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Abstract

Mixture models provide a natural framework for unobserved heterogeneity in a population.

They are widely applied in astronomy, biology, engineering, finance, genetics, medicine,

social sciences, and other areas.

An important first step for using mixture models is the test of homogeneity. Before

one tries to fit a mixture model, it might be of value to know whether the data arise

from a homogeneous or heterogeneous population. If the data are homogeneous, it is not

even necessary to go into mixture modeling. The rejection of the homogeneous model may

also have scientific implications. For example, in classical statistical genetics, it is often

suspected that only a subgroup of patients have a disease gene which is linked to the marker.

Detecting the existence of this subgroup amounts to the rejection of a homogeneous null

model in favour of a two-component mixture model. This problem has attracted intensive

research recently. This thesis makes substantial contributions in this area of research.

Due to partial loss of identifiability, classic inference methods such as the likelihood ratio

test (LRT) lose their usual elegant statistical properties. The limiting distribution of the

LRT often involves complex Gaussian processes, which can be hard to implement in data

analysis. The modified likelihood ratio test (MLRT) is found to be a nice alternative of the

LRT. It restores the identifiability by introducing a penalty to the log-likelihood function.

Under some mild conditions, the limiting distribution of the MLRT is 1/2χ2
0 +1/2χ2

1 where

χ2
0 is a point mass at 0. This limiting distribution is convenient to use in real data analysis.

The choice of the penalty functions in the MLRT is very flexible. A good choice of the

penalty enhances the power of the MLRT. In this thesis, we first introduce a new class of

penalty functions, with which the MLRT enjoys a significantly improved power for testing

homogeneity.

The main contribution of this thesis is to propose a new class of methods for testing ho-
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mogeneity. Most existing methods in the literature for testing of homogeneity, explicitly or

implicitly, are derived under the condition of finite Fisher information and a compactness

assumption on the space of the mixing parameters. The finite Fisher information condition

can prevent their usage to many important mixture models, such as the mixture of geo-

metric distributions, the mixture of exponential distributions and more generally mixture

models in scale distribution families. The compactness assumption often forces applicants

to set artificial bounds for the parameters of interest and makes the resulting limiting dis-

tribution dependent on these bounds. Consequently, developing a method without such

restrictions is a dream of many researchers. As it will be seen, the proposed EM-test in

this thesis is free of these shortcomings.

The EM-test combines the merits of the classic LRT and score test. The properties of

the EM-test are particularly easy to investigate under single parameter mixture models. It

has a simple limiting distribution 0.5χ2
0 + 0.5χ2

1, the same as the MLRT. This result is ap-

plicable to mixture models without requiring the restrictive regularity conditions described

earlier.

The normal mixture model is a very popular model in applications. However it does not

satisfy the strong identifiability condition, which imposes substantial technical difficulties in

the study of the asymptotic properties. Most existing methods do not directly apply to the

normal mixture models, so the asymptotic properties have to be developed separately. We

investigate the use of the EM-test to normal mixture models and its limiting distributions

are derived. For the homogeneity test in the presence of the structural parameter, the

limiting distribution is a simple function of the 0.5χ2
0+0.5χ2

1 and χ2
1 distributions. The test

with this limiting distribution is still very convenient to implement. For normal mixtures

in both mean and variance parameters, the limiting distribution of the EM-test is found

be to χ2
2.
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Mixture models are also widely used in the analysis of the directional data. The von

Mises distribution is often regarded as the circular normal model. Interestingly, it sat-

isfies the strong identifiability condition and the parameter space of the mean direction

is compact. However the theoretical results in the single parameter mixture models can

not directly apply to the von Mises mixture models. Because of this, we also study the

application of the EM-test to von Mises mixture models in the presence of the structural

parameter. The limiting distribution of the EM-test is also found to be 0.5χ2
0 + 0.5χ2

1.

Extensive simulation results are obtained to examine the precision of the approximation

of the limiting distributions to the finite sample distributions of the EM-test. The type I

errors with the critical values determined by the limiting distributions are found to be close

to nominal values. In particular, we also propose several precision enhancing methods,

which are found to work well. Real data examples are used to illustrate the use of the

EM-test.
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Chapter 1

Introduction

1.1 Mixture Models

Since the work of Pearson (1894), finite mixture models have been widely used in many

disciplines such as astronomy, biology, engineering, genetics, medicine, social sciences and

so on. Mixture models can be easily applied to the data set in which two or more sub-

populations are mixed together. Due to its flexibility in modeling, finite mixture model has

enjoyed intensive attentions over the past years, from both a practical and a theoretical

viewpoints.

Typically, there are two situations where mixture models are called for. The first situ-

ation is where there are some group labels or covariates that characterize the distributions

of response variables, yet, this information is missing, not measured or unavailable when

the data were collected. A simple albeit artificial example, is when the data consists of the

heights of graduate students at the University of Waterloo. If at the time we collected the

data, gender information was not recorded, the population is deemed non-homogeneous

due to factors including the gender differences. Because the height distributions for the fe-
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2 Hypothesis Testing in Finite Mixture Models

male and the male are unlikely the same, it is better to model the height data by a mixture

of two parametric distributions, for example, a mixture of two normal distributions.

In some situations, the data are known to be a mixture of several sub-populations. The

statistical problem might be to make inference on the membership of each sample in the

data set. For example, given the height information of an individual student, the objective

is to infer the gender for this student. One possible approach is to model the height data by

a mixture of two normal distributions. Given the height information, one may compute the

posterior probability of the individual being a female. In more complex applications, the

number of homogeneous sub-populations may not be known. In this case, the statistical

problem might be cluster analysis.

We finish this section by two examples to illustrate the wide spread applications of

finite mixture models.

Example 1.1.1. A data set presented in Newcomb (1886) and Pearson (1894) consists

of measurements on the ratio of forehead to body length for 1000 crabs from the Bay of

Naples. The histogram of these measurements exhibited obvious asymmetry and a single

normal distribution could not capture this asymmetry very well (McLachlan and Peel, 2000,

P3. Fig. 1.1). Weldon (1893) guessed that the reason for the asymmetry might be that the

population contained two subspecies of crabs. When the data were collected the labels for

the subspecies were not available. This explanation motivated the fitting the data set by a

mixture of two normal distributions (Pearson, 1894). Obviously, this is a typical example

for the first situation we discussed.

Example 1.1.2. Genetics studies offer good examples of the second situation. Recent

circadian clock studies using gene expression times suggested that there exist some common

circadian-related genes in two different tissues of mouse. These common genes may not be

synchronized in phase or peak expression times. Instead, some circadian-related genes may
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be delayed by 4 to 8 hours in peak expression in one tissue relative to the other (Panda et al.,

2002). The statistical and genetical question of interest is to distinguish the synchronized

genes from genes that are systematically lagged in phase/peak expression times across two

tissues. Liu et al. (2006) used a mixture of two von Mises distributions to cluster 48

common genes in heart and liver tissues into two groups.

1.2 Basic Definitions

As discussed in the last section, mixture models are typically used to model data that

arise from a heterogeneous population. Suppose the whole population can be divided into

m sub-populations and for each subpopulation, the data can be modeled by a parametric

distribution. The marginal distribution for the whole population is then a mixture model.

The general definition for a mixture model is given as follows.

Definition 1.2.1. Let f(x; θ) be a parametric density function which comes from a known

family of distributions {f(x; θ), θ ∈ Θ ⊂ Rd, d ≥ 1}. Let Ψ be a distribution function

defined on Θ. Then the distribution with the following density function is a mixture distri-

bution:

f(x; Ψ) =

∫

Θ

f(x; θ)dΨ(θ). (1.1)

We call Ψ the mixing distribution and f the kernel function or component density. If Ψ has

finitely many support points θj ∈ Θ, j = 1, 2, . . . , m, with corresponding weights α1, . . . , αm

(αj > 0, j = 1, . . . , m and
∑m

j=1 αj = 1), that is,

Ψ(θ) =

m
∑

j=1

αjI(θj ≤ θ),

then (1.1) becomes

f(x; Ψ) =

m
∑

j=1

αjf(x; θj). (1.2)
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We call this model a finite mixture model with m components; m is called the number of

components or the order of the mixture model; the weights (α1, . . . , αm) are called the mixing

proportions, and the support points (θ1, . . . , θm) are called the component parameters.

In the above formulation of the finite mixture model, the number of components m is

considered fixed. But of course in many applications, the value of m is unknown and has to

be inferred from the available data, along with the mixing proportions and the component

parameters.

For general mixture models as in (1.1), the parameter space consists of mixing distri-

butions. For finite mixture models as in (1.2), when m is known, the parameter space is

finite dimensional and we write it as

Ω =
{

Ψ(θ) =
m

∑

j=1

αjI(θj ≤ θ) :
m

∑

j=1

αj = 1, αj ≥ 0, θj ∈ Θ, for j = 1, . . . , m
}

. (1.3)

In Example 1.1.1, Pearson (1894) used the following normal mixture model:

f(x; Ψ) =
1 − α

√

2πσ2
1

φ
(x− µ1

σ1

)

+
α

√

2πσ2
2

φ
(x− µ2

σ2

)

, (1.4)

where φ is the density function for standard normal distribution. For this model, m = 2,

α1 = 1 − α, α2 = α, θ1 = (µ1, σ1), θ2 = (µ2, σ2), and

Ψ(µ, σ) =

2
∑

j=1

αjI(µj ≤ µ, σj ≤ σ).

A very important concept associated with the mixture model is identifiability, which

is the foundation for estimation problems. The estimation of Ψ will become meaningless

if the parameters in Ψ are not identifiable. In general, a parametric distribution family is

said to be identifiable if different parametric values give different members of the family.

The identifiability for the finite mixture model is defined similarly. That is,



Introduction 5

Definition 1.2.2. Let f(x; Ψ) =
∑m

j=1 αjf(x; θj) be the member of a parametric family of

finite mixture models, where Ψ ∈ Ω and Ω is given in (1.3). This class of finite mixture

models is said to be identifiable if for any two members f(x; Ψ) and f(x; Ψ∗),

m
∑

j=1

αjf(x; θj) =

m∗

∑

j=1

α∗
jf(x; θ∗j )

if and only if m = m∗, (α1, . . . , αm) = (α∗
1, . . . , α

∗
m∗) and (θ1, . . . , θm) = (θ∗1, . . . , θ

∗
m∗) after

permuting the component labels.

Teicher (1963) showed that except for mixtures of uniform densities, many finite mix-

tures of continuous densities, especially univariate mixtures of normals, mixtures of expo-

nentials and Gamma distributions, are generally identifiable. These results are extended to

multivariate families such as multivariate mixtures of normals, see Yakowitz and Spragins

(1968). Mixtures of discrete distributions need not to be identifiable, for example, mixtures

of binomial distributions are not identifiable if the common size parameter for binomial dis-

tribution is smaller than 2m−1. Whereas finite mixtures of Poisson distributions (Teicher,

1960) as well as finite mixtures of negative binomial distributions (Yakowitz and Spragins,

1968) are identifiable. See Titterington et al. (1985, Section 3.1) for a detailed account of

the identifiability of finite mixture models. Many of the above mentioned mixture models

are also strongly identifiable. Strong identifiability was first introduced by Chen (1995),

which is required in developing some useful asymptotic results in hypothesis testing in

finite mixture model, see Chen and Chen (2001), Chen et al. (2001, 2004).

We finish this section with the following comment on the identifiability for the finite

mixture model. As we mentioned before, the mixture of normal distributions, the mixture

of Poisson distributions and so on, are identifiable or even strongly identifiable. However,

when m is quite large, some of the mixing proportions becomes close to 0, these mixture

models are close to non-identifiable in the sense that the mixture density with m com-
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ponents might be empirically indistinguishable from one with fewer than m components.

Because of this, in some applications, people use the mixture model with continuous mixing

distribution instead of finite mixing distribution.

1.3 Literature Reviews

1.3.1 Estimation in Mixture Models

Over the past years, a variety of methods have been developed for estimating the param-

eters in finite mixture models. Four of them are widely used in practice and cited in the

literature, they are method of moments, minimum-distance method, maximum likelihood

method and Bayesian method. The method of moments is the earliest method for esti-

mating the parameters in finite mixture models. In Pearson’s classic paper, he used this

method for estimating five parameters in normal mixture models (1.4). Moment estima-

tors enjoyed a wide application until computers were fast enough to find the maximum

of the log-likelihood function. Based on the method of moments, several useful diagnostic

tools had been developed for mixture models, see Lindsay (1989a, 1989b) and Lindsay

and Roeder (1992a). Even today, the moment estimators still serve as useful initial values

for iterative numerical methods such as EM algorithm to compute maximum likelihood

estimates; see Lindsay (1995). Some developments about moment estimators can also be

found in Lindsay and Basak (1993), Furman and Lindsay (1994a, 1994b), Lindsay (1995),

Withers (1996) and Craigmile and Titterington (1998).

Another general method for estimating the mixing distribution Ψ in finite mixture

model is to minimize the distance between the empirical distribution and the mixture

distribution or the distance between the kernel density estimation and the mixture density.

Titterington et al. (1985) gave a detailed review of the minimum-distance estimators.
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Maximum likelihood estimator can also be viewed as a special case of minimum-distance

estimators, simply because it minimizes the Kullback-Leibler (1951) distance between the

empirical distribution and the mixture distribution.

Due to the rapid improvement in computing power, finding numerical solutions of a

likelihood equation becomes feasible. Likelihood-based inference has enjoyed fast develop-

ment and plays an important role in the scope of finite mixture models. Let X1, . . . , Xn

be a random sample from the mixture model f(x; Ψ) in (1.2). The log-likelihood function

of Ψ is given by

ln(Ψ) =

n
∑

i=1

log f(Xi; Ψ) =

n
∑

i=1

log
{

m
∑

j=1

αjf(Xi; θj)
}

.

The maximum likelihood estimator (MLE) of Ψ is defined to be

Ψ̂ = arg max
Ψ∈Ω

ln(Ψ)

when this exists. For finite mixture models, the explicit expression for the MLEs are typi-

cally not available, and a number of numerical algorithms have been developed for maxi-

mizing the log-likelihood function. Expectation-maximization (EM) algorithm of Dempster

et al. (1977) is the most popular method for finding the MLE. This is because a finite mix-

ture model is a special case of the model for incomplete data, to which the EM algorithm

can be easily applied. In the following, we give some details on the EM algorithm for the

mixture of two components. The general idea of EM algorithm is similar and can be easily

applied to mixture models with more than two components.

Suppose X1, . . . , Xn is a random sample coming from the mixture model:

(1 − α)f(x; θ1) + αf(x; θ2).

In the EM framework, the data can be viewed as incomplete since their associated component-

indicator variables, I1, . . . , In, are missing, where Ii = 1 if Xi comes from f(x; θ2) and
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Ii = 0 if Xi comes from f(x; θ1), i = 1, . . . , n. From this point of view, the complete data

are {(Xi, Ii), i = 1, . . . , n}. Note that I1, . . . , In can be seen as a random sample from

distribution Bernoulli(α). Hence the complete log-likelihood is given by

lcn(Ψ) =

n
∑

i=1

[(1 − Ii){log(1 − α) + log f(Xi; θ1)} + Ii{log(α) + log f(Xi; θ2)}], (1.5)

where Ψ(θ) = (1 − α)I(θ1 ≤ θ) + αI(θ2 ≤ θ).

Let Ψ(0) be the value initially specified for Ψ. On the first iteration of the EM algorithm,

the E-step requires the computation of the conditional expectation of lcn(Ψ) given the data

X1, . . . , Xn and the initial value Ψ(0) for Ψ. That is,

Q(Ψ,Ψ(0)) = E{lcn(Ψ)|X1, . . . , Xn,Ψ
(0)}.

In general, on the k + 1 iteration, the E-step requires the calculation of Q(Ψ,Ψ(k)), where

Ψ(k) is the value of Ψ after the kth EM iteration. Since the complete-data log likelihood,

lcn(Ψ), is linear in the unobservable component indicator variables I ′is, the E-step (on the

k+ 1 iteration) simply requires the calculation of the conditional expectations of I ′is given

the observed data X1, . . . , Xn. The conditional expectations are the posterior probabilities

of X ′
is belonging to the second component. As in McLachlan and Peel (2000, P20), for

the E-step, we update the conditional expectations or the posterior probabilities (w
(k)
i

′s)

as follows:

w
(k)
i = E(Ii|Xi; Ψ

(k)) =
α(k)f(Xi; θ

(k)
2 )

(1 − α(k))f(Xi; θ
(k)
1 ) + α(k)f(Xi; θ

(k)
2 )

, i = 1, . . . , n.

In the M-step, on the k + 1 iteration, we update Ψ by maximizing Q(Ψ,Ψ(k)) with

respect to Ψ ∈ Ω. Let Ψ(k+1) be the updated value for Ψ. That is,

Ψ(k+1) = arg max
Ψ∈Ω

Q(Ψ,Ψ(k)).
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Due to the convenient structure of function Q(Ψ,Ψ(k)), the maximization can be accom-

plished as follows:

α(k+1) =
n

∑

i=1

w
(k)
i /n,

θ
(k+1)
1 = arg max

θ1∈Θ

n
∑

i=1

{(1 − w
(k)
i ) log f(Xi; θ1)},

θ
(k+1)
2 = arg max

θ2∈Θ

n
∑

i=1

{w(k)
i log f(Xi; θ2)}.

In many situations, the above optimization problem has explicit solutions. One such

example is the mixture of normal distributions. In some other situations, it maybe hard to

find a close form for Ψ in the M-step. In the so-called generalized EM (GEM) algorithm

(Dempster et al., 1977), in the M-step, Ψ(k+1) is not necessarily required to be a maximum

of Q(Ψ,Ψ(k)), but a value that makes

Q(Ψ(k+1),Ψ(k)) ≥ Q(Ψ(k),Ψ(k))

for k = 0, 1, 2, . . .. Several generalizations, particularizations, and accelerated versions of

the EM algorithm have been proposed; see McLachlan and Krishnan (1997) and references

therein.

The E and M steps are iterated repeatedly until the difference

|ln(Ψ(k+1)) − ln(Ψ(k))|

changes by an arbitrarily small value. One nice property of the EM (or GEM) algorithm

is the so-called monotonicity property. That is,

ln(Ψ(k+1)) ≥ ln(Ψ(k))

for k = 0, 1, 2, . . .. This property is the fundamental reason behind the local convergence of

the algorithm under some very general conditions. See Wu (1983). In some applications,
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we often modify the likelihood function by adding a penalty p(α) to ln(Ψ) and try to find

the maximum of pln(Ψ) = ln(Ψ) + p(α). In this case, the idea of the EM algorithm is

still applicable. We only need to make a minor modification in the M-step for updating α.

That is,

α(k+1) = arg max
α∈[0,1]

{

(n−
n

∑

i=1

w
(k)
i ) log(1 − α) +

n
∑

i=1

w
(k)
i log(α) + p(α)

}

.

With this adjustment, the EM algorithm retains the property (Dempster et al. 1977)

pln(Ψ(k+1)) ≥ pln(Ψ(k))

for k = 0, 1, 2, . . ..

Due to its monotonicity property, the sequence {ln(Ψ(k)) : k = 0, 1, . . .} must converge

to a local mode when the log-likelihood function is bounded above. Denote the limit of the

log-likelihood value by l∗n. Dempster et al. (1977) showed that under some weak conditions

on the kernel function, l∗n is a local maximum of ln(Ψ) if the sequence is not trapped

at some saddle point. Wu (1983) gave a more rigorous treatment of the convergence

properties of the EM algorithm in a general setup. Further details about the convergence

of EM algorithm can be found in the monograph of McLachlan and Krishnan (1997).

The EM algorithm was initially criticized that it did not automatically provide an

estimate of the covariance matrix of the MLEs. A number of methods have been suggested

for estimating the covariance matrix of the MLE of the mixing distribution Ψ. Most

suggestions are based on the observed information matrix I(Ψ) given by

I(Ψ) = −∂2ln(Ψ)/∂Ψ∂ΨT .

There are two typical methods to estimate or approximate the observed information matrix.

The first method replaces Ψ by the MLE Ψ̂ in the above formula. This method involves



Introduction 11

the calculation of the second derivative of the log-likelihood function with respect to Ψ.

The second method extracts the observed information matrix from the complete-data log-

likelihood. Especially, if X1, . . . , Xn are independent and identically distributed (I.I.D.),

the approximation has a very simple form, which only contains the first derivative of the

complete log-likelihood function. The details can be seen in McLachlan and Krishnan

(1997) and McLachlan and Peel (2000).

In spite of its popularity in the application of finite mixture models, the ordinary MLE

are not well defined or not consistent under many classes of important mixture models,

such as the normal mixture model given in (1.4). Under this model, the MLE is not well

defined since ln(Ψ) → ∞ by letting µ1 = X1 and σ2
1 → 0 with other parameters fixed.

Several remedies have been suggested in the literature to account for this case. Hathaway

(1985) and Tan et al. (2006) discussed the use of the constrained MLE, Chen et al. (2007)

investigated the properties of the penalized MLE. The Penalized MLE and the constrained

MLE are shown to be strongly consistent and asymptotically efficient under normal mixture

models in both mean and variance parameters.

The fourth method for estimating Ψ is the Bayesian method. Let Ln(X1, . . . , Xn|Ψ)

be the likelihood function of Ψ. In the framework of the Bayesian approach, one needs

to assume that a prior distribution p(Ψ) on Ψ is available. Using Bayes’ theorem, we can

obtain the posterior density p(Ψ|X1, . . . , Xn), which is given by

p(Ψ|X1, . . . , Xn) ∝ Ln(X1, . . . , Xn|Ψ)p(Ψ).

As summarized in Frühwirth-Schnatter (2006), there are two main reasons why people may

be interested in using the Bayesian method in finite mixture models. Firstly, including a

suitable prior distribution for Ψ in the framework of the Bayesian approach may avoid

spurious modes when maximizing the log-likelihood function. The idea for the penalized

MLE in Chen et al. (2007) can be seen as putting a proper prior distribution on the variance



12 Hypothesis Testing in Finite Mixture Models

parameters. Secondly, when the posterior distribution for the unknown parameters is

available, the Bayesian method can yield valid inference without relying on the asymptotic

normality. As warned by McLachlan and Peel (2000, p.68), the asymptotic theory of the

MLE can apply only when the sample size n is very large. Hence the second advantage of

the Bayesian method become obvious when the sample size n is small.

Unfortunately, for the likelihood function Ln(X1, . . . , Xn|Ψ), it is impossible to find the

conjugate prior for Ψ, which means whatever prior p(Ψ) we choose, the posterior distribu-

tion p(Ψ|X1, . . . , Xn) may not belong to any tractable distribution family. This problem no

longer poses serious obstacle to the application of Bayesian method after the widespread

use of Markov Chain Monte Carlo (MCMC) methods. The main idea of Bayesian esti-

mation using the MCMC methods followed Dempster et al. (1977) by realizing a mixture

model is a special case of incomplete data problem with the missing component indicator

variables I1, . . . , In. After introducing I1, . . . , In or the data augmentation, the idea of

Bayesian estimation was to estimate the augmented parameter (I1, . . . , In,Ψ) by sampling

from the complete-data posterior distribution p(I1, . . . , In,Ψ|X1, . . . , Xn), which consists

of two main steps. In the first step, given the component indicator variables I1, . . . , In,

we are back in the complete-data Bayesian estimation. In many situations, we can simu-

late the parameter Ψ by using Gibbs sampling. In the second step, given the simulated

parameter Ψ, for the ith observation, we can sample Ii based on the posterior probabil-

ity. More details can be seen in Tanner and Wong (1987), Gelfand and Smith (1990) and

Frühwirth-Schnatter (2006).
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1.3.2 Nonparametric Maximum Likelihood Estimate and Local

Mixture Model

The review in the last subsection about the estimation methods in finite mixture model are

under the assumption that the order of finite mixture model is known. When the order of

the mixture model is unknown or the mixing distribution is not discrete, one may employ a

non-parametric assumption on the mixing distribution. A nonparametric maximum likeli-

hood estimate (NPMLE) of Ψ is a distribution function which maximizes the log-likelihood

function over all possible mixing distributions (Laird, 1978). The identifiability problems

for the NPMLE of a mixing distribution have been studied by Teicher (1963), Barndorff-

Nielsen (1965), Chandra (1977), Jewell (1992) and Lindsay and Roeder (1992b). With

the identifiability, the NPMLE has many interesting properties, such as the consistency

of the NPMLE under very general conditions (Kiefer and Woldowitz, 1956 and Leroux,

1992). The most important result, so called “fundamental theorem of the nonparametric

maximum likelihood esitmation”, is summarized in Lindsay (1995).

Part I. Existence, discreteness and uniqueness. There exists an NPMLE which is

discrete with no more than h distinct support points, where h is the number of the distinct

points in the data set. Further, fitted log-likelihood values, namely,

(log f(X1; Ψ̃), . . . , log f(Xn; Ψ̃))

are unique, where Ψ̃ is the NPMLE of Ψ. That is, even if two distributions both maximize

the log-likelihood, the log-likelihood vectors are equal. The mathematical tool for proving

this part is the convex geometry, see Lindsay (1983) and Marriott (2002) for details.

The second part of the fundamental theorem is on how to determine whether a given

distribution function Ψ0 is the NPMLE or not. A useful tool for this investigation is called

the directional derivative. Given two mixing distributions Ψ0 and Ψ1, the directional
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derivative of ln(Ψ) at Ψ0 towards Ψ1 is defined to be

D(Ψ1; Ψ0) = lim
ǫ→0+

ln{(1 − ǫ)Ψ0 + ǫΨ1} − ln(Ψ0)

ǫ

=
n

∑

i=1

f(Xi; Ψ1) − f(Xi; Ψ0)

f(Xi; Ψ0)
.

If Ψ1 is a point mass function at θ, the gradient function is defined to be

D(θ; Ψ0) =
n

∑

i=1

f(Xi; θ) − f(Xi; Ψ0)

f(Xi; Ψ0)
.

Intuitively, if Ψ0 is the NPMLE, then ln(Ψ) can not increase in any direction starting from

Ψ0, hence the gradient function D(θ; Ψ0) should be non-positive.

Part II. Gradient characterization and support point properties. The distribution func-

tion Ψ̃ is the NPMLE of Ψ if and only if

D(θ; Ψ̃) ≤ 0 ∀θ.

Further, the supports of Ψ̃ are contained in the set of θ such that D(θ; Ψ̃)=0.

The fundamental theorem has important applications. It provides the basis for the

algorithms for computing the NPMLE of the mixing distribution. For the details of the

computational methods for finding the NPMLE, the reader is referred to the monographs

by Lindsay (1995) and Böhning (1999).

An alternative and useful tool for understanding and making inference on mixture

model, which allows for unknown number of discrete components, or continuous mixing

distributions, is the use of the local mixture model (Marriott, 2002). The idea behind the

local mixture model is to assume that Ψ is close to a point mass function at some fixed

point θ0 and then approximate f(x; Ψ) by

f(x; Ψ) ≈ f(x; θ0) +
r

∑

k=2

λkf
(k)(x; θ0),
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where

f (k)(x; θ0) =
∂k

∂θk
f(x; θ0).

Here f(x; θ0)+
∑r

k=2 λkf
(k)(x; θ0) is called the local mixture model of f(x; Ψ) with order r.

By this approximation, the integral in (1.1) has been changed to a function with r param-

eters. Some traditional methods, such as the Bayesian method can be easily applied. This

idea has been proved to be powerful and efficient in measurement error modeling (Marriott,

2003), in Bayesian prediction (Marriott, 2002), in lifetime data analysis and influence anal-

ysis (Critchley and Marriott, 2004). Further, the idea of the local mixture model has been

applied to exponential family (Anaya-Izquierdo and Marriott, 2007a) and the scale disper-

sion mixture (Anaya-Izquierdo and Marriott, 2007b). Marriott (2007) studied several ways

in which the local assumption about Ψ can be relaxed.

1.3.3 Order Selection in Finite Mixture Models

Testing the number of components or the order m in a mixture model is an important

problem when the prior information on m is unavailable. In some applications, m is the

crucial parameter under consideration. For example, in cluster analysis, m is the number

of clusters contained in the data; in latent structure analysis, m is the number of latent

classes required to provide a reasonable model; in genetic analysis, if a quantitative trait is

determined by a simple gene with two alleles, m = 2 means that the mode of inheritance

is dominant, whereas m = 3 or more means the mode of inheritance is additive or more

complex in nature. In other applications, m determines the model complexity. We may be

interested in determining how largem needs to describe the data adequately; for parsimony,

we prefer the less complex model.

Due to its importance, accessing the number of components or order selection in a finite

mixture model has attracted the attention of many statisticians. In the literature, there
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are at least five types of order selection methods: information-based methods, for example,

Akaike information criterion (AIC) and Bayes information criterion (BIC) (Leroux, 1992);

penalized distance-based methods (Chen and Kalbfleisch, 1996, James et al., 2001 and

Woo and Sriram, 2006); penalized log-likelihood based method (Chen and Khalili, 2006);

Bayesian method (Carlin and Chib, 1995, Richardson and Green, 1997, Gruet, et al., 1999,

Stephens, 2000, Ishwaran et al., 2001) and testing hypothesis-based method (Chen, 1998,

Dacunha-Castelle and Gassiat, 1999, Chen et al., 2001, Chen and Chen, 2003, Liu and

Shao, 2003, Chen et al., 2004, Charnigo and Sun, 2004, Chen and Kalbfleisch, 2005).

The AIC (Akaike, 1973) and the BIC (Schwarz, 1978) were first designed for the model

selection problems. The AIC criterion aims to minimize the Kullback-Leibler distance

between the true distribution and the distributions for the candidate models, while the

BIC criterion tries to maximize the posterior probability in the space of all candidate

models. For the order selection problem in finite mixture models, the AIC criterion selects

the order to minimize

−2ln(Ψ̂) + 2d

and BIC criterion selects the order which minimizes

−2ln(Ψ̂) + d logn,

where Ψ̂ is the MLE of Ψ and d is the number of free parameters in Ψ under the given order,

respectively. Under some regularity conditions, the order selected by the BIC is consistent

(Keribin, 2000). The AIC and the BIC are asymptotically optimal under some criteria for

the regular models. However, due to the non-regularity of the finite mixture model, these

optimality properties do not hold in the framework of the mixture model. For this reason,

several other information based criteria have been developed, for example, bootstrap-based

information criterion (Ishiguro et al, 1997) and cross-validation-based information criterion

(Smyth, 2000).
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The penalized distance method is another popular method for the order selection in fi-

nite mixture models. There are several distance-based methods proposed in the literature.

Let us reviewed three of them, other methods use the similar ideas. Chen and Kalbfleisch

(1996) suggested choosing the order which minimizes the penalized distance between the

empirical distribution function and the fitted cumulative distribution function with given

order. They showed that under some conditions, the estimated order is strongly consistent

for the true order. James et al. (2001) consider the order selection problem in normal

mixture model in both mean and variance parameters. They proposed choosing the order

by minimizing the penalized Kullback-Leibler distance between two density functions: the

kernel density function of the true density function and the convolution of a normal density

function and the density of finite normal mixtures with given order. They showed under

certain conditions, the order estimator is consistent. Woo and Sriram (2006) considered

choosing the order which minimizes the penalized Hellinger distance between the nonpara-

metric kernel density function and the density function of finite mixture with given order.

Their simulation results showed that the order estimation is robust to model assumptions.

The idea of the penalized log-likelihood based method (Chen and Khalili, 2006) is sim-

ilar to the penalized distance method. The innovative part is the penalty functions added

to the log-likelihood function. Chen and Khalili (2006) suggested putting two penalty

functions to prevent the two types of over-fitting. The first penalty is to prevent any of the

mixing proportions getting too close to 0. The second penalty function is to prevent fitting

a model containing several sub-populations which only differ slightly. Under some regular-

ity conditions, the estimated order is strongly consistent. The advantage of this method is

that it does not need to compare all the candidate models. By choosing a suitable tuning

parameter, the method can select the order automatically. How to determine the suitable

tuning parameter in a computation-easy way is still under investigation.



18 Hypothesis Testing in Finite Mixture Models

In the literature, there are two types of Bayesian methods considering the order selection

for finite mixture model. The first type of method is to apply trans-dimensional MCMC

to sample from the joint posterior density p(m,Ψm|X1, . . . , Xn), where Ψm the mixing

distribution with m components. The major difficulty is that the number of parameters is

not fixed when sampling from the posterior distribution. There are three popular methods

in this category, which are product-space MCMC (Carlin and Chib, 1995), reversible jump

MCMC (Richardson and Green, 1997) and birth and death MCMC (Stephens, 2000). The

second type of method is to compute the marginal density p(X1, . . . , Xn|m) for all possible

orders and further to apply the Bayes’ rule to quantify the posterior evidence for each

order. The challenge is the computation of the marginal density. A lot of papers have been

contributed to the approximation and the estimation of the marginal density, for example,

sampling based approximation and density ratio based estimation, see Frühwirth-Schnatter

(2004) for detailed reviews and comparisons. Based on the decomposition of the marginal

density function, Ishwaran et al. (2001) proposed a weighted Bayes factor method, which

can consistently estimate the order of the finite mixture model.

The fifth method for the order selection is the testing hypothesis-based method. In the

past a few decades, statisticians devoted substantial effort to the hypothesis testing problem

in finite mixture models. One popular method for testing the number of components

is the C(α) test proposed by Neyman and Scott (1966). The C(α) test is a score test

of homogeneity against heterogeneity. One advantage for this method is that the test

statistics is not affected any specific mixture alternatives, and its limiting distribution is

distribution free. When the kernel function f(x; θ) comes from the exponential family, the

C(α) test simply measures the difference between the sample variance and the theoretical

variance under the null model (Lindsay, 1995 and Anaya-Izquiordo and Marriott, 2007b).

The C(α) method is also known to be asymptotically best in the sense of best power under
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local alternatives, but it is not efficient for detecting non-local alternatives (Chen, 1998).

Here, the local alternative, intuitively, means that the distance between the null model and

the alternative model is small. That is, some components have mixing proportions close

to 0 or 1, and other components have component parameters close to each other.

The method of moments is not only used for estimating the unknown parameters in a

finite mixture model, but it has also been applied for testing the number of components.

Lindsay (1989b) suggested a statistic for testing the order of the finite mixture model based

on the determinant of the moment matrix (Lindsay, 1989a) of the mixing distribution Ψ.

For testing homogeneity in the mixture models, the suggested statistic is equivalent to

C(α) test statistic for distributions in the exponential family (Lindsay, 1989b). The same

idea was also used to test the order in the mixture of exponentials (Heckman et al., 1990).

As Lindsay (1989b) pointed out this idea could not be directly used for testing the order

of the finite mixture models in the presence of a structural parameter, for example, normal

mixture models with same and unknown variance for each component.

The likelihood ratio test (LRT) is the most extensively used method in the parametric

hypothesis test. The LRT statistic has a chi-squared null limiting distribution not de-

pending on the true distribution for regular models and this property makes it easy to

use. Due to the non-regularity of the finite mixture models, the large sample property of

likelihood-based tests was an enigma until Ghosh and Sen (1985) and Hartigan (1985).

For the test of homogeneity, the limiting distribution of the LRT statistic often involves a

Guassian process, see Chen and Chen (2001), Dacunha-Castelle and Gassiat (1999), and

Liu and Shao (2003). The percentiles of such a statistic is very hard to determine and

hence the result on LRT is hard to implement in practice (Alder, 1990 and Sun, 1993).

The modified likelihood ratio test (MLRT) proposed in Chen (1998), Chen et al. (2001,

2004) and Chen and Kalbfleisch (2005), restores the simplicity of the likelihood based
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test by adding a penalty function on the mixing proportions. The limiting distribution

of the MLRT statistic is chi-squared or a mixture of chi-squared distributions for a large

variety of mixture models. The modified likelihood method has the advantage of giving a

natural and general approach to testing problems in finite mixture models. The MLRT is

asymptotically locally most powerful. Simulation indicates that the MLRT is more efficient

compared to C(α) test when the Kullback-Leibler distance between the null model and the

alternative model increases. Due to the penalty function, the MLRT may be inefficient

when one of the mixing proportions is close to 0 or 1.

Charnigo and Sun (2004) proposed another class of D-test for testing the order of

mixture models. The D-test statistic measures some L2 distance between the best fitted

uni-component model and the alternative model. This method enjoys the advantage that

the statistic has a closed-form expression in terms of parameter estimators for a large

class of kernel densities. In addition, a weighting function can be used to achieve high

power of the D-test. The percentiles of the test statistic are usually obtained via computer

simulation. Simulation studies in Charnigo and Sun (2004) suggested that the D-test and

the MLRT are competitive.

1.4 Main Contributions and the Presentation of the

Thesis

In some applications, prior information on the order of the finite mixture is known, and

our task is reduced to select the order out of a few competitors. The most important albeit

also most simple example is to choose between a homogeneous model vs a mixture model

with two components. In these applications, it is often sensible to conduct a hypothesis

test with the homogeneous model as the null model. For example, in classical statistical
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genetics, it is often suspected that only a subgroup of patients have a disease gene which is

linked to the marker. Detecting the existence of this subgroup amounts to the rejection of

a homogeneous null model in favour of a two component mixture model (Ott, 1999). In the

literature testing for homogeneity, or specifically, testing for homogeneous model against

an alternative of mixture of two components, has attracted substantial research recently.

The objective of the thesis is to make substantial contributions in this area of research.

The classical LRT is a favored method in general, its application to test of homogeneity

is not successful due to its inconvenient limiting distribution. What complicates the null

limiting distribution of the LRT is the partial loss of identifiability of mixture models. The

MLRT restores the identifiability by introducing a penalty function to the log-likelihood

function. Under some conditions, the limiting distribution of the MLRT is 1/2χ2
0 + 1/2χ2

1,

which is convenient to implement in real data analysis. The choice of the penalty functions

in the MLRT is very flexible. A good choice of the penalty enhances the power of the

MLRT. Chen et al. (2001) suggested the use of penalty function p(α) = C log{4α(1 − α)}
with some positive constant C, where 1− α and α are the mixing proportions for the first

and second components, respectively. A natural question is “can we find a new penalty

function which can improve the approximation of the limiting distribution while retaining

or improving the efficiency of the test under finite sample size”. Chapter 2 contributes

to the answer of this question. After detailed reviews of the LRT and the MLRT, the

new penalty function for the MLRT is suggested. Extensive simulations based on Poisson

mixtures, Binomial mixtures and Normal mixtures with known variance are conducted

to compare the performance of the two penalty functions. We find that the MLRT with

the new penalty function enjoys a significantly improved power for testing of homogeneity

when α is close to 0 or 1.

The main contribution of the thesis is to propose a new class of methods for testing of ho-
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mogeneity. Most existing methods, explicitly or implicitly, are derived under the condition

of finite Fisher information and a compactness assumption on the component parameter

space (Ghosh and Sen, 1985, Chen and Chen, 2001, Chen et al., 2001, Dacunha-Castelle

and Gassiat, 1999, Liu and Shao, 2003 and, Charnigo and Sun, 2004). The finite Fisher

information condition can prevent their usage to many important mixture models. Two

typical examples are the mixture of geometric distributions and the mixture of exponential

distributions. The compactness assumption often forces applicants to set artificial bounds

for the parameters of interest and makes the resulting limiting distribution dependent on

these bounds. Many researchers in this area dream to develop a test method without such

restrictions. In Chapter 3, a new class of methods, called EM-test, are proposed, which are

shown to be free of all these shortcomings. In this chapter, we first give more details for our

motivation by two simple and illustrative examples. Then the EM-test is described, which

is found to inherit the advantages of the classic LRT and score test (Liang and Rathouz,

1999). The asymptotic properties of the EM-test are studied for single parameter mixture

models. It has a simple limiting distribution 0.5χ2
0+0.5χ2

1, the same as the MLRT. This re-

sult is applicable to mixture models without requiring the restrictive regularity conditions

described earlier. The adjustment of the limiting distribution is suggested for the finite

sample size. The Edgeworth expansion is used to approximate the non-zero proportion of

the EM-test statistic. The performance of the new method is compared with the MLRT,

the constrained LRT (Chen and Cheng, 1995 and Lemdani and Pons, 1995) and the D-test

(Charnigo and Sun, 2004) by extensive simulation. The new method works well compared

with these methods. We also illustrate the use of the EM-test by analyzing a number of

real data sets.

The normal mixture model is probably the most popular model in applications. Chen

and Chen (2003) noted that normal distribution does not satisfy the strong identifiability
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condition, which imposes substantial technical difficulties in the study of the asymptotic

properties. For example, the convergence rate of the MLE of the mixing distribution is

Op(n
−1/8) instead of Op(n

−1/4), the optimal rate for the single parameter mixture models

(Chen, 1995). Most existing methods can not directly apply to normal mixture models.

Their asymptotic properties have to be developed separately. In Chapter 4, after reviewing

the developments of the recent researchers on the homogeneity test in normal mixtures,

the use of the EM-test is investigated and its limiting distributions are derived. For the

homogeneity test in the presence of the structural parameter, a penalty function is sug-

gested to overcome the underestimation effect of the variance parameter. The limiting

distribution is a simple function of 0.5χ2
0 + 0.5χ2

1 and χ2
1 distributions. The test with this

limiting distribution is still very convenient to implement. For normal mixtures in both

mean and variance parameters, a penalty on the variance parameters is added to avoid the

unboundedness of the log-likelihood function. The limiting distribution of the EM-test is

found to be χ2
2. Simulations are conducted to check the precision of the approximation of

the limiting distributions to the finite sample distribution of the EM-test statistics. A real

example is used to illustrate the use of the EM-test.

Circular data arise in many disciplines, including astronomy, biology, ecology, geology

and medicine. As a circular analog of the normal distribution on the real line, the von

Mises distribution is called the circular normal distribution. It is the most commonly used

distribution for circular data, see Mardia and Jupp (2000) for its general properties. Similar

to the normal mixture model for the linear data, the mixture of von Mises distributions

is often used to model the heterogeneity in the circular data. Interestingly, it satisfies the

strong identifiability condition and its mean space is compact. However the theoretical

results in the single parameter mixture model can not directly apply to the mixture of von

Mises distributions. In Chapter 5, we study the application of the MLRT and the EM-test
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to von Mises mixture models in the presence of a structural parameter. At the beginning of

this chapter, a general introduction about the von Mises distribution and von Mises mixture

is given, which is followed by the circular moment properties for the mixture of two von

Mises distributions. After that the asymptotic property of the LRT, the MLRT and the

EM-test in the von Mises mixture model are studied. A penalty function is introduced to

prevent the overestimation effect of the structural parameter, which significantly enhances

the precision of the MLRT test and the EM-test. Two real data sets in Grimshaw et al.

(2001) are used to illustrate the idea of these two tests.

Chapter 6 concludes the thesis and discuss additional problems for future research.



Chapter 2

More Effective Penalty Function for

the Modified Likelihood Ratio Test

2.1 Introduction

The modified likelihood ratio test (MLRT) was first introduced in Chen (1998) for testing

homogeneity in mixture of multinomial distributions. In Chen et al. (2001), the MLRT

was generalized to the mixture of general kernel functions. Since then, the MLRT has been

applied to a number of more general testing problems in finite mixture models, for example,

Chen et al. (2004) used the MLRT to test the null hypothesis of m = 2 against m ≥ 3;

Chen and Kalbfleisch (2005) applied MLRT to test of homogeneity at the presence of the

structural parameter; Fu et al. (2007) studied the use of the MLRT to mixture models for

directional data.

For regular parametric models, the likelihood ratio test (LRT) enjoys a very simple

limiting distribution and high efficiency. Theory for the likelihood ratio test in finite

mixture models enjoyed a fast development in the past years since the work of Ghosh

25
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and Sen (1985) and Hartigan (1985). It is one of the most discussed method for testing

homogeneity in the literature. However due to the non-regularity of the finite mixture

models, the limiting distribution of the LRT often involves the supremum of Gaussian

process and hence the test is hard to implement because the computation of the asymptotic

quantiles for the LRT statistic is challenging (Adler, 1990 and Sun, 1993). To overcome

this difficulty, Chen (1998) and others proposed adding a penalty function to the log-

likelihood function. The resulting MLRT has a simple limiting distribution for a large

number of mixture models and it is easy to use in applications. The result is valid for a

large variety of penalty functions. The choice of a good penalty function is an important

research problem. In this chapter, we propose the use of a new class of penalty functions.

We show that the new penalty function significantly improves the power of the MLRT for

testing of homogeneity when α is close to 0 or 1.

2.2 The LRT and the MLRT

To discuss the new penalty functions, let us consider the use of the LRT and the MLRT

for testing homogeneity under the single parameter mixture models. Let X1, . . . , Xn be a

random sample from the mixture density:

f(x; Ψ) = (1 − α)f(x; θ1) + αf(x; θ2), (2.1)

where Ψ(θ) = (1 − α)I(θ1 ≤ θ) + αI(θ2 ≤ θ), θi ∈ Θ, i = 1, 2 and 0 ≤ α ≤ 1. We wish to

test

H0 : α(1 − α)(θ1 − θ2) = 0. (2.2)

We assume Θ is a compact subset of real line. The log-likelihood function is given by

ln(α, θ1, θ2) =

n
∑

i=1

log{(1 − α)f(Xi; θ1) + αf(Xi; θ2)}. (2.3)
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Let (α̂, θ̂1, θ̂2) be the MLE of (α, θ1, θ2) under the full model and θ̂0 maximize ln(1/2, θ, θ)

under the null model. The likelihood ratio test (LRT) statistic is defined to be

Rn = 2{ln(α̂, θ̂1, θ̂2) − ln(1/2, θ̂0, θ̂0)}

and the LRT rejects the null hypothesis when Rn is large.

Chen and Chen (2001) studied the large sample behavior of the LRT using the so

called sandwich method. Dacunha-Castelle and Gassiat (1999) and Liu and Shao (2003)

derived the limiting distribution of the LRT using a parameter transformation technique.

Under the regularity conditions listed in Section 2.5 at the end of this chapter, the limiting

distribution is given by the following theorem.

Theorem 2.2.1. If Conditions A1-A5 in Section 2.5 hold, the limiting distribution of Rn

under null model f(x; θ0) is that of

sup
θ∈Θ

{W+(θ)}2,

where W (θ) is a Gaussian process with mean 0, variance 1 and the autocorrelation function

ρ(θ, θ′) =
cov{Zi(θ) − h(θ)Yi, Zi(θ

′) − h(θ′)Yi}
√

var{Zi(θ) − h(θ)Yi}var{Zi(θ′) − h(θ′)Yi}
.

Here

Yi(θ) =
f(Xi; θ) − f(Xi; θ0)

(θ − θ0)f(Xi; θ0)
, θ 6= θ0; Yi = Yi(θ0) =

f ′(Xi; θ0)

f(Xi; θ0)
, (2.4)

Zi(θ) =
Yi(θ) − Yi(θ0)

(θ − θ0)
, θ 6= θ0; Zi = Zi(θ0) =

f ′′(Xi; θ0)

2f(Xi; θ0)
, (2.5)

and h(θ) = E{YiZi(θ)}/E(Y 2
i ).

We emphasize here that the Conditions A1-A5 include the compact parameter space

assumption and the finite Fisher information condition. If the parameter space is not

compact, Rn may go to infinity in probability as n → ∞ (Hartigan, 1985, Bickel and
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Chernoff, 1993 and Liu and Shao, 2004). It is seen that the correlation function ρ(θ, θ′) in

Theorem 2.2.1 is meaningful only when E{Z2
i (θ)} <∞. Note that E{Z2

i (θ)} <∞ implies

that the Fisher information at α = 0 and θ1 = θ0 or the second moment of the centered

density ratio f(x; θ)/f(x; θ0) − 1 is finite. More discussions will be given in Chapter 3.

When the kernel function f(x; θ) = (θx/x!) exp{−θx} is the probability mass function

of the Poisson distribution, the correlation function is

ρ(θ, θ′) =
evv′ − 1 − vv′

√

(ev2 − 1 − v2)(ev′2 − 1 − v′2)
,

where v = (θ − θ0)/
√
θ0 and v′ = (θ′ − θ0)/

√
θ0. See Chen and Chen (2001) for addi-

tional examples of the correlation function. Typically, the limiting distribution is used

to approximate the critical values of the corresponding test. In this example, we must

compute the quantiles of the supremum of the above truncated Gaussian process to obtain

the critical values, which is not an easy task (Adler, 1990 and Sun, 1993). Ghosh and Sen

(1985) suggested a discretization method to approximate the p-value of the LRT statistic.

It is to select an appropriate sequence of θi ∈ Θ, and approximate the limiting distribu-

tion by that of maxi{W+(θi)}2. This idea may have the following two disadvantages in

applications (Chen et al., 2001). Firstly, the approximation may depend on the choice of

θi’s. Secondly, the asymptotic distribution of the LRT under the null model depends on

the kernel function and the true value of Ψ. So for different kernel functions and different

values of Ψ, we need to do different approximations.

To overcome the difficulty of the LRT, new tests with simple limiting distributions,

and similar efficiency are sought by researchers in this area. The MLRT is one of most

satisfying solutions.

As pointed out by Chen et al. (2001) and Anaya-Izquierdo and Marriott (2007a), there

are two sources of non-regularity which complicate the asymptotic null distribution of the

LRT:
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(1) the null hypothesis lies on the boundary of parameter space α = 0 or α = 1;

(2) the mixture model is not identifiable under null model, that is, α = 0, α = 1 and

θ1 = θ2 are equivalent.

The MLRT overcomes the boundary problem and non-identifiability by adding a regularity-

restoring penalty function. Let

pln(α, θ1, θ2) = ln(α, θ1, θ2) + p(α)

such that p(α) → −∞ as α → 0 or 1 and p(α) achieves its maximal value at α = 0.5.

A main cause of non-regularity of mixture models is the possibility of α = 0 or 1.

Because of the penalty function p(α), the fitted value of α under the modified likelihood is

bounded away from 0 and 1. Thus, the penalty has effectively placed a soft constraint on α.

Let α̃, θ̃1 and θ̃2 maximize pln(α, θ1, θ2) under the full model and θ̃0 maximize pln(1/2, θ, θ).

The modified likelihood ratio test statistic is then defined to be

Mn = 2{pln(α̃, θ̃1, θ̃2) − pln(1/2, θ̃0, θ̃0)}.

The MLRT is asymptotically distribution-free and can be conveniently implemented.

Theorem 2.2.2. If Conditions A1-A5 in Section 2.5 hold, then the asymptotic null dis-

tribution of the MLRT statistic Mn is the mixture of χ2
1 and χ2

0 with the same weights,

i.e.

0.5χ2
0 + 0.5χ2

1,

where χ2
0 is a degenerate distribution with all its mass at 0.

By Theorem 2.2.1, we have Rn = Op(1). Since 0 ≤Mn ≤ Rn, we get

−Rn ≤ 2{p(α̃) − p(0.5)} ≤ 0.
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Therefore, p(α̃) = Op(1), which implies that α̃ is bounded away from 0 and 1 with prob-

ability approaching 1. Hence it follows that θ̃1 and θ̃2 must converge to the true value θ0

under null model. The Taylor’s expansion at θ1 = θ0 and θ2 = θ0 is then used to find the

quadratic approximation of the modified likelihood ratio statistic and typical technique of

quadratic approximation is further applied to yield the desired result. For more details,

see Chen et al. (2000). The purpose of the penalty function p(α) is to bound the fitting

of α away from 0 or 1, which is guaranteed under the finite Fisher information condition

and the compact parameter space assumption. If these two conditions are not satisfied,

the LRT statistic Rn may go to infinity in probability as n → ∞, then the penalty func-

tion p(α) may not fully fulfill its purpose and the simple limiting distribution may not be

applicable.

2.3 More Effective Penalty Function

According to Theorem 2.2.2, the limiting distribution of the MLRT does not depend on

the specific form of p(α), but the precision of the approximation and its power do. Chen

et al. (2001) suggested the use of penalty function

p(α) = C log{4α(1 − α)} (2.6)

with some positive constant C. For a number of mixture models such as Binomial, Poisson

and Normal in mean, Chen et al. (2001) suggested using C = log(M) if the parameters θ1

and θ2 are restricted to [−M,M ]. For example, for a Poisson mixture, if θi ∈ [0, 50], i =1,

2 we let C = log(50). In these cases, the influence of C on the type I error or the power is

minor for C within some appropriate range.

Now we motivate the new penalty function by analyzing two simulated data sets from

Poisson mixture models. We let the sample size be 200. The probability mass function of
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the first Poisson mixture model is

0.05Pois(0.127) + 0.95Pois(5.256)

and the second one is

0.1Pois(1.646) + 0.9Pois(5.373),

where Pois(θ) denotes the Poisson probability mass function with mean θ. These two data

sets are given in Table 2.1.

Table 2.1: Simulated data sets from Poisson mixture models.

Observed values

0 1 2 3 4 5 6 7 8 9 10 11

Frequency

Dataset I 7 9 10 27 32 40 30 20 11 6 8 0

Dataset II 4 11 16 22 28 28 33 33 14 5 3 3

We first compute the MLRT statistics with the penalty function in (2.6) with C =

log(50) for the above two data sets. For the first data set, we find

(α̃, θ̃1, θ̃2) = (0.919, 0.743, 5.185) and Mn = 0.881

and for the second data set, we find

(α̃, θ̃1, θ̃2) = (0.791, 2.751, 5.615) and Mn = 0.960.

In view of the limiting distribution 0.5χ2
0+0.5χ2

1, the asymptotic p-values for the above two

MLRT statistics are 0.174 and 0.164, respectively. Thus, we do not have strong evidence

to reject the uni-component Poisson distribution hypothesis in both cases. One reason is

that the test statistic puts too much penalty on the mixing proportion when it is close to
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0 or 1. For data set I, the penalty term contributes -9.479 to Mn and for data set II, the

penalty term contributes -3.236 to Mn. It appears that the penalty in both cases played

a heavy role, hence the power of the test is severely affected. Can we find a new penalty

function, based on which the null critical values of MLRT is still close to the theoretical

values and the power of MLRT increases even when the mixing proportion is close to 0

and 1?

For the validity of the asymptotic result, p(α) must decrease to negative infinity when

α → 0 or 1. The only other considerations for the choice of p(α) are computational

convenience and statistical efficiency. We suggest the following penalty function

p(α) = C∗ log(1 − |1 − 2α|) (2.7)

for some positive C∗. Our arguments are as follows. Firstly, we find

log(1 − |1 − 2α|) ≤ log(1 − |1 − 2α|2) = log{4α(1 − α)}.

Thus, when C = C∗, the penalty (2.7) is more severe than the penalty (2.6) which enhances

the accuracy of the approximation. Secondly, when α ≈ 0.5, log(1−|1− 2α|) ≈ −|1− 2α|.
So the penalty (2.7) is a Lasso-type penalty (Tibshirani, 1996), that is, it is a continuous

function for all α, but not smooth at α = 0.5. Therefore the new penalty function has

similar properties to the Lasso-type penalty for linear regression (Tibshirani, 1996); the

probability of the fitted value of α being 0.5 is positive. In comparison, the penalty

log{4α(1 − α)} is smooth at α = 0.5 and does not have this property. In conclusion, the

new penalty function can achieve the same precision under the null distribution at a lower

level of modification C∗. Hence, its usage may lead to higher power.

In the simulation study to be presented, we found the MLRT statistics constructed from

the penalty functions in (2.6) with C = log(50) and (2.7) with C∗ = 1 have the similar

null rejection rates for Poisson mixtures and Binomial mixtures. Figure 2.1 compares
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log(1 − |1 − 2α|) and log(50) log{4α(1 − α)}. These two penalty functions are almost the

same when α is close to 0.5 and quite different when α is close to 0 and 1. Hence the

MLRT constructed from the penalty function (2.7) is expected to have larger power when

α is close to 0 and 1.
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Figure 2.1: Comparisons of log(50) log{4α(1−α)} (solid line) and log(1−|1−2α|) (dashed

line).

Remark 2.3.1. The two penalty functions are special cases of C log(1 − |1 − 2α|h) for

some 0 < h ≤ 2. A choice of 0 < h < 1 may further improve the power of the MLRT.

We still recommend the choice of h = 1 due to the following reasons. Firstly, when h = 1,

for the EM algorithm introduced in Chapter 1, α values can be easily updated in M-step as

follows:

α(k+1) =



















min
{
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i
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for k = 0, 1, 2 . . .. Secondly, there is a natural generalization of the current penalty function

to the hypothesis testing problem with more than two components. Note that log(1 − |1 −
2α|) = min[log(2α), log{2(1−α)}]. For the mixture model with m components, the penalty

function can be set as min{log(α1), . . . , log(αm)}. However, when h < 1, the penalty

function loses the above two properties.

Remark 2.3.2. Our final comment concerns the choice of the level of modification C∗. A

natural choice is C∗ = 1. Although a specific reason of choosing C∗ = 1 is lacking, there

is ample evidences that it is a very sensible choice in a wide range of applications. In

simulation study, C∗ = 1 works quite well for mixture of Poisson kernels, Binomial kernels

and normal kernels with known variance. In each new application, we recommend a pilot

simulation study to ensure that C∗ is chosen such that the simulated type I errors are no

more than 5.5% when the target is 5%.

2.4 Simulation Study

The purpose of this simulation study is to compare the power of the MLRT statistics

constructed using the penalty functions in (2.6) and (2.7). In the literature, there are

many others methods for testing homogeneity, such as the C(α) test and the D-test. We

do not include the comparison of the MLRT and the C(α) test, since this has been done in

Chen (1998) and Chen et al. (2001). We also do not include the comparison of the MLRT

and the D-test because this will be investigated in Chapter 3.

For convenience of presentation, let Mn and M∗
n denote the MLRT statistics with

penalty functions in (2.6) and (2.7), respectively. The simulation experiment was conducted

under the Poisson and Binomial kernels with size 10, and the Normal kernel with a known

variance of 1. The mean values for the null distribution and alternative distributions for
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Poisson kernel and Binomial kernel are 5, and for normal kernel are 0. Four alternative

models are selected for each kernel as follows: we set 1 − α = 0.5, 0.25, 0.1, 0.05 and the

variances for the alternative models are set to be 1.25 times the variance under null model.

Under this setup, we have for the Poisson mixture,

α(1 − α)(θ1 − θ2)
2 = 1.25,

for the Binomial mixture,

α(1 − α)(θ1 − θ2)
2 = 1/144

and for the Normal mixture,

α(1 − α)(θ1 − θ2)
2 = 1/4.

Together we have twelve alternative models and their parameter values are summarized in

Table 2.2. We also provide the Kullback-Leibler information of these models with respect

to the corresponding null models, namely,

KL(f, g) = Ef [log{f(X)/g(X)}].

TheM∗
n values were computed with C∗ = 1 for all kernels, andMn values were computed

with C = log(50) for Poisson and Binomial kernels and with C = log(10) for the normal

kernel, as suggested in Chen et al. (2001). In each simulation run, three levels; 10%, 5%

and 1%, and two sample sizes 100 and 200 were considered. The null rejection rates were

calculated based on 20,000 repetitions and the powers were computed based on 10,000

repetitions. Table 2.3 summarizes the rejection rates under the null models. Tables 2.4,

2.5 and 2.6 present the power comparisons under the alternative models. The simulation

results show that when α is close to 0 or 1, for example, when 1 − α = 0.05, the new

penalty function significantly improves the power of the MLRT. When M∗
n is applied to
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the two simulated data sets, for data set I,

(α̃∗, θ̃∗1, θ̃
∗
2) = (0.947, 0.460, 5.128) and M∗

n = 7.738

and for the second data set,

(α̃∗, θ̃∗1, θ̃
∗
2) = (0.902, 1.653, 5.402) and M∗

n = 4.176,

which gives strong evidence to reject the null hypothesis.

2.5 Appendix: Regularity Conditions

The following regularity conditions on the kernel density function are used in obtaining

the asymptotic properties of the LRT and the MLRT.

A1. Compact parameter space. Θ is a compact subset of the real line.

A2. Wald’s integrability conditions. (i) E| log f(X; θ0)| <∞, and (ii) for sufficiently small

ρ and for sufficiently large r, the expected values E log{1+f(X; θ, ρ)} <∞ for θ ∈ Θ

and E log{1 + ϕ(X, r)} <∞, where

f(x; θ, ρ) = sup
|θ′−θ|≤ρ

f(x; θ′)

and

ϕ(x; r) = sup
|θ|≥r

f(x; θ).

A3. Smoothness. The kernel function f(x; θ) has common support and is three times

continuously differentiable with respect to θ. The first two derivatives are denoted

by f ′(x; θ) and f ′′(x; θ).

A4. Strong identifiability. The kernel function f(x; θ) is strongly identifiable, ie.
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(a) for any two mixing distribution functions Ψ1 and Ψ2 with two supporting points

such that
∫

f(x; θ)dΨ1(θ) =

∫

f(x; θ)dΨ2(θ), for all x,

we must have Ψ1 = Ψ2;

(b) for any θ1 6= θ2 in Θ,

2
∑

j=1

{ajf(x; θj) + bjf
′(x; θj) + cjf

′′(x; θj)} = 0

implies that aj = bj = cj , j = 1, 2.

A5. Strong law of large numbers. There exists a g with finite expectation such that

(a) |Yi(θ)|3 ≤ g(Xi) and |Zi(θ)|3 ≤ g(Xi) for all θ ∈ Θ;

(b) |Z ′′
i (θ)|2 ≤ g(Xi) for θ ∈ N(θ0), where N(θ0) is some neighborhood of θ0.

Remark 2.5.1. Condition A5 is sufficient to ensure that the process

n−1/2
n

∑

i=1

[{Zi(θ) − Zi(θ0)}/(θ − θ0)]

is tight in a small neighborhood of θ0, see Billingsley (1968).
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Table 2.2: Parameters in Poisson, Binomial and Normal mixture models.

Model 1 − α θ1 θ2 100KL

Poisson mixtures:

I 0.50 3.882 6.118 1.751

II 0.25 3.064 5.645 2.017

III 0.10 1.646 5.373 2.827

IV 0.05 0.127 5.256 5.081

Binomial mixtures:

I 0.50 0.417 0.583 1.989

II 0.25 0.356 0.548 2.059

III 0.10 0.250 0.528 2.358

IV 0.05 0.137 0.519 2.846

Normal mixtures:

I 0.50 -0.500 0.500 1.358

II 0.25 -0.866 0.289 1.444

III 0.10 -1.500 0.167 1.842

IV 0.05 -2.179 0.115 2.583

KL: Kullback-Leibler information.
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Table 2.3: Null rejection rates (%) of the MLRT statistics.

Mn M∗
n

Level 10% 5% 1% 10% 5% 1%

Poisson mixtures

n = 100 9.7 5.0 1.0 9.9 5.2 1.1

n = 200 9.9 4.9 0.9 10.0 5.1 1.0

Binomial mixtures

n = 100 9.5 4.9 1.0 9.8 5.1 1.1

n = 200 9.7 4.9 1.0 9.9 5.1 1.1

Normal mixtures

n = 100 9.6 4.7 1.0 9.5 4.7 1.0

n = 200 9.8 4.8 1.1 9.7 4.7 1.1
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Table 2.4: Power comparisons of the MLRT statistics under Poisson mixture models.

Model 10% 5% 1%

Mn M∗
n Mn M∗

n Mn M∗
n

n = 100

I 62.9 62.5 49.4 48.8 25.4 25.0

II 65.2 65.5 51.9 51.8 27.7 27.8

III 65.8 68.8 53.8 57.5 31.3 35.6

IV 71.6 82.0 63.1 76.4 47.6 62.6

n = 200

I 83.2 82.8 74.2 73.7 50.8 49.5

II 84.8 84.9 76.3 76.3 54.3 53.8

III 85.9 88.4 78.1 82.2 60.1 65.8

IV 90.8 96.5 87.0 95.2 78.2 91.0
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Table 2.5: Power comparisons of the MLRT statistics under Binomial mixture models.

Model 10% 5% 1%

Mn M∗
n Mn M∗

n Mn M∗
n

n = 100

I 67.6 66.9 54.0 53.0 29.5 28.5

II 67.9 67.5 54.2 53.3 29.9 29.5

III 65.4 66.6 52.6 54.1 30.0 31.9

IV 64.3 69.5 52.4 59.7 32.9 40.5

n = 200

I 87.3 87.0 78.0 77.4 55.6 53.8

II 86.7 86.6 78.1 77.7 55.6 54.3

III 85.7 86.7 76.5 78.5 56.0 58.6

IV 83.5 88.0 74.9 82.2 57.4 68.5
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Table 2.6: Power comparisons of the MLRT statistics under Normal mixture models.

Model 10% 5% 1%

Mn M∗
n Mn M∗

n Mn M∗
n

n = 100

I 63.8 63.7 51.3 50.5 26.6 26.2

II 63.2 63.3 50.5 50.1 26.9 26.7

III 62.2 62.5 49.5 49.8 27.9 28.5

IV 59.9 61.6 49.7 51.5 30.6 33.2

n = 200

I 84.0 83.9 75.1 74.9 49.4 47.7

II 83.3 83.1 74.4 74.4 49.0 47.3

III 82.3 82.3 73.4 73.9 50.7 51.2

IV 79.3 81.5 71.9 75.0 53.9 57.0



Chapter 3

EM-test in Single Parameter Mixture

Models

3.1 Motivation

In the last chapter, we reviewed the MLRT method and proposed a new class of penalty

functions. In general, the MLRT is very convenient to use and widely applicable. At the

same time, there are still many useful finite mixture models to which the MLRT can not

be directly applied. To address this problem, we propose a new class of testing methods.

We first provide some motivating insights.

Many first order asymptotic results in standard parametric models are based on the

fact that the asymptotic distribution of the score vector is very tractable. However even for

very simple mixture models the behaviour of the score and the shape of the log-likelihood

function can be very different from the standard first order results. Consider, the mixture

distribution in (2.1),

f(x; Ψ) = (1 − α)f(x; θ1) + αf(x; θ2).

43
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The score vector with respect to α at α = 0 is based on

∂

∂α
log f(x; Ψ)|α=0 =

f(x; θ2)

f(x; θ1)
− 1.

It is immediately clear that if the covariance of this score is not finite then all standard

asymptotic results based on the limiting normal distribution of the score will not hold.

Example 3.1.1. Let X1, . . . , Xn be a random sample from the following mixture of expo-

nentials:

(1 − α)Exp(1) + αExp(θ),

where Exp(θ) denotes the exponential distribution with mean θ. The score statistic for α

at α = 0 and θ1 = 1 is given by

S(θ) =
n

∑

i=1

[θ−1 exp{−θ−1Xi}
exp{−Xi}

− 1
]

which is a centered density ratio. Under the null model where α = 0, however, we find

E{S(θ)2} =







n(1−θ)2

θ(2−θ)
if θ < 2,

∞ if θ ≥ 2.

Hence the only way to ensure a finite Fisher information is to restrict the range of θ to be

less than 2.

Many inference procedures which are based on the shape of the log-likelihood function

rely on this shape being approximately quadratic. The log-likelihood function for simple

mixture models such as (2.1) in fact can be very far from a quadratic, see Anaya-Izquierdo

and Marriott (2007a, 2007b) and Marriott (2007). Furthermore the shape can be domi-

nated by a few highly influential observations even when the model is correctly specified,

Marriott (2007).
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Example 3.1.2. Consider a simple normal mixture model given by (1 − α)N(0, 1) +

αN(µ, 1) with µ ∈ Θ ⊂ R. It is common to consider the likelihood ratio test for the

hypothesis

H0 : αµ = 0

based on a random sample X1, X2, . . . , Xn. Hartigan (1985) showed that the likelihood ratio

statistic goes to ∞ in probability as n→ ∞ when Θ = R. That is, the classical chi-square

limiting distribution result of Wilks (1938) is not applicable.

In order to be able to use standard testing procedures many authors have been forced

to make assumptions regarding the existence of the Fisher information and compactness

of parameter spaces.

As pointed out in Anaya-Izquierdo and Marriott (2007a), the homogeneity testing prob-

lem in (2.2) can be challenging since the mixture can be close to the unmixed model in two

quite distinct ways. One is that the two components θ1 and θ2 in (2.1) are both close to θ.

Secondly the components might be very far from each other but the mixing parameter is

very close to 0 or 1. It is in the second case that the Fisher information in the α-parameter

direction causes most problems. Furthermore if this mixing parameter is much smaller

than the inverse of the sample size then it is effectively not estimable. It should be noted

that the MLRT employs a penalty function to prevent the manifestation of this ill effect.

Yet the MLRT still relies on the compactness assumption and the finiteness of the Fisher

information.

Finding an effective and convenient method for the test of homogeneity has challenged

statisticians for a long time. Hartigan (1985) was the first to notice this challenge and

provided the Example 3.1.2 above as a case where standard methods fail.

Although Bickel and Chernoff (1993) and Liu and Shao (2004) successfully derived the

limiting distribution of the LRT under this specific model, the general problem under more
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useful models where Θ is not compact remains open. Recent advances are mostly obtained

by confining the mixing parameter(s) into a compact space (Dacunha-Castelle and Gassiat,

1999; Chen and Chen, 2001; Liu and Shao, 2003, etc).

In addition, either explicitly or implicitly, these results are based on the assumption

that all density ratios, f(x; θ)/f(x; θ0), has finite second or even higher moment under H0

for all θ ∈ Θ, where f(x; θ0) is the true distribution under the null hypothesis. Thus they

are assuming the Fisher information is finite. To better explore the problem, we show what

happens when a score test proposed by Davies (1977) is attempted. We present this case

as follows.

Example 3.1.1. (Continued) We wish to test the homogeneity null hypothesis

H0 : α(θ − 1) = 0.

According to Davies (1977), for each given θ, we first calculate a score statistic as the

derivative of the log-likelihood function with respect to α at α = 0.

As a general rule, the test statistic is to be defined as

sup
θ∈Θ

n−1/2S(θ)/
√

E{S(θ)2}.

The score test is clearly not sensible because the supremum is effectively restricted to the

range of θ < 2 by the implicit assumption regarding the finiteness of the Fisher information.

Similar comments also apply to tests based on the log-likelihood. Investigation reveals

that a finite Fisher information is explicitly or implicitly assumed in all the papers we are

aware of (Chen and Chen, 2001; Chen et al. 2001, 2004; Dacunha-Castelle and Gassiat,

1999; Ghosh and Sen, 1985; Liu and Shao 2003, and Charnigo and Sun, 2004).

In this chapter, we propose an EM-test that is completely free from the two difficulties

illustrated by the above examples. The EM-test statistic has a simple limiting distribution
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0.5χ2
0+0.5χ2

1 for mixture models with single parameter kernel function. We further discuss a

precision enhancing technique to improve the chi-square approximation to the finite sample

distribution of the test statistics.

The remainder of this chapter is organized as follows. In Section 3.2, we first introduce

the EM-test and then we examine the asymptotic properties of the EM-test subsequently.

Finally a higher order adjustment for the non-zero proportion is investigated, which en-

hances the precision of the type I error calibrated by the limiting distribution. In Section

3.3, simulation studies are used to examine the performance of the EM-test, followed by the

application of the EM-test to some real data examples in Section 3.4. For the convenience

of presentation, the regularity conditions and proofs are deferred to Section 3.5.

3.2 The EM-test and Its Asymptotic Properties

3.2.1 Testing Procedure

Let X1, X2, . . . , Xn be a random sample of size n from a two-component mixture model

(2.1). We are interested in the homogeneity testing problem given in (2.2). The modified

log-likelihood function is defined as follows.

pln(α, θ1, θ2) =
n

∑

i=1

log{(1 − α)f(Xi; θ1) + αf(Xi; θ2)} + p(α)

= ln(α, θ1, θ2) + p(α)

where ln(α, θ1, θ2) is the usual log-likelihood function defined in (2.3) and p(α) is a penalty

function on α such that p(α) achieves the maximal value at α = 0.5. The role of the

penalty function p(α) has been discussed in Chapter 2.

We propose an EM-test procedure for homogeneity as follows. For each fixed α = α0 ∈
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(0, 0.5], we compute a penalized likelihood ratio test statistic of the form

Mn(α0) = 2{pln(α0, θ̃01, θ̃02) − pln(0.5, θ̃0, θ̃0)}

with θ̃01 and θ̃02 being the maximizers of pln(α0, θ1, θ2) and θ̃0 being the maximizer of

pln(0.5, θ, θ).

Because 0 < α0 ≤ 0.5, the mixture model is fully identifiable. It is easy to verify that

when n → ∞, we have θ̃01 − θ0 = op(1) and θ̃02 − θ0 = op(1). Consequently, we can

show that Mn(α0) has a simple χ2-type null limiting distribution without imposing any

restrictive conditions. It is thus mathematically very convenient to conduct a test based on

Mn(α0). Note that if the data are from an alternative model with α far from α0, this test

is likely to be inefficient. To improve the power, we adopt an EM-like algorithm (Dempster

et al., 1977) to iteratively update Mn(α), for a fixed and finite number of times, between

α and (θ1, θ2). In addition, we choose a number of initial values of α0 to accelerate this

process so that only a few iterations are necessary to capture the true value of θ if the data

are from the alternative model. We then use the maximum value of Mn(α0)’s as our test

statistic.

The EM-test statistic is best explained by the following pseudo code.

Step 0. Choose a number of initial α values, say α1, α2, . . . , αJ ∈ (0, 0.5]. Compute

θ̃0 = arg max
θ
pln(0.5, θ, θ).

Let j = 1, k = 0.

Step 1. Let α
(k)
j = αj .

Step 2. Compute

(θ
(k)
j1 , θ

(k)
j2 ) = arg max

θ1,θ2

pln(α
(k)
j , θ1, θ2)

and

M (k)
n (αj) = 2{pln(α(k)

j , θ
(k)
j1 , θ

(k)
j2 ) − pln(0.5, θ̃0, θ̃0)}.
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Step 3. For i = 1, 2, . . . , n, compute the weights which are the conditional expectations

in the E-step,

w
(k)
ij =

α
(k)
j f(Xi; θ

(k)
j2 )

(1 − α
(k)
j )f(Xi; θ

(k)
j1 ) + α

(k)
j f(Xi; θ

(k)
j2 )

.

Now following the M-step, let

α
(k+1)
j = arg max

α
{(n−

n
∑

i=1

w
(k)
ij ) log(1 − α) +

n
∑

i=1

w
(k)
ij log(α) + p(α)},

θ
(k+1)
j1 = arg max

θ1

{
n

∑

i=1

(1 − w
(k)
ij ) log f(Xi; θ1)}

and

θ
(k+1)
j2 = arg max

θ2

{
n

∑

i=1

w
(k)
ij log f(Xi; θ2)}.

Compute

M (k+1)
n (αj) = 2{pln(α

(k+1)
j , θ

(k+1)
j1 , θ

(k+1)
j2 ) − pln(0.5, θ̃0, θ̃0)}.

Let k = k + 1 and repeat Step 3 for a fixed number of iterations in k.

Step 4. Let j = j + 1, k = 0 and go to Step 1, until j = J .

Step 5. For each k, calculate the test statistic as

EM (k)
n = max{M (k)

n (αj), j = 1, 2, . . . , J}.

In the above algorithm, fixing α to be one of α′
js and choosing a fixed finite number of

iterations on k can be seen as two soft compactness conditions. Under these two conditions,

when the data are from the null model f(x; θ0), we can show that the value of α will be in

a small neighborhood of the initial value of α and the values of θ1 and θ2 are in the small

neighborhood of θ0 after k iterations. So the limiting distribution of EM (k) will not rely

on the finite Fisher information condition and the compact parameter space assumption.

If the index k was allowed to grow unboundedly this nice property may disappear.
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The EM-test is partially motivated by the score test proposed by Liang and Rathouz

(1999). It is originally designed for the case when θ1 = θ0 is known and θ2 = θ is unknown,

and the testing problem is

H0 : α(θ − θ0) = 0.

For this problem, similar to Example 3.1.1, the score statistic for α at α = 0 and θ1 = θ0

is given by

S(θ) =

n
∑

i=1

[ f(Xi; θ)

f(Xi; θ0)
− 1

]

.

Liang and Rathouz (1999) proposed to first choose an fixed α value from (0, 1]. Given this

α, a maximum likelihood estimator of θ is then obtained. Denote this estimator by θ̂α.

The score test statistic is defined to be Tα = αS(θ̂α). Under some conditions this statistic

enjoys a χ2-type limiting distribution under the null hypothesis. Simulation shows that for

a number of mixture models, this method has very good power properties too.

The score test of Liang and Rathouz (1999) can be directly used for the models in

Examples 3.1.1 and 3.1.2. In both tests, a pre-chosen value of the mixing proportion is

utilized. However, the EM-test employs the likelihood ratio statistic which is more efficient

than the score statistic by general consensus. In addition, the EM-test iterates to find a

more suitable mixing proportion which improves efficiency, while the score test has no such

mechanism. Namely, it uses a single α value regardless of the actual fitting of the data.

The MLRT can be regarded as the limiting case of the EM-test. When the number of

iterations k → ∞, and under the assumption that the EM-algorithm converges to a global

maximum, then the EM-test statistic becomes the modified likelihood ratio test.

It is of interest to point out that the EM-test does not have any global/local maximum

problems which can occur in other existing methods. In Figure 3.1, we plot the M
(k)
n (α)

values of k = 0, 5, 10 based on two simulated data sets, one from a null model and another

from an alternative model. Under the null model, the iteration does not increase the value
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of M
(k)
n (α) much and its value at α = 0.5 dominates. In comparison, under the alternative,

the value of M
(k)
n (α) increases at α = 0.1 with k, and it dominates. Hence, the EM-test

retains the most relevant value unlike the MLRT which searches exhaustively.
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Figure 3.1: The M
(k)
n (α) at α = 0.1, 0.2, . . . , 0.5, k = 0, 5, 10 (•: 0 iteration; △: 5 iterations;

⋆: 10 iterations).

By removing the penalty term p(α), the EM-test reduces to the ordinary likelihood

ratio test when the number of iterations k = ∞. However note that the likelihood ratio

test has a complex limiting distribution available only under more restrictive conditions.

Chen and Cheng (1995) and Lemdani and Pons (1995) proposed a constrained test by

requiring ǫ0 ≤ α for some fixed positive constant ǫ0 ∈ (0, 1/2]. There are some similarities

between that method and the EM-test, because the EM-test requires pre-chosen mixing

proportions be larger than 0. However, the EM-iteration allows us to recoup the mixture

models with smaller mixing proportions while the other method does not.
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3.2.2 Asymptotic Results for the EM-test

Under very general conditions, for fixed finite k and any finite set of pre-chosen αj , we show

that the test statistic EM
(k)
n has simple limiting distribution 0.5χ2

0 + 0.5χ2
1. The details

are in the follow theorems with proofs given in Section 3.5.

Theorem 3.2.1. Suppose that f(x; θ) satisfies Conditions B1-B5 given in Section 3.5,

and p(α) is a continuous function such that p(α) → −∞ as α → 0 or 1 and it attains its

maximal value at α = 0.5. Under the null distribution f(x; θ0), we have, for j = 1, . . . , J

and any fixed finite k,

α
(k)
j − αj = op(1),

θ
(k)
j1 − θ0 = Op(n

−1/4),

θ
(k)
j2 − θ0 = Op(n

−1/4)

and

m
(k)
j1 = (1 − α

(k)
j )(θ

(k)
j1 − θ0) + α

(k)
j (θ

(k)
j2 − θ0) = Op(n

−1/2).

Based on the above results, we can easily derive the null distribution of EM
(k)
n .

Theorem 3.2.2. Assume the same conditions as in Theorem 3.2.1, and that one of αj’s

is equal to 0.5. Under the null distribution f(x; θ0), and for any fixed finite k, as n→ ∞,

EM (k)
n

d→ 0.5χ2
0 + 0.5χ2

1.

Remark 3.2.1. (Understanding the limiting distribution). Let η = α(1−α)(θ1 − θ2). The

test of homogeneity is to test η = 0 against the alternative η 6= 0. Intuitively, the limiting

distribution of the EM-test statistic should be χ2
1. Note that the following two groups of

parameters: (α, θ1, θ2) and (1 − α, θ2, θ1) give the same density function in (2.1). Due to

symmetry, we can assume θ1 ≤ θ2 without loss of any information. Therefore the parameter



EM-test 53

space for η is restricted to the non-positive part of the real line and the null hypothesis is on

the boundary of the parameters space. Chernoff (1954), Self and Liang (1987) and Lindsay

(1995) all provide discussion on the limiting distributions when the null hypothesis is on the

boundary. The limiting distributions in this case are often the mixture of χ2 distributions

instead of χ2
1.

Another way for understanding the limiting distribution is from the point view of mo-

ment. Let us use the two-component normal mixture model with same and known variance

of 1 as the example. Without loss of generality, we further assume that the mean of the

two-component normal mixture model is 0. Under this setup, the test of homogeneity is to

select one model between N(0, 1) and (1 − α)N(µ1, 1) + αN(µ2, 1) with

(1 − α)µ1 + αµ2 = 0.

For any given α ∈ (0, 0.5], the second moment for the mixture model is given by

E(X2
1 ) = 1 + αµ2

1 + (1 − α)µ2
2,

which is greater than or equal to 1, with the equality holding when the mixture model is the

homogeneous model. So the test of homogeneity is equivalent to testing

H0 : E(X2
1 ) = 1 versus Ha : E(X2

1 ) > 1.

The null hypothesis is on the boundary of the parameter space, and so the limiting distri-

bution in this case is the mixture of χ2 distributions.

Remark 3.2.2. For each given α ∈ (0, 0.5], Mn(α) can be written as the summation of

two terms: one is from the likelihood function and the other from the penalty. Under the

null model, the first term has the same quadratic approximation for all α values. However,

different α values result in different sizes of penalty. Since the penalty p(α) attains the
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maximum value of 0 at α = 0.5, including α = 0.5 implies that the limiting distribution is

determined by the quadratic approximation only, and hence has the simplest form.

We emphasize here that Conditions B1 − B5 do not include the condition that the

mixing parameter is confined in a compact space, nor conditions on finiteness of the Fisher

information. Hence, the EM-test is both more convenient in applications and more widely

applicable.

Based on the above result, the EM-test rejects the null hypothesis when EM
(k)
n , for a

prechosen k, is larger than some quantile of the limiting distribution. In theory, we can

choose a dense set of α in the interval (0, 0.5] as our initial values and iterate the EM-like

algorithm many times. Simulation studies suggest that three initial values (0.1,0.3,0.5) for

α, and one iteration are enough to arrive at an efficient EM-test statistic.

3.2.3 Precision Enhancing Methods

Before the EM-test is fully implemented, we suggest two precision enhancing measures to

further improve its utility. In applications, the limiting distribution of the test statistic is

usually used to provide a critical value for rejecting the null hypothesis. However when the

sample size is not large, the calibration via the limiting distribution might not be precise

enough. One way to improve the calibration precision is to choose a good penalty function.

For the validity of the asymptotic result, p(α) must decrease to negative infinity when

α → 0 or 1. Other considerations include computational convenience and statistical effi-

ciency. Based on our discussions in Chapter 2, the penalty function in (2.7) is recommended

for computing the EM-test statistics.

The next precision enhancing measure is motivated from the following observation. By a

quick inspection of the limiting distribution, it is suggestive that (1−pn)χ
2
0+pnχ

2
1 with pn =

Pr(EM
(k)
n > 0) may better approximate the finite sample distribution. Because of this, a
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good approximation for pn can be useful. Let µ(f) and σ2(f) be the mean and variance

under the homogeneous model, respectively. Further let S = E[{X1 − µ(f)}2] − σ2(f)

being an over-dispersion measure. The mixture model is not justified unless possibly when

S > 0. Note that Sn =
∑n

i=1(Xi − X̄)2/n − σ̂2(f) provides consistent estimation of the

over-dispersion measure S, where σ̂2(f) is the consistent estimate of σ2(f). Intuitively, if

Sn ≤ 0, the homogeneous model should be not rejected. Therefore we approximate pn by

Pr{Sn > 0}.
In the following proposition, we use the Edgeworth expansion to find the leading term

of this probability. We omit the proof because it is a routine application of the techniques

in Hall (1992, p. 56).

Proposition 3.2.1. Under null hypothesis, if E(X6
1 ) <∞, then

pn ≈ Pr{Sn > 0} = 0.5 +
1√
2πn

(

a− b

6

)

+ o(n−1/2), (3.1)

where

a = lim
n→∞

n1/2E
{ Sn

√

Var(Sn)

}

and b = lim
n→∞

n1/2E
{Sn − E(Sn)

√

Var(Sn)

}3

.

Further, if E(X10
1 ) <∞, then the remaining term o(n−1/2) in (3.1) can be strengthened to

O(n−3/2).

In the above proposition, the Edgeworth approximation relies on the condition E(X6
1 ) <

∞. Note that there exists some distributions, such as the Exponential distribution and the

Geometric distribution, which satisfy this condition or even the condition E(X10
1 ) < ∞,

but do not satisfy the finite Fisher information condition. So the condition E(X6
1 ) <∞ is

not restrictive compared with the finite Fisher information condition. The quantities a and

b may depend on unknown parameters, in which case we replace them by their consistent

estimates under the homogeneity model.
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For many commonly used distributions, we can compute a and b analytically and the

results are presented in the Table 3.1. In the Poisson and Binomial examples, we can

replace the unknown θ by its maximum likelihood estimate under the null model.

Table 3.1: Edgeworth approximations of pn for commonly used kernel functions.

Kernel Edgeworth approximation

N(µ, σ2
0) 0.5 − 5

6
√

πn
+Op(n

−3/2)

Pois(θ) 0.5 − 5θ+1
6θ

√
πn

+Op(n
−3/2)

Binom(N, θ) 0.5 − 1√
πn

(5N−11)θ(1−θ)+1

6θ(1−θ)
√

N(N−1)
+Op(n

−3/2)

Exp(θ) 0.5 − 8
3
√

2πn
+Op(n

−3/2)

σ2
0 in the normal kernel is assumed known

Needless to say, we recommend the use of penalty function (2.7) for the EM-test to-

gether with the higher order adjustment. These two practical considerations enhance the

performance of the new method.

3.3 Simulation Study

Our simulation study examines many aspects of the EM-test and related issues.

First, we examine the precision of the Edgeworth expansion for pn = Pr(EM
(k)
n >

0). We consider null models with kernels N(0, 1), Pois(5), Pois(3), Exp(5) (mean=5),

Exp(1) (mean=1), Binom(10, 0.3) and Binom(10, 0.5). In each case, we generated random

samples of sizes n = 100 and 200. The non-zero proportions of the EM-test statistics are

calculated based on 20,000 repetitions for each kernel. The penalty function in (2.7) with

C∗ = 1 and two sets of initial values for α, (0.1,0.2,0.3,0.4,0.5) and (0.1,0.3,0.5), are used

to compute the EM-test statistics. Note the non-zero proportions of the EM-tests are
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almost the same. Hence only the non-zero proportions of the EM-test statistics based

on the second set of α are presented. The simulation results are summarized in Table

3.2. Clearly, (3.1) gives a very good approximation to pn in all cases considered. Another

observation from the simulation is that the non-zero proportions are not affected much by

the value of C∗. For example, if the data are generated from Exp(5), when C∗ changed

from 1 to 1.5, the non-zero proportion changed from 0.395 to 0.393 for n = 100, and from

0.423 to 0.422 for n = 200; if the data are generated from Exp(1), when C∗ changed from

1 to 1.5, the non-zero proportion changed from 0.396 to 0.394 for n = 100, and from 0.425

to 0.422 for n = 200.

Next, the Poisson mixture model is used to compare the performance of the MLRT

and the EM-test when limiting distribution for both statistics are available. The setup

for Poisson mixture model in Section 2.4 is used in this simulation. For the MLRT and

the EM-test, we use the penalty function in (2.7) with C∗ = 1. We computed the null

rejection rates based on 20,000 repetitions and the powers based on 10,000 repetitions.

The outcomes are summarized in Tables 3.3 and 3.4. We find that the null rejection rates

of both the MLRT and the EM-test in all cases are close to the nominal values. The power

of the EM-test and the MLRT are almost same for all four models especially when |α−0.5|
is not too large. As we pointed out earlier, the MLRT statistic is the EM-test statistic

with k = ∞. The crucial point is: the asymptotic property of the EM-test is applicable to

more general mixture models. We also find that there is no need of using more than three

initials values of α or more than 1 iteration in EM-like algorithm. Additional initial values

or iterations do not meaningfully improve the power.

We now study the EM-test under the models where the asymptotic results of the MLRT

or the LRT are not applicable. Exponential kernel is used in this simulation. We set the

mean of the mixture model 5 in all cases and the same parameter values for alternative
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Table 3.2: Simulated non-zero proportions of the EM-test statistics.

Edgeworth

Kernel EM
(0)
n EM

(1)
n EM

(2)
n Approximation Std

n = 100

N(0, 1) 0.449 0.449 0.449 0.453 0.0035

Pois(5) 0.449 0.449 0.449 0.451 0.0035

Pois(3) 0.448 0.448 0.448 0.450 0.0035

Binom(10, 0.5) 0.453 0.453 0.453 0.457 0.0035

Binom(10, 0.3) 0.453 0.453 0.453 0.457 0.0035

Exp(5) 0.395 0.395 0.395 0.394 0.0035

Exp(1) 0.396 0.396 0.396 0.394 0.0035

n = 200

N(0, 1) 0.463 0.463 0.463 0.467 0.0035

Pois(5) 0.465 0.465 0.465 0.465 0.0035

Pois(3) 0.465 0.465 0.465 0.465 0.0035

Binom(10, 0.5) 0.467 0.467 0.467 0.470 0.0035

Binom(10, 0.3) 0.468 0.468 0.468 0.469 0.0035

Exp(5) 0.423 0.423 0.423 0.425 0.0035

Exp(1) 0.425 0.425 0.425 0.425 0.0035
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Table 3.3: Null rejection rates (%) under Poisson kernel.

Level MLRT EM
(0)
n EM

(1)
n EM

(2)
n EM

(0)
n EM

(1)
n EM

(2)
n

n = 100

10% 9.9 9.8 9.8 9.8 9.8 9.8 9.8

5% 5.2 5.1 5.2 5.2 5.1 5.1 5.1

1% 1.1 1.1 1.1 1.1 1.1 1.1 1.1

n = 200

10% 10.0 9.9 9.9 9.9 9.8 9.8 9.9

5% 5.1 4.9 5.0 5.0 4.9 4.9 4.9

1% 1.0 1.0 1.0 1.0 0.9 1.0 1.0

Results in columns (3, 4, 5) used α = (0.1, 0.2, 0.3, 0.4, 0.5).

Results in columns (6, 7, 8) used α = (0.1, 0.3, 0.5).

models as in Table 3.5. Although the limiting distributions of the LRT (denoted by Rn)

and the D-test (Charnigo and Sun, 2004) are not available, these tests be done by using

simulated quantiles under some null models. They are included in the simulation to serve

as efficiency barometers.

The definition of the D-test (Charnigo and Sun, 2004) is given as follows. Let (α̂, θ̂1, θ̂2)

and (θ̂0, θ̂0) maximize ln(α, θ1, θ2) and ln(1/2, θ, θ) respectively. The D-test statistic is

defined as

D = d(2, n) =

∫

{

(1 − α̂)f(x; θ̂1) + α̂f(x; θ̂2) − f(x; θ̂0)
}2

dx.

A weight function can also be incorporated in this definition to enhance the efficiency of

the D-test. Charnigo and Sun (2004) considered weighting functions x and x2 for testing

homogeneity in mixtures in exponential family distributions. We call these two weighted
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Table 3.4: Simulated powers (%) under Poisson mixture alternatives at the 5% level.

Model MLRT EM
(0)
n EM

(1)
n EM

(2)
n EM

(0)
n EM

(1)
n EM

(2)
n

n = 100

I 48.8 49.0 49.0 49.0 49.0 49.0 49.0

II 51.8 51.8 51.8 51.9 51.8 51.8 51.8

III 57.5 57.1 57.3 57.4 56.8 57.1 57.2

IV 76.4 72.0 74.3 74.5 72.0 74.3 74.5

n = 200

I 73.7 73.9 73.9 73.9 73.9 73.9 73.9

II 76.3 76.5 76.5 76.5 76.4 76.4 76.4

III 82.2 81.6 81.7 81.8 81.5 81.7 81.7

IV 95.2 91.5 92.2 92.4 91.5 92.2 92.4

Results in columns (3, 4, 5) used α = (0.1, 0.2, 0.3, 0.4, 0.5).

Results in columns (6, 7, 8) used α = (0.1, 0.3, 0.5).

versions of the D-test statistics as d1(2, n) and d2(2, n).

The MLRT can also be calibrated by simulated quantiles, but it is bounded by the EM-

test and the LRT and therefore is not included. The constrained LRT (Chen and Cheng,

1995; Lemdani and Pons, 1995) is applicable under the same conditions as the EM-test.

Its test statistic is defined as

Rn(ǫ0) = 2

{

sup
α∈[ǫ0, 1−ǫ0], θ1, θ2

ln(α, θ1, θ2) − ln(0.5, θ̂0, θ̂0)

}

,

for some user chosen positive constant ǫ0 ∈ (0, 0.5]. We find that it has large type I errors

unless we choose a large value of ǫ0. Through some pilot simulation studies, we found that

we have to select ǫ0 as large as 0.45 to have its type I errors comparable with those of
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Table 3.5: Parameters in four exponential mixture models.

1 − α θ1 θ2 ∆ 100KL

Model I 0.50 3.129 6.871 3.50 1.008

Model II 0.25 2.128 5.957 2.75 0.956

Model III 0.10 0.757 5.471 2.00 1.252

Model IV 0.05 0.127 5.256 1.25 1.996

∆: variance of mixing distribution.

KL: Kullback-Leibler information.

EM-tests. We thus included the constrained LRT with ǫ0 = 0.45 in our simulation.

Software for calculating the critical values of the D-test for the Exp(1) distribution can

be found at http://stat.cwru.edu/˜rjc12. For other null distributions, some transformations

as suggested in Charnigo and Sun (2004) must be used. We computed EM
(k)
n for k = 0, 1, 2

with C∗ = 1 and α ∈ {0.1, 0.3, 0.5} first. Their type I errors are also somewhat larger than

the nominal values, we hence also computed the EM-tests with C∗ = 1.5. The null rejection

rates of the EM-tests, D-tests and constrained LRT calibrated by limiting distributions or

by critical values obtained from references are in Table 3.6, The EM-tests and constrained

LRT have reasonably accurate type I errors. The D-test statistics may not sufficiently

invariant to allow transformation of critical values between the Exp(1) and the Exp(5)

null distributions. We note that the EM-tests are slightly over-sized but not too severely

with both choices of C∗ = 1 and C∗ = 1.5. Both meet the recommendation criterion set in

Remark 2.3.2, that is, choose a C∗ value large enough such that the simulated null rejection

rates is no more than 5.5% at 5% significance level.

The power calculations of all methods were done using simulated quantiles to ensure

objective comparisons. In general, the efficiency of the EM-test is much better than other
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Table 3.6: Null rejection rates (%) of the EM-test, the constrained LRT and the D-test

under exponential mixtures.

C∗ = 1 C∗ = 1.5

Level d(2, n) d1(2, n) d2(2, n) EM
(0)
n EM

(1)
n EM

(0)
n EM

(1)
n Rn(0.45)

n = 100

10% 18.8 12.4 8.3 11.0 11.1 10.5 10.5 10.8

5% 12.2 5.1 4.0 5.8 6.0 5.3 5.4 5.5

1% 4.0 0.8 0.8 1.2 1.3 1.1 1.1 1.1

n = 200

10% 19.7 14.9 10.4 10.5 10.6 10.2 10.2 10.5

5% 13.5 7.3 4.3 5.5 5.5 5.2 5.2 5.3

1% 5.0 1.0 0.7 1.2 1.3 1.1 1.2 1.1

methods. The D-test based on d(2, n) is less efficient than the EM-test when α is close to

0.5, but more efficient for alternatives when α is close to 1. This result may not be very

useful because the type I error of the d(2, n) based D-test is hard to control. An interesting

result is that the EM-test is much more efficient than the LRT when α is close to 0.5. Due

to the penalty function, the EM-test is expected to lose power when α is close 0.

3.4 Applications and Real Examples

In this section, we analyze a number of well-known real data sets to further demonstrate

the use of the EM-test.

Example 3.4.3. First, we apply the EM-test to the data studied in Proschan (1963).

The data consist of the times of successive failures for the air conditioning system of
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Table 3.7: Simulated powers (%) of the D-test, the EM-test, the constrained LRT and the

LRT under exponential mixture alternatives at the 5% level.

C∗ = 1 C∗ = 1.5

Model d(2, n) d1(2, n) d2(2, n) EM
(0)
n EM

(1)
n EM

(0)
n EM

(1)
n Rn(0.45) Rn

n = 100

I 17.6 30.1 32.6 33.6 33.4 34.1 34.0 34.6 29.8

II 22.1 30.7 30.3 31.0 30.8 31.3 31.3 31.2 27.9

III 35.4 31.9 24.3 29.2 29.6 27.6 27.9 24.9 32.6

IV 49.5 21.9 10.1 32.2 32.9 28.4 29.0 17.6 42.3

n = 200

I 26.3 48.1 51.2 53.4 53.3 53.6 53.6 54.1 47.6

II 34.5 49.3 47.7 48.0 48.0 47.5 47.6 47.4 44.6

III 54.6 51.7 39.8 45.8 46.0 42.1 42.5 37.5 52.1

IV 66.4 34.9 12.4 46.8 48.6 42.2 43.6 22.5 61.5

each member in a fleet of 13 Boeing 720 jet airplanes. Proschan (1963) performed the

Kolmogorov-Smirnov test to the pooled data, a total of 213 observations, to determine

whether the exponential distribution offered a good fit of the pooled failure times. At the

level of 0.05, the Kolmogorov-Smirnov test failed to reject the null hypothesis of exponential

fit. However, the exponential distribution did not fit the pooled failure times very well.

Figure 3.2 gives the plot of the log empirical survival curve for the pooled data and the log

theoretical survival curve under the exponential model. Proschan (1963) observed that the

log empirical survival curve lies consistently below the theoretical curve when the failure

time is less than 150 and lies consistently above the theoretical curve when the failure time

is larger than 150.
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Figure 3.2: The log empirical (points) and null theoretical (solid line) survival functions of

the airplane pooled data.

Proschan (1963) further used a more refined analysis to show that the failure distribu-

tion for each airplane separately was exponential, but for some airplanes the rates were

different.

So it will be reasonable to assume the pooled failure times follows a mixture of exponen-

tial distributions. Now we conduct the test of homogeneity for the pooled data. The MLEs

under the mixture model for (α, θ1, θ2) is (0.430, 128.286, 46.506). Since θ̂2/θ̂1 = 2.758 > 2,

most existing methods of testing the homogeneity are strictly not applicable because the

density ratio may have infinite second moment, or infinite Fisher information. In contrast,

a rigorous EM-test can be conducted. Accord to our simulations, C∗ = 1.5 is a good choice

for the level of modification for the pooled failure times. We computed the EM-statistics

with C∗ = 1.5 and three initial values (0.1,0.3,0.5) of α, and found EM
(0)
n = EM

(1)
n = 6.221.

With the sample size of 213, according to Table 3.1, pn will be well approximated by 0.427.
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In view of the adjusted limiting distribution 0.573χ2
0 + 0.427χ2

1, the asymptotic p-value for

EM-test is 0.005. For the constrained LRT, we have Rn(0.45) = 6.30 with the asymptotic

p-value 0.005. We also calculate the LRT statistic, Rn = 6.31. We simulated the quantiles

of the LRT statistic with 10,000 repetitions and found the simulated p-value for the LRT is

0.019. So for the pooled failure data, the EM-test and the constrained LRT give stronger

evidence than the LRT to reject the homogeneous exponential fit. We should note that

the above analysis only tells us the two-component exponential mixture model provides a

more suitable fitting for the pooled data than the homogeneous exponential model. If we

want to know what is the order of the mixture if the finite mixture model is used or which

model, the finite mixture model or the mixture model with continuous mixing distribution,

is more suitable for the pooled data, further analysis needs to be conducted.

Example 3.4.4. The second example considers the failure times of a computer in 257

unspecified units, which can be found in Cox and Lewis (1968) Table 1.3. Since the units

are unspecified, there may exist the heterogeneity in the failure times. Our interest is to

test whether this heterogeneity can be easily detected or not. We conducted the test of

homogeneity and found that the asymptotic p-value of the EM-test and the constrained

LRT are all less than 0.00001. Figure 3.3 shows the plot of the log empirical survival

curve and the log theoretical survival curve under the homogeneous exponential model.

Clearly, the homogeneous exponential model does not fit the data. Yet the pool fit might

be purely caused by the two largest observations. Hence we remove these two observations

and reanalyzed the remaining data. The homogeneous model is rejected by all methods

with very small p-values. To better show the difference between the EM-test and other

methods, we delete the largest 7 observations and reanalyze the remaining data. The EM-

test statistics with C∗ = 1.5 and three initial values (0.1, 0.3, 0.5) of α, are EM
(0)
n = 10.484

and EM
(1)
n = 10.582, with the asymptotic p-values 0.0005. The constrained LRT is found to
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be Rn(0.45) = 0.632, with the asymptotic p-value 0.185. We also calculate the asymptotic

p-value for the C(α) test, which is found to be 0.442. In this case, the EM-test has much

stronger evidence than the constrained LRT and the C(α) test to reject the homogeneous

exponential model.
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Figure 3.3: The log empirical (points) and null theoretical (solid line) survival functions of

the computer data.

3.5 Appendix: Regularity Conditions and Technical

Proofs

Regularity Conditions for the EM-test

The proofs are based on the following regularity conditions on the kernel density func-

tion.
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B1. Wald’s integrability conditions. (i) E| log f(X; θ0)| <∞, and (ii) for sufficiently small

ρ and for sufficiently large r, the expected values E log{1+f(X; θ, ρ)} <∞ for θ ∈ Θ

and E log{1 + ϕ(X, r)} <∞, where

f(x; θ, ρ) = sup
|θ′−θ|≤ρ

f(x; θ′)

and

ϕ(x; r) = sup
|θ|≥r

f(x; θ).

(iii) lim|θ|→∞ f(x; θ) = 0 for all x except on a set with probability zero.

B2. Smoothness. The kernel function f(x; θ) has common support and is three times

continuously differentiable with respect to θ. The first two derivatives are denoted

by f ′(x; θ) and f ′′(x; θ).

B3. Identifiability. For any two mixing distribution functions Ψ1 and Ψ2 with two sup-

porting points such that

∫

f(x; θ)dΨ1(θ) =

∫

f(x; θ)dΨ2(θ), for all x,

we must have Ψ1 = Ψ2.

B4. Strong law of large numbers. For some neighborhood N(θ0) of θ0, there exists a g

with finite expectation such that

|Yi(θ)|3 ≤ g(Xi), |Zi(θ)|3 ≤ g(Xi) and |Z ′′
i (θ)|2 ≤ g(Xi).

B5. Positive definite. The covariance matrix of (Yi, Zi) is positive definite.

Remark 3.5.1. The conditions imposed for the EM-test are markedly weakened when

compared to the MLRT or other likelihood based methods. Firstly, the parameter space of θ
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need not be bounded any more. Secondly, we only require E{Yi(θ)
3} <∞ for θ in a small

neighborhood of θ0.

Techinical Proofs

We put two preliminary results as two lemmas here first. The first is seen as the

extension of the results in Wald (1949).

Lemma 3.5.1. Suppose that Condition B1 holds. Let (ᾱ, θ̄1, θ̄2) be some estimators of

(α, θ1, θ2) such that δ ≤ ᾱ ≤ 1 − δ for some δ ∈ (0, 0.5]. Assume that

ln(ᾱ, θ̄1, θ̄2) − ln(0.5, θ0, θ0) ≥ c > −∞.

Then under null distribution f(x; θ0), θ̄1 − θ0 = op(1) and θ̄2 − θ0 = op(1).

Proof. The parameter space under the full model (2.1) with the restriction becomes

Λ = [δ, 1 − δ] × Θ × Θ.

When the null model is true, the “true” parameter values form the set {(α, θ0, θ0) : δ ≤
α ≤ 1 − δ}.

Our proof in principle is similar to that of Wald (1949), but has some important differ-

ences.

First, for some positive constants ǫ and r, let

A(α; ǫ, r) = {(α′, θ1, θ2) ∈ Λ; |α′ − α| ≤ ǫ, |θ1| > r, |θ2| > r}

and define

ψ(x;α, ǫ, r) = sup{α′f(x; θ′1) + (1 − α′)f(x; θ2, ) : (α′, θ′1, θ
′
2) ∈ A(α; ǫ, r)}.
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By Condition B1, it is obvious that for all small enough ǫ and large enough r,

E{logψ(X; ǫ, r)} < E{log f(X; θ0)}

under the null distribution f(X; θ0). Hence, by the law of large numbers,

Pr[sup{ln(α′, θ′1, θ
′
2) : A(α; ǫ, r)} − ln(α, θ0, θ0) > c] → 0

almost surely for any c > −∞. By the classical arguments on the compact set [δ, 1− δ] for

α, the above conclusion is easily extended to

Pr[sup{ln(α′, θ′1, θ
′
2) : (α′, θ′1, θ

′
2) ∈ A} − ln(α, θ0, θ0) > c] → 0

where A = ∪δ≤α≤1−δA(α; ǫ, r).

Next, the same conclusion and the proof are applicable to

B(α, θ1; ǫ, r) = {(α, θ′1, θ2) ∈ Λ; |α′ − α| ≤ ǫ, |θ′1 − θ1| < ǫ, |θ2| > r}

and hence also to

B = ∪{B(α, θ1; ǫ, r) : δ ≤ α ≤ 1 − δ, |θ1| ≤ r}.

In plain words, the log-likelihood at any parameter point with either one of θ1 and θ2 very

large trails the log-likelihood at the true parameter point by an infinite amount.

What left is to prove the same conclusion for parameter points in the compact comple-

ment of A∪B but outside any small neighborhood of (α, θ0, θ0). However, this is the same

as the classical consistent result by Wald (1949).

We hence conclude the proof.

Lemma 3.5.2. Suppose the same conditions of Theorem 3.2.1 on f(x; θ) and p(α) hold.

Let (ᾱ, θ̄1, θ̄2) be some estimators of (α, θ1, θ2) such that under the null hypothesis,

θ̄1 − θ0 = op(1) and θ̄2 − θ0 = op(1)
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and ᾱ− α0 = op(1) for some α0 ∈ (0, 0.5]. If for all n and X1, . . . , Xn,

pln(ᾱ, θ̄1, θ̄2) − pln(0.5, θ0, θ0) ≥ c > −∞,

then under the null distribution f(x; θ0),

θ̄1 − θ0 = Op(n
−1/4), θ̄2 − θ0 = Op(n

−1/4)

and

m̄1 = (1 − ᾱ)(θ̄1 − θ0) + ᾱ(θ̄2 − θ0) = Op(n
−1/2).

Proof. For i = 1, . . . , n, let Wi = Zi − βYi with β = E(Y1Z1)/E(Y 2
1 ). Note that Yi

and Zi are defined in (2.4) and (2.5), respectively. Further, let m̄ = m̄1 + βm̄2 with

m̄2 = (1 − ᾱ)(θ̄1 − θ0)
2 + ᾱ(θ̄2 − θ0)

2.

By the condition of the lemma, θ̄1 and θ̄2 are in a small neighborhood of θ0 in probability.

Therefore, by the Taylor’s expansion at θ0, we get:

2{pln(ᾱ, θ̄1, θ̄2) − pln(0.5, θ0, θ0)} ≤ 2{ln(ᾱ, θ̄1, θ̄2) − ln(0.5, θ0, θ0)}

≤ 2
n

∑

i=1

{m̄Yi + m̄2Wi} − {m̄2
n

∑

i=1

Y 2
i + m̄2

2

n
∑

i=1

W 2
i }(1 + op(1)) + op(1)

≤ {(
∑n

i=1Wi)
+}2

∑n
i=1W

2
i

+
(
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+ op(1). (3.2)

We do not have cross terms in the second line because Yi and Wi are uncorrelated. The

last inequality is simply the property of the quadratic function and the non-negativeness

of m̄2.

Together with the condition that pln(ᾱ, θ̄1, θ̄2)−pln(0.5, θ0, θ0) ≥ c, the above inequality

implies that

2m̄2

n
∑

i=1

Wi − m̄2
2{

n
∑

i=1

W 2
i }{1 + op(1)} = Op(1).
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Because
∑n

i=1Wi = Op(n
1/2) and

∑n
i=1W

2
i = Op(n), we get m̄2 = Op(n

−1/2). Due to the

condition that ᾱ = α0 + op(1) and 0 < α0 ≤ 0.5, we further conclude that

θ̄1 − θ0 = Op(n
−1/4) and θ̄2 − θ0 = Op(n

−1/4).

Similarly, we have m̄ = Op(n
−1/2) and therefore m̄1 = Op(n

−1/2). These conclude the

proof.

Let (ᾱ, θ̄1, θ̄2) be some estimators of (α, θ1, θ2) with the asymptotic properties as before.

Define

Qn(α) = (n−
n

∑

i=1

w̄i) log(1 − α) +

n
∑

i=1

w̄i log(α) + p(α)

= Rn(α) + p(α)

with

w̄i =
ᾱf(Xi; θ̄2)

(1 − ᾱ)f(Xi; θ̄1) + ᾱf(Xi; θ̄2)
.

Let ᾱ∗ = arg maxαQn(α). The following lemma considers some asymptotic properties

regarding ᾱ∗.

Lemma 3.5.3. Suppose the same conditions of Lemma 3.5.2 hold. Under the null distri-

bution f(x; θ0), we have |ᾱ∗ − α0| = op(1).

Proof. For i = 1, 2, . . . , n, let

δ̄i = (1 − ᾱ)
{f(Xi; θ̄1)

f(Xi; θ0)
− 1

}

+ ᾱ
{f(Xi; θ̄2)

f(Xi; θ0)
− 1

}

= m̄1Yi + (1 − ᾱ)(θ̄1 − θ0)
2Zi(θ̄1) + ᾱ(θ̄2 − θ0)

2Zi(θ̄2),

where Yi and Zi are defined in (2.4) and (2.5). Thus,

max
1≤i≤n

|δ̄i| ≤ |m̄1| max
1≤i≤n

|Yi| + m̄2 max
1≤i≤n

{ sup
θ∈N(θ0)

|Zi(θ)|}.
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By Condition B4 and a result on order statistic in Serfling (1980, page 90), we have

max
1≤i≤n

{ sup
θ∈N(θ0)

|Zi(θ)|} = op(n
1/2) and max

1≤i≤n
|Yi| = op(n

1/2).

Consequently, we have maxi |δi| = op(1).

Expanding f(Xi; θ̄j) at θ̄j = θ0, j = 1, 2, we get

w̄i − ᾱ = ᾱ(1 − ᾱ)
f(Xi; θ̄2) − f(Xi; θ̄1)

(1 − ᾱ)f(Xi; θ̄1) + ᾱf(Xi; θ̄2)

=
ᾱ(1 − ᾱ)

1 + δi
{(θ̄2 − θ̄1)Yi + (θ̄2 − θ0)

2Zi(θ̄2) − (θ̄1 − θ0)
2Zi(θ̄1)}.

Hence, putting α̃ = n−1
∑n

i=1w̄i, we have

|α̃− ᾱ|

=
{

(θ̄2 − θ̄1)

n
∑

i=1

Yi + (θ̄2 − θ0)
2

n
∑

i=1

Zi(θ̄2) − (θ̄1 − θ0)
2

n
∑

i=1

Zi(θ̄1)
}

Op(n
−1)

= op(1).

By this result and the assumption that ᾱ− α0 = op(1), we have

α̃− α0 = op(1)

and hence it suffices to prove that ᾱ∗ − α̃ = op(1).

Note that Rn(α) is a binomial log-likelihood. It attains its maximum at and decreases

from α̃ in both directions. For any ǫ > 0 and α ≥ α̃+ 2ǫ, by the mean value theorem,

Rn(α) − Rn(α̃) ≤ Rn(α̃+ 2ǫ) −Rn(α̃+ ǫ) = ǫR′
n(ξ)

for some ξ ∈ [α̃+ ǫ, α̃+2ǫ]. It is easy to verify that R′
n(ξ) → −∞ in probability as n→ ∞

uniformly for ξ in this range. On the other hand, we have

p(α) − p(α̃) = p(α) − p(α0) + op(1) = Op(1).
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Hence, with probability approaching 1,

Qn(α) −Qn(α̃) = Rn(α) −Rn(α̃) + {p(α) − p(α̃)} → −∞

uniformly for any α > α̃ + 2ǫ. Hence, we must have ᾱ∗ < α̃ + 2ǫ in probability. Similarly,

we can show that ᾱ∗ > α̃ − 2ǫ in probability. Therefore, we have ᾱ∗ = α̃ + op(1) as

claimed.

Proof of Theorem 3.2.1

By the property of the EM algorithm (Dempster et al. 1977), the definition of α
(k)
j and

others, for any finite k, we have

pln(α
(k)
j , θ

(k)
j1 , θ

(k)
j2 ) ≥ pln(α

(0)
j , θ

(0)
j1 , θ

(0)
j2 ) ≥ pln(αj, θ0, θ0).

Therefore

ln(α
(0)
j , θ

(0)
j1 , θ

0)
j2) − ln(α

(0)
j , θ0, θ0) ≥ p(α

(0)
j ) − p(α

(k)
j )

≥ p(αj) − p(0.5) > −∞.

By Lemma 3.5.1, we have shown that θ
(0)
j1 and θ

0)
j2 are consistent for θ0. Because of this,

the conclusions of Lemmas 3.5.2 and 3.5.3 apply. Hence, we find

α
(1)
j − αj = op(1);

and both

θ
(1)
j1 − θ0 = Op(n

−1/4); θ
(1)
j2 − θ0 = Op(n

−1/4).

The above conclusions can then be used to show the same conclusions are true for α
(2)
j ,

θ
(2)
j1 and θ

(2)
j2 . By mathematical induction, the conclusion of the theorem is true for all finite

k.
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Proof of Theorem 3.2.2

Due the properties proved in Theorem 3.2.1, the inequality (3.2) is applicable. Hence

for any (j, k), we have

2{pln(α
(k)
j , θ

(k)
j1 , θ

(k)
j2 ) − pln(0.5, θ0, θ0)} ≤ {(

∑n
i=1Wi)

+}2

∑n
i=1W

2
i

+
(
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+ op(1).

It is obvious that

2{sup
θ∈Θ

pln(0.5, θ, θ) − pln(0.5, θ0, θ0)} =
(
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+ op(1).

Hence, we have

2{pln(α
(k)
j , θ

(k)
j1 , θ

(k)
j2 ) − sup

θ∈Θ
pln(0.5, θ, θ)} ≤ {(

∑n
i=1Wi)

+}2

∑n
i=1W

2
i

+ op(1).

At the same time, it is simple to show that

2{pln(α(k)
j , θ

(k)
j1 , θ

(k)
j2 ) − sup

θ∈Θ
pln(0.5, θ, θ)} ≥ {(

∑n
i=1Wi)

+}2

∑n
i=1W

2
i

+ op(1)

when αj = 0.5. Thus,

EM (k)
n =

{(∑Wi)
+}2

∑

W 2
i

+ op(1).

Consequently, the limiting distribution is given by 0.5χ2
0 + 0.5χ2

1.



Chapter 4

EM-test in Normal Mixture Models

4.1 Introduction

After its first application in Pearson (1894), the normal mixture model has become one

of the most popular model in real data analysis, see Reoder (1994), McLachlan and Peel

(200), Chen and Chen (2003), Chen and Kalbfleisch (2005), Tadesse et al. (2005) and

Früwirth-Schnatter (2006).

An example of great interest arises in genetics, in which one wants to know if there

exists a major gene corresponding to a trait of interest. Assume that this major gene (if

exists) has two possible alleles (say A and a) and further assume that A is dominant over a.

Suppose the phenotypes or the trait values for the individuals with and without allele A are

distributed by N(µ1, σ
2
1) and N(µ2, σ

2
2) distributions, respectively. Then if the major gene

exits, the phenotype of a randomly selected individual from the population follows a two-

component normal mixture model; if not, it follows uni-component normal distribution.

The test for the presence of a major gene in principle is the test of homogeneity under the

normal mixture model.

75
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The test of homogeneity under normal mixture models is an important and challenging

problem. Due to the lack of strong identifiability, the asymptotic properties of the LRT

and the MLRT under normal mixture models are substantially different from those under

regular one-parameter mixture models. The asymptotic properties of the LRT and MLRT

have attracted the attention of many statisticians. Chen and Chen (2003) is the first

paper addressing the asymptotic property of the ordinary likelihood test statistic under the

univariate normal mixture model in the presence of a structure parameter (σ2
1 = σ2

2 = σ2).

Chen and Kalbfleish (2005) investigated the use of the MLRT under the same model,

and found the MLRT does not have a simple limiting distribution, but has a very useful

stochastic upper bound which has χ2
2 distribution. Qin and Smith (2004) investigated the

same problem and claimed that the limiting distribution for the MLRT is 0.5χ2
1 + 0.5χ2

2.

Yet this limiting distribution does not fit well with the finite sample distribution of the

MLRT. Our simulations on normal mixture models reveal that the zero-proportions for

the MLRT statistic under the null hypothesis are around 20% when the sample sizes are

between 100 and 200. Clearly, this limiting distribution is not very useful to determine the

critical value of the MLRT. In comparison, the χ2
2 distribution is found to provide a good

fit for the tail distribution of the MLRT (Chen and Kalbfleisch, 2005).

For normal mixture models in both mean and variance parameters, we could not find

many theoretical results on the limiting distribution of the LRT or the MLRT. The general

results in Dacunha-Castelle and Gassiat (1999) and others are not applicable to normal

mixture models. Most publications focus on simulating the quantiles of the LRT statistics.

Wolfe (1971) suggested that the χ2
4 distribution provides a good approximation for the null

limiting distribution of the LRT. However, McLachlan (1987) presented simulation results

and suggested that the χ2
6 distribution provides a better fit to the null limiting distribution

of the LRT than the χ2
4. Feng and McCulloch (1994) found that the null distribution of
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the LRT depends on a lower bound placed on the component variances.

In this chapter, we investigate the use of the EM-test to normal mixture models and

derived its limiting distributions under two situations. For the test of homogeneity in the

presence of the structural parameter (σ2
1 = σ2

2 = σ2), the limiting distribution is a simple

function of 0.5χ2
0 + 0.5χ2

1 and χ2
1 distributions. The test with this limiting distribution is

still very convenient to implement. Its accuracy is examined with extensive simulations,

and is very satisfactory. The power of the test is comparable to the MLRT coupled with

χ2
2 distribution. For normal mixture models in both mean and variance parameters, the

limiting distribution of the EM-test is found be χ2
2. Simulations are also conducted to

confirm that the quantiles of limiting distribution provide accurate critical values of the

EM-test. We include a real data example to illustrate the use of the EM-test.

4.2 Normal Mixture Models in the Presence of the

Structural Parameter

4.2.1 The EM-test Procedure

Suppose X1, . . . , Xn is a random sample from

(1 − α)N(µ1, σ
2) + αN(µ2, σ

2).

We are interested in testing

H0 : α(1 − α)(µ1 − µ2) = 0. (4.1)

For the above testing problem, the log-likelihood function is given by

ln(α, µ1, µ2, σ) =

n
∑

i=1

log{(1 − α)f(Xi;µ1, σ) + αf(Xi;µ2, σ)},
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where f(x;µ, σ) is the probability density function of normal distribution with mean µ and

variance σ2.

For the testing problem (4.1), Chen and Chen (2003) first noted that normal density

function is not strongly identifiable, which is a consequence of

∂f 2(x;µ, σ)

∂µ2
|(µ,σ2)=(0,1) = 2

∂f(x;µ, σ)

∂(σ2)
|(µ,σ2)=(0,1).

A direct effect of the above equality is that µ2
1, µ

2
2 and σ2 are fully confounded together

apart from the confounding between µ1 and µ2. So the first moment and the second moment

of the mixture model can not uniquely determine the values of µ2
1, µ

2
2 and σ2. To detach

them, we need to go for the third and forth moments. Because of this, Chen and Chen

(2003) found that the convergence rates for the MLEs of the mixing distribution and σ2

under the null model are Op(n
−1/8) and Op(n

−1/4), respectively, which imposes substantial

technical difficulties in the study of asymptotic properties. Note that the variance of the

mixture distribution is the sum of the component variance σ2 and the variance of the mixing

distribution. Fitting a mixture model to data arising from a uni-component normal model

tends to result in a smaller fitted component variance. This bias effect tends to make the

LRT or the MLRT somewhat liberal, which is one possible reason that the upper bound

χ2
2 provides a good fit for the tail distribution of the MLRT. If we adjust the bias of the

estimation of σ2 under the null model, it will make the estimation of σ2 biased under the

alternative model.

As discussed in Chapter 3, under single parameter mixture models, the limiting distri-

bution of the EM-test does not require the compactness of the parameter space and has

comparable power to the MLRT. With the additional parameter, the asymptotic property

of the EM-test obtained in Chapter 3 can not be directly used. It is of great interest to

study the application of the EM-test to the testing problem (4.1).

To overcome the under-estimation effect, we define the modified log-likelihood function
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for the EM-test as follows:

pln(α, µ1, µ2, σ) = ln(α, µ1, µ2, σ) + pn(σ) + p(α),

where pn(σ) is a penalty function on σ2, which will be allowed to depend on the data, and

p(α) is a penalty function on α such that p(α) achieves the maximal value at α = 0.5. The

role of the penalty function p(α) has been discussed in Chapter 2. The penalty function

pn(σ) will be selected to prevent the underestimation of σ2 under the null model.

The idea of the EM-test in Chapter 3 can be applied to normal mixture models in

exactly the same way. For given α = α0, we compute a modified likelihood ratio test

statistic as follows

Mn(α0) = 2{pln(α0, µ
(0)
01 , µ

(0)
02 , σ

(0)) − pln(0.5, µ̂0, µ̂0, σ̂0)},

with (µ
(0)
01 , µ

(0)
02 , σ

(0)) being the maximizer of pln(α0, µ1, µ2, σ) and (µ̂0, σ̂0) being the max-

imizer of pln(0.5, µ, µ, σ). Several EM iterations will be applied between α and (µ1, µ2, σ)

to capture more relevant parameter values if the data are from an alternative model. The

value of Mn(α0) will be updated accordingly. Several α0 will be used simultaneously to

accelerate the process. The EM-test statistic will be defined by the maximum value of

these outcomes with a given number of iterations.

The analytic form of the EM-test statistic is not convenient to present. Instead, we

provide the following pseudo code.

Step 0. Choose a number of initial α values, say α1, α2, . . . , αJ ∈ (0, 0.5]. Compute

(µ̂0, σ̂0) = arg max
µ, σ2

pln(1/2, µ, µ, σ).

Let j = 1, k = 0.

Step 1. Let α
(k)
j = αj .
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Step 2. Compute

(µ
(k)
j1 , µ

(k)
j2 , σ

(k)
j ) = arg max

µ1, µ2, σ
pln(α

(k)
j , µ1, µ2, σ)

and

M (k)
n (αj) = 2{pln(α(k)

j , µ
(k)
j1 , µ

(k)
j2 , σ

(k)
j ) − pln(1/2, µ̂0, µ̂0, σ̂0)}.

Step 3. For i = 1, 2, . . . , n, compute the weights which are the conditional expectations

in the E-step.

w
(k)
ij =

α
(k)
j f(Xi;µ

(k)
j2 , σ

(k)
j )

(1 − α
(k)
j )f(Xi;µ

(k)
j1 , σ

(k)
j ) + α

(k)
j f(Xi;µ

(k)
j2 , σ

(k)
j )

.

Now following the M-step, let

α
(k+1)
j = arg max

α
{(n−

n
∑

i=1

w
(k)
ij ) log(1 − α) +

n
∑

i=1

w
(k)
ij log(α) + p(α)},

µ
(k+1)
j1 =

n
∑

i=1

(1 − w
(k)
ij )Xi

/

n
∑

i=1

(1 − w
(k)
ij ),

µ
(k+1)
j2 =

n
∑

i=1

w
(k)
ij Xi

/

n
∑

i=1

w
(k)
ij ,

σ
(k+1)
j = arg max

σ

{

− 1

2σ2

n
∑

i=1

(1 − w
(k)
ij )(Xi − µ

(k+1)
j1 )2 − 1

2σ2

n
∑

i=1

w
(k)
ij (Xi − µ

(k+1)
j2 )2

−n
2

log σ2 + pn(σ)
}

.

Compute

M (k+1)
n (αj) = 2{pln(α

(k+1)
j , µ

(k+1)
j1 , µ

(k+1)
j2 , σ

(k+1)
j ) − pln(1/2, µ̂0, µ̂0, σ̂0)}.

Let k = k + 1 and repeat Step 3 for a fixed number of iterations in k.

Step 4. Let j = j + 1, k = 0 and go to Step 1, until j = J .
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Step 5. For each k, calculate the test statistic as

EM (k)
n = max{M (k)

n (αj), j = 1, 2, . . . , J}.

The homogeneous model is rejected when the EM-test statistic is larger than some

critical value. The critical value will be determined by the limiting distribution of the

EM-test statistic, which will be studied in the next subsection.

4.2.2 Asymptotic Behavior of the EM-test

We study the asymptotic properties of the EM-test under the following conditions on the

penalty function pn(σ).

C1. pn(aσ; aX1 + b, . . . , aXn + b) = pn(σ;X1, . . . , Xn).

C2. supσ>0 max{0, pn(σ)} = o(n) and pn(1) = o(n).

C3. p′n(σ) = op(n
1/4) for σ ∈ N(1) with p′n(σ) being the first derivative of pn(σ) and N(1)

being a small neighborhood of 1 .

Remark 4.2.1. Under Condition C1, the EM-test has the invariance property, which is a

desirable property of statistical inference for location-scale models. Condition C2 controls

the influence of pn(σ) on the log-likelihood function.

The following theorem assesses the asymptotic orders of (α
(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j ) under the

null hypothesis. The proofs will be given in Section 4.2.4.

Theorem 4.2.1. Suppose Conditions C1-C3 hold, and p(α) is a continuous function such

that p(α) → −∞ as α → 0 and it attains its maximal value at α = 0.5. Under the null

distribution N(µ0, σ
2
0), we have, for j = 1, . . . , J and any fixed finite k,
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(a) if αj = 0.5, then

α
(k)
j − αj = Op(n

−1/4),

µ
(k)
j1 − µ0 = Op(n

−1/8),

µ
(k)
j2 − µ0 = Op(n

−1/8),

σ
(k)
j − σ0 = Op(n

−1/4);

(b) if αj 6= 0.5, then

α
(k)
j − αj = Op(n

−1/4),

µ
(k)
j1 − µ0 = Op(n

−1/6),

µ
(k)
j2 − µ0 = Op(n

−1/6),

σ
(k)
j − σ0 = Op(n

−1/3).

It is of interest to note that the convergence rates of (µ
(k)
j1 , µ

(k)
j2 , σ

(k)
j ) depend on the

choice of initial α value. The reason behind this strange phenomenon is the loss of the

strong identifiability of normal mixture models. More discussions will be given after the

next theorem. When αj = 0.5, after several iterations, α
(k)
j is no longer 0.5. However the

problem does not reduce to Case (b), because α
(k)
j is still in a very small neighborhood of

0.5, while in Case (b), αj is outside a fixed small neighborhood of 0.5.

Based on the results in Theorem 4.2.1, we derive the limiting distribution of EM
(k)
n

and the proof will also be deferred to Section 4.2.4.

Theorem 4.2.2. Assume the same conditions as in Theorem 4.2.1, and that one of αj’s is

equal to 0.5. Then under null distribution N(µ0, σ
2
0), and for any fixed finite k, as n→ ∞,

Pr(EM (k)
n ≤ x) → F (x− ∆){0.5 + 0.5F (x)},
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where F (x) is the cumulative density function (cdf) for χ2
1 and

∆ = 2 max
αj 6=0.5

{p(αj) − p(0.5)}.

The results in Theorems 4.2.1 and 4.2.2 needs some interpretations. We can understand

them from the point view of moments. Without loss of generality, we assume that the

mean and variance of the normal mixture model (1 − α)N(µ1, σ
2) + αN(µ2, σ

2) are 0 and

1, respectively. The test of homogeneity is to choose one model between N(0, 1) and

(1 − α)N(µ1, σ
2) + αN(µ2, σ

2) with

(1 − α)µ1 + αµ2 = 0 and (1 − α)µ2
1 + αµ2

2 + σ2 = 1.

First, let us consider the case when α is fixed to be 0.5. Since the first moment of the

mixture model is equal to 0, the mixture density is symmetric and the third moment of the

mixture model is 0. Therefore the third moment can not tell the difference between the

homogeneous model and the mixture model. After some calculations, the forth moment of

the mixture model is found to be

E(X4
1 ) = 3 − (µ4

1 + µ4
2), (4.2)

which is smaller than 3 or equal to 3 with the equality holding when the mixture model

reduces to the homogeneous model. Hence the test of homogeneity is equivalent to testing

H0 : E(X4
1 ) = 3 versus Ha : E(X4

1 ) < 3.

The null hypothesis is on the boundary of the parameter space, so the limiting distribution

of Mn(0.5) is 0.5χ2
0 + 0.5χ2

1. When α is fixed to be α0 ∈ (0, 0.5), we can tell the difference

between the homogeneous model and the mixture model from the third moment. Note

that

E(X3
1 ) = (1 − α0)µ

3
1 + α0µ

3
2,
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which can be greater than 0 or less than 0 and becomes 0 when the mixture model is the

homogeneous model. Therefore, the test of homogeneity is equivalent to testing

H0 : E(X3
1 ) = 0 versus Ha : E(X3

1 ) 6= 0.

In this case, the null hypothesis is the interior point of the parameter space, so Mn(α0)

has the asymptotic distribution χ2
1 + 2{p(α0)− p(0.5)}. The term 2{p(α0)− p(0.5)} is due

to the penalty function. Since the third moment and the forth moment are asymptotically

orthogonal, the limiting distribution of the EM-test involves the maximum of two inde-

pendent distributions: the χ2
1 and the 0.5χ2

0 + 0.5χ2
1. The presence of ∆ in Theorem 4.2.2

is because of the penalty function.

We can also understand the order assessment results in Theorem 4.2.1 from the point

view of moments. If α is fixed to be 0.5, the MLE of the forth moment has the asymptotic

order n−1/2 and so from (4.2), the asymptotic orders for the MLEs of µ4
1 and µ4

2 are n−1/2.

Therefore the MLEs of µ1 and µ2 have the asymptotic orders n−1/8. If α is fixed to be

α0 ∈ (0, 0.5), the MLE of the third moment has the asymptotic order n−1/2. Similar

arguments used before can lead to the result that the asymptotic orders for the MLEs of

µ1 and µ2 are n−1/6.

4.2.3 Simulation Study

In this section, we use simulation to study the accuracy of the limiting distribution of the

EM-test statistics for the test of homogeneity in normal mixture models in the presence

of the structural parameter. We also compare the power of the EM-test and the MLRT

proposed in Chen and Kalbfleisch (2005). For this purpose, we introduce the definition

of the MLRT in Chen and Kalbfleisch (2005). Let (α̂, µ̂1, µ̂2, σ̂) and (µ̂0, σ̂0) be the maxi-

mizers of pln(α, µ1, µ2, σ) and pln(0.5, µ, µ, σ) with pn(σ) = 0 and p(α) = log{4α(1 − α)},
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respectively. The MLRT statistic is defined to be

Mn = 2{ln(α̂, µ̂1, µ̂2, σ̂) − ln(0.5, µ̂0, µ̂0, σ̂0)}.

We use the upper bound χ2
2 distribution to compute the critical values as in Chen and

Kalbfleisch (2005) to calculate the simulated null rejection rates. To ensure the compara-

bility, we use the same penalty function p(α) as in Chen and Kalbflesich (2005).

For the EM-test statistics, we choose the penalty function

pn(σ) = −
{

sn/σ
2 + log(σ2/sn)

}

, (4.3)

where sn =
∑n

i=1(Xi − X̄)2/n. The penalty function pn(σ) is equivalent to placing an

inverse gamma prior on σ2. It is easy to check that pn(σ) satisfies all Conditions C1-C3.

It is also seen that with this pn(σ), σ
(k)
j has a closed form expression in Step 3 of the EM-

iteration. Note that the asymptotic property of the EM-test is valid even when pn(σ) = 0.

The purpose of using the penalty function pn(σ) is to prevent the underestimation of σ2

under the null model. The penalty function pn(σ) is maximized at sn, the MLE of the σ2

under the homogeneous model. This penalty will push the estimation of the σ2 towards

sn, which will improve the approximation of the limiting distribution of the EM-test to its

finite sample distribution. From this viewpoint, the penalty function pn(σ) plays the role

of the higher order adjustment.

For the penalty function p(α), we use

p(α) = log(1 − |1 − 2α|).

The combination of pn(σ) and p(α) results in accurate type I errors for the EM-test statis-

tics as we will see.

Similar to single parameter mixture models, we conduct the simulation with two groups

of initial values for α: (0.1, 0.2, 0.3, 0.4, 0.5) and (0.1, 0.3, 0.5). We generate 20,000 random
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samples from N(0, 1) with sample size n (n=100, 200, 500). The simulated null rejection

rates are summarized in Table 4.1. The EM-test and the MLRT both have very accurate

type I errors, especially EM
(1)
n with three initial values (0.1, 0.3, 0.5) of α.

Table 4.1: Simulated type I errors (%) of the EM-test and the MLRT under normal mixture

models in the presence of the structural parameter.

Level EM
(0)
n EM

(1)
n EM

(2)
n EM

(0)
n EM

(1)
n EM

(2)
n MLRT

n = 100

10% 8.9 9.1 9.2 9.2 9.9 10.2 10.9

5% 4.6 4.8 4.8 4.6 5.1 5.3 5.7

1% 0.9 1.0 1.0 0.9 1.0 1.1 1.2

n = 200

10% 9.3 9.4 9.5 9.7 10.0 10.3 9.8

5% 4.6 4.8 4.8 4.7 5.0 5.1 5.0

1% 1.0 1.1 1.1 0.9 1.1 1.1 1.1

n = 500

10% 9.6 9.6 9.7 9.9 10.1 10.2 8.7

5% 5.0 5.0 5.1 4.9 5.1 5.2 4.5

1% 1.1 1.1 1.1 1.0 1.1 1.1 0.9

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5).

Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5).

For the power comparison, we select four alternative models. The parameters are shown

in Table 4.2. The powers of the EM-test statistics and the MLRT statistics are calculated

based on 10,000 repetitions and they are presented in Table 4.3. We use the simulated

critical values to ensure fairness. The results tell us that the EM-test statistics based on
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three initial values have almost the same power as those from five initial values. Combing

the type I error results and the power comparison results, we recommend the use of EM
(1)
n

with three initial values (0.1, 0.3, 0.5) of α in applications. We also observe that the

EM-test and the MLRT have comparable power. The EM-test has higher power when

the mixing proportion α is close to 0.5, while the MLRT statistic performs better when

the mixing proportion α is close to 0. However, as in the previous chapter the limiting

distribution of the EM-test does not require the compactness of the parameter space, while

the upper bound result of the MLRT does.

Table 4.2: Parameters in alternative normal mixture models in the presence of the struc-

tural parameter.

1 − α θ1 θ2 σ 100KL

Model I 0.50 1 -1.25 1 2.978

Model II 0.25 1 -1.25 1 3.872

Model III 0.10 1.25 -1.25 1 4.202

Model IV 0.05 1.25 -1.5 1 3.108

KL: Kullback-Leibler information.

4.2.4 Technical Proofs

The null limiting distribution of the EM-test statistic does not depend on the true values

of µ and σ2 under the null model. Therefore, without loss of generality, we may assume

that the null distribution is N(0, 1) in our asymptotic investigation.

Let us first study the consistency of the estimator of (µ1, µ2, σ). We assume that a

random sample X1, . . . , Xn is drawn from the null distribution N(0, 1). All the setups are

the same as in Theorems 4.2.1 and 4.2.2.
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Table 4.3: Simulated powers (%) of the EM-test and the MLRT under normal mixture

models in the presence of the structural parameter at the 5% level .

Model EM
(0)
n EM

(1)
n EM

(2)
n EM

(0)
n EM

(1)
n EM

(2)
n MLRT

n = 100

I 45.5 45.2 44.9 46.0 45.4 45.3 37.9

II 48.0 47.8 47.6 47.0 47.1 47.2 46.5

III 44.7 44.8 44.8 43.9 44.1 44.3 51.6

IV 31.7 32.6 32.9 32.4 32.9 33.2 44.4

n = 200

I 76.3 76.1 76.2 76.6 76.6 76.6 69.2

II 81.1 81.0 81.0 80.6 80.7 80.7 80.6

III 79.0 79.1 79.2 78.5 78.6 78.7 84.7

IV 61.3 61.7 61.9 62.2 62.5 62.7 74.6

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5).

Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5).

Lemma 4.2.1. Let (ᾱ, µ̄1, µ̄2, σ̄) be any estimators of (α, µ1, µ2, σ). If

pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1) ≥ c > −∞

and ᾱ ∈ [δ, 1 − δ] for some δ ∈ (0, 0.5], then under the null model N(0, 1), µ̄1 = op(1),

µ̄2 = op(1) and σ̄ − 1 = op(1).

Proof. The idea of the proof is to first show that σ̄ is bounded below with probability

approaching 1 and then apply the result in Kiefer and Wolfowitz (1956) to show the

consistency of (µ̄1, µ̄2, σ̄).
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Let A = {i : |Xi − µ1| < |σ log σ| or |Xi − µ2| < |σ log σ|}. For any index set, say S, we

define

ln(α, µ1, µ2, σ;S) =
∑

i∈S

log{(1 − α)f(Xi;µ1, σ) + αf(Xi;µ2, σ)},

hence ln(α, µ1, µ2, σ) = ln(α, µ1, µ2, σ;A) + ln(α, µ1, µ2, σ;Ac).

Let n(A) be the number of observations in set A. Note that when i ∈ A, the mixture

density is no larger than 1/
√

2πσ2, therefore

ln(α, µ1, µ2, σ;A) ≤ −n(A) log
√

2πσ2 = −1

2
n(A) log(2πσ2). (4.4)

When i ∈ Ac, the mixture density is no larger than exp{− log2 σ/2}/
√

2πσ2, so

ln(α, µ1, µ2, σ;Ac) ≤ −1

2
n(Ac){log(2πσ2) + log2 σ}. (4.5)

Combining (4.4) and (4.5), we have

ln(α, µ1, µ2, σ) ≤ −1

2
n log(2πσ2) − 1

2
{n− n(A)} log2 σ.

After some simple calculations, we get

ln(α, µ1, µ2, σ) − ln(0.5, 0, 0, 1) ≤ 1

2

n
∑

i=1

X2
i − n log(σ) − 1

2
{n− n(A)} log2 σ.

By the definition of set A, its size decreases when σ goes to 0. Therefore there exits a

positive ǫ such that when σ < ǫ,

n(A) ≤ n/2

almost surely and uniformly in µ1, µ2 and σ. For brevity, we do not include all the details,

see Chen et al. (2007) for the proof of a similar result. Note that when ǫ is small enough,

for any σ < ǫ,
1

4
log2 σ + log σ ≥ 1,
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which will be used later.

When σ < ǫ, under the null model N(0, 1), as n→ ∞,

ln(α, µ1, µ2, σ) − ln(0.5, 0, 0, 1) ≤ 1

2

n
∑

i=1

X2
i − n log(σ) − n

4
log2 σ

≤ 1

2

n
∑

i=1

X2
i − n = −n

2
+ o(n),

almost surely. In the last step, we use
∑n

i=1X
2
i = n + o(n), which is a direct result from

the strong law of large numbers. Since supσ>0 max{0, pn(σ)} = o(n) and pn(1) = o(n), and

p(α) ≤ p(0.5), when σ < ǫ, under the null model N(0, 1), for large enough n,

pln(α, µ1, µ2, σ) − pln(0.5, 0, 0, 1) ≤ −n
2

+ o(n).

Thus for any estimator (ᾱ, µ̄1, µ̄2, σ̄) such that pln(ᾱ, µ̄1, µ̄2, σ̄)−pln(0.5, 0, 0, 1) ≥ c > −∞,

it is clear that under the null model N(0, 1),

lim
n→∞

P (ǫ ≤ σ̄) = 1.

This result is equivalent to placing a positive constant lower bound for the variance

parameter for searching the maximal value of pln(α, µ1, µ2, σ). Thus, the consistency of

(µ̄1, µ̄2, σ̄) is covered by the result in Kiefer and Wolfowitz (1956). Note that their proof

can be modified to accommodate a penalty of size o(n).

Lemma 4.2.2. Let (ᾱ, µ̄1, µ̄2, σ̄) be any estimators of (α, µ1, µ2, σ) such that

pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1) ≥ c > −∞.

If ᾱ − α0 = op(1) for some α0 ∈ (0, 0.5], then µ̄1 = Op(n
−1/8), µ̄2 = Op(n

−1/8) and

σ̄2 − 1 = Op(n
−1/4).
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Proof. For i = 1, . . . , n, let

Yi = Xi, Zi = (X2
i − 1)/2, Ui = (X3

i − 3Xi)/6 and Vi = (X4
i − 6X2

i + 3)/24. (4.6)

Further, let

s̄1 = m̄1, s̄2 = m̄2 + σ̄2 − 1, s̄3 = m̄3 and s̄4 = m̄4 − 3m̄2
2 (4.7)

with m̄j = (1 − ᾱ)µ̄j
1 + (1 − ᾱ)µ̄j

2, j = 1, 2, 3, 4.

Following the result in Lemma 4.2.1, (µ̄1, µ̄2, σ̄) are in a small neighborhood of (0, 0, 1)

in probability. Therefore the result in (28), page 363 in Chen and Chen (2003) is easily

modified for 2{ln(ᾱ, µ̄1, µ̄2, σ̄) − ln(0.5, 0, 0, 1)}. Hence

2{pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ 2{ln(ᾱ, µ̄1, µ̄2, σ̄) − ln(0.5, 0, 0, 1)}+ 2{pn(σ̄) − pn(1)} + 2{p(ᾱ) − p(0.5)}

≤ 2s̄1

n
∑

i=1

Yi − s̄2
1

n
∑

i=1

Y 2
i {1 + op(1)}

+2s̄2

n
∑

i=1

Zi − s̄2
2

n
∑

i=1

Z2
i {1 + op(1)}

+2s̄3

n
∑

i=1

Ui − s̄2
3

n
∑

i=1

U2
i {1 + op(1)}

+2s̄4

n
∑

i=1

Vi − s̄2
4

n
∑

i=1

V 2
i {1 + op(1)}

+op(n
1/4)(σ̄2 − 1) + 2{p(α0) − p(0.5)} + op(1). (4.8)

The term op(n
1/4)(σ̄2 − 1) in the last step, is obtained by using the mean value theorem

on pn(σ̄)− pn(1) and by Condition C3. The term 2{p(α0)− p(0.5)}+ op(1) in the last step

comes from that ᾱ− α0 = op(1) and p(α) is a continuous function of α.

Note that using the fact |x| ≤ 1 + x4,

|op(n
1/4)(σ̄2 − 1)| ≤ op(1){1 + n(σ̄2 − 1)4}.
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By Lemma 4.2.3 to be shown,

(σ̄2 − 1)4 = Op

{

4
∑

j=1

s̄2
j

}

.

Therefore op(n
1/4)(σ̄2 − 1) is a higher order term of the quadratic terms in (4.8) and can

be omitted from expansion in (4.8). Note that

2s̄1

n
∑

i=1

Yi − s̄2
1

n
∑

i=1

Y 2
i {1 + op(1)} ≤ (

∑n
i=1 Yi)

2

∑n
i=1 Y

2
i

{1 + op(1)} = Op(1).

The same conclusion is applicable to other three terms. Hence

c ≤ 2{pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ 2s̄1

n
∑

i=1

Yi − s̄2
1

n
∑

i=1

Y 2
i {1 + op(1)} +Op(1)

≤ Op(1).

Therefore

2s̄1

n
∑

i=1

Yi − s̄2
1{

n
∑

i=1

Y 2
i }{1 + op(1)} = Op(1).

Because
∑n

i=1 Yi = Op(n
1/2) and

∑n
i=1 Y

2
i = n+ op(n), we get

s̄1 = Op(n
−1/2). (4.9)

Similarly, we have

s̄j = Op(n
−1/2), j = 2, 3, 4. (4.10)

Due to the condition that ᾱ = α0 + op(1) and 0 < α0 ≤ 0.5, we further conclude that

µ̄1 = Op(n
−1/8), µ̄2 = Op(n

−1/8) and σ̄2 − 1 = Op(n
−1/4)

by using the results in Lemma 4.2.3.
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We skipped two technical details in the above proof and they will be covered in the

following Lemma.

Lemma 4.2.3. Let (ᾱ, µ̄1, µ̄2, σ̄) be any estimators of (α, µ1, µ2, σ) such at

µ̄1 = op(1), µ̄2 = op(1), σ̄2 − 1 = op(1)

and ᾱ ∈ [δ, 1 − δ] for some δ ∈ (0, 0.5]. Then

µ̄4
1 = Op

(

4
∑

j=1

|s̄j|
)

, µ̄4
2 = Op

(

4
∑

j=1

|s̄j|
)

, and (σ̄2 − 1)2 = Op

(

4
∑

j=1

|s̄j|
)

.

Proof. Since µ̄1 = op(1), µ̄2 = op(1), σ̄2 − 1 = op(1), then s̄j = op(1), where s̄j is defined in

(4.7), j = 1, 2, 3, 4.

According to the definition of s̄1 in (4.7), we have

µ̄1 =
1

1 − ᾱ
s̄1 −

ᾱ

1 − ᾱ
µ̄2. (4.11)

Plugging (4.11) in the definitions of s̄3 and s̄4 in (4.7) and using the condition ᾱ ∈ [δ, 1−δ]
for some δ ∈ (0, 0.5], we obtain

s̄3 =
ᾱ(1 − 2ᾱ)

(1 − ᾱ)2
µ̄3

2 + op(s̄1) (4.12)

s̄4 =
ᾱ(1 − 6ᾱ + 6ᾱ2)

(1 − ᾱ)3
µ̄4

2 + op(s̄1)

=
ᾱ(1 − 6ᾱ + 6ᾱ2)

(1 − ᾱ)3
µ̄4

2 − 3(1 − 2ᾱ)µ̄2s̄3/{2(1 − ᾱ)}

+3(1 − 2ᾱ)µ̄2s̄3/{2(1 − ᾱ)} + op(s̄3)

= − ᾱ

2(1 − ᾱ)3
µ̄4

2 + op(s̄1) + op(s̄3). (4.13)

Hence

µ̄4
2 = Op

(

4
∑

j=1

|s̄j|
)
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and consequently by (4.11)

µ̄4
1 = Op

(

4
∑

j=1

|s̄j |
)

.

From the definition of s̄2 in (4.7), we further conclude

(σ̄2 − 1)2 = Op

(

4
∑

j=1

|s̄j |
)

.

Now we show that after finite number of iterations, the fitted value of α remain in an

infinite small neighborhood of the initial value under the null model. Let (ᾱ, µ̄1, µ̄2, σ̄) be

some estimators of (α, µ1, µ2, σ) as before. Define

Hn(α) = (n−
n

∑

i=1

w̄i) log(1 − α) +
n

∑

i=1

w̄i log(α) + p(α)

= Rn(α) + p(α)

with

w̄i =
ᾱf(Xi; µ̄2, σ̄)

(1 − ᾱ)f(Xi; µ̄1, σ̄) + ᾱf(Xi; µ̄2, σ̄)
.

Let ᾱ∗ = arg maxαHn(α). The following lemma considers some asymptotic properties

regarding ᾱ∗.

Lemma 4.2.4. Let (ᾱ, µ̄1, µ̄2, σ̄) be any estimators of (α, µ1, µ2, σ). Suppose

pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1) ≥ c > −∞.

If ᾱ − α0 = Op(n
−1/4) for some α0 ∈ (0, 1), then under the null distribution N(0, 1), we

have ᾱ∗ − α0 = Op(n
−1/4).
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Proof. Putting α̂ = n−1
∑n

i=1w̄i, we have

|α̂− ᾱ| =
(1 − ᾱ)ᾱ

n

∣

∣

∣

n
∑

i=1

f(Xi; µ̄2, σ̄) − f(Xi; µ̄1, σ̄)

(1 − ᾱ)f(Xi; µ̄1, σ̄) + ᾱf(Xi; µ̄2, σ̄)

∣

∣

∣
. (4.14)

Following the results in Lemma 4.2.1, (µ̄1, µ̄2, σ̄) are in a small neighborhood of (0, 0, 1) in

probability. Therefore, by the Taylor’s expansion at (0, 0, 1) of the function on the right

hand side of (4.14) to order 1, we get

|α̂− ᾱ| =
(1 − ᾱ)ᾱ

n

∣

∣

∣
(µ̄2 − µ̄1)

n
∑

i=1

Yi + Op(n){µ̄2
1 + µ̄2

2 + (σ̄2 − 1)2}
∣

∣

∣

= Op(n
−1/4).

Here in the last step, we use the order assessment results in Lemma 4.2.2. Due to the

assumption that ᾱ− α0 = Op(n
−1/4), we have α̂− α0 = Op(n

−1/4) and therefore it suffices

to prove that ᾱ∗ − α̂ = Op(n
−1/4).

First, using the similar arguments in Lemma 3.5.3, we have

ᾱ∗ − α̂ = op(1).

Next, note that

Hn(α̂) = Rn(α̂) + p(α̂) ≤ Hn(ᾱ∗) = Rn(ᾱ∗) + p(ᾱ∗)

and R′
n(α̂) = 0. By applying the first order Taylor expansion at α̂ for Rn(ᾱ∗), the above

inequality becomes

Rn(α̂) + p(α̂) ≤ Rn(α̂) +R′′
n(η)(ᾱ∗ − α̂)2 + p(ᾱ∗),

for some η between α̂ and ᾱ∗. Hence

−R′′
n(η)(ᾱ∗ − α̂)2 ≤ p(ᾱ∗) − p(α̂) = op(1).
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Note that η = α0 + op(1) and hence

−R′′
n(η) =

n

(1 − η)2
(1 − α̂) +

n

η2
α̂ =

n

α0(1 − α0)
{1 + op(1)}.

So it is easily seen that ᾱ∗ − α̂ = op(n
−1/2) = Op(n

−1/4) as claimed.

Lemma 4.2.5. Let (ᾱ, µ̄1, µ̄2, σ̄) be any estimators of (α, µ1, µ2, σ). Suppose

pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1) ≥ c > −∞.

(a) If ᾱ− 0.5 = Op(n
−1/4), then

2{pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ (
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z

2
i

+
{(

∑n
i=1 Vi)

−}2

∑n
i=1 V

2
i

+ op(1).

(b) If ᾱ− α0 = op(1) for α0 ∈ (0, 0.5), then

µ̄1 = Op(n
−1/6), µ̄2 = Op(n

−1/6), σ̄2 − 1 = Op(n
−1/3)

and

2{pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ (
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1 U

2
i

+ 2{p(α0) − p(0.5)} + op(1).

Proof. (a) When ᾱ− 0.5 = Op(n
−1/4), from (4.9), (4.12) and Lemma 4.2.2, we get

s̄3 = Op(n
−1/4) ·Op(n

−3/8) + op(s̄1) = op(n
−1/2).

So the third quadratic function in (4.8) becomes op(1). Further from (4.9), (4.10) and

(4.13), we obtain s̄4 = −2µ̄4
2 + op(n

−1/2), which is always non-positive in probability.
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Using the property of a quadratic function and Lemma 4.2.2, the upper bound (4.8)

can be strengthened to

2{pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ 2{s̄1

n
∑

i=1

Yi + s̄2

n
∑

i=1

Zi + s̄4

n
∑

i=1

Vi}

−{s̄2
1

n
∑

i=1

Y 2
i + s̄2

2

n
∑

i=1

Z2
i + s̄2

4

n
∑

i=1

V 2
i }{1 + op(1)} + op(1)

≤ (
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z

2
i

+
{(

∑n
i=1 Vi)

−}2

∑n
i=1 V

2
i

+ op(1).

(b) If ᾱ − α0 = op(1) for α0 ∈ (0, 0.5), then from (4.9), (4.10) and (4.12), we get µ̄2 =

Op(n
−1/6). Together with (4.11), we further have µ̄1 = Op(n

−1/6). From the definition

of s̄2 in (4.7), we conclude σ̄2 − 1 = Op(n
−1/3).

Next, from (4.13) and the above results, it is seen that s̄4 = op(n
−1/2). So the forth

quadratic function in (4.8) becomes op(1). Using the property of the quadratic func-

tion and Lemma 4.2.2, the upper bound in (4.8) can be strengthened to

2{pln(ᾱ, µ̄1, µ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ 2{s̄1

n
∑

i=1

Yi + s̄2

n
∑

i=1

Zi + s̄3

n
∑

i=1

Ui}

−{s̄2
1

n
∑

i=1

Y 2
i + s̄2

2

n
∑

i=1

Z2
i + s̄2

3

n
∑

i=1

U2
i }{1 + op(1)} + 2{p(α0) − p(0.5)} + op(1)

≤ (
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1 U

2
i

+ 2{p(α0) − p(0.5)} + op(1).

Proof of Theorem 4.2.1
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By the property of the EM algorithm (Dempster et al., 1977), the definition of α
(k)
j and

others, for any finite k, we have

pln(α
(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j ) ≥ pln(α

(0)
j , µ

(0)
j1 , µ

(0)
j2 , σ

(0)
j ) ≥ pln(αj , 0, 0, 1).

Therefore

pln(α
(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j ) − pln(0.5, 0, 0, 1) ≥ p(αj) − p(0.5) > −∞.

Following Lemma 4.2.4, α
(1)
j −αj = Op(n

−1/4). By mathematical induction, we can further

have

α
(k)
j − αj = Op(n

−1/4).

Hence the conclusions in Lemmas 4.2.2 and 4.2.5 can apply to prove the results in Theorem

4.2.1 is true.

Proof of Theorem 4.2.2

According the classic results for the regular models, we have that

2{sup
µ,σ

pln(0.5, µ, µ, σ)− pln(0.5, 0, 0, 1)} =
(
∑n

i=1 Yi)
2

∑n
i=1 Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z

2
i

+ op(1).

Due the properties proved in Theorem 4.2.1, the conclusions in Lemma 4.2.5 are applicable.

So immediately, we have

M (k)
n (0.5) ≤ {(

∑n
i=1 Vi)

−}2

∑n
i=1 V

2
i

+ op(1)

and for αj 6= 0.5,

M (k)
n (αj) ≤

(
∑n

i=1Ui)
2

∑n
i=1 U

2
i

+ ∆ + op(1),

where ∆ is defined in Theorem 4.2.2. Hence

EM (k)
n ≤ max

[

(
∑n

i=1 Ui)
2

∑n
i=1 U

2
i

+ ∆,
{(

∑n
i=1 Vi)

−}2

∑n
i=1 V

2
i

]

+ op(1).
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It is seen that the upper bound is also achievable. Therefore,

EM (k)
n = max

[

(
∑n

i=1 Ui)
2

∑n
i=1 U

2
i

+ ∆,
{(∑n

i=1 Vi)
−}2

∑n
i=1 V

2
i

]

+ op(1).

It is easy to verify that Ui and Vi are uncorrelated. Further,
∑n

i=1 Ui/
√
n and

∑n
i=1 Vi/

√
n

are jointly asymptotical bivariate normal and therefore asymptotically independent. Con-

sequently, the limiting distribution is given by F (x− ∆){0.5 + 0.5F (x)} with F (x) being

the cdf of χ2
1 distribution.

4.3 Normal Mixture Models in Both Mean and Vari-

ance Parameters

4.3.1 The EM-test Procedure

In the last section, we applied the EM-test to normal mixture models in the presence of

the structural parameter and studied its asymptotic properties. In this section, we apply

the EM-test to the test of homogeneity in the normal mixture model when both mean and

variance parameters are unconstrained. Suppose X1, . . . , Xn is a random sample from

(1 − α)N(µ1, σ
2
1) + αN(µ2, σ

2
2).

Our interest is to test

H0 : α = 0 or α = 1 or (µ1, σ
2
1) = (µ2, σ

2
2). (4.15)

The log-likelihood function for the above testing problem is given by

ln(α, µ1, µ2, σ1, σ2) =

n
∑

i=1

log{(1 − α)f(Xi;µ1, σ1) + αf(Xi;µ2, σ2)}.
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For the testing problem (4.15), apart from the non-strong identifiability of normal

mixture model, the asymptotic properties of the LRT or the MLRT are further complicated

due to the following two special technical difficulties.

(1) The log-likelihood function is unbounded because for any given n, ln(α, µ1, µ2, σ1, σ2) →
∞ when µ1 = X1 and σ1 → 0 with other parameters fixed and hence the MLEs are

not well defined;

(2) Normal kernel does not satisfy the finite Fisher information condition, i.e., under the

null model N(0, 1),

E
{f(Xi;µ, σ)

f(Xi; 0, 1)
− 1

}2

can be infinity for some µ and σ > 0.

Because of these two difficulties, especially the second one, the limiting distributions of

the LRT and the MLRT are still under investigation. As we discussed in Chapter 3, the

EM-test is a likelihood based method, whose asymptotic results are free from the finite

Fisher information condition. It could be a useful method for the current testing problem.

As with the EM-test in the last section, we first introduce a modified log-likelihood function

as follows:

pln(α, µ1, µ2, σ1, σ2) = ln(α, µ1, µ2, σ1, σ2) + pn(σ1) + pn(σ2) + p(α), (4.16)

where pn(σ) is used to prevent the fitted value of σ2 to be close 0 and p(α) is added for

the same purpose as in the last section. Note that it is not necessary to choose an additive

penalty function for σ2
1 and σ2

2. This choice is to enable efficient numerical computation in

the calculation of the EM-test statistic to be defined. The EM-test statistic is defined in

exactly the same way as in last section except that the modified log-likelihood function in

the definition is replaced by the function in (4.16) and the maximization must be performed
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with respect to five parameters (α, µ1, µ2, σ1, σ2) under the alternative model. The analytic

form of the EM-test statistic is not convenient to present. Again, we provide the following

pseudo code instead.

Step 0. Choose a number of initial α values, say α1, α2, . . . , αJ . Compute

(µ̂0, σ̂0) = arg max
µ, σ

pln(1/2, µ, µ, σ, σ).

Let j = 1, k = 0.

Step 1. Let α
(k)
j = αj .

Step 2. Compute

(µ
(k)
j1 , µ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ) = arg max

µ1, µ2, σ1, σ2

pln(α
(k)
j , µ1, µ2, σ1, σ2)

and

M (k)
n (αj) = 2{pln(α

(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ) − pln(1/2, µ̂0, µ̂0, σ̂0, σ̂0)}.

Step 3. For i = 1, 2, . . . , n, compute the weights, which are the conditional expectations

in the E-step,

w
(k)
ij =

α
(k)
j f(Xi;µ

(k)
j2 , σ

(k)
j2 )

(1 − α
(k)
j )f(Xi;µ

(k)
j1 , σ

(k)
j1 ) + α

(k)
j f(Xi;µ

(k)
j2 , σ

(k)
j2 )

.

Now following the M-step, let

α
(k+1)
j = arg max

α
{(n−

n
∑

i=1

w
(k)
ij ) log(1 − α) +

n
∑

i=1

w
(k)
ij log(α) + p(α)},

µ
(k+1)
j1 =

n
∑

i=1

(1 − w
(k)
ij )Xi

/

n
∑

i=1

(1 − w
(k)
ij ),

µ
(k+1)
j2 =

n
∑

i=1

w
(k)
ij Xi

/

n
∑

i=1

w
(k)
ij ,

σ
(k+1)
j1 = arg max

σ1

{

− 1

2σ2
1

n
∑

i=1

(1 − w
(k)
ij )(Xi − µ

(k+1)
j1 )2 − 1

2

n
∑

i=1

(1 − w
(k)
ij ) log σ2

1 + pn(σ1)
}

,

σ
(k+1)
j2 = arg max

σ2

{

− 1

2σ2
2

n
∑

i=1

w
(k)
ij (Xi − µ

(k+1)
j2 )2 − 1

2

n
∑

i=1

w
(k)
ij log σ2

2 + pn(σ2)
}

.
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Compute

M (k+1)
n (αj) = 2{pln(α(k+1)

j , µ
(k+1)
j1 , µ

(k+1)
j2 , σ

(k+1)
j1 , σ

(k+1)
j2 ) − pln(1/2, µ̂0, µ̂0, σ̂0, σ̂0)}.

Let k = k + 1 and repeat Step 3 for a fixed number of iterations in k.

Step 4. Let j = j + 1, k = 0 and go to Step 1, until j = J .

Step 5. For each k, calculate the test statistic as

EM (k)
n = max{M (k)

n (αj), j = 1, 2, . . . , J}.

The EM-test rejects the homogeneous model when EM
(k)
n , for a prechosen k, is larger

than some critical value. The critical value will be determined by the limiting distribution

of the EM-test statistic, which will be studied in the next subsection.

4.3.2 Asymptotic Behavior of the EM-test

We study the asymptotic properties of the EM-test under the following conditions on the

penalty function pn(σ) in addition to the Conditions C1 and C2:

C4. p′n(σ) = op(n
1/6) for σ ∈ N(1) with p′n(σ) is the first derivative of pn(σ) and N(1)

being a small neighborhood of 1 .

C5. pn(σ) ≤ 4(logn)2 log(σ), when σ ≤ 1/n as n is large enough.

The first theorem considers the consistency of (α
(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ). The proof will

be given in Section 4.3.4.

Theorem 4.3.1. Suppose Conditions C1-C2 and C4-C5 hold, and p(α) is a continuous

function such that p(α) → −∞ as α → 0 and it attains its maximal value at α = 0.5.

Under the null distribution N(µ0, σ
2
0), we have, for j = 1, . . . , J and any fixed finite k,

α
(k)
j − αj = op(1), and µ

(k)
jh − µ0 = op(1) and σ

(k)
jh − σ0 = op(1), h = 1, 2.



EM-test in Normal Mixture Models 103

Based on the above consistency result, we can get the null distribution of EM
(k)
n for

any given αj , j = 1, 2, . . . , J , and finite k. The proof will be deferred to Section 4.3.4.

Theorem 4.3.2. Assume the same conditions as in Theorem 4.3.1, and that one of αj’s

is equal to 0.5. Under null distribution N(µ0, σ
2
0), for any fixed finite k, as n→ ∞,

EM (k)
n

d→ χ2
2.

It is surprise to see that the additional scale parameter in the model makes the limiting

distribution much simpler. This is in sharp comparison to the case for the likelihood

ratio test. We interpret this phenomenon from the point view of moments. Without

loss of generality, we assume the mean and variance of the normal mixture model (1 −
α)N(µ1, σ

2
1) + αN(µ2, σ

2
2) are 0 and 1, respectively. The test of homogeneity is to choose

one model between N(0, 1) and (1 − α)N(µ1, σ
2
1) + αN(µ2, σ

2
2) with

(1 − α)µ1 + αµ2 = 0 and (1 − α)(µ2
1 + σ2

1) + α(µ2
2 + σ2

2) = 1.

Let β1 = µ2
1 + σ2

1 − 1. When α is fixed to be α0 ∈ (0, 0.5] (for simplicity, let α0 = 0.5), the

third moment and the forth moment of the mixture model are found to be

E(X3
1 ) = 3µ1β1,

E(X4
1 ) = 3β2

1 − 2µ3
1 + 3.

It is easy to verify that {E(X3
1 ), E(X4

1 )} = {0, 3} if and only if the mixture model is the

homogeneous model. So the test of homogeneity is equivalent to testing

H0 : {E(X3
1 ), E(X4

1 )} = {0, 3} versus Ha : {E(X3
1 ), E(X4

1 )} 6= {0, 3}.

As seen in Figure 4.1, {0, 3} is the interior point of the parameter space of {E(X3
1 ), E(X4

1 )}.
Therefore the limiting distribution of the EM-test in this case is χ2

2. Clearly, this limiting

distribution is convenient for the calculation of the critical values for the EM-test statistics.
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Figure 4.1: The parameter space (area inside the solid line) for {E(X3
1 ), E(X4

1 )}.

4.3.3 Simulation Studies

Now we use the simulation studies to examine the finite sample performance of the limiting

distribution for the EM-test and the choice of the penalty function pn(σ). We also compare

the power of the EM-test and the MLRT. Here the MLRT statistic is defined as

Mn = 2

{

sup
α,µ1,µ2,σ1,σ2

pln(α, µ1, µ2, σ1, σ2) − pln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)

}

.

Although the limiting distribution for the MLRT is not available. It is included in the

simulation to serve as an efficiency barometer.

The penalty function pn(σ) used in Section 4.2.3 is found to satisfy all Conditions C1-

C2 and C4-C5. As we mentioned before, this penalty function is equivalent to placing an

inverse gamma prior on σ2. When we have one isolated point in the data, this penalty

function or the inverse gamma prior provides extra information for estimating the variance

parameters, which will prevent the degenerate situation. Therefore, we choose the same
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type of penalty function as in Section 4.2.3 for pn(σ). Based on our simulation results, we

suggest the use of the following two penalty functions, pn(σ) and p(α),

pn(σ) = −0.25
{

sn/σ
2 + log(σ2/sn)

}

and p(α) = log(1 − |1 − 2α|).

The combination of pn(σ) and p(α) results in the EM-test statistics with accurate type I

errors.

Table 4.4: Simulated type I errors (%) of the EM-test under normal mixture model in both

mean and variance parameters.

Level EM
(0)
n EM

(1)
n EM

(2)
n EM

(0)
n EM

(1)
n EM

(2)
n

n = 100

10% 10.8 10.9 10.9 10.5 10.6 10.6

5% 5.5 5.5 5.6 5.3 5.4 5.4

1% 1.2 1.2 1.2 1.1 1.2 1.2

n = 200

10% 10.7 10.7 10.7 10.4 10.5 10.5

5% 5.4 5.4 5.4 5.1 5.2 5.2

1% 1.1 1.1 1.1 1.0 1.0 1.0

n = 500

10% 10.3 10.4 10.4 10.1 10.2 10.2

5% 5.3 5.3 5.3 5.2 5.2 5.2

1% 1.0 1.0 1.0 1.0 1.0 1.0

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5)

Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5)

In simulations, the type I errors are calculated based on 20,000 samples from N(0,1).
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In a similar way to to Section 4.2.3, we use two groups of initial values (0.1, 0.2, 0.3, 0.4,

0.5) and (0.1, 0.3, 0.5) to calculate EM
(k)
n . The simulation results are summarized in Table

4.4. The EM-test statistics based on (0.1, 0.3, 0.5) give accurate type I errors.

For power comparison, we select five alternative models. The parameters are shown

in Table 4.5. The powers of the EM-test and the MLRT are calculated based on 10,000

repetitions and they are presented in Table 4.6. Since the limiting distribution of the

MLRT is unavailable in this case, the critical values have to be simulated if we forcefully

implement it. In this sense, the MLRT is not truly a viable method. Because we need

a yardstick for the EM-test, we decide to carry out the MLRT nevertheless using the

simulated critical values. The comparison should provide us information on whether the

EM-test happen to be poor in the current case. As will be seen, the EM-test passed this

test and works well. The simulation results tell us, EM
(0)
n and EM

(1)
n based on three initial

values (0.1,0.3,0.5) of α almost have the same power as the MLRT. Further increasing the

number of the iterations or the number of initial values on α may not increase the power of

the EM-test statistics. So in applications, we suggest the use of EM
(0)
n or EM

(1)
n based on

three initial values (0.1, 0.3, 0.5) of α. In Table 4.5, the last alternative model is also used

to check whether the penalty function pn(σ) can handle the case when the data have some

isolated points. In the 10,000 repetitions, the estimations of σ2
1 and σ2

2 are all far away

from 0. That is, the penalty function pn(σ) efficiently prevents the degenerate situation.

4.3.4 Technical Proofs

In this subsection, we first prove some general results and then apply these results to show

Theorems 4.3.1 and 4.3.2. Without loss of generality, the null distribution is assumed to

be N(0, 1).

Lemma 4.3.1. Suppose that Conditions C1-C2 and C5 hold. Let (ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) be any
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Table 4.5: Parameters in alternative normal mixture models in both mean and variance

parameters.

1 − α θ1 θ2 σ1 σ2 100KL

Model I 0.50 0.75 -0.75 1.20 0.80 4.258

Model II 0.25 0.65 -0.65 1.20 0.80 4.647

Model III 0.10 0.85 -0.85 1.20 0.80 4.611

Model IV 0.05 1.15 -1.15 1.20 0.80 4.974

Model V 2/n 1.50 -1.50 0.75 0.25 –

KL: Kullback-Leibler information.

estimators of (α, µ1, µ2, σ1, σ2) such that δ ≤ ᾱ ≤ 1 − δ for some δ ∈ (0, 0.5]. Assume that

pln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) − pln(0.5, 0, 0, 1, 1) ≥ c > −∞.

Then under null distribution N(0, 1), µ̄h = op(1) and σ̄h − 1 = op(1) for h = 1, 2.

Under Conditions C1-C2 and C5, Chen et al. (2007) proved that if pln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2)−
pln(0.5, 0, 0, 1, 1) ≥ c > −∞, then

Ψ̄(µ, σ) =
2

∑

j=1

ᾱjI(µ̄j ≤ µ, σ̄j ≤ σ)

is a consistent estimator of

Ψ0(µ, σ) = I(0 ≤ µ, 1 ≤ σ),

the mixing distribution under the null model. Using the condition that α ∈ [δ, 1 − δ] for

some δ ∈ (0, 0.5], Lemma 4.3.1 follows directly.

Let (ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) be some estimators of (α, µ1, µ2, σ1, σ2) as before. Define

Hn(α) = (n−
n

∑

i=1

w̄i) log(1 − α) +

n
∑

i=1

w̄i log(α) + p(α)
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Table 4.6: Simulated powers (%) of the EM-test and the MLRT under normal mixture

models in both mean and variance parameters at the 5% level.

Model EM
(0)
n EM

(1)
n EM

(2)
n EM

(0)
n EM

(1)
n EM

(2)
n MLRT

n = 100

I 47.8 47.8 47.7 47.9 47.7 47.7 47.6

II 55.1 55.1 54.9 55.4 55.2 55.0 54.7

III 55.9 55.9 55.8 56.2 55.9 55.9 55.6

IV 58.4 58.4 58.4 58.7 58.4 58.4 58.4

V 48.7 48.7 48.6 48.9 48.6 48.6 48.8

n = 200

I 81.9 81.8 81.8 82.1 81.9 81.9 81.6

II 87.5 87.4 87.4 87.8 87.6 87.6 87.3

III 86.0 85.9 85.9 86.2 86.1 86.1 85.9

IV 87.3 87.2 87.2 87.5 87.4 87.4 87.1

V 46.7 46.5 46.5 46.9 46.7 46.7 46.6

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5).

Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5).

with

w̄i =
ᾱf(Xi; µ̄2, σ2)

(1 − ᾱ)f(Xi; µ̄1, σ1) + ᾱf(Xi; µ̄2, σ2)
.

Let ᾱ∗ = arg maxαHn(α). Using the same techniques in Lemma 3.5.3 and Lemma 4.2.4,

we have the following lemma considering the asymptotic properties of ᾱ∗.

Lemma 4.3.2. Let (ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) be any estimators of (α, µ1, µ2, σ1, σ2) such that under
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null hypothesis,

µ̄h = op(1) and σ̄h − 1 = op(1), for h = 1, 2.

If |ᾱ−α0| = op(1) for some α0 ∈ (0, 1). Then under the null distribution N(0, 1), we have

|ᾱ∗ − α0| = op(1).

The results in Lemmas 4.3.1 and 4.3.2 will be used to prove Theorem 4.3.1 as follows.

Proof of Theorem 4.3.1

By the property of the EM algorithm (Dempster et al., 1977), the definition of α
(k)
j and

others, for any finite k, we have

pln(α
(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ) ≥ pln(α

(0)
j , µ

(0)
j1 , µ

(0)
j2 , σ

(0)
j1 , σ

(0)
j2 ) ≥ pln(αj, 0, 0, 1, 1).

Therefore

pln(α
(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ) − pln(0.5, 0, 0, 1, 1) ≥ p(αj) − p(0.5) > −∞.

By Lemma 4.3.2, we find

α
(1)
j − αj = op(1).

Then applying the results in Lemma 4.3.1, we get

µ
(1)
jh − 0 = op(1) and σ

(1)
jh − 1 = op(1), h = 1, 2.

Applying this conclusions repeatedly, it is seen that

α(k) − αj = op(1), µ
(k)
jh − 0 = op(1) and σ

(k)
jh − 1 = op(1), h = 1, 2.

is true for all finite k.

We now study the asymptotic distribution of the EM-test. We employ here the “sand-

wich method” to derive the limiting distribution of the EM-test statistic EM
(k)
n under the

null hypothesis.
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Suppose (ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) are the estimators of (α, µ1, µ2, σ1, σ2) such that µ̄h = op(1)

and σ̄h − 1 = op(1), h = 1, 2, and δ ≤ ᾱ ≤ 1− δ for some δ ∈ (0, 0.5]. In the first stage, we

derive an upper bound for 2{pln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) − pln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)} and then apply

the result to EM
(k)
n .

Note that

2{pln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) − pln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)}

= 2{ln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) − ln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)

+pn(σ̄1) − pn(1) + pn(σ̄2) − pn(1) + p(ᾱ) − p(0.5)}

≤ 2{ln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) − ln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)

+pn(σ̄1) − pn(1) + pn(σ̄2) − pn(1)}

= r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) + r2n + r3n(σ̄1, σ̄2),

where

r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) = 2{ln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) − ln(0.5, 0, 0, 1, 1)},

r2n = 2{ln(0.5, 0, 0, 1, 1)− ln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)}

and

r3n(σ̄1, σ̄2) = 2{pn(σ̄1) − pn(1) + pn(σ̄2) − pn(1)}.

To analyze r1n, express r1n = 2
∑n

i=1 log(1 + δ̄i), where

δ̄i = (1 − ᾱ)
{f(Xi, µ̄1, σ̄1)

f(Xi; 0, 1)
− 1

}

+ ᾱ
{f(Xi, µ̄2, σ̄2)

f(Xi; 0, 1)
− 1

}

.

By the inequality 2 log(1 + x) ≤ 2x− x2 + 2/3x3, we have

r1n ≤ 2
n

∑

i=1

δi −
n

∑

i=1

δ2
i + 2/3

n
∑

i=1

δ3
i .



EM-test in Normal Mixture Models 111

For l = 1, 2, 3, 4 and s = 1, 2, 3, 4, we define

m̄l,s = (1 − ᾱ)µ̄l
1(σ̄

2
1 − 1)s + ᾱµ̄l

2(σ̄
2
2 − 1)s.

Using the Taylor’s expansions for f(Xi; µ̄h, σ̄h) up to order 4, h = 1, 2, we have

δi =

4
∑

l+s=1

(

l + s

s

)

m̄l,s
f (l,s)(Xi; 0, 1)

(l + s)!f(Xi; 0, 1)
+ ǫ

(1)
in

and the remainder term ǫ
(1)
n =

∑n
i=1ǫ

(1)
in satisfies

ǫ(1)n = Op(n
1/2)

{

2
∑

h=1

5
∑

k=0

|µ̄h|k|σ̄2
h − 1|5−k

}

. (4.17)

Here f (l,s)(Xi;µ, σ) is defined to be

f (l,s)(x;µ, σ) = ∂l+sf(x;µ, σ)/{∂µl∂(σ2)s}, l, s ≥ 0.

Note that when k = 0, 1, 2,

Op(n
1/2)

2
∑

h=1

|µ̄h|k|σ̄2
h − 1|5−k ≤ Op(n

1/2)

2
∑

h=1

|σ̄2
h − 1|3

and when k = 3, 4,

Op(n
1/2)

2
∑

h=1

|µ̄h|k|σ̄2
h − 1|5−k ≤ Op(n

1/2)

2
∑

h=1

|µ̄h|3|σ̄2
h − 1|.

Therefore, (4.17) is simplified to

ǫ(1)n = Op(n
1/2){|µ̄h|5 + |µ̄h|3|σ̄2

h − 1| + |σ̄2
h − 1|3}.

Absorbing the term m̄l,s such that l + 2s ≥ 5 into the remainder term, we have

δi =
4

∑

l+2s=1

(

l + s

s

)

m̄l,s
f (l,s)(Xi; 0, 1)

(l + s)!f(Xi; 0, 1)
+ ǫin (4.18)
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with

ǫn =
n

∑

i=1

ǫin = Op(n
1/2)

2
∑

h=1

{|µ̄h|5 + |µ̄h|3|σ̄2
h − 1| + |µ̄h|(σ̄2

h − 1)2 + |σ̄2
h − 1|3}.(4.19)

Note that all the other terms in δi have been considered in the above absorption. For

example,

Op(n
1/2)m̄2,2 = Op(n

1/2)

2
∑

h=1

µ̄2
h(σ

2
h − 1)2 ≤ Op(n

1/2)

2
∑

h=1

|µ̄h|(σ2
h − 1)2

and

Op(n
1/2)m̄0,4 = Op(n

1/2)
2

∑

h=1

(σ2
h − 1)4 ≤ Op(n

1/2)
2

∑

h=1

|σ2
h − 1|3.

Using the fact that |2x| ≤ 1 + x2, we have

Op(n
1/2)|µ̄h|3|σ̄2

h − 1| ≤ Op(n
1/2){|µ̄h|5 + |µ̄h|(σ̄2

h − 1)2}.

So (4.19) reduces to

ǫn =
n

∑

i=1

ǫin = Op(n
1/2)

2
∑

h=1

{|µ̄h|5 + |µ̄h|(σ̄2
h − 1)2 + |σ̄2

h − 1|3}. (4.20)

Next we come to simplify the dominant term of δi. By calculation, (4.18) further

reduces to

δi = t̄1Yi + t̄2Zi + t̄3Ui + t̄4Vi + ǫin,

where Yi, Zi, Ui and Vi are the same as those defined in (4.6) and

t̄1 = m̄1,0, t̄2 = m̄2,0 + m̄0,1, t̄3 = m̄3,0 + 3m̄1,1 and t̄4 = m̄4,0 + 6m̄2,1 + 3m̄0,2. (4.21)
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Note that the remainder term for square term and cubic term will be as high as ǫn. So

r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) ≤ 2{t̄1
n

∑

i=1

Yi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n

∑

i=1

Y 2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)}

+2/3{t̄1
n

∑

i=1

Yi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}3 +Op(ǫn).

It is easy to verify that (Yi, Zi, Ui, Vi) are mutually orthogonal, therefore we do not have

the cross term in the above square term. Further using the inequality

(a+ b)3 ≤ 4(a3 + b3), a, b ≥ 0

repeatedly, we have that

∣

∣

∣
{t̄1

n
∑

i=1

Yi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}3
∣

∣

∣

≤ 16
{

|t̄1|3
n

∑

i=1

|Yi|3 + |t̄2|3
n

∑

i=1

|Zi|3 + |t̄3|3
n

∑

i=1

|Ui|3 + |t̄4|3
n

∑

i=1

|Vi|3
}

= Op(n)
{

4
∑

l=1

|t̄l|3
}

= op(n)
{

4
∑

l=1

t̄2l

}

,

which means the cubic term is dominated by the square term. Hence,

r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) ≤ 2{t̄1
n

∑

i=1

Yi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n

∑

i=1

Y 2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)}

+Op(ǫn). (4.22)
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Our next step is to show ǫn is also a high order term than the square term. From (4.20),

the key point is to show that

ǫn = op(n)
{

4
∑

l=1

t̄2l

}

, (4.23)

which is an immediate consequence of the following lemma.

Lemma 4.3.3. Suppose (ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) are the estimators of (α, µ1, µ2, σ1, σ2) such that

under null hypothesis, µ̄h = op(1) and σ̄h − 1 = op(1), h = 1, 2 and δ ≤ ᾱ ≤ 1− δ for some

δ ∈ (0, 0.5]. Then under null distribution N(0, 1),

µ̄5
h = op

{

4
∑

l=1

|t̄l|
}

, µ̄h(σ̄
2
h − 1)2 = op

{

4
∑

l=1

|t̄l|
}

and (σ̄2
h − 1)3 = op

{

4
∑

l=1

|t̄l|
}

, h = 1, 2.

Proof. Because µ̄h = op(1) and σ̄h − 1 = op(1), h = 1, 2, we have t̄l = op(1), l = 1, 2, 3, 4.

Let β̄h = µ̄2
h + σ̄2

h − 1, h = 1, 2. According to the definitions of t̄1 and t̄2 in (4.21), we can

obtain the following relationships:

µ̄2 = t̄1/ᾱ− (1 − ᾱ)µ̄1/ᾱ, (4.24)

β̄2 = t̄2/ᾱ− (1 − ᾱ)β̄1/ᾱ. (4.25)

Plugging (4.24) and (4.25) into the definitions of t̄3 and t̄4 in (4.21) and using the condition

that δ ≤ ᾱ ≤ 1 − δ for some δ ∈ (0, 0.5], we can easily show

t̄3 = 3
1 − ᾱ

ᾱ

{

µ̄1β̄1 −
2(2ᾱ− 1)

3ᾱ
µ̄3

1

}

+ op(t̄1) + op(t̄2), (4.26)

t̄4 = 3
1 − ᾱ

ᾱ

{

β̄2
1 −

2(1 − 3ᾱ + 3ᾱ2)

3ᾱ2
µ̄4

1

}

+ op(t̄1) + op(t̄2). (4.27)

From (4.26) ×
{

β̄1 + 2(2ᾱ−1)
3ᾱ

µ̄2
1

}

− (4.27) × µ̄1, we get

2(1 − ᾱ)(1 − ᾱ+ ᾱ2)

3ᾱ3
µ̄5

1 = op(t̄1) + op(t̄2) + op(t̄3) + op(t̄4).



EM-test in Normal Mixture Models 115

Using the fact ᾱ ∈ [δ, 1 − δ], for some δ ∈ (0, 0.5], we conclude that

µ̄5
1 = op

(

4
∑

l=1

|t̄l|
)

. (4.28)

From (4.27) × µ̄1 and the above result, we have

µ̄1β̄
2
1 = op

(

4
∑

l=1

|t̄l|
)

.

From the definition of β̄1, it is seen that

|µ̄1(σ̄
2
1 − 1)2| ≤ 2|µ̄1|(β̄2

1 + µ̄4
1) = op

(

4
∑

l=1

|t̄l|
)

.

From (4.27) × β̄1 + (4.26) × 2(1−3ᾱ+3ᾱ2)
3ᾱ2 µ̄3

1 and (4.28), we get

|β̄1|3 = op

(

4
∑

l=1

|t̄l|
)

.

Using the inequality (a+ b)3 ≤ 4(a3 + b3), a, b ≥ 0 and the definition of β̄1, we obtain

|(σ̄2
1 − 1)3| ≤ 4(|β̄1|3 + |µ̄1|6) = op

(

4
∑

l=1

|t̄l|
)

.

Other parts can be done similarly.

Combining (4.22) and (4.23), the upper bound in (4.22) can further reduce to

r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) ≤ 2{t̄1
n

∑

i=1

Yi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n

∑

i=1

Y 2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)}.(4.29)

According to the classic results about regular models, we have

r2n = −(
∑n

i=1 Yi)
2

∑n
i=1Y

2
i

− (
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+ op(1). (4.30)
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Now we come to analyze r3n(σ̄1, σ̄2). Using mean theorem on pn(σ̄h)− pn(1), h = 1, 2, and

Condition C4, we can get

r3n(σ̄1, σ̄2) = op(n
1/6)(|σ̄2

1 − 1| + |σ̄2
2 − 1|)

≤ op(1) + op(n
1/2){(σ̄2

1 − 1)3 + (σ̄2
2 − 1)3}

= op(1) + op(n
1/2)

{

4
∑

l=1

|t̄l|
}

≤ op(1) + op(n)
{

4
∑

l=1

t̄2l

}

. (4.31)

In the above second step, we use the fact that |x| ≤ 1 + |x|3, and in the third step, we

apply the result in Lemma 4.3.3. Combining (4.29) and (4.31), we have

r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) + r3n(σ̄1, σ̄2)

≤ 2{t̄1
n

∑

i=1

Yi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n

∑

i=1

Y 2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)} + op(1). (4.32)

Inequality (4.32) implies r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2)+ r3n(σ̄1, σ̄2) is stochastically bounded by the

maximum of the following quadratic function:

Q(t1, t2, t3, t4) = 2{t1
n

∑

i=1

Yi + t2

n
∑

i=1

Zi + t3

n
∑

i=1

Ui + t4

n
∑

i=1

Vi}

−{t21
n

∑

i=1

Y 2
i + t22

n
∑

i=1

Z2
i + t23

n
∑

i=1

U2
i + t24

n
∑

i=1

V 2
i }.

We see that Q(t1, t2, t3, t4) is maximized at tl = t̂l, l = 1, 2, 3, 4, with

t̂1 =

∑n
i=1 Yi

∑n
i=1Y

2
i

, t̂2 =

∑n
i=1 Zi

∑n
i=1Z

2
i

, t̂3 =

∑n
i=1 Ui

∑n
i=1U

2
i

and t̂4 =

∑n
i=1 Vi

∑n
i=1V

2
i

(4.33)

and

Q(t̂1, t̂2, t̂3, t̂4) =
(
∑n

i=1 Yi)
2

∑n
i=1Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).
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This implies that

r1n(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) + r3n(σ̄1, σ̄2)

≤ (
∑n

i=1 Yi)
2

∑n
i=1Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1). (4.34)

Combining (4.30) and (4.34), we can have the following lemma.

Lemma 4.3.4. Suppose Conditions C1-C2 and C4-C5 hold. Let (ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) be any

estimators of (α, µ1, µ2, σ1, σ2) such that under null hypothesis, µ̄h = op(1) and σ̄h − 1 =

op(1), h = 1, 2, and δ ≤ ᾱ ≤ 1 − δ for some δ ∈ (0, 0.5]. Then under null distribution

N(0, 1),

2{pln(ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) − pln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)}

≤ (
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1). (4.35)

This result is going to be used to establish Theorem 4.3.2 as follows.

Proof of Theorem 4.3.2

According to Theorem 4.3.1, we can get that (4.35) also serves as an upper bound for

EM
(k)
n . Now we come to show that the upper bound is also achievable.

Let α̃ = 0.5 and µ̃h and σ̃2
h, h = 1, 2, be the solutions for the following four equations:































1/2µ1 + 1/2µ2 = t̂1

1/2β1 + 1/2β2 = t̂2

3µ1β1 = t̂3

3β2
1 − 2µ4

1 = t̂4

, (4.36)

where βh = σ2
h − 1 + µ2

h, h = 1, 2. Note that from (4.26) and (4.27), 3µ1β1 and 3β2
1 − 2µ4

1

are the dominant term of t3 and t4, respectively. By setting the equations in the way of

(4.36), it is easy to show the solutions exist as follows
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From the last two equations of (4.36), we need to solve the following equation for µ1:

g(µ2
1) = 6µ6

1 + 3t̂4µ
2
1 − t̂23 = 0. (4.37)

Note that g(0) < 0 and g(µ2
1) → ∞ as µ1 → ∞, therefore there exists a positive solution for

µ2
1. Let µ̃1 be the smallest positive solution. With µ̃1, we find β̃1 from the third equation

of (4.36), and then from the first two equations of (4.36), we can get µ̃2 and β̃2. Therefore,

the solutions for the four equations in (4.36) exist.

Note that directly solving the equation in (4.37), we can further get µ̃1 = op(1). From

(4.36), we conclude

µ̃2 = op(1), σ̃2
1 − 1 = op(1) and σ̃2

2 − 1 = op(1).

Using the relationships in (4.26) and (4.27), we have

t̃l = t̂l + op(n
−1/2), l = 1, 2, 3, 4, (4.38)

where t̃l is similarly defined in (4.21) with (ᾱ, µ̄1, µ̄2, σ̄1, σ̄2) being replaced by (α̃, µ̃1, µ̃2, σ̃1, σ̃2).

By (4.33) and (4.38), (α̃, µ̃1, µ̃2, σ̃1, σ̃2) are such that

r1n(α̃, µ̃1, µ̃2, σ̃1, σ̃2)

=
(
∑n

i=1 Yi)
2

∑n
i=1Y

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1). (4.39)

Note that using the similar techniques in Lemma 4.3.3, we can show

(σ̃2
h − 1)3 = op

{

4
∑

l=1

|t̃l|
}

, h = 1, 2

and hence

(σ̃2
h − 1) = op(n

−1/6), h = 1, 2.
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Applying the mean value theorem,

r3n(σ̃1, σ̃2) = op(1). (4.40)

Combining (4.30), (4.39) and (4.40), we have

2{pln(α̃, µ̃1, µ̃2, σ̃1, σ̃2) − pln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)}

=
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).

So if one of αj’s is equal to 0.5, then

EM (k)
n ≥ 2{ sup

(µ1,µ2,σ1,σ2)

pln(0.5, µ1, µ2, σ1, σ2) − pln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)}

≥ 2{pln(α̃, µ̃1, µ̃2, σ̃1, σ̃2) − pln(0.5, µ̂0, µ̂0, σ̂0, σ̂0)}

=
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).

That is, the upper bound for EM
(k)
n is also an lower bound. Hence

EM (k)
n =

(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).

Consequently, the limiting distribution of EM
(k)
n is given by χ2

2.

4.4 Application and Real Example

Mixtures of multivariate normal distributions have been widely used in cluster analysis

in multi-dimensional data sets, see McLachlan et al. (2002) and Tadesse et al. (2005). In

many applications, only a small subset of variables is useful for cluster analysis. Including

the unnecessary variables in cluster analysis could complicate or even mask the recovery

of the clusters (see Tadesse et al. 2005 and the references therein). Variable selection has

become a very important step before using the mixture of multivariate normal distributions
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in cluster analysis. McLachlan et al. (2002) and Charnigo and Sun (2004) suggested con-

ducting the test of homogeneity for each variable to examine whether or not this variable

is important for clustering.

To see how the EM-test might work in this situation, we apply it to Fisher’s Iris data.

This data set consists of 150 four-dimensional variables for three species of iris (Iris setosa,

Iris versicolour, Iris virginica). Four measurements, sepal length, sepal width, petal length

and petal width, are taken for each plant. The Iris data has been analyzed by several

authors (see, e.g., Tadesse et al, 2005) in the framework of classification and clustering.

For illustration purposes, we take the first measurement, sepal length, for the first

two species of iris: Iris setosa and Iris versicolour, which results in 100 observations in

total. For the sepal length measurement, we test whether or not this variable is useful for

cluster the two species of iris. Before conducting the formal test, we do some preliminary

analysis for the 100 observations. Figure 4.2 is the Q-Q plot of this measurement, which

suggests some deviance from the uni-component normal model. A rigorous EM-test can

also be conducted. The analysis results are presented in Table 4.7. The results show strong

evidence to reject the homogeneity in sepal length measurements. The Q-Q plot and the

rigorous EM-test both favor the two-component normal mixture model. So the sepal length

measurement is potentially important for clustering. Note that from our analysis we can

only conclude that the two-component normal mixture model provides a more suitable

description about the data than the homogeneous normal model. If we want to know

whether or not the data is from a uni-component nonnormal model, we have to rely on

some other methods or the scientific background behind this data.
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Table 4.7: Homogeneity testing results for the sepal length observations under two normal

mixture models.

Normal mixture model Normal mixture model

(σ2
1 = σ2

2 = σ2) (σ2
1 6= σ2

2)

Measurement MLRT IM
(1)
n IM

(1)
n

Sepal length 7.693 5.847 7.548

Asymptotic p-value 0.021 0.017 0.023

Simulated p-value 0.026 0.017 0.025

Results for the EM-test used α = (0.1, 0.3, 0.5)
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Figure 4.2: The Q-Q plot of the sepal length observations.
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Chapter 5

Homogeneity Test in Mixture of

Circular Distributions

5.1 Introduction

Circular data, which are measured in the form of angles or two dimensional orientations,

arise commonly in many disciplines, including astronomy, biology, ecology, geology, physics

and medicine. Examples of such data include the direction of flight of birds or the orienta-

tion of the movement of animals, wind and ocean current directions, circadian and other

biorhythms. Describing and analyzing such data statistically poses a lot of interesting and

challenging problems. For example, the sample mean defined for linear data is no longer

appropriate to measure the center of circular data. Suppose two turtles moved at 10◦ and

350◦ measured clockwise from north. Their arithmetic mean is 180◦, due south, while the

two movements point toward north.

1The paper Chen, et al. (2007), based on this chapter, has been accepted for publication in Canadian

Journal of Statistics.
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The followings are several key monographs regarding the theory of circular statistics.

Batschelet (1981) contains the descriptive and inferential tools for circular observations

with a wealth of excellent examples. Fisher (1993) provides a nice introduction to statisti-

cal methods for analyzing circular data including an interesting historical overview of the

subject. Mardia and Jupp (2000) cover a wide variety of topics in statistics of directional

data. Jammalamadaka and Sengupta (2001) present the latest developments in circular

statistics. Statistical inferences in circular or directional mixture models have been dis-

cussed by many authors, such as Stephens (1969), Fraser, et al. (1981), Hsu, et al. (1986),

Kim and Koo (2000), and Holzmann, et al. (2004).

As a circular analog of the normal distribution on the real line, the von Mises distribu-

tion is the most commonly used distribution for circular data. The von Mises distribution

also has two parameters, one represents the mean direction and the other describes the

variation around the mean direction, called the concentration parameter. When the data

are drawn from a heterogeneous population, mixtures of von Mises distributions with same

concentration parameter are often used, see Grimshaw et al. (2001) for an example in ge-

ology. At the same time, it might be of value to know whether the data arise from a

homogeneous or heterogeneous population. If the data are homogeneous, it is not even

necessary to go into mixture modeling. Similar to the linear case, unless the components

are fairly distinct, testing the order or the number of components in a circular mixture is

a challenging problem.

The following is an illustrating example involving the orientation directions of elongate

bones due to Grimshaw et al. (2001).

Example 5.1.1. Information about the flow directions of ancient rivers (paleoflow direc-

tion) helps scientists better understand how certain rock units are oriented, which in turn

leads to more efficient exploration of natural resources and better understanding of land-
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scape development and climate change. Primary bedforms are usually used to interpret the

paleoflow direction, since the orientation of the foreset lamination of the bedforms paral-

lels to the current direction. However, bedforms are often masked or destroyed by various

physical and chemical processes, scientists then have to analyze other available data to ob-

tain information on the paleoflow direction. Morris et al. (1996) proposed the use of the

orientation of elongate bones to identify the paleoflow direction. The Dinosaur National

Monument and Dry Mesa Dinosaur Quarry are two ideal quarries for comparison of direc-

tions of elongate bone and paleoflow, since both dinosaur bone and well-preserved bedforms

exist.

The measurements on elongate dinosaur bones are axial data with period π, since there

is no reason to make a distinction of two ends of the fossil bone. In order to use the vectorial

probability models, one can double the angles modulo 2π. The values of the transformed

axial data then range from 0 to 2π. Dinosaur National Monument and Dry Mesa Dinosaur

Quarry have 444 and 555 dinosaur bones direction measurements, respectively.

As mentioned in Grimshaw et al. (2001), elongate bones can be classified into two

categories: symmetrical and asymmetrical. Symmetrical bones tend to orient themselves

vertical to the paleoflow direction, while asymmetrical bones, which display additional bone

mass on only one end, tend to orient themselves parallel to the paleoflow direction. The

primary interest of Grimshaw et al. (2001) is to make a rigorous comparison of dinosaur

bone direction with primary bedforms. If these two directions are same, the scientists

will have some confidence for the use of dinosaur bone orientations to estimate paleoflow

direction when the bedforms are not visible. Before doing that, the statistical problem of

interest is to test whether there exist two types of elongate bones in the two quarries.

In the above example, since we do not have prior information on the orientation di-

rections of the two types of bones, a two-component von Mises mixture in mean direction
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with the same but unknown concentration parameter is suitable. In this case, we have

a straightforward test of homogeneity problem. Interestingly, unlike the normal mixture

model at the presence of the structural parameter, von Mises mixture model satisfies the

strong identifiability condition and the parameter space of the mean direction is compact.

Therefore the theoretical results for normal mixture model do not apply to the mixture

of von Mises distributions. In this chapter, we study the application of the MLRT and

the EM-test to von Mises mixture models at the presence of the structural parameter.

The remainder of this chapter is organized as follows. In Section 5.2, we study the cir-

cular moment property for a mixture of two von Mises distributions. The results suggest

that the structural parameter tends to be overestimated when a two-component von Mises

mixture is used to fit the data arising from a homogeneous von Mises distribution. This

phenomenon motivates an additional penalty on the large values of the structural parame-

ter. The asymptotic results of the MLRT and the EM-test are developed in Section 5.3. In

Section 5.4, we present some simulation results and analyze the data sets in Example 5.1.1.

Some additional discussions are given in Section 5.5. For the convenience of presentation,

all the proofs are deferred to Section 5.6.

5.2 The von Mises Distribution and Circular Moments

The von Mises distribution was first introduced as a statistical model for directional data

by von Mises (1918). It plays a key role in statistical inference for circular data. Because

of its importance and similarities to the normal distribution on the line, it is also called the

circular normal distribution. The von Mises distribution M(µ, κ) has probability density

function (pdf)

f(x;µ, κ) =
1

2πI0(κ)
exp{κ cos(x− µ)}, |x| ≤ π,
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where |µ| ≤ π and κ ≥ 0. The function I0(κ) is the normalizing constant and is known

as the modified Bessel function of the first kind and order zero. In general, the modified

Bessel function Ip of the first kind and order p (sometimes also called Bessel function of

purely imaginary argument) is defined by

Ip(κ) =
1

2π

∫ 2π

0

cos(px) exp(κ cosx)dx.

Also, we define

A(κ) =
I1(κ)

I0(κ)
.

Properties of these functions can be found in Abramowitz and Stegun (1965).

Figures 5.1 and 5.2 give plots of three density functions of M(0, 1), M(0, 2) and M(0, 3)

on the interval [−π, π] and on the circle, respectively. In Figure 5.2, the unit circle serves

the role of the x axis in the linear plot in Figure 5.1. The distance between the plotted

line and the unit circle is the value of the probability density function. If we cut at the

point π and stretch the plot such that the unit circle becomes the real line, we will get the

linear plot in Figure 5.1. It is seen that these probability density functions are unimodal

and symmetric about µ, and as κ increases, the density function becomes more peaked at

µ.

The measures of location and dispersion of circular data are defined differently from

those for linear data. Let X be a circular random variable. The circular mean direction

and the circular variance can be defined as

CE(X) = argminµ∈[−π,π]E{2 − 2 cos(X − µ)}

and

CVar(X) = E[2 − 2 cos{X − CE(X)}], (5.1)

respectively. We may note that 2− 2 cos(X − µ) = 4 sin2{(X − µ)/2}. Hence, the circular

mean is the minimum point of a trigonometry distance, and the circular variance is the



128 Hypothesis Testing in Finite Mixture Models

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

pd
f

M(0,3)
M(0,2)
M(0,1)

Figure 5.1: Three densities of von Mises distribution on [−π, π].

resulting minimum value. Replacing the sine function in the definition by the identity

function leads to the usual mean and variance for linear data.

For the von Mises distributionM(µ, κ), the mean direction is µ and the circular variance

is 2 − 2A(κ). As κ increases, the circular variance decreases and the distribution places

more mass close to the mean direction. Hence κ is also called the concentration parameter.

We now give the circular mean and variance for a mixture of two von Mises distributions.

Let X be a circular random variable with distribution (1 − α)M(µ1, κ) + αM(µ2, κ) for

some κ > 0. Then, for any µ, we have

E{cos(X − µ)} = A(κ) cos(η − µ)

√

1 − 4α(1 − α) sin2(
µ1 − µ2

2
),

where η ∈ [−π, π] is an angle such that

cos η = {(1 − α) cosµ1 + α cosµ2}/
√

1 − 4α(1 − α) sin2(
µ1 − µ2

2
)
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Figure 5.2: Three densities of von Mises distribution on the circle.

and

sin η = {(1 − α) sinµ1 + α sinµ2}/
√

1 − 4α(1 − α) sin2(
µ1 − µ2

2
).

Hence, we have

CE(X) = arg max
µ

E{cos(X − µ)} = η.

Consequently, by (5.1)

CVar(X) = 2 − 2A(κ)

√

1 − 4α(1 − α) sin2(
µ1 − µ2

2
).

It is seen that the variance of a heterogeneous model, where α(1 − α) 6= 0 and µ1 6= µ2,

is larger than that of a homogeneous model with the same κ. Thus, because A(κ) is an

increasing function of κ, fitting a heterogeneous model to data arising from a homogeneous

model tends to result in a larger fitted concentration parameter.
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5.3 Asymptotic Properties of Likelihood-based Tests

Assume that a circular random sample X1, . . . , Xn is drawn from the von Mises mixture

distribution (1 − α)M(µ1, κ) + αM(µ2, κ), where 0 ≤ α ≤ 1, −π ≤ µ1, µ2 ≤ π and κ ≥ 0.

We are interested in testing

H0 : α(1 − α)(µ1 − µ2) = 0 (5.2)

versus the full model. This section focuses on the asymptotic properties of likelihood-based

testing procedures.

5.3.1 The Likelihood Ratio Test

The log-likelihood function can be expressed as

ln(α, µ1, µ2, κ) = −n log I0(κ)+
∑

log[(1−α) exp{κ cos(Xi−µ1)}+α exp{κ cos(Xi−µ2)}].

Let µ̂0 and κ̂0 be the MLEs under the null hypothesis and let α̂, µ̂1, µ̂2 and κ̂ be the MLEs

under the full model. The likelihood ratio test (LRT) statistic is defined as

Rn = 2{ln(α̂, µ̂1, µ̂2, κ̂) − ln(0.5, µ̂0, µ̂0, κ̂0)}.

Without loss of generality, let M(0, κ0) be the null distribution.

The MLEs have some interesting properties as stated in the following two lemmas.

Lemma 5.3.1. Assume that the distribution of the random sample X1, . . . , Xn is given by

M(0, κ0) for some κ0 > 0. Let κ̂ be the MLE of κ under the full model (1 − α)M(µ1, κ) +

αM(µ2, κ). Then there exists a constant 0 < ∆ <∞ such that

lim
n→∞

P (κ̂ ≤ ∆) = 1.
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As a consequence of Lemma 5.3.1, the parameter space under consideration can be

reduced to a compact one for theoretical derivations. With identifiability (Fraser, et al.

1981, Holzmann, et al., 2004), Lemma 5.3.1 implies the consistency of the MLEs, which is

a direct application of the result in Kiefer and Wolfowitz (1956). The proof is omitted.

Lemma 5.3.2. Assume that the distribution of the random sample X1, . . . , Xn is given by

M(0, κ0). Let α̂, µ̂1, µ̂2, and κ̂ be the MLEs of α, µ1, µ2, and κ under the full model

(1−α)M(µ1, κ)+αM(µ2, κ). Then (1− α̂)µ̂1 + α̂µ̂2 → 0, (1− α̂)µ̂2
1 + α̂µ̂2

2 → 0 and κ̂→ κ0

in probability, as n→ ∞.

The asymptotic distribution of the LRT statistic is given in the following theorem.

Theorem 5.3.1. Let X1, . . . , Xn be a random sample from the mixture distribution (1 −
α)M(µ1, κ) + αM(µ2, κ), where 0 ≤ α ≤ 1, −π ≤ µ1, µ2 ≤ π and κ ≥ 0. Let Rn be the

LRT statistic for testing H0 : α(1 − α)(µ1 − µ2) = 0. Then under the null distribution

M(0, κ0), as n→ ∞,

Rn
d→ sup

|µ|≤π

{ζ+(µ)}2,

where ζ(µ), |µ| ≤ π, is a Gaussian process with mean 0, variance 1 and autocorrelation

ρ(s, t) which is given by

ρ(s, t) =
g(s, t)

{g(s, s)g(t, t)} 1
2

, for s, t 6= 0,

where

g(s, t) =
1

st

[I0[κ0{(cos s+ cos t− 1)2 + (sin s+ sin t)2} 1
2 ]

I0(κ0)
− 1

−A
2(κ0)(cos s− 1)(cos t− 1)

1 −A(κ0)/κ0 −A2(κ0)
− κ0A(κ0) sin s sin t

]

. (5.3)

Chen and Chen (2003) gives the asymptotic distribution of the LRT statistic in a

two-component normal mixture with a structural parameter. In comparison with the
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result above, their Gaussian process contains a spike at 0. More discussions on the subtle

difference between normal and von Mises mixtures will be given in Section 5.5.

5.3.2 The Modified Likelihood Approaches

Similar to the asymptotic results obtained in other finite mixture models, this limiting dis-

tribution of the LRT is not convenient to use in practice. An obvious alternative approach

is the MLRT, which has been found easy to apply in the literature. Let the modified

log-likelihood function be

pln(α, µ1, µ2, κ) = ln(α, µ1, µ2, κ) + p(α). (5.4)

The MLRT statistic is defined as

M∗
n = 2{pln(α̂∗, µ̂∗

1, µ̂
∗
2, κ̂

∗) − pln(1/2, µ̂∗
0, µ̂

∗
0, κ̂

∗
0)},

where (α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗) maximizes pln(α, µ1, µ2, κ) over the region 0 < α < 1, −π ≤ µ1, µ2 ≤
π, κ ≥ 0, and (µ̂∗

0, µ̂
∗
0, κ̂

∗
0) maximizes pln(1/2, µ, µ, κ) which is the modified log-likelihood

function under the null hypothesis.

The result in Theorem 5.3.1 is instrumental in analyzing the asymptotic properties

of the MLRT. The limiting distribution of the MLRT can be shown to be a mixture of

chi-squared distributions, which is very convenient to implement in practice. However

simulation studies indicate that the finite sample distribution of the above MLRT statistic

under the null model is not well approximated by this null limiting distribution unless the

sample size is very large. Two accuracy enhancing measures are hence proposed in the

next subsection.
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5.3.3 Accuracy Enhancing Methods

Due to the moment properties discussed in Section 5.2, κ tends to be overestimated by

the MLE or the modified MLE under the heterogeneous model. As a consequence, the

finite sample distribution of the MLRT statistic is stochastically larger than the limiting

distribution which inflates the type I error rate. To overcome this problem, we propose

penalizing the fit with larger values of κ. More specifically, we suggest adding − log(κ+1)

to pln in (5.4) and the resulting modified likelihood function becomes

pln(α, µ1, µ2, κ) = ln(α, µ1, µ2, κ) − log(κ+ 1) + p(α). (5.5)

The corresponding MLRT statistic Mn is defined in the same fashion as M∗
n . The limiting

distribution of the new MLRT is not affected by this additional penalty. The result will be

presented in next subsection. The penalty function − log(κ+1) is a decreasing function on

κ with the upper bound 0. It prevents the overestimation of κ under the null model and

improve the type-I error of the MLRT statistic. The second enhancing method is to select

a more effective p(α). As we discussed in Chapter 2, we choose p(α) = C∗ log(1−|1−2α|).
Both enhancing methods are found to be effective as will be demonstrated by simulation

studies.

5.3.4 The EM-test

In this subsection, the EM-test is adapted to the testing problem in (5.2). Under the

current model, the EM-test procedure is carried out as follows.

Step 0: Choose a number of initial α values, say 0 < α1, α2, . . . , αJ ≤ 0.5. Compute

(µ̂∗
0, κ̂

∗
0) = arg max

µ, κ
pln(1/2, µ, µ, κ)
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with pln given by (5.5).

Let j = 1 and k = 0.

Step 1: Let α
(k)
j = αj .

Step 2: Compute

(µ
(k)
j1 , µ

(k)
j2 , κ

(k)
j ) = arg max

µ1, µ2, κ
pln(α

(k)
j , µ1, µ2, κ)

and

M (k)
n (αj) = 2{pln(α(k)

j , µ
(k)
j1 , µ

(k)
j2 , κ

(k)
j ) − pln(1/2, µ̂∗

0, µ̂
∗
0, κ̂

∗
0)}.

Step 3: For i = 1, 2, . . . , n, compute the weights, which are conditional expectations in

the E-step,

w
(k)
ij =

α
(k)
j f(Xi;µ

(k)
j2 , κ

(k)
j )

(1 − α
(k)
j )f(Xi;µ

(k)
j1 , κ

(k)
j ) + α

(k)
j f(Xi;µ

(k)
j2 , κ

(k)
j )

.

Now following the M-step, let

α
(k+1)
j = arg max

α
{(n−

n
∑

i=1

w
(k)
ij ) log(1 − α) +

n
∑

i=1

w
(k)
ij log(α) + p(α)},

µ
(k+1)
j1 = arg max

µ1

{

n
∑

i=1

(1 − w
(k)
ij ) cos(Xi − µ1)

}

,

µ
(k+1)
j2 = arg max

µ2

{

n
∑

i=1

w
(k)
ij cos(Xi − µ2)

}

,

κ
(k+1)
j = arg max

κ

[

κ{
n

∑

i=1

(1 − w
(k)
ij ) cos(Xi − µ

(k+1)
j1 ) +

n
∑

i=1

w
(k)
ij cos(Xi − µ

(k+1)
j2 )}

−n log{I0(κ)} − log(κ+ 1)
]

.

Compute

M (k+1)
n (αj) = 2{pln(α

(k+1)
j , µ

(k+1)
j1 , µ

(k+1)
j2 , κ

(k+1)
j ) − pln(1/2, µ̂∗

0, µ̂
∗
0, κ̂

∗
0)}.

Let k = k + 1 and repeat Step 3 until fixed number of iterations in k .
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Step 4: Let j = j + 1, k = 0 and go to Step 1, until j = J .

Step 5: Calculate the EM-test statistic

EM (k)
n = max{M (k)

n (αj), j = 1, 2, . . . , J}.

With these preparations, we present the asymptotic results of the MLRT and the EM-

test together in the following theorem.

Theorem 5.3.2. Let X1, . . . , Xn be a random sample from the von Mises mixture distri-

bution (1 − α)M(µ1, κ) + αM(µ2, κ), where 0 < α < 1, −π ≤ µ1, µ2 ≤ π, κ ≥ 0. Suppose

that p(α) is a continuous function such that p(α) → −∞ as α → 0 or 1 and it attains its

maximal value at α = 0.5. Then under the null distribution M(0, κ0), as n→ ∞,

(a) Mn
d→ 1

2
χ2

0 + 1
2
χ2

1;

(b) if one of the initial α values is equal to 0.5, then for any fixed finite k, EM
(k)
n

d→
1
2
χ2

0 + 1
2
χ2

1.

Intuitively, we should choose large values of J and k to ensure the efficiency of the test.

However, our simulation suggests that EM
(1)
n with (α1, α2, α3) = (0.1, 0.3, 0.5) captures

most power of Mn, which was also observed in Chapter 3. The reason for the necessity of

including α = 0.5 in the above theorem is the same in Theorem 3.2.2. See comments in

Remark 3.2.2.

5.4 Simulations and Applications

Simulation studies were conducted to assess the performance of the proposed testing pro-

cedures. Let

R∗
n = 2{ sup

µ1,µ2,κ
ln(1/2, µ1, µ2, κ) − ln(1/2, µ̂0, µ̂0, κ̂0)}.
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Let EM
(k)
n , Mn and M∗

n denote the EM-test, the MLRT with pln defined by (5.5) and the

MLRT with pln defined by (5.4), respectively. The penalty p(α) for all those tests is chosen

to be p(α) = C∗ log(1−|1− 2α|). The choice of C∗ has some influences on the type I error

of the test. Simulation studies are often used to find a suitable range of C∗. In the current

testing problem, C∗ = 3 has been found satisfactory.

Table 5.1: Simulated null rejection rates (%) of the MLRT and the EM-test statistics.

κ = 2 κ = 3

n Level EM
(0)
n EM

(1)
n Mn M∗

n R∗
n EM

(0)
n EM

(1)
n Mn M∗

n R∗
n

100 10% 10.3 10.4 10.7 13.3 12.0 10.1 10.3 10.7 15.0 13.6

100 5% 5.1 5.3 5.4 7.2 6.3 5.0 5.1 5.5 8.6 7.0

100 1% 1.0 1.2 1.2 1.8 1.4 1.1 1.2 1.3 2.2 1.6

200 10% 9.8 9.8 10.0 11.9 11.2 10.0 10.0 10.4 13.5 12.6

200 5% 5.1 5.1 5.3 6.7 5.9 5.1 5.1 5.4 7.6 6.5

200 1% 1.1 1.2 1.3 1.5 1.2 1.1 1.2 1.2 2.0 1.4

The empirical null distributions of the test statistics were calculated based on 10,000

repetitions for various combination of n(= 100, 200) and κ(= 2, 3). The simulated null

rejection rates of the above test statistics are reported in Table 5.1. Clearly, the simulated

type I error rates of M∗
n are much larger than nominal values and the problem gets worse

with larger κ. Note that increasing C∗ should lower the simulated levels. However, even if

C∗ = ∞, at which M∗
n reduces to R∗

n, the simulated type I errors are still larger than the

nominal levels. On the other hand, the simulated null rejection rates of Mn and EM
(k)
n

are very close to the nominal levels and they do not depend much on the sample size nor

on the size of the concentration parameter. Thus the penalty function − log(κ+ 1) is very

important.
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Table 5.2: Simulated powers (%) of the MLRT and the EM-test at the 5% level.

κ = 2 κ = 3

n 1 − α EM
(0)
n EM

(1)
n Mn EM

(0)
n EM

(1)
n Mn

100 0.05 5.8 6.1 6.2 24.0 24.7 24.4

100 0.10 11.2 19.7 20.7 70.6 73.0 72.7

100 0.25 80.1 84.0 84.1 99.6 99.9 99.9

200 0.05 7.5 8.0 8.1 47.2 54.8 54.8

200 0.10 37.9 44.8 45.8 97.0 97.5 97.5

200 0.25 96.4 98.6 99.0 100.0 100.0 100.0

To compare the power of the tests, we considered the following alternative models

(1 − α)M(π/2, κ) + αM(−π/2, κ),

with (1−α)(= 0.05, 0.10, 0.25) and κ = 2, 3. Simulated critical values were used for power

calculation and the power was calculated based on 10,000 repetitions. The results are in

Table 5.2. It is seen that with one iteration and three initial values for α, the test based

on EM
(1)
n captures most power of Mn.

Now we turn to the analysis of two real data sets in Example 5.1.1. For the Dinosaur

National Monument data set, we find Mn = 26.81, EM
(0)
n = 26.68 and EM

(1)
n = 26.77,

which suggest that there is strong evidence to reject uni-component von Mises distribution.

For the Dry Mesa Dinosaur Quarry data set, we find EM
(0)
n = EM

(1)
n = Mn = 0, all suggest

lack of evidence to reject the uni-component von Mises distribution. In Figure 5.3, we plot

the fitted uni-component von Mises density functions and the kernel density functions of

the two dinosaur data sets. For the Dinosaur National Monument data set, two functions

differ substantially which is consistent to the conclusion of our formal test. For the Dry
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Mesa Dinosaur Quarry data set, it appears the uni-component von Mises distribution fits

the data very well which explains the insignificant outcome of the formal test.

0
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Dinosaur National Monument data
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Dry Mesa Dinosaur Quarry data

Kernel density Uni−component von Mises density

Figure 5.3: Kernel and uni-component von Mises densities.

5.5 Discussion

The von Mises distribution is often regarded as normal distribution for circular data.

However, the von Mises mixtures have quite different properties from normal mixtures.

Most notably, the von Mises mixture is strongly identifiable. Because of this, the MLRT

has quite different asymptotic properties when applied to normal mixtures and von Mises

mixture models. For von Mises mixtures, the convergence rates of the MLEs of the mixing

distribution and κ are Op(n
−1/4) and Op(n

−1/2) respectively, and the limiting distribution

of the MLRT has a simple form, which are different from the conclusions for normal

mixtures (Chen and Chen 2003, Chen and Kalbfleisch 2005). At the same time, when

κ goes to infinity, the von Mises distribution converges to a normal distribution and the
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strong identifiability of the von Mises distribution weakens, which is reflected in (5.13) in

the proof of Theorem 5.3.1. Although for each given κ, the ratio in (5.13) remains op(1),

the asymptotic approximation requires larger n for larger κ.

5.6 Appendix: Technical Proofs

Preliminaries and Notation.

Define

Ui(κ) =
1

κ− κ0

{ f(Xi; 0, κ)

f(Xi; 0, κ0)
− 1

}

=
1

κ− κ0

[I0(κ0)

I0(κ)
exp{(κ− κ0) cosXi} − 1

]

,

Yi(µ, κ) =
1

µ

{ f(Xi;µ, κ)

f(Xi; 0, κ0)
− f(Xi; 0, κ)

f(Xi; 0, κ0)

}

=
I0(κ0)

µI0(κ)
[exp{κ cos(Xi − µ) − κ0 cosXi} − exp{(κ− κ0) cosXi}],

Zi(µ) =
Yi(µ, κ0) − Yi(0, κ0)

µ
,

and let Yi(0, κ), Ui(κ0) and Zi(0) be their continuity limits. For convenience, we put

Yi(µ) = Yi(µ, κ0), Yi = Yi(0), Ui = Ui(κ0) and Zi = Zi(0). The following proposition

assesses the stochastic orders of some relevant stochastic processes.

Proposition 5.6.1. Indexed by the parameters κ ∈ [κ0 − δ, κ0 + δ] for some δ > 0, and

|µ| ≤ π, the following processes are tight

U∗
n(κ) = n−1/2

∑

{Ui(κ) − Ui}/(κ− κ0),

Y ∗
n (µ) = n−1/2

∑

{Yi(µ) − Yi}/µ,

Y ∗
n (µ, κ) = n−1/2

∑

{Yi(µ, κ) − Yi(µ)}/(κ− κ0),

Z∗
n(µ) = n−1/2

∑

{Yi(µ) − Yi − µZi}/µ2.
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Proof. According to Billingsley (1968, p.95), it suffices to verify the following Lipschitz

conditions are satisfied:

E{U∗
n(κ1) − U∗

n(κ2)}2 ≤ B(κ1 − κ2)
2,

E{Y ∗
n (µ1) − Y ∗

n (µ2)}2 ≤ B(µ1 − µ2)
2,

E{Y ∗
n (µ1, κ1) − Y ∗

n (µ2, κ2)}2 ≤ B[(µ1 − µ2)
2 + (κ1 − κ2)

2],

E{Z∗
n(µ1) − Z∗

n(µ2)}2 ≤ B(µ1 − µ2)
2

for some constant B. Consider the following functions

Ui(κ) − Ui

κ− κ0
,

Yi(µ) − Yi

µ
,
Yi(µ, κ) − Yi(µ)

κ− κ0
and

Yi(µ) − Yi − µZi

µ2
.

The Lipschitz condition is satisfied if the derivatives of the above functions have bounded

second moments uniformly in µ and κ. This is obvious since their second moments are

continuous in µ and κ inside a compact parameter space.

Proof of Lemma 5.3.1 Note that

(1−α) exp{κ cos(Xi−µ1)}+α exp{κ cos(Xi−µ2)} ≤ exp[κ{max(cos(Xi−µ1), cos(Xi−µ2))}].

Thus we have

ln(α, µ1, µ2, κ) ≤ −n log I0(κ) + κ
∑

[max{cos(Xi − µ1), cos(Xi − µ2)}].

Using (A.4) in Mardia and Jupp (2000, p. 349) we have, as κ→ ∞,

I0(κ) =
eκ

(2πκ)
1
2

{1 + o(1)},
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hence

ln(α, µ1, µ2, κ) ≤ −nκ +
n

2
log(2πκ) + κ

∑

[max{cos(Xi − µ1), cos(Xi − µ2)}] + op(1)

= −κ
∑

[1 − max{cos(Xi − µ1), cos(Xi − µ2)}] +
n

2
log(2πκ) + op(1).

Let S(µ1, µ2) = E [1 − max{cos(X − µ1), cos(X − µ2)}]. Note that 1 − max{cos(Xi −
µ1), cos(Xi − µ2)} is a uniformly continuous function in |Xi| ≤ π, |µ1| ≤ π and |µ2| ≤ π.

So the uniform strong law of large numbers implies

n−1
∑

[1 − max{cos(Xi − µ1), cos(Xi − µ2)}] → S(µ1, µ2),

almost surely and uniformly in |µ1| ≤ π and |µ2| ≤ π (see Rubin, 1956). For any |X| ≤ π,

we have

1 − max{cos(X − µ1), cos(X − µ2)} ≥ 0,

where the equality holds only if X = µ1 or µ2, which has zero probability to occur when

0 < κ0 < ∞. Therefore, under the null distribution M(0, κ0) with κ0 > 0, S(µ1, µ2) is

continuous and positive, for all the values of µ1 and µ2. Thus,

q = min
µ1,µ2

S(µ1, µ2) > 0.

Then with probability approaching one uniformly in α, µ1, µ2, and κ,

ln(α, µ1, µ2, κ) ≤ −n{qκ− log(2πκ)/2} + op(1).

Clearly, there exists a ∆ > 0 such that when κ > ∆, we have qκ− log(2πκ)/2 > 0. Note

that ln(0, 0, 0, 0) = 0. The function ln(α, µ1, µ2, κ) − ln(0, 0, 0, 0) < 0 in probability when

κ > ∆. This shows that limP (κ̂ > ∆) = 0 for some constant ∆.

Proof of Theorem 5.3.1 By symmetry, we assume that 0 ≤ α ≤ 1/2 instead of 0 ≤ α ≤ 1.

Let

rn(α, µ1, µ2, κ) = 2{ln(α, µ1, µ2, κ) − ln(0, µ̂0, µ̂0, κ̂0)}.
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Also, let r1n(α, µ1, µ2, κ) = 2{ln(α, µ1, µ2, κ) − ln(0, 0, 0, κ0)} and r2n = 2{ln(0, 0, 0, κ0) −
ln(0, µ̂0, µ̂0, κ̂0)}. Then the LRT statistic Rn = rn(α̂, µ̂1, µ̂2, κ̂), and rn(α, µ1, µ2, κ) =

r1n(α, µ1, µ2, κ) + r2n.

We study Rn through quadratic expansions of r1n and r2n. We work on r1n first. Express

r1n(α, µ1, µ2, κ) = 2
n

∑

i=1

log(1 + δi),

where

δi = (1 − α)
{f(Xi;µ1, κ)

f(Xi; 0, κ0)
− 1

}

+ α
{f(Xi;µ2, κ)

f(Xi; 0, κ0)
− 1

}

.

We can also write δi as

δi = (κ− κ0)Ui(κ) + (1 − α)µ1Yi(µ1, κ) + αµ2Yi(µ2, κ). (5.6)

By Lemma 5.3.2 and the assumption that 0 ≤ α ≤ 1/2, under the null distribution,

µ̂1 = op(1) and α̂µ̂2 = op(1). Hence, for asymptotic consideration, we only need to expand

r1n at µ1 values in an arbitrarily small neighborhood of 0. Expansion of r1n with respect

to µ2 will be done in

Ω1(ǫ) = {|µ2| > ǫ} and Ω2(ǫ) = {|µ2| ≤ ǫ}

for arbitrarily small ǫ > 0, respectively. Let Rn(ǫ, I) denote the supremum of rn over Ω1(ǫ)

and Rn(ǫ, II) denote the supremum of rn over Ω2(ǫ). Then Rn = max{Rn(ǫ, I), Rn(ǫ, II)}.
Since κ̂ is a consistent estimator of κ0 as shown in Lemma 5.3.2, we need only expand r1n

with respect to κ in [κ0 − δ, κ0 + δ] for some arbitrarily small δ > 0.

We first analyze Rn(ǫ, I). In the region of Ω1, we expand δi as follows

δi = (κ− κ0)Ui(κ0) + (1 − α)µ1Yi(0, κ0) + αµ2Yi(µ2, κ0) + ǫin

= (κ− κ0)Ui + (1 − α)µ1Yi + αµ2Yi(µ2) + ǫin,
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where ǫin is the remainder term. Let ǫn =
∑n

i=1ǫin. By Proposition 5.6.1, we can show

|ǫn| ≤ n1/2{(κ− κ0)
2 + α2 + µ2

1}Op(1).

Since the remainder resulting from the square and cubic sums has at least the order of the

remainder from the linear sum, we have

r1n(α, µ1, µ2, κ) ≤ 2
n

∑

i=1

δi −
n

∑

i=1

δ2
i +

2

3

n
∑

i=1

δ3
i

= 2

n
∑

i=1

{(κ− κ0)Ui + (1 − α)µ1Yi + αµ2Yi(µ2)}

−
n

∑

i=1

{(κ− κ0)Ui + (1 − α)µ1Yi + αµ2Yi(µ2)}2

+n1/2{(κ− κ0)
2 + α2 + µ2

1}Op(1) + n{(κ− κ0)
3 + α3 + µ3

1}Op(1). (5.7)

Note that, under the null distribution M(0, κ0),

E(U2
i ) = 1 − A(κ0)/κ0 − A2(κ0),

E(Y 2
i ) = κ0A(κ0),

E{Yi(µ2)Ui} = A(κ0)(cosµ2 − 1)/µ2,

E{Yi(µ2)Yi} = κ0A(κ0) sinµ2/µ2.

Let

Vi(µ2) =
1

µ2

[

Yi(µ2) −
E{Yi(µ2)Ui}

E(U2
i )

Ui −
E{Yi(µ2)Yi}
E(Y 2

i )
Yi

]

=
1

µ2

[

Yi(µ2) −
A(κ0)(cosµ2 − 1)

µ2{1 − A(κ0)/κ0 −A2(κ0)}
Ui −

sin µ2

µ2
Yi

]

and Vi = Vi(0) be the continuity limit of Vi(µ2). Then

(κ− κ0)Ui + (1 − α)µ1Yi + αµ2Yi(µ2) = t1Ui + t2Yi + t3Vi(µ2),
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where t3 = αµ2
2 and

t1 = κ− κ0 +
A(κ0)(cosµ2 − 1)

µ2
2{1 −A(κ0)/κ0 − A2(κ0)}

t3,

t2 = (1 − α)µ1 +
sinµ2

µ2
2

t3.

It is easy to verify that Ui, Yi and Vi(µ2) are mutually orthogonal for all µ2. We

restrict our attention to a small neighborhood of (t1, t2, t3) = (0, 0, 0) as suggested by the

consistency results of the MLEs in Lemma 5.3.2. Consequently, we may regard t1, t2 and

t3 as op(1). We have

r1n(α, µ1, µ2, κ) ≤ 2

n
∑

i=1

{t1Ui + t2Yi + t3Vi(µ2)}

−
n

∑

i=1

{t21U2
i + t22Y

2
i + t23V

2
i (µ2)}{1 + op(1)}. (5.8)

The remainder terms in (5.7) are summarized in the op(1) in (5.8). Furthermore, the right-

hand side of (5.8) is asymptotically less than or equal to the maximum of the following

quadratic function

Q(t1, t2, t3) = 2

n
∑

i=1

{t1Ui + t2Yi + t3Vi(µ2)} −
n

∑

i=1

{t21U2
i + t22Y

2
i + t23V

2
i (µ2)}.

Note that for any fixed ǫ < |µ2| ≤ π, t3 ≥ 0 and Q(t1, t2, t3) is maximized at (t1, t2, t3) =

(t̃1, t̃2, t̃3), where

t̃1 =

∑

Ui
∑

U2
i

, t̃2 =

∑

Yi
∑

Y 2
i

and t̃3 =
{∑Vi(µ2)}+

∑

V 2
i (µ2)

. (5.9)

Thus

r1n(α̂, µ̂1, µ̂2, κ̂) ≤
{
∑

Ui}2

∑

U2
i

+
{
∑

Yi}2

∑

Y 2
i

+ sup
ǫ<|µ2|≤π

[{
∑

Vi(µ2)}+]2
∑

V 2
i (µ2)

+ op(1). (5.10)
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On the other hand, the classic analysis gives

r2n = 2{ln(0, 0, 0, κ0) − ln(0, µ̂0, µ̂0, κ0)} = −{
∑

Ui}2

∑

U2
i

− {
∑

Yi}2

∑

Y 2
i

+ op(1). (5.11)

Combining (5.10) and (5.11) yields

Rn(ǫ, I) ≤ sup
ǫ<|µ2|≤π

[{
∑

Vi(µ2)}+]2
∑

V 2
i (µ2)

+ op(1).

We thus obtained a upper bound for Rn(ǫ, I). We next show that this upper bound is

achievable.

For ǫ < |µ2| ≤ π fixed, let α̃, µ̃1 and κ̃ be the solutions for α, µ1 and κ of (5.9). Then

α̃ = Op(n
−1/2), µ̃1 = Op(n

−1/2) and κ̃− κ0 = Op(n
−1/2) uniformly in µ2. Note that

r1n(α̃, µ̃1, µ2, κ̃) = 2

n
∑

i=1

δ̃i −
n

∑

i=1

δ̃2
i (1 + η̃i)

−2,

where |η̃i| < |δ̃i| and δ̃i is equal to δi in (5.6) with α = α̃, µ1 = µ̃1 and κ = κ̃. Since Ui(κ)

and Yi(µ, κ) are bounded functions for |Xi| ≤ π, |µ| ≤ π, and κ ∈ [κ0 − δ, κ0 + δ], we have

max1≤i≤n |δ̃i| = Op(n
−1/2) = op(1). It follows that uniformly in ǫ < |µ2| ≤ π,

max
1≤i≤n

|η̃i| = op(1).

Then we can easily get

r1n(α̃, µ̃1, µ2, κ̃) = 2
n

∑

i=1

δ̃i − {1 + op(1)}
n

∑

i=1

δ̃2
i .

By (5.9), α̃, µ̃1 and κ̃ are such that

sup
ǫ<|µ2|≤π

rn(α̃, µ̃1, µ2, κ̃) = sup
ǫ<|µ2|≤π

{[
∑

Vi(µ2)]
+}2

∑

V 2
i (µ2)

+ op(1).

That is,

Rn(ǫ, I) = sup
ǫ<|µ2|≤π

{[
∑

Vi(µ2)]
+}2

∑

V 2
i (µ2)

+ op(1). (5.12)
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This concludes the analysis of Rn(ǫ, I).

Next, we try to expand Rn(ǫ, II). Since the MLEs of µ1 and κ are consistent, in addition

to |µ2| ≤ ǫ, we can restrict µ1 and κ in the following analysis to the region of |µ1| ≤ ǫ and

|κ− κ0| ≤ ǫ, respectively.

In the sequel, α̂, µ̂1, µ̂2 and κ̂ denote the MLEs of α, µ1, µ2 and κ within the region

defined by 0 ≤ α ≤ 1/2, |µ1| ≤ ǫ, |µ2| ≤ ǫ and |κ− κ0| ≤ ǫ. We write

δi = (κ− κ0)Ui +m1Yi +m2Zi + ǫin,

where ǫin is the remainder term, m1 = (1 − α)µ1 + αµ2 and m2 = (1 − α)µ2
1 + αµ2

2. Let

ǫn =
∑n

i=1ǫin. By Proposition 5.6.1, we find

ǫn = n1/2(κ− κ0)
2Op(1) + n1/2m1(κ− κ0)Op(1)

+n1/2(1 − α)µ3
1Op(1) + n1/2αµ3

2Op(1).

Using the facts |2x| ≤ 1 + x2 for any x and |µ2| ≤ ǫ and |κ− κ0| ≤ ǫ, we have

|ǫn| ≤ nǫOp(1){(κ− κ0)
2 +m2

1 +m2
2} + ǫOp(1).

Note that n−1
∑n

i=1{(κ− κ0)Ui +m1Yi +m2Zi}2 converges to a positive definite quadratic

form in κ− κ0, m1 and m2. Thus

∑n
i=1 |(κ− κ0)Ui +m1Yi +m2Zi|3

∑n
i=1{(κ− κ0)Ui +m1Yi +m2Zi}2

≤ (|κ− κ0| + |m1| + |m2|)Op(1) ≤ ǫOp(1). (5.13)

Using a few similar techniques employed for Rn(ǫ, I), we have

r1n(α, µ1, µ2, κ) ≤ 2

n
∑

i=1

{(κ− κ0)Ui +m1Yi +m2Zi}

−
n

∑

i=1

{(κ− κ0)Ui +m1Yi +m2Zi}2{1 + ǫOp(1)} + ǫOp(1).(5.14)
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We now conduct the orthogonal transformation as follows

(κ− κ0)Ui +m1Yi +m2Zi = s1Ui +m1Yi +m2Vi,

where

s1 = κ− κ0 −
A(κ0)

2{1 − A(κ0)/κ0 − A2(κ0)}
m2.

Thus, (5.14) becomes

r1n(α, µ1, µ2, κ) ≤ 2
n

∑

i=1

{s1Ui +m1Yi +m2Vi}

−
n

∑

i=1

{s1Ui +m1Yi +m2Vi}2{1 + ǫOp(1)} + ǫOp(1)

= 2

n
∑

i=1

{s1Ui +m1Yi +m2Vi}

−
n

∑

i=1

{s2
1U

2
i +m2

1Y
2
i +m2

2V
2
i }{1 + ǫOp(1)} + ǫOp(1).

According to the same technique leading to (5.10), we get

r1n(α̂, µ̂1, µ̂2, κ̂) ≤ {1 + ǫOp(1)}−1

[{
∑

Ui}2

∑

U2
i

+
{
∑

Yi}2

∑

Y 2
i

+
[{

∑

Vi}+]2
∑

V 2
i

]

+ ǫOp(1).

Recall

r2n = 2{ln(0, 0, 0, κ0) − ln(0, µ̂0, µ̂0, κ0)} = −{
∑

Ui}2

∑

U2
i

− {
∑

Yi}2

∑

Y 2
i

+ op(1).

Then,

rn(α̂, µ̂1, µ̂2, κ̂) ≤
ǫOp(1)

1 + ǫOp(1)

[{
∑

Ui}2

∑

U2
i

+
{
∑

Yi}2

∑

Y 2
i

]

+
[{

∑

Vi}+]2

{1 + ǫOp(1)}∑

V 2
i

+ ǫOp(1).

Therefore

Rn(ǫ, II) ≤ [{∑Vi}+]2
∑

V 2
i

+ ǫOp(1). (5.15)
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Next, let α̃ = 1/2, and µ̃1, µ̃2 and κ̃ be determined by

s̃1 =

∑

Ui
∑

U2
i

, m̃1 =

∑

Yi
∑

Y 2
i

and m̃2 =
{
∑

Vi}+

∑

V 2
i

. (5.16)

It is easy to see that

rn(α̃, µ̃1, µ̃2, κ̃) =
[{

∑

Vi}+]2
∑

V 2
i

+ op(1) (5.17)

and hence

Rn(ǫ, II) ≥ [{
∑

Vi}+]2
∑

V 2
i

+ op(1). (5.18)

For any ǫ > 0, Rn = max{Rn(ǫ, I), Rn(ǫ, II)}. Combining (5.12), (5.15) and (5.18), we

have

Rn ≤ max
{ [{∑Vi}+]2

∑

V 2
i

, sup
ǫ<|µ2|≤π

{[∑Vi(µ2)]
+}2

∑

V 2
i (µ2)

+ ǫOp(1)
}

+ op(1)

and

Rn ≥ max
{ [{

∑

Vi}+]2
∑

V 2
i

, sup
ǫ<|µ2|≤π

{[
∑

Vi(µ2)]
+}2

∑

V 2
i (µ2)

}

+ op(1).

By the uniform strong law of large numbers and the tightness of the process of Y ∗
n (µ),

the process

{
∑

V 2
i (µ)}−1/2

∑

Vi(µ), |µ| ≤ π

converges weakly to a Gaussian process ζ(µ) with mean 0, standard deviation 1 and the

autocorrelation function ρ(s, t) which is given by

ρ(s, t) =
g(s, t)

{g(s, s)g(t, t)} 1
2

, for s, t 6= 0,

where g(s, t) = E{V1(s)V1(t)}. By letting n → ∞ and then ǫ → 0, we conclude that

Rn converges in probability to sup|µ|≤π{ζ+(µ)}2. The only thing left is to calculate the

function g(s, t). The result in (5.3) follows by some tedious but simple calculations.

In order to prove Theorem 5.3.2, we need the following lemma which states the consis-

tency property of the modified MLEs.
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Lemma 5.6.1. Let X1, . . . , Xn be a random sample from the mixture population (1 −
α)M(µ1, κ) + αM(µ2, κ). Under the null distribution M(0, κ0),

(a) µ̂∗
0 = op(1), κ̂∗0 − κ0 = op(1) and

pln(1/2, µ̂∗
0, µ̂

∗
0, κ̂

∗
0) − pln(1/2, 0, 0, κ0) =

{∑Ui}2

∑

U2
i

+
{∑Yi}2

∑

Y 2
i

+ op(1); (5.19)

(b) µ̂∗
1 = op(1), µ̂∗

2 = op(1) and κ̂∗ − κ0 = op(1).

Proof. (a) Note that µ̂∗
0 and κ̂∗0 are the modified MLEs of µ and κ under the null model,

hence the consistency of µ̂∗
0 and κ̂∗0 follows from the classic theory. Using this consistency

result, we have

pln(1/2, µ̂∗
0, µ̂

∗
0, κ̂

∗
0)−pln(1/2, 0, 0, κ0) = 2{

n
∑

i=1

log f(Xi; µ̂
∗
0, κ̂

∗
0)−

n
∑

i=1

log f(Xi; 0, κ0)}+op(1).

Thus, the proof of (5.19) for the modified likelihood reduces to the proof of the classical

result for the usual LRT. Then, the result follows.

(b) Firstly, we prove that the modified MLE of α is bounded away from 0 or 1 in

probability. Note that

0 ≤Mn = 2{pln(α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗) − pln(1/2, µ̂∗
0, µ̂

∗
0, κ̂

∗
0)}

≤ 2{pln(α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗) − pln(1/2, µ̂0, µ̂0, κ̂0)}

= 2{ln(α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗) − log(κ̂∗ + 1) + p(α̂∗)

−ln(1/2, µ̂0, µ̂0, κ̂0) + log(κ̂0 + 1) − p(0.5)}

≤ Rn + 2{p(α̂∗) − p(0.5)} + 2 log(κ̂0 + 1)

= Rn + 2{p(α̂∗) − p(0.5)} + 2 log(κ0 + 1) + op(1).

The last step uses the consistency of κ̂0. By Theorem 5.3.1, Rn = Op(1), which implies

p(α̂∗) − p(0.5) = Op(1). Hence there exists ǫ0 > 0, such that P (ǫ0 ≤ α̂∗ ≤ 1 − ǫ0) → 1
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as n → ∞. Hence, the problem reduces to the consistency of the modified MLEs in a

compact and identifiable parameter space. Consequently, the consistency of the modified

MLEs follows.

Proof of Theorem 5.3.2 (a) By (5.11), (5.19) and the consistency of κ̂∗, we have

Mn = r1n(α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗) + r2n + 2{p(α̂∗) − p(0.5)} + op(1)

= rn(α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗) + 2{p(α̂∗) − p(0.5)} + op(1)

≤ rn(α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗) + op(1). (5.20)

Since (µ̂∗
1, µ̂

∗
2, κ̂

∗) are consistent estimators of (0, 0, κ0), Rn(ǫ, II) can serve as an upper

bound for rn(α̂∗, µ̂∗
1, µ̂

∗
2, κ̂

∗). Combining (5.18) and (5.20), we have

Mn ≤ {[
∑

Vi]
+}2

∑

V 2
i

+ op(1).

We take µ̃1, µ̃2 and κ̃ as determined by (5.16) when α̃ = 1/2. Then κ̃− κ0 = op(1) and so

Mn ≥ 2{pln(α̃, µ̃1, µ̃2, κ̃) − pln(1/2, µ̂∗
0, µ̂

∗
0, κ̂

∗
0)}

= rn(α̃, µ̃1, µ̃2, κ̃) + op(1)

=
{[

∑

Vi]
+}2

∑

V 2
i

+ op(1).

The result in the last step follows from (5.17). Combining the above results, we have

Mn =
{[∑Vi]

+}2

∑

V 2
i

+ op(1).

Consequently, the limiting distribution of Mn is given by 1
2
χ2

0 + 1
2
χ2

1.

(b) Obviously,

EM (k)
n ≤Mn ≤ {[

∑

Vi]
+}2

∑

V 2
i

+ op(1).
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If one of αj ’s is equal to 0.5,

EM (k)
n ≥ 2{pln(0.5, µ̃1, µ̃2, κ̃) − pln(1/2, µ̂∗

0, µ̂
∗
0, κ̂

∗
0)} =

{[
∑

Vi]
+}2

∑

V 2
i

+ op(1).

Hence

EM (k)
n =

{[
∑

Vi]
+}2

∑

V 2
i

+ op(1).

Consequently, the limiting distribution of EM
(k)
n is given by 1

2
χ2

0 + 1
2
χ2

1.
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Chapter 6

Future Work

In this chapter, we will first provide a summary of what has achieved in the thesis. The

techniques employed in this thesis and the new method proposed are seen to be applicable to

much more general mixture models. We also outline a number of future research problems.

6.1 Summary of the Current Achievements

In this thesis, we have considered a number of hypothesis testing problems in finite mix-

ture models. More specifically, we study the homogeneity test in two-component mixture

models.

In Chapter 2, we discussed the problem of choosing a more effective penalty function

for the MLRT. The MLRT with the new penalty enjoys a significant improvement on the

power for testing homogeneity when the true mixing proportion is close to 0 and 1. The

simulation studies suggested that the simulated null rejection rates are very close to the

theoretical values by setting the level of modification to be 1.

In Chapter 3, motivated from designing a homogeneity test procedure for geometric
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mixture models, exponential mixture models and mixture models on the scale parameter,

we proposed a new class of methods (EM-test) for testing homogeneity in mixture models

with two components. The EM-test combines and exceeds the advantages of the score

test (Liang and Rathouz, 1999) and the MLRT (Chen, 1998, Chen et al. 2001, 2004). We

find that the EM-test has a simple null distribution, is more efficient, and has broader

applications than the MLRT and other methods. The EM-test also compares favorably to

the D-test and the constrained LRT.

In Chapter 4, we considered the use of the EM-test to the test of homogeneity in normal

mixture models. For the test of homogeneity at the presence of the structural parameter, a

penalty function on the variance parameter is suggested to overcome the under-estimation

effect. The limiting distribution is a simple function of 0.5χ2
0 + 0.5χ2

1 and χ2
1 distributions.

The test with this limiting distribution is still very convenient to implement in applications.

For normal mixture models in both mean and variance parameters, the penalty functions

on the component variance parameters are added to the log-likelihood function to avoid the

unboundedness of the log-likelihood function. The limiting distribution of the EM-test is

shown to be χ2
2. The simulation results review the good fitting of the limiting distributions

to the finite sample distributions of the EM-test statistics.

In Chapter 5, we applied both the MLRT and the EM-test to test of homogeneity in the

mixture of circular distributions, especially, the mixture of von Mises distributions with

unknown but equal concentration parameters. A new penalty function on κ is suggested to

overcome the over-estimation effect of κ. The MLRT and the EM-test are applied to test

of homogeneity. Simulation studies suggested that the EM-test based three initial values of

α, (0.1, 0.3, 0.5), and one iteration, and the MLRT have comparable power. The EM-test

has null rejection rates very close to nominal values. Two real data sets in Grimshaw et

al. (2001) are used to illustrate the idea of two tests.
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In the next a few sections, we present some research problems which are the natural

extension to the development of what have been achieved so far.

6.2 Homogeneity Test in Mixture Models with Multi-

dimensional Parameters

In Section 4.3, we discussed the application of the EM-test to test of homogeneity under

normal mixture models in both mean and variance parameters. The EM-test has been

proved to have a simple limiting distribution in this case. The normal mixture model

in both mean and variance parameters is a special case of mixture models with multi-

dimensional parameters, namely, the density function is given by

(1 − α)f(x; θ1) + αf(x; θ2), (6.1)

where θ1, θ2 ∈ Θ ⊂ Rd, d ≥ 2. Dacunha-Castelle and Gassiat (1999) and Liu and Shao

(2003) found that the limiting distribution of the LRT for testing of homogeneity in mixture

models with multi-dimensional parameters is much more complicated than the univariate

case even if the mixture density in (6.1) is strongly identifiable and the kernel function

f(x;µ, κ) satisfies the finite Fisher information condition. Due to the nice properties of

the EM-test discussed before, one of our future research directions is to extend and apply

the idea of the EM-test to test of homogeneity in mixture models with multi-dimensional

parameters.

One possible way for extension is to follow the pseudo code described in Section 3.2.1

step by step to calculate the EM-test statistics. In Section 4.3, we followed this idea and

applied the EM-test to normal mixture model in both mean and variance parameters. The

application was proved to be successful. The EM-test enjoys a simple limiting distribution.
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When this idea is applied to mixture of general distributions, such as mixture of gamma

distributions and mixture of multivariate normal distributions, the limiting distribution of

the EM-test may still be tractable, but not as neat as in normal mixture models. The

main reason is that we may have several cross terms in the asymptotic expansion of the

expression of the EM-test statistic.

Another way for extension is called “one dimension at one time”. Note that for calcu-

lating the EM-test statistics, the crucial step is to first find an initial value for (α, θ1, θ2)

for the EM-iterations, which is the Step 2 of the pseudo code described in Section 3.2.1.

The idea of “one dimension at one time” differs from the original one on how to choose

the initial value for (α, θ1, θ2). We suggest only allowing one dimension can have differ-

ent values on two components when we find the initial value for (α, θ1, θ2). By allowing

the first dimension can have different values on two components in Step 2 of the pseudo

code in Section 3.2.1, we can calculate an EM-test statistic EM
(k)
n1 . Similarly, we have

EM
(k)
n2 , . . . , EM

(k)
nd . The final test statistic is defined to be

EM (k)
n = max{EM (k)

nh , h = 1, . . . , d}.

Since we only allow one dimension can have different parameters on two components at the

first stage, other parameters can be treated as the structural parameters. Our application

experiences in the normal mixture model and the von Mises mixture models at the presence

of structural parameter suggest thatEM
(0)
nh may have a simple χ2-type limiting distribution.

Further, intuitively, finite number of iterations will not change the values of (α, θ1, θ2) too

much under null hypothesis, we expect EM
(k)
nh , h = 1, . . . , d, will still enjoys a simple χ2-

type limiting distribution. Then the second type of EM-test is expected to have a simple

limiting distribution, the maximum of some χ2-type distributions.

In our future research, we will give a comprehensive comparison of these two ideas from

the theoretical and practical issues.



Future Work 157

6.3 Testing the Order in Finite Mixture Models

Apart from the homogeneity test, testing the order of the finite mixture model is also an

interesting, challenging and more general problem.

In Chen et al (2004), the MLRT is applied to test

H0 : m = 2 versus Ha : m > 2.

The asymptotic null distribution for the MLRT test statistic was shown to be a mixture

of χ2
0, χ

2
1 and χ2

2. A more general problem is to test

H0 : m = q0 versus Ha : m = p > q0,

or more specifically,

H0 : m = q0 versus Ha : m = q0 + 1, (6.2)

Dacunha-Castelle and Gassiat (1999) and Liu and Shao (2003) investigated the use of

the LRT. They found that the limiting distributions for the LRT are in general related

to the supremum of some the Gaussian processes. Not only it is hard to determining the

quantiles of the supremum of a general Gaussian process, but the structure of the Gaussian

process in these results is also very complex. The application of the MLRT has so far only

met with limited success such as the one in Chen et al. (2004). We envisage that the

EM-test idea could be more effective in developing convenient statistical procedures. We

have started working on this problem, yet due to the nature of the problem, it is likely a

long term effort.
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6.4 Data Adaptive Level of Penalty of the MLRT and

the EM-test

The choice of penalty function, particularly the choice of the level of modification, is a

crucial step in the implementation of the MLRT or the EM-test. A new class of penalty

functions was introduced in (2.7) and it was found to have some superior properties. At

this stage, the level of the modification was mostly determined by simulation studies. It

appears that the effectiveness of the MLRT and the EM-test are not greatly affected by the

level of modification. Yet it would be ideal if a data-driven procedure with some theoretical

justification can be found. Continued effort on this research problem is part of my future

research plan.
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