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Abstract 

Multiple-Input Multiple-Output (MIMO) systems are viewed as the last 

available supply for the ever-growing demand on higher data rates in modern 

wireless communication systems. Smart exploitation of the traditional wireless 

resources (time-slots or bandwidth under the same transmit power level) has 

reached its saturation point. By making better use of the free space between the 

radio links, based on the multipath radio wave propagation, MIMO systems 

have shown significant capacity improvement with the same traditional wireless 

resources. 

 

In this multi-disciplinary research, we are exploring the link between the 

electromagnetic propagation and the information theory. Unlike the majority of 

recent research work, we model the propagation channel matrix between the 

transmit/receive elements in a deterministic manner under the Maxwellian 

framework. Having included the environment properties and the characteristics 

of the radiating elements, the deterministic approach provides a realistic 

assessment of the MIMO system performance in specific scenarios. The 

problem addressed in this research is the evaluation of the multi-antenna 

systems degrees of freedom (DOF) by employing all the available 

electromagnetic diversity resources (spatial, pattern and polarization). 

 

Based on a developed well-defined power independent dimensionality (PID) 

metric, we start by investigating the information-bearing potential of the 

collocated multi-polarization MIMO system. We study the hexapole system 

(exploiting both electric and magnetic fields in conveying independent 

information) and compare it to the tripole systems (exploiting the vectorial 

polarization diversity of one field only). We present numerical results for 3 



iv 

deterministic scenarios: a canonical free-space (near and far field exact 

solution), a canonical perfect electric conductor (PEC) corridor using rigorous 

modal analysis, and a lossy-wall corridor using image ray tracing (IRT). 

 

Next, we provide deterministic results for the more interesting sampling 

problem of the electromagnetic vector fields: given a specific MIMO array size, 

what is the optimum number of packed multi-polarization antennas (i.e. multi-

polarization 1D, 2D or 3D sampling) that yields the largest PID for a given 

environment and what is the estimate of this PID? Using a canonical case of 

multi-polarized arrays inside a multipath-rich PEC corridor, we show that the 

spatial frequency spectrum of the electromagnetic field governs the optimum 

PID of the site-specific scenario. The problem is analogous to the DOF 

determination of an essentially time-limited-band-limited 1D scalar function 

using the framework of the prolate spheroidal wave functions. We also present 

simulation results for the same sampling problem in a lossy-wall indoor 

environment using IRT. 
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Chapter 1 

Introduction 

1.1 Basic Information 

The advance in the successful applications of wireless communications puts a 

persistently growing demand on the wireless physical layer resources in order to 

achieve higher data rates. The traditional smart management techniques of the 

wireless resources (time-slots, bandwidth and transmit power level) have been 

exhausted. The last frontier remaining as a new physical layer resource is Space, 

which is essentially based on smart exploitation of the multipath propagation. 

 

Multipath radio propagation has long been viewed as an adverse 

phenomenon for wireless communications. This view has been established 

because multipath propagation leads to fading when the wireless system is 

Single-Input Single-Output (SISO) i.e. having only one radiator at either ends. 

Fortunately, the situation is greatly improved once a Multiple-Input Multiple-

Output (MIMO) system is employed [Win87, Tel95, Fos96, FG98, RC98, 

Mar01]. Employing multiple antennas at both ends has been shown to provide 
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“multiple spatial data modes” [PGN03] (which we call throughout this thesis the 

parallel sub-channels) between the transmit/receive ends while using the same 

traditional wireless resources. 

 

A well-established metric for the MIMO channel performance is the channel 

capacity (evaluated in bit/sec/Hz), which is the general case of the Shannon 

SISO channel capacity [CT91, JW04]. For a multi-antenna system of ( , )R TN N  

receive and transmit antennas, respectively, the propagation environment is 

modeled by the channel matrix R TN N×∈H . Each entry mnh represents the 

response at the thm receive to the excitation at the thn  transmit. The input-

output relation has the form 

( ) ( ) ( ) ( )f f f f= +y H x η ,      (1.1) 

where 1RN ×∈y  and 1TN ×∈x  are the receive and transmit signal vectors, 

respectively, 1RN ×∈η  is the additive noise vector at the receive end and f is 

the temporal frequency. The following assumptions are made [JW04]: 

• The system operates in narrowband (flat fading within the frequency 

band of operation), therefore we omit the frequency dependence from 

(1.1). 

• x  has Gaussian independent identically distributed (iid) elements. 

Therefore, the unencoded transmit vector elements are independent. 

• η  has Gaussian iid elements. 

• H is normalized such that its Frobenius norm is R TF
N N=H , which 

is equivalent to that, on the average, each entry mnh has a unit variance. 

• Perfect channel state information (CSI) is available at the receiver but 

not at the transmitter. Therefore the total transmit power is equally 

divided on the transmit antennas. 

Under the aforementioned assumptions, the MIMO channel capacity is given by 

[FG98] 
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2
SNRlog det( )H

T

C
N

 
= + 

 
I HH ,      (1.2) 

where I  is the identity matrix of size R RN N×  and SNR is the average signal to 

noise ratio at the receive elements (also called the SISO-SNR [JW04]). 

 

The capacity encompasses both effects of the SNR and the propagation 

environment (including the radiating elements characteristics). The channel 

capacity is the upper bound of error-free transmission rate between the 

transmit/receive ends, when optimum coding and modulation are employed. 

Using singular value decomposition, (1.2) can be expressed as [PGN03] 

2
2

1

SNRlog (1 )
K

i
i T

C
N

σ
=

= +∑ ,       (1.3) 

where { }iσ are the singular values of H and min{ , }R TK N N= . Equation (1.3) 

shows that there are at most K parallel sub-channels. The contribution of each 

individual sub-channel to the MIMO capacity is evaluated by the square of its 

singular value 2
iσ . 

 

1.1.1 Statistical and Deterministic Channel Modeling 

In order to evaluate the MIMO channel capacity for a specific scenario, we need 

to know, either statistically or deterministically, the channel matrix H . In the 

statistical approach, H  is constructed with random entries having a distribution 

and a correlation which model the simulated scenario such as: outdoor, urban, 

rural, rich scattering, strong Line-of-Sight (LOS), etc. The statistical properties 

of the scenario are determined from measurements or simulations [e.g. SV87, 

ZFDW00, WJ02, ZFW02]. The ergodic (average) capacity is then found using 

Monte-Carlo simulations. In fact, a “universal” statistical channel model for 

MIMO systems does not exist. Furthermore, the statistical approach does not 

explicitly consider the dependence of the capacity on the specific propagation 

environment (layout geometry and material properties) nor does it allow to 
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accurately include the electromagnetic (EM) effects (antenna 

pattern/polarization or the array geometry/position/orientation), which are 

collectively called the Maxwellian framework [SSWB03, SBY+06]. 

 

In the deterministic approach, based on the simulation of the EM wave 

propagation, H  is predicted for specific scenarios. The cost is obviously the 

heavy computational burden. There are several ways to model the EM 

propagation: either by numerical analysis methods (e.g. Finite-Difference Time-

Domain FDTD) or by using the high frequency approximation (e.g. ray tracing). 

Using FDTD provides an accurate solution at all points of the solution space at 

the expense of the dramatic increase of the computation cost even if the layout 

is very simple. Consequently, FDTD is used for small structures or in 

conjunction with another computationally efficient method [WSC00]. 

Practically, when FDTD is used for propagation simulation, the environment is 

usually modeled as 2D to reduce the computational complexity [e.g. WSC00, 

YIZ04]. Such and other over-simplifications of the EM simulation parameters 

have been reported to underestimate, in general, the predicted capacity value 

since it does not accurately include the full multipath richness of the 

environment [SGWJ01, ESC04a, JW04]. 

 

In this work, we perform deterministic simulations in rectangular empty 

structures. By deterministic simulations, we mean to construct H  according to 

the predicted EM fields such that: 

• Maxwell’s equations are obeyed. 

• The scenario setup (array geometry and boundary conditions) is defined. 

• The vectorial nature of the EM field (polarization) is taken into 

consideration. 

In case of perfect electric conductor (PEC) walls, we use modal analysis as 

described in appendix B to construct H . For other practical lossy-walls 

environments, we use the Image Ray Tracing (IRT), which belongs to the high 

frequency approximation solutions [MH91, TVD98, TVDD99, TVDL99, 
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AN00]. The IRT is applicable when the site dimensions are much larger than 

the wavelength. We briefly discuss the IRT in chapter 3; more details can be 

found in [Eln03]. 

 

The most general matrix representation for the wide-band (frequency-

selective) channel is four-dimensional [XCV04], with dimensions 

R T L NN N N N× × × , where LN  is the number of resolvable multipath rays and 

NN  represents the discrete-time samples of the channel. This general form is 

intended to model a time-dependent (the NN -dimension) frequency selective 

channel (through multipath delays over the LN -dimension). As previously 

stated, we assume that the indoor environment is narrowband, frequency-flat 

and quasi-static. Therefore, H  is constant along the NN -dimension and we 

coherently sum over the LN -dimension (the multipath rays) as described in 

chapter 3. For a more comprehensive review of the MIMO wireless 

communications (propagation aspects), the reader can refer to [JW04]. 

 

1.1.2 Dimensionality Perspective 

Low correlation between the elements of H  is necessary in order to allow 

independent data streams to be transmitted simultaneously and hence increase 

the capacity. Nonetheless, low correlation is not sufficient for capacity increase 

[CFGV02, PGN03, JW04], since a low-correlation rank-deficient H  yields low 

capacity as in the case of the keyhole channels [LCV01, CFGV02, ATM06]. 

 

From (1.3), the capacity value is determined by the SNR and the normalized 

singular values distribution. An even distribution of the singular values makes 

the MIMO system equivalent to K parallel SISO channels (also called having 

K dimensions). When we have k K≤ equal non-zero singular values satisfying 

the Frobenius normalization 
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2 2

1

K

i R TF
i

N Nσ
=

= =∑H ,        (1.4) 

the capacity from (1.3) is expressed as 

      2log (1 SNR) 1,2,...R
k

NC k k K
k

= ⋅ + = .    (1.5) 

Equation (1.5) shows that the capacity increases almost linearly with the 

dimensionality k because the multiplication by k outside the logarithm has a 

stronger effect than the division by k inside the logarithm [JW04]. Table 1.1 

shows the capacity of a (4,4) MIMO system for different values of SNR and 

dimensionality ( k ) according to (1.5). Obviously, by creating one additional 

dimension, we can get the same capacity while achieving a huge power gain. 

This is particularly true for low-dimensionality values (rank-deficient cases).  

 

Table 1.1 

(4,4) MIMO Capacity [bps/Hz] 

SNR and Dimensionality Effects 

 

 

 

 

 

 

 

 

 

 

 

 

The SNR is a common parameter in all communication systems, whereas 

the dimensionality is a unique feature of MIMO systems, which depends solely 

on the singular values distribution. The dimensionality is also known as the 

degrees of freedom (DOF) of MIMO systems and is the number of the parallel 

SNR [dB] 1 2 3 4
7 4.40 6.93 8.82 10.35
10 5.36 8.78 11.52 13.84
14 6.66 11.36 15.32 18.83
17 7.65 13.32 18.25 22.70
20 8.65 15.30 21.21 26.63
21 8.98 15.96 22.20 27.95
27 10.97 19.94 28.16 35.89
30 11.97 21.93 31.15 39.87
31 12.30 22.60 32.14 41.20
40 15.29 28.58 41.11 53.15
60 21.93 41.86 61.04 79.73

Dimensionality (k )
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sub-channels which are simultaneously available to convey information. When 

Shannon derived his celebrated formula of channel capacity in the presence of 

noise [Sha49], he was building on the previous work of Hartley [Har28]. 

Namely, Hartley’s law states that “ the upper limit of the amount of information, 

which may be transmitted by means of magnitude-time functions, is set by the 

sum for the various available lines of the product of the line-frequency-range of 

each by the time during which it is available for use” [Har28 page 557, Sha49 

page 16]. This law should be regarded as a starting point rather than a final 

formula to compute the capacity for 2 reasons: 

• It yields the dimensionality of the lines of essentially time-band-limited 

functions (i.e. the Shannon number 2WT , based on optimum sampling 

using finite samples, which was rigorously proven afterward [LP62] ). 

• It presumes that coding is only based on the signal amplitude 

quantization [Sha49]. 

The point to be made is that dimensionality is a precursor of the channel 

capacity. One cannot estimate the channel capacity before evaluating first its 

dimensionality (DOF). When the target is to estimate the dimensionality, it 

should not be evaluated through the capacity. Since antenna elements are EM 

field samplers, the MIMO-DOF problem should be investigated based on a 

dimensionality framework (of essentially space-wavenumber-limited functions) 

rather than capacity comparison. The space-wavenumber product was also 

predicted by Hartley [Har28 page 560]. 

 

The core of this thesis is to investigate the MIMO-DOF according to the 

electromagnetic propagation characteristics of the environment. In other words, 

we are trying to establish a link between electromagnetism and information 

theory, which is a recent topic attracting many researchers. The problem can be 

stated as follows: Given a specific environment and a fixed array size at the 

transmit/receive ends, what is the maximum dimensionality that we can achieve 

by using a multi-antenna system? What is the optimum number of antennas 

needed to obtain this maximum dimensionality? Certainly, the MIMO-DOF is a 
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problem of utmost theoretical and practical importance because it explores the 

fundamental limit for the antenna packing within a given aperture according to 

the environment characteristics. The MIMO-DOF problem is investigated in 

this thesis by using deterministic vectorial sampling through polarized EM 

perfect samplers (polarized point sources/detectors). The following assumptions 

are made regarding the ideal EM sampler: 

• It is not isotropic (its pattern has a null at the endfire direction). 

• It makes no field disturbance (perfect detector). 

• There is no mutual coupling between the EM samplers within the array. 

 

The EM-DOF problem has been investigated from various perpectives: 

regarding the EM field sampling [BF87, BF89, BGS98], optical systems 

[Mil00, PM00], and recently, MIMO systems [PBT05, Loy05, LM06, Mig06, 

XJ06]. Bucci et al. [BF87, BF89, BGS98] investigated the non-redundant 

number of samples to represent the electromagnetic fields over arbitrary 

surfaces. Migliore [Mig06] followed this approach in the MIMO-DOF 

investigation which is more suitable for outdoor environments.  

 

Miller and Piestun [Mil00, PM00] showed that singular value 

decomposition (SVD) is equivalent to finding the orthogonal communication 

modes (EM-DOF) of an optical system. Xu and Janaswamy [XJ06] followed 

this approach for MIMO-DOF investigation in 2D environments. 

 

Poon et al. [PBT05] considered the problem in a way similar to the optics 

space-bandwidth product [Goo96] and used the clustered angular domain model 

with the free space Green’s function. 

 

Loyka [Loy05] studied the problem in an enclosure (waveguide or cavity) 

from a mode orthogonality perspective, assuming that the field is sampled 

across the whole cross section of the guide. More recently, Loyka and Mosig 

[LM06] tackled this problem based on the bandlimitedness of the spatial 
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spectrum of the EM fields. This is the same path we are following in this 

dissertation (chapter 5). 

 

1.2 Motivation and Objectives 

At an early phase of this research, our interest was focused on the site-specific 

EM-adaptive techniques to improve the MIMO capacity [ESC04b, ESC05, 

ESC06a]. Such techniques included adaptive phased-arrays (Fig. 1.1) and/or 

adaptive polarization selection (Fig. 1.2). The optimization parameter was the 

capacity at a given SNR. 

 

Two main observations have been made from the results of the adaptive 

MIMO system in a deterministic scenario (lossy-wall corridor): 

1. The capacity was sensitive to the array orientation (broadside orientation 

yields better capacity), which was confirmed earlier by measurements in 

similar scenarios [ATKM03, LDBD03]. 

2. For each array orientations (broadside or endfire), there was a capacity 

limit that was not exceeded even after combining the 2 adaptive 

techniques [ESC05]. 

These observations along with the recent interest in the MIMO-DOF problem in 

the literature motivated this current research. 

 

Our objective in this work is threefold: 

• Finding a well-defined metric dedicated to measure the MIMO systems 

dimensionality according to the singular values distribution (i.e. isolate 

the power consideration from the dimensionality). 

• Making a careful study of the multi-polarization dimensionality under 

the Maxwellian framework. 

• Investigating the MIMO-DOF for a fixed array size including all the 

available diversity (spatial, pattern and polarization) through a vectorial-

EM sampling approach. 
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Signal port 1

Signal port 2

Signal port 3

Signal port 4

2φ 2φ2φ

1φ 1φ1φ

3φ 3φ3φ

4φ 4φ4φ

Ant. 1 

Ant. 2 

Ant. 3 

Ant. 4 

Fig. 1.1 Adaptive uniform phased-array (4,4) MIMO system [ESC04b].

 
Signal port 1

Ant. 1: Y-Polarized 

Ant. 1: Z-Polarized 

Signal port 2

Ant. 2: Y- Polarized 

Ant. 2: Z-Polarized 

Signal port 3

Ant. 3: Y-Polarized 

Ant. 3: Z-Polarized 

Signal port 4

Ant. 4: Y-Polarized 

Ant. 4: Z-Polarized 

Fig. 1.2 Adaptive polarization selection (4,4) MIMO system [ESC06a]. 
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1.3 Thesis Organization 

The thesis is logically organized in 6 chapters. In chapter 2, we introduce a new 

metric: the Power-Independent Dimensionality (PID). The PID quantifies the 

effective parallel sub-channels available in a multi-antenna system. We present 

the properties and merits of the PID metric. We also make a comparison of the 

PID to similar power-dependent metrics in the literature, namely, the Effective 

Degrees of Freedom (EDOF) [SFGK00] and the Effective Dimensionality (ED) 

[LK03]. 

 

The electromagnetic modeling of deterministic indoor environments for 

MIMO systems is discussed in chapter 3. Working in the angular domain, we 

apply the high frequency approximation (ray modeling) and plane wave-front 

approximation in order to obtain an intuitive multi-keyhole matrix form [LL06a, 

LL06b]. Afterward, we include the full available diversity (multi-polarization 

and space-diversity) in the model. We provide some PID results of multi-

polarization MIMO systems in lossy-walls rectangular environments, simulated 

using the image ray tracing (IRT) algorithm. We also show PID results, 

obtained through rigorous modal analysis, in a similar PEC wave-guide. 

 

Chapter 4 is devoted to measure the available dimensionality, which can be 

captured through a collocated multi-polarization MIMO system. We rely on the 

deterministic model of chapter 3, which obeys Maxwell’s equations. We 

investigate and quantify the capability of the electric and magnetic fields to 

carry independent information between 2 radiating structures in several 

scenarios: free space (near and far field), PEC and lossy-walls rectangular 

structures. 

 

In chapter 5, we explore the maximum parallel sub-channels performance 

(DOF) of MIMO systems. For an array of a fixed size in a site-specific 

environment, we investigate the maximum achievable PID through the 
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combination of both the spatial and the pattern/polarization diversity. We show 

the effect of the environment properties and array orientation on the DOF in the 

context of the k-domain region of existence (ROE). Next, we extend the 1D 

optimum sampling results to the 2D and 3D array cases. We also present 

numerical results for the PID of multi-polarized MIMO system of a given array 

size (1D, 2D and 3D) in a PEC and lossy-walls corridor. 

 

Chapter 6 concludes the thesis by listing the main contributions and 

proposing directions for future work. Because of the multi-disciplinary nature of 

this research, the required background information is briefly stated alongside the 

corresponding discussion when necessary. The appendices are allotted to 

background information, which are frequently needed throughout different parts 

of the dissertation. A list of the symbols, notation and acronyms is located at the 

end of the thesis. 
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Chapter 2 

Power-Independent Dimensionality 

Metric 

In this chapter, we introduce a new Power-Independent Dimensionality (PID) 

metric quantifying the effective parallel sub-channels available in a multi-

antenna system. The main motivation hereof is to provide a handy measure 

which will be used in the subsequent chapters to evaluate the degrees of 

freedom (DOF) of MIMO systems in deterministic environments. The MIMO-

DOF problem addresses the question of the optimum number of antenna 

elements needed to fully exploit a given environment diversity richness (spatial, 

pattern and/or polarization) according to the available spatial sub-channels. The 

answer to this question requires the knowledge of the spatial properties of the 

environment (expressed through the singular values distribution of the channel 

matrix) rather than the power level (SNR). The parallel sub-channels 

performance is also known as the channel dimensionality [LK03] or degrees of 

freedom (DOF) [SFGK00, PBT05, Mig06]. 
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There are 2 approaches in the literature to compare the dimensionality 

performance of specific MIMO scenarios given the singular values sets. The 

first, which is power-dependent, is by using SNR-dependent dimensionality 

metrics [SFGK00, LK03] or by normalizing the channel matrix and then 

comparing the MIMO capacity at some “artificial” SNR values. The second 

approach, which is power-independent, is to use an integer number, determined 

by the channel matrix rank [e.g. RC98, PBT05] or its effective rank [Mig06, 

Str88], which depends on the number of significant non-zero singular values. 

The first approach suffers from the inability to separate the power from the 

dimensionality effect, whereas the second suffers from some subjectivity such 

as how to define significant and how to characterize the singular values 

distribution by a single metric. Moreover, both approaches are inadequate when 

it comes to comparing the dimensionality performance of 2 MIMO systems 

having a different number of transmit/receive elements. 

 

The novel PID metric is based on the equivalence between the trace and 

Frobenius norms of the actual channel matrix and a fictitious one modeling an 

equi-useable sub-channels MIMO system. MIMO-DOF comparison using the 

PID metric is particularly meaningful in essentially power-similar situations 

such as packing/selecting antenna elements within an aperture size in a given 

environment or when we study the dimensionality of a moving MIMO system 

while normalizing the large scale fading. In the case of dimensionality-adaptive 

MIMO systems (e.g. adaptive beamforming or polarization [ESC05, ESC06a] ), 

the PID provides a handy single parameter for optimization that can be fed back 

to the transmitter rather than the full channel entries or its singular values. 

 

We emphasize that the proposed PID metric is not by any means a substitute 

of the capacity as a measure of the MIMO performance. For instance, the PID is 

not useful for the power-adaptive MIMO systems (based on water-filling), 

where the full set of singular values needs to be known for transmit power 

allocation. The PID is rather a complementary metric dedicated to measure the 
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unique feature of a MIMO communication system: the number of the available 

parallel data pipes in a given environment. Capacity is a global measure of 

MIMO performance comprising both the SNR effect (common to all 

communication systems) and the parallel sub-channels effect (unique to MIMO 

systems). Answering the DOF question in terms of the capacity or other power-

dependent metrics can obscure some spatial phenomena of the environment due 

to the inseparability of the SNR effect. Capacity cannot experimentally be 

measured in the lab (being an upper limit performance measure) whereas, at 

least in theory, one can measure the number of practically available parallel 

data channels (dimensionality). 

 

After introducing the PID definition, we present its properties and merits. 

We also make a comparison of the PID to similar power-dependent metrics in 

the literature, namely, the Effective Degrees of Freedom (EDOF) [SFGK00] 

and the Effective Dimensionality (ED) [LK03]. Further applications of the 

developed PID metric regarding the MIMO systems dimensionality are 

discussed in the subsequent chapters. 

 

2.1 Equivalence-Based Power-Independent 

Dimensionality Metric 

A MIMO channel matrix R TN N×∈H , where ( , )R TN N are the number of 

receive and transmit elements, respectively, can have up to min{ , }R TK N N=  

parallel sub-channels. Consider another fictitious channel ( )eqH , which 

has k equally contributing (out of K available) eigen channels whereas the 

remaining ( )K k−  sub-channels have zero contribution. Obviously, ( )eqH has 

k communication dimensions and its singular values are given by 

       0( ) 1, 2,...,
0 1,...,

eq
i

i k
i k K

σ
σ

=
=  = +

.      (2.1) 
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The normalized matrix ( )

0

1
σ

eqH is known as rank k partial isometry [HJ94]. 

 

In order to estimate the PID, we impose the following 2 Schatten-norm-

based equivalence conditions on the 2 matrices H and ( )eqH : both are to have the 

same Schatten 1-norm (trace norm
tr
i ) and the same Schatten 2-norm 

(Frobenius norm
F
i ). Consequently, 

      ( )
0tr tr

kσ≡ =eqH H             (2.2a) 

      
22 ( ) 2

0F F
kσ≡ =eqH H .           (2.2b) 

Solving for k in (2.2) in terms of 
tr

H and
F

H , we obtain the equivalence-

based PID 

     

2

2

1

2

1

PID

K

i
itr
K

F
i

i

k
σ

σ

=

=

 
    = =  

 

∑

∑

H
H

.       (2.3) 

For non-integer values of the PID, we understand that the dimensionality 

performance is better than that of PID   equi-contributing sub-channels, 

where x   is the largest integer x≤ . 

 

In general, we are free to choose the Schatten p - and q -norms for the 

equivalence condition, where 1 ,p q≤ < ∞  and the generic Schatten-norm-based 

PID is 
1

1 1
PID

p q p qK K
q p

pq i i
i i
σ σ

−

= =

    =     
     
∑ ∑ .      (2.4) 

However, the choice of 1 and 2 for p and q in (2.3) has a mathematical and 

physical justification. For large p andq , the Schatten norm tends to the spectral 

norm (the largest singular value) [HJ87] and the PID will be more biased to the 

largest singular value yielding a value close to 1 except for multiplicity of the 
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largest singular value. Therefore, a choice of small p and q makes the PID more 

sensitive to the small singular values, which justifies the choice of the Schatten 

1-norm (minimum allowed value of p or q ). Moreover, the Frobenius norm is 

readily connected to the power performance of the channel matrix, which 

justifies the choice of the Schatten 2-norm. 

 

2.2 Properties and Merits of the PID 

In this section, we present some useful properties of the PID metric, many of 

which will be used in the subsequent chapters. 

 

2.2.1 Unitary Invariance 

The PID, as given by (2.3), is a universal metric of any matrix and depends 

solely on its singular values distribution (a unitarily invariant quantity [HJ87] ). 

 

2.2.2 Matrix-Scaling Invariance 

The ratio definition of the PID as given by (2.3) makes it invariant to any matrix 

scaling. Therefore, PID(αH )=PID( H ) for any complex scalarα . A direct 

consequence of this property is that the PID is not a matrix norm because it 

violates one of the 5 axioms defining the matrix norms [HJ87]: 

||| ||| | | ||| |||α α= ⋅H H . Another consequence is that the MIMO channel matrix 

does not require any normalization prior to computing its PID. 

 

2.2.3 Range of the PID Values 

For any non-zero matrix, it is straightforward to show that the PID ranges from 

1 to rank( )H . The lower limit indicates the worst rank-deficient case 

( rank( ) 1=H  i.e. only one non-zero singular value), whereas the upper limit is 
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achieved in the case of partial or full isometry (all the non-zero singular values 

are equal). One can interpret PID( ) rank( )H H as the “fraction of the average 

energy” (ranging from1 rank( )H to1) of the discrete signal represented by the 

plot of{ }iσ . 

 

2.2.4 Matrix-Size Independence 

The PID does not depend on the matrix-size. This property makes the PID very 

suitable for dimensionality comparison of 2 MIMO systems having different 

number of elements. The other SNR-dependent metrics, including the capacity, 

are based on a size-dependent Frobenius normalization applied on the channel 

matrix, which can lead to inaccurate dimensionality evaluation. 

Suppose 1Q , 2Q and 3Q are full-rank matrices of very small Frobenius-norm 

compared to 1 F
H . Then, the 2 matrices 1H and 1 1

2
2 3

 
=  
 

H Q
H

Q Q
have 

essentially the same dimensionality (PID) and Frobenius-norm. However, their 

ranks are different and there is a discrepancy in their capacity value because of 

the applied size-dependent Frobenius normalization. 2H can represent a situation 

where some elements suffer from severe polarization mismatch and are still 

counted active in a multi-polarization MIMO system. Other matrix-size-

sensitive situations are encountered when we are investigating the MIMO-DOF 

in essentially power-similar scenarios such as packing elements within a given 

array size or using an adaptive element-selection technique. A numerical 

comparison with other metrics regarding the matrix-size effect on the 

dimensionality is included in the next section. 

 

2.2.5 Relation to the Kronecker Product 

The relation between the Schatten p-norm ( )pN i and the Kronecker product of 2 

matrices ⊗A B is such that [HJ94] 
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( ) ( ) ( )p p pN N N⊗ =A B A B .       (2.5) 

Therefore, based on (2.3), we have a similar PID relation 

PID( ) PID( )PID( )⊗ =A B A B ,      (2.6) 

which is useful in modeling the effect of combining multi-polarization with 

spatial diversity on the MIMO-DOF. 

 

2.2.6 Matrix Product Inequality 

Since the PID objective is to count the number of “significant” singular values 

in a well-defined manner, it can be viewed as an effective rank of the matrix. It 

is then naturally to check whether the following rank inequality of the matrix 

product [HJ87] 

rank( ) min{rank( ), rank( )}≤AB A B       (2.7) 

 is true as well for the PID. Should the PID be a unitarily invariant matrix norm, 

(2.7) would have been straightforwardly true for the PID [HJ87]. Indeed, the 

PID is a unitarily invariant quantity (property 2.2.1), nevertheless, it is not a 

matrix norm (property 2.2.2). Therefore, we can not assert that (2.7) is strictly 

true for the PID. However, based on some Monte-Carlo simulations reported 

hereafter, we can say that it is “essentially” true that 

PID( ) min{PID( ),PID( )} PID( ),PID( ) 1≤AB A B A B .    (2.8) 

 

The result (2.8) is important in evaluating the MIMO dimensionality bottle-

neck as will be discussed in the next chapters. This is the reason why we are 

providing some simulation results to shed light on its validity. In the first 

simulation, A and N N×∈B are square matrices. The entries of each are 

independent Gaussian distributed complex scalars of zero mean and unit 

variance. We denote min{PID( ),PID( )}A B  and max{PID( ),PID( )}A B  by 

minPID and maxPID , respectively. Based on 610  incidences, we evaluate the 

probability min[PID( ) PID ]P >AB  and max[PID( ) PID ]P ≥AB . We also report 
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the maximum error value of ( minPID( ) PID−AB ) over all incidences. The 

results are shown in Table 2.1. 

 

From Table 2.1, we can see that the maximum error does not surpass 1. Also 

as N increases, the probability that (2.8) is false decreases and so does the 

maximum error. We repeated the simulations for rectangular 20N ×∈A and 

square 20 20×∈B . The results are shown in Table 2.2, where we can notice that 

the maximum error is generally smaller than in Table 2.1. 

 

Table 2.1 

Monte-Carlo PID Inequality Results of Matrix Product. 

A and N N×∈B   

N  min[PID( ) PID ]P >AB max[PID( ) PID ]P ≥AB  Maximum Error 

2 2.75 110−×  6.59 210−×  0.8433 

3 1.07 110−×  1.15 210−×  0.9707 

4 3.11 210−×  1.70 310−×  0.9549 

5 6.70 310−×  1.92 410−×  0.7254 

6 1.10 310−×  1.20 510−×  0.4349 

7 1.33 410−×  <1.00 610−×  0.3235 

8 1.30 510−×  <1.00 610−×  0.2322 

9 2.00 610−×  <1.00 610−×  0.0247 
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Table 2.2 

Monte-Carlo PID Inequality Results of Matrix Product. 
20N ×∈A and 20 20×∈B  

N  min[PID( ) PID ]P >AB max[PID( ) PID ]P ≥AB  Maximum Error 

2 2.21 110−×  <1.00 610−×  0.1662 

3 9.15 210−×  <1.00 610−×  0.2128 

4 3.10 210−×  <1.00 610−×  0.2478 

5 8.40 310−×  <1.00 610−×  0.2385 

6 1.80 310−×  <1.00 610−×  0.2638 

7 2.75 410−×  <1.00 610−×  0.1653 

8 2.20 510−×  <1.00 610−×  0.1112 

9 5.00 610−×  <1.00 610−×  0.1001 

 

We perform one more Monte-Carlo simulation regarding the PID matrix 

product inequality when PID( )A is varying over a wide range. We assume that 

both A and 100 100×∈B and the entries of B are complex Gaussian as before. 

Moreover, we assume that A is a deterministic diagonal matrix such that 

1diag( ,1,1,...,1)σ=A , where 1 {1, 2,...,100}σ ∈ . Accordingly, PID( )A takes 

values from 100 down to close to 1. For each value of 1σ , we evaluate the 

average of PID( )B and PID( )AB over 1000 incidences. The results are plotted in 

Fig. 2.1. 

 

We can make 2 observations from Fig. 2.1. First, (2.8) is valid, on the 

average, over the entire range of PID( )A . Second, the discrepancy between 

PID( )AB and minPID increases as PID( )A gets closer to PID( )B . Therefore, the 

upper bound of (2.8) is tighter when there is a wide difference between the 

dimensionality of the 2 matrices. 
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2.2.7 Comparison with the PSWF Eigen Values (Shannon 

Number) 

We present the following matrix normalization, which is independent of the 

matrix size ( , )R TN N  

       

2

PID
F

F tr

=

=

HH
H

H
H H

,         (2.9) 

or, in terms of the normalized singular values{ }iσ , 

       1

2

1

K

i
i

i i K

i
i

σ
σ σ

σ
=

=

=
∑

∑
,            (2.10) 

which leads to 
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Fig. 2.1 Average PID inequality results of the matrix product. 

PID(A) is varying over a wide range.   
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2

1 1
2

PID=
K K

i i
i i

tr F

σ σ
= =

=

= =

∑ ∑

H H
.           (2.11) 

Interestingly, (2.11) is consistent with a similar property of the optimum basis 

functions ( , )i c tψ , wherec WTπ= , used to determine the DOF of “essentially” 

time-limited ( | | / 2t T≤ ) bandlimited ( | |f W≤ ) continuous functions ( )y t . In 

appendix A, we report from the literature some properties of iψ and its fractional 

energy ( )i cλ within| | 2t T≤ , where 0 1(1 ... 0)λ λ> > > ≥ . In the MIMO-DOF 

problem, the finite aperture size in the space-domain is analogous to the finite 

time-window T of ( )y t . Similarly, the bandlimited spatial spectrum of the 

electromagnetic far-field is analogous to the bandlimited temporal spectrum 

of ( )y t  [LM06]. Hence, iλ and 
2

iσ represent the energy/power contribution of 

the orthogonal thi basis/channel, respectively. In appendix A, we report the 

following identity (A.20) regarding the Shannon number 2WT [GG73] 

      
0

( ) 2 DOF everyi
i

c WT cλ
∞

=

= =∑ .         (2.12) 

Moreover, we conjecture in (A.22) the following asymptotic relation 

0
( ) 2 DOFi c

i
c WTλ

∞

→∞
=

→ =∑ .          (2.13) 

Clearly, (2.12-13) are consistent with (2.11) such that, under the normalization 

(2.9), both the finite set 
2

{ }iσ  and the infinite set { }iλ summation yields exactly 

the DOF (Shannon number) of the respective discrete and continuous problems. 

The same is true with { }iσ and could asymptotically be viewed as true (for 

large 2WT ) with{ }iλ . However, unlike the values of{ }iλ , it should be noted 

that some iσ  are 1≥ . Under the normalization (2.9), it can be shown that the 

largest singular value 1 1σ ≥ , where the equality holds if and only if all the non-

zero singular values are equal (i.e. in the case of partial isometry). 

 



 24

2.3 Comparison with Other Power-Dependent 

Metrics 

In this section, we make a comparison between the PID and 2 SNR-dependent 

dimensionality metrics in the literature, namely, the Effective Degrees of 

Freedom (EDOF) [SFGK00] and the Effective Dimensionality (ED) [LK03]. 

We assume a MIMO system with equal transmit power allocation (no Channel 

State Information at the transmit side). Therefore, under the normalization 

       
R TF

N N
= HH

H
,           (2.14) 

the capacity is given by [FG98] 

       2
2

1

SNRlog (1 )
K

i
i T

C
N

σ
=

= +∑ .         (2.15) 

 

The EDOF is defined as [SFGK00] 

       
0

EDOF (2 SNR)d C
d

δ

δδ =

≡ ⋅ ,         (2.16) 

where ( )C i is the MIMO channel capacity at the given SNR. The EDOF in 

(2.16) can be expressed in other forms such as [KRK05]  

       
2

(SNR)EDOF=
(log SNR)

d C
d

,          (2.17) 

or, after simplification using (2.15) [ESC06b], 

     
1

2

1EDOF(SNR, )
1

SNR

K

i
Ti

i

Nσ

σ
=

=
+

∑ .         (2.18) 

 

It is obvious from (2.18) that, regardless of the distribution of{ }iσ , the 

EDOF yields rank( )H  and 0 for high and low SNR, respectively [SFGK00]. 

Therefore, a Power-Independent EDOF (PIEDOF), defined as 
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SNR
2

(SNR)PIEDOF lim
(log SNR)

d C
d→∞

, is also singular-values-independent and always 

yields rank( )H  [SSEV06]. Hence, unlike the proposed singular-values-based 

PID metric, the PIEDOF is not a suitable measure of the environment-specific 

MIMO-DOF performance since it ignores the singular values distribution. Also, 

the PIEDOF fails to give an acceptable estimate of the MIMO-DOF in the 

moderate SNR region (10-20 dB), which is more important from a system 

design perspective. 

 

We move now to another power-dependent DOF metric in the literature. 

The effective dimensionality (ED) [LK03] is defined as the number of parallel 

equi-useable channels yielding the same capacity at a given SNR. Hence, under 

the normalization (2.14), it is found by solving the transcendental equation 

2
2 2

1

SNRlog (1 ) ED(SNR, ) log (1 SNR )
ED(SNR, )

K
R

i i
i T i

N
N

σ σ
σ=

+ = ⋅ +∑ .      (2.19) 

 

We present some numerical comparisons of EDOF, ED and PID for 6 cases 

as described in Table 2.3. The singular value sets { }iσ  are selected such that 

1. they satisfy the normalization (2.14), 

2. they are designed to have a fixed integer PID according to Table 2.3, and 

3. their distribution is characterized by a “knee” at the thB  singular value 

i.e. for each set, there are B  large and K B−  small singular values, 

where B  can take any value from {1,2,..., PID}. The steepest drop 

between any 2 adjacent singular values occurs between Bσ  and 1Bσ + , 

typically of about 10 dB or more. 

 

The classification of { }iσ  into 2 sub-sets - “large” and “small” - is 

motivated by the singular values behavior of the MIMO spatial-DOF problems 

where they exhibit a step-like distribution [PBT05, Mig06] analogous to the 

eigen values { }iλ  behavior in the temporal DOF problems [SP61, LP62, Sle83]. 
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In appendix A, we report that for 2i WT , most of ( )i cλ are close to unity 

whereas for 2i WT , most of ( )i cλ are close to zero. The interval of transition 

from 1 to 0, around 2i WT∼ , grows as log( )c  [LP62, Sle83]. The singular 

values in the MIMO-DOF problems are expected to follow the same pattern 

[PBT05, Mig06] and accordingly, the value of B is expected to be close to PID. 

Our intention by allowing B taking all the possible values{1,2,..., PID}is to 

investigate how the PID will compare with the other metrics in pathological 

cases when the difference ( PID B− ) is large. 

 

For the cases 1-3 in Table 2.3, we employ 2 distributions regarding both 

large and small sub-sets: a) flat distribution, and b) 1 dB linearly decreasing 

distribution. The PID and the matrix size are fixed for each case. We compare 

the ED and EDOF to the fixed PID for several values of B . Fig. 2.2-4 show the 

numerical results of the SNR-dependence of the EDOF and ED in the 3 cases. 

The numerical values of{ }iσ are given in Table 2.4 and their distribution is 

sketched at the top left corner of Fig. 2.2-4. 

 

Table 2.3 

Matrix Size and Singular Values Distribution for Numerical Comparison 

 Matrix Size PID and B  Singular Values Distribution (dB) 

1 1 : 50 50×H  PID 10=  
{1,2,...,10}B =  

2 1 :10 10×H  PID 5=  
{1,2,3,4,5}B =  

3 1 : 4 4×H  PID 3=  
{1,2,3}B =  

1

1

1

( )
( 1) 1, 2,...,

( 1) 1,...,

i

B

a i i B
a i B i B K

σ
σ

σ +

− − =
=  − − − = +

H
 

0or 1a =  for flat or 1 dB decreasing 
distribution, respectively. 

4 1 : 50 50×H  

2 :100 100×H  
PID 10=  

10B =  

5 1 :10 10×H  

2 : 20 20×H  
PID 5=  

5B =  

6 1 : 4 4×H  

2 :8 8×H  
PID 3=  

3B =  

 
2

1

1

( )
1

( )
1, 2,...,

( 1) 1,..., 2

i

i

B

a
i K

i B i K K

σ

σ

σ +

=
= =
 − − − = +

H

H
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Table 2.4 

Numerical Values of the Singular Values Distribution of Table 2.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Knee Drop (dB) 26.44 25.22 25.12 25.56 26.44 27.80 29.79 32.85 38.45 inf 10.23 9.06 8.83 9.03 9.53 10.33 11.48 13.13 15.59 19.75
PID=10

B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
SV1 33.52 30.67 29.00 27.82 26.90 26.15 25.50 24.94 24.43 23.98 32.33 30.41 29.47 28.89 28.49 28.20 27.98 27.81 27.67 27.56
SV2 7.08 30.67 29.00 27.82 26.90 26.15 25.50 24.94 24.43 23.98 22.10 29.41 28.47 27.89 27.49 27.20 26.98 26.81 26.67 26.56
SV3 7.08 5.44 29.00 27.82 26.90 26.15 25.50 24.94 24.43 23.98 21.10 20.36 27.47 26.89 26.49 26.20 25.98 25.81 25.67 25.56
SV4 7.08 5.44 3.89 27.82 26.90 26.15 25.50 24.94 24.43 23.98 20.10 19.36 18.64 25.89 25.49 25.20 24.98 24.81 24.67 24.56
SV5 7.08 5.44 3.89 2.26 26.90 26.15 25.50 24.94 24.43 23.98 19.10 18.36 17.64 16.86 24.49 24.20 23.98 23.81 23.67 23.56
SV6 7.08 5.44 3.89 2.26 0.46 26.15 25.50 24.94 24.43 23.98 18.10 17.36 16.64 15.86 14.96 23.20 22.98 22.81 22.67 22.56
SV7 7.08 5.44 3.89 2.26 0.46 -1.65 25.50 24.94 24.43 23.98 17.10 16.36 15.64 14.86 13.96 12.87 21.98 21.81 21.67 21.56
SV8 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 24.94 24.43 23.98 16.10 15.36 14.64 13.86 12.96 11.87 10.50 20.81 20.67 20.56
SV9 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 24.43 23.98 15.10 14.36 13.64 12.86 11.96 10.87 9.50 7.68 19.67 19.56
SV10 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 23.98 14.10 13.36 12.64 11.86 10.96 9.87 8.50 6.68 4.08 18.56
SV11 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 13.10 12.36 11.64 10.86 9.96 8.87 7.50 5.68 3.08 -1.19
SV12 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 12.10 11.36 10.64 9.86 8.96 7.87 6.50 4.68 2.08 -2.19
SV13 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 11.10 10.36 9.64 8.86 7.96 6.87 5.50 3.68 1.08 -3.19
SV14 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 10.10 9.36 8.64 7.86 6.96 5.87 4.50 2.68 0.08 -4.19
SV15 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 9.10 8.36 7.64 6.86 5.96 4.87 3.50 1.68 -0.92 -5.19
SV16 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 8.10 7.36 6.64 5.86 4.96 3.87 2.50 0.68 -1.92 -6.19
SV17 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 7.10 6.36 5.64 4.86 3.96 2.87 1.50 -0.32 -2.92 -7.19
SV18 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 6.10 5.36 4.64 3.86 2.96 1.87 0.50 -1.32 -3.92 -8.19
SV19 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 5.10 4.36 3.64 2.86 1.96 0.87 -0.50 -2.32 -4.92 -9.19
SV20 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 4.10 3.36 2.64 1.86 0.96 -0.13 -1.50 -3.32 -5.92 -10.19
SV21 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 3.10 2.36 1.64 0.86 -0.04 -1.13 -2.50 -4.32 -6.92 -11.19
SV22 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 2.10 1.36 0.64 -0.14 -1.04 -2.13 -3.50 -5.32 -7.92 -12.19
SV23 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 1.10 0.36 -0.36 -1.14 -2.04 -3.13 -4.50 -6.32 -8.92 -13.19
SV24 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf 0.10 -0.64 -1.36 -2.14 -3.04 -4.13 -5.50 -7.32 -9.92 -14.19
SV25 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -0.90 -1.64 -2.36 -3.14 -4.04 -5.13 -6.50 -8.32 -10.92 -15.19
SV26 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -1.90 -2.64 -3.36 -4.14 -5.04 -6.13 -7.50 -9.32 -11.92 -16.19
SV27 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -2.90 -3.64 -4.36 -5.14 -6.04 -7.13 -8.50 -10.32 -12.92 -17.19
SV28 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -3.90 -4.64 -5.36 -6.14 -7.04 -8.13 -9.50 -11.32 -13.92 -18.19
SV29 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -4.90 -5.64 -6.36 -7.14 -8.04 -9.13 -10.50 -12.32 -14.92 -19.19
SV30 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -5.90 -6.64 -7.36 -8.14 -9.04 -10.13 -11.50 -13.32 -15.92 -20.19
SV31 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -6.90 -7.64 -8.36 -9.14 -10.04 -11.13 -12.50 -14.32 -16.92 -21.19
SV32 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -7.90 -8.64 -9.36 -10.14 -11.04 -12.13 -13.50 -15.32 -17.92 -22.19
SV33 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -8.90 -9.64 -10.36 -11.14 -12.04 -13.13 -14.50 -16.32 -18.92 -23.19
SV34 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -9.90 -10.64 -11.36 -12.14 -13.04 -14.13 -15.50 -17.32 -19.92 -24.19
SV35 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -10.90 -11.64 -12.36 -13.14 -14.04 -15.13 -16.50 -18.32 -20.92 -25.19
SV36 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -11.90 -12.64 -13.36 -14.14 -15.04 -16.13 -17.50 -19.32 -21.92 -26.19
SV37 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -12.90 -13.64 -14.36 -15.14 -16.04 -17.13 -18.50 -20.32 -22.92 -27.19
SV38 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -13.90 -14.64 -15.36 -16.14 -17.04 -18.13 -19.50 -21.32 -23.92 -28.19
SV39 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -14.90 -15.64 -16.36 -17.14 -18.04 -19.13 -20.50 -22.32 -24.92 -29.19
SV40 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -15.90 -16.64 -17.36 -18.14 -19.04 -20.13 -21.50 -23.32 -25.92 -30.19
SV41 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -16.90 -17.64 -18.36 -19.14 -20.04 -21.13 -22.50 -24.32 -26.92 -31.19
SV42 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -17.90 -18.64 -19.36 -20.14 -21.04 -22.13 -23.50 -25.32 -27.92 -32.19
SV43 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -18.90 -19.64 -20.36 -21.14 -22.04 -23.13 -24.50 -26.32 -28.92 -33.19
SV44 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -19.90 -20.64 -21.36 -22.14 -23.04 -24.13 -25.50 -27.32 -29.92 -34.19
SV45 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -20.90 -21.64 -22.36 -23.14 -24.04 -25.13 -26.50 -28.32 -30.92 -35.19
SV46 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -21.90 -22.64 -23.36 -24.14 -25.04 -26.13 -27.50 -29.32 -31.92 -36.19
SV47 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -22.90 -23.64 -24.36 -25.14 -26.04 -27.13 -28.50 -30.32 -32.92 -37.19
SV48 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -23.90 -24.64 -25.36 -26.14 -27.04 -28.13 -29.50 -31.32 -33.92 -38.19
SV49 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -24.90 -25.64 -26.36 -27.14 -28.04 -29.13 -30.50 -32.32 -34.92 -39.19
SV50 7.08 5.44 3.89 2.26 0.46 -1.65 -4.29 -7.92 -14.02 -inf -25.90 -26.64 -27.36 -28.14 -29.04 -30.13 -31.50 -33.32 -35.92 -40.19

Knee Drop (dB) 15.56 15.56 17.29 21.67 inf 11.75 11.70 13.25 17.07 33.61
PID=5

B=1 B=2 B=3 B=4 B=5 B=1 B=2 B=3 B=4 B=5
SV1 19.03 16.53 15.04 13.94 13.01 18.91 16.96 15.95 15.28 14.78
SV2 3.47 16.53 15.04 13.94 13.01 7.16 15.96 14.95 14.28 13.78
SV3 3.47 0.97 15.04 13.94 13.01 6.16 4.26 13.95 13.28 12.78
SV4 3.47 0.97 -2.25 13.94 13.01 5.16 3.26 0.70 12.28 11.78
SV5 3.47 0.97 -2.25 -7.74 13.01 4.16 2.26 -0.30 -4.79 10.78
SV6 3.47 0.97 -2.25 -7.74 -inf 3.16 1.26 -1.30 -5.79 -22.83
SV7 3.47 0.97 -2.25 -7.74 -inf 2.16 0.26 -2.30 -6.79 -23.83
SV8 3.47 0.97 -2.25 -7.74 -inf 1.16 -0.74 -3.30 -7.79 -24.83
SV9 3.47 0.97 -2.25 -7.74 -inf 0.16 -1.74 -4.30 -8.79 -25.83
SV10 3.47 0.97 -2.25 -7.74 -inf -0.84 -2.74 -5.30 -9.79 -26.83

Knee Drop (dB) 9.54 11.44 inf 8.54 10.34 36.50
PID=3

B=1 B=2 B=3 B=1 B=2 B=3
SV1 10.79 8.73 7.27 10.77 9.19 8.19
SV2 1.25 8.73 7.27 2.23 8.19 7.19
SV3 1.25 -2.71 7.27 1.23 -2.15 6.19
SV4 1.25 -2.71 -inf 0.23 -3.15 -30.31

Flat SV 1 dB dec.

Flat SV (dB) 1 dB decreasing SV (dB)

Flat SV 1 dB decreasing SV
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Fig. 2.2 

EDOF, ED and PID comparison for case 1: (50,50) MIMO system and PID=10

Singular values distribution: (a) flat and (b) 1 dB decreasing. 
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EDOF, ED and PID comparison for case 2: (10,10) MIMO system and PID=5 

Singular values distribution: (a) flat and (b) 1 dB decreasing. 
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EDOF, ED and PID comparison for case 3: (4,4) MIMO system and PID=3 

Singular values distribution: (a) flat and (b) 1 dB decreasing. 
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As depicted in Fig. 2.2-4, for cases 1-3, there is a large discrepancy between 

PID and both metrics at high SNR. Compared to the fixed PID, ED is showing a 

smaller deviation than EDOF. The same observation holds at the low SNR 

extreme. This is due to the equivalence definition of ED (2.19) in contrast with 

the differential definition of EDOF (2.16) resulting in the previously mentioned 

asymptotic tendency to rank( )H  and 0 at high and low SNR, respectively 

[SFGK00]. Within the moderate SNR range (10-20 dB), which is widely 

assumed in practical MIMO capacity evaluation, the discrepancy between PID 

and both metrics decreases, again ED being closer. In general, PID shows better 

agreement with both metrics as B approaches the fixed PID, which is likely to 

occur in the MIMO-DOF problems. In fact, the case of 1B =  along with flat 

small singular values represent the most severe pathological distribution of 

{ }iσ  having a given PID 1 because the contribution of many weak channels 

largely exceeds that of a single strong one. 

 

For the cases 4-6, we set PIDB = and we choose the 1 dB linearly 

decreasing distribution of the singular values. The 2 matrices 1H and 2H  (of 

essentially the same dimensionality) have different sizes and ranks. The 

objective is to show the dependence of the SNR-based metrics, including the 

capacity, on the matrix size even when the 2 matrices have essentially the same 

dimensionality and Frobenius norm. The singular values of 2H  encompass those 

of 1H (1 dB-decreasing “large” and “small” singular values), appended by 

additional 1 dB-decreasing “small” singular values as described in Table 2.3. 

 

In order to correctly account for the relative power ratio of N channel 

matrices ,1n n N≤ ≤H , the normalization (2.14) should be generalized to 

[JW04] 

2
( ) ( )

1

n
n

N
n n nF

R T
n

N N
N=

=

∑

HH
H

,         (2.20) 
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where
( ) ( )n n
R TN N

n
×∈H . In each of cases 4-6, we have 2N = . However, since the 

Frobenius norms of 1H and 2H are essentially the same, both normalizations 

(2.14) and (2.20) yield approximately the same dimensionality and capacity 

results. In Fig. 2.5-7, we compare ED and EDOF to PID of 1H and 2H . In 

addition, we plot the capacity values for 1H and 2H on the right vertical axis. 
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Fig. 2.5  (50,50) and (100,100) MIMO systems 

 Case 4 B=PID=10  1 dB decreasing singular values distribution 



 33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25 30 35 40
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SNR [dB]

E
D

O
F,

 E
D

 (P
ID

=5
)

 

 

PID
EDOF(H1)
EDOF(H2)
ED(H1)
ED(H2)

0 5 10 15 20 25 30 35 40
0

50

100

150

C
ap

ac
ity

 [b
ps

/H
z]

 

 

Cap(H1)
Cap(H2)

Fig. 2.6  (10,10) and (20,20) MIMO systems 

 Case 5 B=PID=5  1 dB decreasing singular values distribution 
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Fig. 2.7  (4,4) and (8,8) MIMO systems 

 Case 6 B=PID=3  1 dB decreasing singular values distribution 
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As expected, EDOF tends to the matrix rank at high SNR and ED shows 

smaller variation compared to the PID. Again, within the 10-20 dB range, the 

metrics results are close to the PID. However, Fig. 2.5-7 indicate a discrepancy 

in the EDOF and ED values, which can be quite large for EDOF, due to the 

different sizes of 1H and 2H , even though their dimensionality is essentially the 

same. We also show the discrepancy of the capacity values for 1H and 2H on the 

right vertical axis. The matrix-size-dependent Frobenius normalization (2.14) or 

(2.20) can result in a wide discrepancy of the dimensionality result when 

evaluated through a power-dependent metric. Hence, cases 4-6 illustrate the 

merit of the proposed PID when it comes to the dimensionality evaluation for 

matrices of different sizes, as discussed in the previous section. 

 

2.4 Summary and Discussion 

In this chapter, we presented a well-defined metric for dimensionality 

comparison of multi-antenna systems. The power dependence is isolated and the 

PID depends only on the singular values distribution of the channel matrix. The 

PID was compared to 2 power-dependent metrics in the literature (EDOF and 

ED) showing that ED is closer to PID. Within the moderate SNR range (10-20 

dB), PID is in good agreement with both ED and EDOF. We have also shown 

that the matrix-size-dependent normalization can yield significant discrepancy 

in the dimensionality evaluation by using power-dependent metrics, including 

the capacity. Both power- and matrix-size- independence properties make the 

PID suitable for the MIMO-DOF evaluation. Besides, in adaptive scenarios, the 

PID provides one single optimization parameter that can be fed back to the 

transmitter rather than the full channel entries or its singular values. 

 

A recent power-independent metric, the ellipticity statistic (ES), has been 

proposed in the literature as a measure of multipath richness [SSEV06] rather 

than the DOF of MIMO systems. ES is defined as the ratio of the geometric and 
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arithmetic means of the non-zero 2{ }iσ . Therefore, 

1/ rank( )rank( )
2

1
rank( )

2

1

ES
/ rank( )

i
i

i
i

σ

σ

=

=

 
 
 =
∏

∑

HH

H

H
and 

has real positive values 1≤ , with equality only in the case of partial isometry. 

ES is supposed to measure the deviation from the optimum case of even-

distribution of the singular values. Nevertheless, ES is not suitable as a 

dimensionality measure, even after being multiplied by rank( )H , for 2 reasons: 

1. When there is at least one non-zero small singular value, the geometric 

mean significantly reduces the value of ES. 

2. ES is very sensitive to rank( )H  (i.e. matrix-size-dependent) even when 

the 2 different-size matrices have essentially the same dimensionality. 

In [SSEV06], the non-positive quantity 2rank( ) log (ES)⋅H  is regarded as the 

degradation of the mutual information compared to the optimum case (equi-

useable channels), again with the exception of the rank deficient cases. For 

these reasons, in addition to the fact that it was not intended to measure the 

DOF, we did not include the ES in the numerical comparison. 

 

It has been brought to our attention recently that another dimensionality 

metric can be defined, based on an entropy concept rather than the Schatten-

norm equivalence, which exhibits most of the properties mentioned herein. This 

interesting metric provides similar results to the PID and needs more 

investigation [Kem07]. In the subsequent chapters, we will extensively use the 

PID for the dimensionality evaluation of MIMO systems in deterministic 

scenarios. A complete chapter is dedicated to investigate the multi-polarization 

MIMO systems, using the PID, showing interesting results for tripole and 

hexapole systems. Another chapter is dedicated to the MIMO-DOF evaluation 

for a size-specific aperture (1D, 2D or 3D) including the multi-polarization 

effect and thus investigating the ultimate dimensionality using all the available 

spatial diversity. 
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Chapter 3 

Electromagnetic Modeling of 

Deterministic Indoor Multi-Antenna 

Systems 

We present in this chapter an electromagnetic modeling of deterministic indoor 

environments for MIMO systems. We begin by using the angular domain 

modeling. Then, we apply the high frequency approximation (ray modeling) and 

plane wavefront approximation (PWA). We follow this by exhaustively 

including the full available diversity (multi-polarization and space-diversity) in 

the model. We also discuss the image ray tracing (IRT) algorithm, which is 

employed to simulate the MIMO systems in lossy-walls rectangular 

environments. 

 

Next, we provide numerical results for some scenarios in a rectangular 

structure. We use the IRT algorithm in a lossy-walls environment to obtain the 

PID when using 1D and 2D arrays of various sizes. We also make a comparison 
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of the PID results with those obtained in a similar PEC wave-guide using modal 

analysis. 

 

3.1 Ray Modeling of Electromagnetic Propagation 

in MIMO Systems 

3.1.1 Symbols and Notation 

We state hereafter the symbols and notations used in the modeling for easy 

reference. 

• ( , )r t : (Rx,Tx) link indices superscripts respectively 

• ( , )m n : (Rx,Tx) elements (i.e. ports) indices subscripts respectively 

• D : denotes a dyad 

• M : boldface upper case denotes a matrix 

• ijm : denotes a scalar entry within M  

• [ ]ijm : matrix constructed from the entries ijm  

• v : boldface lower case denotes a vector (in the exception of the electric 

and magnetic field vectors) 

• [ ]kv : vector constructed from the components kv  

• ( )rΩ : Rx solid spherical direction ( ) ( )( , )r rθ ϕ  

• ( )tΩ : Tx solid spherical direction ( ) ( )( , )t tθ ϕ  

• ( ) ( ) ( )( , )rt r t
mn m nΩ ΩG : Generic environment dyad relating the thn Tx field 

radiated at ( )t
nΩ  to the thm Rx field received at ( )r

mΩ  

• ( )rt
mnlG : Environment ray-dyad relating the thn Tx field to the thm Rx field 

along the thl ray path 
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• ( ) ( , )rt r tΩ ΩG : array phase-centre-to-phase-centre (PC-to-PC) dyad 

obtained by applying the plane wavefront approximation (PWA). It 

relates the Tx field radiated at ( )tΩ  to the Rx field received at ( )rΩ . 

• ( )r
ma and ( )t

na : position vector of the thm  and thn  array element referred to 

the Rx/Tx-PC, respectively 

• ( )ˆ r
la and ( )ˆ t

la : unit vectors for the thl  ray direction of arrival/departure 

(DOA/DOD) referred to the Rx/Tx-PC, respectively, under the PWA 

• ˆθa  and ˆϕa : transverse directions unit vectors in the spherical coordinate 

system. 

• e : far-field pattern/polarization vector (also known as the effective 

length or height). For a transmitting antenna having a current inI at its 

terminals, the radiated far-field E  is related to e  by 
0

0 4

jk r

in
eE j I

r
ωµ

π

−

≡ − e . For a receiving antenna, the open-circuit voltage 

( )ocV  is related to the incident electric field 
( )i

E  by 
( )( ) iocV E= ⋅e . In 

spherical coordinates, the vector effective length has 2 transverse 

components such that ˆ ˆ( , ) ( , )e eθ θ ϕ ϕθ ϕ θ ϕ= +e a a  [Bal97, Mey00].  

• { }Ti and { }Hi : denotes the transpose and conjugate transpose operation, 

respectively 

• ( , )R TN N : number of (Rx,Tx) antennas respectively 

• y : Rx signal vector 1RN ×∈  

• x : Tx signal vector 1TN ×∈  

• η : iid spatially white Gaussian noise vector at Rx 1RN ×∈  

• H : narrowband channel matrix R TN N×∈  

• { }σ i : singular values of the matrix  
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3.1.2 Angular Domain Modeling of a Deterministic Environment 

As mentioned in chapter 1, the MIMO system model, in narrowband operation, 

is given by 

      = +y Hx η .           (3.1) 

Assuming a propagation environment with a continuum of solid angles at the 

transmit/receive ends, the channel matrix entry mnh  is expressed as [e.g. 

ZFDW00, MJW05] 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( , ) ( )
r t

m n

r t r T r rt r t t t
mn m n m m mn m n n nh d d

Ω Ω

= Ω Ω Ω ⋅ Ω Ω ⋅ Ω∫ ∫ e G e .   (3.2) 

Careful examination of (3.2) reveals 2 facts: 

1. We are using the angular domain (discussed in appendix C) to 

compute mnh . The general angular domain, which is also called the k-

domain, includes both the far-field traveling wave components (visible 

angular domain) and the near-field evanescent ones. 

2. The environment effect (defined to include the transmit/receive 

geometrical configuration as well as the scatterers/boundaries 

geometrical and electrical properties), is included in the environment 

dyad ( ) ( ) ( )( , )rt r t
mn m nΩ ΩG  for each transmit/receive angular direction. The 

transmit/receive antenna properties (pattern and polarization) are 

included in effective lengths ( ) ( )( )t t
n nΩe   and ( ) ( )( )r r

m mΩe  according to the 

transmit/receive angular direction. 

 

The objective is to formulate the dependence of mnh  on the site-specific 

environment. We will apply some assumptions and approximations in order to 

express (3.2) in a more useful form, which explicitly shows all the available 

space diversity for a given set-up. First, we assume far-field operation, such that 

the transmit and receive are sufficiently remote to neglect the near-field 

(evanescent components) effect. Then, we apply the high-frequency 

approximation [Bal89]. Consequently, the solid angles continuum is discretized 
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since the transmitted and received waves are modeled as ray tubes. Therefore, 

(3.2) can be expressed in a double summation form 

  ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( , ) ( )r t

m n

r T r rt r t t t
mn m m mn m n n nl l

h l l l l∞ ∞

= =
= ⋅ ⋅∑ ∑ e G e ,    (3.3) 

where ( )r
ml  and ( )t

nl  denote the receive/transmit ray order for the elements m  

and n , respectively. Moreover, we assume that each ray is deterministically 

known and traced. This modeling is the deterministic equivalent of the joint 

correlation of angle of arrival (AOA) and angle of departure (AOD) in the 

statistical counterpart (e.g. [XCV04]). In other words, by using the deterministic 

modeling (through ray tracing or other deterministic techniques e.g. modal 

analysis), there is no need (and it is not correct) to include a transmit/receive 

correlation matrix, which would have been required if we had used a stochastic 

“environmentless” channel matrix. The deterministic ray assumption further 

simplifies (3.3) to only one summation, having l  as the ray index 

      ( ) ( ) ( )

1

r T rt t
mn ml mnl nl

l
h

∞

=

= ⋅ ⋅∑e G e .        (3.4) 

 

Next, we apply the plane wavefront approximation (PWA) at both 

transmit/receive ends [JI05]. Accordingly, the plane wave modeling takes place 

only between the transmit/receive PCs, independent of ( , )m n . In order to model 

the transmit/receive array geometry, we add a phase factor based on the PWA. 

Thus, the environment ray-dyad ( )rt
mnlG  can be expressed as 

   ( ) ( ) ( ) ( ) ( ) ( )
0 ˆ ˆexp[ ( )]rt rt r r t t

mnl l m l n ljk= ⋅ + ⋅G G a a a a ,      (3.5) 

where ( )rt
lG represents the environment PC-to-PC ray-dyad for the thl ray 

and 0k is the free space wave number. The array phase delay has the same sign 

at both transmit/receive ends since, by reciprocity, both transmit/receive arrays 

are considered operating in the transmit mode. 

 

From (3.4) and (3.5), we have 
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  ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1

ˆ ˆexp[ ( )]r T rt t r r t t
mn ml l nl m l n l

l
h jk

∞

=

= ⋅ ⋅ ⋅ + ⋅∑e G e a a a a .    (3.6) 

Moreover, for each ray, the environment PC-to-PC dyad ( )rt
lG can be separated 

into a free space spherical propagation factor 0exp( )l ljk R R− , where lR is the 

distance traveled by the thl ray, and a dyad ( )rt
lD encompassing the other 

propagation mechanisms (reflection, transmission, diffraction) so that 

     ( ) ( )0exp( )rt rtl
l l

l

jk R
R
−=G D ,        (3.7) 

and accordingly, from (3.6) and (3.7), 
( ) ( ) ( ) ( )

( ) ( ) ( ) 0

1

ˆ ˆexp[ ( )]r r t t
r T rt t m l n l l

mn ml l nl
l l

jk Rh
R

∞
−

=

⋅ + ⋅= ⋅ ⋅∑ a a a ae D e .    (3.8) 

 

From (3.8), we can readily link the following propagation effects with each 

specific parameter as follows: 

• Environment electrical properties (scattering processes including 

material properties and geometrical setup): ( )rt
lD  

• Environment geometry and set-up: any parameter with the subscript 

l (related to each ray direction), namely, ( )rt
lD , ( )r

mle , ( )t
nle , ( )ˆ r

la , ( )ˆ t
la and lR  

• Space diversity: ( )r
ma  and ( )t

na  

• Pattern/Polarization diversity: ( )r
mle  and ( )t

nle  

 

The environment propagation model in (3.8) can be cast in a 3D matrix form 

such that 
(3D) [ ]mnlh=H              (3.9a) 

( ) ( ) ( ) ( )
( ) ( ) ( ) 0 ˆ ˆexp[ ( )]r r t t
r T rt t m l n l l

mnl ml l nl
l

jk Rh
R

−⋅ + ⋅= ⋅ ⋅ a a a ae D e .       (3.9b) 

H  can be obtained from (3D)H  through the coherent summation over the 

l index (narrowband channel) 
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1
l

l

∞

=

=∑H H            (3.10a) 

[ ]l mn lh=H ,           (3.10b) 

where each matrix “page” R TN N
l

×∈H  models a one-ray propagation channel 

for the thl  ray path. 

 

3.1.3 Identical Radiating Elements: Multi-Keyhole Matrix Form 

From (3.9b), we re-write mnlh  in a parametric form 

       ( ) ( ) ( ) 0exp( )rt r t l
mnl mnl ml nl

l

jk Rh p v v
R
−=        (3.11a) 

( ) ( ) ( ) ( )rt r T rt t
mnl ml l nlp = ⋅ ⋅e D e           (3.11b) 

      ( ) ( ) ( )
0 ˆexp[ ]r r r

ml m lv jk= ⋅a a          (3.11c) 

      ( ) ( ) ( )
0 ˆexp[ ]t t t

nl n lv jk= ⋅a a .         (3.11d) 

In (3.11) ( )rt
mnlp  models the pattern/polarization diversity as well as the 

environment propagation. The parameters ( )r
mlv  and ( )t

nlv  model the 

receive/transmit space-diversity per ray. It is interesting to note that, for each 

ray, ( )r
mlv  and ( )t

nlv  have no magnitude effect (only a phase retardation effect). 

However, this phase-only characteristic is powerful enough to account for a 

major source of the MIMO diversity. 

 

The deterministic model developed thus far is general for any number of 

transmit/receive elements, any pattern/polarization per element and any 

environment subject to the previously mentioned assumptions (far-field, high-

frequency and PWA). Our interest in this research is to investigate the EM-

dimensionality based on EM-vectorial sampling. Therefore, we make one more 

assumption: all the transmit elements are identical; and the same goes for the 

receive elements. In this sub-section we consider arrays of identical elements 



 43

having the same polarization. In the next sub-section, we consider arrays of 

identical elements, which exhaustively include all polarizations. 

 

According to the identical-element same-polarization assumption, 

the ( , )m n indices are omitted from ( )r
mle  , ( )t

nle  and ( )rt
mnlp  in (3.11). Moreover, we 

define the receive and transmit phase shift vectors, ( )r
lv and ( )t

lv , respectively, 

such that 

         ( ) ( )[ ]r r
l m lv=v  

         ( ) ( )[ ]t t
l n lv=v .           (3.12) 

Hence, (3.10) is expressed as 

     ( ) ( ) ( )0

1

exp( )rt r t Tl
l l l

l l

jk Rp
R

∞

=

−=∑H v v .         (3.13) 

 

For each term of (3.13), ( ) ( )r t T
l lv v  forms a matrix of rank 1, which is known 

in the literature as the keyhole dyad effect having only 1 DOF (e.g. [LCV01, 

CFGV02, ATM06]). Therefore, (3.13) suggests that we can model the MIMO 

channel matrix, when there are identical elements at each end, in the multi-

keyhole form which can be re-written as a product of 3 matrices [LL06a, 

LL06b] 
( ) ( ) ( )r rt t T=H H A H ,          (3.14a) 

where, for L  rays, the matrices ( ) RN Lr ×∈H , ( ) TN Lt ×∈H  and  

( )( ) ( ) ( )
1diag [ ... ]rt rt rt L L

Lα α ×≡ ∈A  are constructed such that 

   ( ) ( ) ( )
1 ...r r r

L =  H v v               (3.14b) 

   ( ) ( ) ( )
1 ...t t t

L =  H v v                (3.14c) 

   

( ) ( ) 0

( ) ( ) ( ) 0

exp( )

exp( ) {1,2,..., }

rt rt l
l l

l

r T rt t l
l l l

l

jk Rp
R

jk R l L
R

α −=

−= ⋅ ⋅ ∈e D e
     (3.14d) 
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In order to appreciate the importance of the form (3.14a) for MIMO-

dimensionality evaluation, we have recourse to the PID matrix product 

inequality in chapter 2. From (2.8), we know that the upper bound 

dimensionality (PID) of a matrix product is the smallest dimensionality of each 

individual matrix (mostly true for large PID values).  Consequently, we have 
( ) ( ) ( )PID( ) min{PID( ),PID( ),PID( )}r rt t≤H H A H .        (3.15) 

( )PID( )rH  and ( )PID( )tH  are governed by the aperture size (1D, 2D or 3D) and 

orientation at the receive/transmit ends, respectively, as will be discussed in 

chapter 5. On the other hand, ( )PID( )rtA  is governed by the multipath richness 

of the environment, which depends on the number of rays ( L ) and the 

significance of their contribution based on the value of ( )rt
lα . The latter depends 

on the propagation mechanism, the setup geometry and the pattern/polarization 

of the radiation elements. Therefore, for a highly reflective environment such as 

the PEC corridor, ( )| |rt
lα is large over many rays leading to a large value of 

( )PID( )rtA  and the global dimensionality is bounded by 
( ) ( )min{PID( ),PID( )}r tH H . On the other hand, for poor multipath (e.g. keyhole) 

environments, we get few significant values of ( )| |rt
lα , leading to a small global 

dimensionality bounded by ( )PID( )rtA . Also, it is obvious that a ray of a higher 

reflection order in lossy environments suffers from a large decay due to the 

combined effect of longer traveled distance and the reflection loss (many 

bounces). 

 

3.1.4 Exhaustive Identical Polarization: Kronecker Product 

Form 

As a final step to exhaustively include all the polarization diversity in the 

identical-element model (3.13), we construct the polarization channel matrix 
( ) 6 6rt
l

×∈P  for the thl ray. ( )rt
lP  models the PC-to-PC channel, per ray, of a 

hexapole MIMO system (collocated electric and magnetic polarized point 
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radiators making 6 independent ports at the transmit/receive phase-centres) 

[AMC01, SJW04], which will be discussed in mpre details in chapter 4. ( )rt
lP  is 

constructed such that 
( ) ( )[ ]rt rt
l ij lp=P ,            (3.16) 

 

where each entry ( )rt
ijlp characterizes the PC-to-PC contribution of the thl ray path 

between the thj polarized transmit to the thi polarized receive infinitesimal dipole. 

According to (3.11b), ( )rt
ijlp  is given by 

( ) ( ) ( ) ( )rt r T rt t
ijl il l jlp = ⋅ ⋅e D e .           (3.17) 

 

The indices j and i take the values of {1,2,3} to denote an electric dipole 

and {4,5,6} to denote a magnetic dipole excitation/response, respectively 

[SJW04]. Based on the ray-polarization matrix ( )rt
lP , the full available diversity 

(pattern, polarization and space) is modeled for each matrix page lH  by the 

Kronecker product 

   ( ) ( ) ( ) 0exp( )rt r t T l
l l l l

l

jk R
R
−= ⊗ ⊗H P v v .          (3.18) 

 

It is interesting to note that all the entries ( )rt
ijlp in (3.17) depend on the same 

ray-environment dyad ( )rt
lD , which is a direct consequence of the collocation of 

the hexapole. From a simulation perspective, this common dependence is very 

useful, because the ray tracing has to be performed only once (evaluating ( )rt
lD ) 

for the 36 entries of the ray-hexapole matrix ( )rt
lP . Then, ( )r

ile  and ( )t
jle  are 

evaluated in situ at the receive/transmit ends and take care of the corresponding 

pattern/polarization characteristics, independently of the propagation 

environment. 
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An important fact has to be stated regarding the rank and dimensionality 

of lH  in (3.18). It is well-known that any far-field electromagnetic wave has a 

polarization diversity of 2 (commonly known as the vertical and horizontal 

polarization in free space, see appendix C). Hence, ( )rank( ) 2rt
l =P  even when 

using a hexapole or a tripole system [SJW04]. This far-field rank deficiency 

results from the algebraic dependence between the electric and magnetic fields 

as well as the absence of the radial field components, which is discussed in 

more details in chapter 4. Consequently, ( )PID( ) 2rt
l ≤P , where the equality 

holds if and only if the 2 transverse electric field components at the receive PC 

have the same magnitude after all the scattering processes encountered during 

the propagation. On the other hand, the keyhole dyad ( ) ( )r t T
l l⊗v v forms a matrix 

of rank 1 as was previously stated. From the Kronecker product property of the 

PID in chapter 2 (2.6), we readily get 
( ) ( ) ( )PID( ) 2rt r t T
l l l⊗ ⊗ ≤P v v ,        (3.19a) 

and therefore, 

        PID( ) 2l ≤H .          (3.19b) 

 

In spite of the rank-deficiency of each individual component lH , the 

coherent sum (3.10a) forming H  has, in general, a higher rank. This can be 

shown through singular values inequalities. Let 1H and 2H be 2 matrices of 

size R TN N× , where min{ , }R TK N N= . Then, it is shown in [HJ94 page 178] 

that 

1 1 2 1 2{ } { } { }

for 1 , and 1
i j i j

i j K i j K

σ σ σ+ − + ≤ +

≤ ≤ + ≤ +

H H H H
.         (3.20) 

Applying (3.20) on the 2 environment/polarization matrices ( )
1

rtP and ( )
2

rtP of rank 

2, we get the following inequality for the third singular value of their sum 

{ }( ) ( ) ( ) ( ) ( ) ( )
3 1 2 1 1 1 2 2 1 2 2{ } min { }, { }, { } { }rt rt rt rt rt rtσ σ σ σ σ+ ≤ +P P P P P P .       (3.21) 
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Hence, (3.21) shows that there is a possibility, although it is not guaranteed, that 

we get a non-zero third singular value of the sum. We list 2 counter-examples 

showing that the sum of 2 rank-deficient matrices can result in another rank-

deficient matrix possibly of a lower rank. 

• Suppose 2 1γ=A A , where 1A is of rank 2 andγ is a constant. Clearly, 

3 1 2{ } 0σ + =A A and the sum is a rank-deficient matrix of the same rank. 

• Consider the 2 diagonal matrices 1 diag( , ,0,0,0,0)a b=A  and 

2 diag( , ,0,0,0,0)a b= −A , both of rank 2. Their summation will result in 

a matrix of rank 1. This can model a case when a destructive 

interference is only affecting one of the transverse field components. 

 However, the worst case possibilities mentioned above are not likely to occur 

in a propagation environment, particularly when we are summing a large 

number of matrices of comparable Frobenius norms. Typically, we expect a 

higher rank for
1

l
l

∞

=
=∑H H . 

 

3.2 The Environment Ray-Dyad in a Lossy-Wall 

Rectangular Environment 

We provide in this section the propagation model in a rectangular lossy 

structure based on Image Ray Tracing (IRT). Starting from (3.7), we will 

expand ( )rt
lG  in the case of a 3D rectangular environment having lossy walls. 

The propagation mechanism considered, other than direct Line-Of-Sight (LOS) 

rays, is the off-the-walls reflections. Diffraction at corners and wall edges are 

not considered. The propagation prediction approach is Image Ray Tracing 

(IRT). For the thl  ray path, there is a total of ( )K l  reflections taking place 

between the transmit and receive ends. The following notations concern the thl  

ray path, so we omit the subscript l  for notational convenience: 
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• ( , )− + : superscripts to denote the vector before and after the 
thk reflection, respectively 

• ( , )k k
− +e e : electric field vector (2 transverse components) before and after 

the thk reflection, respectively 

• ( , )k k⊥ : subscripts denoting the 2 components (perpendicular and 

parallel) to the plane of incidence at the thk reflection, respectively 

• ||( , )
k k

e e⊥ : the perpendicular and parallel electric field components to the 

plane of incidence at the thk reflection, respectively 

• ||( , )
k k⊥Γ Γ : the perpendicular and parallel plane reflection coefficients at 

the thk reflection, respectively 

• ˆ ˆ( , )
k k

− −
⊥a a : the perpendicular and parallel unit vectors, respectively, 

before the thk reflection 

• ˆ ˆ( , )
k k

+ +
⊥a a : the perpendicular and parallel unit vectors, respectively, after 

the thk reflection 

• kD : thk 2 2×  reflection dyad  

 

The thk  reflection dyad is given by 

      ||ˆ ˆ ˆ ˆ
k k k k k kk

+ − + −
⊥ ⊥ ⊥= Γ +ΓD a a a a ,          (3.22) 

and the transverse electric field vectors along the ray path before and after the 
thk reflection are related by 

       k k k
+ −= ⋅e D e .             (3.23) 

 

Over the ray segment between the 2 consecutive reflections, k and 1k + , the 

electric fields k
+e  and 1k

−
+e  differ only by a spherical wave propagation factor, 

Therefore, 

     0,
1 0 , 1

0, 1

exp( ) k
k k k k

k

R
jk R

R
− +
+ +

+

= −e e ,          (3.24) 
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where , 1k kR +  is the traveled distance between the 2 reflections and 0,kR  is the 

traveled distance between the transmit phase-centre and the thk reflection point. 

Through recursive combination of (3.23) and (3.24) by applying left dyad 

multiplication, the environment PC-to-PC ray-dyad ( )rt
lG in (3.7) is readily 

obtained 

  

( )

( )
( ) 0

1

( )
0

||
1

exp( )

exp( ) ˆ ˆ ˆ ˆ
kl kl kl kl kl kl

K l
rt l

l kl
kl

K l
l

kl

jk R
R
jk R

R

=

+ − + −
⊥ ⊥ ⊥

=

−=

−= Γ +Γ

∏

∏

G D

a a a a
,        (3.25) 

where lR  is the total PC-to-PC traveled distance along the thl  ray path. Thus, the 

first L pages lH of sufficiently strong Frobenius norm will determine, to a good 

approximation, the ultimate channel matrix H such that 

        
1

L

l
l =

≈∑H H .            (3.26) 

 

For computational consideration in the IRT simulation, we make a fast ray-

ranking based on the traveled distance and the number of reflections per ray: a 

shorter traveled distance and a smaller number of reflections designate a more 

significant ray. We do not consider the pattern/polarization mismatch for the 

sake of time-efficiency and the ranking is performed prior to the actual ray 

tracing (it depends only on the room geometry and transmit/receive setup). Fig. 

3.1 depicts one ray traced in a rectangular structure. In Fig. 3.2, the flow chart 

of the recursive reflection tracing algorithm is described. More details regarding 

the IRT used in the simulation of lossy rectangular structures can be found in 

[Eln03]. 
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Fig. 3.1 [Eln03] 

Image theory in a 3D rectangular structure. 
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   Room dimensions 

  Wall properties 

 Tx/Rx locations 

Tx image index under investigation 

Rec_Tx_position = Tx_image_position 

Rec_Rx_position = Rx_position 

Find crossing point of line joining Rec_Tx to Rec_Rx 

with the appropriate wall 

All the 3 indices of 

Rec_Tx are zeros? 
Yes End

No

Retrieve the hit wall parameters 

Determine the angle of incidence 

Record the reflection and transmission coefficients 

Update the indices for new Rec_Tx image: 

According to the hit wall, one index should have a sign 

inversion and its magnitude decreased by 1 

Update the position for new Rec_Rx: 

Rec_Rx = wall crossing point 

Fig. 3.2 [Eln03] 

Algorithm flow chart for the recursive reflection tracing in a rectangular structure. 
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3.3 Comparison of IRT and Modal Analysis for 

MIMO-DOF Evaluation 

The objective of this section is to validate the developed IRT algorithm for a 

rectangular structure by using the PID as a benchmark for the deterministic 

scenario simulated. We apply the IRT algorithm to evaluate the PID of size-

specific (fixed aperture size at the transmit/receive ends) multi-polarization 

MIMO systems in a long corridor of lossy-walls. We make another PID 

evaluation, using modal analysis, for the same MIMO system in a comparable 

open waveguide of perfect electric conductor (PEC) walls. 

 

The PEC canonical structure is subject to a straightforward modal analysis 

[Col90, Eom04], which is described in appendix B, where the exact field (multi-

mode Green’s function) is found in response to multi-pole point-source 

excitations. The PEC corridor should not be considered a LOS scenario, but 

rather a highly multipath-rich environment due to the lossless reflection 

encountered by each ray as discussed in sub-section 3.1.3. Certainly, a PEC 

rectangular enclosure (cavity) would have experienced ideal multipath richness 

[LM06] and is more geometrically comparable to the lossy-wall corridor; 

however, the former suffers from computational complexity due to 

resonance/evanescence situations as pointed out in appendix B. This is the 

reason of our choice of an open PEC waveguide for comparison since it is more 

computationally friendly in the modal analysis. 

 

As shown in Fig. 3.1, we denote the axis along the corridor length, width 

and height by (L,W,H), respectively. The lossy-wall rectangular corridor 

dimensions are100 4 3× ×  m along (L,W,H), respectively. The transmit and 

receive phase-centres are located at (50, 2, 2.8) and (75, 1.5, 1.7) along 

(L,W,H), respectively. The walls thickness is 15 cm with a dielectric constant of 

4. The ceiling and floor thicknesses are 30 cm with a dielectric constant of 6. 
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Similarly, the PEC waveguide dimensions are 4 3×  m along (W,H), 

respectively; the transmit and receive PCs are located at (2, 2.8) and (1.5, 1.7) 

along (W,H), respectively and are separated 25 m along the L-dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The operating frequency is 2.4123 GHz, where such value is chosen to 

avoid numerical complexity in case any mode happens to be exactly operating 

at one of the cut-off frequencies. Under such operating conditions (frequency 

and corridor dimensions), we have multi-mode propagation through the PEC 

guide (precisely 2495 propagating modes), confirming the multipath richness of 

the environment. Moreover, we set the system to operate in far-field 

(transmit/receive separation large enough in comparison withλ ) and thus, the 

evanescent modes can be safely discarded. 

 

As shown in Fig. 3.3, the transmit and receive ends have fixed aperture 

sizes. We depict the 1D fixed aperture size of TxD and RxD at the transmit and 

receive ends, respectively. Within the array length, a number of tripoles (tri-

polarized electric point radiators) is deployed equidistantly and the number of 

Fig. 3.3 

Size-specific 1D MIMO system. The array is oriented along L-L. At each spatial 

point, there is a collocated tripole (3 physical ports). 

L 

WH 

Tx 

DTx

Rx 

DRx



 54

the physical ports is the triple of the number of the tripoles. The motivation of 

choosing tripoles rather than a simple unipolarized dipole in the comparison is 

that we want to consider the full 3D multipath richness. Under the Maxwellian 

framework, the isotropic radiator does not exist [SSWB03, SBY+06] because of 

the endfire radiation characteristic even with an infinitesimal dipole. Therefore, 

employing tripoles neutralize the effect of the endfire null of a unipolarized 

pattern without deviating from the rigorous Maxwellian framework by assuming 

an isotropic radiator. 

 

In modal analysis, the transmit polarized point source has its response as 

given in appendix B whereas at the receive point, it acts as an ideal field 

sampler according to its specific polarization. In IRT, the transmit and receive 

antennas, both in the transmit mode of operation, are modeled through the far-

field normalized effective length (after omitting the common factors and 

assuming the same current excitation). Accordingly, for a point electric current 

source, polarized in the ˆξa direction, the normalized effective length is given by 

the following decomposition over ˆθa  and ˆϕa   

      ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )ξ θ θ ξ ϕ ϕ= − ⋅ − ⋅e a a a a a a .          (3.27) 

 

We plot the PID results versus the number of rays for 3 orientations of the 

1D transmit-receive arrays along L-L, W-W and H-H in Fig. 3.4-6, respectively. 

For each orientation, we use different array lengths within which a number of 

tripoles is packed equidistantly. The number of tripoles within each array is 

chosen to be the minimum after which the PID tends to saturate (more details 

about this space-constrained DOF are discussed in chapter 5). In the lossy-wall 

scenario, we repeat the simulations for various loss-tangent (LT) values of the 

walls ranging from “transparent” lossy-dielectric ( 2LT 10−∼ ) to “reflective” 

lossy-conductor ( 2LT 10∼ ). The PID in the IRT simulations is evaluated using 

different number of rays, ordered according to their contribution significance as 

previously discussed, and their number ranges from 500 to 410 rays. 
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In general, there is a common trend of saturation of the PID value as the 

number of the rays increases. For large LT, more rays are needed (several 

thousands) to reach some oscillatory saturation, whereas in the small LT cases, 

few hundreds rays are sufficient [ESC04a]. Also, as intuitively expected, the 

more reflective the walls become (larger LT), the higher the PID is achieved 

because of the more available significant rays. Moreover, we notice that for the 

reflective walls scenarios ( 2LT 10∼ ), the PID results of the IRT simulation are 

approaching those obtained through rigorous modal solution in the PEC open 

waveguide. The discrepancy between the latter results increases in the L-L 

orientation, where the dimensionality is already low because of the end-fire 

array configuration [ATKM03, LDBD03, ESC05]. The discrepancy between the 

results ( 2LT 10∼  and PEC) scenarios is attributed to the following reasons: 

1. Although the 2 environments are geometrically similar, they are not 

identical: the wave-guide is open-ended, whereas the corridor is a 

rectangular enclosure (providing 2 more reflection planes for the rays, 

albeit of limited impact due to the large separation). Also, the wave-

guide has PEC lossless walls while those in the corridor are lossy 

conductors resulting in a power loss at each reflection. 

2. The IRT simulation is based on plane wave-front approximation, which 

was employed to tremendously reduce the computational time in 

comparison to the more exact spherical wave-front element-to-element 

ray tracing. 

3. When the array is too close to the wall (e.g. the transmit in the H-H 

orientation), the far field assumption of the IRT is breached. 

4. When the scenario is inherently rank-deficient (such as with the L-L 

orientation), the dimensionality is small per se and the channel matrix 

construction, based on IRT, is more sensitive to any applied 

approximation. 

5. The diffraction mechanism is neglected in the implemented IRT. This 

means that the diffracted rays off the corridor corners are not considered. 
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In Fig. 3.7-8, we plot the results for 2D arrays at the transmit/receive ends, 

where the PID is larger in comparison with the 1D cases. The results of the 

PEC-waveguide and the reflective walls case are closer, in the exception of Fig. 

3.8b where the PID is higher in the lossy reflective walls scenario. This latter 

result occurred because the 2D square array at the transmit, which is oriented 

along WH-WH, has its edge very close to the ceiling which makes some 

deviation from the far-field approximation assumption. The trend of PID 

saturation is similar to that of the 1D cases regarding the required number of 

rays. 

 

3.4 Summary 

In this chapter, we presented the electromagnetic narrowband modeling of the 

MIMO systems in deterministic environments including all sources of diversity 

(space, pattern and polarization). The modeling is based on the high-frequency 

approximation (ray-tracing) as well as the PWA. We applied this model through 

the IRT in rectangular structures. We made a MIMO-PID comparison between 

the IRT simulations and the results of a similar PEC open wave-guide structure 

using rigorous modal analysis with multi-polarized point sources. The results 

are generally comparable in the case of reflective lossy-walls (large LT), where 

some thousands of rays are needed to reach a saturated result. In the case of 

transparent walls (small LT), few hundreds of rays are sufficient to provide a 

stable result. 

 

In the next chapter, we investigate the multi-polarization effect as the sole 

source of diversity in MIMO systems, based on the modeling of this chaper. 

This includes tripoles and hexapoles in PEC and lossy-wall environments. The 

near-field effect in free-space will also be discussed. 
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Fig. 3.4 

IRT and modal solution comparison of multi-polarization size-specific 1D MIMO system 

along L-L. Array length (in terms of free-space wavelength) (a) 1.5  (b) 3  (c)  7. Number 

of tripoles (a) 3  (b) 5  (c) 10.  
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Fig. 3.5 

IRT and modal solution comparison of multi-polarization size-specific 1D MIMO system 

along W-W. Array length (in terms of free-space wavelength) (a) 1.5  (b) 3  (c)  7.  

Number of tripoles (a) 5  (b) 9  (c) 20.  
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Fig. 3.6 

IRT and modal solution comparison of multi-polarization size-specific 1D MIMO system 

along H-H. Array length (in terms of free-space wavelength) (a) 1.5  (b) 3. Number of 

tripoles (a) 5  (b) 9.  
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Fig. 3.7 

IRT and modal solution comparison of multi-polarization size-specific 2D MIMO system 

of aperture size 21.5 1.5λ× , 5 5× tripoles per aperture and oriented as 

(a) LH-LH  (b) WH-WH (c) WL-WL. 
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Fig. 3.8 

IRT and modal solution comparison of multi-polarization size-specific 2D MIMO system 

of aperture size 23 3λ× , 8 8× tripoles per aperture and oriented as 

(a) LH-LH  (b) WH-WH (c) WL-WL. 
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Chapter 4 

Multi-Polarization Dimensionality 

As a first application of the developed PID metric, this chapter is devoted to 

measure the DOF gain (i.e. creation of new parallel sub-channels) through a 

collocated multi-polarization MIMO system. “Multi-polarization” designates 

transmit/receive collocated configurations, namely, tripoles (3 mutually-

orthogonal collocated point sources forming 3 independent ports), hexapoles (2 

coincident dual tripoles i.e. electric and magnetic as described in [AMC01, 

SJW04] ), or further combined dual polarization cases. 

 

In the next chapter, it will be shown that the DOF problem of a size-specific 

MIMO aperture is essentially a classical problem of spatial (1D, 2D or 3D) 

sampling under bandwidth constraints of the spatial frequency. On the contrary, 

the problem tackled in this chapter is eventually a single-point sampling 

(through infinitesimal electric/magnetic dipoles) of a vector-field which 

happens to experience 2 types of spatial orthogonality: vectorial and (scalar) 

functional [SJW04]. The former is the essence of the polarization diversity 

whereas one form of the latter is the pattern diversity in the far-field modeling. 
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Based on deterministic simulations, we will show that the vectorial and 

functional orthogonality are not necessarily independent due to the inevitable 

coupling between the electric and magnetic field components. Consequently, the 

claim of hexapole sixfold dimensionality gain [AMC01, SJW04] under the 

statistical channel assumption is not practically guaranteed. 

 

We attempt to provide a clear answer to the following controversial question 

raised in the literature [PM00, AMC01, SJW04, PBT05]: can each of the 

electric and magnetic fields carry an independent piece of information between 

2 radiating structures and thus doubling the one-field communication 

dimensions? The challenge in this question lies in the fact that the 2 fields are 

not simultaneously arbitrary since they are related by Maxwell’s equations. In 

this chapter, we will show, through a universal model sustained by numerical 

results, that the key point of the answer is the 2 inter-winded orthogonality 

types, which are environment-specific. 

 

The novelty claimed throughout this chapter is the deterministic modeling of 

the multi-polarization problem based on the Maxwellian framework [SSWB03, 

SBY+06], using the well-defined dimensionality metric developed in chapter 2 

[ESC06b, ESC07a]. We begin by setting a generic framework for multi-

polarization scenarios using a 6 6× polarization matrix based on Maxwell’s 

equations. A canonical free-space (near and far field) scenario is then 

thoroughly investigated showing a particular transmit/receive separation at 

which full-rank dimensionality is achievable using tripoles. Subsequently, we 

show multi-polarization results in a PEC corridor scenario using rigorous modal 

analysis followed by a transparent lossy-wall (small LT) corridor scenario using 

the IRT algorithm presented in chapter 3. We conclude by showing a histogram 

of the multi-polarization dimensionality results of the simulated scenarios. 
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4.1 Universal Multi-Polarization Modeling 

The objective of this chapter is to investigate the DOF gain by employing the 

polarization diversity in multi-antenna systems while deliberately excluding the 

space diversity. This is the reason of our choice of the infinitesimal (Hertzian) 

dipole as a perfect multi-polarization “field-probe”, having a zero-length and 

detecting the vectorial nature of the electromagnetic fields. Nevertheless, we 

must admit that the polarization diversity is inseparable of the pattern diversity, 

which ultimately makes the multi-polarization zero-length MIMO system 

founded on the pattern/polarization diversity. In fact, this double-diversity is the 

base of the 2 aforementioned types of collocated spatial orthogonality (vectorial 

and functional) in multi-polarization MIMO systems. 

 

The channel under investigation is described by a 6 6× polarization matrix 
( )hexaH  [SJW04]. For or {1,2,3}m n = , the element mnh represents an electrical 

receive/transmit, where (1,2,3) denote indices for the 3 mutually orthogonal 

coordinates. Similarly, for or {4,5,6}m n = , mnh represents a magnetic 

receive/transmit, where (4,5,6) denote indices for the same 3 mutually 

orthogonal coordinates, respectively. Thus, the electric and magnetic tripoles, 

which form the hexapole, are coincident at the transmit/receive points. We 

assume narrowband operation of the system. Moreover, the following 

source/detector normalization assumptions are made: 

1. The electric ( )EI l  and magnetic ( )MI l  dipole moments are normalized 

such that 0( ) ( )M EI l I lη= , where 0 120η π=  ohm is the free-space 

impedance. Therefore, after normalizing the electric and magnetic dipole 

moments value to unity, any transmit magnetic field component is 

multiplied by 0η  in the following analysis. 
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2. The received signal, either by an electric or magnetic infinitesimal 

dipole, is detected as a proportional voltage. Therefore, any receive 

magnetic field component is multiplied by 0η in the following analysis. 

 

From the duality between the electric and magnetic fields [Har61], the 

hexapole channel matrix ( )hexaH is expressed as 

( )hexa − 
=  
 

C D
H

D C
,         (4.1) 

where, for {1,2,3}n = , the column vectors [ ]nc i  and [ ]nd i  of the 3 3×  sub-

matricesC and D represent the receive electric and magnetic fields response, 

respectively, to the thn polarized transmit electrical excitation. Furthermore, at 

the receive point, the source-free Maxwell’s curl equations must be satisfied 

        0E j Hωµ∇× = −             (4.2a) 

        0H j Eωε∇× = .            (4.2b) 

Therefore, from the aforementioned normalization assumptions and (4.2a), the 

sub-matricesC and D are related by 

        0
0 0

j
j k

η
ωµ

∇×= = ∇×
−

CD C ,      (4.3) 

where∇×C is a dyadic curl (operating on the column vectors ofC ) and 0k is the 

free space wave number. Accordingly, ( )hexaH is expressed as 

      0( )

0

hexa

j
k

j
k

 − ∇× 
 =
 

∇× 
 

C C
H

C C
.      (4.4) 

Equation (4.4) is universal at any source-free point in any environment (i.e. 

under any boundary conditions) as long as we are operating the system in 

narrowband and the environment electrical/magnetic properties are 

deterministic at any one time. At any point in space where there is an impressed 

source or medium inhomogeneity (e.g. at the boundaries), (4.4) is not true. 
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Now, we return back to the question regarding the usage of E  and H  as 

independent information carriers. From (4.4), given the fact that the elements of 
( )hexaH  are not all independent, can we really achieve 6 DOF? Stated in another 

way, given that E and H are not simultaneously arbitrary, according to 

Maxwell’s equations, is it possible that we achieve more than 3 DOF by using a 

hexapole system? The answer was positive in [AMC01, SJW04] and negative in 

[PM00, PBT05]. The deterministic results of this chapter provide evidence that 

by employing a hexapole system, we can have more than 3 DOF if the 

environment permits, however, the maximum 6 DOF cannot be attained. So the 

core of the answer is how to exploit the 2 naturally-available orthogonality 

types in the deterministic environment. 

 

The matrix rank becomes deficient when there exists a linear algebraic 

dependence between the matrix rows or columns. In (4.4), there is a linear 

dependence, however, it is differential rather than algebraic and has therefore no 

clear impact on the matrix rank. The environment properties, manifested 

through the boundary conditions, set the explicit algebraic dependence 

betweenC and D in (4.1). We will see in the upcoming case studies that 

whenever this differential dependence approximates a linear algebraic one 

(single plane-wave or spherical ray), only then, the rank becomes deficient. 

 

The vectorial orthogonality is exhibited through the 3 components of one 

vector field (either electric E or magnetic H but not both) along the 3 mutually 

orthogonal coordinates. Hence, the vectorial orthogonality is also known as the 

polarization diversity. If the dual fields ( E and H ) were independent 

(uncoupled), a pair of infinitesimal dual tripoles (electric and magnetic) would 

be sufficient to allow up to 6 DOF through dual vectorial orthogonality. 

However, the dual fields are indeed coupled; otherwise, the electromagnetic 

propagation would not exist. Therefore, in order to employ the DOF of the dual 

field, it is mandatory to have another sort of diversity, which is accomplished 
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through the so-called Field Expansion Diversity (FED), also known as the 

functional orthogonality or, in the far-field analysis, pattern diversity. The terms 

functional orthogonality and FED will be used interchangeably. 

 

The FED is best understood when the received field is expressed as an 

integration (or summation in discrete analysis) of some field expansion 

components such as in the following situations: 

• The spherical propagating multipath rays in the case of high-frequency 

approximation (IRT). We emphasize that in this case, each ray should be 

considered inseparably of the transmit/receive pattern-weighting 

[SJW04]. This is the core of the EM modeling of chapter 3. 

• In general, the plane-wave expansion components of the received field 

[Cle66]. In appendix C, we present a summary of the plane-wave 

expansion. 

• The modes in a PEC waveguide, which can straightforwardly be further 

decomposed into a summation of plane waves. 

 

As explained in chapter 3, the thl  expansion matrix-component ( )hexa
lH  is 

individually rank-deficient (of rank 2 as in the case of plane-wave or ray 

multipath modeling). Nevertheless, the integration (summation) of all the 

expansion components can produce a higher rank matrix ( ) ( )hexa hexa
l

l
=∑H H  of 

better DOF [AMC01, SJW04]. Consequently, a rank-deficient integrand with 

respect to the continuous angular domain [PBT05] (or a matrix-component in 

the discrete angular case) in the expansion is not automatically a bottle-neck for 

the DOF of the multi-polarization MIMO system as was argued in [PBT05]. In 

case of ray modeling, such FED is traditionally known as the antenna far-field 

pattern diversity [SJW04] since the weighted-integration (summation) of the 

multipath rays is done through the antenna patterns over the visible angular 

domain. 
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As shown in appendix C, for each plane-wave component, there is a linear 

algebraic dependence between the transverse electric and magnetic field 

components such that 

ˆ ˆ( ) 0E ⋅ =k k          (4.5) 

0

ˆ ˆ( )ˆ( ) EH
η
×= k kk ,       (4.6) 

where k̂  is the complex unit vector in the k-domain (C.6a), ˆ( )E k  and ˆ( )H k  

are the electric and magnetic field transforms in the k-domain as given by (C.3) 

and (C.13), respectively. Hence, for each plane wave component, only one field 

(either ˆ( )E k  or ˆ( )H k  but not both) can carry independent information. By 

taking ˆ( )E k  as the independent information carrier for each plane wave, we 

have the following double-impact when all the plane-wave components impinge 

on a hexapole receive from different directions:  

• Even though each plane wave individually allows 2 DOF based on 

partial vectorial orthogonality (the 2 transverse components of ˆ( )E k  in 

(4.5) ), the plane-wave integration (C.6b) creates a third vectorial 

electric DOF because the resultant electric field has 3 components 

[AMC01]. 

• Each field component (say ˆ( )zE k ) of an impinging plane wave has the 

potential to interact with 3 receive elements (electric z-polarized and 

transverse magnetic x- and y-polarized elements). However, these 3 

receive elements interpret differently the same ˆ( )zE k  according to the 

plane wave DOA. Ultimately, when all the plane waves are angularly 

weighted (C.6b), the functional orthogonality is created and gives room 

to more DOF [SJW04]. 

 

Therefore, in the hexapole system, we are exploiting both the vectorial 

nature of one field along with the angular sensitivity of the dual-field detector 

(rather than the dual-field itself, which is not independent) to convey 
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independent pieces of information. Accordingly, the aforementioned question of 

possible 6 DOF becomes whether the same analysis mechanism (plane-wave 

expansion) can provide 2 independent orthogonality effects. The numerical 

results of this chapter show that there is an inevitable coupling between these 2 

effects. 

 

4.2 A Canonical Free-Space Multi-Polarization 

Scenario 

In this section, we investigate the PID distance-dependence (near and far field) 

of free-space multi-polarization MIMO system. We consider several 

transmit/receive multi-polarization cases, namely, tripoles, hexapoles and 

further combined dual polarization cases. Notwithstanding the unusual MIMO 

scenario (free-space, no multipath) being investigated, the rigorously derived 

results shed light on possible near field applications such as short-distance/low-

frequency indoor MIMO systems based on collocated multi-polarization. 

Moreover, the free-space near-field can be plane-wave expanded [Cle66] 

yielding significant spatial bandwidth. Thus, the near-field scenario has a 

similarity with a super-rich multipath environment. 

 

For a z-polarized infinitesimal electrical dipole in free space, the exact 

expressions of the field components in spherical coordinates are given by 

[Str41, Bal97] 
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By duality, for a z-polarized infinitesimal magnetic dipole in free space, the 

field components are given by [Str41, Bal97] 

   

0

0

0

2
0 0

0
2

0 0 0

0

0
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2
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kE j I l e
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θ

ϕ

θ ϕ

θ
η π

θ
η π

θ
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−

−

−
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= + −

= − +

= = =

.     (4.8) 

 

We begin by the hexapole (6,6) system and we follow the normalization 

assumptions of section 4.1. We also assume an orientation as depicted in Fig. 

4.1 for the transmit/receive hexapoles (2 broadside/1 endfire setup) and the 

hexapoles are separated by a distance r . Any arbitrary transmit/receive rotation 

is modeled by a unitary matrix with has no effect on the singular values of the 

channel matrix. 

 

 

 

 

 

 

 

We choose the Cartesian coordinates to construct ( )hexaH  such that the 

indices (1,2,3) of the elements mnh  denote the ( , , )x y z coordinates for 

electrical receive/transmit whereas the indices (4,5,6) of the elements mnh  

denote the ( , , )x y z coordinates for magnetic receive/transmit, respectively. 

According to Fig. 4.1, using (4.7-8) along with coordinate transformation and 

the aforementioned normalization assumptions, ( )hexaH  is constructed yielding 

x

y 

z 
x 

y 

z r

Fig. 4.1 hexapole setup 

2 collocated dual tripoles each consisting of 2 broadside and 1 endfire elements. 
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 −
 
  

H ,          (4.9a) 

where, after multiplying the field components by 24 rπ and omitting the 

common factors, 

       

1
1

1
2

3

0

2(1 )

1
1

a

a
a

jk r

ξ
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ξ

ξ

−

−
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.            (4.9b) 

 

For an arbitrary hexapole orientation in free-space, the generic channel 

matrix ( )hexaH  is given by 

    ( ) ( )hexa hexa   
=    
   

R 0 T 0
H H

0 R 0 T
,           (4.10) 

where
3 3×
R and

3 3×
T are coordinate rotation transformers at the receive/transmit ends, 

respectively, and are thus unitary. Consequently, the matrices ( )hexaH  and 
( )hexaH  have the same singular values ( ){ }hexaσ H , which are obtained from (4.9) 

yielding  

 { }( )
1 1 2 3 2 3 2 3 2 3{ } | |,| |, | |, | |, | |,| |hexa a a a a a a a a a aσ = + + − −H ,      (4.11) 

where each singular value has a multiplicity of 2 [SJW04]. 

 

We now turn our attention to the tripole channel described by the 

3 3× matrix ( )triH . The tripole matrix ( )triH can be extracted from ( )hexaH  by using 

either 3 same-field polarizations ( ( ) [ ], , {1,2,3} {4,5,6}tri
mnh m n or= =H ) ; or 2 

same-field broadside polarizations in addition to 1 dual-field endfire 

polarization ( ( ) [ ], , {2,3,4} {5,6,1}tri
mnh m n or= =H ). The latter case is 
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interesting because it can be implemented using 2 orthogonal electrical dipoles 

and 1 co-planar loop [KGK+05]. According to the setup of Fig. 4.1, and (4.9), 

      ( )
1 2 2diag( , , )tri a a a=H ,           (4.12) 

and therefore, 

      { }( )
1 2 2{ } | |,| |,| |tri a a aσ =H .          (4.13) 

The tripole channel is also orientation-independent. 

 

Based on the global hexapole matrix in (4.9), one can examine further 

orientation-dependent multi-polarization cases. The 4 4×  matrices (3 )eH  and 
(3 )bH  denote tetrapole channels consisting of (1 tripole, 1 dual endfire) and (1 

tripole, 1 dual broadside) polarizations, respectively. The matrices are given by 

     (3 )
1 2 2 1diag( , , , )e a a a a=H             (4.14) 

     

1

2(3 )

2 3

3 2

0 0 0
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 =
 −
 − 

H .           (4.15) 

 

Similarly, the 5 5×  matrices (3 )ebH and (3 )bbH denote pentapole channels 

consisting of (1 tripole, 1 dual endfire, 1 dual broadside) and (1 tripole, 2 dual 

broadside) polarizations, respectively. The matrices are given by 

     

1

2
(3 )

2 3

1

3 2

0 0 0 0
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0 0 0
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 − 

H           (4.16) 
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Table 4.1 includes the closed-form singular values as well as the near-field 

( 1 2/ 2a a → and 3 2/ 0a a → ) and far-field ( 1 2/ 0a a → and 3 2/ 1a a → ) PID values. 

Fig. 4.2 depicts the distance-dependence of the PID for the multi-polarization 

scenarios. The PID of case 1 and 2 in Table 4.1 reaches its maximum, rank( )H , 

at one specific separation when 1 2| | | |a a= , which occurs at 

     1 5 37 0.3747
2 2

r
λ π

+= ≈ ,           (4.18) 

whereλ is the free space wavelength. For all the other cases, the inevitable 

coupling between the electric and magnetic field prevents the PID from 

reaching rank( )H and the maximum PID occurs in the near-field region 

( 0 1k r ). 

 

Table 4.1. Summary of Multi-Polarization Results 

 
Pol. Case Singular Values 

Near-Field 
PID 
0 1k r  

Far-Field 
PID 
0 1k r  

1 Tripole { }( )
1 2 2{ } | |,| |, | |tri a a aσ =H  8/3 2.67≈  2 

2 Tripole 
1 endfire { }(3 )

1 1 2 2{ } | |,| |,| |,| |e a a a aσ =H  3.6 2 

3 Tripole 
1 broadside 

{ }(3 )
1 2 2 3 2 3{ } | |,| |,| |, | |b a a a a a aσ = + −H  25/7 3.57≈  1.8 

4 
Tripole 

1 endfire 
1 broadside 

{ }(3 )
1 1 2 2 3 2 3{ } | |,| |,| |,| |,| |eb a a a a a a aσ = + −H  49/11 4.45≈  1.8 

5 Tripole 
2 broadside { }

(3 )

1 2 3 2 3 2 3 2 3

{ }
| |,| |,| |,| |,| |

bb

a a a a a a a a a
σ
= + + − −

H  4.5 2 

6 Hexapole { }
( )

1 1 2 3 2 3 2 3 2 3

{ }
| |,| |,| |,| |, | |,| |

hexa

a a a a a a a a a a
σ
= + + − −

H  16/3 5.33≈  2 

 

 

In the far-field region, case 3 and 4 have PID of 1.8, which is less than the 

expected 2 DOF (far-field polarization diversity) in the other cases. In fact, all 

the multi-polarization cases approach the dual channel mode in far field (i.e. 

only 2 non-zero singular values) as pointed out previously. However, for case 3 
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and 4, the 2 channels have non-equal contributions 2 2{2 | |,| |}a a whereas the 

other cases have equal dual-channel contributions 2 2{| |,| |}a a or 2 2{2 | |, 2 | |}a a . 

Therefore, from a dimensionality perspective, case 3 and 4 dimensionality 

performance is less than 2, although the power gain of one channel is 6 dB 

better than the other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to appreciate the merit of the canonical case investigated herein, we 

use the plane-wave expansion of the spherical wave [Cle66]. We assume a 

propagation hemisphere cross-section at 0z = (the chosen decay direction of 

the evanescent components is along the positive z-axis). Comparing the field 

vector potential analysis to the plane-wave expansion of the field of an electrical 

point source, we get [Cle66] 

0 0
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2

jk r jk

x y
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e e dk dk
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∞ ∞− − ⋅

−∞ −∞
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,          (4.19) 
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Fig. 4.2 PID vs /r λ  (log-scale) for free-space multi-polarization scenarios. 
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where ( , , )x y z=r is the position vector of the observation point with respect to 

the point source and 
0

1ˆ ( , , )x y zk k k
k

=k is in general a complex unit vector 

( ˆ ˆ 1⋅ =k k ). According to our choice of the hemisphere cross-section at 0z = , 

xk and yk  are always real. Accordingly, zk is either real or pure imaginary as 

follows: 

• For 2 2 2
0x yk k k+ < , 2 2 2

0z x yk k k k= + − − (positive real) and k̂  is the 

propagation direction of the traveling plane wave component. 

• For 2 2 2
0x yk k k+ > , 2 2 2

0z x yk j k k k= − + − (negative pure imaginary) 

and the evanescent plane wave component is decaying in the positive z-

direction at a rate of | |zk ze − . 

 

In the far-field analysis, the spherical wave approaches a single traveling 

plane-wave (within a vicinity of some transmit/receive separation r to disregard 

the 1/ r decay of the field). Therefore, the far-field scenario lacks any FED 

orthogonality since there is only one “plane-wave” component. Moreover, the 

absence of any field radial component reduces the vectorial orthogonality to 2. 

Consequently, we get the well-known horizontal and vertical polarization 

diversity for the hexapole system in the far-field region. From a matrix-

modeling perspective, the far-field scenario approaches one matrix-component 

of rank 2, given the fact that there is a linear algebraic dependence between the 

transverse component of E and H . 

 

On the other hand, the near-field analysis of this canonical free-space 

scenario is more enlightening. Because of the closed-form vector potential in 

the left-hand side of (4.19), we were able to exactly derive the closed-form field 

solution (4.7-8) through Maxwell’s equations, and the solution includes all the 

evanescent waves components, which is not computationally available in the 

other bounded electromagnetic problems. In the extended angular domain (both 
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visible and evanescent spectral domain , ( , )x yk k ∈ −∞ ∞ ), the spectrum of (4.7-

8) exhibits a wide spatial bandwidth (traveling and evanescent). In other words, 

the near-field analysis of a free-space scenario resembles a super-rich multipath 

environment (including traveling and evanescent waves). Although each plane-

wave (traveling or evanescent) has individually 2 DOF, the integration of all 

plane-wave components yields a higher DOF, which is against the argument of 

[PBT05] concerning the strict upper limit of 2 DOF for the multi-polarization 

systems. Both the FED orthogonality and the existence of a radial field 

component (full vectorial orthogonality) results in a higher DOF. However, the 

coupling between the electric and magnetic fields does not allow the PID to 

reach the full-rank value of 6, which means that the vectorial and FED 

orthogonality are not strictly independent. 

 

The multi-polarization DOF results in this example shed some light on the 

expected DOF in a realistic multipath scenario. If the near-field hexapoles 

(equivalent to a super-rich scattering) rigorously shows that more than 2 DOF 

are achievable whereas the 6 DOF (full-rank claimed in [AMC01, SJW04]) are 

not possible, we can expect a similar behavior in other multipath-rich bounded 

environments. The next section presents a case study yielding consistent results 

with this expectation. 

 

4.3 Multi-Polarization in a PEC Corridor 

Scenario: Modal Analysis 

We move now to investigate the multi-polarization DOF gain in a canonical 

indoor scenario. The environment is a rectangular open-ended corridor 

(waveguide) whose walls are perfect electric conductor (PEC). As mentioned in 

chapter 3, such canonical structure is a highly multipath-rich environment and 

we refer to appendix B for the modal solution of this multi-polarization 

excitation. Again, the corridor width and height are 4 m and 3 m, respectively. 
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The operating frequency is 2.4123 GHz, so chosen to avoid numerical 

complexity in the modal solution. Under these operating conditions (frequency 

and corridor dimensions), we have multi-mode propagation through the guide 

(precisely 2495 propagating modes). 

 

The simulations are performed to show the multi-polarization DOF in the 

PEC corridor at 3 different scenarios. As shown in Fig. 4.3, we denote the axis 

along the corridor length, width and height by (L,W,H), respectively. The multi-

polarized transmit is located at (2, 2.8) along (W,H), respectively. The multi-

polarized receive is moving over a grid of equidistant100 100× points on the 

whole cross-section of the corridor. The simulation is repeated over 3 grids 

situated at 25, 30 and 40 m from the transmit point along the L-axis. Such 

distances are sufficient to guarantee the suppression of all the evanescent 

modes. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4a-c and 4.5a-c show the PID over the grid locations using tripoles 

and hexapoles, where the average PID is 2.35 and 4.3, respectively. These 

average values were obtained as well when the transmit and grid points were re-

located to other positions. We can notice the rapid fluctuation of the PID over a 

very short distance. However, the standard deviation of the Frobenius norm (in 

L 

WH 

Tx

Fig. 4.3 Multi-polarization scenarios in a corridor. 
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dB) of the channel matrix over the 410 receive points of each cross-section grid 

is less than 2 dB and 3 dB for the hexapole and tripole system, respectively, 

which indicates that we are in an essentially power-similar scenarios and the 

PID results are thus meaningful. 

 

We can make several interesting observations from Fig. 4.4-5. In the 

hexapole case, 3 DOF or more are almost guaranteed. However, as expected 

earlier in this chapter from the near-field free-space scenario, the full-rank 6 

DOF have never been achieved, even in this rigorously modeled multipath-rich 

environment. The reason for having less than full 6 DOF is attributed to the 

coupling between the electric and magnetic fields, which impacts the 

independence between the vectorial and functional orthogonality. 

 

For the tripole scenario, the full-rank 3 DOF can be closely approached. 

Nevertheless, there are few occurrences of PID<2. In spite of the 2 DOF of each 

plane-wave component, their summation may accidentally yield lower 

dimensionality. As pointed out in chapter 3 (sub-section 3.1.4), this observation 

can be explained by a destructive interference that suppresses one out of the 

available 3 components of the electric field while there is a discrepancy in the 

values of the other 2 components (similar to case 3 and 4 in Table 4.1). In the 

hexapole case, such suppression of 3 or more out of the 6 components of the 

electric and magnetic fields is very unlikely. 

 

Similar to the canonical near-field free-space scenario, we can easily find 

the impact of the FED on the DOF by applying the plane-wave expansion on the 

propagating modes. In spite of the 2 DOF associated with each plane-wave 

component, the summation of all the plane wave contributions can yield higher 

DOF if the environment is sufficiently multipath-rich. 
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(a) (a) 

(b) (b) 

(c) (c) 

Fig. 4.4 

PID of a tripole system in a PEC corridor. 

The receive grid is located at different 

separations along L 

(a) 25 m  (b) 30 m.  (c) 40 m. 

Fig. 4.5 

PID of a hexapole system in a PEC 

corridor. The receive grid is located at 

different separations along L 

(a) 25 m  (b) 30 m  (c) 40 m. 
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4.4 Multi-Polarization in a Lossy-Wall Corridor 

Scenario: IRT Simulation 

The multi-polarization DOF gain is now investigated in a more practical indoor 

scenario. The environment is a rectangular corridor of dimensions100 4 3× ×  m 

along (L,W,H), respectively. The walls thickness is 15 cm with a dielectric 

constant of 4 and a loss tangent of 0.02. The ceiling and floor thicknesses are 30 

cm with a dielectric constant of 6 and a loss tangent of 0.05. In order to have 

comparable scenarios to the PEC corridor in section 4.3, the multi-polarized 

transmit is located at (50, 2, 2.8) along (L,W,H), respectively. The operating 

frequency is also 2.4123 GHz. The multi-polarized receive is moving over a 

grid of equidistant 20 20× points on the whole cross-section of the corridor. The 

simulation is repeated over 3 receive grids situated at 75, 80, 90 m along the L-

axis as sketched in Fig. 4.3. 

 

Such lossy-reflection corridor is a LOS environment and does not enjoy the 

same multipath richness as the PEC counterpart. We employ the IRT, discussed 

in chapter 3, to evaluate the channel matrix at each receive grid point. We 

borrow the general spherical ray expansion from (3.8) in chapter 3 to 

construct ( )hexaH such that each element mnh is expressed as  

( ) ( ) ( ) 0
1

exp( )r T rt t l
mn ml l nll

l

jk Rh
R

∞

=

−= ⋅ ⋅∑ e D e ,        (4.20) 

where the index l represents the ray order; ( )t
nle and ( )r

mle are the transmit/receive  

vector effective length; and ( )rt
lD is the far-field environment ray-dyad ( 2 2× ), 

which models the reflection loss and the polarization rotation along the thl ray 

path and excludes the free space spherical propagation factor 0exp( )l ljk R R− . 

Since the 6 multipole elements are located at the same physical location, we 

omitted the subscripts ,m n from the dyad ( )rt
lD , which depends only on the ray 

DOD/DOA, and the environment geometrical/electrical properties. 
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The far-field pattern/polarization of each polarized element is found through 

vector potential or coordinate transformation according to the framework of 

[SJW04]. Otherwise, we can use (3.27) in chapter 3 to get the normalized 

electric effective length of a point electric current source polarized in 

the ˆξa direction  

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )ξ θ θ ξ ϕ ϕ= − ⋅ − ⋅e a a a a a a           (4.21) 

and then apply the duality principle to get that of a point magnetic source. The 

normalized effective length of each polarized element is shown in Table 4.2. 

 

Table 4.2. Far-Field Pattern/Polarization of the Multipoles [SJW04] 

 Electric point source Magnetic point source 
Axis x  y  z  x  y  z  

i  1 2 3 4 5 6 
ie θ  cos cosθ ϕ− cos sinθ ϕ− sinθ  sinϕ  cosϕ−  0 

ie ϕ  sinϕ  cosϕ−  0 cos cosθ ϕ cos sinθ ϕ  sinθ−  
 

Since there is a linear algebraic dependence between the transverse 

components of the magnetic and electric field along each ray, the multipole PID 

per ray can never exceed 2 (the partial vectorial orthogonality of one field) and 

thus the IRT simulator needs to trace the electric field only. However, the 

summation (4.20) introduces a third vectorial DOF [AMC01] as well as the 

functional orthogonality due to the pattern orthogonal weighting (pattern 

diversity or FED), which is modeled by ( )t
nle  and ( )r

mle . 

 

 In chapter 3, we found out that few hundred rays are sufficient to yield a 

convergent solution in the case of transparent walls (small LT). We employ in 

the simulations herein the most significant 1000 rays, which are traced from the 

fixed multi-polarization transmit to the moving multi-polarization receive at 

each grid point. Fig. 4.6a-c and 4.7a-c show the PID over the grid locations 

using tripoles and hexapoles, where the average PID is 1.9 and 2.4, respectively. 
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The lack of multipath-richness due to the transparent (lossy) walls has 

significantly reduced the DOF in comparison with the PEC corridor. Rapid 

fluctuation of the PID over short distances can also be seen similar to the PEC 

case. The standard deviation of the Frobenius norm (in dB) of the channel 

matrix over the 400 receive points in each cross-section grid scenario is about 6 

dB for both the hexapole and tripole systems. Therefore, the assumption of 

essentially power-similar scenarios is valid, which makes the PID results 

acceptable. 
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(a) (a) 

(b) (b) 

(c) (c) 

Fig. 4.6 

PID of a tripole system in a lossy corridor. 

The receive grid is located at different 

separations along L 

(a) 25 m  (b) 30 m  (c) 40 m. 

Fig. 4.7 

PID of a hexapole system in a lossy 

corridor. The receive grid is located at 

different separations along L 

(a) 25 m  (b) 30  (c) 40 m. 
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4.5 Summary and Discussion 

In this chapter we investigated the DOF gain provided by a collocated multi-

polarization antenna system in 3 case studies. The first 2 canonical cases, the 

near-field free-space and PEC corridor, represent a rigorously derived multipath 

scenario which is very rich, however, the full-rank 6 DOF was never achieved 

through a hexapole system. Therefore, the stochastic modeling of the channel 

matrix in the literature is not adequate to draw some conclusions regarding the 

DOF performance of the multipole system since it disregards the coupling 

between the electric and magnetic fields. 

 

Also, by applying the plane-wave (or spherical ray) expansion on the field in 

all the 3 studied cases, we showed that the individual 2 DOF per plane-wave 

component is not automatically a bottle-neck to the system DOF. The incoming 

plane waves at different directions result in a higher DOF of the system, which 

is attributed to the FED (also known as far-field pattern diversity or functional 

orthogonality) in addition to the obvious vectorial (polarization) orthogonality 

by creating one more component in the resultant field. However, it can happen 

that the plane wave contribution yields less than 2 DOF as observed in the case 

of the tripole system in the multipath rich PEC waveguide. 

 

A rich scattering environment is needed in order to achieve an acceptable 

DOF performance through a multipole system. We repeated the PEC corridor 

simulations with the transmit multipole situated at various locations and we 

obtained the same average PID for the tripole and hexapole systems as those of 

Fig. 4.4-5. One can argue that the open-ended PEC waveguide has only a hemi-

spherical angular spread of the rays and thus it is not as multipath-rich as the 

optimum PEC enclosure. In order to examine this argument, we made other 

simulations in a PEC corridor with only one open end. We placed the transmit 

multipole and the receive grid at L=50 and L=75m, respectively and a PEC wall 

is located at L=100 m. Therefore, we have full receive angular spread over the 
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spherical solid angle. We repeated the modal analysis (the multipole source and 

its image) and we obtained very similar results to Fig. 4.4-5. 

 

We show a comparison between the PID normalized histogram of the PEC 

and lossy-wall (LT~0.01) corridor multipole scenarios in Fig. 4.8. At each 

cross-section grid, we have 410 and 400 points for the PEC and lossy-wall 

corridor, respectively. The bin size for the normalized histogram, spanning the 

PID values from 1 to 6, is 0.1. In the multipath-rich PEC case, the histogram in 

Fig. 4.8 indicates that by using a tripole system, there is some probability of 

achieving a PID close to the full-rank 3 DOF and also the PID can happen to be 

less than 2. On the other hand, the hexapole system almost guarantees more than 

3 DOF, however, it never attains the full 6 DOF. The lossy-wall corridor, 

lacking multipath richness, yielded significant PID reduction and the gap 

between the tripole and hexapole PID average value decreases. 

 

We conclude by summarizing the concepts and findings of this chapter: 

• There are 2 types of orthogonality (vectorial and functional) responsible 

for the diversity when using electric and magnetic multipole systems. 

These 2 types of orthogonality are inter-winded due to the inevitable 

coupling between the electric and magnetic field components. 

• In a sufficiently multipath-rich environment, a tripole system may 

provide very close PID to the maximum full-rank 3 DOF. A hexapole 

system does not automatically double the tripole dimensionality (6 DOF 

were never achieved), however, the hexapole system produces, in 

general, higher DOF (more than 3 DOF are almost guaranteed). 

• The average PID is environment-dependent and seems to be independent 

of the geometrical setup (location of the transmit/receive multipole 

elements). The gap between the hexapole and tripole PID values 

decreases as the multipath richness decreases. 
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In the next chapter, we will combine the multipole system with a spatial 

array to form a multi-polarized spatial MIMO sampler (in contrast to the point 

multipoles investigated herein). Given a specific size of the array (1D, 2D or 

3D), we investigate the upper limit of DOF when using all the available spatial 

diversity (space, pattern and polarization). 

 

 

 

 



 87

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.8 

Normalized histogram of the tripole and hexapole systems PID in the 

PEC and lossy corridor. The receive grid is located at different 

separations along L (a) 25 m  (b) 30 m  (c) 40 m. 
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Chapter 5 

Dimensionality of Size-Specific Multi-

Antenna Systems 

In chapter 2, we developed the dimensionality metric required to measure the 

parallel sub-channels performance (DOF) of MIMO systems. We modeled the 

electromagnetic propagation in chapter 3. The collocated multi-polarization 

effect (Maxwellian framework) was studied in chapter 4. We are ready to 

explore in this chapter the maximum dimensionality performance of MIMO 

systems. Given an array of a fixed size in a site-specific environment, we 

investigate the maximum achievable PID through the combination of both the 

spatial and the pattern/polarization diversity. The target is two-fold: evaluate the 

maximum available dimensionality according to the information-carrying ability 

of the electromagnetic field, then get an estimate of the minimum number of 

antennas required to achieve it. 

 

We start by showing the region of existence (ROE) of the spatial frequency 

spectrum for the generic 3D arrays, which can be promptly reduced to the 1D or 

2D array cases by a simple projection. Accordingly, we show the effect of the 
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environment properties and array orientation on the DOF in the context of the k-

domain ROE. Next, we compare the optimum sampling results to the DOF of 

essentially time-limited bandlimited 1D functions. Afterward, we extend the 1D 

optimum sampling results to the 2D and 3D array cases, sustained by numerical 

simulation based on the PID metric. Finally, we present numerical results for 

the PID of multi-polarized MIMO system of a given array size (1D, 2D and 3D) 

in a PEC and lossy-walls corridor.  

 

5.1 ROE of the EM Fields Angular Spectrum 

In appendix C, we present the spatial-frequency domain (also known as the k-

domain or angular domain) of the electromagnetic fields. At any source-free 

point of space, such as where the electromagnetic detector will be installed, the 

electromagnetic homogeneous wave equation implies that the ROE of the 

spectral domain is as shown in Fig. 5.1. An arbitrary direction of wave 

propagation/evanescence is selected (in Fig. 5.1 it is the positive z-axis) in order 

to make the plane-wave expansion. Accordingly, the hemispherical surface 

2 2 2
0z x yk k k k= + − −  for 2 2 2

0x yk k k+ ≤  represents the ROE of propagating 

plane-wave spectrum. The evanescent spectrum is not considered since the 

transmit/receive separation is assumed large enough to suppress these 

components. When the environment forms an enclosure structure (e.g. a cavity), 

an additional lower hemispherical surface should be considered as well to 

account for the propagating wave components down the negative z-axis. 

Therefore, in a source-free region, the general propagation ROE of 

electromagnetic wave spectrum is the spherical surface 2 2 2 2
0x y zk k k k+ + = , 

which represents the full visible angular spectrum ( [0, ]θ π∈ and [0, 2 ]ϕ π∈ ).  

 

In Fig. 5.1, we show the location of high and low order propagation modes 

in a waveguide structure. Around the pole of the sphere, the components 

represent low order modes or in ray tracing analysis, this is equivalent to rays 
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traveling almost along a LOS or with few encountered reflections [RWV94]. On 

the other hand, as we approach the equator at the traveling/evanescent 

boundary, we find the high order modes (approaching the cut-off frequency), 

which are equivalent to rays encountering many bounces. Thus for lossy-walls 

environments, after choosing the LOS direction as the propagation axis, the 

expansion components located around the pole have a more significant 

contribution than those near the equator since the latter suffer from heavy power 

loss due to the multi-reflection. Hence, the lossy-wall environment effect can be 

viewed as reducing the effective k-bandwidth [BF87, BF89]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From now on, we will use the spatial frequency domain [Goo96], which is a 

scaled version of the k-domain: 1( , , ) ( , , )
2x y z x y zf f f k k k
π

= . As explained in 

appendix C, The ROE intercepts each axis of the f-domain at 1
λ

, where λ  is the 

free space wavelength. The f-domain spectrum is obtained through the Fourier 

Fig. 5.1 Region of existence (ROE) of the EM fields spectrum in the k-domain for the 

half-space z>0. The locations of low and high order modes in a waveguide are indicated. 

Low-order 
modes. 

High-order modes.
Rays of many
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transform of the field along the axis of interest. In general, the 3D transform 

pairs are given by 

2 ( )( , , ) ( , , ) x y zj f x f y f z
x y zE f f f E x y z e dxdydzπ∞ ∞ ∞ + +

−∞ −∞ −∞
= ∫ ∫ ∫     (5.1) 

2 ( )

ROE

( , , ) ( , , ) x y zj f x f y f z
x y z x y zE x y z E f f f e df df dfπ− + += ∫∫∫ .    (5.2) 

 

 If a 1D array is oriented along the x-axis, we are interested in 

the xf spectrum of the field. This can be readily obtained from the general 3D f-

domain as follows 

f f ,fx y z

fx

2 ( )2

ROE ROE

2

ROE

( , , ) ( , , )

( , , )

y zx

x

j f y f zj f x
x y z x y z

j f x
x x

E x y z df e df df E f f f e

df e E f y z

ππ

π

− +−

−

=

=

∫ ∫∫

∫
,  (5.3) 

showing that we are performing a 1D Fourier transform. The 1D ROE is the 

projection of the 3D spherical shell on the xf axis. In this case, ROE
xf is 

1| |xf
λ

≤ , characterizing a 1D xf -bandlimited field. 

 

For a 2D array oriented along the x- and y-axis, we follow the same 

approach to obtain 

f ,f fx y z

f ,fx y

2 ( ) 2

ROE ROE

2 ( )

ROE

( , , ) ( , , )

( , , )

x y z

x y

j f x f y j f z
x y z x y z

j f x f y
x y x y

E x y z df df e df E f f f e

df df e E f f z

π π

π

− + −

− +

=

=

∫∫ ∫

∫∫
  (5.4) 

and in this case, the 2D ROE is the projection of the 3D spherical shell on the 

( , )x yf f plane and ,ROE
x yf f is 2 2

2

1
x yf f

λ
+ ≤ , characterizing a disc 

(bandlimited field) in the ( , )x yf f plane. When the spectrum cuts off at the same 

spatial frequency  magnitude in all directions, it is called isotropic [PM62], i.e. 

its ROE is a hypersphere in the general N-dimensional domain. 
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Based on the previous discussion, the array geometry (being 1D, 2D or 3D) 

and orientation determine the ROE. In a waveguide environment, of 

longitudinal direction along ˆηa , we have only one propagating hemisphere. A 

1D linear array orthogonal to ˆηa  (broadside array) makes the 1D spectrum f-

bandwidth equal to 2
λ

, whereas for a 1D linear array parallel to ˆηa  (endfire 

array), the bandwidth is 1
λ

. Similarly, for 2D array orthogonal to ˆηa , the ROE is 

a disc of radius 1
λ

, while for a 2D array oriented parallel to ˆηa , the ROE is a 

semi-disc of radius 1
λ

. These ROE shapes have a crucial role in determining the 

DOF of the size-specific multi-antenna systems, as will be discussed in the next 

section. 

 

5.2 DOF and Optimum Sampling over a Finite-

Array Size: Scalar Isotropic Sampler 

In this section, we investigate the DOF of the electromagnetic fields for 1D, 2D 

and 3D arrays subject to the ROE of the spectrum, by using isotropic scalar 

sampling element (i.e. neglecting the multi-polarization effect for the moment). 

We will link the prolate spheroidal wave function (PSWF) results presented in 

appendix A to the optimum sampling of the 1D problem. Afterward, we extend 

the optimum sampling results, as a measure of the DOF, to the 2D and 3D 

arrays. 

 

5.2.1 Electromagnetic DOF Problem in the Literature 

It is a well-known fact in the optics community that the space-bandwidth 

product [Goo96], also known as the Shannon number [Tor55, Gab61, Tor69, 
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GG73], determines the DOF of the function within the aperture. The 

information transfer mechanism in optics is based on the scalar diffraction 

theory [Goo96] in free space according to the source resolution. In the 

electromagnetic propagation, the information transfer obeys the more rigorous 

Maxwellian framework and deviates from the optics assumptions regarding the 

vectorial nature of the fields which propagate in bounded environments. 

However, there is a common concept in both: the spectrum bandlimitedness. 

Therefore, we expect that the concept of the space-bandwidth product still 

applies for the electromagnetic propagation with some modification. 

 

The EM-DOF problem was investigated and re-investigated several times. 

Bucci et al. [BF87, BF89, BGS98] investigated the non-redundant number of 

samples to represent the electromagnetic fields over arbitrary surfaces. Some 

recent MIMO-DOF works are following this approach (e.g. [Mig06]), where it 

is implicitly assumed that the environment and transmitter (source) are treated 

as one entity and therefore, such results are more suitable for outdoor MIMO 

systems. Both the significant number of singular values and the capacity were 

used as a measure of dimensionality in [Mig06]. 

 

Miller and Piestun [Mil00, PM00] investigated the orthogonal 

communication channels between 2 volumes based on the PSWF framework, 

originally for scalar wave followed by the vectorial electromagnetic fields. They 

reported the similarity of the PSWF approach and the singular value 

decomposition. Nevertheless, their results were basically for the open free-space 

(no boundary), with possible scatterers between the transmit/receive ends. This 

environment assumption is more suitable for optics. This is the reason why in 

[PM00], only 2 DOF for the hexapole system were reported, in the absence of 

noise, since the system is equivalent to one ray in the far-field. Recently, Xu and 

Janaswamy [XJ06] followed this approach for MIMO-DOF investigation in 2D 

environments. They defined a SNR-based DOF which is the maximum number 

of transmit modes that can excite receive modes stronger than the noise level, 
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under the transmit power constraint. They also reported an observation which is 

consistent with the tight bound property of the PID matrix product inequality 

(2.8) when the 2 matrices are of widely different dimensionalities. However, the 

multi-polarization or array orientation effects were not clearly investigated   

 

Poon et al. [PBT05] tackled this problem, deterministically at the the 

transmit/receive geometry level and statistically at the environment level, based 

on the angular domain approach. They employed the MIMO capacity as a 

dimensionality measure at a given SNR. They reported the same space-

bandwidth product result of the optics community and they considered the array 

orientation effect. However, their approach does not rigorously consider the 

multi-polarization effect as mentioned in chapter 4, neither do they explicitly 

link the DOF to the array dimension (being 1D, 2D or 3D). 

 

Based on the modal orthogonality in a PEC waveguide, Loyka [Loy05] 

essentially used the number of propagating modes to measure the MIMO-DOF. 

However, this requires that the array aperture be situated across the whole cross-

section of the guide or at least over one dimension of its cross-section. More 

recently, Loyka and Mosig [LM06] tackled the link between the 

electromagnetism and information theory based on the bandlimitedness of the f-

domain, which is the same path we are following in this chapter. They reported 

the supreme DOF limit assuming a perfect scattering environment. 

Nevertheless, the link with multi-dimensional sampling and the multi-

polarization effect were not clearly stated. 

 

5.2.2 PSWF-DOF and Optimum Sampling of 1D Bandlimited 

Functions 

In appendix A, we report the celebrated result of Landau and Pollak [LP62] 

regarding the DOF of “essentially” time- and frequency- limited functions. The 

beauty of this theorem is that it rigorously quantifies the ambiguous term 
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“essentially”, which was previously used in studying the DOF from a sampling 

point of view. The complexity arises from the fact that we can not have a 

function ( )y t  which is both time-limited and bandlimited unless it is identically 

zero everywhere. Therefore, for the spectrum of ( )y t  strictly limited to 

| |f W< , we assume that most of the energy of ( )y t is confined within 

| | / 2t T<  such that 
/ 2

2

2/ 2

2

| ( ) |
1

| ( ) |

T

T
T

y t dt

y t dt
ε−

∞

−∞

= −
∫

∫
,        (5.5) 

where 2
Tε represents the negligible portion of “tail” energy outside the time 

window [LP62]. Therefore, ( )y t can be reconstructed, over the entire t-domain, 

through 2 1WT +    optimum basis functions (scaled PSWFs) such that the 

reconstruction square error is bounded by 
2

2 2

0
| ( ) ( , ) | 12

WT

n n T
n

y t a c t dtψ ε
∞   

=−∞

− <∑∫ ,       (5.6) 

where x   is the largest integer x≤ . 

 

Next, let us consider the DOF problem from an optimum sampling 

perspective. The sampling theorem was investigated since the early 20th century 

by Whittaker, Nyquist,  Kotel’nikov, Shannon and others [Whi15, Nyq28, 

Kot33, Sha49]. It states that we can perfectly reconstruct (interpolate) the 

bandlimited function ( )y t  from its uniform discrete samples provided that the 

later are taken at a rate 1
2W

≥ samples/sec (the Nyquist rate). By choosing the 

slowest sampling rate (optimum sampling), we have 

( ) ( )sinc 2 ( - )
2 2n

n ny t y W t
W W

∞

=−∞

 =  
 

∑ ,      (5.7) 
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where sin( )sinc( )= xx
x
π
π

 and is also known as the “sampling” [LP62] or 

“cardinal” [PM62] function. The perfect reconstruction in (5.7) requires an 

infinite number of samples. However, we know that each sinc function has a tail 

of decaying amplitude, which means that it has a local effect mostly 

concentrated around its sample location. Consequently, when we are only 

interested in the time-window | | / 2t T< , we can expect that truncating the 

series in (5.7) to | |n WT≤     will yield a good approximation. Hence, using 

2 1WT +   samples can reconstruct the original signal well enough so that we 

again have 2 1WT +    DOF, now from a sampling perspective. 

 

In particular, this truncation yields good approximation when the energy 

confining condition (5.5) is met because the combined effect of the decaying tail 

of the discarded sinc functions and their small weighting amplitude for 

| | / 2t T>  results in smaller truncation error within | | / 2t T< . In [LP62 theorem 

2], it is shown that the reconstruction square error using a finite series of shifted 

sinc functions (as a basis) is bounded by 2
T Tπε ε+ , which is worse than the case 

with the PSWFs, confirming the optimality of the latter as a reconstruction 

basis. However, the error with the sinc reconstruction is still quite acceptable in 

practical problems, given the advantage of the simpler expansion coefficients 

( )
2
ny
W

 in (5.7) in comparison with the more sophisticated na in (5.6) which 

are given by (A.11) or (A.12). 

 

With either the PSWF or the optimum sampling, we rigorously have 

2 1WT +    DOF (which we will call the 2WT limit henceforth) for the 

bandlimited ( )y t  within the window | | / 2t T<  as long as its energy is confined 

according to (5.5). The condition of (5.5) is of paramount importance in setting 

the rigorous 2WT limit because otherwise, we can incorrectly “show” that it is 

exceeded as described in the following case. 
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In [FK06], the energy bound for the “superoscillation” phenomenon was 

reported. It is shown that the aforementioned finite-energy bandlimited ( )y t  can 

have an arbitrary number N of superoscillations within | | / 2t T<  provided that 

its energy increases exponentially with N . How comes that N could surpass 

the 2WT limit? The answer is that there is a huge increase in the amplitude of 

the superoscillating function for | | / 2t T>  [FK06] and thus (5.5) is breached 

leading to an incorrect 2WT estimate in the first place. In fact, these 

superoscillating functions resemble a PSWF of higher order , 2N N WTψ >> as 

reported in [FK06], where most of its energy is confined outside the time-

window of interest. 

 

In spite of the fact that the example just mentioned is an extreme case, it 

raises an important question: if there is a non-trivial energy fraction of the 

bandlimited signal for | | / 2t T> , but we are only interested in detecting the DOF 

within | | / 2t T< , is the 2WT estimate still good enough? A qualitative answer 

can be provided as follows: By hypothetically multiplying ( )y t  by a smooth 

truncation function (say a Gaussian function), we try to preserve the region of 

interest | | / 2t T< almost intact while suppressing the irrelevant fat tail outside. 

Such truncation in the time domain will inevitably increase the bandwidth in the 

frequency domain by convolution with a reciprocally compressed version of the 

Gaussian function. If the dynamic range in the tail zone is not exaggeratingly 

higher than within | | / 2t T<  (unlike the superoscillation for example), then the 

required truncating function is smooth enough in the time-domain such that the 

increase in the original signal bandwidth is small and the 2WT limit is thus 

acceptable. From a sampling perspective, the weighting of the sinc in the 

outside tail zone will not be exaggeratingly high such that the decaying tail of 

the discarded sinc functions will not influence the reconstruction inside the 

window of interest. Consequently, truncating the outer terms of the sinc 
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reconstruction makes a small error. In [LM06], it is reported that a slight 

oversampling is needed in this case in order to reduce the truncation error. 

 

In summary, either approach (PSWF or optimum sampling) provides that 

there are 2 1WT +    dimensions for the bandlimited ( )y t  within | | / 2t T< . As 

long as the dynamic range of ( )y t  outside the window of interest is smaller 

than or comparable to that within | | / 2t T< , the 2WT limit is still practically 

correct. Accordingly, we will use the optimum sampling approach in the next 

sub-section to evaluate the DOF for the 1D, 2D and 3D arrays of a specific size. 

 

5.2.3 Optimum Sampling of 1D, 2D and 3D Arrays 

For a 1D linear array of size D , the DOF can be readily evaluated according to 

the ROE of the field spectrum. For a spatial bandwidth of 1
λ

or 2
λ

 (endfire or 

broadside orientation), the optimum sampling yields ( )1 D λ+     or 

( )1 2D λ+     samples within the array aperture, respectively. 

 

For the optimum sampling of the N-Dimensional space V , we employ the 

framework of Petersen and Middleton [PM62]. We consider a function 

1 2( ) ( , ,..., )Ny y v v v≡v defined over V , which has its Fourier transform 

1 2( ) ( , ,..., )Ny y u u u≡u  in the spectral domain U according to the transform 

pairs 
2( ) ( ) j

V

y y e dπ− ⋅= ∫ u vu v v            (5.8a) 

2( ) ( ) j

U

y y e dπ ⋅= ∫ u vv u u .           (5.8b) 

We assume that the N-Dimensional signal spectrum is bandlimited. Similar to 

the 1D case, we use N-Dimensional delta functions, located over the periodic N-

Dimensional basis of the space V , to pick samples in the space domain. Let the 
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vector set 1 2{ , ,..., }Nv v v  describe the sampling basis location. Such sampling 

results in a corresponding repetition of the N-dimensional bandlimited 

spectrum, where the repetition basis is given by the vector set 1 2{ , ,..., }Nu u u in 

the spectral domain U . The 2 vector sets 1 2{ , ,..., }Nv v v and 1 2{ , ,..., }Nu u u are 

related by the following vector reciprocal relation as given by Miyakawa 

[Miy59] 

         m n mnδ⋅ =v u ,         (5.9) 

where mnδ is the Kronecker’s delta. The vectors of each set 1 2{ , ,..., }Nv v v  and 

1 2{ , ,..., }Nu u u  are not necessarily mutually orthogonal. Hence, from (5.9), each 

basis vector kv is orthogonal to all l k≠u  and its magnitude is given by 

1| |
| | cosk

k kθ
=v

u
, where the N-dimensional angle kθ is given by 1 ˆ ˆcos ( )k k

− ⋅v u . 

 

The optimum sampling necessitates that there be no aliasing while the 

repeated spectrum is closely packed in U . Therefore, to perform an optimum 

sampling for an N-dimensional bandlimited signal, we follow these steps: 

1. Based on the bandlimited spectrum, we perform an N-dimensional 

optimum packing with the original spectrum and its repeated images. 

2. We find the basis set 1 2{ , ,..., }Nu u u according to the optimum packing. 

3. We find the sampling basis set 1 2{ , ,..., }Nv v v from (5.9). 

 

Next, we perform the optimum sampling for the 2D arrays. For an endfire 

2D array orientation, we know from section 5.1 that the ROE is a semi-disc of 

radius 1
λ

. After following the optimum sampling steps, we get the sampling 

lattice as shown in Fig. 5.2. Accordingly, a D D× square array aperture 

contains ( )( )1 2 1D Dλ λ+ +        samples.  
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For a 2D broadside array orientation, the ROE is a disc of radius 1
λ

. 

Optimum sampling in this case involves the close-packing of 2D hyperspheres 

(discs) [PM62] as shown in Fig. 5.3. Accordingly, it can be shown that a D D×  

square array aperture contains ( )( )1 1 2 1 2 3
2

D Dλ λ  + +     
 samples, 

where x   is the smallest integer x≥ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Optimum sampling within an endfire 2D aperture. 
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Fig. 5.3 Optimum sampling within a broadside 2D aperture [PM62]. 
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For 3D arrays, we note that the ROE is either a spherical or hemispherical 

surface 2 2 2 2
0x y zk k k k+ + = . In other words, the 3D sampling of 

electromagnetic fields is in fact an extended 2D one, the only difference being 

that the spatial bandwidth becomes quadrupled (semi-disc and disc become  

hemispherical and spherical surfaces, respectively). Therefore, we heuristically 

conjecture that the number of samples within the 3D regular array (say of a 

D D D× × cube aperture) is 4 times that in the case of the corresponding 2D 

array ( D D× square aperture). We present shortly some statistical simulations 

which agree with this conjecture. The number of samples (through optimum 

sampling) for the 1D, 2D and 3D array cases, using isotropic elements, is 

summarized in Table 5.1. This number can be viewed as the scalar DOF within 

the given aperture size as discussed earlier in sub-section 5.2.2. We point out 

that these DOF are for the scalar sampling i.e. the multi-polarization effect is 

not considered. 

 

Table 5.1 DOF (Optimum Sampling) for Several Array Sizes and Orientations 

Orientation Array Size ROE DOF (Optimum Sampling) 

Endfire D  BW 1/λ=  1 D λ+     

Broadside D  BW 2 /λ=  1 2D λ+     

Endfire D D×  
Semi-disc 

( 1/R λ= ) 
( )( )1 2 1D Dλ λ+ +        

Broadside D D×  
Disc 

( 1/R λ= ) 
( )( )1 1 2 1 2 3

2
D Dλ λ  + +     

 

 D D D× ×

Hemispherical 

surface 

( 1/R λ= )  

( ) ( )4 1 2 1D Dλ λ+ +        

 D D D× ×

Spherical 

surface 

( 1/R λ= ) 

( )( )14 1 2 1 2 3
2

D Dλ λ  + +     
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In order to examine the stated DOF results, we use the identical-element 

model developed in chapter 3 to compare the DOF results obtained through the 

PID and the optimum sampling. From the multi-keyhole form [LL06a, LL06b] 

in (3.14) we have 
( ) ( ) ( )r rt t T=H H A H .           (5.10) 

We perform Monte-Carlo simulations at one end (say the receive end) in order 

to evaluate the PID of a given array size. ( ) RN Lr ×∈H and is constructed such 

that ( ) ( ) ( )
1 ...r r r

L =  H v v , where 

• RN is the number of the array elements and L is the number of rays, 

• ( )r
lv  is the receive phase shift vector for the thl  ray, 

• the elements of ( )r
lv are given by ( ) ( ) ( )

0 ˆexp[ ]r r r
ml m lv jk= ⋅a a , 

• ( )r
ma  is the position vector of the thm  array element referred to the 

receive phase-centre (PC), and 

• ( )ˆ r
la  is the unit vector for the thl  ray direction of arrival under plane 

wavefront approximation. 

 

We assume a total number of rays 410L = for the 1D and 2D arrays which 

makes the environment quite multipath rich. Due to computational time 

considerations we choose 5000L =  for the 3D array simulations. Moreover, we 

assume that the azimuth angleϕ  of the DOA is uniformly distributed over 

[0,2 )π whereas the elevation angleθ  of the DOA is uniformly distributed over 

[0, / 2)π  and [0, )π  for the hemispherical and spherical ROE, respectively, with 

the array orientation properly adjusted. We compute the PID of ( )rH for each 

case and the results (approximated to the nearest integer) are shown in Fig. 5.4. 

 

We can observe that both the statistical PID results and the DOF based on 

the optimum sampling agree well enough. The largest deviation between the 2 

results occurs for the 3D array with full spherical ROE. In general, the 
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discrepancy between the results decreases as the array size increases. So far, the 

polarization effect was not considered and we inherently assumed that the 

elements were isotropic. The multi-polarization consideration needs 

deterministic simulations, which are presented in the next section. 
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Fig. 5.4 

DOF comparison using optimum sampling and PID for arrays of scalar isotropic 

elements (different sizes and orientations). (a) 1D array (size D)  (b) 2D array (size DxD) 

(c) 3D array (size DxDxD).  
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5.3 DOF of Multi-Polarization Array in a 

Deterministic Scenario 

In order to deterministically examine the multi-polarization effect, we perform 

the simulations in the PEC and lossy-wall corridor environments previously 

described in chapter 3 and 4. The axis along the corridor length, width and 

height are designated by (L,W,H), respectively. The lossy-wall rectangular 

corridor dimensions are100 4 3× ×  m along (L,W,H), respectively. The transmit 

and receive phase-centres are located at (50, 2, 2.8) and (75, 1.5, 1.7) along 

(L,W,H), respectively. The walls thickness is 15 cm with a dielectric constant of 

4. The ceiling and floor thicknesses are 30 cm with a dielectric constant of 6. 

Similarly, the PEC open-ended corridor dimensions are 4 3×  m along (W,H), 

respectively; the transmit and receive PCs are located at (2, 2.8) and (1.5, 1.7) 

along (W,H), respectively and are separated 25 m along the L-axis. The 

operating frequency is 2.4123 GHz and correspondingly, there are 2495 

propagating modes. Fig. 5.5 depicts a setup of a 2D square array of aperture 

size D D× and oriented along WL-WL at the transmit and receive locations. 

Each spatial point thereof accommodates 3 collocated infinitesimal electrical 

dipoles forming 3 independent ports. 

 

 

 

 

 

 

 

 

 

 

 

L 

WH 

Fig. 5.5 

Size-specific 2D MIMO array along WL-WL in a corridor. At each spatial point, 

there is a collocated tripole (3 physical ports). 
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In the PEC corridor, we make a 1D spatial Fourier transform of the electric 

field modal solution (given in appendix B) in response to a tripole excitation 

located at (2, 2.8) along (W,H). The spectrum along ( , , )W L Hf f f  is shown in 

Fig. 5.6 for all the transmit/receive polarization combination. | ( ) |ij kE f denotes 

the electric field amplitude spectrum, after performing the Fourier transform 

along the axis k , when the transmit and receive are polarized along the axes 

j and i , respectively. 

 

From Fig. 5.6, it is obvious that spatial bandwidth is as expected ( 2
λ

and 

1
λ

for broadside and endfire orientations, respectively). However, the spectrum 

is not uniform over the bandwidth. In other words, the effective bandwidth is 

smaller than the maximum value based on the ROE which leads to that the PID 

of a uni-polarized array is smaller than the isotropic scalar case. This is an 

inevitable consequence of working under the Maxwellian framework, where the 

polarized point source must have a pattern (null at the end-fire direction of the 

infinitesimal dipole) [SSWB03, SBY+06]. We also note that there could be a 

large gap between the spatial spectral power density for different polarizations. 

 

We plot the PID results in the described scenario versus the number of 

tripoles (equidistantly packed within the given aperture size) for 3 orientations 

of the 1D transmit-receive arrays along W-W, L-L, and H-H in Fig. 5.7-9, 

respectively. For each orientation, we use different array lengths. In the lossy-

wall scenario, we repeat the simulations for various loss-tangent (LT) values of 

the walls ranging from “transparent” lossy-dielectric ( 2LT 10−∼ ) to “reflective” 

lossy-conductor ( 2LT 10∼ ). The PID in the IRT simulations is evaluated using 
410 rays, which are ordered according to their contribution significance as 

discussed in chapter 3.  
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Fig. 5.6 

1D spatial frequency spectrum of a multi-polarized system in a PEC open-ended corridor. 

(a) over W-axis  (b) over L-axis (c) over H-axis.  
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Fig. 5.7 

PID of multi-polarization 1D MIMO system of aperture size 1.5λ  in PEC and lossy-

walls corridor. The array is oriented as (a) W-W  (b) L-L (c) H-H.  
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Fig. 5.8 

PID of multi-polarization 1D MIMO system of aperture size 3λ  in PEC and lossy-walls 

corridor. The array is oriented as (a) W-W  (b) L-L (c) H-H.  
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In Fig. 5.10-11, we plot the PID results when using 2D square arrays of 

sizes 21.5 1.5λ× and 23 3λ×  having different orientations at the transmit/receive 

ends. The tripole elements are uniformly deployed over both dimensions of the 

square aperture. Although this is not the optimum sampling as pointed out 

before for the 2D cases, we deliberately introduced some oversampling to 

accurately capture the saturation PID value. For the IRT simulations, we use 
410 rays. Due to the heavy computational cost, we only simulated up to 8 

tripoles per array edge (64 tripoles per aperture) for the lossy-walls cases. 

Fig. 5.9 

PID of multi-polarization 1D MIMO system of aperture size 7λ  in PEC and lossy-walls 

corridor. The array is oriented as (a) W-W  (b) L-L.  
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Fig. 5.10 

PID of multi-polarization 2D MIMO system of aperture size 21.5 1.5λ×  in PEC and 

lossy-walls corridor. The array is oriented as (a) WH-WH  (b) WL-WL (c) LH-LH.  
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Fig. 5.11 

PID of multi-polarization 2D MIMO system of aperture size 23 3λ×  in PEC and lossy-

walls corridor. The array is oriented as (a) WH-WH  (b) WL-WL (c) LH-LH. 
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Finally, we show the PID results for 3D cubic arrays (sizes 31.5 1.5 1.5λ× ×  

and 33 3 3λ× × ) in Fig. 5.12. The tripole elements are uniformly deployed over 

the W- and H-axes and we fix the number of tripoles over the L-axis to the 

optimum 1D number of 3 and 5 for the small and large array cube, respectively. 

The computational burden in this tripole 3D array sampling is tremendously 

heavy and can reach up to 87 hours per simulation on a 1.5 GHz processor with 

8 GB RAM. In fact, the memory requirement of the simulation is modest; 

however, the processor speed requirement is voracious. We only simulated up to 

7 tripoles per W- and H- array edge (147 and 245 tripoles for the small and 

large cube, repectively) for the lossy-walls cases. For the IRT simulations, we 

use 410 and 2000 rays for the small and large array cube, respectively. 

 

Lots of information can be obtained from Fig. 5.7-12. We observe that the 

PID values indeed saturates after a certain number of tripoles is reached within 

the aperture. This optimum sampling number depends on the orientation and the 

environment as pointed out before in [PBT05, LM06]. The PEC corridor is 

multipath rich and the maximum element separation agrees with the 

2
λ andλ spacing for the 1D broadside and endfire array, repectively. 

 

In the lossy-wall corridor of small LT, the effective spatial bandwidth is 

reduced because of the power loss suffered by the rays of high-order reflection 

(mostly through transmission through the walls). Such bandwidth reduction 

leads to a larger spacing between the optimum samples and a reduced PID 

value. Also, as pointed out in chapter 3, we notice that for the reflective walls 

scenarios ( 2LT 10∼ ), the PID results of the IRT simulation are approaching 

those obtained through rigorous modal solution in the PEC open waveguide. 

The possible reasons for the slight discrepancy were reported in chapter 3. 
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The PID value itself sheds some light on the multi-polarization impact when 

combined with the spatial diversity under the deterministic Maxwellian 

framework, which was overlooked in the statistical modeling using scalar 

isotropic elements (sub-section 5.2.3). In order to clarify this point, we repeated 

the simulations with hexapole array elements in the PEC waveguide for the 1D 

and 2D arrays. We also performed simulations with electrical uni-polarized 

point radiators as sampling elements over the array aperture (the 9 uni-

Fig. 5.12 

PID of multi-polarization 3D MIMO system in PEC and lossy-walls corridor. Aperture 

size: (a) 31.5 1.5 1.5λ× ×   (b) 33 3 3λ× × .  

1 2 3 4 5 6 7
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45

Number of Tripoles / WH-Dim (3 along L)

P
ID

 3D Array     Size= 1.5x1.5x1.5 λ3

 

 
PEC
LT~0.01
LT~0.1
LT~1
LT~10
LT~100

(a) 

1 2 3 4 5 6 7
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

Number of Tripoles / WH-Dim (5 along L)

P
ID

 3D Array     Size= 3x3x3 λ3

 

 
PEC
LT~0.01
LT~0.1
LT~1
LT~10
LT~100

(b) 



 115

polarization combinations of tripoles at the transmit/receive ends were 

considered). 

 

The maximum PID value obtained was recorded (rounded to the nearest 

integer) for hexapole, tripole and unipole sampling elements (the latter 

maximized over the 9 polarization combinations). We tabulate these results 

along with those obtained in sub-section 5.2.3 (optimum sampling and statistical 

PID) using the isotopic scalar samplers for the spherical and hemispherical ROE 

(according to the array orientation). Tables 5.2-3 show the DOF results for the 

1D and 2D arrays scenarios, repectively. 

 

It is evident that there is a discrepancy between the DOF results, evaluated 

by the scalar isotropic sampler, and those of the unipole point sources. The 

discrepancy becomes larger as the DOF increases (wider aperture or 2D array). 

There are 2 independent reasons for such a discrepancy: 

1. The unipole pattern is omnidirectional over the broadside plane. 

However, it exhibits a null in the endfire direction (along its own linear 

polarization). This is equivalent to reducing the effective spatial 

bandwidth and hence the DOF. 

2. The isotropic sampling was performed only at one end. From (5.10), we 

have 3 matrices (modeling the transmit, receive and environment) whose 

minimum PID will determine the upper bound PID of the channel matrix 

as discussed in (2.8) (matrix product inequality of chapter 2). The 

environment dimensionality ( )PID( )rtA is very large in the multipath rich 

PEC corridor, thus the individual transmit and receive dimensionalities 

will determine the upper bound PID. Since the transmit/receive apertures 

have the same size and orientation, we get ( ) ( )PID( ) PID( )r t≈H H . 

Consequently, the dimensionality upper bound 
( ) ( )min{PID( ), PID( )}r tH H  becomes loose as pointed out in chapter 2 

(see Fig. 2.1). The loose upper bound is more apparent as the PID 

increases at both ends. On the other hand, if there were a large 
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discrepancy between ( )PID( )rH  and ( )PID( )tH  (for example different 

transmit/receive aperture sizes), the PID upper bound would be tighter. 

The later case could explain the observation in [XJ06] that increasing the 

array size at one end makes a slight DOF increase up to the strict limit 

dictated by the other end of smaller aperture size. 

 

We also note the multi-polarization gain in comparison to the unipole 

sampler. Referring to Table 5.2, the tripole and hexapole samplers in the 

multipath rich corridor can enhance the unipole PID of a 1D array by up to 3 

and 5 times, respectively. For the 2D arrays, Table 5.3 shows that an 

enhancement factor of up to 2.71 and 3.88 can be achieved by using the tripole 

and hexapole samplers, respectively. Thus, a larger array aperture is generally 

better in exploiting the spatial diversity with a unipole sampler. These 

enhancement factors are consistent with the average values obtained in chapter 

4. 

 

Table 5.2 DOF for 1D Arrays (Different Sizes and Orientations) Using Isotropic 

and Multi-Polarized Samplers 

Array length (in λ ) 7 3 1.5 

Orientation (Tx and Rx) W L W L H W L H 

Isotropic Scalar Opt. Sampling (number 

of samples within aperture) 
15 8 7 4 7 4 2 4 

Isotropic Scalar PID (Monte-Carlo multi-

keyhole model) 
15 8 7 4 7 4 3 4 

Opt. Number of Elements 

(Deterministic) 
16 8 8 5 8 5 3 5 

Max PID Unipole (Deterministic) 10 7 6 4 5 3 3 3 

Max PID Tripole (Deterministic) 29 16 15 9 13 9 6 9 

Max PID Hexapole (Deterministic) 47 28 25 15 23 15 10 13
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Table 5.3 DOF for 2D Square Arrays (Different Sizes and Orientations) Using 

Isotropic and Multi-Polarized Samplers 

Array Edge Size (in λ ) 3 1.5 

Orientation (Tx and Rx) WH WL LH WH WL LH 

Isotropic Scalar Opt. Sampling 

(number of samples within aperture) 
39 28 28 12 8 8 

Isotropic Scalar PID (Monte-Carlo 

multi-keyhole model) 
49 30 30 19 12 12 

Opt. Number of Elements 

(Deterministic) 
8 8× 8 5× 5 8×  5 5×  5 3×  3 5×

Max PID Unipole (Deterministic) 28 18 17 11 8 7 

Max PID Tripole (Deterministic) 59 48 40 26 21 19 

Max PID Hexapole (Deterministic) 82 69 66 35 31 27 

 

5.4 Summary 

We investigated in this chapter the effect of the spectral domain ROE on the 

DOF of multi-antenna systems. We showed the dependence of the ROE on the 

array orientation and geometry (being 1D, 2D or 3D). We presented the 

optimum sampling (scalar isotropic) of 1D, 2D and 3D array apertures and 

compared the number of samples to the PID obtained through Monte-Carlo 

simulations for given array orientations.  

 

Next we performed deterministic simulations for multi-polarization arrays in 

a PEC corridor (modal analysis) and lossy-wall corridor (IRT) of different 

electrical properties. The results show that unipole samplers PID deviates from 

that of the scalar isotropic samplers, particularly for large DOF. We also 

showed the enhancement which the multi-polarization samplers can provide in 

comparison to the unipole ones. 
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Chapter 6 

Conclusion and Future Work 

6.1 Contributions 

In this dissertation, we have explored the dimensionality (also called DOF, PID 

or parallel sub-channels performance) that can be supplied by the natural carrier 

of the wireless signals: the electromagnetic field.  Based on the 3D spatial and 

vectorial nature of the electric and magnetic fields, we have investigated the 

fundamental upper limit of the number of parallel data channels that can be 

provided by exploiting all the possible available diversity resources (space, 

pattern and polarization). Specifically, the contributions of this research are 

listed as follows: 

• A well-defined power-independent dimensionality (PID) metric has been 

developed in order to measure the parallel sub-channels performance 

according to the channel singular values. The novel PID metric was 

compared to some power-dependent metrics in the literature. The merits 

and properties of the PID have been discussed, in particular its matrix-
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size independence and matrix product inequality, which makes it a very 

suitable measure to quantify the EM-DOF problem at hand. 

• The EM ray propagation model was modified to exhaustively include 

the available multi-polarization and spatial diversity. We also linked it to 

the recent multi-keyhole model [LL06a, LL06b], which yields a closed- 

form expression of matrix product rather than an infinite summation of 

matrices. The multi-keyhole model was shown to be intuitive in 

evaluating the MIMO dimensionality upper bound, when the array 

elements have identical pattern/polarization, through the PID matrix 

product inequality. 

• The multi-polarization effect has been thoroughly investigated in 

deterministic environments, under the Maxwellian framework. In a 

multipath rich environment, we showed that a hexapole system is almost 

guaranteed to provide more than 3 DOF, however the claimed 6 DOF 

have never been achieved. The tripole system was shown to be able to 

provide up to 3 DOF. Therefore, a clear answer was provided, in 

deterministic environments, regarding the ability of the dual fields 

(electric and magnetic) to carry independent information. This is a 

fundamental link between the electromagnetism and information theory 

that has not been well explored in the literature to the best of our 

knowledge. 

• The EM-DOF of a finite array size has been studied in a deterministic 

environment using rigorous modal analysis and approximate ray tracing. 

We have emphasized the dependence of the spectral domain ROE on the 

array geometry (being 1D, 2D or 3D) and its orientation. The optimum 

sampling of 2D and 3D arrays has been carefully examined. We have 

also reported novel results of the multi-polarization dimensionality gain 

(compared to uni-polarized elements) when combined with the spatial 

diversity of the array. 
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6.2 Future Work 

We believe that the framework proposed in this thesis is just the beginning of 

future ambitious research work. The following areas would be good candidates 

to expand on the present work: 

• In order to find a fundamental PID limit, we have employed the ideal 

electromagnetic sampler, which is the polarized (electric or magnetic) 

point source. This choice was motivated by the requirement to exclude 

the finite length of each element, the field distortion due to the presence 

of the detector as well as the inter-element mutual coupling effect. 

Certainly, this choice is too theoretical. An interesting practical problem 

would be how to implement miniaturized collocated multi-polarized 

elements, with acceptable matching over the frequency band of 

operation, while taking the mutual coupling into consideration. Some 

recent advances in this direction are reported in [KGK+05, RGK+07]. 

How would the dimensionality of such practical structures compare with 

the theoretical limit of this work? This is a problem of a chief industrial 

importance, which targets the minimum number of miniaturized 

antennas required to exploit all the available dimensionality of the 

electromagnetic field. 

• A major assumption throughout this thesis was the narrow-band 

operation. This makes the results valid for frequency flat channels at a 

single operating frequency. Recent interest in multi-antenna systems is 

directed toward the wide-band operation [e.g. Mol05]. How the 

dimensionality, including the multi-polarization effect, will be affected 

in such a case? We expect that a sub-band in the higher temporal-

frequency region will make the aperture size electrically wider, thus 

promising higher DOF over this sub-band. However, the environment 

electrical properties and the ray propagation are dispersive as well. In 

other words, each temporal frequency sub-band of operation has its own 
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ROE and effective spatial bandwidth. This interesting problem is still 

open for investigations. 

• At the electromagnetic modeling level, there is room for lots of new 

findings. How can one develop an acceptable statistical model of 

propagation, using multi-polarization systems, while still obeying the 

rigorous Maxwellian framework? How can such a model be extended to 

the wide-band systems? This problem is not yet satisfactorily 

investigated. Some recent work targeted this multi-polarization problem 

from statistical perspective [SZM+06]. Another topic of interest is the 

difference between the indoor and outdoor models. The former exploits 

several propagation mechanisms (transmission, reflection, diffraction), 

whereas the latter relies heavily on the diffraction and reflections. In this 

thesis, we deterministically investigated one canonical structure (empty 

enclosure). How would the outdoor PID results compare to the indoor 

ones under the Maxwellian framework? 

• All the power issues have been overlooked throughout this work, in the 

intention to only focus on the dimensionality performance. However, 

through joint dimensionality- and power-adaptive MIMO systems, it is 

expected that the general performance of the system (evaluated through 

a global power-dependent measure such as the capacity or BER) would 

significantly improve. An interesting project would be to implement an 

adaptive multi-antenna system (adaptive BFN and/or polarization), 

focusing first on the PID as the optimization parameter and then 

applying the optimum power assignment at the transmit elements. 
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Appendix A 

Prolate Spheroidal Wave Functions and 

DOF Evaluation 

In this appendix, we review the definitions and relations of the eigen-functions 

and eigen-values (prolate spheroidal wave functions PSWF) which are relevant 

to the DOF evaluation of essentially time- temporal_frequency- bandlimited 

functions. The functions, whose DOF is under investigation, are assumed to be 

bandlimited having a bandwidth of 2W Hz in the frequency domain. They are 

entire over the time-domain, however, the majority of their energy is 

“essentially” confined within a time window of T sec. 

  

A.1 PSWF Definitions and Relations 

After separating the 3-D scalar wave equation in a prolate spheroidal coordinate 

system and expressing ( )u t as a function of time rather than a spatial coordinate 

(so as to be consistent with our objective hereafter), the second order eigen 

value differential equation 
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2 2 2(1 ) ( , ) ( ( ) ) ( , ) 0d dt u c t c c t u c t
dt dt

χ− + − = ,       (A.1a) 

which is equivalent to 

     
2

2 2 2
2(1 ) 2 ( ) 0d u dut t c t u

dt dt
χ− − + − = ,        (A.1b) 

has bounded solutions (over the entire t ) only when ( )n cχ χ= , 

where ( )n cχ takes discrete real positive values [SP61, Sle83]. Under this 

condition, the angular PSWF 0 ( , )nS c t provides one solution set. The other 

independent solution set is the angular PSWF of the second kind 
(2)
0 ( , )nS c t [Fla57, AS72]. 

 

 A useful solution set is the radial PSWF (1)
0 ( , )nR c t , which is related to the 

angular PSWF by a real scale factor ( )nk c  [SP61, AS72] such that 

(1)
0 0( , ) ( ) ( , )n n nR c t k c S c t= .       (A.2) 

(1)
0 ( , )nR c t is normalized so that [SP61] 

      (1)
0

1( , ) cos[ ( 1) 2]n tR c t ct n
ct

π→∞→ − + .    (A.3) 

 

A.2 Optimum Basis Functions 

Consider a function ( )y t , entire over t , whose Fourier transform ( )y f has a 

bandwidth of 2W (i.e. ( ) 0, | |y f f W= > ), and whose energy is mostly 

concentrated over a time window T such that 
/ 2

2

2/ 2

2

| ( ) |
1

| ( ) |

T

T
T

y t dt

y t dt
ε−

∞

−∞

= −
∫

∫
,       (A.4) 

where 2
Tε represents the negligible portion of energy outside the time window 

(tail energy) [LP62]. 
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The problem of how many degrees of freedom (DOF) are available in 

( )y t can be stated as follows: given only the knowledge of ( )y t within the time-

window T , what is the minimum number of independent expansion functions 

(basis functions) required to reconstruct ( )y t subject to an error (over the entire 

time-domain) which is dependent on the neglected tail energy 2
Tε ? The 

aforementioned problem can be divided into 3 questions: 

1. What are the optimum basis functions (in the sense of their ability to 

best concentrate their energy within and being orthogonal over 

| | / 2t T<  [Sle83])? 

2. How many of them do we need? 

3. What is the greatest lower bound (over all expansion coefficients) of the 

reconstruction error in terms of 2
Tε ? 

These questions were answered in the celebrated paper of Landau and Pollak 

[LP62]. The optimum basis functions are a scaled version of the PSWF’s, where 

2 1WT +   such functions ( x   is the largest integer x≤ ) are needed to 

express ( )y t such that the upper bound of the reconstruction square error is 212 Tε . 

 

The above result is formally stated as [LP62] 
2

2 2

0

| ( ) ( , ) | 12
WT

n n T
n

y t a c t dtψ ε
∞   

=−∞

− <∑∫ ,     (A.5) 

where [SP61] 

    c WTπ=              (A.6) 

    ( )2(1)
0( ) 2 ( ,1)n nc WT R cλ =          (A.7) 

    
0

/ 2
2
0

/ 2

,
/ 2( , ) ( )

,
/ 2

n

n n T

n
T

tS c
Tc t c

tS c dt
T

ψ λ

−

 
 
 =
 
 
 ∫

.     (A.8) 

The important properties of{ ( , )}n c tψ and { ( )}n cλ are listed in the next section.  
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A.3 Properties of the Optimum Basis Functions 

We define the following useful functions and operators: 

• ( )
11 | |
2
10 | |
2

t
t

t

 <Π = 
 >


: Pulse of unit height and unit area centered at the 

origin. 

• sinsinc( ) tt
t
π
π

= : Nyquist sampling function (also called the cardinal 

function [PM62]). 

• { ( )} ( )T
t t

tD y t y t
T→

 ≡ Π  
 

: Time truncation of widthT sec centered at the 

origin. 

• 1{ }and { }
t f f t
F F −

→ →
i i : Fourier and inverse Fourier transform, respectively. 

• 1
2 2{ } { }W Wf t t ft t f f

B F D F−

→ →→ →
≡i i : Convolution with an ideal low-pass filter of 

band-width 2W Hz. 

• { ( )} ( )A
t t
C y t y At
→

≡ : Compression by a factor A . 

• *
1 2 1 2, ( ) ( )y y y t y t dt

∞

−∞

≡ ∫ : the inner product of 1( )y t and 2 ( )y t . 

Next, we present the properties of { ( , )}n c tψ and { ( )}n cλ . 

 

A.3.1 Bandlimitedness and Double-Orthogonality 

{ ( , )}n c tψ are band-limited in the frequency domain (their Fourier 

transform{ ( , )}n c fψ has a bandwidth of 2W Hz). In the time domain, they 

possess a very unique property of being orthogonal over 2 different intervals 

[SP61]: 
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  orthonormal over the real line: ,i j ijψ ψ δ=        (A.9) 

  orthogonal over | | 2t T≤ :  ,T i T j i ijD Dψ ψ λ δ= ,      (A.10) 

where ijδ is the Kronecker delta. Besides, { ( , )}n c tψ and{ ( , )}T nD c tψ are 

respectively complete in the 2 spaces of square-integrable functions spanned by: 

1) the band-limited functions of bandwidth 2W Hz and 2) the time domain T-

truncated functions ( )TD y t . Consequently, (A.9) can be used to expand the 

band-limited  square-integrable function ( )y t yielding 

      
0

( ) , ( , )n n
n

y t y c tψ ψ
∞

=

=∑ .          (A.11) 

Similarly, we can expand ( )y t  using (A.10)  

      
0

,
( ) ( , )

( )
T T n

n
n n

D y D
y t c t

c
ψ

ψ
λ

∞

=

=∑ .         (A.12) 

We point out that the expansion coefficients in (A.11) require the full 

knowledge of ( )y t over the entiret . More interestingly in (A.12), we can 

theoretically extrapolate ( )y t  over the entire t  given only the accurate values of 

( )y t  over | | / 2t T≤  [SP61]. 

 

We note form (A.10) that ( )n cλ  is the fractional energy 

of ( , )n c tψ within| | 2t T≤ and is always a real positive number 1< .{ ( )}n cλ are 

indexed such that their values are in a decreasing order 0 1 21 λ λ λ> > > > and 

correspond to the increasingly-ordered 0 1 2χ χ χ< < < in (A.1) [Sle83]. 

 

A.3.2 Eigen Functions of 2 Finite Kernels 

The first eigen integral relation of ( , )n c tψ , in operator notation, is [SP61, LP62] 

     { }2 ( , ) ( ) ( , )W T n n nB D c t c c tψ λ ψ= ,       (A.13a) 

which is equivalent to the convolution 
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   2 sinc 2 ( - ) ( , ) ( ) ( , )n n n
sW W t s c s ds c c t
T
ψ λ ψ

∞

−∞

 Π = 
 ∫ .    (A.13b) 

Therefore, ( , )n c tψ and ( )n cλ are the eigen functions and eigen values, 

respectively, of the finite shifted sinc kernel 

1( , , 2 , ) 2 sinc 2 ( - ) sK t s W T W W t s
T
 = Π  
 

. 

 

The second eigen integral relation of ( , )n c tψ is linked to the Fourier 

transform operation [SP61] 

2 ( , ) 2 / ( ) ( , )
2 / 2

j ft n
n n n

f fe c df j W T c c t
W T W

π ψ λ ψ
∞

−∞

 Π = 
 ∫ ,     (A.14) 

which, after some manipulations, can be expressed as 

  
22 ( )( , ) ( ) ( , )

2 /

W nj f t
T

n n n
t je c t dt c c f
T W T

π
ψ λ ψ

∞ −

−∞

− Π = 
 ∫ ,    (A.15a) 

or, in operator notation, 

    { }2 /
( )( , ) ( ) ( , )
2 /

n

W T T n n n
jC FD c t c c f

W T
ψ λ ψ−= .    (A.15b) 

Hence, the eigen functions and eigen values of the finite compressed Fourier 

transform kernel 
22

2 ( , , 2 , )
Wj f t
T tK t f W T e

T
π−  = Π  

 
 are 

( , )n c tψ  and ( ) ( )
2 /

n

n
j c

W T
λ− , respectively. 

 

A.3.3 Further Properties 

( )0 ,nS c t is even/odd (with respect to t ) when n is even/odd [SP61] and 

accordingly 

( ) ( ), ( 1) ,n
n nc t c tψ ψ− = − .        (A.16) 

Also, ( ),n c tψ has exactly n zeros within| | / 2t T≤ . 
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Using the orthonormality property, the Fourier transform kernel 2i fte π− can 

be expanded using{ ( , )}n c tψ yielding 

     2

0
( , ) ( , ) all ;| |i ft

nn
n

e c t c f t f Wπ ψ ψ
∞

−

=

= ≤∑ .     (A.17) 

Similarly, using the band-limitedness of ( , )n c fψ , one can show 

that 2 sinc 2 ( - )W W t s can be expanded as [LP62] 

    
0

2 sinc 2 ( - ) ( , ) ( , ) all ,n n
n

W W t s c t c s t sψ ψ
∞

=

=∑ .      (A.18) 

Setting t s= in (A.18), we get 

      2

0
( , ) 2 everyn

n

c t W tψ
∞

=

=∑ .        (A.19) 

Finally, integrating both sides of (A.19)
/ 2

/ 2

( )
T

T

dt
−
∫ i and using (A.10) yield [LP62] 

      
0

( ) 2 everyn
n

c WT cλ
∞

=

=∑ ,         (A.20) 

which means that the summation of all the confined energy fraction of 

( , )n c tψ within | | / 2t T≤ yield the DOF of ( )y t  (i.e. its Shannon number 

[GG73]). 

 

In fact, ( )n cλ has a step-like distribution: for 2n WT , most of ( )n cλ are 

close to unity whereas for 2n WT , most of ( )n cλ are close to zero. The 

interval of transition from 1 to 0, around 2n WT∼ , grows as log( )c  [LP62, 

Sle83]. For large 2WT , a useful asymptotic approximation of ( )n cλ  was 

reported [Sle65, Sle83] 

    
2

1lim 2 log( )
1n bWT

bn WT WT
e π

λ π
π→∞

 = = + +  
,      (A.21) 

whereb can take positive, negative or zero value. 
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Similarly, for large 2WT , due to the step-like behavior of{ ( )}n cλ and the 

transition from approximately unity to zero values, we expect that 

      
0

( ) 2 0k
n c

n
c WT kλ

∞

→∞
=

→ >∑ ,        (A.22) 

where the approaching speed is governed by k . For 1k = , the identity (A.20) 

holds for allc . 
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Appendix B 

Multi-Polarization Excitation in PEC 

Rectangular Structures: Modal Analysis 

This appendix includes the modal solution of the field excited by an 

infinitesimal dipole (also known as point source or Hertzian dipole) in a perfect 

electric conductor (PEC) rectangular environment. We show the solution for a 

rectangular cavity and for a rectangular waveguide as a response to multi-

polarized electrical excitation. The time convention employed for the harmonic 

field is j te ω and consequently, jkre− denotes an outwardly propagating wave. 

 

B.1 PEC Rectangular Cavity 

The PEC rectangular cavity has dimensions of ( , , )X Y Z along 

the x , y and z axis, respectively. The infinitesimal dipole is z-directed and 

located at 0 0 0( , , )x y z , as shown in Fig. B.1, and has unit current density. In 

such configuration (TMZ), the electric vector potential F may be chosen to be 

null and the z-component of the magnetic vector potential A is sufficient to 
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determine the field solution [Str41, Bal89, Col90, Eom04]. Therefore, we have 

one non-homogeneous Helmholz scalar equation 

    2 2
0 0 0 0 0( ) ( ) ( ) ( )zk A x x y y z zµ δ δ δ∇ + = − − − − ,   (B.1) 

where 0k and 0µ are the free space wave number and permeability, respectively. 

The boundary conditions (BC) are the vanishing tangential electric field at the 

PEC boundaries i.e. at {0, } ; {0, } ; {0, }x X y Y z Z= = = . 

 

 

 

 

 

 

 

 

The solution is based on eigen function expansion [Col90, Eom04]. We 

choose the following orthonormal eigen functions, which will satisfy the BC, 

2 2 2( , , ) sin( )sin( )cos( )mnp p
m n px y z x y z

X Y Z X Y Z
π π πψ ε= ,   (B.2) 

where the Neumann factor pε is given by
0.5 0
1 0p

p
p

ε
=

=  ≠
. 

 

We expand zA  and 0 0 0( ) ( ) ( )x x y y z zδ δ δ− − − in (B.1) using ( , , )mnp x y zψ to 

obtain 

0 0 0
0 0 0

( , , ) ( , , )z mnp mnpA a x y z x y zψ
∞ ∞ ∞

=∑∑∑      (B.3) 

0 0 0 0 0 0
0 0 0

( ) ( ) ( ) ( , , ) ( , , )mnp mnpx x y y z z x y z x y zδ δ δ ψ ψ
∞ ∞ ∞

− − − =∑∑∑ .  (B.4) 

Substituting (B.3-4) in (B.1) and applying mode-matching, we get 

0 0 0
0 0 0 0

2 2 2 2
0

( , , )
( , , )

( ) ( ) ( )

mnp
mnp

x y z
a x y z m n pk

X Y Z

ψ
µ π π π= −

− − −
.    (B.5) 

x 
y

z

(x0,y0,z0) 

Fig. B.1  Z-directed infinitesimal dipole in a rectangular structure 
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Substituting (B.5) in (B.3) we get 

0 0 0
0

2 2 2 20 0 0
0

( , , ) ( , , )

( ) ( ) ( )

mnp mnp
z

x y z x y z
A m n pk

X Y Z

ψ ψ
µ π π π

∞ ∞ ∞

= −
− − −

∑∑∑ .    (B.6) 

 

In order to derive the field components from zA , we have 

0

1H A
µ

= ∇× ,        (B.7) 

then, in a source free region, E  can be obtained from the second curl 

Maxwell’s equation [Bal89] 

0

1E H
jωε

= ∇× .        (B.8) 

Both (B.7) and (B.8) are expanded, in cartesian coordinates, into the following 

field components 
2

0 0 0
2

0 0

2 2

2 2
0 0

1 1

1 1

10

z z
x x

z z
y y

z z
z z

A AH E
y j z x

A AH E
x j z y

A AH E
j x y

µ ωε µ

µ ωεµ

ωε µ

∂ ∂= =
∂ ∂ ∂

∂ ∂= − =
∂ ∂ ∂

 ∂ ∂−= = + ∂ ∂ 

   (B.9) 

 

Finally, from (B.6) and (B.9), we get the field solution of the problem 

 

0 0 0

2 2 2 20 0 0
0

sin( )sin( ) cos( )sin( ) cos( ) cos( )8

( ) ( ) ( )
x p

m n p m n px y z x y zn X Y Z X Y ZH m n pXY Z Y k
X Y Z

π π π π π π
πε π π π

∞ ∞ ∞

= −
− − −

∑∑∑
    (B.10a) 

0 0 0

2 2 2 20 0 0
0

sin( )sin( ) cos( ) cos( )sin( ) cos( )8

( ) ( ) ( )
y p

m n p m n px y z x y zm X Y Z X Y ZH m n pXY Z X k
X Y Z

π π π π π π
πε π π π

∞ ∞ ∞

=
− − −

∑∑∑
    (B.10b) 

0zH =                    (B.10c) 
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2 0 0 0

2 2 2 20 0 00
0

sin( )sin( ) cos( ) cos( )sin( )sin( )1 8
( ) ( ) ( )

x p

m n p m n px y z x y z
X Y Z X Y ZE Y mp m n pj XY Z k

X Y Z

π π π π π π
π ε π π πωε

∞ ∞ ∞ =  
  − − −

∑∑∑
    (B.10d) 

2 0 0 0

2 2 2 20 0 00
0

sin( )sin( ) cos( )sin( ) cos( )sin( )1 8
( ) ( ) ( )

y p

m n p m n px y z x y z
X Y Z X Y ZE X np m n pj XY Z k

X Y Z

π π π π π π
π ε π π πωε

∞ ∞ ∞ =  
  − − −

∑∑∑
    (B.10e) 

2 22 0 0 0

2 2 2 20 0 00
0

sin( )sin( )cos( )sin( )sin( )cos( )1 8

( ) ( ) ( )
z p

m n p m n px y z x y zm n X Y Z X Y ZE m n pj XY Z X Y k
X Y Z

π π π π π π
π ε π π πωε

∞ ∞ ∞     = − +    
      − − −

∑∑∑
     (B.10f) 

where 0ε is the permittivity of the free space. 

 

For excitation with an x- or y-polarized source, the field solution is similar 

to (B.10) with simple coordinate transformation. From (B.10), one can clearly 

see that there is no real power propagation since
*1 Re{ } 0

2
E H× = . This result 

should not be surprising because the radiator (infinitesimal dipole) is completely 

surrounded by a PEC enclosure and thus all the power is reflected back to the 

source. Both the evanescent nature of the field and the difficult convergence of 

(B.10) explain why we do not use this PEC enclosure in our simulations in spite 

of being a super multipath-rich environment [LM06]. 

 

B.2 PEC Rectangular Waveguide 

In this section we present the field solution in a PEC waveguide excited by an 

infinitesimal dipole. We assume that the waveguide propagation direction is 

down the y-axis and the waveguide cross-section dimensions along the x- and z-

axis are ( , )X Z respectively as depicted in Fig. B.1. The infinitesimal dipole is 

located at 0 0 0( , , )x y z  

 

B.2.1 Transverse Source 

We assume that the infinitesimal source is z-polarized. For an x-polarized 

source, the solution needs straightforward coordinate transformation. The non-
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homogeneous Helmholz scalar equation is exactly the same as (B.1) (TMZ). We 

have PEC boundaries at {0, } ; {0, }x X z Z= = and we require that the field 

components vanish at y →±∞ (radiation BC). Since the waveguide is open 

along the y-axis, we expect a continuous spectrum along this direction [Col90, 

Eom04]. Accordingly, we define the Fourier Transform (FT) pairs 

( ) ( ) j yg g y e dyηη
∞

−∞

= ∫ .       (B.11a) 

1( ) ( )
2

j yg y g e dηη η
π

∞
−

−∞

= ∫       (B.11b) 

Applying FT over the y-axis on both sides of (B.1) and using (B.11a), we get 

02 2 2
0 0 0 0 0 0 0( ) ( , , , , , ) ( ) ( ) j y

xz zk A x z x y z x x z z e ηη η µ δ δ∇ − + = − − − ,     (B.12) 

where
2 2

2
2 2xz x z

∂ ∂∇ ≡ +
∂ ∂

. 

 

Subsequently, as we did in the cavity case, we choose the following 

orthonormal eigen functions, which will satisfy the BC, 

2 2( , ) sin( )cos( )mp p
m px z x z

X Z X Z
π πψ ε= ,        (B.13) 

and we make the orthonormal expansion similar to section B.1 to obtain 
0

0 0 0 0 0 0 2 2
0 0

( , , , , , ) ( , ) ( , )
j y

z mp mp
m p mp

eA x z x y z x z x z
η

η µ ψ ψ
κ η

∞ ∞

= =
= −

−∑∑ ,     (B.14) 

where 

2 2 2 2
0 ( ) ( )mp

m pk
X Z
π πκ = − − .          (B.15) 

Then, we apply the inverse FT (B.11b) on (B.14) to obtain 0 0 0( , , , , , )zA x y z x y z  

0( )
0

0 0 2 2
0 0

( , ) ( , )
2

j y y

z mp mp
m p mp

I

eA x z x z d
ηµ ψ ψ η

π κ η

∞ − −∞ ∞

= = −∞

= −
−∑∑ ∫ , 

where the integral I is evaluated using the residue theory. We point out that both 

k and mpκ have a small negative imaginary parts accounting for losses (satisfying 
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the vanishing fields at y→±∞ ). We use the residue theory for the contours 

shown in Fig. B.2 such that for 0y y> , we use C0 and C1 and for 0y y< , we use 

C0 and C2. Therefore,
0| |

2
2

mpj y y

mp

eI j
κ

π
κ

− −

= − yielding 

0| |

0 0 0
0 0

( , ) ( , )
2

mpj y y

z mp mp
m p mp

eA j x z x z
κ

µ ψ ψ
κ

− −∞ ∞

= =

= ∑∑ ,       (B.16) 

where 

2 2 2 2 2 2
0 0

2 2 2 2 2 2
0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
mp

m p m pk k
X Z X Z

m p m pj k k
X Z X Z

π π π π

κ
π π π π


− − > += 

− + − < +

.     (B.17) 

 

 

 

 

 

 

 

 

 

 

 

 

The field solution is then found from (B.16) and (B.9) yielding 

 

0| |
0 0 0

0 0

2sgn( ) sin( )sin( )cos( ) cos( ) mpj y y
x p

m p

m m p pH y y x x z z e
XZ X X Z Z

κπ π π πε
∞ ∞

− −

= =

= − ∑∑     (B.18a) 

0| |

0 0
0 0

2 sin( )cos( )cos( )cos( )
mpj y y

y p
m p mp

m m m p p eH j x x z z
XZ X X X Z Z

κπ π π π πε
κ

− −∞ ∞

= =

= − ∑∑     (B.18b) 

0zH =                    (B.18c) 

 

η -Plane 

C2 

C1 

C0 

Fig. B.2  Complex η -plane and integration contours 
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0| |

0 0
0 00

1 2 sin( ) cos( ) cos( )sin( )
mpj y y

x p
m p mp

m p m m p p eE x x z z
XZ X Z X X Z Z

κπ π π π π πε
ωε κ

− −∞ ∞

= =

= − ∑∑    (B.18d) 

0| |
0 0 0

0 00

1 2sgn( ) sin( )sin( ) cos( )sin( ) mpj y y
y p

m p

p m m p pE j y y x x z z e
XZ Z X X Z Z

κπ π π π πε
ωε

∞ ∞
− −

= =

= − ∑∑    (B.18e) 

0| |
2 2

0 0 0
0 00

1 2 sin( )sin( ) cos( ) cos( ) ( )
mpj y y

z p
m p mp

m m p p e pE x x z z k
XZ X X Z Z Z

κπ π π π πε
ωε κ

− −∞ ∞

= =

 = −  
∑∑    (B.18f) 

In (B.18),
1 0

sgn( )
1 0
ξ

ξ
ξ
>

= − <
. We assume that 0| |y y− is large enough 

(compared to the wavelength) such that the evanescent mode effect is negligible 

in the simulations. Thus, according to the operation frequency, only the 

propagating modes of (B.18) are considered and there is no convergence 

problem as long as we are far enough from the source. We note 

from
*1 Re{ }

2
E H× in (B.18) that there is a real power transfer along the 

propagation direction (y-axis) without any decay (lossless walls). We also note 

that the solution is space-invariant with respect to the y-axis i.e. function of 

0( )y y− . 

 

For an x-polarized infinitesimal excitation dipole, coordinate transformation 

readily gives the field solution 

 

0xH =                    (B.19a) 

0| |

0 0
0 0

2 cos( )cos( )sin( )cos( )
mpj y y

y m
m p mp

p m m p p eH j x x z z
XZ Z X X Z Z

κπ π π π πε
κ

− −∞ ∞

= =

= ∑∑     (B.19b) 

0| |
0 0 0

0 0

2sgn( ) cos( )cos( )sin( )sin( ) mpj y y
z m

m p

m m p pH y y x x z z e
XZ X X Z Z

κπ π π πε
∞ ∞

− −

= =

= − − ∑∑    (B.19c) 

 
0| |

2 2
0 0 0

0 00

1 2 cos( )cos( )sin( )sin( ) ( )
mpj y y

x m
m p mp

m m p p e mE x x z z k
XZ X X Z Z X

κπ π π π πε
ωε κ

− −∞ ∞

= =

 = −  
∑∑     (B.19d) 

0| |
0 0 0

0 00

1 2sgn( ) cos( )sin( )sin( )sin( ) mpj y y
y m

m p

m m m p pE j y y x x z z e
XZ X X X Z Z

κπ π π π πε
ωε

∞ ∞
− −

= =

= − ∑∑    (B.19e) 

0| |

0 0
0 00

1 2 cos( )sin( )sin( ) cos( )
mpj y y

z m
m p mp

m p m m p p eE x x z z
XZ X Z X X Z Z

κπ π π π π πε
ωε κ

− −∞ ∞

= =

= − ∑∑    (B.19f) 
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B.2.2 Longitudinal Source 

We conclude this appendix by providing the field solution in a PEC waveguide, 

which is excited by an infinitesimal y-polarized source (along the direction of 

propagation). The same procedure in sub-section B.2.1 is repeated with the non-

homogeneous Helmholz scalar equation (TMY mode) 
2 2

0 0 0 0 0( ) ( ) ( ) ( )yk A x x y y z zµ δ δ δ∇ + = − − − −       (B.20) 

under the same PEC-BC at {0, } ; {0, }x X z Z= = and the requirement that the 

field components vanish at y →±∞ . 

 

Accordingly, we apply FT along the y-axis and we choose the following 

orthonormal eigen functions, which will satisfy the BC, 

2 2( , ) sin( )sin( )mp
m px z x z

X Z X Z
π πψ = .       (B.21) 

After repeating the same steps of sub-section B.2.1, we get the following 

field solution 
0| |

0 0
0 0

2 sin( )sin( )sin( )cos( )
mpj y y

x
m p mp

p m m p p eH j x x z z
XZ Z X X Z Z

κπ π π π π
κ

− −∞ ∞

= =

= − ∑∑     (B.22a) 

0yH =                    (B.22b) 

0| |

0 0
0 0

2 sin( ) cos( )sin( )sin( )
mpj y y

z
m p mp

m m m p p eH j x x z z
XZ X X X Z Z

κπ π π π π
κ

− −∞ ∞

= =

= ∑∑     (B.22c) 

 

0| |
0 0 0

0 00

1 2sgn( ) sin( )cos( )sin( )sin( ) mpj y y
x

m p

m m m p pE j y y x x z z e
XZ X X X Z Z

κπ π π π π
ωε

∞ ∞
− −

= =
= − − ∑∑     (B.22d) 

0| |
2 2

0 0
0 00

1 2 ( ) ( ) sin( )sin( )sin( )sin( )
mpj y y

y
m p mp

m p m m p p eE x x z z
XZ X Z X X Z Z

κπ π π π π π
ωε κ

− −∞ ∞

= =

 = +  
∑∑     (B.22e) 

0| |
0 0 0

0 00

1 2sgn( ) sin( )sin( )sin( ) cos( ) mpj y y
z

m p

p m m p pE j y y x x z z e
XZ Z X X Z Z

κπ π π π π
ωε

∞ ∞
− −

= =

= − − ∑∑     (B.22f) 
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Appendix C 

Spatial-Frequency Domain of 

Electromagnetic Fields 

In this appendix, we review the spectral domain (spatial frequency) transform of 

the electromagnetic fields, which is also known as the plane wave expansion 

[Cle66]. Two useful properties of this transform, governed by the vectorial 

electromagnetic wave equation, are employed throughout this thesis: 

1. The 2 DOF associated with each vectorial spectral component 

of E and H . 

2. The region of existence (ROE) of the 3D spatial-Fourier transform of the 

electromagnetic fields. 

 

At any source-free point of space, such as where the electromagnetic 

detector will be installed, the electromagnetic vectorial homogeneous wave 

equation must be satisfied 
2 2

0 0E k E∇ + =           (C.1a) 

2 2
0 0H k H∇ + = ,          (C.1b) 
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where 0k is the free space wave number and is related to the free space 

wavelengthλ by 0
2k π
λ

= . The homogeneous wave equation (C.1) is another 

form of the 2 source-free curl Maxwell’s equations after decoupling E and H . 

 

By applying the 3D spatial Fourier transform on (C.1a), in Cartesian 

coordinates, we obtain 

2 2 2 2
0( ) ( , , ) 0x y z x y zk k k k E k k k− − − + = ,     (C.2) 

where the transform vector pairs are related by 

  ( )( , , ) ( , , ) x y zj k x k y k z
x y zE k k k E x y z e dxdydz

∞ ∞ ∞ + +

−∞ −∞ −∞
= ∫ ∫ ∫    (C.3) 

 ( )
3

1( , , ) ( , , )
(2 )

x y zj k x k y k z
x y z x y zE x y z E k k k e dk dk dk

π
∞ ∞ ∞ − + +

−∞ −∞ −∞
= ∫ ∫ ∫  (C.4) 

The kernel in (C.4) represents a plane wave (traveling or evanescent), thus the 

transform (C.4) can be regarded as a plane wave expansion. There are 2 useful 

normalizations for the k-domain, namely, the spatial frequency domain [Goo96] 

1( , , ) ( , , )
2x y z x y zf f f k k k
π

=          (C.5a) 

yielding 

2 ( )( , , ) ( , , ) x y zj f x f y f z
x y z x y zE x y z E f f f e df df dfπ∞ ∞ ∞ − + +

−∞ −∞ −∞
= ∫ ∫ ∫ ;     (C.5b) 

and the complex direction cosine (also known as the complex unit vector) 

domain [Cle66] 

     ˆ ( , , )
2 x y zk k kλ
π

=k          (C.6a) 

yielding 

0
ˆ 3

3

1 ˆ ˆ( , , ) ( ) jkE x y z E e d
λ

∞ − ⋅

−∞
= ∫ k rk k ,        (C.6b) 

where ( , , )x y z=r . 

 

From (C.2), the values of ( , , )x y zk k k  are not arbitrary since they must 

satisfy 
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2 2 2 2
0x y zk k k k+ + = ,       (C.7) 

otherwise, E will vanish over the whole k-domain. Consequently, the ROE 

of E is a surface in the 3D k-domain, over which (C.7) is satisfied. In other 

words, the 3D Fourier transform can be reduced to a 2D one. Typically, we pick 

a direction (say the positive z-axis), which will become the decay direction of 

the evanescent plane-wave components in the half-space z>0, and express its 

corresponding k-component ( zk ) in terms of ( ,x yk k ) so that 

     
2 2 2 2 2 2

0 0

2 2 2 2 2 2
0 0

x y x y

z

x y x y

k k k k k k
k

j k k k k k k

 + − − + ≤= 
− + − + >

.   (C.8) 

 

As depicted in Fig. C.1, when zk is real, the ROE is the upper hemispherical 

shell, each point over which represents a plane-wave component traveling in the 

direction k̂ . For negative imaginary zk , the ROE is the lower semi-hyperboloid 

surface (of one-sheet), each point over which represents an evanescent plane-

wave component decaying in the positive z-direction at a rate of | |zk ze − . In the 

evanescent case, the unit vector k̂ is complex such that ˆ ˆ 1⋅ =k k ; and its real and 

imaginary vector components are orthogonal [Cle66]. The ROE intercepts each 

axis of the k-domain at 0k (corresponding to 1
λ

 and 1 for the f- and k̂ -domains, 

respectively). 

 

The transform ROE above covers only one half-space (z>0). In order to 

cover the other half-space, there is a symmetrical ROE (hemisphere and semi-

hyperboloid in the negative and positive zk directions, respectively) which 

accounts for the propagation/evanescence components in the half-space z<0. 

The propagation spherical shell (the 2 hemispheres) of the k-domain represents 

the full visible angular spectrum ( [0, ]θ π∈ and [0,2 ]ϕ π∈ ), which is 

encountered in closed structures such as cavities. In the far-field region, the 
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effect of the evanescent components on the semi-hyperboloid surfaces is 

negligible, hence we focus only on the propagation sphere ROE in practical 

scenarios. 

 

The 3D inverse Fourier transform (C.4) over the ROE surface is thus 

equivalent to a 2D one 
2 2 2 1/ 2

0( ( ) )
2

1( , , ) ( , )
(2 )

x y x yj k x k y k k k z
x y x yE x y z E k k e dk dk

π
∞ ∞ − + ± − −

−∞ −∞
= ∫ ∫ , (C.9) 

where the upper/lower signs describe the propagation along the 

positive/negative z-direction, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we proceed to find the relation between k̂ and the 2 transform 

vectors E and H [Bal97]. In a source-free region, ( , , ) 0E x y z∇⋅ = . Therefore, 

by applying the divergence operation on (C.6b) and interchanging the 

differentiation and integration order, we get 

Fig. C.1  Region of existence (ROE) of the electromagnetic fields 

spectrum in the k-domain for the half-space z>0 
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( )0
ˆ . 3ˆ ˆ( ) 0jkE e d

∞ −

−∞
∇ ⋅ =∫ k rk k .         (C.10) 

Using the vector identity ( )A A Aα α α∇⋅ = ∇ ⋅ + ⋅∇ and noting that ˆ( ) 0E∇⋅ =k , 

(C.10) yields 

      0 0
ˆ ˆ. .

0
ˆ ˆ ˆ( ) ( ) 0jk jkE e jk e E− −⋅∇ = − ⋅ =k r k rk k k ,      (C.11) 

that is for real k̂ (traveling waves), ˆ( )E k is orthogonal to the direction of 

propagation. From (C.11), given k̂  and 2 components of ˆ( )E k , the third 

component can be readily derived and thus each ˆ( )E k has only 2 DOF. 

 

Finally, in order to obtain ˆ( )H k , we plug (C.6b) in the following Maxwell’s 

equation and we switch the order of the integration and curl operation to get 

( )0

0

ˆ . 3
3

0 0

1( , , ) ( , , )

1 1 ˆ ˆ( ) jk

H x y z E x y z
j

E e d
jk

ωµ

η λ
∞ −

−∞

= − ∇×

= − ∇×∫ k rk k
,      (C.12) 

where 0 120η π=  is the free-space impedance. Using the vector identity 

( )A A Aα α α∇× = ∇× +∇ ×  and noting that ˆ( ) 0E∇× =k , (C.12) yields 

0

0

0

ˆ . 3
3

0 0

ˆ . 3
3

0

ˆ . 3
3

1 1 ˆ ˆ( , , ) ( )

ˆ ˆ1 ( ) ˆ

1 ˆ ˆ( )

jk

jk

jk

H x y z e E d
jk

E e d

H e d

λ η

λ η

λ

∞ −

−∞

∞ −

−∞

∞ −

−∞

= − ∇ ×

×=

≡

∫

∫

∫

k r

k r

k r

k k

k k k

k k

.      (C.13) 

Therefore,
0

ˆ ˆ( )ˆ( ) EH
η
×= k kk , confirming that each spatial component is indeed 

a plane wave (traveling or evanescent). Consequently, for each individual 

component, ˆ( )H k does not provide any further DOF since it can be fully known 

from ˆ( )E k . However, through the integration of all plane-wave components, 

both E and H can provide higher DOF as discussed in chapter 4. 
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List of Symbols and Notation 

M    Boldface upper case denotes a matrix 

ijm  Subscripted lower case denotes a scalar entry within M  (row i and 

column j ) 

[ ]ijm  Matrix constructed from the entries ijm  

D    Barred boldface upper case denotes a dyad 

v  Boldface lower case denotes a vector (in the exception of E , H , A  

and F ) 

[ ]kv  Vector constructed from the components kv  

v̂  Unit vector 

E  Electric field vector 

H  Magnetic field vector 

A  Magnetic vector potential 

F  Electric vector potential 

∇×M  Dyadic curl operating on the column vectors of M  
m n×  Set of bym n− − complex matrices 

diag( )v  Diagonal matrix whose diagonal entries are those of v  

{ }σ i   Singular values of a matrix 

iσ    thi singular value 

( )pN i   Schatten p-norm, { }( )
1/
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i
N pσ ≡ ≤ < ∞ 

 
∑M M  

tr
i   Trace norm (Schatten 1-norm) 

F
i   Frobenius norm (Schatten 2-norm) 
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⊗  Kronecker product (also called direct, tensor or outer product). 

For m n×∈A and p q×∈B , 
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x     Largest integer x≤  

x     Smallest integer x≥  

det( )M  Determinant of a matrix 

{ }Ti   Transpose operation 

{ }Hi   Conjugate transpose operation 

{ }*i   Complex conjugate operation 

( )i    Fourier transform of a scalar or vector function 

Re{ }i   Real part 

Im{ }i   Imaginary part 

1 2,y y  Inner product of the functions 1y  and 2y  

θ    Elevation angle 

ϕ    Azimuth angle 

mnδ   Kronecker delta 

( )δ i   Delta function 

0η     Free space impedance 

0k    Free space wave number 

λ    Free space wavelength 

ω    Angular temporal frequency 

0ε    Free space permittivity 

0µ    Free space permeability 
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List of Acronyms and Nomenclatures 

AOA  Angle of Arrival 

AOD  Angle of Departure 

BC   Boundary Conditions 

BER  Bit Error Rate 

BFN  Beamforming Network 

BW  Bandwidth 

CSI  Channel State Information 

DOA  Direction of Arrival 

DOD  Direction of Departure 

DOF  Degrees of Freedom 

ED   Effective Dimensionality 

EDOF  Effective Degrees of Freedom 

EM  Electromagnetic 

ES   Ellipticity Statistic 

FDTD  Finite Difference Time Domain 

FED  Field Expansion Diversity 

FT   Fourier Transform 

Hexapole Collocated electric and magnetic polarized point radiators making 6 

independent ports 

iid   Independent Identically Distributed 

IRT  Image Ray Tracing 

LOS  Line of Sight 

LT   Loss Tangent 

MIMO  Multiple Input Multiple Output 

PC   Phase Centre 

PEC  Perfect Electric Conductor 

PID  Power Independent Dimensionality 
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PIEDOF Power Independent Effective Degrees of Freedom 

PSWF  Prolate Spheroidal Wave Function 

PWA  Plane Wavefront Approximation 

ROE  Region of Existence 

Rx   Receiver 

SISO  Single Input Single Output 

SNR  Signal to Noise Ratio 

SV   Singular Values 

SVD  Singular Values Decomposition 

TM  Transverse Magnetic 

Tripole Tri-polarized collocated point radiators (electric or magnetic) 

making 3 independent ports 

Tx   Transmitter 
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“... apprendre n’est pas savoir; il y a les sachants et les savants: c’est la 

mémoire qui fait les uns, c’est la philosophie qui fait les autres... La philosophie 

ne s’apprend pas; la philosophie est la réunion des sciences acquises au génie 

qui les applique... ” 

 

L’abbé Faria, Le Comte de Monte-Cristo, Chapitre XVII, Alexandre Dumas 

père, 1844. 

 

“... to learn is not to know; there are the knowledgeable ones and the scientists. 

Memory makes the one, philosophy the other... Philosophy cannot be taught; 

philosophy is the reunion of the acquired sciences to the genie who applies 

them...” 

 

 




