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Abstract 

   Nondestructive testing is used extensively throughout the industry for quality 

assessment and detection of defects in engineering materials. The range and variety of 

anomalies is enormous and critical assessment of their location and size is often 

complicated. Depending upon final operational considerations, some of these anomalies 

may be critical and their detection and classification is therefore of importance. Despite 

the several advantages of using Nondestructive testing for flaw detection, the 

conventional NDT techniques based on the heuristic experience-based pattern 

identification methods have many drawbacks in terms of cost, length and result in erratic 

analysis and thus lead to discrepancies in results.  

   The use of several statistical and soft computing techniques in the evaluation and 

classification operations result in the development of an automatic decision support 

system for defect characterization that offers the possibility of an impartial standardized 

performance. The present work evaluates the application of both supervised and 

unsupervised classification techniques for flaw detection and classification in a semi-

infinite half space. Finite element models to simulate the MASW test in the presence and 

absence of voids were developed using the commercial package LS-DYNA. To simulate 

anomalies, voids of different sizes were inserted on elastic medium. Features for the 

discrimination of received responses were extracted in time and frequency domains by 

applying suitable transformations. The compact feature vector is then classified by 

different techniques: supervised classification (backpropagation neural network, adaptive 

neuro-fuzzy inference system, k-nearest neighbor classifier, linear discriminate classifier) 

and unsupervised classification (fuzzy c-means clustering). The classification results 
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show that the performance of k-nearest Neighbor Classifier proved superior when 

compared with the other techniques with an overall accuracy of 94% in detection of 

presence of voids and an accuracy of 81% in determining the size of the void in the 

medium. The assessment of the various classifiers’ performance proved to be valuable in 

comparing the different techniques and establishing the applicability of simplified 

classification methods such as k-NN in defect characterization.   

   The obtained classification accuracies for the detection and classification of voids are 

very encouraging, showing the suitability of the proposed approach to the development of 

a decision support system for non-destructive testing of materials for defect 

characterization. 
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Chapter 1 

Introduction 

1.1 Forward 

   While destructive testing usually provides a more reliable assessment of the state of the 

test object than nondestructive testing (NDT), destruction of the test object usually makes 

this type of test not suitable, for example, of existing structures.  The American society 

for NDT defines it as an examination of an object or material in a manner that will not 

impair its future usefulness. Non-destructive techniques have been recently gaining more 

importance due to the rapid development in technology and due to several types of 

materials and systems that could be tested without causing any damage or destruction. 

The number of NDT methods is large and continues to grow and can be used for  

• Detecting presence of any internal or external imperfections or anomalies 

• Determine structure, composition or material properties 

• Measure geometric characteristics  

Destructive testing is also inappropriate in many circumstances, such as forensic 

investigation. Although there is a tradeoff between the cost of the test and its reliability 

(cheaper NDT usually are not as reliable as the more expensive destructive testing), 

practical situations favor a strategy in which most test objects are inspected 

nondestructively; destructive testing, on the other hand, may be performed on a sampling 

of test objects that is drawn randomly for the purpose of characterizing the testing 

reliability of the nondestructive test.  

   During their service lives, many industrial components need regular nondestructive 

tests to detect damage that may be difficult or expensive to find by everyday methods.    
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These NDT techniques are very valuable in many applications including the assessment 

of the conditions of structures like pavements, bridges, quality monitoring in 

manufacturing, and in testing of nuclear reactors and transducers embedded in biomedical 

systems, etc. The following are a few examples: 

•   Detection of cracks in buildings, bridges, aircrafts and even space shuttles, 

implementation of effective and appropriate repair work and also for continuous 

monitoring of their performances; 

•   Integrity monitoring of onshore, port, coastal and offshore structures 

•   Status of underground onshore as well as offshore pipelines are often subjected to 

corrosion and stress corrosion cracking can be monitored which enables planning and 

undertaking appropriate protection measures 

•   Monitoring the status of pipes in industrial plants that may be subjected to erosion and 

corrosion from the products they carry 

•   Monitoring the properties of concrete structures that may be weakened if the inner 

reinforcing steel has corroded 

•   Condition assessment of wire ropes in suspension bridges that are often subjected to 

vibrations due to heavy loads and weather conditions so that appropriate repair work can 

be undertaken for broken wires and other damages. 
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1.2 Statement of the Problem 

   Detecting defects in materials is one of the most important applications of the 

nondestructive testing. A variety of imperfections can arise in engineering materials due 

to their manufacturing. Depending upon final operational considerations, some of these 

may be critical and their detection and classification is therefore of importance. The term 

‘imperfection’ refers to any flaw, fault or irregularity in the structure of the material that 

may cause weakness or failure in the functioning of the product or system with which it is 

associated. Researchers continue to find novel approaches of applying physics and other 

scientific disciplines to develop NDT methods. Some of the widely used NDT methods 

include ultrasonic testing, visual inspection, electromagnetic or eddy-current testing, 

radiography, magnetic particle testing and penetrate testing.  

   Ultrasonics is one of the mostly used NDT techniques for the detection, localization 

and measurement of the imperfections present in engineering materials under inspection. 

Ultrasonic testing is based on the transmission of high frequency sound waves into 

materials to detect imperfections or to locate changes in the material properties. The 

reflected echoes from the defects or the imperfections are received by the ultrasonic 

transducers and are recovered for further processing. 

   Despite the advantages of using ultrasonics for flaw detection (ultrasonic has a high 

probability of detection and a low number of false results) the detection and classification 

of defects is frequently questionable, the reason being identification of types of the 

defects that depend exclusively on the experience and the knowledge of the operator. The 

human eye is unparalleled in its ability to recognize significant patterns after a period of 

suitable training and experience. However, an overwhelming flow of data often reduces 
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the effectiveness of the human eye in extracting relevant information for decision 

making. Thus, the conventional NDT techniques based on the heuristic experience-based 

pattern identification methods have many drawbacks in terms of cost, length and result in 

erratic analysis and thus lead to discrepancies in results.  

   Various modern signal processing tools, statistical and soft computing techniques have 

come into practice to overcome these problems. The use of these processing tools for the 

evaluation and classification operations should overcome the above mentioned 

drawbacks by enhancing the measurement accuracy and reducing the work load on the 

operators, thereby, enabling them to concentrate more efficiently on the evaluation of the 

results. The main advantages of using these techniques for computational purposes is the 

development of an automatic decision support system for the defect characterization that 

offers the possibility of an impartial, standardized performance.  

1.3 Research Objectives 

   The objective of the present study was to develop a classification scheme for defect 

characterization using ultrasonics in a homogeneous half-space medium. The first step 

consists of constructing numerical models using commercial finite element code (LS-

DYNA) to simulate the propagation of Rayleigh waves in a homogeneous half-space 

medium. The next step consists of introducing rectangular voids of varying sizes to 

simulate defects. A sufficient number of samples were generated by changing the input 

loading conditions in order to maintain enough variance in the dataset. A total of 37 

features were extracted from the samples by applying several transformations. 

   Two types of learning algorithms were employed for defect characterization; 

supervised/classification and unsupervised/clustering using both soft computing and 
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statistical methods. The results are assessed in form of the confusion matrix which gives 

information about the predicted and actual classification. A comparison between the 

performances of various techniques used for classification was performed.   

1.4 Thesis Organization 

This thesis contains six chapters and is organized in the following order: 

Chapter one provides a brief introduction to the problem addressed in this study and 

outlines the research objectives. 

Chapter two provides a review of seismic wave theory, including body and surface 

waves. The concepts of wave velocity and attenuation are introduced, and different types 

of attenuation and damping are discussed. A review of the different signal processing 

techniques used in this study was presented. Lastly, an overview of the commonly 

employed ultrasonic testing techniques used for flaw detection was presented. Each 

method is introduced and a brief summary of the method was provided. 

   Chapter three provides an overview of the soft computing methods which includes 

Fuzzy Logic and Artificial Neural Networks. A detailed review of the different 

classification and clustering techniques using both soft computing and statistical methods 

applied for detection and classification of defects in this study was provided. Literature 

review of the classification/clustering techniques employed for defect characterization 

was presented at the end. 

   Chapter four reviews the different numerical methods used for modeling wave 

propagation problems. The principles of the finite element technique and the basic 

concepts of the numerical finite element code (LS-DYNA) that is used in this study are 

described. A literature review of the numerical work for flaw detection was presented.  
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This chapter continues with the description of the basic numerical model developed using 

LS-DYNA. The set-up, calibration, and validation of the model with theoretical solution 

are discussed. The finite element modeling of the voids along with a discussion on the 

generation of the sample data set was discussed. Lastly, contour plots of the surface 

responses along the surface of all the models in the presence and absence of voids are 

presented. 

   Chapter five discusses the feature extraction procedure and the various features 

extracted from the samples. The feature preprocessing tools and assessment of the 

classification results are discussed. The results obtained from supervised (classification) 

and unsupervised (clustering) techniques in defect detection and classification are 

presented in detail. Related concepts, such as sensitivity analysis, optimal selection are 

also discussed. Lastly, the critical features which give the best classification results are 

presented. 

   Chapter six summarizes the conclusions of this study. Further, recommendations for 

future studies are provided in this chapter. 
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Chapter 2 

Theoretical Background 

2.1 Introduction 

   The chapter begins with a brief introduction to wave propagation, followed by a review 

of the seismic wave theory which includes body waves and surface waves. The second 

section provides a review of the different signal processing techniques used in this study. 

The final section briefly discusses some of the commonly used ultrasonic testing 

techniques used for flaw detection in materials. 

2.2 Seismic waves 

2.2.1 Background 

   Mechanical waves are generated by the oscillatory motion of particles in a material 

media. The velocities at which these waves propagate depend on the material and inertial 

properties of the medium. These waves exist in various modes of propagation that are 

defined by the type of motion involved. The different types of waves can be broadly 

classified into body waves and surface waves. Other modes of wave propagation exist, 

but they are comparatively of minor importance. 

Body waves 

   Body waves that can travel through the interior of the solid media are of two types: 

longitudinal and shear waves. Longitudinal waves also known as P, primary, pressure or 

compressional waves consist of alternate compressions and dilations along their 

propagation paths. These alternate compressions and dilations are directed in the 

direction of wave propagation. Thus, the direction of wave propagation is parallel to the 

direction of particle motion as shown in Figure 2.1. They are also called volumetric 
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waves because the volume of the solid fluctuates as they propagate. They are the fastest 

propagating waves in solids and can travel through both solids and liquids. These waves 

attenuate at a rate of 1/r where, r is the distance from the origin of the wave. Their 

velocity is a function of the elastic modulus E, Poisson ratio υ and the density ρ of the 

medium and is given by:   

                                                
)21)(1(

)1(
υυρ

υ
−+

−
=

EVp                                                (2.1)                                  

 

Figure 2.1: Propagation of the P-waves (Nisee, 1998) 
 

Shear Waves 

   Shear waves also known as S, secondary or transverse waves have their particle motion 

perpendicular to the direction of wave propagation as shown in Figure 2.2. The main 

restoring force for these waves comes from shearing effects of the medium which, 

implies that a solid material medium is required for their effective propagation. Because 

liquids do not offer resistance to shear, they cannot sustain a shear wave. These waves are 

slower than the longitudinal waves but they attenuate at the same rate due to the effect of 

geometrical spreading. Unlike longitudinal waves, shear waves cause rotation in the 

media without any volume change as they propagate. Their velocity is a function of the 

density ρ and shears modulus G of the medium and is given by: 
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ρ
GVs =                                                           (2.2)        

 

Figure 2.2: Propagation of the Shear waves (Nisee, 1998) 
 

Shear waves can be polarized. If the direction of propagation and particle motion is 

perpendicular to the incident surface, the wave is said to be vertically polarized and is 

called SV wave. However if the particle motion is parallel to the incident surface, the 

waves are said to be horizontally polarized and are called SH waves.  

Surface waves 

   The theoretical prediction of the existence of the surface waves occurred a century ago 

by the profound contributions of Rayleigh, Lamb and Love. The observation of the 

propagation of seismic waves over the surface of the earth led to the development of the 

experimental evidence of the occurrence of surface waves. This was obtained by 

examining the unusual ability of the seismic waves to travel along curved surfaces and 

the phenomenon of the energy decay with increased depth (Rose and Joseph, 1999). 

The surface waves are generated due to the interaction between the body waves and the 

surface of the medium and their energy is concentrated closer to the surface. Another 

important property of surface waves is their dispersion in a layered medium, which, 

implies that different frequencies travel with different velocities as these waves propagate 

through different layers. Shorter wavelengths are affected by the near surface properties 
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of the medium, whereas, the longer wavelengths are affected by both the near and deeper 

properties. This property of the surface waves makes them very useful in the non-

destructive testing techniques in evaluating the properties of the material media. Surface 

waves travel slowly compared to the body waves.  

Rayleigh Waves 

   The first kind of surface wave called Rayleigh wave is generated due to the interaction 

between the P and SV waves at the free surface of the medium which are shown in  

Figure 2.3. The existence of the Rayleigh waves was predicted in the year 1885 by Lord 

Rayleigh, in whose name such waves are named after. These waves travel along the 

surface of the medium penetrating to a depth of approximately one wavelength. Their 

deformation of the particle motion is retrograde at the surface that changes into pro-grade 

at deeper levels of the media. They have the greatest amplitude and attenuate at the rate 

of 1
r

. Thus, the particle motion of this type of surface waves is confined to the near-

surface region because of the rapid attenuation of the amplitude of particle motion with 

respect to depth below the free surface. At a depth equal to 1.5 times the wavelength, the 

vertical component of the amplitude is approximately equal to 10% of the original 

amplitude at the ground surface (Santamarina, 2001). In a homogeneous medium, R-

wave velocity (VR) is constant and is independent of frequency (f) (Nazarian, 1984). 

Thus, the velocity of R-wave is given by the following relationship: 

                                                             λfVR =                                                           (2.3)        

where λ is the corresponding wavelength. However, in a layered medium, where, there is 

difference in the material properties at different depths, R-wave velocity changes with 

respect to frequency (wavelength). This phenomenon of different velocities propagating 
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with different frequencies is known as dispersion. An approximation of the Rayleigh 

wave velocity is given by the following empirical relation (Achenbach, 1973): 

                                                     0.87 1.12

1
C Cr s

υ

υ

+
=

+
                                                  (2.4)     

where υ is the Poisson’s ratio and VS is the shear wave velocity 

 

Figure 2.3: Propagation of the Rayleigh waves (Nisee, 1998) 
 

In an isotropic, elastic half-space, the ratio of Rayleigh wave to shear wave velocity 

increases with an increase in the Poisson ratio. This ratio varies from 0.87 to 0.96 for 

values of Poisson ratio from 0.0 to 0.5.  

Love Waves 

   The second type of surface waves called the Love waves was predicted by Love in the 

year 1911.These horizontally polarized waves are generated due to the interaction of the 

SH waves with the free surface of the medium and are shown in Figure 2.4. The velocity 

of the Love waves is slower than the body waves but faster than the Rayleigh waves. 

Love (1911) showed that these waves exist only in a layered media, in which, the shear 

wave velocity increases with an increase in depth. Their deformation is parallel to the 

surface and decreases exponentially with depth. Like Rayleigh waves, Love waves are 

also dispersive implying that the wave velocity is dependent on frequency, with low 

frequencies normally propagating at higher velocity.  Depth of penetration of the Love 
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waves is dependent on frequency, with lower frequencies penetrating to greater depth of 

the media. 

 

Figure 2.4: Propagation of the Love waves (Nisee, 1998) 
 

The propagation of body waves and surface waves (Rayleigh waves) away from a 

vertically vibrating circular source at the surface of a homogeneous, isotropic, elastic 

half-space is shown in Figure 2.5. 

 
Figure 2.5: Distribution of Rayleigh, shear and compression wave displacement from 
     a circular footing on a Homogeneous, isotropic, elastic half space (Richard et al. 1970) 
 
It was found that approximately 67 percent of the input energy propagates in form of 

Rayleigh waves, while, the percentage of the input energy that propagates in form of 
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shear and compression waves is 26 and 7 respectively (Miller and Pursey, 1955). Body 

waves propagate radially outwards from the source and travel in a spherical wavefront. 

Rayleigh waves propagate along a cylindrical wavefront near the surface. At the surface 

of an elastic half-space, body wave attenuate at a rate of r-2 and Rayleigh waves attenuate 

at a rate of 1
r

 where, ‘r’ is the distance from the source. 

2.2.2 Velocities in wave motion 

General 

   Mechanical waves propagate due to the simple harmonic motion of the particles about 

their equilibrium position within the material media. But these particles do not progress 

through the medium with the waves. The three velocities of wave motion namely particle, 

wave or phase and group velocities are quite different from one another although they are 

connected mathematically as explained in the following sections. 

Particle velocity 

   The simple harmonic velocity of the particles about their equilibrium position is the 

particle velocity. All other kinds of waves are produced as a result of the superposition of 

longitudinal and shear wave particle velocity components.  

Wave or Phase velocity Vph 

   This is defined as the rate at which plane of equal phase, crests or troughs progress 

through a medium. It is also defined as the speed with which the shape of the wave 

moves is the phase velocity. A wave can be expressed as the function  

                                                     ( )xtA κω −=Ψ cos                                                  (2.5)         
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The above equation is the solution to the one-dimensional wave equation where A is the 

amplitude of the wave, ω is defined as 2πf, where, f is the frequency and κ is defined as 

2π/λ where λ is the wavelength. The phase velocity is given by  

                                                              
κ
ω

=phV                                                           (2.6)       

Thus Vp represents the velocity of each frequency component in the propagating wave. 

Group velocity Vg 

   A number of waves of different frequencies, wavelengths, and velocities may be 

superimposed to form a group. The speed at which the energy in the wave group is 

transmitted is referred to a the group velocity and is given by (Graff, 1991) 

                                        
κ

κ
κ
ω

d
dV

V
d
dV ph

phg +==                                          (2.7)              

Thus group velocity is the rate at which the variations in the shape of the wave’s 

amplitude propagate through space or the velocity of energy propagation is referred to as 

the group velocity. The velocity of the waves within a group may be different that of the 

velocity of wave group. When the wave velocity is independent of the frequency or in a 

non-dispersive media, i.e., when 0=
κd

dVph  the group velocity is the same as the phase 

velocity. When the wave velocity decreases with frequency, i.e., when 0<
κd

dVph  the 

group velocity is less than the phase velocity and the individual wavelets build up in front 

of the group and disappear in the rear end of the group. On the other hand when 

0=>
κd

dVph  the group velocity is greater than the phase velocity and the individual 

wavelets build up at the back of the group and disappear at the front. 
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2.2.4 Damping and attenuation in seismic waves 

Background 

   Attenuation or damping of waves is a complex phenomenon resulting from the 

interaction of many processes which contribute to the reduction in the amplitude or the 

energy content of the wave form in time or space domain. 

The attenuation of seismic waves occurs through the following processes: 

• Spreading or focusing of the waves called the geometric attenuation 

• Absorption of energy called material or intrinsic attenuation 

• Dispersion 

• Reflection and transmission at interfaces 

• Mode conversion 

• Scattering by interfaces, material inhomogeneities and defects  

The first three processes are due to the interaction of the waves with the material media 

and the rest are as a result of the interaction between the waveforms. 

Geometric or radiation attenuation 

   The geometric attenuation occurs due to the propagation of the waveforms over a 

greater area, which, results in the spreading of energy. This leads to a decrease in the 

energy per unit volume as the area of the spread increases. As mentioned earlier, body 

wave spread in a three dimensional spherical pattern, whereas, surface waves spread in a 

two dimensional cylindrical pattern. Geometric attenuation causes the amplitude of the 

body waves to attenuate at the rate of 1/r, whereas, that of the surface waves at the rate of 

1
r

with increasing distance. Thus, surface waves geometrically attenuate more slowly 

than body waves because they propagate in two dimensional spaces. The geometric 
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attenuation changes only the amplitude or the energy content of the wave but not the 

wave speed. 

Material or intrinsic attenuation 

   Material damping occurs through the conversion of elastic energy into other forms of 

energy such as heat accompanied by a reduction in the amplitude of the wave. This 

occurs through internal friction due to the non elastic response of the material. These are 

as a result of the molecular behaviour such as viscoelastic or non-elastic and plastic 

behaviour as well as due to friction at boundaries, between molecules and grains and in-

homogeneities. These effects are dependent on the stress and strain history in contrast to 

the elastic behaviour which depends only on the current stress. 

Dispersion 

   Dispersion is a phenomenon in which waves of different frequencies propagate with 

different velocities. Both Rayleigh and Love waves are dispersive. The dispersion occurs 

when the stiffness of a site varies with depth. The velocity of surface wave thus varies 

and becomes a function of wavelength (or frequency).  

   The frequency dependence of wave velocities results in the high frequency components 

propagating with different velocities when compared with the low frequency 

components. When the high frequency components propagate with high velocities, the 

ending phases of the waveforms becomes more smoothed or stretched. Similarly, the 

propagation of low frequency components with low velocities result in the ending phases 

of the waves becoming more compacted (Lempriere, 2002). Thus, dispersion changes the 

amplitude of the successive peaks but not the energy content. High frequencies (or 

shorter wavelengths) help in the investigation of near surfaces, and thus their wave 
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velocity depends on the properties of surface material only. Low frequencies (or long 

wavelengths) help in deeper investigation with their wave velocities affected by material 

properties of deeper layers. This phenomenon is utilized in the Spectral analysis of 

surface waves technique (SASW) to determine the thickness of different layers in a 

layered medium and to evaluate their elastic modules (Nazarian, 1984). 

Reflection and transmission at interfaces 

   When a wave encounters an interface between two materials, reflection and 

transmission of the wave occurs across the interface. The nature and the distribution of 

energy between the reflected and transmitted waves can be determined by the theory of 

elasticity (Kramer, 1996). A change in the speed and the amplitude is observed in the 

waves produced at the interface. The speed of the wave is determined by the properties of 

the two media, characteristics and the direction of the incident wave, whereas, the 

amplitude is determined by the difference between the impedance of the two media. A 

wave incident on an interface at an angle not normal to the interface results in oblique 

reflection and transmission. Oblique transmission is referred to as refraction, since; the 

angle of transmission is not equal to the angle of incidence. The fraction of the incident 

wave intensity that is reflected and transmitted can be determined by the reflection and 

transmission coefficients respectively given by: 

                                                          
)(
)(

12

12

ZZ
ZZ

R
+
−

=                                                     (2.8)            

                                                             1T R= −                                                        (2.9)    

where Z1 and Z2 denote the acoustic impedance (which is the product of the density and 

the velocity of the material) of the two materials.  
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Mode conversion 

   When the wave encounters an interface between materials of different acoustic 

impedance at an incident angle not normal to the interface, other types of waves in 

reflection or transmission are generated. This process is referred to as the mode 

conversion. 

Scattering by material inhomogeneities and defects 

   When a wave encounters a discontinuity in form of an inhomogeneity in the medium, 

scattering of waves occur. Discontinuity is referred to a region with properties different 

form those of the surrounding material medium. These inhomogeneities extract energy 

from the advancing wave front thereby, resulting in reflection and transmission in 

multiple directions in form of scattered waves. The amount of energy scattered depends 

on the size of the inhomogeneity and the wavelength of the propagating wave. Scattering 

is in form of reflection, refraction and mode conversion when the wavelength of the 

propagating wave is smaller than the size of the in-homogeneity, whereas, if the 

wavelength is greater than the size, then, the wave propagates in the medium with 

properties reflecting the combined properties of the medium and the inhomogeneity. 

When the size of the inhomogeneity is held a constant, the proportion of the energy 

scattered is inversely proportional to the wavelength and is greater at any given 

wavelength for shear waves than that for p-waves. This is due to the fact that shear waves 

has a shorter wavelength due to their lower velocity than p-waves for any given 

frequency and are therefore attenuated more than the p waves. 
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2.3 Signal Processing  

2.3.1 Introduction 

  A wide variety of physical phenomena can be described by the variation of a function 

with respect to one or more independent variables. The desired part of this function is 

referred to as the signal and the undesired part as noise. Although, signals can be 

represented in many ways, in all cases, the information in a signal is contained in a 

pattern of variation of some form. The process of extracting information contained in a 

signal is known as signal processing.  

 Domain of signal analysis 

In this dissertation, signals would be analyzed in the following five domains: 

• Time domain analysis consists of decomposing the signal into shifted and scaled 

impulses (or step functions). 

• Frequency domain analysis consists of decomposing the signal into different 

frequency components given by a sum of sinusoidals. 

• Wavelet transformation through which the signal is represented as a summation of 

wavelets. 

•  Cepstrum coefficients are obtained by applying inverse Fourier transforms to log 

magnitude Fourier spectrum.  

2.3.2 Time domain analysis 

General concepts 

   The most frequently used independent variables to represent the variation of the 

information contained in a signal are the time or spatial coordinates. In the time domain, 

signals can be recorded in two types: continuous or discrete time signals. In continuous 
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time signals, the independent variable is continuous and thus, these signals are defined 

for a continuum of values of the independent variable. They can also be referred to as the 

uninterrupted observation of the signal in time or space and are denoted by x(t). On the 

other hand, intermittent observation of the signal in time or space gives rise to discrete 

time signals. These time signals are defined only at discrete time and thus, for discrete 

signals the independent variable takes on only a discrete set of values. An important 

branch of discrete time signals is produced by sampling the continuous time signals at 

regular intervals. The discrete time signal is denoted by: 

                                                    ( ) ( )x i t x t t i t∆ = = ∆                                                 (2.10)        

( )x i t∆   is the sampled signal of the continuous signal x(t). ∆t is called the sampling 

interval and i is called the time index. Figure 2.6 shows a continuous signal and its 

discrete counter part.  

 

Figure 2.6: A continuous signal and its discrete counter part 
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Sampling 

   Sampling is the process of converting a continuous time signal into a discrete time 

signal. During sampling, the continuous time signal is defined at discrete instants of time 

and the time interval between two subsequent sampling instants is called sampling 

interval. This process of sampling is based on the sampling theorem. 

   The sampling theorem ensures that during sampling of a continuous signal, the 

sampling rate is kept sufficiently small so that the original signal can be completely 

recovered from its samples. This is essential in order to avoid the effect of under 

sampling or aliasing of the signals. Aliasing occurs when the sampling interval is greater 

or equal to half period 2t T∆ ≥  and it takes place either in the time or in the spatial 

domain. The effect of undersampling or aliasing of the signal is shown in Figure 2.7. 

 

Figure 2.7: Aliasing of the signal (Nasseri, 2006) 

It can be seen that the original signal is undersampled and appears aliased into a signal of 

low frequency content. According to the sampling theorem, the sampling rate (∆t) or the 

sampling frequency (fs) should satisfy the Nyquist criterion: 

                                                   t
T

f
t

f nys ∆==>
∆

= 221                                         (2.11)       
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where T is the largest period present in the signal. That is, to avoid aliasing, the sampling 

frequency must be greater than twice the highest frequency present in the signal. In 

practice, a minimum of ~10 points per cycle is recommended (Santamarina, 2001). 

Antialiasing filters are used to remove the high frequency components greater than  

1/(2∆t) before it is sampled to reduce the effect of aliasing.  

2.3.3 Frequency domain analysis 

Fourier series and Fourier transforms 

   Analysis in the frequency domain has proven to be a helpful analytical tool for studying 

linear systems for many decades. In addition to the representation of the signal in a 

functional form or by a set of sample values in time, signals can also be characterized in 

their frequency domain in terms of their frequency content or frequency spectrum. The 

frequency content of a signal shows what frequencies are present in the signal and can be 

obtained by decomposing the signal into frequency components given by a sum of 

sinusoids. 

   In general, the frequency spectrum is complex values and can be represented in terms 

of real and imaginary components or in terms of magnitude and phase spectrum. In case 

of periodic signals, the frequency spectrum can be generated by computing the Fourier 

series. Fourier series is named after the French physicist Jean Baptiste Fourier (1768-

1830) who was responsible for predicting that any periodic waveforms could be 

represented by a sum of sinusoids (Kamen, 2000). The Fourier series of any periodic 

signal x(t) of period T is given by (Oppenheim and Wilsky,1983):                                    

                                  ( ) ( )( ) cos sin0 0 01
x t a a n t b n tn nn

∞ ⎡ ⎤= + Ω + Ω∑ ⎣ ⎦=
                     (2.12)          
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Therefore any periodic signal can be represented as an infinite sum of sine and cosine 

functions which are themselves periodic signals of angular frequencies 0, 

Ω0….kΩ0…..This series of sine and cosine terms are referred as trigonometric Fourier 

series. The coefficient a0 is called the DC component and is given by; 

                                                     ( )
01

0

t T
a x t dt

T T

+
= ∫                                               (2.13)        

coefficients an and bn are given by: 

                                               ( ) ( )02 cos 0

t T
a x t n t dtn T T

+
= Ω∫                                   (2.14)       

                                                ( ) ( )02 sin 0

t T
b x t n t dtn T T

+
= Ω∫                                   (2.15)        

[a1cos (Ω0t) + b1sin (Ω0t)] is the first harmonic, [a2cos (2 Ω0t) + b2sin (2 Ω0t)] the 

second harmonic and [ancos (n Ω0t) + bnsin (n Ω0t)] the nth harmonic. 

A periodic signal x(t) can be represented by Fourier series only if satisfies the Dirichlet 

conditions (Oppenheim and Wilsky,1983) given by 

1. x(t) has at most a finite number of discontinuities in one period. 

2. x(t) has at most a finite number of maxima and minima in one period. 

3. x(t) is bounded 

4. Over any period, x(t) must be absolutely integrable; that is, 

                                                          ( )x t dt
T

< ∞∫                                                   (2.16)       

In case of non-periodic signals, the frequency spectrum is generated by computing the 

Fourier transform. A non-periodic signal can be obtained from a periodic signal whose 

period tends to infinity. As the period becomes infinite, the frequency components form a 
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continuum and the Fourier series sum becomes an integral. Thus Fourier stated that the 

Fourier transforms of a continuous non-periodic signal can be obtained from the Fourier 

series sum of a periodic function and then extending the period T to infinity. The general 

definition of the Fourier transforms of a continuous signal x(t) is given by: 

                                            ( ) ( )1
2

j tx t X j e dωω ω
π

+∞
= ∫

−∞
                                       (2.17)        

                                              ( ) ( ) j tX j x t e dtωω
+∞ −= ∫
−∞

                                          (2.18)       

The above two equations are referred to as the Fourier transform pair in which ω is the 

angular frequency, the function X(jω) is referred to as the Fourier transforms or Fourier 

integral of the signal x(t) and first equation is referred to as the inverse Fourier transform 

of X(jω). As stated earlier Fourier transform will be a complex value given by: 

                                                   ( ) ( ) ( )iF F e ωω ω Φ=                                                (2.19)    

where the amplitude spectrum is given by: 

                                         )(Im)(Re)( 2 ωωω FFF +=                                      (2.20)       

and the phase spectrum is given by: 
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                                          (2.21)    

The Fourier transforms for a discrete signal can be computed as follows: 

                                   
1
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            u=0, 1… N-1                      (2.23)        

The above two equations are referred to as the discrete-time Fourier transform pair. Xu is 

the discrete-time Fourier transforms of xi and xi is inverse discrete-time Fourier transform 

of Xu. For each value of u, computation of Xu will require N multiplications. As stated 

before, Xu is complex valued and hence the computation of an N-point DFT or the 

inverse DFT requires N2 complex multiplications. In practice, a collection of efficient 

numerical algorithms are used to compute the discrete Fourier transform known as the 

fast Fourier transforms (FFT) (Walker, 1996). In the FFT algorithm the number of 

available points in time should be a power of two.  

Properties of Fourier transforms 

   Properties of Fourier transforms have been summarized below. The proof of these 

properties can be found in reference Papoulis, (1962). In these properties, x(t) and y(t) are 

time functions, X(ω) and Y(ω) are the corresponding Fourier transforms, a and b are 

constants, F and F-1are the Fourier and inverse Fourier operators respectively.  

• Linearity: ( ) ( ) ( ) ( )[ ]F ax t by t aX bYω ω+ ↔ +                                          (2.24)    

• Scaling: ( ) 1[ ]F x at X
a a

ω⎛ ⎞↔ ⎜ ⎟
⎝ ⎠

                                                                  (2.25)    

• Time shifting: ( ) ( ) 0
0[ ] j tF x t t X e ωω −− ↔                                                  (2.26)     

• Frequency shifting: ( ) ( ) 01
0[ ] j tF X x t e ωω ω −− − ↔                                     (2.27)    

• Time reversal: ( ) ( )[ ]F x t X ω− ↔ −                                                            (2.28)    

• Derivative: ( ) ( )dx t
F i X

dt
ω ω

⎛ ⎞
=⎜ ⎟

⎝ ⎠
                                                                (2.29)     
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• Convolution: ( ) ( ) ( ) ( )*x t y t X Yω ω↔                                                      (2.30)        

• Parseval’s theorem: ( ) ( )2 21
2

x t dt X dω ω
π

∞ ∞

−∞ −∞

=∫ ∫                                   (2.31)        

Thus this theorem relates the energy content of the signal in time and frequency domains.  

• Duality: ( ) ( )2X t xπ ω↔ −                                                                           (2.32)        

• Fourier Transform of a signal + reflection: 

( )[ ] ( )( )01)( 0
tiaeXttaxtxF ωω −−=−+                                                           (2.33)    

This property explains that the presence of reflection in time domain is seen as successive 

peaks in frequency domain though the general trend of frequency response is not 

changed. 

2.3.4 Wavelet transforms 

   According to Fourier theory, a signal can be expressed as a sum of infinite number of 

sines and cosines.  The main drawback in Fourier analysis is the loss of time information 

during the transformation from time to frequency domain. When looking at a Fourier 

transform of a signal, it is impossible to infer when a particular event took place. If the 

signal properties do not change much over time as in case of a stationary signal -this 

drawback is not very important. However, in practice, most of the signals contain 

numerous non-stationary or transitory characteristics in them. These characteristics are 

often the most important part of the signal, and Fourier analysis is not suited to detecting 

them. In order to have resolution in both the frequency and time domain, a representation 

of the signal simultaneously in both the domains is essential.  

This can be achieved by dividing the signals into a number of segments, small enough 

such that the signal is stationary in these segments. For this purpose, a window function 
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whose width is equal to the segment of the signal is multiplied with the segment. This 

results in the time- frequency representation of the signal. Several tools (Cohen, 1989) for 

time-frequency analysis have been proposed such as the short time Fourier transforms, 

Wigner distributions etc. These tools have certain limitations in terms of width of the 

window to be chosen, thereby, resulting in a compromise between the time-frequency 

resolutions of the signal. The reason for this limitation could be explained by 

Heisenberg’s uncertainty principle (Chan, 1995), which states that it is impossible to 

know at which frequency what instant of time exist, but it is possible to know at which 

frequency band exist at what instant of time exist. To have a good resolution in the 

frequency domain, a wide window has to be chosen which results in poor resolution in 

time domain and visa versa. To bridge the gap between time and frequency resolution, 

wavelet transform technique was introduced which overcomes these drawbacks inherent 

in the other tools. Wavelet analysis allows the use of long time intervals, where, one 

would need more precise low-frequency information, and shorter regions, or one would 

need information in the high-frequency domain.  

The definition of continuous wavelet transforms is given by: 

                                    ∫
∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

= dt
a

bttx
a

baWT *)(1),( ψ                                        (2.36a)                  

Where x(t) is the time signal, ψ(t) represents the window known as mother wavelet, 

parameter b is used to time shift the window ψ(t), parameter a is used to define the center 

frequency of ψ(t), * denotes the complex conjugate and the coefficient 
a

1 ensures that 

all dilated versions of ψ(t) used to measure the time signal have the same energy. In 

discrete form, the wavelet transforms is computed as 
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Where xn denotes the discrete time signal over a time period given by N.∆t, ∆t is the 

sampling time interval, m is an integer counter giving a shift time m.∆t and k is an integer 

counter giving the center frequency of the wavelet (
tk

f
∆

=
2

1
0 ). A number of wavelets 

are available for implementation of wavelet transformation (Qian, 2002). Mallat’s 

pyramid algorithm (1989) is used for implementing wavelet transforms. In wavelet 

transforms, Mallat’s algorithm is used for decomposing the signal into a number of 

components called levels with each level starting at -1 and onwards. The total number of 

levels is determined by number of sampling points, i.e if N=2n then the number of levels 

is equal to n+1. Summation of all the levels helps in reconstructing the signal.  

2.3.5 Cepstrum Analysis: 

   Cepstral analysis is a nonlinear signal processing technique that is applied most 

commonly in speech processing and homomorphic filtering. The cepstrum has been 

highly effective in automatic speech recognition and in modeling the frequency content 

of audio signals. Cepstral coefficients c(k) are a very convenient way to model spectral 

energy distribution and are computed by taking the inverse Fourier transforms of the 

complex logarithm of the magnitude of the Fourier transform given as (Malcolm Slaney, 

1998) 

                                             { }{ })(log)( nxDFTIDFTkc =                                        (2.37)          

where DFT denotes the Fourier-transform and IDFT its inverse.  
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2.4 Previous related work: Ultrasonic testing techniques for flaw detection 

   Most of the current non-destructive testing techniques (NDT) were invented in the late 

1930’s. Sokolov (1929) in Russia conducted experiments using ultrasonic waves for 

detecting metal objects. The primary purpose of using these techniques during the earlier 

days was for defect detection. In view of this need, several NDT techniques using 

ultrasonics, eddy currents, X-rays, magnetic particles, and other forms of energy were 

developed. Over the years, rapid development made in the field of computer technology 

for data acquisition and subsequent signal processing led to significant improvements in 

these techniques which are now being applied in different fields with different degrees of 

success. 

  Ultrasonics is one of the mostly used NDT techniques for the detection, localization and 

measurement of the defects present in engineering materials under inspection. Ultrasonic 

testing is based on the transmission of ultrasonic signals to detect imperfections or to 

characterize the materials. The reflected echoes from the defects or the imperfections are 

received by the ultrasonic transducers and are recovered for further processing. Four 

commonly used techniques used in ultrasonic testing are impact echo (IE), pulse velocity 

(PE), spectral analysis of surface waves (SASW) and multiple analysis of surface waves 

(MASW). 

2.4.2 Impact-Echo Method 

   Impact-Echo method has been successfully employed for flaw detection in concrete and 

masonry structures (Carino and Sansalone 1986; Carino and Sansalone 1990; Lin 1996; 

Poston et al., 1995). This method consists of applying a light impact on the surface of the 

material which results in a stress wave propagating radially outwards from the source in 
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form of compression, shear and surface waves. The stress wave pulse undergoes multiple 

reflections between the top surface and any internal defect or the bottom of the material. 

These multiple reflection arriving at the surface produces periodic displacements which 

are monitored with a transducer placed adjacent to the source. The time signals are 

analyzed in frequency domain for further interpretation of the test data. The large peak in 

the frequency spectrum as a result of the multiple wave reflections is known as the 

resonant frequency. To interpret the frequency spectrum, the basic relationship used in IE 

method is 

                                                             
f

V
h p

2
=                                                          (2.38)    

where pV is the compression wave velocity, f is frequency of compression wave 

reflections, h is the distance to the reflecting interface. The basic principle of IE method 

is shown in Figure 2.8. 

 

Figure 2.8: Principle of IE Method (Sansalone and Streett, 1997) 
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The main advantage of IE method is that access to only one surface of the material is 

required. This method is very effective for defects oriented parallel to the surface. 

However this method can be difficult to interpret especially for complex geometries and 

it is not sensitive for small defects (smaller than half the pulse wavelength). Due to the 

type of input source (short duration impact) results in scattering of high frequency waves 

limiting this method to be used only for relatively thin structures (Popovics and Rose, 

1994). 

2.4.3 Pulse Velocity Method 

   In the late 1940’s application of pulse velocity through concrete began and even today 

this method is very popular among NDE techniques being used for evaluation of quality 

of materials and for detection of flaws in materials (Carino and Nicholas 1986). The basic 

principle of the pulse-velocity method is the measurement of compressional wave 

velocity through a solid which are indicative of its material properties. Presence of 

internal cracks, voids and other defects causes a change in the wave velocity due to the 

fact that compressional waves are reflected at air or water interfaces. This method 

consists of placing two piezoelectric transducers on two sides of the test object. There are 

three possible transducer configurations (Figure 2.9) in which the transducers may be 

arranged; direct, semi-direct and indirect transmission.  

   In one of the sensors, pulses are generated and the time taken by the pulse to travel 

through the object is measured by the other sensor. Knowing the travel time and length of 

the specimen, the corresponding wave velocity can be determined. Conversely, knowing 

the wave velocity, the travel time can be used to determine the depth to a given flaw or 

thickness of the specimen. 
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Figure 2.9: Transducer Configurations in pulse velocity method (Olson, 2004) 

   Presence of a defect causes a delay in the arrival time which results in lower wave 

velocities. There is also a reduction in the signal amplitude which occurs due to the 

attenuation of the wave energy by scattering/ reflection at internal flaws. 

   This method is easy to perform and mathematically simple. However the transducers 

must be in full contact with the test medium which might be problematic in case of 

materials like wood. Only defects larger than the transducer contact face will cause a 

measurable reduction in velocity and therefore this method is not sensitive for small 

defects (Suaris et al., 1987). 

2.4.4 Spectral Analysis of Surface Waves (SASW) 

   The SASW method introduced by Heisey et al., 1982 is based on the dispersive 

properties of Rayleigh waves to evaluate the low strain (in the order of .001%) elastic 

properties of different layers (Sheu and Rix et al., 1988; Roesset et al., 1989). Dispersion is 

the property wherein each frequency component of the Rayleigh wave propagates with 

different velocities called the phase velocities. When a seismic source is created on the 
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surface of an elastic medium, majority of the energy is in the form of surface waves, 

known as Rayleigh waves and the rest goes into body waves (Miller and Pursey 1955, 

Woods 1968). Further, Rayleigh waves attenuate at a slower rate than body waves due to 

the effect of geometrical damping. Thus Rayleigh waves can be generated with relatively 

small energy and have the potential of traveling long distances.  All these characteristics 

make Rayleigh waves very attractive for non-destructive testing.  

   Basically the SASW method involves three steps (Nazarian, 1984):1) Data gathering at 

the surface, 2) construction of experimental dispersion curve, 3) inversion of the dispersion 

curve. The basic set-up of SASW method is shown in Figure 2.10. In SASW investigation, 

the surface of the medium is subjected to an impact to generate surface waves with 

various frequencies. Two receivers placed on the surface are used to monitor the 

propagation of the waves. Heisey (1981) suggested that the distance between the 

receivers should be less than two wavelengths and greater than one-third of a wavelength. 

This is expressed as 

                                                         λλ 2
3

<∆< x                                                      (2.39)           

where λ denotes wavelength of surface wave and ∆x denotes the receiver spacing that is 

commonly equal to the distance between the source and first receiver. The signals are 

recorded in a digitized form using a data acquisition system and are analyzed in the 

frequency domain using a spectral analyzer. 



 34

 

Figure 2.10: SASW test configuration. S is the distance from the source to the first                          
                    receiver and D is the distance between the two receivers. (Roesset et al 1989) 
             
The phase difference between the receiver pair for each frequency is determined from the 

cross power spectrum. The cross power spectrum is expressed as 

                                   )(
21

*
21 )()()()()( fiefAfAfYfYfC ϕ∆==                               (2.40)      

where Y1(f) and Y2(f) are the Fourier transforms of the two signals, A1(f) and A2(f) are 

spectral amplitudes, i is the imaginary unit, * denotes the complex conjugate, 

12 ϕϕϕ −=∆  represents the phase difference as a function of frequency. The phase 

differences obtained are stated as an angle in the range 
2
π

± (wrapped phase). The correct 

phase is obtained by adding an appropriate number of cycles to the wrapped phase which 

gives the unwrapped phase. 

The phase velocity of the Rayleigh wave Vph at any frequency f is related to distance ∆x 

and the phase difference ∆φ by the following relationship 
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xfVph 2                                                      (2.41)     

The wavelength λ as function of frequency f and phase velocity Vph is given as                                                 

                                                            
f

Vph=λ                                                          (2.42)      

The dispersion curve is constructed by plotting the Vph against λ. An appropriate 

frequency range should be chosen for analysis to ensure that reliable information is 

obtained for construction of the dispersive curve. Inversion of the dispersive curve is 

accomplished iteratively by matching the theoretical (constructed by assuming a shear 

wave velocity profile) with the experimental dispersive curve from which shear wave 

velocity profile can be determined (Bullen, 1963). The process of inversion is 

accomplished by a least-squares approach (Nazarian, 1984; Lai, 1998). Layer thickness 

and elastic properties of each layer are readily obtained from the shear wave velocity profile. 

Advantages of SASW: 

   This method requires access to only one side of the specimen. The stiffness profile can 

be determined without knowing the layer thicknesses. By varying the range of 

frequencies emitted by the source, the depth of penetration of surface waves can be 

changed thus making deep sounding possible. Surface waves are very sensitive to 

anomalies close to the surface which makes this method very effective in detecting near 

surface flaws (Curro 1983; Dravinski 1983). Belesky and Hardy (1986), reported that the 

amplitude of surface waves are more affected by presence of obstacles than the travel 

time which makes this method more efficient than conventional seismic methods in 

defect detection. 
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Disadvantages of SASW: 

   The two-receiver arrangement is sensitive to ambient noise. Surface waves have a 

limited penetration depth which ranges between 12 to 30 m (Drossaert, 2001). Since only 

two receivers are used, this method requires performing the test with several testing 

configurations to sample the desired frequency range which is time consuming.  

2.4.5 Multiple Analysis of Surface Waves (MASW) 

   Multiple Analysis of Surface Waves was developed to overcome the limitations 

associated with SASW method. The main difference between the two methods is that the 

SASW method uses only two receivers whereas the later uses several receivers (the use 

of 12 to 48 receivers are reported in literature) Socco and Strobbia (2004). MASW offers 

the advantages of more effective noise removal process, faster data collection, more 

reliable shear wave velocities, identification of higher modes (Park et al., 1999). The 

basic set-up of the MASW method is shown in Figure 2.11. 

 

 

Figure 2.11: MASW testing configuration (Park et al., 1999)  
 



 37

The choice of offset value D (distance between the source and the first receiver) and 

receiver spacing ∆x has significant effect on the data collected. The selection of the offset 

distance depends on the stiffness of the material to be tested, attenuation properties of the 

medium, desired investigation depth, wave velocity of the medium, the frequency range 

used (Hiltunen and Woods, 1989). The offset distance should be large enough to allow 

the surface waves to be fully developed (near field effects). A number of criteria have 

been proposed that relates the receiver spacing with wavelength (Lysmer, 1965; Sanchez-

Salinero et al. 1987, Hiltunen and Woods 1990, Al Hunaidi 1993). The commonly used 

criteria is given by Heisey (1981) Equation (2.39). The basic procedure of MASW is 

similar to SASW with the exception of having multiple receivers instead of two. The 

basic steps are 1) Data gathering at the surface with multiple receivers deployed in a line 

at a distance from the source which record the responses 2) Construction of dispersion 

curve which consists of measuring the phase difference for each frequency between 

various receivers. In SASW where there are only two receivers this process is simple, but 

in MASW this process might be different due to multiple receivers which therefore 

require more rigorous techniques (Phillips et al., 2003). In a homogeneous medium, the 

phase angle of each frequency component varies linearly with distance. However in case 

of non-homogeneous medium, the phase angle will not vary linearly with distance. The 

variations in the phase angle with distance can be utilized detect areas where there are 

changes in the elastic properties of the medium or presence of an obstacle can be 

identified from the variations in the phase angle with distance. 3) Inversion of the 

dispersive curve to obtain the shear wave velocity profile from which layer thickness and 

elastic properties of the medium can be determined. 
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   The spatial resolution of the results depends on the number of receivers, the more the 

number; greater is the ability to detect changes in the horizontal properties of the 

medium. Successful case study reports using MASW include Xie et al. (1999); Gang 

Tian et al. (2003); Chih-Ping Lin et al. (2004); Chaoqiang and Stephen (2005). 

Advantages of MASW: 

   The results obtained from MASW are highly reliable even under the presence of noise 

and higher modes of surface waves. The process of data collection and processing is very 

fast. Compared to SASW, this method has the capacity of recognizing and differentiating 

between different events such as reflections and refractions.  

Disadvantages of MASW: 

   This method is only suitable for horizontal layers and does not take into account lateral 

inhomogeneities. Difficulties in differentiating between different modes of Rayleigh 

waves lead to complications in data interpretation. A standard criterion is not available 

for the choice of the offset distance and receiver spacing (Nasseri, 2006). 
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Chapter 3 

Classification and Clustering 

3.1 Introduction 

   Due to rapid development in the field of defect detection using non-destructive testing 

techniques, the growth in the amount of data available, and the speed with which it can be 

collected, the traditional manual data analysis has become inefficient and computer-based 

analyses are gaining momentum. Statistical methods, soft computing methods like fuzzy 

logic and neural network algorithms are being tested on a variety of problems related to 

defect prediction so as to provide a decision support system.  

   The term artificial intelligence was first coined by John McCarthy who referred it to as 

the “science and engineering of making intelligent machines”. “Artificial Intelligence” 

can be defined as the simulation of human intelligence on a machine, so as to make the 

machine efficient to identify and use the right piece of “Knowledge” at a given step of 

solving a problem (Amit Konar, 2000).     

   The most basic requirement of any system in recognizing and classifying objects is to 

possess a detailed knowledge about the characteristic features of those objects; the next 

stage in selecting a classification method involves choosing one of the two basic 

paradigms: supervised learning and unsupervised learning. In supervised learning 

scheme, the system is provided with training examples and is trained to recognize them. 

Unsupervised learning involves simply allowing a system to cluster samples together 

based on similarities that it perceives in the feature space. This form of learning is also 

referred to as clustering. In this study, analysis of data for fault detection and 

classification was done using these two basic paradigms:  
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Under supervised learning, classification was performed using  

1. Soft computing methodology using Fuzzy logic and Neural Networks 

2. Statistical methods   

Under unsupervised learning, the following soft computing method was utilized 

1. Fuzzy C-means Clustering  

   This chapter begins with an overview of soft computing methods which includes Fuzzy 

Logic and Artificial Neural Networks. The second section briefly discusses the 

supervised and unsupervised classification techniques. The final section provides a 

literature review of the classification/clustering techniques used for flaw detection. 

3.2 Soft Computing Methods 

3.2.1 Fuzzy Logic 

Introduction 

   The fuzzy logic is a form of logic in which, the underlying modes of reasoning are 

approximate instead of exact and can be thought of as an extension of conventional 

Boolean logic to handle the concept of partial truth. It emulates the ability to reason out 

and use approximate data to find solutions. It was introduced by Lotfi Zadeh of 

UC/Berkeley in the 1960's. The following section provides a brief summary of evolution 

of Fuzzy logic. 

Historical Background 

1965: Zadeh introduced his seminal idea in a continuous-valued logic called fuzzy set 

theory. 

1970s: Zadeh illustrated a possibility theory resulting from special cases of fuzzy set. 
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1988: The investigations of Klir and Folger showed a strong relationship between 

evidence, probability and possibility theories with the use of fuzzy measures  

1980s: East Asian countries particularly the Japanese have adopted Fuzzy Logic in 

industry. 

1990s: Americans and Europeans have adopted it with much reluctance. 

2000s: In China about 1000 researchers are believed to be working on Fuzzy Systems. 

For a long time, most of the Western scientists have been reluctant to use fuzzy logic as 

they felt that it threatens the integrity of scientific thought. Other scientists feel that it 

even expands the possibilities of computer programming. Eastern philosophy and 

scientists have embraced fuzzy logic. In over the three decades, since its inception by 

Zadeh, fuzzy set theory has undergone tremendous growth.  

Fuzzy Logic 

   Fuzzy sets, fuzzy operators and the knowledge base are building blocks of fuzzy logic 

theory. Fuzzy sets are represented by membership functions. A particular element of the 

fuzzy set will have grade of membership which gives the degree to which a particular 

element belongs to a set. A membership function is a curve that provides the degree of 

membership within a set of any element that belongs to the universe of discourse, X. If X 

is the universe of discourse and the elements in X are denoted by x, then a fuzzy set A in 

X is defined as a set of ordered pairs 

                                      A = {x, µA(x);  x Є X,  µA(x) Є [0, 1]}                                   (3.1)    

where )(xAµ is a membership function of x in A shown in Figure 3.1 
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Figure 3.1: The membership function of a fuzzy set (Karray and C.De.Silva, 2004) 

 
Boolean operators such as ‘AND’, ‘OR’ and ‘NOT’ operators exist in fuzzy logic as well. 

These operators are defined as the minimum, maximum and complement. The knowledge 

base in fuzzy logic is represented by if-then rules of fuzzy descriptors. A single ‘IF-

THEN’ rule assumes the following format: 

if x is A then y is B 
 

A and B are linguistic variables and are defined by fuzzy sets on the ranges X AND Y 

(where X and Y are the universes of discourse). The ‘if ‘part of the rule “x is A” is the 

antecedent or premise and the then part of the rule ‘y’ is B is the consequence or 

conclusion. One of the most important applications of fuzzy logic is fuzzy control which 

offers a formal methodology in controlling systems based on human’s heuristic 

knowledge. The fuzzy control essentially consists of four components 

• Fuzzification of inputs to the system so that they can be  compared and interpreted 

with the rules in the rule base 

• Knowledge rule base which consists of a set of if-then rules of fuzzy descriptors  

provides information as how best to control the system 
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• Inference mechanism which determines the relevant control rules at the current 

time and decides what the input to the system should be 

• Defuzzification of the fuzzy conclusions reached by the inference engine into the 

inputs to the system 

The fuzzy logic controller ensures the performance objectives of the system are met, by 

comparing the system output data with the reference input which helps in deciding what 

the system input should be. Thus the use of fuzzy logic in applications involving complex 

knowledge-based decision making is appealing and valuable particularly because of its 

ability of incorporating approximate reasoning. 

3.2.2 Artificial Neural networks 

Introduction 

   Artificial neural networks were born of the interest in mimicking the immense 

capabilities of the human brain in processing information and making instantaneous 

decisions under extremely complex situations and even in unknown environments. This 

extremely powerful learning and decision making capability of the human brain is 

attributed to the way the brain processes the information using a massive network of 

parallel and distributed computational elements called neurons tied together by weighted 

connections called synapses. This efficient computational biological model has inspired 

research for the last few decades in developing computational systems which can process 

information in a similar manner. Such systems are called artificial neural networks 

(ANN) and are composed of a parallel information processing array based on a network 

of interconnected artificial neurons (also called cells, units, nodes, or processing 
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elements). These neurons are tied together by weighted connections similar to the brain 

synapses. 

Historical background 

1943: McCulloch and Pitts introduced the first neural network model (Pitts and 

McCulloch, 1947).  

1949: Donald Hebb published a book called “The Organization of Behaviour” which 

formed the basis of ‘Hebbian learning’ which is now regarded as an important concept in 

the field of ANN.  

1950 to 1956: The development of digital computers led to further development and 

investigation in the field of artificial intelligence. In 1956, Dartmouth Summer Research 

Project on artificial intelligence stimulated further research in this area. 

1958: John Von Neumann proposed modeling the neuron functions using items of 

computer hardware.  

1960: Frank Rosenblatt developed neuron models in hardware called the Perceptron used 

for classifying linearly separable sets into one or two classes.  

1962: Bernard Widrow and Marcian Hoff developed neuron models called the 

ADALINE (ADAptive LInear Neuron) and MADALINE (multiple ADALINE). The 

MADALINE was the first model to be applied to a real world problem. 

1969: Minsky and Pappert published a book called “Perceptrons” in which they brought 

out the limitations of the Perceptrons. The main limitation was its inability to handle the 

‘exclusive or’ function. The training of the network was another limitation. All these 

limitations resulted in dampening the expectations set in the field of ANN which led to 

the diminishing interest in this field. This period lasted till 1981. Despite the reduction in 
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research funding, a number of researchers continued working in ANN. Werbos in 1974 

developed the back-propagation learning algorithm (Werbos, 1974) to overcome the 

limitations of the earlier models.  

1982: Hopfield presented a paper in which the advantages of ANN was brought out. The 

training algorithms for multilayered networks were introduced and hence his 

contributions marked a revived interest in ANN. Since then, significant progress took 

place in the field of neural networks which has resulted in ANN being successfully 

applied across an extraordinary range of problem domains.  

Basic Structure of a neural network 

   The basic structure of a neural network consists of a set of parallel and distributed 

processing units called the neurons. A single neuron receives a number of inputs 

( )Ixxx ,,1 K=  (either from the original data or from the output of other neurons in the 

neural network) and determines the optimal connection weights ( )Iwww ,,1 K= that are 

appropriate to each input through learning which describes the corresponding strength of 

input. Each neuron also has a threshold value (bias effect) which is intended to 

occasionally inhibit the activity of some neurons (Karray and De Silva, 2004).  The 

weighted sum of the inputs is formed, and the threshold subtracted to compose the 

activation of the neuron.  This value is passed through a mapping (not necessarily linear) 

called the transfer (or activation) function F to produce the output of the neuron, Figure 

3.2.  The output of a typical neuron is given as: 
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Figure 3.2: Basic structure of a Neuron (Wolfgang and Heiko (2004)) 
 

These neurons are usually arranged in different layers, appropriately connected by 

weighted connections as shown in Figure 3.3. The neural network shown in Figure 3.3 

has its nodes hierarchically arranged in three layers starting with the input layer and 

ending with the output layer. In between the two layers is the hidden layer which 

provides most of the network computational power. The input layer takes the input and 

distributes it to the hidden layer which performs all the necessary computations and 

outputs the results to the output layer. The processing activity within each layer is done 

simultaneously which provides the neural network with a powerful capability of parallel 

computing. 
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Figure 3.3: Basic Structure of a Neural Network (Steward, 2002) 

In general, there are two principal functions for artificial neural networks. 

• The input–output mapping or feature extraction. 

• Pattern association or generalization. 

The mapping of input and output patterns is estimated or learned by the neural network 

with a representative sample of input and output patterns. The generalization of the neural 

network is an output pattern in response to an input pattern, based on the network 

memories that function like the human brain. Therefore, a neural network can learn 

patterns from a sample data set and determine the class of new data based on previous 

knowledge. 
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Classification of ANN 

General 

   Different types of neural networks have evolved based on the neuron arrangement, their 

interconnections and training paradigm used. ANN can be broadly classified according to 

the following: 

 Learning paradigms 

• Supervised 

• Unsupervised 

• Hybrid 

 Architecture 

• Feed forward 

• Recurrent 

 Activation functions 

Detailed description of the different types of ANN can be found in Karray and De Silva 

(2004). 

 
3.3 Previous related work: Evaluation of Classification/Clustering methods for flaw 

detection 

   In the application of non-destructive testing techniques for material inspection, 

researchers have always tried to develop a decision support system for the automatic 

defect classification. In spite of several modern automated inspection methods, defect 

classification still is a difficult task. Much work published in this area is based on 

artificial intelligence methods using artificial neural networks and conventional statistical 

classification algorithms. The most popularly employed artificial neural network for 
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defect characterization reported in literature is the multilayer perceptron (MLP). On the 

other hand, K-nearest neighbor is most commonly used amongst statistical classifiers. 

   Rose (1977) used pattern recognition algorithms and tried to separate 23 flaw 

geometries into as many classes as possible. Shankar et al. (1978) developed an adaptive 

learning network for non-destructive testing classification problem that combined a 

statistical approach and the application of a neural network like model. Burch and 

Bealing (1986) using pulse echo method tried to classify smooth and rough cracks from 

more benign volumetric flaws such as porosity and slag. Qualitative physical models 

were developed for the interaction of ultrasound with these defects to determine three 

uncorrelated features (amplitude ratio, waveform kurtosis and sphericity). Weighted 

minimum distance pattern recognition algorithm was used for defect classification which 

gave an accuracy of 100% for 40 buried defects in ferritic steel.  

   Researchers have reported the use of advanced signal processing techniques based on 

time-frequency analysis, wavelet transforms, Hilbert transforms and power spectrum for 

processing transient signals for characterization of materials and to improve the 

probability of defect detection (Flandrin 1988, Drai et al 2000 and Legendre et al., 2001).  

  Baker and Windsor (1989) used the Hopfield network for classification of processed 

ultrasonic data from various classes of defects (cracks, rough cracks, pores and slag) 

within steel test welds. They reported a classification accuracy of 100% which is 

comparable to the conventional minimum distance classification algorithm. Chiou and 

Schmerr (1991) using the quasi pulse echo ultrasonic classification technique tried to 

distinguish between smooth edged and sharp edged geometries. To test the practicality of 

this approach, experiments were conducted on cylindrical cavities and surface breaking 
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fatigue cracks. Their results showed a good consistency in the classification of smooth 

and sharp edged flaws. Self learning backpropagation neural networks for classification 

of ultrasonic inspection data was performed in both time and frequency domain. It was 

found that most of signals with flaws could be correctly classified (Raja Damarla et al., 

1992). Song and Schemrr (1992) tried to classify flaws in weldments from their 

ultrasonic scattering signatures using probabilistic neural networks and they reported a 

high classification performance than the other types of neural networks.  

   Neural network was used to distinguish crack-like defects from volumetric defects by 

directly analysis the images collected from ultrasonic scanning, (Windsor, 1993). 

Masnata and Sunseri (1995) developed a methodology for automatic characterization of 

weld defects detected by a P-scan ultrasonic system. Fischer linear discrimination 

analysis was used to reduce the number of features from 24 to 14 uncorrelated features 

which were classified using a three-layered multiple layer Perceptron.  

   Margrave et al. (1999) evaluated performance of different types of neural networks in 

accurate flaw detection in steel plates. The networks employed were 3 layers Multilayer 

Perceptron, Self Organizing maps using Kohonen learning rule and Linear vector 

quantization (LVQ) networks. Neural networks were trained to classify between six 

classes of defects; no defective, side drilled holes, slots, inclusions, porosities and cracks. 

Signals in time domain obtained directly from the ultrasonic scans and in frequency 

domain were given as inputs to the neural networks with little or no preprocessing. They 

reported the performance of MLP to be the best among all three, the self organizing maps 

performed the least satisfactorily among the considered networks and performance of 

LVQ was faster than MLP but requires the classes to be clearly discriminated. In 
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comparison with the time domain analysis, frequency domain analysis results in better 

classification.    

   Santos and Perdigao (2001) using pulse-echo technique tried to discriminate between 

defects with three different shapes (cylindrical, spherical, planar). A total of four features 

were extracted from the signals, three in time domain, namely, pulse duration, pulse 

decay rate and peak-to peak relative amplitude of the third cycle, frequency for maximum 

amplitude was extracted in the frequency domain. They reported a classification accuracy 

of 100% using the nearest neighbor approach. Obaidat et al. (2001) developed a 

methodology to detect defects obtained from ultrasonic-based NDT using the multilayer 

perceptrons (MLP). They found that results obtained by using discrete wavelet transform 

(for feature extraction) and neural networks were superior over the classification of NDT 

signals using only neural networks. Drai et al. (2002) tried to distinguish between a 

planar and volumetric flaw based on the calculation of wavelet coefficients, time and 

frequency domain parameters to characterize the defects. Classification was performed 

using K nearest neighbor, Bayesian statistical method and artificial neural network. They 

reported higher classification accuracy of 97% with features from wavelet transforms 

associated with ANN. 

   Francesca Cau et al. (2005) developed an ANN model for fault detection in not 

accessible pipes. Fault classification was based on the depth and width of the faults and 

the signal database for the training, validation and test set were obtained using finite 

element simulations based on propagation of guided ultrasonic waves. A total of 46 

features were extracted: 39 in time domain and 7 in frequency domain. Out of the two 

types of data reduction strategies employed, namely, Garson’s method and Principle 



 52

component analysis, the later gave better classification accuracy. Their results showed 

that the percentage error of ANN for fault width classification to be less than 5% and less 

than 7% for fault depth classification.  

  In addition to experimental works, numerical simulations were also used to generate 

ultrasonic signals for flaw detection using neural networks. Rhim and Lee (1995) used 

the back propagation neural networks in conjunction with finite element method to detect 

the existence and to identify the characteristics of damage in laminate composite beams 

with various imperfections. Liu et al. (2002) simulated the pulse-echo method by 

developing numerical models using finite element method combining with boundary 

integral equation to investigate the effects of cracks in a medium. Back propagation 

neural network was utilized which gave an accuracy of 94% in classifying between three 

distinct classes; without cracks, surface cracks and sub-surface cracks.  

3.4 Classifiers used in this study 
 
3.4.1 Supervised Learning: Soft Computing Methodologies 
 
Back Propagation Neural Network 
 
   Among the various types of neural networks, the multi-layer perceptron trained with the 

back-propagation learning algorithm has proved to be the most useful in engineering 

applications (Upda 1990, Damarla et al. 1991, Obaidat et al 2001). The back-propagation 

network is given its name due to the way that it learns by back propagating the errors in 

the direction from output neurons to input neurons. The multi-layer perceptron network 

comprises of an input layer, output layer and a number of hidden layers. The presence of 

hidden layers allows the network to represent and compute more complicated 

associations between patterns. Many researchers (Margrave et al., 1991; Obaidat et al., 
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2001; Amitava Roy et al., 1995) proved that the multi-layer perceptron with three layers 

can perform arbitrarily complex classification, while, the complexity depends on the 

number of neurons in the hidden layer. The number of neurons in each layer may vary 

and is dependent on the problem. The basic structure of a feed-forward, back-propagation 

network based on the multi-layer perceptron is shown in Figure 3.4  

 

Figure 3.4: Schematic representation of the BPNN (Karray and De Silva, 2004) 
 

Propagation of data takes place from input layer to the output layer. There is no 

connectivity between neurons in a layer. This type of neural network is trained using a 

process of supervised learning in which the network is presented with a series of matched 

input and output patterns and the connection strengths or weights of the connections 

automatically adjusted to decrease the difference between the actual and desired outputs. 

To begin with, patterns are presented to the network and a feedback signal which is equal 

to the difference between the desired and actual output is propagated backwards through 
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the network for the adjustment of weights of the layers’ connections according to the 

backpropagation learning algorithm. Typical neuron employed in back-propagation 

learning is shown in Figure 3.5 

 

Figure 3.5: Structure of single artificial neuron (Liu et al., 2002) 

The basic function of a single neuron consists of collecting all the incoming signals x1, 

x2,….,xl multiplies them by corresponding weights w1, w2,….,wl and compares the result 

with a predetermined bias ө before applying some sort of activation mapping function f 

resulting in the output o expressed as 
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The activation function is required to transform inputs from minus infinity to plus infinity 

and scale it into the range of either -1 to 1 or into 0 to 1 interval. The most commonly 

used activation function is the sigmoid nonlinearity function (Figure 3.6) because of the 

continuity of the function over a wide range.  



 55

 
Figure 3.6: Hyperbolic tangent sigmoid function. 

 

   The steps involved in training a multilayer perceptron with backpropagation learning 

essentially consists of the following steps (Karray and De.Silva, 2004): 

Step 1: The weights and threshold or bias are initialized to small random values 

Step 2: An input-output pattern from the training dataset is presented to the network  

Step 3: The output values for all i neurons at every layer (l) are calculated using  

Equation 3.3 

Step 4: The error between the actual and predicted output is calculated using 
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E represents the square of the difference between the k-th target output vector t(k) and the 

k-th actual output vector o(k) of the network and index i represents the i-th neuron of the 

output layer composed of a total of q neurons. 

Step 5: The weights are updated according to  
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where )(

)(
lw
kE

∂
∂ is the gradient of the error E with respect to the vector w(l) corresponding to 

all interconnection weights between layer (l) and the preceding layer (l-1),η is the 

learning rate parameter indicating the convergence and stability behavior of the learning 

algorithm and is a small positive number usually between 0 and 1. δw(l)indicates the 

difference between the vectors w(l)(k+1) and w(l)(k). In other words it represents the 

interconnection weights leading to neurons at layer (l) after and before the presentation of 

the training pattern k. 

Step 6: The above process is repeated with another input-output pattern. One epoch or 

iteration is completed once after all the patterns from training dataset are presented to the 

network 

Step 7: The process of training the network is carried out through a large number of 

training sets and training cycles. As the training process progresses, the RMS error (root 

mean square error between the target and the actual output) decreases until it reaches a 

minimum threshold value. The training phase stops if any one of the following conditions 

occurs: when the designated number of epochs is reached, designated amount of time has 

been executed or the RMS error reaches the threshold value or goal.  

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

   Neuro-fuzzy system is a combination of neural network and fuzzy system in such a way 

that neural network learning algorithms are used to tune parameters of the fuzzy system. 

ANN is usually considered as a black box that is able to provide a correct matching in the 

form of output data for a set of previously unseen input data. Leaning mechanism of 

ANN does not rely on human expertise. ANN are capable to learn from the scratch by 

adjusting interconnections between layers, but due to homogenous structure of ANN it is 
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difficult to extract structured knowledge from the weights or the configuration of an 

ANN. 

   Fuzzy Inference System (FIS) is a popular computing framework based on the concept 

of fuzzy set theory. The knowledge base of a FIS with its rule base containing a number 

of if-then rules and database which defines the membership functions of the fuzzy sets 

used in the fuzzy rules is capable of utilizing human expertise. Although it is very handy 

to express the knowledge as a set of if-then rules, it is impossible to extract knowledge 

stored in the form of numerical data. Consequently, the association ANN and FIS lead to 

mutually beneficial relationship that eliminates mentioned shortcomings. This is 

embodied through integrated Neuro-Fuzzy (NF) architectures that share data structures 

and knowledge representations. Adaptive Neuro-Fuzzy Inference System (ANFIS) is a 

particular type of NF architectures proposed by Jang (1993). ANFIS architecture is 

presented in Figure 3.8, where two fuzzy if-then rules based on a first order Sugeno 

model are considered: 

Rule 1: If x is A1 and y is B1 then 1111 ryqxpf +×+×=  
 
Rule 2: If x is A2 and y is B2 then 2222 ryqxpf +×+×=  

where x and y are inputs, Ai and Bi are fuzzy sets, fi are the outputs within the fuzzy 

region specified by the fuzzy rule and pi, qi and ri are linear parameters which are tuned 

during the training process.  

   The first layer consists of adaptive neurons. The fuzzy membership grade of the inputs 

are the outputs of this layer and are given by 

                                                      )(1 xO
iAi µ= , i=1, 2, or                                               (3.6)          

                                                      )(
2

1 yO
iBi =

= µ , i=3, 4,                                                 (3.7)           
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where )(x
iAµ , )(

2
y

iB =
µ can adopt any fuzzy membership function. Gaussian membership 

function is used in this study (Figure 3.7) given by 
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Figure 3.7: Gaussian Membership Function 

 

where {σi and ci}is the parameter set of the membership function (MF), governing the 

shape of the MF. The parameters in this layer are referred to as premise parameters. 

   The second layer consists of fixed neurons. Each node in this layer estimates the firing 

strengths of a rule by applying the AND operator. Firing strengths implies the degree to 

which the antecedent part of a fuzzy rule is satisfied. The output of this layer can be 

represented as the firing strengths of the rules 

                                        ),()(2 yxwO
ii BAii µµ==  2,1=i                                         (3.9)           

   The third layer consists of fixed nodes. Each node in this layer calculates the ratio of 

the ith rule’s firing strength in inference layer to sum of all the rule’s firing strengths. The 

output of each node is given by 
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   The fourth layer consists of adaptive nodes. The output of each node in this layer is 

computed as 

                                    )(4
iiiiiii ryqxpwfwO ++== ,   i=1, 2                                (3.11)    

Here pi, qi and ri are the modifiable parameters in this layer. They are referred to as 

consequent parameters. 

   The single node in the fifth layer computes the overall output as the summation of all 

incoming signals. 
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Figure 3.8: ANFIS Structure (Jung, 1993) 

 

From the ANFIS architecture, we observe that the values of the premise and consequent 

parameters have to be tuned to make the ANFIS output match training data. When the 

values of the premise parameters of the MF’s are fixed, the overall output can be 

expressed as a linear combination of the consequent parameters.    
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   The learning algorithm for ANFIS is a hybrid algorithm which is a combination 

between gradient descent and least squares method. More specifically, in the forward 

pass of the hybrid learning algorithm, node outputs go forward until layer 4 and the 

consequent parameters are identified by the least-squares method. In the backward pass, 

the error signals propagate backward and the premise parameters are updated by gradient 

descendent. The consequent parameters are identified optimal under the condition that the 

premise parameters are fixed. Accordingly, the hybrid approach converges much faster 

since it reduced the search space dimensions of the original pure backpropagation 

method. 

3.4.2 Supervised Learning: Statistical Methods 

k- Nearest Neighbour Classifier 

   The k-nearest neighbour classifier is a powerful and simple method of classification 

that has proved successful in a wide variety of applications like medicine, face 

recognition, signature recognition, handwriting recognition and food industry. k-NN 

classifier belongs to the category of supervised classifiers used for classifying objects 

based on training samples in the feature space. Classification of an object in the feature 

space is based on the maximum number of neighbours, with the object being assigned the 

most frequent class amongst its surrounding k nearest neighbours. 
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Algorithm of k-NN classifier 

   The algorithm consists of two phases: training and testing. In the training phase, the 

training samples represented with a set of attributes or features are stored in a 

multidimensional features space. The multidimensional space is divided into regions by 

locations and labels of the training samples.  

Training set: ),(),....,,(),,( 2211 nn yxyxyx  

Assume ),...,,( )()2()1( d
iiii xxxx = is a d-dimensional feature vector of real numbers for all i  

and iy is a class label in { }nCCC ..., 21 for all i, where n stands for the number of classes.  

In the testing phase, the new sample newx  whose class is not known is represented as a 

vector in the feature space. Distances from the new sample newx  to all samples in the 

training set are calculated. It is common to use the Euclidean distance, though other types 

of distance measures like the Manhattan distance could be used instead. 

The Euclidean distance between two points is ),...,,( 21 nxxxX =  and ),...,,( 21 nyyyY =  

is defined as 

                                                  ( ) ( )∑
=

−=
n

i
ii yxYXD

1

2,                                         (3.14)    

Based on the calculated distances the number of k nearest samples to the new sample is 

selected. The class of the new sample is predicted based on the majority of the class of 

the k nearest neighbours. The modules of k-NN classifier are shown in Figure 3.9. The 

first and second modules consist of the training and testing set. The measurement of 

distance is considered as the third module. The fourth module consists of finding the 

class that has the maximum number of neighbors closest to the sample from the testing 
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set and the decision is taken in the fifth module. No training is required as the training set 

already represents the features of the samples to be learnt. 

 
Figure 3.9: Modules of k-NN classifier (Kandir, 2000) 

   Due to the fact that no training is required k-NN classifiers can be used to solve any 

classification problem because they do not have to spend additional effort and time for 

classifying additional classes. The new training samples can be added to the training set 

and are considered for classification only if they are among the nearest neighbours of the 

new sample to be classified. However, k-NN classifiers have some drawbacks because 

there is no training, every time a new classification is performed the Euclidean distances 

has to be examined for the entire training data set. The efficiency of this approach 

decreases with increase in the number of training samples making them more efficient for 

problems with limited training data set. 

Classify: Linear Discriminate Analysis 

   Linear Discriminate analysis is a standard statistical method used for classifying 

samples of unknown classes based on training samples of known classes. LDA is used for 

data classification, although it is commonly used for data reduction prior to classification. 

In LDA, the original data is transformed into a new feature space in which class 
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separability can be carried out more effectively. LDA maximizes the ratio of between-

class variance to within-class variance (Fukunuga, 1990). The main purpose is to 

maximize this ratio so that adequate class separability is achieved.  

   Let the training set consists of a set of N samples{ }Nfff ,...,, 21 . Each sample belongs to 

one of M classes{ }MCCC ,...,, 21 . The within-class scatter matrix Sw is defined as 
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where j
if is the ith sample of the jth class, jn the number of samples for the jth class and 

jm the mean of the jth class. The between-class scatter matrix Sb is defined as   
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where m is the mean of the entire data set. In LDA, within-class and between- class 

scatter are used to formulate criteria for class separability. The optimizing criterion for 

class separability is the ratio of between-class scatter to within-class scatter. The 

optimizing criterion is given by 

                                            bw SSimize
1

max
−

=                                                          (3.18)    

The transformation function found by maximizing the ratio of between-class scatter to 

with-in class scatter rotates the axes of the original data so that when the classes are 

projected on the new axes, the differences between the classes are maximized. After 

transformation, Euclidean distance (Equation 3.13) is used to classify data points. In the 

testing phase, test vectors are transformed and the Euclidean distance of the test vectors 

from the class means is calculated. The test vector is classified as belonging to the class 

which has the shortest distance. 



 64

3.4.3 Unsupervised Learning 
 
Fuzzy C-means Clustering 
 
   Fuzzy C-means Clustering (FCM) belongs to the category of unsupervised learning 

wherein the algorithm identifies patterns and classifies samples based on the patterns 

present in them. Clustering is accomplished by grouping of patterns based on similarities 

between the individual patterns. The patterns that are similar to the highest extent are 

assigned to the same cluster (Pedrycz, 1997). Thus a collection of samples is partitioned 

into a number of clusters, where the samples inside a cluster show a certain degree of 

similarity. The clustering starts with an initial guess for the cluster centers, which are 

intended to mark the mean location of each cluster. In the next step, the samples are 

assigned a membership grade for each cluster which describes the degree of membership 

to that cluster. As with fuzzy sets, each sample can belong to more than one cluster with 

varying degrees of membership. Based on the membership grades, a sample is classified 

as belonging to the cluster for which it has the highest membership grade. 

   The FCM algorithm determines the following steps with a data set xj, where j=1,…n , n 

being the number of data points. The first step in FCM consists of randomly selecting the 

cluster centers from among all the data points. The second step consists of determining 

the membership matrix U according to Equation 3.19 
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wherein uij is the membership grade (between 0 and 1) of jth data point belonging to ith 

cluster, ci is the centroid of cluster i, dij is the Euclidian distance between ith centroid(ci) 

and jth data point, m є [1,∞] is a weighting exponent. The third step consists of computing 
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the dissimilarity function given in Equation 3.20 which gives the distance between the 

data points and centroids 
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This process is stopped if its improvement over previous iteration over the previous 

iteration is below a threshold. The fourth step consists of updating the cluster centroids 

and membership matrix according to  
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Detailed algorithm of fuzzy c-mean clustering can be found in the paper by Bezdek, 

(1973). By this iterative process, FCM moves the cluster centers to the right location 

within a dataset by iteratively updating the membership functions and cluster centers for 

each data point. The termination criteria for the iterations occur after a specified number 

of iterations or, if less than a specified number of objects change clusters. The 

performance of the algorithm depends on the initial positions of centroids which are 

randomly selected. So the algorithm gives no guarantee for an optimum solution. This 

can be overcome by running FCM several times with different initial centroids. 
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Chapter 4 
 

Numerical Investigations 
 

4.1 Introduction 

   For the objectives of this work, either experimental or numerical investigations can be 

used. The later method is fast and economical through which a detailed parametric study 

can be carried out in less time, once the model is calibrated and validated. However, 

considerable effort is needed for the calibration and validation of the model. In the case 

of experimental investigation, the incorporation of all the parameters dictating the 

problem chosen is quite complicated, laborious and sometimes may not be possible.  

   This chapter explains the details of the numerical models constructed using LS-DYNA, 

finite element software to simulate the propagation of Rayleigh waves in a homogeneous 

elastic half-space. The principles of the finite element technique and the basic concepts of 

the numerical finite element code (LS-DYNA) that is used in this study are described in 

the first section of this chapter. A literature review of the numerical work for flaw 

detection is provided in the second section. In the third section, the details of the 

numerical models developed for the present study, the details of the boundary conditions, 

loading conditions and surface responses obtained are presented.  These 2-D ax-

symmetric finite element models simulate the MASW (Multiple Analysis of Surface 

Waves) test method that facilitates the investigation of the behaviour of Rayleigh wave in 

the presence and absence of anomalies in the medium. To simulate anomalies, voids of 

different sizes were introduced in the medium. Sufficient numbers of samples were 

generated by changing the input loading conditions inorder to maintain enough variance 

in the dataset. A total of 2400 samples were generated. 
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   This chapter in addition, outlines the parameters associated with the numerical 

simulation of surface waves which include model boundaries, damping parameters, 

temporal and spatial discretization parameters, source configuration and model 

calibration to Lamb’s theoretical solution. The effect on the surface responses due to the 

presence of voids of different sizes has also been presented. 

4.2 Numerical modeling of Rayleigh wave propagation 

4.2.2 Numerical methods 

Background 

   Physical problems result in differential equations. To obtain the exact solution in closed 

form is difficult. Therefore, numerical methods are the only other alternative to obtain 

approximate solution. Many numerical methods such as Rayleigh-Ritz method, Galerkin 

method, the least square method, finite difference and finite element methods are often 

used to obtain approximate solutions.  

   Numerical simulation methods to model the propagation of Rayleigh waves have 

greatly improved in the last two decades due to the rapid progress in computers. The 

earlier approach to model, wave propagation problems consists of analytical methods 

solving the governing equations of motion and their boundary conditions. However, this 

approach can be utilized for specimens with simple geometries and for perfect specimens 

(having no defects). The main advantage of these numerical methods lies in their ability 

to model specimens with complicated geometries and for imperfect specimens having 

defects in them.  

   A number of different numerical methods to solve elastic wave propagation problems 

have been reported in the literature. Alterman et. al, (1981)  and Berthholf, (1967) 
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provide a review of these different methods. Among these methods, finite element (FEM) 

and finite difference methods (FDM) are extensively used in this field (Boore, 1972).  

   The main difference between the two methods is that: finite difference method is an 

approximation to the differential equation, whereas the finite element method is an 

approximation to its solution. Table 4.1 illustrates the main differences between FDM 

and FEM. The primary advantage of FEM is its versatility in handling complex domains 

and availability of numerous commercial FE codes overcomes the need to develop the 

actual code. These commercial software provide several advantages of being user 

friendly and providing sophisticated pre- and post- processing options.  

4.2.2 Finite Element Method 

History of FEM 

   The origin of finite element analysis dates back to the Ritz method of numerical 

analysis in 1909, however, the term finite element was first developed by Courant in 

1943 who used the Ritz method of numerical analysis and calculus of variation in 1943 to 

obtain approximate solutions to problem of vibration systems. A major turning point in 

the development of FEA occurred in 1956 with a paper titled “stiffness and deflection of 

complex structures” by Tumer et al. In 1960, the term “finite element” was coined by 

Courant and around this time engineers began applying method of approximate solutions 

to problems in stress analysis, fluid flow and aerospace industry. By the late 1960s and 

early 1970s FEA had become established as a general numerical technique for solving 

any system of differential equations. However, the usage of this method was limited 

owing to the requirements of powerful computers and thus was used only in the 

aeronautical, automotive, defense and nuclear industries. 
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Table 4.1: Difference between FEM and FDM 

FDM FEM 

FDM defines the domain as an assemblage of 

grid points. 

FEM models the domain as a set of 

piecewise continuous sub-domains called 

finite elements bounded by finite number of 

nodes. 

This method was developed for solving the 

system of ordinary differential equations, 

ODE’s for problems having simple 

geometries with simple boundaries 

This method was designed to model 

inhomogeneous, nonlinear materials bounded 

by irregular boundaries 

FDE approximates the derivatives in the 

differential equations by difference equations 

between grid points. Therefore it requires 

rectangular grids. 

FEM approximates the unknown in term of 

linear independent interpolating functions 

called the shape functions and a set of 

unknown parameters. 

FDM is restricted to solve one-dimensional 

and two dimensional domains with simple 

geometries and with boundaries parallel to 

the coordinate axes. 

FEM can be used to solve one, two and three 

dimensional domains and allows usage of 

irregular meshes of varying density and 

allows using elements of varying geometry, 

order of approximation thereby enabling to 

achieve different degrees of accuracy in 

different parts of the domain.  

The quality of approximation between grid 

points is low.  

Since it uses shape functions that 

approximate the distribution of the unknown 

function over the domain, FEM has a good 

quality of approximation. The quality of the 

approximation increases by either decreasing 

the size of the elements or increasing order of 

the interpolating functions. 

FDM is mostly used for the analysis in the 

area of computational fluid dynamics. 

FEM is mostly utilized for analysis in areas 

of structural dynamics and structural 

mechanics. 
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The advent of micro-computers (pc’s and workstations) in the 1980’s has made this 

method widely applied to solve a wide variety of problems. The development in 

mainframe computers and availability of powerful microcomputers has made this method 

used in a variety of applications. 

Principles of FEM 

   The key idea of the finite element method is to discretize the actual domain of the 

object into an assemblage of sub-domains called finite elements which are connected by a 

finite number of boundary nodes. Thus, the continuum having ‘infinite’ degrees of 

freedom is discretized into a number of finite elements having ‘finite’ degrees of freedom 

defined at a set of nodal points. The grid of finite elements is assigned the material and 

structural properties which defines how the real structure would respond to the loading 

condition. The forces actually distributed in the real structure are transformed to act at the 

nodal points. Thus, the response of the real structure is approximated from the response 

of the discretized object obtained from the assembly of finite elements. The response of 

each element is expressed in terms of degrees of freedom characterized by unknown 

functions defined at a set of nodal points. For structural problems, these nodal degrees of 

freedom are unknown values of displacements or translations of the material defined in 

each coordinate direction.  It has been found that the accuracy of the response 

progressively increases as the density of mesh increases or the mesh size becomes finer 

which in turn would be computationally very expensive. This in turn calls for a trade off 

between accuracy and computational resources. The selection of optimum number of 

elements should be based on (Bhatti, 2005). 

1. The required subdivision of the continuum is to be based on past experience 
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2. In absence of past experience the optimum subdivision should be based on 

convergence study for various mesh grading. 

Principles of FEM in wave propagation problems: 

General equation for wave propagation is  

                                                                FLu =                                                         (4.1)             

where F, u represent force and displacement vectors and L is a linear operator of the form  
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where [M], [C], [K] represent the mass, damping and stiffness matrices respectively. 

   One approach for solving the above equation of motion is to analytically solve the 

governing differential equations and their associated boundary conditions. However, this 

procedure can be utilized only for problems having simple geometries. For complex 

geometries and geometries having imperfections in them, numerical techniques are often 

utilized. 

   In case of steady state dynamic problems, the time variable in equation (4.2) is 

eliminated and proper consideration is given only to spatial discretization (Valliappan et 

al., 1977). In case of transient dynamic problems, Equation (4.2) is solved following an 

integration scheme in time domain in addition to the spatial discretization. This requires 

proper consideration to be given in the selection of both time and spatial discretization 

parameters. Thus the temporal and spatial resolution of the finite element model is critical 

for the accuracy of finite element results. The implications of improper discretization of 

each of these parameters are discussed below: 

   In the spatial domain, if the element size is too big, the mesh causes removal of high 

frequency (short wavelength) energy. This removal results in two adverse effects. Firstly 
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the low pass filtering of mesh producers spurious oscillations called Gibb’s phenomenon 

(Valliappan and Murti, 1984).Secondly the wave velocity obtained is higher than the 

actual velocity which occurs as a result of premature arrival of the waves. On the other 

hand, a smaller element size can lead to numerical instability. A larger time step leads to 

numerical instability and affects the accuracy of the results. On the other hand a smaller 

time step produces spurious oscillations (Gibb’s phenomenon). 

Convergence, stability and consistence 

   The basic property that a scheme must possess is that its numerical solution converges 

to the exact solution and this convergence improves as the discretization parameters in 

both spatial and time domain decreases or tends to zero. This property is called 

convergence of a scheme.  

   In practice, direct effort to prove that a given method is convergent is difficult, so this 

has been replaced by evaluating the stability and consistency of the method. A scheme 

that satisfies both completeness and compatibility requirements is said to be consistent. 

These conditions are briefly described as follows: 

Completeness: The finite elements must have enough power to approximate the 

analytical solution in the limit of a mesh refinement process. 

Compatibility: The shape functions must provide displacement continuity between 

elements.  

Stability: Stability is the requirement that a scheme must satisfy in order to have the same 

solution uniqueness properties as the analytical solution.  

Marfurt, 1984 used the following stability conditions for the determination of spatial (∆x) 

and temporal (∆t) discretization parameters 
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where  

α = 1 for finite element solutions of the scalar and elastic equations 

α =
2

1  for finite difference solutions of the scalar and elastic equations 

α = 
22
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+
for finite difference solutions of the elastic equations. 

VP and VS correspond to the compressional and shear wave velocities. 

The following expressions have been recommended in References (Valliappan and Murti, 

1984) & (Zerwer et al., 2002) to determine the spatial discretization parameter. The 

selection of element size is based on the highest frequency (fmax) of the lowest velocity 

wave (VR) and is computed as  

                                                                minχλ≤g                                                      (4.4)          

where minλ is the minimum wavelength and is given by 

                                                              
max

min f
VR=λ                                                     (4.5)         

and constant χ must be less than 0.5 because of the Nyquist limit and further depends on 

whether the mass matrices are consistent ( χ =0.25) or lumped ( χ =0.2). This formulation 

is based on the assumption that the elements have square dimensions. 

Alleyne and Cawley, 1998 used the following equation for the determination of element 

dimension which is based on 10 nodes per wavelength.  

                                                              
10

minλ
=g                                                         (4.6)              
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Marfurt,1984 used a much higher condition for the element size determination based on 

20 nodes per wavelength. 

                                                             
20
minλ

=g                                                          (4.7)        

where g is the element length and λmin is the shortest wavelength of interest. 

Calculation of the time step depends on the element dimension computed with the 

following expression (Zerwer et al., 2002): 
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where τ = characteristic time; g=element dimension; Vp compressional wave velocity. 

This time step calculation incorporates the spatial Nyquist limit. The time step must also 

incorporate the temporal Nyquist limit given as  
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Mesh grading: 

   As far as possible, uniform grading of finite elements are always preferred throughout 

the model. This uniformity is essential in order to maintain the relative importance of 

each frequency components in wave propagation problems. Mesh grading is acceptable 

only when the grading is mild.  

4.2.3 LS-DYNA 

General 

   LS-DYNA is a general purpose non-linear finite element code for analyzing large 

deformation dynamic response of structures. The origin of LS-DYNA dates back to 

DYNA3D, a public domain software which was developed by Lawrence Livermore 
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National Laboratory in the mid-seventies. Later, it underwent several revisions in the 

following years in terms of new capabilities being added. In 1989, Livermore Software 

Technology Corporation was founded to continue the development of DYNA3D as a 

commercial version called LS-DYNA3D which was later shortened to LS-DYNA 

(Hallquist, 1991-1998). The present LS-DYNA has a huge library of sophisticated 

material models, an extensive element library with both under-integrated and fully-

integrated element formulations and allows different contact conditions (Hallquist, 1992-

2005). All these features make it suitable to investigate large deformations thereby 

making it capable of simulating many complex real world problems.  

Structural module of LS-DYNA 

In general, the structural module of LS-DYNA has three phases. 

• Pre-processing 

• Processing  or analysis 

• Post-processing 

Pre-processing  

   The first step consists of constructing the finite element model of the structure to be 

analyzed. The geometric shape of the structure is constructed followed by the 

discretization of the model which consists of specifying the number, size, type and the 

arrangement of the finite elements within the model. The next stage consists of defining 

the loading, material and boundary conditions. The structure is represented by a grid of 

finite elements having the same properties as the structure. LS-DYNA is designed to 

operate with a number of commercial pre-processing software like TRUEGRID, FEMB, 
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ANSYS, and HYPERMESH. It also has its own built in preprocessor LS-INGRID with 

limited capabilities. 

Processing 

   The next stage of the FEA process is the analysis. The FEM conducts a series of 

computational procedures taking into account the effect of the applied forces, and the 

element properties which produces the model solution. This analysis results in the 

determination of effects such as deformations, strains, and stresses which are caused by 

applied structural loads such as velocity, force, pressure and gravity. 

Post-processing 

   The last step in FEA is post processing the results obtained from step 2. This stage 

involves presentation of the distribution of stresses and strains, deformed configuration of 

the structures, mode shapes etc. During post-processing contour plots, time histories, 

fringes and animation of large number of quantities may be interactively plotted on the 

meshes of actual model. 

4.3 Previous related work: Numerical NDT work for flaw detection 

   Numerical simulation methods to model the propagation of Rayleigh waves have 

greatly improved in the last two decades. Alterman et. al, (1981)  and Berthholf (1967) 

provide a review of the different numerical methods to solve elastic wave propagation 

problems. Among these methods, Finite element (FEM) and Finite difference methods 

(FDM) are extensively used in this field (Boore, 1972).  

   Lamb (1904) calculated the vertical and horizontal displacement histories generated by 

a point source acting on the free surface of a homogeneous half-space and found that 

geometric damping is smaller for Rayleigh waves than for body waves. Watkins et al 
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(1967) and Rechtien & Stewart (1975) conducted numerical studies for the detection of 

near surface cavities. They reported distances and concentration of energy in the time 

domain signals in the vicinity of the cavity. Hirao and Fukuoka (1982) developed 

numerical models using finite difference method to investigate the scattering of Rayleigh 

waves by surface edge cracks. The depth of the cracks was determined from the 

increasing Rayleigh wave arrival times. The numerical results were in good agreement 

with the experimental observations. Al-Hunaidi (1993) justified the use of axi-symmetric 

or plane numerical models to simulate wave propagation problems and the numerical 

results had a good agreement with the field data. Imran (1995) developed numerical 

models using FEM to recommend the best field-test configuration to be used to detect 

and size defects with Rayleigh waves. They reported the existence of standing wave 

energy in the vicinity of crack and suggested one receiver and source located close to the 

crack on one side and a second receiver located on the opposite side.  

   Gucunski et al (1996) developed finite element models to investigate the effect of 

underground obstacles on the dispersion curves obtained from SASW method. They 

reported reflections from the near and far faces of the void which resulted in strong 

fluctuations in the dispersion curves. Ganji (1997) detected obstacles from the 

fluctuations in the dispersion curve, due to reflections of Rayleigh waves from the 

obstacle. They developed finite-element models to simulate the SASW test and compared 

it with the experimental results. The application of the SASW to detect underground 

obstacles is limited to shallower depths. Different numerical studies have shown 

significant effects due to presence of voids on the surface responses of a medium in both 

time and frequency domain.  



 78

   Phillips et al., (2000, 2002) conducted laboratory and numerical along with field tests 

and reported that the presence of an underground void causes energy concentrations for 

certain frequencies over the location of the void. Nasseri et al., (2004) reported 

significant effects on the surface responses of a medium due to the presence of embedded 

anomalies. Nasseri (2006) developed finite difference numerical models to simulate 

MASW test in presence and absence of anomalies. The numerical results were verified 

with experimental and laboratory results. It was found that the anomaly starts to vibrate 

due to the interaction with the Rayleigh wave which causes partitioning of energy. A part 

of the energy is reflected in form of Rayleigh waves and another part is converted into 

body waves which get dissipated into the medium. A new technique was proposed to 

locate and determine the depth of the anomaly. Nasseri et al., (2006) conducted field and 

numerical experiments using finite difference models (MASW method) to investigate the 

effects of underground cavities on Rayleigh wave. The displacement time histories along 

the surface were recorded. They reported amplitude changes in the displacement time 

histories in the region over the void and concentration of energy in the Fourier spectra in 

the vicinity of the void.  

4.4 Numerical Methodology 

General 

   For several engineering applications, many elements of a structure can be approximated 

by a half-space with reasonable accuracy especially over short distances. In a half-space, 

the medium extends in all directions and there are no boundary effects except at the 

surface. In this study, the half space profiles are assumed to be homogeneous that extends 

to infinity in horizontal and vertical directions. In addition, it is assumed that the material 
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model to be elastic, isotropic and the waves are plane. The propagation of plane waves is 

independent of the properties of the medium in one direction. This condition reduces the 

wave propagation problem to a two dimensional problem. The coordinate system used in 

this study consists of the horizontal direction represented by x-axis and the vertical 

direction represented by y-axis. The numerical modeling activity in this research study 

consists of four stages. The first stage comprised of two dimensional finite element 

models constructed to simulate the propagation of Rayleigh waves through a 

homogeneous elastic half space. Model calibration was done in the second stage for the 

theoretical Lamb Solution. Rectangular voids with different sizes were incorporated into 

the medium in the third stage. The maximum penetration depth of Rayleigh wave is 2λch 

(λch is the characteristic wavelength), however as a rule of thumb, Rayleigh waves are 

very sensitive to the mechanical properties at depth of 
3
chλ

(Huch Doyle, 1995). Based on 

this concept, the sizes of the voids were chosen. The concept of characteristic wavelength 

is discussed in section on normalization and characteristic wavelength. Three different 

sizes of voids were chosen: small sized void which responds to 0.5(
3
chλ

), medium sized 

void responds to 1(
3
chλ

) and the large size void responds to 2(
3
chλ

). The fourth stage 

consists of changing the type of input loading in order to generate sufficient number of 

samples. Table 4.2 gives a description of the different models adopted for the study. 

Herein, model Model_1 corresponds to a homogeneous model without any void, where 

as, the other models correspond to a homogeneous model with different degrees of void.  
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Table 4.2: Model types used in this study 
 

Model Type Description 

Model_1 2-D Homogeneous elastic half-space 

Model_2 
2-D elastic half-space with a small void [0.5(

3
chλ

)] 

Model_3 
2-D elastic half-space with a medium void [1(

3
chλ

)] 

Model_4 
2-D elastic half-space with a large void [2(

3
chλ

)] 

 

Numerical Model Description 

Numerical models were developed using commercial non-linear finite element software 

(LS-DYNA). All the numerical simulations were executed with double precision solver. 

The size of the model is 250 mm in both horizontal (X direction) and vertical (Y 

direction). The basic model consists of a mesh of 595 numbers uniformly graded finite 

elements each of which of size 0.42mm both in the vertical and horizontal directions 

consisting of 354,025 finite elements spread over the entire model. To record the surface 

responses, 75 recording locations were chosen along the surface of the model (X 

direction). The surfaces responses were recorded at a distance of every other 8 grid 

points. Therefore the distance between the recording locations is 3.36 mm. Both the 

horizontal and vertical displacements were recorded at these locations. All the numerical 

models were developed from the basic model shown in Figure 4.1. 
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Figure 4.1: General geometry of the model 

Test Material Properties 

   In LS-DYNA different material models can be incorporated into one structure, for 

example, by making some elements null or removing some elements, the effect of 

presence of voids can thus be simulated. In addition, it is assumed that the material of the 

model is elastic and isotropic. The material properties of the chosen model are given in 

Table 4.3. 
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Table 4.3: Material properties of the model 

Material Properties Values 

Density (Kg/m3 ) 2340 

Poisson ratio (υ) 0.25 

Modulus of Elasticity E (MPa) 45000 

Shear Modulus G (MPa) 18000 

P-wave velocity Vp (m/s) 4800 

Shear wave velocity Vs (m/s) 2770 

Rayleigh wave velocity VR (m/s) 2550 

 
 
These material properties represent typical values for sound concrete structure. 
 
Boundary Conditions 

   Finite size of the numerical model is one of the most important problems associated 

with numerical simulation of wave propagation problems. The finite boundary of the 

finite element model causes the waves to be reflected from the mesh boundaries and 

superimposed with the progressing waves which finally contaminate the desired solution. 

This can be eliminated by increasing the mesh dimensions which in turn is expensive in 

terms of computer storage and execution time. Another way of overcoming this problem 

is by introducing absorbing or non-reflecting boundaries which is equivalent to making 

the grid boundaries transparent to the outgoing energy (Kenneth, 1985) , thereby, 

minimizing reflections from the boundary.  

   The non reflecting boundary type used by LS-DYNA is based on the viscous boundary 

method developed by Lysmer and Kuhlemeyer (1969). It applies viscous dampers in the 

normal and shear directions on the boundary elements. This boundary condition can be 
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expressed by the following equation which ensures that all energy arriving at the 

boundary is absorbed  

                                                         wVa p &ρσ =                                                        (4.10)           

                                                          uVb s &ρτ =                                                         (4.11)       

where Vp and Vs are the p-wave and shear-wave velocities; σ and τ are the normal and 

tangential stresses; a and b are constants, whereas, w& and u& are the normal and tangential 

velocities respectively. The quiet boundary conditions can be implemented by modifying 

the governing equation of motion ( fKuuCuM =++ &&& ) to include dashpots oriented 

normal and tangential to the boundary. Numerical analysis of the absorbing boundary 

method shows that for a given choice of a and b the effectiveness of the absorption 

depends on the angle of incidence θ of the waves. Perfect absorption cannot be achieved 

over the whole range of incident angles by any choice of a and b. Nearly perfect 

absorption is attained for angles of incidence greater than 30 degrees for a = b = 1. For 

smaller angles of incidence, this method is not very effective; however some absorption 

of energy still takes place. The absorption characteristic of this method depends on the 

frequency of the wave and it can be applied to harmonic and transient waves. 

   In this study, the bottom and right boundaries of the model are free and non-reflecting 

boundary conditions were applied to them inorder to represent an infinite half space and 

to minimize the effect of reflections. The left boundary is fixed in the horizontal 

direction, thereby, representing the axes of symmetry. The free body motion of the model 

in X and Y direction is prevented by applying translational constraints in both the X and 

Y directions on the lower right corner of the model.  

 



 84

Calibration 

   To establish the validity of finite element models used in this study, they were first 

calibrated with a known theoretical solution. This is done in order to ensure that the finite 

element results provide a certain degree of confidence in their accuracy, since; exact 

analytical solutions are not available for complex problems like the one taken up under 

the present study. The results of this calibration were used to develop guidelines for the 

application of finite element analysis for more complicated geometries. 

Input Loading: Lamb’s Problem 

   Lamb (1904) calculated the vertical and horizontal displacement time histories 

generated by point source acting on the free surface of a semi-infinite half-space. The 

choice of the Lamb source is justified for calibration as the source transfers 2/3rd of its 

energy to the medium in the form of Rayleigh waves (Barker, 1997), since the focus of 

this study is based on propagation of Rayleigh waves. Loading is simulated by point 

source acting vertically on the surface of an infinite half-space given by  

                                                   ( ) ( )22 Ψ+
=

t
FtF b

π
                                                   (4.12)           

wherein, Fb alters the force amplitude, ψ controls the width of the pulse (or the frequency 

content) and t represents time. In this study the Lamb source with the following 

parameters is chosen: 

• bF = 0.75  

• Time shift = .0075 msec 

• 001.=ψ  msec 
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The graphical representation of Lamb source in time and frequency domain is shown in 

Figure 4.2. The source has energy spread over wide range of frequency of up to 1000 

KHz (Figure 4.2 (b)) and is concentrated  a short duration of about 0.01ms  

(Figure 4.2 (a)).                                 

 

 

Figure 4.2: Representation of the used Lamb source in time (a) and frequency (b)   

                  domains 
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The cumulative distribution of energy as a function of frequency shown in Figure. 4.3. 

Almost the entire energy is concentrated within frequencies smaller than 300 KHz. 
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Figure 4.3: Cumulative energy versus frequency of the source 

 
Information regarding the frequency content of the input source is given in Table 4.4, 

which is important in the selection of finite element discretization and damping 

parameters.  

Table 4.4: Information about the frequency content of the input source 
 

Source Fcog (KHz) Fmax (KHz) F5% (KHz) F95%(KHz) 

Lamb(1904) 169.6 8.33 14 251 

 

where Fcog = frequency corresponding to center of gravity of frequency spectrum 

Fmax = frequency corresponding to maximum spectral amplitude 

F5%, F95% = frequency corresponding to 5% and 95% of cumulative energy respectively 
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Damping 

   Damping occurs in dynamic systems due to dissipation of energy as a result of 

geometric spreading of wave fronts and inelastic nature of the medium. To simulate 

material damping in numerical models, the frequency dependent Rayleigh damping is 

adopted. Rayleigh damping has two components: mass-proportional and stiffness 

proportional and is given by (Liu and Gorman, 1995) as 

                                                     KMC βα +=                                                       (4.13)    

where α and β are proportionality constants for mass and stiffness respectively. Mass 

proportional damping is dominant at lower frequency ranges, while, stiffness damping is 

dominant at higher frequencies.  The relationship between damping ratio and Rayleigh 

damping for a single degree of freedom system is given by 

                                                               
22
βω

ω
α

+=D                                                                   (4.14)          

The constants α and β are determined by (Leger and Dussault 1992; Woodward and 

Griffiths 1996) 

                                         
n

nD
ωω

ωωω
α

1

1)(2
= ,   

n

D
ωω
ωβ

+
=

1

)(2                                      (4.15)        

where 1ω  and nω represent the first and the highest natural frequency of the vibration 

respectively. A constant damping can be achieved over a bounded frequency range ( 1ω  to 

nω ) by specifying the values of Rayleigh damping parameters α and β. In this study, 

values of 1ω  and nω  are taken as 45 and 850 KHz respectively. The frequency variations 

of Rayleigh, stiffness and mass damping are shown in Figure 4.4. 
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Figure 4.4: Relationship between Rayleigh damping parameters and damping ratio 

Theoretical Response: Solution to Lamb Problem 

   The analytical solution to Lamb’s problem for R-wave displacement is given by Bath 

and Berkhout (1984). The vertical (Equation 4.16) and horizontal (Equation 4.17) 

displacements are given by 

                            ( ) )(cos
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where R is a constant that depends on the compressional, shear and Rayleigh wave 

velocities, VR is the Rayleigh wave velocity, G is the shear modulus and d is the distance 

from the source. For calibration of the numerical model, only the solution to the vertical 

displacement due to Rayleigh wave is used in this study. Figure 4.5 (a) & (b) shows 

typical vertical and horizontal responses at different distances. 

 

 

 

 

Figure 4.5: Typical vertical (a) and horizontal displacements (b) of Rayleigh wave 
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Spatial and temporal discretization parameters 

   Selection of mesh size ∆s and time step ∆t is based on the consistency, stability criteria 

described given in section 4.2.2. The mesh size is calculated by first computing the 

maximum mesh dimension. The maximum dimension depends on the highest 

propagating frequency, Rayleigh wave velocity and the constant χ (Equation 4.4). The 

value of the constant χ is adopted as 0.25 for the consistent mass approach used by LS-

DYNA. The source has a wide frequency bandwidth from 1 KHz to 1MHz with the 

highest propagating frequency selected as 750 KHz which gives the maximum mesh 

dimension as 0.68 mm. An element size of 0.42 mm was chosen for the model which 

gives a total of 354025 elements. Plain strain shell elements are used mostly to model 

linear, elastic materials. The shell element is a four node element with six degrees of 

freedom at each node: translations in the x, y and z directions and rotations about the x, y, 

and z. 

   LS-DYNA uses an explicit finite element scheme which is conditionally stable. The 

time step must be smaller than the length of time required for a signal to traverse the 

distance between the node points of a single element. The time required for a signal to 

travel through an element is called the critical time ∆tcrit and is computed automatically 

by LS-DYNA based on the bar’s wave speed and maximum of the shortest side or the 

area/ (minimum of the longest side or the longest diagonal). In order to avoid instabilities, 

the critical time step is scaled down by a scale factor of 0.5 which gives a value of 

4.12×10-5 ms and the maximum dynamic time (tmax) is selected as 0.12 ms.  
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Normalization and characteristic wavelength 
 
   The concept of characteristic wavelength chλ was introduced inorder to generalize the 

results (Nasseri, 2006). In other words, chλ  is used as a benchmark for the measurement 

of distance and time. Figure 4.6 shows the frequency spectrum of the response at the first 

receiver. Wavelengths corresponding to the frequency of maximum spectral amplitude 

and frequency at the center of gravity of the spectrum were computed. 

 

Figure 4.6: Frequency Spectrum of the response at a distance of 0.42mm from the source 

Wavelength corresponding to 75max =f KHz and 2550=RV  m/s is 34 mm ( )maxλ  

Wavelength corresponding to 151=cogf  KHz and 2550=RV  m/s is 15 mm ( )cogλ  

The maximum of the two wavelengths is taken as the characteristic wavelength. 

                                                     34=chλ mm                                                          (4.18)        

The time taken by the Rayleigh wave to travel a length equal to the characteristic 

wavelength is defined as the characteristic time. 

                                                013.0==
R

ch
ch V

t
λ

ms                                                  (4.19)         
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Based on the above definitions, the grid spacing ( 42.0=∆s mm) is 0.012 chλ and the 

critical time step ( 51012.4 −×=∆t ms) is cht31017.3 −×  

4.5 Model Validation 
 
Comparison between the theoretical and numerical results 
 
   Verification of the numerical model was performed by comparing the model responses 

to the theoretical responses in time domain. For calibration only the vertical 

displacements at different locations along the surface were considered. Graphical 

representation of the calibration of typical numerical responses with theoretical vertical 

responses is showed in Figure 4.8(a) (where d indicates the distance from the source). 

The model responses were found to be in good agreement with the theoretical responses 

after a certain distance from the source which is referred to as the near field effect which 

occurs due to body wave interference (Zywicki and Rix, 2005). Since the geometric 

attenuation of body waves from an active source is larger than Rayleigh waves, the 

surface waves tend to dominate the wave field in relatively large distances. The 

commonly used criteria to overcome the near field effects has been proposed by Heisey et 

al. (1982), for the case, where, the distance between the source and first receiver is equal 

to the receiver spacing ∆s which is given as 

                                                              
3
λ

>∆s                                                         (4.20)                     

where λ is the wavelength of Rayleigh wave. However, Nasseri et al (2006) found that 

near field effects are important for λ2<∆s .Thus near field effects would be upto 

approximately one to two chλ  where mmch 34=λ . Figure 4.7 shows that after a distance 

of 34 mm (1 chλ ) away from the source, the numerical response is found to agree well 
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with the theoretical response of Lamb (1904) and after a distance of 70 mm ( chλ2 ) the 

numerical responses is identical to the theoretical response. The oscillations at the end of 

the responses are the effects of the spatial and temporal discretization. Thus it can be 

concluded that the model has been well calibrated with the theoretical Lamb solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
         

 
 

Figure 4.7: Comparison of typical numerical responses with theoretical Lamb’s 
solution; d represents the distance from the source 

 

   For the purpose of validation, theoretical horizontal responses of Lamb’s solution were 

utilized. Graphical representation of the validation of typical numerical responses with 

theoretical horizontal responses is showed in Figure 4.8 (where d indicates the distance 

from the source). 
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Figure 4.8: Validation of typical numerical responses with theoretical Lamb’s 

solution; d represents the distance from the source 
 

Model validation is essential in order to check if the calibrated model responds well to 

another type of an independent response. The model responses were found to be in good 

agreement with the theoretical horizontal responses which establishes the fact that the 

model responds well to sources other than the source (theoretical vertical responses) used 

for calibration.  

4.6 Surface Responses 

Time Responses  

   The wiggle plots of typical vertical and horizontal responses recorded along the surface 

of the model are shown in Figures (4.9 & 4.10). In these plots, the horizontal axis 

represents time in seconds and the vertical axis represents distance from the source. All 
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the responses are normalized by dividing it by the maximum of the responses and hence, 

the maximum value of each response will be equal to 1. Normalization of the traces is 

important in order to ensure that all the responses have equal importance. The large peaks 

seen in all the traces indicate the Rayleigh wave arrival, whereas, the small dips (seen 

more prominently in horizontal responses) indicate the arrival of P-wave. The oscillations 

seen at the end of the responses are the effects of spatial and temporal discretization. Due 

to the input source type (vertical impulse), relative amplitude of P-waves is found to be 

smaller in comparison with R-waves. On the other hand, a horizontal impulse would 

generate a stronger P-wave. As the Rayleigh wave velocity is close to the shear wave 

velocity (the ratio of R-wave to S-wave velocity is 0.9), the large amplitude of R-waves 

overshadows the S-wave arrival.  

      As the particle motion of p-wave is parallel to the direction of propagation, at surface 

the p-waves can be traced better in the horizontal responses as shown by both the wiggle 

and contour plots (Nasseri, 2006). The slope of each event represents the parameter 

( )td ∆∆  which gives the apparent velocity of the event. The measured values of apparent 

velocity for p-wave and Rayleigh wave are 4761 ( )sm  and 2532 ( )sm . These values 

agree well with the theoretical p-wave and Rayleigh wave velocities related to the model 

(Table 3.2). Reflection of the incident Rayleigh wave from the model boundaries can be 

also be seen in these figures; though p-wave reflections from model boundaries can be 

seen well only in the contour plot of the horizontal responses Figure 4.10(b). 
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(a) 

 

(b) 

 
Figure 4.9: Normalized vertical responses along the surface of the model in form of (a) 

Wiggle Plot (b) Contour Plot (Model_1) 
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(a) 

 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10: Normalized horizontal responses along the surface of the model in form of 
(a) Wiggle Plot (b) Contour Plot (Model_1) 

 



 98

Frequency Responses 

   The frequency spectrum of typical normalized vertical responses recorded along the 

surface is shown in Figure 4.11. The shape of the spectra does not change with distance, 

though reflections corresponding to incident Rayleigh wave in the time domain can be 

seen as successive peaks in the frequency domain. Contour plot of the same data is shown 

in Figure 4.12. The ripples in the contour plot indicate the presence of reflections in the 

recorded data (Robinson and Durrani, 1986). 

 

 
Figure 4.11: Frequency spectrum of the normalized vertical responses from Model_1 
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Figure 4.12: Contour plot of the frequency spectrum of the normalized vertical responses 

from Model_1 
 
4.7 Finite element modeling of voids 

   The development of a decision support system for classification between a perfect 

model (without any void) and imperfect model with varying sizes of voids is attempted in 

this section. Three different sizes of voids were considered; small, medium and large, the 

dimensions of which are given in Table 4.5 

Table 4.5: Dimensions of the different sizes of voids; dimensions in terms of the 
characteristic wavelength are also indicated  

 
Type of Void Embedment Depth (h) (mm) Height (a) (mm) Width (b) (mm) 

Small 6.3 (.185 chλ ) 6.3 (.185 chλ ) 37.8 (1.1 chλ ) 

Medium 6.3 (.185 chλ ) 12.6 (.37 chλ ) 75.6 (2.2 chλ ) 

Large 6.3 (.185 chλ ) 25.2 (.74 chλ ) 151.2 (4.4 chλ ) 
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The general geometry of the model with void is shown in Figure 4.13. The voids are 

always centered at 125 mm from the source, thus the center of the voids is coincides with 

the center of the model. 

 

Figure 4.13: General geometry of the model with void 

Generation of sample data set 

   The most significant factor in ensuring a good accuracy of any classification process is 

the presence of enough variance in the sample data set. This in turn requires generation of 

sufficient number of samples for each of the considered cases. For each of the considered 

cases, different samples were created by changing the type of input loading. Four 

different loading conditions were considered for each of the four different cases which 

yielded 16 numerical simulations.  
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   In order to ensure sufficient variance in the dataset, the sources were chosen such that 

there is sufficient variation in the frequency content of the pulses generated by these 

sources. The sources used are Lamb (1904), Ricker (1945), impact and sinusoidal which 

are some of the commonly used sources in geophysics. The source functions are 

expressed as follows: 

• Lamb 

The same source used for calibration (Equation 4.12) is used as the input source which is 

expressed as 

                                                    ( ) ( )22 Ψ+
=

t
FtF b

π
                                                  (4.21) 

where Fb alters the force amplitude, ψ controls the width of the pulse (or the frequency 

content) and t represents time. Graphical Representation of Lamb force is shown in 

Figure 4.14 
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Figure 4.14: Lamb Source 
• Ricker 

   The Mexican hat wavelet often called the Ricker wavelet in Geophysics is usually used 

to model the seismic data. The Ricker wavelet is the normalized second derivative of a 

Gaussian function and is defined as 
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where Fb alters the force amplitude, ψ controls the width of the pulse (or the frequency 

content) and t represents time. Graphical representation of Ricker function is shown in 

Figure 4.15. 
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Figure 4.15: Ricker Source 

• Impact 

Impact is a commonly used source for generating stress waves in materials for example 

impact-echo method. The impact source is expressed as: 

                                                 ( ) )(sin)( tqtFti b απ=                                                 (4.23)    

where Fb alters the force amplitude, α controls the width of the pulse (frequency content), 

t represents time and q(t) is given by 

                                           

q t( ) sin α π⋅ t( ) α π⋅ t π<if

0 otherwise

:=

                                 (4.24)    
                                         

Graphical representation of impact function is shown in Figure 4.16 
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4.16: Impact source 

• Decaying Sinusoidal 

A decaying sinusoidal source with seven cycles has been used and is expressed as 

                                             )()sin()( t
b etFts ωξω −=                                                   (4.25)    

where Fb alters the force amplitude, ω controls the width of the pulse (frequency 

content), ξ controls the decay.. 

Graphical Representation of Sinusoidal function is shown in Figure 4.17 
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Figure 4.17: Sinusoidal Source 
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Comparison between the frequency content of the sources is showed in Figure 4.18 

.There is a sufficient variation between the frequency content of the sources. 
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Figure 4.18: Frequency Spectrum of the sources 

In each of the simulations, both horizontal and vertical responses were recorded at 75 

locations along the surface of the model which gives a total number of 2400 samples (16 

simulations * 75 horizontal responses * 75 vertical responses). A block diagram showing 

the different types of sample data set generation is presented in Figure 4.19 
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Figure 4.19: Process of data set generation 
 

4.8 Surface responses with the voids 

   Figures (4.20 to 4.22) show the contour plots of the normalized vertical surface 

responses of the model when subjected to the Lamb source in the presence of voids of 

different sizes. Figures (4.23 to 4.25) show the contour plots of the frequency spectra 

responding to Figures (4.20 to 4.22) respectively. The general dimensions of the voids 

and the dimensions in terms of the characteristic wavelength are provided in Table 4.5. In 

the contour plots, the dashed lines represent the void boundaries projected onto the 

surface. The first dashed line represents the near boundary (NB) of the void, whereas, the 

second represents the far boundary (FB) of the void. The following trends were observed 

in all the three cases of different void sizes. The incident Rayleigh wave R1 undergoes 

reflection and transmission when it interacts with the near boundary of the void. The 

reflected part is represented as R2 while, the transmitted part as R3. The reflected wave 

R2 gets reflected from the boundary of the model represented as R4. The transmitted 

Rayleigh wave R3 is reflected as R5 and transmitted as R6 when it encounters the far 
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boundary of the void. The transmitted wave R6 gets reflected as R7 when it encounters 

the model boundary. The dimension of the voids plays an important role in determining 

the occurrence of the various events which can be seen in the contour plots. Numerical 

investigations with other input functions confirm these observed trends. The results of the 

models with the other input functions are presented in the Appendix. Nasseri (2006) 

found that the distance between the ripples seen in the contour plots of the frequency 

spectra is a function of the time delay between the main signal and its reflection, i.e. 

larger the delay, the closer will be the ripples to each other. This trend can be observed in 

Figures (4.23 to 4.25). The delay between the main signal and its reflection is larger for 

Model_2 than in Model_3 and Model_4 as seen in Figures (4.20 to 4.22). As a result of 

the differences in the time delays, ripples in Figure 4.23 (small void) are much closer to 

each other than in Figures 4.24 and 4.25.  

   Therefore, the surface responses reflect the differences between the various classes in 

both time and frequency domains, for example the pattern of the responses obtained from 

a small void was distinct from those caused by a medium sized void. These differences 

were useful in the detection and classification process of the void sizes. 
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Figure 4.20: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a small void (Model_2) 

 
Figure 4.21: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a medium void (Model_3) 
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Figure 4.22: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a large void (Model_4) 
 
 
 

 
Figure 4.23: Contour plot of the frequency spectra of normalized vertical responses along 

the surface of the model in the presence of a small void (Model_2) 
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Figure 4.24: Contour plot of the frequency spectra of normalized vertical responses along 

the surface of the model in the presence of a medium void (Model_3) 
 
 
 

 
Figure 4.25: Contour plot of the frequency spectra of normalized vertical responses along 

the surface of the model in the presence of a large void (Model_4) 
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4.9 Summary 

   This chapter presented the set-up, calibration and verification of an explicit scheme 

finite element numerical model developed with LS-DYNA to simulate the propagation of 

Rayleigh waves in a semi-infinite medium. The set-up of the model includes procedures 

for choosing the model size, material properties, temporal and spatial discretization 

parameters, damping parameters and boundary conditions. Calibration of the numerical 

model was done using Lamb’s solution for vertical displacements to assure the quality of 

the obtained data. Validation of the numerical model was performed by comparing the 

horizontal responses of numerical model to the theoretical horizontal responses of 

Lamb’s solution. The final result of this calibration is a finite element model that 

accurately simulates the propagation of surface wave in a homogeneous semi-infinite 

medium.  

   The concept of characteristic wavelength was computed to normalize the numerical 

results. A total number of 600 samples were generated for each of the four considered 

cases resulting in a total of 2400 samples altogether. The effect on the surface responses 

due to the presence of voids of different sizes has also been presented. The interaction of 

the surface responses with the voids depends on the dimensions of the voids. Therefore 

the surface responses are capable of reflecting the differences between the void classes. 
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Chapter 5 

Data Analysis by Classification Techniques 

5.1 Introduction 

     In this chapter, results of applying various classification tools for the purpose of 

detection and characterization of defects are presented. The classification system for 

defect diagnosis is composed of three modules: a data generator, feature extractor, and a 

classifier. The sample data set consists of surface responses obtained from numerical 

models developed using the finite element method presented in Chapter 4. The purpose of 

the feature extractor is to generate a good set of parameters that are capable of reflecting 

the true nature of the underlying dataset consisting of a large number of data values 

categorized as signals. The classifier helps to make a decision on the class that any 

sample may belong to. A set of 37 features was extracted from all the samples in various 

domains by applying suitable transformations. Both supervised and unsupervised 

classifiers were employed in this study. The classification results obtained from the 

various classifiers are reported in terms of the confusion matrix. The obtained 

classification results are quite encouraging showing the suitability of the proposed 

techniques for the development of a decision support system for automatic 

characterization of defects in the field of non-destructive testing. Even though the results 

were obtained for a specific material (concrete), all the conclusions presented here are 

applicable for many other cases as soon as the response is normalized. 
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5.2 Feature Extractions and Preprocessing 

5.2.1 Feature Extractions 

   A major step in the design of any signal classification system is the selection of a 

“good” set of features that are capable of separating the signals in the feature space. A 

classification algorithm will always give some kind of result, but a poor feature 

representation will lead to a result that does not reflect the true nature of the underlying 

data. The data should be simplified without loosing information. Usually, it is desirable to 

reduce the dimensionality of the input data to improve performance and increase the 

computational efficiency, and in many cases this can be achieved by applying suitable 

additional transformations. The choice of features needs to fulfill a basic criterion; the 

features should preserve all and only the important information that is contained in the 

data. This requirement has strong implications on what transforms should be used in the 

feature extraction process. Finding the best features is a very difficult task, and it often 

can only be accomplished through a trial-and-error process.  

   Feature extraction in the most general sense, consists of applying a mapping of the 

multidimensional space into a space of fewer dimensions. Feature extraction methods can 

be classified as linear or nonlinear methods. Linear methods attempt to find a globally 

flat subspace, while, the nonlinear methods attempt to find a locally flat subspace. Linear 

methods are simpler and better understood, while, nonlinear methods are more general 

and difficult to analyze. In the proposed work, only the linear mode of feature extraction 

was performed. Table 5.1 gives a brief outline concerning the domains from which the 

features were extracted. 
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Table 5.1: Domain of feature vectors 
 

Numbers of Features Feature Type 

6 Time Traces 

3 Derivatives from time traces 

9 Fourier Transformation 

6 Log Discrete Fourier Transforms 

9 Wavelet Coefficients 

4 Cepstrum Coefficients 

 
The following sections discuss the features extracted in different domains. Programs for 

extracting features were developed using Matlab ®. 

Time Traces 

   The following features were extracted from the responses in time domain  

• Amplitude (+/-)  

Maximum and minimum values of time domain amplitude    

• Mean value 

            Probability distribution functions can be characterized by their moments. The  

            well known moment mean is the first order moment  
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             where, xi represents the data and n is the number of data points  

• Standard deviation or second order moment 

Standard deviation measures the ‘spread’ of the distribution 

                                                 
( )

1
1

2

−

−
=
∑
=

n

xx
n

i
i

σ                                                    (5.2)    



 114

• Skewness or third order moment 

Skewness measures the degree of asymmetry of a distribution 
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• Kurtosis or fourth order moment measures the degree of peakedness or flatness of 

a distribution compared with normal distribution 
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Derivatives 

• First derivative of displacement responses with respect to time gives velocity  

• Second derivative of displacement with respect to time gives acceleration 

• Third derivative of displacement with respect to time gives jerk 

Fourier Transformation 

   The following features were extracted from the frequency spectra of the responses by 

applying the fast Fourier transformation.  

• Maximum spectral amplitude (Amax) 

• Frequency corresponding to Amax 

• Area under the spectrum 

• First order moment with respect to area 

• Second order moment with respect to area 

• Mean value 

• Standard deviation 
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• Skewness 

• Kurtosis 

A Matlab® coding of (Tallavo, 2006) was adopted for performing Fast Fourier 

Transformation. 

Log Discrete Fourier Transformation (log DFT) 

   Log DFT is obtained by taking the logarithm value of the Fourier amplitude. The 

following features were extracted by applying log DFT. 

• Maximum value 

• Minimum value 

• Mean value 

• Standard deviation 

• Skewness 

• Kurtosis 

Wavelet Coefficients 

   The wavelet transformation generates the approximate coefficient vector, CA and detail 

coefficient vector, CD obtained by a single level wavelet decomposition of the response 

vector using the Daubechies window of order 2. 

Features extracted from both the coefficient vectors (CA and CD) are given below 

Approximate Coefficients 

• Maximum value 

• Minimum value 

• Mean value 

• Standard deviation 
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• Skewness 

• Kurtosis 

Detail Coefficients 

• Mean value 

• Standard deviation 

Cepstrum Analysis 

   The following features were extracted from the complex cepstrum of the responses 

• Mean value 

• Standard deviation 

• Skewness 

• Kurtosis 

A total of 37 features were extracted from all the samples corresponding to each of the 

considered classes. The size of feature space is 372400× , where, the number of rows 

corresponds to the total number of samples for all the classes (i.e., six hundred samples 

per class) and the number of columns responds to the number of features (37 features per 

sample). 

5.2.2 Feature Preprocessing 
 
Scaling and Normalization 

   Scaling of the extracted features is essential especially, when, the data spans different 

ranges. After scaling, normalization of the data set is carried out so that all the inputs and 

the target outputs have the same means of zero and standard deviation of 1. The purpose 

of normalization is to ensure that all features receive about equal weight and are not 

dominated by the larger-valued measurements. 
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Principal Component Analysis (PCA) 

   One of the main problems concerning neural networks applications in the field of 

classification/pattern recognition is the choice of a successful range of features providing 

the independent or discriminate information needed by the network for the correct 

classification. Often, a large set of potentially useful features is collected, and by feature 

reduction, the most suitable features are selected. In fact, not all the extracted features are 

correlated to the identification of the pattern; these features introduce uncertainty, 

thereby, reducing the capacity of recognition.  

   In this study, principal component analysis was employed for feature reduction for 

overcoming the problem of feature redundancy. PCA is a technique for simplifying the 

input dataset (in this case the extracted features) so that the data set is uncorrelated. This 

analysis based on linear transformation transforms, the input data thereby, minimizing the 

correlation between the input data (Jolliffe, 2002). PCA transforms the data to a new 

coordinate system such that, the greatest variance by the projection of the data lies on the 

first coordinate called the first principle coordinate and each successive orthogonal 

components account for as much as remaining variability in the dataset. Thus, it tries to 

encapsulate the variance in the dataset in terms of principal components. In addition, 

PCA reduces the dimensionality of the dataset, thereby, retaining only those components 

which contribute more than a specified fraction of the total variation in the dataset. PCA 

has the merit of being the optimal linear transformation for keeping the largest variance 

in the dataset without much loss of the information in the dataset. Other advantage of 

PCA is that it does not have a fixed set of basic vectors as their basic vector depends on 

the dataset unlike the other linear transformation techniques. 
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5.3 Assessment of classification results: Confusion Matrix 
 
   As the problem considered here concerns a classification problem, a good assessment 

of the success of the network can be obtained by looking at the confusion matrix. The 

confusion matrix (Kohavi and Provost, 1998) contains information about actual and 

predicted classifications done by a classification system. A representation of the 

confusion matrix is shown in Table 5.2. 

Table 5.2: Confusion matrix 

   Predicted  Class 

  Class 1  Class 2 

Actual  Class 1 a  b 

Class Class 2 c d 
 

Each column of the matrix represents the instances in a predicted class, while, each row 

represents the instances in an actual class. Classification accuracy can be reported by the 

following standard terms: 

Overall accuracy is based on the proportion of the total number of predictions that were 

correct and is determined by the expression 

                                                 
dcba
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+++

+
=                                                     (5.5)        

True rate for class 1 is based on the proportional of number of correct predictions for 

class 1 and is given by 
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aTR
+

=1                                                            (5.6)    

False rate for class 1 is based on the proportional of number of class 2 cases incorrectly 

classified as class 1 and is given by 
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True rate for class2 is based on the proportional of number of correct predictions for 

class2 and is given by 

                                                       
dc
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+

=2                                                          (5.8)     

False rate for class 2 is based on the proportional of number of class 1 cases incorrectly 

classified as class 2 and is given by 
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bFR
+

=2                                                           (5.9)     

5.4 Classification/Clustering techniques for detection and classification of voids 
 
   The physical phenomena arising due to the existence of voids of different sizes were 

presented in Chapter 4. It was observed that the surface responses were dependent on the 

dimensions of the voids. Therefore the surface responses were capable of reflecting the 

differences between the void classes. These differences were useful in the detection and 

classification process of the voids. Features were extracted from the surface responses 

(vertical and horizontal displacements) of the medium through the feature extraction 

procedure described in section 5.2.1. The feature space consisting of a total of 37 features 

extracted from 2400 samples was subjected to feature preprocessing by applying scaling 

and normalization.  

   Once the features were extracted, scaled and normalized, three types of classifications 

were performed for the detection and characterization of the defect classes. The accuracy 

of the classifier was defined by the percentage of samples from each class correctly 

identified. Table 5.3 shows the three types of classification  
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Table 5.3: Types of classifications 

Classification 1  Classification between perfect medium 
without any void and imperfect medium with 
any void 

Classification 2 Classification between perfect medium and 
medium with a small void considered as one 
class and medium with a medium sized void 
and a large void considered as the second 
class 

Classification 3 Classification between the different sizes of 
the void as well as the no void case 

 

   The objective of all the three classification types is to primarily determine the stability 

of the medium by checking if the medium is prefect or imperfect with voids inside it. The 

next step is to fine tune the classification process, wherein, the perfect medium and 

medium with a small void are considered as belonging to one class and the medium with 

medium sized and large sized void are considered to be the second class .The third step is 

to determine the extent of damage due to the presence of voids in the medium which is 

done by determining the size of the void present in the medium. The third type of 

classification is more complicated than the other two types of classifications since not 

only the presence of a void is detected but also the size of the void is determined. 

   In general, the term classification deals with assigning samples to different classes 

based on the fact that similar samples would be classified into the same class and 

dissimilar objects into different classes. This classification can be achieved in a 

supervised and unsupervised manner. If the classes are predefined and this information is 

used during the training process, the process is called supervised classification or simply 

classification. On the other hand, if the classes are not predefined, the process is known 

as clustering, wherein, the classes are themselves called clusters. 
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   In this study, both supervised classification and unsupervised/clustering tools were 

employed for the defect characterization. In supervised learning scheme, the system is 

provided with training examples and is trained to recognize them. Two main phases can 

be recognized in any diagnostic task using supervised learning: the training phase and the 

defect characterization phase. The training phase consists of presenting inputs from 

training set along with corresponding desired target outputs (here, classes) and is used to 

train the network until it can associate the input vectors with specific target outputs. The 

testing phase consists of presenting new inputs from the test set to the trained model, to 

see how well the network has learnt and how well the network has performed. The 

training set is composed of 75% of the total data set (1800 samples) and the testing set 

consisting of the remaining 25% (600 samples). The samples of the training and testing 

set are randomly selected from the data set. Table 5.4 gives the desired target outputs for 

the three types of classification 

Table 5.4: Target outputs for the three types of classification 

Classification Type 1: 
 

Class Target Output 
Perfect Medium (No void) 1 

Imperfect Medium (Presence of Void) 2 
 

Classification Type 2: 

Class Target Output 
No void and Small void 1 

Medium and Large void 2 
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Classification Type 3: 

Class Target Output 
No Void 1 

Small Void 2 
Medium Void 3 

Large Void 4 
   

 Since the primary objective of this study is defect characterization which in turn requires 

partition of the space that contains vector representations (features) of the classes into 

regions. Each region ideally must contain samples from a single and unique class only. 

This characterization can be achieved by either artificial neural networks or conventional 

statistical methods. Based on nature of the data set, the type of classification method can 

be chosen. Artificial neural networks are employed when the class regions cannot be 

separated by a hyperplane and the vice versa for statistical methods. In order to 

investigate the nature of the feature set, both the methods were utilized.  

    Unsupervised learning scheme (Clustering) consists of allowing a system to cluster 

samples together based on similarities it perceives in the feature space. By contrast with 

supervised learning, there are no explicit target outputs in unsupervised learning. The 

entire data set is presented to the system; the system discovers collective properties and 

organizes the data into clusters or classes.  

   The results obtained from the classification/clustering techniques used in this study are 

described in the following sections. A detail description of these techniques is presented 

in Chapter 3 on classification and clustering. All the techniques used in this study were  

developed using Matlab ®. 
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Sensitivity Analysis 
 
  One of the main limitations of soft computing methods occurs when the number of 

samples in the training set is limited (as in the present work) and overfitting of the 

network occurs.  

   Francesca Cau et al. (2006) established the fact that overfitting tends to fit samples in a 

more complex fashion than required. Overfitting occurs when the network has many 

degrees of freedom and this can be overcome by limiting the size of the network by 

reducing the number of hidden layers and the number of neurons in the hidden layer. 

However, in most of the applications reported in literature, the size and the number of 

neurons in the hidden layers have to be heuristically determined (Oscar et al., 2006) 

which in turn calls for a sensitivity analysis to be performed in order to choose the most 

adequate network. The sensitivity analysis consists of training the network with 

heuristically selected number of hidden layers and the number of neurons in the hidden 

layers. The performance of the network is assessed in terms of the overall prediction 

accuracy obtained through the confusion matrix. If the performance is satisfactory, the 

procedure ends, otherwise, a new network having more hidden neurons or more number 

of hidden layers is trained and the process of training the network goes on until the 

network reaches the desired performance. Overfitting can also occur from overtraining 

the network, wherein, the network has not only learnt the basic mapping associated with 

input and output data, but also the noise present in the training set. As a result, the 

network memorizes only the training set and therefore, the network performs well on the 

training set. On the other hand, the network loses its ability to generalize to new data 

(testing set). This can be avoided by evaluating the mean square error between the 
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predicted and actual results during the testing phase which gives an indication regarding 

the overtraining. As the error begins to increase, the training process is terminated.  

5.5 Supervised Classification 

5.5.1 Soft Computing Methods 

5.5.1.1 General 

   Two types of soft computing methods were employed for supervised classification: 

Backpropagation Neural Network (BPNN) and Adaptive Neuro-Fuzzy Inference System 

(ANFIS). Sensitivity analysis for both the methods was performed for all the three types 

of classifications. Detailed description of these methods is provided in Chapter 3. 

5.5.1.2 Backpropagation Neural Network (BPNN) 

   BPNN comprises of an input layer, output layer and a number of hidden layers. The 

first layer has weights from the input. Propagation of data takes place from input layer to 

the output layer. There is no connectivity between neurons in a layer. This type of neural 

network is trained using a process of supervised learning in which the network is 

presented with a series of matched input and output patterns and the connection strengths 

or weights of the connections automatically adjusted to decrease the difference between 

the actual and desired outputs. Detailed description of the steps involved in BPNN is 

presented in Chapter 3. An example of the training of BPNN is shown in Figure 5.1 
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Figure 5.1: Training of BPNN 

As Figure 5.1 shows, the performance is the RMSE calculated at 5000 epoch and goal is 

the minimum threshold value. After the training phase, the testing data set is presented to 

the trained model, to see how well the network has learnt and how well the network has 

performed.  

Sensitivity Analysis 

   Sensitivity analysis was performed for all the three types of classifications in order to 

select the optimal parameters that give the maximum overall classification accuracy 

obtained through the confusion matrix. The parameters include number of epochs, 

number of hidden layers, and number of neurons in the hidden layers. The input and 

output layers consists of one neuron. All the results reported were obtained by testing the 

trained network with the testing data.  
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 Classification 1 (Void and no void) 

One Hidden Layer   
5 neurons  

 
Number of Epochs Classification Accuracy (%) 

1000 79 
2500 80 
5000 83 
10000 84 

 
10 neurons 

 
Number of Epochs Classification Accuracy (%) 

1000 80 
2500 81 
5000 84 
10000 88 

 
      20 neurons 
 

Number of Epochs Classification Accuracy (%) 
1000 80 
2500 82 
5000 84 
10000 85 

 
Two Hidden Layers 

10 and 5 Neurons in two hidden layers, respectively 
 

Number of Epochs Classification Accuracy (%) 
1000 81 
2500 84 
5000 84 
10000 82 

 
10 and 20 Neurons in two hidden layers, respectively 
 

Number of Epochs Classification Accuracy (%) 
1000 78 
2500 83 
5000 87 
10000 90 
50000 92 

 



 127

 Classification 2 (No & small void and medium void & large void) 

One Hidden Layer 
5 neurons in the hidden layer 

 
Number of Epochs Classification Accuracy (%) 

1000 69 
2500 70 
5000 72 
10000 68 

 
10 neurons in the hidden layer 

 
Number of Epochs Classification Accuracy (%) 

1000 67 
2500 67 
5000 66 
10000 68 

 
20 neurons in the hidden layer 

 
Number of Epochs Classification Accuracy (%) 

1000 68 
2500 68 
5000 71 
10000 73 

 
Two Hidden Layers 

10 and 5 neurons in two hidden layers, respectively 
 

Number of Epochs Classification Accuracy (%) 
1000 66 
2500 70 
5000 72 
10000 66 

 
10 and 20 neurons in two hidden layers, respectively 

 
Number of Epochs Classification Accuracy (%) 

1000 64 
2500 66 
5000 70 
10000 78 
50000 74 
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 Classification 3 (No, small, medium and large void) 
 
One Hidden Layer 

5 neurons in the hidden layer 
 

Number of Epochs Classification Accuracy (%) 
1000 37 
2500 38 
5000 40 
10000 44 

 
10 neurons in the hidden layer 

 
Number of Epochs Classification Accuracy (%) 

1000 36 
2500 39 
5000 43 
10000 47 

 
20 neurons in the hidden layer 

 
Number of Epochs Classification Accuracy (%) 

1000 37 
2500 38 
5000 43 
10000 47 

 
Two Hidden Layers 

10 and 5 neurons in two hidden layers, respectively 
 

Number of Epochs Classification Accuracy (%) 
1000 33 
2500 40 
5000 43 
10000 45 

 
10 and 20 neurons in two hidden layers, respectively 

 
Number of Epochs Classification Accuracy (%) 

1000 34 
2500 43 
5000 45 
10000 44 
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Three Hidden Layers 
20, 10 and 5 Neurons in three hidden layers, respectively 

 
Number of Epochs Classification Accuracy (%) 

1000 35 
2500 42 
5000 51 
10000 56 

 
Optimal Selection 

   The number of hidden layers was decided by experimenting with the number of layers 

ranging from 1 to 3. The number of neurons for the hidden layers was selected by 

experimenting with different number of neurons ranging from 5 to 20. The number of 

epochs was varied from 1000 to 50000. Final setting of the network in classification 1 

trained for 50000 epochs was two hidden layers with 10 and 20 neurons. The confusion 

matrix with this optimal selection of parameters for classification1 is shown in Table 5.5 

Table 5.5: Confusion matrix for optimal selection of parameters for classification 1 

Class No Void Void 
No void 120 26 S 

Void 24 U 430 
 

The overall classification accuracy is 92% wherein, the accuracy in predicting the 

absence of a void is 82% and whereas 18% of the samples are incorrectly predicted as 

presence of voids. On the other hand, the accuracy in predicting the presence of a void is 

95% whereas 5% of the samples are incorrectly predicted as absence of void. Out of the 

false predictions, 18% of the samples incorrectly predicted as the presence of void is on 

the safe side (indicated by “S”), from the structural point of view, whereas, 5% of 

samples incorrectly predicted as sound samples are unsafe (indicated by “U”) while, they 

actually have voids in them. The classification of the incorrectly predicted samples into 
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safe and unsafe classification is essential. The safe misclassification probably results in a 

high cost but it is structural safe. The safe and unsafe misclassifications are indicated by 

“S” and “U” in all the classifications performed by all the classifiers.  

   The final setting of the network in classification 2 was two hidden layers with 10 and 

20 neurons respectively trained for 10000 epochs. The confusion matrix with this optimal 

selection of parameters for classification 2 is shown in Table 5.6 

Table 5.6: Confusion matrix for optimal selection of parameters for classification 2 

Class No void & Small void Med & Large void 
No void & Small void 231 63 S 

Med & Large void 71 U 235 
 

The overall classification accuracy is 78%. The accuracy in correctly predicting the  

class 1 (no void and small void) is 79% whereas 21% of the samples are incorrectly 

predicted as belonging to class 2 (medium and large void). The safe “S” and unsafe “U” 

false predictions are indicated in the confusion matrix. 

   The final setting of the network in classification 3 was three hidden layers with 5, 10 

and 20 neurons respectively trained for 10000 epochs. The confusion matrix with this 

optimal selection of parameters for classification 3 is shown in Table 5.7 

Table 5.7: Confusion matrix for optimal selection of parameters for classification 3 

Class No Void Small 
Void 

Medium 
Void 

Large  
Void 

No void 94 34 S 17 S 
 

1 S 

Small Void 15 U 59 66 S 
 

8 S 

Medium Void 7 U 42 U 104 23 S 

Large Void 1 U 3 U 46 U 80 
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The overall classification accuracy is 56%. The percentage of correctly classified samples 

is 64% (no void class), 40% (small void), 59% (medium void) and 62% (large void). The 

misclassification between the different classes and the safe “S” and unsafe “U” false 

predictions are indicated in the confusion matrix.  

5.5.1.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

   ANFIS combines the desirable qualities of both fuzzy logic and neural networks. 

Detailed description of step by step procedure of ANFIS is given in chapter 3. One of the 

drawbacks of ANFIS lies in the dimensionality of the feature data set not being able to 

exceed a value of 3. For this purpose, principal component analysis was employed to 

reduce the dimensionality of the feature set from 37 to 3 without much loss of the 

information in the data set.  

Sensitivity Analysis 

   Sensitivity analysis was performed for all the three types of classifications inorder to 

select the optimal parameters which give the maximum overall classification accuracy 

obtained through the confusion matrix. The parameters include number of epochs, 

number of membership functions per input. All the results reported were obtained by 

testing the trained network with the testing data.  

 Classification1 (Void and no void) 

Two Membership Functions 
 

Epochs Accuracy 
5 47 
10 47 
20 47 
50 47 
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Three Membership Functions 
 

Epochs Accuracy 
5 43 
10 44 
20 44 
50 43 

 

 Classification 2 (No & small void and medium & large void) 

Two Membership Functions 
 

Epochs Accuracy 
5 44 
10 44 
20 44 
50 44 

 
Three Membership Functions 
 

Epochs Accuracy 
5 43 
10 43 
20 43 
50 43 

 
 Classification 3 (No, small, medium and large void) 

 
Two Membership Functions  
 

Epochs Accuracy 
5 26 
10 26 
20 26 
50 26 

 
Three Membership Functions  
 

Epochs Accuracy 
5 22 
10 22 
20 22 
50 22 
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Optimal Selection 

   The number of membership functions was varied from 2 to 3. The number of epochs 

was varied from 5 to 50. The misclassification between the different classes, the safe and 

unsafe false predictions is indicated in the confusion matrix. Final setting of the 

parameters for all the classifications was: two membership functions per input trained for 

50 epochs. The results obtained by the model with the testing data for the different 

classifications presented in the form of confusion matrices are shown in the following 

tables.  

Table 5.8: Confusion matrix for optimal selection of parameters for classification 1 
 

Class No Void Void 
No void 70 76 S 

Void 247 U 207 
 
The overall classification accuracy in correctly predicting the classes is 48%.  

Table 5.9: Confusion matrix for optimal selection of parameters for classification 2 

Class No void & Small void Med & Large void 
No void & Small void 165 129 S 

Med & Large void 207 U 99 
 

The overall classification accuracy in correctly predicting the classes is 44% 

Table 5.10: Confusion matrix for optimal selection of parameters for classification 3 

Class No Void Small 
Void 

Medium 
Void 

Large  
Void 

No void 37 34 S 38 S 
 

37S 

Small Void 50 U 42 31 S 
 

25 S 

Medium Void 68 U 46 U 32 30 S 

Large Void 55 U 41 U 18 U 16 
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The overall classification accuracy in correctly predicting the classes is 26% 

5.5.2 Supervised Classification: Statistical Techniques 

5.5.2.1 General 

   Two types of statistical methods were employed for supervised classification: k-nearest 

neighbor classification (k-NN) and classification based on linear discriminate analysis  

(LDA). Detailed description of these methods is given in chapter 3. 

5.5.2.2 k-Nearest Neighbor Classifier (k-NN) 

   The k-nearest neighbor classifier is based on finding the number of k-nearest 

neighboring samples around an unknown sample and the class of the sample is 

determined by the class that has the highest percentage of neighbors. The results obtained 

from the model with the testing data for the different classifications presented in the form 

of confusion matrices are shown in the following tables. The misclassification between 

the different classes and the safe “S” and unsafe “U” false predictions are indicated in the 

confusion matrix. 

 Classification 1 (Void and no void) 

Table 5.11: Confusion matrix for classification 1 

Class No Void Void 
No void 127 19 S 

Void 17 U 437 
 

A very high classification accuracy of 94% was obtained in detecting the presence of 

voids in the medium. 
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 Classification 2 (No & small void and medium & large void) 

Table 5.12: Confusion matrix for classification 2 

Class No void & Small void Med & Large void 
No void & Small void 258 36 S 

Med & Large void 35 U 271 
 

An overall classification accuracy of 88% was obtained in classifying between the two 

classes (no void and small void) and (medium and large void).  

 Classification 3 (No, small, medium and large void) 

Table 5.13: Confusion matrix for classification 3 

Class No Void Small 
Void 

Medium 
Void 

Large  
Void 

No void 127 6 S 13 S 0 S 
Small Void 8 U 117 13 S 10 S 

Medium Void 8 U 20 U 127 21 S 
Large Void 1 U 6 U 10 U 113 

 

An overall classification accuracy of 81% was obtained in determining the size of the 

void in the medium. 

5.5.2.3 Linear Discriminate Classifier 

   In LDA, the original data is transformed into a new feature space in which class 

separability can be carried out more effectively. LDA maximizes the ratio of between-

class variance to within-class variance. The main purpose is to maximize this ratio so that 

adequate class separability is achieved. After transformation, Euclidean distance is used 

to classify data points. In the testing phase, test vectors are transformed and the Euclidean 

distance of the test vectors from the class means is calculated. The test vector is classified 

as belonging to the class that has the shortest distance. The results obtained from the 
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model with the testing data for the different classifications presented in the form of 

confusion matrices are shown in the following tables. The misclassification between the 

different classes and the safe “S” and unsafe “U” false predictions are indicated in the 

confusion matrix. 

 Classification 1 (Void and no void) 

Table 5.14: Confusion matrix for classification 1 

Class No Void Void 
No void 115 31 S 

Void 74 U 380 
 
An overall classification accuracy of 83% was obtained in detecting the presence of voids 

in the medium. 

 Classification 2 (No & small void and medium & large void) 

Table 5.15: Confusion matrix for classification 2 

Class No void & Small void Med & Large void 
No void & Small void 219 75 S 

Med & Large void 78 U 228 
 
An overall accuracy of 75 % was obtained in predicting the considered classes  
 

 Classification 3 (No, small, medium and large void) 

Table 5.16: Confusion matrix for classification 3 

Class No Void Small 
Void 

Medium 
Void 

Large  
Void 

No void 97 37 S 5 S 7 S 
Small Void 25 U 73 24 S 26 S 

Medium Void 16 U 53 U 64 43 S 
Large Void 4 U 23 U 25 U 78 
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An overall classification accuracy of 52% was obtained in determining the size of the 

void in the medium. 

5.6 Unsupervised Classification or Clustering 

5.6.1 Fuzzy C-means Clustering 

   Fuzzy c-means clustering is one of the most commonly used clustering techniques. In 

real world applications, there is often no sharp or crisp boundary between classes that 

makes fuzzy clustering appropriate for such classifications. Fuzzy C-means clustering is 

accomplished by grouping of patterns based on similarities between the individual 

patterns. The results obtained for the different classifications presented in the form of 

confusion matrices are shown in the following tables. The misclassification between the 

different classes and the safe “S” and unsafe “U” false predictions are indicated in the 

confusion matrix. 

 Classification 1 (Void and no void) 

Table 5.17: Confusion matrix for classification 1 

Class No Void Void 
No void 202 398 S 

Void 612 U 1188 
 
An overall classification accuracy of 58% was obtained in detecting the presence of voids 

in the medium. 

 Classification 2 (No & small void and medium & large void) 

Table 5.18: Confusion matrix for classification 2 

Class No void & Small void Med & Large void 
No void & Small void 437 763 S 

Med & Large void 377 U 823 
 



 138

An overall accuracy of 53% was obtained in predicting the considered classes  
 

 Classification 3 (No, small, medium and large void) 

Table 5.19: Confusion matrix for classification 3 

Class No Void Small 
Void 

Medium 
Void 

Large  
Void 

No void 175 175 S 177 S 73 S 
Small Void 184 U 173 154 S 89 S 

Medium Void 225 U 138 U 147 90 S 
Large Void 296 U 89 U 125 U 90 

 
An overall classification accuracy of 24% was obtained in determining the size of the 

void in the medium. 

5.7 Comparison of results from various classification techniques 

   The assessment of the classifiers’ performance used for detection and characterization 

of defects has proved to be valuable in comparing the various techniques. The 

performance of all the classifiers were reported in terms of their overall classification 

accuracy obtained through the confusion matrix (Table 5.20) 

Table 5.20: Overall classification accuracy given by different classifiers 

 Classification between presence and absence of voids (Classification1) 
 

Supervised : Soft Computing Accuracy (%) 
Feedforward Backpropagation Neural 

Network 
92 

Adaptive Network based Fuzzy inference 
system 

47 

 
Supervised: Statistical Accuracy (%) 

Classify: Linear Discriminate Analysis 83 
k-Nearest Neighbor 94 

 
Unsupervised Accuracy (%) 

Fuzzy C-means Clustering 53 
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 Classification between (no void, small void) and (medium, large void) 
(Classification2) 

 
Supervised : Soft Computing Accuracy (%) 

Feedforward Backpropagation Neural 
Network 

78 

Adaptive Network based Fuzzy inference 
system 

44 

 
Supervised: Statistical Accuracy (%) 

Classify: Linear Discriminate Analysis 75 
k-Nearest Neighbor 88 

 
Unsupervised Accuracy (%) 

Fuzzy C-means Clustering 53 
 

 Classification between different sizes of the void (Classification3)  
 

Supervised : Soft Computing Accuracy (%) 
Feedforward Backpropagation Neural 

Network 
56 

Adaptive Network based Fuzzy inference 
system 

26 

 
Supervised: Statistical Accuracy (%) 

Classify: Linear Discriminate Analysis 52 
k-Nearest Neighbor 81 

 
Unsupervised Accuracy (%) 

Fuzzy C-means Clustering 24 
   

   Therefore the performance of k-nearest neighbor for all the three classifications has 

proved to be superior to the other classifiers. An overall accuracy of 94% was obtained in 

detecting the presence of a void in a medium and an accuracy of 81% was obtained in 

determining the size of the void in the medium. In all the classifications, the incorrectly 

predicted samples are classified into safe and unsafe misclassifications (indicated by “S” 

and ”U” in the confusion matrices) because though the safe misclassification probably 

might result in a high operational cost but it is safe from structural point of view.    
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   The performance of feedforward backpropagation neural networks (BPNN) and linear 

discriminate classifier were found to be satisfactory. However the classification 

accuracies reported by adaptive neuro-fuzzy inference system and fuzzy c-mean 

clustering was very low, a possible result because of severe reduction in dimensionality 

from 37 to 3 in case of ANFIS and the closely clustered nature of the data set in case of 

FCM. Thus the assessment of the various classifiers’ performance in this application is 

useful in comparing the various techniques and establishes the advantages of using 

simplified classification techniques like k-NN for defect characterization. 

   Further to test the severity of the best classification technique namely, the k-NN 

classifier, the classification was performed by training the classifier with 50% of the 

dataset (1200 samples) and testing with the rest 50% as the testing data (1200 samples). 

The results obtained for the different classifications presented in the form of confusion 

matrices are shown in the following tables. 

 Classification 1 

Table 5.21: Confusion matrix for classification 1 

Class No Void Void 
No void 244 58 S 

Void 47 U 851 
 
An overall classification accuracy of 91% was obtained in detecting the presence of voids 

in the medium. 

 

 

 

 



 141

 Classification 2 

Table 5.22: Confusion matrix for classification 2 

Class No void & Small void Med & Large void 
No void & Small void 483 88 S 

Med & Large void 109 U 520 
 
An overall accuracy of 84 % was obtained in predicting the considered classes  
 

 Classification 3 

Table 5.23: Confusion matrix for classification 3 

Class No Void Small 
Void 

Medium 
Void 

Large  
Void 

No void 244 23 S 29 S 6 S 
Small Void 21 U 195 32 S 21 S 

Medium Void 20 U 62 U 219 49 S 
Large Void 6 U 21 U 29 U 223 

 
An overall classification accuracy of 73% was obtained in determining the size of the 

void in the medium. Comparison between the results obtained from 75% & 25% of the 

dataset used as training and testing and 50% & 50% is shown in Table 5.24 

Table 5.24: Comparison of the classification accuracies between 75% & 25% and 50% & 
50% of the dataset used as training and testing 

 
Type 75 % training & 25% testing 

Classification accuracy (%) 

50% training & 50% testing 

Classification accuracy (%) 

Classification 1 94 91 

Classification 2 88 84 

Classification 3 81 73 
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It can be seen that the results were encouraging as there is not much difference in the 

classification accuracies between the two methods. 

5.8 Critical Features 

   Based on the classification results by different techniques, it can be concluded that k-

Nearest neighbor classifier gives the highest classification accuracy for all the 

classification types. Selection of critical features is essential in order to identify the 

critical feature set which gives the maximum classification accuracy.  

Table 5.20 gives the overall classification accuracy for different category of features 

vectors using k-nearest neighbor Classifier 

Table 5.25: Classification accuracy for individual categories of feature vectors 

Accuracy (%) Time 
Traces 

Derivatives Fourier 
Transforms

Log 
DFT

Wavelet 
Coeff 

Cepstrum
Coeff 

Classification1 92 69 93 83 90 81 

Classification2 81 54 86 73 83 74 

Classification3 71 32 76 64 69 59 

 

From the above table, features extracted from time traces, Fourier transformation and 

Wavelet transformation gives better results when compared with the other categories. The 

classification accuracy obtained by combining features from these three domains is 

presented in Table 5.26. 

   Features extracted from the time traces and from the frequency spectra (by applying 

Fourier transformation) gives the maximum classification accuracy for all the three 

classification types; however there is only a marginal increase in the classification 

accuracy.  
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Table 5.26: Classification accuracy by combining features extracted from time traces, 
Fourier transformation and Wavelet transformation 

 
Accuracy (%) (Time, 

Fourier, 
Wavelet) 

(Time and 
Fourier) 

(Time and 
Wavelet) 

(Fourier and 
Wavelet) 

Classification 1 95 95 90 94 
Classification 2 88 90 84 85 
Classification 3 80 82 71 77 

 

5.9 Summary 

   A classification and Clustering method for non-destructive testing for void 

characterization in half space media using ultrasonics has been implemented.  

The sample database for training and validation has been obtained from finite element 

simulations. Significant features extracted from the dataset in different domain by 

applying suitable transformations were subject to feature preprocessing. Both supervised 

and unsupervised classification techniques were applied for void detection and 

characterization.  

   The performance of each classifier for detection and classification of voids is given in 

Table 5.20. The assessment of the various classifiers’ performance in this application has 

proved to be valuable in comparing the various techniques. From the classification 

results, it was discovered that the performance of k-nearest neighbor classifier proved 

superior when compared with the other techniques. An overall accuracy of 94% was 

obtained in detecting the presence of a void in a medium and an accuracy of 81% was 

obtained in determining the size of the void in the medium. Further the features extracted 

from the time traces and from the frequency spectra (by applying Fourier transformation) 

were found to give the maximum classification accuracy. The severity of the best 
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classification method, namely the k-NN classifier was tested by training the classifier 

with 50% of the dataset and testing with the rest 50%. The results obtained were 

encouraging as there was not much difference in the classification accuracies when 

compared with 75% and 25% of the dataset used for training and testing. These results 

therefore help in assessing the applicability of simplified classification methods such as 

k-NN in defect characterization. 
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Chapter 6 
 

Summary and Conclusions 
 
   A diagnostic system based on supervised and unsupervised learning paradigm was 

developed for the identification and classification of voids in a half-space medium. The 

first step involved the construction of numerical models using LS-DYNA, a commercial 

finite element code to simulate the propagation of Rayleigh waves in a homogeneous 

elastic half-space. These 2-D axi-symmetric finite element models simulate the MASW 

(Multiple Analysis of Surface Waves) test method that facilitates the investigation of the 

behaviour of Rayleigh wave in the presence and absence of voids in the medium. To 

establish the validity of finite element models used in this study, they were first calibrated 

with a known theoretical solution. This was done to ensure that the finite element results 

provided a certain degree of confidence in their accuracy, because exact analytical 

solutions were not available for complex problems like the one taken up under the present 

study. Once the model was calibrated and validated, a detailed parametric study can be 

carried out in less time. The investigation into the numerical modeling of surface waves 

examined the model element size, time step, model size, boundary conditions, damping 

parameters, source configuration and calibration to Lamb’s theoretical solution by 

comparing the numerical responses with the theoretical responses.  

   Once the model was calibrated, voids of different sizes were introduced into the model 

to simulate anomalies. The most significant factor in ensuring a good accuracy of any 

classification process is the presence of enough variance in the sample data set. This was 

achieved by generating sufficient numbers of samples for each case by changing the type 

of input loading. Inorder to ensure sufficient variance in the dataset, the sources were 



 146

chosen such that there is sufficient variation in the frequency content of the pulses 

generated by these sources since the responses obtained from the medium is dependent 

on the frequency content of the source. A set of 600 samples were generated for each of 

the four considered cases which gave a total of 2400 samples. The effect on the surface 

responses due to the presence of voids of different sizes revealed that the pattern of the 

surface responses obtained was dependent on the void dimensions. These differences 

were useful in the involved extraction of features from identification and classification of 

the voids. 

  The second step consists of selecting a good set of parameters from the responses that 

are capable of reflecting the true nature of the underlying dataset. This was achieved 

through the feature extraction process which in the most general sense is applying a 

mapping of the multidimensional space into a space of fewer dimensions by applying 

suitable transformations. A set of 37 features were extracted from all the samples in 

various domains. 

   The third step involved application of applying classifications methods based on 

supervised and unsupervised learning on the feature dataset which helps in making a 

decision on the class any sample belongs to. The objective of the three types of 

classifications that were performed was to firstly identify the presence of a void in a 

medium and then to determine the class or the size of the void in the medium. In 

classifiers based on supervised learning, this was achieved by training the system with 

training examples by which the system learns and is capable of predicting with the testing 

dataset. Supervised classifiers based on soft computing methods such as backpropagation 
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neural network, adaptive neuro-fuzzy inference system and statistical methods such as k-

nearest neighbor and linear discriminate analysis were employed.  

   Unsupervised learning scheme consists of allowing a system to cluster samples together 

based on similarities it perceives in the feature space. By contrast with supervised 

learning, there is no training and testing in unsupervised learning. The entire data set is 

presented to the system; the system discovers collective properties and organizes the data 

into clusters or classes. Fuzzy c-mean clustering based on unsupervised learning was 

employed. 

   From the classification results, it was discovered that the performance of k-nearest 

neighbor classifier proved superior when compared with the other techniques. An overall 

accuracy of 94% was obtained in identification and an accuracy of 81% was obtained in 

determining the size of the void in the medium. The assessment of the various classifiers’ 

performance has proved to be valuable in comparing the different techniques and 

establishing the applicability of simplified classification methods such as k-NN in defect 

characterization.   

   The obtained classification accuracy for the detection and classification of voids are 

very encouraging, showing the suitability of the proposed approach to the development of 

a decision support system for non-destructive testing of materials for defect 

characterization.  

  Recommendation for future work includes validating the obtained results with actual 

measures. The applicability of these results can be extended in more complex geometries 

(ex. more boundaries, different materials and defects with a wider range of sizes and 

shapes) provided enough number of samples is taken to train the classifiers. More work is 
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necessary in transferring the above work by applying these classification tools on 

experimental or field data. This will require additional signal processing techniques 

including more analyses into the wavelet transformation of the signals inorder to obtain 

significant features that lead to more robust classification processes.   
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Appendix A 

 

 

Developed Mathcad® Sheets 

This appendix contains the developed Mathcad work sheets that were used for the 

calculations of the following 

Mathgram Chapter 4-1: shows the Lamb solution and calculates the corresponding 

displacements  

Mathgram Chapter 4-2: shows the details of the numerical model and the calibration 

procedure 

Mathgram Chapter 4-3: shows the different sources used for the sample data generation 
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Appendix A: Mathcad Files 

Poisson ratio =0.25 Density (kg/m3) = 2340 Elastic Modulus (MPa) = 45000 

Shear Modulus G1 (MPa) = 18000 P-Wave Velocity (m/s) = 4800  

Shear Wave Velocity (m/s)= 2770 Rayleigh Wave Velocity Vr (m/s) = 2550 

Time domain parameters: Frequency domain parameters: 

Number of points: N0 1200:=  Number of points in frequency: Nf
N0
2

:=  

i 1 N0..:=  dt 10 7−
:=  s ti i dt⋅:=  j 1 Nf..:=  ∆f

1
N0 dt⋅ 1000⋅

:=  Hz freq j ∆f j⋅:=  

Input source: 

Source freq content or width of the pulse: ψ 10 6−
:=  s Source Amplitude: Fb .75:=  

Time shift: delay 75 dt⋅:=  t1i ti 1000⋅:=  ms 

Source function:  f t( )
Fb ψ⋅

π t( ) delay−[ ]2
ψ

2
+⎡⎣ ⎤⎦

:=  foi f ti( ):=  
f1

fo
1000

:=  

 

Mathgram Chapter 4-1: Lamb Solution 

References: Bath and Berkout (1984)  

Material Properties: 
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F CFFT f1( ):=  

0 200 400 600 800 1000
0

2

4

6
Frequency spectrum of lamb source

Frequency in KHz

A
m

pl
itu

de

F j

freqj

 

Theoretical solution for Rayleigh wave displacement: 

Spacing between the receivers 

z 1 595..:=  ∆d
250
595

:=  dz ∆d z⋅:=  

Constant: R 1:=  ψ1 ψ 1000⋅:=  G1 18000:=  Vr 2550:=  

Vertical Surface Displacements far from the source: 

v t1 d,( ) atan
t1 delay 1000⋅−

d
Vr

−

ψ1

⎛
⎜
⎜
⎝

⎞

⎠
:=  

wv t1 d,( )
R Fb⋅

4 π⋅ G1⋅ ψ1
2

⋅ Vr⋅

2 ψ1⋅ Vr⋅

d
⋅ cos

π

4
3
2

v t1 d,( )⋅−⎛⎜
⎝

⎞
⎠

⋅ cos v t1 d,( )( )

3

2
⋅:=  w1i z, wv t1i dz,( ):=  

Horizontal Surface Displacements far from the source: 

wh t1 d,( )
R Fb⋅

4 π⋅ G1⋅ ψ1
2

⋅ Vr⋅

2 ψ1⋅ Vr⋅

d
⋅ sin

π

4
3
2

v t1 d,( )⋅−⎛⎜
⎝

⎞
⎠

⋅ cos v t1 d,( )( )

3

2
⋅:= w2i z, wh t1i dz,( ):=  
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0.02 0.03 0.04 0.05 0.06 0.07
2 .10 4

0

2 .10 4

4 .10 4

At d=80 mm
At d=100 mm
At d=120 mm

Vertical Displacements

Time (msec)

A
m

pl
itu

de w1i 193,

w1i 241,

w1i 281,

t1i

0.02 0.03 0.04 0.05 0.06 0.07
2 .10 4

0

2 .10 4

4 .10 4

At d=80 mm
At d=100 mm
At d=120 mm

Horizontal Displacements

Time (msec)

A
m

pl
itu

de w2i 193,

w2i 241,

w2i 281,

t1i

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

Mathgram Chapter 4-2: Calibration of the numerical model 

References: (Valliappan and Murti, 1984) & (Cascante et al.,2002)  

Properties of the numerical model 

Model Dimensions = 250*250 Termination time of the simulation tmax=0.12 ms 

Total Number of elements = 354025 Element dimension = 0.4202 mm  
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Number of receivers =75  Distance between the receivers = 3.36 mm 

 

Critical time chosen by LS-DYNA based on the model's wave speed and maximum of the shortest 
side or the area/ (minimum of the longest side or longest diagonal) is scaled down by 
a scale factor of 0.5 which gives a value of 4.12*10-5 

Material Properties: 

Density (kg/m3) = 2340 Poisson ratio =0.25 Shear Modulus G1 (MPa) = 18000 

Rayleigh Wave Velocity Vr (m/s) = 2550 P-Wave Velocity (m/s) = 4800  

Shear Wave Velocity (m/s) = 2770 
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In this study, the bottom and right boundaries of the model are free and non-reflecting  
boundary conditions were applied to them inorder to represent an infinite half space and to 
minimize the effect of reflections. The left boundary is fixed in the horizontal direction, thereby, 
representing the axes of symmetry. The free body motion of the model in X and Y direction is 
prevented by applying translational constraints in both the X and Y directions on the lower right 
corner of the model.  

Boundary Conditions: 

Damping Parameters: 

Rayleigh Damping D = 2.5% 

D

η1
2

ln
ω1
ωn

⎛
⎜
⎝

⎞
⎠

η2
4

ωn
2

ω1
2

−( )⋅+⎡
⎢
⎣

⎤
⎥
⎦

ωn ω1−
:=  

The following equations were solved to obtain the damping parameters: 

Variance σ =.00105 

ω1 = first natural frequency which is taken as 45 KHz 

ωn = highest natural frequency which is taken as 850 KHz 
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e

Calibration of the numerical model: Comparison of the numerical responses with the theoretical 
responses obtained from Lamb solution (Mathgram Chapter 4-1) 

Camparing the numerical responses with the theoretical responses at typical distances (d) from the 
source 

d = 71 mm 

d = 101 mm 

d = 132 mm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

d = 0.42 mm 

d = 34 mm 

where d indicates the distance from the source 
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References: Bath and Berkout (1984), Ricker (1945)  

Source 1:  Lamb 

Time domain parameters: Frequency domain parameters: 

Number of points: N0 1200:=  Number of points in frequency: Nf
N0
2

:=  

i 1 N0..:=  dt 10 7−
:=  s ti i dt⋅:=  j 1 Nf..:=  ∆f

1
N0 dt⋅ 1000⋅

:=  Hz freq j ∆f j⋅:=  

Input source: 

Source freq content or width of the pulse: ψ 10 6−
:=  s Source Amplitude: Fb .75:=  

Time shift: delay 75 dt⋅:=  t1i ti 1000⋅:=  ms 

Source function:  f t( )
Fb ψ⋅

π t( ) delay−[ ]2
ψ

2
+⎡⎣ ⎤⎦

:=  foi f ti( ):=  
f1

fo
1000

:=  

The source was modified so that the function starts at zero. This was done to remove 
oscillations in the numerical responses. 

Load READPRN "G:\Extra files1\\load.cvr"( ):=  

rows Load( ) 1.2 103
×=  cols Load( ) 2=  n rows Load( ):=  in 0 n 1−..:=  

f1min Load 1〈 〉( )
in:=  tmin Load 0〈 〉( )

in:=  F1 CFFT f1m( ):=  

0 0.02 0.04 0.06 0.08
0

100

200

300
Lamb force in time domain

Time in msec

A
m

pl
itu

de

f1min

tmin

 

Mathgram Chapter 4-3: Sources used 
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Time domain parameters: Frequency domain parameters: 

N0 1200:=  i 1 N0..:=  Nf
N0
2

:=  j 1 Nf..:=  

dt 10 7−
:=  s ti i dt⋅:=  

∆f
1

N0 dt⋅ 1000⋅
:=  freq j ∆f j⋅:=  

Input source: 

Source freq content or width of the pulse: ψ1 .0015:=  ms Source Amplitude: Fb1 500:=  

Time shift: dt dt 1000⋅:=  msec t1i ti 1000⋅:=  ms delay1 120 dt⋅:=  

Source function:  rw t1( )
Fb1

2π
1

t1 delay1−( )2

ψ1
2

−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

e

t1 delay1−( )2−

2ψ12
⋅:=  r0i rw t1i( ):=  R CFFT r0( ):=  

Source 2:  Ricker 
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6
Frequency spectrum of lamb source
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pl
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de

F1 j

freq j
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pl
itu

de

r0i

t1 i



 167

0 200 400 600 800 1000
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4

Frequency spectrum of ricker function

Frequency in KHz

A
m

pl
itu

de

Rj

freqj

Time domain parameters: Frequency domain parameters: 

N0 1200:=  i 1 N0..:=  
Nf

N0
2

:=  j 1 Nf..:=  

dt 10 7−
:=  s ti i dt⋅:=  

∆f
1

N0 dt⋅ 1000⋅
:=  freq j ∆f j⋅:=  

Input source: 

Source freq content or width of the pulse: α 375:=  Source Amplitude: Fb2 400:=  

Time shift: dt dt 1000⋅:=  msec t1i ti 1000⋅:=  ms 

Source function:  

q1 t1( ) sin α π⋅ t1( ) α π⋅ t1 π<if

0 otherwise

:=  
q2 t1( ) Fb2 sin α πt1( ) q1 t1( )⋅:=  imi q2 t1i( ):=  I CFFT im( ):=  

0 0.01 0.02 0.03 0.04
0

200

400
Impact force in time domain

Time in msec

A
m

pl
itu

de

imi

t1i

Source 3: Impact Source 



 168

 

 

Time domain parameters: Frequency domain parameters: 

N0 1200:=  i 1 N0..:=  
Nf

N0
2

:=  j 1 Nf..:=  

dt 10 7−
:=  s ti i dt⋅:=  

∆f
1

N0 dt⋅ 1000⋅
:=  freq j ∆f j⋅:=  

Input source: 

Source freq content or width of the pulse: ξ 0.1:=  Source Amplitude: Fb3 225:=  

Time shift: dt dt 1000⋅:=  msec t1i ti 1000⋅:=  ms f0 300:=  ω 2 π⋅ f0⋅:=  

Source function:  s t1( ) Fb3 sin ω t1⋅( )⋅ exp ω− ξ⋅ t1⋅( )⋅:=  s1i s t1i( ):=  S CFFT s1( ):=  

Source 4: Decaying Sinusoidal Source  
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Frequency spectrum of impact source

Frequency in KHz

A
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de

I j

freq j
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Frequency spectrum of sinusoidal signal

Frequency in KHz

A
m

pl
itu

de

Sj

freqj

Comparison of the frequency spectrum of the different sources: 

0 200 400 600 800 1000 1200
0

2

4

6
Lamb
Ricker
Impact
Sinusoidal

Frequency spectrum of sources

Frequency in KHz

A
m

pl
itu

de

F1 j

Rj

I j( )
Sj

freqj

Source type Fcog in KHz Fmax in KHz F (5%) F (95%) Average 

Lamb 169.61 8.333 14 251 31.923

Morlet 172 170 79 260 4.539

Ricker 169.5 150 80 250 0.000334

Impact 370 8.333 26 536 4.631

Sinusoidal 487.17 300 84 425 9.27

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
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Appendix B 

 

 

Developed Matlab® Sheets 

This appendix contains the developed Matlab work sheets that were used for the 

calculations of the following 

Matlab Chapter 4-1: Contour Plots 

Matlab Chapter 5-1: Process of feature extraction 

Matlab Chapter 5-2: Scaling of features 

Matlab Chapter 5-3: Computation of the Confusion matrix 

Matlab Chapter 5-4: Development of Backpropagation neural network 

Matlab Chapter 5-5: Development of Adaptive neuro-fuzzy inference system  

Matlab Chapter 5-6: Development of k-Nearest Neighbor Classfier 

Matlab Chapter 5-7: Development of Linear Discriminate Classifier 

Matlab Chapter 5-8: Development of Fuzzy C-means Clustering 
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%Matlab Chapter 4-1: Contour Plots 
 
%%%Program for plotting contour plots%%%% 
clear; 
clc; 
 
%load the data  
load xs_lambB.txt  
  
%load the data 
load lambB_2916.txt % 
%load the time data 
time=lambB_2916(:,1);  
 
%get the distances between the traces 
disp=0.4202; %distance between the source and the first trace 
for i=2:75; 
disp(i)=disp(i-1)+3.3616; 
end 
 
%normalize all the traces to the max value of the corresponding traces so the max 
%value in each trace is equal to 1 
[m,n]=size(xs_lambB); 
 
for i=1:n; 
        dataN(:,i)=xs_lambB(:,i)/max(xs_lambB(:,i)); 
end; 
 
contourf(time,disp,dataN',64) 
hold on; 
shading flat; 
hold off; 
xlabel('Time(msec)') 
ylabel('Distance from source(mm)') 
colorbar 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-1: Feature Extraction 
 
%%%%%%%%%%%%%%%Program for extracting features%%%%%%%%%%%%% 
clear; 
clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
format long; 
%load the data from which the features have to be extracted 
load x_nolambB.mat 
data=[x_nolambB]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Features from Time traces 
%Features from time domain: [max min mean stddev skewness kurtosis] 
%5features 
 
for i=1:size(data,2); 
x(:,i)=data(:,i); 
v(:,i)=var(x(:,i)); 
mxx(:,i)=max(x(:,i)); %max 
mix(:,i)=min(x(:,i)); %min 
meanx(:,i)=mean(x(:,i)); %mean 
stx(:,i)=std(x(:,i)); %stddev 
skx(:,i)=skewness(x(:,i)); %skewness 
kux(:,i)=kurtosis(x(:,i)); %kurtosis 
end; 
 
timef = [mxx' mix' meanx' stx' skx' kux']; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Features obtained from the derivatives of the responses 
%3 features 
for i=1:size(data,2); 
q(:,i)=sum(abs(diff(data(:,i)))); 
q1(:,i)=sum(abs(diff(diff(data(:,i))))); 
q2(:,i)=sum(abs(diff(diff(diff(data(:,i)))))); 
end 
 
der=[q' q1' q2']; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Features from wavelet transformation 
%Wavelet Analylis:  
%[ca1mean1 ca1std1 cd1mean1 cd1std1 ca1CDVD3 ca1skew1 ca1kurt1] 
%7 features 
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for i=1:size(data,2); 
s(:,i)=data(:,i); 
s1(:,i)=[0;s(:,i)]; 
%s1(:,i)=[s(:,i)]; 
 
%Wavelet Transformation computes the approximate coefficients  
%vector, CA and detail coefficients vector, CD obtained by a  
%single level wavelet decomposition of the response vector  
%using the Daubechies window of order 2. 
 
[ca1(:,i),cd1(:,i)] = dwt(s1(:,i),'db2'); 
ss(:,i) = idwt(ca1(:,i),cd1(:,i),'db2'); 
err(:,i) = norm(s1(:,i)-ss(:,i)); 
[Lo_R,Hi_R] = wfilters('db2','r');  
ss(:,i) = idwt(ca1(:,i),cd1(:,i),Lo_R,Hi_R); 
ca1max(:,i)=max(ca1(:,i)); %ca max 
ca1min(:,i)=min(ca1(:,i)); %ca min  
ca1mean(:,i)= mean(ca1(:,i));%ca mean 
ca1std(:,i) = std(ca1(:,i)); %ca std 
ca1CV(:,i)=ca1std(:,i)/ca1mean(:,i); %ca coeff of var 
ca1skew(:,i)= skewness(ca1(:,i)); %ca skewness 
ca1kurt(:,i)= kurtosis(ca1(:,i)); %ca kurtosis 
cd1mean(:,i)=mean(cd1(:,i)); %cd mean 
cd1std(:,i)= std(cd1(:,i)); %cd std 
end; 
 
wc=[ca1max' ca1min' ca1mean' ca1std' ca1CV' ca1skew' ca1kurt' cd1mean' cd1std']; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Features by taking logarithmric value of the Fourier amplitude 
%logDFT Analylis: [max min mean stddev skewness kurtosis] 
%6 features 
 
for i=1:size(data,2); 
d(:,i)=data(:,i); 
Y(:,i) = fft(d(:,i)); 
Pyy=log(Y); 
lmxp=real(max(Pyy)); %max 
lmip=real(min(Pyy)); %min 
lmpow=real(mean(Pyy)); %mean 
lstpow=real(std(Pyy)); %stddev 
lskpow=real(skewness(Pyy)); %skewness 
lkupow=real(kurtosis(Pyy)); %kurtosis 
end; 
 
logdft = [lmxp' lmip' lmpow' lstpow' lskpow' lkupow']; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Features from Cepstral analysis 
% MFCC Analylis: [mean stddev skewness kurtosis] 
%4 features 
 
for i=1:size(data,2); 
    x(:,i)=data(:,i); 
ccepsco(:,i)=cceps(x(:,i)); 
mcep(:,i)=mean(ccepsco(:,i));%mean 
stcep(:,i)=std(ccepsco(:,i));%std 
skcep(:,i)=skewness(ccepsco(:,i));%skewness 
kucep(:,i)=kurtosis(ccepsco(:,i));%kurtosis 
end; 
 
mfcc = [mcep' stcep' skcep' kucep']; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Combining all the features extracted 
 
features=[timef,wc,logdft,mfcc,der]; 
save features features 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-2: Scaling 
 
%%%%%%%%%%%%%%%Program for extracting features%%%%%%%%%%%%% 
clear; 
clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%load the data 
load feaB.mat; 
checkmax = max(feaB); 
checkmin = min(feaB); 
check = [checkmin;checkmax]; 
size_matrix = size(feaB); 
total_samples = size_matrix(:,1); 
total_parameters = size_matrix(:,2); 
for k=1:total_parameters 
    minparam = check(1,k); 
    maxparam = check(2,k); 
    diff_param = maxparam - minparam; 
    if diff_param > 0 
        for l=1:total_samples 
            replace_val=(feaB(l,k)-minparam)/diff_param; 
            feaB_scaled(l,k) = replace_val; 
        end 
    end 
end 
save feaB_scaled feaB_scaled 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-3:Confusion Matrix 
 
%%%%%%%%%%%%%%%Program for Confusion Matrix%%%%%%%%%%%%% 
% CONFMAT Generates a confusion matrix% 
% c = confmat(x,y)% 
% Author Adrian Chan% 
% This function generates a confusion matrix.% 
% Inputs 
%    x: vector of what the signal should have been 
%    y: vector of what the signal was classified as% 
% Outputs 
%    c: confusion matrix (rows are inputs, colums are outputs)% 
% Modifications 
% 00/02/01 AC First created. 
% 01/01/18 AC c(i,j) = length(find(z == j)) 
%      changed to c(i-minx+1,j-minx+1) = length(find(z == j)) 
%             This allows any minx. 
 
function c = confmat(x,y) 
 
minx = min(x); 
maxx = max(x); 
 
c = zeros(maxx-minx); 
for i = minx:maxx 
   index = find(x == i); 
   for j = minx:maxx 
      z = y(index); 
      c(i-minx+1,j-minx+1) = length(find(z == j)); 
   end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-4: Backpropagation Neural Network (BPNN) 
 
%Also includes normalization of the dataset 
 
%%%%%%%%%%%%%%%Program for BPNN%%%%%%%%%%%%%%%%%% 
clear; 
clc; 
 
%generation of training and testing data 
training_data = []; %75 training 
testing_data = []; %25 testing 
 
%Load the scaled feature data set 
load featuresB_scaled.mat; 
features=featuresB_scaled; 
 
%Load the target output file for the different classes 
load out_basicB.mat; 
output=out_basicB; 
 
%Selecting the training and testing data set randomly 
num_of_training = round(.75*length(features(:,1))); 
num_of_testing = length(features(:,1)) - num_of_training; 
sam_number = [1:length(features(:,1))]'; 
alldata_scaled = [sam_number features output]; 
 
rand('seed',7171751); 
 
for i=1:num_of_training 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    training_data = [training_data;alldata_scaled(cur_index,:)]; 
end 
 
for i=1:num_of_testing 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    testing_data = [testing_data;alldata_scaled(cur_index,:)]; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Normalizing the training data set 
x=training_data(:,2:38)'; 
p=x; 
perexplained=0.01; 
        [pn,meanp,stdp] = prestd(p); 
x=pn'; 
ninput=size(x(1,:));  
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y=training_data(:,39); 
nsample=length(y); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Normalizing the testing data set                
xtest=testing_data(:,2:38)'; 
ptest=xtest; 
[pntest,meanp,stdp] = prestd(ptest); 
xtest=pntest'; 
ytest=testing_data(:,17); 
nsample1=length(ytest); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Input parameters for the BPNN 
no=input('Number of neurons in the hidden layer = '); 
%input the number of epochs 
e=input('Number of epochs = '); 
%input the termination error tolerance 
goal=input('Enter the maximum tolerable error = '); 
P=x; 
T=y; 
a=xtest; 
s=ytest; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Preprocesfeatures of the data  
%Some transfer functions need that the inputs and targets are scaled so that  
%they fall within a specified range. In order to meet this requirement we  
%need to pre-process the data 
%For PrepocesfeaturesBg Premnmx is used so that the maximum is +1 and minimum is 
%-1 
[pn,minp,maxp,tn,mint,maxt]=premnmx(P',T'); 
[an,mina,maxa,sn,mins,maxs]=premnmx(a',s'); 
 
%Feed forward network 
%Creating a feed forward neural net with one hidden layer,one hidden layer 
%with tangent sigmoid as transfer function in hidden layer and in the output  
%layer, and with gradient descent with momentum backpropagation training function 
%the syntax is  
%net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 
%here features set of the data is large the minmax command is used to get the max and 
%the min values of the input data 
net=newff(minmax(pn),[no 10 1],{'tansig','tansig','tansig','tansig'},'traingdm'); 
%input the number of epochs for which the network has to be trained 
net.trainParam.epochs=e; 
%input the maximum tolerable error 
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net.trainParam.goal=goal; 
%the network is trained with the training data 
net=init(net); 
net=train(net,pn,tn); 
 
%Testing 
%After training the network we simulate our testing data to see how well 
%our trained network predicts the output  
w=sim(net,an); 
%to convert the predicted output to the original scale the data has to be 
%postprocessed ufeaturesBg the postmnmx command 
predy=postmnmx(w',mins,maxs); 
nsample1=length(ytest); 
 
%to see the predicted nt and the actual outputs for the testing data  
for i=1:nsample1; 
if predy(i) < 1.5 
predy1(i)=1; 
else 
predy1(i)=2; 
end 
end 
 
d=[predy1'-ytest].^2; 
%mean square error 
mse=mean(d) 
%finding the root mean square error 
rmse=sqrt(mse) 
 
%Creating the confusion matrix 
cm=confmat(s,predy1')/nsample1 
cm1=confmat(s,predy1') 
 
%Accuracy of prediction by the network 
Accuracy=(cm(1,1)+cm(2,2))*100 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-5: Adaptive Neuro-fuzzy Inference System (ANFIS) 
 

%Also includes feature reduction (Principle Component Analysis PCA) 
 
%%%%%%%%%%%%%%%%%Program for ANFIS%%%%%%%%%%%%%%%% 
clear; 
clc; 
%generation of training and testing data 
training_data = []; %75 training 
testing_data = []; %25 testing 
 
%Load the scaled feature data set 
load featuresB_scaled.mat; 
features=featuresB_scaled; 
 
%Load the target output file for the different classes 
load out_basicB.mat; 
output=out_basicB; 
 
%Selecting the training and testing data set randomly 
num_of_training = round(.75*length(features(:,1))); 
num_of_testing = length(features(:,1)) - num_of_training; 
sam_number = [1:length(features(:,1))]'; 
alldata_scaled = [sam_number features output]; 
 
rand('seed',7171751); 
 
for i=1:num_of_training 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    training_data = [training_data;alldata_scaled(cur_index,:)]; 
end 
 
for i=1:num_of_testing 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    testing_data = [testing_data;alldata_scaled(cur_index,:)]; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Normalizing and applying PCA on the training data set 
x=training_data(:,2:38)'; 
p=x; 
 
%Principle Component Analysis 
% PREPCA preprocesses the network input training set by applying a principal 
%component analysis. 
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% This analysis transforms the input data so that the elements of the input vectors will be 
%uncorrelated. In addition, the size of the input vectors may be reduced by retaining only 
those components which contribute more than a specified fraction (min_frac) of the total 
variation in the data set. 
 
% PREPCA(p,min_frac) takes these inputs:      
% P- RxQ matrix of centered input (column) vectors. 
% min_frac - Minimum fraction variance component to keep and returns: 
% Ptrans   - Transformed data set. 
% TransMat - Transformation matrix. 
      
perexplained=0.01;%min_frac 
        [pn,meanp,stdp] = prestd(p); 
        [ptrans,transMat] = prepca(pn,perexplained); 
        while (length(ptrans(:,1))) > 3; 
            perexplained=perexplained+0.01; 
[ptrans,transMat] = prepca(pn,perexplained); 
        end; 
             
x=ptrans'; 
ninput=size(x(1,:)); %number of input vectors (after PCA) for prediction 
y=training_data(:,39); 
nsample=length(y); 
 
%Input the number of epochs for which the network is trained 
epoch_n = 50; 
 
% genfis1 generates a single-output Sugeno-type fuzzy inference system (FIS) using a 
%grid  partition on the data (no clustering). By default, GENFIS1 uses two 'gbellmf' type 
%membership functions for each input. Each rule generated by GENFIS1 has one output  
% membership function, which is of type 'linear' by default. 
 
% anfis uses a hybrid learning algorithm to identify the membership function parameters 
%of single-output, Sugeno type fuzzy inference systems (FIS). A combination of least-
%squares and backpropagation gradient descent methods are used for training. 
     
in_fis  = genfis1([x y],2,'gbellmf'); 
out_fis = anfis([x y],in_fis,epoch_n); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Normalizing and applying PCA on the testing data set     
xtest=testing_data(:,2:38)'; 
ptest=xtest; 
 
perexplained=0.01; 
        [pntest,meanp,stdp] = prestd(ptest); 
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        [ptranstest,transMattest] = prepca(pntest,perexplained); 
        while (length(ptranstest(:,1))) > 3; 
            perexplained=perexplained+0.005; 
[ptranstest,transMattest] = prepca(pntest,perexplained); 
        end; 
         
xtest=ptranstest';   
ytest=testing_data(:,39); 
nsample1=length(ytest); 
 
%After training the network we simulate our testing data to see how well the trained 
%network predicts the output  
predy= evalfis(xtest,out_fis); 
 
%to see the predicted nt and the actual outputs for the testing data  
for i=1:nsample1; 
if predy(i) < 1.5 
predy1(i)=1; 
else 
predy1(i)=2; 
end 
end 
 
%confusion matrix 
cm=confmat(ytest,predy1')/nsample1 
cm1=confmat(ytest,predy1') 
 
%Accuracy of prediction by the network 
Accuracy=(cm(1,1)+cm(2,2))*100 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-6: k-Nearest Neighbor Classifier 
 
%Also includes normalization of the dataset 
 
%%%%%%%%%%%%%%%%Program for k-NN%%%%%%%%%%%%%%%%%% 
clear; 
clc; 
%generation of training and testing data 
training_data = []; %75 training 
testing_data = []; %25 testing 
 
%Load the scaled feature data set 
load featuresB_scaled.mat; 
features=featuresB_scaled; 
 
%Load the target output file for the different classes 
load out_basicB.mat; 
output=out_basicB; 
 
%Selecting the training and testing data set randomly 
num_of_training = round(.75*length(features(:,1))); 
num_of_testing = length(features(:,1)) - num_of_training; 
sam_number = [1:length(features(:,1))]'; 
alldata_scaled = [sam_number features output]; 
 
rand('seed',7171751); 
 
for i=1:num_of_training 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    training_data = [training_data;alldata_scaled(cur_index,:)]; 
end 
 
for i=1:num_of_testing 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    testing_data = [testing_data;alldata_scaled(cur_index,:)]; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Normalizing the trining data set 
x=training_data(:,2:38)'; 
p=x; 
perexplained=0.01; 
        [pn,meanp,stdp] = prestd(p); 
x=pn'; 
ninput=size(x(1,:));  
y=training_data(:,39); 



 184

nsample=length(y); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Normalizing the testing data set                
xtest=testing_data(:,2:38)'; 
ptest=xtest; 
[pntest,meanp,stdp] = prestd(ptest); 
xtest=pntest'; 
ytest=testing_data(:,17); 
nsample1=length(ytest); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Class = knnclassify(Sample, Training, Group) classifies the rows of the data matrix 
%Sample into groups, based on the grouping of the rows of Training. Sample and 
%Training must be matrices with the same number of columns. Group is a vector whose 
%distinct values define the grouping of the rows in Training.  
 
[predy]=knnclassify(xtest,x,y); 
 
%creating confusion matrix 
cm=confmat(ytest,predy)/nsample1 
cm1=confmat(ytest,predy) 
 
%accuracy of prediction 
Accuracy=(cm(1,1)+cm(2,2)+cm(3,3)+cm(4,4))*100 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-7: Linear Discriminate Classifier 
 
%Also includes normalization of the dataset 
 
%%%%%%%%%%%%%%%%Program for LDA%%%%%%%%%%%%%%%%%% 
clear; 
clc; 
%generation of training and testing data 
training_data = []; %75 training 
testing_data = []; %25 testing 
 
%Load the scaled feature data set 
load featuresB_scaled.mat; 
features=featuresB_scaled; 
 
%Load the target output file for the different classes 
load out_basicB.mat; 
output=out_basicB; 
 
%Selecting the training and testing data set randomly 
num_of_training = round(.75*length(features(:,1))); 
num_of_testing = length(features(:,1)) - num_of_training; 
sam_number = [1:length(features(:,1))]'; 
alldata_scaled = [sam_number features output]; 
 
rand('seed',7171751); 
 
for i=1:num_of_training 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    training_data = [training_data;alldata_scaled(cur_index,:)]; 
end 
 
for i=1:num_of_testing 
    cur_index = randint(1,1,[1 length(features(:,1))]); 
    testing_data = [testing_data;alldata_scaled(cur_index,:)]; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Normalizing the training data set 
x=training_data(:,2:38)'; 
p=x; 
perexplained=0.01; 
        [pn,meanp,stdp] = prestd(p); 
x=pn'; 
ninput=size(x(1,:));  
y=training_data(:,39); 
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nsample=length(y); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Normalizing the testing data set                
xtest=testing_data(:,2:38)'; 
ptest=xtest; 
[pntest,meanp,stdp] = prestd(ptest); 
xtest=pntest'; 
ytest=testing_data(:,17); 
nsample1=length(ytest); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% [CLASS,ERR] = CLASSIFY(SAMPLE,TRAINING,GROUP) classifies each row of 
%the data in SAMPLE into one of the groups in TRAINING.  SAMPLE and TRAINING 
%must be  matrices with the same number of columns.  GROUP is a grouping variable 
%for TRAINING or the target output value. Err is the misclassification rate 
 
[predy,erry]=classify(xtest,x,y); 
 
%creating the confusion matrix 
cm=confmat(ytest,predy)/nsample1 
cm1=confmat(ytest,predy) 
 
%accuracy of prediction and classification 
Accuracy=(cm(1,1)+cm(2,2)+cm(3,3)+cm(4,4))*100 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Matlab Chapter 5-8: Fuzzy c-mean clustering (FCM) 
 
%%%%%%%%%%%%%%%Program for FCM%%%%%%%%%%%%%%%%%% 
clear; 
clc; 
 
%Load the data 
load featuresB.mat 
data=featuresB; 
rand('seed',717171); 
   
% [CENTER, U, OBJ_FCN] = FCM(DATA, N_CLUSTER) finds N_CLUSTER number 
%of clusters in the data set DATA. DATA is size M-by-N, where M is the number of 
% data points and N is the number of coordinates for each data point. The coordinates for 
%each cluster center are returned in the rows of the matrix CENTER. The membership 
%function matrix U contains the grade of membership of each DATA point in each 
%cluster. The values 0 and 1 indicate no membership and full membership respectively. 
%Grades between 0 and 1 indicate that the data point has partial membership in a cluster. 
%At each iteration, an objective function is minimized to find the best location for the 
%clusters and its values are returned in OBJ_FCN 
 
[center,U,obj_fcn] = fcm(data,2); 
             
maxU = max(U); 
% Find the data points with highest grade of membership in cluster 1 
index1 = find(U(1,:) == maxU); 
 
% Find the data points with highest grade of membership in cluster 2 
index2 = find(U(2,:) == maxU); 
 
 c1(1:length(index1))=1; 
 c2(1:length(index2))=2; 
 ind1=[index1' c1']; 
 ind2=[index2' c2']; 
 
 tot=[ind1;ind2]; 
 q=sortrows(tot); 
  
 %predicted outputs by FCM 
 predy=q(:,2); 
  
%load target output   
load out_basicB.mat; 
s=out_basicB; 
nsample=length(data); 
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%creating conusion matrix 
cm=confmat(s,predy) 
cm1=confmat(s,predy)/nsample 
 
%accuracy of prediction 
accuracy=(cm1(1,1)+cm1(2,2))*100 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix C 

Developed LS-DYNA Input file  

*KEYWORD 
*TITLE 
LS-DYNA keyword deck by LS-PRE                                                   
*CONTROL_ACCURACY 
$#     osu       inn    pidosu 
         1         1 
*CONTROL_DYNAMIC_RELAXATION 
$#  nrcyck     drtol    drfctr    drterm    tssfdr    irelal     edttl    idrflg 
       250  0.001000  0.995000     0.000     0.000         0  0.040000 
*CONTROL_TERMINATION 
$#  endtim    endcyc     dtmin    endeng    endmas 
  0.120000 
*CONTROL_TIMESTEP 
$#  dtinit    tssfac      isdo    tslimt     dt2ms      lctm     erode     ms1st 
     0.000  0.500000         2 
$#  dt2msf   dt2mslc 
     0.000         0 
*DATABASE_NODOUT 
$      PID     SECID     MID     EOSID     HGID     GRAV     ADPOPT     TMID 
$#      dt    binary 
 1.0000E-5         1 
*DATABASE_BINARY_D3PLOT 
$#      dt      lcdt      beam     npltc 
 5.0000E-4 
$#   ioopt 
         0 
*DATABASE_EXTENT_BINARY 
$#   neiph     neips    maxint    strflg    sigflg    epsflg    rltflg    engflg 
         0         0         3         1         1         1         1         1 
$#  cmpflg    ieverp    beamip     dcomp      shge     stssz    n3thdt   ialemat 
         0         1         0         1         1         1         2         1 
$# nintsld 
         1 
*DATABASE_HISTORY_NODE_SET 
$#     id1       id2       id3       id4       id5       id6       id7       id8 
         5 
*BOUNDARY_NON_REFLECTING_2D 
$#    nsid 
         2 
         3 
*BOUNDARY_SPC_NODE 
$#     nid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 
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    355216         0         1         1 
*BOUNDARY_SPC_SET 
         1         0         1 
*SET_NODE_LIST_TITLE 
LB 
$      SID       DA1       DA2       DA3       DA4 
         1 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
*LOAD_NODE_POINT 
$#     nid       dof      lcid        sf       cid        m1        m2        m3 
         1         2         1  1.000000 
*PART 
$# title 
MISS1                                                                            
$      PID     SECID     MID     EOSID     HGID     GRAV     ADPOPT     TMID 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         1         1         1 
*SECTION_SHELL_TITLE 
section 
$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 
         1        15  0.850000         4         1     0.000         0         1 
$#      t1        t2        t3        t4      nloc     marea 
     0.000     0.000     0.000     0.000         0     0.000 
*MAT_ELASTIC_TITLE 
material 
$#     mid        ro         e        pr        da        db  not used 
         1  0.002340 45000.000  0.250000 
*DEFINE_CURVE_TITLE 
LCur_1 
$     LCID      SIDR       SFA       SFO      OFFA      OFFO    DATTYP 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
         1         0  1.000000  1.000000 
$                 A1                  O1 
$#                a1                  o1 
*SET_NODE_LIST_TITLE 
RB 
$      SID       DA1       DA2       DA3       DA4 
$#     sid       da1       da2       da3       da4 
         2 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
*SET_NODE_LIST_TITLE 
BB 
$      SID       DA1       DA2       DA3       DA4 
$#     sid       da1       da2       da3       da4 
         3 
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$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
*SET_NODE_LIST_TITLE 
TB 
$      SID       DA1       DA2       DA3       DA4 
$#     sid       da1       da2       da3       da4 
         4 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
*SET_NODE_LIST_TITLE 
STB 
$      SID       DA1       DA2       DA3       DA4 
$#     sid       da1       da2       da3       da4 
         5 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
         2        10        18        26        34        42        50        58 
        66        74        82        90        98       106       114       122 
       130       138       146       154       162       170       178       186 
       194       202       210       218       226       234       242       250 
       258       266       274       282       290       298       306       314 
       322       330       338       346       354       362       370       378 
       386       394       402       410       418       426       434       442 
       450       458       466       474       482       490       498       506 
       514       522       530       538       546       554       562       570 
       578       586       594 
*DAMPING_GLOBAL 
$#    lcid    valdmp       stx       sty       stz       srx       sry       srz 
         0  8.595253 
*DAMPING_PART_STIFFNESS 
$#     pid      coef 
         1 1.9558E-5 
*ELEMENT_SHELL 
$    EID     PID    NID1    NID2    NID3    NID4 
$#   eid     pid      n1      n2      n3      n4 
*NODE 
$    NID               X               Y               Z      TC      RC 
$#   nid               x               y               z      tc      rc 
*END 
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Appendix D: Contour Plots of different sources 
 

Ricker Source 

 
Figure A.1: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a small void (Ricker) 

 
Figure A.2: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a medium void (Ricker) 
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Figure A.3: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a large void (Ricker) 
 

Impact Source 

 
Figure A.4: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a small void (Impact) 
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Figure A.5: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a medium void (Impact) 

 
Figure A.6: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a large void (Impact) 
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Decaying Sinusoidal Source 

 
 

Figure A.7: Contour plot of the normalized vertical responses along the surface of the 
model in the presence of a small void (Sinusoidal) 

 
Figure A.8: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a medium void (Sinusoidal) 
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Figure A.9: Contour plot of the normalized vertical responses along the surface of the 

model in the presence of a large void (Sinusoidal) 
 
 

 

 

 

 

 

 

 

 

 


