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Abstract 
Abstract. The recent growth in electronic commerce has motivated the development 

of semi-autonomous negotiation systems capable of implementing multiple negotiations 

simultaneously.  Different approaches have recently been presented in the literature with 

the aim of providing a solution to this growing market segment. The current thesis 

presents an examination of optimization approaches for learning the parameters of a time-

dependent decision-function that has recently obtained significant interest in the 

negotiation literature.  Twelve different nonlinear optimization variants are evaluated 

using 800 problems, and the resulting 9600 runs are statistically analyzed on four 

different performance measures.   Potential implications of our analysis are discussed for 

their possible use in the context of electronic negotiation.   
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Chapter 1 Introduction 

1.1 Motivation 
 
 Over the last decade, advancements in information technology have fuelled the 

growth of electronic commerce (e-commerce) into an essential part of many businesses. 

With the current growth of the global economy, vendors and purchasers are forced to 

seek and source creative pricing techniques in order to remain competitive. Previously, a 

small business owner may have been able to support a self-sustaining business by only 

selling products locally at a fixed price.  However, this simple business model is 

becoming less effective as global competition begins to rise. The need for a 

purchaser/vendor to buy/sell products globally using selective pricing techniques has 

never been greater.      

 The current thesis considers the situation in which negotiations are conducted via 

the Internet similar to the methods used by Ozro NegotiateTM and AuctionBot.  Such a 

negotiation shall henceforth be termed as electronic negotiation (e-negotiation).    We 

focus on developing an efficient technique that allows an individual to negotiate prices 

for goods bought and sold. In order to make this technique applicable in a real-world 

situation, it will need to be flexible; it will need to use a minimal amount of 

computational power and it will also need to work semi-autonomously in real-time. 

Flexibility is a key issue while searching for an efficient technique. A flexible approach 

will allow the technique to be applicable to negotiation parties that use significantly 

different negotiation tactics. For the method to be widely used, it will also need to use no 

more computational power than what is currently available in a standard desktop 

computer. Last, the method must be able to complete negotiations without much human 



2 
 

intervention and in real-time. If all of the above criteria are met, an individual will be able 

to effectively negotiate prices selectively with multiple individuals across the world 

simultaneously. By selectively pricing the goods bought and sold to each individual, the 

vendor or purchaser will be able to maximize the profit generated by the purchase/sale of 

the good.  

 Research into e-negotiation has been conducted from different perspectives, 

including Game theoretic approaches (Harsanyi, 1972), Bayesian approach (Zeng and 

Sycara, 1998) and heuristic approaches (Kim, 2000; Mok and Sundarraj, 2005; Jennings, 

Faratin et al., 2001). The use of optimization techniques to obtain a solution, which is the 

current interest in this thesis, is still in its infancy and will be thoroughly examined in this 

paper. Various nonlinear least-squares optimization techniques will be used and tested to 

verify their effectiveness in obtaining a robust solution to the negotiation problem.  

  

1.2 Research Goal  
 

In this thesis, we consider a tactic, known as the time-dependent tactic (TDT) that 

has been used in other works related to electronic negotiation (Faratin, 1998; Deveaux et 

al., 2001; Mok and Sundarraj, 2005). With TDT, negotiators treat time as an important 

aspect impacting the value of their offers (Pruitt, 1981). Using a mathematical model of 

TDT (Faratin et al., 1998), the underlying negotiation parameters are attempted to be 

learned, by only knowing the price offers that have been made by an opponent in an 

ensuing negotiation. This learning problem is modeled as a nonlinear least-squares 

problem, and its solution using optimization algorithms is tested.   

The goal of this thesis is to improve upon the previous work performed on 

learning algorithms for electronic negotiation (Shi, 2005).  We consider several 
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algorithms to improve both the convergence rate, as well as accuracy of the parameter 

estimation.  The aspect of parameter-estimation accuracy is especially important to this 

thesis.   

Several nonlinear least-square algorithms and line search methods will be 

examined in order to meet our research objective.  One class of algorithms suggested in 

the literature is the quasi-Newton approach.  We will compare the effectiveness of 

variants of the quasi-Newton approach over that of the simpler Gauss-Newton method. 

We will also examine the effect of pre-processing starting points and the use line search 

algorithms.  This results in a combination of 12 algorithms.  We test them all on four 

different performance measures, and include observations based on statistical analysis.    

 A successful improvement on all examined parameters will allow the 

development of a negotiation system that can use nonlinear optimization algorithms in 

order to improve current negotiation performance. This may also lead to a potential 

commercial application of an electronic agent that uses these techniques to predict the 

negotiation behaviour of an opponent at the next iteration of a negotiation.  

1.3 Structure 
 
 Chapter 2 describes the literature review. It deals with the definition of 

negotiation and fundamentals of negotiation. It also highlights current trends in electronic 

commerce, the use of adaptive electronic agents to facilitate electronic negotiation, and 

provides some real world examples of their potential use.  

 Chapter 3 deals with the formulation of a time dependent negotiation model with 

practical uses in electronic negotiation systems. The model is presented and then the 

learning problem is formulated as a nonlinear least squares model.  
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 Chapter 4 explains the current methods used to solve nonlinear least squares 

problems. A breakdown of detailed methods used includes pre-processing methods, line 

search approaches and specific least squares algorithms.  

 Chapter 5 deals with the experimental design for our tests. The performance 

measures for the solution approaches are presented and their significance in terms of 

electronic negotiation is discussed.   

 Chapter 6 provides detailed statistical analyses examining the effectiveness of the 

methods used and the significance of the results obtained in the context of electronic 

negotiation. A brief summary is given to provide insights into the best combination of 

algorithms to effectively solve the learning problem.  

Chapter 7 deals with the possible implication of the methods developed in this 

work.  Conclusions and future work are also discussed.  
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Chapter 2 Literature Review 
 

This chapter provides an overview of negotiation theory, electronic commerce and 

current applications of electronic negotiation. The material provided in this chapter serves 

as a basis for understanding the importance of negotiation in an electronic commerce 

setting. We then introduce the idea of an electronic agent and discuss the application of 

agents to electronic negotiation.  

2.1 Negotiation 
 

2.1.1 Definition 
 

Negotiation can be defined as (Pruitt, 1981): 

 “A process by which a joint decision is made by two or more 
parties. The parties first verbalize contradictory demands and 
then move towards agreement by a process of concession 
making or search for new alternatives”  

 
Negotiation is used in everyday purchasing, pricing and bargaining. Negotiation 

occurs in the interactions of almost everyone in groups and organizations: Labour 

bargains with management; managers negotiate with employees, peers and senior 

management; sales people negotiate with customers; purchasing agents negotiate with 

suppliers. In today’s team-based organizations, negotiation skills become critical, so that 

teams can work together efficiently (Robbins, 2005).  

We next discuss the fundamentals of negotiation.  

 
 
 



6 
 

2.1.2 Fundamentals of Negotiation 
  

One of the main attributes of negotiation is that the parties involved start off with 

opposing interests and preferences (Pruitt,1981). Each party has a given benefit 

(henceforth termed utility) for a specific outcome. At each iteration of the negotiation, a 

buyer/seller is expected to make a bid/offer that will decrease his/her utility, in the hope 

of keeping the negotiation in progress. A concession from each party at each iteration is 

paramount to ensure that a final agreement is reached. Two-party bargaining can be 

divided into two types: integrative and distributive (Raiffa, 1982). 

 Integrative bargaining can be defined as a negotiation situation where there exists 

more than one final settlement where both parties can emerge victorious (Robbins, 2005). 

In this situation, informally called a win-win situation, both parties can work together in 

order to reach a settlement where both parties increase their respective utility. A simple 

example to illustrate this situation can be explained by labour unions bargaining with 

management over more health benefits for their employees. The union would like to have 

health benefits to keep its employees healthy and happy. Management does not want to 

offer increased health benefits on account of the additional cost, but is also concerned 

with the downside of a discouraged workforce that may be less productive. If both parties 

work together towards a common goal, a mutually beneficial outcome is possible. For 

example, if management works together with the union to find a cost effective way to 

insure its unionized employees with health benefits, it may lead to a win-win situation 

where the company gains from higher productivity of the workforce, and the unionized 

employees gain from having health benefits.  

The other form of negotiation is distributive in nature.  That is, when a negotiation 

is between two parties, we will encounter a win-lose (or distributive) situation, when 
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there is only one negotiation issue (e.g., cost).  An example of this situation would be the 

cash-purchase of a used car from a dealer. The potential buyer of the automobile would 

be inclined to keep the buying price low, while the potential seller would be inclined to 

keep the selling price high. Both parties have a respective reservation price, which is the 

highest (lowest) price that the buyer (seller) is willing to give (take).  In general, the 

reservation price of each negotiation party is not known to the opponent. This in fact is a 

fundamental attribute in the negotiation scheme. If the reservation price of the seller is 

higher than the reservation price of the buyer, the negotiation will not conclude. 

However, if there is a zone of potential agreement (ZOPA), there exists a possibility that 

the negotiation will reach a final settlement price at which the transaction will be made. 

In the current thesis, we will assume that the ZOPA always exists and that the reservation 

price of the negotiation is always fixed prior to the start of the negotiation. An illustration 

of the above example is given in Figure 1.  

 

                                                                Price 
 
Figure 2.1 Illustration of the zone of potential agreement 

8K6K0K 5K

Buyer 

Seller 

ZOPA 
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In Figure 2.1, the lowest price that the buyer is willing to pay is $0, and the 

highest price is $6k, which is also the buyer’s reservation price. The maximum price at 

which the wants to sell the car is $8k, which can be viewed as the "best" retail price of 

the automobile, and the lowest price, the reservation price, at which he is willing to sell, 

is $5k. The zone of potential agreement in this example is $1k, which is the price 

difference between the buyer and seller’s reservation price for the sale of the automobile. 

In this case, for every dollar that the seller gains by raising the selling price, the buyer 

loses, and vice versa. Therefore, distributive bargaining can be looked at as a zero-sum 

game.  

        Other than reservation price of the buyer and seller, and the ZOPA of the 

negotiation, several other negotiation characteristics need to be outlined. One of the most 

important characteristics of negotiation behaviour is the concession rate of each party 

engaged in the negotiation. In order to understand how a given negotiators’ concession 

rate affects negotiation, we must first understand the ultimate goal of each negotiator. A 

bargainers’ demand level can be thought of to correspond to the level of benefit (or 

utility) to the buyer (Pruitt, 1981). For example, two parties negotiating over the price of 

a given object are only concerned with the final negotiation price. If the negotiation price 

rises, the benefit increases for the seller and decreases for the buyer.  Therefore, in order 

for the seller to make a concession, he or she must reduce the offer in selling price to 

increase the level of benefit to the buyer. It is extremely important to make concessions in 

a negotiation in order to ultimately reach an desired negotiation price. Concessions are 

generally made in the anticipation that the concession maker will hasten the agreement, 

will prevent the other party from leaving the negotiation, or to encourage the other party 
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to make reciprocal concessions (Pruitt, 1981). Therefore, both the size of the concession 

and the amount of elapsed time between concessions, defined as the concession rate, 

plays a crucial role in the outcome of the negotiation.  

The role of time in a negotiation will have a large effect on both the concession 

rate and the final outcome. As stated by Raiffa (1982), in negotiations conducted in 

laboratory settings, subjects show an almost uncanny ability to detect even small ZOPAs, 

but the smaller the zone, the longer it usually takes them to agree on a solution (Raiffa, 

1982). Therefore, it can be inferred from this statement that a negotiation under serious 

time restrictions would lead to a lower probability of price convergence, ultimately in a 

case where time is of the essence, a proper concession rate needs to be determined in 

order to ensure a positive negotiation outcome. In other words, the parties in the 

negotiation must make concessions quickly enough in order for them to come to an 

agreement before time runs out. 

In the next section, a look at the currently expanding level of commercial activity 

in e-commerce will motivate the growing need for adaptive, semi-autonomous 

negotiation.  

 

2.2 Electronic Commerce 
 

2.2.1 Introduction 
 

Electronic commerce is an emerging sector in which business approaches are able 

to engage with their customers electronically (rather than by phone or in person) in all 

phases of a business transaction. Electronic commerce have enabled customers to, for 

example, access product information, select items to purchase, purchase items securely, 
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and have the purchase settled financially (International Engineering Consortium, 2007). 

Electronic marketplaces are becoming important players to several industries, because 

they promise to greatly improve economic efficiency, reduce margins between price and 

cost, and speed up complicated business deals (Feldman, 2000). Examples of electronic 

market places include eBay, Equipnet and Officemax where products range from 

stationary supplies to x-ray generators (eBay, 2007).  

 Online sales by Canadian companies and government departments grew 

substantially for the fifth consecutive year in 2004, but e-commerce still accounted for 

less than 1% of total operating revenues for private businesses (Government of Canada, 

2006). The potential for growth in the field of electronic commerce remains strong and is 

one of the fundamental factors motivating this thesis. 

For many firms, e-commerce is one of many steps involved in fully integrating 

business practices using the Internet. Business-to-Business e-commerce will affect the 

way that businesses run in several ways, including accelerating business processes, 

creating transparent markets and redefining market boundaries (Global Reach, 1998). The 

current reach of the internet will allow markets to be penetrated much faster, enabling the 

first player in the game to take a significant stake in the business.  This puts much 

emphasis on a company’s ability to adapt to the current trends in electronic commerce in 

order to gain or maintain a valuable market position (Stone, 2005).  

Another area in which e-commerce is currently altering the business world is in 

the globalization of business. Electronic commerce increases the range of services that 

can be traded internationally (e.g., to include medical, legal, and educational services) 

and can provide access to markets that were previously closed (Panagariya, 1999). This 

new-found globalization of business markets will in turn lower transaction and 
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production costs, facilitate market entry and increase competition by allowing various 

participants to enter the market who previously were not able due to their location. As a 

result, this will provide lower prices, increased quality, and provide the creation of new 

and more diverse products, thereby increasing economic growth and social welfare 

(Panagariya, 1999).   

The introduction of e-commerce has also allowed for the formation of transparent 

and competitive markets, where differentiation will be essential to survive. Several 

benefits will be passed off to the consumer, including market knowledge and reduced 

search costs, even if customers make the final purchase in person (Economist, 2000). 

Companies will now have to be able to communicate how they are different than their 

competitors; this can be accomplished by direct comparison of features and price, global 

delivery, customizing and easy access to worldwide product information. 

One area facilitated by e-commerce businesses is that of electronic negotiation 

(Choi et al., 2001).  Electronic negotiation has allowed businesses, such as eBay, to 

develop fast and efficient ways to deal with multiple customers simultaneously, without 

undue stress to its labour resources (International Engineering Consortium, 2007). Also, 

automated negotiation will allow for various techniques (e.g., dynamic pricing) that were 

previously considered to be difficult for small-scale businesses. This change in the 

business paradigm has ultimately led to the development of efficient, semi-autonomous 

systems that can potentially reduce labour-intensive practices to conduct routine activities  

The next sections will discuss electronic negotiation and electronic agents, along 

with a brief description of their fundamental characteristics and current applications.  
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2.3 Electronic Negotiation   
 

Electronic Negotiations are considered a key component of e-commerce 

(Sandholm, 1999). They are now playing an increasing role in everyday transactions 

between businesses, and between customers and businesses (Mahadevan, 2000).   For 

example, eBay boasts more than 220 million registered users selling more than 50,000 

categories of merchandise (eBay, 2007). Although electronic negotiation is still in its 

infancy, there has been a great deal of research that has accompanied it.  

Several attempts have been made to define electronic negotiation, and also to 

define the characteristics that are desirable in electronic negotiations (Rosenschein, 1994; 

Sandholm, 1999; Lomuscio, Wooldridge et al., 2003).   These characteristics include 

• Computational efficiency: A negotiation mechanism must be computationally 

efficient.  

 

• Communication efficiency: All things being equal, it would be beneficial to have a 

negotiation mechanism that enables communication among the agents in an 

efficient way.  

 

• Individual rationality: Each individual involved in the negotiation should act 

rationally and it should be in an individual’s best interest to participate in the 

negotiation. Also, if the utility of a group of individuals should be taken into 

consideration, the group utility can be obtained by the component of each agent’s 

personal utility. 

 

• Distribution of computation: Mechanisms that distribute the computation over the 

agents involved are preferable to ones in which one server is performing all the 

computation for the whole system. This is preferred for many reasons, including 
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the desire to avoid performance bottlenecks and the disruptive effects of a single 

point of failure. 

 

• Pareto efficiency: A Pareto efficient outcome is one where there is no other 

possible outcome that could be beneficial to at least one agent without negatively 

affecting the other agent. 

Agents play a key part in electronic negotiation.  In the following sections, we will 

define a negotiation agent and present models in negotiation agents.   

 

2.3.1 Electronic Agents 
 

The emergence of e-commerce has led to the design of online auction programs 

(Guttman, 1999; Bansal, 2005) as well as software agents capable of negotiating based on 

several criteria (Lee, Chang et al. 2000; Bichler, Kersten et al. 2003). In general, auctions 

help establish efficient markets when the goal is to obtain the best price (Beam, 1999), 

but when the goal is to establish the terms of a transaction, features of a product or 

service, then negotiation is considered to be advantageous (Gordon Lo, 1999). In 

negotiation, the agents engage in an iterative and alternating process of bids and offers 

over time until they converge to a single price acceptable to both.  

    In order to understand the importance of electronic negotiation agents, we must 

first understand the definition. The term “agent” has been the subject of much recent 

debate. Several definitions allow the inclusion of almost all possible objects; others only 

allow only a limited scope for agents (Faratin, 2000). However, in general, an electronic 

negotiation agent can be defined as a software-based computer system that can perform 

certain tasks on behalf of their users. In order for an electronic negotiation agent to be 
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successful, it must have the following properties.  (Guttman, 1999; Cardoso and Oliveira, 

2001; Bichler, Kersten et al., 2003; Strobel and Weinhardt, 2003).  

• Autonomous: agent must be able to make decision by themselves, autonomously, 

without any direct intervention. 

• Reactive: agents must be able to understand their environment and respond 

quickly to any changes. 

• Cooperative: agents must have a communication interface to interact with other 

agents or people. 

• Learning: agents are able to understand the user’s preferences and performances 

as they interact with other agents or humans, so that they can improve the 

performance over time. 

• Proactive: Agents are able to act in anticipation to maximize their utility.  

   Although the above are general properties of agents, there are variations, depending 

on the task on hand.  The next section will deal with the modeling approaches of 

electronic agents in the context of electronic negotiations.   

 

2.3.2 Modeling Approaches 
 
 There are two major modeling approaches for electronic agents: non-learning 

such as game theoretic methods, and learning approaches such as machine learning and 

heuristic based methods.  
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Non-Learning Based Approach: Game-Theoretic Models 
 
 
 Game theory is a branch of economics (Nash, 1950) that provides a formal 

framework of rational decision making in strategic situations. In a game theory based 

negotiation, each negotiator must first rank his/her preference for each possible outcome. 

Each individual must then take into account what the other is likely to do and act 

accordingly in order to achieve his/her preferred outcome. This formal framework 

provides clear analyses of various situations and precise results concerning the strategy 

that a negotiator should use. However, it uses several restrictive assumptions that make it 

hard to use in real-world negotiations (Wilkenfeld, 1992).   

 

• Bilateral Negotiation: Even if multiple agents are present in the negotiation 
setting, no more than two agents need the same resource. 

 
• Full Information: Each agent is aware of all information including the other 

agent’s utility for all possible outcomes over time. 
 

• Rationality: All agents behave rationally; each agent attempts to maximize its 
utility. 

 
• Commitments Are Kept: If an agreement is reached, both agents will honour it.  

 
• No Long Term Commitments: Each honoured outcome stands alone. An agent 

cannot commit itself to any future activity other than the current situation. 
 

• Resource Division Possibilities: It is assumed that all resources are divisible. 
 

• No Other Options: No other possibilities or alternatives to the current negotiation 
exist. The negotiation must continue until an agreement is reached.  

 

Due to these limiting assumptions, it is often unacceptable to model negotiation 

behaviour based on game theory alone. However, game-theoretic tactics have been found 
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useful when applied to negotiation scenarios within the following two key areas 

(Jennings, Faratin et al., 2001):  

 

1. Game theory is useful to design the appropriate protocol that will govern the 

interactions between the negotiation participants. In general, a protocol defines the 

“rules of encounter” between agents. This allows the formation of a framework, or 

protocol that sets specific constraints and bounds that the negotiation participants 

are allowed to make.  

 

2.     Agents can use game-theoretic models as a benchmark to validate that their current 

strategy is in their best interest (i.e. utility maximization).  

 

     One of the main difficulties with the second point is that the utility maximization 

problem is difficult, somewhat dampening the effectiveness of this application (Jennings, 

Faratin et al., 2001). However, several attempts have been made to apply game-theoretic 

techniques for artificial intelligence purposes, using relaxations to the underlying 

assumptions (Harsanyi, 1972; Genesereth, 1986; Wilkenfeld, 1992).  

 
 
Learning-Based Approach: Heuristics and Machine Learning 
 

Another modeling approach is the use of learning based methods including 

heuristic and machine learning. These methods allow for the correction of the several 

shortcomings associated with game-theoretic approaches. One of the major advantages is 

the acknowledgement that although heuristic approaches do not employ the (game-

theoretic) optimal solution, the associated computational complexity is often significantly 

lower (Jennings, Faratin et al., 2001). In many case, the models may be approximation to 
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the game-theoretic techniques (Genesereth, 1986) or computational models loosely based 

on the models of negotiation behaviour previously presented (Pruitt, 1981; Raiffa, 1982). 

These models include (Wilkenfeld, 1992; Faratin, Sierra et al. 1998; Zeng, 1998; 

Deveaux, 2001; Mok and Sundarraj, 2005; Shi, 2005).  In each case, the models attempt 

to learn from their opponents’ behaviour in order to improve their negotiation outcome, 

which is not the case with Game-Theoretic Models. 

Other advantages attributed to heuristics include its realism, since according to 

research (Pruitt, 1981), people generally tend to base their negotiation strategies on 

simple heuristics.   

 

2.3.3 Current Applications 
 

    In human negotiations, two or more parties bargain with one another to determine 

the price or other transaction terms (Fisher, 1981). In an automated negotiation, software 

agents engage in broadly similar processes to achieve the same end (Jennings, Faratin et 

al., 2001). As previously explained, autonomous electronic negotiation agents have 

several key properties that enable them to negotiate without much human intervention. 

This makes them extremely important in several areas of e-commerce, since it allows for 

the reduction of the costly human component. These advantages have been the major 

drive in the development of negotiation agents for commercial purposes.  

    A good example of a practical software agent is AuctionBot. The Michigan Internet 

AuctionBot is a flexible, scalable, and robust auction server that supports both software 

and human agents (Wurman, 1998). Although this system is currently not in use for 

commercial applications, it has been successfully used to create an online market for used 
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textbooks. The server is capable of managing many simultaneous auctions by separating 

the interface from the core auction procedures. This clever design provides a responsive 

interface and tolerates system and network disruptions, but necessitates careful 

timekeeping procedures to ensure temporal accuracy (Wurman, 1998). It also enables 

users a web-based access to their accounts, and presents an organized view of their bids, 

the auctions in which they are currently involved, and their past transactions  

  Several other negotiation systems have also been developed in order to exploit the 

benefits of electronic agents in a commercial setting; MIT Kasbah marketplace is one of 

them. Kasbah is an electronic marketplace in which users can create an autonomous agent 

capable of buying or selling a product (Chavez, 1996). The agent configuration includes 

some behaviour rules, including the maximum time allowance for the negotiation, the 

desired price interval and the price suggestion function (de Paula, Ramos et al., 2001). 

The price suggestion function can be chosen as a linear, quadratic or cubic with respect to 

time. Unlike AuctionBot, Kasbah is able to perform Merchant Brokering as well as 

negotiation (Guttman, 2000). The buyer or seller is therefore in control of the desired 

negotiation strategy, and hence, the concession rate of the electronic agent.  This freedom 

allows an individual to select the negotiation parameters as he/she sees fit, and allows 

him/her to properly leverage the agent.  

Another similar negotiation system, also developed by the MIT Media Lab, is 

Tête-À-Tête. Unlike Kasbah which is aimed at individuals (Guttman, 2000), this system 

is geared at retail sales. Also unlike Kasbah and AuctionBot, Tête-À-Tête has the ability 

to function as a product brokering agent. Product Brokering allows the retrieval of 

information to help determine what to buy. This encompasses the evaluation of product 

alternatives based on consumer-provided criteria (Guttman, 2000). Since Tête-À-Tête 



19 
 

deals with the retail sales, unlike most other agents that generally only compete over 

price, it co-operatively negotiates across multiple terms of a transaction (Wang, 2004), 

making it extremely useful in commercial settings. The “shopping agent” follows an 

argumentative style of negotiation with its agents and uses the previously defined 

evaluation constraints provided by the user in the product brokering stages as dimensions 

of a multi-attribute utility function (Wang, 2004). The utility associated with the current 

customer’s position is then used to rank merchant offers correspondingly.  

In all, several attempts have been made in order to integrate electronic negotiation 

and auction agents in commercial settings. The first international Trading Agent 

Competition in 2000 challenged its entrants to design an automated trading agent that was 

capable of bidding in simultaneous online auctions for complementary and substitutable 

goods (Stone, 2005). Twenty-two entrants from around the world competed in ten games. 

Agents were compared on several criteria including their bidding strategy, allocation 

strategy (i.e. weight given to negotiation factor such as price or quality), special 

approaches, and team motivations. The large involvement of the teams and the apparent 

success of the competition provide a strong indication of where the future of e-commerce 

lies; in the hands of electronic auction and negotiation agents.  

Another main application of electronic negotiation could be its implementation in 

the practice of dynamic pricing. Dynamic pricing refers to the charging of different prices 

for different quantities of a product, at different times, to different customer groups or in 

different markets, when these price differences are not justified by cost differences 

(Salvatore, 2001).  It is believed that one of the major changes that will be brought about 

by agent-mediated e-commerce is that dynamic pricing and personalization of offers will 

become the norm for many goods and customers (He, Jennings et al. 2003). Online 
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consumers differ in their purchasing preferences and, therefore, a seller’s profit can be 

increased by charging two different prices for the same good from price-insensitive and 

price-sensitive consumers (Dasgupta, 2003).  A good example of dynamic pricing is 

given by the operations of the company priceline.com. Priceline allows buyers to name 

the price they are willing to pay for flights, hotels and mortgages, cars and groceries 

(Salvatore, 2001). If their price bid is not expectable, Priceline will either reject their bid, 

or provide a less costly alternative that meets their price needs.  This pricing technique 

was previously difficult to implement due to the fact that it would involve too much 

labour capital in order to set individual prices for each customer. Now with the 

pervasiveness of internet access, and the induction of electronic negotiation agents, prices 

can be individually set according to the maximum price each customer is willing to pay; 

ultimately allowing retailers to charge specific consumers more for goods and services 

than the price at which they would initially be marketed. 

 

2.4 Our contribution 
 

So far, we have discussed how heuristic techniques often resemble human 

behaviour, and as a result, are used in a number of electronic negotiation systems.  

Mathematical models based on these techniques are scarce and are just beginning to 

emerge.   

In this thesis, we assume that the only issue in the negotiation is price and that a 

negotiator makes price-offers by following the Time-dependent tactic (TDT), introduced 

in section 1.2 and formulated mathematically in the next chapter.  The agent then seeks to 

estimate (i.e., learn) the underlying mathematical parameters of the negotiator's TDT 
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model, by knowing only the price-offers received thus far in the negotiation.  Our goal in 

the thesis is to determine robust and flexible algorithms for this learning problem.  Note 

that the learning can be used to improve the outcome of the agent, although this aspect is 

outside the scope of this thesis.   

The use of classical optimization techniques for the aforementioned problem has 

been given by Shi (2005).  Shi considers a mathematical functional form of a common 

negotiation heuristic, known as the time-dependent tactic, that has been incorporated in a 

number of electronic negotiation systems.  As mentioned in section 1.2, he uses 

optimization to estimate the parameters of the function, based on the increasing price 

offers received from his opponent.  While such an approach was not proposed before, 

Shi’s results suggests the potential for improvement, in terms of algorithmic convergence 

and accuracy of parameter estimation. Thus, this thesis will tackle the same problem 

using different line search and nonlinear least squares methods than those previously 

attempted.  The solution approach applied in this paper uses a more complex set of 

optimization algorithms, namely quasi-Newton algorithms, in order to estimate a 

negotiator's underlying TDT parameters. This solution approach was chosen since it does 

not make the assumptions that are inherent with the Gauss-Newton based methods 

previously applied. These assumptions may have resulted in lower rate of convergence 

and poorer parameter estimation accuracy, and thus motivate this thesis. 
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Chapter 3 Problem Formulation 

3.1 Introduction 
 

The current chapter deals with the formulation of the time dependent tactic 

presented by Faratin (Faratin, Sierra et al., 1998).  We formulate the learning problem as 

a nonlinear least squares model. These methods will be presented as well as potential 

solution approaches using nonlinear programming.   

3.2. Time-dependent tactics functions 
 

As previously explained in section 2.1.2, time plays an extremely important role 

in the concession rate as well as the final outcome of the negotiation. Therefore, the use 

of the time dependent tactic function seems to be a natural selection when it comes to 

model negotiations. Several different time-dependent tactical functions have been 

proposed for use in negotiation agents. See references for more detail (Wilkenfeld, 1992; 

Faratin, Sierra et al., 1998; Deveaux 2001; Da-Jun and Liang-Xian, 2002; Fatima, 

Wooldridge et al., 2002; Papamichail and Papamichail, 2003; Mok and Sundarraj, 2005). 

    In a negotiation process, several factors can affect the concession rates of the 

participants. However, time pressure is the most relevant. Levels of demand and 

concession rates are functions of time pressure and the amount of time that has elapsed 

since the beginning of the negotiation (Pruitt, 1981).   

The time dependent tactic presented in this thesis is based on human negotiation 

behaviour, which can generally be divided into two categories; boulware and conceder 

behaviour (Pruitt, 1981; Raiffa, 1982).  
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 An agent that exhibits boulware behaviour concedes slowly at the beginning of the 

negotiation, only incrementing the price by a small amount at each turn of the 

negotiation. As the time in the negotiation begins to reach the maximum allowable time, 

the negotiator begins to concede more rapidly. This can be explained by the cost 

associated with not reaching an agreement in the deal. A good example of this behaviour 

is a contractor that needs to purchase lumber in order to build houses. If the contractor 

has already agreed to build the houses, he/she must purchase wood in order to begin the 

construction. The contractor must reach an agreement in time with the lumber seller (or 

sellers) in order to build the houses. If not, the contractor may have to break the contracts, 

loose the chances of gaining profits, and possibly incur a fine for not meeting the contract 

provisions. At the beginning of the negotiation, the contractor may attempt to only 

concede slowly due to financial constraints, or possibly to avoid image loss. However, as 

the negotiation progresses, the cost associated with not reaching an agreement becomes 

apparent, the contractor begins to concede more rapidly in order to avoid costly contract 

infringement.  

The other type of negotiation behaviour is conceder behaviour. A negotiator exhibiting 

conceder behaviour concedes rapidly at the beginning of the negotiation and reaches 

his/her reservation price early on in the bargaining process. This behaviour is often 

exhibited by negotiators that are pressed for time and want to resolve the negotiation 

rapidly. Also, rapid concessions at the beginning of the negotiation encourage the 

opponent to stay in the negotiation, and limits the risk that an agreement will not be 

reached. Figure 3.1 below plots both negotiation behaviours of a buyer as a function of 

the number of turns in the negotiation.  
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Figure 3.1 Boulware and Conceder Behaviors Price Offers of a Buyer 

 

The next section will deal with the time-dependent tactic function proposed by Faratin. 

 

3.3 The Faratin Model 
 

Based on the negotiation behaviour models proposed in section 3.2, Faratin 

proposed a mathematical model that incorporates and quantifies these models as well as 

their assumptions. See Equations 3-1, 3-2. 

 

         
 
where 
                        t         is time (number of turns) in the interval [0,Tmax] 

P(t)    is the value of the negotiating issue proposed by an agent at time t 
Pmin    is the minimum price value  
Pmax   is the maximum price value  
k        is a constant that determines the value of the price in the first offer 
Tmax     is the time limit (maximum number of turns) proposed by both 
 agents 

( )
( )

( )minmax

ln1

min PPePtP
k

T
t

mac −+=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β

( )
( )

( )minmax

ln1

min
max1 PPePtP

k
T

t

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β

      Seller      

       Buyer (3-1) 

(3-2) 



25 
 

                        β        is a constant that determines the degree of convexity of the   
   negotiation function 

 

It must be noted that for the buyer (eqn 3-1), the utility decreases as the price rises (or 

number of turns increases) and for the seller (eqn 3-2), the utility rises as the price 

increases (or number of turns increases). This is to be expected, since price is the sole 

issue determining utility in this set of equations.  

In order to fully understand the significance of the Faratin function, we must take a 

close look at each of the five parameters since their values define the negotiation 

behaviour used by the agent. The interval of Pmin and Pmax defines the price range that the 

agent is willing to negotiate within. If an agreement is not found within the bound of 

Tmax, the negotiation will end. The value of k, given a previously defined interval of Pmin, 

and Pmax,, determines the first offer in the negotiation. This can be demonstrated by 

setting the value of t in equation 3-1 to zero. The resulting formula P(0) = Pmin + k (Pmax - 

Pmin) demonstrates that the value of k must be in the interval of [0,1], where a higher 

value of k will result in a larger initial offer and a smaller value of k will result in a 

smaller offer. The value of β determines the convexity of the function. A value of β in the 

interval of [0,1] results in boulware behaviour, whereas, a value larger than one results in 

conceder behaviour. A plot of the Faratin buyer model (eqn 3-1) as a function of β is 

given below.   
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Figure 3.2 Effect of β on the Faratin Buyer model 

 

The next section deals with the formulation of the Faratin model as a nonlinear least 

squares problem.  

3.4 Nonlinear least squares optimization  

The ultimate goal of formulating the Faratin buying agent function (eqn 3-1) into a 

nonlinear least squares function is to obtain an estimate of the parameters [Pmin, Pmax, 

Tmax, β, k]. The benefit of having the function in this form is the current availability of 

robust techniques that can be used to solve these equations.   

3.4.1 Learning as a Nonlinear Least Squares Problem 
To understand the formulation of the learning problem (Shi, 2005), consider the 

following nonlinear least-squares problem (Fletcher and Xu, 1987): 

Find a local minimum x* 
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where ri(x) is a residual term resulting from the difference of fi(x*) and fi(x). 

Redefining equation 3-1 gives:  

                       ( )ˆ ,tP f t θ=  ,                    (3-4) 

where θ = [Pmin, Pmax, Tmax, β, k] is a parameter vector of the five parameters in equation 

3-1. If we then substitute the value of the residual r(x) in equation 3-3: 

                                       ( )tfPr ti ,)( θθ −= ,                                                        (3-5) 

where Pt is the actual price given by the opponent of the negotiation at time t, we 

obtain: 

                               ( ) ( )[ ]∑
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i
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2
1 θ                                                        (3-6) 

Thus, the minimization of equation 3-6 by using nonlinear optimization techniques 

can provide us with a way to obtain an estimation of parameter vector θ.  Therefore, 

learning the parameters of the time-dependent tactic function is now in the form of an 

unconstrained nonlinear optimization model as a function of time.  We solve this 

optimization problem once five (i.e., t = 5) offers have been made.   

 The effectiveness of each solution approach, in terms of price estimation, can then be 

tested using the following sum of squared errors function. While other metrics can be 

used, SSE has is generally considered superior owing to its properties (see Shi, 2005 for 

more details).   

              ( )
2 2

ˆ( ) ,t t t
t t

SSE P P P f tθ θ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎣ ⎦∑ ∑                                                  (3-7) 



28 
 

 The next chapter will deal with the various methods used to solve nonlinear 

optimization problems and their relevance to the work proposed in this thesis.   
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Chapter 4 Solution Approach  
  

When attempting to solve a nonlinear optimization problem, several 

considerations need to be made before an appropriate method is chosen. Methods vary 

greatly in terms of their computational complexity, accuracy and effectiveness. Also, a 

method that performs well on one function may perform poorly on another function. It is 

therefore necessary to analyse algorithms thoroughly, before making recommendations 

for real-world implementation.  In general, nonlinear optimization techniques can be 

broken down into two major categories: invariable (or exact) methods, or numerical 

approximations. Exact solution methods can be beneficial since they provide an optimal 

solution to the problem at hand. With this class of methods, the first partial derivative of 

the function (eqn 3-7) with respect to each of the five parameters needs be obtained at 

each time interval. Each of these derivatives then needs to be set to zero and then the 

system of equations needs to be solved at each time interval. However, when the function 

under consideration is large and cumbersome (as is the case with eqn 3-1), it would 

require too much computation in order to obtain a solution in the time frame provided in 

an electronic negotiation.  Therefore, in contrast to exact methods, numerical 

approximation methods are generally used to solve nonlinear optimization problems 

when the function provided appears to be computationally complex, assuming that the 

approximations obtained are accurate and fast enough.  

Several numerical methods are available that all provide various results based on 

the function being solved. The prominent ones, shown in the figure below (Scales, 1985), 

can be classified into small residual and large residual types.   
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Figure 4.1 Numerical methods for solving nonlinear Least Squares problems 

 
  Small residual algorithms can be seen as methods that ignore the residual term in 

nonlinear least-squares function. This greatly simplifies the computational complexity 

involved, since the Hessian matrix is not calculated; the Hessian is simply ignored. In 

contrast, large residual algorithms, the residual term in nonlinear least square function is 

approximated. This method involves much more computational power since the residual 

term involving the Hessian matrix is often quite complex.  

 In the next section, the framework of quasi-Newton methods will be developed, 

and its relevance to this work explained.  

4.1 Framework for Algorithms 
  

For general unconstrained minimization problem where the Hessian matrix is 

available or computable, Newton’s method can be used with great accuracy (Yabe and 

Takahashi, 1991). This method constructs a sequence of vectors θi such that: 

                                                 iiii dαθθ +=+1 ,                                                          (4-1)  
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where αi  is a scalar steplength and di is the direction of the search that satisfies the 

Newton equation 4-2:  

                                             ( ) ( )ii fdf θθ −∇=∇ 2                                                     (4-2) 

                                                  
For sum of squares of nonlinear functions, the gradient vector and Hessian matrix have 

special forms that are respectively given by: 
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where r(θ), the residual term, is given by (3-5), and J(θi), the Jacobian of (3-1) is as 

follows (recall from Chapter 3 that n is the number of offers received): 

 
 
 
 
 
  
 
 
 
 
       Therefore, the method of solving for the decent direction using Newton’s method can 

be presented in the following form:                                       
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   For the Faratin function (3-1), the above expression is computationally complex to 

evaluate. It is in such cases that quasi-Newton methods are recommended (Scales, 1985).  

In order to simplify the notation in equation 4-4, the following equation is presented: 
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T
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where A(θi) is an approximation as given below given below. 

 
                                                (4-7) 

 
Therefore, the ultimate goal of quasi-Newton methods is to find a way to calculate 

the term A(θi) using a minimal amount of computational power, while obtaining close 

approximations. The next section expands on this framework.   

 
 

4.2 Algorithmic Details 
 
 The quasi-Newton framework calls for computation of a proper descent direction 

based on an approximation of equation 4-7.  Of the several methods that have been 

proposed for this purpose, we shall employ two prominent ones, namely, the structured 

and factorized methods.  An overview of these methods is given in section 4.2.1.   

 Further, as given in (eqn 4-1), one will have to compute an appropriate step size α 

as well as a suitable starting point θ0.  Algorithms used for these two steps are given in 

section 4.2.2 and 4.2.3, respectively.     

 

4.2.1 Structured and Factorized Quasi-Newton Methods 
  

The two main methods that will be examined in this work are Structured and 

Factorized quasi-Newton Methods. Structured methods including the generalized quasi-

Newton method (Luksan, 1996), Bartholomew-Biggs (Bartholomew-Biggs, 1977) and 

the Dennis-Walsh-Gay (DWG) method (Dennis, 1981) are all robust algorithms for large 
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and small residual problems (Yabe and Takahashi, 1991). The update formulas below are 

adapted from Yabe and Takahashi (1991).   

 

A generalized update scheme for A is given by the following equation (θ: is 

suppressed for convenience) 
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The Bartholomew-Biggs update is given by the following equation: 
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The Dennis, Gay and Welsh (DWG) update is given by the following: 
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where  

                                      ( )tfPr iti ,θ−=                                                                          (4-16)              
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 In general, for quasi-Newton methods, it is desirable for the approximation matrix 

parameter to be positive definite. This is to ensure that a descent direction for the 

objective function is obtained at each iteration. However, for structured quasi-Newton 

methods, it is not clear how to construct an updating formula for A(θi+1) such that the 

matrix Ji
TJi + A(θi) is always positive definite (Yabe and Takahashi,1991). In order to 

overcome this difficulty, factorized quasi-Newton methods have been proposed, 

including the use of modified Cholesky and QR decomposition (Bjorke, 1996). Once the 

matrix has been decomposed using either technique, the problem has the following form 

(Yabe and Takahashi, 1991): 

                              ( ) ( ) i
T

iiii
T

ii rJdLJLJ −=++   ,                                                       (4-17) 

where the matrix Li is an m x n correction matrix to the Jacobian matrix such that 

Li
TJi+JiLi+Li

TLi is the i-th approximation to the second part of the Hessian matrix of (4-

5). 

 
 The next section deals with the line search algorithms used in order to ensure a 

proper step size in the descent direction.  

4.2.2 Selecting the Step-size Parameter  
 
     Several methods are available to estimate the optimal step size. Since this estimation 

needs to be calculated at each iteration, it is important to have a method that does not 

involve too much computational complexity, yet provides a near optimal solution. In 

order to gain a full understanding of the line search algorithms proposed, it is beneficial 

to have another look at equation 4-1. 
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                                   iiii dαθθ +=+1                                                                         (4-18)               

        Given that the previous value of θi has been calculated and the descent direction was 

obtained using equation 4-5, a value of αi must be selected at each iteration in order to 

ensure an optimal step size. Several line search algorithms have been proposed by 

previous researchers. One algorithm proposed by Shi (2005), referred to in this paper as 

general step size parameter selection, was to set the value of αi in equation 4-1 to 1. When 

the descent direction was calculated and the new parameter values of θi were obtained, 

only the parameters that were found within a predefined bound were updated, and the 

other parameters were left unaltered. This approach to a line search algorithm may be 

problematic, since it involves a deviation from the optimal direction of descent. In order 

to avoid this issue, an attempt was made to use all of the updated parameters, while 

varying the value of αi to ensure that the step size in the descent direction was optimal to 

equation 3-7.  We employ the Golden section search algorithm and another algorithm, 

known as "backaway" algorithm, that aims to keep the updated parameter values within 

certain feasible limits.   

 
Golden Section Search Algorithm  
 

The Golden Section Search (Scales, 1985) is a robust algorithm that can achieve 

results with sufficient accuracy in a minimal amount of iterations. This algorithm is a 

well-know univariate optimization method that allows for a minimum value to be 

determined by constantly reducing the search interval by a factor τ ≈ 0.6180, where τ 

satisfies the following quadratic equation. 

  012 =−+ττ                                                                                                   (4-19) 

The Golden section search is illustrated in the following diagram.  
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             Figure 4.2 Golden Section Search algorithm 
 
     The search section starts with two points a and b, and is then progressively reduced at 

each iteration by a factor of τ.  The traditional Golden section search is for univariate 

optimization, and so, in order to adapt it to our case, equation 3-7 was modified to take 

the following form. 

                            ( ) [ ] 2

* )*,(ˆ dtfPSSE tt
αθθθ +=−Σ= ,                                        (4-20) 

 
 Therefore, the optimal step size was selected by finding a value of α that 

minimizes (4-20) and hence, minimizes the sum of squared error between the actual and 

estimated time dependent negotiation function.  

The modified algorithm can then be given by the pseudo code in Table 4.1.   

a b α2

a b 

SSE1(θ) 

α1 α2

a b α2α1

Iteration 1 
 

Iteration 3 
 

Iteration 2 
 

SSE2(θ) 

SSE1(θ) 

SSE2(θ) 

SSE1(θ) SSE2(θ) 

α1
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                             Initialize  a and b, to 0 and 1;  

          τ to 0.6180   
                                             α1= a +  τ* ( b-a)                                            
                                             α2= a +  τ* ( b-a) 

          SSE1(θ, α1 ); SSE2(θ, α2 ) 
 
While b-a > tolerance   
    If ( SSE1(θ) > SSE2(θ)  ) 
         
           then:  a = α1 
                     α1 = α2 ; SSE1(θ)  = SSE2(θ) 
                     α2 = a + τ ( b-a) 
                     SSE2(θ)  = SSE(θ) (α2) 
 
    Else (SSE1(θ)  < SSE2(θ)  ) 
 
           Then:  b = α2 
                     α2 = α1 ; SSE2(θ)  = SSE1(θ) 
                     α1 = a + (1-τ )( b-a) 
                     SSE1(θ) = SSE(θ) (α1) 
  End If 
End While 

                 

Table 4.1 Pseudo-code for Golden Section Search 
 

          
Back-away algorithm 
 

In order to ensure that all the parameters were used to update the value of θi, it 

was necessary to derive a method that would allow the direction of deepest decent to be 

followed while ensuring that all parameters remained within their predefined bounds. The 

pseudo code for the proposed algorithm is presented below in Table 4.2.  

iiii dαθθ +=+1  

Lθ   are the lower bound parameters 
Uθ   are the upper bound parameters 
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                       For j=1 to.m 
                                    0001 *)()()( djjj αθθ +=   
                        Initialize      k = 1 
                         While ( )(1 ji +θ > )( jUθ OR )(1 ji +θ < )( jLθ  

                              then )(1 ji +α = )( jiα   / k 
                                       k = k 2 

                              until ( )(1 ji +θ > )( jUθ OR )(1 ji +θ < )( jLθ  
                               End While  

 

Table 4.2 Pseudo-code for the back-away algorithm 
 
  As a brief explanation, if a given parameter was not within the pre-defined 

bounds, the step size was divided by k (set to 2 for the first iteration). The squared value 

of k was increased until the updated step size was within with the lower and upper 

bounds. This allowed decent direction to be maintained while assuring that the 

parameters remained within their pre-defined bounds.  

 

4.2.3 Pre-processing  
 

 In order to ensure a successful attempt is made to locate a minimum value 

of a function, it is often necessary to begin with a proper starting point. We refer to this 

setup as pre-processing.  

Two main forms of pre-processing are commonly used before the implementation 

of a Gauss-Newton or quasi-Newton algorithms; Pattern search and Exploratory search. 

The Hooke-Jeeves algorithm is a hybrid search method that applies aspects of both forms 

of search without the need for either first or second order derivative information. Hence, 
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it serves as a robust method to achieve a suitable starting point before the implementation 

of a Newton-based method.  

 

Hooke-Jeeves 
 

The Hooke-Jeeves algorithm is implemented by defining an initial starting point θ0, a 

step size δ, and a set of n orthogonal unit vectors ei. The first part of the algorithm is the 

implementation of the exploratory search. Starting from the initial point θ0, each 

coordinate direction, j, is explored using the following equation 

                                                           ijiji e*,1, δθθ +=
+

                                       (4-21) 

    The functional value of θi, j+1 is then compared to that corresponding to θi, j in the 

function being evaluated. If ( ) ( )jiji ff ,1, θθ <+ , then point θi, j+1 is accepted; if the reverse 

holds, the same increment is subtracted.   

                                                           ijiji e*,1, δθθ −=
+

                                        (4-22) 

 In either case, the new value of θi,j+1 is accepted as long as the function under 

evaluation has improved. If no improvement is found in the search in either direction, the 

initial value of θi,j will remain unchanged. This procedure will repeat until all of the m 

search directions have been explored.  

The next step in the Hooke-Jeeves algorithm is the implementation of the pattern 

search. The pattern search first compares the values of the function under evaluation 

using the starting point, and the resulting point, θ1, from the exploratory search. If  
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( ) ( )01 θθ ff < , then the pattern search is made along the direction presented in the 

equation below.                                                 

                                      ( )0110 θθαθ −+=y ,                                                            (4-23) 

where, α is the acceleration factor used to size the magnitude of the pattern search. The 

procedure of the exploratory search is then repeated starting with the new point obtained.  

However, if the new found point does not satisfy ( ) ( )01 θθ ff < , the step magnitude δ 

is reduced by a factor of div using the following equation.  

                                                 divδ δ=                                                                 (4-24) 

The Hooke-Jeeves algorithm then continues and concludes when δ is smaller than a 

predefined small value tol.  

 In terms of the current work, the Hooke-Jeeves algorithm is used as a pre-processor to 

the initial starting point. This step is then followed by a Newton-based algorithm to find 

the descent direction. The step size in the decent direction is then defined by the value 

obtained in the from the parameter selection.  
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Chapter 5 Experimental Design 
 

5.1 Parameter Generation 
  

      In order to measure the effectiveness of a given combination of optimization 

techniques, a uniform set of starting points and actual points is needed. In the current 

thesis, a set of 200 starting points and 200 actual points (corresponding to the negotation 

parameters in θ) are generated using the following equation. 

     θ(i)=LowerBound(i)+rand(i)*(UpperBound(i)-LowerBound(i)),      (5-1)     

where rand(i) is a random value within the interval of (0,1).  The values of the lower and 

upper bounds of each parameter are given in the following table.   

Parameter Range 

Pmin [100, 250] 

Pmax [300, 600] 

Tmax [20, 40] 

β [0, 10] 

k [0,1] 

Table 5.1 Upper and Lower bounds of test parameters 
  

Without loss of generality, since the current thesis deals with negotiation from the 

buyer’s perspective, we use equation 3-1 to generate bidding prices.  

  
            (5-2) 
 
  
 

The actual parameters are used to generate an array of prices that represent the 

actual price-curve of the buyer.  The number of price-offers generated varies from 4 to 

10; see also section 5.3.  The starting parameters are applied to equation 5-2 to generate 

( )
( )

( )minmax

ln1

min PPePtP
k

T
t

mac −+=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β
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the starting prices of the buyer. The performance of the algorithm is monitored by using 

equation 3-7.                  

                         ( )
2 2

ˆ( ) ,t t t
t t

SSE P P P f tθ θ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎣ ⎦∑ ∑  ,                                        (5-3) 

where Pt is the actual price at time t and f(t,θ) is the starting price at time t. Since the 

price vector of the actual prices remains constant, the change in the value of the standard 

square error is only a function of the changing value of the estimated parameters.   

      The minimization process is illustrated by the following figure, where SSE0 through 

SSE2 determine the sum of squared error for iteration 0 through 2.   
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Figure 5.1 Sum of squared errors at iteration 0 through 2 

 

As illustrated in Figure 5.1, the sum of squared errors is minimized at each 

iteration where SSE0 >SSE1 > SSE2. The iterative process is ended when the value of 

SSE is below a predetermined tolerance level or when the process has reached the 

maximum iteration number of 30.  

      The next section deals with the different combinations of algorithms that were applied 

in order to minimize equation 5-3.   
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5.2 Overall combinations of algorithms  
 

We follow the experimental framework in Shi (2005), thereby permitting a 

comparison of the different methods for the problem. All combinations of quasi-Newton 

methods and line search algorithms are presented in Figure 5.2 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  MSE < tolerance 

 

 

 

 

Figure 5.2 Combinations of algorithms tested 
 

After several attempts, it was found that both polynomial interpolation and the 

Golden section search method were not viable options since they increased computational 

time and did not introduce an appreciable gain to the final results. Therefore, their results 

Pre-processing options 
• No pre-processing 
• Hooke-Jeeves 

Main optimization part 
options 

• Gauss-Newton 
• Factorized QN

Parameter selection options 
• Golden 
• General 
• Back-away

Is MSE < tolerance  
(see section 5.4.3) 

Yes 

Stop 

No
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are not included in chapter 6. Also, only the generalized structured and factorized quasi-

Newton methods had any success in terms of solving equation 3-7. Both the 

Bartholomew-Biggs and Dennis-Gay-Welsh updates introduced problems including rank 

deficiency and singularity of the approximation matrices. These problems caused 

equation 3-6 not to converge due to computational errors. As a result, only the 

generalized quasi-Newton update in its structured and factorized forms is presented in the 

experimental results in chapter 6.   

      An updated table of all of the possible permutations of pre-processing, parameter 

selection and optimization algorithms is presented below.  

 

Generalized QN 
Methods 

Hook-
Jeeves 

Parameter 
Selection 

Algorithms 
Combinations 

       
GEN GN_GEN No 
BA GN_BA 

GEN HJ_GN_GEN 
GN 

Yes 
BA HJ_GN_BA 

GEN SQN_GEN No 
BA SQN_BA 

GEN HJ_SQN_GEN 
Structured 

Yes 
BA HJ_SQN_BA 

GEN FQN_GEN No 
BA FQN_BA 

GEN HJ_FQN_GEN 
Factorized 

Yes 
BA HJ_FQN_BA 

 
LEGEND 
 
 GN: Gauss-Newton method 
 SQN: Structured quasi-Newton method 
 FQN: Factorized quasi-Newton method 
 BA: Back-away parameter update  
 GEN: General parameter update     

Table 5.2 Combinations of optimization methods  
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5.3 Definition of Convergent and Divergent Cases 
  

Each of combination of pre-processing, optimization algorithm and parameter 

selection will be evaluated using following characteristics.   The number of actual prices 

generated, henceforth called number of learning points (NoLP), is 4, 6, or 10.   

1. Convergence: The mean squared error between the estimated price and the actual 

price for NoLP (number of learning points) for (NoLP = 4, 6, 8, or 10) will be 

evaluated using the following formula: 

                         
( )

2

1

ˆ( ) ( )
NoLP

t
P t P t

MSE
NoLP

=

−
=

∑
 ,                                                               (5-4) 

where P(t) is the actual prices, and ˆ( )P t  is the estimated prices (the 

number of prices depends on the value of NoLP). A convergent case arises when 

the chosen algorithm obtains a solution of MSE< 10⁻² for equation 5-4. If this 

occurs, the function is said to have converged at a local optimal solution at some 

point θ*= [Pmin, Pmax, Tmax, β, k].  

2. Divergence: If the algorithm does not converge within 30 iterations, we classify it 

as a divergent case. That is, no local optimal solution has been found.  
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5.4 Performance Measures 
  

Each algorithm will be assessed in terms of convergence rate, scaled norm of the 

difference between the actual and the estimated parameters, the sum of squared errors of 

the next five learning points and the CPU time.  

5.4.1 The convergence rate 
 

The convergence rate is defined as the percentage of converged cases out of the 

total number of replications (200 in our case) in each learning method. This parameter 

will be examined closely to determine the effectiveness of a given method in reaching a 

conclusion to a given negotiation. It should be pointed out that convergence rate, as used 

herein, does not refer to the rate at which the algorithm converges to a solution.   

5.4.2 The scaled norm  
 

The following formula, for the norm of the difference between the actual and the 

estimated parameters, is used to evaluate the accuracy of the of the optimization 

algorithm.  

222 22

max max max maxmin min

min max max

ˆˆˆ ˆˆ P P T TP P k knorm
P P T k

β β
β

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ − −− − −
= + + + + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠         (5-5) 

where [Pmin, Pmax, Tmax, β, k] are the actual parameters for the time-dependent model 

and min max max
ˆˆˆ ˆ ˆ, , , ,P P T kβ⎡ ⎤

⎣ ⎦  are the estimates. The scaled norm is an extremely important 

parameter in this thesis, since it measures the ability of a given set of algorithms to learn 

from an opponent. Hence, a given set of algorithms with a lower norm would be more 

successful at predicting an opponent’s next bid/offer price.  
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5.4.3 SSEN 
 

  While the SSE measure indicates the closeness with which the algorithm matches the 

prices already offered, it does not give any indication as to whether the process can 

estimate the future moves of the opponent.  This estimation of the future is important.  

Thus, in this work, we use SSEN, defined as  

                            ( ) ( )( )
2

5

1

ˆˆ∑
+

+=

−=
NoLP

NoLPi
N tPtPSSE                                              (5-6)                             

In this paper, NoLP =4, 6, 8, or 10 depending on the number of learning points 

that are being used.  

5.4.4 CPU time 
 

Computational time is an important measure to gauge the usefulness of a given set 

of optimization methods studied in the context of electronic negotiation. Since all 

electronic negotiations will occur in real time, any method that takes more than a few 

seconds would not find much practical use. Each method will be evaluated on the basis of 

the average computation time used in order to obtain convergence. As a result, attempts 

not resulting in convergence will not be included within this measure.  

       The next chapter deals with the experimental results obtained from the combination 

of algorithms presented within this chapter. Inferential statistical analyses will be 

conducted in order to evaluate the performance measures in both absolute and relative 

terms.  
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Chapter 6: Experimental Results  
  
 The following analysis on each combination of algorithms was performed using 

MATLAB 7.0 software package on a Pentium 4, 2.2 GHz CPU with 512MB of RAM. In 

each of the following sections, the performance measures will be evaluated and compared 

using relevant statistics.  

6.1 Convergence Rate 
 

The convergence rate obtained in this work is an important indication of the 

effectiveness of a given combination of pre-processing algorithms, optimization 

algorithms and parameter selection.  In the context of electronic negotiation, the 

convergence rate represents the portion of successful attempts of estimating the 

negotiation curve of the opponent. Hence, a higher convergence rate would indicate a 

higher likelihood of gaining valuable information on the behaviour of the negotiation 

opponent.  

The table below provides an overview of the results obtained for the convergence 

rates of each combination of pre-processing, optimization algorithm and parameter 

selection, for each set of learning points.  
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Table 6.1 Convergence Results of different optimization methods 
 

In order to get a proper depiction of the effect that each algorithm has on the rate 

of convergence, it helps to look at each subclass of methods separately. Since several 

factors contribute to the convergence of a given method, the performance needs to be 

compared in three categories: pre-processing, optimization algorithm, and parameter 

selection. The results are presented in the table below.    

 

 

 

 

 

 

 

 

 

 

 

 GN_GEN HJ_GN_GEN GN_BA HJ_GN_BA SQN_GEN HJ_SQN_GEN
LP_4 31.00% 35.50% 35.50% 72.00% 39.00% 41.50% 
LP_6 21.50% 27.50% 49.50% 52.50% 32.50% 32.00% 
LP_8 18.50% 23.50% 50.00% 52.00% 20.00% 30.00% 

LP_10 18.00% 24.00% 48.00% 51.50% 22.50% 31.50% 
 SQN_BA HJ_SQN_BA FQN_GEN HJ_FQN_GEN FQN_BA HJ_FQN_BA 

LP_4 69.00% 72.00% 58.00% 56.00% 73.00% 80.50% 
LP_6 66.00% 67.50% 42.50% 40.00% 71.50% 72.50% 
LP_8 64.00% 66.00% 41.00% 35.50% 67.50% 67.50% 

LP_10 64.00% 64.50% 35.50% 31.00% 64.50% 69.50% 
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  GN_GEN SQN_GEN FQN_GEN 
LP_4 31.00% 39.00% 56.00% 
LP_6 21.50% 32.50% 40.00% 
LP_8 18.50% 20.00% 35.50% 
LP_10 18.00% 22.50% 31.00% 

 
  HJ_GN_GEN HJ_SQN_GEN HJ_FQN_GEN 

LP_4 35.50% 41.50% 58.00% 
LP_6 27.50% 32.00% 42.50% 
LP_8 23.50% 30.00% 41.00% 
LP_10 24.00% 31.50% 35.50% 

 
  GN_BA SQN_BA FQN_BA 

LP_4 35.50% 69.00% 73.00% 
LP_6 49.50% 66.00% 71.50% 
LP_8 50.00% 64.00% 67.50% 
LP_10 48.00% 64.00% 64.50% 

 
  HJ_GN_BA HJ_SQN_BA HJ_FQN_BA 

LP_4 72.00% 72.00% 80.50% 
LP_6 52.50% 67.50% 72.50% 
LP_8 52.00% 66.00% 67.50% 
LP_10 51.50% 64.50% 69.50% 

  Table 6.2 Convergence rate of each combination of optimization method 
 

In the current thesis, we have looked at three main types of algorithms: the Gauss-

Newton, the structured quasi-Newton and the factorized quasi-Newton. Each algorithm 

had a different effect on the convergence rates of the functions evaluated, given the same 

use of pre-processing and parameter selection. It is apparent by comparing algorithms in 

table 6.2 that there is an improvement in convergence going from the Gauss-Newton to 

structured quasi-Newton to factorized quasi-Newton method. This pattern seems to hold 

true regardless of the use of pre-processing, the method used for parameter selection or 

the number of learning points used.   It is therefore evident that structured quasi-Newton 

methods and Factorized Quasi-Newton methods provide improved rates of convergence 

for estimating the time dependent negotiation function’s parameters. Hence, it can be 
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concluded that the use of structured and factorized quasi-Newton methods hold an 

advantage over the Gauss-Newton based methods previously proposed by Shi (2005).   

Another pattern that is apparent in table 6.2 is the improvement in convergence 

obtained by the use of the Hooke-Jeeves pre-processing method. By comparing methods 

with the same optimization algorithm and parameter selection, methods that used the 

Hooke-Jeeves pre-processing achieved higher convergence for 22 out of the 24 cases.  

This conclusion is illustrated in the table below which represents the relative 

improvement in the convergence rate of a given function by using Hooke-Jeeves pre-

processing. 

 

  GN SQN FQN 
LP_4 102.82% 4.35% 8.22% 
LP_6 6.06% 2.27% 1.40% 
LP_8 4.00% 3.13% 0.00% 
LP_10 

BA
 

7.29% 0.78% 7.75% 
     

LP_4 14.52% 6.41% 3.57% 
LP_6 27.91% -1.54% 6.25% 
LP_8 27.03% 50.00% 15.49% 
LP_10 

G
EN

 

33.33% 40.00% 14.52% 

Table 6.3 Relative improvement of convergence using Hooke-Jeeves pre-processing  
 

The results indicate that the Hooke-Jeeves pre-processing method is an integral 

part in obtaining higher convergence rates while attempting to solve the non-linear 

optimization function presented in equation 3.7.  

The next apparent pattern in table 6.2 is the effect of parameter selection. 

Parameter selection makes a significant difference in the convergence rate obtained. In 

each of the 24 cases compared, the use of the back-away algorithm over the use of 

general parameter selection greatly increased the rate of convergence. This conclusion is 
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easily drawn by referencing the table below that presents the relative improvement to the 

convergence rate by the use of Back-away parameter selection.  

 

 

 

 

 

 

 

 

 
 

Table 6.4 Relative improvement of convergence using the back-away algorithm 
 

The last pattern that presents itself in table 6.2 is the effect of the number of 

learning points used to estimate the opponents negotiation function. Although the results 

are not as apparent as with the other three patterns analyzed, there seems to be a pattern 

that indicates that the convergence rate drops as the number of learning points is 

increased.  This pattern seems slightly more pronounced in cases where the general 

parameter selection is used as opposed to the back-away algorithm.  

 

In conclusion, the results suggests that the most robust algorithm would be 

obtained by combining the most effective method suggested above; this would also imply 

that the least effective would be obtained by combining the least effective methods.  This 

hypothesis is supported by the fact that the highest convergence rate (of 80.5%) was 

obtained by using Hooke-Jeeves pre-processing coupled with the factorized quasi-

Newton method and back-away parameter selection with four learning points, while the 

  GN SQN FQN 
LP_4 14.52% 76.92% 30.36% 
LP_6 130.23% 103.08% 78.75% 
LP_8 170.27% 220.00% 90.14% 
LP_10 

H
-J

 

166.67% 184.44% 108.06% 
     

LP_4 102.82% 73.49% 36.21% 
LP_6 90.91% 110.94% 70.59% 
LP_8 121.28% 120.00% 64.63% 
LP_10 

N
o 

H
-J

 

114.58% 104.76% 95.77% 
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least effective was obtained by using the Gauss-Newton  method without pre-processing 

and the general parameter selection with 10 learning points (18.0%).  

 Although the convergence rate is a good indication of the effectiveness of a given 

set of optimization methods, other performance measures also need to be examined to 

truly reach a definite conclusion. The next section deals with the calculated norms 

obtained with each combination of pre-processing, optimization algorithm and parameter 

selection.  

 6.2 Scaled Norm 

 
 The scaled norm is a parameter that is extremely important to the goals of this 

work. As given in section 5.2, the norm is calculated as the relative difference between 

estimated parameters and the actual parameter, relative to the actual parameters. Hence, 

the lower the value obtained for the scaled norm, the more accurately the negotiation 

parameters of an opponent have been estimated.  

In order to obtain a general idea of the magnitude of scaled norms presented in 

this section, the table below has been provided.  
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 Pmin Pmax Tmax Beta k Scaled 
Norm 

Starting Parameters 201.5398 392.6653 22.9402 3.0759 0.3230 0.6086 
Actual Parameters 172.6017 302.8364 28.1865 3.0525 0.6079 - 

Norm 1 172.6009 302.8364 28.1861 3.0525 0.6079 0.0000 
Norm 2 172.5931 302.8330 28.1643 3.0501 0.6080 0.0011 
Norm 3 172.5879 302.8311 28.1547 3.0491 0.6080 0.0016 
Norm 4 172.5331 302.8266 28.1456 3.0480 0.6082 0.0022 
Norm 5 172.6393 302.8015 28.0528 3.0416 0.6080 0.0059 
Norm 6 172.8231 302.8751 27.9701 3.0214 0.6073 0.0129 
Norm 7 168.4903 302.3997 26.9111 2.9063 0.6219 0.0738 
Norm 8 166.4856 302.2051 26.3608 2.8425 0.6284 0.1064 
Norm 9 187.1797 301.1566 26.8774 3.0966 0.5670 0.1185 
Norm 10 170.9672 301.4712 25.3245 2.7819 0.6193 0.1365 
Norm 11 172.0412 301.0091 23.9785 2.6335 0.6191 0.2037 
Norm 12 155.2072 301.2298 23.9255 2.5655 0.6611 0.2572 

Table 6.5 Improvement of estimated parameters as the scaled norm is decreased 

 

    Table 6.5 contains the results obtained from a given run with 10 learning points. Each 

Norm presented from Norm 1 to Norm 12 resulted from one convergent case using the 

same starting and actual parameters. One conclusion that can be drawn from this table is 

that each convergent case does not necessarily guarantee that the negotiation parameters 

of an opponent have been estimated accurately. As an example, Norm 12 has converged, 

however its estimation of the parameters vary from 0.5% to 10%; whereas for Norm 1, all 

parameters have been estimated within 0.00002% to 0.001%. Therefore, the effectiveness 

of a given combination of pre-processing, optimization algorithm and parameter selection 

is also dictated by the ability to minimize the calculated scaled norm.  

 From the previous section, we make two observations that are going to influence 

the presentation in this section: 

• First, we observe that the methods proposed in this thesis do provide significant 

improvements in the convergence rates.    
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• Second, the methods that provide the improvement are Hooke-Jeeves method (in 

pre-processing), back-away (in parameter selection) and quasi-Newton (in the 

optimization part).   

Thus, in this section, we will study how the scaled-norm measure varies with respect 

to the three aforementioned algorithms and with respect to convergence rates.   Tables 6.6 

through 6.9 deal with the optimization algorithms, table 6.10 deals with pre-processing 

and table 6.11 with the parameter selection element.  Finally, we also test to see how the 

number of learning points influences the norm.   

The table below contains a breakdown of the mean and standard deviation of the 

combined cases for each permutation of pre-processing, optimization algorithm and 

parameter selection; we present results for all cases as well for convergent cases.  

 
 

  GEN HJ_GEN BA HJ_BA 

  Mean STDEV Mean STDEV Mean STDEV Mean STDEV
LP_4 1.5761 0.9103 0.8550 0.8912 1.4591 0.9539 0.9365 0.9172 
LP_6 2.0350 0.4849 1.1135 1.0883 1.6003 0.9632 0.7774 0.9645 
LP_8 2.0619 0.4899 1.8054 0.6285 2.0675 0.4326 0.8508 1.0175 G

N
 

LP_10 2.0327 0.5020 1.1092 1.1054 1.5820 0.9824 0.8946 1.0282 

          
LP_4 1.9145 0.5691 0.8978 0.8872 1.1927 0.9387 0.9349 0.8735 
LP_6 1.9619 0.5414 0.8591 0.9947 1.4170 0.9991 0.8165 0.9556 
LP_8 2.0675 1.6426 0.8508 0.9019 1.4082 1.5299 0.8576 0.8574 SQ

N
 

LP_10 2.0468 0.4730 0.8651 1.0336 1.5210 0.9891 0.8953 1.0221 
          

LP_4 1.1927 0.9387 1.2575 0.9400 0.9349 0.8735 0.9365 0.8721 

LP_6 1.4170 1.4170 1.8858 0.5881 0.8165 0.9556 0.8165 0.9439 

LP_8 1.4082 1.0188 1.5299 0.9802 0.8574 0.9871 0.9312 0.9452 FQ
N

 

LP_10 1.5210 0.9891 1.6022 0.9590 0.8953 1.0221 0.8653 1.1345 

 
(a) All cases 
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  GEN HJ_GEN BA HJ_BA 
  Mean STDEV Mean STDEV Mean STDEV Mean STDEV 

LP_4 0.2591 0.2239 0.3411 0.2586 0.3347 0.2562 0.2897 0.2167 
LP_6 0.0109 0.0297 0.0618 0.1268 0.0018 0.0028 0.0019 0.0025 
LP_8 0.0051 0.0088 0.0018 0.0023 0.0017 0.0026 0.0016 0.0022 G

N
 

LP_10 0.0018 0.0029 0.0008 0.0012 0.0008 0.0011 0.0007 0.0011 

          
LP_4 0.3303 0.2532 0.3199 0.2725 0.3282 0.2434 0.3050 0.2149 
LP_6 0.1417 0.1644 0.1096 0.1451 0.1002 0.1424 0.1222 0.1671 
LP_8 0.1845 0.2331 0.1085 0.1451 0.0406 0.0595 0.0584 0.0782 SQ

N
 

LP_10 0.0896 0.1316 0.0516 0.0919 0.0400 0.0575 0.0742 0.0997 

          
LP_4 0.3965 0.3157 0.3742 0.2472 0.3638 0.2632 0.3696 0.2498 
LP_6 0.2309 0.2215 0.1928 0.2124 0.1323 0.1746 0.1765 0.2109 
LP_8 0.1078 0.1228 0.0966 0.1171 0.1013 0.1344 0.1167 0.1401 FQ

N
 

LP_10 0.1285 0.1522 0.1431 0.1866 0.0717 0.0902 0.0959 0.1294 

(b) Only convergent cases 
 

Table 6.6 Means and standard deviations of the scaled norms 

 

In the following table, the norm values obtained using the structured quasi-

Newton method and the Gauss-Newton method are compared using p-values at 95% 

confidence. 

  GN versus SQN 
  GEN GEN_HJ BA BA_HJ 

LP 4 0.2035 0.2100 0.7444 0.3684 

LP 6 0.0263 <0.0001 <0.0001 0.0012 
LP 8 0.9045 <0.0001 <0.0001 0.0529 
LP 10 0.2037 <0.0001 0.0031 0.0456 

(a) All Cases 

  GN versus SQN 
  GEN GEN_HJ BA BA_HJ 

LP 4 0.2278 0.6208 0.8283 0.5540 
LP 6 <0.0001 0.0685 <0.0001 0.0269 
LP 8 <0.0001 <0.0001 0.0009 <0.0001 
LP 10 0.0002 0.0010 <0.0001 <0.0001 

      (b) Convergent cases 
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Table 6.7 ANOVA results comparing structured quasi-Newton with Gauss-Newton  
     

       Table 6.7 provides the p-values of GN versus SQN for various combinations of 

the other components (e.g, column 2 provides the influence of SQN when using Gen 

parameter update and when HJ pre-processing is used). The results of the p-values 

displayed in table 6.7(a) are mixed, however they seem to indicate that structured 

quasi-Newton methods improves the calculated norm in 9 out of the 16 variations 

attempted for all cases. Several resulting p-values in table 6.7(b) suggest that there is 

a difference between the scaled norms of convergent cases calculated using the SQN 

method versus those calculated using the GN method. However, table 6.6(b) 

indicates that smaller norm values are obtained using the GN method. Hence, the 

opposite effect is apparent for convergent cases. This can possibly be explained by 

the fact that the use of the SQN optimization algorithm results in more convergent 

cases. Also, it could be explained by the possibility that the GN optimization 

algorithm will only result in convergent cases for functions evaluated whose initial 

starting points result in small calculated norm values. Hence, cases with larger norms 

that would not have normally converged via the use of the GN optimization 

algorithm are brought within the range of convergence while using the SQN 

algorithm. Therefore, in order to properly compare the effect of the optimization 

algorithms, parameter selection algorithms and pre-processing algorithm on the 

scaled norm, it is beneficial to only base the analysis on all cases.  For the remainder 

of this section, all results will be presented from all cases and all convergent cases; 

however, conclusions from statistical analysis will only be drawn from comparison 

among optimization methods showing all 200 cases.  
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In the following table, the norm values obtained using the factorized quasi-Newton 

method and the structured quasi-Newton method are compared using p-values at 95% 

confidence. 

  SQN versus FQN 
  GEN GEN_HJ BA BA_HJ 

LP 4 <0.0001 0.0339 0.6738 0.1663 

LP 6 <0.0001 0.0004 0.6633 0.6132 
LP 8 <0.0001 0.2428 0.9477 0.7109 

LP 10 <0.0001 0.8355 0.7699 0.4327 

(a) All cases 

  SQN  versus FQN 
  GEN GEN –HJ BA BA – HJ 

LP 4 0.2427 0.0850 0.2453 0.0212 
LP 6 0.1450 0.0006 <0.0001 <0.0001 
LP 8 0.0013 0.8343 0.0119 <0.0001 
LP 10 0.1365 0.0004 0.0018 0.2167 

        (b) Convergent cases 

Table 6.8 ANOVA Results comparing structured quasi-Newton with factorized 
quasi-Newton    

      The results of the p-values displayed in table 6.8(a) are mixed, however they seem to 

indicate that the norm calculated using the factorized quasi-Newton methods improves 

the calculated norm when the general parameter selection is used without Hooke-Jeeves 

pre-processing (GEN, as shown in column 1).   

In the following table, the norm values obtained using the factorized quasi-Newton 

method and the Gauss-Newton method are compared using p-values at 95% confidence. 

  GN versus FQN 
  GEN GEN_HJ BA BA_HJ 

LP 4 <0.0001 0.0006 0.9295 0.6542 
LP 6 <0.0001 0.0060 <0.0001 0.0051 
LP 8 <0.0001 <0.0001 <0.0001 0.0199 
LP 10 <0.0001 <0.0001 0.0070 0.0053 

(a) All cases 
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  GN versus FQN 
  GEN GEN –HJ BA BA – HJ 

LP 4 0.0142 0.2110 0.2614 0.0040 
LP 6 <0.0001 0.0006 <0.0001 <0.0001 
LP 8 <0.0001 <0.0001 <0.0001 <0.0001 
LP 10 <0.0001 <0.0001 <0.0001 <0.0001 

      (b) Convergent cases 

Table 6.9 ANOVA Results comparing Gauss- Newton with factorized quasi-Newton    
   

      The results of the p-values displayed in table 6.9(a) indicate that the norm calculated 

using the factorized quasi-Newton methods improves the calculated norm when the 

general parameter selection is used with and without Hooke-Jeeves pre-processing.   

  In terms of the scaled norm in this thesis, there are three parameters that need to 

be investigated further. As discussed in the previous section, it seems that other 

components yielding improved convergence are: Hooke-Jeeves pre-processing, back-

away parameter selection.   Thus we investigate the following: 

In the following table, the norm values obtained with and without the use of the 

Hooke-Jeeves pre-processing are compared using p-values at 95% confidence. 

 

 

 

 (a) All Cases 

 GN SQN FQN 
 GEN BA GEN BA GEN BA 

LP 4 0.9953 0.0806 0.3721 0.6442 0.2536 0.3025 
LP 6 0.1663 <0.0001 0.2162 0.5864 0.6233 0.4240 
LP 8 0.6890 0.6251 0.4913 0.6602 0.6105 0.7617 

LP 10 0.4357 0.7451 0.1438 0.5487 0.7654 0.2315 

(b) Convergent cases 

 GN SQN FQN 
 GEN BA GEN BA GEN BA 

LP 4 <0.0000 0.4228 <0.0001 0.6687 0.4908 0.1605 
LP 6 0.4269 <0.0000 <0.0001 0.4059 0.0000 0.9226 
LP 8 <0.0000 <0.0000 <0.0001 0.6188 0.2255 0.9437 

LP 10 0.1245 0.4960 <0.0001 0.7756 0.4061 0.4061 
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Table 6.10 ANOVA Results comparing cases with and without Hooke-Jeeves pre-
processing 

The results of the p-values displayed in table 6.10(a) indicate that the norm values 

obtained with Hooke-Jeeves pre-processing are smaller then those obtained using no pre-

processing for SQN while using the general parameter selection. Also, the results suggest 

that the same pattern holds true for the GN algorithm using both parameter selection 

methods and the FQN optimization algorithm using the general parameter selection. 

However, the same observation is not supported for either the SQN or FQN optimization 

algorithms while using the back-away parameter selection. Overall, it appears that there 

is sufficient evidence to support that the Hooke-Jeeves pre-processing method may help 

in reducing the scaled norm obtained while estimating the TDT parameters. However, 

this result is not constant for each combination of methods analysed.  

 The next parameter to be analysed is the effect of parameter selection on the 

scaled norm. As with the previous Hooke-Jeeves pre-processing analysis, all other 

parameters will be held constant to determine the effect of the parameter selection in 

isolation.  

In the following table, the norm values obtained using the back-away parameter 

selection and the general parameter selection are compared using p-values at 95% 

confidence. 

 GN SQN FQN 
 No HJ HJ No HJ HJ No HJ HJ 

LP 4 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001   <0.0001 
LP 6 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
LP 8 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001   <0.0001 

LP 10 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001   <0.0001 

(a) All cases 
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 GN SQN FQN 
 No HJ HJ No HJ HJ No HJ HJ 

LP 4 0.7541 0.1406 0.6346 0.2448 0.7807 0.8337 
LP 6 0.8657 0.0121 0.8396 0.0681 0.8583 0.5543 
LP 8 0.1899 0.6460 0.1956 0.0765 0.3680 0.9559 

LP 10 0.0679 0.3787 0.5727 0.9639 0.2226 0.7639 

(b) Convergent cases 

Table 6.11 ANOVA Results comparing the influence of the back-away algorithm 
 

The results of the p-values displayed in table 6.11(a) all indicate that the 

calculated scaled norms significantly improve with the use of back-away parameter 

selection. Therefore, there is strong reason to believe that the use of the back-away 

parameter selection can improve the learning of an opponents negotiation parameters.  

  The next parameter to be tested in table 6.12 concerns the number of learning points 

used. By observing the mean values of the norm in table 6.6(b) it becomes evident that 

the mean scaled norm decreases as the number of learning points increases. This seems 

intuitive since more information regarding an opponent’s negotiation behaviour is gained 

at each exchange of bid-offers between the buyer and seller. 

 GEN BA 
 GN SQN FQN GN SQN FQN 

No HJ 0.0648 <0.0001 <0.0001 0.0425 <0.0001 <0.0001 
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

(a) All cases 

 GEN BA 
 GN SQN FQN GN SQN FQN 

No HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 

(b)  Convergent cases 

Table 6.12 ANOVA Results comparing the influence of the number of learning 
points 
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 The results of the p-values displayed in Table 6.12(a) and (b) all indicate, with 

one exception, that the scaled norm estimated decreased by increasing the number of 

learning points. Hence, the initial assumption is supported.   Therefore, the more learning 

points obtained from an opponent, the lower the value of the scaled norm will be. Hence, 

the accuracy of the estimation of an opponent’s negotiation behaviour can be 

significantly increased by obtaining more learning points.  

 The test results of this section bring out a few important observations.  First, as 

discussed in Table 6.5, algorithmic convergence does not necessarily imply an accurate 

estimation of the parameters.  Fortunately, based on the mean results on our test 

problems, when convergence does occur, the estimations have been generally accurate.  

Thus, the superior convergence rates of our methods yield improvements on knowing the 

parameters characterizing the underlying negotiation behaviour of the opponent.   

6.3 SSEN
 

 

The next parameter examined is extremely important in the context of electronic 

negotiation. It examines the ability of a given set of methods to predict the next five price 

offers given by the buyer. A method with a low SSEN is a direct measure of its 

effectiveness to predict the actual future offers of the opponent. Since this parameter is 

based on the next five moves of an opponent, once it is believed that the negotiation 

parameters of the opponent have been properly estimated, it is only valid for convergent 

cases. Hence, the results presented in the section will only represent those obtained from 

convergent cases.  
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  GEN HJ_GEN BA HJ_BA 
  Mean STDEV Mean STDEV Mean STDEV Mean STDEV 

LP_4 0.1053 0.1285 0.1209 0.1347 0.1236 0.1433 0.0967 0.1066 
LP_6 0.0001 0.0005 0.0019 0.0083 0.0000 0.0000 0.0000 0.0000 
LP_8 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 G

N
 

LP_10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

          
LP_4 0.1111 0.1271 0.0938 0.1090 0.1255 0.1375 0.1195 0.1347 
LP_6 0.0263 0.0392 0.0173 0.0374 0.0045 0.0078 0.0075 0.0206 
LP_8 0.0410 0.0817 0.0129 0.0263 0.0019 0.0040 0.0032 0.0065 SQ

N
 

LP_10 0.0085 0.0173 0.0006 0.0014 0.0011 0.0029 0.0040 0.0097 

          
LP_4 0.1477 0.1483 0.1777 0.2237 0.1495 0.1635 0.1396 0.1468 
LP_6 0.0391 0.0617 0.0618 0.0873 0.0212 0.0520 0.0357 0.0580 
LP_8 0.0095 0.0170 0.0149 0.0307 0.0100 0.0223 0.0151 0.0258 FQ

N
 

LP_10 0.0090 0.0257 0.0158 0.0291 0.0076 0.0144 0.0091 0.0234 

Table 6.13 Sum of squared errors over the next five turns for all convergent cases   
 

At a quick glance, one pattern becomes evident in table 6.13. As expected, the more 

learning points that are obtained, the lower the value of SSEN
 will be. This is a direct 

implication of the lower value obtained for the scaled norm of functions with a higher 

number of learning points, as previously observed from the results in table 6.12 .  

It was not apparent from the results in table 6.10(b) that the norm values obtained 

using Hooke-Jeeves pre-processing were lower than those obtained without pre-

processing. However, one way to further the analysis on the effectiveness of the Hooke-

Jeeves algorithm is to test its ability to lower the value of SSEN obtained.  

In the following table, SSEN values obtained using Hooke-Jeeves pre-processing and 

those obtained without pre-processing are compared using p-values at 95% confidence. 
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 GN SQN FQN 

 GEN BA GEN BA GEN BA 
LP 4 <0.0001 0.0463 <0.0001 0.1212 0.1053 0.0386 
LP 6 0.0436 <0.0001 <0.0001 0.1686 0.1507 0.4540 
LP 8 0.0001 <0.0001 <0.0001 0.1095 0.2114 0.6913 

LP 10 0.0133 0.0328 <0.0001 0.0103 0.0402 0.1902 

Table 6.14 ANOVA results comparing SSEN with and without Hooke-Jeeves pre-
processing 

 
The results of the p-values displayed in table 6.14 are mixed. Several cases 

support the assumption that Hooke-Jeeves pre-processing can lower the SSEN and several 

others do not. Hence, it cannot be assured with certainty that the value of SSEN 

significantly improves with the addition of a pre-processing stage with 95% confidence 

for each method. However, since several cases support this preliminary observation, there 

is reason to believe that the addition of a pre-processing step may be worthwhile step to 

include as part of our learning algorithm.    

6.4 CPU Time 
 

 The next parameter analyzed in this work is the computational time used in order 

to reach convergence in each method. Table 6.15 contains the values of computational 

time, in seconds, obtained.  
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  GEN HJ_GEN BA HJ_BA 
  Mean STDEV Mean STDEV Mean STDEV Mean STDEV 

LP_4 0.1062 0.0486 0.1502 0.0733 0.1269 0.0704 0.1649 0.0807 
LP_6 0.1277 0.0546 0.1765 0.1089 0.1583 0.0688 0.1854 0.0876 
LP_8 0.1570 0.0690 0.1912 0.0693 0.1814 0.0805 0.2300 0.1188 G

N
 

LP_10 0.2130 0.0985 0.2171 0.0641 0.2156 0.0753 0.2489 0.1110 
LP_4 0.1679 0.1003 0.1966 0.1034 0.1610 0.0862 0.2061 0.1007 
LP_6 0.2243 0.1446 0.3273 0.1741 0.3394 0.2161 0.4217 0.2363 
LP_8 0.2588 0.1648 0.3340 0.2100 0.2983 0.1803 0.3498 0.1916 SQ

N
 

LP_10 0.3442 0.2284 0.3707 0.2327 0.3711 0.2175 0.4389 0.2555 
LP_4 0.2479 0.1281 0.2364 0.1121 0.2217 0.1128 0.2466 0.1245 
LP_6 0.4289 0.2462 0.5126 0.2462 0.3291 0.1575 0.3213 0.1574 
LP_8 0.3790 0.2087 0.3994 0.1872 0.4461 0.2005 0.4135 0.2061 FQ

N
 

LP_10 0.4888 0.2776 0.5679 0.2754 0.5788 0.2623 0.5391 0.2849 

Table 6.15 Computational time mean and standard deviations 
 

 As would be expected, when the Faratin function is evaluated using more learning 

point, computational time will be added. This statement is supported by the test by the p-

values in table 6.16 below.  

 

 
 
 

Table 6.16 ANOVA results comparing computational time comparison among cases 
with different number of learning point selection 
 
 

The results of the p-values displayed in table 6.16 indicate that the computational 

time is increased as the number of learning points is increased.   Hence, the more learning 

points obtained from an opponent, the longer it will take to estimate an opponent’s 

negotiation parameters.  

Another pattern arose that was also expected. It appears by examining the data in 

table 6.15 that the computational time is increased with increasing complexity of the 

optimization algorithm. This in turn would suggest that the least computational time 

 GEN BA 
 GN SQN FQN GN SQN FQN 

No HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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would be needed using the Gauss-Newton algorithm while the most time would be 

required while using the factorized Quasi-Newton algorithm.  

 
 
 
 
 

Table 6.17 ANOVA results comparing computational time comparison among cases 
with different optimization algorithms 
 
 

The p-values in table 6.17 support the hypothesis that the more computationally 

complex an algorithm is, the more computation time it will take in order to solve the 

nonlinear optimization problem presented in equation 3-7.      

 Although it has been show with 95% confidence that the computational time 

increases with an increase in the number of learning points and with increasing 

computational complexity of the optimization algorithm, the improvement in 

convergence of both of these methods more than compensates for the increased time.  By 

taking the computational time into the context of a real time electronic negotiation, the 

time difference between an algorithm that can make the computation in 0.1s versus a 

more complex and accurate algorithm that can be performed in 0.5s is negligible. Hence, 

in this case, the computational time should not affect the decision of which methods are 

to be used in a real time electronic negotiation.  

6.5 Summary of Results 
 
 In summary, this chapter has demonstrated that, as compared to the standard 

Gauss-Newton method, higher convergence rates for solving equation 3.7 can be obtained 

by the use of a structured quasi-Newton method. It has also demonstrated that by the use 

 GEN BA 
 GN SQN FQN GN SQN FQN 

No HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
HJ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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of factorized quasi-Newton methods, convergence can again be improved over the use of 

a structured quasi-Newton methods by ensuring that the Hessian approximation matrix is 

positive definite, hence ensuring a decent direction at each iteration.   

 The back-away algorithm used in this paper also significantly increased 

convergence in each case, regardless of the optimization algorithm used and regardless of 

whether or not parameter pre-processing was performed. By glancing at table 6.2, the 

effectiveness of the back-away parameter selection method is clearly evident.  It 

introduced relative improvements to convergence in different cases with the lowest 

improvement being 14.5% percent, and the highest being 220%.  It was also determined 

that by increasing the number of learning points, the rate of convergence will decrease. 

However, this negative effect was dampened by a decrease in scaled norm, hence 

resulting in more accurate estimations of an opponent’s negotiation behaviour.  

Although we have conducted no mathematical analysis concerning the 

improvements afforded by our methods, the statistical results have demonstrated with 

95% confidence the that use of the back-away algorithm, Hooke-Jeeves pre-processing 

and factorized quasi-Newton methods can improve the learning of an opponent’s 

negotiation parameters. It has also been found that the use of a higher number of learning 

point will also result in a more accurate estimation of the negotiation parameters. These 

conclusions are important since they ultimately support the initial motivation for this 

thesis. 

In conclusion, in order to improve the convergence and the accuracy of the 

estimation of an opponent’s negotiation parameters, Hooke-Jeeves pre-processing 

coupled with a factorized quasi-Newton method and back-away parameter selection 

should be used. If convergence is more important in the analysis, a smaller number of 
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learning points should be used. However, if the ultimate goal of the analysis is to 

accurately estimate the negotiation parameters of your opponent, the more learning points 

obtained the more accuracy that will be achieved.  

The next chapter summarizes the significance of the results obtained within this 

chapter. Potential applications of the work performed within this thesis will be 

summarized and future work to possibly improve the results further will be brought forth.  
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Chapter 7 Conclusion and Implications 
    

This chapter deals with the implication of the results obtained in this work. 

Possible applications for this solution method will be examined and future work that may 

contribute to further improvement to the results obtained will be outlined.  

7.1 Summary 
 
 In this thesis, the TDT has been defined and the estimation of its parameters was 

formulated into a nonlinear least squares problem. A successful attempt was made which 

resulted in improved algorithmic convergence and accuracy in TDT parameter 

estimation. This positive result may have several practical implications in the context of 

electronic negotiation.  

7.2 Implication of results  
 

The results achieved in this work have significantly improved on those obtained 

by Shi (2005) by increasing the convergence rate from the high 60% range to 

approximately 80%. Also, the low values of the scaled norm obtained by a number of the 

methods tested suggest that the nonlinear least squares optimization methods attempted 

can estimate the negotiation parameters with great accuracy. This in turn implies that the 

next move made by an opponent in an electronic negotiation can be estimated with 

reasonable accuracy. This statement is supported by the very small values of the sum of 

squared errors obtained over the next five moves by an opponent (Table 6.13). 

 By taking the results in context of an electronic negotiation, a method has been 

found that can accurately estimate the negotiation parameters of an opponent, and use 
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these results to accurately predict the value of the next bid/offer price. This estimation 

can be obtained within a fraction of a second (Table 6.15) on a standard desktop 

computer, semi-autonomously and without any human interaction. The combination of all 

of these results indicates that the methods applied in this work may potentially contribute 

to the design of appropriate decision models underlying an automated negotiation agent. 

As pointed out by (Bichler and Kersten 2003), decision models constitute only one aspect 

of negotiation agents and the construction of agents entails rigorous Computer Science 

techniques (e.g., computational linguistics, artificial intelligence, protocol design etc.).  

 In the next section, previous research conducted is analysed for its potential use in 

conjunction with the learning methods presented in this paper. An algorithm is presented 

that can enable a buyer/seller to apply the learning methods in order to obtain a 

lower/higher transaction price.  

 

7.3 The benefit of learning 
  

In the current thesis, it has been concluded that one is able to successfully learn an 

opponents negotiation parameters using various combinations of pre-processing, 

optimization algorithm and parameter selection. Previous work (Mok and Sundarraj, 

2005) has shown that the ability to learn an opponent’s negotiation behaviour throughout 

the process of negotiation can be beneficial in terms of maximizing utility. Their 

proposed algorithm, the reaction algorithm, consists of three phases: (i) selection of target 

range; (ii) feasibility check; and (iii) parameter adjustment. The first phase uses the learnt 

parameters to determine a set of final target offers that would improve the negotiation 

outcome, as compared to the non-learning outcome. In the feasibility phase, they attempt 
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to determine if the targets obtained are feasible. Finally, in the parameter adjustment 

phase, the concession rate (β in this paper) is adjusted in order to reach the final target.  

 This algorithm was experimentally tested under each of the follow scenarios: 

1. The buyer and the seller exhibit boulware behaviour 
2. The buyer and the seller exhibit conceder behaviour 
3. The buyer exhibits boulware behaviour and the seller exhibits conceder behaviour  
4. The buyer exhibits conceder behaviour and the seller exhibits boulware behaviour  

  
 The figure below (Mok and Sundarraj, 2005) is a pictorial description of the effect 

of learning on the resulting transaction price.  
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Figure 7.1 Effect of learning on the transaction price 
 

In each of the above outcomes, Mok and Sundarraj have determined that the use   

of learning algorithms, in conjunction with the reaction algorithm, can benefit the buyer 

by lowering the final negotiation price (transaction price). This is an extremely important 

conclusion since it highlights the importance of the work performed in this thesis. The 

improved learning algorithm, achieved with the use of back away parameter selection, 

Hooke-Jeeves pre-processing and the factorized quasi-Newton algorithm, can be used in 

conjunction with the reaction algorithm to benefit the buyer/seller in terms of further 

reducing lowering/raising the transaction price. The figure below is an example of how 

accurate leaning can lead to an improved transaction price for a buyer.  

 

    
 
Figure 7.2 Effect of improved learning on the transaction price 
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 In figure 7.2, the buyer with accurate learning is able to significantly lower the 

price at which he/she obtains the good or service under negotiation. Hence, the ability to 

structure robust learning algorithm can ultimately result in beneficial results for the user.  

 The next section deals with future work that may result from this thesis.  

 

7.4 Future Work  
 

 Future work that may be applied to further strengthen the conclusion obtained in 

this thesis can include a series of tests in real-life negotiation settings against actual 

opponents. The design could involve selecting a large pool of people, and having them 

negotiate online on a one-on-one basis with an electronic agent. The lowest bid price and 

the highest offer price of the item under consideration would be predefined by the system 

in order to set the pricing parameters. Also, the maximum number of iterations allowable 

to reach an agreement would be set in order to add time pressure to the process.  The bids 

and offers of each respective party would be recorded, at each iteration, in order to obtain 

an estimate of their negotiation parameters. After the completion of a successful 

transaction, the buyer and seller would exchange roles, and the same procedure would be 

followed using a different item.  Once the data is collected, each negotiator would be 

required to participate in four additional negotiations with the automated agent. This 

would allow the agent to act as a buyer and seller, with and without learning, against a 

single opponent.  

 The results of this experiment could be quantified by comparing the normalized 

transaction price obtained, for each negotiation conducted by the agent, with and without 

the use of learning. The normalized transaction price of the buyer would be given by the 
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difference between the median price and the transaction price, divided by the difference 

between the maximum price and the minimum price. For the seller, the normalized 

transaction price would be given by the difference between the transaction price and the 

median price, divided by the difference between the maximum price and the minimum 

price.  

In the first equation, the normalized transaction price is positive when the agent, 

as a buyer, achieves a transaction price lower than the median price. Likewise, in the 

second equation, the normalized transaction price of the agent, as a seller, is positive 

when the transaction price is higher than the median price. In each case, the agent will be 

awarded with a positive value, normalized by the difference between the set maximum 

and minimum price of the item under negotiation, when a transaction price that is 

preferred to the median price is obtained. By comparing the results obtained for cases 

with and without the benefits of learning, the net effect of learning in an actual 

negotiation setting can be tested using relevant statistics, with a high degree of 

confidence. A successful result of this experiment would strengthen the conclusion that 

the learning methods described in this paper could be used to benefit an agent in a real 

life electronic negotiation.  

The main limitation of this experiment is that the current learning method used in 

this thesis makes several assumptions that do not allow the opponent to act irrationally, 

which may be the case in the real-life application described above. In future work, the 

learning methods presented in this paper can be further tested in situations where the 

opponent’s negotiation behaviour changes dramatically during the life of the negotiation. 

If a solution is found, it will be able to greatly increase the ability of this type of 

negotiation strategy to find a place in an e-commerce setting.   
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Appendix 

Matlab Generate 
function[ActualPara, NoPara, StartingPoint, StartingPrice, ActualPrice, 
LowerBound, UpperBound] =Generate(NoRepl) 
  
LowerBound=[100,300,20,0,0]; 
UpperBound=[250,600,40,10,1]; 
  
NoRepl=1; 
  
% Verify the sizes of lowerbound and upperbound 
if size(LowerBound)~=size(UpperBound) 
    error('The sizes of the first two parameters in function 
GenerateStartingPoint must be the same!') 
end 
  
NoPara=size(LowerBound,2);  %record the number of parameters 
time=1:10; % number of learning points 
  
% begin to generate starting points under the given conditions 
for j=1:NoRepl 
    for i=1:NoPara 
        ActualPara(i)=LowerBound(i)+rand*(UpperBound(i)-LowerBound(i));  
        StartingPoint(i)=LowerBound(i)+rand*(UpperBound(i)-
LowerBound(i));    
    end %for 
    
  
    StartingPrice=faratin(StartingPoint,time); 
end %for 
 
 

Matlab Faratin 
 
function P=faratin(Para,t) 
% evaluation of faratin's function 
% Pb=Pmin+exp((1-t/Tmax)^beta*log(K))*(Pmax-Pmin) 
P=Para(1)+exp((1-t/Para(3)).^Para(4)*log(Para(5)))*(Para(2)-Para(1)); 

Matlab Quasi-Newton General 
%counter=0; 
%while counter < 30 
   
tolerance=1E-2; 
MaximumIteration=30; 
NoPara=5;  % number of parameters 
time=1:7; 
NoTime=size(time,2);  % number of time 
  
iteration=0; 
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ConvergeInfor=0; 
DivergeInfor=0; 
  
TotalTime=0; 
NoFunEval=0; 
NoFunEvalAlg=0; 
  
[ActualPara]=Generate1; 
[StartingPoint]=Generate1; 
ActualPrice=faratin(ActualPara, time); 
f=faratin(StartingPoint, time); 
r=f-ActualPrice; 
SSE=norm(r)^2; 
%plot(time, ActualPrice, time, f); 
LowerBound=[100,300,20,0,0]; 
UpperBound=[250,600,40,10,1]; 
  
syms h1 h2 h3 h4 h5 
for i=1:NoPara 
    eval(['SymbolG(',int2str(i),')=h',int2str(i),';']);  % SymbolG(i)=xi 
end 
  
for i=1:NoTime 
    FuncF(i)=faratin(SymbolG,time(i));  % function F 
   % ActualPrice(i)=faratin(ActualPara,time(i)); % actual price value 
end 
%************************************************* 
  
J=jacobian(FuncF.',SymbolG); % matrix D 
Jt=transpose(J); 
%NoFunEval=NoFunEval+NoFunEvalAlg; 
gradient=Jt*r'; 
Ak=Jt*J; 
h1=StartingPoint(1); 
h2=StartingPoint(2); 
h3=StartingPoint(3); 
h4=StartingPoint(4); 
h5=StartingPoint(5); 
Ak=eval(Ak); 
Hess=Ak; 
gradient=eval(gradient); 
trial=-pinv(Hess); 
J=eval(J); 
Jt=eval(Jt); 
x=StartingPoint; 
d=-pinv(Hess)*gradient; 
%alpha=0.5*eye(5,5); 
alpha=1; 
decentd=(alpha*d)'; 
  
%%%%%%%%%%%%%%%%%%% 
% iteration begins 
%%%%%%%%%%%%%%%%%%% 
  
while ((SSE>tolerance)&(iteration<MaximumIteration)); 
      iteration=iteration+1;  % record iteration number 



81 
 

      fprintf('.') 
       
    syms alpha1 
        
      alphavect=x+alpha1*d'; 
      %sizealphavect=size(alphavect) 
      F=faratin(alphavect,time) ; 
      R=Res(F, ActualPrice); 
  
for i=1:5 
 if (x(i)+ decentd(i)>LowerBound(i) & x(i)+ decentd(i)<UpperBound(i)); 
      x_1(i)=x(i)+decentd(i) 
 else 
     x_1(i)=x(i)+0.4*decentd(i) 
 end 
end      
         % elseif((x(i)+ decentd(i)<LowerBound(i) | x(i)+ 
decentd(i)>UpperBound(i))) 
          %    x_1=(i)+decentd(i)*0.1 
     
                   for i=1:NoTime 
          f(i)=faratin(x_1,time(i)); 
         
     end 
        
    
       h1=x_1(1); 
       h2=x_1(2); 
       h3=x_1(3); 
       h4=x_1(4); 
       h5=x_1(5); 
       
        J_1=jacobian(FuncF.',SymbolG);  
        Jt_1=transpose(J_1); 
        r_1=f-ActualPrice;    % Matrix Y 
        J_1=eval(J_1); 
        Jt_1=eval(Jt_1); 
        gradient_1=(Jt_1)*(r_1)'; 
        B=Jt_1*J_1; 
        SSE=norm(r_1)^2%standard square error  
   
        if SSE>100  
            alpha=1; 
            else 
            alpha=0.2; 
        end 
    %Calculations%%%%%%%%%%%%%%%%%%%%%%%%%% 
      
    Jtrial=J_1-J; 
    sk=x_1-x; 
    yk=(gradient_1-gradient)'; 
    Ak=gen(sk, yk, J_1, Jt_1); 
   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    try,    
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         Hess=B+Ak; 
         detHess=det(Hess); 
       
      if det(Hess)==0; 
         fprintf('s'); % stand for singular 
      end 
          
         trial=-pinv(Hess); 
         d=-pinv(Hess)*gradient_1;       % minimal norm solution for 
singular case 
         decentd=(alpha*d)'; 
         NoFunEval=NoFunEval+1; 
     catch, 
        fprintf('\nDiverge: Error in calculating matrix B in iteration 
%d. However, continue...',iteration) 
        ConvergeIndex='diverge' 
        EndTime=cputime; 
    
        EndingPoint=x;  % converge ending point 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
  
       break;      
    end 
  
    
      
    if SSE<=tolerance 
        fprintf('Converge!') 
        ConvergeIndex='converge'; 
      
        EndingPoint=x;  % converge ending point 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
       
    elseif iteration==MaximumIteration 
        fprintf('Diverge!'); 
        ConvergeIndex='diverge'; 
        %TimeElapse=EndTime-StartTime; 
        EndingPoint=x; 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
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        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
  
      end % if 
      
  %changing variables%%%%%%%%%%%%%%%%%%       
        x=x_1; 
        J=J_1; 
        Jt=Jt_1; 
        r=r_1; 
        gradient=gradient_1; 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
   end % while 
  
  EndPrice=faratin(EndingPoint, time); 
  StartingPrice=faratin(StartingPoint, time); 
   
  plot(time, f, time, ActualPrice); 
  subplot(2,1,1); plot(time,ActualPrice, time, StartingPrice); 
  subplot(2,1,2); plot(time, ActualPrice, time, EndPrice); 
 

Matlab Quasi-Newton General Update 
 
function Ak=gen(sk, yk, J_1, Jt_1); 
  
Ak=pinv(sk)*(yk-sk*Jt_1*J_1); 
 

Matlab Quasi-Newton DGW 
   
tolerance=1E-2; 
MaximumIteration=30; 
NoPara=5;  % number of parameters 
time=1:5; 
NoTime=size(time,2);  % number of time 
  
iteration=0; 
ConvergeInfor=0; 
DivergeInfor=0; 
  
TotalTime=0; 
NoFunEval=0; 
NoFunEvalAlg=0; 
  
[ActualPara]=Generate1; 
[StartingPoint]=Generate1; 
ActualPrice=faratin(ActualPara, time); 
f=faratin(StartingPoint, time); 
r=f-ActualPrice; 
SSE=norm(r)^2; 
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%plot(time, ActualPrice, time, f); 
LowerBound=[100,300,20,0,0]; 
UpperBound=[250,600,40,10,1]; 
  
syms h1 h2 h3 h4 h5 
for i=1:NoPara 
    eval(['SymbolG(',int2str(i),')=h',int2str(i),';']);  % SymbolG(i)=xi 
end 
  
for i=1:NoTime 
    FuncF(i)=faratin(SymbolG,time(i));  % function F 
   % ActualPrice(i)=faratin(ActualPara,time(i)); % actual price value 
end 
%************************************************* 
  
J=jacobian(FuncF.',SymbolG); % matrix D 
Jt=transpose(J); 
%NoFunEval=NoFunEval+NoFunEvalAlg; 
gradient=Jt*r'; 
Ak=Jt*J; 
h1=StartingPoint(1); 
h2=StartingPoint(2); 
h3=StartingPoint(3); 
h4=StartingPoint(4); 
h5=StartingPoint(5); 
Ak=eval(Ak); 
Hess=Ak; 
gradient=eval(gradient); 
trial=-pinv(Hess); 
J=eval(J); 
Jt=eval(Jt); 
x=StartingPoint; 
d=-pinv(Hess)*gradient; 
%alpha=0.5*eye(5,5); 
alpha=0.5; 
decentd=(alpha*d)'; 
  
%%%%%%%%%%%%%%%%%%% 
% iteration begins 
%%%%%%%%%%%%%%%%%%% 
  
while ((SSE>tolerance)&(iteration<MaximumIteration)); 
         iteration=iteration+1;  % record iteration number 
      fprintf('.') 
       
    syms alpha1 
        
      alphavect=x+alpha1*d'; 
      %sizealphavect=size(alphavect); 
      alpha_lb=0; 
      alpha_ub=3; 
       
      F=faratin(alphavect,time) ; 
       
         R=Res(F, ActualPrice); 
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   % end %---LOOP STOP    
         
      %disp(alpha1) 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            if (x+ decentd >LowerBound & x+ decentd<UpperBound); 
                x_1=x+decentd; 
           fprintf('no adj') 
            else 
                decentd=decentd./6; 
                x_1=x+decentd 
            fprintf('adjust') 
            end % if 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        
     for i=1:NoTime 
          f(i)=faratin(x_1,time(i)); 
          NoFunEval=NoFunEval+1; 
     end 
        
    
       h1=x_1(1); 
       h2=x_1(2); 
       h3=x_1(3); 
       h4=x_1(4); 
       h5=x_1(5); 
       
        J_1=jacobian(FuncF.',SymbolG);  
        Jt_1=transpose(J_1); 
        r_1=f-ActualPrice;    % Matrix Y 
        J_1=eval(J_1); 
        Jt_1=eval(Jt_1); 
        gradient_1=(Jt_1)*(r_1)'; 
        B=Jt_1*J_1; 
        SSE=norm(r_1)^2;%standard square error  
   
         
    %Calculations%%%%%%%%%%%%%%%%%%%%%%%%%% 
      
    Jtrial=J_1-J; 
    sk=x_1-x 
    skt=transpose(sk); 
    yk=(gradient_1-gradient)' 
    ykt=transpose(yk); 
    beta=(r_1*r')/(r*r') 
     
    if beta > 1; 
        beta=1; 
    end 
    disp(beta) 
    v=(J_1-J)'*r_1'; 
    G=(v-beta*Ak*sk'); 
    Gt=transpose(G); 
    Ak_1=DGW(beta,G,Ak,yk,ykt,Gt,skt); 
    pause 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    try,    
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         Hess=B+Ak; 
         detHess=det(Hess); 
       
      if det(Hess)==0; 
         fprintf('s'); % stand for singular 
      end 
          
         trial=-pinv(Hess); 
         d=-pinv(Hess)*gradient_1;       % minimal norm solution for 
singular case 
         decentd=(alpha*d)'; 
         NoFunEval=NoFunEval+1; 
     catch, 
        fprintf('\nDiverge: Error in calculating matrix B in iteration 
%d. However, continue...',iteration) 
        ConvergeIndex='diverge' 
        EndTime=cputime; 
        %TimeElapse=EndTime-StartTime; 
        EndingPoint=x;  % converge ending point 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
        
infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval]; 
       break;      
    end 
  
    
      
    if SSE<=tolerance 
        fprintf('Converge!') 
        ConvergeIndex='converge'; 
        EndTime=cputime; 
        %TimeElapse=EndTime-StartTime; 
        EndingPoint=x;  % converge ending point 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
        
infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval]; 
    elseif iteration==MaximumIteration 
        fprintf('Diverge!'); 
        ConvergeIndex='diverge'; 
        EndTime=cputime; 
        %TimeElapse=EndTime-StartTime; 
        EndingPoint=x; 
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        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
        
infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval]; 
      end % if 
      
  %changing variables%%%%%%%%%%%%%%%%%%       
        x=x_1; 
        J=J_1; 
        Jt=Jt_1; 
        r=r_1; 
        gradient=gradient_1; 
        Ak=Ak_1; 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
   end % while 
  
  EndPrice=faratin(EndingPoint, time); 
  StartingPrice=faratin(StartingPoint, time); 
   
  plot(time, f, time, ActualPrice); 
  subplot(2,1,1); plot(time,ActualPrice, time, StartingPrice); 
  subplot(2,1,2); plot(time, ActualPrice, time, EndPrice); 
  %counter=counter+1; 
 %fprintf('[%d]',counter) 
 %end 
%end%countrer 
 

Matlab Quasi-Newton DGW Update 
 
function Ak_1=DGW(beta,G,Ak,yk,ykt,Gt,skt) 
  
Ak_1=beta*Ak+(G*yk+ykt*Gt)/(skt*yk)-((skt*Gt)/(skt*yk)^2)*ykt*yk 

 

Matlab Biggs 
 
%counter=0; 
%while counter < 30 
   
tolerance=1E-2; 
MaximumIteration=30; 
NoPara=5;  % number of parameters 
time=1:5; 
NoTime=size(time,2);  % number of time 
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iteration=0; 
ConvergeInfor=0; 
DivergeInfor=0; 
  
TotalTime=0; 
NoFunEval=0; 
NoFunEvalAlg=0; 
  
[ActualPara]=Generate1; 
[StartingPoint]=Generate1; 
ActualPrice=faratin(ActualPara, time); 
f=faratin(StartingPoint, time); 
r=f-ActualPrice; 
SSE=norm(r)^2; 
%plot(time, ActualPrice, time, f); 
LowerBound=[100,300,20,0,0]; 
UpperBound=[250,600,40,10,1]; 
  
syms h1 h2 h3 h4 h5 
for i=1:NoPara 
    eval(['SymbolG(',int2str(i),')=h',int2str(i),';']);  % SymbolG(i)=xi 
end 
  
for i=1:NoTime 
    FuncF(i)=faratin(SymbolG,time(i));  % function F 
   % ActualPrice(i)=faratin(ActualPara,time(i)); % actual price value 
end 
%************************************************* 
  
J=jacobian(FuncF.',SymbolG); % matrix D 
Jt=transpose(J); 
%NoFunEval=NoFunEval+NoFunEvalAlg; 
gradient=Jt*r'; 
Ak=Jt*J; 
h1=StartingPoint(1); 
h2=StartingPoint(2); 
h3=StartingPoint(3); 
h4=StartingPoint(4); 
h5=StartingPoint(5); 
Ak=eval(Ak); 
Hess=Ak; 
gradient=eval(gradient); 
trial=-pinv(Hess); 
J=eval(J); 
Jt=eval(Jt); 
x=StartingPoint; 
d=-pinv(Hess)*gradient; 
%alpha=0.5*eye(5,5); 
alpha=1; 
decentd=(alpha*d)'; 
  
%%%%%%%%%%%%%%%%%%% 
% iteration begins 
%%%%%%%%%%%%%%%%%%% 
  
while ((SSE>tolerance)&(iteration<MaximumIteration)); 
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      iteration=iteration+1;  % record iteration number 
      fprintf('.') 
       
    syms alpha1 
        
      alphavect=x+alpha1*d'; 
      %sizealphavect=size(alphavect); 
      alpha_lb=0; 
      alpha_ub=3; 
       
      F=faratin(alphavect,time) ; 
       
         R=Res(F, ActualPrice); 
         
      %disp(alpha1) 
      for i=1:NoPara 
            if (x(i)+ decentd(i)>LowerBound(i) & x(i)+ 
decentd(i)<UpperBound(i)); 
                x_1(i)=x(i)+decentd(i); 
            else 
                x_1(i)=x(i); 
            end % if 
      end %for 
        
     for i=1:NoTime 
          f(i)=faratin(x_1,time(i)); 
          NoFunEval=NoFunEval+1; 
     end 
        
    
       h1=x_1(1); 
       h2=x_1(2); 
       h3=x_1(3); 
       h4=x_1(4); 
       h5=x_1(5); 
       
        J_1=jacobian(FuncF.',SymbolG);  
        Jt_1=transpose(J_1); 
        r_1=f-ActualPrice;    % Matrix Y 
        J_1=eval(J_1); 
        Jt_1=eval(Jt_1); 
        gradient_1=(Jt_1)*(r_1)'; 
        B=Jt_1*J_1; 
        SSE=norm(r_1)^2;%standard square error  
   
         
    %Calculations%%%%%%%%%%%%%%%%%%%%%%%%%% 
      
    Jtrial=J_1-J; 
    sk=x_1-x; 
    skt=transpose(sk) 
    yk=(gradient_1-gradient)'; 
    ykt=transpose(yk) 
    beta=(r_1*r')/(r*r') 
    v=(J_1-J)'*r_1'; 
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    G=(v-beta*Ak*sk') 
    Gt=transpose(G); 
    Ak_1=biggs(G,Gt,sk,Ak,beta) 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    try,    
         Hess=B+Ak; 
         detHess=det(Hess); 
       
      if det(Hess)==0; 
         fprintf('s'); % stand for singular 
      end 
          
         trial=-pinv(Hess); 
         d=-pinv(Hess)*gradient_1;       % minimal norm solution for 
singular case 
         decentd=(alpha*d)'; 
         NoFunEval=NoFunEval+1; 
     catch, 
        fprintf('\nDiverge: Error in calculating matrix B in iteration 
%d. However, continue...',iteration) 
        ConvergeIndex='diverge' 
        EndTime=cputime; 
        %TimeElapse=EndTime-StartTime; 
        EndingPoint=x;  % converge ending point 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
        
infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval]; 
       break;      
    end 
  
    
      
    if SSE<=tolerance 
        fprintf('Converge!') 
        ConvergeIndex='converge'; 
        EndTime=cputime; 
        %TimeElapse=EndTime-StartTime; 
        EndingPoint=x;  % converge ending point 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
        
infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval]; 
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    elseif iteration==MaximumIteration 
        fprintf('Diverge!'); 
        ConvergeIndex='diverge'; 
        EndTime=cputime; 
        %TimeElapse=EndTime-StartTime; 
        EndingPoint=x; 
        NormSA=norm((StartingPoint-ActualPara)./ActualPara); % norm 
between starting point and actual parameter 
        NormEA=norm((EndingPoint-ActualPara)./ActualPara); % norm 
between ending point and actual parameter 
        SSEPara=norm(EndingPoint-ActualPara)^2;  % unnormalized SSE 
between parameters. 
        SSERevPara=norm((EndingPoint-ActualPara)./ActualPara)^2; %SSE 
between actual parameters and estimated parameters. 
        
infor=[StartingPoint,EndingPoint,SSE,iteration,NormSA,NormEA,NoFunEval]; 
      end % if 
      
  %changing variables%%%%%%%%%%%%%%%%%%       
        x=x_1; 
        J=J_1; 
        Jt=Jt_1; 
        r=r_1; 
        gradient=gradient_1; 
        Ak=Ak_1; 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
   end % while 
  
  EndPrice=faratin(EndingPoint, time); 
  StartingPrice=faratin(StartingPoint, time); 
   
  plot(time, f, time, ActualPrice); 
  subplot(2,1,1); plot(time,ActualPrice, time, StartingPrice); 
  subplot(2,1,2); plot(time, ActualPrice, time, EndPrice); 
 

Matlab Biggs Update 
 
function Ak_1=biggs(G,Gt,sk,beta,Ak) 
  
Ak_1=beta*Ak+(G*Gt)/(sk'*Gt) 

 

Matlab Alpha Select 
function x_1=alpha_select(decentd, x); 
x 
LowerBound=[100,300,20,0,0]; 
UpperBound=[250,600,40,10,1]; 
counter=0; 
q=[0 0 0 0 0]; 
  
while sum(q)<5; 
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counter=(1+counter); 
  
  for i=1:5      
   if(x(i)+ decentd(i)/counter <UpperBound(i) & x(i)+ decentd(i)/counter 
>LowerBound(i) ); 
  q(i)=1; 
   else 
  q(i)=0 ;   
   end%if      
  end%for    
   
  if sum(q)==5 
    x_1=x+ decentd./counter; 
  break 
  end 
end %while 

 

Matlab Alpha Range 
 
function[alpha,min_E]=alpha_range(alpha_lower,alpha_upper,lowest_possibl
e_alpha,E,alpha1,SSE); 
  
    steps=[0.5,0.1] 
end 
for i=1:length(steps); 
    incr=steps(i); 
    
[alpha,min_E]=check_range_alpha(alpha_lower,incr,alpha_upper,E,alpha1); 
    if(alpha==lowest_possible_alpha); 
        alpha_upper=alpha +incr; 
        alpha_lower=alpha; 
    else 
        alpha_upper=alpha; 
        lower_alpha=alpha-incr; 
         upper_alpha=alpha+incr; 
        
[l_alpha,l_min_E]=check_range_alpha(lower_alpha,incr,lower_alpha,E,alpha
1); 
        
[u_alpha,u_min_E]=check_range_alpha(upper_alpha,incr,upper_alpha,E,alpha
1); 
        if(abs(l_min_E)<abs(u_min_E)); 
             alpha_lower=lower_alpha; 
            alpha_upper; 
           %fprintf('\n Lower alpha:%f\t Upper alpha: %f\t at step size: 
%f\t \n',alpha_lower,alpha_upper,incr); 
         else 
            alpha_lower=alpha_upper; 
            alpha_upper=upper_alpha; 
            %fprintf('\n Lower alpha:%f\t Upper alpha: %f\t at step 
size: %f\t \n',alpha_lower,alpha_upper,incr); 
  
        end 
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    end 
     
end 
 

Matlab Check Alpha Range 
function[alpha,min_E]=check_range_alpha(alpha_lower,incr,alpha_upper,E,a
lpha1); 
      range=alpha_lower:incr:alpha_upper;% generating values for alphal 
      range=range';% creating a column array 
      min_E=0.0; 
      alpha=alpha_lower; 
      fid=fopen('e_cal.txt','A'); % opens file result.txt in appen mode 
      %fprintf('\n current step size: %f',incr); 
      for i=1:size(range),; 
          alpha_1=range(i);%alpha_one 
          EE=subs(E,alpha1, alpha_1);% replace alpha1 with the value of 
alpha_1 
          
          if i==1 
              min_E=abs(EE); % initialize min_E with first value 
              alpha=alpha_1; 
                
          else 
              if abs(EE) < min_E; 
                  min_E=abs(EE); 
                  alpha=alpha_1; 
              end 
          end 
      fclose(fid); 

 

Stats 
function [NormEA, SSERevPara]=Stats(Endpoint, StartingPointv, time, 
ActualParav) 
    EndPrice=faratin(Endpoint, time); 
    StartingPrice=faratin(StartingPointv, time); 
    NormSA=norm((StartingPointv-ActualParav)./ActualParav); % norm 
between starting point and actual parameter 
    NormEA=norm((Endpoint-ActualParav)./ActualParav); % norm between 
ending point and actual parameter 
    SSEPara=norm(Endpoint-ActualParav)^2;  % unnormalized SSE between 
parameters. 
    SSERevPara=norm((Endpoint-ActualParav)./ActualParav)^2; %SSE between 
actual parameters and estimated parameters. 
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Cholesky Matrix Decomposition 
 
function [L,D,E,pneg]=mchol(G) 
% 
%  n gives the size of the matrix. 
% 
n=size(G,1); 
% 
%  gamma, zi, nu, and beta2 are quantities used by the algorithm.   
% 
gamma=max(diag(G)); 
zi=max(max(G-diag(diag(G)))); 
nu=max([1,sqrt(n^2-1)]); 
beta2=max([gamma, zi/nu, 1.0E-15]); 
% 
%  Initialize diag(C) to diag(G). 
% 
C=diag(diag(G)); 
% 
%  Loop through, calculating column j of L for j=1:n 
% 
  
L=zeros(n); 
D=zeros(n); 
E=zeros(n); 
  
for j=1:n, 
    bb=[1:j-1]; 
    ee=[j+1:n]; 
  
    % 
    %  Calculate the jth row of L.   
    % 
    if (j > 1), 
        L(j,bb)=C(j,bb)./diag(D(bb,bb))'; 
    end; 
    % 
    %  Update the jth column of C. 
    % 
    if (j >= 2), 
        if (j < n),  
            C(ee,j)=G(ee,j)-(L(j,bb)*C(ee,bb)')'; 
        end; 
    else 
        C(ee,j)=G(ee,j); 
    end; 
    % 
    % Update theta.  
    % 
    if (j == n) 
        theta(j)=0; 
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    else 
        theta(j)=max(abs(C(ee,j))); 
    end; 
    % 
    %  Update D 
    % 
    D(j,j)=max([eps,abs(C(j,j)),theta(j)^2/beta2]'); 
    % 
    % Update E. 
    % 
    E(j,j)=D(j,j)-C(j,j); 
     
    ind=[j*(n+1)+1 : n+1 : n*n]'; 
    C(ind)=C(ind)-(1/D(j,j))*C(ee,j).^2; 
  
  
end; 
  
ind=[1 : n+1 : n*n]'; 
L(ind)=1; 
  
%  if needed, find a descent direction.   
% 
if ((nargout == 4) & (min(diag(C)) < 0.0)) 
    [m,col]=min(diag(C)); 
    rhs=zeros(n,1); 
    rhs(col)=1; 
    pneg=L'\rhs; 
else 
  pneg=[]; 
end; 
  
  
return 
 
 

Hooke-Jeeves 
 
function 
StartingPointv_HJ=H_J(StartingPointv,ActualPrice,LowerBound,UpperBound,t
ime, NoPara) 
%-------------------------------- 
f_sp=faratin(StartingPointv,time); 
r_sp=f_sp-ActualPrice; 
SSE_sp=norm(r_sp)^2; 
  
  
x0=StartingPointv'; 
k=0.2; 
div=2; 
e=[100,0,0,0,0; 
    0,100,0,0,0; 
    0,0,2,0,0; 
    0,0,0,0.2,0; 
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    0,0,0,0,0.2]; 
alpha=1; 
delta=0.00001; 
x1=x0; 
  
initial_HJ=1; 
step1=1; 
step2=1; 
step3=1; 
step4=1; 
NoIter=0; 
fail=0; 
  
while ((step1 | step2 | step3 | step4 |initial_HJ) & ~fail) % or 
  
    NoIter=NoIter+1; 
    if NoIter>200 
        fail=1; 
        fprintf('f'); 
    end; 
    x=x1; 
    initial_HJ=0; 
    for i=1:NoPara % size(x0,1) 
        x_old=x; 
        y_old=faratin(x_old,time); 
        r_old=y_old-ActualPrice; 
        SSE_old=norm(r_old)^2;   
        x_new = x_old + k * e(:,i);     % update point 
        y_new=faratin(x_new,time); 
        r_new=y_new-ActualPrice; 
        SSE_new=norm(r_new)^2;   
  
         
        if SSE_new >= SSE_old 
            
         x_new = x_old - k * e(:,i); % update point 
         y_new=faratin(x_new,time); 
         SSE_new=norm(r_new)^2; 
         k = -k; 
            
         if SSE_new >= SSE_old 
                x = x_old; 
            else 
                x = x_new; 
            end %if 
          else 
          x = x_new; 
        end %if 
     end %for 
     
    f_temp1=faratin(x,time); 
    r_temp1=f_temp1-ActualPrice; 
    SSE_temp1=norm(r_temp1)^2; 
     
    f_temp2=faratin(x0,time); 
    r_temp2=f_temp2-ActualPrice; 
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    SSE_temp2=norm(r_temp2)^2; 
 %----------------------------------------------------------------------
------------    
     
if SSE_temp1<SSE_temp2 
        step1=1; 
        x1 = x + alpha * (x - x0); 
        x0 = x; 
  
else 
      step1 = 0; 
        
       if x1~=x0 
           x1 = x0; 
           step2 = 1; 
       else 
           step2 = 0; 
            k=k/div; 
            if abs(k)>=delta 
              step3 = 1; 
            else 
              step3 = 0; 
            end %if 
        end %if 
    end %if    
xt=x; 
StartingPointv_HJ_t=x'; 
for i=1:NoPara 
    if StartingPointv_HJ_t(i)<LowerBound(i) 
       StartingPointv_HJ_t(i)=LowerBound(i); 
    elseif StartingPointv_HJ_t(i)>UpperBound(i) 
        StartingPointv_HJ_t(i)=UpperBound(i); 
    end%if 
end%for 
if StartingPointv_HJ_t ~= xt'; 
     x1=StartingPointv_HJ_t'; 
     step4=1; 
else 
    step4=0; 
    x1=StartingPointv_HJ_t'; 
end 
end %while 
StartingPointv_HJ=x1'; 
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Directory 
 
 
Generate_run; 
  
for n=0:3 
    
  switch n  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
      case 0 
         
          Parameters_4; 
          Jac_4; 
          algo=0; 
          conind=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     for i=0:11 
          
        switch i 
             
        case 0  
        for Q=1:NoRepl; 
          GN_B2; 
        end 
  
        LP_4_conind_GN_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B2,2,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'P3') 
        conind=0; 
         
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
            case 1  
        for Q=1:NoRepl; 
          GN_B2_HJ; 
        end 
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        LP_4_conind_GN_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B2_HJ,4,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'W3') 
         
        conind=0; 
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1     
             
            case 2  
        for Q=1:NoRepl; 
          GN_B3; 
        end 
         
        LP_4_conind_GN_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B3,6,'H4') 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B2_HJ,6,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,5,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AD3') 
         
        conind=0; 
      
           clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
         
             case 3  
        for Q=1:NoRepl; 
          GN_B3_HJ; 
        end 
         
        LP_4_conind_GN_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_GN_B3_HJ,8,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AK3') 
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        conind=0; 
      
            clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
      
            case 4  
        for Q=1:NoRepl; 
          QNG_B2; 
        end 
         
        LP_4_conind_QNG_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B2,10,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'E3') 
         xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AR3') 
         
        conind=0; 
    
           clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
            
             case 5  
        for Q=1:NoRepl; 
          QNG_B2_HJ; 
        end 
         
        LP_4_conind_QNG_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B2_HJ,12,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'AY3') 
         
        conind=0; 
        
            clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
     
        
            case 6  
        for Q=1:NoRepl; 
          QNG_B3; 
        end 
        LP_4_conind_QNG_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B3,14,'H4') 
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        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'BF3') 
  
         
        conind=0;  
           clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
             
            case 7  
        for Q=1:NoRepl; 
          QNG_B3_HJ; 
        end 
        LP_4_conind_QNG_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNG_B3_HJ,16,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'BM3')  
         
        conind=0; 
       
          clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
       
             case 8  
        for Q=1:NoRepl; 
          QNGC_B2; 
        end 
        LP_4_conind_QNGC_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B2,18,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'E3') 
         xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'BT3') 
         
        conind=0; 
           clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 9  
        for Q=1:NoRepl; 
          QNGC_B2_HJ; 
        end 
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        LP_4_conind_QNGC_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B2_HJ,20,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'CA3') 
         
        conind=0; 
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 10  
        for Q=1:NoRepl; 
          QNGC_B3; 
        end 
         
        LP_4_conind_QNGC_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B3,22,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,22,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'CH3') 
         
        conind=0; 
         
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1  
       
             case 11  
        for Q=1:NoRepl; 
          QNGC_B3_HJ; 
        end 
         
        LP_4_conind_QNGC_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_4_conind_QNGC_B3_HJ,24,'H4') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,24,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'A3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'B3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'C3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'D3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'E3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,29,'CO3') 
         
        conind=0; 
         clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        end 
     end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      case 1 
         
          Parameters_6; 
          Jac_6; 
          algo=0; 
          conind=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     for i=0:11 
          
        switch i 
        
            case 0  
        for Q=1:NoRepl; 
          GN_B2; 
        end 
  
        LP_6_conind_GN_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B2,2,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'P3') 
         
        conind=0; 
       
      clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1      
             case 1  
        for Q=1:NoRepl; 
          GN_B2_HJ; 
        end 
         
        LP_6_conind_GN_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B2_HJ,4,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'W3') 
        conind=0; 
       clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 2  
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        for Q=1:NoRepl; 
          GN_B3; 
        end 
         
        LP_6_conind_GN_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B3,6,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,6,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AD3') 
        conind=0; 
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 3  
        for Q=1:NoRepl; 
          GN_B3_HJ; 
        end 
         
        LP_6_conind_GN_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_GN_B3_HJ,8,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AK3') 
        conind=0; 
       clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
            case 4  
        for Q=1:NoRepl; 
          QNG_B2; 
        end 
         
        LP_6_conind_QNG_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B2,10,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AR3') 
        conind=0; 
         clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
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             case 5  
        for Q=1:NoRepl; 
          QNG_B2_HJ; 
        end 
         
        LP_6_conind_QNG_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B2_HJ,12,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'AY3')  
        conind=0; 
   clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 6  
        for Q=1:NoRepl; 
          QNG_B3; 
        end 
         
        LP_6_conind_QNG_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B3,14,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'BF3') 
        conind=0; 
       clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
              
            case 7  
        for Q=1:NoRepl; 
          QNG_B3_HJ; 
        end 
        LP_6_conind_QNG_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNG_B2_HJ,16,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'BM3') 
        conind=0; 
  clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1  
       
             case 8  



106 
 

        for Q=1:NoRepl; 
          QNGC_B2; 
        end 
         
        LP_6_conind_QNGC_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B2,18,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'BT3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
      
             case 9  
        for Q=1:NoRepl; 
          QNGC_B2_HJ; 
        end 
         
        LP_6_conind_QNGC_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B2_HJ,20,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'CA3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 10  
        for Q=1:NoRepl; 
          QNGC_B3; 
        end 
         
        LP_6_conind_QNGC_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B3,22,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,21,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'CH3') 
        conind=0; 
      clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
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            case 11  
        for Q=1:NoRepl; 
          QNGC_B3_HJ; 
        end 
         
        LP_6_conind_QNGC_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_6_conind_QNGC_B3_HJ,24,'H5') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,23,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'G3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'I3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'J3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'K3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,30,'CO3') 
        conind=0; 
    clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
        end         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%           
           
      case 2 
         
          Parameters_8; 
          Jac_8; 
          algo=0; 
          conind=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     for i=0:11 
          
        switch i 
             
            case 0  
        for Q=1:NoRepl; 
          GN_B2; 
        end 
  
        LP_8_conind_GN_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B2,2,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'P3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
      
             case 1  
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        for Q=1:NoRepl; 
          GN_B2_HJ; 
        end 
         
        LP_8_conind_GN_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B2_HJ,4,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'W3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 2  
        for Q=1:NoRepl; 
          GN_B3; 
        end 
         
        LP_8_conind_GN_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B3,6,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,5,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AD3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 3  
        for Q=1:NoRepl; 
          GN_B3_HJ; 
        end 
         
        LP_8_conind_GN_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_GN_B3_HJ,8,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AK3') 
        conind=0; 
       clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
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             case 4  
        for Q=1:NoRepl; 
          QNG_B2; 
        end 
         
        LP_8_conind_QNG_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B2,10,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AR3') 
        conind=0; 
     clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 5  
        for Q=1:NoRepl; 
          QNG_B2_HJ; 
        end 
         
        LP_8_conind_QNG_B2_HJ=conind 
  
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B2_HJ,12,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'AY3') 
        conind=0; 
         clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
         
             case 6  
        for Q=1:NoRepl; 
          QNG_B3; 
        end 
        LP_8_conind_QNG_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B3,14,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'BF3') 
        conind=0; 
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      clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 7  
        for Q=1:NoRepl; 
          QNG_B3_HJ; 
        end 
        LP_8_conind_QNG_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNG_B3_HJ,16,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'BM3') 
        conind=0; 
      
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 8  
        for Q=1:NoRepl; 
          QNGC_B2; 
        end 
         
        LP_8_conind_QNGC_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B2,18,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'BT3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
      
             case 9  
        for Q=1:NoRepl; 
          QNGC_B2_HJ; 
        end 
         
        LP_8_conind_QNGC_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B2_HJ,20,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'CA3') 
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        conind=0; 
    clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 10  
        for Q=1:NoRepl; 
          QNGC_B3; 
        end 
         
        LP_8_conind_QNGC_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B3,22,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,21,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'CH3') 
        conind=0; 
       clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 11  
        for Q=1:NoRepl; 
          QNGC_B3_HJ; 
        end 
         
        LP_8_conind_QNGC_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_8_conind_QNGC_B3_HJ,24,'H6') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,24,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'M3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'N3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'O3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'P3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'Q3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,31,'CO3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
        end         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%             
             
      case 3 
         
          Parameters_10; 
          Jac_10; 
          algo=0; 
          conind=0; 
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 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     for i=0:11 
          
        switch i 
       
              case 0  
        for Q=1:NoRepl; 
          GN_B2; 
        end 
  
        LP_10_conind_GN_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B2,2,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,2,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,1,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,1,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,1,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,1,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,1,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'P3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
      
             case 1  
        for Q=1:NoRepl; 
          GN_B2_HJ; 
        end 
         
        LP_10_conind_GN_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B2_HJ,4,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,4,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,3,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,3,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,3,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,3,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,3,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'W3') 
        conind=0; 
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 2  
        for Q=1:NoRepl; 
          GN_B3; 
        end 
         
        LP_10_conind_GN_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B3,6,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,6,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,5,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,5,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,5,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,5,'V3') 
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        xlswrite('C:\MATLAB701\work\All_Results',iterationt,5,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AD3') 
        conind=0;  
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 3  
        for Q=1:NoRepl; 
          GN_B3_HJ; 
        end 
         
        LP_10_conind_GN_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_GN_B3_HJ,8,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,8,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,7,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,7,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,7,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,7,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,7,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AK3') 
        conind=0; 
          clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 4  
        for Q=1:NoRepl; 
          QNG_B2; 
        end 
         
        LP_10_conind_QNG_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B2,10,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,10,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,9,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,9,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,9,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,9,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,9,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AR3') 
        conind=0; 
          clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 5  
        for Q=1:NoRepl; 
          QNG_B2_HJ; 
        end 
         
        LP_10_conind_QNG_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B2_HJ,12,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,12,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,11,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,11,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,11,'U3') 
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        xlswrite('C:\MATLAB701\work\All_Results',Qt,11,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,11,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'AY3') 
        conind=0; 
       clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
        
             case 6  
        for Q=1:NoRepl; 
          QNG_B3; 
        end 
        LP_10_conind_QNG_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B3,14,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,14,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,13,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,13,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,13,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,13,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,13,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'BF3') 
        conind=0; 
        clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 7  
        for Q=1:NoRepl; 
          QNG_B3_HJ; 
        end 
         
        LP_10_conind_QNG_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNG_B3_HJ,16,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,16,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,15,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,15,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,15,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,15,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,15,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'BM3') 
        conind=0; 
     clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 8  
        for Q=1:NoRepl; 
          QNGC_B2; 
        end 
         
        LP_10_conind_QNGC_B2=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B2,18,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,18,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,17,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,17,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,17,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,17,'V3') 
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        xlswrite('C:\MATLAB701\work\All_Results',iterationt,17,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'BT3') 
        conind=0; 
         clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 
iterationt_1 timer1 timer_1 Endpointt Endpointt_1 
         
             case 9  
        for Q=1:NoRepl; 
          QNGC_B2_HJ; 
        end 
         
        LP_10_conind_QNGC_B2_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B2_HJ,20,'H7'
) 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,20,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,19,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,19,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,19,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,19,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,19,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'CA3') 
        conind=0; 
   clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1  
         
             case 10  
        for Q=1:NoRepl; 
          QNGC_B3; 
        end 
         
        LP_10_conind_QNGC_B3=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B3,22,'H7') 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,22,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,21,'S3') 
        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,21,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,21,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,21,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,21,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'CH3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
         
             case 11  
        for Q=1:NoRepl; 
          QNGC_B3_HJ; 
        end 
         
        LP_10_conind_QNGC_B3_HJ=conind 
        
xlswrite('C:\MATLAB701\work\All_Results',LP_10_conind_QNGC_B3_HJ,24,'H7'
) 
        xlswrite('C:\MATLAB701\work\All_Results',NoRepl,24,'H3') 
        xlswrite('C:\MATLAB701\work\All_Results',NormEA_1,23,'S3') 
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        xlswrite('C:\MATLAB701\work\All_Results',SSERevPara_1,23,'T3') 
        xlswrite('C:\MATLAB701\work\All_Results',timer1,23,'U3') 
        xlswrite('C:\MATLAB701\work\All_Results',Qt,23,'V3') 
        xlswrite('C:\MATLAB701\work\All_Results',iterationt,23,'W3') 
        xlswrite('C:\MATLAB701\work\All_Results',Endpointt,32,'CO3') 
        conind=0; 
 clear NormEA_1 NormEA SSERevPara_1 SSERevPara Qt Qt_1 iterationt_1 
timer1 timer_1 Endpointt Endpointt_1 
        end 
       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%             
           
  end         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  end 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


