

Experimental Investigation of Quasi-Newton Approaches to a

Learning Problem in Electronic Negotiation

by

Paul Meloche

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Management Sciences

Waterloo, Ontario, Canada, 2007

© Paul Meloche 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144142405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract
Abstract. The recent growth in electronic commerce has motivated the development

of semi-autonomous negotiation systems capable of implementing multiple negotiations

simultaneously. Different approaches have recently been presented in the literature with

the aim of providing a solution to this growing market segment. The current thesis

presents an examination of optimization approaches for learning the parameters of a time-

dependent decision-function that has recently obtained significant interest in the

negotiation literature. Twelve different nonlinear optimization variants are evaluated

using 800 problems, and the resulting 9600 runs are statistically analyzed on four

different performance measures. Potential implications of our analysis are discussed for

their possible use in the context of electronic negotiation.

iv

Acknowledgements
I would like to thank my supervisor, Dr. R.P. Sundarraj for his continuous support,

both mentally and financially. He has provided me with valuable guidance and

encouragement along the way. Without his help and understanding, I could not have

completed this thesis. I would also like to thank the readers for their time and guidance.

v

Table of Contents
AUTHOR’S DECLARATION .. II
ABSTRACT... III
ACKNOWLEDGEMENTS .. IV
TABLE OF CONTENTS.. V
LIST OF TABLES.. VII
LIST OF FIGURES ... VIII

CHAPTER 1 INTRODUCTION..1
1.1 MOTIVATION .. 1
1.2 RESEARCH GOAL .. 2
1.3 STRUCTURE .. 3

CHAPTER 2 LITERATURE REVIEW..5
2.1 NEGOTIATION ... 5

2.1.1 Definition ... 5
2.1.2 Fundamentals of Negotiation ... 6

2.2 ELECTRONIC COMMERCE ... 9
2.2.1 Introduction.. 9

2.3 ELECTRONIC NEGOTIATION.. 12
2.3.1 Electronic Agents ... 13
2.3.2 Modeling Approaches .. 14
2.3.3 Current Applications.. 17

2.4 OUR CONTRIBUTION ... 20

CHAPTER 3 PROBLEM FORMULATION..22
3.1 INTRODUCTION ... 22
3.2. TIME-DEPENDENT TACTICS FUNCTIONS ... 22
3.3 THE FARATIN MODEL... 24
3.4 NONLINEAR LEAST SQUARES OPTIMIZATION... 26

3.4.1 Learning as a Nonlinear Least Squares Problem .. 26

CHAPTER 4 SOLUTION APPROACH ...29
4.1 FRAMEWORK FOR ALGORITHMS ... 30
4.2 ALGORITHMIC DETAILS.. 32

4.2.1 Structured and Factorized Quasi-Newton Methods ... 32
4.2.2 Selecting the Step-size Parameter .. 34
4.2.3 Pre-processing ... 38

CHAPTER 5 EXPERIMENTAL DESIGN...41

vi

5.1 PARAMETER GENERATION.. 41
5.2 OVERALL COMBINATIONS OF ALGORITHMS .. 44
5.3 DEFINITION OF CONVERGENT AND DIVERGENT CASES... 46
5.4 PERFORMANCE MEASURES... 47

5.4.1 The convergence rate ... 47
5.4.2 The scaled norm ... 47
5.4.3 SSEN ... 48
5.4.4 CPU time.. 48

CHAPTER 6: EXPERIMENTAL RESULTS...49
6.1 CONVERGENCE RATE ... 49
6.2 SCALED NORM.. 54
6.3 SSEN... 63
6.4 CPU TIME .. 65
6.5 SUMMARY OF RESULTS .. 67

CHAPTER 7 CONCLUSION AND IMPLICATIONS ..70
7.1 SUMMARY .. 70
7.2 IMPLICATION OF RESULTS ... 70
7.3 THE BENEFIT OF LEARNING... 71
7.4 FUTURE WORK ... 74

BIBLIOGRAPHY..76
APPENDIX ..79

MATLAB GENERATE... 79
MATLAB FARATIN.. 79
MATLAB QUASI-NEWTON GENERAL .. 79

Matlab Quasi-Newton General Update .. 83
MATLAB QUASI-NEWTON DGW.. 83

Matlab Quasi-Newton DGW Update .. 87
MATLAB BIGGS .. 87

Matlab Biggs Update .. 91
MATLAB ALPHA SELECT .. 91

Matlab Alpha Range ... 92
Matlab Check Alpha Range .. 93

STATS... 93
CHOLESKY MATRIX DECOMPOSITION .. 94
HOOKE-JEEVES... 95
DIRECTORY .. 98

vii

List of Tables

TABLE 4.1 PSEUDO-CODE FOR GOLDEN SECTION SEARCH ... 37

TABLE 4.2 PSEUDO-CODE FOR THE BACK-AWAY ALGORITHM .. 38

TABLE 5.1 UPPER AND LOWER BOUNDS OF TEST PARAMETERS .. 41

TABLE 5.2 COMBINATIONS OF OPTIMIZATION METHODS .. 45

TABLE 6.1 CONVERGENCE RESULTS OF DIFFERENT OPTIMIZATION METHODS .. 50

TABLE 6.2 CONVERGENCE RATE OF EACH COMBINATION OF OPTIMIZATION METHOD 51

TABLE 6.3 RELATIVE IMPROVEMENT OF CONVERGENCE USING HOOKE-JEEVES PRE-PROCESSING 52

TABLE 6.4 RELATIVE IMPROVEMENT OF CONVERGENCE USING THE BACK-AWAY ALGORITHM 53

TABLE 6.5 IMPROVEMENT OF ESTIMATED PARAMETERS AS THE SCALED NORM IS DECREASED 55

TABLE 6.6 MEANS AND STANDARD DEVIATIONS OF THE SCALED NORMS ... 57

TABLE 6.7 ANOVA RESULTS COMPARING STRUCTURED QUASI-NEWTON WITH GAUSS-NEWTON........... 58

TABLE 6.8 ANOVA RESULTS COMPARING STRUCTURED QUASI-NEWTON WITH FACTORIZED QUASI-

NEWTON... 59

TABLE 6.9 ANOVA RESULTS COMPARING GAUSS- NEWTON WITH FACTORIZED QUASI-NEWTON........... 60

TABLE 6.10 ANOVA RESULTS COMPARING CASES WITH AND WITHOUT HOOKE-JEEVES PRE-PROCESSING

... 61

TABLE 6.11 ANOVA RESULTS COMPARING THE INFLUENCE OF THE BACK-AWAY ALGORITHM............... 62

TABLE 6.12 ANOVA RESULTS COMPARING THE INFLUENCE OF THE NUMBER OF LEARNING POINTS 62

TABLE 6.13 SUM OF SQUARED ERRORS OVER THE NEXT FIVE TURNS FOR ALL CONVERGENT CASES 64

TABLE 6.14 ANOVA RESULTS COMPARING SSEN WITH AND WITHOUT HOOKE-JEEVES PRE-PROCESSING

... 65

TABLE 6.15 COMPUTATIONAL TIME MEAN AND STANDARD DEVIATIONS ... 66

TABLE 6.16 ANOVA RESULTS COMPARING COMPUTATIONAL TIME COMPARISON AMONG CASES WITH

DIFFERENT NUMBER OF LEARNING POINT SELECTION ... 66

TABLE 6.17 ANOVA RESULTS COMPARING COMPUTATIONAL TIME COMPARISON AMONG CASES WITH

DIFFERENT OPTIMIZATION ALGORITHMS... 67

viii

List of Figures

FIGURE 2.1 ILLUSTRATION OF THE ZONE OF POTENTIAL AGREEMENT... 7

FIGURE 3.1 BOULWARE AND CONCEDER BEHAVIORS PRICE OFFERS OF A BUYER 24

FIGURE 3.2 EFFECT OF Β ON THE FARATIN BUYER MODEL ... 26

FIGURE 4.1 NUMERICAL METHODS FOR SOLVING NONLINEAR LEAST SQUARES PROBLEMS...................... 30

FIGURE 4.2 GOLDEN SECTION SEARCH ALGORITHM... 36

FIGURE 5.1 SUM OF SQUARED ERRORS AT ITERATION 0 THROUGH 2... 43

FIGURE 5.2 COMBINATIONS OF ALGORITHMS TESTED... 44

FIGURE 7.1 EFFECT OF LEARNING ON THE TRANSACTION PRICE ... 73

FIGURE 7.2 EFFECT OF IMPROVED LEARNING ON THE TRANSACTION PRICE .. 73

1

Chapter 1 Introduction

1.1 Motivation

 Over the last decade, advancements in information technology have fuelled the

growth of electronic commerce (e-commerce) into an essential part of many businesses.

With the current growth of the global economy, vendors and purchasers are forced to

seek and source creative pricing techniques in order to remain competitive. Previously, a

small business owner may have been able to support a self-sustaining business by only

selling products locally at a fixed price. However, this simple business model is

becoming less effective as global competition begins to rise. The need for a

purchaser/vendor to buy/sell products globally using selective pricing techniques has

never been greater.

 The current thesis considers the situation in which negotiations are conducted via

the Internet similar to the methods used by Ozro NegotiateTM and AuctionBot. Such a

negotiation shall henceforth be termed as electronic negotiation (e-negotiation). We

focus on developing an efficient technique that allows an individual to negotiate prices

for goods bought and sold. In order to make this technique applicable in a real-world

situation, it will need to be flexible; it will need to use a minimal amount of

computational power and it will also need to work semi-autonomously in real-time.

Flexibility is a key issue while searching for an efficient technique. A flexible approach

will allow the technique to be applicable to negotiation parties that use significantly

different negotiation tactics. For the method to be widely used, it will also need to use no

more computational power than what is currently available in a standard desktop

computer. Last, the method must be able to complete negotiations without much human

2

intervention and in real-time. If all of the above criteria are met, an individual will be able

to effectively negotiate prices selectively with multiple individuals across the world

simultaneously. By selectively pricing the goods bought and sold to each individual, the

vendor or purchaser will be able to maximize the profit generated by the purchase/sale of

the good.

 Research into e-negotiation has been conducted from different perspectives,

including Game theoretic approaches (Harsanyi, 1972), Bayesian approach (Zeng and

Sycara, 1998) and heuristic approaches (Kim, 2000; Mok and Sundarraj, 2005; Jennings,

Faratin et al., 2001). The use of optimization techniques to obtain a solution, which is the

current interest in this thesis, is still in its infancy and will be thoroughly examined in this

paper. Various nonlinear least-squares optimization techniques will be used and tested to

verify their effectiveness in obtaining a robust solution to the negotiation problem.

1.2 Research Goal

In this thesis, we consider a tactic, known as the time-dependent tactic (TDT) that

has been used in other works related to electronic negotiation (Faratin, 1998; Deveaux et

al., 2001; Mok and Sundarraj, 2005). With TDT, negotiators treat time as an important

aspect impacting the value of their offers (Pruitt, 1981). Using a mathematical model of

TDT (Faratin et al., 1998), the underlying negotiation parameters are attempted to be

learned, by only knowing the price offers that have been made by an opponent in an

ensuing negotiation. This learning problem is modeled as a nonlinear least-squares

problem, and its solution using optimization algorithms is tested.

The goal of this thesis is to improve upon the previous work performed on

learning algorithms for electronic negotiation (Shi, 2005). We consider several

3

algorithms to improve both the convergence rate, as well as accuracy of the parameter

estimation. The aspect of parameter-estimation accuracy is especially important to this

thesis.

Several nonlinear least-square algorithms and line search methods will be

examined in order to meet our research objective. One class of algorithms suggested in

the literature is the quasi-Newton approach. We will compare the effectiveness of

variants of the quasi-Newton approach over that of the simpler Gauss-Newton method.

We will also examine the effect of pre-processing starting points and the use line search

algorithms. This results in a combination of 12 algorithms. We test them all on four

different performance measures, and include observations based on statistical analysis.

 A successful improvement on all examined parameters will allow the

development of a negotiation system that can use nonlinear optimization algorithms in

order to improve current negotiation performance. This may also lead to a potential

commercial application of an electronic agent that uses these techniques to predict the

negotiation behaviour of an opponent at the next iteration of a negotiation.

1.3 Structure

 Chapter 2 describes the literature review. It deals with the definition of

negotiation and fundamentals of negotiation. It also highlights current trends in electronic

commerce, the use of adaptive electronic agents to facilitate electronic negotiation, and

provides some real world examples of their potential use.

 Chapter 3 deals with the formulation of a time dependent negotiation model with

practical uses in electronic negotiation systems. The model is presented and then the

learning problem is formulated as a nonlinear least squares model.

4

 Chapter 4 explains the current methods used to solve nonlinear least squares

problems. A breakdown of detailed methods used includes pre-processing methods, line

search approaches and specific least squares algorithms.

 Chapter 5 deals with the experimental design for our tests. The performance

measures for the solution approaches are presented and their significance in terms of

electronic negotiation is discussed.

 Chapter 6 provides detailed statistical analyses examining the effectiveness of the

methods used and the significance of the results obtained in the context of electronic

negotiation. A brief summary is given to provide insights into the best combination of

algorithms to effectively solve the learning problem.

Chapter 7 deals with the possible implication of the methods developed in this

work. Conclusions and future work are also discussed.

5

Chapter 2 Literature Review

This chapter provides an overview of negotiation theory, electronic commerce and

current applications of electronic negotiation. The material provided in this chapter serves

as a basis for understanding the importance of negotiation in an electronic commerce

setting. We then introduce the idea of an electronic agent and discuss the application of

agents to electronic negotiation.

2.1 Negotiation

2.1.1 Definition

Negotiation can be defined as (Pruitt, 1981):

 “A process by which a joint decision is made by two or more
parties. The parties first verbalize contradictory demands and
then move towards agreement by a process of concession
making or search for new alternatives”

Negotiation is used in everyday purchasing, pricing and bargaining. Negotiation

occurs in the interactions of almost everyone in groups and organizations: Labour

bargains with management; managers negotiate with employees, peers and senior

management; sales people negotiate with customers; purchasing agents negotiate with

suppliers. In today’s team-based organizations, negotiation skills become critical, so that

teams can work together efficiently (Robbins, 2005).

We next discuss the fundamentals of negotiation.

6

2.1.2 Fundamentals of Negotiation

One of the main attributes of negotiation is that the parties involved start off with

opposing interests and preferences (Pruitt,1981). Each party has a given benefit

(henceforth termed utility) for a specific outcome. At each iteration of the negotiation, a

buyer/seller is expected to make a bid/offer that will decrease his/her utility, in the hope

of keeping the negotiation in progress. A concession from each party at each iteration is

paramount to ensure that a final agreement is reached. Two-party bargaining can be

divided into two types: integrative and distributive (Raiffa, 1982).

 Integrative bargaining can be defined as a negotiation situation where there exists

more than one final settlement where both parties can emerge victorious (Robbins, 2005).

In this situation, informally called a win-win situation, both parties can work together in

order to reach a settlement where both parties increase their respective utility. A simple

example to illustrate this situation can be explained by labour unions bargaining with

management over more health benefits for their employees. The union would like to have

health benefits to keep its employees healthy and happy. Management does not want to

offer increased health benefits on account of the additional cost, but is also concerned

with the downside of a discouraged workforce that may be less productive. If both parties

work together towards a common goal, a mutually beneficial outcome is possible. For

example, if management works together with the union to find a cost effective way to

insure its unionized employees with health benefits, it may lead to a win-win situation

where the company gains from higher productivity of the workforce, and the unionized

employees gain from having health benefits.

The other form of negotiation is distributive in nature. That is, when a negotiation

is between two parties, we will encounter a win-lose (or distributive) situation, when

7

there is only one negotiation issue (e.g., cost). An example of this situation would be the

cash-purchase of a used car from a dealer. The potential buyer of the automobile would

be inclined to keep the buying price low, while the potential seller would be inclined to

keep the selling price high. Both parties have a respective reservation price, which is the

highest (lowest) price that the buyer (seller) is willing to give (take). In general, the

reservation price of each negotiation party is not known to the opponent. This in fact is a

fundamental attribute in the negotiation scheme. If the reservation price of the seller is

higher than the reservation price of the buyer, the negotiation will not conclude.

However, if there is a zone of potential agreement (ZOPA), there exists a possibility that

the negotiation will reach a final settlement price at which the transaction will be made.

In the current thesis, we will assume that the ZOPA always exists and that the reservation

price of the negotiation is always fixed prior to the start of the negotiation. An illustration

of the above example is given in Figure 1.

 Price

Figure 2.1 Illustration of the zone of potential agreement

8K6K0K 5K

Buyer

Seller

ZOPA

8

In Figure 2.1, the lowest price that the buyer is willing to pay is $0, and the

highest price is $6k, which is also the buyer’s reservation price. The maximum price at

which the wants to sell the car is $8k, which can be viewed as the "best" retail price of

the automobile, and the lowest price, the reservation price, at which he is willing to sell,

is $5k. The zone of potential agreement in this example is $1k, which is the price

difference between the buyer and seller’s reservation price for the sale of the automobile.

In this case, for every dollar that the seller gains by raising the selling price, the buyer

loses, and vice versa. Therefore, distributive bargaining can be looked at as a zero-sum

game.

 Other than reservation price of the buyer and seller, and the ZOPA of the

negotiation, several other negotiation characteristics need to be outlined. One of the most

important characteristics of negotiation behaviour is the concession rate of each party

engaged in the negotiation. In order to understand how a given negotiators’ concession

rate affects negotiation, we must first understand the ultimate goal of each negotiator. A

bargainers’ demand level can be thought of to correspond to the level of benefit (or

utility) to the buyer (Pruitt, 1981). For example, two parties negotiating over the price of

a given object are only concerned with the final negotiation price. If the negotiation price

rises, the benefit increases for the seller and decreases for the buyer. Therefore, in order

for the seller to make a concession, he or she must reduce the offer in selling price to

increase the level of benefit to the buyer. It is extremely important to make concessions in

a negotiation in order to ultimately reach an desired negotiation price. Concessions are

generally made in the anticipation that the concession maker will hasten the agreement,

will prevent the other party from leaving the negotiation, or to encourage the other party

9

to make reciprocal concessions (Pruitt, 1981). Therefore, both the size of the concession

and the amount of elapsed time between concessions, defined as the concession rate,

plays a crucial role in the outcome of the negotiation.

The role of time in a negotiation will have a large effect on both the concession

rate and the final outcome. As stated by Raiffa (1982), in negotiations conducted in

laboratory settings, subjects show an almost uncanny ability to detect even small ZOPAs,

but the smaller the zone, the longer it usually takes them to agree on a solution (Raiffa,

1982). Therefore, it can be inferred from this statement that a negotiation under serious

time restrictions would lead to a lower probability of price convergence, ultimately in a

case where time is of the essence, a proper concession rate needs to be determined in

order to ensure a positive negotiation outcome. In other words, the parties in the

negotiation must make concessions quickly enough in order for them to come to an

agreement before time runs out.

In the next section, a look at the currently expanding level of commercial activity

in e-commerce will motivate the growing need for adaptive, semi-autonomous

negotiation.

2.2 Electronic Commerce

2.2.1 Introduction

Electronic commerce is an emerging sector in which business approaches are able

to engage with their customers electronically (rather than by phone or in person) in all

phases of a business transaction. Electronic commerce have enabled customers to, for

example, access product information, select items to purchase, purchase items securely,

10

and have the purchase settled financially (International Engineering Consortium, 2007).

Electronic marketplaces are becoming important players to several industries, because

they promise to greatly improve economic efficiency, reduce margins between price and

cost, and speed up complicated business deals (Feldman, 2000). Examples of electronic

market places include eBay, Equipnet and Officemax where products range from

stationary supplies to x-ray generators (eBay, 2007).

 Online sales by Canadian companies and government departments grew

substantially for the fifth consecutive year in 2004, but e-commerce still accounted for

less than 1% of total operating revenues for private businesses (Government of Canada,

2006). The potential for growth in the field of electronic commerce remains strong and is

one of the fundamental factors motivating this thesis.

For many firms, e-commerce is one of many steps involved in fully integrating

business practices using the Internet. Business-to-Business e-commerce will affect the

way that businesses run in several ways, including accelerating business processes,

creating transparent markets and redefining market boundaries (Global Reach, 1998). The

current reach of the internet will allow markets to be penetrated much faster, enabling the

first player in the game to take a significant stake in the business. This puts much

emphasis on a company’s ability to adapt to the current trends in electronic commerce in

order to gain or maintain a valuable market position (Stone, 2005).

Another area in which e-commerce is currently altering the business world is in

the globalization of business. Electronic commerce increases the range of services that

can be traded internationally (e.g., to include medical, legal, and educational services)

and can provide access to markets that were previously closed (Panagariya, 1999). This

new-found globalization of business markets will in turn lower transaction and

11

production costs, facilitate market entry and increase competition by allowing various

participants to enter the market who previously were not able due to their location. As a

result, this will provide lower prices, increased quality, and provide the creation of new

and more diverse products, thereby increasing economic growth and social welfare

(Panagariya, 1999).

The introduction of e-commerce has also allowed for the formation of transparent

and competitive markets, where differentiation will be essential to survive. Several

benefits will be passed off to the consumer, including market knowledge and reduced

search costs, even if customers make the final purchase in person (Economist, 2000).

Companies will now have to be able to communicate how they are different than their

competitors; this can be accomplished by direct comparison of features and price, global

delivery, customizing and easy access to worldwide product information.

One area facilitated by e-commerce businesses is that of electronic negotiation

(Choi et al., 2001). Electronic negotiation has allowed businesses, such as eBay, to

develop fast and efficient ways to deal with multiple customers simultaneously, without

undue stress to its labour resources (International Engineering Consortium, 2007). Also,

automated negotiation will allow for various techniques (e.g., dynamic pricing) that were

previously considered to be difficult for small-scale businesses. This change in the

business paradigm has ultimately led to the development of efficient, semi-autonomous

systems that can potentially reduce labour-intensive practices to conduct routine activities

The next sections will discuss electronic negotiation and electronic agents, along

with a brief description of their fundamental characteristics and current applications.

12

2.3 Electronic Negotiation

Electronic Negotiations are considered a key component of e-commerce

(Sandholm, 1999). They are now playing an increasing role in everyday transactions

between businesses, and between customers and businesses (Mahadevan, 2000). For

example, eBay boasts more than 220 million registered users selling more than 50,000

categories of merchandise (eBay, 2007). Although electronic negotiation is still in its

infancy, there has been a great deal of research that has accompanied it.

Several attempts have been made to define electronic negotiation, and also to

define the characteristics that are desirable in electronic negotiations (Rosenschein, 1994;

Sandholm, 1999; Lomuscio, Wooldridge et al., 2003). These characteristics include

• Computational efficiency: A negotiation mechanism must be computationally

efficient.

• Communication efficiency: All things being equal, it would be beneficial to have a

negotiation mechanism that enables communication among the agents in an

efficient way.

• Individual rationality: Each individual involved in the negotiation should act

rationally and it should be in an individual’s best interest to participate in the

negotiation. Also, if the utility of a group of individuals should be taken into

consideration, the group utility can be obtained by the component of each agent’s

personal utility.

• Distribution of computation: Mechanisms that distribute the computation over the

agents involved are preferable to ones in which one server is performing all the

computation for the whole system. This is preferred for many reasons, including

13

the desire to avoid performance bottlenecks and the disruptive effects of a single

point of failure.

• Pareto efficiency: A Pareto efficient outcome is one where there is no other

possible outcome that could be beneficial to at least one agent without negatively

affecting the other agent.

Agents play a key part in electronic negotiation. In the following sections, we will

define a negotiation agent and present models in negotiation agents.

2.3.1 Electronic Agents

The emergence of e-commerce has led to the design of online auction programs

(Guttman, 1999; Bansal, 2005) as well as software agents capable of negotiating based on

several criteria (Lee, Chang et al. 2000; Bichler, Kersten et al. 2003). In general, auctions

help establish efficient markets when the goal is to obtain the best price (Beam, 1999),

but when the goal is to establish the terms of a transaction, features of a product or

service, then negotiation is considered to be advantageous (Gordon Lo, 1999). In

negotiation, the agents engage in an iterative and alternating process of bids and offers

over time until they converge to a single price acceptable to both.

 In order to understand the importance of electronic negotiation agents, we must

first understand the definition. The term “agent” has been the subject of much recent

debate. Several definitions allow the inclusion of almost all possible objects; others only

allow only a limited scope for agents (Faratin, 2000). However, in general, an electronic

negotiation agent can be defined as a software-based computer system that can perform

certain tasks on behalf of their users. In order for an electronic negotiation agent to be

14

successful, it must have the following properties. (Guttman, 1999; Cardoso and Oliveira,

2001; Bichler, Kersten et al., 2003; Strobel and Weinhardt, 2003).

• Autonomous: agent must be able to make decision by themselves, autonomously,

without any direct intervention.

• Reactive: agents must be able to understand their environment and respond

quickly to any changes.

• Cooperative: agents must have a communication interface to interact with other

agents or people.

• Learning: agents are able to understand the user’s preferences and performances

as they interact with other agents or humans, so that they can improve the

performance over time.

• Proactive: Agents are able to act in anticipation to maximize their utility.

 Although the above are general properties of agents, there are variations, depending

on the task on hand. The next section will deal with the modeling approaches of

electronic agents in the context of electronic negotiations.

2.3.2 Modeling Approaches

 There are two major modeling approaches for electronic agents: non-learning

such as game theoretic methods, and learning approaches such as machine learning and

heuristic based methods.

15

Non-Learning Based Approach: Game-Theoretic Models

 Game theory is a branch of economics (Nash, 1950) that provides a formal

framework of rational decision making in strategic situations. In a game theory based

negotiation, each negotiator must first rank his/her preference for each possible outcome.

Each individual must then take into account what the other is likely to do and act

accordingly in order to achieve his/her preferred outcome. This formal framework

provides clear analyses of various situations and precise results concerning the strategy

that a negotiator should use. However, it uses several restrictive assumptions that make it

hard to use in real-world negotiations (Wilkenfeld, 1992).

• Bilateral Negotiation: Even if multiple agents are present in the negotiation
setting, no more than two agents need the same resource.

• Full Information: Each agent is aware of all information including the other

agent’s utility for all possible outcomes over time.

• Rationality: All agents behave rationally; each agent attempts to maximize its
utility.

• Commitments Are Kept: If an agreement is reached, both agents will honour it.

• No Long Term Commitments: Each honoured outcome stands alone. An agent

cannot commit itself to any future activity other than the current situation.

• Resource Division Possibilities: It is assumed that all resources are divisible.

• No Other Options: No other possibilities or alternatives to the current negotiation
exist. The negotiation must continue until an agreement is reached.

Due to these limiting assumptions, it is often unacceptable to model negotiation

behaviour based on game theory alone. However, game-theoretic tactics have been found

16

useful when applied to negotiation scenarios within the following two key areas

(Jennings, Faratin et al., 2001):

1. Game theory is useful to design the appropriate protocol that will govern the

interactions between the negotiation participants. In general, a protocol defines the

“rules of encounter” between agents. This allows the formation of a framework, or

protocol that sets specific constraints and bounds that the negotiation participants

are allowed to make.

2. Agents can use game-theoretic models as a benchmark to validate that their current

strategy is in their best interest (i.e. utility maximization).

 One of the main difficulties with the second point is that the utility maximization

problem is difficult, somewhat dampening the effectiveness of this application (Jennings,

Faratin et al., 2001). However, several attempts have been made to apply game-theoretic

techniques for artificial intelligence purposes, using relaxations to the underlying

assumptions (Harsanyi, 1972; Genesereth, 1986; Wilkenfeld, 1992).

Learning-Based Approach: Heuristics and Machine Learning

Another modeling approach is the use of learning based methods including

heuristic and machine learning. These methods allow for the correction of the several

shortcomings associated with game-theoretic approaches. One of the major advantages is

the acknowledgement that although heuristic approaches do not employ the (game-

theoretic) optimal solution, the associated computational complexity is often significantly

lower (Jennings, Faratin et al., 2001). In many case, the models may be approximation to

17

the game-theoretic techniques (Genesereth, 1986) or computational models loosely based

on the models of negotiation behaviour previously presented (Pruitt, 1981; Raiffa, 1982).

These models include (Wilkenfeld, 1992; Faratin, Sierra et al. 1998; Zeng, 1998;

Deveaux, 2001; Mok and Sundarraj, 2005; Shi, 2005). In each case, the models attempt

to learn from their opponents’ behaviour in order to improve their negotiation outcome,

which is not the case with Game-Theoretic Models.

Other advantages attributed to heuristics include its realism, since according to

research (Pruitt, 1981), people generally tend to base their negotiation strategies on

simple heuristics.

2.3.3 Current Applications

 In human negotiations, two or more parties bargain with one another to determine

the price or other transaction terms (Fisher, 1981). In an automated negotiation, software

agents engage in broadly similar processes to achieve the same end (Jennings, Faratin et

al., 2001). As previously explained, autonomous electronic negotiation agents have

several key properties that enable them to negotiate without much human intervention.

This makes them extremely important in several areas of e-commerce, since it allows for

the reduction of the costly human component. These advantages have been the major

drive in the development of negotiation agents for commercial purposes.

 A good example of a practical software agent is AuctionBot. The Michigan Internet

AuctionBot is a flexible, scalable, and robust auction server that supports both software

and human agents (Wurman, 1998). Although this system is currently not in use for

commercial applications, it has been successfully used to create an online market for used

18

textbooks. The server is capable of managing many simultaneous auctions by separating

the interface from the core auction procedures. This clever design provides a responsive

interface and tolerates system and network disruptions, but necessitates careful

timekeeping procedures to ensure temporal accuracy (Wurman, 1998). It also enables

users a web-based access to their accounts, and presents an organized view of their bids,

the auctions in which they are currently involved, and their past transactions

 Several other negotiation systems have also been developed in order to exploit the

benefits of electronic agents in a commercial setting; MIT Kasbah marketplace is one of

them. Kasbah is an electronic marketplace in which users can create an autonomous agent

capable of buying or selling a product (Chavez, 1996). The agent configuration includes

some behaviour rules, including the maximum time allowance for the negotiation, the

desired price interval and the price suggestion function (de Paula, Ramos et al., 2001).

The price suggestion function can be chosen as a linear, quadratic or cubic with respect to

time. Unlike AuctionBot, Kasbah is able to perform Merchant Brokering as well as

negotiation (Guttman, 2000). The buyer or seller is therefore in control of the desired

negotiation strategy, and hence, the concession rate of the electronic agent. This freedom

allows an individual to select the negotiation parameters as he/she sees fit, and allows

him/her to properly leverage the agent.

Another similar negotiation system, also developed by the MIT Media Lab, is

Tête-À-Tête. Unlike Kasbah which is aimed at individuals (Guttman, 2000), this system

is geared at retail sales. Also unlike Kasbah and AuctionBot, Tête-À-Tête has the ability

to function as a product brokering agent. Product Brokering allows the retrieval of

information to help determine what to buy. This encompasses the evaluation of product

alternatives based on consumer-provided criteria (Guttman, 2000). Since Tête-À-Tête

19

deals with the retail sales, unlike most other agents that generally only compete over

price, it co-operatively negotiates across multiple terms of a transaction (Wang, 2004),

making it extremely useful in commercial settings. The “shopping agent” follows an

argumentative style of negotiation with its agents and uses the previously defined

evaluation constraints provided by the user in the product brokering stages as dimensions

of a multi-attribute utility function (Wang, 2004). The utility associated with the current

customer’s position is then used to rank merchant offers correspondingly.

In all, several attempts have been made in order to integrate electronic negotiation

and auction agents in commercial settings. The first international Trading Agent

Competition in 2000 challenged its entrants to design an automated trading agent that was

capable of bidding in simultaneous online auctions for complementary and substitutable

goods (Stone, 2005). Twenty-two entrants from around the world competed in ten games.

Agents were compared on several criteria including their bidding strategy, allocation

strategy (i.e. weight given to negotiation factor such as price or quality), special

approaches, and team motivations. The large involvement of the teams and the apparent

success of the competition provide a strong indication of where the future of e-commerce

lies; in the hands of electronic auction and negotiation agents.

Another main application of electronic negotiation could be its implementation in

the practice of dynamic pricing. Dynamic pricing refers to the charging of different prices

for different quantities of a product, at different times, to different customer groups or in

different markets, when these price differences are not justified by cost differences

(Salvatore, 2001). It is believed that one of the major changes that will be brought about

by agent-mediated e-commerce is that dynamic pricing and personalization of offers will

become the norm for many goods and customers (He, Jennings et al. 2003). Online

20

consumers differ in their purchasing preferences and, therefore, a seller’s profit can be

increased by charging two different prices for the same good from price-insensitive and

price-sensitive consumers (Dasgupta, 2003). A good example of dynamic pricing is

given by the operations of the company priceline.com. Priceline allows buyers to name

the price they are willing to pay for flights, hotels and mortgages, cars and groceries

(Salvatore, 2001). If their price bid is not expectable, Priceline will either reject their bid,

or provide a less costly alternative that meets their price needs. This pricing technique

was previously difficult to implement due to the fact that it would involve too much

labour capital in order to set individual prices for each customer. Now with the

pervasiveness of internet access, and the induction of electronic negotiation agents, prices

can be individually set according to the maximum price each customer is willing to pay;

ultimately allowing retailers to charge specific consumers more for goods and services

than the price at which they would initially be marketed.

2.4 Our contribution

So far, we have discussed how heuristic techniques often resemble human

behaviour, and as a result, are used in a number of electronic negotiation systems.

Mathematical models based on these techniques are scarce and are just beginning to

emerge.

In this thesis, we assume that the only issue in the negotiation is price and that a

negotiator makes price-offers by following the Time-dependent tactic (TDT), introduced

in section 1.2 and formulated mathematically in the next chapter. The agent then seeks to

estimate (i.e., learn) the underlying mathematical parameters of the negotiator's TDT

21

model, by knowing only the price-offers received thus far in the negotiation. Our goal in

the thesis is to determine robust and flexible algorithms for this learning problem. Note

that the learning can be used to improve the outcome of the agent, although this aspect is

outside the scope of this thesis.

The use of classical optimization techniques for the aforementioned problem has

been given by Shi (2005). Shi considers a mathematical functional form of a common

negotiation heuristic, known as the time-dependent tactic, that has been incorporated in a

number of electronic negotiation systems. As mentioned in section 1.2, he uses

optimization to estimate the parameters of the function, based on the increasing price

offers received from his opponent. While such an approach was not proposed before,

Shi’s results suggests the potential for improvement, in terms of algorithmic convergence

and accuracy of parameter estimation. Thus, this thesis will tackle the same problem

using different line search and nonlinear least squares methods than those previously

attempted. The solution approach applied in this paper uses a more complex set of

optimization algorithms, namely quasi-Newton algorithms, in order to estimate a

negotiator's underlying TDT parameters. This solution approach was chosen since it does

not make the assumptions that are inherent with the Gauss-Newton based methods

previously applied. These assumptions may have resulted in lower rate of convergence

and poorer parameter estimation accuracy, and thus motivate this thesis.

22

Chapter 3 Problem Formulation

3.1 Introduction

The current chapter deals with the formulation of the time dependent tactic

presented by Faratin (Faratin, Sierra et al., 1998). We formulate the learning problem as

a nonlinear least squares model. These methods will be presented as well as potential

solution approaches using nonlinear programming.

3.2. Time-dependent tactics functions

As previously explained in section 2.1.2, time plays an extremely important role

in the concession rate as well as the final outcome of the negotiation. Therefore, the use

of the time dependent tactic function seems to be a natural selection when it comes to

model negotiations. Several different time-dependent tactical functions have been

proposed for use in negotiation agents. See references for more detail (Wilkenfeld, 1992;

Faratin, Sierra et al., 1998; Deveaux 2001; Da-Jun and Liang-Xian, 2002; Fatima,

Wooldridge et al., 2002; Papamichail and Papamichail, 2003; Mok and Sundarraj, 2005).

 In a negotiation process, several factors can affect the concession rates of the

participants. However, time pressure is the most relevant. Levels of demand and

concession rates are functions of time pressure and the amount of time that has elapsed

since the beginning of the negotiation (Pruitt, 1981).

The time dependent tactic presented in this thesis is based on human negotiation

behaviour, which can generally be divided into two categories; boulware and conceder

behaviour (Pruitt, 1981; Raiffa, 1982).

23

 An agent that exhibits boulware behaviour concedes slowly at the beginning of the

negotiation, only incrementing the price by a small amount at each turn of the

negotiation. As the time in the negotiation begins to reach the maximum allowable time,

the negotiator begins to concede more rapidly. This can be explained by the cost

associated with not reaching an agreement in the deal. A good example of this behaviour

is a contractor that needs to purchase lumber in order to build houses. If the contractor

has already agreed to build the houses, he/she must purchase wood in order to begin the

construction. The contractor must reach an agreement in time with the lumber seller (or

sellers) in order to build the houses. If not, the contractor may have to break the contracts,

loose the chances of gaining profits, and possibly incur a fine for not meeting the contract

provisions. At the beginning of the negotiation, the contractor may attempt to only

concede slowly due to financial constraints, or possibly to avoid image loss. However, as

the negotiation progresses, the cost associated with not reaching an agreement becomes

apparent, the contractor begins to concede more rapidly in order to avoid costly contract

infringement.

The other type of negotiation behaviour is conceder behaviour. A negotiator exhibiting

conceder behaviour concedes rapidly at the beginning of the negotiation and reaches

his/her reservation price early on in the bargaining process. This behaviour is often

exhibited by negotiators that are pressed for time and want to resolve the negotiation

rapidly. Also, rapid concessions at the beginning of the negotiation encourage the

opponent to stay in the negotiation, and limits the risk that an agreement will not be

reached. Figure 3.1 below plots both negotiation behaviours of a buyer as a function of

the number of turns in the negotiation.

24

Boulware and Conceder Behavior

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30
Time

Pr
ic

e
Boulw are

Conceder

Figure 3.1 Boulware and Conceder Behaviors Price Offers of a Buyer

The next section will deal with the time-dependent tactic function proposed by Faratin.

3.3 The Faratin Model

Based on the negotiation behaviour models proposed in section 3.2, Faratin

proposed a mathematical model that incorporates and quantifies these models as well as

their assumptions. See Equations 3-1, 3-2.

where
 t is time (number of turns) in the interval [0,Tmax]

P(t) is the value of the negotiating issue proposed by an agent at time t
Pmin is the minimum price value
Pmax is the maximum price value
k is a constant that determines the value of the price in the first offer
Tmax is the time limit (maximum number of turns) proposed by both
 agents

()
()

()minmax

ln1

min PPePtP
k

T
t

mac −+=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β

()
()

()minmax

ln1

min
max1 PPePtP

k
T

t

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β

 Seller

 Buyer (3-1)

(3-2)

25

 β is a constant that determines the degree of convexity of the
 negotiation function

It must be noted that for the buyer (eqn 3-1), the utility decreases as the price rises (or

number of turns increases) and for the seller (eqn 3-2), the utility rises as the price

increases (or number of turns increases). This is to be expected, since price is the sole

issue determining utility in this set of equations.

In order to fully understand the significance of the Faratin function, we must take a

close look at each of the five parameters since their values define the negotiation

behaviour used by the agent. The interval of Pmin and Pmax defines the price range that the

agent is willing to negotiate within. If an agreement is not found within the bound of

Tmax, the negotiation will end. The value of k, given a previously defined interval of Pmin,

and Pmax,, determines the first offer in the negotiation. This can be demonstrated by

setting the value of t in equation 3-1 to zero. The resulting formula P(0) = Pmin + k (Pmax -

Pmin) demonstrates that the value of k must be in the interval of [0,1], where a higher

value of k will result in a larger initial offer and a smaller value of k will result in a

smaller offer. The value of β determines the convexity of the function. A value of β in the

interval of [0,1] results in boulware behaviour, whereas, a value larger than one results in

conceder behaviour. A plot of the Faratin buyer model (eqn 3-1) as a function of β is

given below.

26

Figure 3.2 Effect of β on the Faratin Buyer model

The next section deals with the formulation of the Faratin model as a nonlinear least

squares problem.

3.4 Nonlinear least squares optimization

The ultimate goal of formulating the Faratin buying agent function (eqn 3-1) into a

nonlinear least squares function is to obtain an estimate of the parameters [Pmin, Pmax,

Tmax, β, k]. The benefit of having the function in this form is the current availability of

robust techniques that can be used to solve these equations.

3.4.1 Learning as a Nonlinear Least Squares Problem
To understand the formulation of the learning problem (Shi, 2005), consider the

following nonlinear least-squares problem (Fletcher and Xu, 1987):

Find a local minimum x*

 () ()[] () () ()∑
=

∈==
n

i

nT
i Rxxrxrxrxf

1

2

2
1

2
1 , (3-3)

27

where ri(x) is a residual term resulting from the difference of fi(x*) and fi(x).

Redefining equation 3-1 gives:

 ()ˆ ,tP f t θ= , (3-4)

where θ = [Pmin, Pmax, Tmax, β, k] is a parameter vector of the five parameters in equation

3-1. If we then substitute the value of the residual r(x) in equation 3-3:

 ()tfPr ti ,)(θθ −= , (3-5)

where Pt is the actual price given by the opponent of the negotiation at time t, we

obtain:

 () ()[]∑
=

−=
n

i
t tfPxf

1

2,
2
1 θ (3-6)

Thus, the minimization of equation 3-6 by using nonlinear optimization techniques

can provide us with a way to obtain an estimation of parameter vector θ. Therefore,

learning the parameters of the time-dependent tactic function is now in the form of an

unconstrained nonlinear optimization model as a function of time. We solve this

optimization problem once five (i.e., t = 5) offers have been made.

 The effectiveness of each solution approach, in terms of price estimation, can then be

tested using the following sum of squared errors function. While other metrics can be

used, SSE has is generally considered superior owing to its properties (see Shi, 2005 for

more details).

 ()
2 2

ˆ() ,t t t
t t

SSE P P P f tθ θ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎣ ⎦∑ ∑ (3-7)

28

 The next chapter will deal with the various methods used to solve nonlinear

optimization problems and their relevance to the work proposed in this thesis.

29

Chapter 4 Solution Approach

When attempting to solve a nonlinear optimization problem, several

considerations need to be made before an appropriate method is chosen. Methods vary

greatly in terms of their computational complexity, accuracy and effectiveness. Also, a

method that performs well on one function may perform poorly on another function. It is

therefore necessary to analyse algorithms thoroughly, before making recommendations

for real-world implementation. In general, nonlinear optimization techniques can be

broken down into two major categories: invariable (or exact) methods, or numerical

approximations. Exact solution methods can be beneficial since they provide an optimal

solution to the problem at hand. With this class of methods, the first partial derivative of

the function (eqn 3-7) with respect to each of the five parameters needs be obtained at

each time interval. Each of these derivatives then needs to be set to zero and then the

system of equations needs to be solved at each time interval. However, when the function

under consideration is large and cumbersome (as is the case with eqn 3-1), it would

require too much computation in order to obtain a solution in the time frame provided in

an electronic negotiation. Therefore, in contrast to exact methods, numerical

approximation methods are generally used to solve nonlinear optimization problems

when the function provided appears to be computationally complex, assuming that the

approximations obtained are accurate and fast enough.

Several numerical methods are available that all provide various results based on

the function being solved. The prominent ones, shown in the figure below (Scales, 1985),

can be classified into small residual and large residual types.

30

Figure 4.1 Numerical methods for solving nonlinear Least Squares problems

 Small residual algorithms can be seen as methods that ignore the residual term in

nonlinear least-squares function. This greatly simplifies the computational complexity

involved, since the Hessian matrix is not calculated; the Hessian is simply ignored. In

contrast, large residual algorithms, the residual term in nonlinear least square function is

approximated. This method involves much more computational power since the residual

term involving the Hessian matrix is often quite complex.

 In the next section, the framework of quasi-Newton methods will be developed,

and its relevance to this work explained.

4.1 Framework for Algorithms

For general unconstrained minimization problem where the Hessian matrix is

available or computable, Newton’s method can be used with great accuracy (Yabe and

Takahashi, 1991). This method constructs a sequence of vectors θi such that:

 iiii dαθθ +=+1 , (4-1)

Nonlinear Least Square
optimization

Small Residual
algorithms

Large Residual
algorithms

Gauss-
Newton

Levenberg-
Marquardt

Powell’s hybrid
method

Quasi-
Newton

Gill-Murray Hybrid
methods

31

where αi is a scalar steplength and di is the direction of the search that satisfies the

Newton equation 4-2:

 () ()ii fdf θθ −∇=∇ 2 (4-2)

For sum of squares of nonlinear functions, the gradient vector and Hessian matrix have

special forms that are respectively given by:

 () () ()ii

T
ii rJf θθθ =∇ , and (4-3)

 () () () () ()iiiii

T

ii rrJJf θθθθθ 22 ∇+=∇ ∑ , (4-4)

where r(θ), the residual term, is given by (3-5), and J(θi), the Jacobian of (3-1) is as

follows (recall from Chapter 3 that n is the number of offers received):

 Therefore, the method of solving for the decent direction using Newton’s method can

be presented in the following form:

() () () () () ()()ii
T

iii

T

i
ii

T
i rJrrJJd θθθθθθ

1
2

1

−

=

⎟
⎠

⎞
⎜
⎝

⎛
∇+−= ∑ (4-5)

 For the Faratin function (3-1), the above expression is computationally complex to

evaluate. It is in such cases that quasi-Newton methods are recommended (Scales, 1985).

In order to simplify the notation in equation 4-4, the following equation is presented:

1 1 1 1 1

min max max

min max max

(,) (,) (,) (,) (,)

(,) (,) (,) (,) (,)n n n n n

f t f t f t f t f t
P P T k

f t f t f t f t f t
P P T k

β

β

∂ ∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

θ θ θ θ θ

J
θ θ θ θ θ

M M

32

() () () () () () () ()ii
T

iiiiii
T

ii AJJrrJJf θθθθθθθθ +=∇+=∇ ∑ 22 , (4-6)

where A(θi) is an approximation as given below given below.

 (4-7)

Therefore, the ultimate goal of quasi-Newton methods is to find a way to calculate

the term A(θi) using a minimal amount of computational power, while obtaining close

approximations. The next section expands on this framework.

4.2 Algorithmic Details

 The quasi-Newton framework calls for computation of a proper descent direction

based on an approximation of equation 4-7. Of the several methods that have been

proposed for this purpose, we shall employ two prominent ones, namely, the structured

and factorized methods. An overview of these methods is given in section 4.2.1.

 Further, as given in (eqn 4-1), one will have to compute an appropriate step size α

as well as a suitable starting point θ0. Algorithms used for these two steps are given in

section 4.2.2 and 4.2.3, respectively.

4.2.1 Structured and Factorized Quasi-Newton Methods

The two main methods that will be examined in this work are Structured and

Factorized quasi-Newton Methods. Structured methods including the generalized quasi-

Newton method (Luksan, 1996), Bartholomew-Biggs (Bartholomew-Biggs, 1977) and

the Dennis-Walsh-Gay (DWG) method (Dennis, 1981) are all robust algorithms for large

() () ()∑
=

∇≈
n

i
iiiii rrA

1

2 θθθ

33

and small residual problems (Yabe and Takahashi, 1991). The update formulas below are

adapted from Yabe and Takahashi (1991).

A generalized update scheme for A is given by the following equation (θ: is

suppressed for convenience)

() T

iiii
i

T
i

ii vsAy
sv

AA −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=+

1
1 (4-8)

where

 () 11 ++ −= i
T

iii rJJv (4-9)

 iiis θθ −= +1 (4-10)

 () ()iii ffy θθ ∇−∇= +1 (4-11)

The Bartholomew-Biggs update is given by the following equation:

()()
() i

T
iiii

T
iiiiiiii

iii ssAv
sAvsAv

AA
β

ββ
β

−

−−
+=+1 (4-12)

i

T
i

ii
T

i rr
rr 1+

=β (4-13)

The Dennis, Gay and Welsh (DWG) update is given by the following:

() () ()
()

T
ii

i
T

i

iiiii

i
T

i

T
iiiii

T
iiiii

iii yy
ys

sAvs
ys

sAvyysAv
AA 21

βββ
β

−
−

−+−
+=+ (4-14)

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= 1,min

ii
T

i

i
T

i
i sAs

vs
β , (4-15)

where

 ()tfPr iti ,θ−= (4-16)

34

 In general, for quasi-Newton methods, it is desirable for the approximation matrix

parameter to be positive definite. This is to ensure that a descent direction for the

objective function is obtained at each iteration. However, for structured quasi-Newton

methods, it is not clear how to construct an updating formula for A(θi+1) such that the

matrix Ji
TJi + A(θi) is always positive definite (Yabe and Takahashi,1991). In order to

overcome this difficulty, factorized quasi-Newton methods have been proposed,

including the use of modified Cholesky and QR decomposition (Bjorke, 1996). Once the

matrix has been decomposed using either technique, the problem has the following form

(Yabe and Takahashi, 1991):

 () () i
T

iiii
T

ii rJdLJLJ −=++ , (4-17)

where the matrix Li is an m x n correction matrix to the Jacobian matrix such that

Li
TJi+JiLi+Li

TLi is the i-th approximation to the second part of the Hessian matrix of (4-

5).

 The next section deals with the line search algorithms used in order to ensure a

proper step size in the descent direction.

4.2.2 Selecting the Step-size Parameter

 Several methods are available to estimate the optimal step size. Since this estimation

needs to be calculated at each iteration, it is important to have a method that does not

involve too much computational complexity, yet provides a near optimal solution. In

order to gain a full understanding of the line search algorithms proposed, it is beneficial

to have another look at equation 4-1.

35

 iiii dαθθ +=+1 (4-18)

 Given that the previous value of θi has been calculated and the descent direction was

obtained using equation 4-5, a value of αi must be selected at each iteration in order to

ensure an optimal step size. Several line search algorithms have been proposed by

previous researchers. One algorithm proposed by Shi (2005), referred to in this paper as

general step size parameter selection, was to set the value of αi in equation 4-1 to 1. When

the descent direction was calculated and the new parameter values of θi were obtained,

only the parameters that were found within a predefined bound were updated, and the

other parameters were left unaltered. This approach to a line search algorithm may be

problematic, since it involves a deviation from the optimal direction of descent. In order

to avoid this issue, an attempt was made to use all of the updated parameters, while

varying the value of αi to ensure that the step size in the descent direction was optimal to

equation 3-7. We employ the Golden section search algorithm and another algorithm,

known as "backaway" algorithm, that aims to keep the updated parameter values within

certain feasible limits.

Golden Section Search Algorithm

The Golden Section Search (Scales, 1985) is a robust algorithm that can achieve

results with sufficient accuracy in a minimal amount of iterations. This algorithm is a

well-know univariate optimization method that allows for a minimum value to be

determined by constantly reducing the search interval by a factor τ ≈ 0.6180, where τ

satisfies the following quadratic equation.

 012 =−+ττ (4-19)

The Golden section search is illustrated in the following diagram.

36

 Figure 4.2 Golden Section Search algorithm

 The search section starts with two points a and b, and is then progressively reduced at

each iteration by a factor of τ. The traditional Golden section search is for univariate

optimization, and so, in order to adapt it to our case, equation 3-7 was modified to take

the following form.

 () [] 2

*)*,(ˆ dtfPSSE tt
αθθθ +=−Σ= , (4-20)

 Therefore, the optimal step size was selected by finding a value of α that

minimizes (4-20) and hence, minimizes the sum of squared error between the actual and

estimated time dependent negotiation function.

The modified algorithm can then be given by the pseudo code in Table 4.1.

a b α2

a b

SSE1(θ)

α1 α2

a b α2α1

Iteration 1

Iteration 3

Iteration 2

SSE2(θ)

SSE1(θ)

SSE2(θ)

SSE1(θ) SSE2(θ)

α1

37

 Initialize a and b, to 0 and 1;

 τ to 0.6180
 α1= a + τ* (b-a)
 α2= a + τ* (b-a)

 SSE1(θ, α1); SSE2(θ, α2)

While b-a > tolerance
 If (SSE1(θ) > SSE2(θ))

 then: a = α1
 α1 = α2 ; SSE1(θ) = SSE2(θ)
 α2 = a + τ (b-a)
 SSE2(θ) = SSE(θ) (α2)

 Else (SSE1(θ) < SSE2(θ))

 Then: b = α2
 α2 = α1 ; SSE2(θ) = SSE1(θ)
 α1 = a + (1-τ)(b-a)
 SSE1(θ) = SSE(θ) (α1)
 End If
End While

Table 4.1 Pseudo-code for Golden Section Search

Back-away algorithm

In order to ensure that all the parameters were used to update the value of θi, it

was necessary to derive a method that would allow the direction of deepest decent to be

followed while ensuring that all parameters remained within their predefined bounds. The

pseudo code for the proposed algorithm is presented below in Table 4.2.

iiii dαθθ +=+1

Lθ are the lower bound parameters
Uθ are the upper bound parameters

38

 For j=1 to.m
 0001 *)()()(djjj αθθ +=
 Initialize k = 1
 While ()(1 ji +θ >)(jUθ OR)(1 ji +θ <)(jLθ

 then)(1 ji +α =)(jiα / k
 k = k 2

 until ()(1 ji +θ >)(jUθ OR)(1 ji +θ <)(jLθ
 End While

Table 4.2 Pseudo-code for the back-away algorithm

 As a brief explanation, if a given parameter was not within the pre-defined

bounds, the step size was divided by k (set to 2 for the first iteration). The squared value

of k was increased until the updated step size was within with the lower and upper

bounds. This allowed decent direction to be maintained while assuring that the

parameters remained within their pre-defined bounds.

4.2.3 Pre-processing

 In order to ensure a successful attempt is made to locate a minimum value

of a function, it is often necessary to begin with a proper starting point. We refer to this

setup as pre-processing.

Two main forms of pre-processing are commonly used before the implementation

of a Gauss-Newton or quasi-Newton algorithms; Pattern search and Exploratory search.

The Hooke-Jeeves algorithm is a hybrid search method that applies aspects of both forms

of search without the need for either first or second order derivative information. Hence,

39

it serves as a robust method to achieve a suitable starting point before the implementation

of a Newton-based method.

Hooke-Jeeves

The Hooke-Jeeves algorithm is implemented by defining an initial starting point θ0, a

step size δ, and a set of n orthogonal unit vectors ei. The first part of the algorithm is the

implementation of the exploratory search. Starting from the initial point θ0, each

coordinate direction, j, is explored using the following equation

 ijiji e*,1, δθθ +=
+

 (4-21)

 The functional value of θi, j+1 is then compared to that corresponding to θi, j in the

function being evaluated. If () ()jiji ff ,1, θθ <+ , then point θi, j+1 is accepted; if the reverse

holds, the same increment is subtracted.

 ijiji e*,1, δθθ −=
+

 (4-22)

 In either case, the new value of θi,j+1 is accepted as long as the function under

evaluation has improved. If no improvement is found in the search in either direction, the

initial value of θi,j will remain unchanged. This procedure will repeat until all of the m

search directions have been explored.

The next step in the Hooke-Jeeves algorithm is the implementation of the pattern

search. The pattern search first compares the values of the function under evaluation

using the starting point, and the resulting point, θ1, from the exploratory search. If

40

() ()01 θθ ff < , then the pattern search is made along the direction presented in the

equation below.

 ()0110 θθαθ −+=y , (4-23)

where, α is the acceleration factor used to size the magnitude of the pattern search. The

procedure of the exploratory search is then repeated starting with the new point obtained.

However, if the new found point does not satisfy () ()01 θθ ff < , the step magnitude δ

is reduced by a factor of div using the following equation.

 divδ δ= (4-24)

The Hooke-Jeeves algorithm then continues and concludes when δ is smaller than a

predefined small value tol.

 In terms of the current work, the Hooke-Jeeves algorithm is used as a pre-processor to

the initial starting point. This step is then followed by a Newton-based algorithm to find

the descent direction. The step size in the decent direction is then defined by the value

obtained in the from the parameter selection.

41

Chapter 5 Experimental Design

5.1 Parameter Generation

 In order to measure the effectiveness of a given combination of optimization

techniques, a uniform set of starting points and actual points is needed. In the current

thesis, a set of 200 starting points and 200 actual points (corresponding to the negotation

parameters in θ) are generated using the following equation.

 θ(i)=LowerBound(i)+rand(i)*(UpperBound(i)-LowerBound(i)), (5-1)

where rand(i) is a random value within the interval of (0,1). The values of the lower and

upper bounds of each parameter are given in the following table.

Parameter Range

Pmin [100, 250]

Pmax [300, 600]

Tmax [20, 40]

β [0, 10]

k [0,1]

Table 5.1 Upper and Lower bounds of test parameters

Without loss of generality, since the current thesis deals with negotiation from the

buyer’s perspective, we use equation 3-1 to generate bidding prices.

 (5-2)

The actual parameters are used to generate an array of prices that represent the

actual price-curve of the buyer. The number of price-offers generated varies from 4 to

10; see also section 5.3. The starting parameters are applied to equation 5-2 to generate

()
()

()minmax

ln1

min PPePtP
k

T
t

mac −+=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β

42

the starting prices of the buyer. The performance of the algorithm is monitored by using

equation 3-7.

 ()
2 2

ˆ() ,t t t
t t

SSE P P P f tθ θ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎣ ⎦∑ ∑ , (5-3)

where Pt is the actual price at time t and f(t,θ) is the starting price at time t. Since the

price vector of the actual prices remains constant, the change in the value of the standard

square error is only a function of the changing value of the estimated parameters.

 The minimization process is illustrated by the following figure, where SSE0 through

SSE2 determine the sum of squared error for iteration 0 through 2.

43

Figure 5.1 Sum of squared errors at iteration 0 through 2

As illustrated in Figure 5.1, the sum of squared errors is minimized at each

iteration where SSE0 >SSE1 > SSE2. The iterative process is ended when the value of

SSE is below a predetermined tolerance level or when the process has reached the

maximum iteration number of 30.

 The next section deals with the different combinations of algorithms that were applied

in order to minimize equation 5-3.

44

5.2 Overall combinations of algorithms

We follow the experimental framework in Shi (2005), thereby permitting a

comparison of the different methods for the problem. All combinations of quasi-Newton

methods and line search algorithms are presented in Figure 5.2

 MSE < tolerance

Figure 5.2 Combinations of algorithms tested

After several attempts, it was found that both polynomial interpolation and the

Golden section search method were not viable options since they increased computational

time and did not introduce an appreciable gain to the final results. Therefore, their results

Pre-processing options
• No pre-processing
• Hooke-Jeeves

Main optimization part
options

• Gauss-Newton
• Factorized QN

Parameter selection options
• Golden
• General
• Back-away

Is MSE < tolerance
(see section 5.4.3)

Yes

Stop

No

45

are not included in chapter 6. Also, only the generalized structured and factorized quasi-

Newton methods had any success in terms of solving equation 3-7. Both the

Bartholomew-Biggs and Dennis-Gay-Welsh updates introduced problems including rank

deficiency and singularity of the approximation matrices. These problems caused

equation 3-6 not to converge due to computational errors. As a result, only the

generalized quasi-Newton update in its structured and factorized forms is presented in the

experimental results in chapter 6.

 An updated table of all of the possible permutations of pre-processing, parameter

selection and optimization algorithms is presented below.

Generalized QN
Methods

Hook-
Jeeves

Parameter
Selection

Algorithms
Combinations

GEN GN_GEN No
BA GN_BA

GEN HJ_GN_GEN
GN

Yes
BA HJ_GN_BA

GEN SQN_GEN No
BA SQN_BA

GEN HJ_SQN_GEN
Structured

Yes
BA HJ_SQN_BA

GEN FQN_GEN No
BA FQN_BA

GEN HJ_FQN_GEN
Factorized

Yes
BA HJ_FQN_BA

LEGEND

 GN: Gauss-Newton method
 SQN: Structured quasi-Newton method
 FQN: Factorized quasi-Newton method
 BA: Back-away parameter update
 GEN: General parameter update

Table 5.2 Combinations of optimization methods

46

5.3 Definition of Convergent and Divergent Cases

Each of combination of pre-processing, optimization algorithm and parameter

selection will be evaluated using following characteristics. The number of actual prices

generated, henceforth called number of learning points (NoLP), is 4, 6, or 10.

1. Convergence: The mean squared error between the estimated price and the actual

price for NoLP (number of learning points) for (NoLP = 4, 6, 8, or 10) will be

evaluated using the following formula:

()

2

1

ˆ() ()
NoLP

t
P t P t

MSE
NoLP

=

−
=

∑
 , (5-4)

where P(t) is the actual prices, and ˆ()P t is the estimated prices (the

number of prices depends on the value of NoLP). A convergent case arises when

the chosen algorithm obtains a solution of MSE< 10⁻² for equation 5-4. If this

occurs, the function is said to have converged at a local optimal solution at some

point θ*= [Pmin, Pmax, Tmax, β, k].

2. Divergence: If the algorithm does not converge within 30 iterations, we classify it

as a divergent case. That is, no local optimal solution has been found.

47

5.4 Performance Measures

Each algorithm will be assessed in terms of convergence rate, scaled norm of the

difference between the actual and the estimated parameters, the sum of squared errors of

the next five learning points and the CPU time.

5.4.1 The convergence rate

The convergence rate is defined as the percentage of converged cases out of the

total number of replications (200 in our case) in each learning method. This parameter

will be examined closely to determine the effectiveness of a given method in reaching a

conclusion to a given negotiation. It should be pointed out that convergence rate, as used

herein, does not refer to the rate at which the algorithm converges to a solution.

5.4.2 The scaled norm

The following formula, for the norm of the difference between the actual and the

estimated parameters, is used to evaluate the accuracy of the of the optimization

algorithm.

222 22

max max max maxmin min

min max max

ˆˆˆ ˆˆ P P T TP P k knorm
P P T k

β β
β

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ − −− − −
= + + + + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ (5-5)

where [Pmin, Pmax, Tmax, β, k] are the actual parameters for the time-dependent model

and min max max
ˆˆˆ ˆ ˆ, , , ,P P T kβ⎡ ⎤

⎣ ⎦ are the estimates. The scaled norm is an extremely important

parameter in this thesis, since it measures the ability of a given set of algorithms to learn

from an opponent. Hence, a given set of algorithms with a lower norm would be more

successful at predicting an opponent’s next bid/offer price.

48

5.4.3 SSEN

 While the SSE measure indicates the closeness with which the algorithm matches the

prices already offered, it does not give any indication as to whether the process can

estimate the future moves of the opponent. This estimation of the future is important.

Thus, in this work, we use SSEN, defined as

 () ()()
2

5

1

ˆˆ∑
+

+=

−=
NoLP

NoLPi
N tPtPSSE (5-6)

In this paper, NoLP =4, 6, 8, or 10 depending on the number of learning points

that are being used.

5.4.4 CPU time

Computational time is an important measure to gauge the usefulness of a given set

of optimization methods studied in the context of electronic negotiation. Since all

electronic negotiations will occur in real time, any method that takes more than a few

seconds would not find much practical use. Each method will be evaluated on the basis of

the average computation time used in order to obtain convergence. As a result, attempts

not resulting in convergence will not be included within this measure.

 The next chapter deals with the experimental results obtained from the combination

of algorithms presented within this chapter. Inferential statistical analyses will be

conducted in order to evaluate the performance measures in both absolute and relative

terms.

49

Chapter 6: Experimental Results

 The following analysis on each combination of algorithms was performed using

MATLAB 7.0 software package on a Pentium 4, 2.2 GHz CPU with 512MB of RAM. In

each of the following sections, the performance measures will be evaluated and compared

using relevant statistics.

6.1 Convergence Rate

The convergence rate obtained in this work is an important indication of the

effectiveness of a given combination of pre-processing algorithms, optimization

algorithms and parameter selection. In the context of electronic negotiation, the

convergence rate represents the portion of successful attempts of estimating the

negotiation curve of the opponent. Hence, a higher convergence rate would indicate a

higher likelihood of gaining valuable information on the behaviour of the negotiation

opponent.

The table below provides an overview of the results obtained for the convergence

rates of each combination of pre-processing, optimization algorithm and parameter

selection, for each set of learning points.

50

Table 6.1 Convergence Results of different optimization methods

In order to get a proper depiction of the effect that each algorithm has on the rate

of convergence, it helps to look at each subclass of methods separately. Since several

factors contribute to the convergence of a given method, the performance needs to be

compared in three categories: pre-processing, optimization algorithm, and parameter

selection. The results are presented in the table below.

 GN_GEN HJ_GN_GEN GN_BA HJ_GN_BA SQN_GEN HJ_SQN_GEN
LP_4 31.00% 35.50% 35.50% 72.00% 39.00% 41.50%
LP_6 21.50% 27.50% 49.50% 52.50% 32.50% 32.00%
LP_8 18.50% 23.50% 50.00% 52.00% 20.00% 30.00%

LP_10 18.00% 24.00% 48.00% 51.50% 22.50% 31.50%
 SQN_BA HJ_SQN_BA FQN_GEN HJ_FQN_GEN FQN_BA HJ_FQN_BA

LP_4 69.00% 72.00% 58.00% 56.00% 73.00% 80.50%
LP_6 66.00% 67.50% 42.50% 40.00% 71.50% 72.50%
LP_8 64.00% 66.00% 41.00% 35.50% 67.50% 67.50%

LP_10 64.00% 64.50% 35.50% 31.00% 64.50% 69.50%

51

 GN_GEN SQN_GEN FQN_GEN
LP_4 31.00% 39.00% 56.00%
LP_6 21.50% 32.50% 40.00%
LP_8 18.50% 20.00% 35.50%
LP_10 18.00% 22.50% 31.00%

 HJ_GN_GEN HJ_SQN_GEN HJ_FQN_GEN

LP_4 35.50% 41.50% 58.00%
LP_6 27.50% 32.00% 42.50%
LP_8 23.50% 30.00% 41.00%
LP_10 24.00% 31.50% 35.50%

 GN_BA SQN_BA FQN_BA

LP_4 35.50% 69.00% 73.00%
LP_6 49.50% 66.00% 71.50%
LP_8 50.00% 64.00% 67.50%
LP_10 48.00% 64.00% 64.50%

 HJ_GN_BA HJ_SQN_BA HJ_FQN_BA

LP_4 72.00% 72.00% 80.50%
LP_6 52.50% 67.50% 72.50%
LP_8 52.00% 66.00% 67.50%
LP_10 51.50% 64.50% 69.50%

 Table 6.2 Convergence rate of each combination of optimization method

In the current thesis, we have looked at three main types of algorithms: the Gauss-

Newton, the structured quasi-Newton and the factorized quasi-Newton. Each algorithm

had a different effect on the convergence rates of the functions evaluated, given the same

use of pre-processing and parameter selection. It is apparent by comparing algorithms in

table 6.2 that there is an improvement in convergence going from the Gauss-Newton to

structured quasi-Newton to factorized quasi-Newton method. This pattern seems to hold

true regardless of the use of pre-processing, the method used for parameter selection or

the number of learning points used. It is therefore evident that structured quasi-Newton

methods and Factorized Quasi-Newton methods provide improved rates of convergence

for estimating the time dependent negotiation function’s parameters. Hence, it can be

52

concluded that the use of structured and factorized quasi-Newton methods hold an

advantage over the Gauss-Newton based methods previously proposed by Shi (2005).

Another pattern that is apparent in table 6.2 is the improvement in convergence

obtained by the use of the Hooke-Jeeves pre-processing method. By comparing methods

with the same optimization algorithm and parameter selection, methods that used the

Hooke-Jeeves pre-processing achieved higher convergence for 22 out of the 24 cases.

This conclusion is illustrated in the table below which represents the relative

improvement in the convergence rate of a given function by using Hooke-Jeeves pre-

processing.

 GN SQN FQN
LP_4 102.82% 4.35% 8.22%
LP_6 6.06% 2.27% 1.40%
LP_8 4.00% 3.13% 0.00%
LP_10

BA

7.29% 0.78% 7.75%

LP_4 14.52% 6.41% 3.57%
LP_6 27.91% -1.54% 6.25%
LP_8 27.03% 50.00% 15.49%
LP_10

G
EN

33.33% 40.00% 14.52%

Table 6.3 Relative improvement of convergence using Hooke-Jeeves pre-processing

The results indicate that the Hooke-Jeeves pre-processing method is an integral

part in obtaining higher convergence rates while attempting to solve the non-linear

optimization function presented in equation 3.7.

The next apparent pattern in table 6.2 is the effect of parameter selection.

Parameter selection makes a significant difference in the convergence rate obtained. In

each of the 24 cases compared, the use of the back-away algorithm over the use of

general parameter selection greatly increased the rate of convergence. This conclusion is

53

easily drawn by referencing the table below that presents the relative improvement to the

convergence rate by the use of Back-away parameter selection.

Table 6.4 Relative improvement of convergence using the back-away algorithm

The last pattern that presents itself in table 6.2 is the effect of the number of

learning points used to estimate the opponents negotiation function. Although the results

are not as apparent as with the other three patterns analyzed, there seems to be a pattern

that indicates that the convergence rate drops as the number of learning points is

increased. This pattern seems slightly more pronounced in cases where the general

parameter selection is used as opposed to the back-away algorithm.

In conclusion, the results suggests that the most robust algorithm would be

obtained by combining the most effective method suggested above; this would also imply

that the least effective would be obtained by combining the least effective methods. This

hypothesis is supported by the fact that the highest convergence rate (of 80.5%) was

obtained by using Hooke-Jeeves pre-processing coupled with the factorized quasi-

Newton method and back-away parameter selection with four learning points, while the

 GN SQN FQN
LP_4 14.52% 76.92% 30.36%
LP_6 130.23% 103.08% 78.75%
LP_8 170.27% 220.00% 90.14%
LP_10

H
-J

166.67% 184.44% 108.06%

LP_4 102.82% 73.49% 36.21%
LP_6 90.91% 110.94% 70.59%
LP_8 121.28% 120.00% 64.63%
LP_10

N
o

H
-J

114.58% 104.76% 95.77%

54

least effective was obtained by using the Gauss-Newton method without pre-processing

and the general parameter selection with 10 learning points (18.0%).

 Although the convergence rate is a good indication of the effectiveness of a given

set of optimization methods, other performance measures also need to be examined to

truly reach a definite conclusion. The next section deals with the calculated norms

obtained with each combination of pre-processing, optimization algorithm and parameter

selection.

 6.2 Scaled Norm

 The scaled norm is a parameter that is extremely important to the goals of this

work. As given in section 5.2, the norm is calculated as the relative difference between

estimated parameters and the actual parameter, relative to the actual parameters. Hence,

the lower the value obtained for the scaled norm, the more accurately the negotiation

parameters of an opponent have been estimated.

In order to obtain a general idea of the magnitude of scaled norms presented in

this section, the table below has been provided.

55

 Pmin Pmax Tmax Beta k Scaled
Norm

Starting Parameters 201.5398 392.6653 22.9402 3.0759 0.3230 0.6086
Actual Parameters 172.6017 302.8364 28.1865 3.0525 0.6079 -

Norm 1 172.6009 302.8364 28.1861 3.0525 0.6079 0.0000
Norm 2 172.5931 302.8330 28.1643 3.0501 0.6080 0.0011
Norm 3 172.5879 302.8311 28.1547 3.0491 0.6080 0.0016
Norm 4 172.5331 302.8266 28.1456 3.0480 0.6082 0.0022
Norm 5 172.6393 302.8015 28.0528 3.0416 0.6080 0.0059
Norm 6 172.8231 302.8751 27.9701 3.0214 0.6073 0.0129
Norm 7 168.4903 302.3997 26.9111 2.9063 0.6219 0.0738
Norm 8 166.4856 302.2051 26.3608 2.8425 0.6284 0.1064
Norm 9 187.1797 301.1566 26.8774 3.0966 0.5670 0.1185
Norm 10 170.9672 301.4712 25.3245 2.7819 0.6193 0.1365
Norm 11 172.0412 301.0091 23.9785 2.6335 0.6191 0.2037
Norm 12 155.2072 301.2298 23.9255 2.5655 0.6611 0.2572

Table 6.5 Improvement of estimated parameters as the scaled norm is decreased

 Table 6.5 contains the results obtained from a given run with 10 learning points. Each

Norm presented from Norm 1 to Norm 12 resulted from one convergent case using the

same starting and actual parameters. One conclusion that can be drawn from this table is

that each convergent case does not necessarily guarantee that the negotiation parameters

of an opponent have been estimated accurately. As an example, Norm 12 has converged,

however its estimation of the parameters vary from 0.5% to 10%; whereas for Norm 1, all

parameters have been estimated within 0.00002% to 0.001%. Therefore, the effectiveness

of a given combination of pre-processing, optimization algorithm and parameter selection

is also dictated by the ability to minimize the calculated scaled norm.

 From the previous section, we make two observations that are going to influence

the presentation in this section:

• First, we observe that the methods proposed in this thesis do provide significant

improvements in the convergence rates.

56

• Second, the methods that provide the improvement are Hooke-Jeeves method (in

pre-processing), back-away (in parameter selection) and quasi-Newton (in the

optimization part).

Thus, in this section, we will study how the scaled-norm measure varies with respect

to the three aforementioned algorithms and with respect to convergence rates. Tables 6.6

through 6.9 deal with the optimization algorithms, table 6.10 deals with pre-processing

and table 6.11 with the parameter selection element. Finally, we also test to see how the

number of learning points influences the norm.

The table below contains a breakdown of the mean and standard deviation of the

combined cases for each permutation of pre-processing, optimization algorithm and

parameter selection; we present results for all cases as well for convergent cases.

 GEN HJ_GEN BA HJ_BA

 Mean STDEV Mean STDEV Mean STDEV Mean STDEV
LP_4 1.5761 0.9103 0.8550 0.8912 1.4591 0.9539 0.9365 0.9172
LP_6 2.0350 0.4849 1.1135 1.0883 1.6003 0.9632 0.7774 0.9645
LP_8 2.0619 0.4899 1.8054 0.6285 2.0675 0.4326 0.8508 1.0175 G

N

LP_10 2.0327 0.5020 1.1092 1.1054 1.5820 0.9824 0.8946 1.0282

LP_4 1.9145 0.5691 0.8978 0.8872 1.1927 0.9387 0.9349 0.8735
LP_6 1.9619 0.5414 0.8591 0.9947 1.4170 0.9991 0.8165 0.9556
LP_8 2.0675 1.6426 0.8508 0.9019 1.4082 1.5299 0.8576 0.8574 SQ

N

LP_10 2.0468 0.4730 0.8651 1.0336 1.5210 0.9891 0.8953 1.0221

LP_4 1.1927 0.9387 1.2575 0.9400 0.9349 0.8735 0.9365 0.8721

LP_6 1.4170 1.4170 1.8858 0.5881 0.8165 0.9556 0.8165 0.9439

LP_8 1.4082 1.0188 1.5299 0.9802 0.8574 0.9871 0.9312 0.9452 FQ
N

LP_10 1.5210 0.9891 1.6022 0.9590 0.8953 1.0221 0.8653 1.1345

(a) All cases

57

 GEN HJ_GEN BA HJ_BA
 Mean STDEV Mean STDEV Mean STDEV Mean STDEV

LP_4 0.2591 0.2239 0.3411 0.2586 0.3347 0.2562 0.2897 0.2167
LP_6 0.0109 0.0297 0.0618 0.1268 0.0018 0.0028 0.0019 0.0025
LP_8 0.0051 0.0088 0.0018 0.0023 0.0017 0.0026 0.0016 0.0022 G

N

LP_10 0.0018 0.0029 0.0008 0.0012 0.0008 0.0011 0.0007 0.0011

LP_4 0.3303 0.2532 0.3199 0.2725 0.3282 0.2434 0.3050 0.2149
LP_6 0.1417 0.1644 0.1096 0.1451 0.1002 0.1424 0.1222 0.1671
LP_8 0.1845 0.2331 0.1085 0.1451 0.0406 0.0595 0.0584 0.0782 SQ

N

LP_10 0.0896 0.1316 0.0516 0.0919 0.0400 0.0575 0.0742 0.0997

LP_4 0.3965 0.3157 0.3742 0.2472 0.3638 0.2632 0.3696 0.2498
LP_6 0.2309 0.2215 0.1928 0.2124 0.1323 0.1746 0.1765 0.2109
LP_8 0.1078 0.1228 0.0966 0.1171 0.1013 0.1344 0.1167 0.1401 FQ

N

LP_10 0.1285 0.1522 0.1431 0.1866 0.0717 0.0902 0.0959 0.1294

(b) Only convergent cases

Table 6.6 Means and standard deviations of the scaled norms

In the following table, the norm values obtained using the structured quasi-

Newton method and the Gauss-Newton method are compared using p-values at 95%

confidence.

 GN versus SQN
 GEN GEN_HJ BA BA_HJ

LP 4 0.2035 0.2100 0.7444 0.3684

LP 6 0.0263 <0.0001 <0.0001 0.0012
LP 8 0.9045 <0.0001 <0.0001 0.0529
LP 10 0.2037 <0.0001 0.0031 0.0456

(a) All Cases

 GN versus SQN
 GEN GEN_HJ BA BA_HJ

LP 4 0.2278 0.6208 0.8283 0.5540
LP 6 <0.0001 0.0685 <0.0001 0.0269
LP 8 <0.0001 <0.0001 0.0009 <0.0001
LP 10 0.0002 0.0010 <0.0001 <0.0001

 (b) Convergent cases

58

Table 6.7 ANOVA results comparing structured quasi-Newton with Gauss-Newton

 Table 6.7 provides the p-values of GN versus SQN for various combinations of

the other components (e.g, column 2 provides the influence of SQN when using Gen

parameter update and when HJ pre-processing is used). The results of the p-values

displayed in table 6.7(a) are mixed, however they seem to indicate that structured

quasi-Newton methods improves the calculated norm in 9 out of the 16 variations

attempted for all cases. Several resulting p-values in table 6.7(b) suggest that there is

a difference between the scaled norms of convergent cases calculated using the SQN

method versus those calculated using the GN method. However, table 6.6(b)

indicates that smaller norm values are obtained using the GN method. Hence, the

opposite effect is apparent for convergent cases. This can possibly be explained by

the fact that the use of the SQN optimization algorithm results in more convergent

cases. Also, it could be explained by the possibility that the GN optimization

algorithm will only result in convergent cases for functions evaluated whose initial

starting points result in small calculated norm values. Hence, cases with larger norms

that would not have normally converged via the use of the GN optimization

algorithm are brought within the range of convergence while using the SQN

algorithm. Therefore, in order to properly compare the effect of the optimization

algorithms, parameter selection algorithms and pre-processing algorithm on the

scaled norm, it is beneficial to only base the analysis on all cases. For the remainder

of this section, all results will be presented from all cases and all convergent cases;

however, conclusions from statistical analysis will only be drawn from comparison

among optimization methods showing all 200 cases.

59

In the following table, the norm values obtained using the factorized quasi-Newton

method and the structured quasi-Newton method are compared using p-values at 95%

confidence.

 SQN versus FQN
 GEN GEN_HJ BA BA_HJ

LP 4 <0.0001 0.0339 0.6738 0.1663

LP 6 <0.0001 0.0004 0.6633 0.6132
LP 8 <0.0001 0.2428 0.9477 0.7109

LP 10 <0.0001 0.8355 0.7699 0.4327

(a) All cases

 SQN versus FQN
 GEN GEN –HJ BA BA – HJ

LP 4 0.2427 0.0850 0.2453 0.0212
LP 6 0.1450 0.0006 <0.0001 <0.0001
LP 8 0.0013 0.8343 0.0119 <0.0001
LP 10 0.1365 0.0004 0.0018 0.2167

 (b) Convergent cases

Table 6.8 ANOVA Results comparing structured quasi-Newton with factorized
quasi-Newton

 The results of the p-values displayed in table 6.8(a) are mixed, however they seem to

indicate that the norm calculated using the factorized quasi-Newton methods improves

the calculated norm when the general parameter selection is used without Hooke-Jeeves

pre-processing (GEN, as shown in column 1).

In the following table, the norm values obtained using the factorized quasi-Newton

method and the Gauss-Newton method are compared using p-values at 95% confidence.

 GN versus FQN
 GEN GEN_HJ BA BA_HJ

LP 4 <0.0001 0.0006 0.9295 0.6542
LP 6 <0.0001 0.0060 <0.0001 0.0051
LP 8 <0.0001 <0.0001 <0.0001 0.0199
LP 10 <0.0001 <0.0001 0.0070 0.0053

(a) All cases

60

 GN versus FQN
 GEN GEN –HJ BA BA – HJ

LP 4 0.0142 0.2110 0.2614 0.0040
LP 6 <0.0001 0.0006 <0.0001 <0.0001
LP 8 <0.0001 <0.0001 <0.0001 <0.0001
LP 10 <0.0001 <0.0001 <0.0001 <0.0001

 (b) Convergent cases

Table 6.9 ANOVA Results comparing Gauss- Newton with factorized quasi-Newton

 The results of the p-values displayed in table 6.9(a) indicate that the norm calculated

using the factorized quasi-Newton methods improves the calculated norm when the

general parameter selection is used with and without Hooke-Jeeves pre-processing.

 In terms of the scaled norm in this thesis, there are three parameters that need to

be investigated further. As discussed in the previous section, it seems that other

components yielding improved convergence are: Hooke-Jeeves pre-processing, back-

away parameter selection. Thus we investigate the following:

In the following table, the norm values obtained with and without the use of the

Hooke-Jeeves pre-processing are compared using p-values at 95% confidence.

 (a) All Cases

 GN SQN FQN
 GEN BA GEN BA GEN BA

LP 4 0.9953 0.0806 0.3721 0.6442 0.2536 0.3025
LP 6 0.1663 <0.0001 0.2162 0.5864 0.6233 0.4240
LP 8 0.6890 0.6251 0.4913 0.6602 0.6105 0.7617

LP 10 0.4357 0.7451 0.1438 0.5487 0.7654 0.2315

(b) Convergent cases

 GN SQN FQN
 GEN BA GEN BA GEN BA

LP 4 <0.0000 0.4228 <0.0001 0.6687 0.4908 0.1605
LP 6 0.4269 <0.0000 <0.0001 0.4059 0.0000 0.9226
LP 8 <0.0000 <0.0000 <0.0001 0.6188 0.2255 0.9437

LP 10 0.1245 0.4960 <0.0001 0.7756 0.4061 0.4061

61

Table 6.10 ANOVA Results comparing cases with and without Hooke-Jeeves pre-
processing

The results of the p-values displayed in table 6.10(a) indicate that the norm values

obtained with Hooke-Jeeves pre-processing are smaller then those obtained using no pre-

processing for SQN while using the general parameter selection. Also, the results suggest

that the same pattern holds true for the GN algorithm using both parameter selection

methods and the FQN optimization algorithm using the general parameter selection.

However, the same observation is not supported for either the SQN or FQN optimization

algorithms while using the back-away parameter selection. Overall, it appears that there

is sufficient evidence to support that the Hooke-Jeeves pre-processing method may help

in reducing the scaled norm obtained while estimating the TDT parameters. However,

this result is not constant for each combination of methods analysed.

 The next parameter to be analysed is the effect of parameter selection on the

scaled norm. As with the previous Hooke-Jeeves pre-processing analysis, all other

parameters will be held constant to determine the effect of the parameter selection in

isolation.

In the following table, the norm values obtained using the back-away parameter

selection and the general parameter selection are compared using p-values at 95%

confidence.

 GN SQN FQN
 No HJ HJ No HJ HJ No HJ HJ

LP 4 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
LP 6 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
LP 8 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

LP 10 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

(a) All cases

62

 GN SQN FQN
 No HJ HJ No HJ HJ No HJ HJ

LP 4 0.7541 0.1406 0.6346 0.2448 0.7807 0.8337
LP 6 0.8657 0.0121 0.8396 0.0681 0.8583 0.5543
LP 8 0.1899 0.6460 0.1956 0.0765 0.3680 0.9559

LP 10 0.0679 0.3787 0.5727 0.9639 0.2226 0.7639

(b) Convergent cases

Table 6.11 ANOVA Results comparing the influence of the back-away algorithm

The results of the p-values displayed in table 6.11(a) all indicate that the

calculated scaled norms significantly improve with the use of back-away parameter

selection. Therefore, there is strong reason to believe that the use of the back-away

parameter selection can improve the learning of an opponents negotiation parameters.

 The next parameter to be tested in table 6.12 concerns the number of learning points

used. By observing the mean values of the norm in table 6.6(b) it becomes evident that

the mean scaled norm decreases as the number of learning points increases. This seems

intuitive since more information regarding an opponent’s negotiation behaviour is gained

at each exchange of bid-offers between the buyer and seller.

 GEN BA
 GN SQN FQN GN SQN FQN

No HJ 0.0648 <0.0001 <0.0001 0.0425 <0.0001 <0.0001
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

(a) All cases

 GEN BA
 GN SQN FQN GN SQN FQN

No HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

(b) Convergent cases

Table 6.12 ANOVA Results comparing the influence of the number of learning
points

63

 The results of the p-values displayed in Table 6.12(a) and (b) all indicate, with

one exception, that the scaled norm estimated decreased by increasing the number of

learning points. Hence, the initial assumption is supported. Therefore, the more learning

points obtained from an opponent, the lower the value of the scaled norm will be. Hence,

the accuracy of the estimation of an opponent’s negotiation behaviour can be

significantly increased by obtaining more learning points.

 The test results of this section bring out a few important observations. First, as

discussed in Table 6.5, algorithmic convergence does not necessarily imply an accurate

estimation of the parameters. Fortunately, based on the mean results on our test

problems, when convergence does occur, the estimations have been generally accurate.

Thus, the superior convergence rates of our methods yield improvements on knowing the

parameters characterizing the underlying negotiation behaviour of the opponent.

6.3 SSEN

The next parameter examined is extremely important in the context of electronic

negotiation. It examines the ability of a given set of methods to predict the next five price

offers given by the buyer. A method with a low SSEN is a direct measure of its

effectiveness to predict the actual future offers of the opponent. Since this parameter is

based on the next five moves of an opponent, once it is believed that the negotiation

parameters of the opponent have been properly estimated, it is only valid for convergent

cases. Hence, the results presented in the section will only represent those obtained from

convergent cases.

64

 GEN HJ_GEN BA HJ_BA
 Mean STDEV Mean STDEV Mean STDEV Mean STDEV

LP_4 0.1053 0.1285 0.1209 0.1347 0.1236 0.1433 0.0967 0.1066
LP_6 0.0001 0.0005 0.0019 0.0083 0.0000 0.0000 0.0000 0.0000
LP_8 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 G

N

LP_10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LP_4 0.1111 0.1271 0.0938 0.1090 0.1255 0.1375 0.1195 0.1347
LP_6 0.0263 0.0392 0.0173 0.0374 0.0045 0.0078 0.0075 0.0206
LP_8 0.0410 0.0817 0.0129 0.0263 0.0019 0.0040 0.0032 0.0065 SQ

N

LP_10 0.0085 0.0173 0.0006 0.0014 0.0011 0.0029 0.0040 0.0097

LP_4 0.1477 0.1483 0.1777 0.2237 0.1495 0.1635 0.1396 0.1468
LP_6 0.0391 0.0617 0.0618 0.0873 0.0212 0.0520 0.0357 0.0580
LP_8 0.0095 0.0170 0.0149 0.0307 0.0100 0.0223 0.0151 0.0258 FQ

N

LP_10 0.0090 0.0257 0.0158 0.0291 0.0076 0.0144 0.0091 0.0234

Table 6.13 Sum of squared errors over the next five turns for all convergent cases

At a quick glance, one pattern becomes evident in table 6.13. As expected, the more

learning points that are obtained, the lower the value of SSEN
 will be. This is a direct

implication of the lower value obtained for the scaled norm of functions with a higher

number of learning points, as previously observed from the results in table 6.12 .

It was not apparent from the results in table 6.10(b) that the norm values obtained

using Hooke-Jeeves pre-processing were lower than those obtained without pre-

processing. However, one way to further the analysis on the effectiveness of the Hooke-

Jeeves algorithm is to test its ability to lower the value of SSEN obtained.

In the following table, SSEN values obtained using Hooke-Jeeves pre-processing and

those obtained without pre-processing are compared using p-values at 95% confidence.

65

 GN SQN FQN

 GEN BA GEN BA GEN BA
LP 4 <0.0001 0.0463 <0.0001 0.1212 0.1053 0.0386
LP 6 0.0436 <0.0001 <0.0001 0.1686 0.1507 0.4540
LP 8 0.0001 <0.0001 <0.0001 0.1095 0.2114 0.6913

LP 10 0.0133 0.0328 <0.0001 0.0103 0.0402 0.1902

Table 6.14 ANOVA results comparing SSEN with and without Hooke-Jeeves pre-
processing

The results of the p-values displayed in table 6.14 are mixed. Several cases

support the assumption that Hooke-Jeeves pre-processing can lower the SSEN and several

others do not. Hence, it cannot be assured with certainty that the value of SSEN

significantly improves with the addition of a pre-processing stage with 95% confidence

for each method. However, since several cases support this preliminary observation, there

is reason to believe that the addition of a pre-processing step may be worthwhile step to

include as part of our learning algorithm.

6.4 CPU Time

 The next parameter analyzed in this work is the computational time used in order

to reach convergence in each method. Table 6.15 contains the values of computational

time, in seconds, obtained.

66

 GEN HJ_GEN BA HJ_BA
 Mean STDEV Mean STDEV Mean STDEV Mean STDEV

LP_4 0.1062 0.0486 0.1502 0.0733 0.1269 0.0704 0.1649 0.0807
LP_6 0.1277 0.0546 0.1765 0.1089 0.1583 0.0688 0.1854 0.0876
LP_8 0.1570 0.0690 0.1912 0.0693 0.1814 0.0805 0.2300 0.1188 G

N

LP_10 0.2130 0.0985 0.2171 0.0641 0.2156 0.0753 0.2489 0.1110
LP_4 0.1679 0.1003 0.1966 0.1034 0.1610 0.0862 0.2061 0.1007
LP_6 0.2243 0.1446 0.3273 0.1741 0.3394 0.2161 0.4217 0.2363
LP_8 0.2588 0.1648 0.3340 0.2100 0.2983 0.1803 0.3498 0.1916 SQ

N

LP_10 0.3442 0.2284 0.3707 0.2327 0.3711 0.2175 0.4389 0.2555
LP_4 0.2479 0.1281 0.2364 0.1121 0.2217 0.1128 0.2466 0.1245
LP_6 0.4289 0.2462 0.5126 0.2462 0.3291 0.1575 0.3213 0.1574
LP_8 0.3790 0.2087 0.3994 0.1872 0.4461 0.2005 0.4135 0.2061 FQ

N

LP_10 0.4888 0.2776 0.5679 0.2754 0.5788 0.2623 0.5391 0.2849

Table 6.15 Computational time mean and standard deviations

 As would be expected, when the Faratin function is evaluated using more learning

point, computational time will be added. This statement is supported by the test by the p-

values in table 6.16 below.

Table 6.16 ANOVA results comparing computational time comparison among cases
with different number of learning point selection

The results of the p-values displayed in table 6.16 indicate that the computational

time is increased as the number of learning points is increased. Hence, the more learning

points obtained from an opponent, the longer it will take to estimate an opponent’s

negotiation parameters.

Another pattern arose that was also expected. It appears by examining the data in

table 6.15 that the computational time is increased with increasing complexity of the

optimization algorithm. This in turn would suggest that the least computational time

 GEN BA
 GN SQN FQN GN SQN FQN

No HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

67

would be needed using the Gauss-Newton algorithm while the most time would be

required while using the factorized Quasi-Newton algorithm.

Table 6.17 ANOVA results comparing computational time comparison among cases
with different optimization algorithms

The p-values in table 6.17 support the hypothesis that the more computationally

complex an algorithm is, the more computation time it will take in order to solve the

nonlinear optimization problem presented in equation 3-7.

 Although it has been show with 95% confidence that the computational time

increases with an increase in the number of learning points and with increasing

computational complexity of the optimization algorithm, the improvement in

convergence of both of these methods more than compensates for the increased time. By

taking the computational time into the context of a real time electronic negotiation, the

time difference between an algorithm that can make the computation in 0.1s versus a

more complex and accurate algorithm that can be performed in 0.5s is negligible. Hence,

in this case, the computational time should not affect the decision of which methods are

to be used in a real time electronic negotiation.

6.5 Summary of Results

 In summary, this chapter has demonstrated that, as compared to the standard

Gauss-Newton method, higher convergence rates for solving equation 3.7 can be obtained

by the use of a structured quasi-Newton method. It has also demonstrated that by the use

 GEN BA
 GN SQN FQN GN SQN FQN

No HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

68

of factorized quasi-Newton methods, convergence can again be improved over the use of

a structured quasi-Newton methods by ensuring that the Hessian approximation matrix is

positive definite, hence ensuring a decent direction at each iteration.

 The back-away algorithm used in this paper also significantly increased

convergence in each case, regardless of the optimization algorithm used and regardless of

whether or not parameter pre-processing was performed. By glancing at table 6.2, the

effectiveness of the back-away parameter selection method is clearly evident. It

introduced relative improvements to convergence in different cases with the lowest

improvement being 14.5% percent, and the highest being 220%. It was also determined

that by increasing the number of learning points, the rate of convergence will decrease.

However, this negative effect was dampened by a decrease in scaled norm, hence

resulting in more accurate estimations of an opponent’s negotiation behaviour.

Although we have conducted no mathematical analysis concerning the

improvements afforded by our methods, the statistical results have demonstrated with

95% confidence the that use of the back-away algorithm, Hooke-Jeeves pre-processing

and factorized quasi-Newton methods can improve the learning of an opponent’s

negotiation parameters. It has also been found that the use of a higher number of learning

point will also result in a more accurate estimation of the negotiation parameters. These

conclusions are important since they ultimately support the initial motivation for this

thesis.

In conclusion, in order to improve the convergence and the accuracy of the

estimation of an opponent’s negotiation parameters, Hooke-Jeeves pre-processing

coupled with a factorized quasi-Newton method and back-away parameter selection

should be used. If convergence is more important in the analysis, a smaller number of

69

learning points should be used. However, if the ultimate goal of the analysis is to

accurately estimate the negotiation parameters of your opponent, the more learning points

obtained the more accuracy that will be achieved.

The next chapter summarizes the significance of the results obtained within this

chapter. Potential applications of the work performed within this thesis will be

summarized and future work to possibly improve the results further will be brought forth.

70

Chapter 7 Conclusion and Implications

This chapter deals with the implication of the results obtained in this work.

Possible applications for this solution method will be examined and future work that may

contribute to further improvement to the results obtained will be outlined.

7.1 Summary

 In this thesis, the TDT has been defined and the estimation of its parameters was

formulated into a nonlinear least squares problem. A successful attempt was made which

resulted in improved algorithmic convergence and accuracy in TDT parameter

estimation. This positive result may have several practical implications in the context of

electronic negotiation.

7.2 Implication of results

The results achieved in this work have significantly improved on those obtained

by Shi (2005) by increasing the convergence rate from the high 60% range to

approximately 80%. Also, the low values of the scaled norm obtained by a number of the

methods tested suggest that the nonlinear least squares optimization methods attempted

can estimate the negotiation parameters with great accuracy. This in turn implies that the

next move made by an opponent in an electronic negotiation can be estimated with

reasonable accuracy. This statement is supported by the very small values of the sum of

squared errors obtained over the next five moves by an opponent (Table 6.13).

 By taking the results in context of an electronic negotiation, a method has been

found that can accurately estimate the negotiation parameters of an opponent, and use

71

these results to accurately predict the value of the next bid/offer price. This estimation

can be obtained within a fraction of a second (Table 6.15) on a standard desktop

computer, semi-autonomously and without any human interaction. The combination of all

of these results indicates that the methods applied in this work may potentially contribute

to the design of appropriate decision models underlying an automated negotiation agent.

As pointed out by (Bichler and Kersten 2003), decision models constitute only one aspect

of negotiation agents and the construction of agents entails rigorous Computer Science

techniques (e.g., computational linguistics, artificial intelligence, protocol design etc.).

 In the next section, previous research conducted is analysed for its potential use in

conjunction with the learning methods presented in this paper. An algorithm is presented

that can enable a buyer/seller to apply the learning methods in order to obtain a

lower/higher transaction price.

7.3 The benefit of learning

In the current thesis, it has been concluded that one is able to successfully learn an

opponents negotiation parameters using various combinations of pre-processing,

optimization algorithm and parameter selection. Previous work (Mok and Sundarraj,

2005) has shown that the ability to learn an opponent’s negotiation behaviour throughout

the process of negotiation can be beneficial in terms of maximizing utility. Their

proposed algorithm, the reaction algorithm, consists of three phases: (i) selection of target

range; (ii) feasibility check; and (iii) parameter adjustment. The first phase uses the learnt

parameters to determine a set of final target offers that would improve the negotiation

outcome, as compared to the non-learning outcome. In the feasibility phase, they attempt

72

to determine if the targets obtained are feasible. Finally, in the parameter adjustment

phase, the concession rate (β in this paper) is adjusted in order to reach the final target.

 This algorithm was experimentally tested under each of the follow scenarios:

1. The buyer and the seller exhibit boulware behaviour
2. The buyer and the seller exhibit conceder behaviour
3. The buyer exhibits boulware behaviour and the seller exhibits conceder behaviour
4. The buyer exhibits conceder behaviour and the seller exhibits boulware behaviour

 The figure below (Mok and Sundarraj, 2005) is a pictorial description of the effect

of learning on the resulting transaction price.

73

Figure 7.1 Effect of learning on the transaction price

In each of the above outcomes, Mok and Sundarraj have determined that the use

of learning algorithms, in conjunction with the reaction algorithm, can benefit the buyer

by lowering the final negotiation price (transaction price). This is an extremely important

conclusion since it highlights the importance of the work performed in this thesis. The

improved learning algorithm, achieved with the use of back away parameter selection,

Hooke-Jeeves pre-processing and the factorized quasi-Newton algorithm, can be used in

conjunction with the reaction algorithm to benefit the buyer/seller in terms of further

reducing lowering/raising the transaction price. The figure below is an example of how

accurate leaning can lead to an improved transaction price for a buyer.

Figure 7.2 Effect of improved learning on the transaction price

74

 In figure 7.2, the buyer with accurate learning is able to significantly lower the

price at which he/she obtains the good or service under negotiation. Hence, the ability to

structure robust learning algorithm can ultimately result in beneficial results for the user.

 The next section deals with future work that may result from this thesis.

7.4 Future Work

 Future work that may be applied to further strengthen the conclusion obtained in

this thesis can include a series of tests in real-life negotiation settings against actual

opponents. The design could involve selecting a large pool of people, and having them

negotiate online on a one-on-one basis with an electronic agent. The lowest bid price and

the highest offer price of the item under consideration would be predefined by the system

in order to set the pricing parameters. Also, the maximum number of iterations allowable

to reach an agreement would be set in order to add time pressure to the process. The bids

and offers of each respective party would be recorded, at each iteration, in order to obtain

an estimate of their negotiation parameters. After the completion of a successful

transaction, the buyer and seller would exchange roles, and the same procedure would be

followed using a different item. Once the data is collected, each negotiator would be

required to participate in four additional negotiations with the automated agent. This

would allow the agent to act as a buyer and seller, with and without learning, against a

single opponent.

 The results of this experiment could be quantified by comparing the normalized

transaction price obtained, for each negotiation conducted by the agent, with and without

the use of learning. The normalized transaction price of the buyer would be given by the

75

difference between the median price and the transaction price, divided by the difference

between the maximum price and the minimum price. For the seller, the normalized

transaction price would be given by the difference between the transaction price and the

median price, divided by the difference between the maximum price and the minimum

price.

In the first equation, the normalized transaction price is positive when the agent,

as a buyer, achieves a transaction price lower than the median price. Likewise, in the

second equation, the normalized transaction price of the agent, as a seller, is positive

when the transaction price is higher than the median price. In each case, the agent will be

awarded with a positive value, normalized by the difference between the set maximum

and minimum price of the item under negotiation, when a transaction price that is

preferred to the median price is obtained. By comparing the results obtained for cases

with and without the benefits of learning, the net effect of learning in an actual

negotiation setting can be tested using relevant statistics, with a high degree of

confidence. A successful result of this experiment would strengthen the conclusion that

the learning methods described in this paper could be used to benefit an agent in a real

life electronic negotiation.

The main limitation of this experiment is that the current learning method used in

this thesis makes several assumptions that do not allow the opponent to act irrationally,

which may be the case in the real-life application described above. In future work, the

learning methods presented in this paper can be further tested in situations where the

opponent’s negotiation behaviour changes dramatically during the life of the negotiation.

If a solution is found, it will be able to greatly increase the ability of this type of

negotiation strategy to find a place in an e-commerce setting.

76

Bibliography

Bansal, V. (2005). "Simultaneous Independent Online Auctions with Discrete Bid

Increments." Electronic Commerce Research, 5(2): 181-201.
Bartholomew-Biggs, M. C. (1977). "The Estimation of the Hessian Matrix in Nonlinear

least squares problems with non-zero residuals." Mathematical Programming 12:
67-80.

Beam, C. (1999). "A New Market-based Negotiation Paradigm."
http://haas.berkeley.edu/~citm/nego/newnego.html.

Bichler, M and Kersten, G. (2003). "Towards a structured design of electronic
negotiations." Group Decision and Negotiation 12(4): 311-335.

Bjorke, A. (1996). Numerical Methods for Least Squares Problems, SIAM.
Cardoso, H. L. and Oliveira, E. (2001). A platform for electronic commerce with adaptive

agents. Agent-Mediated Electronic Commerce III. Current Issues in Agent-Based
Electronic Commerce Systems, 3-4 June 2000, Barcelona, Spain, Springer-
Verlag.

Chaves, A. M. (1996). Kasbah, An Agent Marketplace for Buying and Selling Goods.
Proceedings of the First International Conference on The Practical Application of
Intelligent Agents and Multi-agent Technology, London, UK.

Choi S. P. M., Liu, J., and Chan, S. P. 2001. "A Genetic agent-based negotiation system".
Computer Networks and ISDN Systems 37, 195–204.

Da-Jun, C. and Liang-Xian, X (2002). A negotiation model of incomplete information
under time constraints. AAMAS '02: First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 15-19 July 2002, Bologna, Italy,
ACM.

Dasgupta, P. (2003). "Dynamic Consumer Profiling and Tiered Pricing Using Software
Agents." Electronic Commerce Research 3: 277-296.

de Paula, G. E. and Ramos, F. S. (2001). Bilateral Negotiation Model for Agent-Mediated
Electronic Commerce. Lecture Notes in Computer Science Volume 2003/2001.

Dennis, J. E. and Walsh R.E (1981). "An Adaptive Nonlinear Least-Squares Algorithm."
ACM Transactions on Mathematical Software (TOMS) 7(3), 23-41.

Deveaux, L. (2001). "Bargaining on an Internet Agent-based Market: Behavioural vs.
Optimizing Agents." Electronic Commerce Research 1(4): 371-401.

eBay, "sneak peak", Retrieved July 18th, 2007, from http://pages.ebay.com/sneakpeek
Economist, The. (2000). "Dotty about dot.commerce? The E-Commerce boom is

changing business, for the better [Editorial]." The Economist 354(8159): 24.
Faratin, P. (2000). "Automated Service Negotiation Between Autonomous Computational

Agents." A dissertation submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy of the University of London.

Faratin, P. and Sierra, C. and Jennings, N.R. (1998). "Negotiation decision functions for
autonomous agents." Robotics and Autonomous Systems 24(3-4): 159-82.

Fatima, S. S. and Wooldridge, M (2002). Multi-issue negotiation under time constraints.
AAMAS '02: First International Joint Conference on Autonomous Agents and
Multi-Agent Systems, 15-19 July 2002, Bologna, Italy, ACM.

Feldman, S. (2000). "Electronic marketplaces." IEEE Internet Computing 4(4): 93-95.

77

Fisher, R. U., (1981). Getting to Yes: Negotiating an Agreement without Giving In,
Random House.

Fletcher, R. and Xu, C. (1987). "Hybrid methods for nonlinear least squares." IMA
Journal of Numerical Analysis 7(3): 371-89.

Genesereth, M. R. G., (1986). Cooperation without communication. In Proc. of the
National Conference on Artificial Intelligence, Philadelphia.

Global Reach, “Electronic Commerce”. Retrieved March 18th, 2006, from
http://www.glreach.com/eng/ed/art/ecommerce.html

Gordon Lo, G. (1999). Negotiation and Electronic Commerce: Integrating Negotiation
Support and Software Agent Technologies. 29th Atlantic Schools of Business
Conference (1999)

Government of Canada, “Electronic Commerce”. Retrieved February 13th, 2006, from
http://www.statcan.ca

Guttman, R. H. (1999). "Agent-mediated Integrative Negotiation for Retail Electronic
Commerce." Workshop on Agent Mediated Electronic Trading (AMET'98).

Guttman, R. H. and Maes, P (2000). "Agents as Mediators in Electronic Commerce".
Electronic Markets, MIT Media Lab. Cambridge: 1-6.

Harsanyi, J. C. (1972). "Generalized Nash solution for 2-person bargaining games with
incomplete information." Management Science 18(5): 50-106.

He, M. H. and Jennings, N. R (2003). "On agent-mediated electronic commerce." IEEE
Transactions on Knowledge and Data Engineering 15(4): 985-1003.

International Engineering Consortium, “Electronic Commerce". Retrieved January 13th,
2007, from http://www.iec.org/online/tutorials/e_commerce

Jennings, N. R. and Faratin. P. (2001). "Automated negotiation: Prospects, methods and
challenges." Group Decision and Negotiation 10(2): 199-215.

Kersten, G.E. and Noronha, S. and Teich, J. (2000). "Are All E-Commerce Negotiations
Auctions?" Fourth International Conference on the Design of Cooperative
Systems, 1-10Kitti, M. (2004). "Analysis of the Constraint Proposal Method for
Two-Party Negotiations." Helsinki University of Technology: 1-21.

Lee, K. J. and Chang, Y.S. (2000). "Time-bound negotiation framework for electronic
commerce agents." Decision Support Systems 28(4): 319-31.

Lomuscio, A. R. and Wooldridge, M. (2003). "A classification scheme for negotiation in
electronic commerce." Group Decision and Negotiation 12(1): 31-56.

Mahadevan, B. (2000). "Business Models for Internet based E-Commerce: An Anatomy."
California Management Review 42(40): 1-33.

Mok, W. and Sundarraj, R. P. (2005). "Learning Algorithms for Single-Instance
Electronic Negotiations Using the Time-Dependent Behavioural Tactic." ACM
Transactions on Internet Technology (TOIT) 5(1): 195-230.

Nash, J. (1950). "The bargaining problem." Econometrica 18: 155-162.
Panagariya, A. (1999). "Electronic Commerce, WTO and Developing Countries." WTO,

Electronic Commerce 5(15): 28.
Panagariya, A. (1999). "Electronic Commerce, WTO, and Developing Countries." WTO,

Electronic Commerce 5(11): 30-31.
Papamichail, G. P. and Papamichail, D. P. (2003). "Towards using computational

methods for real-time negotiations in electronic commerce". European Journal of
Operational Research. 145: 232-238.

Pruitt, D. (1981). Negotiation Behavior, Academic Press.

78

Raiffa, H. (1982). The Art and Science of Negotiation. Cambridge, Mass., Harvard
Univesrity Press: 23-27

Robbins, S. P. (2005). Communication, conflict, and Negotiation. Fundamentals of
Organizational Behaviour. Toronto, Pearson Prentice Hall: 195.

Rosenschein, J. S. (1994). Rules of Encounter: Designing Conventions for Automated
Negotiation among Computers. The MIT Press. Cambridge: 20-22.

Salvatore, D. (2001). Market Structure and Pricing Practices. Managerial Economics in a
Global Economy. New York, Harcourt College Publishers: 482-510.

Sandholm, T. (1999). "Automated Negotiation." Communications of the ACM 42(3): 84-
85.

Scales, L. E. (1985.). Introduction to non-linear optimization. London, U.K., Macmillan.
Shi, X. (2005). Comparison of Nonlinear Optimization Methods for Learning Time-

dependent Decision Functions in Electronic Negotiations. Management Sciences
MASc Thesis,. Waterloo, University of Waterloo: 133.

Stone, P. (2005). "The First International Trading Agent Competition: Autonomous
Bidding Agents." Electronic Commerce Research and Applications 5: 229-265.

Strobel, M. and Weinhardt, C. (2003). "The Montreal Taxonomy for electronic
negotiations." Group Decision and Negotiation 12(2): 143-164.

Wang, Y. T. (2004). "PumaMart: a parallel and autonomous agents based internet
marketplace." Electronic Commerce Research and Applications 3: 294-310.

Wilkenfeld, J. K. and Zlotkin, G; (1992). "Multiagent Negotiation Under Time
Constraints". Computer Science Technical Report Series. College Park: 1-62.

Wurman, P. R. and Walsh, W.E. (1998). The Michigan Internet AuctionBot: A
Congurable Auction Server for Human and Software Agents. In Proceedings of
the Second International Conference on Autonomous Agents, Minneapolis, MN.

Yabe, H. and Takahashi, T. (1991a). "Factorized quasi-Newton methods for nonlinear
least squares problems." Mathematical Programming 51: 75-100.

Yabe, H. and Takahashi, T. (1991b). "Numerical comparison among structured quasi-
Newton methods for nonlinear least squares problems." Journal of the Operations
Research Society of Japan 34(3): 287-305.

Zeng, D. D. and Sycara, K. (1998). "Bayesian learning in negotiation" International
Journal of Human-Computer Studies(48): 125-141.

79

Appendix

Matlab Generate
function[ActualPara, NoPara, StartingPoint, StartingPrice, ActualPrice,
LowerBound, UpperBound] =Generate(NoRepl)

LowerBound=[100,300,20,0,0];
UpperBound=[250,600,40,10,1];

NoRepl=1;

% Verify the sizes of lowerbound and upperbound
if size(LowerBound)~=size(UpperBound)
 error('The sizes of the first two parameters in function
GenerateStartingPoint must be the same!')
end

NoPara=size(LowerBound,2); %record the number of parameters
time=1:10; % number of learning points

% begin to generate starting points under the given conditions
for j=1:NoRepl
 for i=1:NoPara
 ActualPara(i)=LowerBound(i)+rand*(UpperBound(i)-LowerBound(i));
 StartingPoint(i)=LowerBound(i)+rand*(UpperBound(i)-
LowerBound(i));
 end %for

 StartingPrice=faratin(StartingPoint,time);
end %for

Matlab Faratin

function P=faratin(Para,t)
% evaluation of faratin's function
% Pb=Pmin+exp((1-t/Tmax)^beta*log(K))*(Pmax-Pmin)
P=Para(1)+exp((1-t/Para(3)).^Para(4)*log(Para(5)))*(Para(2)-Para(1));

Matlab Quasi-Newton General
%counter=0;
%while counter < 30

tolerance=1E-2;
MaximumIteration=30;
NoPara=5; % number of parameters
time=1:7;
NoTime=size(time,2); % number of time

iteration=0;

80

ConvergeInfor=0;
DivergeInfor=0;

TotalTime=0;
NoFunEval=0;
NoFunEvalAlg=0;

[ActualPara]=Generate1;
[StartingPoint]=Generate1;
ActualPrice=faratin(ActualPara, time);
f=faratin(StartingPoint, time);
r=f-ActualPrice;
SSE=norm(r)^2;
%plot(time, ActualPrice, time, f);
LowerBound=[100,300,20,0,0];
UpperBound=[250,600,40,10,1];

syms h1 h2 h3 h4 h5
for i=1:NoPara
 eval(['SymbolG(',int2str(i),')=h',int2str(i),';']); % SymbolG(i)=xi
end

for i=1:NoTime
 FuncF(i)=faratin(SymbolG,time(i)); % function F
 % ActualPrice(i)=faratin(ActualPara,time(i)); % actual price value
end
%***

J=jacobian(FuncF.',SymbolG); % matrix D
Jt=transpose(J);
%NoFunEval=NoFunEval+NoFunEvalAlg;
gradient=Jt*r';
Ak=Jt*J;
h1=StartingPoint(1);
h2=StartingPoint(2);
h3=StartingPoint(3);
h4=StartingPoint(4);
h5=StartingPoint(5);
Ak=eval(Ak);
Hess=Ak;
gradient=eval(gradient);
trial=-pinv(Hess);
J=eval(J);
Jt=eval(Jt);
x=StartingPoint;
d=-pinv(Hess)*gradient;
%alpha=0.5*eye(5,5);
alpha=1;
decentd=(alpha*d)';

%%%%%%%%%%%%%%%%%%%
% iteration begins
%%%%%%%%%%%%%%%%%%%

while ((SSE>tolerance)&(iteration<MaximumIteration));
 iteration=iteration+1; % record iteration number

81

 fprintf('.')

 syms alpha1

 alphavect=x+alpha1*d';
 %sizealphavect=size(alphavect)
 F=faratin(alphavect,time) ;
 R=Res(F, ActualPrice);

for i=1:5
 if (x(i)+ decentd(i)>LowerBound(i) & x(i)+ decentd(i)<UpperBound(i));
 x_1(i)=x(i)+decentd(i)
 else
 x_1(i)=x(i)+0.4*decentd(i)
 end
end
 % elseif((x(i)+ decentd(i)<LowerBound(i) | x(i)+
decentd(i)>UpperBound(i)))
 % x_1=(i)+decentd(i)*0.1

 for i=1:NoTime
 f(i)=faratin(x_1,time(i));

 end

 h1=x_1(1);
 h2=x_1(2);
 h3=x_1(3);
 h4=x_1(4);
 h5=x_1(5);

 J_1=jacobian(FuncF.',SymbolG);
 Jt_1=transpose(J_1);
 r_1=f-ActualPrice; % Matrix Y
 J_1=eval(J_1);
 Jt_1=eval(Jt_1);
 gradient_1=(Jt_1)*(r_1)';
 B=Jt_1*J_1;
 SSE=norm(r_1)^2%standard square error

 if SSE>100
 alpha=1;
 else
 alpha=0.2;
 end
 %Calculations%%%%%%%%%%%%%%%%%%%%%%%%%%

 Jtrial=J_1-J;
 sk=x_1-x;
 yk=(gradient_1-gradient)';
 Ak=gen(sk, yk, J_1, Jt_1);

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 try,

82

 Hess=B+Ak;
 detHess=det(Hess);

 if det(Hess)==0;
 fprintf('s'); % stand for singular
 end

 trial=-pinv(Hess);
 d=-pinv(Hess)*gradient_1; % minimal norm solution for
singular case
 decentd=(alpha*d)';
 NoFunEval=NoFunEval+1;
 catch,
 fprintf('\nDiverge: Error in calculating matrix B in iteration
%d. However, continue...',iteration)
 ConvergeIndex='diverge'
 EndTime=cputime;

 EndingPoint=x; % converge ending point
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

 break;
 end

 if SSE<=tolerance
 fprintf('Converge!')
 ConvergeIndex='converge';

 EndingPoint=x; % converge ending point
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

 elseif iteration==MaximumIteration
 fprintf('Diverge!');
 ConvergeIndex='diverge';
 %TimeElapse=EndTime-StartTime;
 EndingPoint=x;
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter

83

 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

 end % if

 %changing variables%%%%%%%%%%%%%%%%%%
 x=x_1;
 J=J_1;
 Jt=Jt_1;
 r=r_1;
 gradient=gradient_1;
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 end % while

 EndPrice=faratin(EndingPoint, time);
 StartingPrice=faratin(StartingPoint, time);

 plot(time, f, time, ActualPrice);
 subplot(2,1,1); plot(time,ActualPrice, time, StartingPrice);
 subplot(2,1,2); plot(time, ActualPrice, time, EndPrice);

Matlab Quasi-Newton General Update

function Ak=gen(sk, yk, J_1, Jt_1);

Ak=pinv(sk)*(yk-sk*Jt_1*J_1);

Matlab Quasi-Newton DGW

tolerance=1E-2;
MaximumIteration=30;
NoPara=5; % number of parameters
time=1:5;
NoTime=size(time,2); % number of time

iteration=0;
ConvergeInfor=0;
DivergeInfor=0;

TotalTime=0;
NoFunEval=0;
NoFunEvalAlg=0;

[ActualPara]=Generate1;
[StartingPoint]=Generate1;
ActualPrice=faratin(ActualPara, time);
f=faratin(StartingPoint, time);
r=f-ActualPrice;
SSE=norm(r)^2;

84

%plot(time, ActualPrice, time, f);
LowerBound=[100,300,20,0,0];
UpperBound=[250,600,40,10,1];

syms h1 h2 h3 h4 h5
for i=1:NoPara
 eval(['SymbolG(',int2str(i),')=h',int2str(i),';']); % SymbolG(i)=xi
end

for i=1:NoTime
 FuncF(i)=faratin(SymbolG,time(i)); % function F
 % ActualPrice(i)=faratin(ActualPara,time(i)); % actual price value
end
%***

J=jacobian(FuncF.',SymbolG); % matrix D
Jt=transpose(J);
%NoFunEval=NoFunEval+NoFunEvalAlg;
gradient=Jt*r';
Ak=Jt*J;
h1=StartingPoint(1);
h2=StartingPoint(2);
h3=StartingPoint(3);
h4=StartingPoint(4);
h5=StartingPoint(5);
Ak=eval(Ak);
Hess=Ak;
gradient=eval(gradient);
trial=-pinv(Hess);
J=eval(J);
Jt=eval(Jt);
x=StartingPoint;
d=-pinv(Hess)*gradient;
%alpha=0.5*eye(5,5);
alpha=0.5;
decentd=(alpha*d)';

%%%%%%%%%%%%%%%%%%%
% iteration begins
%%%%%%%%%%%%%%%%%%%

while ((SSE>tolerance)&(iteration<MaximumIteration));
 iteration=iteration+1; % record iteration number
 fprintf('.')

 syms alpha1

 alphavect=x+alpha1*d';
 %sizealphavect=size(alphavect);
 alpha_lb=0;
 alpha_ub=3;

 F=faratin(alphavect,time) ;

 R=Res(F, ActualPrice);

85

 % end %---LOOP STOP

 %disp(alpha1)
 %%%
 if (x+ decentd >LowerBound & x+ decentd<UpperBound);
 x_1=x+decentd;
 fprintf('no adj')
 else
 decentd=decentd./6;
 x_1=x+decentd
 fprintf('adjust')
 end % if
 %%

 for i=1:NoTime
 f(i)=faratin(x_1,time(i));
 NoFunEval=NoFunEval+1;
 end

 h1=x_1(1);
 h2=x_1(2);
 h3=x_1(3);
 h4=x_1(4);
 h5=x_1(5);

 J_1=jacobian(FuncF.',SymbolG);
 Jt_1=transpose(J_1);
 r_1=f-ActualPrice; % Matrix Y
 J_1=eval(J_1);
 Jt_1=eval(Jt_1);
 gradient_1=(Jt_1)*(r_1)';
 B=Jt_1*J_1;
 SSE=norm(r_1)^2;%standard square error

 %Calculations%%%%%%%%%%%%%%%%%%%%%%%%%%

 Jtrial=J_1-J;
 sk=x_1-x
 skt=transpose(sk);
 yk=(gradient_1-gradient)'
 ykt=transpose(yk);
 beta=(r_1*r')/(r*r')

 if beta > 1;
 beta=1;
 end
 disp(beta)
 v=(J_1-J)'*r_1';
 G=(v-beta*Ak*sk');
 Gt=transpose(G);
 Ak_1=DGW(beta,G,Ak,yk,ykt,Gt,skt);
 pause
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 try,

86

 Hess=B+Ak;
 detHess=det(Hess);

 if det(Hess)==0;
 fprintf('s'); % stand for singular
 end

 trial=-pinv(Hess);
 d=-pinv(Hess)*gradient_1; % minimal norm solution for
singular case
 decentd=(alpha*d)';
 NoFunEval=NoFunEval+1;
 catch,
 fprintf('\nDiverge: Error in calculating matrix B in iteration
%d. However, continue...',iteration)
 ConvergeIndex='diverge'
 EndTime=cputime;
 %TimeElapse=EndTime-StartTime;
 EndingPoint=x; % converge ending point
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval];
 break;
 end

 if SSE<=tolerance
 fprintf('Converge!')
 ConvergeIndex='converge';
 EndTime=cputime;
 %TimeElapse=EndTime-StartTime;
 EndingPoint=x; % converge ending point
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval];
 elseif iteration==MaximumIteration
 fprintf('Diverge!');
 ConvergeIndex='diverge';
 EndTime=cputime;
 %TimeElapse=EndTime-StartTime;
 EndingPoint=x;

87

 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval];
 end % if

 %changing variables%%%%%%%%%%%%%%%%%%
 x=x_1;
 J=J_1;
 Jt=Jt_1;
 r=r_1;
 gradient=gradient_1;
 Ak=Ak_1;
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 end % while

 EndPrice=faratin(EndingPoint, time);
 StartingPrice=faratin(StartingPoint, time);

 plot(time, f, time, ActualPrice);
 subplot(2,1,1); plot(time,ActualPrice, time, StartingPrice);
 subplot(2,1,2); plot(time, ActualPrice, time, EndPrice);
 %counter=counter+1;
 %fprintf('[%d]',counter)
 %end
%end%countrer

Matlab Quasi-Newton DGW Update

function Ak_1=DGW(beta,G,Ak,yk,ykt,Gt,skt)

Ak_1=beta*Ak+(G*yk+ykt*Gt)/(skt*yk)-((skt*Gt)/(skt*yk)^2)*ykt*yk

Matlab Biggs

%counter=0;
%while counter < 30

tolerance=1E-2;
MaximumIteration=30;
NoPara=5; % number of parameters
time=1:5;
NoTime=size(time,2); % number of time

88

iteration=0;
ConvergeInfor=0;
DivergeInfor=0;

TotalTime=0;
NoFunEval=0;
NoFunEvalAlg=0;

[ActualPara]=Generate1;
[StartingPoint]=Generate1;
ActualPrice=faratin(ActualPara, time);
f=faratin(StartingPoint, time);
r=f-ActualPrice;
SSE=norm(r)^2;
%plot(time, ActualPrice, time, f);
LowerBound=[100,300,20,0,0];
UpperBound=[250,600,40,10,1];

syms h1 h2 h3 h4 h5
for i=1:NoPara
 eval(['SymbolG(',int2str(i),')=h',int2str(i),';']); % SymbolG(i)=xi
end

for i=1:NoTime
 FuncF(i)=faratin(SymbolG,time(i)); % function F
 % ActualPrice(i)=faratin(ActualPara,time(i)); % actual price value
end
%***

J=jacobian(FuncF.',SymbolG); % matrix D
Jt=transpose(J);
%NoFunEval=NoFunEval+NoFunEvalAlg;
gradient=Jt*r';
Ak=Jt*J;
h1=StartingPoint(1);
h2=StartingPoint(2);
h3=StartingPoint(3);
h4=StartingPoint(4);
h5=StartingPoint(5);
Ak=eval(Ak);
Hess=Ak;
gradient=eval(gradient);
trial=-pinv(Hess);
J=eval(J);
Jt=eval(Jt);
x=StartingPoint;
d=-pinv(Hess)*gradient;
%alpha=0.5*eye(5,5);
alpha=1;
decentd=(alpha*d)';

%%%%%%%%%%%%%%%%%%%
% iteration begins
%%%%%%%%%%%%%%%%%%%

while ((SSE>tolerance)&(iteration<MaximumIteration));

89

 iteration=iteration+1; % record iteration number
 fprintf('.')

 syms alpha1

 alphavect=x+alpha1*d';
 %sizealphavect=size(alphavect);
 alpha_lb=0;
 alpha_ub=3;

 F=faratin(alphavect,time) ;

 R=Res(F, ActualPrice);

 %disp(alpha1)
 for i=1:NoPara
 if (x(i)+ decentd(i)>LowerBound(i) & x(i)+
decentd(i)<UpperBound(i));
 x_1(i)=x(i)+decentd(i);
 else
 x_1(i)=x(i);
 end % if
 end %for

 for i=1:NoTime
 f(i)=faratin(x_1,time(i));
 NoFunEval=NoFunEval+1;
 end

 h1=x_1(1);
 h2=x_1(2);
 h3=x_1(3);
 h4=x_1(4);
 h5=x_1(5);

 J_1=jacobian(FuncF.',SymbolG);
 Jt_1=transpose(J_1);
 r_1=f-ActualPrice; % Matrix Y
 J_1=eval(J_1);
 Jt_1=eval(Jt_1);
 gradient_1=(Jt_1)*(r_1)';
 B=Jt_1*J_1;
 SSE=norm(r_1)^2;%standard square error

 %Calculations%%%%%%%%%%%%%%%%%%%%%%%%%%

 Jtrial=J_1-J;
 sk=x_1-x;
 skt=transpose(sk)
 yk=(gradient_1-gradient)';
 ykt=transpose(yk)
 beta=(r_1*r')/(r*r')
 v=(J_1-J)'*r_1';

90

 G=(v-beta*Ak*sk')
 Gt=transpose(G);
 Ak_1=biggs(G,Gt,sk,Ak,beta)

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 try,
 Hess=B+Ak;
 detHess=det(Hess);

 if det(Hess)==0;
 fprintf('s'); % stand for singular
 end

 trial=-pinv(Hess);
 d=-pinv(Hess)*gradient_1; % minimal norm solution for
singular case
 decentd=(alpha*d)';
 NoFunEval=NoFunEval+1;
 catch,
 fprintf('\nDiverge: Error in calculating matrix B in iteration
%d. However, continue...',iteration)
 ConvergeIndex='diverge'
 EndTime=cputime;
 %TimeElapse=EndTime-StartTime;
 EndingPoint=x; % converge ending point
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval];
 break;
 end

 if SSE<=tolerance
 fprintf('Converge!')
 ConvergeIndex='converge';
 EndTime=cputime;
 %TimeElapse=EndTime-StartTime;
 EndingPoint=x; % converge ending point
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval];

91

 elseif iteration==MaximumIteration
 fprintf('Diverge!');
 ConvergeIndex='diverge';
 EndTime=cputime;
 %TimeElapse=EndTime-StartTime;
 EndingPoint=x;
 NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm
between starting point and actual parameter
 NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm
between ending point and actual parameter
 SSEPara=norm(EndingPoint-ActualPara)^2; % unnormalized SSE
between parameters.
 SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE
between actual parameters and estimated parameters.

infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval];
 end % if

 %changing variables%%%%%%%%%%%%%%%%%%
 x=x_1;
 J=J_1;
 Jt=Jt_1;
 r=r_1;
 gradient=gradient_1;
 Ak=Ak_1;
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 end % while

 EndPrice=faratin(EndingPoint, time);
 StartingPrice=faratin(StartingPoint, time);

 plot(time, f, time, ActualPrice);
 subplot(2,1,1); plot(time,ActualPrice, time, StartingPrice);
 subplot(2,1,2); plot(time, ActualPrice, time, EndPrice);

Matlab Biggs Update

function Ak_1=biggs(G,Gt,sk,beta,Ak)

Ak_1=beta*Ak+(G*Gt)/(sk'*Gt)

Matlab Alpha Select
function x_1=alpha_select(decentd, x);
x
LowerBound=[100,300,20,0,0];
UpperBound=[250,600,40,10,1];
counter=0;
q=[0 0 0 0 0];

while sum(q)<5;

92

counter=(1+counter);

 for i=1:5
 if(x(i)+ decentd(i)/counter <UpperBound(i) & x(i)+ decentd(i)/counter
>LowerBound(i));
 q(i)=1;
 else
 q(i)=0 ;
 end%if
 end%for

 if sum(q)==5
 x_1=x+ decentd./counter;
 break
 end
end %while

Matlab Alpha Range

function[alpha,min_E]=alpha_range(alpha_lower,alpha_upper,lowest_possibl
e_alpha,E,alpha1,SSE);

 steps=[0.5,0.1]
end
for i=1:length(steps);
 incr=steps(i);

[alpha,min_E]=check_range_alpha(alpha_lower,incr,alpha_upper,E,alpha1);
 if(alpha==lowest_possible_alpha);
 alpha_upper=alpha +incr;
 alpha_lower=alpha;
 else
 alpha_upper=alpha;
 lower_alpha=alpha-incr;
 upper_alpha=alpha+incr;

[l_alpha,l_min_E]=check_range_alpha(lower_alpha,incr,lower_alpha,E,alpha
1);

[u_alpha,u_min_E]=check_range_alpha(upper_alpha,incr,upper_alpha,E,alpha
1);
 if(abs(l_min_E)<abs(u_min_E));
 alpha_lower=lower_alpha;
 alpha_upper;
 %fprintf('\n Lower alpha:%f\t Upper alpha: %f\t at step size:
%f\t \n',alpha_lower,alpha_upper,incr);
 else
 alpha_lower=alpha_upper;
 alpha_upper=upper_alpha;
 %fprintf('\n Lower alpha:%f\t Upper alpha: %f\t at step
size: %f\t \n',alpha_lower,alpha_upper,incr);

 end

93

 end

end

Matlab Check Alpha Range
function[alpha,min_E]=check_range_alpha(alpha_lower,incr,alpha_upper,E,a
lpha1);
 range=alpha_lower:incr:alpha_upper;% generating values for alphal
 range=range';% creating a column array
 min_E=0.0;
 alpha=alpha_lower;
 fid=fopen('e_cal.txt','A'); % opens file result.txt in appen mode
 %fprintf('\n current step size: %f',incr);
 for i=1:size(range),;
 alpha_1=range(i);%alpha_one
 EE=subs(E,alpha1, alpha_1);% replace alpha1 with the value of
alpha_1

 if i==1
 min_E=abs(EE); % initialize min_E with first value
 alpha=alpha_1;

 else
 if abs(EE) < min_E;
 min_E=abs(EE);
 alpha=alpha_1;
 end
 end
 fclose(fid);

Stats
function [NormEA, SSERevPara]=Stats(Endpoint, StartingPointv, time,
ActualParav)
 EndPrice=faratin(Endpoint, time);
 StartingPrice=faratin(StartingPointv, time);
 NormSA=norm((StartingPointv-ActualParav)./ActualParav); % norm
between starting point and actual parameter
 NormEA=norm((Endpoint-ActualParav)./ActualParav); % norm between
ending point and actual parameter
 SSEPara=norm(Endpoint-ActualParav)^2; % unnormalized SSE between
parameters.
 SSERevPara=norm((Endpoint-ActualParav)./ActualParav)^2; %SSE between
actual parameters and estimated parameters.

94

Cholesky Matrix Decomposition

function [L,D,E,pneg]=mchol(G)
%
% n gives the size of the matrix.
%
n=size(G,1);
%
% gamma, zi, nu, and beta2 are quantities used by the algorithm.
%
gamma=max(diag(G));
zi=max(max(G-diag(diag(G))));
nu=max([1,sqrt(n^2-1)]);
beta2=max([gamma, zi/nu, 1.0E-15]);
%
% Initialize diag(C) to diag(G).
%
C=diag(diag(G));
%
% Loop through, calculating column j of L for j=1:n
%

L=zeros(n);
D=zeros(n);
E=zeros(n);

for j=1:n,
 bb=[1:j-1];
 ee=[j+1:n];

 %
 % Calculate the jth row of L.
 %
 if (j > 1),
 L(j,bb)=C(j,bb)./diag(D(bb,bb))';
 end;
 %
 % Update the jth column of C.
 %
 if (j >= 2),
 if (j < n),
 C(ee,j)=G(ee,j)-(L(j,bb)*C(ee,bb)')';
 end;
 else
 C(ee,j)=G(ee,j);
 end;
 %
 % Update theta.
 %
 if (j == n)
 theta(j)=0;

95

 else
 theta(j)=max(abs(C(ee,j)));
 end;
 %
 % Update D
 %
 D(j,j)=max([eps,abs(C(j,j)),theta(j)^2/beta2]');
 %
 % Update E.
 %
 E(j,j)=D(j,j)-C(j,j);

 ind=[j*(n+1)+1 : n+1 : n*n]';
 C(ind)=C(ind)-(1/D(j,j))*C(ee,j).^2;

end;

ind=[1 : n+1 : n*n]';
L(ind)=1;

% if needed, find a descent direction.
%
if ((nargout == 4) & (min(diag(C)) < 0.0))
 [m,col]=min(diag(C));
 rhs=zeros(n,1);
 rhs(col)=1;
 pneg=L'\rhs;
else
 pneg=[];
end;

return

Hooke-Jeeves

function
StartingPointv_HJ=H_J(StartingPointv,ActualPrice,LowerBound,UpperBound,t
ime, NoPara)
%--------------------------------
f_sp=faratin(StartingPointv,time);
r_sp=f_sp-ActualPrice;
SSE_sp=norm(r_sp)^2;

x0=StartingPointv';
k=0.2;
div=2;
e=[100,0,0,0,0;
 0,100,0,0,0;
 0,0,2,0,0;
 0,0,0,0.2,0;

96

 0,0,0,0,0.2];
alpha=1;
delta=0.00001;
x1=x0;

initial_HJ=1;
step1=1;
step2=1;
step3=1;
step4=1;
NoIter=0;
fail=0;

while ((step1 | step2 | step3 | step4 |initial_HJ) & ~fail) % or

 NoIter=NoIter+1;
 if NoIter>200
 fail=1;
 fprintf('f');
 end;
 x=x1;
 initial_HJ=0;
 for i=1:NoPara % size(x0,1)
 x_old=x;
 y_old=faratin(x_old,time);
 r_old=y_old-ActualPrice;
 SSE_old=norm(r_old)^2;
 x_new = x_old + k * e(:,i); % update point
 y_new=faratin(x_new,time);
 r_new=y_new-ActualPrice;
 SSE_new=norm(r_new)^2;

 if SSE_new >= SSE_old

 x_new = x_old - k * e(:,i); % update point
 y_new=faratin(x_new,time);
 SSE_new=norm(r_new)^2;
 k = -k;

 if SSE_new >= SSE_old
 x = x_old;
 else
 x = x_new;
 end %if
 else
 x = x_new;
 end %if
 end %for

 f_temp1=faratin(x,time);
 r_temp1=f_temp1-ActualPrice;
 SSE_temp1=norm(r_temp1)^2;

 f_temp2=faratin(x0,time);
 r_temp2=f_temp2-ActualPrice;

97

 SSE_temp2=norm(r_temp2)^2;
 %--

if SSE_temp1<SSE_temp2
 step1=1;
 x1 = x + alpha * (x - x0);
 x0 = x;

else
 step1 = 0;

 if x1~=x0
 x1 = x0;
 step2 = 1;
 else
 step2 = 0;
 k=k/div;
 if abs(k)>=delta
 step3 = 1;
 else
 step3 = 0;
 end %if
 end %if
 end %if
xt=x;
StartingPointv_HJ_t=x';
for i=1:NoPara
 if StartingPointv_HJ_t(i)<LowerBound(i)
 StartingPointv_HJ_t(i)=LowerBound(i);
 elseif StartingPointv_HJ_t(i)>UpperBound(i)
 StartingPointv_HJ_t(i)=UpperBound(i);
 end%if
end%for
if StartingPointv_HJ_t ~= xt';
 x1=StartingPointv_HJ_t';
 step4=1;
else
 step4=0;
 x1=StartingPointv_HJ_t';
end
end %while
StartingPointv_HJ=x1';

98

Directory

Generate_run;

for n=0:3

 switch n
%%%
 case 0

 Parameters_4;
 Jac_4;
 algo=0;
 conind=0;
%%
 for i=0:11

 switch i

 case 0
 for Q=1:NoRepl;
 GN_B2;
 end

 LP_4_conind_GN_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B2,2,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'P3')
 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 1
 for Q=1:NoRepl;
 GN_B2_HJ;
 end

99

 LP_4_conind_GN_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B2_HJ,4,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'W3')

 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 2
 for Q=1:NoRepl;
 GN_B3;
 end

 LP_4_conind_GN_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B3,6,'H4')

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B2_HJ,6,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,5,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AD3')

 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 3
 for Q=1:NoRepl;
 GN_B3_HJ;
 end

 LP_4_conind_GN_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B3_HJ,8,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AK3')

100

 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 4
 for Q=1:NoRepl;
 QNG_B2;
 end

 LP_4_conind_QNG_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B2,10,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AR3')

 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 5
 for Q=1:NoRepl;
 QNG_B2_HJ;
 end

 LP_4_conind_QNG_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B2_HJ,12,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AY3')

 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 6
 for Q=1:NoRepl;
 QNG_B3;
 end
 LP_4_conind_QNG_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B3,14,'H4')

101

 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'BF3')

 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 7
 for Q=1:NoRepl;
 QNG_B3_HJ;
 end
 LP_4_conind_QNG_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B3_HJ,16,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'BM3')

 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 8
 for Q=1:NoRepl;
 QNGC_B2;
 end
 LP_4_conind_QNGC_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B2,18,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'BT3')

 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 9
 for Q=1:NoRepl;
 QNGC_B2_HJ;
 end

102

 LP_4_conind_QNGC_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B2_HJ,20,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'CA3')

 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 10
 for Q=1:NoRepl;
 QNGC_B3;
 end

 LP_4_conind_QNGC_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B3,22,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,22,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'CH3')

 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 11
 for Q=1:NoRepl;
 QNGC_B3_HJ;
 end

 LP_4_conind_QNGC_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B3_HJ,24,'H4')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,24,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'A3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'B3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'C3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'D3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'E3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'CO3')

 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

103

%%
 end
 end
%%
 case 1

 Parameters_6;
 Jac_6;
 algo=0;
 conind=0;
%%
 for i=0:11

 switch i

 case 0
 for Q=1:NoRepl;
 GN_B2;
 end

 LP_6_conind_GN_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B2,2,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'P3')

 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1
 case 1
 for Q=1:NoRepl;
 GN_B2_HJ;
 end

 LP_6_conind_GN_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B2_HJ,4,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'W3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 2

104

 for Q=1:NoRepl;
 GN_B3;
 end

 LP_6_conind_GN_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B3,6,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,6,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AD3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 3
 for Q=1:NoRepl;
 GN_B3_HJ;
 end

 LP_6_conind_GN_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B3_HJ,8,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AK3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 4
 for Q=1:NoRepl;
 QNG_B2;
 end

 LP_6_conind_QNG_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B2,10,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AR3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

105

 case 5
 for Q=1:NoRepl;
 QNG_B2_HJ;
 end

 LP_6_conind_QNG_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B2_HJ,12,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AY3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 6
 for Q=1:NoRepl;
 QNG_B3;
 end

 LP_6_conind_QNG_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B3,14,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'BF3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 7
 for Q=1:NoRepl;
 QNG_B3_HJ;
 end
 LP_6_conind_QNG_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B2_HJ,16,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'BM3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 8

106

 for Q=1:NoRepl;
 QNGC_B2;
 end

 LP_6_conind_QNGC_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B2,18,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'BT3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 9
 for Q=1:NoRepl;
 QNGC_B2_HJ;
 end

 LP_6_conind_QNGC_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B2_HJ,20,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'CA3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 10
 for Q=1:NoRepl;
 QNGC_B3;
 end

 LP_6_conind_QNGC_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B3,22,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,21,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'CH3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

107

 case 11
 for Q=1:NoRepl;
 QNGC_B3_HJ;
 end

 LP_6_conind_QNGC_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B3_HJ,24,'H5')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,23,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'G3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'I3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'J3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'K3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'CO3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 end
%%
 end

%%

 case 2

 Parameters_8;
 Jac_8;
 algo=0;
 conind=0;
%%
 for i=0:11

 switch i

 case 0
 for Q=1:NoRepl;
 GN_B2;
 end

 LP_8_conind_GN_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B2,2,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'P3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 1

108

 for Q=1:NoRepl;
 GN_B2_HJ;
 end

 LP_8_conind_GN_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B2_HJ,4,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'W3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 2
 for Q=1:NoRepl;
 GN_B3;
 end

 LP_8_conind_GN_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B3,6,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,5,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AD3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 3
 for Q=1:NoRepl;
 GN_B3_HJ;
 end

 LP_8_conind_GN_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B3_HJ,8,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AK3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

109

 case 4
 for Q=1:NoRepl;
 QNG_B2;
 end

 LP_8_conind_QNG_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B2,10,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AR3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 5
 for Q=1:NoRepl;
 QNG_B2_HJ;
 end

 LP_8_conind_QNG_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B2_HJ,12,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AY3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 6
 for Q=1:NoRepl;
 QNG_B3;
 end
 LP_8_conind_QNG_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B3,14,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'BF3')
 conind=0;

110

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 7
 for Q=1:NoRepl;
 QNG_B3_HJ;
 end
 LP_8_conind_QNG_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B3_HJ,16,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'BM3')
 conind=0;

 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 8
 for Q=1:NoRepl;
 QNGC_B2;
 end

 LP_8_conind_QNGC_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B2,18,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'BT3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 9
 for Q=1:NoRepl;
 QNGC_B2_HJ;
 end

 LP_8_conind_QNGC_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B2_HJ,20,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'CA3')

111

 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 10
 for Q=1:NoRepl;
 QNGC_B3;
 end

 LP_8_conind_QNGC_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B3,22,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,21,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'CH3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 11
 for Q=1:NoRepl;
 QNGC_B3_HJ;
 end

 LP_8_conind_QNGC_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B3_HJ,24,'H6')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,24,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'M3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'N3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'O3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'P3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'Q3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'CO3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 end
%%
 end

%%
%%

 case 3

 Parameters_10;
 Jac_10;
 algo=0;
 conind=0;

112

 %%
 for i=0:11

 switch i

 case 0
 for Q=1:NoRepl;
 GN_B2;
 end

 LP_10_conind_GN_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B2,2,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'P3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 1
 for Q=1:NoRepl;
 GN_B2_HJ;
 end

 LP_10_conind_GN_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B2_HJ,4,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'W3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 2
 for Q=1:NoRepl;
 GN_B3;
 end

 LP_10_conind_GN_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B3,6,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,6,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'V3')

113

 xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AD3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 3
 for Q=1:NoRepl;
 GN_B3_HJ;
 end

 LP_10_conind_GN_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B3_HJ,8,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AK3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 4
 for Q=1:NoRepl;
 QNG_B2;
 end

 LP_10_conind_QNG_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B2,10,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AR3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 5
 for Q=1:NoRepl;
 QNG_B2_HJ;
 end

 LP_10_conind_QNG_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B2_HJ,12,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'U3')

114

 xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AY3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 6
 for Q=1:NoRepl;
 QNG_B3;
 end
 LP_10_conind_QNG_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B3,14,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'BF3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 7
 for Q=1:NoRepl;
 QNG_B3_HJ;
 end

 LP_10_conind_QNG_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B3_HJ,16,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'BM3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 8
 for Q=1:NoRepl;
 QNGC_B2;
 end

 LP_10_conind_QNGC_B2=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B2,18,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'V3')

115

 xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'BT3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1
iterationt_1 timer1 timer_1 Endpointt Endpointt_1

 case 9
 for Q=1:NoRepl;
 QNGC_B2_HJ;
 end

 LP_10_conind_QNGC_B2_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B2_HJ,20,'H7'
)
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'CA3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 10
 for Q=1:NoRepl;
 QNGC_B3;
 end

 LP_10_conind_QNGC_B3=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B3,22,'H7')
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,22,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'S3')
 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'CH3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1

 case 11
 for Q=1:NoRepl;
 QNGC_B3_HJ;
 end

 LP_10_conind_QNGC_B3_HJ=conind

xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B3_HJ,24,'H7'
)
 xlswrite('C:\MATLAB701\work\All_Results',NoRepl,24,'H3')
 xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'S3')

116

 xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'T3')
 xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'U3')
 xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'V3')
 xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'W3')
 xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'CO3')
 conind=0;
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1
timer1 timer_1 Endpointt Endpointt_1
 end

%%

 end
%%
 end
end

