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Abstract

Feature selection based on feature ranking has received much attention by researchers in

the field of text classification. The major reasons are their scalability, ease of use, and fast

computation. However, compared to the search-based feature selection methods such as

wrappers and filters, they suffer from poor performance. This is linked to their major

deficiencies, including: (i) feature ranking is problem-dependent; (ii) they ignore term

dependencies, including redundancies and correlation; and (iii) they usually fail in un-

balanced data.

While using feature ranking methods for dimensionality reduction, we should be

aware of these drawbacks, which arise from the function of feature ranking methods.

In this thesis, a set of solutions is proposed to handle the drawbacks of feature ranking

and boost their performance. First, an evaluation framework called feature meta-ranking

is proposed to evaluate ranking measures. The framework is based on a newly proposed

Differential Filter Level Performance (DFLP) measure. It was proved that, in ideal cases,

the performance of text classifier is a monotonic, non-decreasing function of the number

of features. Then we theoretically and empirically validate the effectiveness of DFLP as

a meta-ranking measure to evaluate and compare feature ranking methods. The meta-

ranking framework is also examined by a stopword extraction problem. We use the

framework to select appropriate feature ranking measure for building domain-specific

stoplists. The proposed framework is evaluated by SVM and Rocchio text classifiers on

six benchmark data. The meta-ranking method suggests that in searching for a proper

feature ranking measure, the backward feature ranking is as important as the forward

one.

Second, we show that the destructive effect of term redundancy gets worse as we de-

crease the feature ranking threshold. It implies that for aggressive feature selection, an

effective redundancy reduction should be performed as well as feature ranking. An algo-

rithm based on extracting term dependency links using an information theoretic inclusion

index is proposed to detect and handle term dependencies. The dependency links are vi-

sualized by a tree structure called a term dependency tree. By grouping the nodes of the

tree into two categories, including hub and link nodes, a heuristic algorithm is proposed

to handle the term dependencies by merging or removing the link nodes. The proposed

method of redundancy reduction is evaluated by SVM and Rocchio classifiers for four

benchmark data sets. According to the results, redundancy reduction is more effective on

weak classifiers since they are more sensitive to term redundancies. It also suggests that

in those feature ranking methods which compact the information in a small number of
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features, aggressive feature selection is not recommended.

Finally, to deal with class imbalance in feature level using ranking methods, a local

feature ranking scheme called reverse discrimination approach is proposed. The pro-

posed method is applied to a highly unbalanced social network discovery problem. In

this case study, the problem of learning a social network is translated into a text clas-

sification problem using newly proposed actor and relationship modeling. Since social

networks are usually sparse structures, the corresponding text classifiers become highly

unbalanced. Experimental assessment of the reverse discrimination approach validates

the effectiveness of the local feature ranking method to improve the classifier performance

when dealing with unbalanced data. The application itself suggests a new approach to

learn social structures from textual data.
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Chapter 1

Introduction

1.1 Background

Recently, text classification has become one of the fastest growing applications of machine

learning and data mining [100]. There are many applications that use text classification

techniques, such as natural language processing and information retrieval [55]. All of

these applications use text classification techniques in dealing with natural language doc-

uments. Since text classification is a supervised learning process, many machine learning

methods such as K-Nearest Neighbor, regression models, Naive Bayes classifier, decision

trees, inductive rule learning, neural networks, and Support Vector Machines can be em-

ployed [3].

Most text classification algorithms use vector space model and bag-of-words repre-

sentation to model textual documents. Some extensions of the vector space model have

also been proposed to utilize the semantic and syntactic relationship between terms [99].

In the vector space model, every word or group of words (depending on whether one is

working with a single word or a phrase) is called a term, which represents one dimension

of the feature space. A positive number, reflecting the relevancy and significance, is as-

signed to each term. This number can be the frequency of the term in the document [120].

The major problem of text classification is its high dimensionality. A high dimensional

feature space addresses a very large vocabulary that consists of all terms occurring, at

least once, in the collection of documents. High dimensional feature space has a destruc-

tive influence on the performance of most text classifiers. Additionally, it increases the

complexity of the system. To deal with high dimensionality and avoid its consequences,

dimensionality reduction is strongly desired [95, 123].

1



2 Feature Ranking for Text Classifiers

One well-known approach for excluding a large number of irrelevant features is fea-

ture ranking [95, 26]. In this method, each feature is scored by a feature quality measure

such as information gain, χ2, or odds ratio. All features are then sorted based on their

scores. For feature selection, a small number of the best features are kept and the rest

are removed. However, this method has a serious disadvantage in that it ignores the

redundancies among terms. This is because the ranking measures consider the terms in-

dividually. Another drawback of feature ranking-based feature selection is evident when

it is applied to unbalanced data. Feature ranking methods are unable to fairly select fea-

tures from all classes. Consequently, small classes tend to be ignored when training the

classifier.

Due to the high dimensionality of text classification problems, computational effi-

ciency and complexity reduction are very important issues. One strategy in dimensional-

ity reduction is aggressive feature selection, in which the classification task is performed

by very few features with minimum loss of performance and maximum reduction of com-

plexity. In aggressive feature selection, more than 90% of non-discriminant, irrelevant,

and non-informative features are removed [95,26]. Both aforementioned drawbacks have

a more destructive impact on the classifier performance in an aggressive feature selection

scheme.

1.2 Objectives

This thesis attempts to propose new techniques towards enhancing the performance of

feature ranking-based feature selectors for text classifiers. Any improvement in the per-

formance of feature ranking methods can be made after identifying and analyzing the

drawbacks of these methods.

Feature ranking methods are data dependent such that we cannot suggest a general

method best-suited for all data sets. The performance of ranking methods also depends

on the choice of classifiers. Furthermore, in order to filter out the lower ranked features by

ranking methods, there is a free parameter which is called the feature ranking threshold.

Estimating this parameter is quite subjective and highly dependent on the data set and

the learning model. Because of all aforementioned issues, feature ranking methods are

highly problem-dependent. To deal with this problem dependency, we need an objective

framework to study, analyze, and predict the behavior of ranking methods with respect

to the data set characteristics and learning model.

The performance of the majority of learning models decreases as the class imbalance



Introduction 3

increases. Employing feature ranking methods can worsen this situation. Another ob-

jective of this thesis is to investigate the reason of feature ranking failure when applied

to unbalanced data, and propose some modifications to improve the performance in the

case of high class skew.

A feature selection scheme is efficient if it can reduce redundancy as well as noise. The

other goal is to propose a measure to evaluate the asymmetric dependency between every

two features and learn the dependency links between them, which can be employed to

extract feature redundancies.

1.3 Thesis Organization

This thesis consists of eight chapters. After the introduction, in Chapter 2, feature se-

lection based on feature ranking for text classifiers is reviewed. The most popular fea-

ture ranking methods are discussed. In addition to existing measures, two new ranking

measures including normalized information gain and category-document frequency are

introduced.

In Chapter 3, the drawbacks of feature ranking methods with emphasis on text clas-

sifiers application, are detailed. We theoretically and experimentally show that feature

ranking methods ignore term redundancy and fail when applied to a problem with class

imbalance.

The proposed method, differential filter level performance, to evaluate feature ranking

methods, is introduced in Chapter 4. Based on the proposed method, a meta-ranking

framework is proposed to select the best-suited feature ranking method with respect to

the data set and the choice of classifier.

Chapter 5 provides an application of the meta-ranking framework to extract domain-

specific stopwords, which is an inverse task of feature selection. In this chapter, we extend

the notion of filter level performance and try to estimate it approximately by data set

characteristics such as global sparsity index. One interesting result is that if a given term

ranking can perform well for selecting good features, it will not necessarily perform well

when selecting poor features (stopwords).

In Chapter 6, the proposed approach to extracting term dependency is explained. We

introduce inclusion index, a new information theoretic dependency measure to assess

the dependencies between features. Using the term dependency tree, an algorithm is

proposed to extract the redundant terms. We show that by using the proposed method,

we can improve the classifier performance in the aggressive feature selection scheme.



4 Feature Ranking for Text Classifiers

In Chapter 7, we deal with another serious drawback of feature ranking methods. By

introducing the reverse discrimination method for feature ranking, a local feature ranking

method is proposed to re-balance the unbalanced data at the feature level. The problem

of learning a social network from text data is employed to examine the proposed local

feature ranking method.

Chapter 8 concludes the thesis with a discussion of the contributions made in addition

to some suggestions for future work.

Appendix A provides some information about the data sets employed in this thesis

and Appendix B includes the list of notations.



Chapter 2

Feature Selection based on Feature

Ranking for Text Classifiers

2.1 Introduction

Text classification is one of the fast paced applications of machine learning and data min-

ing [100]. There are many applications in natural language processing and information

retrieval employing text classification techniques [55]. All these applications use the capa-

bility of text classification techniques in dealing with natural language documents. Since

text classification is a supervised learning process, a lot of learning methods, for example,

nearest neighbor, regression models, Bayesian approach, decision trees, inductive rule

learning, neural networks, and Support Vector Machines (SVM), can be employed [3,124].

Most text classification algorithms use the vector space model to represent text doc-

uments. In this model, every word or group of words (terms), depending on working

with a single word or a phrase, represents one dimension of the feature space. A positive

number is assigned to each term. This number can be the frequency of the term in the

text [120].

One major problem with text classifiers, especially when modeled by the vector space

model, is high dimensionality, not only in the data but also in the feature space. A high

dimensional feature space means a very large vocabulary that consists of all terms oc-

curring at least once in the collection of documents. Although high dimensional feature

space has destructive influences on text classification, its impact on increasing complexity

is worse and expensive. To deal with performance degradation and complexity, feature

selection is strongly desired [95, 123].

5
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Based on Heap’s law, the size of vocabulary is non-linearly related to the size of data

set, O(nβ), where n is the size of data set and β is a small number (0.4 ≤ β ≤ 0.6).

On the other hand, according to Zipf’s law, in a vocabulary, only few words are very

frequent. For instance, two most frequent words in English can account for more than 10%

of occurrences, while the majority of words occurs only once. Although both groups may

carry some linguistic content and help to understand the meaning of a text (for example

in natural language processing), for text classification purpose both groups should be

removed because they do not contribute in the learning process and are not predictive

enough. The words in the first group are called stopwords which can be dealt with as

noise.

In this chapter, dimensionality reduction methods for text classifiers are briefly out-

lined. One class of dimensionality reduction methods is feature ranking-based feature

selection techniques, which are reviewed in this chapter. Their major advantages, design

parameters, and difficulties are also discussed. Finally, the most popular methods are

introduced.

2.2 Document Representation

Document representation is an important issue in text mining. It can affect the text cat-

egorization process and its performance. Most researches in text categorization assume

that a document consists of a Bag Of Words (BOW). In other words, in this representa-

tion, the smallest segment of information in textual data is word, not letter or sentence.

In the literature, the atomic piece of information in textual data is called term, which may

include a single word, multiple words or even a phrase. However, in this thesis, term is

used as a single word.

BOW representation is not sufficient by itself to be employed in text categorization

task as a vector of features. One problem is the size of documents, which are different

using the BOW representation. One solution is to employ the Vector Space Model (VSM)

to represent BOW of the documents. VSM, which is originally a representation model in

information retrieval systems, has been first proposed by Salton [126].

In this model, every document is represented by a sequence of terms. Each term is rep-

resented either by a binary or a weighted format. There are different weighting schemas

such as Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF),

and Term Frequency Constraint (TFC). In TFC the length of the document is considered

in weighting scheme. The length of this vector is as big as the size of the vocabulary,
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which is the set of all distinct word occurred in the data set. The jth entry of the VSM

represents the weight or score of the jth term of the vocabulary in the document. This

process is called term indexing.

In text classification, term indexing can be performed using local vocabulary or global

vocabulary. The local vocabulary Ti includes all distinct terms occurring in the documents

belonging to the category ci. Obviously, in C-class problem, there are C local vocabulary.

On the other hand, T is the global vocabulary and includes all distinct terms occurring in

the collection.

VSM representation has some disadvantages, which includes ignoring four important

facts of natural language text [77]:

• term dependencies and correlation

• text structure

• grammar and language model (which can be also considered as advantage once we

are looking for a language independent framework)

• ordering of terms in the document

Let D∈ R
n×m be the training text samples represented by a structure called document-

term matrix. Each row such as Di represents a document vector and every column such

as tj depicts the distribution of the term in the training samples. According to the vector

space model, Di is modeled as follows,

Di = (wi,1t1, wi,2t2, ..., wi,mtm) (2.1)

where m = the number of terms or the size of the vocabulary;

wi,j = the weight of the jth term in the ith document.

In the case of using binary weighting scheme, wi,j = {0, 1} due to the occurrence of tj in

Di. Otherwise, the weight consists of two weighting factors, local and global weighings.

In local weighting the distribution of the term in the document is observed. For example,

TF and TFC are two local weighting schemes. The global weighting scales the term into

its distribution across the collection, for example inverse document frequency, term con-

tribution, and all other term ranking measures such as information gain, odds ratio, and

χ2.

Since the length of documents in the collection could be different, in order to prevent

the learning model to get biased to the very large documents, all terms in Dj are also
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locally normalized across the document vector. Calculating and storing the normalized

document vectors can considerably save further computation time.

Di =
wi,1t1, wi,2t2, ..., wi,mtm

‖Di‖
=

wi,1t1, wi,2t2, ..., wi,mtm
√

∑
m
j=1 w2

i,j

(2.2)

where ‖Di‖ = the norm or simply Euclidian length of the vector Di.

There have also been some efforts to use more sophisticated models that utilize se-

mantic and syntactic relationship between terms [99, 105]. These two relationships are

ignored by vector space model, which trusts completely in statistical behavior of terms

within a document.

2.3 Dimensionality Reduction Methods

High dimensionality is known to be an intrinsic property of text classification problems,

which not only increases the complexity of the problem but also degrades the perfor-

mance of the system. In text categorization, dimensionality is directly linked to the notion

of overfitting, which can harm the generalization capacity of a classifier [19, 128].

Three strong motivations for feature selection and dimensionality reduction for text

classifiers are [76]:

• improving the scalability of the text classifier

• reducing the size of data base and saving computer resources

• improving the classifier performance through reducing noise, stopwords, and re-

dundancy

Dimensionality reduction is either supervised or unsupervised depending on whether

it is being used in a classification or a clustering task, respectively. Compared to unsu-

pervised dimensionality reduction [75], supervised techniques are more successful and

well-appreciated by researchers in text categorization [25, 33, 96, 28, 110].

Methods of dimensionality reduction are grouped into two categories: features ex-

traction and feature selection [82]. Feature extraction uses all dimensions and measure-

ment space to achieve a newly transformed space for compacting the feature space with-

out eliminating any of them, while feature selection is mainly searching for a subset of
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features among the total number of features based on one or more feature quality mea-

sures [60]. The quality measure can be either directly or indirectly linked to the classifier

performance, which correspond to two families of feature selection approaches: wrapper

and filter.

2.3.1 Feature Extraction

Feature extraction uses all dimensions and measurements to achieve a newly transformed

space for compacting the feature space without eliminating any of them. The process of

feature extraction is searching a mapping f , by which Y = f (X) where X and Y are former

and new feature spaces, respectively. The function compacts the original feature space X

such that |Y| ≪ |X|. A good function is the one, which offers the best reconstruction of the

data and provides the most predicting features. One advantage of feature transformation

techniques are their solid mathematical background. The other is their promising results

in many dimensionality reduction problems.

The transformation can be either linear or non-linear. Some examples of linear mod-

els are Principle Component Analysis (PCA), Singular Value Decomposition (SVD) also

known as Latent Semantic Indexing (LSI) in information retrieval, Linear Discriminant

Analysis (LDA), and Independent Component Analysis (ICA). For non-linear transforma-

tion, we can use techniques such as non-linear PCA and neural networks [32]. However,

most feature extraction algorithms such as PCA fail with large data base of text mining.

Another drawback is the computational time of feature extraction methods. For example

calculating eigenvectors and eigenvalues are two time demanding and expensive tasks

for high dimensional text problems [82].

2.3.2 Feature Selection

Feature selection reduces dimensionality by searching for a subset of features among the

total number of features based on one or more performance indices. The performance

indices can be either directly or indirectly linked to the classifier performance, which

addresses two families of feature selection methods: wrappers and filters [47].

It is worthwhile to mention that for some applications such as genomic microarray

analysis and text information retrieval, improving the classification performance and re-

ducing the dimensionality are not the only reasons of feature selection. For example, in

DNA microarray data analysis, biologists measure the gene expression including tens of
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thousand genes in a tissue sample and try to explain how the genes relate to some de-

ceases. For example, although some genes are strongly correlated to a particular type

of cancer; biologists prefer to target a small subset of most relevant genes rather than

conducting detail analysis and expensive experiments with a larger set of genes [31, 58].

Wrapper Approach

In the wrapper approach, the corresponding performance index of a candidate feature

subset is tied to the performance of the classifier. Therefore, the process of feature selec-

tion is not independent of the data mining task. In wrapper approaches, a classifier is

employed to assign scores for features and feature selection depends on the choice of the

classifier [44, 58].

Since most feature selection methods have been proposed for non-textual data clas-

sification, the majority of them follow the wrapper strategy; not an efficient means of

text classification. Two major drawbacks of wrappers are: (i) their huge computational

time, which makes them inappropriate and unscalable for high dimensional text mining

problems; and (ii) they are biased to the classification model. On the other hand, the

great advantage of wrappers is their taking into account the correlations and dependen-

cies between features. Because of this trait, the wrapper approach is called a multivariate

(non-univariate) method, which is consistent with the multivariate function of text classi-

fiers.

Filter Approach

To free the feature selection from the classification model, the classification performance

can be indirectly estimated by some other quality measures. In the filter approach, pre-

diction capacity of a classifier is translated into a merit function of selected features. This

function reflects the quality of the selected features and can include information theory

and information retrieval measures. The filter approach includes a wide range of search

and ranking techniques. They employ almost the same search algorithms as wrappers.

Filter approaches are implemented in a prepossessing step of classification, independent

from the choice of the classification method [44, 48, 58].

Hybrid Methods

Recently some hybrid methods have also been proposed [14]. For instance, in [6], a

method based on ranking features by weighing each feature on the separating hyper-
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plane of the SVM classifier has been proposed. The other example is feature weighting

based on generalization error bounds of SVM classifier with respect to the feature [89,51].

One drawback of these methods is their use of the expensive SVM classifier for feature

selection. Another hybrid feature selection technique is proposed in [76], in which a lin-

ear classifier is employed to rank the features. This method is not a pure wrapper ap-

proach because the classifier model individually ranks every feature without considering

the subset of features. It means that the method is still univariate without removing any

possible term redundancy or correlation.

Other combinations of feature selection methods have also been considered to im-

plement hybrid approach. For example, in [121], a feature ranking method (see section

2.4) such as information gain is followed by a recursive filter-based feature selection us-

ing Markov Blanket filter. The method is applied to genomic microarray data, which is

similar to text problem in terms of high dimensional feature space. Also, [22] proposes

the use of feature ranking techniques to provide more efficient search to wrapper-based

feature selection. This method can also be extended to combination of feature ranking

and a wrapper approach. In both cases, feature ranking is to substantially reduce the

dimensionality, in which the major target is noise reduction. At the second part, filters

or wrappers, which are recursive search-based algorithms, the main target is to remove

redundancy and improving the classifier performance [58].

2.4 Feature Ranking

A class of filter approach feature selection algorithms is feature ranking methods, which

is also know as Best Individual Features (BIF) method [40]. Feature ranking retains a

certain number of features according to a ranking threshold; that is, those having the

highest scores as measured by term relevance, predictive capacity, information content

or quality index. Simply defined, feature ranking is sorting the features according to a

feature quality index, feature weighting, or feature ranking measure, which reflects the

relevance, information, and discriminating power of the features.

Compared to the wrapper approach and other filter techniques, feature ranking is less

expensive, simpler, and more scalable. All these properties make feature ranking suitable

for text classification problems. Similar to other filter methods, its design process is inde-

pendent of the classifier model. It has been shown, however, that some ranking methods

work better with particular classifiers [23,6]. As a rule, feature ranking is performed only

on training data. Some researchers prefer to use test data to obtain term count, without
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using the class labels [22].

2.4.1 Feature Ranking Design Factors

A feature ranking-based feature selector requires the use of a ranking measure and filter-

ing out the low scored features. Designing a feature ranking-based feature selector needs

to make decision about the following issues:

Feature Ranking Scope

The process of feature ranking is either local or global. In the local case, feature ranking

is performed for each class individually, which implies employing a local vocabulary.

Using a local vocabulary is potentially one of the solutions to overcome the performance

degradation caused by class skew problem [23]. In global feature ranking, we are dealing

with only one unified vocabulary associated with the training data set.

Feature Ranking Measure

Selecting a ranking measure must be performed by considering the classification model

and the characteristics of the training data set. There is a link between feature ranking

measures and classifiers. Some classifiers work better with a particular set of feature

ranking measures; for example, the Naive Bayes classifier (NBC) works better with odds

ratio, such that features with a higher rank in odds ratio measure are more influential in

NBC [6, 76]. It can also be shown that the performance of feature ranking methods vary

from one data set to another. For instance, in [76], it has been shown that the odds ratio

feature ranking performs more successfully with moderately sparse data sets in the range

of 10 to 20 terms per document vector, while the classifiers are NBC or SVM. Due to this

correlation, one challenging problem is selecting the appropriate ranking measure for a

particular data set. According to [76], sparsity can be a strong parameter by which one

can decide about the feature ranking method. In this thesis, the main goal is to propose

an objective framework for choosing the best feature ranking, one which may differ from

one data set to the next.

Feature Ranking Threshold

The other crucial problem in feature ranking is to determine the appropriate threshold

to filter out noise and irrelevant terms. This threshold represents the number of desired
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features and reflects the complexity of the classifier. The ranking threshold can be applied

to either the value of the ranking measures or the number of features.

The threshold is either a predetermined number of features k, which means that the k

first features are to be selected, or a predefined value τ to select every feature whose score

is higher than the threshold τ. The value of a threshold to be applied to sorted features

depends on the training data set and the classification algorithm. For example, unlike a

K-Nearest Neighbor (KNN) text classifier, which works with a short length feature vector,

a NBC needs more features, and SVM is almost insensitive to the feature length [43].

In [26] a measure is proposed to find out whether a feature ranking improves the

performance of a text classifier or not. This measure can be potentially employed for esti-

mating the feature ranking threshold. The method is based on analyzing the distribution

of features according to their information gain values. The introduced measure is called

Outlier Count (OC), representing the number of features that their information gain are

greater than µ + 3σ:

OC = |{t ∈ T : IG(t) > µIG + 3σIG}| (2.3)

where µIG = mean of information gain scores;

σIG = standard deviation of information gain scores.

According to [26], the speed of decline of sorted information gain across the features is

more important than absolute value. OC is strongly correlated with the magnitude of

improvement that can be achieved by feature selection.

The OC is also potentially applicable to investigate the effectiveness of aggressive fea-

ture selection, in which about 90% to 95% of features are removed [95]. According to [26],

with lower OC, aggressive feature selection is highly recommended; but in higher OCs,

however, aggressive feature selection can harm the classifier performance. In such cases,

a very smooth feature selection is preferred. Figure (2.1) demonstrates the sorted, nor-

malized information gain of the best 500 features for the six data sets employed in this

thesis. Among the data sets, the 20 Newsgroups, WebKB, and Industry Sectors have

quite sharp decline and consequently low OC compared to the rest of the data sets. In

other words, the ranking threshold for these data sets should be low such that an aggres-

sive scheme can be applied. On the other hand, for data sets whose sorted information

gain have smooth decline, for example the Reuters, aggressive feature selection is not

recommended and the threshold should be large number.
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Figure 2.1: Sorted information gain of the best 500 features for the six data sets.

2.4.2 Evaluating Feature Ranking Methods

A number of ranking measures have been perviously proposed. In [123,95,77,6], the mea-

sures have been comprehensively compared with each other. According to their findings,

information gain and χ2 offer better results. Although these are comprehensive studies,

there is no objectively formulated merit function to find the best feature ranking measure

for a given data set. The problem is more complex when considering the fact that the

functionality of feature ranking highly depends on the type of classifier, and the charac-

teristics of the training data, such as sparsity and imbalance [6, 76].

Various ranking measures adopted from information theory and/or information re-

trieval have been already introduced. Examples include information gain, mutual infor-

mation, term entropy, χ2, (inverse) document frequency, and odds ratio. Among the list

of measures, a few usually offer a good ranking result compared to the others. Since,

the functionality of the feature ranking for feature selection depends on other factors, in-

cluding the type of classifier and training data characteristics, proposing a general feature

ranking measure as the best method for all conditions is not possible. In other words, a

framework is needed to indicate the best ranking measure according to the characteristics

of the training data. In this thesis, a model is formulated to select the best feature ranking

measure among a set of candidate measures.
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2.5 Feature Ranking Measures

All feature ranking methods are based on the following three steps:

• estimating a feature ranking measure as a merit index for each feature;

• sorting (weighting) all features in decreasing order based on the ranking measures;

• applying a threshold to the sorted feature list.

Feature ranking measures can provide each feature either one value per category (C

scores for each term, where C is the number of categories), or one single value per collec-

tion (one value for each term) [23, 77], which are called local and global feature rankings,

respectively. Local feature ranking, which has C local feature vectors, one for each cat-

egory, produces a table called category-term ranking matrix F ∈ R
C×m. Every entry

φ(tj, ck) of the matrix F is called a category-term weight representing the relevance of the

term j to the class k. Since class information is involved in the ranking process, this group

of ranking methods can be used only in supervised learning problems. Examples are mu-

tual information, χ2, and odds ratio. The kth row of F is the local feature ranking for the

kth category, and the jth column is the distribution of the term j over the categories.

The popular approach is to use a global feature vector, which requires a unified rank-

ing method, producing one score for each term per collection. The result of global ranking

is the ranking vector Φ ∈ R
1×m. Global ranking is performed either by an unsupervised

measure such as inverse document frequency and term contribution, or a supervised mea-

sure such as information gain.

The category-term ranking matrix can be transformed into a ranking vector and em-

ployed using a global vocabulary. In order to create a ranking vector from a matrix, all

weights assigned to a term (the jth column of the category-term ranking matrix) across

different classes are aggregated using an aggregation function:

Γ : F ∈ R
C×m → Φ ∈ R

1×m (2.4)

where Γ = the aggregation operator and might be any function such as maximum or

mean.

To implement most feature ranking methods, it is essential to estimate various proba-

bility distributions such as joint and conditional probabilities. Let Tp, Fn, Fp be document

frequency measures with different conditions as follows:
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Table 2.1: Class-Term contingency table.

tj t̄j

ck Tp Fn

c̄k Fp Tn

• True-Positive (Tp): number of documents in ck containing tj where ck is the kth class

and tj is the jth feature (term),

• False-Negative (Fn): number of documents in ck without tj,

• False-Positive (Fp): number of documents not in ck containing tj,

• True-Negative (Tn): number of documents not in ck without tj.

Most feature ranking measures can be grouped into two families:

• information theory measures, for example, information gain, mutual information,

entropy, χ2, Bi-Normal Separation (BNS) [22], and correlation coefficient ranking

[31];

• information retrieval measures, such as document frequency-based measures, in-

cluding document frequency and its variants, odds ratio, and F-measure based

ranking.

According to [77], there is also a group of machine learning-based measures, which have

good recall but poor precision such as Laplace measure, Difference measure, and Impu-

rity level. In addition, they do not perform well in aggressive feature reduction tasks.

Due to these drawbacks, they are not considered in this thesis.

2.5.1 Information-Theoretic Feature Ranking Measures

Mutual Information

Mutual information is a measure of statistical information that is shared between two

probability distributions. Based on the definition in [11], mutual information I(x; y) is

computed by the relative entropy of a joint probability distribution such as P(x, y), and

the product of the marginal probability distributions P(x) and P(y) as follows:

I(x; y) = D(P(x, y)||P(x)P(y)) = ∑
x

∑
y

P(x, y)log
P(x, y)

P(x)P(y)
(2.5)



Feature Selection based on Feature Ranking for Text Classifiers 17

Mutual information has been applied in text mining and information retrieval applica-

tions including word association [9] and feature selection [117, 123]. Mutual information

can be computed either as a single term or as a multiple term measure.

The single-term mutual information measures information shared between term tj and

category ck as follows:

I(ti; ck) = P(ti, ck)log
P(ti , ck)

P(ti)P(ck)
(2.6)

and using Table (2.1)

I(ti; ck) =
Tp

n
log

n.Tp

(Tp + Fp).(Tp + Fn)
, (2.7)

where n = the total number of documents in the training data.

In multiple-term mutual information, information shared between two or more terms

occurring in a particular category is considered. In this case, the mutual information

is viewed as the entropy of co-occurrence of any two terms, when a category is given.

Although this is one of the most promising solutions for redundancy reduction [65], es-

timating mutual information of higher orders (more than two) is very expensive [1]. De-

spite the multiple-term measure, the single-term mutual information provides poor re-

sults [95, 123] due to its tendency to select rare terms [39].

Information Gain (IG)

Information Gain (IG) is one of the improved variants of mutual information. IG not only

measures information shared between a term and a class, but also evaluates the informa-

tion shared between a term and the rest of categories. IG measures the discriminating

capacity of a term. According to [123], of all the different ranking measures, IG and χ2

offer better results. Based on [6], IG can have a high precision and low recall result, which

is more desirable for classification problems. The local information gain of the term tj

against the class ck contains three components as follows:

IG(tj, ck) = −ig1 + P(tj).ig2 + P(t̄j).ig3 (2.8)

ig1 = P(ck). log P(ck)

ig2 = P(ck|tj). log P(ck|tj)

ig3 = P(ck|t̄j). log P(ck|t̄j)

where P(ck) = the probability of a document belongs to the class ck;

P(tj) = the probability of a document contains the term tj;
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P(ck|tj) = the conditional probability of ck given term tj.

In practice, all these probabilities can be estimated using Table (2.1) as follows:

P(ck) =
Tp + Fn

Tp + Fn + Fp + Tn
=

Tp + Fn

n
(2.9)

P(ck|tj) =
P(tj, ck)

P(tj)
=

Tp

Tp + Fp
, P(tj) =

Tp + Fp

n

P(ck|t̄j) =
P(t̄j, ck)

P(t̄j)
=

Fn

Tn + Fn
, P(t̄j) =

Tn + Fn

n

The global information gain of a term across all categories in the training data is estimated

by weighted average of (2.8) for all classes.

IG(tj) =
C

∑
k=1

ig1 +
Tp + Fp

n

C

∑
k=1

ig2 +
Fn + Tn

n

C

∑
k=1

ig3 (2.10)

Normalized Information Gain (NIG)

Using the entropy of term tj, Normalized Information Gain (NIG) is introduced as follow:

NIG(tj) =
IG(tj)

H(tj)
=

IG(tj)

−P(tj) log P(tj)
(2.11)

Several formulations have been previously reported for normalizing information gain

measure [78, 102]. In the proposed NIG, the aim is to normalize the average informa-

tion shared between a feature and classes by the information provided by the feature

itself. Figure (2.2) illustrates a diagram to explain the IG measure. Using this figure,

we can estimate the following components of IG: H(ck) = {2 + 3}, H(ck|tj) = {3}, and

H(ck|t̄j) = {2}.

IG(tj, ck) = {2, 3} − P(tj).{3} − P(t̄j).{2} (2.12)

The lower bound of IG is zero and it is when the feature is correlated with all classes

(the term is a stopword). The upper bound of IG is estimated as follows: tj and ck are

completely correlated, then H(ck|tj) = {3} = 0, H(ck|t̄j) = H(ck), and H(ck) = H(tj) =

{1} = {2}. As a result, we have: IG(tj, ck) = {1}.(1− P(t̄j)). From (2.11):

NIG(tj, ck) =
{1}.(1− P(t̄j))

{1}
= 1− P(t̄j) = P(tj) (2.13)

It means that by the proposed NIG, we bounded IG measure to the weight of the term

(i.g. its document frequency). NIG(tj) is the average of NIG(tj, ck) over all classes. The
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Figure 2.2: Information shared between a term and a class to estimate information gain

measure.

above explanation is true for the average NIG, because NIG(tj) for a term is maximum

when it is correlated with one class and uncorrelated with others.

The χ2 Statistic

χ2 has presented promising results in many text classification problems, such that it can

usually outperform IG [95]. χ2 is referred to the χ2 distribution with one degree of free-

dom, which measures the lack of independence between a term and a category. An esti-

mation of χ2 is as follows:

χ2(ti, ck) =
(TpTn − FnFp)2

(Tp + Fp)(Fn + Tn)(Tp + Fn)(Fp + Tn)
(2.14)

According to [77], simplified χ2 is calculated as

sχ2(tj, ck) = P(tj, ck).P(t̄j, c̄k)− P(t̄j, ck).P(tj, c̄k) =
TpTn − FnFp

n2
(2.15)

It should be noted that χ2 values are normalized across a category, and can be compared

as long as they are in the same class.

This measure yields unreliable results for very low frequent terms. However, by ap-

plying a conservative Low Document Frequency (Low-DF) term elimination, usually χ2

offers the best results of the different ranking methods.

2.5.2 Information Retrieval Term Ranking Measures

Document Frequency (DF)

Document Frequency (DF) is a measure that reflects the contribution of a term in a whole

data set. It is assumed that all the terms in the feature vector have the same impor-

tance. This assumption does not always work, because from a pragmatic point of view,



20 Feature Ranking for Text Classifiers

the importance of the terms across the collection and its categories varies. The second

assumption in estimating DF is that all the terms are uniformly distributed over the cat-

egories [61]. In other words, the DF is biased to uniformly distributed terms across the

categories, which means DF can be potentially employed in stopword reduction. Since DF

ignores the labels and class information of the documents, it is an unsupervised ranking

measure that is widely used in text clustering. Each term is assigned a measure, repre-

senting the number of documents, containing the term. Other variants of DF are term

contribution, inverse document frequency, variance quality index [3], and local DF [54].

We also introduce category-document frequency measure, which is an extension of local

DF.

Inverse Document Frequency (IDF) is an information retrieval ranking measure and

widely used in removing high frequent terms, which are potentially considered as stop-

words. For example, in [22] stopword removal is performed by removing all the terms

with DF ≥ n/2. This rule fails in the case of domain-specific stopword reduction and

data sets with high class distribution imabalance [22].

IDF is calculated by different formulations such as

IDF(tj) = log
n− n(tj) + 0.5

n(tj) + 0.5
(2.16)

where n(tj) = the number of documents containing the term tj.

Category-Document Frequency (CDF)

IDF is an unsupervised feature ranking measure, where only the frequency of the term

is observed across the collection. By involving the class information in the DF measure,

other DF variants are defined. The class information of the documents can be involved in

the DF measure by the joint probability of a term and a category P(tj, ck). From the def-

inition of P(tj, ck), Local Document Frequency (LDF) and Document Frequency Variance

(DFV) [54, 3] are calculated by

LDF(tj) = arg
C

max
k=1

P(tj, ck) (2.17)

and

DFV(tj) =
1

C

C

∑
k=1

[P(tj, ck)−
C

∑
k=1

P(tj, ck)]
2 (2.18)
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Although both LDF and DFV use the class information, from our experiments, they do

not offer good results. For more efficient class information in DF measure, Category-

Document Frequency (CDF) is proposed as follows:

CDF(tj) = LDF(tj) log
1 + C

∑
C
k=1 T (tj, ck)

, Tc(tj, ck) =

{

0, P(tj, ck) < τd

1, P(tj, ck) ≥ τd

(2.19)

where τd = the category-term frequency threshold and 0 < τd ≤ 1. Here τd = 0.1.

Odds Ratio

Odds Ratio (OR), as a feature ranking measure, has been adopted from relevance ranking

in information retrieval [92]. OR is estimated as follows:

odds(tj|ck) =
P(tj|ck)

1− P(tj|ck)
, OR(tj, ck) =

odds(tj|ck)

odds(tj|c̄k)
=

TpTn

FpFn
(2.20)

In OR, the terms, which rarely occur in a category but never appear in other categories,

attain higher ranks [76]. This property renders OR appropriate for keyword extraction.

The risk is to select singletons (less frequent noise words) as relevant features [6]. Similar

to the χ2 measure, which is unreliable in low frequent terms, the solution is to apply a

low-DF filter to reject rare and obscure words. According to [6], OR offers a high recall

and low precision, which makes it insufficient for classification, but proper for retrieval

tasks.

Ranking Measure based on F-measure

Let h be a single classification rule as follows:

h : i f tj ∈ Di → Di ∈ ck, (2.21)

which implies an association between term j and class k, tj → ck. The rule h is applied to

each term in the vocabulary. By referring to Table (2.1), the Precision (Pc) and Recall (Rc)

measures of h can be estimated as follows:

Pc(tj → ck) =
|retrieved ∩ relevant|

|retrieved|
=

Tp

Tp + Fp
(2.22)

and

Rc(tj → ck) =
|retrieved ∩ relevant|

|relevant|
=

Tp

Tp + Fn
(2.23)
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where Pc(tj → ck) = the precision of h;

Rc(tj → ck) = the recall of h.

Eq. (2.22) and (2.23) are read as Pc(tj, ck) and Rc(tj, ck). With these two measures, the

F-measure ranking method [23] is defined as follows:

F(tj, ck) =
2Pc(tj, ck)Rc(tj, ck)

Pc(tj, ck) + Rc(tj, ck)
=

2Tp

2Tp + Fn + Fp
(2.24)

2.6 Estimating Classifier Performance

Text classifiers are usually evaluated by measures such as accuracy, Break-Even Point

(BEP), precision and recall, or some combination such as F-measure [26]. The behavior

of each of these evaluation measures highly depends on the data set characteristics, such

as multiple or binary class, multiple or single label, imbalance (class skew), and homo-

geneity [23]. It should be noted that in a homogenous problem, the degree of difficulty is

uniformly distributed over all categories, which means the difficulty of all classes is quite

similar.

Classification accuracy (or error rate) is usually used as performance index in non-

textual data classification. It may fail in the case of imbalance, which are more common

in textual data. In order to deal with imbalance, one can adopt performance measures

from information retrieval. Unlike text classification, in which imbalance is rarely consid-

ered, information retrieval systems always face with imbalance of class distribution. One

simple example is when processing a user query. While the user looks for a single rele-

vant (positive) record, the retrieval system may return many irrelevant (negative) records

along with the positive result. This is the reason to adopt F-measure of information re-

trieval in text classification problems.

F-measure is defined based on precision and recall, which are two popular informa-

tion retrieval measures. Precision is the fraction of retrieved documents that are relevant

or Pc = P(relevant|retrieved). Recall is the fraction of relevant documents that are re-

trieved or Rc = P(retrieved|relevant). Recall is a non-decreasing function of the number

of retrieved documents, while precision usually decreases. In performance evaluation

of a classifier, given a query (a document) the output of the classifier (assigned label) is

the retrieved document, which can be either relevant (true label) or irrelevant (false la-

bel). We can achieve very high recall while scoring very poor precision. For example, a

system whose precision is very poor can retrieve all existing documents as results. This
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simple example shows that precision is as important as recall. Due to this fact, a weighted

harmonic mean, which is a conservative mean of precision and recall, is used:

Fmeasure =
(β2 + 1)PcRc

β2Pc + Rc
(2.25)

We usually use balanced F-measure, in which β = 1.

F-measure is usually employed for a binary classification problem. In the case of

a multiple class problem, micro-averaged and macro-averaged F-measure is employed.

Micro-averaged F-measure is a weighted average of F-measures of all categories by class

distribution, while in macro-averaged F-measure, classes have no weights and all are

similarly treated. While dealing with uniformly distributed classes, both averages are the

same. Otherwise macro-average is less than micro-averaged F-measure [22, 23]. In other

words, any difference between these two averages, could be a sign of class skew.

Most classification techniques do not obtain strong recall in the case of highly skewed

classes because they focus on the accuracy measure. As a result, while evaluating un-

balanced classes, the classification accuracy can be misleading. A better alternative is to

use F-measure and, in the case of unbalanced multiple-class problems, macro-averaged F-

measure is strongly recommended [22]. For this research, then, all classifier performances

are measured by macro-averaged F-measure.

In order to estimate the classifier performance, different validation strategies have

been introduced; for example, hold-out, leave-one-out, and K-fold cross validation [27,5].

The K-fold cross validation has been widely used in text classification [26, 23]. In most

experiments in this thesis, a five-fold cross validation has been used for estimating the

performance of the classifier, which is the macro-averaged F-measure. In this process,

the collection (the data set) is divided into five subsets. The experiment is repeated five

times. Each time we train the classifier with four subsets and leave the fifth one for the

test phase. The average of five evaluations is the estimated performance.

2.7 Conclusion

In this chapter, feature ranking-based feature selection methods were detailed. Three el-

ements of the feature ranking methods, including the scope of feature ranking, feature

ranking measures, and ranking threshold, were also discussed. The ranking methods

were categorized into two groups including information theoretic and information re-

trieval methods. We also introduced NIG which is an extension of IG and CDF as the

supervised version of IDF.



Chapter 3

Feature Ranking Drawbacks

3.1 Introduction

Feature ranking methods are problem-dependent such that their behavior varies from

one problem to the other. The problem means a combination of data set characteris-

tics, for example data sparsity, and classification techniques. In previous section, it has

been explained that the performance of a feature ranking measure varies based on the

type of classifier. Furthermore, feature ranking methods, despite their scalability and

lower cost algorithms, suffer from lower performance compared to the search-based fea-

ture selection approaches such as wrappers. The low performance of feature ranking

techniques arises from two issues: (i) ignoring the correlation and dependency between

terms, and realizing a univariate selection while the nature of text classifiers is multivari-

ate [19, 80]; and (ii) failing in multi-class problems, especially with high class distribution

imbalance [23].

3.2 Multivariate Characteristic of Text Classifiers

Feature selection based on ranking is a univariate approach, in which only one feature

is considered to be retained or removed. In other words, feature ranking measures such

as IG simply ignore the dependency and correlation between terms. The consequences

can be low discriminating capacity and increasing redundancy. Let φ be a feature ranking

measure such as IG, and t1, t2, t3, and t4 be four features (terms) from the vocabulary.

Let us suppose that the features t1 and t2 have higher ranks than t3 and t4 as follows:

{φ(t1) > φ(t2) > ... > φ(t3) > φ(t4) > ...}. In other words, it implies that t1 and t2 are

24
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more relevant features than the others. Univariate feature selection approaches, such as

feature ranking, fail in the following scenarios:

1. The feature ranking measure φ ranks t1 and t2 higher than t3 and t4, while in natural

language texts, sometimes two individually irrelevant terms, such as t3 and t4 are

jointly relevant. A well-known example is the phrase “To be or not to be”, in which

all terms are individually noise, but meaningful together.

2. By most feature ranking methods, t1 and t2 will be kept, while in textual data these

two terms can be redundant as well as relevant, such as synonym terms [125].

As a result, neglecting the multivariate characteristic of text classifiers causes two seri-

ous problems: (i) ignoring correlation and dependency between features, and (ii) ignoring

feature redundancies.

3.2.1 Term Correlation and Dependency

In spite of feature ranking, a text classifier behaves based on a combination of features

returning to the correlation between them. By a simple test, we demonstrate the impact

of the multivariate characteristic of text classifiers on their performance. Five ranking

measures, including: IG, Max(χ2), Mean(χ2), IDF, and random feature ranking (RND) are

applied to the six data sets, detailed in Appendix A. In addition to these five measures,

the sixth ranking measure called Single Term Prediction (STP), which is defined based

on the discriminant capability of every feature, is introduced. Let J(tj), 1 ≤ j ≤ m be

the classifier performance using only feature tj. Here J is the performance (i.g., macro-

averaged F-measure) of a Rocchio classifier [57]. After estimating J for all features, the

terms are sorted based on their corresponding performance.

The classifier performance of the six ranking measures is estimated across all levels

of filtering (ranking threshold) for the six data sets. Figure (3.1) depicts the classifier

performance for 50% of the best features for the six ranking measures. It shows that

STP ranking always performs very poorly as compared to the other methods, including

random ranking. It suggests ignoring the correlation and dependency between terms is

as destructive as noise in feature ranking.

3.2.2 Term Redundancy

All terms of the vocabulary with respect to their contribution to the categorization and

retrieval processes can be grouped into four classes: (i) non-redundant and relevant; (ii)
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Figure 3.1: The impact of ignoring term correlation on the Rocchio classifier performance

for the six data sets.
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non-redundant and irrelevant; (iii) redundant and relevant; and (iv) redundant and irrel-

evant. In feature selection for text classifiers, we are only interested in the first group,

which is non-redundant and relevant terms. Measuring the relevancy of the terms, by

employing strong feature ranking methods, such as IG, is quite feasible. The difficulty is

to extract term redundancies.

Redundancy is a kind of data dependency and correlation, which can be estimated

by different measures, such as the Jaccard, Cosine, co-occurrence, and correlation coef-

ficients [15, 122, 107]. Redundancy between two terms can be also measured by mutual

information. If two terms have similar probability distributions on class labels, one of the

terms might be considered as a redundant term such that removing it does not hurt the

classifier performance. The problem is to find the possible redundancies and identify the

redundant terms to be removed.

In this section, the result of an experiment illustrating the influence of redundancy

on the classifier performance is presented. Two different text classifiers are employed: a

Rocchio classifier which is sensitive to noise, and a SVM classifier with a linear kernel,

as an optimum classifier which usually does not need feature selection and is commonly

used as a text classifier. All the six data sets are employed in the experiment.

We show that adding redundancy, especially in the case of a very low number of fea-

tures (aggressive feature selection), can degrade the performance. The testing process is

as follows: Let T be the m sorted terms of the vocabulary according to a feature ranking

measure φ, T = {t1, t2, . . . , tm}, where t1 is the best term and tm the worst. The vectors

T1, T2, and T3, three versions of T are generated by the following setups:

1. q best terms: q < m best terms of the set T are selected such that T1 = {ti ∈ T|1 ≤

q}.

2. q/2 best terms + q/2 redundant terms: The vector T2 includes two segments. For

the first segment, q/2 best terms of T are selected. The q/2 terms of the second

segment are artificially generated by adding a very small amount of noise to each

term of the first segment. The result is a set of redundant terms. Using this setup,

the rate of redundancy (#redundant
#terms ) is at least 50%.

T2 = P1 ∪ P2, P1 = {tj ∈ T|1 ≤ j ≤
q

2
}, (3.1)

P2 = {t′j ∈ P1|t
′
j = tj + σn, 1 ≤ j ≤

q

2
}

where σn = added noise to each term;

P1 = the set of the best and the most informative terms;
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P2 = the set of redundant terms.

The process of adding noise is as follows: Each term such as tj is associated with a

vector tj = {w1,j, w2,j, ..., wn,j}, where wi,j ∈ {0, 1}, 1 ≤ j ≤ n, is the weight of tj in

document Di. Here, a binary weighting scheme is used. We randomly add binary

noise to each vector, which means inverting σn = n
10 weights in each vector.

3. q/2 best terms + q/2 noise: It is the same as the previous setup, except that the

second part consists of noisy terms. Due to the use of feature ranking measures, q/2

last (worst) terms in T should be noisy and less informative. Therefore, we do not

have to generate artificial noise.

T3 = P1 ∪ P2, P1 = {tj ∈ T|1 ≤ j ≤
q

2
}, (3.2)

P2 = {tj ∈ T|m + 1−
q

2
≤ j ≤ m}

where P1 = the set of the best and the most informative terms;

P2 = noisy terms (worst and less informative).

We use five-fold cross validation for estimating the performance of classifiers. In this

process, the collection (whole data set) is divided into five subsets. The experiment is

repeated five times. Each time we train the classifier with four subsets and leave the

fifth one for the test phase. The average of the five measures is the estimated classifier

performance, which is the macro-average F-measure. All three feature vectors with q =

{0.1, 0.2, ..., 0.5} × m, are submitted to the SVM and Rocchio classifiers and the average

of the performance of each classifier is calculated. We consider performance of the first

classifier as the baseline, in which the original feature vector T1 without any artificially

added noise or redundancy is employed. To compare the classification using noisy and

redundant feature vectors, we compare their performance degradation from the baseline

classifier. Let δ2 = Meanq [J(T2)− J(T1)] where J(T2) and J(T1) are the performance of

the classifier using term vector T2 and T1, respectively. We estimate δ3 = Meanq[J(T3)−

J(T1)] for the feature vector T3. Both δ2 and δ3 are always negative.

To compare the performance of T2 and T3, δJ = (δ2 − δ3) is calculated for all feature

ranking measures, including F-measure, IG, NIG, Max(χ2), mean(χ2), Max(OR), CDF,

IDF, and random feature ranking, for the six data sets discussed in this thesis. A negative

value for δJ means that redundancy is more destructive than noise. Tables (3.1) and (3.2)

illustrate the result of δJ for both Rocchio and SVM classifiers. For all combinations of

data sets and feature rankings, in both classifiers, the measure δJ is a negative value,



Feature Ranking Drawbacks 29

Table 3.1: The estimation of δJ for all feature rankings and the six data sets using Rocchio

classifier.
Data Set F-measure IG NIG Max(χ2) Mean(χ2) Max(OR) CDF IDF Random

Industry Sectors -0.2282 -0.1550 -0.2233 -0.2122 -0.3806 -0.3724 -0.1882 -0.3676 -0.5070

LO Metadata -0.4783 -0.5255 -0.4640 -0.4470 -0.5343 -0.5713 -0.5027 -0.5775 -0.5296

20 Newsgroups -0.7099 -0.7717 -0.7691 -0.7114 -0.6403 -0.6460 -0.6788 -0.8289 -0.3228

Reuters -0.2415 -0.3173 -0.3649 -0.2927 -0.3420 -0.3270 -0.2601 -0.3141 -0.3916

WebKB -0.0880 -0.1183 -0.1252 -0.0536 -0.0341 -0.1077 -0.1125 -0.0276 -0.1336

CS Abstracts -0.2362 -0.1109 -0.2306 -0.2679 -0.3937 -0.2532 -0.2531 -0.4094 -0.3537

Table 3.2: The estimation of δJ for all feature rankings and the six data sets using SVM

classifier.
Data Set F-measure IG NIG Max(χ2) Mean(χ2) Max(OR) CDF IDF Random

Industry Sectors -0.3117 -0.3393 -0.1843 -0.3433 -0.4806 -0.4317 -0.3345 -0.4666 -0.2943

LO Metadata -0.4903 -0.6095 -0.6365 -0.5209 -0.6407 -0.5925 -0.4724 -0.6144 -0.5467

20 Newsgroups –0.6973 -0.8114 -0.7799 -0.7075 -0.7613 -0.7082 -0.6577 -0.8526 -0.2335

Reuters -0.2935 -0.3770 -0.3614 -0.2907 -0.4521 -0.3899 -0.2817 -0.4368 -0.2660

WebKB -0.1323 -0.2251 -0.2371 -0.1978 -0.1948 -0.1659 -0.1586 -0.1312 -0.1774

CS Abstracts -0.2702 -0.1749 -0.2597 -0.2303 -0.3570 -0.2890 -0.2497 -0.3606 -0.2875

which means the impact of the redundancy is always worse than that of noise. This fact

is more clearly shown in Figures (3.2) and (3.3), in which the performance of classifiers

using noisy feature vector T3 is better than that of using feature vector with redundancy

(T2).

In conclusion, according to this experiment, redundant terms not only have no dis-

criminating benefits for the classifier, but also reduce the chance that other less informa-

tive but non-redundant terms can contribute to the classification process. This experiment

conformed findings in [58], which showed using feature correlation matrix that the fewer

redundant features in a small subset of features includes, the more information it can offer

for accurate prediction.

3.3 Class Distribution Imbalance

The majority of feature ranking methods fail when applied to multiple class problems

with non-uniform class distributions (class skew). According to [23], feature ranking

methods can select relevant features for easy classes, while being unable to learn difficult

or small classes. They only pay more attention to the easy and large classes to compensate

for their weakness against the difficult classes. By means of this trick, they improve their

overall accuracy even though there is a large negative number of results for small and

difficult classes. One potential approach to decrease the destructive impact of imbalance
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Figure 3.2: The effect of noise and redundancy on the Rocchio classifier performance with various feature ranking

methods. The solid lines show the feature vectors with added redundant terms, and the dashed lines depict those

with added noise terms.
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Figure 3.3: The effect of noise and redundancy on the SVM classifier performance with various feature ranking

methods. The solid lines show the feature vectors with added redundant terms, and the dashed lines depict those

with added noise terms.
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is to make use of local feature ranking instead of a global scheme [23], which is discussed

in Chapter 7.

Figure (3.4) illustrates the results of some experiments, which have been performed

to investigate the impact of class distribution of training data on the classification perfor-

mance. The six data sets, detailed in Appendix A, have been examined. The experiment

is performed by several random samplings of each data set with a predefined imbalance

level. It should be noted that the imbalance is measured by the variance in the class size

of the training data. Since most data sets are not homogenous, to ensure that the per-

formance loss is independent of the class difficulty, the average classifier performance of

20 random samplings for a desired level of class distribution imbalance is obtained. Ac-

cording to Figure (3.4), by increasing the imbalance of document distributions across the

categories, the performance of both Rocchio and SVM classifiers, dramatically drops. The

results of 20 Newsgroups and Reuters clearly illustrate the correlation between classifier

performance and class distribution imbalance. These two data sets are more homogenous

as compared to the other data sets. In a homogenous classification problem, the classi-

fication difficulty is uniformly distributed across all categories in the data set. In other

words, in a homogenous classification problem all classes have similar complexities.

3.3.1 Data Sparsity

In Figure (3.4), classifier performance is considered as a function of class distribution

imbalance. In some cases such as WebKB data with Rocchio classifier or Industry Sectors

with SVM, this function is not monotonically decreasing. In order to explain these cases,

we should note that, in fact, the most influential characteristic of training data, which

can directly affect the performance of classifier, is data sparsity [6, 76]. While the sparsity

of classes are not balanced, class imbalance may re-balance the sparsity of classes and

improve the performance. As a result, any class distribution imbalance affects classifier

performance through increasing or decreasing the degree of sparsity in classes. The local

sparsity of class k is estimated as follows:

S(ck) = 1−
∑

nk
i=1 xi

m.nk
(3.3)

where xi = the number of distinct words in the ith document or the number of non-zero

entries in the ith row of the document-term matrix;

nk = the number of samples in class k.
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Figure 3.4: The impact of class distribution imbalance on the classifier performance: (a)

Rocchio, and (b) SVM classifier.
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In other words, because of high dimensional feature space in text classification problems,

more than having a balanced training samples, we need to have all categories in the train-

ing data balancedly compact.

The measure of sparsity reflects the compactness of the training data space. The more

compact data space, the more accurate model we can fit to predict unknown test data. As

a result, the classifier performance is reduced by increasing (decreasing) the data sparsity

(density which is equal to 1− sparsity). Let m be the length of the feature vector. In fact,

the document data set, which is represented by a document-term matrix, is stored as a

sparse matrix. Then, the size of the database can be measured by the sparsity index,

S = 1−
∑

n
i=1 xi

m.n
, (3.4)

According to [6], by decreasing the sparsity index (3.4), the compactness of the learning

model is improved, implying a more accurate prediction. We call this measure global spar-

sity because the categories are not involved. Figure (3.5) illustrates classifier performance

as a function of global sparsity. The experiment is similar to that of Figure (3.4). In both

classifiers and all data sets, classifier performance, which reflects the prediction accuracy

of the classifier, is negatively correlated with global sparsity of training data.

3.3.2 Feature Ranking for Imbalance Data

In Figure (3.4), the impact of unbalanced class distribution on the performance of classifi-

cation was demonstrated. All experiments in this figure have been performed on full fea-

ture length and no feature ranking involved. We expect that feature ranking can intensify

the impact of class imbalance. To illustrate the function of feature ranking, while dealing

with unbalanced class distribution, an experiment, which is a simplified binary classifi-

cation problem, is set up. Two data sets, including Industry Sectors and 20 Newsgroups,

have been examined. From industry sectors, the classes “financial” and “healthcare” have

been selected. Two classes of 20 Newsgroups are “sci.crypt” and “sci.med”. From each

class, 100 samples are randomly selected. Since we expect that feature ranking fails on

smaller classes, in each experiment, F-measure of the smaller class (“financial” in Indus-

try Sectors and “sci.crypt” in 20 Newsgroups data set) are estimated by using a Leave One

Out Cross Validation (LOOCV) scheme. Two feature ranking measures, including IG and

OR, have been employed using five ranking thresholds including {20, 40, 60, 80, 100} per-

cent of the total number of features (m).

According to Figure (3.6), by increasing the class imbalance, the classifier performance

is decreased, which is exactly similar to the results in Figure (3.4). Figure (3.6) also shows
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Figure 3.5: The correlation between global sparsity and the classifier performance: (a)

Rocchio, and (b) SVM classifier.



36 Feature Ranking for Text Classifiers

0 1:5 1:10 1:15 1:20 1:25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Class Imbalance

F
−

m
ea

su
re

20 Newsgroups

20% of features
40% of features
60% of features
80% of features
100% of features

0 1:5 1:10 1:15 1:20 1:25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class Imbalance

F
−

m
ea

su
re

Industry Sectors

20% of features
40% of features
60% of features
80% of features
100% of features

(a)

0 1:5 1:10 1:15 1:20 1:25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Class Imbalance

F
−

m
ea

su
re

20 Newsgroups

20% of features
40% of features
60% of features
80% of features
100% of features

0 1:5 1:10 1:15 1:20 1:25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class Imbalance

F
−

m
ea

su
re

Industry Sectors

20% of features
40% of features
60% of features
80% of features
100% of features

(b)

Figure 3.6: The impact of class distribution imbalance on the F-measure of the minor-

ity class with various feature length (feature ranking threshold) for 20 Newsgroups and

Industry Sectors data sets using: (a) information gain, and (b) odds ratio ranking.
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the impact of various ranking threshold on the classifier performance while dealing with

imbalance data. In small feature vectors (aggressive feature selection), for instance 20%

of full length of feature vector, the performance more sharply declines, while in longer

feature vectors, the decline is smoother. The reason is that by removing more features of

the training samples in small classes, they have less chance to have representative features

contributed in building the classifier model. It should be noted that because of using

binary-class problem, the class imbalance has been measured by notation (ns : nl), where

ns and nl are the size of smaller and larger classes, respectively.

3.4 Conclusion

One well-known filter-based approach for excluding a large number of non-discriminant

and irrelevant terms is feature ranking. Although feature ranking methods have a few

disadvantages, such as ignoring the correlation between terms and the risk of term redun-

dancy, they are highly scalable and less expensive as compared to other feature selection

techniques. All these properties make feature ranking suitable for text classification prob-

lems. Similar to other filter methods, its design process is independent of the classifier

model.

In this chapter, we explained that feature ranking methods have some serious draw-

backs. They are problem-dependent such that their behavior varies from one problem to

another. It has also been explained that the performance of a feature ranking measure

varies based on the type of classifier. In Chapter 4, a framework is proposed to choose

proper feature ranking measure with respect to the training data set and the choice of

classifier. The proposed framework, which is called differential filter level performance,

is practically considered a hybrid method, and requires to estimate the performance of a

classifier.

Furthermore, we explained that feature ranking methods, despite their scalability and

lower cost algorithms, suffers from lower performance compared to the search-based fea-

ture selection approaches such as wrappers. The low performance of feature ranking

techniques arises from two issues:

1. Ignoring the dependency between terms and realizing a univariate selection while

the nature of text classification problems is multivariate. The univariate function of

feature ranking causes two serious problems: (i) ignoring correlation between fea-

tures, and (ii) ignoring feature redundancies. According to the experiments in this
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chapter, redundant terms not only have no discriminating benefits for the classifier,

but also reduce the chance that other less informative but non-redundant terms can

contribute to the classification process.

2. Failing in multi-class problems, especially with high class distribution imbalance.

The majority of feature ranking methods fail when applied to multiple class prob-

lems with non-uniform class distributions (class skew). We showed in this chapter

that any class distribution imbalance affects classifier performance through increas-

ing or decreasing the degree of local (class) sparsities. Because of high dimensional

feature space in text classification problems, more than having a balanced training

samples, we need to have all classes in the training data balancedly compact. It

was also explained that feature ranking can intensify the class imbalance effects on

the classifier performance. By removing more features of the training samples in

small classes, they have less chance to have representative features contributed in

building the classifier model.

While using feature ranking methods to reduce the dimensionality, we should be

aware of these two drawbacks, which arise from the function of feature ranking meth-

ods. For the first drawback, ignoring term dependency and correlation, we need to take

extra effort to search for term dependencies including redundancies and correlations. Al-

though they increase the cost of feature reduction using feature ranking, this extra cost

is worth it since the search will be performed on a small number of features according

to the ranking threshold, which is practically very small. For example, to search for only

pair-wise term dependencies among q terms, the whole space, including q(q − 1) pairs,

should be investigated.

The next step is to make a decision about the extracted dependencies. We can either

merge the dependent terms or remove some of them and retain the rest. Heuristically, in

the case of redundant terms, if asymmetric dependency between terms is given, it will be

possible to consider removing the term with more dependency and retain the term with

less dependency. This task needs to search for asymmetric term dependency. In this case,

we cannot employ the mutual information measure to extract term dependencies.

The alternative approach is to focus on correlated terms regardless of the dependency

direction. This approach is less expensive because we can employ mutual information

measure, which requires q(q − 1)/2 pair-wise (two variables) mutual information esti-

mations. In this case, the conservative approach is to merge the terms with each other

and form a new multiple-word term.
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Empirical results on the impact of term dependency on feature ranking performance

prompt us to work on extracting pair-wise term correlation using mutual information

and merging correlated terms rather than removing the terms. We are also interested in

extracting asymmetric dependencies, which can implement the redundancy reduction.

This approach is detailed in Chapter 6.

Another direction in our research is to deal with imbalance data in feature level rather

than data and algorithm level. Dealing with highly unbalanced data has been received

lots of attention in machine learning community [87]. In this chapter, it has also been

shown that the destructive effect of class imbalance on the classifier performance is wors-

ened as we apply feature ranking-based feature selection. It is because the majority of

feature ranking measures pay more attention to the features in large classes while those

in small classes are usually ignored [23]. In other words, in an aggressive feature selection

(very small feature vector), small classes are rarely represented by features in the feature

vector. Although the data re-balance strategies such as minority class oversampling and

majority class down-sampling [87] may increase the chance of small classes to have more

representative features, we are interested in working on balancing techniques in feature

level. In this approach, selected feature vector by feature ranking is compelled to cover

all classes and contain a minimum number of relevant features from each class. In this

case, we can employ a local feature selection (one classifier for each class). This technique

is explained in Chapter 7.



Chapter 4

Differential Filter Level Performance

4.1 Introduction

In this chapter, a new method called differential filter level performance is introduced to

identify the best feature ranking measure for text classification among a set of candidate

measures. The proposed method requires two elements: first, a set of feature rankings,

and second, their corresponding classifier performances. We introduce some heuristic

criteria to compare two feature ranking measures. Next, a simplified, objective version of

the criteria is proposed.

In the proposed approach, a classifier is used to estimate the trend of performance vs.

the various levels of feature filtering. Such classifiers that are well-suited for this study are

those that are sensitive to feature selection and the level of filtering. These classifiers are

able to reflect the behavior of the feature rankings. For example, the SVM classifier is not

a good choice due to its insensitivity to noise reduction. Therefore, a weaker classifier,

sensitive to noise reduction and feature selection, in addition to being simple, fast and

inexpensive, is more desirable. These characteristics point to the Rocchio classifier.

4.2 Classifier Performance as a Function of Number of Fea-

tures

The objective in a text categorization system is the classification of documents into a fixed

number of predefined categories. Let D be the set of documents and C be the finite set of

categories. Let us suppose there is an ideal classifier H, which is defined as H : D → C,

where H is a many-to-one mapping of the documents to the class space. Practically, the

40
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document space is randomly sampled such that a finite number of documents, which is

called the set of training samples D ⊂ D, is employed to build the model. The resulting

learning model h is, optimistically, a good approximation of H such that by applying the

model to a set of unknown random samples or test data, which are independent of the

training set, the test error ǫh is minimized. To rephrase the text classification problem, it

is an optimization of h to gain the highest generalization ability by minimizing the test

error.

The classifier h, in fact, is a family of learning solutions which can be defined based

on the distribution of training data and the set of features. The text classification design

process is to find an optimum h ∈ h minimizing the test error. In order to represent the

classifier by the set of its features, the set of training data is assumed to be fixed during

feature selection.

Let J be the performance of the classifier h. It can be expressed as a function of three

independent variables

J(h) = f (G,D, H) (4.1)

where G = the generalization ability or learn-ability of the classifier;

D = the data distribution;

H = the information provided by the selected features.

It should be mentioned that in (4.1) all three variables G, D, and H are assumed to be

independent of each other.

During the feature selection, regardless of the approach, we always employ same clas-

sification algorithm in all steps. As a result, the learn-ability of a classifier has no change

during feature selection. The performance function is also consistent with data distri-

bution during feature selection, because in all iterations of feature selection, we use the

same data. The total classifier performance is also unbiased to data distribution by apply-

ing different cross validation techniques (i.g. leave one out and K-fold cross validation).

As a result, in order to compare two feature ranking-based feature selection methods,

while using exactly similar classifiers and data sets, the estimated performance is a func-

tion of information provided by features. It has been previously shown that there is a link

between classifier Bayes error and mutual information [115, 21, 30]. In these works, the

lower bound of Bayes error is estimated by maximizing the mutual information shared

between features and classes. In this thesis, to simplify the case, we assume that the clas-

sifier performance is a function of information expressed by the features:

J(h) = f (H) (4.2)
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Theorem 1. Sigma-additive Information of Feature Space

In a feature ranking-based feature selection, the behavior of classifier performance

J(h) is a monotonic non-decreasing function of the number of features.

Proof. Let T = {ti|1 ≤ i ≤ m} be a finite set of terms, which is also known as vocabulary

in text categorization. According to the vector space model [97], each term is considered

as a feature, a degree of freedom, or a variable of the text categorization model. From [12],

the information content of features can be estimated as follows:

H(t1, t2, ..., tm) = H(t1) + H(t2) + ... + H(tm)−MI(t1, t2, ..., tm) (4.3)

where H(ti) = the Shannon’s entropy of feature ti;

MI(t1, t2, ..., tm) = the summation of all mutual information values, addressing the corre-

lation and information shared between features.

In feature ranking-based feature selection, the features are considered independent of

each other [19]. In other words, in feature ranking, the features are assumed to be orthog-

onal, which means MI(t1, t2, ..., tm) = 0. As a result, we have:

H(t1, t2, ..., tm) = H(t1) + H(t2) + ... + H(tm) (4.4)

or we can rewrite (4.4) as follows

H(
m
⋃

j=1

tj) =
m

∑
j=1

H(tj) (4.5)

It means that the information provided by the features are a sigma-additive function. In

other words, because H(ti) ≥ 0, H(t1, t2, ..., tm) is a monotonic non-decreasing function.

As a result, from (4.2), the classifier performance is also a monotonic non-decreasing func-

tion of the number of features: J(h(t1 , t2, ..., tm)) ≡ f (t1, t2, ..., tm) or simply:

J(t1, t2, ..., tm) ≡ f (t1, t2, ..., tm) where f is a monotonic non-decreasing function.

The Theorem (1) can be explained by the following statement: the classifier performance

monotonically increases as we increase the number of features. This is almost true if we

assume that the feature vector is clean (no noise) and the features are independent of

each other. This is an ideal case and a strong assumption made by feature ranking-based

feature selection. In practice, we know that no ranking is perfect and always there are

some noise in higher ranks, as well as feature correlation and redundancy.
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We can also empirically state the sigma-additivity of feature space (Theorem (1)) by an

experiment (see Figure (4.1)). In this experiment, all features are randomly ranked. Start-

ing with an empty selected feature set, each time we add 10% of highly ranked features

to the selected pool of features, train the classifier, and estimate the classifier performance

on test data using a five-fold cross validation scheme. The experiment is repeated 10

times on the six data sets studied in this thesis using Rocchio and SVM classifiers. In all

cases, depicted in Figure (4.1), the classifier performance has a monotonic non-decreasing

behavior, which confirms the Theorem (1).

4.3 Feature Ranking Sequence

Definition 1. Feature Ranking Sequence

In a feature ranking method, all terms are sorted from high to low according to a rank-

ing measure φ. The sort function is ζ such that ζ : T→ V where V = {v1, v2, ..., vm}

is the sorted set of the terms, such that φ(v1) ≥ φ(v2) ≥ ... ≥ φ(vm). The elements

v1 and vm are called Head Hs(V) and Tail Ts(V) elements, respectively. V is a mono-

tonically decreasing, finite sequence and called Feature Ranking Sequence, such that

every subsequence S of the sequence V is still a sequence. S ⊑ V means S is a

subsequence of V.

In the feature ranking sequence, there is a restriction in order to define subsequences.

Since we always want to select the terms with highest ranking measures, then the head

of any subsequence of V has to be the same as the head of the original sequence V. As

a result, we always change the tail element of a feature ranking sequence to make subse-

quences. Due to this restriction, the α-cut of a sequence is defined.

Definition 2. α-cut Sequence

Let 0 < α ≤ 1, the sequence Vα is called the α-cut of the finite sequence V (Vα ⊑ V),

such that Hs(Vα) = Hs(V) = v1 and Ts(Vα) = v⌊α.|V|⌋ where |V| is the cardinal

number of the sequence V and ⌊.⌋ is the floor function (greatest integer less than

or equal of the argument). The parameter α is called filter level or feature ranking

threshold.
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Figure 4.1: The classifier performance as a monotonic non-decreasing function of number

of features: (a) Rocchio, and (b) SVM classifier.
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For all 0 < α1, α2 ≤ 1 we have the following properties of α-cut operation on se-

quences:

∀ α1 > α2 : |Vα1 | ≥ |Vα2 | (4.6)

∀ α1 > α2 : |Vα1 | = |Vα1 ∪Vα2 | (4.7)

f or α = 1 : Vα = V (4.8)

Definition 3. Power Sequence

Given a feature ranking sequence V with size m, the power sequence P(V) is the set

of all α-cut subsequences of V, such that |P(V)| = |V| = m. For example, the power

sequence of V = (v1, v2, v3) is P(V) = {(v1), (v1, v2), (v1, v2, v3)}.

According to Definition (3), feature selection based on feature ranking is a search

among the power sequences of the feature space, while other feature selections such as

wrappers are looking for a solution among the power set of the feature space. In other

words, feature ranking is an O(m) problem while others, i.g. wrappers, are in the order

of O(2m).

Now let us build a feature ranking sequence by inverting the sorted set of feature

scores. Let Φ
− = {φ(vm), φ(vm−1), ..., φ(v1)} be the sorted set of feature scores such that

φ(vm) ≤ φ(vm−1) ≤ ... ≤ φ(v1). The backward feature ranking sequence is defined as Λ =

{vm, vm−1, ..., v1}. Since the backward feature ranking sequence Λ is a sequence like V, it

inherits all properties of the forward (regular) feature ranking sequence V.

Definition 4. Inverse of Feature Ranking Sequence and Power Sequence

Given a feature ranking sequence V, its backward sequence Λ is also its inverse

sequence, such that Λ = V−1. We also define P(Λ) = {(vm), (vm, vm−1), ...,

(vm, vm−1, ..., v1)} as the inverse of power sequence P(V).

4.4 Filter Level Performance

Definition 5. Filter Level Performance (FLP)

In a feature ranking sequence V with corresponding vector of scoring measures Φ and



46 Feature Ranking for Text Classifiers

the set of corresponding classifiers h, Filter Level Performance (FLP) is defined as the

set of classifier performance values of the power sequence P(V). Let us define the set

of all corresponding classifiers h as follows,

h = h(P(V)) = {h(v1), h(v1, v2), ..., h(v1, v2, ..., vm)} =
⋃

0<α≤1

h(Vα) (4.9)

Let J(Vα) be the performance of the classifier h(Vα). We define J = J(P(V)), which

is the set of corresponding performance values, as FLP of the feature ranking sequence

V.

According to Theorem (1), ideally, the FLP of any feature ranking sequence is a mono-

tonic non-decreasing sequence. In other words, we have:

J(v1) ≤ J(v1, v2) ≤ ... ≤ J(v1, v2, ..., vm) (4.10)

or formally

∀ 0 ≤ α1, α2 ≤ 1, α1 ≤ α2 : J(Vα1) ≤ J(Vα2) (4.11)

The implication of (4.10) is that if we repeatedly accumulate a new lower rank term (less

φ) from the sequence to the set of terms, we expect to achieve a more accurate or at least

similar classifier performance in every step. It means that in an effective feature ranking

measure, classifiers become more accurate by increasing α.

Filter level performance can also be applied to the backward feature ranking sequence

Λ. Using sigma-additive property of feature space (Theorem (1)), regardless of ascend-

ing order of corresponding feature scores of Λ, its FLP is also monotonic non-decreasing

function of increasing number of features.

∀ 0 ≤ α1, α2 ≤ 1, α1 ≤ α2 : J(Λ
α1) ≤ J(Λ

α2) (4.12)

The FLP characteristic is depicted by performance of the classifier as a function of the

power sequence of V or simply as a function of α. The classifier performance is estimated

by measures such as accuracy or F-measure. Figure (4.2) illustrates an example of a FLP

characteristic. Each point of the FLP represents a classifier performance, or simply J(Vα).

Since the size of the power sequence used to calculate the FLP characteristic can be

large, factor α is stepwise broken into K ≪ m steps called resolution. In other words,

the P(V) is downsized to K sequences. For example, in most experiments in this Thesis,

K = 200 such that every step of α is equal to 1/200, and the corresponding increase in the

number of features is approximately equal to m/200.
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Figure 4.2: Filter Level Performance (FLP) of feature ranking sequence: Classifier perfor-

mance as a function of α or filter level: (a) forward, and (b) backward FLP.

Now, we are ready to characterize the feature ranking behavior using FLP model. Let

us revisit the objectives of the feature ranking-based feature selection methods: (i) In a

feature ranking, we are looking for a subsequence Vα ⊂ P(V) offering the best classifier

performance J(Vα). In other words, we are looking for the best filter level α maximizing

the J(Vα). (ii) Furthermore, we are also interested in smaller filter levels, which supports

the smaller feature space and consequently more compact database.

The two objectives can be casted in a unified statement: a good feature ranking method

is the one that compacts more informative features in a small feature ranking subse-

quence. It means that it can accumulate most information provided by features in very

first features.

4.5 Comparing Feature Ranking Measures

Theorem 2. Differential Filter Level Performance (DFLP)

Let P(VA) and P(VB) be two power sequences of two feature ranking sequences VA

and VB generated by two feature ranking measures ΦA and ΦB, respectively. Both

sequences are generated from the same vocabulary T. VA is better ranking sequence

than VB if VA does satisfy the following criterion:

J(P(VA))− J(P(ΛA)) > J(P(VB))− J(P(ΛB)).
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Proof. Let us suppose

J(P(VA)) > J(P(VB)) (4.13)

According to Definition (4), P(ΛA) and P(ΛB) are respectively the inverse of the given

power sequences P(VA) and P(VB). Then we can write:

J(P(ΛA)) < J(P(ΛB)) (4.14)

or

− J(P(ΛA)) > −J(P(ΛB)) (4.15)

Inequalities 4.13 and 4.15 can be added together:

J(P(VA))− J(P(ΛA)) > J(P(VB))− J(P(ΛB)) (4.16)

We call J(P(VA))− J(P(ΛA)) in 4.16 Differential Filter Level Performance (DFLP). The

summation of this set can be used as a measure of merit to evaluate feature ranking mea-

sures. It is calculated as follows

δFLP =
1

K

K

∑
i=1

(J(V⌊
m.i
K ⌋)− J(Λ

⌊m.i
K ⌋)) (4.17)

Figure (4.3) shows forward and backward characteristics for a ranking measure such

as IG. Both are obtained under the same conditions, including the same classifier (Roc-

chio) and data set (WebKB). In order to select the best feature ranking measure, we are

looking for a feature ranking measure that maximizes DFLP. It implies a backward-forward

FLP with maximum positive and minimum negative areas in Figure (4.3). The pos-

itive area is associated with f orward > backward and the negative is associated with

f orward < backward.

Using DFLP, we are able to evaluate and compare a set of feature ranking measures.

Let V1, V2, ..., and Vr be r feature ranking sequences generated by feature ranking mea-

sures φ1, φ2, ..., and φr, respectively. According to 4.16, the best feature ranking sequence

among the sequences is the one that not only its power sequence maximizes the classifier

performance J, but also the power sequence of its backward feature ranking sequence

minimizes the classifier performance J. It means that focusing on the forward FLP is

not enough to evaluate a feature ranking measure. In many cases, as we show in Sec-

tion 4.6, forward FLP are flat for most feature ranking measures and we can differentiate
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Figure 4.3: Forward and Backward FLPs of Max(OR) ranking measure for the WebKB

data set using Rocchio classifier. In ranking-based feature selection, the goal is to achieve

larger positive and smaller negative areas.

them only by involving backward FLP. The feature ranking sequence and filter level per-

formance provide a framework to compare the measures and identify the best feature

ranking among a set of candidate measures.

In practice, the FLP characteristic is not necessarily monotonic. The reason can be ex-

plained as follows: In Theorem (1), features are assumed to be independent of each other,

which is an essential assumption in feature ranking-based feature selection methods but

nevertheless does not always work in reality. Especially in text classification, there is

correlation and dependency between terms.

Figure (4.4) depicts two FLP examples, including the FLP of two feature ranking mea-

sures: Mean(χ2) and CDF for Reuters data set. In Figure (4.3), any decline in forward

or backward FLP implies that some informative and discriminant terms have been mis-

placed in the lower ranks, and some noise terms have been ranked as relevant terms. In

Figure (4.4), CDF is not monotonic (δFLP = 0.28), while Mean(χ2) behaves monotonically

and is more appropriate for feature ranking (δFLP = 0.34).

It should be noted that the generalization capacity of text classifiers has significant

influence on the rate of test error. For example, a SVM classifier can deal with noisy fea-

tures with negligible loss of performance, while Rocchio and KNN are strongly sensitive

to noise. With respect to the length of the feature ranking sequence, KNN suffers from a
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Figure 4.4: Two examples of forward and backward FLP characteristic for Reuters data

set: (a) Mean(χ2), and (b) CDF ranking.

high number of features while NBC performs better with a large number of terms [107].

Therefore, to consolidate the result of the study on feature ranking strategies, we should

use those classifiers, which do not interfere with the performance of the feature ranking.

For example, a SVM classifier can compensate for any misplacing of the terms in feature

ranking and even deal properly with noise. Due to this fact, a classifier such as Rocchio,

which is sensitive to feature selection, is used in most experiments.

4.6 Evaluation and Discussion

In this chapter, the method of differential and backward-forward filter level performance

has been introduced to find the best feature ranking measure among a set of candidate

ranking measures. To evaluate the proposed framework, nine feature ranking measures

are applied to the six data sets, which are detailed in Appendix A. The set of feature rank-

ing measures represented by RankSet includes: F-measure, IG, NIG, Max(χ2), Mean(χ2),

Max(OR), CDF, IDF, and Random. The set of document collections represented by DataSet

includes: Industry Sectors, LO Metadata, 20 Newsgroups, Reuters, WebKB, and CS Abstracts.

To estimate the FLPs, a macro-averaged F-measure of the Rocchio classifier is obtained by

applying the ranked features with variable resolutions. Every classification experiment is

validated by the five-fold cross validation approach.

Figure (4.5) depicts the forward-backward FLPs for all RankSet × DataSet cases with

resolution K = 200. As we are using the average of a five-fold cross validation, the
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Table 4.1: The DFLP measures of DataSet × RankSet using Rocchio classifier.

F-measure IG NIG Max(X2) Mean(X2) Max(OR) CDF IDF Random

Industry Sectors 0.32 0.41 0.40 0.34 0.28 0.25 0.26 0.15 -0.01

LO Metadata 0.51 0.49 0.51 0.51 0.49 0.40 0.52 0.42 0.00

20 Newsgroups 0.45 0.41 0.80 0.47 0.38 0.74 0.36 0.27 -0.00

Reuters 0.35 0.30 0.36 0.36 0.30 0.29 0.30 0.22 0.00

WebKB 0.06 0.07 0.08 0.06 0.05 0.06 0.06 0.03 -0.00

CS Abstracts 0.14 0.14 0.23 0.14 0.12 0.12 0.11 0.07 -0.01

results are reliable. Tables (4.1) and (4.2) represent the corresponding DFLP measures

and ranking of feature ranking measures (meta-ranking) according to their DFLP values,

respectively.

The following conclusions can be immediately drawn from the results:

1. The behavior of feature ranking measures depends on not only the classification al-

gorithm [6, 76], but also the data set characteristics. Figure (4.5) shows the extreme

differences in behavior of the feature rankings while being applied to various data

sets. In Table (4.2), IG scores far more varied results as compared to the other rank-

ing methods.

2. The NIG ranking measure has the best performance in most cases. Surprisingly, IG

and χ2 offer poor results compared to NIG. Another newly proposed measure, CDF,

is also beating other methods in the case of the LO Metadata collection.

3. IDF, which is widely used in information retrieval for term ranking, scores nearly

the worst ranking and in fact is only better than the random ranking. IDF is also

employed for removing high-DF terms, also known as stopwords. According to

Table (4.2), the result of IDF-based filtering cannot be reliable, because it filters out

not only noisy terms but also some relevant terms. Its sharp rising parts of backward

FLP for Industry Sectors, 20 Newsgroups and CS abstracts, illustrate this point. IDF

has also produced negative DFLP measures for Industry Sectors and WebKB, which

means it is not able to filter out all noise terms such that there are some non-relevant

terms in the higher ranks.

In similar experiments, we used a SVM text classifier instead of the Rocchio. Since the

SVM classifier is more time-demanding, a lower resolution level (K = 40) was examined.

Figure (4.6) illustrates the forward-backward FLPs for all RankSet × DataSet cases. A

five-fold cross validation is also used to estimate the SVM classifier performance. In Table

(4.3), the DFLP measures are depicted for the case of the SVM classifier, and Table (4.4)
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Figure 4.5: Forward and Backward FLPs of DataSet × RankSet using Rocchio classifier. Forward and backward FLPs

are shown by solid lines and dashed lines, respectively.
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Table 4.2: Meta-ranking results using Rocchio classifier: the data sets and their sorted

feature ranking from best to worst.

Meta-Ranking

Data Set 1(the best) 2 3 4 5 6 7 8 9(the worst)

Industry Sectors IG NIG Max(X2) F-measure Mean(X2) CDF Max(OR) IDF Random

LO Metadata CDF NIG F-measure Max(X2) Mean(X2) IG IDF Max(OR) Random

20 Newsgroups NIG Max(OR) Max(X2) F-measure IG Mean(X2) CDF IDF Random

Reuters NIG Max(X2) F-measure Mean(X2) IG CDF Max(OR) IDF Random

WebKB NIG IG Max(X2) F-measure Max(OR) CDF Mean(X2) IDF Random

CS Abstracts NIG Max(X2) IG F-measure Mean(X2) Max(OR) CDF IDF Random

shows the meta-ranking results for the candidate ranking measures studied in this thesis.

The results of the SVM classifier confirms our statement, which is that the feature ranking

measure should be selected with respect to the data set characteristics and the choice

of classifier. Based on DFLP measures, we are unable to recommend a unique ranking

solution either for data sets or for classifiers. It means we must identify the best ranking

solution based on the data set and the classification model to be employed. One approach,

which has been introduced in this chapter, is the meta-ranking method.

Table 4.3: The DFLP measures of DataSet × RankSet using SVM classifier.

F-measure IG NIG Max(X2) Mean(X2) Max(OR) CDF IDF Random

Industry Sectors 0.43 0.46 0.45 0.44 0.40 0.40 0.40 0.29 0.01

LO Metadata 0.46 0.46 0.44 0.46 0.46 0.37 0.47 0.41 0.00

20 Newsgroups 0.35 0.31 0.33 0.35 0.35 0.31 0.33 0.27 -0.01

Reuters 0.41 0.38 0.39 0.40 0.37 0.40 0.40 0.32 0.02

WebKB 0.35 0.35 0.35 0.36 0.33 0.36 0.36 0.31 -0.00

CS Abstracts 0.15 0.13 0.14 0.16 0.15 0.14 0.14 0.09 -0.00

To validate the results, and investigate the impact of the resolution, the experiment

has been tried using different values for the resolution K. The DFLP measures, similar

Table 4.4: Meta-ranking results using SVM classifier: the data sets and their sorted feature

ranking from best to worst.

Meta-Ranking

Data Set 1(the best) 2 3 4 5 6 7 8 9(the worst)

Industry Sectors IG NIG Max(X2) F-measure Max(OR) CDF Mean(X2) IDF Random

LO Metadata CDF F-measure Max(X2) Mean(X2) IG NIG IDF Max(OR) Random

20 Newsgroups F-measure Mean(X2) Max(X2) CDF NIG IG Max(OR) IDF Random

Reuters F-measure Max(X2) CDF Max(OR) NIG IG Mean(X2) IDF Random

WebKB Max(OR) CDF Max(X2) IG F-measure NIG Mean(X2) IDF Random

CS Abstracts Max(X2) F-measure Mean(X2) Max(OR) CDF NIG IG IDF Random
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Figure 4.6: Forward and Backward FLPs of DataSet × RankSet using SVM classifier. Forward and backward FLPs

are shown by solid lines and dashed lines, respectively.
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to those in Figure (4.5), have been obtained for K = {5, 10, 20, 50, 100, 200}. In Table

(4.5), each entry presents the average (and corresponding standard deviation) of DFLP

measures for every couple of data set and ranking measures with 6 different resolutions.

Since the standard deviation for almost all measures is quite low, we may conclude that

the resolution has no strong effect on the FLP analysis of feature ranking measures. Table

(4.6) represents the order of feature ranking measures with different resolution values.

According to Table (4.6), DFLP enjoys stable behavior against the resolution. This means

that for estimating the FLP characteristic of a feature ranking measure, or comparing two

or more feature ranking measures, it is not necessary to perform experiments at higher

resolutions. A less complex, and inexpensive algorithm may be employed to find the best

feature ranking among a set of candidate measures.

The proposed method is mainly a meta-ranking algorithm (ranking the ranking mea-

sures), in which we are evaluating a set of candidate feature ranking measures. Although

each feature ranking measure is a filter-based feature selection (with no classifier in the

loop), the meta-ranking technique may be considered as a hybrid method, since we use

the classifier in the loop to find the best ranking measure. Using the classifier in feature

selection process can increase the cost of the algorithm, but we should note that the cost

is almost negligible compared to that of the wrapper approach. In the DFLP method,

the order of search or running the classifier is O(K), while in the wrappers, the order is

O(2m). We also showed that it is not necessary to employ a large resolution. According

to the results in Table (4.6), even by the very small resolution K, the trend of forward and

backward FLPs can be estimated.

The DFLP-based meta-ranking is recommended for the case of pattern classification

with a high dimensional feature space such as text classification, gene recognition, and

bio-informatics. In low dimensional cases, use of meta-ranking technique has no benefits

compared to the wrappers, which offer good results with reasonable cost in the search

for the best feature subset. In other words, when we are unable to employ the wrapper

approaches, because of high dimensional feature space, we prefer to use DFLP-based

meta-ranking to find the best feature ranking measure.

4.7 Conclusion

It has been previously demonstrated that there is no single feature ranking measure best-

suited for all data sets and all classifiers [85]. In other words, the performance of a par-

ticular ranking measure depends on the data set characteristics, such as class distribution
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Table 4.5: The average DFLP measures of DataSet × RankSet with six different values of

resolution.

F-measure IG NIG Max(X2) Mean(X2) Max(OR) CDF IDF Random

Industry Sectors 0.30±0.02 0.39±0.03 0.38±0.03 0.32±0.03 0.27±0.02 0.24±0.02 0.24±0.02 0.14±0.02 -0.01±0.00

LO Metadata 0.49±0.04 0.47±0.03 0.49±0.03 0.48±0.04 0.48±0.03 0.39±0.02 0.49±0.04 0.41±0.02 0.00±0.00

20 Newsgroups 0.41±0.04 0.37±0.05 0.76±0.05 0.43±0.04 0.36±0.04 0.72±0.03 0.33±0.04 0.25±0.03 -0.00±0.00

Reuters 0.33±0.03 0.28±0.02 0.34±0.03 0.34±0.03 0.29±0.02 0.27±0.02 0.28±0.03 0.21±0.02 0.00±0.00

WebKB 0.06±0.00 0.07±0.01 0.07±0.01 0.06±0.00 0.05±0.00 0.05±0.00 0.05±0.00 0.03±0.00 -0.00±0.00

CS Abstracts 0.13±0.01 0.13±0.01 0.22±0.01 0.13±0.01 0.11±0.01 0.11±0.01 0.10±0.01 0.06±0.01 -0.01±0.00

Table 4.6: Meta-ranking results: the achieved ranks of feature ranking methods for the six

levels of resolution.

F-measure IG NIG Max(X2) Mean(X2) Max(OR) CDF IDF Random

Industry Sectors 444444 111111 222222 333333 555555 666777 777666 888888 999999

LO Metadata 333333 666666 111122 554444 245555 888888 422211 777777 999999

20 Newsgroups 444444 655555 211111 333333 566666 122222 777777 888888 999999

Reuters 333333 555555 111111 222222 444444 667777 776666 888888 999999

WebKB 344444 222222 111111 433333 777777 555555 666666 888888 999999

CS Abstracts 434444 343333 111111 222222 555555 666666 777777 888888 999999

imbalance and sparsity. Its performance may also differ from one classifier to another. To

deal with the nonrobust behavior of feature ranking measures, one strategy is to tailor the

feature ranking to the particular data set and classifier.

In this Chapter, the problem of finding the best ranking measure among a set of can-

didate feature ranking measures was detailed and a framework to find the best solution

based on meta-ranking. The proposed feature meta-ranking strategy used a newly in-

troduced structure called feature ranking sequence with some specific properties. By ex-

tending the concept of the forward feature ranking sequence to backward sequences, Dif-

ferential Filter Level Performance (DFLP), the difference between forward and backward

filter responses, was defined.

According to the findings, while using the differential filter level performance mea-

sure, the best feature ranking among a set of candidate measures should have: (i) mono-

tonically increasing classifier performances by increasing filter levels for both forward

and backward sequences; (ii) sharp and smooth risings for forward and backward re-

sponses, respectively; and (iii) higher forward FLP response compared to the backward

response in all levels of filtering. We learn from the numerical experiments that the pro-

posed method offers promising and stable results with different resolution of filter levels.

Compared to the recursive wrapper approaches, the proposed method is more scalable.



Chapter 5

Extracting Domain-Specific Stopwords

5.1 Introduction

In Chapter 4, a framework was proposed to find the best feature ranking method among

a set of candidate methods for selecting relevant features. In this Chapter, FLP technique

is employed in the reverse process, which is extraction of stopwords.

Stopwords or so-called common words, noise words or negative dictionary are con-

sidered as irrelevant, non-predictive, and non-discriminating words in text classification.

They carry low information content and cause low retrieval rate and prediction results.

In addition, stopwords make up a large portion of the textual data in text mining tasks,

where dimensionality is a critical issue. Stopwords are identified by the following at-

tributes:

• low discriminating values;

• negligible information content;

• high document frequency;

• correlation with most categories (in labeled corpus);

• correlation with most words in the vocabulary.

Typically, stopword removal, as well as stemming, is conducted prior to any textual

data processing task. In most information retrieval and text categorization systems, all

terms (words) are stemmed by a stemming algorithm such as Porter stemmer. Unlike

stopword removal that reduces the vocabulary size by only a few hundred terms, stem-

ming can cut the vocabulary size by as much as 40% [84, 36].

57
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Stopwords are grouped into two categories: general and domain-specific. The former

includes those standard stopwords, which are available in the public domain or non-

standard stopwords which are generated inside information retrieval or text categoriza-

tion systems [62, 103, 7, 83]. Domain-specific stopwords are recognized as a set of words

which have no discriminant value within a specific domain or context. Domain-specific

stopwords differ from one domain to another. For example, the term “learning”, can be

a stopword in the domain of “education”, but a keyword in “computer science”. The

result of removing these terms, are similar to those of removing general stopwords that

is an improved performance of the retrieval and categorization tasks. Not only can the

performance be improved, but also the size of the database. Domain-specific stopwords

have already been employed in areas such as physics, human resource management [14],

bioinformatics, and gene ontology [101]. Unlike general stopword lists (stoplists) which

usually have a fixed size, the size of domain-specific stoplists depends on the contex-

tual and statistical characteristics of the corpus, including the sparsity (or density) of the

corpus, the size of the vocabulary, and the number of sub-domains.

Both stopwords and stemming continue to be subjects of debate among researchers

working on different aspects of natural language textual data. Their interests can be cate-

gorized into three groups.

• Natural Language Processing (NLP): For applications in this area, stopword re-

moval and word stemming are sometimes questionable. They can reduce the per-

formance of results. For example, each of the following words, “to be or not to

be”, is pivotal to the meaning. From this viewpoint, the effectiveness of stemming

and stopword reduction, due to the linguistic correlation among words, is not guar-

anteed. For instance, by stemming or stopword reduction, the meaning of many

singular and plural nouns, prepositions, verbs, and negations are lost. Therefore,

NLP researchers conservatively conduct stopword removal [93, 22].

• Information Retrieval: In information retrieval applications, stopwords carry a very

low retrieval value. They are removed not only from the database but also from

the user’s query [88]. However, even in information retrieval systems, stopword

removal can reduce the performance. For example, abbreviations and symbols can

be removed by stopword removal process, degrading information retrieval perfor-

mance [106].

• Text Categorization: In text categorization applications, stopwords are treated as

noise that increases the dimensionality without offering any significant prediction
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capacity [100].

Stopword reduction is achieved by a standard stoplist, a high document frequency

(High-DF) filtering, a feature ranking scheme, or a combination of all three methods [23].

Inspired by Zipf’s law, where the number of documents in the data base is sufficiently

high, the terms with high document frequencies are treated as stopwords. However,

this rule fails in some cases, including the one where the documents are not uniformly

distributed across the categories.

In this chapter, a newly developed method is described for generating non-standard

and domain-specific stopwords. The drawback of previous methods, based on document

frequency for stopword extraction, are outlined. Conventional feature ranking-based

methods are evaluated by backward FLP. Using this evaluation, we illustrate that the be-

havior of feature ranking measures for scoring relevant terms differs from that for scoring

the irrelevant terms and stopwords. According to the experimental results which are ob-

tained by applying the proposed method to the six data sets, choosing the proper feature

ranking measure for building stoplists depends on the data set characteristics, including

the sparsity index.

5.2 Related Work

In [62, 103], outdated stoplists and web influences are mentioned as the two major moti-

vations for the automatic extraction of the stoplists. There are also some other reasons to

develop stopword extraction algorithms.

5.2.1 Outdated Stoplists

Standard stoplists become quickly outdated. For example, the first English stoplist was

published in the 1970’s [116]. Obviously, over time the usage of some popular words have

changed, depending on social factors such as technological changes, cultural shifts, new

media, and education levels. It is not surprising that revising, updating and optimizing

current stoplists are crucial [103].

Although general stoplists, mostly for the English language, are available, the need

for automatically constructing stoplists has not been obvious to researchers in text min-

ing. The first initiative in stopword extraction has been accredited to Van Rijsbergen in

1979 [116]. His stoplist is one of the most used ones in NLP and information retrieval ap-
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plications. Brown has developed the next most popular English stoplist adopted from [24]

and called the Brown general stoplist.

In [62], information gain ranking has been applied for stopword extraction. The re-

sults have been compared with those of several document and term frequency measures.

Additionally, the extracted stopwords are evaluated in an information retrieval query

processing task by using TREC collections. As we show in this chapter, the information

gain ranking is not comprehensive enough for stopword extraction. Choosing the proper

ranking measure depends significantly on the data set characteristics.

To generate stoplists for web-specific documents, word entropy was employed in

[104]. Since the method is unsupervised, the generated stoplist is evaluated by a web

clustering scheme. In [103], the stoplist, generated by word entropy, is optimized via

a k-means clustering and stochastic search algorithm. In [45], an association algorithm

for producing stoplists, based on Receiver Operating Characteristics (ROC) analysis, has

been suggested.

5.2.2 Web Impact

Influenced by new media such as the Web and new communication tools such as chat,

email, and Short Message Service (SMS), some new words have become more common in

daily English, for example, “email”, “contacts”, “URL”, and “link” [62].

5.2.3 Stoplist for Non-English Text Mining

Most of the research activities on NLP, information retrieval and text categorization have

gone into the English language text. Recently, stopword lists have been published for

other European languages. Table (5.1) lists the statistics of some stoplists [38, 37]. For

more details on available stoplists one can refer to [38] and [37]. Regardless of European

languages, there still exist some languages without standard stoplist.

In [98], a general stoplist, in addition to stemming, has been developed for French

text. Also, stoplists for other languages such as Russian, Arabic, and Farsi (Persian) have

been generated [81,7,112,83]. In most of the experiments, stopwords have been extracted

according to their high frequent words, and evaluated by information retrieval systems.

There are still some languages without standard stoplists.
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Table 5.1: The number of stopwords in some European languages.
Catalan 124 Czech 136 Danish 99 Dutch 46-101 English 37-360 Finish 1134

French 124-155 German 127-231 Hungarian 33 Italian 132-279 Polish 108 Portuguese 145

Russian 256 Spanish 176-313 Swedish 114 Norwegian 117 Turkish 112

5.2.4 Domain-Specific Stopwords

For the automatic extraction of domain-specific text mining and retrieval applications, we

always need stoplists from the local vocabulary of a corpus. Domain-specific stopwords

have been manually extracted in areas such as physics, human resource management [14],

bioinformatics, and gene ontology [101]. Unlike general stoplists which have fixed size,

the size of domain-specific stoplists depend on the contextual and statistical characteris-

tics of the corpus such as sparsity (or density) of the corpus, the size of the vocabulary,

and the number of sub-domains.

5.2.5 Formal Language Text Mining

Recently, text mining and statistical machine learning have been applied to formal lan-

guage texts such as software source codes [69,35]. For instance, in software clustering [35],

each function or procedure is represented by a bag of words, including reserved words,

constants, variables, and function calls. The first two elements are the noise and stop-

words to be removed and the last two elements, which carry more information, are fea-

tures. The identification of stopwords for various formal languages requires an automatic

extraction system.

5.2.6 Ontology Learning

Hub words have been introduced in [49]. They are related to many other words. Since one

characteristic of stopwords is their correlation with other terms, hub words are viewed as

a subset of domain-specific stopwords. Extracting hub words and building sub-domain

vocabularies, also known as terminology, is a baseline for learning ontology.

5.3 Stopword Reduction Using Document Frequency

In text information retrieval and in text categorization systems, stopword reduction is

usually performed by a stoplist. The first English standard stoplists were published in
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the 1970s. Since then, many lists with few changes continue to be relied on. In addi-

tion to the use of a standard stoplist, most text categorization systems perform low and

high document frequency filtering (Low-DF and High-DF). In this section, the benefits

and drawbacks of classical DF-based filtering for stopword extraction and removal is dis-

cussed.

According to Zipf’s law, in a corpus of natural language text, the usage frequency of

any word is considered to be inversely proportional to its frequency rank. For example,

the most frequently used words occur almost twice as often as the second most frequently

word used, and the second one occurs twice as often as the third most frequent word, and

so forth. In other words, in a vocabulary, only a few words are very frequent, whereas

the majority of words occur only once. Both high frequent and low frequent groups carry

some linguistic content, and typically facilitate the understanding of the meaning of the

text. For text mining purposes both groups are removed, because they do not relevant

enough to contribute to the learning process. Figure (5.1) illustrates this law for the six

data sets used in this thesis. In each graph, the left tail indicates the High-DF terms and

the right tail shows Low-DF terms.

Document Frequency (DF) is a measure that reflects the contribution of a term in a data

set. It is assumed that all the terms in the vocabulary have the same importance. This as-

sumption does not always work, because from a pragmatic point of view, the importance

of the terms across the collection and its categories varies. The second assumption in esti-

mating DF is that all the terms are uniformly distributed over the categories [61]. In other

words, the DF is biased to uniformly distributed terms across the categories, which means

DF can be potentially employed in stopword reduction. Since DF ignores the labels and

class information of the documents, it is an unsupervised scoring measure that is widely

used in text clustering. Each term is assigned a measure, representing the number of doc-

uments, containing the term. Other variants of DF are IDF, variance quality index [3],

local DF [54], and CDF (see Chapter 2).

5.3.1 Removing Low Document Frequency Terms and Singletons

In the majority of text classification research, Low-DF terms are removed from the vo-

cabulary. The threshold used for Low-DF filtering varies from one to more than ten,

depending on the data sets [95, 22, 23]. Those Low-DF terms, which occur only once in

the collection, are called singletons. The singletons are sometimes considered as stop-

words [4]. Removing Low-DF terms dramatically reduces the vocabulary size, but it does
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Figure 5.1: Zifp’s law for different data sets.

not influence the sparsity index.

Low-DF terms include rare terms or phrases, spelling errors, and those have no sig-

nificant contribution in the discriminating process of document category. Although these

words from the information retrieval point of view have a critical role in indexing and re-

trieval, in the learning process, they have no information content and are treated as noise

to be removed. Furthermore, in a family of feature ranking methods for feature selection,

including χ2 and odds ratio which behave unreliable and non-robust in the case of low

frequent features, eliminating Low-DF terms is required.

However, removing Low-DF terms is risky. Sometimes Low-DF terms are useful in

the classification process. In text classification, where difficult classes with less sparse

vocabulary, or classes with very few samples, Low-DF terms and singletons can have a

more predictive role. Another application of Low-DF terms is for the keyword extrac-

tion. Low-DF terms can be key indices for query processing to retrieve the appropriate

documents. In this case, those Low-DF terms with a high TF which imply the popular

TF × IDF weighting, are desired. It has also been demonstrated that by increasing the



64 Feature Ranking for Text Classifiers

threshold of Low-DF filtering (eliminating more Low-DF terms), precision drops and re-

call remains almost unchanged, or even, slightly improved [22]. Thus, by removing more

Low-DF terms, a high recall is obtained at the cost of precision. The reason for this is that

Low-DF terms are individual positive features or good keywords.

5.3.2 Removing High Document Frequency Terms

IDF is an information retrieval ranking measure and widely used in removing high fre-

quent words, which are potentially considered as stopwords. For example, in [22] stop-

word removal is performed by removing all the terms with DF ≥ n/2. This rule fails in

the case of domain-specific stopword reduction and data sets with high class skew [22].

According to Zipf’s law, unlike a Low-DF reduction, removing High-DF terms reduces

the vocabulary size by only a small amount, and the database size by a significant amount.

Although IDF is popular for stopword reduction, in Section 5.5, we show that it is one of

the worst ranking measures. It can confuse some relevant words with stopwords so that,

sometimes, the resulting stoplist leads to a misleading high classification accuracy.

5.4 Stopword Extraction Using Feature Ranking Measures

In previous stoplist generations [62, 103], the information retrieval systems have been

used to evaluate the generated stoplist. In this thesis, we use a text classification perfor-

mance measure to evaluate the extracted stoplists. In addition, this framework is em-

ployed to compare various extraction algorithms. The text classifier, employed for the

stoplist evaluation, must be a weak classifier, sensitive to the noise and stopwords, and

scalable and inexpensive as much as possible. The Rocchio classifier, which is used in this

research, can meet these requirements [94]. For estimating the text classifier performance,

the macro-averaged F-measure is employed [22, 23].

From the text categorization viewpoint, a set of terms T1 is more relevant than a set

of T2, if it offers a better classification performance that addresses the prediction capacity.

In the opposite direction, a set of stopwords S1 is better than that of S2, if S1 offers less

prediction capacity or poorer classifier performance. To express these two statements into

a unified expression, the Area Under FLP (AUF) is defined as

Aτ = ∑
0<α≤τ

J(Vα), (5.1)
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and for backward FLP

Aτ = ∑
0<α≤τ

J(Λ
α), (5.2)

where 0 < τ ≤ 1 = the maximum filter level or threshold;

0 < α ≤ 1 = the variable filter-level;

Λ = the backward feature ranking sequence;

J = estimated classifier performance.

As we discussed in Chapter 4, by FLP approach, the behavior of a ranking measure

is analyzed and compared with that of other measures. The major disadvantage of this

approach is that it requires a text classifier for estimating the FLP response. Although

the Rocchio classifier, employed in this chapter, is simple and inexpensive, especially for

large vocabularies, obtaining FLP characteristics is challenging.

One alternative approach is to approximately predict the classifier performance with-

out performing any classification task [8]. Our idea is to analyze the data set characteris-

tics and to estimate the performance trend. The data set sparsity is one of the appropriate

data set characteristics, which, approximately, represents the classifier performance [6,23].

The sparsity index is calculated by various formulations. In [6], a global sparsity such as

(3.4) is discussed.

Figure (5.2-a) depicts the correlation between the backward FLP and global sparsity

for the data sets studied in this thesis. Each graph is the average of 9, 000 experiments,

including nine ranking measures, 200 filter levels, and 5 different distributions of the

training data (by 5-fold cross validation). In all the experiments, the Rocchio text classifier

is used. This experiment is also performed with a different classifier to investigate the

impact of the classifier model on the correlation between the classifier performance and

global sparsity index. Figure (5.2-b) illustrates the correlation between the backward FLP

and global sparsity for the data sets by the SVM. Each graph is the average of 1, 800

experiments, including 9 ranking methods, 40 filter levels, and 5 different distributions

of the training data. To reduce the computation time, we use a smaller number of filter

levels for the SVM-based FLP.

According to both sets of experiments and regardless of the type of classifier model,

the FLP response and global sparsity index are strongly correlated, which has been infor-

mally addressed in [6]. As a result, for the FLP analysis, instead of obtaining the classifier

performance, which can be expensive when sophisticated classifiers such as the SVM are

used, we can estimate backward FLP by adopting the global sparsity of the document-

term matrix, associated with the training data, when the same filter-level as FLP is applied
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as follows:

J(Λ
α) =

KD

[S(Λα)]γ
, KD > 0, 0 < γ ≤ 1 (5.3)

where S(Λ
α) = the sparsity of the filtered document-term matrix in which filter-level α is

applied to the feature vector;

KD and γ = constants depending on the type of classifier and the data set.

5.5 Experimental Results

To evaluate the proposed framework, nine feature ranking measures are applied to the

six data sets, which are detailed in the Appendix A. The set of feature ranking methods

called RankSet, includes F-measure, IG, NIG, Max(χ2), Mean(χ2), Max(OR), CDF, IDF, and

Random. The set of document collections, represented by DataSet, includes Industry Sec-

tors, LO Metadata, 20 Newsgroups, Reuters, WebKB, and CS Abstracts. To estimate the FLPs,

the macro-average F-measure of the Rocchio classifier, a sorted list of features with dif-

ferent filter levels is obtained. All the classification experiments and sparsity estimations

are validated by a five-fold cross validation technique.

Figures (5.3) and (5.4) illustrate forward and backward FLPs for all six data sets with

τ = 0.1 and 200 filter levels. With respect to the backward FLP responses (graphed in

Figure (5.4)), it is evident that the performance of the IDF ranking measure is almost sim-

ilar to that of Random ranking. In any circumstances, it cannot be the best ranking for

stopword extraction. This experiment challenges the use of High-DF filtering for stop-

word reduction. In addition, the experiment indicates we cannot rely on IDF to filter out

the stopwords, since, in most cases, its backward FLP is usually higher than that of oth-

ers. It is implied that, by IDF ranking among terms with lower ranks, there are still some

relevant and informative terms.

The second point is the inconsistency of the behavior of the term ranking measures in

forward and backward filtering. In Figure (5.3), the forward FLPs are presented for all

the ranking measures versus all the data sets. The results in this figure are not consistent

with those in Figure (5.4), which exhibits the backward FLPs of the ranking measures. In

other words, a good ranking is supposed to assign not only higher ranks to the relevant

words but also lower ranks to the irrelevant stopwords. Table (5.2) summarizes the results

in Figures (5.3) and (5.4), describing the behavior of each ranking measure by the AUF

index. In Table (5.4), the rank of the ranking methods for each data set, with respect to

their forward and backward AUF, is presented. According to Table (5.4), the best ranking
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Figure 5.2: The correlation between global sparsity and classifier performance: (a) Roc-

chio, and (b) SVM classifier.
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Figure 5.3: Forward filter-level performance of the ranking methods.
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Figure 5.4: Backward filter-level performance of the ranking methods.
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Table 5.2: The area under FLP of the feature ranking methods for different data sets using

Rocchio classifier (forward,backward).
Data Set IG NIG Max(χ2) Mean(χ2) Max(OR) F-measure CDF IDF Random

Industry Sectors 6.61,1.50 6.57,1.71 6.51,1.32 6.30,1.45 6.41,1.07 6.50,1.26 6.38,1.07 6.09,1.84 2.98,2.98

LO Metadata 6.17,0.23 5.98,0.46 6.63,0.39 5.57,0.39 4.17,0.42 6.61,0.41 6.97,0.32 4.53,0.45 0.99,0.97

20 Newsgroups 9.09,2.31 9.17,0.33 9.09,1.27 9.04,1.35 8.12,0.83 9.09,1.31 9.09,1.66 8.99,3.21 2.69,2.17

Reuters 4.75,0.29 5.08,0.29 5.07,0.29 4.29,0.53 4.76,0.23 5.05,2.26 5.12,0.23 3.82,0.71 1.66,1.50

WebKB 2.27,0.51 2.23,0.51 2.32,0.49 2.29,0.52 2.36,0.49 2.33,0.49 2.36,0.49 2.310.56 1.64,1.47

CS Abstracts 4.38,1.50 4.12,1.39 4.21,1.20 4.23,1.15 4.28,0.97 4.23,1.20 4.03,0.92 4.11,2.25 2.32,2.43

Table 5.3: The area under FLP of the feature ranking methods for different data sets using

SVM classifier (forward,backward).
Data Set IG NIG Max(χ2) Mean(χ2) Max(OR) F-measure CDF IDF Random

Industry Sectors 17.47,5.42 17.49,5.73 17.42,5.21 17.30,5.27 17.34,5.21 17.41,5.19 17.32,5.21 17.10,7.25 13.51,13.47

LO Metadata 11.85,1.17 11.99,1.74 12.09,1.40 11.83,1.14 10.59,1.48 12.08,1.34 12.17,1.10 11.37,1.53 6.62,6.38

20 Newsgroups 4.77,2.51 4.77,2.42 4.78,2.18 4.78,2.14 4.76,2.41 4.78,2.16 4.78,2.26 4.78,2.76 4.12,4.21

Reuters 3.31,0.71 3.32,0.73 3.33,0.70 3.31,0.74 3.32,0.64 3.32,0.67 3.32,0.63 3.29,0.99 2.57,2.40

WebKB 2.27,0.44 2.27,0.46 2.28,0.46 2.23,0.48 2.27,0.42 2.28,0.43 2.27,0.42 2.21,0.55 1.59,1.63

CS Abstracts 2.22,1.30 2.23,1.22 2.22,1.05 2.22,1.04 2.22,1.12 2.21,1.06 2.22,1.13 2.21,1.54 1.97,2.00

measures for feature selection (according to their Forward FLPs) are IG, CDF, NIG, CDF,

Max(OR), and IG, for the six data sets, respectively. On the contrary, the best ranking

measures to extract stopwords are not exactly similar to those for term selection. The best

ranking, in relation to the data sets are Max(OR), IG, NIG, Max(OR), F-measure, and CDF,

which is different from the previous meta-ranking except for 20 Newsgroups data set. This

data set is the easiest (with the minimum class skew), and most homogenous (similar

difficulty for all classes) data set.

Also, we examined the previous setup with the SVM classifier. Table (5.3) depicts the

AUF indices for the forward and backward FLPs for the SVM classifier, and Table (5.5)

shows the rank of the ranking methods for each data set, with respect to their forward and

backward AUF. According to the results, even by employing a powerful SVM classifier

to estimate backward and forward FLPs, there is still an inconsistency between selecting

relevant and rejecting irrelevant terms. This finding addresses the pitfall of using feature

ranking methods to remove noise and stopwords.

To compare the proposed approach, which is based on an estimated backward filter-

level performance by using the global sparsity measure, for other automatically building

stoplists, the following experiment is set up. First, the stoplist, extracted by backward FLP

characteristic, is considered as the baseline and optimum list. It should be noted that for

all methods, 10% of the most irrelevant terms are selected as stopwords. The stopword list

by using the IDF ranking, a classical approach, is also derived. Two well-known feature
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Table 5.4: The data sets and the rank of feature ranking measures (meta-ranking) using

Rocchio classifier (forward, backward).
Data Set IG NIG Max(χ2) Mean(χ2) Max(OR) F-measure CDF IDF Random

Industry Sectors 1,6 2,7 3,4 7,5 5,1 4,3 6,2 8,8 9,9

LO Metadata 4,1 5,8 2,3 6,4 8,6 3,5 1,2 7,7 9,9

20 Newsgroups 5,8 1,1 4,3 6,5 8,2 3,4 2,6 7,9 9,7

Reuters 6,6 2,4 3,5 7,7 5,1 4,3 1,2 8,8 9,9

WebKB 7,5 8,6 4,2 6,7 1,3 3,1 2,4 5,8 9,9

CS Abstracts 1,7 6,6 5,5 3,3 2,2 4,4 8,1 7,8 9,9

Table 5.5: The data sets and the rank of feature ranking measures (meta-ranking) using

SVM classifier (forward, backward).
Data Set IG NIG Max(χ2) Mean(χ2) Max(OR) F-measure CDF IDF Random

Industry Sectors 2,6 1,7 3,2 7,5 5,3 4,1 6,4 8,8 9,9

LO Metadata 5,3 4,8 2,5 6,2 8,6 3,4 1,1 7,7 9,9

20 Newsgroups 7,7 6,6 1,3 3,1 8,5 2,2 4,4 5,8 9,9

Reuters 6,5 2,6 1,4 7,7 5,2 3,3 4,1 8,8 9,9

WebKB 4,4 3,6 2,5 7,7 5,1 1,3 6,2 8,8 9,9

CS Abstracts 3,7 1,6 6,2 4,1 2,4 7,3 5,5 8,8 9,9

ranking measures, IG and Max(χ2) [62] are also considered in the experiment. The best

feature ranking measures, which are obtained by forward FLP, are also examined. Finally,

the stoplist is extracted by the estimated backward FLP by using global sparsity. All the

lists are compared with the baseline stoplist by using the F-measure. According to Table

(5.6), which illustrates the results of the comparison, the sparsity-based estimation of the

FLP provides the most stopwords that are similar to the baseline stoplist. The IDF offers

poor results compared to the other methods. Adopting the best feature selection method

by the forward FLP characteristic, and IG perform better than IDF, but they cannot out-

perform the sparsity-based estimated backward FLP results. Table (5.7) presents a list of

the first 50 domain-specific stopwords, which are extracted by the proposed approach by

using sparsity measure.

Table 5.6: F-measure of extracted stoplists compared with the baseline stoplist.
Data Set Global Sparsity Best Forward FLP IDF IG Max(χ2)

Industry Sectors 0.9170 0.9170 0.5034 1.0000 0.7823

LO Metadata 1.0000 1.0000 0.5416 0.6891 0.3750

20 Newsgroups 1.0000 1.0000 0.7529 0.9831 0.6092

Reuters 0.6494 0.6494 0.6381 0.9736 0.6494

WebKB 1.0000 0.7724 0.5241 0.9983 0.8589

CS Abstracts 1.0000 0.8751 0.6749 0.8751 0.5458
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Table 5.7: Extracted stoplists (first 45 stopwords) using Backward FLP method.
Industry Sectors LO Metadata 20 Newsgroups Reuters WebKB CS Abstracts
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5.6 Conclusion

Standard stoplists, which are used in information retrieval and text categorization, are

outdated. Automatically building stoplists are also required in applications such as domain-

specific text mining, ontology generation, non-English text processing, and formal lan-

guage textual data mining. Conventional methods for stopword extraction are based on

removing the terms with low and high document frequencies. In this chapter, the risks

of the document frequency approach are discussed. For supervised stopword extraction,

which uses labeled training data, feature ranking measures such as IG and χ2 are em-

ployed. According to the results in this chapter, if a given feature ranking can perform

well for selecting good features, the selection of poor features (stopwords) in the oppo-

site direction, are not guaranteed. The reason is that term rankings behave differently,

whereas ranking relevant terms from scoring irrelevant words. This fact is studied by

introducing a new evaluation model, called the area under backward filter-level perfor-

mance.

Using the notion of backward FLP and meta-ranking framework, we can identify the

best term ranking measure, which minimizes the prediction capacity of selected terms as

candidate stopwords, among a set of candidate ranking methods. The novel optimum

solution can extract the most irrelevant stopwords so-called the baseline stoplist. The

major disadvantage of this approach is that it employs a classifier to obtain filter-level

performance. One alternative approach is to use training data characteristics to estimate

the classifier performance. In this chapter, we use the global sparsity index, after term se-

lection, to predict the trend of text classifier performance. According to the experimental

results, obtained by applying the proposed approach to the six benchmark textual data

sets, sparsity index offers a good estimation of classifier performance. The result of spar-

sity based estimation is almost better than other feature ranking measures, and entirely

outperforms traditional inverse document frequency.



Chapter 6

Learning Term Dependency

6.1 Introduction

During recent years, many researchers in the text classification field have constantly re-

peated that feature selection is unnecessary for a SVM classifier, which is directly adopted

from findings of Joachims [43]. According to [43], even the features ranked the lowest

still contain considerable information for SVM and removing those features tends to hurt

the performance of the classifier. These findings seem to be against the need for fea-

ture selection in text classification problems. However, this is true when using feature

ranking methods, evaluating features individually, and ignoring term redundancy. For

example, [58] demonstrated that even SVM classifier performs better when redundancy

is reduced by a recursive wrapper approach. It also showed that a weaker classifier with

feature selection can beat a SVM classifier without feature selection.

In Chapter 3, it was discussed that one of the major disadvantages of feature ranking-

based feature selection methods is that they ignore the dependencies among the fea-

tures [125]. Dependency can be considered between two or more features. It has also

been explained that the impact of term redundancy is more destructive when employ-

ing a small number of features [127] (aggressive feature selection). Furthermore, there are

some reports showing that redundancy reduction can improve the performance of feature

selection algorithms [95, 125].

The problem of redundancy reduction is to find an efficient redundancy extraction

algorithm in terms of low computational complexities. The major difficulty in redun-

dancy extraction is calculating the correlation between features. This calculation can be

expensive. Few simplified term redundancy reductions such as the µ−occurrence mea-

74
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sure have been reported [107]. They propose special cases such as binary class problems

or assessing only pair-wise term redundancy without considering the class labels, which

can increase the complexity of the problem.

6.2 Mutual Information

Mutual information has been employed as an indicator of relevance and dependency be-

tween two or more variables. Because of potential capability of mutual information to

measure these dependencies, it has been widely adopted by researchers for feature se-

lection [2, 113, 117, 52, 80, 53, 114, 1]. The problem with mutual information is its difficult

calculation. Estimating mutual information can be complicated when dealing with con-

tinuous variables [2,52,53]. One well-known approach is dividing the continuous feature

space into some discrete partitions and estimating the entropy and mutual information

between them using the definition of discrete entropy and mutual information. Since in

this thesis, we use the binary term weighting to represent features in vector space model,

we do not face this problem.

Most efforts on employing mutual information to extract redundancy and correlation

between features have gone into implementing an objective function to maximize the in-

formation content in the search-based filter approach feature selection [1, 2, 52, 80]. Due

to the complexity of mutual information estimation, especially in the case of continu-

ous features and high dimensional feature space, employing mutual information can be

expensive for text classification problems. The minimum cost of calculating the mutual

information is at least quadratic for the case of estimating only pair-wise mutual infor-

mation, while in the filter-based approach we need to calculate the information shared

between a candidate feature with all selected features.

Mutual information is a measure of statistical information shared between two prob-

ability distributions. Based on the definition in [63], mutual information I(x; y) is com-

puted by the relative entropy of a joint probability distribution, such as P(x, y) and the

product of the marginal probability distributions P(x) and P(y)

I(x; y) = D(P(x, y)||P(x)P(y)) = ∑
x

∑
y

P(x, y)log
P(x, y)

P(x)P(y)
(6.1)

which is called the Kullback-Leibler divergence. Mutual information, such as other infor-

mation theoretic measures, widely used in language modeling, has been applied in text

mining and information retrieval for applications such as word association [9] and feature

selection [117].
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Figure 6.1: Entropies and mutual information between two terms and one class.

Figure (6.1) depicts the scenario. According to the figure, the area {4}+ {7} is associ-

ated with the mutual information between two terms regardless of the class information

that they share. In most text classification applications, this area is referred as mutual

information. However, this is a simplified case. A more complicated case is the mutual

information between an individual term and previously selected features. One attempt

to involve the class information in mutual information has been reported in [1], in which

the main objective is to select a set of features that maximizes the area {6}.

Similar to most previous works [53, 2, 80], in this thesis mutual information is viewed

as the entropy of co-occurrence of two terms. In other words, we are interested in the

information shared between two terms. Eq. 6.1 can be rewritten as follows:

I(ti; tj) = P(ti, tj)log
P(ti, tj)

P(ti)P(tj)
(6.2)

where I(ti; tj) = the mutual information of the distribution of terms ti and tj.

In other words, I(ti; tj) is the entropy of P(ti , tj), which is the joint probability distribution

of the terms ti and tj. If the two terms are completely correlated, then I(ti; tj) = 1, and

I(ti; tj) = 0 if the two terms are completely uncorrelated.

6.3 Information Theoretic Inclusion Index

In feature selection, the dependency can be asymmetric (term redundancy) or symmetric

(term correlation). Mutual information is a symmetric measure and unable to evaluate

asymmetric relations. In order to define a measure of redundancy or asymmetric term

dependency, we know that the information that is concordantly shared by two terms can
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Figure 6.2: Inclusion relation between terms t1 and t2, (a) no inclusion relation between t1

and t2, (b) t1 partially includes t2, (c) t1 includes t2.

be estimated by mutual information or I(ti; tj). A good asymmetric dependency measure

may represent the contribution of each partner in the mutual information.

Let θ(ti; tj) (θ(tj; ti)) be the dependency of tj to ti (ti to tj). One approach is to em-

ploy an inclusion index to evaluate the degree of dependency between two terms [67,65].

Inclusion index θ(ti , tj) [97], measuring how much ti includes tj, is calculated by:

θ(ti , tj) =
||ti ∩ tj||

||tj||
=

n(ti , tj)

n(tj)
, θ(ti , tj) 6= θ(tj, ti) (6.3)

where ||.|| = the cardinal number of the set;

n(ti) = the number of documents in the training data containing ti;

n(ti , tj) = the number of documents in the training data containing ti and tj.

Inclusion index can be also estimated by conditional probability of ti given tj as follows:

θ(ti , tj) = P(ti |tj) =
P(ti, tj)

P(tj)
(6.4)

where P(ti , tj) = the joint probability of ti and tj.

If ti completely covers tj, then θ(ti , tj) = 1, which is a full inclusive case. On the contrary,

θ(ti , tj) = 0 means that there is no overlap between the two terms. There is also partial

inclusion when 0 < θ(ti , tj) < 1. tj is called more inclusive than ti if θ(ti , tj) < θ(tj, ti) (see

Figure (6.2)).

The inclusion index can be also expressed by information theoretic terms. The amount

of information provided by a conditional probability distribution such as P(ti|tj) is mea-

sured by conditional entropy H(ti|tj),

H(ti|tj) = H(ti)− I(ti; tj) (6.5)

The upper bound of H(ti|tj) is H(ti), when I(ti; tj) = 0. It means there is no overlap be-

tween the two terms and they are independently distributed. The lower bound of H(ti|tj)
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is zero when I(ti; tj) = H(ti), addressing a full inclusive case (ti ⊂ tj). In order to map

the conditional entropy H(ti|tj) to unit distance [0, 1], it is normalized by H(ti):

Hn(ti|tj) =
H(ti|tj)

H(ti)
= 1−

I(ti; tj)

H(ti)
(6.6)

Since Hn(ti|tj) decreases as we increase the overlap between two terms, we can estimate

the Information theoretic inclusion index by using the normalized conditional entropy as

follows:

θ(tj, ti) = 1− Hn(ti|tj) =
I(ti; tj)

H(ti)
(6.7)

and

θ(ti , tj) =
I(ti; tj)

H(tj)
(6.8)

Using Figure (6.1), we also have:

θ(ti, tj) =
{4}+ {7}

{2}+ {4}+ {5}+ {7}
(6.9)

θ(tj, ti) =
{4}+ {7}

{1}+ {4}+ {6}+ {7}
(6.10)

It is interesting that the information theoretic definition of the inclusion index is ex-

actly similar to the coefficients of constraint [10] and coefficients of uncertainty [86]. In-

clusion index can be also linked to the Normalized Mutual Information (NMI) proposed

in [109]:

NMI(ti ; tj) =
I(ti; tj)

√

H(ti).H(tj)
=

√

θ(ti , tj).θ(tj, ti) (6.11)

where NMI = the normalized mutual information;
√

θ(ti , tj).θ(tj, ti) = the geometric mean of inclusion indices.

It is worthwhile to mention that mutual information has no upper bound. By normalizing

I(ti; tj), the maximum value of the mutual information is one.

Using the asymmetric dependency θ(ti ; tj), we can evaluate the following statements:

• θ(ti , tj) > θ(tj, ti): The term tj is dependent to the term ti and might be redundant.

• θ(tj, ti)=θ(tj , ti) > 0: The term ti and tj are correlated.

• θ(tj, ti)=θ(tj , ti) = 0: The term ti and tj are independent.
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From (6.7) and (6.8), we need to calculate several information theoretic terms includ-

ing: H(ti), H(tj), and I(ti; tj). In text classification, we usually approximate the proba-

bilities by frequency measures. Table (6.1) depicts some of the most common frequency

terms that we use to estimate the probabilities. These measures are easily obtained from

the document-term matrix of the training data set. Using Table (6.1), the information

Table 6.1: Estimating the probabilities with document frequency measures.

summarized notation frequency probability comment

a n(ti) n.P(ti) # documents containing ti

b n(tj) n.P(tj) # documents containing tj

c n(ck) n.P(ck) # documents in ck

d n(ti, tj) n.P(ti, tj) # documents containing ti and tj

e n(tj, ck) n.P(tj, ck) # documents in ck containing tj

f n(ti, ck) n.P(ti, ck) # documents in ck containing ti

g n(ti, tj, ck) n.P(ti, tj, ck) # documents in ck containing ti and tj

n n - # documents in the training data set

theoretic terms are estimated as follows [63]:

H(ti) = P(ti) log
1

P(ti)
= −

a

n
log

a

n
(6.12)

H(tj) = P(tj) log
1

P(tj)
= −

b

n
log

b

n
(6.13)

and

I(ti; tj) = P(ti, tj) log
P(ti , tj)

P(ti)P(tj)
=

d

n
log

n.d

a.b
(6.14)

6.4 Term Dependency Tree

Let Tq = {t1, t2, ..., tq} be the set of q ≪ m (m is the number terms or the size of vocabu-

lary) most relevant terms according to a ranking measure φ, such as information gain. By

estimating pair-wise inclusion index of Tq, the term dependency matrix is obtained. Table

(6.2) depicts an example of term dependency matrix for six terms. The objective is to mine

the matrix and extract the dependency links between the terms. Given the dependency

links, we are able to identify term redundancies and correlations. At the final stage, us-

ing a criterion, we make a decision about retaining or removing (merging) the redundant

(correlated) terms.
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Table 6.2: Term dependency matrix.
rec hockei motorcycl bike nhl playoff

rec 0 0.0988 0.0995 0.0333 0.0139 0.0140

hockei 0.4426 0 0 0 0.1366 0.1240

motorcycl 0.4372 0 0 0.2891 0 0

bike 0.2839 0 0.5609 0 0 0

nhl 0.2067 0.4530 0 0 0 0.0460

playoff 0.2059 0.4067 0 0 0.0455 0

Table 6.3: Adjacency matrix representing the term dependency tree in Figure (6.3).
rec hockei motorcycl bike nhl playoff

rec 0 0 0 0 0 0

hockei 1 0 0 0 0 0

motorcycl 1 0 0 0 0 0

bike 0 0 1 0 0 0

nhl 0 1 0 0 0 0

playoff 0 1 0 0 0 0

A graph representation is also proposed for visualizing the dependency links between

terms. Term Dependency Tree (TDT) is a rooted, directed, incomplete, and acyclic graph in

which both vertices or nodes of any edge are assigned to terms such as t1 = “hockei” and

t2 = “nhl”. An edge, connecting t1 to t2, states that t2 is dependent on t1 (or t1 includes

t2). Figure (6.3) shows an example. The direction of each edge depends on the value of

θ(ti , tj) and θ(tj, ti). If θ(ti , tj) < θ(tj, ti) then the direction is from jth to ith node, otherwise

the direction is reversed. In Algorithm (1), the process of generating an adjacency matrix,

which represents a term dependency tree, is detailed. Table (6.3) illustrates the adjacency

matrix of the dependency matrix in Table (6.2), and in Figure (6.3), the corresponding

term dependency tree is demonstrated.

Figure 6.3: Term dependency tree.
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(a) (b) (c)

Figure 6.4: Cycles and Pseudo-cycle.

6.4.1 Graph De-cycling

The major attribute of a term dependency structure is its acyclic property. In rare cases,

the Algorithm (1) fails to construct a cycle-free graph. Algorithm (2) presents a general

algorithm to detect a cycle in a graph. In the case of term dependency tree, we face the

following situations:

• Cycle type 1: The graph has no root (Figure (6.4-a)). In term dependency tree, the

node with zero indegree, by which any other node in the tree is reachable, is labled

as the root. To ensure that the generated graph has a root, it should have at least

one node with zero indegree. To resolve this problem, the node with maximum

coverage is chosen as root and all incoming edges to this node are disconnected (see

Algorithm (3)). In the case of having more than one node with zero indegree, the

graph includes some isolated sub-graphs.

• Cycle type 2 and Pseudo-cycle: There is at least one node with indegree > 1. This

problem either causes a cycle (Figure (6.4-b)) or a Pseudo-cycle (Figure (6.4-c)). Both

cases are treated as a cycle. By identifying the node with indegree > 1, the weaker

link(s) is disconnected. The weaker link is the one which exchanges less information

(dependency) between the two terms. In Algorithm (4), the approach to fix this

problem is detailed.
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Algorithm 1 Extracting adjacency matrix from term dependency matrix.

Require: Θ = {0 ≤ θ(i, j) ≤ 1|1 ≤ i, j ≤ q}: term dependency matrix.

Ensure: A = {a(i, j) ∈ {0, 1}|1 ≤ i, j ≤ q}: adjacency matrix.

1: for all 1 ≤ i, j ≤ q: a(i, j)← 0

2: Z ← 1

3: while Z 6= 0 do

4: for all 1 ≤ j ≤ q: SUM(j)← ∑
q
i=1 θ(i, j)

5: x ← arg min
q
i=1 [Non-zero elements of SUM]

6: y← arg max
q
i=1[θ(i, x)]

7: a(x, y)← 1

8: for all 1 ≤ i ≤ q: θ(x, i)← 0 and θ(i, x)← 0

9: Z← # Non-zero elements of Θ

10: end while

Algorithm 2 General algorithm to detect cycles in the adjacency matrix.

Require: A = {a(i, j) ∈ {0, 1}|1 ≤ i, j ≤ q}: adjacency matrix.

1: B← A

2: if the depth of the graph is given then

3: q← depth

4: end if

5: for i = 2 to q do

6: B← B×A

7: end for

8: N ← # non-zero elements in Diag(B)

9: if N > 0 then

10: there is at least one cycle in the adjacency matrix A.

11: end if

Algorithm 3 Finding a root for the extracted graph (No node with zero indegree).

Require: Θ = {0 ≤ θ(i, j) ≤ 1|1 ≤ i, j ≤ q}: term dependency matrix.

A = {a(i, j) ∈ {0, 1}|1 ≤ i, j ≤ q}: adjacency matrix.

Ensure: A = {a(i, j) ∈ {0, 1}|1 ≤ i, j ≤ q}: rooted adjacency matrix.

1: for all 1 ≤ j ≤ q: SUM(j)← ∑
q
i=1 θ(i, j)

2: K ← arg max
q
i=1[SUM(i)]

3: for all 1 ≤ j ≤ q: a(k, j)← 0
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Algorithm 4 De-cycling and removing pseudo-cycles in the extracted graph.

Require: Θ = {0 ≤ θ(i, j) ≤ 1|1 ≤ i, j ≤ q}: term dependency matrix.

A = {a(i, j) ∈ {0, 1}|1 ≤ i, j ≤ q}: adjacency matrix.

Ensure: A = {a(i, j) ∈ {0, 1}|1 ≤ i, j ≤ q}: de-cycled adjacency matrix.

1: cycle← TRUE

2: while cycle do

3: for all 1 ≤ i ≤ q: indegree(i) ← ∑
q
j=1 a(i, j)

4: k← find the first element with indegree > 1

5: if k={} then

6: cycle← FALSE

7: else

8: l ← arg max
q
i=1[θ(i, k)]

9: a(k, j)← 0 for all 1 ≤ j ≤ 1 except j=l

10: end if

11: end while

6.5 Substitution Cost

Let T = {t1, t2, ..., tm} be the sorted terms of the vocabulary according to a feature ranking

measure φ such that φ(t1) ≥ φ(t2) ≥ ... ≥ φ(tm). Let Tq ⊂ T be the selected features in-

cluding the q≪ m most relevant terms. q is the ranking threshold or the desired number

of features.

In feature ranking-based feature selection, the search for redundant and correlated

terms is sequential and based on individual terms. Let tj, 1 ≤ j ≤ q, with the ranking

measure φ(tj) be a redundant (correlated) term to be removed (to be merged). By remov-

ing (or merging) tj, the length of Tq is decreased to q − 1. To have q features, tq+1 with

ranking measure φ(tq+1) is added to Tq. In order to provide an objective measure to fa-

cilitate the decision making about term removal, Substitution Cost is defined as the cost of

substituting a relevant but redundant (or correlated) term with a less relevant term.

∆φ(tj) ≡ φ(tj)− φ(tq+1) (6.15)

where ∆φ(tj) = the cost of removing or merging the term tj.

A high substitution cost addresses a risky redundant term removal (or correlated term

merging), because by substituting the term with a poor term in terms of information and

relevance, the total performance of the feature vector can be reduced.

The main reason can be understood intuitively as follows: Referring to Figure (6.5),

illustrating the sorted information gain for the first 100 best terms, when q is less than
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Algorithm 5 Redundancy reduction algorithm.

Require: Θ = {0 ≤ θ(i, j) ≤ 1|1 ≤ i, j ≤ q}: term dependency matrix.

A = {a(i, j) ∈ {0, 1}|1 ≤ i, j ≤ q}: adjacency matrix.

T = {t(i)|1 ≤ i ≤ m}: ranked set of terms

Φ = {φ(i)|1 ≤ i ≤ m}: sorted term scores (ranking measures)

q≪ m: the desired number of terms

SubstitutionThreshold > 0: substitution cost threshold

CorrelationThreshold > 0: correlation threshold

Ensure: Tq: the set of selected, non-redundant terms.

1: for all 1 ≤ j ≤ q: outdegree(j)← ∑
q
i=1 a(i, j)

2: DependentSet← arg
q
i=1[outdegree(i) ≤ 1]

3: Tq ← t(1)

4: k ← 2

5: while length of Tq < q do

6: SubstitutionCost ← φ(k)− φ(k + q)

7: l = arg
q
j=1[a(k, j) = 1]: t(l) is the node connected to t(k)

8: if [t(l) /∈ DependentSet] or [SubstitutionCost > SubstitutionThreshold] then

9: Tq ← Tq + {t(k)}

10: else if |θ(l, k)− θ(k, l)| < CorrelationThreshold then

11: merge t(k) with t(l): t(k) and t(l) are correlated

12: T ← T − {t(k)}

13: else

14: T ← T − {t(k)}: t(k) is redundant

15: end if

16: k← k + 1

17: end while

10, term redundancy reduction is being held in the sharp slope region of the curve (for

example, between points “A” and “B”). It means that by removing a redundant term from

the feature vector, most likely a much less informative term will be substituted (tq+1 with

feature ranking measure φ(tq+1)), but in the case of working in a smooth region of the

curve (for example, between points “B” and “C”), the proposed method may outperform

information gain. As a result, according to this figure, removing or merging any term

in areas between “A” and “B”, and also between “C” and “D” is costly, since the graph

shows a sharp decline in these areas. On the contrary, depending on q, we probably can

remove the redundant terms from “B” to “C” and “D” to “E”.

The substitution cost can be compared with a threshold such as τs to make a deci-

sion on redundancy term removal or merging. The removal or merging is performed if

∆φ(ti) < τs. In this thesis, we heuristically use the average feature ranking measure as
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Figure 6.5: Sorted information gain for the 100 best terms.

the substitution cost threshold:

τs =
1

q

q

∑
i=1

φ(ti) (6.16)

6.6 Redundancy Reduction Algorithm

Term dependency tree and dependency matrix provide a framework to evaluate the fea-

tures based on their dependencies to each other. Figures (6.6) to (6.9) illustrate the depen-

dency tree of the data sets employed in this chapter. The algorithm (see Algorithm (5))

for redundancy reduction is performed in the following steps:

1. Using the feature ranking measure φ and the ranking threshold q, the q best terms

are selected. By estimating pair-wise inclusion index of the terms, and using Algo-

rithm (1), the term dependency tree is extracted. The nodes of the tree are clustered

into the Links and Hubs based on their measure of outdegree:

• Link nodes: the nodes that their outdegree is equal to one.

∀ 1 ≤ j ≤ q, tj ∈ Tq, outdegree(tj) = 1 : tj ∈ LINKS (6.17)

• Hub nodes: the nodes that their outdegree is greater than one.

∀ 1 ≤ j ≤ q, tj ∈ Tq, outdegree(tj) > 1 : tj ∈ HUBS (6.18)
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For example, in Figure (6.8), the set of hub and link nodes are as follows:

hubs = {shr, japan, market}

links = {acquir, corp, rev, note, ct, net, japanese,

trade, export, oil, rate, bank, f ranc, stg}

A link node is most likely redundant, because it shares its maximum information

with only one child node. On the contrary, a hub node shares its information with

many child nodes. In a classification task, each of these child nodes might be rele-

vant to a particular class. As a result, hub nodes are hardly redundant. It should

be noted that the indegree of all nodes is one, with the exception of the root whose

indegree is zero.

2. Starting from the highest ranked term t1 according to the feature ranking measure

φ, a link node is redundant if it satisfies the substitution cost criterion.

3. Before removing a redundant term, we should ensure that it is not correlated with its

co-dependent term. Let tk be a candidate redundant term. Let tl be its co-dependent

term, or parent node in the term dependency tree. By introducing correlation thresh-

old τc, the correlation between the two terms tk and tl can be approximately evalu-

ated. If |θ(tk , tl)− θ(tl , tk)| ≤ τc, they are most likely correlated. In this case, instead

of removing tk, it can be merged with tl to make a multi-word term. Otherwise,

the term tk is removed from the set of terms. In this thesis, τc is empirically set to

0.1× τs.

6.7 Experimental Results

The proposed approach is applied to four data sets including: Industry Sectors, 20 News-

groups, Reuters, and WebKB using SVM with linear kernel and Rocchio text classifiers.

Recently, SVM has outperformed most classifiers in text categorization [43, 26]. There are

some reports showing that feature selection for SVM classifiers is not only unnecessary

but also can reduce the performance [95,43]. However, in this chapter, we show that for a

very small size of feature vector, SVM performance can be improved by feature selection

through redundancy reduction [26].

The proposed approach has been evaluated by comparing its results with those of

stand-alone information gain ranking (without redundancy reduction). A five-fold cross



Extracting Term Dependency 87

Figure 6.6: Term dependency tree of first 0.2% of terms for Industry Sectors data.

validation is used for better estimation of classifier performance. Each method has been

applied to the SVM and Rocchio classifiers with 10 levels of aggressive feature selection

including {0.002, 0.004, ..., 0.02}×m. It is worthwhile to mention that in aggressive feature

selection, the number of features is drastically reduced, and only 2% to 5% of features are

retained [95].

The performance of both classifiers are presented in Figure (6.10) and (6.11). Redun-

dancy reduction improves the Rocchio classifier performance in most data sets. Figure

(6.11) shows that the result of redundancy reduction method is better than that of infor-

mation gain ranking. In the 20 Newsgroups data set, both methods perform similarly for

the first levels of filtering. This can be explained by the notion of substitution cost. In 20

Newsgroups, the sorted information gain starts with a sharp decline (see Figure (6.5)), in

which any redundancy reduction cannot be affordable. In the smooth region of the curve

(“B” to “C”), redundancy reduction can outperform the information gain ranking.

Generally speaking, in the 20 Newsgroups data, the redundancy reduction method

for both classifiers cannot offer better results compared to the information gain ranking.

The main reason can be explained as follows: The 20 Newsgroups seems an easy data set.

It includes 20 uniformly distributed classes and is a homogenous data set, such that the

distribution of features in classes is almost uniform. It means that in a very small feature
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Figure 6.7: Term dependency tree of first 0.2% of terms for 20 Newsgroups data.
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Figure 6.8: Term dependency tree of first 0.2% of terms for Reuters data.

vector (aggressive feature selection), the terms are uniformly scattered over all classes. In

this case, the terms are rarely redundant.

6.8 Conclusion

In aggressive feature selection, the length of feature vector is quite short. The text clas-

sifiers, working with very small feature vectors, are very sensitive to noise and redun-

dancies. Because of these restrictions, improving any classical feature selection method,

such as feature ranking for aggressive reduction is absolutely necessary. Feature ranking

methods, such as information gain and χ2, ignore term dependencies (including correla-

tion and redundancy), which can cause serious complications.

To deal with redundancy, a method for improving aggressive feature selection by fea-

ture ranking for text classifiers was proposed. The method was based on extracting and

removing term redundancy using an information theoretic inclusion measure. The pair-

wise inclusion measures are used to estimate the dependency link between terms. A

heuristic technique was proposed to search the links for redundancy and correlation. Fi-

nally, using the correlation threshold, we can either remove the redundant term or merge

it with the correlated one. The proposed approach and the stand-alone IG ranking were

compared in SVM and Rocchio text classifier frameworks. Results showed that the pro-

posed approach outperformed the aggressive feature selection by the stand-alone infor-

mation gain for most data sets with a weak classifier such as Rocchio.



90
F

ea
tu

re
R

an
k

in
g

fo
r

T
ex

t
C

la
ss

ifi
er

s

Figure 6.9: Term dependency tree of first 0.2% of terms for WebKB data.
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Figure 6.10: SVM classifier performance vs. the number of features for two aggressive feature selection methods.

Dashed lines represent the proposed method and solid lines represent information gain feature ranking.
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Figure 6.11: Rocchio classifier performance vs. the number of features for two aggressive feature selection methods.

Dashed lines represent the proposed method and solid lines represent information gain feature ranking.



Chapter 7

Local Feature Ranking for Unbalanced

Data

7.1 Introduction

From Chapter 3, the majority of feature ranking methods fail when applied to multiple

class problems with non-uniform class distributions. According to [23], feature ranking

methods can select relevant features for simple classes, while being unable to learn dif-

ficult or small classes. They only pay more attention to the easy and large classes to

compensate for their weakness against the difficult classes. By means of this trick, they

improve their overall accuracy even though there is a large negative number of results for

small and difficult classes.

One potential approach to decrease the destructive impact of imbalance is to make

use of local feature ranking instead of a global scheme [23]. In this chapter, this approach

is detailed and applied to an extremely unbalanced data, which is the problem of social

network extraction from textual data.

7.2 Social Networks

A social network is defined as a map of relationship between individuals. Relationships

and individuals involved in a social network are also called ties and actors (nodes or

members), respectively. In social network analysis, the point of focus is ties rather than

actors. In order to have an actual social network, its size should be limited to around

150 actors. This number, the so-called Dunbar’s number, comes from the idea of the

93
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maximum size of a village in sociology [29].

Social networks on the Internet use a web site to connect people together who share

their ideas about personal or professional interests. Unlike real social networks, the size

of social networks in a virtual world can number in the thousands. During the last three

years, social networks such as orkut1, Facebook2, Friendster 3, LinkedIn4, hi5network5,

MySpace6, and Yahoo!3607, have had substantial growth in terms of web traffic. The

majority of these networks are for personal and socialization purposes. However, they

are interesting for marketing and advertising due to their exponentially increasing traffic.

Unlike the virtual networks, which are for public, with broad commercial applica-

tions, the Friend Of A Friend (FOAF) project is initiated by professionals in the semantic

web and information technology community [108]. FOAF is merely a metadata standard

for describing people and their relationship, and to build a social network or online com-

munity [18]. FOAF is one of the semantic web initiatives attempting to build a social

network framework. Similar to the other types of metadata, a FOAF file is data about an

object, in this case an individual person in a community. One important part of FOAF is

the friend-list, including the name of friends and their contact information [18].

Finding a person’s friends’ network is a more personal and private issue. However,

in a small community such as a virtual classroom in an e-learning system, by creating the

social network online, we can offer the students a list of individuals of similar interest

who can share their knowledge, questions, comments and interests towards educational

matters. Scenarios might include preparing a course paper, developing a course note or

getting feedback about a lecture. In all cases, the system can provide the user a list of

potential friends who can help her to perform the task.

This thesis proposes an approach to generating automatically a social network from a

collection of web documents. In order to generate (semi)automatically a social network,

we need to represent each actor (individual person) by a set of features or attributes. Us-

ing web resources, every person can be represented by her corresponding documents,

which is represented by a vector space model. Using vector space document represen-

tation, each person is described by a set of single-word terms from the vocabulary. As-

1www.orkut.com/
2www.facebook.com
3www.friendster.com/
4www.linkedin.com/
5www.hi5network.com/
6www.myspace.com/
7360.yahoo.com/
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sociating people in the community to the terms in the vocabulary, the new structure is

called actor-term matrix. Similar to the document-term model, the new model suffers from

high dimensionality of the vocabulary. By a set of preprocessing tasks such as stemming,

stopword removal and document frequency threshold, the vocabulary is downsized up

to 80%.

The next step is learning social relations from the actor-term data base. Similar to other

machine learning applications, if there is any training data, a social network can be ex-

tracted using a supervised learning or a classification approach. In this case, the training

data is a set of known relationships among some actors. If no pair-wise relation is known,

the learning is unsupervised, which is based on pair-wise similarities and clustering.

In this thesis, we assume that the social network is partially explored. Using the re-

vealed relations in the social network as training data, a classifier is employed to extract

the missing relations to complete the social network.

7.3 Related Work

Recent researches on machine learning and data mining has provided developed meth-

ods and algorithms to construct statistical models of network data, including social net-

works, web-page networks, email tracks, citation networks, and so on. The models can be

constructed either directly from data using information extraction algorithms, which are

applied mostly on structure data (for example, relational databases) and semi-structured

data (for example, XML data), or indirectly from unstructured textual data using text

mining techniques.

In the first case, the concept of acquaintanceship (or a link between two actors) can be

extracted from information in the data object, for example, the receiver of an email, the

author of a cited paper, a web page link, and “knows” relationship of FOAF vocabulary

in an FOAF file. In this case, the extracted network is mostly descriptive rather than

predictive. In descriptive social network problems, the goal is to visualize the extracted

network for analysis and tracking purposes [41, 17]. One interesting work was exploring

the social network in Enron by tracking the 1.5 million messages [17]. In 2003, the US

Federal Energy Regulatory Commission posted the company’s e-mail on its Web site.

After removing duplicates, the data included a half-million e-mails from about 161 users,

including those of the company’s top executives.

In the second case, which is predictive, acquaintanceship is translated into the simi-

larity of two actors. This pair-wise similarity is extracted from the textual resources of the
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actors. The resources can be articles, papers, news, resumes, CVs, and so on [79]. In [91],

social networks are generated by mining knowledge-sharing sites to support generating

a marketing plan. In the knowledge-sharing networks, customers share their opinions

with others. The social network is generated by a probabilistic model of the network.

FOAF, as a semantic web initiative with RDF format, is a vocabulary to create machine

readable information about people. One element of the FOAF vocabulary is knows triple,

by which the owner of FOAF describes her friends. In [74], this relationship is extended

to achieve a context aware social network by involving the concepts as well as actors. The

relationship between actors and concepts is estimated by Google web page frequency

[108, 73]. In [46], using text-based segmentation of chat-room conversations, social and

contextual environment of the given chat-rooms are analyzed.

Data mining has also been used for mining social networks. For instance, in [70], us-

ing the influence diffusion model, the social networks in a message board are extracted.

The model is simply based on the frequency of terms which are propagated between two

individuals. The social networks are categorized to study some social and psychologi-

cal issues such as interactivity among members. Another approach in extracting social

networks is using usage and log data instead of textual contents. One application is ex-

ploring the social networks in instant messaging systems to study the network related

issues such as system traffic [90].

In [71], the number of retrieved web pages, including the names of both actors, is

considered as a degree of acquaintanceship to build a social context. The method has

been applied to extract social relationships of conference participants. One drawback of

querying the name of network members in a search engine is the personal identification

problem. For social network extraction we need to assign a unique identity to each actor,

given that many individuals may have same identities and a person may be known by

more than one name. Using FOAF person metadata, this problem is resolved because

each member is associated with an Uniform Resource Identifier (URI), which cannot be

redundant. Acquaintanceships and ties in a social network might also be extracted using

citation, web link, and co-authorship. In [34], the social network of a software reverse

engineering community is extracted from co-authorship graph. It shows that the com-

munity behaves like a small world [20].
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7.4 Problem Statement

A social network is considered as a descriptive framework to study and analyze social

relations and measure social metrics. In this thesis, our view of social networks is more

predictive rather than descriptive. The problem is, in the lack of an explicit social net-

work, how we can predict and learn the network while knowing only a small number of

relations between actors. In other words, the goal is to complete a partially known social

network. The set of known relations can be obtained using questionnaires, FOAF files,

and searching web documents using information extraction techniques. For example, us-

ing BibTex metadata, we can extract co-authorship, which is a strong tie between two or

more individuals.

Let A = {a1, a2, ..., an} be a finite set of n actors, who are interconnected through a

finite set of relations or ties. These interacting actors form a connected social network or

some isolated sub-networks. Since we assume the social relations to be symmetric, there

are M = n(n− 1)/2 possible ties among the actors. Practically, the set of existing relations

is a very small subset of the possible relations. This fact addresses an important metric of

social network called sparsity:

SN = 1−
2nr

n(n− 1)
(7.1)

where nr = the number of ties in the network.

Social networks are usually very sparse graphs. High sparsity can create isolated sub-

networks or even isolated actors. On the other hand, low sparsity increases the density

of the network, in which every actor is connected to the others. In this case, the network

seems to have no social benefits for its members.

Social networks are represented either by graphs called socio-graph or matrices called

socio-matrix (adjacency matrix). Let RT = {rk ∈ {0, 1}|0 ≤ k ≤ q}, q ≪ M be the

incomplete set of known ties among the actors of A. The objective is, using the textual

data D = {D1, D2, ..., Dn}, which are associated with the actors, to learn new relations in

order to complete and enrich the social network(s). In other words, the adjacency matrix

AT is given (Table (7.1-A)), the goal is learning the adjacency matrix AE, which is the

complete social network (Table (7.1-B)).
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Table 7.1: Two socio-matrices: (a) incomplete matrix (training examples), (b) complete

matrix (learned socio-matrix).
(A) (B)

0 ? 0 ? 1

? 0 ? ? 0

0 ? 0 1 ?

? ? 1 0 0

1 0 ? 0 0

0 1 0 1 1

1 0 0 0 0

0 0 0 1 1

1 0 1 0 0

1 0 1 0 0

7.5 Learning Social Networks from Unbalanced Text Data

Learning a social network is to explore the relationships among the actors of a commu-

nity. In addition to the structural methods, which require structured data, statistical ap-

proaches such as data mining techniques may provide more comprehensive frameworks

by which to extract social structures. By employing text mining techniques, the social

network generation system may learn non-trivial patterns, similarities, and association

among the actors in the community.

In order to extract information about people, we need sufficient resources from or

about them. The information may include news, personal home pages, web logs, publi-

cations, resumes, and so on. In the proposed approach, we assume that two input data

are available:

1. a subset of relations represented by RT;

2. the textual data D associated with the actors.

Learning social networks is performed in three steps:

1. actor representation;

2. relationship representation;

3. classifier design to learn unknown relations of the network.

7.5.1 Actor Representation

In this approach, each actor is represented by her web documents, including home page,

blog, CV and so on. All documents associated with an individual are merged together to
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build a unique document vector. Every document Di ∈ D is associated with an individ-

ual actor where D is the actor-term matrix. Using the vector space model, each actor is

represented by a set of single-word terms as follows:

Di = { wi,jtj|1 ≤ i ≤ n, 1 ≤ j ≤ m} (7.2)

where wi,j = the weight of term j in the web documents associated with the actor i;

ti = the ith term in the vocabulary T.

The weight wi,j is calculated by a weighting technique. All weighting techniques include

two parts, global and local weighting. The global weighting assigns a weight to the term

based on its significance across the collection, while the local one estimates the importance

of the term in a particular document. In this research, the TF × IDF weighting scheme

is used. It consists of a TF local weighting and an IDF global weighting. A normalized

version of TF× IDF is as follows

TF× IDF(i, j) =
TFi,j

log
n(tj)

n

/

√

√

√

√∑
n(Di)
i=1 (

TFi,j

log
n(tj)

n

)2 (7.3)

where n(tj) = the number of documents in which the term j appears;

TFi,j = the number of occurrences of the jth term within the ith document;

n(Di) = the length of the document vector Di associated with the actor ai.

After performing two preprocessing tasks, including stemming and general stopword

reduction, two DF thresholds are applied. All terms with document frequency less than

5 and more than 100 are removed.

Another approach to representing the actors is Latent Semantic Indexing (LSI) or gen-

eralized vector space model [64]. LSI has been inspired from Singular Value Decompo-

sition (SVD) to capture major associative patterns in the data. LSI not only reflects the

significant associations, which can be interpreted as semantic relations, but also ignores

minor influences. By applying this technique, an effective dimensionality reduction is

achieved in addition to extracting more relevant features at the same time [16]. The other

approach is to represent each actor with its associated keywords. In this approach, we

need to extract keywords from the corresponding documents [79].

7.5.2 Relationship Representation

One simple approach to representing the relation between two actors is to estimate the

similarity of their document vectors. The similarity measure is calculated by various
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formulations such as Cosine, Jaccard, and Correlation [79, 64]. This approach offers very

poor results because it describes each relation by only one feature, which is not enough

for this classification problem.

A better approach is to aggregate the document vectors of the actors in both sides

of the relation and create a new aggregated vector. By this operation, the new vector

represents the relation instead of the actors. Let Di and Dj be the document vectors as-

sociated with the actors ai and aj, respectively. The relation between the two actors is

represented by their aggregated vectors. The vectors are aggregated by an operator such

as MIN, MAX, or Product. While working with binary features, operators such as AND

or OR may also be used. Here, due to the use of weighted features, a MAX operator is

employed to generate aggregated vectors.

We call the aggregated vector relation vector. The relation vector is obtained as follows:

Wi,j = { max(wi,k, wj,k)|1 ≤ i, j ≤ n, 1 ≤ k ≤ m} (7.4)

The vector aggregation using MAX operator offers better results compared to MIN and

Product. The reason can be explained as follows: When applying MAX operator on two

vectors, a resulting, sparse vector shows the closeness and similarity of two aggregated

document vectors. On the other hand, a scattered result reflects existing dissimilarity and

difference between the two vectors. As a result, this model offers a more discriminating

feature vector, which is required to design the classifier. Therefore, MIN and Product can-

not generate discriminating feature vectors, because they tend to represent more compact

vectors.

7.5.3 Classifier Design for Imbalance Social Network Data

Given n actors in a social network with symmetric relations, they can be connected to each

other by M = n(n− 1)/2 possible relations. The problem of learning social networks is a

search problem in this large space. Using vector space model representation, each relation

is modeled by a vector of m terms. Since by this formulation, every relation is represented

by an aggregated document vector, the problem of learning social networks is translated

into a text classification problem.

From (7.4), we define relation-term matrix W ∈ R
M×m, in which every column is the

distribution of the term across the relation space. In a classification model, the label of

each relation vector can be either 1 or 0 addressing relation (connected link) or no relation

(broken link), respectively.
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Let W be the relation space modeled by document aggregation, andR = {0, 1} be the

set of classes. Let us suppose there is a classifier such as h, which is defined as

h : W→ R (7.5)

where h = a many-to-one mapping of the documents to the binary class space.

As labels of training data, the labels of q relations out of M possible relations are given

(q ≪ M). The label of each relation is either connected = 1 or broken = 0, which are

mapped to the positive and negative classes, respectively.

Using a classifier, M − q remaining relations are predicted. Due to one of the essen-

tial properties of social networks among M relations, very few are positive or connected,

which addresses the sparsity of the social network structure. Since the training data is

randomly sampled from the real social network, its sparsity is directly linked to the class

imbalance of the classifier. From (7.1), only nr relations are positive and M− nr are neg-

ative, which means the class imbalance is nr : M − nr or approximately nr : M since

nr ≪ M.

Learning social networks is a binary class problem. The training data for this problem

is extremely unbalanced, such that the data samples are non-uniformly distributed across

the two classes. The class imbalance, also known as class skew, may dominate the support

vectors in SVM and does not let the samples in the minority class effectively contribute in

the training process.

In social network analysis, the focus is mostly on the connected ties or positive classes

(class = 1). For example, in crime investigation and policing, tracking disease transmis-

sion, and other critical issues, investigating the connections is more important than the

broken ties. Then class imbalance may hurt the performance of learning social networks,

because it ignores the positive examples in the minority class and will focus primarily on

the majority class, including negative samples.

A common approach to dealing with class imbalance is to artificially re-balance the

training data. Two well-known techniques are up-sampling the minority and down-

sampling the majority classes [59, 66]. A multiple-resampling approach can also be ap-

plied to improve the classifier performance [68].

In this thesis, we consider the problem of learning social networks as a case study to

deal with imbalance data at a feature level rather than data and algorithm levels [111].

In Chapter 3, the impact of feature ranking-based feature selection on the classifier per-

formance of imbalance data was explained. It was empirically stated that the majority of
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feature ranking methods fail in the case of unbalanced class distribution. In the next sec-

tion, we propose a new technique to deal with class imbalance at the feature level using

local feature selection.

7.6 Reverse Discrimination: Re-balancing Unbalanced Data

at Feature Level

The major motivation to re-balance unbalanced data at the feature space level is to im-

prove the performance of feature ranking methods when applied to unbalanced data.

In Chapter 3, we empirically stated that, in unbalanced data, feature ranking methods

tend to select features from majority and simple classes rather than minority and difficult

classes. In other words, feature ranking methods are unable to be fair in the case of class

imbalance. By increasing the level of imbalance, the chance of having representative fea-

tures from the minority class decreases. The consequence is a high misclassification rate

of the minority class, which is primarily the target class.

Inspired from social science, reverse (positive) discrimination [56] in feature ranking is

proposed. From Wikipedia [119]:

“Affirmative Action refers to concrete steps that are taken to promote access to

education or employment aimed at a historically socio-politically non-dominant

group; typically people of color or women. Motivation for Affirmative Action

policies (sometimes referred to as Positive or Reverse Discrimination) is to re-

dress the effects of past discrimination and to encourage public institutions

such as Universities, Hospitals and Police forces to be more representative of

the population.”

In the reverse discrimination approach, the goal is to design a fair representation of

all classes in feature selection using a feature ranking scheme. Simply defined, in the

reverse discrimination approach, features are locally ranked and selected for each class.

In the next step, for each category and using the corresponding feature vector, a classifier

is designed. Finally, the results of all classifiers are combined by an aggregation method

such as maximum weight or majority vote [50].

To implement a reverse discrimination-based feature ranking, a local feature rank-

ing measure, such as OR or χ2, is required. Local feature ranking measures produce a

category-term ranking matrix instead of a ranked feature vector. Let φ be a local feature

ranking measure. We have
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F =











φ(t1, c1) φ(t2, c1) ... φ(tm, c1)

φ(t1, c2) φ(t2, c2) ... φ(tm, c2)

...

φ(t1, cC) φ(t2, cC) ... φ(tm, cC)











(7.6)

where F = the category-term ranking matrix.

From Chapter 2, φ(tj, ck) is the weight of feature tj in class ck. The features are sorted

C times according to their scores in the rows of F. The result includes C feature vectors

V = {V1, V2, ..., VC}, each of which is suited for one separate class. In the next step, a

threshold αk is applied to each feature vector Vk. Using C different thresholds, we can

control the feature distribution over classes. In other words, by choosing appropriate

threshold values, an efficiently balanced data might be achieved. Intuitively, a feature

vector of a larger class needs a lower threshold, while the vector of a smaller one requires

a higher threshold value. In this thesis, we use only one threshold value for all vectors,

i.e., α1 = α2 = ... = αC.

Let h = {h(Vα1
1 ), h(Vα2

2 ), ..., h(VαC
C )} be the set of classifiers. Here, we use same clas-

sifier algorithms for all feature vectors. The aggregated classifier result is estimated as

follow:

h∗ = Γ(h(Vα1
1 ), h(Vα2

2 ), ..., h(V
αC
C )) (7.7)

where Γ = the aggregation function.

In this research, a maximum operator is employed as the aggregation function.

7.7 Experimental Results

A Rocchio text classifier is applied to learn social relations from a subset of the FOAF

data set described in Appendix A. Because of highly unbalanced training data, reverse

discrimination-based feature ranking is applied. Figure (7.1) shows the comprehensive

results of the classifier using the reverse discrimination (local) approach and the regular

(global) feature ranking. The experiments are performed for 200 filter levels. After pre-

processing, the total number of terms in the vocabulary is 2, 910. Considering the overall

macro-averaged F-measure of the classifier, the proposed method outperforms the global

feature ranking method. Although the macro-average of χ2 in both methods is better

than that of OR ranking measure, we prefer to use OR ranking because it offers superior

results for learning the minority class.
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From Chapter 3, the behavior of class imbalance can be analyzed by sparsity mea-

sure. Let SPN and SNN be the sparsity of training documents belonging to the minority

(positive) and majority (negative) class, respectively. Figure (7.2) depicts the normalized

sparsity of the minority class (SPN/(SPN + SNN). We learn from Chapter 3 that the lower

sparsity level implies a more compact learning model, offering better performance and

accuracy. For both feature ranking measures (OR and χ2), the reverse discrimination ap-

proach guarantees lower class sparsity than that of the global ranking approach.

7.8 Conclusion

A text classifier framework to predict social relations using web documents was pro-

posed. It has been shown that the sparse characteristic of social networks causes high

class imbalance, which degrades the performance of supervised learning. To deal with

the class imbalance, a feature-level re-balance scheme, feature ranking based on reverse

discrimination, was proposed. In the proposed approach, the feature ranking method is

compelled to select features fairly from all classes, with especial attention to the minority

class (here, the positive class).

The Rocchio text classifier enjoys better performance using the proposed method.

However, our experiments show that feature ranking based on reverse discrimination

cannot improve SVM classifier performance. It can be explained as follows: SVM classi-

fier is sensitive to training data rather than feature space. In SVM classifier, only a small

portion of training examples, also known as support vectors, are really used to train the

classification boundary. In the lack of the support vectors, balancing feature space cannot

compensate for this shortage. On the other hand, multiple re-sampling techniques, due to

the generating of new data samples, may provide support vectors [66,68]. We also expect

that combining a feature level re-balance approach with data-level multiple samplings

may offer promising results.
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Figure 7.1: Macro-averaged F-measure and F-measure of the majority and minority class

using reverse discrimination or local ranking (solid lines), and global (dashed) feature

ranking method for OR and χ2.
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Figure 7.2: Sparsity of the minority class vs. filter level using global feature ranking

(dashed lines), and reverse discrimination or local feature ranking (Solid lines).



Chapter 8

Conclusion and Future Work

The overall aim of this thesis was mainly to characterize the behavior of feature rank-

ing methods in text classifiers, identify their drawbacks, and propose effective models,

techniques, and algorithms to handle their deficiencies.

The first part of the thesis was devoted to highlighting the advantages and disad-

vantages of feature ranking methods. Focusing on the disadvantages, we studied the

behavior of feature ranking methods by a set of experiments in different scenarios. Ac-

cording to the findings, the feature ranking-based feature selection techniques fail in two

major cases: (i) filtering out the term redundancies; and (ii) the problem of unbalanced

data classification. Additionally, the ranking methods are very domain specific and suffer

from a high problem dependency.

In the second part, which includes the major contributions of the thesis, a set of mod-

els, algorithms, and measures were proposed to enhance the performance of feature rank-

ing methods for text classifiers.

8.1 Contributions

• Experiments to show the drawbacks of feature ranking methods.

– According to the findings in Section 3.2.2, redundant terms not only have no

discriminating benefits for the classifier, but also reduce the chance that other

less informative but non-redundant terms can contribute to the classification

process.

– A new ranking method called Single Term Prediction (STP), which ranks the

terms based on their individual discriminant capacity, was proposed. In Sec-

107
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tion 3.2.1 we showed that STP ranking always performs very poorly as com-

pared to the other methods, including random ranking. It suggests ignoring

the correlation and dependency between terms is as destructive as noise in fea-

ture ranking.

– In Section 3.3, failing in multi-class problems, especially with high class distri-

bution imbalance was discussed. We showed that any class distribution imbal-

ance affects classifier performance through increasing or decreasing the degree

of local (class) sparsities. Because of high dimensional feature space in text clas-

sification problems, more important than having a balanced training samples

is the need to have all classes in the training data balanced and compact.

• Two new feature ranking measures. In Section 2.5, two new ranking measures

NIG and CDF were proposed. We explained that by using NIG, we can bound

IG measure with the weight of the term (e.g. its document frequency). In Section

4.6, the effectiveness of NIG was experimentally demonstrated. It outperformed the

well-known IG and Max(χ2) ranking measures in four out of six data sets. The other

proposed measure, CDF, is technically a supervised version of IDF. In one case (out

of six data sets), it outperformed other ranking measures.

• DFLP Method for Evaluating Feature Ranking Measures. To deal with high prob-

lem dependency of feature ranking methods, in Chapter 4 the notion of backward

and forward FLP as hybrid models was proposed to evaluate the performance of

feature ranking measures. Based on this objective framework, feature meta-ranking

strategy was introduced to rank the candidate feature ranking measures based on

their DFLP measures and select the one best-suited to the problem. We also proved

that, in the ideal case, the classifier performance increases as we increase the number

of features, regardless of how we ranked them.

• Extracting Domain-Specific Stopwords. In Chapter 5, the concept of domain-specific

stopwords was introduced. Using an approximate estimation of FLP measure using

the global sparsity of training data, domain-specific stoplists for six data sets were

extracted. We proposed a machine learning evaluation measure and the amount

of misclassification rate, instead of information retrieval evaluation framework to

assess the extracted stoplists.

• A New Asymmetric Dependency Measure: Information Theoretic Inclusion In-

dex. In Chapter 6, a new measure of asymmetric dependency based on mutual
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information, which is called inclusion index, was introduced. This measure is a

weighted version of mutual information between two features ti and tj. The mutual

information for feature ti is weighed against the information provided by the other

feature tj.

• Redundancy Reduction Using Term Dependency Tree. An algorithm to extract re-

dundant terms was proposed in Section 6.6. The algorithm was based on a newly

proposed term dependency tree, which is constructed by estimating the pair-wise

inclusion measures. All nodes in the tree are clustered according to their outdegree

values. The nodes with outdegree less than two are grouped as Link nodes. We

showed that these nodes are potentially redundant. By proposing the notion of sub-

stitution cost in section 6.5, an objective function was introduced to decide whether

a Link node should be removed or not. Experimental results showed that the pro-

posed approach outperformed the aggressive feature selection by the stand-alone

IG for most data sets with a weak classifier such as Rocchio.

• Reverse Discrimination in Feature Ranking. In Chapter 7 a local feature ranking

for unbalanced data was proposed, based on the idea of reverse discrimination to

re-balance the local (class) sparsity of training data. In this scheme, feature ranking

is forced to select fairly the representative features from all classes, in particular the

small ones. According to the experimental results in Section 7.7, the Rocchio text

classifier enjoys better performance using the proposed method.

• A Supervised Learning Framework for Learning Social Networks from Text data.

The problem of extracting social networks, which is a classification problem of highly

unbalanced data, was investigated as a case study to experiment with the local fea-

ture rankling scheme. In Section 7.5, first we suggested a text classification approach

to learning social networks, and next, a classification framework is proposed for

learning unexplored social links from an incomplete, small set of known relations.

We also proposed the document aggregation model instead of the document simi-

larity for representing the links between actors in a community.

8.2 Future Work

This thesis is ended here, but we believe that the research in this area should be continued.

Working on feature ranking schemes for text classifiers directly and indirectly opened
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some new opportunities in text mining research.

• DNA Microarray and Gene Expression Data. In this research, we mainly focused

on the text mining application. We are also interested in applying the DFLP measure

and meta-ranking framework to other high dimensional data such as DNA microar-

ray and gene expression data. The idea of stopword extraction in text mining can

be adopted by bioinformatics applications to extract noise and irrelevant features.

• Feature Ranking for Unsupervised Feature Selection. The supervised dimension-

ality reduction techniques, compared to the unsupervised examples are more suc-

cessful and well-appreciated by researchers in text categorization. In the lack of effi-

cient feature ranking methods for text clustering, the IDF ranking method is widely

used. We showed in this thesis that relying on IDF measure for feature ranking can

be very risky, especially when dealing with unbalanced categories. One interesting

topic can be designing efficient term ranking measures for text clustering applica-

tions.

• Ontology Learning and Taxonomy Extraction Using Term Dependency Tree. The

idea of term dependency tree may provide a framework to extract taxonomies for

ontology learning. Let T = {t1, t2, ..., tq} be the set of terms, realizing domain-

specific concepts, also known as terminology. Terms can be extracted from a corpus

in domain D. The problem of taxonomy extraction is to learn links between the

terms in T. Using the idea of term dependency tree and an information theoretic

inclusion index, we are able to extract approximately the links.

One practical application of taxonomy extraction is in metadata enrichment. Re-

cently, Folksonomy, user generated taxonomy, has become a popular approach to

generating metadata for large databases. One well-known example is Flickr1 photo-

sharing web site. People can post and share their photos on the web site and gener-

ate their own metadata (tag) for the photos. One problem with this type of tagging

is that it generates flat (not hierarchial) metadata. To provide semantic search and

retrieval, we need to give depth to the tag list by building a taxonomy (hierarchial

metadata) from the given tags.

1http://www.flickr.com/
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8.3 Publication Resulting from this Work

• Book Chapter

– M. Makrehchi, M. S. Kamel. Aggressive Feature Selection by Feature Rank-

ing. In Computational Methods of Feature Selection, Huan Liu and Hiroshi

Motoda, Eds.; Chapman and Hall/CRC Press, 2007 (in press).

• Journal

– M. Makrehchi, M. S. Kamel. Differential Filter Level Performance for Eval-

uating Feature Ranking Measures in Text Classifiers, Submitted to Knowledge

and Information Systems Journal.

– M. Makrehchi, M. S. Kamel. Extracting Domain-Specific Stopwords Using

Sparsity Based Estimation of Classifier Performance, Submitted to The IEEE

Transaction on Knowledge and Data Engineering Journal.

– M. Makrehchi, M. S. Kamel. Impact of Term Dependency and Class Imbal-

ance on Performance of Feature Ranking Methods for Text Classifiers, Sub-

mitted to the Journal of Pattern Analysis and Applications.

– M. Makrehchi, M. S. Kamel. Learning Social Network from Content, To be

submitted to Knowledge and Information Systems Journal.

• Conference

– M. Makrehchi, M. S. Kamel. Automatic Taxonomy Extraction Using Google

and Term Dependency, Accepted in the 2007 IEEE/WIC/ACM International Con-

ference on Web Intelligence (WI’07), to be held in Silicon Valley, CA, USA, 2 - 5 Nov.

2007.

– M. Makrehchi, M. S. Kamel. A Text Classification Framework with a Local

Feature Ranking for Learning Social Networks, Accepted in the 2007 IEEE In-

ternational Conference on Data Mining, (ICDM 2007), to be held in Omaha, NE,

USA, 28 - 31 Oct. 2007.

– M. Makrehchi, M. S. Kamel. Learning Term Dependency Links Using Infor-

mation Theoretic Inclusion Measure, Accepted in the 2007 ICDM Workshop on

Mining Graphs and Complex Structures (MGCS2007), to be held in Omaha, NE,

USA, 28 - 31 Oct. 2007.
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– M. Makrehchi, M. S. Kamel. Combining Feature Ranking for Text Classifica-

tion, Accepted in 2007 IEEE International Conference on Systems, Man and Cyber-

netics, to be held in Montreal, Canada, 7 - 10 Oct. 2007.

– M. Makrehchi, M. S. Kamel. Learning Social Networks Using Multiple Re-

sampling Method, Accepted in 2007 IEEE International Conference on Systems,

Man and Cybernetics, to be held in Montreal, Canada, 7 - 10 Oct. 2007.

– M. Makrehchi, M. S. Kamel. Learning Social Networks from Web Documents

Using Support Vector Classifiers, The 2006 IEEE/WIC/ACM International Con-

ference on Web Intelligence, Hong Kong, Dec. 18 - 22, 2006.

– M. Makrehchi, M. S. Kamel. Building Social Networks from Web Documents:

A Text Mining Approach, The 2nd LORNET Scientific Conference, Vancouver, BC,

Canada, Nov. 14-18, 2005.

– M. Makrehchi, M. S. Kamel. Text Classification Using Small Number of Fea-

tures, Machine Learning and Data Mining Conference (MLDM2005), Leipzig, Ger-

many, pp. 580–589, July 9–11, 2005.

– M. Makrehchi, M. S. Kamel. A Fuzzy Set Approach to Extracting Keywords

from Abstracts, NAFIPS-IEEE Annual Meeting of the Fuzzy Information Process-

ing, Banff, Canada, pp. 528–532, June 27–30, 2004.



Appendix A

Data Sets

A.1 Document Data Sets

Six document data sets, including four well-known benchmark collections and two data

sets created by the authors, have been used in this paper. All data sets are preprocessed by

Porter stemmer, and stopword reduction using a general stoplist. In a few cases, empty

or very small documents and classes containing less than three documents have been

removed from the data base. Table A.1 depicts some statistics of the data sets used in this

paper.

A.1.1 Industry Sectors

This data set contains company web pages, which are hierarchically classified into 71

categories [72]. To reduce the number of classes, the documents in the classes of the same

hierarchy are merged into seven larger categories. The resulting set of categories consists

Table A.1: The data sets statistics.

Parameter Industry Sectors LO Metadata 20 Newsgroups Reuters WebKB CS Abstracts

Number of documents 4018 1525 19997 7181 48852 2912

Number of terms 30943 9206 28983 17138 75636 19722

term per document 329.18± 648.55 164.14± 48.98 105.63± 79.90 46.51± 40.89 86.53± 416.00 217.95± 61.58

Number of classes 7 31 20 20 7 17

document per class 574.00± 295.94 49.19± 13.47 999.85± 0.67 359.50± 447.48 6978.86± 5183.52 171.29± 30.31

term per class 107.95± 11.98 84.85± 13.85 105.63± 19.31 57.95± 13.90 26.24± 7.83 219.06± 11.16

sparsity (%) 99.6571 99.0860 99.6355 99.7286 99.9629 98.8949

low-DF threshold 1 1 3 not available 1 3

Number of terms removed by stopword 419 382 1350 not available 432 997

Number of terms removed by stemming 9491 4049 16319 not available 15330 9173
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of “materials”, “energy”, “financial”, “health-care”, “technology”, “transportation”, and

“utilities”.

A.1.2 20 Newsgroups

This data set was first employed in [42]. The collection includes about 20, 000 documents,

which are uniformly distributed into 20 classes. This data set is a good example of a

homogeneous and uniform data set (with minimum class distribution imbalance), which

makes it for the classification easy even for weak classifiers.

A.1.3 Reuters

The Reuters document collection is a well-known benchmark data set for text categoriza-

tion algorithms [57]. The original version, in terms of class imbalance, the distribution

of terms in documents and classes, and the number of classes, is a difficult data set for

classification. In this paper, a small version of the Reuters is employed, including only 20

classes.

A.1.4 WebKB

This data set [13] is one of the worst collections for categorization for two reasons: (i) very

scattered vocabulary (the distribution of features across classes); and (ii) high imbalance.

The data set includes 48, 852 documents distributed across seven categories.

A.1.5 The Learning Object Metadata (LO Metadata)

This data set has been collected from the Schoolnet Canada1 for the Learning Objects

Repositories NETwork (LORNET) project, supported by the National Science and Engi-

neering Research Council of Canada. The collection contains 1, 525 learning object meta-

data that are classified into 31 categories.

A.1.6 Computer Science Abstracts

This data set have been also collected by the authors from CiteSeer Computer Science

Directory2 for keyword extraction research. The collection contains 2, 912 documents in

1http : //www.schoolnet.ca/home/e/resources/
2http : //citeseer.ist.psu.edu/directory.html
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17 categories.

A.2 Social Network Data

In this research, a real FOAF database contains 210, 611 RDF triples is used (see Appendix

A) [18, 108]. We searched the database using two queries to explore two types of infor-

mation: (i) Relations between the individuals; and (ii) Any web resource addresses and

URLs related to the individuals. The first information, which represents a set of true social

networks and can be called descriptive social network, is used for training and evalua-

tion purpose. The second queried information is used to construct vector space model

of actors by downloading their web resources, which includes, home pages, blogs, re-

sumes, articles, papers, and so on. We use downloaded data to build actor-term matrix

and model the actor-actor relationship based on merging their document vectors. Using

a small portion of relations in the true social network as training data, the missing rela-

tions are approximately predicted. This resulting network can be considered as predictive

social network.

The set of actors includes 34, 275 individuals, which are connected together through

33, 419 ties out of 587, 370, 675 possible relationship. The database represents an extremely

sparse (%99.99) social network. If we use this data set as the training data, and assume

a relation between two actors as positive class and a no-relation as negative class, it ad-

dresses a very unbalanced (1 : 17, 575) classification problem. One alternative solution

is breaking the database into small sub-graphs. For example, Figure (A.1-a) represents

a subset of the social networks, in which both actors of all relations have downloadable

web resources. It includes 2, 933 actors, which build some social networks with 2, 641 ties

out of 42, 99, 778 relations. The sparsity index is negligibly decreased to %99.94, while the

class imbalance is dramatically reduced to (1 : 1, 627).

The resulting database is still very big. It is downsized once more into a small subset

of the social database by removing very large and very small (with less than 20 and more

than 70 members) social networks. Figure (A.1-b) illustrates the final networks for train-

ing and evaluation purpose. The number of actors is 254, which are interconnected by

246 ties out of 32, 131. The sparsity index is %99.21 with class imbalance of 1 : 130, which

is still challenging for classification algorithms.

In the FOAF metadata collection, the relationships are described by various vocabu-

laries. Table A.2 shows the vocabulary used for querying the relations. Table A.2 depicts

the keywords to search URLs associated to each individual.
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Table A.2: The vocabulary for querying the relations among the individuals.

http://purl.org/vocab/relationship/knowByRep

http://purl.org/vocab/relationship/knowByReputation

http://purl.org/vocab/relationship/knowInPass

http://purl.org/vocab/relationship/knowInPassing

http://purl.org/vocab/relationship/wouldLikeToKnow

http://purl.org/vocab/relationshipknowsByReputation

http://purl.org/vocab/relationshipwouldLikeToKnow

http://www.perceive.net/schemas/relationship/knowsOf

http://www.w3.org/1999/02/22-rdf-syntax-ns#knows

http://xmlns.com/foaf/0.1/knowns http://xmlns.com/foaf/0.1/knows

Table A.3: The vocabulary for querying the web URLs of the individuals.

http://owl.mindswap.org/2003/ont/owlweb.rdf#mindswapHomepage

http://www.w3.org/2000/01/rdf-schema#homepage

http://www.w3.org/2000/10/swap/pim/contact#homePage

http://xmlns.com/foaf/0.1/groupHomepage

http://xmlns.com/foaf/0.1/homepage

http://xmlns.com/foaf/0.1/projectHomepage

http://xmlns.com/foaf/0.1/publication

http://xmlns.com/foaf/0.1/publications

http://xmlns.com/foaf/0.1/schoolHomepage

http://xmlns.com/foaf/0.1/weblog

http://xmlns.com/foaf/0.1/workInfoHomepage

http://xmlns.com/foaf/0.1/workOrgHomepage

http://xmlns.com/foaf/0.1/workplaceHomepage
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(a) (b)

Figure A.1: FOAF data set, (a) all social networks, (b) a subset of FOAF data set.

Degree measure, which is estimated by the the number of ties associated to an actor,

is an important measure for social network analysis [118]. According to [108], degree

measure in social network data bases follows the Zifp’s law, in which a few actors have

many ties while many others have very few. (Figure (A.2)). Due to this fact, the networks

with very small and vary large number of actors are removed from the database.
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Figure A.2: The Zipf’s law for the FOAF data set.



Appendix B

List of Symbols

A set of actors in a community

Aτ area under FLP

ai actor i in a community

C set of category labels

C number of categories

CDF(tj , ck) category-document frequency

ck category k

D document space

D Training data set (represented by document-term matrix)

Di ith document of the training data set

DFV(tj) document frequency variance

F category-term ranking matrix

Fn False-Negative

Fp False-Positive

Fmeasure F-measure

G generalization ability or learn-ability of a classifier
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H classifier space

H(tj) term entropy

H(t1, t2, ..., tm) joint entropy

H(ck|tj) conditional entropy

Hn(ti|tj) normalized conditional entropy

Hs(V) head of sequence V

h a subset of classifiers h ⊂ H

h classifier

I(x; y) mutual information

IDF(tj) inverse document frequency

IG(tj, ck) local information gain

IG(tj) global information gain

J(T) classifier performance using feature vector T

K resolution

KD constants depending on the type of classifier and the data set

in estimating classifier performance by global sparsity

KJH scaling factor

LDF(tj) local document frequency

M number of all possible ties

MI(t1, t2, ..., tm) the summation all mutual information values

m number of terms in the vocabulary

NIG(tj) normalized information gain

NMI(ti ; tj) normalized mutual information

n number of documents in the training data set

n(ti , tj) the number of documents in the training data containing ti and tj

n(ti) number of documents in the training data containing ti

nl the size of larger class in class imbalance scenario

ns the size of smaller class in class imbalance scenario

nk the number of samples in class k

nr number of ties (relations)

OC outlier count

odds(tj |ck) odds value

OR(tj, ck) odds ratio
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P(V) power sequence of V

P(x) probability

P(ti , ck) joint probability distribution of a term and a category

P(ck|tj) the conditional probability of ck given term tj

Pc(tj, ck) precision of classification rule tj → ck

Pc precision

q number of selected features (q < m)

RT the set of training ties

R the set of relation labels {0, 1}

Rc(tj, ck) recall of classification rule tj → ck

Rc recall

RND random feature ranking

S subsequence of a feature ranking sequence

S global sparsity of training data

SN social network sparsity

SPN sparsity of training documents belong to the minority or positive class

SNN sparsity of training documents belong to the majority or negative class

STP single term prediction ranking

S(ck) local sparsity of class k

sχ2(tj, ck) simplified χ2

T (tj, ck) threshold function

T vocabulary (list of terms)

TF× IDF term frequency, inverse document frequency weighting

Tn True-Negative

Tp True-Positive

Ts(V) tail of sequence V

tj term j of the vocabulary

V the set of local feature vectors

V feature ranking sequence

W relation-term matrix

Wi,j aggregated vector of actors i and j

wi,j weight of term j in document i

xi number of distinct words in the ith document or the number of

non-zero entries in the ith row of the document-term matrix
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α filter level (feature ranking threshold)

β F-measure parameter

χ2 χ2 distribution

∆φ(tj) substitution cost of tj

δFLP differential filter level performance measure

ǫh classifier errors corresponding to the set of classifiers h

Γ aggregation function

γ constant depending on the type of classifier and the data set

in estimating classifier performance by global sparisty

Λ backward feature ranking sequence

µIG mean of information gain scores

Φ term ranking vector

Φ
− inverted feature score vector

φ(tj, ck) category-term weight representing the relevance of the term j to the class k

φ feature ranking measure

φ(tj) feature ranking score of term tj

σIG standard deviation of information gain scores

τ maximum filter level or threshold

τc category-term frequency threshold

τd correlation threshold

τs substitution cost threshold

θ(ti , tj) inclusion index

ζ sort function
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