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Abstract

In this thesis we consider some network design games that arise from common
network design problems. A network design game involves multiple players who
control nodes in a network, each of which has a personal interest in seeing their
nodes connected in some manner. To this end, the players will submit bids to
a mechanism whose task will be to select which of the players to connect, how
to connect their nodes, and how much to charge each player for the connection.
We rely on many fundamental results from mechanism design (from [8], [9] &
[5]) in this thesis and focus our efforts on designing and analyzing cost-sharing
methods. That is, for a given set of players and their connection requirements,
our algorithms compute a solution that satisfies all the players’ requirements
and calculates ’fair’ prices to charge each of them for the connection.

Our cost-sharing methods use a primal-dual framework developed by Agrawal,
Klein and Ravi in [1] and generalized by Goemans & Williamson in [3]. We mod-
ify the algorithms by using the concept of death-time introduced by Könemann,
Leonardi & Schäfer in [6].

Our main result is a 2-budget balanced and cross-monotonic cost sharing
method for the downwards monotone set cover game, which arises naturally
from any downwards monotone 0, 1-function. We have also designed a 2-budget
balanced and cross-monotonic cost sharing method for two versions of the edge
cover game arising from the edge cover problem. These games are special cases
of the downwards monotone set cover game. By a result by Immorlica, Mahdian
& Mirrokni in [4] our result is best possible for the edge cover game.

We also designed a cross-monotonic cost sharing method for a network de-
sign game we call the Even Parity Connection game arising from the T-Join
problem that generalizes proper cut requirement functions. We can show our
algorithm returns cost shares that recover at least half the cost of the solution.
We conjecture that our cost sharing method for the even parity connection game
is competitive and thus 2-budget balance.
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Chapter 1

Introduction

In the past decade many advancements have been made in the field of classical
game theory, a broad research area that studies the behaviour of rational and
selfish agents interacting in a well defined environment. This renewed interest
has been largely driven by the explosive growth of the Internet, a complex
network that brings together millions of users and computers each desiring to
send, share and receive huge amounts of data. The problems of how to connect
these users and how to efficiently transmit their data could be loosely defined
as network design problems. This is a well studied area within the field of
combinatorial optimization, which seeks to minimize the cost of accomplishing
a specific goal given finite resource constraints.

For a motivating example, consider an Internet Service Provider (ISP) that
wishes to provide cable Internet service to a remote town. Given a list of
businesses and households in the town that wish to receive this service, the ISP
would like to determine how to lay new cables to service the new customers while
minimizing the cost of laying the cable. In the broad terms of combinatorial
optimization, the service provider wishes to accomplish the goal of connecting
all the new customers while minimizing the cost of laying the cable, constrained
by building restrictions from local and regional governments.

1.1 Network Design Problems

The above problem is an example of a network design problem. We are given an
undirected graph G with node set V and edge set E, where each edge e ∈ E has
a non-negative cost ce. In this example, the edges represent feasible sites for
new cable, the nodes represent homes, businesses and cable junctions, and the
cost of each edge segment captures the cost of clearing land and the cable itself.
We assume our graph includes one root node which represents a connection to
the Internet through the ISP; it wouldn’t do to just connect the townspeople to
one another!

We now develop a mathematical model that captures all network design
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1. INTRODUCTION

problems presented in this thesis. Consider our ISP example, and notice that
any set S that includes a customer node but not the root node must have an
edge crossing the cut δ(S) for the customer to receive service. To generalize
this concept, we define a cut requirement function f(S) which maps each subset
of nodes S ⊆ V to N. In our example, any subset of nodes S that includes
a customer that wishes to receive service and not the root node would have
f(S) = 1. That is, at least one line of cable must cross the boundary of the set
S connecting the customer to the Internet.

We can model and solve network design problems using linear programming.
Consider the following integer programming formulation for the general network
design problem:

min
∑

e∈E

cexe (IP)

s.t.
∑

e∈δ(S)

xe ≥ f(S) ∀S ⊆ V,

xe ∈ {0, 1} ∀e ∈ E.

We will see in Section 1.4 how to use this integer program and its dual to
solve our network design problems.

The well known Steiner Tree problem falls into this framework. Here we
are given an input graph G = (V,E), non-negative edge costs ce for each edge
e ∈ E, a set of terminals R ⊆ V and a root vertex r ∈ V . The goal is to connect
all the terminals and the root node with a single tree of minimum cost. The
appropriate cut requirement function has f(S) = 1 if and only if S ⊂ (R∪{r}).
Comparing the Steiner Tree problem to the example above, we can identify each
interested customer and the root node as terminals, and observe that the ISP’s
problem of servicing all the customers at minimum cost is just the problem of
finding the minimum cost Steiner tree that spans the customer nodes and the
root node.

In our example, a feasible solution is a subset of edges F ⊆ E forming a tree
that spans every customer terminal and the root node. The optimal solution
would be the feasible tree of minimum total cost. Goemans & Williamson
explored the model of a general network design problem in [3], where a feasible
solution is a subset of edges F ⊆ E such that F crosses the cut induced by each
S at least f(S) times, i.e. |δ(S) ∩ F | ≥ f(S),∀S ⊆ V .

We will be considering a number of cut requirement functions in this the-
sis, restricting our focus to problems where the cut-requirement f(S) is a 0, 1-
function.

Definition 1. A function f : 2V → {0, 1} satisfies maximality if for all disjoint
A,B with f(A) = f(B) = 0 we have f(A ∪B) = 0.

Notably, every cut requirement function in this thesis will satisfy the maxi-
mality property.

2



1.2. NETWORK DESIGN GAMES

Definition 2. A function f is proper if it satisfies both the maximality property
and the symmetry property: f(S) = f(V \S) for all S ⊆ V .

Another class of functions, from which we will draw our first few problems,
is the class of downwards monotone functions.

Definition 3. A function f is downwards monotone if ∀S, S′ ⊆ V where S′ ⊆ S
we have f(S) ≤ f(S′).

It is necessary that we assume f(V ) = 0 in every problem. Goemans &
Williamson address the special case where f(S) is a 0, 1-function and either
proper or downwards monotone in [3]. Many of these network design problems,
including the Steiner Tree problem, are NP-hard. Note that the Steiner Tree
problem’s cut requirement function is proper.

1.2 Network Design Games

We can make our example interesting from a game theoretic perspective by
asking an obvious question: how much should each customer pay? ISPs are
in the habit of charging a flat monthly fee to their customers, but due to the
remoteness of the town it may not be cost-effective to charge the customers
in the small town the same fee as those living in a large city. The ISP may
want to pass on the excessive cost of laying cable to the customers who do use
the service. It may also want to consider factors such as expected bandwidth
usage, or more generally, how much each individual customer values access to
the Internet. For instance, a household that wouldn’t pay more than $10 a
month for cable Internet service is not a very desirable customer. On the other
hand, the ISP would be losing out on revenue if it elected to charge $50 a month
to a business that was willing to pay upwards of $200 a month.

A general network design game has a player set P , with |P | = p ≥ 1 players.
Each player i ∈ P has their own cut requirement function fi, and seeks to
establish a forest F ⊆ E that satisfies their cut requirement. In most games,
we insist that a feasible F must satisfy all cut requirements fi,∀i ∈ P . For
functions fi satisfying the maximality property this is equivalent to satisfying
the cut requirement f(S) = maxi∈P fi(S). To see why, consider two disjoint
sets A and B with fi(A) = fi(B) = 0 for all i ∈ P . Then by maximality,
fi(A∪B) = 0 for all players, so f(A∪B) = 0 as well for all disjoint sets A and
B with f(A) = f(B) = 0.

From the perspective of the ISP we can define the set P = {1, ..., p} of agents
as the set of potential customers. In our example, we can identify each player
with one node representing a household or business. We say that each player
i ∈ P has a private utility ui ≥ 0 for receiving the service, and utility 0 if they
do not receive cable Internet service. The utility of a player can be interpreted
as the most they are willing to pay for receiving the service. In our example,
the cut requirement fi,∀i ∈ P can be simply defined as fi(S) = 1 if and only
if S contains the node owned by player i and not the root node. That is, each

3



1. INTRODUCTION

player is only interested in ensuring they are connected to the root node. As
all of these cut requirements satisfy the maximality property, a feasible solution
to this network design game is also a feasible solution to the network design
problem with cut requirement f(S) = maxi∈P fi(S).

1.3 Cost-Sharing Mechanisms

If the ISP knew the utilities {ui}i∈P of all the customers in the remote town, it
could make educated decisions as to which customers are worth servicing; how
to lay cable in order to service them; and how much to charge each customer.
Unfortunately for the ISP, we assume these valuations are private. Instead, the
ISP could solicit bids {bi}i∈P from the players.

At this point we enter the field of mechanism design. In general, a mechanism
is an algorithm that allocates resources among a set of agents. In this thesis we
will be considering a smaller class of mechanism design problems where we try
to allocate a service rather than resources.

Our ISP problem is a good example of a mechanism in action. The mecha-
nism is tasked with three objectives:

1. Determine a set Q ⊆ P that will receive the service;

2. Compute a solution F ⊆ E to service Q;

3. Charge a price xi to each player i ∈ Q.

A mechanism that accomplishes these goals is called a cost-sharing mechanism.
For notational convenience we define an indicator variable qi such that qi = 1

if i ∈ Q and qi = 0 otherwise. Define the benefit of player i as uiqi − xi.
From the perspective of the players, the mechanism is a strategic game where

we assume each player i is selfish, and seeks to maximize their benefit. We let Bi

represent the set of all feasible bids for player i ∈ P . Let B−i represent the set
of vectors of feasible bids for the other players, and let the vector b−i represent
the chosen bids of all other players. Let ui(bi, b−i) represent the benefit of player
i following the outcome of the mechanism if she bids bi given the other players
bid b−i.

Definition 4. We say a bid bi ∈ Bi is a dominant strategy for player i if for
all b−i ∈ B−i, we have ui(bi, b−i) ≥ ui(b

′
i, b−i) for all b′i ∈ Bi.

An intuitive way to define this dominant strategy is as follows: regardless
of the bids of the other players b−i, player i cannot improve their benefit by
instead submitting a new bid b′i 6= ui. A rational agent should always use a
dominant strategy, if one exists at all.

Since the players are selfish, it may suit a player to lie about her utility ui

and submit a bid bi 6= ui. If this happens, it can only hurt the ISP. It could
either lose money by not charging a customer enough, or could lose a customer
entirely if the ISP decides the bid received is too low to bother providing service.
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1.3. COST-SHARING MECHANISMS

As a result, a very desirable property of cost-sharing mechanisms is that the
dominant strategy of each player is to report their utility. This property is also
desirable from the player’s perspective as they can be confident they are using
a simple yet optimal strategy.

Definition 5. A cost-sharing mechanism is said to be strategyproof (or truth-
ful) if bidding bi = ui is a dominant strategy for each player i ∈ P

We can generalize this concept to coalitions.

Definition 6. Suppose the mechanism returns prices x and indicator vector q
when every player i ∈ P bids bi = ui, while it returns prices x′ and indicator
vector q′ if a coalition of players P ′ ⊆ P deviates from the truth and each player
i ∈ P ′ is permitted to bid some b′i 6= ui. We say the mechanism is group-
strategyproof if for all i ∈ P ′

uiq
′
i − x′

i ≥ uiqi − xi

then for all i ∈ P ′

uiq
′
i − x′

i = uiqi − xi

In short, a mechanism is group-strategyproof if no member of a coalition can
increase their benefit without decreasing the benefit of another member.

In [5] Jain & Vazirani describe a general model for cost-sharing mechanisms
and list other desirable properties, including:

1. No Positive Transfer (NPT): The prices are all non-negative (xi ≥ 0,∀i)

2. Voluntary Participation (VP): Each player i is never charged a price xi

greater than their bid bi and only the players who receive service (those
in Q) are charged a price;

3. Consumer Sovereignty (CS): A player is only guaranteed to receive service
if they make a large enough bid.

Voluntary Participation reflects the reality that someone who is being charged
more for the service than they are willing to pay (i.e. has negative benefit) can
instead choose not to play the game at all. Consumer Sovereignty prohibits
the mechanism from guaranteeing service to players regardless of price, which
encourages each player to bid their valuation instead of 0.

The service provider must charge prices to the players it services in order
to recoup the cost of maintaining the network that services the players. Let
the cost of servicing a player set Q be denoted by c(Q). In our ISP example,
if we are given edge costs ce for each edge e ∈ E then for a forest F ⊆ E that
services some subset of the customers Q we have that c(Q) =

∑

e∈F ce. Note
that while an optimal forest Fopt(Q) certainly exists for servicing Q that the
mechanism may not be able to find it in polynomial time. As mentioned earlier,
some network design problems like the Steiner Tree problem are NP-Hard. As
a result, we do not insist that our mechanism return an optimal solution, and
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1. INTRODUCTION

instead relax the requirement to a solution that is at most a constant times the
optimal solution. Let

optQ =
∑

e∈Fopt(Q)

ce

i.e. the cost of the optimal forest that services Q.
Once we have a solution that services Q, we seek to share the cost of the

solution among the agents in Q. In the pursuit of fair prices, we try and de-
sign cost-sharing mechanisms that are budget balanced. Define a cost-sharing
mechanism as budget balanced if:

c(Q) ≤
∑

i∈Q

xi ≤ optQ

The first inequality is referred to as the cost recovery inequality and insists
that the cost of servicing Q be recovered. The second inequality is referred to
as the competitiveness inequality and promotes fairness by insisting the service
provider not charge the players more than the optimal cost of servicing them.
Since we are considering network design problems where we seek to minimize the
objective function, a budget balanced mechanism naturally has c(Q) = optQ.

One final property we would like our mechanism to have is efficiency. We say
a mechanism is efficient if the total benefit of the players in Q is maximized. Un-
fortunately, it is a classical result in game theory that no cost-sharing mechanism
is both efficient and budget balanced. Recently, Roughgarden and Sundarara-
jan [10] introduced an alternative measure of efficiency known as Social Cost
that circumvents this difficulty somewhat. However, we will set this condition
aside for the remainder of the thesis and focus on the remaining properties.

Now consider the problem of finding a budget balanced and group-strategyproof
cost-sharing mechanism that also satisfies the NPT, VP and CS properties.

Immorlica, Mahdian and Mirrokni showed in [4] that the trivial cost-sharing
mechanism that charges the entire cost c(Q) to a somewhat arbitrary player
(whose bid is at least c(Q) for some Q ⊆ P ) and nothing to the rest of the players
results in a budget balanced and group-strategyproof cost-sharing mechanism.
While this mechanism technically satisfies the properties listed above, it is un-
desirable for the following reasons. The first problem is that most of the players
who do receive service do so without paying for it; we would like a cost-sharing
mechanism that avoids free riders (those that pay nothing) whenever possible.
The second problem is that a coalition of players could convince a free riding
member i ∈ Q whose utility is 0 to not submit a bid at all. Let Q′ = Q − {i}.
This could result in a lower cost of service c′(Q′) < c(Q) charged to the one
player bearing the cost without changing the benefit of player i. The result is
one member of the coalition increases their benefit (by paying less) while the
player whose utility is 0 experiences no change in benefit. The mechanism is
technically still group-strategyproof, but only in the way we defined earlier. It
does not meet a stronger notion of group-strategyproofness suggested by Moulin
in [8]. The authors suggest allowing utilities and bids to be negative so that the
above mechanism is not a feasible alternative. The remainder of this thesis will

6



1.3. COST-SHARING MECHANISMS

take this approach so that we can focus our attention on ’sensible’ cost-sharing
mechanisms.

This brings us to a general cost-sharing mechanism developed by Moulin
& Shenker in [8] & [9], sometimes referred to as a Moulin mechanism. This
mechanism is a group-strategyproof cost-sharing mechanism that arises from
any cross-monotonic cost-sharing method ξ.

Definition 7. Given Q ⊆ P , define a cost sharing method ξ as an algorithm
that returns a solution to service Q and prices ξQ(i) ∈ R

+ (cost shares) such
that ξQ(i) = 0 if i 6∈ Q and

∑

i∈Q ξQ(i) = c(Q).

Intuitively, a cost-sharing mechanism selects a subset Q ⊆ P and then uses
a cost-sharing method to compute the solution F and prices xi = ξQ(i).

Definition 8. A cost share is cross-monotonic if for sets R and S with R ⊆ S
and each player j ∈ R we have

ξS(j) ≤ ξR(j)

That is, the cost share of each player should not increase if other players
join the game; or analogously, the cost share of each player should not decrease
if a player leaves the game.

Algorithm 1 Moulin Mechanism

1: Given: A cost-sharing method ξ, the set of players P and their bids {bi}i∈P

2: Q← P
3: repeat

4: Compute ξQ(i) using the cost-sharing method ξ
5: R = {i ∈ Q : ξQ(i) > bi}
6: Q← Q\R
7: until R = ∅
8: Return: xi = ξQ(i),∀i ∈ P

Moulin & Shenker also showed that if the cost-sharing method ξ is budget-
balanced then the Moulin mechanism is budget-balanced. However, if the un-
derlying problem of finding the optimal solution that services Q is NP-hard then
it is unlikely that a cost-sharing mechanism exists that is budget balanced and
can compute prices in polynomial time.

We thus relax the budget balance requirement and focus our attention on
finding cost-sharing mechanisms that are approximately budget balanced. Define
a cost-sharing mechanism as α-budget balanced if:

1

α
c(Q) ≤

∑

i∈Q

xi ≤ optQ

Just as we defined α-budget balanced for cost-sharing mechanisms we can define
an α-budget balanced cost-sharing method ξ as one that satisfies:

1

α
c(Q) ≤

∑

i∈Q

ξQ(i) ≤ optQ

7



1. INTRODUCTION

Jain & Vazirani in [5] extended the results of Moulin & Shenker with the
following theorem

Theorem 1.3.1. The Moulin mechanism is α-budget balanced, group-strategyproof
and meets NPT, VP and CS if the underlying cost-sharing method ξ is cross-
monotonic and α-budget balanced.

We now turn to the problem of finding such cross-monotonic and α-budget
balanced cost-sharing methods for some network design games by developing
primal-dual approximation algorithms and cost-shares derived from dual solu-
tions to these problems.

1.4 Primal Dual Algorithms

Recall the general linear program for network design problems we introduced
earlier:

min
∑

e∈E

cexe (IP)

s.t.
∑

e∈δ(S)

xe ≥ f(S) ∀S ⊆ V,

xe ∈ {0, 1} ∀e ∈ E.

It is convenient to consider the linear programming relaxation (LP) of the
above (IP), where the constraints xe ∈ {0, 1},∀e ∈ E are replaced with the
constraints xe ≥ 0,∀e ∈ E.

Now consider the dual (D) of (LP), which has a dual variable yS for each
subset S ⊆ V and a constraint for each edge e ∈ E:

max
∑

S⊆V

f(S)yS (D)

s.t.
∑

S⊆V :e∈δ(S)

yS ≤ ce ∀e ∈ E, (1)

yS ≥ 0 ∀S ⊆ V.

There exist a few closely related primal-dual algorithms for solving general
network design problems. Agrawal, Klein and Ravi first proposed a primal-dual
algorithm (AKR) for the Steiner Forest Problem in [1]. In the Steiner Forest
Problem we are given an undirected graph G = (V,E), non-negative edge costs
ce∀e ∈ E, and a set of k > 0 terminal pairs R = {(s1, t1), . . . , (sk, tk)} ⊆ V ×V .
A feasible solution to this problem is a forest F ⊆ E such that the two vertices
si, ti of each terminal pair (1 ≤ i ≤ k) are contained in the same tree of F . It
is interesting to note that the Steiner Tree problem is just a special case of the
Steiner Forest problem, where the root node r ∈ {si, ti} for all 1 ≤ i ≤ k.

8



1.4. PRIMAL DUAL ALGORITHMS

The appropriate cut requirement function for the Steiner Forest problem can
be stated naturally in terms of Steiner cuts. A set U ⊆ V is a Steiner cut if
it contains exactly one vertex of an (si, ti) pair, for some 1 ≤ i ≤ k. We let
F represent the set of all Steiner cuts. Now we can define the cut requirement
function for the Steiner Forest problem as f(S) = 1 if and only if S ∈ F , and
f(S) = 0 otherwise.

1.4.1 AKR Algorithm

The AKR algorithm constructs a primal solution for (IP) and a dual solution
for (D) with the cut requirement function f from the previous paragraph. The
algorithm begins with an empty forest F and dual variables y = 0. During the
execution of AKR the algorithm simultaneously computes a feasible forest for
(IP) by augmenting the forest F and maintains a feasible dual solution to (D)
by raising the value of certain dual variables.

We consider the execution of AKR as a process over time. At the initial-
ization of the algorithm we set the time variable τ = 0, and we increase τ and
the dual variables at the same rate over the execution of the algorithm. Let xτ

represent the primal incidence vector, F τ represent the forest induced by xτ ,
and yτ represent the dual solution vector at time τ ≥ 0. At the initiation of the
algorithm, we have x0

e = 0,∀e ∈ E and y0
S = 0,∀S ⊆ V .

For our example we use an instance of the Steiner Forest game. The different
shapes represent three given terminal pairs. The corresponding cut requirement
has f(S) = 1 if and only if S contains exactly one vertex of any shape (equivalent
to S containing exactly one of the two vertices in any (si, ti)-pair).

2 2

22

3

3

5

4

5

Figure 1.1: Sample Input Graph for AKR Algorithm.

We say a edge e ∈ E becomes tight if the corresponding constraint (1) is
satisfied with equality at time τ . We use F̄ τ to represent the set of tight edges

9



1. INTRODUCTION

induced by the duals yτ . For convenience, we refer to a connected component
of F̄ τ as a moat. We say a moat U of F̄ τ is active if U separates at least one
terminal pair, i.e., U ∈ F is a Steiner cut. Let Aτ represent the set of active
moats at time τ .

The AKR algorithm raises the dual variables of all active moats in Aτ uni-
formly at all times τ ≥ 0. Whenever an edge becomes tight during the execution
of an algorithm, we check for a collision. We say that moats U1 and U2 collide
at time τ if

1. U1 is an active moat at time τ (U1 ∈ A
τ )

2. U2 is an active moat at time τ

3. τ is the first time during the execution of the AKR algorithm at which
forest F̄ τ contains a connected component U such that U1 ⊆ U and U2 ⊆
U .

2 2

22

3

3

5

4

5

Figure 1.2: At this point, the edges with cost of 2 are tight and part of the
current solution. The edges with cost 3 will soon be tight but will not be part
of F , as they will not become tight as a result of two active moats colliding.

When a collision occurs at time τ between two active moats U1 and U2 , there
must exist vertices v1 ∈ U1 and v2 ∈ U2 such that a path Pv1,v2

between v1 and
v2 becomes tight as a result of increasing yU1

and yU2
. When this happens, we

add the path Pv1,v2
to F τ and continue the algorithm. The algorithm terminates

at a time τ∗ when the set of active moats Aτ∗

is empty. At this point the forest
F τ∗

is feasible for the Steiner Forest problem.
We give a formal definition of the algorithm and present the main theorem

of [1]:

10
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Theorem 1.4.1. Suppose that algorithm AKR outputs a forest F and a feasible
dual solution {yU}U∈F . Let optR represent the minimum cost of a Steiner forest
for the terminal set R. Then

c(F ) ≤ (2)
∑

U∈F

yU ≤ (2)optR

Algorithm 2 Primal-Dual AKR algorithm with uniform increase rule

1: y ← 0
2: F ← ∅
3: repeat

4: A ← { active moats U}
5: repeat

6: Raise yU uniformly ∀U ∈ A
7: until Two moats U1 and U2 collide
8: P ← a path of tight edges joining some v1 ∈ U1 to some v2 ∈ U2

9: F ← F ∪ P
10: until F is feasible
11: Return: (F, y)

1.4.2 GW Algorithm

The GW algorithm presented in [3] extends the framework of the AKR algo-
rithm presented in [1] to general downwards monotone and proper cut require-
ment functions. Throughout the remainder of this section we will refer to the
algorithm as the GW algorithm, although we will be taking ideas from both
algorithms as we develop our own in this thesis.

Recall the more general network design problem defined by (IP). The GW
algorithm is also viewed as a process over time. The main difference between the
two algorithms is in deciding which dual variables to raise during the execution.
The GW algorithm is designed for more general cut requirement functions, so
we need some new terminology and notation. For an infeasible forest F τ , we
say that the set S is violated if δ(S)∩ F τ < f(S). Unfortunately, there may be
exponentially many violated sets so we are required to make some simplifying
assumptions.

Recall we said we would restrict our focus to problems where the cut-
requirement f(S) is a 0, 1-function. Now we can say a set S is violated when
f(S) = 1 and δ(S) ∩ F τ = ∅.

The GW algorithm only raises the dual variables of violated sets which do
not contain violated subsets. It is easy to identify these minimal violated sets
when the cut requirement function satisfies the maximality property, as the
following lemma from [3] shows.

Lemma 1.4.2. Let f(S) be a {0, 1} function satisfying the maximality property,
and let E ⊆ F be any edgeset. Then a connected component S induced by the
edgeset E with f(S) = 1 is a minimal violated set.

11
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Intuitively, a minimal violated set is a set S such that no subset S′ ⊆ S has
f(S′) = 1 and δ(S′) ∩ F τ = ∅.

Let Cτ represent the connected components of F τ . Let Aτ represent the set
of minimal violated sets at time τ , i.e.

Aτ = {S ∈ Cτ : f(S) = 1}

The GW algorithm raises the dual variables of all minimal violated sets in
Aτ uniformly at all times τ ≥ 0. As the dual variables for minimal violated sets
are raised, it could happen at time τ that the constraint of type 1 corresponding
to an edge e ∈ E becomes tight. At this point, the GW algorithm adds edge e
to F τ and continues.

At some time τ∗ ≥ 0, the forest F τ∗

will be feasible for the given (IP). The
GW algorithm now performs a reverse delete step by considering edges in the
reverse order they were added to the forest. When considering the edge e, if
the forest F τ∗

−{e} is feasible for (IP), then the GW algorithm removes e from
F τ∗

. We let F represent the final forest after the reverse delete step.
Consider running the GW algorithm on the same example we presented for

the AKR algorithm (see Figure 1.2).

2 2
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5
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5

Figure 1.3: At this point, the edges with cost 2 are tight and are all part of
the current solution F . Soon the edges of cost 3 will be tight and added to the
solution.

It should be noted that in the original AKR algorithm we only add certain
tight edges and do not perform a reverse-delete step. In the example, the edges
of cost 3 will not be added in the AKR algorithm. In the case of the Steiner
Forest problem, the execution of the two algorithms on the same graph and
terminal set return the exact same solution. This is not the case for most other

12
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2 2
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5

Figure 1.4: The edge with cost 4 is now tight, and in the reverse delete step, we
remove both edges of cost 3

network design problems. We will use the more general GW framework for the
first few algorithms presented in this thesis, and the AKR technique in the last
algorithm presented.

The following theorem appears in [3] and its proof is included here for com-
pleteness:

Theorem 1.4.3. Let F be the final forest produced by the GW Algorithm.
Let {yS}S⊆V be the corresponding feasible dual solution for (D). Let f be a
0,1-function satisfying the maximality property. Then F is feasible for (IP) and
c(F ) ≤ 2

∑

S⊆V f(S)yS .

Proof. We can show the result by considering the average degree of a forest.
Consider an arbitrary time τ < τ∗ and the set of tight edges Eτ ⊆ F τ that will
be retained in the final solution F (that is, Eτ ⊆ F as well). Define a minimal
augmentation M of Eτ such that Eτ ⊆M , M is a feasible solution and M − e
is infeasible for all edges e ∈ M . By definition, the final forest F returned by
GW is a minimal augmentation of Eτ .

Now consider the set Aτ of minimally violated sets induced by the edgeset
Eτ in G at time τ . If we increase the dual variables of all sets in Aτ at time τ
by ǫ, then the total incremental dual growth is ǫ|Aτ |. At all times during the
execution of GW, these minimally violated sets are incident to edges in F\Eτ ,
that is, edges that are not tight yet but will be added to the final solution at
some later time. For a set A ∈ Aτ , let

δEτ (A) = δ(A) ∩ F\Eτ

We need to show that the number of such edges is at most twice |Aτ | at all times
τ < τ∗. This implies we can share the dual growth of the minimally violated

13
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Algorithm 3 Primal-Dual GW algorithm with uniform increase rule and re-
verse delete step

1: y ← 0
2: F ← ∅
3: i← 0
4: repeat

5: i← i + 1
6: A ← { minimal violated sets S}
7: repeat

8: Raise yS uniformly ∀S ∈ A
9: until An edge ei becomes tight

10: F ← F ∪ {ei}
11: until F is feasible
12: for j = i to 1 do

13: if F − {ei} is feasible then

14: F ← F − {ei}
15: end if

16: end for

17: Return: (F, y)

sets at any time τ among the final edges that ’feel’ the dual growth, and the
theorem will be shown.

Consider the auxiliary graph Hτ formed by taking G with edge set Eτ and
shrinking the connected components of Eτ down to vertices. Every edge in Hτ

now corresponds to an edge that will become tight at some future time τ ′ > τ
(and will not be removed in the reverse delete step). This is exactly the set of
edges F\Eτ , so

∑

A∈Aτ

|δEτ (A)| =
∑

v∈Hτ

dv

Each vertex of Hτ corresponds to a connected component induced by Eτ . Let
W τ be the set of vertices of Hτ corresponding to sets in Aτ . Naturally,

|Aτ | = |W τ |

The cut requirement function f on G translates nicely to the graph Hτ by
letting f(v) = 1 for v ∈ V (Hτ ) if and only if v corresponds to a connected
component S induced by Eτ and f(S) = 1.

Notice that Hτ has the property that no connected component contains
more than one vertex x with f(x) = 0. Suppose, by contradiction, that ∃x, y ∈
C ⊆ Hτ with f(x) = f(y) = 0, C a connected component of Hτ . Then ∃ a path
from x to y in Hτ and an edge e whose deletion disconnects x and y. Consider
the resulting sets S1∪S2 = C and suppose without loss of generality that x ∈ S1

and y ∈ S2. Then f(S1) = f(S2) = 0, and Eτ − e is still feasible, contradiction
to the minimality of Hτ . Now suppose Hτ has c components. Thus

|V (Hτ )| − c ≤ |W τ |

14
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Thus, we now have

∑

A∈Aτ

|δEτ (A)| =
∑

v∈Hτ

dv ≤ 2(|V (Hτ )| − c) ≤ 2|W τ | = 2|Aτ |

since Hτ is a forest implies
∑

v∈Hτ dv ≤ 2(|V (Hτ )| − c) and the result is
shown.

This implies that the GW algorithm is a 2-approximation for network de-
sign problems given by (IP) where the cut requirement function f satisfies the
maximality property. In the remainder of this thesis, we apply this framework
to some network design problems with special properties.

In the next chapter we will consider four different network design games. We
will use variations of the primal-dual algorithms from this chapter to solve spe-
cial instances of network design problems underlying the given network design
game. We will then use the dual solutions to derive cross-monotonic cost-shares
for the agents playing the game. We will also briefly discuss how to use these
cost-shares in a Moulin Mechanism to ultimately compute which players to ser-
vice and how much to charge them for the service. The final chapter contains
discussion on directions for future work arising from this thesis.

15





Chapter 2

Algorithms for Network

Design Games

Recall we introduced general network design games with a player set P , where
|P | = p ≥ 1. Each player i ∈ P has their own cut requirement function fi, and
seeks to establish a forest F ⊆ E that satisfies their cut requirement. As an
example, consider the Steiner Forest Game, based on an instance of the Steiner
Forest problem. Each terminal pair (si, ti), 1 ≤ i ≤ k in the Steiner Forest
problem is associated with a player i ∈ P . Each player i wishes to connect
their terminal pair, so that a feasible solution to the Steiner Forest Game is a
forest F ⊆ E such that both vertices of each player’s pair are contained in the
same tree of F . We assume that each player i ∈ P has a private utility ui for
establishing this connection.

To solve a network design game like the Steiner Forest Game we can use a
cost-sharing mechanism. First we solicit bids from the players, run the cost-
sharing methods we will develop in this chapter on the player set P and assign
a cost share ξP (i) for each player i ∈ P . Next we can use the Moulin mechanism
to remove any players R whose assigned cost-shares are greater than their bids.
We then rerun the cost-sharing method as a subroutine of the Moulin mecha-
nism on the smaller player set Q = P\R. The Moulin mechanism requires us
to repeat this process until all the remaining players’ cost-shares are at most
their bids. In this manner every time we run the algorithm that computes the
solution to service the current set Q we do so ignorant of the bids and the other
iterations of the algorithm. Thus, we can effectively ignore the bids of the play-
ers while designing the approximation algorithms and cost-sharing methods for
these network design games.

The resulting solution may not satisfy every player’s cut requirement func-
tion. Instead, players whose utility is less than their assigned cost-shares are
completely removed from the game. As explained above, on subsequent itera-
tions we run the cost-sharing method on the player set Q. A feasible solution to
a network design game is one that satisfies the cut requirements of every player
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2. ALGORITHMS FOR NETWORK DESIGN GAMES

i ∈ Q.

2.1 Death-time concept

The notion of vertex death-time in the execution of a primal-dual algorithm was
introduced in [7]. Könemann, Leonardi and Schäfer modified the AKR algo-
rithm to develop a 2-budget balanced and cross-monotonic cost-sharing method
(known as KLS) for the Steiner Forest Game. Recall we explored how the GW
algorithm generalized the AKR algorithm to downwards monotone and proper
cut requirement functions. This thesis takes the natural step of generalizing the
KLS cost-sharing method to downwards monotone and proper cut requirement
functions.

To see why we are interested in designing non-trivial cost-sharing methods,
consider trying to obtain a cross-monotonic cost-sharing method directly from
AKR. Suppose we run the AKR algorithm on our sample Steiner Forest prob-
lem and divide the dual growth of yU among all players whose vertex pair is
separated by U . We provide a specific example that shows the resulting duals
do not give rise to a cross-monotonic cost-sharing method.

4 2 2 2 4

Figure 2.1: Our sample Steiner Forest game

4 2 2 2 4

Figure 2.2: AKR at time 1

4 2 2 2 4

Figure 2.3: Uniform distribution of dual growth among active vertices would
result in a total cost share to the triangle player of 3 + 3 = 6

18



2.1. DEATH-TIME CONCEPT

This is because the amount of dual growth each set experiences may be
dependent on the presence of other players.

4 46

Figure 2.4: We remove the hexagon player from the game

4 46

Figure 2.5: AKR running at time 2

4 46

Figure 2.6: Uniform distribution of dual growth would now result in a total cost
share of 2 + 2 + 1/2 + 1/2 = 5 for the triangle player

Comparing the example in Figure 2.3 with the example illustrated in Figure
2.6, the removal of the hexagon player results in a lower total cost share for the
triangle player. Equivalently, observe that if we add the hexagon player back,
the triangle player’s cost share goes up. This is a violation of cross-monotonicity.

The concept of vertex death-time allows us to control the dual growth so
that the resulting duals naturally give rise to a cross-monotonic cost-sharing
method. Könemann, Leonardi and Schäfer used death-time to develop the KLS
cost-sharing method for the Steiner Forest game in [6]. The death-time of each
vertex of an si, ti pair was defined as half the cost of the shortest si, ti-path.

This definition arises naturally from a more general way to define vertex
death-time. Suppose the current player set is Q ⊆ P . We run the GW algorithm
presented earlier on the graph G. However, instead of growing the duals for all
violated sets, we only grow the dual of sets that violate the cut requirement
fi of a specific player i ∈ Q. For example, to calculate the vertex death-time
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2. ALGORITHMS FOR NETWORK DESIGN GAMES

for player 1 in the Steiner Forest game, we would only grow the duals of the
connected components that contained exactly one of s1 or t1. As a result, at all
times during the execution of the algorithm, exactly two moats are growing and
will continue growing until they collide. At this point, the shortest si, ti-path
is tight. Thus the sum of the duals of sets containing si returned by the ith

run of the GW algorithm is exactly half the cost of the shortest si, ti-path. The
same is true for the sum of the duals of sets containing ti. After repeating this
process for each player i ∈ Q, we will have computed the vertex death-time for
all si, ti pairs. The resulting death-times are exactly those used in [7].

2 2

22
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3

5

4

5

5/2 5/2

5/25/2

2 2

Figure 2.7: The death times for each vertex have been added to this example

Of course, we do not need to calculate the death-times this way since we can
efficiently compute shortest paths, but this does help to motivate our choice
of death-time for other games. If we extend this idea to a general network
design game, the death-time of a vertex v for player i reflects the last time v
is contained in a set that violates the cut-requirement fi, if we were to run the
GW algorithm in the absence of the other players.

We cannot give a general definition of death-time that is suitable for all
network design games. Instead, in each game we consider we will give an explicit
way of calculating the vertex death-time di(v) of a vertex v for a player i. We
can now define the notion of activity for this thesis and say a vertex v is active
at time τ if τ ≤ di(v) for some player i ∈ Q. Note that di(v) could be positive
for multiple players. In the Steiner Forest Game for example, it could be that
v is a vertex of two or more terminal pairs. It will be convenient to define the
death-time D(v) of vertex v, without reference to any player, as

D(v) = max
i∈Q

di(v)

To summarize, we say a vertex v is active at time τ if τ ≤ D(v).
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Let Uτ represent the connected components of F̄ τ , that is, the set of moats.
If f(S) = 1 for a moat S ∈ Uτ , we say the moat S is unsatisfied. For consistency
with the notation introduced with the GW algorithm, we let Aτ represent the
set of unsatisfied moats.

Define an active moat as a moat that contains an active vertex. Now we can
define the set of active moats as:

Mτ = {S ∈ Uτ : ∃v ∈ S such that τ < D(v)}

The algorithms presented in the following sections will all follow a primal-
dual framework based on the GW & AKR algorithms. However, instead of
raising the duals of minimal violated sets, the algorithms will raise the dual
variables of active moats to develop an intermediate forest F τ∗

, where τ∗ is
the time the last active terminal(s) become(s) inactive. Then the algorithms
may add paths to augment the intermediate forest F τ∗

into a feasible forest F .
The details of each algorithm will be presented in the section dedicated to each
individual network design game.

In each section we will introduce the network design game, review the primal-
dual method we will use to solve the underlying network design problem, and
compute the death-times for each vertex. We will then introduce our cost-
sharing method for each game, and show the resulting cost-shares recover a
constant fraction of the cost of the solution returned by the algorithm. We will
also show, where possible, that the cost-sharing method is cross-monotonic, and
thus gives rise to a group-strategyproof cost-sharing mechanism.

2.2 Single-node Multi-player Edge-Cover Game

In this section we consider a game-theoretic version of the edge cover game. We
are given an undirected graph G with node set V and edge set E, where each
edge e ∈ E has a non-negative cost ce. We are also given a player set P , with
|P | = p ≥ 1 players. For now, we assume that each player owns exactly one
node and that no node is owned by more than one player, so we can identify
each player i ∈ P with their node vi ∈ V . Let O ⊆ V be the set of nodes owned
by the players. Note that if there are more nodes than players, some nodes will
remain unowned.

Each player i ∈ P wants their node vi ∈ O ⊆ V to be covered by an edge
added in the solution. In the context of the mechanism, each player i ∈ P
has a private utility ui for satisfying their vertex, and will submit a bid bi to
the service provider. All other information, including who owns which nodes, is
public. On a given iteration of this algorithm with current player set Q ⊆ P and
associated vertices OQ ⊆ O, a feasible solution to the single-node multi-player
edge-cover game is a set of edges F ⊆ E such that δ(v) ∩ F 6= ∅,∀v ∈ OQ,
i.e. F must contain at least one edge incident to each node v that is owned by
one of the players. The goal is to find a minimum-cost feasible solution to this
problem.
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In the remainder of this section, we present a cross-monotonic cost-sharing
method that is 2-budget balanced for the above network design game. This
result is the best possible, due to a result in [4] where the authors proved that
there does not exist a (2 − ǫ)-budget balanced cross-monotonic cost-sharing
method for the edge cover problem, for any ǫ > 0. Our result confirms their
bound is tight for the general edge cover game.

2.2.1 Primal-dual method

To solve this problem we use a primal-dual algorithm based on the framework
provided by Goemans & Williamson [3]. Consider the following integer pro-
gramming formulation for the edge-cover game:

min
∑

e∈E

cexe (IP-1)

s.t.
∑

e∈δ(v)

xe ≥ 1 ∀v ∈ O,

xe ∈ {0, 1} ∀e ∈ E.

This linear program fits nicely into the framework we set up for general
network design problems by defining f({v}) = 1 if and only if v ∈ O. Again,
it will be convenient to consider the linear programming relaxation (LP-1) of
the above (IP-1), where the constraints xe ∈ {0, 1},∀e ∈ E are replaced with
the constraints 0 ≤ xe,∀e ∈ E. Note that in an optimal solution to the linear
relaxation no edge variable xe would be assigned a value of more than 1. We
also present the linear programming dual (D-1) of (LP-1), which has a dual
variable yv for each node v ∈ O and a constraint for each edge e ∈ E:

max
∑

v∈O

yv (D-1)

s.t.
∑

v∈O:e∈δ(v)

yv ≤ ce ∀e ∈ E, (1)

yv ≥ 0 ∀v ∈ O.

Note that in the edge-cover game, the only candidates for violated sets are
the nodes v ∈ O. Also note that on subsequent iterations with player set Q and
active nodes OQ we can rebuild these LPs by substituting OQ for O.

We present the Könemann-Wheatley (KW) Algorithm for the Single-node
Multi-player Edge-Cover Game (KW-1). The cut requirement fi for player i is
very simple:

fi(S) =

{

1 if S = {vi}
0 otherwise
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The general cut requirement for the current iteration, captured in the problem
(IP-1), is

f(S) = max
i∈Q

fi(S)

Note that since each player i controls only one node, and each node v ∈ OQ is
owned by exactly one player, for vertex vi ∈ OQ ⊆ V we can actually compute
the death-time:

D(vi) = di(vi) =
1

2
cost of the shortest edge incident to vi

For all other vertices u 6∈ O, we automatically set D(u) = 0. Once the death-
times are computed we consider a fresh instance of the graph G with yv = 0,∀v ∈
V and F = ∅. The algorithm first uniformly raises the dual variables of every
active vertex until some edge becomes tight. As in the GW algorithm, the KW-1
algorithm adds this edge to the forest F τ , and then continues to uniformly raise
the dual variables of connected components of F τ that contain active vertices.
In this version of the edge-cover game, a connected component of F τ containing
more than one vertex cannot contain any active vertices (Why? Suppose u, v are
two vertices in the same connected component, and u is active. Then τ < D(u)
implies that the dual variables yu = yv are each less than half the length of the
shortest edge incident to u. Thus, no edge incident to u is tight). This implies
the only candidates for active moats are active vertices. The KW-1 algorithm
continues in this fashion until a time τ∗ when there are no more active vertices.
It is important to note that the dual variable yv is raised uniformly until time
τ = D(v), so at time τ∗, we have yv = D(v) for all v ∈ V . Let F 0 = F τ∗

.
Here we can justify with a quick example why we must use half the cost of the

shortest edge so that the cost-sharing method remains competitive. Consider
a graph with two vertices, each owned by one of two players. The vertices are
joined by an edge of unit length. Suppose instead we set the death time to be
the length of the shortest edge incident to vi. The death-times of both vertices
would be 1, and then the total dual growth using the above method is 3

2 . This
does not immediately lead to a competitive cost-sharing method. By defining
the death-times as we do here, we can ensure the resulting cost-sharing method
is competitive, but we may have to add some edges.

Next the KW-1 algorithm adds edges to connect any unsatisfied vertices.
We refer to this as the edge-buying phase. We proceed with a simple greedy
algorithm which considers the shortest edge from unsatisfied vertices in G to
their nearest neighbour. For this game, the shortest edge for an unsatisfied
vertex v is just the shortest edge incident to v. In practice, we could create a
table with one entry for each unsatisfied vertex and the shortest edge we can
buy to satisfy it. Then we can buy each edge in order from shortest to longest,
updating the table as we go. We can resolve ties by using the player ordering
implied by the player labels 1, ..., n, buying the edge of the vertex owned by the
lower-numbered player first. We add the 1st edge to F 0, call the new forest F 1

and repeat for each unsatisfied vertex. For notation purposes, we say we add
the kth edge to F k−1 and call the new forest F k. After repeating this simple
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edge-buying process for each unsatisfied vertex, adding some p edges, F p will
be a feasible solution to the problem.

Finally, we perform the reverse delete step that is standard in primal-dual
algorithms. Suppose F p = {e1, ..., el} and that edge ei was added before ej if
and only if i < j. We consider every edge e ∈ F p in the reverse order they were
added to F p (throughout the entire algorithm) and delete an edge e from F p if
F p − e is feasible for the problem. Some tight edges may be removed that were
added during the dual-growth step. Let the final forest be F . Just as F p was
feasible for the problem, so is F .

Algorithm 4 Primal-Dual KW-1 algorithm for edge cover game

1: Given: D(v) for each v ∈ OQ

2: y ← 0
3: F ← ∅
4: i← 0
5: repeat

6: i← i + 1
7: A← {v ∈ OQ : yv ≤ D(v)}
8: repeat

9: Raise yv uniformly ∀v ∈ A
10: until An edge ei becomes tight or all vertices are inactive
11: F ← F ∪ {ei}
12: until A = ∅
13: repeat

14: i← i + 1
15: ei ← the edge connecting v to its nearest neighbour
16: F ← F ∪ {ei}
17: until 6 ∃v ∈ V such that F ∩ δ(v) = ∅
18: for j = i to 1 do

19: if F − {ei} is feasible then

20: F ← F − {ei}
21: end if

22: end for

23: Return: (F, y)

2.2.2 Analysis: Cost Recovery

Consider the set of edges F 0∩F , i.e., the set of tight edges after the dual-growth
phase that were not removed in the reverse delete phase. Let X ⊆ OQ be the
set of vertices that are owned by one of the players and are incident to one (or
more) of these tight edges. Formally, we can define:

X = {v ∈ OQ : δ(v) ∩ {F 0 ∩ F} 6= ∅}

Note that a vertex v ∈ X is simply a vertex with f(v) = 1 that is now
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satisfied by an edge added in the dual growth phase. We can use the following
lemma to bound the cost of the edges added in the dual-growth phase:

Lemma 2.2.1. The total cost of the edges of F added during the dual growth
stage, denoted c(F 0 ∩ F ), satisfies c(F 0 ∩ F ) ≤ 2

∑

v∈X yv

Proof. The only edges added during the dual growth stage are those edges that
become tight. Since a moat for vertex v only grows until the dual yv attains
half the value of the shortest edge incident to v, an edge e = uv becomes tight
if and only if u is v’s nearest neighbour and likewise v is u’s nearest neighbour.

Since the reverse delete phase will remove any unnecessary edges, the set
of edges F 0 ∩ F we are considering clearly form a forest. The vertices incident
to the edges F 0 ∩ F are exactly the vertices in X. Since F 0 ∩ F is a forest,
|F 0∩F | ≤ |X|−1. The average degree of a forest is at most two, so each vertex
with a positive dual value is incident to an average of at most 2 edges. Thus

c(F 0 ∩ F ) ≤ 2
∑

v∈X

yv

as each edge e = uv ∈ {F 0 ∩ F} has cost c(e) = 2yv = 2yu and the result is
shown.

Let Z ⊆ OQ be the remaining set of unsatisfied vertices, such that X ∪Z =
OQ and X ∩Z = ∅. We will satisfy these vertices in the edge-buying phase, and
thus we need the following simple lemma to bound the cost of the edges bought
in the edge-buying phase:

Lemma 2.2.2. The total cost of the edges of F added during the edge-buying
stage, denoted c(F p − F 0), satisfies c(F p − F 0) ≤ 2

∑

v∈Z yv

Proof. The cost of the edge bought to satisfy a vertex v ∈ Z with f(v) = 1 is
at most the cost of the shortest edge incident to v. Since D(v) is half this cost,
the shortest satisfying edge P (v) satisfies

P (v) ≤ 2D(v)

Also recall that yv = D(v), so we have

P (v) ≤ 2yv

Which gives
∑

v∈Z

c(P (v)) = c(F p − F 0) ≤ 2
∑

v∈Z

yv

by summing over all vertices in Z, and the result is shown.
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These two lemmas give rise to the following theorem bounding the cost of
the forest outputted by KW-1:

Theorem 2.2.3. The forest F and duals yv,∀v ∈ V returned by the KW-1
algorithm satisfy c(F ) ≤ 2

∑

v∈V yv

Proof. Recall that X ∪ Z = OQ, so each vertex v ∈ OQ is now satisfied and
F is a feasible solution to the original problem. Note that the forest F =
{F 0 ∩ F} ∪ {F p − F 0}, since the right-hand side is just the set of edges added
in the first two phases and not subsequently deleted in the reverse-delete phase.
Thus, we have:

c(F ) ≤ c(F 0 ∩ F ) + c(F p − F 0) ≤ 2
∑

v∈X

yv + 2
∑

v∈Z

yv ≤ 2
∑

v∈V

yv

since X ∩ Z = ∅ and the result is shown.

2.2.3 Analysis: Cross-monotonic Cost-Sharing Method

For each vertex v ∈ OQ, we define the cost-share for vertex v as ξQ(v) = D(v).
Since each player only owns one vertex, define the cost-share of the player i ∈ Q
who owns v as ξQ(i) = ξQ(v). We will show this cost-sharing method ξ is
cross-monotonic and 2-budget balanced for the single-node edge cover game.

It is important to note that we could have just defined a very simple cost-
sharing method for the edge cover game that does not require a primal-dual
algorithm. That is, we can compute D(v) just by finding the shortest edge
incident to v, add this edge to the solution F , and then define the cost-share as
above. We presented the primal-dual algorithm with path-buying phase as an
introductory exercise to illustrate how the our cost-sharing method will work
on more complex problems. Immorlica, Mahdian & Mirrokni give a simple 2-
budget balanced cross-monotonic cost-sharing method for the unweighted edge
cover game in [4], and as mentioned before, show the result is best possible.

We continue by proving our cost-sharing method is indeed cross-monotonic.
Consider an arbitrary player i ∈ Q, their node i ∈ OQ and let Q0 = Q\{i}.

Lemma 2.2.4. The cost-sharing method ξ arising from KW-1 is cross-monotonic,
i.e., for each v ∈ Q0 we have ξQ0

(v) ≥ ξQ(v)

Proof. Recall that ξQ(v) = D(v) for a vertex v ∈ OQ, and D(v) is just 1/2
the length of the shortest edge incident to v. Specifically, D(v) is calculated
in absence of any of the other players, including the player i we arbitrarily
removed from Q. We then have ξQ0

(v) = D(v) and in fact ξQ0
(v) = ξQ(v) for

each v ∈ Q0. Thus ξ is cross-monotonic.

Lemma 2.2.5. The cost-sharing method ξ arising from KW-1 is competitive,
i.e.,

∑

i∈Q ξQ(i) ≤ optQ
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Proof. Recall ξQ(i) = ξQ(v) = yv for the player i who owns vertex v. For any
edge e = uv ∈ E we have that yu ≤ c(e) (and yv ≤ c(e) respectively) since yu

(resp. yv) is at most half the length of the shortest edge incident to vertex u
(resp. v). Thus equation (1) in (D-1) reduces to yu + yv ≤ ce for each e ∈ E,
implying the duals {yv}v∈OQ

outputted by KW-1 are feasible to (D-1). Thus

∑

i∈Q

ξQ(i) =
∑

v∈OQ

yv ≤ optQ

where the last inequality follows from Weak Duality theory.

Theorem 2.2.6. Suppose that algorithm KW-1 outputs a forest F and a dual
solution {yv}v∈OQ

. Then ξ is a 2-budget balanced cost-sharing method, i.e.

1

2
c(F ) ≤

∑

i∈Q

ξQ(i) ≤ optQ

Proof. Recall result 2.2.3 which bound the cost of the forest F by c(F ) ≤
2
∑

v∈V yv. Also note that when running KW-1 with player set Q and active
vertices OQ we only increase the dual variables of the vertices in OQ, so

c(F ) ≤ 2
∑

v∈V

yv = 2
∑

v∈OQ

yv

By design yv = D(v) = ξQ(v) = ξQ(i) for each vertex v ∈ OQ (owned by player
i ∈ Q) so

∑

v∈OQ

yv =
∑

i∈Q

ξQ(i) ≤ optQ

where the last inequality follows from the previous lemma on competitiveness.

2.3 Multi-player Multi-node Edge Cover Game

In this section we consider a subtly different game-theoretic version of the edge
cover game. We are given an undirected graph G with node set V and edge
set E, where each edge e ∈ E has a non-negative cost ce. We are also given
a player set P , with |P | = p ≥ 1 players. Now we allow each player to own
multiple nodes, and remove the restriction that each node is owned by at most
one player. Let Oi represent the set of nodes owned by player i,∀i ∈ P , and let
O = ∪i∈P Oi represent the set of nodes owned by at least one player.

Each player i ∈ P wants to satisfy all their nodes v ∈ Oi by buying a set
of edges such that each of the nodes v ∈ Oi is incident to at least one of the
edges in the final solution. In the context of the mechanism, each player has
a private utility ui for satisfying all their nodes and will submit a bid bi to
the service provider. Again, we focus on one iteration of the algorithm, with
current player set Q ⊆ P and active nodes OQ = ∪i∈QOi. A feasible solution to
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the multi-node multi-player edge-cover game is a set of edges F ⊆ E such that
δ(v) ∩ F 6= ∅,∀v ∈ OQ, i.e. F must contain at least one edge incident to each
node v that is owned by one of the players. The goal is to find a minimum-cost
feasible solution to this problem.

In the remainder of this section, we will see that the KW-1 algorithm also
gives rise to a cross-monotonic cost-sharing method that is 2-budget balanced
for the above network design game.

2.3.1 Primal-Dual Method

The IP presented for the single-node multi-player edge-cover game (IP-1) is the
same IP for this game, as the formulation of the IP does not depend on who
owns the nodes. Similarly, the dual problem (D-1) is the same for the multi-
node multi-player edge-cover game. Again, on subsequent iterations with player
set Q and active nodes OQ we can rebuild these IPs by substituting OQ for O.
Also note that in the edge-cover game, the only candidates for violated sets are
the nodes v ∈ OQ.

The cut requirement fi for player i is again very simple:

fi(S) =

{

1 if S = v such that v ∈ Oi

0 otherwise

The general cut requirement for the current iteration, captured in the problem
(IP-1), is

f(S) = max
i∈Q

fi(S)

As for the first version of edge-cover we considered, the death-time of vertex
v ∈ Oi for player i ∈ Q is

di(v) =
1

2
cost of the shortest edge incident to v

Since each node may be owned by more than one player, we can compute the
Death-time of vertex v, without reference to a player, as

D(v) = max
i∈Q

di(v)

which the reader may recall defines the time τ when vertex v becomes inactive.
From this point on the KW-1 algorithm runs just as was described for single-

node edge cover. Once the death-times are computed we consider a fresh in-
stance of the graph G with yv = 0,∀v ∈ V and F = ∅. Please see section 2.2.1
for the details of the execution of KW-1.

2.3.2 Analysis: Cost Recovery

Again we consider the set of edges F 0∩F , and let X ⊆ OQ be the set of vertices
that are owned by one of the players and are incident to one (or more) of these
tight edges. Recall we defined this formally as:
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X = {v ∈ OQ : δ(v) ∩ {F 0 ∩ F} 6= ∅}

We will bound the cost of the edges c(F 0 ∩F ) by using result 2.2.1 from the
previous section.

Lemma 2.3.1. The total cost of the edges of F added during the dual growth
stage, denoted c(F 0 ∩ F ), satisfies c(F 0 ∩ F ) ≤ 2

∑

v∈X yv

Proof. Note that for a vertex v owned by players {1, ..., j} ∈ Q we have that
d1(v) = ... = dj(v) = D(v) since the death-time di(v) is just half the cost of
the shortest edge incident to v. In this sense, we can instead assume that each
vertex is owned by only one player. Consider then the execution of the KW-
1 algorithm with active vertex set X, each one owned by one of |X| distinct
players. This will cause the same set of edges c(F 0 ∩F ) to become tight during
the dual growth phase. We can apply lemma 2.2.1 and the result follows.

Recall we let Z ⊆ OQ be the remaining set of unsatisfied vertices, such that
X ∪ Z = OQ and X ∩ Z = ∅. We will satisfy these vertices in the path-buying
phase, and again we can bound the cost of the bought edges with:

Lemma 2.3.2. The total cost of the edges of F added during the path-buying
stage, denoted c(F p − F 0), satisfies c(F p − F 0) ≤ 2

∑

v∈Z yv

Proof. As in the proof for the previous lemma, we can assume each vertex
in Z is owned by only one player and apply lemma 2.2.2. The result follows
immediately.

2.3.3 Analysis: Cross-monotonic Cost-Sharing Method

For each vertex v ∈ OQ, we define the cost-share for vertex v as ξQ(v) = D(v).
For a vertex v ∈ OQ owned by k players {1, ..., k} ∈ Q define the cost-share of
player i for vertex v as ξi

Q(v) = 1
k
ξQ(v). Then the total cost-share for player

i ∈ Q can be defined as

ξi
Q =

∑

v∈Oi

ξi
Q(v)

We will show this cost-sharing method ξ is cross-monotonic and 2-budget bal-
anced for the multi-node edge cover game. We note again that we can avoid the
primal-dual phase when developing our cost-sharing method for the edge cover
game.

Consider an arbitrary player i ∈ Q, let Q0 = Q\{i} and consider the set of
vertices OQ0

owned by the players in Q0.

Lemma 2.3.3. The cost-sharing method ξ is cross-monotonic, i.e., for each
player j ∈ Q0 we have ξj

Q0
≥ ξj

Q
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Proof. Recall that ξQ(v) = D(v) for a vertex v ∈ OQ, and D(v) is just 1/2
the length of the shortest edge incident to v. Specifically, D(v) is calculated in
absence of any of the other players, including the player i we arbitrarily removed
from Q. We then have ξQ0

(v) = D(v) if v ∈ OQO
.

Suppose that v ∈ Oi and v is owned by k > 0 other players in Q0. Then
while ξi

Q(v) = 1
k+1ξQ(v) we now have for each player j such that v ∈ Oj :

ξj
Q0

(v) =
1

k
ξQ0

(v) > ξi
Q(v)

Now we get ξj
Q0
≥ ξj

Q by summing over all vertices owned by player j ∈ Q0.
Thus ξ is cross-monotonic.

Lemma 2.3.4. The cost-sharing method ξ is competitive, i.e.,
∑

i∈Q ξQ(i) ≤
optQ

Proof. Recall ξQ(v) = yv for every v ∈ OQ. We split up the cost-share for vertex
v among all the players that own it, so we maintain

∑

i∈Q ξQ(i) =
∑

v∈V ξQ(v).
For any edge e = uv ∈ E we have that yu ≤ c(e) (and yv ≤ c(e) respectively)

since yu (resp. yv) is at most half the length of the shortest edge incident to
vertex u (resp. v). Thus equation (1) in (D-1) reduces to yu + yv ≤ ce for each
e ∈ E, implying the duals {yv}v∈OQ

outputted by KW-1 are feasible to (D-1).
Thus

∑

i∈Q

ξQ(i) =
∑

v∈V

yv ≤ optQ

where the last inequality follows from Weak Duality theory.

Theorem 2.3.5. Suppose that algorithm KW-1 outputs a forest F and a dual
solution {yv}v∈OQ

. Then ξ is a 2-budget balanced cost-sharing method, i.e.

1

2
c(F ) ≤

∑

i∈Q

ξQ(i) ≤ optQ

Proof. This proof is identical to theorem 2.2.6

2.4 Downwards Monotone Set Cover Game

Recall from Definition 3 that a function f : 2V → {0, 1} is downwards monotone
if ∀S, S′ ⊆ V where S′ ⊆ S we have f(S) ≤ f(S′). Note the edge-cover cut
requirement functions were downwards monotone.

Consider an extension of the edge-cover game where we are given an undi-
rected graph G = (V,E) with a cost ce for each edge e ∈ E. Each player i of
the the player set P owns a set of vertices Oi ⊂ V not necessarily disjoint from
other players’ sets. Again let O = ∪i∈P Oi represent the set of nodes owned by
at least one player.

30



2.4. DOWNWARDS MONOTONE SET COVER GAME

In one iteration of the algorithm, with current player set Q ⊆ P and active
nodes OQ = ∪i∈QOi, a feasible solution to the downwards monotone set cover
game is a set of edges F ⊆ E such that δ(S) ∩ F 6= ∅,∀S ⊆ Oi,∀i ∈ Q.
The following lemma gives us a more intuitive way of thinking about a feasible
solution to this problem.

Lemma 2.4.1. A set of edges F is feasible for the downwards monotone set
cover game with a set of players Q if and only if for each vertex v ∈ Oi, F
contains a v, u-path for some vertex u 6∈ Oi, for all players i ∈ Q

Proof. Suppose we have a feasible solution F ⊆ E such that δ(S)∩F 6= ∅,∀S ⊆
Oi,∀i ∈ Q. Suppose for the sake of contradiction that there exists a vertex
v ∈ Oi such that F does not contain a v, u-path for some vertex u 6∈ Oi, for
some player i ∈ Q. Let C(v) represent the (maximally) connected component
of F that contains v. Then C(v) ⊆ Oi since we assumed F does not contain a
v, u-path to any vertex u 6∈ Oi. However, since F is feasible, δ(C(v)) ∩ F 6= ∅,
a contradiction to the maximality of C(v).

Now suppose for each vertex v ∈ Oi, F contains a v, u-path to some vertex
u 6∈ Oi, for all players i ∈ Q. Suppose for the sake of contradiction ∃S ⊆ Oi such
that δ(S)∩F = ∅ for some player i ∈ Q. But if S ⊆ Oi and the cut induced by
S is empty, then F cannot contain a v, u-path for any vertex v ∈ S to a vertex
u 6∈ Oi. This is also a contradiction, so the two statements of feasibility are
equivalent.

Note that in a feasible solution F two arbitrary vertices u, v ∈ Oi for some
player i need not lie in the same component of F . All that is required is that
each vertex v ∈ Oi lie in a connected component of F that contains a vertex
not in Oi.

The goal is to find a minimum-cost feasible solution to this problem. In the
remainder of this section, we will present the KW-2 algorithm that gives rise to
a cross-monotonic cost-sharing method that is 2-budget balanced for the above
network design game.

2.4.1 Downwards Monotone Cut Requirements

The connectivity demand of player i in the downwards monotone set cover game
can be captured by the downwards monotone cut requirement function:

fi(S) =

{

1 if S ⊆ Oi

0 otherwise

As usual, we define the general cut requirement function for the current iteration
as:

f(S) = max
i∈Q

fi(S)

Lemma 2.4.2. The function f(S) is downwards monotone.
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Proof. If f(S) = 0 then f(S) ≤ f(S′) for all subsets S′ ⊆ S since f is a {0, 1}
function. If f(S) = 1 then ∃i ∈ Q such that fi(S) = 1. By definition of fi it
must be that S ⊆ Oi, and so for all subsets S′ ⊆ S we have that S′ ⊆ Oi and
thus fi(S

′) = 1. Then f(S′) = 1 ≥ f(S) so f is downwards monotone.

It is interesting to note a stronger property: every downwards monotone
0, 1-function on the vertex set V can be captured using these cut requirements.

Lemma 2.4.3. Suppose we are given a function f : 2V → {0, 1} that is down-
wards monotone. Then there exists a family of pairwise disjoint sets O ⊆ 2V

such that a forest F is feasible for f if and only if ∀O ∈ O and ∀S ⊆ O, we have
δ(S) ∩ F 6= ∅.

Proof. The construction is straightforward. The family of sets O we are consid-
ering is the set of maximal vertex subsets O ⊆ V such that f(O) = 1.

Suppose F is feasible for f . Consider an arbitrary set O ∈ O and an arbitrary
subset S ⊆ O. Since f(O) = 1 by construction and f is downwards monotone,
we have f(S) = 1, which implies that δ(S) ∩ F 6= ∅, since F is feasible for f .

Now suppose we have that δ(S) ∩ F 6= ∅, for all S ⊆ O, for all O ∈ O. Now
consider some arbitrary set S′ ⊆ V , such that f(S′) = 1. By construction, there
exists O ∈ O such that S ⊆ O. This implies that δ(S′) ∩ F 6= ∅, which means
F is feasible for f .

These two lemmas shows that we could have equivalently defined this net-
work design game as each person owning a general downwards monotone func-
tion. That is, each player i ∈ P owns a set of sets O ⊆ 2V such that for each
O ∈ O, they have fi(O) = 1.

2.4.2 A Lazy Primal-Dual Method

Let A = {S ⊆ V : f(S) = 1} represent the set of violated sets. The Integer
Programming problem for the downwards monotone set cover game (IP-2) is the
original (IP) presented in the previous chapter using the downwards monotone
cut requirement f from the previous section.

We present the KW Algorithm for the Downwards Monotone Set Cover
Game (KW-2). The algorithm first calculates the Death-time D(v) for each
node v ∈ OQ by considering the cost of the shortest path from v to a vertex
u 6∈ Oi. Let Pv,i ⊆ E represent this path. We let

di(v) =
1

2
c(Pv,i)

and

D(v) = max
i∈Q

di(v)

as usual. If v 6∈ OQ, we can simply set D(v) = 0.
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Figure 2.8: Death times included for each vertex

Here we define the crucial notion of responsibility introduced by Könemann,
Leonardi & Schäfer in [6]. First we define a precedence order over the vertices
in V . Let v ≻ w if D(v) > D(w),∀v, w ∈ V . Furthermore, if D(v) = D(w),
then we define an arbitrary precedence order for v and w. Observe then that
v ≻ w if and only if D(v) ≥ D(w).

Definition 9. We say a vertex v is responsible for a set S ⊆ V if v ∈ S and
v ≻ w,∀w ∈ S.

In this fashion we can associate each set with a single vertex (of largest death-
time) for ease of analysis. We will use this concept frequently as we explore the
algorithm.

Once the death-times are computed we consider a fresh instance of the graph
G with yv = 0,∀v ∈ V and F = ∅. Just like the AKR algorithm described in
Section 1.4.1, the KW-2 algorithm first uniformly raises the dual variables of
every active moat until some edge becomes tight. We deviate from the previous
algorithm here by insisting we only add edges contained in paths that become
tight as a result of two active moats colliding.
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Figure 2.9: KW-2 algorithm at the first collision

Recall we let Uτ represent the set of moats, i.e., the set of connected com-
ponents of F̄ τ , the forest of tight edges at time τ .
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Recall our definition of collision from Section 1.4.1. We say that moats S1

and S2 collide at time τ if

1. S1 is an active moat at time τ (S1 ∈ Uτ and S1 contains an active vertex
v with D(v) ≥ τ)

2. S2 is an active moat at time τ

3. τ is the first time during the execution of the algorithm at which forest
F̄ τ contains a connected component S such that S1 ⊆ S and S2 ⊆ S.

Suppose two moats S1, S2 of F̄ τ collide at time τ , where v1 is responsible for
S1 and v2 is responsible for S2. If D(v1) ≥ τ and D(v2) ≥ τ then we add the
shortest path P ⊆ E between S1 and S2 to the forest F τ . If either of the moats
is inactive (either D(v1) < τ or D(v2) < τ) then we do not add this path.

We also do not add paths that create cycles. If multiple moats collide si-
multaneously at time τ then we process the collisions in an arbitrary order (we
may join S1 to S2, and then S3 to the union of S1 and S2). These two modifi-
cations will allow us to do away with the reverse delete-step without affecting
the performance guarantee of the algorithm.
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Figure 2.10: The KW-2 algorithm in progress

The KW-2 algorithm then continues to uniformly raise the dual variables
of active moats until a time τ∗ when there are no more active vertices. Let
F 0 = F τ∗

.
Next the KW-2 algorithm buys paths to connect any unsatisfied connected

components of F 0. As before, this will be an iterative process where we add
at most p paths. At each step, among all the connected components C of the
current forest with f(C) = 1, we pick the component C1 whose responsible
vertex has the lowest precedence order. We then buy a path that connects C1

to another component C2 of the current forest such that at least one player
i ∈ P that had fi(C1) = 1 has fi(C1 ∪C2) = 0. We will describe this process in
more detail below, and show that such a path always exists.

The actual number of paths p we buy depends on the order we add the
paths, but we can guarantee that p ≤ |Aτ∗

|, where |Aτ∗

| is the number of
unsatisfied connected components of the forest F τ∗

. Let F k represent the forest
after we have added the kth path. For 0 ≤ k ≤ p, let Ak = {S ∈ A : S is a
connected component of F k}, i.e. the set of unsatisfied connected components.
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We define a precedence order for the sets in Ak by using their responsible
vertices. Specifically, if v1 is responsible for C(v1) ∈ A

k and v2 is responsible
for C(v2) ∈ Ak with v1 ≻ v2 then C(v1) ≻ C(v2).

Note that f(C) = 1 for all components C ∈ Ak. Hence, each component
C ∈ Ak contains a vertex v ∈ Oi for a player i ∈ Q such that fi(C) = 1.
Beginning with the lowest ranked component of this precedence order, say C(v),
with responsible vertex v of smallest D(v), we identify the path Pv,j which
was used to define dj(v) for one of the players j such that fj(C(v)) = 1 and
dj(v) = D(v). Since v is one endpoint of this path, let u 6∈ C(v) be the other
endpoint of this path. Since Pv,j was used to define dj(v), we know that u 6∈ Oj ,
so by downwards monotonicity, fj(C(v) ∪ {u}) = 0. We add the path Pv,j by
setting F k+1 = F k ∪ Pv,j .

f(C_1) = 1

f(C_2) = 1

f(C_3) = 1

f(C_4) = 0

f(C_5) = 0

f(C_6) = 0

Figure 2.11: A sketch to illustrate why buying one path per unsatisfied compo-
nent is always enough.

It is important when buying subsequent paths that we not create a cycle
of paths connecting components of Ak. We accomplish this goal by consider-
ing connected components of Ak, instead of the intermediate forest F τ∗

. The
reader will note in the formal presentation of the algorithm that we update A to
represent the unsatisfied connected components of F k. We repeat this process
until we have Ap = ∅ and the edgeset F p. The following lemma shows that the
final forest F p is a feasible solution to the given network design game:

Lemma 2.4.4. If A0 has p components, then the path-buying phase terminates
after buying at most p paths (one path for each component C ∈ A0), and
F p ⊆ E has the property that δ(S) ∩ F p 6= ∅,∀S ⊆ Oi,∀i ∈ Q

Proof. We proceed by mathematical induction on the number of paths added.
The induction hypothesis: Let Ak be the set of violated sets after k paths

have been added. Then Ak has at most p− k components.
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The base case: take k = 0. Then by definition A0 has p components, so the
base case holds.

We assume the induction hypothesis holds for 0 < k < p, and we consider the
point in the algorithm after we have bought the first k paths. By the inductive
hypothesis, we suppose Ak has at most p − k components, C1, ..., Cp−k, whose
responsible vertices are v1, ..., vp−k, respectively. The algorithm will find the
responsible vertex (from this list) of lowest precedence order, which we assume
is v1 without loss of generality.

Case 1: If the path Pv1,j for some player j bought to satisfy C1 connects
to one of the other components in Ak, say C2, then the new forest F k+1 has
one less component than F k. The new component C1 ∪ V (Pv1,j) ∪ C2 may
still be unsatisfied, and thus in the set Ak+1. However, while Ak has p − k
components, Ak+1 has at most p − k − 1 components. Notably, if the new
component C1∪V (Pv1,j)∪C2 is in fact satisfied, Ak+1 will have at most p−k−2
components.

Case 2: If the path Pv1,j bought to satisfy C1 connects to a connected
component S of F k with f(S) = 0, then by downwards monotonicity f(C1 ∪
S) = 0. The new forest F k+1 has one less component than F k, and Ak+1 has
p−k−1 components. In either case, we have reduced the number of unsatisfied
components by at least one. The result follows by mathematical induction, as
each path bought reduces the number of unsatisfied components by at least
one.

2.4.3 Analysis: Cost Recovery

Recall we say a vertex v is responsible for a set S ∈ V if v ∈ S and v ≻ w,∀w ∈
S. Let Cτ (v) be the connected component of F τ at time τ that contains v.
Following the example of [6] we define an indicator variable:

rτ (v) =

{

1 if v is responsible for the componentCτ (v)
0 otherwise

and define the responsibility time of vertex v ∈ OQ as:

r(v) =

∫ D(v)

τ=0

rτ (v)dτ

Just as in [6], we can show that each vertex v ∈ OQ is responsible for a unique
moat at all times 0 ≤ τ < r(v).

Lemma 2.4.5. For a vertex v ∈ OQ with responsibility time r(v), v is re-
sponsible for the connected component Cτ (v) at all times 0 ≤ τ < r(v) in the
execution of KW-2.

Proof. Suppose, for the sake of contradiction, that there is a time τ ′ when v is
not responsible for Cτ ′

(v), for 0 ≤ τ ′ < r(v). But the connected component
Cτ ′

(v) contains the active vertex v, so it must be some other vertex u ∈ OQ is
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Algorithm 5 Primal-Dual KW-2 algorithm for downwards monotone set cover
game

1: Given: D(v) for each v ∈ OQ

2: y ← 0
3: F ← ∅
4: repeat

5: A ← {C ⊆ V : C is a connected component (moat) of F̄ , ∃v ∈ C with
∑

S:v∈S yS < D(v)}
6: repeat

7: Raise yS uniformly ∀S ∈ A
8: until An path becomes tight between two active moats S1, S2 ∈ A
9: P ← the shortest path from S1 to S2

10: F ← F ∪ E(P )
11: until A = ∅
12: repeat

13: A ← {C ⊆ V : C is a connected component with f(C) = 1}
14: C ← the component of lowest precedence order of A
15: v ← the vertex responsible for C
16: j ← an arbitrary player in Q such that dj(v) = D(v) and fj(C) = 1.
17: Pv ← the path connecting v to the closet vertex u 6∈ C where fj(C∪{u}) =

0.
18: F ← F ∪ Pv

19: until A = ∅
20: Return: (F, y)
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responsible for Cτ ′

(v) at time τ ′. Then u ≻ v and D(u) ≥ D(v). However, u
and v are both contained in Cτ ′

(v) and will continue to be in the same moat
for all times τ ≥ τ ′. Thus v will never be responsible again, implying r(v) < τ ′,
a contradiction.

This lemma also implies that once a vertex stops being responsible, it will
never be responsible again during the execution of KW-2.

We use the notion of responsibility time to associate the dual growth of a
set with the unique vertex that is responsible for the set. Let S(v) represent the
set of sets S ⊆ V such that v is responsible for S. Since each active set contains
exactly one active vertex that is responsible for it, it is clear from the definition
of responsibility time that for any connected component C of the forest F 0 we
have:

∑

S∈S(v):v∈C

yS =
∑

v∈C

r(v) (2)

This equation will prove to be very useful later.
For now, consider the set of edges F 0 added during the dual-growth stage

of KW-2 and the set of connected components

C0 = {C ⊆ V : C is a connected component induced by the edgeset F 0}

We partition the vertices of OQ into two sets: those that are responsible for a
connected component C ∈ C0 and those that are not. Let

X = {v ∈ OQ : v ∈ C ∈ C0,∃u ∈ C such that u ≻ v}

represent the set of vertices that are not responsible for the connected compo-
nents in C0. We will show that the total cost of the edges added during the
dual-growth stage of KW-2, denoted c(F 0), satisfies c(F 0) ≤ 2

∑

v∈X r(v). We
will then show the path bought to satisfy each unsatisfied connected component
has cost at most twice the responsibility time of the vertex responsible for that
component.

To show the first result, we need the following lemma from [1]. Let Cτ

represent the set of connected components induced by the forest F τ at time τ .
Consider a single component C ∈ Cτ and the set of edges F τ

C = {e = uv ∈ F τ :
u, v ∈ C}. We let c(F τ

C) denote the total cost of these edges. Clearly, the edges
of F τ

C form a tree (since we avoid adding edges that form cycles). Let u be the
vertex responsible for C.

Lemma 2.4.6. For all times 0 ≤ τ ≤ τ∗ and any connected component C ∈ Cτ

we have c(F τ
C) ≤ 2

∑

S∈S(v):v∈C yτ
S − 2max(τ,D(u))

Proof. Proof is contained in [1] and omitted here. Notably, we have replaced
their notation of age(C) with the equivalent max(τ,D(u)).

Now we return to the result we were first trying to prove:

38



2.4. DOWNWARDS MONOTONE SET COVER GAME

Lemma 2.4.7. The total cost of the edges added during the dual-growth stage
of KW-2, denoted c(F 0), satisfies c(F 0) ≤ 2

∑

v∈X r(v)

Proof. Consider a arbitrary connected component C ∈ C0, where the reader will
recall C0 is the set of connected components after the dual growth step. Let u be
the vertex responsible for C. Let MD(u)(C) represent the moat that contains C
at time D(u). Since MD(u)(C) was active up to and including time τ = D(u),
the previous lemma gives

c(F
D(u)
C ) ≤ 2

∑

S∈S(v):v∈C

y
D(u)
S − 2D(u)

Note that the moat MD(u)(C) that contains C at time D(u) became inactive at
time D(u), but it may be that MD(u)(C) is a subset of a larger moat at the end
of the dual-growth phase. This could happen if an edge became tight between
MD(u)(C) and some active moat at some time τ > D(u), but this would not
trigger a collision as MD(u)(C) would be inactive by assumption. Thus, the

edges of F
D(u)
C are the only edges we will charge to the dual growth of sets

whose responsible vertices are in C. would not trigger a collision as MD(u)(C)

would be inactive by assumption. Thus, the edges of F
D(u)
C are the only edges

we will charge to the dual growth of sets whose responsible vertices are in C.

Since we know C is a component of the forest F τ∗

, let FC = F
D(u)
C = F τ∗

C ,
the tree spanning C after the dual growth phase. Now we can use equality (2)
to observe

c(FC) ≤ 2
∑

v∈C

r(v)− 2D(u)

Note the responsible vertex u is responsible for C at time τ = D(u) so we know
r(u) = D(u). If we separate this term from the summation we get:

c(FM(C)) ≤ 2
∑

v∈(C−{u}) r(v) + 2r(u)− 2D(u)

≤ 2
∑

v∈(C−{u}) r(v)

and summing over every moat C ∈ C0 gives the result, since X is just the set
of vertices not responsible for a component C ∈ C0.

Next we bound the cost of the paths bought during the path-buying phase
using the responsibility times of the vertices responsible for the components C0.
Let

Z = {v ∈ OQ : v is responsible for some component C ∈ C0}

so that X ∪ Z = OQ and X ∩ Z = ∅. Recall Pv is the path bought to satisfy
the component C(v) whose responsible vertex is v. Let P = ∪v∈ZPv represent
the set of paths bought during the path buying phase.

Lemma 2.4.8. The total cost of the edges bought during the path buying phase,
denoted c(P ), satisfies c(P ) ≤ 2

∑

v∈Z r(v)
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Proof. Since vertex v is responsible for component C(v) at the end of the dual-
growth phase we have that r(v) = D(v) for all v ∈ Z. When we add path Pv,j

from v to a vertex u in another component C(u) of the current forest, where
fj(C(v) ∪ {u}) = 0 for a player j ∈ Q with fj(C(v)) = 1 and dj(v) = D(v), we
know it costs at most 2D(v) by the way we choose Pv,j . Thus each path Pv,j

has the property that c(Pv,j) ≤ 2D(v) = 2r(v),∀v ∈ Z.
Using result 2.4.4 we know that we buy at most one path per component.

Furthermore, in the situation where a path connects two unsatisfied components,
the order in which we buy the paths guarantees that when we buy a path for the
responsible vertex of lowest precedence order from the components of Ak, this
vertex is removed from the list of responsible vertices of components of Ak+1.
In this manner we can be sure that the responsible vertices we are using to pay
for paths is a subset of the original set Z. Furthermore, the 2r(v) savings from
each connected component of the intermediate forest F τ∗

are used at most once.
The result:

c(P ) ≤ 2
∑

v∈Z

r(v)

follows after summing over all components C ∈ C0.

Together the previous two lemmas give us the following result:

Theorem 2.4.9. Suppose the KW-2 algorithm outputs the forest F and the
duals {yS}S⊆V . Then c(F ) ≤ 2

∑

S⊆V yS

Proof. Since X ∪ Z = OQ and X ∩ Z = ∅ we have that

2
∑

v∈X

r(v) + 2
∑

v∈Z

r(v) = 2
∑

v∈OQ

r(v)

and using the equation
∑

v∈C r(v) =
∑

S⊆C yS for every component C ∈ C0

gives

2
∑

v∈OQ

r(v) = 2
∑

S⊆V

yS

Finally, note that the forest F = F 0 ∪ P so that

c(F ) = c(F 0) + C(P ) ≤ 2
∑

v∈X

r(v) + 2
∑

v∈Z

r(v) = 2
∑

S⊆V

yS

as required.

2.4.4 Analysis: Cross-monotonic Cost-Sharing Method

Consider the following cost-sharing method that follows the methodology of [6]
derived from the KW-2 Algorithm: when we grow the dual variable of an active
moat we share the cost of this growth among all active vertices contained in the
moat. Recall we let Mτ (v) be the connected component of F̄ τ that contains
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vertex v, i.e. that active moat that contains v. Now let aτ (v) be the number
of active vertices contained in Mτ (v), i.e., the number of vertices u ∈ Mτ (v)
with D(u) ≥ τ . Furthermore, we share the cost-share of one vertex among all
players for whom the vertex is still active. Let bτ (v) be the number of players
j for whom dj(v) ≥ τ . Now we can define the cost-share of vertex v ∈ OQ for
player i ∈ Q as

ξi
Q(v) =

∫ di(v)

τ=0

1

aτ (v)bτ (v)
dτ

The cost-share of player i ∈ Q is just the sum of the cost-shares of their termi-
nals:

ξQ(i) =
∑

v∈Oi

ξi
Q(v)

We will show the cost-sharing method ξ is a cross-monotonic and 2-budget
balanced cost-sharing method for the downwards monotone set cover game.

To prove cross-monotonicity, we study the effect of the removal of one player
on the cost-shares of the remaining players. Consider an arbitrary player i ∈ Q
and let Q0 = Q− {i}. Let KW-2(Q) represent the run of the KW-2 algorithm
using the set of players Q and KW-2(Q0) represent the run of the KW-2 algo-
rithm using the set of players Q0. Suppose KW-2(Q) has moats Uτ induced by
the forest F̄ τ and terminates at time τ∗; while KW-2(Q0) has moats Uτ

0 induced
by the forest F̄ τ

0 and terminates at time τ∗
0 . The following lemma is from [7]

and shows that Uτ
0 is a refinement of Uτ :

Lemma 2.4.10. For all times 0 ≤ τ ≤ τ∗ and for every moat U0 ∈ U
τ
0 there

must be a set U ∈ Uτ such that U0 ⊆ U .

Proof. We proceed by mathematical induction on the time τ .
The claim is trivially true at time τ = 0 since Uτ = Uτ

0 .
Now suppose the claim holds for some time 0 ≤ τ ≤ τ∗ and consider what

happens when we grow the duals of active moats from τ to τ ′ = τ + ǫ for a
small ǫ > 0. Let U0 ∈ Uτ

0 be an active moat at time τ in the run of KW-2(Q0)
and let v ∈ U0 be an active vertex (dj(v) ≥ τ for some player j ∈ Q0). Thus
KW-2(Q0) grows the moat U0 from time τ to τ ′. By the induction hypothesis,
we know at time τ that ∃U ∈ Uτ such that U0 ⊆ U . Then v is active in the
run of KW-2(Q) and contained in the moat U , so U is an active moat. Thus
KW-2(Q) grows the dual of U at time τ to time τ ′ and the claim follows.

This lemma implies cross-monotonicity, as the removal of one player can not
possibly reduce the cost-shares of the remaining players. To see this explicitly,
let ξi

Q0
(v) represent the cost-share of vertex v for player i with player set Q0.

Lemma 2.4.11. The cost-sharing method ξ arising from KW-2 is cross-monotonic,
i.e., for each player j ∈ Q0 we have ξQ0

(j) ≥ ξQ(j)

Proof. We will prove a stronger result, that is for each player j ∈ Q0 and each
vertex v ∈ OQ0

we have ξj
Q0

(v) ≥ ξj
Q(v). Recall we let Uτ (v) be the moat that
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contains v in the execution of KW-2(Q), so similarly let Uτ
0 (v) be the moat

that contains v in the execution of KW-2(Q0). Recall we let aτ (v)bτ (v) be the
number of active vertices contained in Uτ (v) times the number of players for
whom v is still active, so similarly let aτ

0(v)bτ
0(v) be the number of active vertices

contained in Uτ
0 (v) times the number of players for whom v is still active.

The previous lemma shows that Uτ
0 (v) ⊆ Uτ (v), so it must be that aτ

0(v) ≤
aτ (v) and bτ

0(v) ≤ bτ (v) for all times 0 ≤ τ ≤ τ∗. Thus

ξj
Q(v) =

∫ dj(v)

τ=0

1

aτ (v)bτ (v)
dτ ≤

∫ dj(v)

τ=0

1

aτ
0(v)bτ

0(v)
dτ = ξj

Q0
(v)

for all players j ∈ Q0 and vertices v ∈ OQ0
. Summing over all vertices proves

cross-monotonicity.

Note that the sum of the cost shares
∑

i∈Q ξQ(i) =
∑

S⊆V yS , the sum of
the duals by construction. Recall that

∑

v∈OQ
r(v) =

∑

S⊆V yS , so we have the
following useful equation:

∑

i∈Q

ξQ(i) =
∑

v∈OQ

r(v) (3)

We will prove the cost-sharing method is competitive by using the responsibility
times of the vertices in a tree of the optimal solution. First we will need a
supporting lemma which shows that every maximal tree T of an optimal solution
has diameter at least twice the death-time of v, the tree’s responsible vertex.

Lemma 2.4.12. Let P ⊆ T be the longest path in the tree that contains the
responsible vertex v. Then the cost of the path P must satisfy

c(P ) ≥ 2D(v)

Proof. Recall D(v) = maxi∈Q di(v), so there exists a player j ∈ Q for which
dj(v) = D(v). By construction, dj(v) is half the length of the shortest path
from v to a vertex u 6∈ Oj . By result 2.4.1 we know a feasible solution to our
problem requires v to lie in a tree that contains a vertex not in Oj . Thus, an
optimal tree T that contains v must also contain a vertex not in Oj , of which
we know u is the closest. It may be that u is not in T , but we do know that
any path from v to a vertex not in Oj has cost at least 2D(v). Thus the longest
path P ⊆ T that contains v must have cost at least 2D(v).

Lemma 2.4.13. The cost-sharing method ξ arising from KW-2 is competitive,
i.e.,

∑

i∈Q ξQ(i) ≤ optQ

Proof. Consider the optimal forest Fopt and a maximal tree T in the optimal
solution. Let V (T ) represent the vertices of T . Let v be the vertex responsible
for T , i.e., the vertex of highest death-time in V (T ). LetMτ

T represent the set
of active moats whose responsible vertices are in V (T ). Recall we let Mτ (v)
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represent the active moat that contains v. It is important to note that if v is
responsible for Mτ (v) and u 6= v is responsible for Mτ (u), then the two moats
must be disjoint. A short proof is provided in [7]. If the active moats Mτ

T

intersect the tree T at all times τ ≤ τ∗, then by the disjointness property we
have that

∑

u∈V (T ) r(u) ≤ c(T ).

However, once |Mτ
T | = 1, it may be that the last active moat Mτ (v) out-

grows T . Let τ ′ < τ∗ represent the last time that the moat Mτ ′

(v) containing
v intersected the tree T in the run of KW-2. It must be that V (T ) ⊆ Mτ ′

(v).
In this case, we can still show that the sum of the responsibility times of the
vertices in V (T ) does not exceed the total cost of the tree by tracking the active
moats which intersect T in two or more places simultaneously.

We let V (P ) represent the vertices on the longest path P in T that contains
v. The previous result 2.4.12 implies that c(P ) ≥ 2D(v). Now consider an
arbitrary active moat Mτ (u) whose responsible vertex is u ∈ V (P ), for some
time τ < τ ′. By assumption |Mτ (u) ∩ T | ≥ 1 for all times τ < τ ′. We are
particularly interested in the cases where |Mτ (u) ∩ T | > 1.

For a moat Mτ (u) with responsible vertex u ∈ OQ, let P τ (u) = |δ(Mτ (u))∩
P |. That is, P τ (u) counts the number of edges of the path P that the moat
Mτ (u) intersects at time τ .

Now we consider the sum of the responsibility times of the vertices up until
time τ ′. Let ρ =

∑

u∈V (T ) max{r(u), τ ′} represent this quantity. Since the
moats that the vertices in the tree are responsible for intersect the tree until
time τ ′, we can say

c(T ) ≥ ρ +

∫ τ ′

0

(
∑

u∈OQ

max{0, P τ (u)− 1})dτ (2.4.1)

where
∫ τ ′

0
(
∑

u∈V P τ (u)− 1)dτ are the savings we get from moats that intersect
P in more place than one.

Observe that the path P must be tight at time τ ′ since we assumed that τ ′

is the last time the moat Mτ ′

(v) containing the responsible vertex v intersected
the tree T . This implies that

c(P ) =

∫ τ ′

0

(
∑

u∈OQ

P τ (u))dτ

Further observe that since a path has only two endpoints, the number of moats
that intersect P in exactly one place at any time 0 ≤ τ ≤ τ ′ is at most two. By
pulling the terms corresponding to these moats out of the summation we get
the following expression

c(P ) ≤ 2τ ′ +

∫ τ ′

0

(
∑

{u∈OQ:P τ (u)≥2}

P τ (u))dτ

Now every term in the summation is at least two, so we can subtract one from
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each term and multiply by 2 to get

c(P ) ≤ 2τ ′ + 2

∫ τ ′

0

(
∑

u∈OQ

max{0, P τ (u)− 1})dτ

We can rearrange this inequality as follows

∫ τ ′

0

(
∑

u∈OQ

max{0, P τ (u)− 1})dτ ≥
c(P )− 2τ ′

2

which, combined with 2.4.1 gives us

c(T ) ≥
c(P )− 2τ ′

2
+ ρ

Finally, recall the previous result 2.4.12 implies that D(v) ≤ c(P )
2 , so we have

c(T ) ≥ D(V )− τ ′ + ρ

We know the growth of the final moat after time τ ′ is at most D(V )−τ ′. Recall
ρ is the sum of the responsibility times up to time τ ′. Thus, we have shown that
the time the last active moat spends growing beyond the tree T can be paid for
by the savings we get from the active moats that intersect the path P in two or
more places at once. Thus

∑

u∈V (T )

r(u) ≤ c(T )

and summing over all trees T of F gives

∑

i∈Q

ξQ(i) =
∑

u∈V

r(u) ≤ c(F ) = optQ

where the first equality comes from the distribution of cost-shares.

We are now ready for the final result of this section:

Theorem 2.4.14. Suppose that algorithm KW-2 outputs a forest F and a dual
solution {yv}v∈OQ

. Then ξ is a 2-budget balanced cross-monotonic cost-sharing
method, i.e.

1

2
c(F ) ≤

∑

i∈Q

ξQ(i) ≤ optQ

Proof. Result 2.4.9 and 2.4.13 imply 2-budget balanced since
∑

i∈Q ξQ(i) =
∑

S⊆V yS , while result 2.4.11 implies cross-monotonicity. The theorem fol-
lows.
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2.5 Even Parity Connection Game

A function f is proper if it satisfies both the maximality property and the
symmetry property: f(S) = f(V \S) for all S ⊆ V . It is also necessary that we
assume f(V ) = 0. Proper functions encompass a wide variety of network design
problems, including Steiner Tree, T-Joins and Perfect Matchings. The work of
Könemann, Leonardi, Schäfer, and van Zwam in [7] addresses the Steiner Forest
problem whose associated cut requirement function is proper.

The minimum-weight perfect matching problem is the problem of finding a
minimum cost set of edges that cover all the vertices, with each vertex incident
to exactly one edge. The T-Join problem considers an even subset T ⊆ V of
vertices with the goal of finding a minimum cost set of edges that has odd degree
at vertices in T and even degree at all other vertices.

Consider a network design game based on the T-Join problem where we are
given an undirected graph G = (V,E) with a cost ce for each edge e ∈ E. Each
player i of the the player set P owns a set of vertices Oi ⊆ V not necessarily
disjoint from other players’ sets, where |Oi| is even for all i ∈ P . Again let
O = ∪i∈P Oi represent the set of nodes owned by at least one player.

As usual, we will be considering one iteration of the algorithm, with current
player set Q ⊆ P and the set of nodes owned by the players OQ = ∪i∈QOi.
Before we can define a feasible solution we need to explore the idea of a T-cut.
A set S ⊆ V is a T-cut if |Oi ∩ S| is odd for some player i ∈ Q. Formally, we
can define the set of T-cuts TQ for the player set Q as:

TQ = {S ⊆ V : ∃i ∈ Q such that |Oi ∩ S| is odd}

Now we can say a feasible solution to the even parity connection game is a set
of edges F ⊆ E such that for all T-Cuts S ∈ TQ, δ(S) ∩ F 6= ∅.

The following cut requirement for a player i ∈ P arises naturally from T-cuts:

fi(S) =

{

1 if |S ∩Oi| is odd
0 otherwise

Since every player owns an even number of nodes, the function fi satisfies sym-
metry for each player i ∈ P . As well, if fi(A) = fi(B) = 0 for disjoint sets
A,B ⊆ V , then neither set is a T-Cut for player i, so A∪B is also not a T-Cut
for player i. This implies the function fi is indeed proper, as shown by Goemans
and Williamson in [3].

As usual, we define the general cut requirement function for the current
iteration as:

f(S) = max
i∈Q

fi(S)

Note that a feasible solution F may not be a T-Join for the set of nodes OQ

in the traditional sense. However, a feasible solution does guarantee that each
connected component induced by F contains an even number of vertices owned
by each player.
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The goal is to find a minimum-cost feasible solution to this problem. In
the remainder of this section, we will modify the KW-2 algorithm into a cross-
monotonic cost-sharing method that satisfies 2-approximate cost recovery for
the above network design game. We conjecture that the method is competitive,
and thus 2-budget balanced, but a proof is not provided in this thesis.

2.5.1 Primal-Dual Method

Recall we let TQ represent the set of T-cuts. The Integer Programming problem
for the even parity connection game fits the framework of the general network
design problem (IP) using the above cut requirement function f .

Recall the AKR & GW algorithms discussed earlier. AKR was designed for
the Steiner Forest problem while GW generalized the framework to run on any
proper cut requirement. In the special case of the Steiner Forest problem, the
algorithms return the same solutions to both primal and dual problems. The
difference lies in how edges are added. While GW adds many edges and then
removes unnecessary edges in a reverse delete step, AKR selectively adds edges
and retains them all for the final solution. We adapt the AKR method of only
adding certain paths (and not performing a reverse delete step) into the KW-3
algorithm specialized for the Even Parity Connection game.

To calculate the death-times in this game we cannot simply use shortest
paths as in the previous algorithms. Instead, we have to use the more general
idea presented in Section 2.1 and run the GW algorithm once for each player
i ∈ P .

Let GW(i) represent the run of the GW algorithm where we grow only
the moats that contain an odd number of vertices owned by player i. This is
equivalent to only raising the dual of a moat U if fi(U) = 1. Recall we say a
moat U is active if fi(U) = 1. The run of GW(i) for a particular player i begins
by uniformly growing the dual yv for each of the vertices v ∈ Oi. At some time
τ ≥ 0, two (or more) active moats will collide when a path between two (or
more) vertices becomes tight.

We seek to pair up the vertices of Oi through this process. To this end, if
more than two active moats collide simultaneously, we choose two appropriate
moats and pair the vertices up arbitrarily among active vertices of the colliding
moats that do not already have mates.

When the first collision takes place it will be between two active moats
(perhaps chosen by the above rule) that each contain only one vertex owned by
player i. In this situation, for a moat U(v) that contains vertex v ∈ Oi colliding
with a moat U(u) that contains vertex u ∈ Oi, we define u to be v’s i-mate and
v to be u’s i-mate. For convenience, we also refer to v and u as simply mates.
We define di(v) = di(u) = τ(u, v), where τ(u, v) is the time the active moats
U(v) and U(u) collide during the run of GW(i).

At all times during the run of GW(i), moats that contain an even number
of vertices of Oi are inactive. Moats that contain an odd number of vertices are
active, although every active moat contains exactly one vertex of Oi that does
not have a mate. When we process subsequent collisions of active moats, the
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2.5. EVEN PARITY CONNECTION GAME

pairing of mates is always defined naturally by pairing the two vertices of the
colliding moats that do not already have mates.

We continue growing the duals of active moats (connected components of
the forest F̄ τ of tight edges) until a time τ∗

i when every vertex of Oi has a
mate. When this happens we terminate the run of GW(i), store the death
times computed for player i, and reset all the dual values to 0 so that we may
repeat this process for the other players. Note that a single vertex v may have
as many mates as the number of players that own v.

6
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2

2 66

2

2

9111

1
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Figure 2.12: Death times for Even Parity Connection Game

Once all the death times di(v) have been computed for each v ∈ Oi,∀i ∈ P ,
we are ready to run KW-3. In the run of KW-3 with the set of players Q ⊆ P ,
we define

D(v) = max
i∈Q

di(v)

as usual. Just as in AKR, GW, KW-1 and KW-2, we view this algorithm as a
process over time and say a vertex v is active at time τ in the run of KW-3 if
D(v) ≥ τ . We say a moat is active in the run of KW-3 if it contains an active
vertex. The KW-3 algorithm will uniformly grow the duals corresponding to
active moats at all times τ ≥ 0.

We define a precedence order over the vertices. Let v ≻ w if D(v) >
D(w),∀v, w ∈ V . Otherwise, we define an arbitrary precedence order for v
and w if their death-times are equal.

The execution of KW-3 is very similar to KW-2, in that we only add a
path to the forest F τ when two active moats collide. Specifically, when we are
processing the collision of two moats U1 and U2 at time τ , we add the shortest
path P to the forest F τ such that the connected components C1 contained in
U1 and C2 contained in U2 are now joined by P .

We continue growing active moats and processing collisions of active moats
just as in previous algorithms, until a time τ∗ when there are no more active
moats. Since each run of GW(i) terminates only after satisfying the cut re-
quirement fi, the aggregate run of KW-3 must satisfy every cut requirement
fi,∀i ∈ Q and return a forest F τ∗

that is feasible for the Even Parity Connec-
tion game. We present the KW-3 algorithm formally below, noting there is no
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need to buy paths or perform a reverse-delete step (although one may by used
in practice).

Algorithm 6 Primal-Dual KW-3 algorithm for even parity connection game

1: Given: D(v) for each v ∈ OQ

2: y ← 0
3: F ← ∅
4: i← 0
5: repeat

6: A ← {U ⊆ V : U is a connected component (moat) of F̄ , ∃v ∈ U with
∑

S:v∈S yS < D(v)}
7: repeat

8: Raise yS uniformly ∀S ∈ A
9: until A path becomes tight between two active moats S1, S2 ∈ A that

contains connected components C1 and C2 of F
10: P ← the shortest path from C1 to C2

11: F ← F ∪ E(P )
12: until A = ∅
13: Return: (F, y)

2.5.2 Analysis: Cost Recovery

The execution of KW-3 is essentially an execution of the AKR algorithm with
only one major modification: we use death-times to determine how long a moat
will continue growing. This is the methodology used in [6]. We will show that
despite this change, we can reduce the execution of KW-3 on the Even Parity
Connection game to an execution of AKR on an instance of the Steiner Forest
problem.

Theorem 2.5.1. If KW-3 returns the forest F , then F is feasible for the Even
Parity Connection game and the total cost of the forest F , denoted c(F ), satisfies
c(F ) ≤ 2

∑

S⊆V yS

Proof. Suppose F is infeasible and there exists a connected component C of F
with f(C1) = 1. This implies for some player i ∈ Q that fi(C) = 1. Thus, C
must contain an odd number of vertices of Oi, so let v ∈ Oi be the vertex of
highest precedence order in C whose i-mate u ∈ Oi is not in C.

Consider the run of GW(i) we used to define the death-times of the vertices
of Oi. GW(i) terminates when every vertex of Oi has a mate, and thus returns
a solution that is feasible for player i. Since we define death-times for KW-3
using GW(i), if a moat U grows in GW(i) at time τ , then there exists a vertex
v ∈ U with d(v) > τ , and thus there exists a moat U ′ containing U that grows
in KW-3 at time τ .

We know by time τ = di(v) = di(u) that v is in the same component as
its i-mate u in the run of GW(i). We also know that in the run of KW-3, v
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and u are both contained in active moats until time τ = di(v) = di(u) (and
possibly beyond). This, together with the previous paragraph, implies that at
some time τ ′ ≤ τ , the two active moats containing v and u must have collided
in the execution of KW-3. When this occurred, KW-3 would have added a
path between the moats. However, this is a contradiction to our assumption
that KW-3 terminated and returned the forest F with a component C that
contained v and not u. Thus F is indeed feasible.

We will show that c(F ) is at most twice the total dual growth by a reduction
to the Steiner Forest problem, using an argument found in [6]. We construct an
instance of the Steiner Forest problem from the Even Parity Connection game
as follows: for each vertex v ∈ OQ, we introduce a new vertex ṽ and a new edge

ẽv = vṽ with c(ẽ) = 2D(v). Let Ẽ represent this set of new edges. We run the
AKR algorithm on the new graph with terminal set R̃ = {(v, ṽ) : v ∈ OQ}. Let

S̃ represent the set of Steiner cuts with terminal set R̃.
Observe that in the run of AKR the edge ẽv will become tight at time

τ = D(v), for each v ∈ OQ. This implies that the component containing v will
be active in the run of AKR for precisely the same amount of time as the moat
containing v in the run of KW-3. Let {yAKR

S }S∈S̃ represent the set of duals
returned by the AKR algorithm on the new graph, and let {yKW

S }S⊆V represent
the set of duals returned by the KW-3 algorithm on the original graph. We thus
have

∑

S∈S̃

yAKR
S =

∑

S⊆V

yKW
S +

∑

v∈OQ

yAKR
{ṽ}

Furthermore, since collisions are defined in the same manner for both AKR and
KW-3, when a collision takes place and we add a path in the run of KW-3,
the same collision takes place and the same path is added in the run of AKR.
Thus, the solution computed by AKR, restricted to the original graph, must be
the same solution as the one computed by KW-3. By result 1.4.1, the forest
returned by AKR on the new graph is at most twice the total AKR dual growth,
that is

∑

e∈E∪Ẽ

c(e)xe ≤ 2
∑

S∈S̃

yAKR
S

Finally, we know that each edge ẽv = vṽ is added by AKR at time c(ẽ)
2 , which

implies
∑

e∈Ẽ

c(e)xe = 2
∑

v∈OQ

yAKR
{ṽ}

Putting these results together gives us

c(F ) =
∑

e∈E

c(e)xe =
∑

e∈E∪Ẽ

−
∑

e∈Ẽ

c(e)xe

≤ 2
∑

S∈S̃

yAKR
S − 2

∑

v∈OQ

yAKR
{ṽ} = 2

∑

S⊆V

yKW
S (2.5.1)

which proves the result.
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2.5.3 Analysis: Cross-monotonic Cost-Sharing Method

We use the same cost-sharing method derived from the KW-2 Algorithm for
our KW-3 Algorithm: when we grow the dual variable of an active moat we
share the cost of this growth among all active vertices contained in the moat.
The definitions are reproduced here for completeness. Recall we let Mτ (v) be
the connected component of F̄ τ that contains vertex v, i.e. that active moat
that contains v. Now let aτ (v) be the number of active vertices contained in
Mτ (v), i.e., the number of vertices u ∈Mτ (v) with D(u) ≥ τ . Furthermore, we
share the cost-share of one vertex among all players for whom the vertex is still
active. Let bτ (v) be the number of players j for whom dj(v) ≥ τ . Now we can
define the cost-share of vertex v ∈ OQ for player i ∈ Q as

ξi
Q(v) =

∫ di(v)

τ=0

1

aτ (v)bτ (v)
dτ

The cost-share of player i ∈ Q is just the sum of the cost-shares of her terminals:

ξQ(i) =
∑

v∈Oi

ξi
Q(v)

We will show the cost-sharing method ξ is a cross-monotonic and recovers at
least half the cost of the solution for the Even Parity Connection Game.

To prove cross-monotonicity, we again study the effect of the removal of
one player on the cost-shares of the remaining players. Consider an arbitrary
player i ∈ Q and let Q0 = Q − {i}. Let KW-3(Q) represent the run of the
KW-3 algorithm using the set of players Q and KW-3(Q0) represent the run of
the KW-3 algorithm using the set of players Q0. Suppose KW-3(Q) has moats
Uτ induced by the forest F̄ τ and terminates at time τ∗; while KW-3(Q0) has
moats Uτ

0 induced by the forest F̄ τ
0 and terminates at time τ∗

0 . The following
lemma should be familiar to the reader (see Section 2.4.4) and shows that Uτ

0 is
a refinement of Uτ :

Lemma 2.5.2. For all times 0 ≤ τ ≤ τ∗ and for every moat U0 ∈ U
τ
0 there

must be a set U ∈ Uτ such that U0 ⊆ U .

Proof. We proceed by mathematical induction on the time τ .

The claim is trivially true at time τ = 0 since Uτ = Uτ
0 .

Now suppose the claim holds for some time 0 ≤ τ ≤ τ∗ and consider what
happens when we grow the duals of active moats from τ to τ ′ = τ + ǫ for a
small ǫ > 0. Let U0 ∈ U

τ
0 be an active moat at time τ in the run of KW-3(Q0)

and let v ∈ U0 be an active vertex (dj(v) ≥ τ for some player j ∈ Q0). Thus
KW-3(Q0) grows the moat U0 from time τ to τ ′. By the induction hypothesis,
we know at time τ that ∃U ∈ Uτ such that U0 ⊆ U . Then v is active in the
run of KW-3(Q) and contained in the moat U , so U is an active moat. Thus
KW-3(Q) grows the dual of U at time τ to time τ ′ and the claim follows.
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Again, this refinement lemma immediately implies cross-monotonicity, as the
removal of one player cannot decrease the cost-share of any of the remaining
players. The following lemma shows this explicitly:

Lemma 2.5.3. The cost-sharing method ξ arising from KW-3 is cross-monotonic,
i.e., for each player j ∈ Q0 we have ξQ0

(j) ≥ ξQ(j)

Proof. We will prove a stronger result, that is for each player j ∈ Q0 and each
vertex v ∈ OQ0

we have ξj
Q0

(v) ≥ ξj
Q(v). Recall we let Uτ (v) be the moat that

contains v in the execution of KW-3(Q), so similarly let Uτ
0 (v) be the moat

that contains v in the execution of KW-3(Q0). Recall we let aτ (v)bτ (v) be the
number of active vertices contained in Uτ (v) times the number of players for
whom v is still active, so similarly let aτ

0(v)bτ
0(v) be the number of active vertices

contained in Uτ
0 (v) times the number of players for whom v is still active.

The previous lemma shows that Uτ
0 (v) ⊆ Uτ (v), so it must be that aτ

0(v) ≤
aτ (v) and bτ

0(v) ≤ bτ (v) for all times 0 ≤ τ ≤ τ∗. Thus

ξj
Q(v) =

∫ dj(v)

τ=0

1

aτ (v)bτ (v)
dτ ≤

∫ dj(v)

τ=0

1

aτ
0(v)bτ

0(v)
dτ = ξj

Q0
(v)

for all players j ∈ Q0 and vertices v ∈ OQ0
. Summing over all vertices proves

cross-monotonicity.
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Chapter 3

Discussion

3.1 Future Work

We conjecture that the cost-sharing method ξ that arises from the KW-3 algo-
rithm for the even parity connection game is competitive. To see the motivation
for this conjecture, consider the following lifted cut relaxation.

3.1.1 Lifted Cut Relaxation

To prove the cost-sharing method ξ is competitive, we will consider a lifted-cut
relaxation for our even parity connection game. Recall we let TQ represent the
set of T-cuts. Let NQ represent the set of subsets of V that are not T-cuts.
Formally, we can define NQ as:

NQ = {S ⊆ V : ∀i ∈ Q, |Oi ∩ S| is even}

Let S = TQ ∪ NQ. As defined, S is simply the set of all possible subsets of V .
In practice, it is the set of sets that may experience dual growth.

In order to create a useful lifted-cut relaxation, we form a non-disjoint parti-
tion of the T-cuts according to special vertices contained within each set. Recall
we defined two vertices to be mates when they were paired together during a
run of GW(i). Define:

T (v) = {S ∈ TQ : v is responsible for S OR v ∈ S has a mate u 6∈ S}

We call this partition non-disjoint as a T-Cut S may belong to many such sets.
For example, suppose S = {v, v′, u, w,w′} where v ≻ v′ ≻ w ≻ w′, v and v′ are
each other’s unique mates, w is w′’s unique mate but w has another mate not
in S, and at least one of u’s mate is not in S. Then S ∈ T (v), S ∈ T (u) and
S ∈ T (w).

We also want to partition the non T-cuts, but before we do that we need
to introduce the concept of a friend. Unlike in the Steiner Forest game, in the
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run of KW-3, two mates may not end up in the same component of a feasible
solution F . As a result, we must generalize the concept for the Even Parity
Connection game.

First we say a player i ∈ Q controls v ∈ Oi if D(v) = di(v). We can then
introduce notation for a set of players that control v as

KQ(v) = {i ∈ Q : D(v) = di(v)}

Now for a non T-cut S ∈ NQ and responsible vertex v we can define the set of
v’s friends FQ(v, S) as

FQ(v, S) = {u ∈ {∪i∈KQ(v)Oi ∩ S}}

The friends of v in a non T-cut S are just the set of vertices that are owned by
at least one player who controls v. Note that since S isn’t a T-cut, v will always
have at least one friend in S.

We choose the best friend u of v in a non T-cut S as the most responsible
friend that isn’t v itself. Formally, u ∈ FQ(v, S) is the best friend of the respon-
sible vertex v of the set S ∈ NQ if 6 ∃w ∈ FQ(v, S) with w ≻ u. Now we can
form a cover of the non T-cuts by defining:

N(v) = {S ∈ NQ : v is responsible for S

OR v is the best friend of the responsible vertex u} (3.1.1)

We say this is a cover because each non T-cut S with responsible vertex v
and best friend u is actually a member of two sets: N(v) ⊆ NQ and N(u) ⊆ NQ.

We now have all the notation we need to introduce the dual of the lifted-cut
relaxation for the even parity connection game:

max
∑

S∈S

yS (LC-D)

s.t.
∑

S∈S:e∈δ(S)

yS ≤ ce ∀e ∈ E, (6)

∑

S∈T (v)

yS +
∑

S∈N(v)

yS ≤ D(v) ∀v ∈ OQ, (7)

yS ≥ 0 ∀S ∈ S.

Notice that a feasible solution to (LC-D) may assign positive values to non
T-cuts, just as the algorithm may grow the duals of non T-cuts. The constraints
of type 7 are required to bound the objective function of (LC-D), which sums
over the duals of all subsets of V , not just the T-cuts.

We now consider the lifted-cut primal (LC-P) (dual to (LC-D)) which has
an additional variable zv for each v ∈ OQ:
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min
∑

e∈E

cexe +
∑

v∈OQ

D(v)zv (LC-P)

s.t.
∑

e∈δ(S)

xe +
∑

v:S∈T (v)

zv ≥ 1 ∀S ∈ TQ (8)

∑

e∈δ(S)

xe +
∑

v:S∈N(v)

zv ≥ 1 ∀S ∈ NQ (9)

xe, zv ≥ 0 ∀e ∈ E,∀v ∈ OQ.

Given a feasible solution F to the underlying even parity connection game
we would like to construct a solution (x, z) that is feasible for (LC-P). We will
also show the associated duals {yS}S∈S returned by the algorithm are feasible
for (LC-D). We would like to then show that the optimal solution OPTLC−P is
bounded by the cost of F . By weak duality, the optimal solution to the lifted-cut
dual OPTLC−D is at most OPTLC−P , so this value too is bounded by the cost
of F . By using the optimal solution F ∗, we would finally show that the sum
of the duals returned by our algorithm is bounded by the cost of the optimal
solution, implying our cost-sharing method is competitive.

Lemma 3.1.1. Any set of duals {yS}S∈S returned by the KW-3 algorithm is
feasible to LC-D

Proof. The duals returned by KW-3 naturally satisfy
∑

S∈S:e∈δ(S) yS ≤ ce,∀e ∈
E, as whenever an edge e ∈ E becomes tight between two moats we merge
the moats into one. By only growing the duals corresponding to connected
components of tight edges (moats), we ensure that we never overload an edge.

To prove the duals also satisfy
∑

S∈T (v) yS +
∑

S∈N(v) yS ≤ D(v),∀v ∈ OQ,
we first note that at any given time 0 ≤ τ ≤ τ∗, v is contained in at most one
moat S ∈ S whose dual yS is growing at time τ . To complete the proof, we just
need to show that the dual corresponding to any set S ∈ (T (v)∪N(v)) will not
grow after time τ = D(v).

Suppose S ∈ T (v), then either v is responsible for S or v has a mate u 6∈ S.
Now suppose for the sake of contradiction that algorithm KW-3 grows the dual
yS at a time τ > D(v). Suppose v is responsible for S, then D(v) ≥ D(w),∀w ∈
S. But then at time τ > D(v) the set S does not contain any active vertices,
which contradicts the assumption that KW-3 was growing the dual after time
τ = D(v). Instead, suppose v has a mate u 6∈ S. By time τ = D(v) in the run of
GW(i) (for each player i ∈ Q), by definition v and u must be in the same moat.
As a result, v and u must also be in the same moat in the execution of KW-3
by time τ = D(v). Thus, either KW-3 grows the dual yS at a time τ < D(v),
or never at all. This also contradicts the assumption that KW-3 was growing
the dual after time τ = D(v).

Now suppose S ∈ N(v), so that either v is responsible for S or v is the best
friend of u, the vertex responsible for S. Suppose for the sake of contradiction
that algorithm KW-3 grows the dual yS at a time τ > D(v). If v is responsible
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for S, then again D(v) ≥ D(w),∀w ∈ S. But at time τ > D(v) the set S does
not contain any active vertices, which contradicts the assumption that KW-3
was growing the dual after time τ = D(v).

Instead, suppose v is the best friend of u, the vertex responsible for S. If v
is also the mate of highest precedence order of u, then D(v) ≥ D(u). But this
would again imply that the set S does not contain any active vertices. Suppose
then that another vertex w is the mate of highest precedence order of u. This
implies D(v) ≤ D(u). Let player i be the player for whom the run of GW(i)
established v and w as mates. Since v is the best friend of u, we know w 6∈ S
and that v ∈ Oi. Now consider the mates of v. If any mate of v is not in S,
by the same reasoning as above KW-3 would not grow the dual yS after time
τ = D(v).

Instead, suppose that all of v’s mates are in S. Since S is a non-T-Cut,
there are an even number of vertices of Oi in the set S. We know that v and
u were not established as mates in the run of GW(i), so it must be v’s mate
from the run of GW(i) is a third vertex x owned by player i in the set S. This
immediately implies there is a fourth vertex y owned by player i in S. Since v
is u’s best friend, we know v ≻ x and v ≻ y. But the vertex y also has a mate
from the run of GW(i) that can’t be any of v, u or x. If this mate is not in
S, then again KW-3 would not grow the dual yS after time τ = D(y) ≤ D(v).
This establishes a recursive argument which will continue until we exhaust the
vertices of Oi. In summary, if v is the best friend of u but not its mate of highest
precedence order and all of v’s mates are in S, then either S is actually a T-Cut,
or KW-3 would never grow the dual yS anyway.

3.1.2 Competitive Conjectures

We conjecture that there always exists a constructed solution to the lifted cut
primal whose objective value is at most the cost of the optimal solution to
the underlying network design problem. In an attempt to prove this powerful
result, we tried to patch up the given feasible solution by buying some edges.
By creating a forest where every vertex is in the same component as its’ mates,
it would be easy to construct a solution that is feasible to the lifted cut primal
and whose objective value is at most the cost of the augmented solution.

We conjecture that the cost of these edges required to augment any feasible
solution to the even parity connection game is at most a constant factor times
the cost of the optimal solution, which implies the total cost shares would be
at most a constant factor times the optimal solution. For a constant α, this
property is known as α-approximate competitiveness (as in [5]).

3.2 Conclusions

Our main result is a 2-budget balanced and cross-monotonic cost sharing method
for the downwards monotone set cover game, which arises naturally from any
downwards monotone 0, 1-function. We have also designed a 2-budget balanced
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and cross-monotonic cost sharing method for two versions of the edge cover
game arising from the edge cover problem. These games are special cases of the
downwards monotone set cover game. By a result by Immorlica, Mahdian &
Mirrokni in [4] our result is best possible for the edge cover game.

We also designed a cross-monotonic cost sharing method for a network de-
sign game we call the Even Parity Connection game arising from the T-Join
problem that generalizes proper cut requirement functions. We have shown our
algorithm returns cost shares that recover at least half the cost of the solution.
We conjecture that our cost sharing method for the even parity connection game
is competitive and thus 2-budget balanced.
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