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Abstract

The KioskNet project aims to provide extremely low-cost Internet access to rural

kiosks in developing countries, where conventional access technologies, e.g., DSL,

CDMA and dial-up, are currently economically infeasible. In the KioskNet ar-

chitecture, an Internet-based proxy gathers data from the Internet and sends it

to a set of edge nodes, called “gateways” from which ferries, such as buses and

cars, opportunistically pick up the data using short-range WiFi as they drive past,

and deliver it wirelessly to kiosks in remote villages. The first part of this the-

sis studies the downlink scheduling problem in the context of KioskNet. We pose

the following question: assuming knowledge of the bus schedules, when and to

which gateway should the proxy send each data bundle so that 1) the bandwidth

is shared fairly and 2) given 1), the overall delay is minimized? We show that an

existing schedule-aware scheme proposed in the literature, i.e., EDLQ [11], while

superficially appearing to perform well, has some inherent limitations which could

lead to poor performance in some situations. Moreover, EDLQ does not provide

means to enforce desired bandwidth allocations. To remedy these problems, we

employ a token-bucket mechanism to enforce fairness and decouple fairness and

delay-minimization concerns. We then describe a utility-based scheduling algo-

rithm which repeatedly computes an optimal schedule for all eligible bundles as

they come in. We formulate this optimal scheduling problem as a minimum-cost

network-flow problem, for which efficient algorithms exist. Through simulations,

we show that the proposed scheme performs at least as well as EDLQ in scenarios

that favour EDLQ and achieves up to 40% reduction in delay in those that do not.

Simulation results also indicate that our scheme is robust against the randomness

in actual timing of buses.

The second part of the thesis shares some of our experience with building and

testing the software for KioskNet. We subjected a prototype of the KioskNet sys-

tem, built on top of the DTN reference implementation, to stress tests and were able

to identify and fix several software defects which severely limited the performance.

From this experience, we abstract some general principles common to software that

deals with opportunistic communication.
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Chapter 1

Introduction

Rural Internet kiosks in developing countries provide a variety of services such as

birth, marriage, and death certificates, land records, and consulting on medical

and agricultural problems. Fundamental to a kiosk’s operation, among others, is

its connection to the Internet. Unfortunately, most existing access technologies,

such as dial-up, VSAT, and GPRS, are either not present in those areas, or too

costly given local economic conditions.

Delay-tolerant networking (DTN) has emerged as an attempt to extend the

reach of networks. It defines a message-oriented overlay above the transport layer

and employs the store-and-forward mechanism to deliver messages from senders to

receivers without requiring end-to-end connectivity[8]. DTN opens new possibilities

in providing Internet access to remote rural communities. The DakNet [17] project

was the first to put the theory into practice, where vehicles with onboard wireless

routers were used to carry data back and forth between rural kiosks and Internet

hubs in neighbouring cities. Based on the same basic idea, the KioskNet [19] project

provides a comprehensive solution for rural kiosk networks, encompassing naming,

addressing, routing, user mobility management, application support, and security.

An architecture for rural kiosk networks is proposed in [19]. As depicted in

Figure 1.1, the architecture contains four major components: rural kiosks, buses,

Internet gateways, and a proxy server. Kiosks are where end users send and receive

data. Buses serve as mechanical backhaul [19], ferrying data between the kiosks and

Internet gateways, using short-range WiFi to download and upload data as they

drive past. Internet gateways (or gateways for short), usually located in nearby

1



Figure 1.1: An architecture for rural kiosk networks proposed in the KioskNet

project.

towns or cities, have persistent Internet connections such as dial-up or DSL, whose

job is to forward data to and receive data from the proxy, which is a well-provisioned

machine on the Internet. The proxy communicates on behalf of users with legacy

servers such as web servers, FTP servers, and mail servers. In the uplink direction

(i.e., from kiosks to servers), the proxy receives requests from users and initiates

communication with legacy servers. In the downlink direction (i.e., from servers to

the kiosks), the proxy buffers data it receives from legacy servers and forwards the

data to the gateways, from which the buses opportunistically pick up the data and

eventually deliver it to the destination kiosks.

The first part of this thesis studies the downlink scheduling problem in the

context of KioskNet. In the downlink direction, the proxy essentially acts as an

2



application-layer switch. Its incoming (from other servers to the proxy) and outgo-

ing (from the proxy to gateways) links are logical links, typically TCP connections.

Data arriving from the Internet to the proxy is fragmented and encapsulated into

fixed-sized bundles, which are stored in the proxy’s buffer. Whenever an outgoing

link becomes free, we say the link presents a transmission opportunity to the proxy.

The job of the proxy is to choose a bundle from its buffer and transmit the bun-

dle over that link. The downlink scheduling problem asks the following question:

assuming knowledge of the bus schedules, when and to which gateway should the

proxy send each data bundle so that 1) the bandwidth is shared fairly and 2) given

1), the overall delay is minimized?

By assigning transmission opportunities to bundles, the proxy either explicitly

or implicitly selects a gateway for each bundle and decides the order in which

different users are served. Existing schemes tend to decouple these two tasks. What

they usually do is select an outgoing link immediately after a bundle arrives, enter

the bundle into a buffer associated with the chosen link, and apply a scheduling

discipline such as FCFS or Round-Robin to each individual link to determine the

order in which bundles are served. The best of such schemes to our knowledge

is EDLQ [11], which, as we will show, while superficially appearing to work well,

suffers from several inherent limitations which could lead to poor performance in

some situations. We propose a novel scheme where token buckets are used to ensure

fair allocation of bandwidth and where a scheduler repeatedly computes an optimal

schedule for all admitted bundles as they arrive. The schedule computed by the

scheduler minimizes the total delay of all admitted bundles.

The second part of the thesis shares some experience with building and test-

ing the software for KioskNet. The success of KioskNet depends heavily on the

robustness of the software and its ability to deliver high throughput during oppor-

tunistic connection periods. We subjected our software to stress tests and were

able to identify and fix several performance bottlenecks. From this experience, we

abstract some general principles common to software that deals with opportunistic

communication.
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1.1 Contributions

This thesis makes the following contributions:

1. A novel scheme for the downlink scheduling problem that overcomes the short-

comings of existing schemes.

2. Evaluation of the proposed scheme in both situations where buses follow their

schedules precisely and situations where they do not.

3. Principles, abstracted from our experience with building and testing the soft-

ware for KioskNet, that are common to software that deals with opportunistic

communication

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 we study the downlink

scheduling problem. Chapter 3 shares some experience with building and testing the

software for KioskNet. Related work is summarized in Chapter 4. Finally, Chapter

5 concludes the thesis and discusses some potential future research directions.
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Chapter 2

The Downlink Scheduling

Problem

In this chapter, we study an algorithmic problem that arises in the context of

KioskNet, namely downlink scheduling, where the goal is to minimize delay while

enforcing desired allocation of bandwidth. The following sections define the sys-

tem model and objective in a semi-formal manner, provide some insights into this

seemingly simple yet subtle and challenging problem by showing how some näıve

approaches can lead to unnecessarily long delay, present our solution, and finally

evaluate our solution using simulations.

2.1 System Model and Objective

In this section, we define the system model and objective of the downlink scheduling

problem in a semi-formal manner.

2.1.1 System Model

Figure 2.1 shows the flow of data and the roles of various components of the system.

Data arriving from external servers to the proxy is fragmented and encapsulated

into fixed-length bundles and stored in the proxy’s buffer. We use arr(b) and

dst(b) to denote the arrival time and index of the destination kiosk of bundle b,

5



Figure 2.1: System model

respectively. The delay of a bundle is measured from the moment it arrives at the

proxy to the moment it is delivered to the destination kiosk. A bundle is the unit

of scheduling. There is a logical link between the proxy and each gateway — in

reality, typically a TCP connection. The proxy is usually hosted in a data centre,

provisioned with effectively unlimited inbound and outbound network bandwidth.

The gateways, on the other hand, are usually connected to the Internet via DSL,

which typically provides a data rate of around 100 Kbps. As a result, the bandwidth

of individual links between the proxy and the gateways are limited by the capacity

of the DSL subscription the gateways have. In our model, we assume that all

proxy-gateway links have the same constant data rate r1 and that the proxy may

communicate with any number of gateways simultaneously. We also assume the

latency between the proxy and the gateways is negligible. Because we assume

bundles all have a fixed size, it takes a fixed amount of time to transfer a bundle

from the proxy to any gateway.

A link is said to be free or idle when no data is being transmitted over that

link, otherwise it is said to be busy. Whenever a link becomes free, the scheduler

may either select a bundle from the buffer and send the bundle over that link or

decide to leave the link idle. Data sent to a gateway is temporarily buffered at the

1Our solution only requires the rate of each individual proxy-gateway link to be constant over
time, but does not require all the rates to be the same. Allowing the rates to be different only
makes the discourse lengthy without offering additional insight.
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gateway, waiting to be picked up by a bus that would take it to the destination

kiosk.

The gateways and kiosks are connected by bus routes. Bus schedules define

the start and end times of opportunistic connection windows that happen when

a bus passes a gateway or a kiosk. We assume that the schedules of all buses

are known to us and that the buses follow their schedules precisely. We further

assume, as an approximation, that during an opportunistic connection window, the

bandwidth of the wireless link between the two parties is infinite, and that therefore

data transfer over wireless links finishes instantly.2 Given these assumptions, by

applying a modified version of Dijkstra’s shortest path algorithm [11], we can tell

exactly what the earliest possible delivery time of a bundle would be if it were to

be sent to a given gateway at a given time. Essentially, the bus schedules define a

function Di,j(t) for each kiosk-gateway pair 〈ki, gj〉, which is the delivery time of a

bundle destined to kiosk ki if it were to be sent to gateway gj at time t. If there

are no bus routes from gateway gj to kiosk ki, Di,j(t) = ∞ for all t.

Note that Di,j(t) is necessarily monotonically increasing. For any two bundles

b1 and b2 with dst(b1) = dst(b2) = i, if they are both sent to gateway gj at time t1

and t2, respectively, with t1 < t2, then b1 can always be delivered no later than b2.

On the other hand, Di,j(t) is not strictly increasing — that is, b1 may be delivered

at the same time as b2, which is the case if between t1 and t2 no bus departs from

gateway gj for kiosk ki. In fact, Di,j(t) is a step function, an example of which is

given in Figure 2.2. Jumps in delivery time occur when buses leave the gateway in

question.

2.1.2 Fairness Requirement

Given the unlimited inbound bandwidth of the proxy and the limited capacities of

proxy-gateway links, traffic may arrive at the proxy at a higher rate than it can

leave the proxy, which, coupled with our assumption that all wireless links have

2This assumption is not as strong as it might appear. Even if buses pass a gateway only
once a day, it would take less than 3 minutes to transfer, using WiFi at 54 Mbps, the data that
the gateway has accumulated at 100 Kbps over the course of a day. Even though the actual
throughput of WiFi is well below the nominal rate (around 50% at 54 Mbps), given moderately
frequent contact opportunities, the time it would take to transfer all pending data is negligible.
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Figure 2.2: An example of step function Di,j(t). The x axis is the time when a

bundle is sent to gateway gj and the y axis the expected time when the bundle is

delivered to kiosk ki.

infinite bandwidth, indicates that the proxy-gateway links are the only bottlenecks

of the system. Sharing of the bandwidth of the proxy-gateway links therefore must

be regulated in some fashion.

But among whom should the bandwidth be allocated? It is argued in [5] that

resources (or cost) should be allocated among economic entities. We consider each

kiosk to be an economic entity to which a fair share of bandwidth is allocated. A

kiosk owner pays the network provider a certain subscription fee which is directly

related to the amount of bandwidth this kiosk gets allocated. The kiosk owner

then charges end users who access the network through the kiosk. This provides

economic incentives for kiosk owners to subscribe to an appropriate amount of

bandwidth according to the sizes of their businesses. In the rest of the chapter we

shall use the term “kiosk” interchangeably with the term “user”.

During times of congestion, we require that each kiosk be guaranteed the amount

of bandwidth allocated to it. A kiosk that downloads excessive amount of traffic

that exceeds its allocated rate should not negatively impact the service received by

8



other kiosks. The measures of quality of service include delay and loss ratio3.

2.1.3 Objective

The objective of the downlink scheduling problem is to minimize overall bundle

delay across all kiosks subject to the fairness requirement described in Section

2.1.2.

2.2 Existing Techniques

Three schemes are proposed in [11] for routing in delay tolerant networks where

information of precise future contact schedules is available, namely Earliest Delivery

(ED), Earliest Delivery with Local Queuing (EDLQ), and Earliest Delivery with All

Queues (EDAQ). We summarize them here.

2.2.1 ED

All three schemes use a modified Dijkstra’s algorithm, which can be applied to

a graph with time-varying edge costs, to find shortest paths. The simplest of all

three, ED, assumes zero queuing delay at any nodes. Using this algorithm, the

proxy selects for an incoming bundle a gateway that will result in the earliest

delivery, assuming that the bundle can be sent to the gateway immediately. In

other words, if the proxy receives a bundle destined to kiosk ki at time t, it chooses

gateway gj∗ such that

j∗ = arg min
j

Di,j(t).

This works well when queuing delays are negligible. In our case, however, the

queuing delay at the proxy can be substantial due to the asymmetry in bandwidth

of incoming and outgoing channels. The actual time the bundle can be sent to

3The reason why there may be losses is not because the buffer size is limited — the fact that
nodes store data in their persistent storage means that there is effectively unlimited storage space.
The real reason for losses is that if there is a sustained overload, dropping bundles is the only way
to keep the system stable.
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gateway gj∗ is t+∆j∗ , where ∆j∗ is queuing delay before the bundle can be sent to

gateway gj∗ , and there may well be another gateway gj� such that

Di,j�(t + ∆j�) < Di,j∗(t + ∆j∗).

Then gateway gj� will be a better choice than gateway gj∗ .

2.2.2 EDLQ

EDLQ is superior to ED in that it considers local queuing delay. Compared to ED,

it chooses gateway gj∗ such that

j∗ = arg min
j

Di,j(t + ∆j).

Note that Di,j(t + ∆j) is an accurate estimate of the delivery time if the bundle is

to be sent to gateway gj. Therefore, EDLQ is able to find a best gateway for the

incoming bundle, given there is a way to compute ∆j at the time the bundle arrives.

This is only possible when bundles for which the same gateway is chosen are served

in FIFO order. To compute ∆j then, we just need to see how many bundles are

already in the queue for gateway gj and multiply the number by 1/r, the time it

takes to transmit one bundle. In contrast, ED does not dictate the order in which

bundles with the same gateway choice are served.

2.2.3 EDAQ

EDAQ takes another step forward by considering not only local queuing delay, but

all queuing delay along a path. Under our assumption that the bandwidth of all

wireless links is infinite, however, queuing delay only occurs at the proxy. Therefore,

EDLQ and EDAQ is equivalent in our system model.

2.3 What is Wrong with EDLQ

At a first sight, EDLQ appears to be a viable solution to our problem. It is able

to accurately estimate delivery times and always chooses gateways that will result

in the earliest delivery. When the load is high, it is able to respond to the increase

10



Figure 2.3: A scenario where EDLQ performs well. The top axis shows the schedule

of buses from gateway g1 to kiosk k1 and the bottom one shows the schedule of buses

from gateway g2 to kiosk k1. Each arc represents one bus trip, with the tail of the

arc indicating the time when the bus leaves the gateway and the head indicating

the time when the bus arrives at the kiosk. (Same graphical representation of bus

schedules used in other figures)

in the local queue length by spreading the load across multiple links. Consider the

scenario shown in Figure 2.3 which involves one kiosk and two gateways. Suppose

initially the queues for both gateways are empty and that at time t0, the proxy

receives a batch of bundles destined to kiosk k1. Using ED, the proxy will place

all the bundles in the queue for gateway g1. If not all bundles can be sent to

gateway g1 before t1, those that are sent after t1 can only be delivered at time

t7, while leaving gateway g2 totally unused. On the other hand, if EDLQ is used,

after putting a certain number of bundles in the queue for gateway g1, the proxy

will realize that any bundles put in g1’s queue afterwards would not be sent before

t1, and therefore will place the rest of the bundles in gateway g2’s queue, thereby

achieving the shortest possible delay.

It may seem the problem is solved, but a closer study reveals three limitations

of EDLQ which could lead to poor performance in some situations. The first —

and most obvious — is that EDLQ cannot guarantee fair allocation of bandwidth.

The fact that EDLQ relies on bundles being served in FIFO order allows a kiosk

that requests an excessive amount of data to dominate the usage of bandwidth.

One could argue that EDLQ is just a routing algorithm and is not charged with

providing fairness in the first place, and that therefore it is not a problem with

EDLQ itself. However, the point we are making here is that at least EDLQ alone

is not sufficient to serve our purposes.
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Figure 2.4: A scenario where EDLQ performs poorly due to its greedy nature.

The second problem with EDLQ stems from the greedy nature of EDLQ. Al-

though as shown before it has the ability to switch to a secondary path when there

is load on the primary path, sometimes such actions come too late. Consider the

scenario shown in Figure 2.4 which is similar to the scenario shown in Figure 2.3.

The only difference is that now the buses that go from gateway g2 to kiosk k1 leave

g2 earlier than they do in the previous scenario. Now let’s suppose the proxy re-

ceives a batch of bundles at time t0. It finds that there is just enough time to send

all the bundles to gateway g1 before t2, so it puts all the bundles in the queue for

g1. Shortly after t1, the proxy receives another batch. No bundle from the second

batch can be sent to g1 before t2 because the bundles from the first batch already

occupied all the slots before t2. At this time, even if we send these bundles to

gateway g2, we cannot expect them to be delivered at t4, since the bus that will

arrive at kiosk k1 at t4 has already left. As a result, the delivery time of the second

batch can only be t7 or later. Had we sent some bundles from the first batch to g2

— which delays their delivery slightly, from t3 to t4 — we would have saved some

slots for the second batch, which could bring forward the delivery time of at least

some bundles from the second batch from t7 to t3, a significant reduction in delay.

The reason why EDLQ fails to be optimal in this case is because EDLQ chooses

gateways greedily, with no regard to the fact that a path that is only slightly worse

may disappear soon and the next path in line may be considerably worse.

Finally, the third problem with EDLQ lies with the its inability to reorder

bundles. Consider the scenario shown in Figure 2.5. t0, t1, . . . , t10 are evenly spaced,

with ti+1 − ti = δ. In this paragraph we shall use the term “batch” to refer to the

set of bundles that would take time δ to be transferred from the proxy to a gateway.

Suppose the proxy receives two batches for kiosk k1 at time t0, and one batch for

kiosk ki at time ti−1, i = 2, 3, 4. Using EDLQ which serves bundles in the order of
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Figure 2.5: A scenario where EDLQ performs poorly due to its inability to reorder

bundles.

arrival, the first batch for kiosk k1 will be transmitted between t0 and t1, and the

second batch between t1 and t2. The batch for kiosk ki will be transmitted between

ti and ti+1, i = 2, 3, 4. As a result, the first batch for kiosk k1 will experience a

delay of 3δ, while all the other batches will experience a delay of 7δ. The optimal

scheduling in this case is to send the first batch for kiosk k1 between t0 and t1,

the batch for kiosk ki between ti−1 and ti, i = 2, 3, 4, and finally send the second

batch for kiosk k1 between t4 and t5. This way, all batches except the second batch

for kiosk k1 will experience a delay of 3δ, and the second batch for kiosk k1 will

experience a delay of 7δ. Compared to the optimal scheduling, EDLQ more than

doubles the delay of three of the five batches. It is not hard to see that, by adding

more kiosks, we can construct scenarios where EDLQ performs arbitrarily badly

compared to the optimal scheduling.

2.4 Our Solution

In this section we present our utility-based approach to downlink scheduling in

rural kiosk networks. To ensure fair bandwidth allocation, we use a token-bucket

traffic regulator for each kiosk, where the token arriving rates reflect the allocated
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bandwidth. We associate some utility with every bundle transmitted, which cap-

tures the “value” of sending a bundle based on the delay it will experience. Every

time new bundles are admitted by the token-bucket regulators, the scheduler is

invoked to compute a bundle transmission schedule4 for all admitted bundles —

which determines which bundle should be sent to which gateway at what time —

that would maximize the total utility. The subsequent subsections describes our

solution in more detail.

2.4.1 Token-Bucket Traffic Regulator

A token-bucket traffic regulator (or TB regulator for short)has two parameters:

filling rate σ and depth d. A token is added to the bucket every 1/σ time units,

unless the bucket already has d tokens — in which case the token is discarded.

Traffic destined to each kiosk is subject to a separate TB regulator. When a bundle

b destined to kiosk ki arrives, if the bucket associated with ki is not empty, one token

is removed from the bucket and b becomes eligible. Eligible bundles are buffered in

per-kiosk post-bucket queues. If the bucket is empty, b will be temporarily buffered

in a pre-bucket queue. The pre-bucket queue has a fixed capacity. If the pre-bucket

queue is full, new arriving bundles will be dropped. An illustration of a proxy with

TB regulators is given in Figure 2.6.

The filling rate controls how fast bundles can pass the regulator in the long run.

To meet the fairness requirement, we just need to set the filling rate of kiosk ki’s

token bucket according to kiosk ki’s allocated rate. To be able to provide bandwidth

guarantees at all times, the sum of rates allocated to all kiosks is not allowed to

exceed the capacity of the system, i.e., no over-booking is permitted, which means

that bundles cannot become eligible faster than they can leave the proxy and once

a bundle becomes eligible, it can be guaranteed to be delivered in finite time. A

well-behaving kiosk, which does not request data faster than its allocated rate, will

have all the requested data delivered to it. An ill-behaving kiosk, on the other

hand, will eventually fill up its pre-bucket queue and experience losses.

The use of TB regulators decouples fairness and delay minimization. The sched-

uler only considers the set of eligible bundles and focuses solely on delay minimiza-

4This schedule should not be confused with bus schedules. The meaning of the term “schedule”
should be clear from its context.
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Figure 2.6: Token Bucket

tion, without any regard to fairness. It significantly simplifies the design of the

scheduler as compared to one that has to concern itself with both fairness and delay

minimization.

The limitation of TB regulators is that they are sometimes too conservative.

There may be times when bundles are blocked by the regulators while the links

sit idle. One work-around to this problem is using a large value for bucket depth.

A deep bucket does not start throttling traffic until the traffic has been over limit

for a sufficiently long time, so the likelihood of simultaneous occurrence of bundles

being blocked and links sitting idle is smaller. Another solution is to bypass the TB

regulators when the system is underloaded, and enable them only when there are

already a certain number of eligible bundles. This way, we can ensure that there is

always some work to keep the links busy.

2.4.2 Utility Model

Intuitively, the usefulness of a bundle depends on the delay it has experienced and

the time at which it is delivered. We define a utility function U(x, y) that captures
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that usefulness of a bundle that has a delay of x and is delivered at time y. The

function can be different for different kiosks to reflect their different preferences.

We use Ui(x, y) to denote the utility function of kiosk ki and Wi,j(n, t) to denote the

utility of sending the nth bundle from kiosk ki’s post-bucket queue (whose arrival

time we denote as arri(n)) at time t to gateway gj. It is easy to see that

Wi,j(n, t) = Ui(Di,j(t)− arri(n), Di,j(t))

Recall that Di,j(t) is the delivery time of a bundle destined to kiosk ki if it were to

be sent to gateway gj at time t.

This definition of utility functions is quite versatile at expressing various opti-

mization objectives. However, it makes it a hard problem to compute a schedule

that maximizes the total utility, because each single bundle must be treated indi-

vidually. To make the optimization problem tractable, we define the utility function

based on remaining delay, that is, the time remaining from the scheduling instant

s until the delivery time of the bundle. Denoting the utility function of kiosk ki as

Ui(x) where x is the remaining delay, we have

W s
i,j(n, t) = Ui(Di,j(t)− s)

where s is the time of the scheduling instant and the superscript of W s
i,j(n, t) signifies

that it is a time-varying function. We can see that in this definition W s
i,j(n, t) no

longer depends on n. In other words, all bundles belonging to the same kiosks

are equivalent, hence significantly reduced search space. Since W s
i,j(n, t) no longer

depends on n, we will write it as W s
i,j(t).

It is easy to see that if we define Ui(x) to be simply −x, the opposite of the

remaining delay, then a schedule that maximizes the total utility, therefore mini-

mizing the total remaining delay, will minimize the total end-to-end delay for all

eligible bundles. It should be noted that such a schedule is not necessarily one that

eventually minimizes the total delay of all bundles, which would require knowledge

of future traffic arrival. We refer to schedules that minimizes the total delay of

all bundles as being globally optimal, and ones that minimizes the total delay of

bundle that are eligible at the time they are computed as being locally optimal. It

is impossible for an online algorithm to deterministically compute globally optimal

schedules.
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2.4.3 Scheduling

Every time new bundles become eligible, the scheduler computes a schedule that

would maximize the total utility gained from sending all the bundles that are cur-

rently eligible.

We divide the time into slots and the length of each slot is the time it takes

to transmit a bundle over a proxy-gateway link. We refer to the combination of

time slot h (which finishes at th) and gateway gj as an transmission opportunity

pjh. A schedule assigns transmission opportunities to bundles. We formulate the

optimal scheduling problem as a minimum-cost network-flow problem [1]. We first

describe a basic formulation, then show how we can reduce the input size using a

more efficient formulation exploiting the fact that Di,j(t) is a step function, and

finally discuss some subtle issues involved in making scheduling decisions.

A Basic Formulation

In a minimum-cost network-flow problem, there are some nodes with certain units

of supply of goods, some nodes with certain units of demand, and some relay

nodes. There are arcs connecting these nodes, each with a capacity and a unit

cost. The goal is find a way to transport goods from supplying nodes to demanding

nodes that incurs the least cost while honouring the capacities of all links. Many

assignment problems can be formulated as network flow problems. Since scheduling

is essentially assigning bundles to transmission opportunities, network flow is a

natural tool to solve the optimal scheduling problem.

Formally, we create a directed bipartite graph G = (Ns + Nd,A). For every

kiosk ki, we add a node si to Ns and associate with it a number S(i) indicating the

number of eligible bundles destined to kiosk ki, which corresponds to the number

of units of “supply” node si has. For each transmission opportunity pjh, we add

a node djh to Nd, each of which “demands” one unit of supply. We create an arc

from node si ∈ Ns to node djh ∈ Nd if a bundle from kiosk ki may be sent to

gateway gj in time slot h. Each edge (si, djh) ∈ A has a capacity wijh = 1 and a

cost cijh = −Wi,j(th). The optimal scheduling problem can be stated as follows:

Minimize z(x) =
∑

(si,djh)∈A

cijhxijh
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subject to ∑
{djh:(si,djh)∈A}

xijh = S(i) for all si ∈ Ns,

∑
{si:(si,djh)∈A}

xijh ≤ 1 for all djh ∈ Nd,

0 ≤ xijh ≤ 1 for all (si, djh) ∈ A.

where x is a mapping f : A → {0, 1}, with xijh indicating whether a bundle destined

to kiosk ki should be assigned to transmission opportunity pjh.

The first constraint ensures all eligible bundles are assigned a slot and the sec-

ond ensures that at most one bundle is assigned to any transmission opportunity.

Although no constraints explicitly require xijh to be integral, it can be shown that

as long as the capacities of all edges are integral, xijh will also be integral [1].

Many polynomial-time algorithms exist for solving minimum-cost network-flow

problems. Let n = |Ns + Nd| and m = |A|, the best algorithm known solves the

problem in O((m log n)(m + n log n)) [1].

A More Efficient Formulation

The formulation we just presented requires adding a node for each transmission

opportunity. Since we must consider at least as many transmission opportunities as

there are eligible bundles, the input size of an instance of the problem is proportional

to the number of eligible bundles.

When we look at the created graph, we notice that nodes representing transmis-

sion opportunities offered by a given link can be divided into groups within which

all nodes, except for representing transmission opportunities at different times, are

completely indistinguishable from one another — they are connected to the same

set of kiosk nodes by arcs with the same costs. This is due to the fact that Di,j(t) is

a step function whose value changes only once in a while. If for t ∈ [t~, t~+l], Di,j(t)

remains the same for any given i, then the set of nodes {djh : h = ~, . . . , ~ + l} are

equivalent.

Nodes within the same group can be aggregated to form a new node, replacing

the old nodes which represent individual transmission opportunities. The demand

of the new node, as well as the capacities of arcs that point to the new node, equals
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the number of transmission opportunities the new node represents. The costs of all

arcs remain the same as before. Solving a minimum network flow problem on this

new graph will also give us the solution to the optimal scheduling problem.5

Compared to the basic formulation, the input size for the same problem instance

is dramatically reduced. Suppose on average Di,j(t) changes every 30 time slots.

Using the more efficient formulation, both the number of nodes and the number

arcs are reduced by almost a factor of 30.

Instantiating a Schedule Class

A solution returned from the first formulation tells us exactly which transmission

opportunity should be granted to which kiosk. That is, however, not the case with

the second formulation. Since in the second formulation we aggregate multiple

transmission opportunities into one node, a solution returned only tells us, of each

group of transmission opportunities, how many should be allocated to each kiosk,

but not the exact allocation of each individual transmission opportunities. In fact,

a solution does not correspond to a schedule, but rather a class of schedules. All

schedules consistent with the solution belong to this class of schedules and have the

same total utility.

Given a schedule class, the scheduler must pick a specific schedule to execute,

which we refer to as “instantiating a schedule class”. With the first formulation,

the instantiation is implicit and is nothing but an artifact of the specific network

flow solver used to solve the problem, which is out of our control. With the second

formulation, we are given the opportunity to make more intelligent choices.

One may wonder, if all schedules belonging to the same schedule class have the

same utility, why would one be better than another? The answer lies in the fact

that we have to compute a new schedule every time new bundles become eligible.

Depending on how we instantiate a schedule class, the next time new bundles come

in, we may be facing different situations, of which some may be more desirable

than others. For instance, consider the scenario shown in Figure 2.7. At time t0,

the scheduler is invoked with one eligible bundle for each kiosk. The bus going to

kiosk k1 is going to leave in 2 time slots and the bus going to kiosk k2 is going to

5But not in exactly the same way as using the basic formulation. See the next subsection.
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Figure 2.7: A scenario showing the effect of different ways of instantiating a schedule

class. At t0 each kiosk has one eligible bundle. At t1, one more bundle becomes

eligible for kiosk k1.

leave in 10 time slots. Two groups of transmission opportunities can be formed

with the first group containing the first two time slots and the second containing

the next 8 time slots. The optimal solution, unsurprisingly, assigns each kiosk one

time slot from the first group. Two possible ways to instantiate the schedule class

are S1 = (〈k1, t1〉, 〈k2, t2〉) and S2(〈k2, t1〉, 〈k1, t2〉). One time step later, a bundle

arrives for kiosk k1. If at t0 we executed schedule S2, we would have 2 bundles for

kiosk k1 at t1 — at least one bundle could not make the bus. If, alternatively, we

executed schedule S1 at t0, both bundles for kiosk 1 would make the bus, so would

the bundle for kiosk 2.

This example suggests that we should incorporate some notion of “urgency” into

the decision of instantiating a schedule class. We now present a heuristic based on

the notion of “urgency” which is used as a hint for the instantiation of a schedule

class.

First, we need to understand what constitutes urgency. Clearly, if a bus is soon

going to leave gateway gj for kiosk ki, we should schedule bundles for ki to be

transmitted to gateway gj as early as possible so that if more bundles for kiosk ki

comes before the bus leaves they can still make the bus. So one factor that affects

urgency is the time remaining before the next bus departure, and by the same

reasoning, the one after that, and so on. What also affects the urgency is the cost

of missing a bus, that is the increase in delay as a result of missing a bus. Clearly,

the higher the cost, the greater the urgency.

Following the above analysis, we define the “urgency” with which kiosk ki is in
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Figure 2.8: An example of urgency function ui,j(t) plotted on top of a delivery time

function Di,j(t) from which it is derived.

need of getting bundles to gateway gj at time t as

ui,j(t) =

∫ ∞

t

(Di,j(τ)−Di,j(t))e
−γ(τ−t)dτ∫ ∞

t

e−γ(τ−t)dτ

(2.1)

As can be seen, ui,j(t) is defined as the weighted integral of the difference between

the function Di,j(τ) and constant Di,j(t) over time from t to infinity, where the

weights decay exponentially with time. The γ in the index of the exponential term

is called the discount rate, which controls the rate at which the weight decreases

with time. What determine the value of ui,j(t) are 1) the times at which Di,j(t)

increases, and 2) the amplitude of the increases. The more imminent and larger

an increase is, the more it contributes to the urgency. Figure 2.8 illustrates an

example urgency function plotted on top of a delivery time function from which it

is derived.

With urgency defined, when we instantiate a schedule class, if a group of trans-

mission opportunities are allocated to multiple kiosks, we always serve the kiosk

with the highest urgency. In other words, we assign transmission opportunity pjh

to kiosk ki such that ui,j(th) is the highest among those that have not used up their

allocated slots from the current group of transmission opportunities.
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Work-Conserving vs. Non-Work-Conserving

Another issue not yet addressed is which set of transmission opportunities should

be considered by the scheduler when it computes a schedule. Since an optimal

schedule may assign all bundles to the same gateway, it seems that we should let

the scheduler consider the next N time slots from each proxy-gateway link, or NL

transmission opportunities where N is the number of eligible bundles and L is

the number of gateways. The problem of doing so, however, is that the scheduler

may choose to leave some links idle when there are eligible bundles waiting to be

transmitted. In other words, it is not work-conserving. A non-work-conserving

scheduler, like EDLQ, is prone to perform poorly in scenarios like the one shown

in Figure 2.4.

So should the scheduler be work-conserving? The limitation of a work-conserving

scheduler is also obvious. Such a scheduler may send a bundle to a gateway which

will lead to a very late delivery while it could be delivered much earlier if we send

it a little while later to another gateway which is currently busy.

Our solution to this dilemma is to use a work-conserving scheduler with a re-

transmission mechanism. When computing a schedule, we consider only the next

dN
L
e time slots from each proxy-gateway link, so the resulting schedule is work-

conserving. Then when we execute a schedule, after a bundle is sent, we do not

delete the bundle immediately if it is not sent to the most desirable gateway, but

store it in a secondary buffer and note the estimated delivery time. We keep the

bundle in the secondary buffer as long as resending it to another gateway could

lead to an earlier delivery. We resend bundles from the secondary buffer only when

there are no eligible bundles left — so the links would otherwise be idle. In the

absence of eligible bundles, we assign each transmission opportunity to a bundle

from the secondary buffer so that the maximum reduction in delay can be achieved.

Formally, we assign transmission opportunity pjh to bundle b∗ such that

b∗ = arg max
b∈Bs

(D(b)−Ddst(b),j(th))

where Bs is the set of bundles in the secondary buffer and D(b) is the current

estimated delivery time of bundle b. The receiver is expected to deal with duplicates.

We expect such a work-conserving scheduler with a retransmission mechanism

to work well because when the load is light, most bundles that are not sent to the
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most desirable gateway the first time will get a second chance and be delivered

at the same time as with a non-work-conserving scheduler, and when the load is

heavy, a work-conserving scheduler is the better choice to begin with.

2.5 Evaluation

In this section, we evaluate the performance of our proposed scheme using sim-

ulation. We show that our scheme does ensure fair allocation of bandwidth and

compare our scheme with EDLQ in terms of delay.

2.5.1 Simulator and Simulation Setup

We developed a custom simulator which implements the model described in Section

2.1. Each simulation step corresponds to roughly one minute in reality. Each proxy-

gateway link is capable of transmitting one bundle per step. For TB regulators, we

use a generous bucket depth of 500. The maximum size of each pre-bucket queue is

200. For computing urgency, we use a discount rate of γ = 0.5%. Each simulation

is run for 43200 steps, or 30 days in reality. Each data point is obtained from

running the simulation five times, and 95% confidence intervals are included. In

all simulations involving EDLQ, TB regulators are used with EDLQ to ensure fair

comparisons.

We use batched Poisson processes with a geometric batch size distribution as our

traffic model . Such a process is characterized by mean inter-arrival time 1/λ and

mean batch size b. The mean arrival rate can be computed as bλ. In all simulations

we use a mean inter-arrival time of 20 steps and vary b to achieve desired arrival

rates.

2.5.2 Microbenchmarks

The purpose of the microbenchmarks is to test the performance of our scheme in

various scenarios that span as wide an area as possible in the parameter space.

These scenarios are not meant to be realistic. While it is quite hard to param-

eterize the input space due to the enormous degrees of freedom with which bus
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Load Frequency Transit Delay Phase Difference

0.45 12 60 180◦

Table 2.1: Parameters for the base case of Scenario 1. The first three columns

apply to both kiosks.

schedules could vary, we identify four dimensions of the input space: load, phase

difference between bus schedules, transit delay, and bus frequency. Load is the

mean bundle arrival rate of a kiosk in number of bundles per step. The remaining

three dimensions are about bus schedules. We consider a special class of bus sched-

ules where for every gateway-kiosk pair 〈gj, ki〉, a bus leaves gateway gj for kiosk ki

every fi,j steps, and each trip from gateway gj to kiosk ki takes qi,j steps. 1440/fi,j

is the number of buses going from gateway gj to kiosk ki in a day (recall that one

simulation step corresponds to one minute in reality), which we call frequency. qi,j

is the transit delay. If f1,j = f2,j, then the phase difference between these two

schedules is defined as the difference of the departure time of a bus going to k1

and the departure time of the next bus going to k2 relative to f1,j. A 180◦ phase

difference means the difference in departure time is
1

2
f1,j.

Single Gateway

In the first set of simulations we consider a simple scenario with one gateway, g1,

and two kiosks, k1 and k2. Since there is only one gateway, the gateway selection

aspect of scheduling decisions is not tested in this scenario. Only the effect of

service order is examined.

The parameters for the base case is shown in Table 2.1. We use a filling rate of

0.5 token per step for the TB regulator for both kiosks.

Every time, we vary the scenario from the base case along one of the four

dimensions. Figure 2.9 shows the mean delay of the two kiosks when the load of

kiosk k2 varies from 0.1 to 2 using our scheme. As can be seen from the graph, after

the load of kiosk k2 exceeds its allocated rate, the delay of kiosk k1 remains almost

constant while the delay of kiosk k2 increases significantly. Our simulation results

also show that kiosk k2 experiences no bundles loss while kiosk k2 suffers from severe

loss. The delay of kiosk k2 finally levels off because the bundle dropping mechanism
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Figure 2.9: Delay using our scheme vs. load of kiosk k2 in a single-gateway scenario

ensures the system is stable. This graph shows that the token-bucket mechanism

does ensure fair allocation of bandwidth and protect well-behaving kiosks from

being negatively impacted by ill-behaving kiosks.

Figure 2.10 shows the the percentage of reduction in delay using our scheme

compared to EDLQ when the phase difference changes from 0 to 180◦. When the

phase difference is between 0 and 120◦, one kiosk experiences slightly reduced delay

and the other slightly increased delay, but overall the delay is reduced. when the

phase difference is between 120◦ and 180◦, both kiosks experience slightly reduced

delay.

Figure 2.11 shows the effect of transit delay. We vary the transit delay of kiosk

k2 so that q2,1/q1,1 changes from 1 to 10. The reduction is not significant in this

case, especially for kiosk k2, whose delay become dominated by the large transit

delay, which cannot be reduced by scheduling.

Finally, Figure 2.12 shows the effect of bus frequency. We reduce the frequency

for kiosk k2 so that the ratio of frequency between the two kiosks changes from 1

to 12. As the ratio increases, kiosk k1 is able to enjoy more and more reduction in

delay while kiosk k2 enjoys less. This is because when a kiosk has infrequent buses,
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Figure 2.10: Reduction in delay vs. phase difference in a single-gateway scenario
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Figure 2.11: Reduction in delay vs. ratio of transit delay in a single-gateway

scenario
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Figure 2.12: Reduction in delay vs. ratio of frequency in a single-gateway scenario

it is less likely to miss one so our scheduler can often schedule other kiosks that

would otherwise miss their buses.

Multiple Gateways

Now let’s consider scenarios with two gateways, g1 and g2, and two kiosks, k1 and

k2. With two gateways, the gateway selection strategy will now play a role in

determining delay. The token-bucket filling rate is set to 1 token per step for both

kiosks.

Let’s first consider a scenario where gateway g1 is near to kiosk k1 but far from

kiosk k2 and gateway g2 is near to kiosk k2 but far from kiosk k1. The information

about the bus schedules is shown in Table 2.2. Note that this is a favourable

scenario for EDLQ because it is seldom necessary for any kiosk to use a secondary

gateway.

We fix the load of kiosk k1 at 0.9 bundle per step, and vary the load of kiosk

k2 from 0.1 to 2 bundles per step. The results are shown in Figure 2.13 and Figure

2.14. Again, we can see that kiosk k1 is not affected by kiosk k2 when the latter is
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Frequency Transit Delay

g1 → k1, g2 → k2 10 60

g1 → k2, g2 → k1 4 150

Table 2.2: Bus schedule information. Each kiosk prefers a different gateway.
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Figure 2.13: Delay using our scheme vs. load of kiosk k2 in a scenario where each

kiosk prefers a different gateway.

ill-behaving. Also we can see that our scheme is still slightly better than EDLQ

even though this is a favourable scenario for EDLQ.

Next we consider a scenario where both kiosks prefer gateway g1. The bus

schedule information is shown in Table 2.3. This is a scenario where EDLQ tends

to perform poorly because it only uses gateway g2 when the queue for gateway g1

grows too large, which may already be too late. Again, we fix the load of kiosk k1

at 0.9 bundle per step, and vary the load of kiosk k2 from 0.1 to 2 bundles per step.

The results are shown in Figure 2.15 and Figure 2.16. As expected, our scheme

offers more improvement over EDLQ than in the previous scenario. When the load

of both kiosks is 0.9, both kiosks see a reduction in delay of about 25%.
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Figure 2.14: Reduction in delay vs. load of kiosk k2 in a scenario where each kiosk

prefers a different gateway

Frequency Transit Delay

g1 → k1, g1 → k2 10 60

g2 → k1, g2 → k2 4 150

Table 2.3: Bus schedule information. Both kiosks prefer the same gateway.
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Figure 2.16: Reduction in delay vs. load of kiosk k2 in a scenario where both kiosks

prefer the same gateway
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From

IDT/MTD Union Yorkdale York Mills York U

To

Brampton 80/46 131/45 131/55 -

Markham 53/38 - - 72/35

Milton 58/71 103/63 720/70 -

NewMarket 48/60 58/54 111/80 90/55

Oakville 48/35 206/70 1440/80 45/74

Oshawa 58/54 25/105 25/95 85/76

Table 2.4: Mean inter-departure time (IDT) and mean transit delay (MTD) of each

schedule in the GTA scenario.

Summary

The simulation results of microbenchmarks confirm the effectiveness of token buck-

ets as a means to ensuring fair allocation of bandwidth and protecting well-behaving

users from ill-behaving ones. It is also shown that our scheme outperforms EDLQ

in all scenarios in terms of overall delay. While the margin is slim in scenarios that

favour EDLQ, it is prominent in ones that do not.

2.5.3 A More Realistic Scenario

We now consider a more realistic scenario. Figure 2.17 shows part of the public

transportation system in the Greater Toronto Area (GTA) . While the GTA, being

a modernized metropolitan area, is certainly not in need of a data ferrying network

to access the Internet, the bus routes connecting Toronto and its surrounding towns

may resemble those found in developing regions. We select four locations in the city

of Toronto to place our (imaginary) gateway nodes at, and serve six (imaginary)

kiosks in surrounding towns. The information about bus schedules is taken from

the website of the Greater Toronto Transit Authority6. These schedules, as is

commonly observed, have more frequent departures during peak hours, less frequent

departures during the rest of the day, and no departure during late night hours.

Table 2.4 shows the mean inter-departure time and the mean transit delay of each

schedule.

6http://www.gotransit.com/
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Figure 2.17: Selected part of the public transportation system of the Greater

Toronto Area. Information about bus routes is taken from the published sched-

ules of the Greater Toronto Transit Authority.
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Figure 2.18: Reduction in delay in the GTA scenario

We set the token-bucket filling rate to 0.65 bundle per step for all six kiosks.

All kiosks have a load of 0.6 bundle per step. The results about reduction in delay

using our scheme compared to EDLQ are shown in Figure 2.18. We can see that

the kiosk that benefits the most from our scheme enjoys a reduction in delay of

about 40%. Four of the six kiosks see a reduction of over 20% and none of the

kiosks experiences longer delay in a statistically significant sense. Compared to

the simple scenarios in microbenchmarks, we see more improvement in this more

complex scenario. We believe that our scheme offers more advantage in scenarios

with complex topologies where there is more opportunity for optimization.

2.6 Impact of Imprecise Schedules

So far we have assumed that buses follow their publicized schedules precisely. How-

ever, this is never the case in reality. The punctuality of buses is subject to a

number of factors that are random in nature, such as traffic conditions, weather

conditions, and the conditions of the buses themselves. In this section we evaluate

through simulation how this randomness affect the performance of our scheme.
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Figure 2.19: Effect of increasing degree of perturbation.

We are concerned with two types of randomness — randomness in departure

times and randomness in transit delays. The first captures the fact that buses may

leave earlier or later than scheduled, and the second the fact that it may take a bus

a longer or shorter time than expected to reach the destination. In our simulations,

we perturb the departure times and transit delays in the following manner. Given

a schedule, we first compute the mean inter-departure time, denoted as T d. For

each trip with scheduled departure time t, the actual departure time is drawn from

a Gaussian distribution with a mean of t and a standard deviation of βT d, where

β is called the degree of perturbation. Similarly, for each trip with expected transit

delay q, the actual transit delay is drawn from a Gaussian distribution with a mean

of q and a standard deviation of βq.7

We simulate again the multiple-gateway scenario in the microbenchmarks, ex-

cept that this time the actual bus departure times and transit delays are randomized

in the described above. Figure 2.19 is a visualization of the effect of increasing de-

7For transit delay, if the number turns out to be negative, we discard the number and draw
another.
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Figure 2.20: Impact of Imprecise Schedules — The Two-Gateway Two-Kiosk Sce-

nario

gree perturbation to the schedule from gateway g1 to kiosk k1. Each line in Figure

2.19 represents the actual timing of bus trips in a typical day. One can see that as

the degree of perturbation increases from 0, the actual departure times and transit

delays deviate more and more from the schedule. However, from around β = 50%,

the actual timing is almost completely different from the schedule. Figure 2.20

shows the results. Scheme names that end with “-IMP” represent schemes that

are fed with the original schedules, and those that end with “-PREC” represent

schemes that are fed with the actual timing of bus trips. For comparison, we also

included a random scheme which assigns bundles to gateways randomly, provided

the bundle can be delivered via the randomly chosen gateway. Note the random

scheme is work-conserving. From the figure, we can make four observations:

1. Unsurprisingly, for the same base scheme, schemes that are fed with pre-

cise timing information perform better than those fed with imprecise timing

information.

2. The difference between *-IMP and *-PREC at first increases with the degree

of perturbation, and remains almost constant beyond around β = 20%.

3. MCF performs better than EDLQ, even when MCF is fed with imprecise

timing information and EDLQ is fed with precise timing information.

4. There is no discernable difference in the performance of MCF-IMP and RAN-
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DOM. This indicates that in this scenario the gain from using MCF over

EDLQ is mostly attributable to the work-conserving nature of MCF. MCF

still outperforms RANDOM when fed with precise timing information.

We then simulate the GTA scenario with perturbed timing. The results are

shown in Figure 2.21. The results are in large part consistent with the previous

case. Except for Brampton, where EDLQ-PREC performs better than MCF-IMP,

for all other kiosks MCF outperforms EDLQ, regardless of the preciseness of timing

information. RANDOM in this scenario performs quite badly for some kiosks,

indicating that even when there is substantial randomness in the timing of bus

trips, schedule-aware schemes such as MCF and EDLQ are still superior to schedule-

oblivious ones.

These initial results suggest that the impact of imprecise schedules is bounded

and that our scheme compares favourably with EDLQ or schedule-oblivious schemes

even when fed with imprecise timing information.
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Figure 2.21: Impact of Imprecise Schedules — The GTA Scenario

37



Chapter 3

Implementation

In this chapter we focus on the practical issues involved in the implementation of

the KioskNet architecture. The implementation of the KioskNet system is based

on the DTNRG DTN reference implementation 1. We extended the the DTN

reference implementation to add flooding and support user mobility. We subjected

our software to long-term stress tests, and identified and fixed several performance

bottlenecks. In the following sections, we describe the overall software architecture,

the testing environment, and the stress tests we conducted. We discuss problems

revealed by the stress test and abstract some principles for designing software for

opportunistic communication.

3.1 Software Architecture Overview

KioskNet software runs on proxies, gateways, ferries, kiosk controllers, and cell

phones, as shown in Figure 3.1. The DTNRG DTN reference implementation

(shown in the figure as “DTN”) runs on kiosks, ferries, and gateways. DTN is

ultimately responsible for detecting peer nodes when they are in range, transfer-

ring data opportunistically, and routing data from the source to the destination.

TCA Admin is an extension to DTN which implements flooding and location man-

agement. A region is identified by a region ID and each kiosk or gateway belongs to

one region. Messages are flooded within a region. When a user account is created,

1Can be downloaded from http://www.dtnrg.org/wiki/Code
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Figure 3.1: Software components

a central DNS name server is updated with the user ID and the ID of his/her home

kiosk. The DNS name server also maintains information about which region each

kiosk belongs to and the gateways in each region. When a gateway receives a mes-

sage destined to a user in another region, it queries the DNS name server for a list

of gateways in that region and chooses one to send the message to. The gateway

in the other region that receives the message can then flood the message in its own

region.

The Opportunistic Connection Management Protocol (OCMP) is session-layer

protocol designed to work with multiple types of connections, such as GPRS, dial-

up, VSAT, and DTN, and decide how to most efficiently use them to meet user-

specified requirements. It runs on cell phones, kiosks and proxies. Each type of

connection is modelled as a Connection Object (CO) which implements a common

interface used by OCMP. OCMP allows KioskNet users to access legacy services on
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the Internet. The OCMP on the proxy handles all communication with those legacy

services on behalf of disconnected users. The OCMP software on the proxy can

interact with the DTN software on multiple gateways via DTN COs. The scheduling

algorithm presented in the previous chapter is implemented as a scheduler module

in OCMP to control the use of these COs. OCMP also provides an easy-to-use

directory API to support development of delay-tolerant applications.

3.2 Stress Tests

We performed long-term stress tests on our software for two purposes: 1) to find

out the maximum throughput that can be achieved by our system, or how much

overhead the software introduces, and 2) whether the performance degrades after

the software has been running for an extended period of time. Through the stress

tests, not only were we able to identify and fix several performance bottlenecks,

but we also learned some lessons that should be regarded as principles for designing

software for opportunistic communication.

3.2.1 Testbed Setup

The testbed setup is shown in Figure 3.2. The testbed consists of four nodes, which

represent a kiosk, a bus, a gateway, and a proxy, respectively. All the nodes except

the proxy are Soekris 2 boxes, while the proxy is a server-class machine. Soekris

boxes are low-power single-board computers, widely used as mobile wireless routers

in wireless projects. The model we use is Soekris net4801, which has an AMD 266

MHz processor and 256 MB of RAM. We equip each Soekris box with an Atheros

WiFi interface card and a Toshiba 40 GB hard drive. The gateway is connected

to the proxy via a wired network. The kiosk, bus, and gateway each have a WiFi

interface operating in the 802.11a mode. The kiosk and the gateway run as access

points on different channels using different essid’s. The bus runs as a 802.11 client.

We periodically flip the essid of the bus to emulate a real bus moving between the

kiosk and the gateway. In the tests, we let the bus remain associated with the kiosk

or the gateway for one minute, and associated with the other node for one minute,

with five seconds of gap in between, and repeat the process indefinitely.

2http://www.soekris.com/
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Figure 3.2: Testbed setup

Our testing application generates traffic between the kiosk and the proxy in

both directions. It injects bundles into the network every minute, and each time

injects a specified number of bundles. Previous study shows that bundle size has

a great impact on the performance of the DTN reference implementation [16] and

that larger bundle sizes generally lead to better throughput. Therefore, we use a

bundle size of 50 KB, the maximum bundle size supported by the DTN API as of

the time of the writing of this thesis. We request delivery receipt for every bundle.

The testing application keeps track of every outstanding bundle that is sent but

for which the delivery receipt has not been received. A test terminates when the

number of outstanding bundles reaches a certain point, which indicates that our

system is not able to handle the current load.

3.2.2 Lessons Learned from the Stress Tests

When we first started the stress tests, we soon found that the DTN reference

implementation was not always able to establish a connection between two peers

when they discovered each other. The DTN reference implementation is a multi-

threaded, event-driven program, where a main thread executes an event loop and

various other threads do actual work such as sending and receiving data and detect-

ing neighbours, which also post events to the event queue when something happens

that needs attention. The log output shows that the main thread did receive events

telling it that a neighbour was discovered, but the times at which such events were

processed were significantly later than the times at which those event occurred. Not

surprisingly, by the time these events were processed, the peer had already gone.

The log output also reveals that the main thread was busy processing backlogged
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events, most of which non-urgent and data-related, such as bundle received events,

when neighbour discovery events occurred. Clearly, non-urgent data-related events

were interfering with time-sensitive link control events. We worked around the

problem by posting control events at the head of the event queue, rather than the

default action — posting at the tail. Although this worked quite well — the DTN

software is now able to reliably establish connections between peers when they are

in range, ideally we should have separate event queues for data-related events and

control-related events. This leads us to the first principle for designing software

that deals with opportunistic communication: cleanly separate the data plane and

the control plane, so that changes in the environment are responded to with the least

possible delay.

The performance of the modified software, however, was still not good. It could

not even sustain a load of 10 bundles per minute, or 66.7 Kbps. We confirmed that

the DTN software was able to establish a connection when two peers are in range.

We ran system profiling software and found that during an opportunistic connection

window, the NIC was only transmitting data for a fraction of the duration of the

window, and the CPU utilization was 100%, of which an overwhelming majority is

spent running user-level code. Finally we found the following code snippet in the

router module of the DTN reference implementation.

for (iter = pending_bundles_->begin();

iter != pending_bundles_->end();

++iter)

{

fwd_to_matching(*iter, next_hop);

}

This code is part of the event handler for link open events, executed directly by

the main thread. The for loop iterates through the list of backlogged bundles,

and tries to send each bundle over the link that has just become open, by call-

ing fwd_to_matching(*iter, next_hop), where next_hop represents the link in

question. fwd_to_matching() checks if the bundle should be sent over this link

and if the link is busy. If all looks good it puts the bundle to a queue associated

with the link, from which another thread (the sending thread) pulls bundles out

and push them to the NIC. The queue has a limited capacity, the default being 10
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bundles. When the queue gets filled, the status of the link will immediately become

busy, and consequently subsequent calls to fwd_to_matching() will fail. As the

sending thread pulls bundles out from the queue, it posts an event requesting to

change the status of the link from busy to open. Now the cause of the problem

becomes clear: after the main thread calls fwd_to_matching() successfully for the

first few bundles, the links becomes busy, but the main thread continues to execute

the loop. As the same time, the sending thread clears the queue and requests to

change the status of the link by posting an event. The main thread cannot pro-

cess this event until it iterates through the entire bundle list, which, when there

is a large backlog, not only takes significant amount of time on a under-powered

processor like the ones used by Soekris boxes, but also wastes time doing nothing

useful, which explains the low utilization of connectivity and high user-level CPU

utilization. Clearly, this is another violation of the first principle, where data opera-

tions (sending bundles) interfere with control operations (link status management).

Furthermore, this case also demonstrates the detrimental effect of having an event

handler that takes too much time to execute, hence the second principle: in an

event-driven program, event handlers should never block the main thread regardless

of the load; if an event could potentially take a long time to process, the main thread

should delegate the processing to another thread. While in our case it is preferable

to delegate the processing of link open events to another thread, as a quick fix, we

simple break the loop when we find the link is busy. Now the code looks like

for (iter = pending_bundles_->begin();

iter != pending_bundles_->end();

++iter)

{

if (next_hop->isbusy())

break;

fwd_to_matching(*iter, next_hop);

}

This change has been included in the latest release of the DTN reference imple-

mentation.

Further stress tests showed there was still a significant amount of CPU time

spent running user-level code when bundle transfer between two peers took place.
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We profiled CPU usage using oprofile and were able to identify two pieces of code

as the main culprits. The first piece of code performs duplicate detection. Upon

the receipt of a bundle, the DTN software iterates through its bundle list to see

if the same bundle has been received before. The second piece of code is in our

extension to the DTN reference implementation which deals with death certificates.

A death certificate is a special type of bundle which is generated when a bundle is

delivered to its destination. The death certificate is then flooded over the network

and whoever receives the death certificate can safely remove the delivered bundle

from its storage, if it has it. Recall that we use flooding, where, without death

certificates, the only way to discard bundles is through expiration. The second

piece of code checks the list of bundles against a death certificate. What is com-

mon in both pieces of code is that both involve operations whose running time is

O(n), where n is the number of bundles in a node’s storage. Duplicate detection

and death certificates have the potential benefit of reducing storage requirement

and network traffic, but in order to realize such benefit, we must design efficient

algorithms and data structures that scale well, especially with the low-powered

processors we currently have, otherwise the high computational cost could easily

defeat the purpose of having these measures in place. This leads us to the third

principle: use efficient algorithms and data structures that scale well with load to

keep computational overhead low.
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Chapter 4

Related Work

Fair sharing of bandwidth in packet-switching networks has been well studied in

the context of traditional low-delay networks. The most popular notion of fairness

in the literature is called max-min fairness, which is what can be achieved with

Generalized Processor Sharing (GPS). Since GPS is unimplementable in reality, a

number of packetized scheduling algorithms have been proposed which in general

all try to mimic GPS as closely as possible. For a survey of these scheduling

algorithms see [21] and references therein. A fair scheduling algorithm that operates

on multiple links[4] is also proposed after the survey paper is published. Our work

is different from theirs in two aspects. First, our notion of fairness is defined

on a longer time scale. While their scheduling disciplines try to achieve max-min

allocation of bandwidth at time intervals as short as possible, we focus on long-term

fairness which is exactly what token-bucket regulator can provide. We are willing to

allocate a disproportionately large portion of bandwidth to some users at one time

and compensate for other users at another, provided the bandwidth is allocated

fairly in the long run. We do not lose anything by giving up short-term fairness

because bundles sent to the gateways early will have to wait for their buses to come

anyway. Second, besides ensuring fair allocation of bandwidth, our scheme also

tries to minimize end-to-end delay. The addition of this second objective makes

it a much harder problem if the scheduler has to fulfill both objectives. In our

scheme, we offload the task of ensuring fairness to token-bucket regulators and let

the scheduler focus exclusively on delay minimization.

Opportunistic scheduling has been studied in the context of wireless data net-
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works, where base stations can exploit temporal fluctuation of link quality to max-

imize aggregate throughput[12][14][15]. What is common in our and their work is

that we both trade strict adherence to max-min fairness for improvement in other

performance metrics. However, delay minimization and throughput maximization

require fundamentally different approaches. Therefore techniques developed in their

area cannot be applied in our system.

Our work is inspired by research in Time/Utility Function (TUF) based schedul-

ing [13][18][20][9] in the area of real time scheduling. TUFs are a generalization of

the hard real time constraints. Instead of specifying a hard deadline for each job,

a TUF specifies the utility resulting from the completion of a job as a function of

arbitrary shape of its completion time. In our system, the utility resulting from

sending a bundle is determined by the time at which it is sent and the gateway to

which it is sent. They consider a richer set of objectives than just utility maximiza-

tion, such as providing bounds on the probability with which jobs are completed

before their critical times [9], and additional constraints, such as interdependencies

between jobs and mutually exclusive accesses to non-CPU resources[13].

Other projects that use ferries to physically transport data in challenged en-

vironments include Message Ferrying (MF) [24] and DieselNet [7]. MF considers

mobile ad hoc networks where there may not always be a single- or multiple-hop

route between some or all node pairs due to node mobility, short radio range,

physical obstacles, or so forth. MF deploys a set of mobile nodes called message

ferries which move along certain routes and can be used to deliver messages in a

store-carry-forward fashion. The controlling of the trajectory of mobile nodes is

a major concern in the MF scheme [22][25]. DieselNet is a large-scale testbed of

delay-tolerant networking consisting of 40 buses in Amherst, Massachusetts. They

study problems including routing [7][2], security [6], and power management [3].

The main differences between our work and theirs are 1) while traffic is between

peers in their systems, it is always either uplink or downlink in our system; and

2) we assume that the bus schedules are known to us so routing inside the kiosk

network is a relatively easy problem.
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Chapter 5

Conclusions and Future Work

In this thesis we study the downlink scheduling problem in rural kiosk networks

and report some experience with building and testing the software for KioskNet.

For the downlink scheduling problem, we analyze why EDLQ, an existing shortest

path based routing algorithm which assumes FIFO service order, fails to meet the

goals. Our proposed solution consists of two parts: token-bucket regulators and a

utility-based scheduler. The former ensures fair allocation of bandwidth and the

latter repeatedly computes a utility-maximizing bundle transmission schedule for

all bundles admitted by the former. We formulate the optimal scheduling problem

as a minimum-cost network-flow problem for which efficient algorithms exist. We

describe a technique based on the notion of urgency for choosing a schedule from

a set of schedules that are equivalent in terms of utility. We discuss the pros and

cons of work-conserving and non-work-conserving scheduler and propose to use a

work-conserving scheduler with a retransmission mechanism to get the best from

both. Simulation results show that, compared to EDLQ, our scheme reduces overall

delay, and, most of the time, reduces delay for all users. The amount of reduction in

delay for a single user can be sometimes up to 40%. Our initial results regarding the

impact of imprecise schedules indicate that the proposed scheme is robust against

randomness in the timing of bus trips.

From our experience with building and testing the software for KioskNet, we

abstract three principles for designing software for opportunistic communication:

1) cleanly separate control and data planes, 2) never block the main thread in a

event-driven program, and 3) use efficient algorithms and data structures that scale
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well with load.

5.1 Future Work

In the future, we plan to work on the following problems:

1. Investigating the impact of imprecise schedules in more depth. Our evalua-

tion with imprecise schedules is preliminary. The model we use to generate

randomness in the timing of bus trips is not necessarily realistic. To have a

more realistic model, we need to understand the nature of the randomness in

bus movement.

2. Application-layer delay minimization. In this thesis our goal is to minimize

overall bundle delay, which is different from application-layer delay, which

is determined by the delay of the last received bundle of an application-

layer data unit. Minimizing bundle delay does not necessarily minimizes

application-layer delay because of out-of-order delivery as a result of load bal-

ancing across multiple gateways, known as link striping. Minimizing application-

layer delay is a more meaningful goal since that is the delay perceived by end

users.

3. Deploying the system in the field. We would like to deploy a real system in

the field and run experiments on the real system to evaluate the performance

of our scheme. A deployed system would also allow us to collect traffic traces

which could help us understand traffic patterns in such networks. As stated

earlier, our current scheduling algorithm is not globally optimal because it

does not consider future traffic. With an understanding of the traffic arrival

patterns, it may be possible to improve our algorithm by taking into account

prediction of future traffic.
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