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Abstract

In this thesis, the root-locus theory for a class of diffusion systems is

studied. The input and output boundary operators are co-located in the

sense that their highest order derivatives occur at the same endpoint. It is

shown that infinitely many root-locus branches lie on the negative real axis

and the remaining finitely many root-locus branches lie inside a fixed closed

contour. It is also shown that all closed-loop poles vary continuously as the

feedback gain varies from zero to infinity.
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Notation

f̂(s) Laplace transform of f(t)

G(s) Open-loop Transfer function

Gk(s) Closed-loop Transfer function

k Feedback gain

T (t) C0-semigroup

ω0 Growth bound of a semigroup

D(A) Domain of the operator A

R(λ,A) Resolvent operator

ρ(A) Resolvent set

(A, B, C) Finite-dimensional state-space realization

(A,B, C) Boundary control system

L(X,Y ) Space of bounded linear operators from X to Y

O(f) Order of an entire function

τ̂ Instantaneous gain

sig Sign of τ̂

λ Complex conjugate of λ

vi



Contents

1 Introduction 1

1.1 A Perspective on Control Systems . . . . . . . . . . . . . . . . 2

1.2 Recent Advances on the Zeros of Infinite Dimensional Systems 8

1.3 Summary and Organization . . . . . . . . . . . . . . . . . . . 11

2 Infinite-Dimensional Systems 13

2.1 Semigroup Theory . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Boundary Control Systems . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Well-posedness . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Transfer Functions . . . . . . . . . . . . . . . . . . . . 32

2.3 A Special Class of Boundary Control Systems . . . . . . . . . 35

2.3.1 Transfer function . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Zero-input form and zero dynamics . . . . . . . . . . . 47

2.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Root-Locus Theory 56

3.1 Finite-dimensional systems . . . . . . . . . . . . . . . . . . . . 58

3.2 Root-Locus Theory for a Class of Infinite-Dimensional Systems 70

vii



3.2.1 Open-loop Poles and Zeros . . . . . . . . . . . . . . . . 78

3.2.2 Closed-loop Poles . . . . . . . . . . . . . . . . . . . . . 80

3.2.3 Proof of Theorem 3.14 . . . . . . . . . . . . . . . . . . 81

3.2.4 Proof of Theorem 3.15 . . . . . . . . . . . . . . . . . . 95

3.2.5 Proof of Theorem 3.16 . . . . . . . . . . . . . . . . . . 100

3.2.6 Stability of the Closed-loop System . . . . . . . . . . . 106

3.2.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Conclusions and Future Research 111

viii



Chapter 1

Introduction

We begin this chapter with a perspective on control systems in section 1.

We classify control systems into two main classes: open-loop and closed-loop

systems. Open-loop and closed-loop controllers are then compared and some

examples are provided. Then we move to introducing some general concepts

in control systems. Based on the equations of the system, any control sys-

tem is divided into two types: finite and infinite-dimensional systems. We

then focus on infinite-dimensional systems and introduce systems governed

by partial differential equations, in particular, boundary control systems, as

examples of infinite-dimensional systems. In section 2, we narrow our intro-

duction over systems governed by partial differential equations and outline

recent research done in this area. The last section of this chapter is devoted

to giving a summary of this thesis.

1
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Controller

Output

Plant

Desired Output

Figure 1.1: Block diagram of an open-loop control system

Comparison Controller

Output

Measurement

Plant

Desired Output

Figure 1.2: Block diagram of a closed-loop control system

1.1 A Perspective on Control Systems

Controlling a system means forcing the system to provide a desired system

response. The process that is being controlled is called the plant and all

actuating devices, sensors and other components that are employed to control

the process are called the controller. Control systems can be divided into two

classes: open-loop and closed-loop systems. In an open-loop control system,

the controller can be an actuating device that controls the process directly

and the output has no effect on the controller. In contrast, in a closed-loop

control system the output is measured, compared with the desired output,

and then this error, or a function of it, is fed to the controller so as to reduce

the discrepancy between the actual and the desired output. A closed-loop

system is also called a feedback system. An open-loop and a closed-loop

system are shown in Figure 1.1 and Figure 1.2, respectively. An example

of an open-loop control system is a washing machine. All operations of a
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washing machine are on a time basis and the output of the system, that

is, the cleanliness of the clothes, is not measured and has no effect on the

soaking, washing, or rinsing time. Another example of an open-loop system is

traffic control by means of traffic lights operated on a time basis. In general,

any control system that operates only on a time basis is open-loop [21].

A simple example of a closed-loop control system is the speed control of a

car with eyes. The driver measures the speed by looking at the speedometer

and compares the actual speed with the speed limit. If the error, that is, the

difference between the actual and the desired speed, is nonzero, the driver

decreases or increases the speed so as to lower the error. Room temperature

control systems and cruise control systems are examples of closed-loop control

systems.

Open-loop controllers are more convenient when the output is hard to

measure or measuring the output is economically not feasible. The construc-

tion and maintenance of open-loop systems are simpler and less expensive

than closed-loop systems. However, in most actual systems, unwanted pa-

rameters like noise and internal or external disturbances are involved and

hence an exact mathematical model of the system is not available. In these

cases, feeding back the output to correct the errors caused by these unwanted

parameters is indispensable.

Among many types of feedback controllers used in industry, proportional-

integral-derivative(PID) controllers are widely used. A PID controller in-

volves three parts: the proportional, the integral, and the derivative values

of the error. The summation of these three values, as illustrated in Figure

1.3, determines the reaction of the plant to the error. Roughly speaking,
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y(t)
Ki

∫ t

0 e(t)dt

Kpe(t)

Kd
de(t)
dt

r(t)

Desired Output

Plant
G(s) =

n(s)
d(s)

Figure 1.3: Block diagram of a PID controller

a pure proportional control(Ki = Kd = 0) moves the output towards the

desired output but usually with a steady-state error. The contribution of

the integral term, when the proportional term is set to an appropriate value,

accelerates the movement of the output towards the desired value by eliminat-

ing the residual steady-state error. Finally, the contribution of the derivative

term, when the proportional and integral terms are set to suitable values,

slows the rate of change of the output. Note that PI, PD, and proportional

controllers are special cases of PID controllers with Kd = 0, Ki = 0 and

Kd = Ki = 0, respectively.

For any linear time-invariant system a transfer function can be defined.

For single-input single-output (SISO) systems, G(s) is the transfer function

if for any input u(t) and its corresponding output y(t) the relation ŷ(s) =

G(s)û(s) holds, where û(s), ŷ(s) represent the Laplace transform of u(t), y(t),

respectively.

The stability of control systems is a very important concern in designing
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control systems. A system is L2-stable if any input u(t) ∈ L2(0,∞; U) results

in an output y(t) ∈ L2(0,∞; Y ), where U, Y are the input and output spaces,

respectively. Stability has a very close relation to the location of the poles of

the system transfer function. (A point p ∈ C is a pole of G(s) if lims→p G(s) =

∞, a point z ∈ C is a zero of G(s) if lims→z G(s) = 0).

If the system has a variable gain, then the location of the closed-loop

poles depend on the value of the loop gain chosen. For example, in the

system shown in Figure 1.3, if Kd and Ki are set to zero and the only variable

parameter is k = Kp, then the equations of the closed-loop system are ê(s) =

r̂(s) − kŷ(s), and ŷ(s) = G(s)ê(s). Thus, the closed-loop transfer function

(assuming the open-loop transfer function being G(s)) is

Gk(s) =
ŷ(s)

r̂(s)
=

kG(s)

1 + kG(s)
. (1.1)

The closed-loop poles are the roots of the characteristic equation 1+kG(s) =

0.

A simple method for finding the roots of the characteristic equation has

been developed by W.R. Evans for finite-dimensional systems and used exten-

sively in control systems. In this method, called the root-locus method, the

roots of the characteristic equation are plotted for all values of a system pa-

rameter. The roots corresponding to a particular value of this parameter can

then be located on the resulting graph. For example, for the characteristic

equation 1 + kG(s) = 0, as k approaches zero, the roots of the characteristic

equation approach the poles of G(s) and as k tends to infinity, the roots

approach the zeros of G(s).

Any system modeled by x(n)(t)+c1x
(n−1)(t)+···+cn−1x

′(t)+cnx(t) = f(t)

can be represented as ż(t) = Az(t) + Bu(t), z(0) = z0, where z(.) ∈ Rn
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is called the system state, u(·) ∈ Rm is called the input, and y ∈ Rp is the

output. The matrix A ∈ Rn×n is the state matrix, and B ∈ Rm×n is the

input operator. Now if the output is a linear mapping of the state and input,

we can represent the system as

ż(t) = Az(t) + Bu(t), z(0) = z0,

y(t) = Cz(t) + Du(t),
(1.2)

where C ∈ Rp×n and D ∈ Rp×m. This representation is called the state-space

realization of the system and is denoted by (A,B,C, D). In many cases the

input term does not appear in the output measurement, so we also assume

that D = 0 and denote the system by (A,B, C). For example, the motion of

a mass m under a force f(t) can be modeled by md2x
dt2

+ c1
dx
dt

= f(t), where

x(·) is the position of the mass. Taking the position and velocity as the state

variables, we obtain a state-space realization for the system with R2 as its

state-space.

The states of the system (1.2) lie in a finite-dimensional vector space

and hence it is called a finite-dimensional system. Now consider the system

governed by the partial differential equation




∂z
∂t

= ∂2z
∂x2 + u(x, t),

zx(0, t) = 0 = zx(1, t)

z(x, 0) = z0(x), x ∈ [0, 1],

(1.3)

where u(x, ·) is a continuous function of x. At each time t, the solution z(·, t)
lies in {z ∈ H2(0, 1); z′(0) = z′(1) = 0} which is an infinite-dimensional vec-

tor space. Note that H2(0, 1) is the space of all functions whose derivatives

up to the second order are square integrable on (0, 1). In general, any state-

space realization whose state-space is an infinite-dimensional vector space
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is called an infinite-dimensional system. Systems governed by partial dif-

ferential equations and delay equations are examples of infinite-dimensional

systems. The function u(x, t) in equation (1.3) is the source term, or the

input, and is applied through the whole region x ∈ [0, 1].

There are systems governed by partial differential equations for which

the input is applied only through the boundary and the output is also taken

from the boundary. These systems are called boundary control systems. For

example, consider the heat equation system





ż(t) = ∂2z
∂x2 ,

zx(0, t) = u(t),

zx(1, t) = 0

z(x, 0) = z0(x), x ∈ [0, 1],

z(0, t) = y(t).

(1.4)

Root-locus method, stability analysis, and locating poles and zeros of finite-

dimensional linear time-invariant systems are classical subjects in control

theory and can be found in many books [11, 18, 21]. However, studying

these subjects for infinite-dimensional systems is an open research area with

many unsolved problems. One problem with infinite dimensional systems is

that their transfer function may not be bounded at infinity and hence many

standard arguments, required to determine the asymptotic behavior of the

roots, are not generally valid [4]. Some background knowledge on infinite-

dimensional systems can be found in [10, 17]. In the following section, we

outline some recent advances on the zeros of infinite-dimensional systems.
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1.2 Recent Advances on the Zeros of Infinite

Dimensional Systems

The zeros of transfer functions for systems governed by partial differential

equations are studied in e.g. [4, 5, 7, 12, 23, 30].

In [4], Byrnes et al. developed a root-locus analysis for a special class

of boundary control systems with first order time derivative and linear n’th-

order spatial derivative in a bounded one-dimensional space. In their work,

they assumed that n is even and the derivative of order n-1 does not appear

in the spatial operator. Further, the input and output operators are co-

located in the sense that their highest order derivatives occur at the same

point. The state operator in their work was originally studied by Birkhoff in

[1], where he obtained the asymptotic eigenvalues and eigenfunctions of this

class of operators with suitable homogeneous boundary conditions. Byrnes et

al. showed that infinitely many root-locus branches of the considered system

lie on the negative real axis and the remaining finitely many branches can

be embedded within a finite closed contour. Elaborating the results in [4] for

second-order systems is the main part of this thesis.

In [23], Pohjolainen studied a state-space system (A,B, C) with a linear

self-adjoint state operator on a Hilbert space with bounded linear input and

output operators. He proved a necessary and sufficient condition for λ ∈ C
to be a finite eigenvalue of A + kBC when k tends to infinity.

A finite-dimensional system is minimum-phase if all zeros of the system

lie in the left-half s-plane. A bounded analytic function g ∈ H∞(C0;Cm)

on the closed right-half plane is minimum phase if for all functions f ∈
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H2(C0;Cm), the operator Λf = gf defined on H2(C0;Cm) has a dense range

in H2(C0;Cm). Note that

H∞(C0;Cm) = {g : C0 → Cm, g is analytic and sup
Re(s)>0

‖g(s)‖ < ∞},

and,

H2(C0;Cm) = {f : C0 → Cm, f is analytic and ‖f‖2 < ∞}.

For infinite-dimensional systems, besides right-half plane poles, some aspects

of the zero dynamics may lead to a nonminimum-phase behavior. (The zero

dynamics of a system is the system obtained by setting the output to zero).

For example, the transfer function of a pure delay system has no zeros but

is not minimum phase [12]. One disadvantage of a non-minimum phase

systems is that they are slow in responding and so in designing a system,

if fast speed of response is of primary importance, we should not use non-

minimum phase components [21]. Furthermore, the sensitivity of a minimum

phase system can be reduced to an arbitrarily small level, resulting in good

output disturbance rejection [18]. So it is desired to design minimum phase

control systems.

In [30], the location of zeros of an infinite-dimensional state-space system

with bounded input and output operators is discussed and sufficient condi-

tions for the zeros to be real and negative is given. It is proved that if the

state operator is self-adjoint and the output operator is the transpose conju-

gate of the input operator, i.e. the system is co-located, then the transmission

zeros are real. They gave a sufficient condition for the transfer function to

have interlacing zeros and poles on the negative real axis.
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The invariant zeros of the system (A, B, C) are the set of all λ ∈ C such

that the system of equations (λI − A)x + Bu = 0, Cx = 0 has a solution

for u ∈ U and non-zero x ∈ D(A). A subspace Z ⊆ H is A − invariant if

A(Z ∩ D(A)) ⊂ Z. A subspace Z ⊆ H is feedback invariant if Z is closed

and there exists an A-bounded feedback K such that Z is A+BK-invariant.

A subspace Z ⊆ H is open-loop invariant if for every x0 ∈ Z there exists an

input u ∈ C([0,∞); U) such that the solution of ẋ(t) = Ax(t)+Bu(t), x(0) =

x0 ∈ H, u ∈ U remains in Z. In [29], Zwart discussed the concept of open-

loop and closed-loop invariance for infinite-dimensional systems and proved

that they are equivalent for closed linear subspaces. In [19], SISO systems

on a Hilbert space H with bounded input and output operators are studied.

It is shown that for any feedback gain matrix K, the set of eigenvalues of

A + BK is identical to the set of invariant zeros of the system.

In [5], Byrnes et. al. studied the problem of output regulation for a co-

located boundary control system governed by a PDE with first order time

derivative and second order self-adjoint elliptic spatial operator on a bounded

region in Rn. It is assumed that the zero-dynamics of the system is asymptot-

ically stable, that is, the system is minimum phase. Under this assumption,

the input signal guaranteeing asymptotically perfect tracking of a reference

output is obtained.

In [24], conditions for continuity of the spectrum are derived for a class of

well-posed boundary control systems. Rebarber and Townley in this paper

studied the robustness of the spectrum of the closed-loop system operator and

hence the closed-loop poles for this class of systems. Under some conditions,

they derived a stability radius for robustness of the closed-loop poles. They
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also showed that under some conditions, the closed-loop behavior of the

system approaches the system zero-dynamics as the feedback gain tends to

infinity.

In [12], Jacob et al. studied a class of systems governed by a second order

PDE. They derived a sufficient condition for the system that guarantees

the minimum-phase property of the transfer function with either position or

velocity measurements.

For some classes of systems, determining the poles and zeros of infinite-

dimensional systems is closely related to locating the zeros of analytic func-

tions. In [14], an algorithm for approximating the zeros of an analytic func-

tion is given. This algorithm also gives the multiplicity of the zeros. The

problem of finding zeros of analytic functions is also studied in [2]. However,

transfer functions of infinite-dimensional systems are difficult to compute in

general.

1.3 Summary and Organization

The organization of this thesis is as follows. In chapter 2, first we present pre-

liminary notions for infinite-dimensional systems. We introduce semigroup

theory as the starting point of studying infinite-dimensional systems. Then,

we introduce boundary control systems. In the next section, we formulate

the problem of our interest [4], where we analyze the open-loop system and

derive some key results about the open-loop transfer function. In the last sec-

tion of chapter 2, we introduce the concept of stability, and we show that for

all finite-dimensional state-space representations and some classes of infinite-
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dimensional systems the stability is associated with the poles of the transfer

function. The material in this chapter are generally based on [6, 10, 17, 18].

We begin chapter 3 with an introduction to the root-locus theory for

finite-dimensional systems. This finite-dimensional root-locus analysis is

based on [11, 18]. In this section, we derive some results on the closed-

loop stability of a feedback system when the feedback gain is sufficiently

large. The main part of chapter 3 discusses the generalization of root-locus

method to the class of infinite-dimensional systems defined in chapter 2.

The stability of the closed-loop system is also discussed and a necessary and

sufficient condition is given for the closed-loop system to be stable. The

infinite-dimensional root-locus theory in this thesis is based on [4]. Finally,

the thesis is concluded in chapter 4.



Chapter 2

Infinite-Dimensional Systems

Many problems arising in control systems are in infinite dimensional spaces.

For example systems governed by partial differential equations and delay

systems are infinite-dimensional systems. In this thesis, we deal with systems

of partial differential equations and so this chapter is devoted to providing a

background on infinite dimensional systems.

This chapter is organized as follows. In section 2.1, we introduce semi-

groups of operators, and present some important theorems in this context.

The material in this section is generally based on [10]. In section 2.2, bound-

ary control systems(BCS’s) are described and well-posed BCS’s are defined.

The transfer function of BCS’s is also characterized in this section. The ma-

terial in this section is mainly based on [6, 7, 8]. Section 2.3 of this chapter

is dedicated to the special class of boundary control systems considered in

[4]. After defining the system, some of its properties are analyzed. Finally,

in section 2.4 stability of finite and infinite-dimensional systems is discussed.

This section is based on [18, 17]

13
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2.1 Semigroup Theory

Consider the linear time-invariant state-space realization(SSR)

ż(t) = Az(t) + Bu(t), z(0) = z0, (2.1)

y(t) = Cz(t), (2.2)

where z(·) ∈ Rn is the system state, u(·) ∈ Rm is the input, and y ∈ Rp is

the output. The matrix A ∈ Rn×n is the state matrix, and B ∈ Rm×n is the

input operator. Also, C ∈ Rp×n. From the theory of ordinary differential

equations, the state of this system can be represented as

z(t) = eAtz0 +

∫ t

0

eA(t−τ)Bu(τ)dτ, t > 0, (2.3)

where

eAt =
∞∑

n=0

Antn

n!
. (2.4)

But there are many cases where the state-space is an infinite-dimensional

space, as in the following example.

Example 2.1. Consider the 1-D heat equation




∂z
∂t

= ∂2z
∂x2 + u(x, t),

zx(0, t) = 0 = zx(1, t)

z(x, 0) = z0(x), x ∈ [0, 1]

(2.5)

The solution of (2.5) is

z(x, t) =

∫ 1

0

g(t, x, y)z0(y)dy +

∫ t

0

∫ 1

0

g(t− s, x, y)u(y, s)dyds, (2.6)

where g(t, x, y) is the Green’s function

g(t, x, y) = 1 +
∞∑

n=1

2e−n2π2t cos nπx cos nπy. (2.7)
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Now, if we define the operator T (t)z(x) =
∫ 1

0
g(t, x, y)z(y)dy, then we can

rewrite (2.6) as

z(x, t) = T (t)z0(x) +

∫ t

0

T (t− τ)u(τ)dτ. (2.8)

Clearly, this equation is very similar to equation (2.3) with eAt replaced by

T (t). If we define B = I, and A = ∂2/∂x2 with D(A) = {z ∈ H2(0, 1), dz
dx

(0) =

0 = dz
dx

(1)}, we observe that the system (2.5) is formulated as an abstract dif-

ferential equation (2.1) on the infinite-dimensional state-space L2(0, 1) and

the solution is given by (2.8).

This example shows that we need to generalize the notion of matrix ex-

ponential eAt to deal with problems in more general spaces where A is un-

bounded. Semigroup theory gives an abstract framework to derive solutions

for equations of the form (2.1) when A is an unbounded operator on an

infinite-dimensional vector space.

Assume the system dynamics from the initial state z0 to z(t) are linear,

time-invariant and autonomous. For each time t ≥ 0, a linear operator T (t)

on a Hilbert space H can be defined as follows

T (t) : H → H, T (0) = I

z(t) = T (t)z0, ∀z0 ∈ H
(2.9)

We assume that the state of the system is continuous at time t = 0. We also

assume that for all z0 ∈ Z the state of the system after time t + s with the

initial condition z0 is the same as that after time t with the initial condition

z(s) = T (s)z0. This leads to the following important property of the map

T (t):

T (t + s) = T (t)T (s) ∀t, s ≥ 0 (2.10)
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Such a family of dynamical systems can be described using the concept

of strongly continuous semigroups:

Definition 2.2. Consider an operator-valued function T (t) : R+ → L(X,X)

where X is a Banach space and L(X, X) is the space of all bounded linear

operators on X. T(t) is called a semigroup on X if it satisfies the following

properties:

(a) T (t + s) = T (t)T (s) ∀t, s ≥ 0,

(b) T (0) = I.

A semigroup T (t) is uniformly continuous if it satisfies

lim
t→0+

‖ T (t)− I ‖ = 0, (2.11)

and is strongly continuous if

lim
t→0+

‖ T (t)z0 − z0 ‖ = 0, ∀z0 ∈ X. (2.12)

The notation C0-semigroup is used for a strongly continuous semigroup.

Remark 2.3. A C0-semigroup is a special case of a semigroup. In general, a

set G equipped with a binary operation ◦ : G×G 7→ G is called a semigroup if

it is associative and possesses the identity element. It can be verified that the

set G = {T (t); t ≥ 0} equipped with the binary operator T (t)◦T (s) = T (t+s)

forms a semigroup.

Example 2.4. Let A be a bounded linear operator on a Banach space X.

First we prove that the series
∑∞

n=0
(At)n

n!
is convergent in L(X, X) and then
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we show that it forms a semigroup on X. For M > N , we have that

‖
M∑

n=0

(At)n

n!
−

N∑
n=0

(At)n

n!
‖ = ‖

M∑
n=N+1

(At)n

n!
‖

≤
M∑

n=N+1

‖(At)n

n!
‖

≤
M∑

n=N+1

‖A‖ntn

n!
.

The series
∑∞

n=0
‖A‖ntn

n!
is convergent because it is the Taylor series for e‖A‖t.

Therefore, the sequence {∑n
i=0

‖A‖iti

i!
, n ≥ 1} is Cauchy. Thus, for any ε > 0,

there is some integer N1 > 0 such that for all M > N > N1,

‖
M∑

n=0

‖A‖ntn

n!
−

N∑
n=0

‖A‖ntn

n!
‖ < ε, (2.13)

which implies

‖
M∑

n=0

(At)n

n!
−

N∑
n=0

(At)n

n!
‖ < ε. (2.14)

Thus, the sequence {∑n
i=0

(At)i

i!
, n ≥ 1} is Cauchy and by completeness of

L(X,X) converges to some point in L(X,X). The series
∑∞

i=0
(At)i

i!
can be

considered as a generalization of the matrix exponential. Hence, we define

eAt =
∞∑

n=0

(At)n

n!
(2.15)
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Now we prove that eAt is a semigroup on X. It’s clear that eA(0) = I. Consider

‖eAtz0 − z0‖ = ‖
∞∑

n=1

(At)n

n!
z0‖

≤
∞∑

n=1

‖(At)n

n!
z0‖

≤
∞∑

n=1

‖A‖ntn

n!
‖z0‖

= (e‖A‖t − 1)‖z0‖.

The last term tends to zero as t approaches zero and hence strong continuity

at zero is satisfied. Now take any t, s ≥ 0. We have

eA(t+s) =
∞∑

n=0

(A(t + s))n

n!

=
∞∑

n=0

An

n!

n∑

k=0

Cn
k tksn−k

=
∞∑

n=0

n∑

k=0

AktkAn−ktn−k

k!(n− k)!

=
∞∑

k=0

∞∑

n=k

AktkAn−ktn−k

k!(n− k)!

=
∞∑

k=0

Aktk

k!

∞∑

n=k

An−ktn−k

(n− k)!

= eAteAs.

Hence, by definition, the operator-valued function eAt forms a C0-semigroup

on X.

Before we begin another example, which will be applicable in our work,

we recall the Generalized Fourier Series theorem.
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Theorem 2.5. Generalized Fourier Series [15]

Let H be a separable Hilbert space with an orthonormal sequence {φn}.
The following statements are equivalent:

(1) {φn} is maximal, that is, 〈x, φn〉 = 0 ∀n implies x = 0.

(2) For all x ∈ H, x =
∑∞

n=1〈x, φn〉φn.

(3) For all x ∈ H, ‖x‖2 =
∑∞

n=1〈x, φn〉2.
A maximal orthonormal sequence in a separable Hilbert space is called an

orthonormal basis.

In the following example, we describe a class of semigroups on an infinite-

dimensional Hilbert space.

Example 2.6. Let H be a separable Hilbert space with an orthonormal basis

{φn, n ≥ 1}, and let {λn, n ≥ 1} be a sequence in C with

sup
n≥1

Re(λn) = λ̃ < ∞. (2.16)

Define the operator

T (t)z =
∞∑

n=1

eλnt〈z, φn〉φn. (2.17)

First we show that T (t) is a bounded linear operator on H. Linearity can be
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easily verified. In order to prove boundedness, take any z ∈ H. We have that

‖T (t)z‖2 = ‖
∞∑

n=1

eλnt〈z, φn〉φn‖2

=
∞∑

n=1

|eλnt|2|〈z, φn〉|2

=
∞∑

n=1

e2Re(λn)t|〈z, φn〉|2

≤
∞∑

n=1

e2λ̃t|〈z, φn〉|2

= e2λ̃t‖z‖2,

Thus,

‖T (t)‖ ≤ eλ̃t, (2.18)

which implies that T (t) is a bounded operator on H. Now, we can prove that

T (t) is a semigroup on H: For any z ∈ H, T (0)z = z and hence T (0) = I.

Furthermore, for any t, s ≥ 0 and z ∈ H,

T (t)T (s)z =
∞∑

n=1

eλnt〈T (s)z, φn〉φn

=
∞∑

n=1

eλnt〈
( ∞∑

j=1

eλjs〈z, φj〉φj

)
, φn〉φn

=
∞∑

n=1

∞∑
j=1

eλnteλjs〈z, φj〉〈φj, φn〉φn

=
∞∑

n=1

eλn(t+s)〈z, φn〉φn

= T (t + s)z,
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which implies that

T (t)T (s) = T (t + s), ∀t, s ≥ 0. (2.19)

Now we prove strong continuity at t = 0. For any z ∈ H, we have

‖T (t)z − z‖2 = ‖
∞∑

n=1

(
eλnt − 1

) 〈z, φn〉φn‖2

=
∞∑

n=1

∣∣eλnt − 1
∣∣2 |〈z, φn〉|2.

(2.20)

Since
∑∞

n=1 |〈z, φn〉|2 is a convergent sequence, for any ε > 0 there exists

N1 > 0 such that
∑∞

n=N+1 |〈z, φn > |2 < ε. The sequence {|eλnt− 1|2} is also

a bounded sequence on 0 ≤ t ≤ 1 and hence there exists N > 0 such that
∑∞

n=N+1

∣∣eλnt − 1
∣∣2 |〈z, φn〉|2 < ε. On the other hand,

lim
t↓0

N∑
n=1

∣∣eλnt − 1
∣∣2 |〈z, φn〉|2 = 0.

Therefore,

lim
t↓0

∞∑
n=1

∣∣eλnt − 1
∣∣2 |〈z, φn〉|2 < ε (2.21)

that verifies strong continuity at t = 0. Thus, T(t) forms a C0-semigroup on

H.

Some important properties of a C0-semigroup are gathered in the follow-

ing theorem.

Theorem 2.7. ([10] Theorem 2.1.6) For a C0-semigroup the following prop-

erties hold:
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1. T (t) is bounded on every finite interval [0, a] for all a ∈ R+.

2. T (t) is strongly continuous for all t ≥ 0,i.e.,

lim
s→0+

‖T (t + s)z0 − T (t)z0‖ = 0, ∀z0 ∈ H.

3. limt→0+ ‖1
t

∫ t

0
T (s)zds− z‖ = 0, ∀z ∈ H.

4. There exists an ω0 ∈ R such that ω0 = inft>0
1
t
ln ‖T (t)‖, Furthermore,

ω0 = limt→∞ 1
t
ln ‖T (t)‖. The constant ω0 is called the growth bound of

the semigroup.

5. ∀ω > ω0, there is a constant Mω > 0 s.t. for all t > 0, ‖T (t)‖ ≤ Mωeωt.

Definition 2.8. Let T (t) be a C0-semigroup on a Hilbert space H. If the

operator A satisfies

Az = lim
t→0+

1

t
(T (t)− I)z, (2.22)

then A is called the infinitesimal generator of the semigroup. The domain of

A, denoted by D(A), contains all elements z ∈ H for which this limit exist.

Example 2.9. Consider the semigroup eAt =
∑∞

n=0
(At)n

n!
defined in Example

2.4. For any z ∈ H,

1

t

(
eAtz − z

)
=

1

t

∞∑
n=1

(At)n

n!
z,

=
∞∑

n=1

Antn−1

n!
z.

As t approaches zero only the first term of the series remains nonzero. Thus,

lim
t→0

1

t

(
eAtz − z

)
= Az, ∀z ∈ H. (2.23)
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Therefore, A is the infinitesimal generator of the C0-semigroup eAt with

D(A) = H.

Example 2.10. Consider the semigroup T (t) defined in Example 2.6. For

any z ∈ H,

lim
t→0

1

t
(T (t)z − z) = lim

t→0

∞∑
n=1

eλnt − 1

t
〈z, φn〉φn

=
∞∑

n=1

lim
t→0

eλnt − 1

t
〈z, φn〉φn

=
∞∑

n=1

λn〈z, φn〉φn.

Thus the operator

Az =
∞∑

n=1

λn〈z, φn〉φn (2.24)

with domain

D(A) = {z ∈ H;
∞∑

n=1

|λn〈z, φn〉|2 < ∞} (2.25)

is the infinitesimal generator of the C0-semigroup T (t).

As we mentioned earlier, semigroup theory has been developed to solve

problems of the form ż(t) = Az where A is an unbounded operator. The

following theorem relates any semigroup T(t) with an infinitesimal generator

A and the solution of the problem ż(t) = Az.

Theorem 2.11. ([10] Theorem 2.1.10) Let T (t) be a C0-semigroup on a

Hilbert space H with infinitesimal generator A. The following properties

hold:

1. z0 ∈ D(A) implies T (t)z0 ∈ D(A), ∀t ≥ 0.

2. d
dt

(T (t)z0) = AT (t)z0 = T (t)Az0, for all z0 ∈ D(A), t > 0.
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3. The operator A is densely defined, that is, D(A) is dense in H.

4. The operator A is a closed linear operator, where closedness means

that the set {(z, Az); z ∈ D(A)} is closed in H ×H.

This theorem guarantees that z(t) = T (t)z0 solves ż = Az with z(0) = z0

if A is the infinitesimal generator of the C0-semigroup T(t). The question is

whether or not we can make sure that a given operator A is the infinitesimal

generator of a C0-semigroup. The Hille-Yosida theorem below gives us the

answer. First we define the resolvent set and spectrum of an operator, used

frequently in our work.

Definition 2.12. The resolvent set for an operator A, denoted by ρ(A), is

the set of all complex numbers λ for which the λI−A has a bounded inverse.

The inverse operator (λI −A)−1 is called the resolvent operator and denoted

by R(λ,A). The spectrum of A, denoted by σ(A), is the set of all complex

numbers that do not belong to ρ(A).

The Hille-Yosida theorem gives necessary and sufficient conditions for an

operator A to be the infinitesimal generator of a C0-semigroup.

Theorem 2.13. Hille-Yosida Theorem.([10] Theorem 2.1.12)

Let A be a closed, densely defined, linear operator on a Banach space X.

A is the infinitesimal generator of a C0-semigroup if and only if there exist

real numbers M, ω such that, for all α ∈ C satisfying Re(α) > ω, we have

α ∈ ρ(A), and

‖R(α,A)r‖ ≤ M

(Re(α)− ω)r
, ∀r ≥ 1. (2.26)

In this case,

‖T (t)‖ ≤ Meωt. (2.27)
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In the following example we use this theorem to show that each operator

A in the class defined in example 2.10 is the infinitesimal generator of a

C0-semigroup.

Example 2.14. Let H be a separable Hilbert space with an orthonormal basis

{φn, n ≥ 1}, and assume that {λn, n ≥ 1} is a sequence in C satisfying

sup
n≥1

Re(λn) = λ̃ < ∞. (2.28)

We will prove that the operator

Az =
∞∑

n=1

λn〈z, φn〉φn (2.29)

with domain

D(A) = {z ∈ H;
∞∑

n=1

|λn〈z, φn〉|2 < ∞} (2.30)

is the infinitesimal generator of a C0-semigroup.

First we verify that A is a closed, densely defined linear operator on H.

Linearity is obvious. In order to prove that A is densely defined, take any

z ∈ H and represent it as

z =
∞∑

j=1

〈z, φj〉φj. (2.31)

Construct the sequence {zn, n ≥ 1} such that

zn =
n∑

j=1

〈z, φj〉φj. (2.32)

The sequence {zn} belongs to D(A) and is convergent to z. Thus for any

z ∈ H there is a sequence in D(A) converging to z, meaning that D(A) is

dense in H.
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Now we must prove that A is a closed operator, that is, if the sequence

{(xn, Axn)} with xn ∈ D(A) converges to (x, y) ∈ H × H, then x ∈ D(A)

and y = Ax. Since {xn} converges to x, ‖xn‖ converges to ‖x‖ in R+. It can

be shown that any convergent sequence in R is bounded. Therefore ‖Axn‖ is

bounded which means

∞∑
j=1

(λj〈xn, φj〉)2 < ∞, n ≥ 1. (2.33)

Thus ∞∑
j=1

(λj〈x, φj〉)2 < ∞, n ≥ 1. (2.34)

Hence x ∈ D(A) and y = Ax. Consequently, the operator A is a closed,

densely defined linear operator on H.

Now we shall prove that all λ ∈ C with Re(λ) > λ̃ belong to the resolvent

set of A. Take any z ∈ D(A) and λ ∈ C such that infn≥1 |λ − λn| > 0. We

have

(λI − A)z =
∞∑

n=1

(λ− λn)〈z, φn〉φn. (2.35)

Define the following operator:

Aλx =
∞∑

n=1

1

(λ− λn)
〈x, φn〉φn. (2.36)

We claim that the operator Aλ is bounded on D(Aλ): First recall that

sup
n≥1

∣∣∣∣
1

λ− λn

∣∣∣∣ =
1

infn≥1 |λ− λn| (2.37)
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which is bounded by assumption. Thus we have

‖Aλx‖2 =
∞∑

n=1

∣∣∣∣
1

λ− λn

∣∣∣∣
2

〈x, φn〉2

≤
∞∑

n=1

∣∣∣∣sup
n≥1

1

λ− λn

∣∣∣∣
2

〈x, φn〉2

=

∣∣∣∣sup
n≥1

1

λ− λn

∣∣∣∣
2

‖x‖2,

which implies that the operator Aλ is bounded. Then, for all z ∈ D(A),

Aλ(λI − A)z = (λI − A)Aλz = z. (2.38)

Thus Aλ is the inverse of (λI − A) and hence it is the resolvent operator

R(λ,A). Therefore, for all Re(λ) > λ̃, λ belongs to the resolvent set of A.

By simple calculations it can be shown that

R(λ,A)rx =
∞∑

n=1

1

(λ− λn)r
〈x, φn〉φn, ∀x ∈ H (2.39)

and hence

‖R(λ,A)r‖ ≤ sup
n≥1

1

|λ− λn|r

≤ sup
n≥1

1

|Re(λ)− λn|r

=

(
sup
n≥1

1

|Re(λ)− λn|
)r

.

For any real ω ≥ λ̃, any λ with Re(λ) > ω, and any r ≥ 1 we have
(

sup
n≥1

1

|Re(λ)− λn|
)r

≤ 1

(Re(λ)− ω)r
. (2.40)

Therefore,

‖R(λ, A)r‖ ≤ 1

(Re(λ)− ω)r
∀r ≥ 1, Re(λ) > ω. (2.41)
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Thus, by the Hille-Yosida theorem A is the infinitesimal generator of a C0-

semigroup satisfying ‖T (t)‖ ≤ eωt. Now we wish to calculate this semigroup.

From Theorem 2.11 we have that

d

dt
T (t)φn = T (t)Aφn,

= λnT (t)φn.

From this and the fact that T (0) = I, we obtain T (t)φn = eλntφn. Since T(t)

is linear and bounded and {φn} forms an orthonormal basis in H, for any

z ∈ H we have

T (t)z =
∞∑

n=1

eλnt〈z, φn〉φn, (2.42)

previously considered in Example 2.6.

The one-dimensional heat equation considered in Example 2.1 is a special

case of the above example with λn = −n2π2 and φn(x) =
√

2 cos(nπx) for

n ≥ 1, and λ0 = 0 with φ0(x) = 1. Also, 〈·, ·〉 is the inner product on L2(0, 1).

Since the set {1,√2 cos(nπx), n ≥ 1} is an orthonormal basis for L2(0, 1),

the operator T (t) defined in Example 2.1 is a C0-semigroup on L2(0, 1).

While the Hille-Yosida theorem is a strong theorem, it’s not always easy

to verify (2.26) for suitable M, ω. On the other hand, in most applications, we

usually wish to know whether a given operator is the infinitesimal generator

of a C0-semigroup on a Hilbert space. Thus, only establishing a sufficient

condition for the operator to be the infinitesimal generator of a C0-semigroup

on a Hilbert space would suffice. The Lumer-Phillips theorem gives a useful

sufficient condition.
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Theorem 2.15. Lumer-Phillips Theorem ([10] Corollary 2.2.3)

Let A be a closed, densely defined operator on a Banach space X. The

operator A is the infinitesimal generator of a C0-semigroup if there exists a

real number ω such that

Re〈Aφ, φ〉 ≤ ω‖φ‖2, ∀φ ∈ D(A), (2.43)

Re〈A∗ψ, ψ〉 ≤ ω‖ψ‖2, ∀ψ ∈ D(A∗), (2.44)

where A∗ denotes the adjoint of A. In this case, the corresponding semigroup

T (t) satisfies

‖T (t)‖ ≤ eωt. (2.45)

Example 2.16. Consider the operator A defined in Example 2.14. It can be

verified that for ω = supn≥1 Re(λn) the inequalities (2.43)-(2.44) are satisfied,

implying that A is the infinitesimal generator of a C0-semigroup that satisfies

the inequality (2.45).

2.2 Boundary Control Systems

A boundary control system(BCS) is a system in which the input signal and

the output measurement occur on the boundary. An abstract representation

of such a system is

ż(t) = Az, z(0) = z0 (2.46)

Bz(t) = u(t), (2.47)

Cz(t) = y(t), (2.48)

where z(x, t) represents the state of the system, u(t) and y(t) are the input

and output, respectively. The operator A ∈ L(Z, H) is the state operator,
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where L(Z, H) represents the space of bounded linear operators from Z into

H. The operator B ∈ L(Z, U) is the input operator, and C ∈ L(Z, Y ) is

the output operator. The spaces Z,H, U, Y are all Hilbert spaces and Z is a

dense subspace of H. We denote the boundary control system (2.46)-(2.48)

by (A,B, C).

Example 2.17. Consider temperature control along a bar of length 1 with

Neumann boundary conditions. The mathematical representation of this sys-

tem is 



∂z
∂t

= ∂2z
∂x2 , x ∈ (0, 1)

z(x, 0) = 0, x ∈ [0, 1]

∂z
∂x

(0, t) = 0,

∂z
∂x

(1, t) = u(t),

y(t) = z(x1, t), 0 < x1 ≤ 1.

(2.49)

By defining Az = ∂2z
∂x2 with D(A) = {z ∈ H2[0, 1]; zx(0) = 0 = zx(1)},

Bz(t) = ∂
∂x

z(1, t), and Cz(t) = z(x1, t), we obtain the standard form of a

boundary control system defined by equations (2.46)-(2.48).

2.2.1 Well-posedness

A system is well-posed if the state and the output of the system continuously

depend on the initial state and input. Salamon was the first to discuss the

well-posedness of boundary control systems [26]. He also derived conditions

under which a BCS can be represented as a state-space realization. But in

general if a BCS is transformed into a state-space realization, the input and

output operators in the state-space form are unbounded. For a BCS, the

definition of well-posedness can be phrased as follows.
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Definition 2.18. [26] The boundary control system (2.46)-(2.48) is well-

posed if the following conditions hold.

1. For every initial condition z0 ∈ Z, if Bz0 = 0, there exists a unique

z(t) ∈ C1([0, T ], Z) which solves (2.46)-(2.48) with u = 0 and depends

continuously on z0.

2. For every u ∈ H1([0, T ], U), if z0 = 0 and Bz0 = 0, there exists a

unique z(t) ∈ C1([0, T ], Z) which solves (2.46)-(2.48) and depends con-

tinuously on u.

3. There exists a constant c > 0 such that for all z0 ∈ Z with Bz0 = 0
∫ T

0

‖Cz(t; z0, 0)‖2
Y dt ≤ c‖z0‖2. (2.50)

4. There exists a constant c > 0 such that for all u ∈ H2([0, T ], U),
∫ T

0

‖y(t; 0, u)‖2
Y dt ≤ c

∫ T

0

‖u(t)‖2
Udt. (2.51)

The first condition in the definition of well-posedness is satisfied if A is

the infinitesimal generator of a C0-semigroup, say T (t). In this case, the

solution to (2.46)-(2.48) if u = 0 is z(t) = T (t)z0. Condition (2) implies that

the map from input to state is bounded. Condition (3) is equivalent to saying

that the map from initial state to output is bounded. Similarly, condition

(4) is equivalent to saying that the map from input to output is bounded.

In [27], Salamon proved that every bounded time-invariant, causal, linear

input/output operator has a well-posed state-space realization. Thus, in

what follows, we will only focus on well-posedness of the input/output map.

In the following example, it is shown that for a finite-dimensional state-space

realization the input/output map is always bounded.
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Example 2.19. Consider the finite-dimensional state-space realization

(A, B, C), where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rn×p. The zero-state

solution of this system satisfies

‖y(t; 0, u)‖Rp = ‖
∫ t

0

CeA(t−τ)Bu(τ)dτ‖

≤ ‖C‖‖B‖
√∫ t

0

eA(t−τ)dτ‖u(.)‖L2([0,t];Rm).

Thus, for u ∈ L2([0, t]; R
m), the output norm is bounded by the input norm

up to a constant coefficient. Therefore, the input/output map is bounded for

any finite-dimensional state-space realization (A,B,C).

In general, for an infinite-dimensional control system, if the input and

output operators are not chosen properly, the input/output map may not

be bounded. In the following subsection, after introducing a necessary and

sufficient condition for the boundedness of the input/output map, an example

of an ill-posed boundary control system is presented.

2.2.2 Transfer Functions

For a single-input single-output(SISO) linear time-invariant system the trans-

fer function is known as the Laplace transform of the output divided by that

of the input. For multiple-input multiple-output(MIMO) systems a transfer

matrix can be defined whose entry (i,j) is the Laplace transform of the j’th

output divided by that of the i’th input. In general, we define the system

transfer function as follows.

Definition 2.20. Let ŷ(s) and û(s) denote the Laplace transform of the out-

put and the input of a system. The input and the output belong to the vector
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space U and Y , respectively. The system transfer function is the operator

G(s) that satisfies

ŷ(s) = G(s)û(s), (2.52)

for all complex s with Re(s) > σ, for some real σ. The transfer function

G(s) is proper if for some σ ∈ R

sup
Re(s)>σ

‖G(s)‖L(U,Y ) < ∞. (2.53)

The transfer function G(s) is strictly proper if it is proper and

lim
Re(s)→∞

‖G(s)‖L(U,Y ) = 0. (2.54)

Definition 2.21. A point p ∈ C is called a pole of the transfer function

G(s), if G(s) tends to infinity as s tends to p. A point z ∈ C is called a zero

of the transfer function G(s), if G(s) tends to zero as s tends to z.

Example 2.22. Consider the finite-dimensional state-space realization

(A, B, C) defined in (2.1)-(2.2). By taking the Laplace transform of the equa-

tions we obtain

ŷ(s) = Cẑ(s)

= C(sI − A)−1Bû(s)

=
CAdj(sI − A)B

det(sI − A)
û(s).

Thus the transfer matrix is

G(s) =
CAdj(sI − A)B

det(sI − A)
. (2.55)

The function Adj(sI−A) is a polynomial of order at most n-1, while det(sI−
A) is a polynomial of order n. We can observe that each entry in the transfer
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matrix is a rational function of s with the order of its denominator greater

than that of its numerator, implying that each entry approaches zero as s ap-

proaches infinity. Thus the transfer matrix G(s) satisfies (2.54). Therefore,

for any finite-dimensional state-space representation (A,B,C), the transfer

function is strictly proper.

Example 2.23. Consider the system defined in Example 2.17. By taking

the Laplace transform of the system we obtain the system transfer function

in the form

G(s) =
e
√

sx1 + e−
√

sx1

√
s(e

√
s − e−

√
s)

, s ∈ C, Re(s) > 0. (2.56)

This system is strictly proper, because

lim
Re(s)→∞

|G(s)| = lim
Re(s)→∞

e
√

sx1

√
se
√

s
,

= lim
Re(s)→∞

1√
se
√

s(1−x1)
,

= 0.

The following theorem relates the transfer function and the input/output

map of a system.

Theorem 2.24. [9] Let (A,B, C) denote a boundary control system. The

input/output map of the system is bounded, in the sense of Definition 2.18(4),

if and only if the system transfer function is proper.

An inappropriate choice of the input and boundary operators may lead to

an improper transfer function and hence an unbounded input/output map,

as in the following example.
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Example 2.25. Consider the 1-D heat equation with Dirichlet boundary con-

ditions: 



∂z
∂t

= ∂2z
∂x2 , x ∈ (0, 1)

z(x, 0) = 0, x ∈ [0, 1]

∂z
∂x

(0, t) = 0,

z(1, t) = u(t),

y(t) = ∂z
∂x

(1, t).

(2.57)

Taking the Laplace transform of the system yields the system transfer func-

tion, which is

G(s) =

√
s(e

√
s − e−

√
s)

e
√

s + e−
√

s
. (2.58)

The norm of G(s) tends to infinity as Re(s) approaches infinity, implying

that the system transfer function is improper. Thus, the input/output map

is unbounded.

2.3 A Special Class of Boundary Control Sys-

tems

The following class of systems represents a large class of BCS’s which we

encounter in diffusion control systems.

Consider the system




∂z
∂t

= ∂2z
∂x2 + a(x)z, t > 0, x ∈ (0, 1), a(x) ∈ C∞(0, 1)

β ∂z
∂x

(0, t) + β1z(0, t) + β2z(1, t) = u(t),

γ ∂z
∂x

(1, t) + γ1z(0, t) + γ2z(1, t) = 0,

αz(0, t) = y(t),

z(x, 0) = f(x),

(2.59)
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where f ∈ L2[0, 1], u(t) and y(t) are the input and output, respectively. All

coefficients are real-valued with α, β, γ 6= 0.

The system (2.59) is a special case of the problem analyzed in [4]. Byrnes

and Gilliam in [4] characterized a linear partial differential system with first

order time derivative and linear n’th-order spatial derivative in a bounded

one-dimensional space. In their work, they assumed that n is even and the

derivative of order n-1 does not appear in the spatial operator. Further, the

input and output operators are co-located in the sense that their highest

order derivatives occur at the same point. Differential operators of this form

are first studied by Birkhoff in [1] and he derived the asymptotic eigenvalues

and eigenfunctions of this class of linear differential operators with suitable

homogeneous boundary conditions.

We can rewrite the system (2.59) as

ż(t) = Az, z(., 0) = f(.) (2.60)

Bz(t) = u(t), (2.61)

Cz(t) = y(t), (2.62)

where the state, input and output operators are

Az =
∂2z

∂x2
+ a(x)z, x ∈ (0, 1), a(x) ∈ C∞(0, 1) (2.63)

Bz = β
∂z

∂x
(0) + β1z(0) + β2z(1), β 6= 0 (2.64)

Cz = αz(0), α 6= 0. (2.65)

Define the homogeneous boundary operator W as

Wz = γ
∂z

∂x
(1) + γ1z(0) + γ2z(1), γ 6= 0. (2.66)
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The domain D(A) of the operator A becomes

D(A) =
{
z ∈ H2(0, 1);Wz = 0

}
, (2.67)

where the Sobolev space H2(0, 1) is the space of functions f whose derivatives

up to the second order are in L2(0, 1). As we can see in (2.64) and (2.65),

it is assumed that β 6= 0 and so the order of the input operator B is greater

than that of the output operator C. This assumption guarantees the strictly

properness of the system transfer function, as we will see in Proposition 2.33.

2.3.1 Transfer function

In this part some properties of the transfer function for the system (2.59) are

stated. Before we assert the essential proposition about the transfer function,

we recall a lemma from differential equations. The definition of the order of

an entire function is also needed.

Lemma 2.26. ([20],Chapter IV) Let a(x) be a real-valued continuous func-

tion. The equation
∂2g

∂x2
+ (a(x)− s)g = 0, (2.68)

possesses two unique independent solutions g1(x, s), g2(x, s) that are entire

functions of s and are real functions of s in the sense that gi(x, s) = gi(x, s), i =

1, 2, and satisfy

g1(0, s) = 1 , g1x(0, s) = 0,

g2(0, s) = 0 , g2x(0, s) = 1.
(2.69)

It’s not easy to find the independent solutions of the equation (2.68) when

a(x) is a non-constant function. However, for the case where a(x) is constant,
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the two unique independent solutions given in Lemma 2.26 can be found. In

the following example the solutions satisfying Lemma 2.26 are obtained when

a(x) is identically zero. A slight manipulation of the obtained result yields

the result when a(x) is a non-zero constant.

Example 2.27. Consider the equation

∂2g

∂x2
− sg = 0. (2.70)

Define

g1(x, s) = cosh(
√

sx), g2(x, s) =
sinh(

√
sx)√

s
. (2.71)

The Taylor series expansion for g1(x, s) and g2(x, s) are

g1(x, s) =
∞∑

n=0

snx2n

(2n)!
(2.72)

and

g2(x, s) =
∞∑

n=0

snx2n+1

(2n + 1)!
(2.73)

that are clearly independent solutions of (2.70) and are entire functions of s.

From this series expansion it is also evident that gi(x, s) are real functions

of s and gi(x, s) = gi(x, s), i = 1, 2. Moreover,

g1(0, s) = 1 , g1x(0, s) = 0,

g2(0, s) = 0 , g2x(0, s) = 1,
(2.74)

as claimed in Lemma 2.26. We can also show that the solutions g1(x, s), g2(x, s)

obtained in (2.71) is the unique set of solutions that satisfies (2.69). To this

end, assume ĝ1(x, s), ĝ2(x, s) is any other two solutions for (2.70). Then

ĝ1(x, s) = a1(s)g1(x, s) + a2(s)g2(x, s),

ĝ2(x, s) = a3(s)g1(x, s) + a4(s)g2(x, s),
(2.75)
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for some functions ai(s), i = 1, .., 4. If ĝ1(x, s), ĝ2(x, s) satisfy (2.69), since

g1(x, s), g2(x, s) satisfy (2.74), we must have a1(s) = 1, a2(s) = 0, a3(s) = 0,

and a4(s) = 1. Thus,

ĝ1(x, s) = g1(x, s), ĝ2(x, s) = g2(x, s) (2.76)

and the uniqueness result follows.

The order of an entire function is defined in the following example. We

observe that it can be interpreted as a growth bound on the absolute value

of the function.

Definition 2.28. ([16], Lecture 1) An entire function f(s), s ∈ C, is said to

be of finite order if there exist α, r > 0 such that

|f(s)| ≤ e|s|
α

, ∀|s| > r (2.77)

The infimum of all such α, is called the order of f(s), denoted by O(f).

Example 2.29. We show that the function f(s) = ses has order one. To

this end, we must verify that for any ε > 0,

(i) there exists r > 0 such that for all s ∈ C with |s| > r, the inequality

|ses| ≤ e|s|
1+ε

holds, and

(ii) for any r > 0, there exists an s ∈ C with |s| > r such that |ses| >

e|s|
1−ε

.

Write s = ρejφ. Then,

|ses| = ρeρ cos φ,

≤ ρeρ,
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and,

e|s|
1+ε

= eρ1+ε

.

In order to prove that |ses| ≤ e|s|
1+ε

for large s we need to show that ρeρ ≤
eρ1+ε

for large ρ. Equivalently, we need to prove that f(ρ) = ρ+ln ρ−ρ1+ε ≤ 0

for large ρ. However, f ′(ρ) = 1 + 1
ρ
− (1 + ε)ρε. For any ε > 0 there exists

an R > 0 such that f ′(ρ) < 0 for all ρ > R. Hence, for any ε > 0 there is

r > 0 such that f(ρ) < 0 for ρ > r, and |ses| ≤ e|s|
1+ε

.

For the proof of (ii), it suffices to show that the function f(ρ, φ) =

ρeρ cos φ − eρ1−ε
is positive for sufficiently large ρ and φ = 0. Since ρ > ρ1−ε

for ρ > 1, then ln ρ + ρ > ρ1−ε for ρ > 1. Thus, eln ρ+ρ > eρ1−ε
for ρ > 1 and

the result follows.

Now we can state the properties of the system transfer function for (2.59).

Proposition 2.30. [4] For the system (2.59) with zero-initial condition, the

transfer function has the form

G(s) =
N (s)

D(s)
, (2.78)

where D and N are entire functions of s and G(s) is a real function of s,

i.e.,

G(s) = G(s), (2.79)

and hence the complex poles and zeros occur in conjugate pairs. Furthermore,

the asymptotic form for N (s) is

N (s) = (1 +O(
1√
s
))αγ cosh(

√
s), (2.80)

and the asymptotic form for D(s) is

D(s) = −(1 +O(
1√
s
))βγ

√
s sinh(

√
s). (2.81)
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Thus, D and N have order 1
2

with infinitely many zeros diverging to infinity.

Proof. Take the Laplace transform of the equations in the system (2.59) to

obtain

∂2ẑ
∂x2 + (a(x)− s)ẑ = 0, a(x) ∈ C∞(0, 1), (2.82)

Bẑ(s) = β ∂ẑ
∂x

(0, s) + β1ẑ(0, s) + β2ẑ(1, s) = û(s), (2.83)

W ẑ(s) = γ ∂ẑ
∂x

(1, s) + γ1ẑ(0, s) + γ2ẑ(1, s) = 0, (2.84)

Cẑ(s) = αẑ(0, s) = ŷ(s) (2.85)

By Lemma 2.26, there is a unique set of independent solutions z1(x, s) and

z2(x, s) of equation (2.82) that are entire functions of s and are real in the

sense that zj(x, s) = zj(x, s), j = 1, 2. Any solution ẑ(x, s) of equation (2.82)

has the form

ẑ(x, s) =
2∑

j=1

aj(s)zj(x, s) (2.86)

Since the input operator and homogeneous boundary operator are linear,

substituting (2.86) into (2.83)-(2.84) yields the system of equations

a1(s)Bz1(s) + a2(s)Bz2(s) = û(s),

a1(s)Wz1(s) + a2(s)Wz2(s) = 0.
(2.87)

On the other hand, the transfer function is

G(s) =
ŷ(s)

û(s)

=

∑
aj(s)Czj(s)∑
aj(s)Bzj(s)

= α
a1(s)z1(0, s) + a2(s)z2(0, s)

û(s)
. (2.88)
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Now if we solve the system of equations (2.87) for a1(s) and a2(s) and plug

the result in (2.88), we obtain the transfer function as

G(s) = α
z1(0, s)Wz2(s)− z2(0, s)Wz1(s)

Bz1(s)Wz2(s)− Bz2(s)Wz1(s)
(2.89)

Define

N (s) = α(z1(0, s)Wz2(s)− z2(0, s)Wz1(s)), (2.90)

D(s) = Bz1(s)Wz2(s)− Bz2(s)Wz1(s). (2.91)

Since the operator W is linear and z1 and z2 are entire functions of s, the

numerator and denominator of the obtained transfer function are entire func-

tions of s.

The proof of G(s) being real is straightforward since z1 and z2 are real

functions of s.

Now we must find an asymptotic form for N (s) and D(s). To this end,

we need to find the asymptotic form of z1(x, s) and z2(x, s). In equation

(2.82), a(x) is a continuous function of x on a closed and bounded interval

which implies that a(x) attains its extremum values on [0, 1]. Therefore, a

positive real r can be so chosen that

max
x∈[0,1]

|a(x)| << r. (2.92)

Birkhoff in [1] proved that the asymptotic behavior of the solutions of (2.82)

can be obtained by neglecting the term a(x)y compared to the other two

terms for |s| > r and solving

∂2ẑ

∂x2
− sẑ = 0. (2.93)
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In Example 2.27 we obtained the unique basis of solutions for the above

equation satisfying Lemma 2.26. Birkhoff proved that the asymptotic inde-

pendent solutions of (2.82) are

z1(x, s) = (1 +O( 1√
s
)) cosh(

√
sx),

z2(x, s) = (1 +O( 1√
s
)) sinh(

√
sx)√

s
.

(2.94)

This result on asymptotic solutions of differential equations is also discussed

in [20], chapter VII. By substituting z1 and z2 in (2.90) we obtain

N (s) = αWz2(s)

= (1 +O(
1√
s
))

(
αγ cosh(

√
s) + αγ2

sinh(
√

s)√
s

)
.

Thus, for sufficiently large |s|, N (s) can be written as

N (s) = αγ(1 +O(
1√
s
)) cosh(

√
s). (2.95)

Clearly, N (s) has order 1
2

with infinitely many asymptotic zeros s = −(nπ +

π
2
)2, for integer numbers n ≥ 0, that are diverging to infinity. Similarly, we

substitute (2.94) in (2.91) and simplify to obtain

D(s) = (1 +O(
1√
s
))

(
β2γ − βγ1 + (β1γ − βγ2) cosh(

√
s)

−βγ
√

s sinh(
√

s) + (β1γ2 − β2γ1)
sinh(

√
s)√

s

)
.

As |s| approaches infinity, D(s) can be written as

D(s) = −βγ(1 +O(
1√
s
))
√

s sinh(
√

s). (2.96)

It is clear that this function has infinitely many asymptotic zeros s = −n2π2,

for integer numbers n ≥ 1, that are diverging to infinity. Similar to Example

2.29, we can show that the obtained D(s) has order 1
2
.
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Example 2.31. Find the transfer function of the following system




∂z
∂t

= ∂2z
∂x2 ,

− ∂z
∂x

(0, t) = u(t),

z(1, t) = 0,

z(0, t) = y(t),

z(x, 0) = f(x) ∈ L2(0, 1)

(2.97)

The Laplace transform of the system (3.12), assuming zero initial state,

satisfies

sẑ = ∂2ẑ
∂x2 , (2.98)

− ∂ẑ
∂x

(0, s) = û(s), (2.99)

ẑ(1, s) = 0, (2.100)

ẑ(0, s) = ŷ(s). (2.101)

Solving (2.98) with the homogeneous boundary condition (2.100) yields

ẑ(x, s) = a(s) sinh
(
(x− 1)

√
s
)
, (2.102)

where a(s) is an arbitrary function of s. Therefore, the transfer function is

G(s) =
ŷ(s)

û(s)
=

ẑ(0, s)

− ∂ẑ
∂x

(0, s)
=

sinh
√

s√
s cosh

√
s

. (2.103)

In this example, the functions N (s) and D(s) defined in (2.90)-(2.91) are

N (s) =
sinh(

√
s)√

s
, D(s) = cosh(

√
s). (2.104)

Definition 2.32. A function g(s) belongs to H∞(Ca
+) if there exists M > 0

such that g(s) is analytic in Ca
+ and sups∈Ca

+
|g(s)| < M , where Ca

+ = {z ∈
C, Re(z) ≥ a}. The space H∞(C0

+) is usually indicated by H∞.
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Proposition 2.33. For the system (2.59), the transfer function G(s) is in

H∞(Ca
+), for some a ∈ R and satisfies

lim
|s|→+∞

G(s) = 0, s ∈ Ca
+. (2.105)

Hence, the system (2.59) is strictly proper.

Proof. In the proof of Proposition 2.30, we obtained N (s) and D(s) for suf-

ficiently large |s|. From (2.80) and (2.81), we obtain the asymptotic transfer

function as

G(s) =
N (s)

D(s)
=

(
1 +O(

1√
s
)

)
αγ cosh(

√
s)

−βγ
√

s sinh(
√

s)
. (2.106)

This function approaches zero as |s| tends to infinity, as was to be shown.

From Proposition 2.33 and Theorem 2.24, the following result follows.

Corollary 2.34. For the system (2.59) the input/output map is bounded.

Example 2.35 (Example 2.31 continued). The transfer function obtained in

(2.103) is analytic on the open right-half plane and hence lies in H∞(Ca
+), a =

0. Also, it is easy to verify that the system transfer function satisfies

lim
|s|→+∞

sinh
√

s√
s cosh

√
s

= 0. (2.107)

Proposition 2.36. For the system (2.59), the transfer function G(s) satis-

fies

lim
|s|→∞

√
sG(s) = τ̂ , s ∈ Ca

+, (2.108)

for some nonzero real number τ̂ where the limit is taken on the positive real

axis. We refer to the number τ̂ as the instantaneous gain. Denoting the sign

of τ̂ by sig,

sig = (−1)r, (2.109)
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where

r =
1

π
arg

(
α

β

)
+ 1, (2.110)

and the constant real numbers α and β are the coefficients of the highest order

terms of the output and input operators, respectively.

Proof. From the asymptotic transfer function in (2.106) follows

lim
s→∞

√
sG(s) = −α

β
, (2.111)

which is a nonzero real number, as required. Thus, τ̂ = −α
β

is the instanta-

neous gain of the system. Verifying (2.109) is now straightforward.

The name instantaneous gain for τ̂ is introduced in [4]. In the classical

case, the instantaneous gain can be computed as the value of the inverse

Laplace transform of the transfer function at time zero. For this class of

systems, this value does not exist, but τ̂ can be considered as an analogous

to this value.

Example 2.37 (example 2.31 continued). The transfer function of the sys-

tem (2.97) satisfies

lim
|s|→+∞

√
sG(s) = lim

|s|→+∞
sinh

√
s

cosh
√

s
= 1. (2.112)

Therefore, the instantaneous gain of the system (2.97) is one.
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2.3.2 Zero-input form and zero dynamics

Definition 2.38. The uncontrolled or zero-input form of the system (2.59)

is the system obtained by setting the input to be zero, that is,

∂z
∂t

= A0z, t > 0, x ∈ (0, 1)

Cz(t) = y(t)

z(x, 0) = f(x) ∈ L2[0, 1]

(2.113)

where the operator A0 is

A0z =
∂2z

∂x2
+ a(x)z, (2.114)

D(A0) = {z ∈ H2(0, 1);Wz = Bz = 0}. (2.115)

Another definition is the definition of the zero dynamics of the system.

Definition 2.39. The system obtained by constraining the output to zero is

known as the zero dynamics of the system (2.59).

∂z
∂t

= A∞z,

z(x, 0) = f(x) ∈ L2(0, 1)
(2.116)

where

A∞z =
∂2z

∂x2
+ a(x)z, (2.117)

D(A∞) = {z ∈ H2(0, 1);Wz = Cz = 0} (2.118)

We have the following relationship between the system poles and the

spectrum of the operator A0.

Proposition 2.40. The poles of the system (2.59) form a subset of the spec-

trum of the operator A0 with domain D(A0) defined in (2.114)-(2.115).
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Proof. The Laplace transform of the system (2.59) is given in equations

(2.82)-(2.85). The transfer function of this system is

G(s) =
ŷ(s)

û(s)
(2.119)

=
αẑ(0, s)

β ∂ẑ
∂x

(0, s) + β1ẑ(0, s) + β2ẑ(1, s)
, (2.120)

where ẑ(x, s) is the Laplace transform of z(x, t). A complex number s is

a pole of the transfer function if ẑ(x, s) satisfies (2.82) and (2.84) and s

is a zero of the the denominator of the transfer function, that is, Bẑ(s) =

β ∂ẑ
∂x

(0, s)+β1ẑ(0, s)+β2ẑ(1, s) = 0. On the other hand, a complex number s

lies in the spectrum ofA0 if it satisfiesA0ẑ = sẑ, for some nonzero ẑ ∈ D(A0),

that is equivalent to

∂2ẑ
∂x2 + (a(x)− s)ẑ = 0, (2.121)

Bẑ(s) = β ∂ẑ
∂x

(0, s) + β1ẑ(0, s) + β2ẑ(1, s) = 0, (2.122)

W ẑ(s) = γ ∂ẑ
∂x

(1, s) + γ1ẑ(0, s) + γ2ẑ(1, s) = 0. (2.123)

Clearly, the system of equations that yields the poles of the system transfer

function is the same as the system of equations that yields the spectrum of A0

with domain D(A0). Considering the possibility of a pole/zero cancelation in

the system transfer function, we conclude that the poles of the system (2.59)

form a subset of the spectrum of the operator A0 with domain D(A0).

The following relationship holds between the system zeros and the spec-

trum of the operator A∞.

Proposition 2.41. The zeros of the system (2.59) form a subset of the

spectrum of the operator A∞ with domain D(A∞).
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The proof of this proposition is similar to that of Proposition 2.40.

Example 2.42. [Example 2.31 continued] In (2.103) we obtained the system

transfer function as

G(s) =
ŷ(s)

û(s)
=

ẑ(0, s)

− ∂ẑ
∂x

(0, s)
=

sinh
√

s√
s cosh

√
s
, (2.124)

and the functions N (s) and D(s) introduced in (2.90)-(2.91) are

N (s) =
sinh(

√
s)√

s
, D(s) = cosh(

√
s). (2.125)

The poles of this system are s = −(nπ + π/2)2, n = 0, 1, 2, .... On the

other hand, the spectrum of A0 can be obtained by solving ∂ẑ
∂x

(0, s) = 0 with

(2.102), which results in solving cosh
√

s = 0. The roots of this equation are

s = −(nπ + π/2)2, n = 0, 1, 2, ..., corresponding to eigenfunctions cos(nπ +

π/2)x. Thus, the spectrum of A0 is s = −(nπ + π/2)2, n = 0, 1, 2, ....

Hence, the spectrum of A0 with domain D(A0) are exactly the open-loop

poles. Furthermore, the open-loop zeros are s = −n2π2, n = 1, 2, .., while

the spectrum of the zero-dynamics can be obtained by solving ẑ(0, s) = 0

with (2.102), which results in solving 1√
s
sinh

√
s = 0. Thus, the spectrum

of A∞ is s = −n2π2, n = 1, 2, .., corresponding to eigenfunctions sin nπx.

Consequently, the spectrum of A∞ with domain D(A∞) are exactly the zeros

of the transfer function.

2.4 Stability

One of the most important design objectives in control systems is the stability

of the system. In actual systems we like that a bounded input always result
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in a bounded output. We refer to such systems as L2-stable systems. The

mathematical expression of stability for a finite-dimensional system is as

follows.

Definition 2.43. ([18], Definition 3.1) A system is L2-stable or externally

stable if for any input u ∈ L2(0,∞; U), the output y lies in L2(0,∞; Y ),

where U, Y are the vector spaces of the input and output, respectively.

Theorem 2.44. ([18], Theorem 3.6) A finite-dimensional system is L2-stable

if and only if the system transfer function G(s) lies in H∞(Definition 2.32).

This result is also true for general well-posed systems [7]. We will prove

this equivalence for the class of boundary control systems introduced in

(2.59). First we recall a theorem from complex analysis.

Theorem 2.45. ([25],Theorem 10.18) Let f be an analytic function on a

domain C in the complex plane. If f is not identically zero, then the zeros

of f on C have the following properties.

(a) If s0 is a zero of f , then the order of s0 is finite, that is, there exists

an m such that f(s) = (s− s0)
mg(s) and g(s0) 6= 0.

(b) The zeros of f are isolated, that is, if f(s0) = 0, there exists δ > 0

such that f(s) 6= 0 whenever 0 < |s− s0| < δ.

(c) The zeros of f do not have any accumulation points in C. As a result,

in any compact subset of C, the function f possesses only a finite number of

zeros.

We also need Parseval’s Theorem.
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Theorem 2.46. (Parseval’s Theorem [22]) For f(t), g(t) ∈ L2(−∞,∞;R)

with Fourier transform f̂(jω), ĝ(jω), ω ∈ R, the following equality holds.
∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
f̂(jω)ĝ(jω)ds. (2.126)

The following theorem gives a necessary and sufficient condition for L2-

stability of the system (2.59).

Theorem 2.47.

Proof. In Proposition 2.30 we proved that the transfer function of the system

(2.59) is

G(s) =
N (s)

D(s)
, (2.127)

where N and D are entire functions of s. We also proved in Proposition 2.33

that G(s) is strictly proper and hence it satisfies the properness condition

supRe(s)>σ ‖G(s)‖ < ∞, for some σ ∈ R. If G(s) ∈ H∞, then D(s) has no

roots in the closed right-half plane, and by Theorem 2.45, these roots are

isolated. There exists some M > 0 such that the transfer function satisfies

|G(s)| ≤ M, (2.128)

for all s ∈ C+
0 = {s ∈ C, Re(s) ≥ 0}. Take any u ∈ L2(0,∞; U) with Fourier

transform û(jω). by Parseval’s theorem,
∫ ∞

0

|u(t)|2dt =

∫ ∞

−∞
|û(jω)|2dω. (2.129)

Thus, the Fourier transform of the output satisfies
∫ ∞

−∞
|ŷ(jω)|2dω =

∫ ∞

−∞
|G(jω)û(jω)|2dω

≤ ‖G(jω)‖2

∫ ∞

−∞
|û(jω)|2dω

≤ M‖u‖2
2, (2.130)
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where the right-hand side is bounded by assumption. Thus, by Parseval’s

Theorem ∫ ∞

0

|y(t)|2dt =

∫ ∞

−∞
|ŷ(jω)|2dω < ∞. (2.131)

Therefore, the system is L2-stable.

Now assume G(s) is not in H∞. Since G is proper and N (s) and D(s)

are entire functions, G has at least one pole in C+
0 . Choose a pole p with

Re(p) ≥ 0. Choose an input u ∈ L2(0,∞; U) such that û(p) 6= 0. The

Laplace transform of the corresponding output is

ŷ(s) = G(s)û(s) = G1(s) +
A

s− p
, (2.132)

where G1(s) is analytic in a neighborhood of p and A is the residue of

G(s)û(s) at s = p. If Re(p) > 0, the inverse Laplace transform of ŷ(s)

has a term that is growing exponentially and hence y is not in L2(0,∞; Y ).

If p is imaginary, then the inverse Laplace transform has an oscillating term

which implies that y is not in L2(0,∞; Y ). In both cases, the system is not

L2-stable. The argument is similar when p is a pole of multiplicity more than

one. This completes the proof.

The above theorems concern the external stability of a system. Another

concept that has a significant importance is whether the states eventually

become zero for all initial states. In [17], asymptotically stable and exponen-

tially stable semigroups are introduced.

Definition 2.48. (Definition 3.1 [17]) A C0-semigroup T (t) on a Banach

space X is asymptotically stable if for any x ∈ X, ‖T (t)x‖ → 0 as t ap-

proaches infinity.
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Definition 2.49. (Definition 3.1 [17]) A C0-semigroup T (t) on a Banach

space X is exponentially stable if

‖T (t)‖ ≤ Me−αt, (2.133)

for some constants M ≥ 1, α > 0 and all t ≥ 0.

The constant α is the decay rate of the semigroup.

In both asymptotic and exponential stability of the semigroup T (t) with

infinitesimal generator A, the solution to ż(t) = Az(t), z(0) = z0 tends

to zero as t approaches infinity. It is easy to show that in finite-dimensional

systems, asymptotic and exponential stability are equivalent. However, expo-

nential stability is stronger than asymptotic stability for infinite-dimensional

systems. In the following example, we show an asymptotically stable semi-

group that is not exponentially stable.

Example 2.50. Let X = l2, the space of sequences {xn, n ≥ 1} with
∑∞

n=1 x2
n <

∞. Define the semigroup

T (t)x = {e−t/nxn, n ≥ 1}, t ≥ 0, (2.134)

for all x = {xn, n ≥ 1} ∈ l2. We have ‖T (t)x‖2 =
∑∞

n=1 e−2t/nx2
n which is

convergent to zero as t tends to infinity. Thus, T (t) is asymptotically stable.

However, for any t ≥ 0 and any x ∈ l2,

‖T (t)x‖2 =
∞∑

n=1

e−2t/nx2
n

≤
∞∑

n=1

x2
n

= ‖x‖2.
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Thus, ‖T (t)‖ ≤ 1. Consider the sequence x = {xn, n ≥ 1} such that xi =

1 for some i ≥ 1 and xn = 0 for n 6= i. For this sequence, ‖T (t)x‖ =

e−t/i|xi| and ‖x‖ = |xi|. Therefore, with a suitable choice of i, ‖T (t)x‖ can

be arbitrarily close to ‖x‖. Thus, ‖T (t)‖ = 1 for all t ≥ 0. Hence, T (t) is

not exponentially stable.

Note that the infinitesimal generator of T (t) is

Ax = {−xn

n
, n ≥ 1}, (2.135)

and the spectrum of A is σ(A) = {−1
n

, n ≥ 1}.

Now we define the internal stability of a control system.

Definition 2.51. A well-posed control system with state operator A and

associated semigroup T (t) is internally stable if T (t) is exponentially stable.

Corollary 2.52. ([18], Definition 3.14) A finite-dimensional system with

state-space realization (A,B, C) is internally stable if max1≤i≤n Re(λi(A)) <

0, where λi(A), 1 ≤ i ≤ n are the eigenvalues of A.

The following theorem gives necessary and sufficient conditions for a semi-

group to be exponentially stable.

Theorem 2.53. ([17], Theorem 3.35) Let T (t) be a semigroup on a Hilbert

space H with generator A. Then T (t) is exponentially stable if and only if

{λ ∈ C, Reλ ≥ 0} belongs to the resolvent set of A and the resolvent operator

satisfies

‖R(λ,A)‖ ≤ M, (2.136)

for some positive constant M and all λ with Reλ ≥ 0.
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In [18](Theorem 3.16), it is shown that an internally stable finite di-

mensional system is always L2-stable. This property also holds for general

well-posed systems. We show below that for the system (2.59) exponen-

tial stability of the semigroup generated by the state operator is a sufficient

condition for L2-stability of the system.

Theorem 2.54. The system (2.59) is L2-stable if the semigroup generated

by the operator A0 is exponentially stable.

Proof. IfA0 is exponentially stable then by Theorem 2.53 all of its eigenvalues

are in the open left-half plane. From Proposition 2.40, we also know that

the poles of the system transfer function form a subset of the eigenvalues of

A0. Thus, all poles of the transfer function lie in the open left-half plane and

hence by Theorem 2.47 the system is L2-stable.

In this chapter we provided background knowledge on infinite-dimensional

linear systems and basic concepts in this context. Through examples in finite

and infinite-dimensional systems we tried to clarify the material. But, so

far, we have not mentioned what is meant by controlling a system. In the

following chapter we will introduce feedback control systems and stability

analysis.



Chapter 3

Root-Locus Theory

Controlling a system generally means forcing the system to operate in the

way we wish and to produce our desired output. If an exact mathematical

model of a system was available and there was no disturbance on the system,

one would be able to apply the suitable input so that the desired output is

produced. But in all actual systems unwanted disturbances are involved. So

a feedback mechanism is required to measure a quantity and correct errors

if any discrepancies from the desired value of that quantity occur. There are

many examples of feedback control systems. In this chapter we consider the

r y
G(s)

e

k

Figure 3.1: the closed-loop system

56
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feedback system shown in Figure 3.1. The system that is being controlled is

called the plant and is shown by transfer function G(s). The controller, a

proportional controller, is a constant but adjustable gain k. The open-loop

system is the system obtained by setting the feedback gain to zero. The

transfer function G(s) is called the open-loop transfer function. In contrast,

the system with feedback is called the closed-loop system. The equations of

the closed-loop system are

ê(s) = r̂(s)− kŷ(s),

ŷ(s) = G(s)ê(s).
(3.1)

Therefore, the closed-loop transfer function is

Gk(s) =
ŷ(s)

r̂(s)
=

G(s)

1 + kG(s)
. (3.2)

The poles of Gk(s) are the closed-loop poles of the system. We can see

that the closed-loop poles move in the s-plane as k varies. The graph of all

trajectories of the closed-loop poles as k varies from zero to infinity, is known

as the root-locus graph of the system.

The root-locus graph shows us for what values of the variable parameter

k the closed-loop poles lie in the open left-half plane, making the closed-loop

system stable. It is usually possible to set the parameter k such that an

unstable open-loop system becomes a stable closed-loop one.

The root-locus method for finite-dimensional systems is totally estab-

lished and known. But for infinite-dimensional systems the root-locus theory

is still an open research area. This chapter is organized as follows. In sec-

tion 1, we discuss the root-locus theory for finite-dimensional systems. The

material in this section is generally based on [11], [18]. In section 2, we deal
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with the feedback control of the system described in (2.59) and the root-locus

method is applied to this class of infinite-dimensional systems. The stability

problem is then discussed for this system. This section is mainly based on

[4].

3.1 Finite-dimensional systems

In this section, we describe the root-locus method to locate the closed-loop

poles of a finite-dimensional state-space realization as the feedback gain pa-

rameter k varies from zero to infinity. Particularly, we deal with the stability

of the closed-loop system for sufficiently large k. We begin with a motivating

example.

Example 3.1. Consider the system shown in Fig.3.1 with open-loop transfer

function G(s) = s
(s+1)(s+2)

. The closed-loop transfer function is

Gk(s) =
(s + 1)(s + 2)

(s + 1)(s + 2) + ks
. (3.3)

The closed-loop poles of the system are the roots of

(s + 1)(s + 2) + ks = 0, (3.4)

that is,

s1 =
1

2

(
−(3 + k) +

√
(3 + k)2 − 8

)
, s2 =

1

2

(
−(3 + k)−

√
(3 + k)2 − 8

)
.

(3.5)

For k ≥ 0, s1, s2 are real-valued. As k varies from zero to plus infinity, s1

moves from −1 to the origin on the real axis in the s-plane, and s2 moves

from -2 to −∞ on the real axis. Furthermore, s1 and s2 are continuous
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k = 1.74

k = 0 k = ∞

Figure 3.2: the root-locus graph for example 3.1

monotone functions of k for k ≥ 0. The root-locus graph of this system for

0 ≤ k < ∞ is shown in Figure 3.2. From the root-locus graph we realize that

for 0 < k < ∞ the closed-loop poles always are in the open left-half plane

implying that the closed-loop system is stable for all 0 < k < ∞.

In Figure 3.3, an example of a root-locus graph produced by MATLAB

for the system shown in Figure 3.1 is illustrated. The open-loop transfer

function of this system is G(s) = s
(s2+2s+2)(s−1)(s+1)(s+2)

.

Consider the finite-dimensional state-space realization

ẋ(t) = Ax + Bu,

y = Cx,
(3.6)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. We obtained the transfer

function of this system in Example 2.22 as

G(s) =
CAdj(sI − A)B

det(sI − A)
. (3.7)

Thus, for any state-space realization (A,B, C) the transfer function is a ra-

tional function and the numerator and denominator have finite orders. Let

G(s) = n(s)/d(s) be the open-loop transfer function of this system, with

n(s) and d(s) being polynomials of order nz and np, respectively. We form



Chapter 3. Root-Locus Theory 60

Figure 3.3: the root-locus graph for G(s) = s
(s2+2s+2)(s−1)(s+1)(s+2)

the closed-loop system by a proportional feedback of the form

u = −ky + r, (3.8)

as shown in Figure 3.1. The closed loop transfer function is

Gk(s) =
G(s)

1 + kG(s)
=

n(s)

d(s) + kn(s)
(3.9)

The stability of the closed-loop system depends on the closed-loop poles of

the system, that is, the zeros of

d(s) + kn(s) = 0. (3.10)

which is called the characteristic equation of the closed-loop system. For

k = 0, the closed-loop poles are exactly the open-loop poles of the system,

which may not be in the open left-half plane. Therefore, we wish to choose k
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so that all closed-loop poles lie in the open left-half plane. We can tackle this

problem using the root-locus method. Let us rewrite the open-loop transfer

function as

G(s) =

∏nz

j=1 (s + zj)∏np

j=1 (s + pj)
, (3.11)

where {−zj}nz
j=1 are the open-loop zeros and {−pj}np

j=1 are the open-loop

poles. The characteristic equation can now be written as

k.

∏nz

j=1 (s + zj)∏np

j=1 (s + pj)
= −1. (3.12)

From this equation follows

∣∣∣∣∣k
∏nz

j=1 (s + zj)∏np

j=1 (s + pj)

∣∣∣∣∣ = 1, (3.13)

arg

(
k

∏nz

j=1 (s + zj)∏np

j=1 (s + pj)

)
= π + 2mπ, m = 0,±1,±2, ... (3.14)

These equations can be simplified in the following form.

|k|.
∏nz

j=1 |s + zj|∏np

j=1 |s + pj|
= 1, (3.15)

and

arg(k) +
nz∑
j=1

arg(s + zj)−
np∑
j=1

arg(s + pj) = π + 2mπ, m ∈ Z. (3.16)

Thus, a point s ∈ C lies on the root-locus if it satisfies the equations (3.15)-

(3.16) for some k ∈ R+.

All finite-dimensional systems are well-posed systems and so the map

from input to output is bounded. For these systems, as we discussed in

chapter 2, the transfer function is proper which means that the order of the
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denominator is not less than that of the numerator. Thus, in this section, we

assume that the system described by (3.11) satisfies the condition np ≥ nz.

The first step to sketch the root-locus for a system with characteristic

equation (3.12) is to locate the closed-loop poles for k = 0, that is the open-

loop poles. In the second step, the closed-loop poles when k approaches

infinity must be located, that is the open-loop zeros.

In what follows, some properties of the root-locus graph for a system

shown in Figure 3.1 with open-loop transfer function given in (3.11) are

stated.

Proposition 3.2. If all coefficients of the open-loop transfer function G(s)

are real, then the root-locus graph is symmetric with respect to the real axis.

In other words, for each k ≥ 0, the closed loop poles are either real or occur

in conjugate pairs.

Proof. The closed-loop poles are obtained by solving equation (3.10). Since

all coefficients are real, we have that d(s) + kn(s) = d(s) + kn(s), for all

s ∈ C. Thus, for each k ≥ 0, if d(s0) + kn(s0) = 0, s0 ∈ C, then

d(s0) + kn(s0) = 0,

which implies

d(s0) + kn(s0) = 0

Thus, if s0 is a closed-loop pole, then is so s0.

In particular, the open-loop poles and zeros occur in conjugate pairs. In

general, for any closed-loop system with characteristic equation f(s, k) =

0, Proposition 3.2 is satisfied if the f(s, k) is a real function of s, that is



Chapter 3. Root-Locus Theory 63

f(s, k) = f(s, k). Thus, this proposition can be applied to a variety of

systems including many infinite-dimensional systems.

The following proposition indicates which intervals on the real axis are

sections of the root-locus.

Proposition 3.3. For k > 0, x ∈ R belongs to the root-locus if and only if

x lies in a section of the real axis to the left of an odd number of poles and

zeros.

Proof. First we prove that if for some k ∈ [0,∞), the point x ∈ R sat-

isfies the magnitude and phase conditions (3.15)-(3.16), then x lies to the

left of an odd number of poles and zeros. For any x ∈ R, we have that
∏nz

j=1 |x + zj|/
∏np

j=1 |x + pj| is a positive real number, say, α. Thus, for

k = 1/α the magnitude condition is satisfied. It only remains to prove that

x satisfies the phase condition (3.16), if and only if x lies in a section of the

real axis to the left of an odd number of poles and zeros. Let r be the number

of real open-loop zeros to the right of x, r̂ be the total number of complex

conjugate open-loop zeros’ pairs, s be the number of real open-loop poles to

the right of x, and ŝ be the total number of complex conjugate open-loop

pole pairs. As illustrated in Figure 3.4, we have

nz∑
j=1

arg(x + zj) = 2πr̂ + πr, (3.17)

np∑
j=1

arg(x + pj) = 2πŝ + πs. (3.18)

Since arg(k) = 0, the phase condition (3.16) is

arg(k) +
∑nz

j=1 arg(x + zj)−
∑np

j=1 arg(x + pj)

= 2π(r̂ − ŝ) + π(r − s)
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φ s-plane

π

−pj

−pj

x

2π − φ

−pj

Figure 3.4: Any real pole −pi to the right of x satisfies arg(x+ pi) = π. Any

pair of complex poles −pj,−p̄j satisfy arg(x + pj) + arg(x + p̄j) = 2π

where r̂ − ŝ is an integer number. For every real x on the root-locus, the

equation (3.19) is equal to an odd multiplicity of π which implies r − s is

an odd number and hence r + s is an odd number, that is, the number of

real poles and zeros to the right of x is an odd number. This completes the

proof.

Definition 3.4. A rational transfer function G(s) possesses a zero at infinity

of multiplicity mz > 0 if

lim
|s|→∞

smzG(s) = c, (3.19)

for some nonzero constant c ∈ R.

A pole at infinity can also be defined in a similar way, but since finite-

dimensional systems have proper transfer functions, they never have poles at

infinity.

The following proposition can be easily verified.
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Proposition 3.5. A finite-dimensional system with transfer function G(s)

given in (3.11), possesses a zero of multiplicity np − nz at infinity.

Proof. Write

G(s) =
snz + a1s

nz−1 + ... + anz

snp + b1snp−1 + ... + bnp

, (3.20)

where nz indicates the number of zeros of G and np the number of poles.

Then,

lim
|s|→∞

snp−nzG(s) = 1 (3.21)

Thus, G(s) has np − nz zeros at infinity.

The following proposition follows from a theorem in algebra that proves

the roots of any polynomial continuously depend on its coefficients.

Proposition 3.6. [28] For a system shown in Figure 3.1 with a well-posed

open-loop transfer function G(s) given in (3.11), all closed-loop poles vary

continuously as k varies from zero to infinity.

From Proposition 3.6 the following corollary follows.

Corollary 3.7. For a system shown in Figure 3.1 with a rational open-loop

transfer function G(s) given in (3.11), the number of separate loci is equal

to np.

Proof. Consider the characteristic equation d(s)+kn(s) = 0, with the trans-

fer function G(s) given in (3.11). For each k ≥ 0 there are np roots for this

equation that vary continuously with k. As k approaches infinity, the roots

of the characteristic equation tend to the zeros of G(s). We showed that

G(s) possesses np − nz zeros at infinity in addition to nz finite zeros. Thus,
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nz branches end at nz finite open-loop zeros and np − nz branches tend to

np − nz zeros at infinity. Thus, the number of separate loci is np.

The following important property describes the behavior of the infinite

branches.

Proposition 3.8. For a system shown in Figure 3.1 with a well-posed open-

loop transfer function G(s) given in (3.11), np−nz sections of loci must end

at zeros at infinity. These sections of loci proceed to the zeros at infinity along

asymptotes as k approaches infinity. These linear asymptotes are centered at

a point on the real axis given by

σ =

∑
(poles of G(s))−∑

(zeros of G(s))

np − nz

(3.22)

The angles of the asymptotes w.r.t the real axis are,

φ =
(2m− 1)π

np − nz

, m = 1, 2, ..., np − nz (3.23)

Proof. Write the open-loop transfer function in the form (3.20). For suffi-

ciently large |s|, G(s) can be approximated as

G(s) =
snz + a1s

nz−1 +O(snz−2)

snp + b1snp−1 +O(snp−2)
,

=
1

snp−nz

1 + a1

s
+O( 1

s2 )

1 + b1
s

+O( 1
s2 )

.

Dividing the numerator and denominator of the above equation by 1 + a1

s

yields

G(s) =
1

snp−nz

1 +O( 1
s2 )

1 + b1−a1

s
+O( 1

s2 )
,

=
1 +O( 1

s2 )

snp−nz + (b1 − a1)snp−nz−1 +O(snp−nz−2)
. (3.24)
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On the other hand, for sufficiently large |s|, we can approximate the

binomial expansion

(
s +

b1 − a1

np − nz

)np−nz

= snp−nz + (b1 − a1)s
np−nz−1 +O(snp−nz−2). (3.25)

Substitute (3.25) into (3.24) to obtain

G(s) =
1 +O( 1

s2 )(
s + b1−a1

np−nz

)np−nz

+O(snp−nz−2)
. (3.26)

Hence the characteristic equation 1 + kG(s) = 0 becomes

1 + k
1 +O( 1

s2 )(
s + b1−a1

np−nz

)np−nz

+O(snp−nz−2)
= 0. (3.27)

From this equation it follows that

(
s +

b1 − a1

np − nz

)np−nz

+O(snp−nz−2) = kejπ(2m−1)(1+O(
1

s2
)), m ∈ Z. (3.28)

Therefore, the asymptotic approximation of the obtained equation is

s +
b1 − a1

np − nz

= k
1

np−nz e
jπ 2m−1

np−nz , m = 1, 2, ..., np − nz. (3.29)

Thus, the asymptotes are centered at

σ = − b1 − a1

np − nz

, (3.30)

with angles φ = (2m−1)π
np−nz

, m = 1, ..., np − nz.

Recall that the summation of the roots of a polynomial in s of order n is

equal to the negative of the coefficient of the term sn−1. Hence, in the transfer

function G(s), b1 = −∑
(poles of G(s)) and a1 = −∑

(zeros of G(s)). The

proof is now complete.
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25.1

Figure 3.5: the root-locus graph for G(s) = s
(s2+2s+2)(s−1)(s+1)(s+2)

, asymp-

totes are centered at σ = −1.25

The behavior of the asymptotes for an example is illustrated in 3.5.

In our finite-dimensional root-locus analysis we always assumed that the

feedback gain k is positive. Let us see what happens to the system shown

in Figure 3.1 with open-loop transfer function (3.11), if k is negative. By

simple manipulations of the proof of Proposition 3.3, we can show that a real

point x ∈ R belongs to the root-locus if and only if x lies in a section of the

real axis to the left on an even number of real poles and zeros. Furthermore,

similar to the proof of Proposition 3.8 we can show that if np − nz > 0,

the infinite branches have asymptotes with angles φ = 2mπ/(np − nz), m =

0, 1, .., np−nz−1. Thus, if the system is strictly proper, that is, np−nz ≥ 1,

one of the root-locus branches is the interval [a,∞), where a ∈ R is the

right-most real open-loop pole or zero. The closed-loop pole that approaches
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infinity on this branch, makes the system unstable for sufficiently large |k|.
Hence, we observe that the assumption k > 0 is plausible.

From Proposition 3.8, we have the following results on the stability of the

system shown in Figure 3.1 with open-loop transfer function (3.11).

1. If np−nz > 2, then there is an asymptote with phase −π/2 < θ < π/2,

which means for k sufficiently large, there is a closed-loop pole lying in the

right-half plane, thus, the closed-loop system is unstable for sufficiently large

k.

2. If np − nz = 2 and σ ≥ 0, σ defined in (3.22), the two asymptotic

branches lie in the closed right-half plane, which means the system is unstable

for sufficiently large k.

3. If np − nz = 2 and σ < 0, then two asymptotes lie in the open

left-half plane, which means that as k tends to infinity, the two closed-loop

poles diverging to the two open-loop zeros at infinity, are on the open left-

half plane. In this case, for the closed-loop system to be eventually stable(for

sufficiently large k), it suffices that all open-loop zeros lie in the open left-half

plane.

4. If np − nz = 1, the only asymptote is the negative real axis, which

means the closed-loop pole diverging to the zero at infinity, is stable for

sufficiently large k and the only criterion for the closed-loop system to be

stable is that all open-loop zeros lie in the open left-half plane.

5. If np − nz = 0, there is no infinite branches in the root-locus and all

closed-loop poles are finite. In this case, the only criterion for the closed-loop

system to be stable is that all open-loop zeros lie in the open left-half plane.



Chapter 3. Root-Locus Theory 70

3.2 Root-Locus Theory for a Class of Infinite-

Dimensional Systems

In this section, we will evaluate the feedback control of the open-loop system




∂z
∂t

= ∂2z
∂x2 + a(x)z, t > 0, x ∈ (0, 1), a(x) ∈ C∞(0, 1)

Bz(t) = β ∂z
∂x

(0, t) + β1z(0, t) + β2z(1, t) = u(t),

Wz(t) = γ ∂z
∂x

(1, t) + γ1z(0, t) + γ2z(1, t) = 0,

Cz(t) = αz(0, t) = y(t),

z(x, 0) = f(x),

(3.31)

where f ∈ L2[0, 1], u(t) and y(t) are the input and output, respectively. All

coefficients are real-valued with α, β, γ 6= 0. The state operator of the system

is

Az =
∂2z

∂x2
+ a(x)z, (3.32)

D(A) = {z ∈ H2(0, 1);Wz = Bz = 0}. (3.33)

This system was introduced in section 2.3 and some of its properties derived.

In this section, we want to evaluate the closed-loop system when a feedback

shown in Figure 3.1 is applied to the system. The output control is obtained

by the feedback

u = −ky + r, (3.34)

which changes the system as follows

∂z
∂t

= Akz,

Bz(t) + kCz(t) = r(t),

Cz(t) = y(t),

z(x, 0) = f(x),

(3.35)
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where

Akz = Az,

D(Ak) = {z ∈ H2(0, 1);Wz = 0, (B + kC)z = 0}.
(3.36)

The stability analysis of the closed-loop system mostly consists of determin-

ing if the closed-loop poles lie in the open left-half plane. This in general

takes a lot of effort and requires background in complex and asymptotic

analysis. However, for the specific case where the operator Ak with domain

D(Ak) is self-adjoint, this analysis is much easier due to the fact that the

eigenvalues of a self-adjoint operator are real, which we will prove in the

following theorem.

Theorem 3.9. ([20], Chapter IV) If the operator A with domain D(A) is

self-adjoint, all eigenvalues of A are real.

Proof. Let λ be an eigenvalue of A and λ̄ be its complex conjugate. Take

φ, ψ ∈ D(A). We have

〈φ,Aψ〉 = 〈φ, λψ〉 = λ̄〈φ, ψ〉,
〈Aφ, ψ〉 = 〈λφ, ψ〉 = λ〈φ, ψ〉.

Self-adjointness implies

(λ̄− λ)〈φ, ψ〉 = 0. (3.37)

Since φ, ψ are chosen arbitrarily, we must have λ = λ̄ meaning that the

eigenvalues are all real.

But the operator Ak defined in (3.36) is not necessarily self-adjoint. In

the following proposition a sufficient condition for Ak to be self-adjoint is

given.
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Proposition 3.10. Consider the operator Ak with domain D(Ak) defined in

(3.36). A sufficient condition for the operator Ak to be self-adjoint is

γ1

γ
+

β2

β
= 0. (3.38)

Proof. For v, w ∈ D(Ak) we have

〈v,Akw〉 − 〈Akv, w〉 =

∫ 1

0

v(x)

(
d2w

dx2
+ a(x)w

)
dx

−
∫ 1

0

w(x)(
d2v

dx2
+ a(x)v)dx

=

∫ 1

0

v(x)
d2w

dx2
dx−

∫ 1

0

w(x)
d2v

dx2
dx.

Integrating by parts gives

〈v, Akw〉 − 〈Akv, w〉 =

[
v
dw

dx
− w

dv

dx

]1

0

. (3.39)

For all v, w ∈ D(Ak) the following equations hold:

Wv = γ ∂v
∂x

(1) + γ1v(0) + γ2v(1) = 0, (3.40)

Ww = γ ∂w
∂x

(1) + γ1w(0) + γ2w(1) = 0, (3.41)

(B + kC)v = β ∂v
∂x

(0) + (β1 + kα)v(0) + β2v(1) = 0, (3.42)

(B + kC)w = β ∂w
∂x

(0) + (β1 + kα)w(0) + β2w(1) = 0. (3.43)

Multiplying both sides of equation (3.40) by w(1), (3.41) by v(1), (3.42) by

w(0), and (3.43) by v(0), and doing simple calculations, we obtain

v(1)
∂w

∂x
(1)− w(1)

∂v

∂x
(1) =

γ1

γ
(v(0)w(1)− v(1)w(0)), (3.44)

w(0)
∂v

∂x
(0)− v(0)

∂w

∂x
(0) =

β2

β
(v(0)w(1)− v(1)w(0)). (3.45)
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The summation of the left-hand sides of equations (3.44) and (3.45) is equal

to the right-hand side of (3.39). Thus,

〈v,Akw〉 − 〈Akv, w〉 = (
γ1

γ
+

β2

β
)(v(0)w(1)− v(1)w(0)). (3.46)

The operator Ak with domain D(Ak) is self-adjoint if

(
γ1

γ
+

β2

β
)(v(0)w(1)− v(1)w(0)) = 0, (3.47)

Thus, a sufficient condition for Ak to be self-adjoint is

γ1

γ
+

β2

β
= 0. (3.48)

From Proposition 3.10, we observe that in particular if γ1 = β2 = 0,

the feedback operator Ak is self-adjoint. This is the case when the input

and output operators are purely applied to one end and the homogeneous

boundary operator is purely applied to the other end. These systems are

referred to as co-located systems.

Consider the closed-loop system shown in Figure 3.1, with output y and

input r. We obtained the closed-loop transfer function in (3.2) as

Gk(s) =
G(s)

1 + kG(s)
. (3.49)

On the other hand, in Proposition 2.30, we showed that the open-loop trans-

fer function for the system (2.59) can be written as

G(s) =
N (s)

D(s)
, (3.50)
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where N (s) and D(s) are entire functions of s. Thus, the closed-loop transfer

function is

Gk(s) =
N (s)

D(s) + kN (s)
. (3.51)

The equation

D(s) + kN (s) = 0 (3.52)

is hereafter called the characteristic equation.

Proposition 3.11. For any k, the poles of the transfer function Gk(s) given

in (3.51) form a subset of the spectrum of the closed-loop operator Ak.

Proof. Obtaining the spectrum of the operatorAk requires solving the system

of equations

∂2ẑ
∂x2 + (a(x)− s)ẑ = 0, (3.53)

W ẑ = 0, (3.54)

(B + kC)ẑ = 0. (3.55)

By Proposition 2.30, there are two unique independent solutions z1(x, s) and

z2(x, s) that are entire functions of s and satisfy the properties given in the

mentioned proposition. Any solution ẑ(x, s) of equation (3.53) has the form

ẑ(x, s) =
2∑

j=1

aj(s)zj(x, s), (3.56)

where a1(s) and a2(s) are arbitrary functions of s. Since the input, output

and homogeneous boundary operators are linear, we have

a1(s)Wz1 + a2(s)Wz2 = 0, (3.57)

a1(s)(B + kC)z1 + a2(s)(B + kC)z2 = 0. (3.58)
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In order to have non-zero solutions a1 and a2 for this system, we must have
∣∣∣∣∣∣
Wz1 Wz2

(B + kC)z1 (B + kC)z2

∣∣∣∣∣∣
= 0 (3.59)

On the other hand, the functions N (s) and D(s) for the system (3.31) are

obtained in (2.90)-(2.91) and plugging them into (3.51) yields the closed-loop

transfer function

Gk(s) =
α(z1(0, s)Wz2(s)− z2(0, s)Wz1(s))

Bz1(s)Wz2(s)− Bz2(s)Wz1(s) + kα(z1(0, s)Wz2(s)− z2(0, s)Wz1(s))
.

The roots of equation (3.59) are the roots of the function in the denomina-

tor of the above closed-loop transfer function, that is, D(s) + kN (s) = 0.

Note that the functions N (s) and D(s) obtained in Proposition 2.30 are not

necessarily co-prime. Thus, in the above closed-loop transfer function some

pole/zero cancellations may occur. Therefore, closed-loop poles form a subset

of the spectrum of the closed-loop operator Ak.

Example 3.12. Consider the following system




∂z
∂t

= ∂2z
∂x2 ,

− ∂z
∂x

(0, t) = u(t),

z(1, t) = 0,

z(0, t) = y(t),

z(x, 0) = f(x) ∈ L2(0, 1),

(3.60)

under the feedback law u = −ky + r. We derived the properties of the open-

loop system in chapter 2. Now we want to evaluate the closed-loop system.

Denote by A0,Ak, and A∞ the zero-input, feedback, and zero-dynamics op-

erators of the system, respectively.
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1. Find the closed-loop transfer function.

2. Find the closed-loop poles and zeros.

3. Verify that the closed-loop poles are exactly the spectrum of Ak with

domain D(Ak).

4. Verify that the closed-loop and open-loop zeros are exactly the spectrum

of A∞ with domain D(A∞).

For this system the operators A0,Ak,A∞ are

A0z = ∂2z
∂x2 , D(A0) = {z ∈ H2(0, 1); z(1, t) = 0, ∂z

∂x
(0, t) = 0},

Akz = ∂2z
∂x2 , D(Ak) = {z ∈ H2(0, 1); z(1, t) = 0,− ∂z

∂x
(0, t) + kz(0, t) = 0},

A∞z = ∂2z
∂x2 , D(A∞) = {z ∈ H2(0, 1); z(1, t) = 0, z(0, t) = 0}.

Denote by ẑ(x, s), û(s), and ŷ(s) the Laplace transform of z(x, t), u(t),

and y(t), respectively. The Laplace transform of the system (3.60), assuming

zero initial state, satisfies

sẑ = ∂2ẑ
∂x2 , (3.61)

− ∂ẑ
∂x

(0, s) = û(s), (3.62)

ẑ(1, s) = 0, (3.63)

ẑ(0, s) = ŷ(s). (3.64)

Solving (3.61) with the homogeneous boundary condition (3.63) yields

ẑ(x, s) = a(s) sinh
(
(x− 1)

√
s
)
, (3.65)

where a(s) is an arbitrary function of s. Therefore, the open-loop transfer

function is

G(s) =
ŷ(s)

û(s)
=

ẑ(0, s)

− ∂ẑ
∂x

(0, s)
=

sinh
√

s√
s cosh

√
s

. (3.66)
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The closed-loop transfer function is

Gk(s) =
ŷ(s)

û(s) + kŷ(s)
=

ẑ(0, s)

− ∂ẑ
∂x

(0, s) + kẑ(0, s)
=

sinh
√

s√
s cosh

√
s + k sinh

√
s

.

It can be seen that the functions N (s) and D(s) obtained in Proposition 2.30

are N (s) = sinh(
√

s)/
√

s and D(s) = cosh(
√

s). These functions are co-

prime, that is, they have no common roots. The closed-loop poles are the

zeros of cosh
√

s + k sinh
√

s/
√

s = 0. Also, the spectrum of Ak must be

obtained by solving − ∂ẑ
∂x

(0, s) + kẑ(0, s) = 0 with (3.65), that is, the equation

cosh
√

s + k sinh
√

s/
√

s = 0. Thus, the closed-loop poles are exactly the

spectrum of Ak with domain D(Ak).

The closed-loop zeros of the system are exactly the open-loop zeros of the

system and in Example 2.42 we showed that the open-loop zeros are exactly

the spectrum of the operator A∞ with domain D(A∞).

In the rest of this section, we present a general root-locus analysis for the

closed-loop system (3.35), where the operator Ak with domain D(Ak) is not

necessarily self-adjoint. Recall that sig is the sign of the instantaneous gain

discussed in Proposition 2.36 and proved to be

sig = (−1)r, r =
1

π
arg(

α

β
) + 1, (3.67)

with α and β being the coefficients of highest order derivatives of output and

input operators, respectively.

In Proposition 3.9, it was shown that when the closed-loop operator Ak

is self-adjoint, the closed-loop poles of the system, that is, the zeros of the

characteristic equation are all real. We show that in this case for all k ∈ R

with k · sig > 0, The closed-loop transfer function has no poles on the right
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of some a ∈ R. If the state operator Ak is not self-adjoint, the closed-loop

poles of the system may be either real or complex and the root-locus branches

may move to the right or left. An asymptotic analysis of the characteristic

equation shows that if k · sig > 0, then for large |s|, the infinitely many real

closed-loop poles vary continuously from real open-loop poles to real open-

loop zeros that interlace on the negative real axis. Moreover, the number

of complex closed-loop poles are finite and all branches containing complex

points, can be embedded in a closed contour Ω.

3.2.1 Open-loop Poles and Zeros

As for the finite-dimensional systems, locating the open-loop poles and zeros

of an infinite-dimensional system is necessary for a root-locus analysis of the

system.

Let us first define the map z = i
√

s and divide the complex plane into 4

regions

Sj =
{

z| j
π

2
≤ arg(z) < (j + 1)

π

2

}
, j = 0, 1, 2, 3. (3.68)

The map z = i
√

s is a bijection between P0 and S0, and between P1 and S3,

as shown in Figure 3.6. Thus, we can substitute s = −z2 in the characteristic

equation and solve the problem of finding the roots of D(−z2)+kN (−z2) = 0

in the regions S0 ∪S3 for z. Then we can find the roots of D(s)+ kN (s) = 0

in the s-plane.

The following theorem concerns the open-loop poles of large modulus.

Theorem 3.13. For the system (3.35), all but a finite number of open-loop

poles and zeros are real and interlace on the negative real axis. All poles and
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z = −i
√

s

S2

S1

P0
S3

S0

P1

Figure 3.6: The map z = −i
√

s is a bijection that transforms P0 onto S0 and

P1 onto S3.

zeros diverge to minus infinity.

Proof. In the proof of Proposition 2.30 it was shown that the asymptotic

form for N (s) is

N (s) = (1 +O(
1√
s
))αγ cosh(

√
s), (3.69)

and the asymptotic form for D(s) is

D(s) = −(1 +O(
1√
s
))βγ

√
s sinh(

√
s). (3.70)

Denote D(−z2) and N (−z2) by Dz(z) and Nz(z), respectively. In terms of

the variable z = i
√

s, the asymptotic form of Dz and Nz are

Dz(z) = [1]βγz sin(z), (3.71)

Nz(z) = [1]αγ cos(z), (3.72)

where [1] is defined to be [1] = 1 +O(1
z
), [1].

For sufficiently large |z|, the zeros of Nz and Dz are the zeros of sin z and

cos z and since z ∈ S0 ∪ S3, the zeros of Dz and Nz interlace on the positive

real axis. Therefore, the zeros of D(s) and N (s), for sufficiently large |s|
interlace on the negative real axis and diverge to minus infinity.
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3.2.2 Closed-loop Poles

The theorems in this section are the main results about the closed-loop be-

havior of the system (3.35). All analysis is based on the assumption that

k is chosen so that k · sig > 0 where sig is the sign of the instantaneous

gain discussed in Proposition 2.36 and proved to be sig = (−1)r, where

r = 1
π
arg(α

β
) + 1. The first theorem gives the properties of the asymptotic

form of the closed-loop transfer function. The second theorem deals with the

remaining finitely many closed-loop poles. Finally, the third theorem deals

with the real closed-loop poles.

Theorem 3.14. For the system (3.35), if k is so chosen that k · sig > 0, the

following properties hold.

(P1) The root-locus branches corresponding to the infinitely many real

open-loop poles and zeros are real, simple, countable and diverging to minus

infinity.

(P2) The root-locus branches corresponding to the infinitely many real

open-loop poles and zeros move continuously to the left from an open-loop

pole to an open-loop zero.

The following theorem guarantees that the remaining finitely many root-

locus branches are bounded and move continuously from an open-loop pole

to an open-loop zero .

Theorem 3.15. For the system (3.35), if k is so chosen that k · sig > 0,

then the following properties hold.

(Q1) There exists a fixed simple closed contour Ω that contains finitely

many closed-loop branches such that all branches outside Ω satisfy Theorem
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3.14.

(Q2) All of the closed-loop poles inside Ω vary continuously from the

open-loop poles to the open-loop zeros.

As for the finite-dimensional case, the real branches of the root-locus for

the system of our interest are branches that lie to the left of an odd number

of real open-loop poles and zeros.

Theorem 3.16. For the feedback system (3.35), if k · sig > 0, then a real

point on the root-locus always lies to the left of an odd number of real poles

and zeros.

The proof of these theorems are quite long and make use of the results of

several subsidiary theorems. Thus, we devote a section to the proof of each

theorem. The proofs are based on [4] except the proof of Q2 where we use a

different approach. In this new approach, we deal with the zeros of analytic

functions.

3.2.3 Proof of Theorem 3.14

Substituting Dz and Nz from (3.71)-(3.72) in the characteristic equation

Dz + kNz = 0, and simplifying, we obtain

−izβ[1](1− e−2iz) + kα[1](1 + e−2iz) = 0, (3.73)

which implies

e−2iz = [1]
z + ikα/β

z − ikα/β
. (3.74)

In the proof of Theorem 3.13, we discussed that the map z = i
√

s is a one-to-

one map from the whole complex plane onto the right-half z-plane. Thus, the
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M

z-plane

Figure 3.7: The right-hand side of the asymptotic characteristic equation

(3.74) is bounded above in the shaded area.

roots of equation (3.74) in the region S0 ∪S3 defined in (3.68) are associated

with the system closed-loop poles via the relation s = −z2. Thus, Theorem

3.14 will follow if it is shown that the roots of (3.74) for sufficiently large |z|
are real, simple and move to the right from a root of (3.74) with k = 0 to

a root of (3.74) when k approaches infinity. In this section, a proof of this

statement is developed. To clarify the steps of the proof, we first give an

outline of the proof.

(1) We show, through a lemma, that the absolute value of the right-hand

side of equation (3.74) is bounded above in the region (S0 ∪ S3) ∩ {z; |z| >

M}, for some M > 0 (Figure 3.7). Then, using this lemma, we prove that

there exists y0 > 0 such that equation (3.74) has no roots in the region

(S0 ∪ S3) ∩ {z; |z| > M, |Im(z)| > y0} (Figure 3.8). Therefore, all roots of

large modulus lie inside a strip S = {z; |Im(z)| ≤ y0} ∩ (S0 ∪ S3).

(2) Divide the strip S = {z; Im(z) ≤ y0} ∩ (S0 ∪ S3) into rectangular

regions of width π, starting from a region V . Now we know that the solution

belongs to the regions Vp = V + pπ, p = 1, 2, .... Each z ∈ S can be written



Chapter 3. Root-Locus Theory 83

M

z-plane

y0

−y0

Figure 3.8: The asymptotic characteristic equation (3.74) has no roots in the

shaded area

7π

4
3π

4

π π π

z̃0 z0,p z
∞,pz̃

∞

−y0

y0
VpV1V

Figure 3.9: The roots of the asymptotic characteristic equation (3.74) lie

inside the strip S. Any z ∈ Vp can be written as z = z̃ + pπ, for some z̃ ∈ V,

p ∈ N
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as z = z̃ + pπ for some p ∈ N and z̃ ∈ V . Thus, solving equation (3.74) for

z ∈ S is equivalent to substituting z = z̃ +pπ in (3.74) and solving for z̃ ∈ V

and p ∈ N. The region V is chosen so that for all p > P , some P ∈ N, and

all |k| ∈ [0,∞), the equation (3.74) has no roots on the boundary of V + pπ.

This step is illustrated in Figure 3.9.

(3) By using Rouche’s theorem, we prove that for each sufficiently large

p, the asymptotic characteristic equation has only one root z̃ in V and thus

only one root in any region Vp, for all p ≥ P , for some P ∈ N. This root has

to be real since the roots occur in conjugate pairs.

(4) In the final step of the proof, we show that the roots of equation

(3.74) are continuous, monotone increasing functions of k and hence the

corresponding roots of the characteristic equation D(s) + kN (s) = 0 are

continuous and move to the left from an open-loop pole to an open-loop

zero.

In what follows, we go into the details of all the steps outlined above.

Lemma 3.17. There exists an M > 0 such that

∣∣∣∣[1]
z + ikα/β

z − ikα/β

∣∣∣∣ ≤ 3/2, (3.75)

for all k and z with k · sig > 0 and z ∈ S0 ∩ {z : |z| > M}.

Proof. The gain k is chosen so that k · sig > 0, or

k(−1)
1
π

arg(α
β

)+1 > 0, (3.76)

where α and β are coefficients of the highest order derivatives in the output

and input operators of the system (3.31), respectively. This implies that if
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−ikα
β

z

S0

ikα
β

Figure 3.10: For z ∈ S0,
∣∣∣ z+ikα/β
z−ikα/β

∣∣∣ ≤ 1 and for z ∈ S3,
∣∣∣ z+ikα/β
z−ikα/β

∣∣∣ ≥ 1 .

α
β

> 0 then k < 0 and if α
β

< 0 then k > 0. Therefore, the condition k ·sig > 0

implies kα
β

< 0 and we have

arg(−ik
α

β
) = π/2. (3.77)

Choose M > 0 and C > 2 such that

|O(
1

z
)| ≤ 1

C
, |z| > M. (3.78)

From (3.77) and Figure 3.10, for any z ∈ S0∣∣∣∣
z + ikα/β

z − ikα/β

∣∣∣∣ ≤ 1. (3.79)

Thus, ∣∣∣∣(1 +O(
1

z
))

z + ikα/β

z − ikα/β

∣∣∣∣ ≤ (1 + 1/C) ≤ 3/2, (3.80)

for all z ∈ S0 ∩ {z; |z| > M}. This completes the proof.

Note that in the proof of Lemma 3.17 if we choose smaller upper bounds

for |O(1
z
)|, we will end up with a tighter upper bound for the right-hand side

of (3.74). To avoid calculation complexities, we simply use this bound.
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Lemma 3.18. Suppose k is so chosen that k · sig > 0. Then, there exist

positive constants M, y0, independent of k, such that the equation

e−2iz = [1]
z + ikα/β

z − ikα/β
, (3.81)

has no roots for z ∈ (S0 ∪ S3) ∩ {z : |z| > M, |Im(z)| > y0}.

Proof. By Lemma 3.17, there exist M > 0 and C > 2 such that the modulus

of the right-hand side of equation (3.81) is not greater than 3/2 for z ∈
S0∩{z; |z| > M}. Write z = x+ iy0 for real x > 0 and y0 ≥ 0. The left-hand

side of (3.81) satisfies

|e−2iz| = |e−2ix+2y0| = e2y0 . (3.82)

We can find y0 > 0 such that e2y0 = 2 > 3/2. For this value of y0, the

equation (3.74) has no roots in z ∈ S0 ∩ {z; |z| > M}.
On the other hand, the closed-loop poles occur in complex conjugate

pairs, because in Proposition 2.30 we proved that the functions N (s) and

D(s) are real functions of s in the sense that N (s) = N (s) and D(s) = D(s).

Therefore, with the obtained value of y0, equation (3.74) has no roots in

z ∈ (S0 ∪ S3) ∩ {z : |z| > M, |Im(z)| > y0}. Now the result follows.

We need the following two lemmas to show that for sufficiently large |z|
the poles are real and simple.

Lemma 3.19. The roots of the equation

e−2iz =
z + ikα/β

z − ikα/β
(3.83)

are all real and simple for z ∈ (S0 ∪ S3) ∩ {z; |z| > c}, for some positive

constant c and all k such that k · sig > 0.
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Proof. Write z = x + iy. In the proof of Lemma 3.17 we showed that if

z ∈ S0, then | z+ikα/β
z−ikα/β

| ≤ 1. Thus, from equation (3.83),

|z + ikα/β

z − ikα/β
| = |e−2iz| = e2y ≤ 1, z ∈ S0. (3.84)

Thus we must have y = 0. Similarly, if z ∈ S3, from (3.77) and Figure 3.10,

we have | z+ikα/β
z−ikα/β

| ≥ 1 and hence

|z + ikα/β

z − ikα/β
| = |e−2iz| = e2y ≥ 1, z ∈ S3. (3.85)

Thus, y has to be zero. Hence, if z = x + iy satisfies (3.83), then y = 0,

which implies that the roots are all real.

To prove that the roots are simple, we take the derivative of equation

(3.81) with respect to z,

∂

∂z
(−e−2iz +

z + ikα/β

z − ikα/β
) = 2ie−2iz − 2ikα/β

(z − ikα/β)2
. (3.86)

A point z ∈ C is a multiple root of equation (3.83) if z is a zero of (3.83)

and a zero of (3.86). We proved that the roots of equation (3.83) are all real,

so we need to find real roots of (3.86). Simple calculations show that the

function given in (3.86) is never zero for x ∈ R, x > 1/2. Therefore, all roots

are real and simple for {z; |z| > 1/2} ∩ (S0 ∪ S3).

Lemma 3.20. Suppose k is chosen so that k · sig > 0. Define the functions

Fp(z̃, k) = e−2iz̃ − [1]
z̃ + pπ + ikα/β

z̃ + pπ − ikα/β
, (3.87)

fp(z̃, k) = e−2iz̃ − z̃ + pπ + ikα/β

z̃ + pπ − ikα/β
, (3.88)

hp(z̃, k) = e−2iz̃ − pπ + ikα/β

pπ − ikα/β
, (3.89)
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where p is a positive integer and z̃ belongs to

V = {z̃; |Im(z̃)| ≤ y0, 3π/4 ≤ Re(z̃) ≤ 7π/4}, (3.90)

and y0 > 0 is obtained in Lemma 3.18. The following statements hold.

(1) |fp(z̃, k)−hp(z̃, k)| tends to zero uniformly in k for z̃ ∈ V as p →∞.

(2) hp(z̃, k) has exactly one root in the interior of V .

(3) There exists a constant C such that |hp(z̃, k)| > C, z̃ ∈ ∂V , for all k,

where ∂V is the boundary of the region V .

(4) There exists a positive integer P1 such that for p > P1,

|fp(z̃, k)| > C/2, for z̃ ∈ ∂V, ∀k. (3.91)

(5) |Fp(z̃, k)− fp(z̃, k)| tends to zero uniformly in k for z̃ ∈ V as p →∞.

(6) There exists a positive integer P2 > P1 such that for p > P2,

|Fp(z̃, k)| > C/3, for z̃ ∈ ∂V, ∀k. (3.92)

Proof. As we have shown in Lemma 3.18, the asymptotic characteristic equa-

tion has no roots in the region (S0 ∪ S3) ∩ {z; |Im(z)| > y0, |z| > M}. Thus,

all roots of large modulus lie inside the strip S = (S0∪S3)∩{z; |Im(z)| ≤ y0}.
We divide this strip into sections of width π starting from the region V de-

fined in (3.90). For any z ∈ S (with Re(z) > 7π/4) we have z = z̃ + pπ, for

somep ∈ N and some z̃ ∈ V . If z ∈ S is a root of the characteristic equation

(3.74), we have z = z̃ + pπ, for some z̃ ∈ V . Since we know that the roots of

large modulus belong to rectangles V + pπ, p ∈ N, we substitute z = z̃ + pπ

in equation (3.74) to obtain

e−2iz̃ = [1]
z̃ + pπ + ikα/β

z̃ + pπ − ikα/β
. (3.93)
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Thus, finding the roots of the characteristic equation (3.74) is equivalent to

finding the roots of Fp(z̃, k) for z̃ ∈ V and p ∈ N. This is illustrated in Figure

3.9. Thus, to say that the equation (3.74) has real and simple roots for large

|z|, is to say that for all sufficiently large p, the roots of Fp(z̃, g) in the region

V are real and simple. To this end, we make use of the two defined auxiliary

functions, i.e., fp(z̃, k) and hp(z̃, k).

We have that

|fp(z̃, k)− hp(z̃, k)| =

∣∣∣∣
z̃ + pπ + ikα/β

z̃ + pπ − ikα/β
− pπ + ikα/β

pπ − ikα/β

∣∣∣∣

=

∣∣∣∣
2kpπα/β

(z̃ + pπ − ikα/β)(pπ − ikα/β)

∣∣∣∣ .

∣∣∣∣
z̃

pπ

∣∣∣∣ .(3.94)

We want to prove that w(p, k) =
∣∣∣ 2kpπα/β
(z̃+pπ−ikα/β)(pπ−ikα/β)

∣∣∣ is a bounded function

of p, k. To be able to use Extreme Value Theorem, for the moment, we assume

that p can take any positive real number. The term in the denominator of

w(p, k) is nonzero for all z̃ ∈ V , all k, and all p and hence, w(p, k) is a

continuous function of p and k. It is easy to show that limp→∞ w = 0, for

any k. Also, lim|k|→∞ w = 0, for any p. Thus, w(p, k) is arbitrarily small

outside a compact set. By the Extreme Value Theorem, w(p, k) attains its

extreme values inside that compact set. Thus, w(p, k) is a bounded function

of p, k and from (3.94)we conclude that

|fp(z̃, k)− hp(z̃, k)| = O(1/p), (3.95)

and hence it goes to zero uniformly in k as p →∞. This completes the proof

of (1).

Proof of (2): Lemma 3.19 implies that the roots of hp(z̃, k) in V are real
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and simple for all k and p ∈ N. The real roots of hp(z̃, k) are

z̃k,p =
1

2
(arg(pπ + ikα/β)− arg(pπ − ikα/β) + π + 2nπ) , n ∈ Z. (3.96)

Hence,

z̃k,p = π − arg(pπ − ikα/β) + π/2 + nπ, n ∈ Z. (3.97)

Recall that if k · sig > 0, then kα/β < 0. Thus, 0 ≤ arg(pπ − ikα/β) ≤ π/2

and hence each root satisfies

π + nπ ≤ z̃k,p ≤ 3π/2 + nπ, n ∈ Z. (3.98)

Among the roots of hp(z̃, k) the only root that lies in V is the one that

satisfies

π ≤ z̃k,p ≤ 3π/2. (3.99)

The proof of (2) is now complete.

Proof of (3): We showed that the roots of hp(z̃, k) in V are always real and

belong to the interval [π, 3π/2] and hence hp is not zero on ∂V . Moreover, it

is easy to show that hp is a continuous function of z̃, k on V . The continuity

of hp(z̃, k) on V requires the existence of a non-zero constant C so that

|h| > C > 0 on the boundaries.

Proof of (4): Let P1 be a number such that for p > P1 and z̃ ∈ V ,

|fp(z̃, k)− hp(z̃, k)| < C/2, (3.100)

and by the previous part,

|hp(z̃, k)| > C, z̃ ∈ ∂V (3.101)

Thus, by using the triangle inequality,

|fp(z̃, k)| > C/2, for z̃ ∈ ∂V, ∀k, p. (3.102)
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This completes the proof of (4).

The proofs of (5) and (6) are similar to those of (1) and (4), respectively.

Now we use Rouche’s theorem to conclude that Fp(z̃, k) has only one root

in V , which must be real since the roots appear in conjugate pairs.

Theorem 3.21. Rouche’s theorem ([25], Theorem 10.43) If f1 and f2 are

two analytic functions on a domain D that contains a simple, closed contour

Γ, and if |f1(z)| > |f2(z)|, z ∈ Γ, then f1 and f1 + f2 have the same number

of zeros in the interior of the region enclosed by Γ.

Lemma 3.22. Consider the function Fp(z̃, k) defined in (3.87), where z̃

belongs to the set V defined in (3.90).

The following statements hold,

(1) There exists an integer number P > 0 such that the function Fp(z̃, k)

has only one root in V , for each p > P .

(2) For p > P , the only zero of Fp(z̃, k) in V is a continuous, monotone

increasing function of k for |k| → ∞, with k · sig > 0.

Proof. Proof of (1): in Lemma 3.20(4)-(5), we proved that there exists a

number P̂ such that for p > P ,

|Fp(z̃, k)− fp(z̃, k)| < C/2 < |fp(z̃, k)|, ∀z̃ ∈ ∂V. (3.103)

Thus, by Rouche’s Theorem, fp(z̃, k) and Fp(z̃, k) have the same number of

zeros in V for p > P̂ . Similarly, from Lemma 3.20(1)-(3), there exists a

number P > P̂ such that for p > P ,

|hp(z̃, k)− fp(z̃, k)| < C/2 < |h(z̃, k)|, ∀z̃ ∈ ∂V. (3.104)
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Thus, fp(z̃, k) and hp(z̃, k) have the same number of zeros in V for p > P .

Since, from Lemma 3.20(2), hp(z̃, k) has only one root in V , Fp(z̃, k) has also

only one root in V which has to be real since all roots appear in conjugate

pairs. Proof of (1) is now complete.

Before we prove (2), we need to recall the Implicit Function Theorem.

Theorem 3.23. Implicit Function Theorem ([3], page 194) Let φ(z, w)

be a complex-valued function having continuous partial derivatives. Suppose

φ(z0, w0) = 0 and φy(z0, w0) 6= 0. Then in some interval around z0, there is

a unique continuously differentiable function w = ψ(z) such that w0 = ψ(z0)

and φ(z, ψ(z)) = 0. If φ has continuous partial derivatives of n ≥ 1 order,

then ψ has n continuous derivatives.

Proof of (2): Denote by z̃k,p the only root of Fp(z̃, k) in V . First we show

that z̃k,p is continuous in k. For any fixed p > P , P obtained in (1), the

roots of Fp(z̃, k) are simple and hence ∂Fp(z̃,k)

∂z̃
6= 0 for all z̃ ∈ V and all k.

Therefore, by the Implicit Function Theorem, if Fp(z̃k0,p, k0) = 0, then z̃k,p

can be written as a continuous function of k in some neighborhood of k0.

thus, z̃k,p is a continuous function of k for all k.

Now we show that z̃k,p is monotone in k. Suppose z̃k1,p = z̃k2,p = z̃. Since

Fp(z̃, k1) = Fp(z̃, k2) = 0, we have that

z̃ + pπ + ik1α/β

z̃ + pπ − ik1α/β
=

z̃ + pπ + ik2α/β

z̃ + pπ − ik2α/β
(3.105)

which implies k1 = k2. From this and the continuity of z̃k,p with respect to

k, we conclude that z̃k,p is a monotone function of k. To prove that z̃k,p is

increasing with k, it suffices to compare z̃0,p and lim|k|→∞ z̃k,p. As k tends to
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zero, the root in V of Fp(z̃, k) satisfies

e−2iz̃0,p = 1, (3.106)

which implies that z̃0,p = π. Similarly, as k approaches infinity, the root in

V of Fp(z̃, k) satisfies

e−2iz̃∞,p = −1, (3.107)

which implies z̃∞,p = 3π/2. Thus, π = z̃0,p < z̃g,p < z̃∞,p = 3π/2 and hence

z̃k,p is a monotone increasing real-valued function of k. The proof of (2) in

now complete.

Note that for all p > P , P obtained in the above lemma, z0 = z̃0,p + pπ is

a zero of the characteristic equation for k = 0, which implies that z0,p is the

only open-loop pole in V + pπ.

In the proof of Lemma 3.20 we showed z ∈ S is a root of the asymptotic

characteristic equation (3.74) if and only if z̃ = z − pπ is a root of Fp(z̃, k)

in V , for some p ∈ N. So we have the following result about the roots of the

asymptotic characteristic equation.

Lemma 3.24. Define

F (z, k) = e−2iz − [1]
z + ikα/β

z − ikα/β
, (3.108)

where z ∈ S0 ∪S3 with S0, S3 defined in (3.68). For sufficiently large |z| and

for any given k satisfying k · sig > 0, the roots of F (z, k) are real, simple,

countable, and divergent to plus infinity. Furthermore, as |k| migrates from

zero to infinity, these roots move to the right monotonically and continuously

from a root of F (z, 0) to a root of F (z,∞).
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Proof. In Lemma 3.22 we proved that there exists P ∈ N such that for any

p > P the function Fp(z̃, k) has only one root z̃k,p in V . Thus, for any p > P ,

F (z, k) has only one root zk = z̃k,p + pπ in V + pπ, which implies that for

|z| > Pπ +7π/4 all roots of F (z, k) are real, simple, countable and divergent

to plus infinity. Furthermore, since for any p > P the only root of Fp(z̃, k)

moves monotonically and continuously to the right from z̃0,p to z̃∞,p as k

moves from zero to infinity, we can say that in each region V +pπ, for p > P ,

the only root of F (z, k), zk = z̃k,p + pπ, moves to the right from the only

root of F (z, 0) to the only root of F (z,∞) in V + pπ. This completes the

proof.

The proof of Theorem 3.14 is now straightforward due to the mapping

s = −z2:

Verification of P1: In Lemma 3.24, we proved that for sufficiently large

|z| the roots of F (z, k), or the roots of asymptotic characteristic equation

(3.74), are positive real, simple, countable and diverge to plus infinity. Thus,

so are the roots of Dz + kNz = 0 for sufficiently large |z|. Thus, the roots

of the characteristic equation D(s) + kN (s) = 0 for sufficiently large |s| are

negative real, simple, countable and diverge to minus infinity, via the relation

s = −z2.

Verification of P2: The root-locus branches corresponding to the in-

finitely many real open-loop poles and zeros move continuously to the left

from an open-loop pole, that is, a zero of the characteristic equation for k = 0

to an open-loop zero, that is, a zero of the characteristic equation when k

approaches infinity.

The proof of Theorem 3.14 is now complete. This theorem ensures that
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outside some fixed contour Ω, all closed loop poles are real and negative.

Thus, as far as stability is concerned, we only need to assess if the finitely

many closed-loop poles inside Ω lie in the open left-half plane or for which

values of the feedback gain k the closed-loop poles are in the left-half plane.

3.2.4 Proof of Theorem 3.15

Let us first restate Theorem 3.15. We want to prove that for the system

(3.35), if k is so chosen that k · sig > 0, then the following properties hold.

(Q1) There exists a fixed simple closed contour Ω that contains finitely

many closed-loop branches such that all branches outside Ω satisfy Theorem

3.14.

(Q2) All of the closed-loop poles inside Ω vary continuously from the

open-loop poles to the open-loop zeros.

Proof of Q1: We must prove that the remaining finitely many root-locus

branches that are not considered in Theorem 3.14, lie inside a fixed simple

closed contour Ω. The closed-loop poles of the system (3.35) are the roots

of the characteristic equation D(s) + kN (s) = 0. In Proposition 2.30, we

proved that N (s) and D(s) are entire functions of s. Therefore, by Theorem

2.45, the zeros of the characteristic equation are isolated with no accumu-

lation points in the complex plane. Thus, for each k there exists a closed

contour Ωk that separates the roots of the the characteristic equation into

a finite part embedded inside Ωk and an infinite part outside Ωk. Further-

more from Theorem 3.14(P1), we know that for sufficiently large |s| equation

(3.74) has no roots outside some fixed closed contour with the exception of

those infinitely many closed-loop poles that we dealt with in Theorem 3.13.
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Thus, the family of contours Ωk is uniformly bounded. Thus, a separating

closed contour Ω can be found that is independent from k. This closed con-

tour embeds the remaining finite number of root-locus branches that are not

considered in Theorem 3.14. This completes the proof of Q1.

To prove Q2, we need the following lemma.

Lemma 3.25. Let g(s) be an analytic function in a domain containing s = 0

with g(0) 6= 0. Consider the equation

sng(s) = ty(s), (3.109)

where n ≥ 1, t ∈ R and y is an analytic function in a domain containing

s = 0. Then, as t goes to zero, exactly n roots of equation (3.109) approach

zero. In other words, for all sufficiently small values of ε > 0, there exists

δ > 0 such that whenever |t| < δ, equation (3.109) possesses exactly n roots

in Bε(0) = {s ∈ C; |s| < ε}.

Proof. Since g(0) 6= 0 and from analyticity of g, there exist r1 > 0 and

0 < l < L1 such that l < |g(s)| < L1, for all s in the closed ball Br1(0). Also,

by analyticity of y, there exist r2 > 0 and l < L2 such that |y(s)| < L2, for

all s in the closed ball Br2(0). Let r = min{r1, r2} and L = max{L1, L2} We

use Rouche’s theorem (Theorem 3.21) to prove this lemma.

Take any ε such that 0 < ε < r. Pick a positive real number α < l
2
.

Define functions

g1(s) = sng(s)− αsn, (3.110)

g2(s) = αsn − ty(s). (3.111)
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For s ∈ ∂Bε(0) we can write s = εejφ and hence

|g1(s)| = |sn||g(s)− α|
= εn|g(s)− α|
≥ εn

∣∣∣|g(s)| − α
∣∣∣

≥ εn(l − α), (3.112)

for all s ∈ ∂Bε(0). Moreover, for s ∈ ∂Bε(0),

|g2(s)| = |αεnejnφ − ty(s)|
= εn|αejnφ − ty(s)

εn
|

≤ εn(|αejnφ|+ |ty(s)

εn
|)

≤ εn(α +
tL

εn
). (3.113)

Set δ = εn(l − 2α)/L. For |t| < δ we have

α +
tL

εn
< l − α (3.114)

and therefore, |g2| < |g1| on ∂Bε(0) for |t| < δ. Thus, by Rouche’s Theorem,

the number of the roots of g1 and g1 + g2 inside Bε(0) are equal when |t| < δ.

But g1 has exactly n roots in Bε(0). These n roots are s = 0 with multiplicity

n (Note that g(s) − α 6= 0 in Bε(0), because we know that in this ball

|g| > l and we picked α < l/2 when we defined g1 and g2 in (3.110)-(3.111)).

Therefore, g1 + g2 = sng(s)− ty(s) has exactly n roots in Bε(0) when |t| < δ.

This completes the proof.

Proof of Q2: In the previous section, we proved that for the system

(3.35), if k is so chosen that k · sig > 0, then for sufficiently large |s|, the
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closed-loop poles vary continuously from the open-loop poles to the open-

loop zeros. Now we give a general proof. The closed-loop poles of the system

(3.35) are the roots of the characteristic equation f(s, k) = D(s) + kN (s),

where D(s) and N (s) are entire functions of s. Thus, f(s, k) has continuous

partial derivatives of all orders. Thus, by the Implicit Function Theorem, if

(s0, k0) satisfies f(s0, k0) = 0 and fs(s0, k0) 6= 0, then s can be represented

as a differentiable function s = v(k) in some neighborhood of k0 such that

v(k0) = s0 and f(v(k), k) = 0.

It remains to prove Q2 for the points (s0, k0) where f(s0, k0) = fs(s0, k0) =

0. These points correspond to multiple roots of f and need to be treated dif-

ferently. Since we proved that outside the closed contour Ω all roots of the

characteristic equation are simple roots, we know that all multiple roots lie

inside Ω. Since f is an entire function of s, by Theorem 2.45, any zero of f

has a finite order. Let s = s0 be a zero of order n for f(s, k0) = 0. Then

∂if

∂si
(s0, k0) = 0, 0 ≤ i ≤ n− 1, (3.115)

∂nf

∂sn
(s0, k0) 6= 0. (3.116)

Furthermore,

f(s, k0) = D(s) + k0N (s)

= (s− s0)
ng(s, k0), (3.117)

where g(s0, k0) 6= 0. Moreover, we can show that g(s, k0) is an analytic

function in some neighborhood of s0. Using equations (3.115)-(3.116), we
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have

(s− s0)
ng(s, k0) = f(s, k0)

=
∞∑
i=1

f (i)(s0, k0)

i!
(s− s0)

i

= (s− s0)
n

∞∑
i=n

f (i)(s0, k0)

i!
(s− s0)

i−n, (3.118)

which implies g(s, k0) has a Taylor expansion in a neighborhood of s0 and

hence is analytic in this neighborhood.

Now let k = k0 + ε. The function f(s, k) can be written as

f(s, k) = D(s) + k0N (s) + εN (s)

= (s− s0)
ng(s, k0) + εN (s). (3.119)

We need to prove that as ε approaches zero, exactly n roots of f(s, k) ap-

proach s0. Since N (s) is an entire function, it is bounded on the region

surrounded by Ω which contains s = s0. Also, g(s, k0) is analytic in some

neighborhood of s = s0 and g(s0, k0) 6= 0. Now Lemma 3.25 can be applied

to conclude that exactly n roots of f(s, k) approach s0 when ε approaches 0,

that is,k approaches zero. This completes the proof of Q2.

In [4], the statement of Q2 is proved using a different argument. In this

paper, the proof is separated into two parts; the infinite branches of poles are

treated similar to our proof of P2, and the finite number of poles that are

embedded in the closed curve Ω, are treated based on [13] (chapter III, §6.4,

theorem 6.17 and chapter VII, §1.3, theorem 1.7). Kato proved that if Ak is

a family of operators dependent on k analytically, and the spectrum Σ(Ak) of

Ak has two separate parts; a finite part Σ′ and an infinite part Σ”, then the
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space D(Ak) can be decomposed into M ′ and M”, and the operator Ak can

be decomposed to Ak(M
′) and Ak(M”) in such a way that the spectrum of

Ak(M
′) and Ak(M”) lie in M ′ and M”, respectively. Furthermore, Ak(M

′)

and Ak(M”) depend on k analytically.

3.2.5 Proof of Theorem 3.16

Let us first restate Theorem 3.16. We want to prove that for the feedback

system (3.35), if k · sig > 0, then a real point on the root-locus always lies to

the left of an odd number of real poles and zeros.

Theorem 3.26. Hadamard factorization theorem ([16], Lecture 4).

An entire function f of order O(f) (Definition 2.28) may be represented

in the form

f(z) = zmeP (z)

∞∏
n=1

Q(
z

an

, p), (3.120)

where a1, a2, ... are nonzero roots of f(z), p ≤ O(f), m is the multiplicity of

the root at the origin, P (z) is a polynomial of degree q ≤ O(f), and

Q(w, p) =





1− w p = 0,

(1− w)ew+w2/2+...+wp/p p > 0.
(3.121)

The number p is the smallest integer number for which
∑∞

n=1 |an|−p−1 < ∞,

called the rank of f(z).

Proposition 3.27. For the system (2.59) with transfer function G(s) given

by Proposition 2.30, the functions N (s) and D(s) have rank zero.

Proof. By Theorem 3.13, all but a finite number of the roots of N (s) = 0

are negative real numbers asymptotic to {sn = −n2π2}∞n=N , where N is some
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positive integer number. Therefore,
∑∞

n=N |sn|−1 < ∞ from which it can be

deduced that N (s) has rank zero. The argument for D(s) is similar.

By Proposition 2.30, N (s) and D(s) are entire functions of s. Thus,

from Hadamard Factorization Theorem and Proposition 3.27 the following

important property follows.

Proposition 3.28. For the system (2.59) with transfer function G(s) given

by Proposition 2.30, the functions N (s) and D(s) can be represented as

N (s) = C1s
p
∏∞

n=p+1

(
1− s

zn

)
,

D(s) = C2s
q
∏∞

n=q+1

(
1− s

pn

)
,

(3.122)

where {zn}∞n=p+1 and {pn}∞n=q+1 are non-zero zeros and poles of the transfer

function G(s), respectively, and C1, C2 ∈ R.

To prove Theorem 3.16, we need the following lemma.

Lemma 3.29. For the system (2.59), let sig be the sign of the instantaneous

gain given in Proposition 2.36 and the system transfer function be G(s) =

N (s)/D(s) with the representation of N (s) and D(s) given by (3.122). We

have

arg(k · sig) = arg

(
k(−1)r C1

C2

)
, (3.123)

where r is the number of positive real poles and zeros.

Proof. Since all parameters k, sig, C1, C2, r are real numbers, the problem

reduces to showing that the sign of sig is equal to that of (−1)r C1

C2
. Using the

representation (3.122) and the definition of the instantaneous gain given in



Chapter 3. Root-Locus Theory 102

Proposition 2.36, we have

arg(sig) = arg

(
lim

s→+∞
√

sG(s)

)

= arg

(
C1

C2

lim
s→+∞

sp−q+ 1
2

∏∞
n=p+1(1− s

zn
)∏∞

n=q+1(1− s
pn

)

)
.

Separate the positive real poles and zeros and rewrite the equation as

arg(sig) = arg

(
C1

C2

lim
s→+∞

sp−q+ 1
2

∏p+r1

j=p+1(1− s
zj

)
∏∞

n=p+r1+1(1− s
zn

)
∏q+r2

j=q+1(1− s
pj

)
∏∞

n=q+1+r2
(1− s

pn
)

)
,

(3.124)

where {zj, p+1 ≤ j ≤ p+r1} are positive real zeros, {pj, q+1 ≤ j ≤ q+r2} are

positive real poles, {zj, 1+p+r1 ≤ j} are complex zeros, and {pj, 1+q+r2 ≤
j} are complex poles. Note that negative real poles and zeros do not have

any contribution to the argument, because arg(1 − s
α
) = 0, α ∈ R, α < 0.

The complex poles and zeros have no contribution either, because, given

α ∈ C, α 6= 0, we have

arg
(
(1− s

α
)(1− s

α
)
)

= arg
(
1− s

2Re(α)

|α|2 +
s2

|α|2
)
.

Thus, as s tends to +∞, this term tends to zero and does not affect the

argument in (3.124). An illustrative example is shown in Figure 3.4. Conse-

quently, (3.124) can be simplified as

arg(sig) = arg

(
C1

C2

lim
s→+∞

∏r1+p
j=1+p(1− s

zj
)

∏r2+q
j=1+q(1− s

pj
)

)

= arg

(
C1

C2

(−1)r1−r2

)

= arg

(
C1

C2

(−1)r1+r2

)

= arg

(
C1

C2

(−1)r

)
.
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This completes the proof.

Now we can prove Theorem 3.16.

Proof of Theorem 3.16: Consider the open-loop transfer function

G(s) = N (s)
D(s)

. Use the representation (3.122) for N (s) and D(s).

Let us take an arbitrary a ∈ R. The point a belongs to the root-locus if

it satisfies the characteristic equation kN (s)
D(s)

+ 1 = 0, i.e.,

k
N (a)

D(a)
= −1, (3.125)

The phase condition then becomes

arg

(
k
N (a)

D(a)

)
= π, (3.126)

On the other hand, from (3.122),

arg

(
k
N (a)

D(a)

)
= arg

(
k
C1

C2

ap−q

)
+ arg

( ∞∏
n=p+1

(1− a

zn

)

)

− arg

( ∞∏
n=q+1

(1− a

pn

)

)

= arg

(
k
C1

C2

ap−q

)
+

∞∑
n=p+1

arg(a− zn)−
∞∑

n=q+1

arg(a− pn)

−
∞∑

n=p+1

arg(−zn) +
∞∑

n=q+1

arg(−pn)

By Theorem 2.30, N (s) and D(s) are entire and real functions of s. Hence,

if α ∈ C is a complex pole(zero) of G(s) (Figure 3.4), then α ∈ C is also a

pole(zero) and hence for any a ∈ R,

arg(a− α) + arg(a− α) = 0.
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Thus, we conclude the following results:

(1) The contribution of each conjugate pair of zeros in
∑∞

n=p+1 arg(a−zn)

is 0, that is arg(a− zi) + arg(a− zi) = 0, where zi is a complex zero.

(2) The contribution of each real zero to the right of a is π, that is,

arg(a− zj) = π, where zj is a real zero to the right of a.

(3) Similarly, the contribution of each conjugate pair of poles in the sum
∑∞

n=q+1 arg(a− pn) is 0.

(4) The contribution of each real pole to the right of a is π.

(5) The contribution of each real pole or zero to the left of a is 0.

(6) For any zero zi on the positive real axis arg(−zi) = π and for any

pole pi on the positive real axis arg(−pi) = π. Both quantities are 0 if zi or

pi are negative.

We also use the fact that arg(α), α ∈ C can be replaced by arg(α) +

2mπ, m ∈ Z. Let r1 and r2 be the number of zeros and poles on the positive

real axis, respectively, and s1 and s2 be the number of real non-zero zeros

and poles to the right of a. Therefore, we have

arg

(
k
N (a)

D(a)

)
= arg

(
k
C1

C2

ap−q

)
+ s1π − s2π − r1π + r2π.

The total number of zeros and poles on the positive real axis is r1 + r2, and

the total number of real nonzero zeros and poles to the right of a is s1 + s2.

Let r̂ = r1 + r2 and r̂ = r1 + r2. We add 2πs2 + 2πr1 to the argument of the
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above equation to obtain

arg

(
k
N (a)

D(a)

)
= arg

(
k
C1

C2

ap−q

)
+ ŝπ + r̂π

= arg

(
k(−1)r̂ C1

C2

ap−q

)
+ ŝπ

= arg

(
k(−1)r̂ C1

C2

)
+ arg

(
ap−q

)
+ ŝπ,

= arg(k · sig) + arg
(
ap−q

)
+ ŝπ.

By Lemma 3.29 and from the hypothesis of Theorem 3.16, we have arg(k ·
sig) = 0 and therefore,

arg

(
k
N (a)

D(a)

)
= arg

(
ap−q

)
+ ŝπ, (3.127)

Thus, for a real number a to be on the root-locus we must have

arg
(
ap−q

)
+ ŝπ = π + 2jπ, j ∈ Z, (3.128)

The number of real poles and zeros to the right of a is ŝ if a > 0, and is

ŝ + p + q if a < 0 (Note that ŝ is the total number of real nonzero zeros and

poles to the right of a ). Now we are set to make the final conclusion of the

theorem. By equation (3.128),

1. If a > 0, then a lies on the root-locus if and only if ŝ is odd, that is,

the number of real poles and zeros to the right of a is odd.

2. If a < 0 and p + q is even, then a lies on the root-locus if and only if

s is odd, that is, the number of real poles and zeros to the right of a, i.e.,

ŝ + p + q, is odd.

3. If a < 0 and p+q is odd, then a lies on the root-locus if and only if ŝ is

even, thus the number of real poles and zeros to the right of a, i.e., ŝ+ p+ q,

is odd.

This completes the proof of Theorem 3.16.
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3.2.6 Stability of the Closed-loop System

So far we have shown that the infinitely many closed-loop poles are real and

negative, and that there is a fixed contour Ω which contains all of the finitely

many closed-loop poles that may be complex, multiple, or on the right-half

plane. In chapter 2, we presented some theorems about the stability of the

open-loop system. Here we want to investigate the closed-loop system (3.35)

and derive some results regarding the stability of this system as the feedback

gain k becomes sufficiently large.

Proposition 3.30. Let Ca
+ = {z ∈ C; Re(z) > a}. Choose k so that k ·sig >

0. For the system (3.35), the transfer function Gk(s) is in H∞(Ca
+), for some

a ∈ R and satisfies

lim
|s|→+∞

Gk(s) = 0, s ∈ Ca
+. (3.129)

Hence, the system (2.59) is strictly proper.

Proof. In (2.95) and (2.96) we obtained the asymptotic forms of N (s) and

D(s). Therefore, the asymptotic form of the closed-loop transfer function for

the system (3.35) is

Gk(s) =
N (s)

D(s) + kN (s)

=

(
1 + O(

1√
s
)

)
αγ cosh(

√
s)

−βγ
√

s sinh(
√

s) + kαγ cosh(
√

s)
. (3.130)

It is easy to show that lim|s|→+∞ Gk(s) = 0 and therefore, |Gk(s)| is bounded

on Ca
+ for some a ∈ R. Hence, the closed-loop system is strictly proper.

From Theorem 2.24 and the above proposition, the following corollary

follows.
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Corollary 3.31. Choose k so that k · sig > 0. For the system (3.35), the

input/output map is bounded in sense of Definition 2.18-(4).

In Theorem 2.47, we proved that the open-loop system (2.59) is L2-stable

if and only if the system transfer function lies in H∞. This also holds for the

feedback system (3.35). In other words, For any k with k ·sig > 0, the system

(3.35) is L2-stable if and only if the system closed-loop transfer function lie

in H∞.

Theorem 3.32. For any k with k · sig > 0, the system (3.35) is L2-stable

if all roots of the characteristic equation D(s) + kN (s) = 0 lie in the open

left-half plane.

Proof. In Proposition 3.11, we proved that the closed-loop poles are a subset

of the roots of the characteristic equation. If all roots of the characteristic

equation lie in the open left-half plane, then are so all closed-loop poles. Thus,

the closed-loop transfer function Gk(s) is analytic on the closed right-half

plane. Moreover, the closed-loop poles are isolated since the characteristic

equation is an analytic function of s (Theorem 2.45). Therefore, |Gk(s)| is

bounded on the closed right-half plane. Thus, Gk(s) lies in H∞ and hence

the closed-loop system is L2-stable.

The following conclusion can be made.

Proposition 3.33. If all open-loop zeros of the system (3.35) are in the open

left-half plane, then there exists k0 with k0 · sig > 0 such that for all k with

k · sig > k0 · sig the system (3.35) is L2-stable.

Proof. The proof of this theorem is straightforward.
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3.2.7 Example

Consider the open-loop system





∂z
∂t

= ∂2z
∂x2 , t > 0, x ∈ (0, 1),

− ∂z
∂x

(0, t) + z(1, t) = u(t),

∂z
∂x

(1, t) = 0,

z(0, t) = y(t),

z(x, 0) = f(x),

(3.131)

where f ∈ L2[0, 1], u(t) and y(t) are the input and output, respectively. The

output control is obtained by the feedback

u = −ky, (3.132)

We want to locate the closed-loop poles of this system for all values of k > 0

and derive some results about the stability of this system. The Laplace

transform of (3.131) is





sẑ = ∂2ẑ
∂x2 , t > 0, x ∈ (0, 1),

− ∂ẑ
∂x

(0, s) + ẑ(1, s) = û(s),

∂ẑ
∂x

(1, s) = 0,

ẑ(0, s) = ŷ(s),

(3.133)

The open-loop transfer function is

G(s) =
cosh

√
s

1 +
√

s sinh
√

s
. (3.134)

The open-loop poles are the roots of

1 +
√

s sinh
√

s = 0. (3.135)
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As |s| approaches infinity, the open-loop poles tend to the zeros of sinh
√

s.

Thus, for sufficiently large |s|, the open-loop poles are −n2π2, n ≥ N , for

some N ∈ N, and hence the open-loop transfer function is analytic on some

right-half plane. For the closed-loop poles with bounded modulus, we make

the change of variable z = −i
√

s in (3.135) to obtain 1−z sin z = 0 and solve

it for z ∈ {z; Rez ≥ 0, Imz ≥ 0}. Write z = x + iy. The equation z sin z = 1

can be rewritten as

x sin x cosh y − y cos x sinh y = 1, (3.136)

y sin x cosh y + x cos x sinh y = 0. (3.137)

We consider three cases:

(1) For x = 0, the system of equations (3.136)-(3.137) has no solutions.

(2) For y = 0, we need to solve x sin x = 1, x ∈ R+. It can be geo-

metrically observed that this equation has infinitely many roots that form

a countable set. Thus, the system of equations (3.136)-(3.137) possesses a

countable set of real solutions zn = xn, n ≥ 1, where xn’s are the roots of

x sin x = 1.

(3) For any y > 0, we need to solve (x2 +y2) sinh y cos x = −y (Substitute

sin x cosh y = −x
y

cos x sinh y into (3.136)). Geometrically, the left-hand side

of this equation is an oscillating function of x with an increasing magnitude,

while the right-hand side is constant for any y. Thus, the system of equations

(3.136)-(3.137) has infinitely many solutions zn = x̂n + iy, n ≥ 1.

From (1)-(2) we conclude that all real open-loop poles are negative due

to s = −z2 which means that all real branches of the root-locus lie on the

negative real axis for k > 0. However, (3) implies that there are infinitely
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many open-loop poles in the complex plane and hence the open-loop system

is not L2-stable.

The closed-loop transfer function is

Gk(s) =
cosh

√
s

1 +
√

s sinh
√

s + k cosh
√

s
. (3.138)

The open-loop zeros are the roots of cosh(
√

s) = 0, that are s = −(2n+1
2

π)2,

n ≥ 0. Since the open-loop zeros are in the open left-half plane, the closed-

loop system is L2-stable for sufficiently large k.



Chapter 4

Conclusions and Future

Research

We started this thesis with an introduction to control systems in chapter 1.

We continued this chapter with a literature review on the zeros of infinite-

dimensional systems.

In chapter 2, we introduced the concept of C0-semigroups as an essential

component of analyzing infinite-dimensional systems. We presented the Hille-

Yosida Theorem as a strong theorem that gives a necessary and sufficient

condition for an operator on a Banach space to be the infinitesimal generator

of a C0-semigroup. Then we introduced boundary control systems and their

transfer functions. After that, we formulated an open-loop second order

boundary control system with co-located input and output in the sense that

the highest order derivatives of the input and output operators occur at

the same endpoint of a one-dimensional spatial domain. We proved some

propositions about the open-loop transfer function of this system. Also, we

111
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proved that the open-loop system is L2-stable if and only if the open-loop

transfer function lies in H∞.

In chapter 3, we introduced the root-locus method for locating the closed-

loop poles of a system and applied this method to finite-dimensional systems.

We derived some results about the closed-loop stability of this class of sys-

tems. Denoting the difference between the number of poles and zeros by

np−nz, if np−nz > 2 the closed-loop system is unstable for sufficiently large

feedback gain. If np − nz = 0 or np − nz = 1 and all open-loop zeros are

in the open left-half plane, the closed-loop system is stable for sufficiently

large k. If np−nz = 2 and the asymptotes intersect on the positive real axis,

then the two asymptotic branches lie in the closed right-half plane, which

means the system is unstable for sufficiently large k. If np − nz = 2 and

the asymptotes intersect on the negative real axis, then two asymptotes lie

in the open left-half plane, which means that as k tends to infinity, the two

closed-loop poles diverging to the two open-loop zeros at infinity, are on the

open left-half plane. In this case, for the closed-loop system to be eventually

stable(for sufficiently large k), it suffices that all open-loop zeros lie in the

open left-half plane, that is, the system is minimum-phase.

We continued chapter 3 with presenting a complete root-locus analysis for

a second order diffusion problem with control and observation on the bound-

ary. We showed that outside a fixed contour Ω, the closed-loop poles, for any

feedback gain k, are negative real, simple and form a divergent sequence. In

another word, all root-locus branches lie on the negative real line. We also

showed that all closed-loop poles vary continuously, from open-loop poles to

open-loop zeros, as k varies from zero to infinity. Particularly, for the real
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branches outside Ω, we proved that the closed-loop poles move continuously

to the left.

We further showed that poles with negative real values do not lead to

instability in the system response. Hence, the infinitely many closed-loop

poles on the negative real axis are stable poles. However, the finitely many

poles inside Ω may be complex, multiple, or on the right-half plane and

hence the root-locus branches may lie on the right-half plane and lead to an

unstable system response. If the open-loop system has no closed right-half

plane zeros, the closed loop system is stable for sufficiently large values of

the feedback gain. On contrast, if there is at least one open-loop zero in the

closed right-half plane, then for sufficiently large k, the closed-loop system

has at least one unstable pole and so the system is unstable.

The root-locus theory for infinite-dimensional systems has many open-

problems. For example, we can extend our study to the root-locus analysis

of PDE systems with second order time derivatives, e.g., vibrating systems.

As another example, we can study boundary control systems with non-co-

located input and output operators.
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