameleon
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Figure C.5: Plotmatrix showing clusters C(2,1,1) 4 and C(2,1,2) 5 from Chameleon
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Figure C.6: Plotmatrix showing clusters C(2,2,1) 4 and C(2,2,2) 5 from Chameleon
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Figure D.1: Plotmatrix showing clusters C(1) 4, C(2) 5, and C(3) © from DBSCAN
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Figure D.2: Plotmatrix showing clusters C(1,1) 4 and C(1,2) 5 from DBSCAN
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Figure D.3: Plotmatrix showing clusters C(2,1) 4 and C(2,2) 5 from DBSCAN
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Figure D.4: Plotmatrix showing clusters C(3,1) 4 and C(3,2) 5 from DBSCAN
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Figure D.5: Plotmatrix showing clusters C(1,1,1) 4 and C(1,1,2) 5 from DBSCAN
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Figure D.6: Plotmatrix showing clusters C(1,2,1) 4 and C(1,2,2) 5 from DBSCAN
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Figure D.7: Plotmatrix showing clusters C(2,1,1) 4, and C(2,1,2) 5 from DBSCAN
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Figure D.8: Plotmatrix showing clusters C(2,2,1) 4 and C(2,2,2) 5 from DBSCAN
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Figure D.9: Plotmatrix showing clusters C(3,2,1) 4 and C(3,2,2) 5 from DBSCAN
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Figure E.1: Plotmatrix showing clusters C(1) 4 and C(2) 5 from unsupervised decision tree method
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Figure E.2: Plotmatrix showing clusters C(1,1) 4 and C(1,2) 5 from unsupervised decision tree method
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Figure E.3: Plotmatrix showing clusters C(2,1) 4 and C(2,2) 5 from unsupervised decision tree method
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Figure E.4: Plotmatrix showing clusters C(1,1,1)4 and C(1,1,2)5 from unsupervised decision tree method
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Figure E.5: Plotmatrix showing clusters C(1,2,1)4 and C(1,2,2)5 from unsupervised decision tree method
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Figure E.6: Plotmatrix showing clusters C(2,1,1)4 and C(2,1,2)5 from unsupervised decision tree method
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Figure E.7: Plotmatrix showing clusters C(2,2,1)4 and C(2,2,2)5 from unsupervised decision tree method



Appendix F

Figures of Validity Test Results

Test 1: 5% Error Perturbation
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Figure F.1: Dendrogram of first 5% error perturbation test
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Figure F.2: Dendrogram of second 5% error perturbation test
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Figure F.3: Dendrogram of third 5% error perturbation test
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Figure F.4: Dendrogram of fourth 5% error perturbation test
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Figure F.5: Dendrogram of fifth 5% error perturbation test



176 Clustering Multiobjective Programming for Land Use Planning

Test 1: 10% Error Perturbation
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Figure F.6: Dendrogram of first 10% error perturbation test
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Figure F.7: Dendrogram of second 10% error perturbation test
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Figure F.8: Dendrogram of third 10% error perturbation test
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Figure F.9: Dendrogram of fourth 10% error perturbation test
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Figure F.10: Dendrogram of fifth 10% error perturbation test
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Test 1: 25% Error Perturbation
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Figure F.11: Dendrogram of first 25% error perturbation test
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Figure F.12: Dendrogram of second 25% error perturbation test
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Figure F.13: Dendrogram of third 25% error perturbation test
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Figure F.14: Dendrogram of fourth 25% error perturbation test
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Figure F.15: Dendrogram of fifth 25% error perturbation test
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Test 2: 5% Data Deletion
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Figure F.16: Dendrogram of first 5% data deletion test
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Figure F.17: Dendrogram of second 5% data deletion test
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Figure F.18: Dendrogram of third 5% data deletion test



184 Clustering Multiobjective Programming for Land Use Planning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Candidate Solutions

D
is

ta
nc

e

Figure F.19: Dendrogram of fourth 5% data deletion test
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Figure F.20: Dendrogram of fifth 5% data deletion test
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Test 2: 10% Data Deletion
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Figure F.21: Dendrogram of first 10% data deletion test
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Figure F.22: Dendrogram of second 10% data deletion test
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Figure F.23: Dendrogram of third 10% data deletion test
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Figure F.24: Dendrogram of fourth 10% data deletion test
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Figure F.25: Dendrogram of fifth 10% data deletion test
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Test 2: 25% Data Deletion
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Figure F.26: Dendrogram of first 25% data deletion test
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Figure F.27: Dendrogram of second 25% data deletion test
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Figure F.28: Dendrogram of third 25% data deletion test
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Figure F.29: Dendrogram of fourth 25% data deletion test
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Figure F.30: Dendrogram of fifth 25% data deletion test
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Test 3: Data Split
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(a) First subset
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(b) Second subset

Figure F.31: Dendrograms of first data split test
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(a) First subset
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(b) Second subset

Figure F.32: Dendrograms of second data split test
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(b) Second subset

Figure F.33: Dendrograms of third data split test
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(b) Second subset

Figure F.34: Dendrograms of fourth data split test
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Figure F.35: Dendrograms of fifth data split test
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